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Preface 

Data warehousing and knowledge discovery are increasingly becoming mission-critical 
technologies for most organizations, both commercial and public, as it becomes increas-
ingly important to derive important knowledge from both internal and external data 
sources. With the ever growing amount and complexity of the data and information 
available for decision making, the process of data integration, analysis, and knowledge 
discovery continues to meet new challenges, leading to a wealth of new and exciting 
research challenges within the area.  

Over the last decade, the International Conference on Data Warehousing and 
Knowledge Discovery (DaWaK) has established itself as one of the most important 
international scientific events within data warehousing and knowledge discovery. 
DaWaK brings together a wide range of researchers and practitioners working on 
these topics. The DaWaK conference series thus serves as a leading forum for discuss-
ing novel research results and experiences within data warehousing and knowledge 
discovery. This year’s conference, the 11th International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK 2009), continued the tradition by dis-
seminating and discussing innovative models, methods, algorithms, and solutions to 
the challenges faced by data warehousing and knowledge discovery technologies.  

The papers presented at DaWaK 2009 covered a wide range of aspects within data 
warehousing and knowledge discovery. Within data warehousing and analytical process-
ing, the topics covered data warehouse modeling including advanced issues such as 
spatio-temporal warehouses and DW security, OLAP on data streams, physical design of 
data warehouses, storage and query processing for data cubes, advanced analytics func-
tionality, and OLAP recommendation. Within knowledge discovery and data mining, the 
topics included stream mining, pattern mining for advanced types of patterns, advanced 
rule mining issues, advanced clustering techniques, spatio-temporal data mining, data 
mining applications, as well as a number of advanced data mining techniques. It was 
encouraging to see that many papers covered emerging important issues such as spatio-
temporal data, streaming data, non-standard pattern types, advanced types of data cubes, 
complex analytical functionality including recommendations, multimedia data, mssing 
and noisy data, as well as real-world applications within genetics and within the clothing 
and telecom industries. The wide range of topics bears witness to the fact that the data 
warehousing and knowledge discovery field is dynamically responding to the new chal-
lenges posed by novel types of data and applications.  

From 124 submitted abstracts, we received 100 papers from 17 countries in 
Europe, North America and Asia. The Program Committee finally selected 36 papers, 
yielding an acceptance rate of 36%.  

We would like to express our most sincere gratitude to the members of the Program 
Committee and the external reviewers, who made a huge effort to review the papers in 
a timely and thorough manner. Due to the tight timing constraints and the high number 
of submissions, the reviewing and discussion process was a very challenging task, but 
the commitment of the reviewers ensured that a very satisfactory result was achieved. 



 Preface VI 

We would also like to thank all authors who submitted papers to DaWaK 2009, for 
their contribution to making the technical program so excellent.  

Finally, we extend our warmest thanks to Gabriela Wagner for delivering an out-
standing level of support within all aspects of the practical organization of DaWaK 
2009. We also thank Amin Anjomshoaa for his support with the conference manage-
ment software.  
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New Challenges in Information Integration 

Laura M. Haas1 and Aya Soffer2 
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laura@almaden.ibm.com, ayas@il.ibm.com 

Abstract. Information integration is the cornerstone of modern business infor-
matics.  It is a pervasive problem; rarely is a new application built without an 
initial phase of gathering and integrating information.  Information integration 
comes in a wide variety of forms.  Historically, two major approaches were rec-
ognized: data federation and data warehousing.  Today, we need new ap-
proaches, as information integration becomes more dynamic, while coping with 
growing volumes of increasingly dirty and diverse data.  At the same time, in-
formation integration must be coupled more tightly with the applications and 
the analytics that will leverage the integrated results, to make the integration 
process more tractable and the results more consumable.   

Keywords: Information integration, analytics, data federation, data warehous-
ing, business intelligence solutions. 

1   Introduction 

Information integration is the cornerstone of modern business informatics.  Every 
business, organization, and today, every individual, routinely deals with a broad range 
of data sources.  Almost any professional or business task we undertake causes us to 
integrate information from some subset of those sources.  A company needing a new 
customer management application may start by building a warehouse with an inte-
grated and clean record of all information about its customers from legacy data stores 
and newer databases supporting web applications.  A healthcare organization needs to 
integrate data on its patients from many siloed laboratory systems and potentially 
other hospitals or doctors’ offices.  Individuals planning their trip to Austria may 
integrate information from several different web sites and databases. 

There are many information integration problems [1]. Different environments, data 
sources, and goals have led to a proliferation of information integration technologies 
and tools [2], each addressing a different piece of the information integration process, 
for a particular context.  There are tools to help explore data on the web, tools to track 
metadata in an enterprise, and tools to help identify common objects in different data 
sources. Other technologies focus on information transformation, specifying what 
data should be transformed and how to transform it, or actually doing the transforma-
tion to create the needed data set.  

Two major technologies for information integration are data warehousing and data 
federation.  Data warehousing materializes the integrated information, typically lever-
aging Extract/Transform/Load (ETL) tools to do scalable processing of complex 
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transforms. Data federation, on the other hand, is a form of virtual integration; the 
data is brought together as it is needed. Both techniques have their strengths; materi-
alization allows for efficient access, and, because data is typically processed offline, 
enables multiple passes so that more complex analyses and transforms can be han-
dled. However, because data warehouses are built ahead of actual use, they have to 
process all data that might be needed. Data federation, by contrast, only transfers and 
transforms data that is actually needed by the user. Data warehouses typically take 
months of planning and effort to create; a data federation can be set up in a few days 
or weeks.  Both techniques focus on creating the necessary data sets, and leave any 
analysis of the data to the application. Both require the use of additional tools to clean 
data, discover common entities across data sets, etc. 

Today’s world calls for different technologies. The goal of information integration 
is increasingly to bring together information in a way that gives the user some new 
insights. In fact, in the current business climate, leveraging information to enhance the 
business can be a key competitive differentiator. So users need to get not only data, 
but also understanding; they need information in a form they can use, and they need it 
faster than ever before. There are five key challenges to meeting these needs. First, 
there are many integration problems, with many different characteristics, each need-
ing different tools and techniques. Second, today’s data is not static: we must deal 
with the dynamics of changing data values, changing data formats, and changing user 
needs. Third, there are not only more data sources than ever that may need to be con-
nected, but also many types of analytics that may need to be coordinated and applied 
to the correct data sets as part of the integration. Fourth, there is an opportunity to 
leverage powerful emerging infrastructures to speed the integration and analysis proc-
ess, but new algorithms or abstractions are required. Finally, in order to really get 
insight out of the information, the results must be made “consumable” by users – 
returned in a form in which they are easy to understand, and in which the insights 
jump out at you.   

The rest of this paper is organized as follows. Section 2 explores in more depth the 
challenges involved in getting insight out of data, especially the many different inte-
gration challenges. Section 3 describes some of the research approaches that try to 
deal with our dynamic world. Section 4 focuses on research into connecting more data 
sources and analytic engines, and discusses the need to intertwine analytics and tradi-
tional integration steps more closely. Section 5 looks at how modern infrastructures 
and information architectures may allow us to integrate information more rapidly. 
Section 6 considers briefly work in consumability. We conclude in Section 7.   

2   Integration for Insight 

The ability to pull value from data is a crucial competitive differentiator for busi-
nesses and individuals.   Further, substantial value can be realized by making smart 
data-driven decisions.  Due to advances in information technology, vast amounts of 
heterogeneous data are available online. To derive value from it, however, we increas-
ingly need to analyze and correlate information from diverse sources; the information 
used must be clean, accurate, consistent, and generally trustworthy.   
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But information consumers may not know which of these diverse sources are rele-
vant, how to correlate them, what analytics to use, or how to interpret results. Even if 
the original sources are trustworthy, errors can be easily introduced during the integra-
tion process, especially if the consumer is not familiar with the sources. Thus current 
research in the area of information integration can be viewed as enabling the end-
consumer to easily find the relevant data and the appropriate analytics to apply, and 
ensuring that they get the results in a form that they can understand and interact with.    

To achieve this goal, we need to step back and understand what the consumer 
wants to do with the information.  Do they want to have a clean reference dataset, so 
that they can look up any customer and instantly know how much they’ve spent this 
year?  Or are they in a very different scenario, trying to correlate information from 
video, still image, text and databases?  Does that correlation need to be done in real-
time, to stop a terrorist from getting on a plane, or can it be done overnight, to prepare 
information on a patient from multiple tests for a doctor who will be seeing the patient 
the next day?  The task at hand, the types of data needed, how quickly it is needed, 
how accurate it must be – these desiderata among others [1] must be considered in 
creating or choosing tools and technologies to integrate information. 

As in the scenarios above, it is often important to be able to identify when multiple 
sources refer to the same objects. The general problem of finding the data that refers 
to the same objects or entities is often known as entity resolution.  In some scenarios 
this is harder than in others, and different degrees of precision are needed for different 
applications. For example, in a hospital there will likely be records from radiology, 
the lab, and administration all referring to the same patient.  In this simple case, there 
will almost certainly be a patient number of some sort to connect them.  But if we add 
information from other hospitals that might have treated the same patient, finding the 
common patients becomes harder, as different ids may have been assigned.  In this 
scenario, correctly matching patients may literally be a matter of life and death, so 
precision is important.  Entity resolution may be harder yet in the security scenario in 
which information from emails, video feeds and criminal record databases must be 
correlated to find suspects for a recent crime.  However, in this application, “recall” 
(finding all possible candidates) is more important than precision, as further investiga-
tions will normally be needed before the information is acted on. 

Of course, if multiple data sources refer to the same entity, there is the potential for 
redundancy and contradiction (actually, these occur within a source, as well). These 
may be found (and potentially, eliminated) during entity resolution, although they are 
often looked for earlier, and resolved later.  But again, the application scenario will 
play a major role in how this is done, and to what extent.  Some scenarios require a 
reliable, fully “clean” dataset at the end, as in traditional warehousing scenarios.  
Others may be focused on the needs of the moment, for example, getting all the data 
related to the patient that I am about to see.  The warehouse will typically exclude 
redundant information, and force resolution of contradictions.  The doctor doesn’t 
want to see three identical records of the same visit, but if those records have some 
contradictions, she may want to know and see all possibilities.  In video surveillance, 
it may be important to keep all records, no matter how similar they seem. 

At all phases of an integration process, the end goal can and should influence the 
choice of technologies.   Information integration design tools – by analogy to physical 
database design tools – are a worthwhile topic of research.  Such tools would be im-
mensely valuable for organizations embarking on any substantial integration project. 
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3   Dealing with Dynamic Data Environments 

To deal with applications that have less rigorous needs for completeness and accu-
racy, and where an end-user is more directly involved in the process, a more dynamic 
form of integration is emerging.  It was originally inspired by desktop scenarios, in 
which a user wants to bring together data from email, files, and applications, for ex-
ample. However, the user only wants a subset of the data for a particular purpose 
(writing a memo, creating a chart), and, because she is actively involved in the proc-
ess, is willing to tolerate some errors or inconsistencies. In this environment, integra-
tion is done incrementally, as more data is requested. This approach has been labeled 
“Pay-as-you-go”, and the personal work environments that inspired it have been 
called “Dataspaces” [3].   

In these emerging applications, there is no fixed schema that is to be produced, as 
traditionally existed for warehousing and federation. In fact, in important scenarios 
such as healthcare patient records or financial transactions there are often hundreds or 
even thousands of schemas, each of which may be the preferred schema of some user, 
organization or application. Mapping rules [4] are typically used to relate different 
schemas, but hundreds of schemas may require thousands of mapping rules, probably 
incomplete, and evolving over time. Answering queries with that many mapping rules 
quickly becomes intractable. New techniques are needed to process queries in an 
almost schema-less world.   

With multiple sources of information, overlaps and inconsistencies are the norm. In 
these dynamic environments, a new challenge is to create methods for on-the-fly data 
cleansing and entity resolution – when new data is constantly arriving, schemas are 
not fixed, and there is a specific need. We mentioned earlier the need to find all re-
cords relating to a particular patient from many doctors, labs and hospitals. In the 
desktop environment, a more localized example might be dynamically linking paper 
authors with emails from them, or finding all information related to an upcoming trip 
to a conference.  These are not requests that today’s data cleaning and entity resolu-
tion technology can handle. 

Another characteristic of these emerging integration scenarios is the availability of 
additional sources of information that may help – or hinder – integration. For exam-
ple, the semantic web and linked open data provide a growing volume of semi-
structured information that encapsulates additional human knowledge; certain web 
sites may be seen as authoritative sources for particular domains, e.g., the site of the 
American Heart Association for heart disease. This knowledge can potentially help 
with tough integration problems such as entity resolution, or conflict resolution.  On 
the other hand, many such sources are themselves inconsistent, incomplete, or inaccu-
rate, making it difficult to exploit them. Still, ontologies are increasingly being tried 
as an aid to integration; a recent proposal even leverages people as a source of knowl-
edge directly [5].  In the dynamic world of web data sources, keeping up with chang-
ing schemas and interfaces may require the use of metadata and data maintained by 
the millions of web users, rather than relying on clean, accurate – but instantly stale – 
individually maintained glossaries or other sources. 
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4   Converging Integration and Analytics 

In the past, information integration typically meant connecting a set of well-structured 
data sources, but today, the sources are likely to include data that is unstructured (at 
least, by traditional data standards).  Many application scenarios rely on multiple data 
modalities, such as text, video and structured database data.  Typically some analytics 
must be run on this data before it can be integrated with any other sources.  In general, 
each type of information to be integrated in one of these scenarios may require analy-
sis or other processing in order to extract enough information to permit integration.  
For example, speech may be turned into text and annotated with keywords or con-
cepts for indexing.  Image features, shape recognition, and other analytics may be 
done on image and video data.  The type of analysis may be tuned to the application 
need.  We will extract very different features from text data if it is being used to check 
for regulatory compliance in banking than we will if the text belongs to patient re-
cords and is being used in disease management or diagnosis.   

In the past, analytics and information integration were treated in isolation from 
each other.  However, with the incorporation of these complex data types it has be-
come clear that they need, at the least, to be interwoven.  Analytics on the underlying 
data is needed to provide information to the integration process.  Integration, in turn, 
feeds advanced analytics.  In some cases, these analytics will drive the need to inte-
grate more data, to enable further analysis. 

With this new world view, there are many research challenges to explore.  Some 
research teams are looking at how to analyze particular types of data, discovering the 
right features to extract, how to correlate them to other types of information, and so 
on.  Others have focused on connecting particular types of information, for example, 
text with relational data, or speech with video.  One newly emerging research chal-
lenge is connecting and orchestrating diverse analytic engines.  For example, a par-
ticular healthcare decision support application might require pipelining patient records 
through a set of analyses, with the result of one analysis possibly determining other 
types of analytics to apply.  As another example, an application to do content-based 
targeted advertising for video clips requires several kinds of analytics on the video 
(object recognition, speech analysis, topic extraction, and so on), plus analytics on the 
user (profile analysis, sites recently visited, social network analysis, etc).  Some of 
these must be done in sequence; others can be done in parallel.  Workflow and 
streaming engines have been proposed as ways to handle the interconnection and 
coordination needed to federate these specialized analytics and extract the desired 
insight while integrating the information flowing through them.   

5   Leveraging New Platforms 

Many types of analytics require extensive resources, as they involve processing large 
volumes of data and running complex algorithms over them. For example, large tele-
phone providers (Telcos) in India and China are accumulating call data records at an 
unprecedented pace (around 1TB of data a day). These records are typically stored for 
a 3 month period and queried often as part of the Telco’s business intelligence and 
operational functions. Simple business intelligence functions can be performed on the 
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warehouse or data mart where the data is stored. However, running more complex 
analytics such as social graph analysis for campaign management or chain prediction 
on these call data records requires different architectures.  Hence, massive scale ana-
lytic platforms are being explored. The much ballyhooed “cloud computing” has the 
potential to provide massive parallelism across low-cost processors.  However, today 
the cloud, even with the addition of Hadoop [6], is painful to use for such analytics.  
A higher level of abstraction is needed, and several groups are working to provide a 
data model and query language for the cloud [7], [8].  An important area for further 
work is adapting analytics to these environments.  Interesting explorations include 
using the cloud as a basis for ETL-style structured analytics and integration, for con-
tent analytics for text or multimedia data, and for sophisticated mathematical analyses 
and machine learning algorithms.  

While such cloud platforms are built on commodity processors, it is far from trivial 
to install, run and maintain such systems. In some cases, hosted platforms such as 
Amazon’s EC2 (Elastic Compute Cloud) are adequate. However, this can be an inap-
propriate solution in the enterprise, when dealing with sensitive company and per-
sonal information.  Some vendors are therefore offering “private clouds” and services 
that support these systems and supply tooling for data gathering, integration, and 
analytics.   Again, creating appropriate algorithms and tools that take advantage of the 
hardware resources and work well in such massive data environments is a significant 
research challenge. 

When the data to be analyzed is public, not private, “Analytics as a Service” mod-
els may be explored.  These would allow companies to make use of the wealth of 
information on the Web whether it is factual data (such as companies’ financial pro-
files) or social data (such as blogs) that may have implications for marketing applica-
tions (such as brand management or campaign effectiveness). Interesting challenges 
include how to supply packaged analytics as a service over a public cloud and in par-
ticular, how to integrate the results with private information from inside a firewall.  

6   Making It Useful – and Usable 

Getting answers in real-time is important if the results of an information integration 
exercise are to be useful.  However, much more is needed.  It is also important that 
the information returned be understood by the users and be trustworthy.  Information 
consumers are not typically experts in the data, or in the many analytic tools avail-
able.  They typically will not understand the process that produced data for their con-
sumption.  They may apply additional analytics without really understanding the 
impact, for example, the compounding of errors that may occur. Consequently, for  
the end user to feel comfortable with the data and base their decision-making on it, 
the user needs to understand the rationale behind the displayed results and any  
specific recommendations,   

To help save these users from themselves, researchers are taking a number of dif-
ferent approaches.  Embedded or invisible analytics are an encapsulated set of simple 
analytic building blocks that can be embedded directly into applications or composed 
to solve more complicated tasks. The individual building blocks are simple enough to 
be well understood, and thus they provide a solid foundation for making information 
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integration usable and less error-prone. Examples of invisible analytics include high-
lighting, entity extraction, and filtering.  

Visualizations let users explore different aspects of the result for better understand-
ing. In their simplest form, visualizations are relatively static, and portray a certain 
aspect of the underlying data. Visualization, however, can be used to go further in the 
analytics process by serving as a front end that allows interaction with the underlying 
data. Some examples include testing hypotheses, drilling down into various facets of 
information, tweaking or refining the analytics process, and linking back to the data 
source.  Delivering on the power of such visualizations once again requires a good 
link between the application (here the visualization tool) and the integration design.   

Provenance of data and analytics helps establish trust by letting the user under-
stand where the results came from, explaining the rationale, promoting reuse and 
hence, raising confidence.  Provenance information has to include information about 
the base data sets, the way they were integrated (what mappings were used, what 
entity resolution algorithms, and so on), and the actual analysis applied.  Tracking this 
information, querying it, and relating it to the base data and the end results is an active 
area of research.   

Finally, situational analytics make data more usable by taking into account the 
user’s context (task, data, social network, location) and because they are adapted for 
different environments (secured, mobile, collaborative).  Examples of situational 
analytics may include providing information about products automatically when ap-
proaching objects in a store, providing a salesperson with the information about the 
customer when they arrive on site, or providing advertisers with information about 
prospective clients in the vicinity.  Each of these examples can require information 
integration, which should further take the context into account. 

In general, these approaches aim to make information easier to consume and to 
help the user derive value or insight from the data more quickly.  They leverage inte-
grated information and drive additional information integration needs.  But these 
technologies could also be of value in the integration process itself, as a way to create 
more effective tools for parts of the integration process that are data-intensive (for 
example, schema matching or entity resolution, both of which may require looking at 
large graphs of data).  Embedded or situational analytics might help with data clean-
sing or with “debugging” information integration, when the results are not what was 
expected. 

7   Conclusions 

Information integration remains a pervasive and difficult task.  There is an increasing 
diversity of integration problems, technologies, data, sources, and analytics, and all 
are changing rapidly. Meanwhile, the pressure to deliver more value from integration 
projects more quickly is mounting.  These environmental trends have led to a new 
generation of research challenges.  We identified and described several of these chal-
lenges and opportunities.  The diversity of integration tasks leads to opportunities for 
specialized integration solutions and perhaps for an integration design tool to help 
match the right combination of technologies to particular problems.  A dynamic envi-
ronment is creating interest in iterative approaches to integration, and in postponing 
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processing until the actual need is known.  Automatically leveraging community-
provided metadata is another approach to a constantly changing world.  Where inte-
gration and analytics used to be separate, a synergistic and coordinated approach is 
being explored – which adds further planning options for how to integrate data (what 
integration steps get done when, with respect to which analytics).  Meanwhile, the 
need for speed drives investigation into the use of new platforms for information 
integration and analysis, while the need to understand the end result of all these com-
plex logistics is leading to new investigations of how best to provide analytics, how to 
visualize data and integration processes, and how to record and present their prove-
nance.  We foresee no dearth of research topics in this area, and recommend it highly 
as an area for young researchers. 
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Abstract. In the last years, extending OLAP (On-Line Analytical Pro-
cessing) systems with spatial and temporal features has attracted the
attention of the GIS (Geographic Information Systems) and database
communities. However, there is no a commonly agreed definition of what
is a spatio-temporal data warehouse and what functionality such a data
warehouse should support. Further, the solutions proposed in the lit-
erature vary considerably in the kind of data that can be represented
as well as the kind of queries that can be expressed. In this paper we
present a conceptual framework for defining spatio-temporal data ware-
houses using an extensible data type system. We also define a taxonomy
of different classes of queries of increasing expressive power, and show
how to express such queries using an extension of the tuple relational
calculus with aggregated functions.

1 Introduction

Geographic Information Systems (GIS) have been extensively used in various ap-
plication domains, ranging from economical, ecological, and demographic anal-
ysis, to city and route planning [21]. Spatial information in a GIS is typically
stored in different so-called thematic layers (or themes). Information in themes
consists of spatial data (i.e., geometric objects) associated to thematic (alphanu-
meric) information.

OLAP (On-Line Analytical Processing) [7] comprises a set of tools and al-
gorithms that allow efficiently querying data warehouses, which are multidi-
mensional databases containing large amounts of data. In this multidimensional
model, data are organized as a set of dimensions and fact tables. Thus, data
can be perceived as a data cube, where each cell contains measures of interest.
Dimensions are further organized in hierarchies that favor the data aggregation
process [1]. Several techniques have been developed for query processing, most
of them involving some kind of aggregate precomputation.

In spite of the wide corpus of existing work claiming to solve the problem
of spatial and spatio-temporal data warehousing and OLAP, there is no clear
definition of the meaning of these terms. Moreover, there is no formal notion
of “SOLAP query”, or “Spatio-temporal OLAP query”. Further, existing efforts
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do not clearly specify the kinds of queries addressed. As a consequence, com-
paring proposals or assessing the capabilities of different approaches is difficult.
This paper aims at closing that gap in the following way: (a) first, we define a
taxonomy of models that integrate OLAP, spatial data, and moving data types;
(b) for each of the classes in this taxonomy, we define the queries that they
must support; (c) in order to define these classes of queries, starting from the
tuple relational calculus extended with aggregate functions, we propose a spatio-
temporal calculus supporting moving data types. We show that each extension
defines the kinds of queries in each class of the taxonomy.

The remainder of the paper is organized as follows. Section 2 provides a com-
prehensive background on existing work in GIS-OLAP integration. Section 3
introduces the calculus and conceptual model that we use throughout the pa-
per, as well as presents our running example. Section 4 introduces the taxonomy
of data models. Section 5 defines the queries associated to each class in the
taxonomy. We conclude and describe future work in Section 6.

2 Related Work

In the last years, the topic of extending OLAP with spatial and temporal features
has attracted the attention of the database and GIS communities. In this section
we review relevant efforts in this area.

Rivest et al. [15] introduced the notion of SOLAP (standing for Spatial OLAP),
a paradigm aimed at exploring spatial data by drilling on maps, as it is performed
in OLAP with tables and charts. They describe the desirable features and opera-
tors a SOLAP system should have. Although they do not present a formal model
for this, SOLAP concepts and operators have been implemented in a commercial
tool called JMAP1. Related to the concept of SOLAP, Shekhar et al. [16] intro-
duced MapCube, a visualization tool for spatial data cubes. Given a so-called base
map, cartographic preferences, and an aggregation hierarchy, the MapCube oper-
ator produces an album of maps that can be navigated via roll-up and drill-down
operations.

Several conceptual models have been proposed for spatio-temporal data ware-
houses. Stefanovic et al. [19] classify spatial dimension hierarchies according to
their spatial references in: (a) non-geometric; (b) geometric to non-geometric;
and (c) fully geometric. Dimensions of type (a) can be treated as any descriptive
dimension. In dimensions of types (b) and (c) a geometry is associated to the
hierarchy members. Malinowski and Zimányi [9] defined a multidimensional con-
ceptual model, called MultiDim, that copes with spatial and temporal features.
The MultiDim model extends the above classification by considering a dimension
level as spatial if it is represented as a spatial data type (e.g., point, region), and
where spatial levels may be related through topological relationships (e.g., con-
tains, overlaps). In the models above, spatial measures are characterized in two
ways, namely: (a) measures representing a geometry, which can be aggregated
along the dimensions; (b) numerical measures, calculated using a topological or
1 http://www.kheops-tech.com/en/jmap/solap.jsp

http://www.kheops-tech.com/en/jmap/solap.jsp
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metric operator. Most proposals support option (a), either as a set of coordinates
[15,9], or a set of pointers to geometric objects [19]. Da Silva et al. [17] intro-
duced GeoDWFrame, a framework for spatial OLAP, which classifies dimensions
in geographic and hybrid, depending on whether they represent only geographic
data, or geographic and non-spatial data, respectively. Over this framework, da
Silva et al. [18] propose GeoMDQL, a query language for spatial data cubes
based on MDX and OGC2 simple features.

It is worth noting that all the above conceptual models follow a tightly-coupled
approach between the GIS and OLAP components, where the spatial objects are
included in the data warehouse. On the contrary, the Piet data model, introduced
by Gómez et al. [4], follows a loosely-coupled approach, where GIS data and
data warehouse data are maintained separately, a matching function bounding
the two components. Piet supports the notion of geometric aggregation, that
characterizes a wide range of aggregate queries over regions defined as semi-
algebraic sets, addressing four kinds of queries: (a) standard GIS queries; (b)
standard OLAP queries; (c) geometric aggregation queries; and (d) integrated
GIS-OLAP queries. OLAP-style navigation is also supported in the latter case.
Recently, an SQL-like query language was proposed for Piet, denoted Piet-QL.
This language, in addition to query types (a) to (d), allows expressing GIS
queries filtered by a data cube (i.e., filtered by aggregated data)3.

Pourabas [13] introduced a conceptual model that uses binding attributes to
bridge the gap between spatial databases and a data cube. No implementation
of the proposal is discussed. Besides, this approach relies on the assumption that
all the cells in the cube contain a value, which is not the usual case in practice.
Moreover, the approach also requires modifying the structure of the spatial data.

Traditional data warehouses and OLAP system do not support the evolution
of dimension data. Temporal data warehouses cope with this issue. Mendelzon
and Vaisman [10] proposed a model, denoted TOLAP, and developed a prototype
and a Datalog-like query language, based on a temporal star schema. In this
model, changes to the structure and/or the instances of the dimension tables are
supported, using the concept of transaction and valid time, respectively. Some
structural changes also yield different fact table versions. Also, Eder et al. [2]
propose a data model for temporal OLAP supporting structural changes.

In order to support spatio-temporal data, a data model and associated query
language is needed for supporting moving objects, i.e., objects whose geometry
evolves over time. This is achieved in Hermes, a system introduced by Pelekis et
al. [12], and SECONDO [5], a system supporting the model of Güting et al. [6].
In spite of their ability to handle spatio-temporal data, neither SECONDO, nor
Hermes, are oriented toward addressing the problem of integrating GIS, OLAP,
and moving objects. However, in this paper we use many concepts underlying
SECONDO to present our approach. Vega López et al. [20] present a compre-
hensive survey on spatio-temporal aggregation.

2 Open Geospatial Consortium http://www.opengeospatial.org
3 A Piet-QL demo can be found at http://piet.exp.dc.uba.ar/pietql

http://www.opengeospatial.org
http://piet.exp.dc.uba.ar/pietql
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The work by Orlando et al. [11] introduces the concept of trajectory data
warehouses, aimed at providing the infrastructure needed to deliver advanced
reporting capabilities and facilitating the use of mining algorithms on aggregate
data. This work is also based on the Hermes system. A relevant feature of this
proposal is the treatment given to the ETL (Extraction, Transformation and
Loading) process, which transforms the raw location data and loads it to the
trajectory data warehouse.

3 Preliminaries

3.1 Extending the Conceptual Model

Throughout the paper we use the following real-world example. The Environ-
mental Control Agency of a country has a collection of water stations measuring
the value of polluting substances at regular time intervals. The application has
maps describing rivers, water stations, and the political division of the country
into provinces and districts.

Figure 1 shows the conceptual schema depicting the above scenario using the
MultiDim model [9]. There is one fact relationship, WaterPollution, to which sev-
eral dimensions are related. The fact relationship WaterPollution has two mea-
sures, commonArea and load, and is related to five dimensions: Time, District,
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Fig. 1. An example of a spatial data warehouse
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River, Station, and Pollutant. Dimensions are composed of levels and hierarchies.
For example, while the Station dimension has only one level, the District di-
mension is composed of two levels, District and Province, with a one-to-many
parent-child relationship defined between them.

In the MultiDim model the spatiality of elements is indicated by pictograms.
For example, Station, River, and District are spatial levels; they have a geometry
represented by a point, a line, and a region, respectively. Similarly, the attribute
capital in Province, as well as the measure commonArea in the fact relationship are
spatial. Finally, topological relationships may be represented in fact relationships
and in parent-child relationships. For example, the topological relationship in
WaterPollution indicates that whenever a district, a river, and a water station
are related in an instance of the relationship, they must overlap. Similarly, the
topological relationship in the hierarchy of dimension District indicates that a
district is covered by its parent province.

To address spatio-temporal scenarios we borrow the data types defined by
Güting et al. [6]. We refer to this work for the complete definition of the type
system and the corresponding operations. There is a set of base types which are
int, real, bool, string, and an identifier type id, which is used for the identifiers of
level members. There are also time types which are instant and periods, the latter
being a set of time intervals. There are four spatial data types, point, points, line,
and region. A value of type point represents a point in the Euclidean plane. A
points value is a finite set of points. A line value is a finite set of continuous
curves in the plane. A region is a finite set of disjoint parts called faces, each of
which may have holes. It is allowed that a face lies whith a hole of another face.

Moving types capture the evolution over time of base and spatial types. Mov-
ing types are obtained by applying a constructor moving(·). Hence, a value of
type moving(point) is a continuous function f : instant → point. Moving types
have associated operations that generalize those of the non-temporal types. This
is called lifting. For example, a distance function with signature moving(point)×
moving(point) → moving(real) calculates the distance between two moving points
and gives as result a moving real, i.e., a real-valued function of time. Intuitively,
the semantics of such lifted operations is that the result is computed at each
time instant using the non-lifted operation. Definition 1 summarizes the con-
cepts discussed above.

Definition 1 (Data types). We denote Γ a set of nontemporal types, composed
of a set of base types β, a set of time types τ , and a set of spatial types ξ. There
is also a set of temporal types Φ, composed of two sets of temporal types φβ

and φξ, obtained by applying the moving constructor to elements of β and ξ,
respectively.

3.2 Spatio-temporal Calculus

For addressing the issue of querying data warehouses, we use a relational repre-
sentation of the MultiDim conceptual model. A dimension level is represented
by a relation of the same name, having an implicit identifier attribute denoted
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id, an implicit geometry attribute (if the level is spatial), in addition to the other
explicitly indicated attributes. The id attribute (e.g., River.id) identifies a par-
ticular instance of the dimension. Dimension levels involved in hierarchies (e.g.,
District) have also an additional attribute containing the identifier of the parent
level (e.g., District.province), and there is a referential integrity constraint for
such attributes and the corresponding parent (e.g., Province.id).

A fact relationship is represented by a relation of the same name having an
implicit id attribute, one attribute for each dimension, and one attribute for
each measure. There is a referential integrity constraint between the dimension
attributes in the fact relationship (e.g., WaterPollution.district) and the identifier
of the corresponding dimension (e.g., District.id).

We use a query language based on the tuple relational calculus (e.g., [3])
extended with aggregate functions and variable definitions4. We explain this
language through an example. Consider the following relations from the data
warehouse shown in Fig. 1.

District(id, geometry, districtName, population, area, . . . , province)
Province(id, geometry, provinceName,majorActivity, capital, governor, . . .).

The following query asks the name and population of districts of the Antwerp
province.

{d.districtName, d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)}

Suppose that we want to compute the total population of districts of the Antwerp
province. A first attempt to write this query would be:

sum({d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)})

Notice that however, since the relational calculus is based on sets (i.e., collections
with no duplicates), if two districts of the Antwerp province happen to have the
same population, they would appear only once in the set to which the sum
operator is applied. As in Klug’s approach [8], this is solved by using aggregate
operators that take as argument a set of tuples (instead of a set of values) and
that specify on which column the aggregate operator must be applied. Therefore,
the above query is more precisely written as follows.

sum2({d.id, d.population | District(d) ∧ ∃p (Province(p)∧
d.province = p.id ∧ p.provinceName = ‘Antwerp’)}

In this case, the sum operator is applied to a set of pairs 〈id, population〉 and
computes the sum of the second attribute.

4 Even though manipulation languages for OLAP exist (e.g., [14]), the choice of the
relational calculus is motivated by the fact that it applies to the classical relational
model, thus providing a clean and elegant way of defining different spatio-temporal
OLAP models and languages.
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Finally, suppose we want to calculate the total population by province pro-
vided that it is greater than 100,000. In this case we need a recursive definition
of queries and variables that bind the results of inner queries to outer queries.
The latter query is written as follows.

{p.name, totalPop | Province(p)∧
totalPop = sum2({d.id, d.population | District(d) ∧ d.province = p.id})∧
totalPop > 100, 000 }

Here, the outer query fixes a particular province p and the inner query collects
the population of districts for that province. The sum of these populations is
then bound to the variable totalPop. Notice that this query corresponds to an
SQL query with the GROUP BY and HAVING clauses.

Proposition 1. Let us denote Ragg the relational calculus with aggregate func-
tions defined above, over the sets of basic and time types β and τ , respectively.
Ragg has the same expressive power of the relational calculus extended with
aggregate functions defined in [8].

The idea of the proof follows from the fact that Ragg is a syntactic variation
of Klug’s calculus. We show later in the paper how we extend Ragg to support
spatial and moving data types in order to define a hierarchy of classes of spatio-
temporal queries, starting from the expressive power of Ragg.

4 A Taxonomy for Spatio-temporal OLAP

Existing proposals for spatial data warehousing cover different functional re-
quirements, but, with limited exceptions, there is no clear specification of the
kinds of queries these proposals address. This is probably due to the fact that
no taxonomy for these systems has been defined so far. When we talk about
GIS, we often refer to static GIS, i.e., GIS where the geometry of objects does
not change over time. On the other hand, when we talk about OLAP or data
warehousing, we assume static data warehousing, i.e., data warehouses where
dimensions do not change over time. Thus, the term SOLAP refers to the in-
teraction between static GIS and static data warehouses. The schema in Fig. 1
is an example of this approach. When time gets into play, things become more
involved, and only partial solutions have been provided. On the one hand, dif-
ferent models exist for temporal data warehousing, depending on the approach
followed to implement the warehouse. In this paper we define a temporal data
warehouse as a warehouse that keeps track of the history of the instances of the
warehouse dimensions, i.e., we assume there is no structural (schema) changes.
The reason for this is that, as far as we know, only academic implementations
of fully temporal data warehouses exist.

We define a taxonomy for spatio-temporal OLAP as follows (see Fig. 2). We
start by considering four basic classes: Temporal dimensions, OLAP, GIS, and
moving data types. As a derived basic class, adding moving data types to GIS
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Fig. 2. A taxonomy for spatio-temporal data warehousing

produces Spatio-Temporal Data, typically allowing trajectory analysis in a ge-
ographic environment. Providing OLAP with the ability of handling temporal
dimensions produces the concept of Temporal OLAP (TOLAP). The interaction
of OLAP and GIS is denoted Spatial OLAP (SOLAP). The interaction between
GIS and TOLAP is called Spatial TOLAP (S-TOLAP). Adding OLAP capa-
bilities to spatio-temporal data results in Spatio-Temporal OLAP (ST-OLAP).
Finally, if the latter supports temporal dimensions we have Spatio-Temporal TO-
LAP (ST-TOLAP).

5 Queries

In this section, we define the kinds of queries that should be supported for each
one of the classes in the taxonomy of Fig. 2.

5.1 OLAP and Spatial OLAP Queries

We start by showing examples of OLAP queries.

Q1. For water stations located in districts of the Limburg province and polluting
agents of organic category give the maximum load by month.

{s.name, p.name, m.month, maxLoad | Station(s) ∧ Pollutant(p) ∧
Month(m) ∧ ∃c (Category(c) ∧ p.category=c.id ∧ c.name= ‘Organic’) ∧
maxLoad = max1({w.load | WaterPollution(w) ∧ w.station = s.id ∧

w.pollutant = p.id ∧ ∃d, ∃v, ∃t ( District(d) ∧ Province(v) ∧
Time(t) ∧ w.district = d.id ∧ d.province = v.id ∧
v.name = ‘Limburg’ ∧ w.time = t.id ∧ t.month = m.id)})}

Q2. For each river, give the total number of stations where, for at least one
pollutant, the average load in March 2008 was greater than the load limit
for this pollutant.
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{r.name, nbStations | River(r) ∧
nbStations = count({s.id | Station(s) ∧ ∃p (Pollutant(p) ∧
avg2({w.id, w.load | WaterPollution(w) ∧ w.river = r.id ∧
w.station=s.id ∧ w.pollutant=p.id ∧ ∃t(Time(t) ∧ w.time= t.id ∧
t.date ≥ 1/3/2008 ∧ t.date ≤ 31/3/2008)}) > p.loadLimit)})}

Definition 2 (OLAP queries). Let us call Ragg the relational calculus with
aggregate functions defined in Section 3.2. The class of OLAP queries includes
all the queries that are expressible by Ragg .

We give next some examples of SOLAP queries.

Q3. Total population in the districts within 3 Km from the Ghent district that
are crossed by the Schelde river.

sum2({d1.id, d1.population |District(d1)∧∃d2, ∃r(District(d2)∧River(r) ∧
d2.name = ‘Ghent’ ∧ distance(d1.geometry, d2.geometry) < 3 ∧
r.name = ‘Schelde’ ∧ intersects(d1.geometry, r.geometry))})

Note that this query do not use a fact relationship. The function distance
verifies that the geometries of the two districts are less than 3 Km from
each other and the predicate intersects verifies that the district is crossed
by the river.

Q4. Stations located over the part of the Schelde river that flows through the
Antwerp province, with an average content of nitrates in the last quarter
of 2008 above the load limit for that pollutant.

{s.name | Station(s) ∧ ∃r, ∃p, ∃l, ∃c (River(r) ∧ Province(p)∧
Pollutant(l) ∧ Category(c) ∧ r.name= ‘Schelde’ ∧ p.name= ‘Antwerp’ ∧
inside(s.geometry, intersection(r.geometry, p.geometry)) ∧
l.category = c.id ∧ c.name = ‘Nitrates’x ∧
avg2({w.id, w.load | WaterPollution(w) ∧ w.station = s.id ∧

w.pollutant = l.id ∧ ∃t (Time(t) ∧ w.time = t.id ∧
t.date ≥ 1/10/2008 ∧ t.date ≤ 31/12/2008)}) > l.loadLimit)}

Here, the intersection of the river and the district is computed, and then it
is verified that the geometry of the station is located inside this intersection.

Definition 3 (SOLAP queries). Let us call Rξ
agg the language Ragg aug-

mented with spatial types in ξ. The class of SOLAP queries is the class composed
of all the queries that can be expressed by Rξ

agg .

5.2 Temporal OLAP Queries

The notion of Temporal OLAP (TOLAP) arises when evolution of the dimension
instances in the data warehouse is supported, a problem also referred to as slowly-
changing dimensions [7].

This evolution is captured by using temporal types. In other words, when at
least one of the dimensions in the data warehouse includes a type in the set φβ

of Definition 1, we say that the warehouse supports the TOLAP model.
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To define TOLAP queries, we modify our running example in Fig. 1 mak-
ing the dimension Pollutant temporal, as shown in Fig. 3. Temporal levels are
identified by the LS pictogram. In our example, the level Pollutant is temporal,
which means that, e.g., a new pollutant may start to be monitored from a par-
ticular date. Temporal levels have a predefined attribute called lifespan, of type
moving(bool), which keeps track of the validity of a member at each instant.
Temporal attributes are identified by the VT pictogram. In our example, the
attribute loadLimit is temporal, meaning that the load limit varies across time.
Temporal attributes are defined over temporal types, for example, moving(real)
for the attribute loadLimit.

Finally, temporal parent-child relationships are indicated by the LS pictogram.
In our example, the relationship between Pollutant and Category is temporal,
which means that the association of pollutants to categories varies over time,
e.g., at a particular date, a category can be split into two. Temporal relationships
are also represented by temporal types. For example, the Pollutant level has an
attribute category, of type moving(id), which associates, at each time instant, a
category to a pollutant.

The temporal multidimensional model assumes implicit constraints that re-
strict the lifespan of the instances of temporal levels participating in fact rela-
tionships or in temporal parent-child relationships. For example, an instance of
the fact relationship relates a time instant t and a pollutant p provided that t
is included in the lifespan of p. Further, a pollutant p is related to a pollutant
category c at instant t provided that t is included in the lifespan of c.

We consider the following TOLAP queries.

Q5. For each province and pollutant category, give the average load of water
pollution by quarter.

{p.name, c.name, q.quarter, avgLoad | Province(p) ∧ Category(c)∧
Quarter(q) ∧ avgLoad = avg2({w.id, w.load | WaterPollution(w) ∧
∃d, ∃t, ∃m, ∃l (District(d) ∧ Time(t) ∧ Month(m) ∧ Pollutant(l) ∧
w.district = d.id ∧ d.province = p.id ∧ w.time = t.id ∧
t.month = m.id ∧ m.quarter = q.id ∧ w.pollutant = l.id ∧
val(initial(atperiods(l.category, t))) = c.id)})}

In the last line of the above query, since the parent-child relationship is rep-
resented by the temporal attribute category, we need to obtain the value of
this attribute at the time defined by the instance t of the Time dimension. As
the granularity of the Time dimension is day, function atperiods restricts the
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Fig. 4. Examples of a spatio-temporal measure and a spatio-temporal dimension

temporal attribute to that day, function initial takes the first 〈instant, value〉
pair of the function, and function val returns the corresponding value. There
is no need to verify that the lifespan of the instances of Pollutant or Category
include the time t, since these constraints are implicity kept by the model.

Q6. Calculate by day the number of water stations that, for the pollutant lead,
had load greater than the maximum value (over its history) of the load limit.

{t.date, nbStations | Time(t) ∧ nbStations = count1({s.id | Station(s) ∧
∃w, ∃p (WaterPollution(w) ∧ Pollutant(p) ∧ w.time = t.id ∧
w.station = s.id ∧ w.pollutant = p.id ∧ p.pollutant = ‘Lead’ ∧
p.load > val(initial(atmax(p.loadLimit))))})}

In the query above, function atmax restricts the temporal attribute to the
time instants during which it has its maximum value, function initial takes
the 〈instant, value〉 pair of the first instant and function val obtains its value.

Definition 4 (TOLAP queries). Let us call Rφβ
agg the language Ragg aug-

mented with the data types in φβ . The class of TOLAP queries is the class
composed of all the queries that can be expressed by Rφβ

agg .

5.3 Spatio-temporal OLAP Queries

Spatio-temporal OLAP (ST-OLAP) accounts for the case when the spatial ob-
jects evolve over time. For this, we need to consider moving types defined by
moving(α) where α is a spatial data type in ξ.

In order to define ST-OLAP queries, we add the fact relationship shown in
Fig. 4 to our running example in Fig. 1. The Cloud dimension refers to clouds
generated by industrial plants. Both the Cloud level and the commonArea mea-
sure have a geometry that is a moving region, indicated by the symbol ‘m’.
Notice that commonArea is a derived measure, i.e., in an instance of the fact
relationship that relates a cloud c, a district d, and a date t, the measure keeps
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the restriction of the trajectory of the cloud at that date and over that district.
This is computed by the expression at(atperiods(c.geometry, t), d). Notice also
that the Cloud dimension is related to the Pollutant dimension, while in Fig. 1
the Pollutant dimension participates in the fact relationship.

We give next examples of ST-OLAP queries.

Q7. For each district and polluting cloud, give the duration of time when the
cloud passed over the district.

{d.name, c.number, dur | District(d) ∧ Cloud(c) ∧
dur = duration(deftime(at(c.geometry, d.geometry)))}

Function at selects the part of moving geometry that is over the district,
function deftime obtains the periods when this happens, and finally function
duration calculates the size of the corresponding periods.

Q8. For each district, give by month the total number of persons affected by
polluting clouds.

{d.name, m.month, totalNo | District(d) ∧ Month(m) ∧
totalNo = area(union({traversed(p.commonArea) | AirPollution(p) ∧

p.district = d.id ∧ ∃t (Time(t) ∧ t.month = m.id)}))/
area(d.geometry) × d.population}

The inner query selects all facts relating a given district and a day of
a given month; then function traversed projects the moving geometry of
the commonArea measure over the plane. A union of all the regions thus
obtained yields the part of the district affected by polluting clouds during
that month, and the area of this region is then computed. Finally, assuming
a uniform distribution of the population, we divide this by the total area
of the district and multiply that by its population.

Definition 5 (ST-OLAP queries). Let us call Rφξ
agg the language Ragg aug-

mented with spatial types in ξ and moving spatial types in φξ. The class of
ST-OLAP queries is the class composed of all the queries that can be expressed
by Rφξ

agg .

Notice that Definition 5 captures the model of Orlando et al. [11] on trajectory
data warehousing.

5.4 Spatial TOLAP Queries

Spatial TOLAP (S-TOLAP) covers the case when in addition to having spatial
objects and attributes in the data warehouse, the dimensions are also temporal.
As we have done in Sect. 5.2, we modify our running example in Fig. 1 so that
the dimension Pollutant is temporal, as shown in Fig. 3.

We consider the following S-TOLAP queries.

Q9. For each station located over the Schelde river, give the periods of time
during the last quarter of 2008 when the content of nitrates was above the
load limit for that pollutant.
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{s.name, periods | Station(s) ∧ ∃r (River(r) ∧ r.name = ‘Schelde’ ∧
inside(s.geometry, r.geometry) ∧ periods = union1({t.date | Time(t) ∧

∃w, ∃p, ∃c (WaterPollution(w) ∧ Pollutant(p) ∧ Category(c) ∧
w.station = s.id ∧ w.time = t.id ∧ w.pollutant = p.id ∧
p.category = c.id ∧ c.name = ‘Nitrates’ ∧
t.date ≥ 1/10/2008∧ t.date ≤ 31/12/2008 ∧
w.load > val(atinstant(p.loadLimit, now)))}))}

As usual in temporal databases, a distiguished variable, ‘now’, represents
the (moving) current instant. Thus, the above query assumes that the com-
parison should be made with respect to the current value for the limit. Then,
the union operator takes a set of dates and construct a minimal set of disjoint
periods.

Q10. For each month in 2008, and for each water station in the province of
Namur, give the average Biological Oxygen Demand (BOD), if this average
is larger than the load limit during the reported month.
{m.month, s.name, avgBOD | Month(m) ∧ Station(s) ∧ ∃q, ∃y, ∃p, ∃l (

Quarter(q)∧Year(y) ∧ Province(p) ∧ Pollutant(l) ∧ m.quarter = q.id ∧
q.year = y.id ∧ y.year = 2008 ∧ p.name = ‘Namur’ ∧
inside(s.geometry, p.geometry) ∧ l.name = ‘BOD’ ∧
avgBOD = avg2({w.id, w.load | WaterPollution(w) ∧ ∃t (

Time(t) ∧ w.station = s.id ∧ w.time = t.id ∧
t.month = m.id ∧ w.pollutant = l.id)}) ∧

avgBOD > val(initial(atperiods(l.loadLimit, m.month))))}
In the last term above, function atperiods restrict the load limit to month
m, and then functions initial and val obtain the value of this attribute at
the first day of the month. This is compared with the average load of that
month in avgBOD.

Definition 6 (Spatial TOLAP queries). Let us call Rξ,φβ
agg the language Ragg

augmented with spatial types in ξ and moving types in φβ . We denote S-TOLAP
the class of queries composed of all the queries that can be expressed by Rξ,φβ

agg .

5.5 Spatio-Temporal TOLAP Queries

Spatio-Temporal TOLAP (ST-TOLAP) is the most general case where there are
moving geometries and the dimensions vary over time. In our running example
in Fig. 1 this amounts to replace the temporal dimension Pollutant as in Fig. 3
and to include the AirPollution fact relationship in Fig. 4.

An example of this kind of queries is the following.

Q11. Total number of days when the Gent district has been under at least one
cloud of carbon monoxide (CO) such that the average load in the cloud is
larger than the load limit at the time when the cloud appeared.

duration(union({t.date | Time(t) ∧ ∃p, ∃d, ∃c, ∃l (AirPollution(p) ∧
District(d) ∧ Cloud(c) ∧ Pollutant(l) ∧ p.time = t.id ∧
p.district = d.id ∧ d.name = ‘Ghent’ ∧ p.cloud = c.id ∧
c.pollutant = l.id ∧ l.name = ‘CO’ ∧ p.load >
val(atinstant(l.loadLimit, inst(initial(at(c.lifespan, true))))))}))}
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To obtain the instant when a cloud appeared we use the functions at
(to restrict the lifespan of the cloud), initial, and inst. Functions atinstant
and val return the value of the load limit at the instant when the cloud
appeared.

Definition 7 (Spatio-Temporal TOLAP queries). Let us call Rφξ,φβ
agg the

language Ragg augmented with spatial types in ξ, moving spatial types in φξ,
and moving types in φβ . We denote ST-TOLAP the class of queries composed
of all the queries that can be expressed by Rξ,φξ,φβ

agg .

6 Conclusion

In this paper, we have defined a conceptual framework that allows characterizing
the functionalities that must be supported by spatio-temporal data warehouses.
We have shown that such data warehouses result from the combination of GIS
and OLAP technologies, further extended with the support of temporal data
types. These data types allow to model both geometries that evolve over time
(usually called moving objects) and evolving data warehouse dimensions.

To address the issue of querying spatio-temporal data warehouses, we have
defined an extension of the tuple relational calculus with aggregate functions.
We defined a taxonomy for spatio-temporal OLAP queries that, starting from
the class of traditional OLAP queries, incrementally adds features for defining
several classes of queries with increasing expressive power. This is realized by
extending the type system underlying the data warehouse and its associated
query language. Our taxonomy provides an elegant and uniform way to charac-
terize the features required by spatio-temporal data warehouses and to classify
the many different works addressing this issue in the literature.

This work constitutes a first step aiming at defining spatio-temporal data
warehouses and therefore many issues remain to be addressed. As we have men-
tioned above, our framework is defined at a conceptual level and therefore we
have omitted any implementation consideration. However, as can be expected,
spatio-temporal data warehouses contain huge amounts of data, and therefore
optimization issues are of paramount importance. These issues range from appro-
priate index structures, through pre-aggregation, to efficient query optimization.
With respect to the latter issue, our example queries can be expressed in several
ways, exploiting either the fact relationship or directly the moving geometries.
Although from a formal perspective these alternative queries are equivalent, since
they yield the same result, the evaluation time of these queries may vary signi-
ficatively, depending on the actual population of the data warehouse. Therefore,
the translation of our conceptual model into logical and physical models is still
another further work.
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Abstract. Data Warehouses (DW) manage crucial enterprise information used 
for the decision making process which has to be protected from unauthorized 
accesses. However, security constraints are not properly integrated in the com-
plete DWs’ development process, being traditionally considered in the last stag-
es. Furthermore, legacy systems need a reverse engineering process in order to 
accomplish re-documentation for detecting new security requirements as well as 
system’s design recovery to enable migration and reuse. Thus, we have pro-
posed a model driven architecture (MDA) for secure DWs which takes into  
account security issues from the early stages of development and provides au-
tomatic transformations between models. This paper fulfills this architecture  
providing an architecture-driven modernization (ADM) process focused on ob-
taining conceptual security models from legacy OLAP systems. 

1   Introduction 

Data Warehouses (DWs) manage business’ historical information used to take strateg-
ic decisions and usually follow a multidimensional approach in which the information 
is organized in facts classified per subjects called dimensions. In a typical DW  
architecture, ETL (extraction/transformation/load) processes extract data from hetero-
geneous Data Sources and then transform and load this information into the DW repo-
sitory. Finally, this information is analyzed by Data Base Management Systems 
(DBMS) and On-Line Analytical Processing (OLAP) tools. 

Since data in DWs are crucial for enterprises, it is very important to avoid unautho-
rized accesses to information by considering security constraints in all layers and 
operations of the DW, from the early stages of development as a strong requirement 
to the final implementation in DBMS or OLAP tools (Thuraisingham, Kantarcioglu et 
al. 2007). 

In this way, DWs’ development can be aligned with the Model Driven Architecture 
(MDA 2003) approach which proposes a software development focused on models at 
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different abstraction levels which separate the specification of the system functionali-
ty and its implementation. Firstly, system requirements are included in business mod-
els (CIM). Then, conceptual models (PIM) represent the system without including 
information about specific platforms and technologies which are finally specified in 
logical models (PSM). Moreover, automatic transformations between models can be 
defined by using several languages such as Query / Views / Transformations (QVT) 
(OMG 2005).  

Furthermore, MDA architectures support reverse engineering capabilities which 
consists of analysis of legacy systems to (1) identify the system’s elements and their 
interrelationships and (2) carry out representations of the system at a higher level of 
abstraction (Chikofsky and Cross 1990). Reverse engineering can be used in the  
development of DWs to accomplish re-documentation for detecting new security 
requirements as well as system’s design recovery to enable migration and reuse. Nev-
ertheless, reverse engineering takes part in a whole reengineering process (Müller, 
Jahnke et al. 2000). MDA provides the needed formalization to reengineering process 
to converge in so-called Architecture-Driven Modernization (ADM), another OMG 
initiative (OMG 2006). ADM advocates reengineering processes where each artifact 
involved in these processes is depicted and managed as a model (Khusidman and 
Ulrich 2007). 

We have proposed an MDA architecture to develop secure DWs taking into ac-
count security issues in the whole development process (Fernández-Medina, Trujillo 
et al. 2007). To achieve this goal we have defined an access control and audit model 
specifically designed for DWs and a set of models which allow the security design of 
the DW at different abstraction levels (CIM, PIM and PSM). This architecture pro-
vides two different paths (a relational path towards DBMS and a multidimensional 
path towards OLAP tools) and includes rules for the automatic transformation be-
tween models and code generation. 

This paper improves the architecture by defining an architecture-driven moderniza-
tion (ADM) process which permits re-documentation and platform migration. Since 
most of DWs are managed by OLAP tools by using a multidimensional approach, this 
ADM process is focused on the multidimensional path, obtaining conceptual security 
models (PIM) from logical multidimensional models (PSM) and legacy OLAP  
systems. 

This paper is organized as follows: Section 2 will present the related work on se-
cure DWs; Section 3 will briefly show our complete MDA architecture for developing 
secure DWs and will underline the difference between our previous works and the 
contribution of this paper; Section 4 will present the defined ADM process; Section 5 
will use an application example to validate our proposal; Section 6 will finally present 
our conclusions and future work.   

2   Related Work 

There are relevant contributions focused on secure information systems development, 
such as UMLSec (Jürjens 2004) which uses UML to define and evaluate security 
specifications using formal semantics, or Model Driven Security (MDS) (Basin, Dos-
er et al. 2006) which uses the MDA approach to include security properties in  
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high-level system models and to automatically generate secure system architectures. 
Within the context of MDS, SecureUML (Lodderstedt, Basin et al. 2002) is proposed 
as an extension of UML for modeling a generalized role based access control. 

However, these proposals do not consider the special characteristics of DWs. In 
this area, solely Priebe and Pernul propose a complete methodology for develop se-
cure DWs (Priebe and Pernul 2001). This methodology deals with the analysis of 
security requirements, the conceptual modeling by using ADAPTed UML, and the 
implementation into commercial tools, but does not establish the connection between 
levels in order to allow automatic transformations. They use SQL Server Analysis 
Services (SSAS) creating a Multidimensional Security Constraint Language 
(MDSCL) by extending multidimensional expressions (MDX) with hide statements 
for cubes, measures, slices and levels. 

Although MDA philosophy has been applied to develop secure DWs (Fernández-
Medina, Trujillo et al. 2007) and data reverse engineering field has been widely 
studied in literature (Aiken 1998; Blaha 2001; Cohen and Feldman 2003; Hainaut, 
Englebert et al. 2004), there is little research on reengineering of data warehouses 
following an MDA approach and security concerns are not considered. These reen-
gineering works are performed for: re-documentation, model migration, restructur-
ing, maintenance or improvement, tentative requirements, integration, conversion of 
legacy data.  

3   MDA Architecture for Secure DWs 

Our architecture to develop secure DWs proposes several models improved with secu-
rity capabilities which allow the DW’s design considering confidentiality issues in the 
whole development process, from an early development stage to the final implemen-
tation. This proposal has been aligned with an MDA architecture (Fernández-Medina, 
Trujillo et al. 2007) providing security models at different abstraction levels (CIM, 
PIM, PSM) and automatic transformations between models (Figure 1). 

 

Fig. 1. MDA architecture for Secure DWs 
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Firstly, security requirements are modeled at business level (CIM) by using a UML 
profile (Trujillo, Soler et al. 2008) based on the i* framework (Yu 1997), which is an 
agent oriented approach centered on the agents’ intentional characteristics. Then, 
transformation from secure CIM models to conceptual model (PIM) is achieved ap-
plying a methodology described by using the OMG Software Process Engineering 
Metamodel Specification standard (SPEM) (Trujillo, Soler et al. 2008). 

Conceptual models (PIM) are defined according to a UML profile, called SECDW 
(Fernández-Medina, Trujillo et al. 2007) which has been specifically created for DWs 
and complemented by an Access Control and Audit (ACA) model focused on DW 
confidentiality (Fernández-Medina, Trujillo et al. 2006). In this way, SECDW allows 
the representation of structural aspects of DWs (such as facts, dimensions, base 
classes, measures or hierarchies) and security constraints which permit the classifica-
tion of authorization subjects and objects in three ways (into roles (SecurityRole), 
levels (SecurityLevel) and compartments (SecurityCompartment)) and the definition 
of several kinds of security rules (Sensitive information assignment rules (SIAR), 
authorization rules (AUR) and audit rules (AR)). 

Multidimensional modeling at the logical level depends of the tool finally used and 
can be principally classified into online analytical processing by using relational 
(ROLAP), multidimensional (MOLAP) and hybrid (HOLAP) approaches. Thus, our 
architecture considers two different paths: a relational path towards DBMS and a 
multidimensional path towards OLAP tools.   

The relational path uses a logical relational metamodel (PSM) called SECRDW 
(Soler, Trujillo et al. 2008) which is an extension of the relational package of the 
Common Warehouse Metamodel (CWM 2003) and allows the definition of secure 
relational elements such as secure tables or columns. Moreover, this relational path 
is fulfilled with the automatic transformation from conceptual models (Soler, Trujil-
lo et al. 2007) and the eventual implementation into a DBMS, Oracle Label  
Security. 

Furthermore, this MDA architecture was recently improved with a new multidi-
mensional path towards OLAP tools in which a secure multidimensional logical me-
tamodel (PSM), called SECMDDW (Blanco, García-Rodríguez de Guzmán et al. 
2008) considers the common structure of OLAP tools and allows to represent a DW 
model closer to OLAP platforms than conceptual models. SECMDDW is based on a 
security improvement of the OLAP package from CWM and is composed of: a securi-
ty configuration metamodel which represents the system’s security configuration by 
using a role-based access control policy (RBAC); a cube metamodel which defines 
both structural cube aspects such as cubes, measures, related dimensions and hierar-
chies, and security permissions for cubes and cells; and a dimension metamodel with 
structural issues of dimensions, bases, attributes and hierarchies, and security permis-
sions which are related to dimensions and attributes.  

This path also deals with the automatic transformation from conceptual models by 
using QVT transformations (Blanco, García-Rodríguez de Guzmán et al. 2008) and 
the final secure implementation into a specific OLAP platform, SQL Server Analysis 
Services (SSAS), by using a set of Model-to-Text (M2T) rules. 
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4   Modernizing Secure DWs 

Modernizing DWs provides us several benefits such us to generate diagrams on a high 
abstraction level in order to identify security lacks in an easy way and to include new 
security constraints which solve these identified problems. Transformation rules are 
then applied obtaining an improved logical model and the final implementation. By 
using the MDA philosophy the system can be also migrate to different technologies 
(MOLAP, ROLAP, HOLAP, etc.) and different final tools. Since most DWs are ma-
naged by OLAP tools using a multidimensional approach (MOLAP), in this section 
we present a modernization process focused on the multidimensional path obtaining 
conceptual models from multidimensional logical models (Figure 1). 

In a first stage, the multidimensional logical model according to SECMDDW is 
obtained from the source code of the OLAP tool. To achieve this goal is applied a 
static analysis (Canfora and Penta 2007) which is a reengineering method based on 
the generation of lexical and syntactical analyzers for the specific tool. In this way, 
code files are analyzed and a set of code-to-model transformations create the corres-
ponding elements into the target logical model. 

Once logical multidimensional model is obtained several set of QVT rules carry 
out a model-to-model transformation towards the corresponding conceptual model. 
Since the source metamodel (SECMDDW) presents three kinds of models (roles con-
figuration, cubes and dimensions) three sets of transformations have been developed 
(Figure 2). Each transformation is composed of several QVT relations which are fo-
cused on transforming structural and security issues. 

Role2SECDW transformation creates the security configuration of the system 
based on a set of security roles. This is an example of a semantic gap between abstrac-
tions levels, because conceptual level is richer than logical level and includes support 
to the definition of security levels, roles and compartment. This transformation 
presents the relations “RoleFiles2Package” and “Role2SRole” which transform the 
“RoleFiles” into a “Package” and create security roles “SRole” for each role detected 
at the logical level. Figure 3 shows the implementation of this transformation and 
Figure 4 the graphical representation for the “Role2SRole” relation. 

Cube2SECDW transformation analyzes cube models and generates at the concep-
tual level structural aspects and security constraints defined over the multidimensional 
elements. Table 1 (left column) shows the signatures for the relations included in this 
transformation.  

 

Fig. 2. PSM to PIM transformation overview 
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Fig. 3. Role2SECDW transformation 

 

Fig. 4. Graphical representation of Role2SRole relation 

Table 1. Relations for Cube2SECDW and Dimension2SECDW transformations 

transformation Cube2SECDW transformation Dimenssion2SECDW  
top relation CubeFiles2Package {…} 
relation Cube2SFact {…} 
relation Measures2SFA {…} 
relation Measure2SProperty {…} 
relationDimension2SDimension{…} 

top relation DimensionFiles2Package {…} 
relation Dimension2SDimension {…} 
relation attribute2SProperty {…} 
relation hierarchy2SBase {…} 
realtion attribute2SBaseProperty {…}  

relation CubePermission2SClass {…} 
relation CellPermission2SProperty{…} 

relation DimensionPermission2SClass {…} 
relation AttributePermission2SProperty{…} 

There are a set of structural rules which transform cubes into secure fact classes 
(“Cube2SFact” relation) and their related measures and dimensions into secure prop-
erties (“Measures2SFA” and “Measure2Property” relations) and secure dimension 
classes (“Dimension2SDimension” relation). Security permissions related with cubes 
or cells are transformed into security constraints at the conceptual level (“CubePer-
mission2SClass” and “CellPermission2SProperty” relations). 

Role2SRole 
SECMDDW SECDW

psm pim

When 

Where 

pk : Package 

<<domain>>

r : Role 

ID = xName 

<<domain>> 

sr : SRole

ownedMember

name = xName

transformation Role2SECDW (psm:SECMDDW, pim:SECDW) { 
key SECDW::SRole {rootPackage, name};  
top relation RoleFiles2Package { 

xName : String;   
 checkonly domain psm rf:SECMDDW::SecurityConfiguration::RoleFiles {  

name = xName }; 
 enforce domain pim pk:SECDW::Package { name = xName };   

where { rf.ownedRoles->forAll (r:SECMDDW::SecurityConfiguration::Role |  
 Role2SRole(r, pk)); }   } 

relation Role2SRole { 
 xName : String; 
 checkonly domain psm r:SECMDDW::SecurityConfiguration::Role { ID = xName }; 
 enforce domain pim pk: SECDW::Package{  

ownedMember = sr : SECDW::SRole { name = xName } };   }}
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Fig. 5. Cube2SECDW transformation 

 

Fig. 6. Graphical representation of Cube2SFact relation 

The implementation of some relations is shown in Figure 5 and Figure 6 presents 
the “Cube2SFact” relation in a graphical way. 

Dimension2SECDW transformation focuses on dimension models and creates at 
the conceptual level structural aspects such as dimension and base classes, properties 
and hierarchies (“Dimension2SDimension”, “attribute2SProperty”, “hierarchy2SBase” 
and “attribute2SBaseProperty” relations) and security constraints related with dimen-
sions, bases and properties (“DimensionPermission2SClass” and “AttributePermis-
sion2SProperty” relations). This transformation is composed of several relations which 
signatures are shown in Table 1 (right column). 

The implementation of some relations is shown in Figure 7 and Figure 8 presents 
the “DimensionPermission2SClass” relation in a graphical way. 

 

c.ownedMeasureGroups -> forAll (mg: MeasureGroup | 
         (mg.ownedMeasures -> forAll (m: Measure | Measures2SFA (m, f) ) ) ); 
 

Cube2SFact 
SECMDDW SECDW

psm pim

When 

Where 

pk : Package

<<domain>>

c : Cube 

ID = xName 

<<domain>> 

f : SFact

ownedMember 

name = xName 

transformation Cube2SECDW (psm:SECMDDW, pim:SECDW) { 
key SECDW::SFact {rootPackage, name};  
top relation CubeFiles2Package {  

xName : String;   
checkonly domain psm cf:SECMDDW::Cubes::CubeFiles { name = xName }; 
enforce domain pim pk:SECDW::Package { name = xName };   
where { cf.ownedCubes->forAll (c:SECMDDW::Cubes::Cube | Cube2SFact(c, pk)); }   } 

relation Cube2SFact {  
xName : String; 
checkonly domain psm c:SECMDDW::Cubes::Cube { ID = xName }; 

 enforce domain pim pk: SECDW::Package { 
  ownedMember = f : SECDW::SFact { name = xName } }; 

 where { c.ownedMeasureGroups->forAll (mg:SECMDDW::Cubes::MeasureGroup | 
 (mg.ownedMeasures->forAll (m:SECMDDW::Cubes::Measure | Measures2SFA(m, f))));}} 
relation Measures2SFA { 
 xName : String; 
 checkonly domain psm m:SECMDDW::Cubes::Measure { ID = xName }; 
 enforce domain pim f:SECDW::SFact { 

  attributes = sfa:SECDW::SFA { name = xName } };   }}



 Towards a Modernization Process for Secure Data Warehouses 31 

 

Fig. 7. Dimension2SECDW transformation 

 

Fig. 8. Graphical representation of DimensionPermission2SClass relation 

5   Example 

This section shows the defined ADM process by using an example in which the  
transformation rules are applied into a PSM multidimensional model to obtain the 
corresponding PIM model. This example uses a DW which manages airport’s infor-
mation about trips involving passengers, baggage, flights, dates and places. This in-
formation is analyzed for the airport staff, companies or passengers, and can be used 
for many purposes, for instance companies can decide to reinforce certain routes with 
a great number of passengers or can offer to passengers a special price for their top  
 

DimensionPermission2
SClass 
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dp.deniedSet = null; 

 

When 

Where 

si:SecureInformation 

<<domain>> 

dp : DimensionPermission 

roleID = xRoleID

<<domain>> 

sd : SDimension

name = xDimensionName

sr : SRole 

name = xRoleID 

securityRoles 

d :  Dimension 

name = xDimensionName 

ownedSecInfownedDimensionPermissions 

transformation Dimension2SECDW (psm:SECMDDW, pim:SECDW) { 
key SECDW::SDimension {rootPackage, name}; 
key SECDW::SRole {rootPackage, name};  
top relation DimensionFiles2Package { 
 xName : String;   
 checkonly domain psm df:SECMDDW::Dimensions::DimensionFiles { name = xName }; 
 enforce domain pim pk:SECDW::Package { name = xName };   

 where { df.ownedDimensions->forAll (d:SECMDDW::Dimensions::Dimension | 
 Dimension2SDimension(d, pk)); } } 

relation Dimension2SDimension { 
 xName : String; 
 checkonly domain psm d:SECMDDW::Dimensions::Dimension {ID = xName }; 
 enforce domain pim pk: SECDW::Package {  

ownedMember = sd : SECDW::SDimension { 
ownedSecInf = si : SECDW::SecureInformation {}, name = xName } }; 

 where { d.ownedDimensionPermissions->forAll 
(dp:SECMDDW::Dimensions::DimensionPermission  |  
(dp.deniedSet.oclIsUndefined()) implies (DimensionPermission2SClass (dp, si, pk)) ); }} 

relation DimensionPermission2SClass { 
 xRoleID : String; 
 checkonly domain psm dp:SECMDDW::Dimensions::DimensionPermission { 

roleID = xRoleID }; 
 enforce domain pim  sd :SECDW::SecureInformation { 
  securityRoles = sr : SECDW::SRole { name = xRoleID } }; 
 enforce domain pim pk:SECDW::Package { ownedMember = sr : SECDW::SRole {} }; 
 when{ dp.deniedSet = ''; }  }}
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Fig. 9. PSM multidimensional model for security configuration 

 

Fig. 10. PSM multidimensional model for cubes 

destinations. The source multidimensional PSM model is composed of three parts: 
security configuration (Figure 9), cubes (Figure 10) and dimensions (Figure 11). Fig-
ure 12 finally shows the PIM model obtained after applying the ADM process. 

Firstly, Role2SECDW transformation analyzes the security configuration model 
(Figure 9) and creates roles in the PIM model. The conceptual level (PIM) is richer 
and supports the specification of security levels, compartments and roles, but logical 
models (PSM) only include information of roles. Thus, transformation rules can only 
transform each role in the logical model into a role in the conceptual model. 

Then, logical cube models (Figure 10) are processed by the Cube2SECDW trans-
formation. It creates in the PIM model (Figure 12) the following structural aspects: 
the secure fact class “Trip”, its measures and its related dimensions and hierarchies. 
Since security permissions related with cubes were not defined, security constraints 
are not established in the PIM model.   
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Fig. 11. PSM multidimensional model for dimensions 

 

Fig. 12. PIM model 

Finally, Dimension2SECDW process logical dimension models. Figure 11 shows 
the PSM model for “Passenger” dimension in which have been defined some 
attributes and dimension permissions to authorize and deny accesses to certain roles. 
This structural information is transformed into a secure dimension class “Passenger” 
with secure properties in the PIM model (Figure 12). Positive security permissions are 
also transformed by including the authorized roles (“SLTS” and “SLS”) as stereo-
types of the “Passenger” dimension. 
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6   Conclusions  

We have proposed an MDA architecture for developing secure DWs taking into ac-
count security issues from early stages of the development process. We provide secu-
rity models at different abstraction levels and automatic transformations between 
models and towards the final implementation. 

This work has fulfilled the architecture providing an architecture-driven moderni-
zation (ADM) process which allows us to automatically obtain higher abstraction 
models (PIM). Firstly, code analyzers obtain the logical model from the implementa-
tion, and then, QVT rules transform this logical model into a conceptual model. In 
this way, existing systems can be re-documented and this design at higher abstraction 
level (PIM) can be easier analyzed in order to include new security constraints. Fur-
thermore, once PIM model is obtained the DW can be migrated to other platforms or 
final tools.  

Our further works will improve this architecture in several aspects: dealing with 
the inference problem by including dynamic security models which complement the 
existing models; including new PSM models (such as XOLAP); and giving support to 
other final platforms (such as Pentaho). 
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Abstract. Data warehousing involves complex processes that transform
source data through several stages to deliver suitable information ready
to be analysed. Though many techniques for visual modelling of data
warehouses from the static point of view have been devised, only few
attempts have been made to model the data flows involved in a data
warehousing process. Besides, each attempt was mainly aimed at a spe-
cific application, such as ETL, OLAP, what-if analysis, data mining.
Data flows are typically very complex in this domain; for this reason,
we argue, designers would greatly benefit from a technique for uniformly
modelling data warehousing flows for all applications. In this paper, we
propose an integrated visual modelling technique for data cubes and data
flows. This technique is based on UML profiling; its feasibility is evalu-
ated by means of a prototype implementation.

Keywords: OLAP, UML, conceptual modelling, data warehouse.

1 Introduction

Data transformations are the main subject of visual modelling concerning data
warehousing dynamics. A data warehouse integrates several data sources and
delivers the processed data to many analytical tools to be used by decision mak-
ers. Therefore, these data transformations are everywhere: from data sources to
the corporate data warehouse by means of the ETL processes, from the cor-
porate repository to the departmental data marts, and finally from data marts
to the analytical applications (such as OLAP, data mining, what-if analysis).
Data warehousing commonly implies complex data flows, either because of the
large number of steps data transformations may consist of, or of the differ-
ent types of data they carry. These issues rise interesting challenges concerning
design-oriented modelling of data warehousing flows. In particular, the thorough
visualisation of these models has a deep impact on the current trends for data
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warehousing design, where the so-called model-driven technologies [1] promote
diagrams as the main, tentatively unique, design artefacts managed by software
engineers. Cognitive aspects, such as diagrams readability, are thus related to
the productivity of the whole development process.

Nevertheless, the main research efforts made so far have concerned the static
modelling of the data warehouse repository [2] and, even when data warehousing
flows were considered, it was done within specific business intelligence applica-
tions (OLAP, data mining and so on). While these efforts were addressed at
designing individual modelling frameworks, all of them characterised nothing
but data transformations.

Our contribution in this paper is twofold: firstly, we identify and formally
define data warehousing flows (fw’s) as the founding concept for every visual
modelling technique studied so far, which means that flows can be applied to
model any data transformation, from OLAP to data mining (§2). Due to space
constraints, this paper is focused on OLAP fw’s that, as a matter of fact, are
the backbone of data warehousing. In general, an OLAP session model can be
useful in different contexts: (1) it can be a relevant part of more complex data
warehousing flows (e.g., it could describe a set of transformations to be applied
to multidimensional data in a what-if analysis application); (2) it can be used
to design or document a semi-static report, where a limited number of OLAP
operators can be applied depending on the data currently visualized; (3) it can
represent auditing information showing system administrators the more frequent
operators applied to cubes.

Secondly, we present an integrated visual modelling framework for fw’s based
on UML [3]. The proposal consists in the diagramming of data cubes, meant as
results of multidimensional queries (§3), and data transformations (§4). These
diagrams have been implemented in a prototype illustrated in §5. Remarkably,
our solution covers the modelling gaps identified in the state-of-the-art as it is
shown in §6. Finally, conclusions are drawn in §7.

2 The fw Framework for Visual Modelling

A data warehousing flow fw may be functionally characterised as f : I → O
where f is the (probably complex) data transformation, I is the universe of
data objects managed by f and O is the universe of the processed data objects.
Moreover, f is defined as the composition of other functions, f = f1 ◦ . . . ◦ fn,
that may recursively be defined as compositions.

fw’s may be classified according to the actual data-object type they manip-
ulate, i.e., the domain I and codomain O. Data cubes, we argue, are the most
important factor in this classification because they are the building blocks of
data warehouses. Let C be the universe of all data cubes involved in an fw, and
X denote any unspecified sort of data objects; we can distinguish the disjoint
categories shown in Table 1.

For instance, mining flows may be characterised as f−c, because they trans-
form data cubes into other data objects, namely data-mining patterns such as
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Table 1. General taxonomy of data flows based on their data-object types

Name Notation Definition

OLAP flow fc fc : C → C
ETL flow f+c f+c : X → C

mining flow f−c f−c : C → X

object flow f∅ f∅ : X → X

association rules or clusters. Though the names for flow types were chosen ac-
cording to the field where they mainly appear, in practice they are not bound
to a single application domain, such as in the case of what-if analysis, where
different types may be involved.

The canonical fw may be decomposed (regarding Table 1) into: fw = f∅ ◦
f−c ◦ f c ◦ f+c ◦ f∅, where ◦ is any composition operator and the fw’s from the
right to the left respectively characterise: (1) transactional flows for populating
data sources; (2) ETL flows for populating the data warehouse; (3) OLAP flows
occurring during an OLAP session; (4) mining flows aimed at extracting pat-
terns from the data warehouse; and (5) flows for manipulating and visualising
patterns. Though there are in practice many ways of connecting fw’s (e.g., mul-
tiple branches are valid structures), it is evident that fw’s involving data cubes
either in input or in output are the actual backbone of the data warehousing
process. Noticeably, all fw’s that involve data cubes might also be characterised
as atomic f∅’s at the finest detail level, because cubes can be decomposed into
their elements (dimensions, measures, etc.). For this reason, f−c’s and f+c’s will
be sometimes visually modelled as a composition of detailed f∅’s instead of be-
ing considered as atomic. Conversely, visually modelling internal details of f c’s
is out of the scope of this paper.

Visual modelling of fw’s should comply with the following wish-list: (i) it
should be based on some multidimensional diagrams that model data warehouse
facts and dimensions, (ii) it should be easy to understand, (iii) its semantics
should have formal foundation, and (iv) it should rely on a standard notation.

The need to manage fw complexity suggests to create separate diagrams for
data cubes. For this reason, our framework provides two kinds of diagrams,
namely data cube and fw diagrams. Data cube diagrams represent a multidi-
mensional query formulated on the data warehouse. fw diagrams represent how
actions transform data cubes.

For such diagrams to be cognitively effective, their notations should achieve
a conceptual integration of information from separate diagrams into a coher-
ent user’s mental model and a perceptual integration by means of perceptuals
cues (orienting, contextual and directional information) in order to support nav-
igation between diagrams [4]. In fw diagrams, data cubes are just rendered
as information scents [5] (like the scent of food) that encourage readers to
look for more detailed diagrams (where more succulent information could be
found). Conversely, data cube diagrams render each data cube in detail. In ad-
dition, data cubes are visually modelled over the multidimensional diagrams [6]
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of the underlying data warehouse facts, thus providing the required percep-
tual cues1. The following two sections describe data cube and fw diagrams,
respectively.

3 Data Cube Diagrams

Our aim is to propose a visual modelling technique based on standard repre-
sentations of fw’s. A well-known extension technique such as UML profiling [3]
seems then appropriate. Profiling enables to easily but formally extend (in terms
of both semantics and notation) the UML language, the de facto standard for
general-purpose modelling in software engineering. By means of profiling, data
cubes can be smoothly hosted in a UML multidimensional diagram describing
the data warehouse. To accomplish this goal we will use the UML profile for
multidimensional modelling presented in [6], namely the DataWarehouse UML
profile, which also provides a proper iconography that improves diagram read-
ability.

Fig. 1 illustrates a sample multidimensional diagram (host diagram) to which
the data cube diagram of Fig. 2 is allocated (guest diagram). The host diagram
represents the database for analysing the sales facts ( in Fig. 1) by product,
customer, location, and date ( ). Each dimension allows sales to be aggre-
gated ( ) at different granularities. For instance, sales may be aggregated by
month and year ( ). In addition, facts and dimensions can be respectively de-
scribed by measures ( , e.g., quantity) and descriptors ( , e.g., city name).

On the other hand, the guest diagram represents a query that may be eas-
ily referred to the host diagram. For instance, Fig. 2 shows a cube of sales
quantity grouped by month, store city and product branch; in particular, only
the branches whose code is food.

3.1 A UML Profile for the Integrated Diagramming of Data Cubes

Our DataCube profile is based on the DataWarehouse profile by Luján-Mora
et al. [6]. Both profiles are represented in Fig. 3 with the standard notation for
UML profiling [3], i.e., the profile diagrams where stereotypes of UML modelling
elements are presented. On the one hand, the DataWarehouse profile contains a
set of stereotypes (e.g., Fact and Dimension). Each stereotype represents a single
multidimensional concept by extending the specific UML metaclass considered
as the most semantically close to that concept. Fig 3 also shows the proper
iconography. On the other hand, the DataCube profile (see Fig. 3) introduces
five stereotypes2:

1 Indeed, visual models contain two kinds of data: statements about the reality that
they model and metadata about how they are represented, such as canvas locations.

2 We chose names for the DataCube profile stereotypes according to the terminology of
the multidimensional expressions (MDX) from Microsoft, the most spread language
for OLAP querying, to emphasise that data cubes are the result of queries.
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Fig. 1. Multidimensional diagram by using the DataWarehouse UML profile
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Fig. 2. Data-cube diagram by using the DataCube UML profile

Cell, summarising a set of Facts of a given cube.
Axis, showing each Base (component of the group-by clause) of a given cube.
CellMember & AxisMember, representing each returned Measure and Descriptor.
Slice, representing the predicate formulated on CellMembers and/or AxisMembers.

All these stereotypes specialise the CubeElement abstract stereotype. Every
CubeElement has references to both the extended metaclass and the supporting
entity of the multidimensional diagram (shown by a use dependency in Fig. 3).
The cube attribute of the CubeElement stereotype is a tag definition referring
to all the cubes that contain a cube element. Let F be a class stereotyped as
Fact. In order to represent a cube c resulting from a query on fact F , you need
to additionally stereotype F as Cell and annotate class F with tagged value c
for the cube attribute of Cell.

All CubeElements (except Slices) have two abstraction levels:

Space Specification, where either Cell or Axis stereotypes are applied to
Facts or Bases, respectively. Each retrieved cell or axis member are left to the
designer as a variation point [3] whose options are: (i) all owned properties
(measures or descriptors) are retrieved in that cell; or (ii) they still remain
unspecified. Unless differently stated, the second option is assumed.
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Fig. 3. DataCube and DataWarehouse UML profiles

Member Specification, where CellMember or AxisMember stereotypes must
be applied together with the owner Cell or Axis, respectively. The under-
lying space specification is thus explicitly shown. The application of these
stereotypes may be managed by diagramming tools as we shall discuss next.

The rules about how to apply and combine the proposed stereotypes are
formally specified in OCL [7] (i.e., a declarative language to query and specify
constraints in UML models), and thus, they could be automatically managed by
the corresponding checking engine. For instance, the OCL constraint to check
the rule of CellMember specifications is

context CellMember inv ‘Member Specification Rule’:

self.base_Property.class.extension_Cell.cube->includesAll(self.cube)

3.2 Rendering Data Cube Diagrams

UML profiles allow to adapt the UML notation to include new iconography.
In this way, the DataCube profile provides a new version of the DataWarehouse
stereotypes whose aim is to emphasise the retrieved data. This marking is accom-
plished by swapping the DataWarehouse icons, rendered in grayscale, with new
coloured versions. The aesthetics decision of colouring is justified by the cog-
nitive studies about preattentive processing [8], stating that coloured diagram
nodes are distinguished from grayscale ones before conscious attention occurs,
thus showing CubeElements “at a glance”. In addition, the selected colours are
complementary (red vs. green), so they can be distinguished very well from each
other. Due to black-and-white printing, this iconography also uses shapes (re-
sembling the underlying DataWarehouse elements) for codifying CubeElements.
It is worth noting that there is not a DataWarehouse counterpart of the Slice
stereotype, because particular predicates regarding specific data instances only
concern data cube diagrams, not multidimensional diagrams.
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Nevertheless, rendering DataCubes over DataWarehouses requires special cus-
tomisations of diagramming tools. Since every CubeElement references all the
cubes it belongs to, the DataCube iconography setting should be context-aware.
The context is the current diagram itself: only the CubeElements, whose cube
property includes the name given to the current diagram, are actually rendered
with DataCube icons (though they may internally refer to other cubes). Of course,
this assumes that both the CubeElement::cubes and diagram names refer to the
same set of values, i.e., the actual names of the data cubes being diagrammed.

3.3 Drawing Data Cubes

The workflow for drawing DataCubes consists of the following steps:

1. Copying the DataWarehouse diagram, representing the repository from
which the data cube will be retrieved, into a new DataCube-to-be diagram.

2. Renaming this DataCube diagram in order to identify the desired cube.
3. Specifying CubeElements by following one of the two specifying conven-

tions discussed above (namely, space or member) and by attaching the proper
Slices to the corresponding CubeElements. This step is actually decomposed
into (i) application of CubeElement stereotypes if they were not already ap-
plied for a previous data cube, and (ii) addition of the current diagram name
as a CubeElement::cube tagged value. Since the second step could be some-
times cumbersome, it can be automatically managed in diagramming tools
by implementing the corresponding controllers for context-aware marking.

4. Hiding undesired DataWarehouse elements (optional) for enhancing the
final diagram readability. This step is mainly targeted to visually remove
from the diagram (not from the metamodel occurrence) the unused Measures,
Dimensions, and Descriptors, or to prune aggregations (Bases).

4 The Data Warehousing Flows Visual Library

Data cube diagrams visualise the static aspects of fw’s. In this section, we
discuss how to manage the dynamic aspects. According to the well-known
software-engineering principle of separation of concerns [9], the dynamic and
static features of fw’s are represented in separate diagrams. By setting aside
the complexity of data cubes, fw’s can be visualised in a more readable form.
However, we recall that both kinds of diagrams are closely related, and they
were devised as artefacts to be used together, as described in §2.

To represent the dynamic aspects of fw’s, we could use any type of diagram
aimed at process modelling, such as flow charts, data flows, etc. We selected ac-
tivity diagrams because they enable designers to model fw dynamics intuitively
by means of UML. In this way, both static and dynamic diagrams discussed in
this paper may be smoothly integrated to be managed together. Like for data
cubes, the many kinds of activities involved in an fw require an additional cus-
tomisation. Therefore, we propose (i) a UML profile for adapting the activity
diagram notation to represent data cubes, and (ii) a set of fw catalogues that
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capture the fw diversity. Due to the space constraints, we shall only discuss the
OLAP catalogue of the fw library3. However, all of them share the same principles.

4.1 A UML Profile for Diagramming the fw Library

As for data cube diagrams, we also devised a UML profile to adapt the notation
of activity diagrams. The main issues this profile deals with are: (i) notational
improvement, emphasising object flows ([3], p. 386) for data cubes, and (ii) val-
idation of action names that model fw’s ([3], p. 311). As to the first issue, the
notation decorates the edges that connect actions by highlighting data cube
flows (with the icon) as shown in Fig. 4. These flows are related to data cube
diagrams. As to the second issue, the naming patterns used for actions express
the semantics of actions and of their parameters. In such a way, naming patterns
can be checked using regular expressions codified by OCL constraints. Due to
space constraints, we overlook the details of the profile definition. All the same,
the library that applies this profile for visualising fw’s is described next.

The OLAP catalogue is the main entity of the fw library due to the relevance of
OLAP applications. This catalogue includes the best-known operators of OLAP
algebras [10]. With a few exceptions, all operators are f c. Note that the fw

library contains the best practices in data warehouse modelling, and it is not
limited to the presented operators. For instance, some modellers may believe
that the pivoting operator is relevant enough to be added to the fw library.

Fig. 4 shows that each OLAP operator is modelled as an action taking cubes in
input and output. Naming patterns formalise the vocabulary widely understood
among OLAP analysts [10]. Each naming pattern may encode several parame-
ters, represented as <parameter>. Optional parameters are enclosed in square
brackets. Parameters with multiple occurrences are followed by a “+” mark; in
this case, occurrences are separated by commas. Parameters commonly refer to
cube elements, and they are instantiated with the same name of the element
they refer to. Next, we briefly discuss how the OLAP algebra is rendered; for a
deep understanding of this topic, interesting readers may be referred to [10]:

slice by has a criterion (i.e., a constraint) for filtering values of cube mem-
bers. This constraint may be given in natural language, e.g., this year, or
in a formal language such as OCL, e.g., year = now.year.

dice by is similar to slice, but applied to several dimensions at the same time.
roll up & drill down aggregate and disaggregate data cubes. They are pa-

rameterised with a dimension and optionally a base when multiple aggre-
gation paths are possible from the current aggregation level (e.g., sales by
day could be aggregated into months but also weeks).

md-project selects one or more data cube measures.
drill anywhere groups cells by a set of dimensions. This OLAP operation, also

known as change base, generalises the add & remove dimensionoperators, that

3 Herein, the term ‘library’ refers to the whole metamodel for the fw dynamic mod-
elling, whereas each part of this is called ‘catalogue’.
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Fig. 4. The fw catalogue of OLAP actions

can be simulated by using an extended notation: [+-]dimension for adding
or removing dimension to/from the current cube base.

push converts a dimension into a measure.
pull converts a measure into a dimension.
query for queries a data warehouse in order to retrieve a data cube. This is

the only operation that takes a control flow rather than a cube in input. The
cube parameter is bound to a cube diagram.

drill across joins a cube with a fact to change the set of measures.
union, intersection, & difference manipulate data cubes by using set se-

mantics, thus they are the only actions that require two data cubes in input.
In addition, other set operations such as symmetric difference may be defined
by means of the previous ones.

5 Prototype and Example Application

Our framework has been implemented in the Eclipse development platform4,
whose modular, plugin-based architecture enables a proper implementation of
the UML extensions proposed. In particular, we have enhanced the plugin for
UML modelling, UML2Tools, with the functionalities of diagram rendering
and event controller for both data cube diagrams and fw library (see Fig. 5).
The proposed models are stored in two kinds of files: those that contain the
diagramming metadata and those that contain the modelled elements.

We consider as a case study an OLAP analysis of profitability in the food
market domain. The screenshot in Fig. 5 shows in its upper part the whole f c

modelled as an activity diagram: naming patterns are used to name actions, and
4 http://www.eclipse.org (UML2Tools are also located here)

http://www.eclipse.org
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Fig. 5. Prototype for the fw visual-modelling framework implemented in Eclipse

the manipulated data cubes are properly emphasized by the notation introduced,
the icon. For each data cube involved, a data cube diagram like the one in
Fig. 2 may be drawn. For instance, the data cube diagram in the bottom part of
the figure shows the input data cube for food profitability. Remarkably, it
was possible to simply label data cube flows in activity diagrams with a measure
name (such as quantity or price) because data cubes are properly represented
in their own diagrams. Furthermore, f c semantics is clearly stated by naming
patterns, so that automated generation of executable code is made possible.

In more detail, the c0 data cube obtained by action query for food
profitability is first sliced (flow f c

0) by selecting Spanish sales only. Then,
the resulting cube f c

0(c0) is duplicated to fork the analysis process into two
branches, one focusing on sales location and time, one on sales quantity. In the
first branch, whose overall flow we denote with f c

1 , the product dimension is re-
moved (drill anyway -product), then a sequence of roll up actions are car-
ried out, twice for location (from store to city, then from city to country),
and once for date (from month to year). After these operations, sales are anal-
ysed by location and date at country and year granularity. The analyst then
drills down location to show details on cities by years. Finally, products
are added to the data cube axes (drill anyway +product) to prepare to a later
union. As to the second branch, it first applies a multidimensional projection to
focus only on sales quantity (md-project sales::quantity, denoted with f c

2).
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Then it is further decomposed into two sub-branches, the first (f c
2a) perform-

ing a drill across inventory for stock to traverse interesting data cubes,
the second (f c

2b) adding the customer dimension (drill anyway +customer).
Finally, the two output data cubes c1 and c2 for this f c may be denoted as
c1 = (f c

1 ◦ f c
0(c0)) ∪ (f c

2b ◦ f c
2 ◦ f c

0(c0)); c2 = f c
2a ◦ f c

2 ◦ f c
0 (c0). Note that, though

the fw library is extensively used in this example, additional utility actions–such
as duplicate cube–have also been modelled.

6 Literature Review

There are many modelling frameworks presented in the scientific literature re-
garding the particular fw’s. Specifically, concerning OLAP, there are a few works
proposing visual modelling techniques for OLAP. [11] presents a specific ap-
proach where OLAP sessions are represented by UML state diagrams. Regarding
OLAP query modelling, [12] employs a graph-based representation to highlight
the fw dependencies from analytical tools to the data sources. While [12] is ori-
ented to visual modelling of dynamic aspects, [13] achieves static representation
of queries by annotating structural conceptual models of a data warehouse, sim-
ilarly to the data cube diagrams we propose in §3. A compact representation of
OLAP queries is achieved by means of UML class-like structures also in [11].

Overall, even OLAP works point out the dichotomy between visualising fw’s
as data states vs. data transformations. This is related to the classical debate
on state vs. flow charts : they are complementary and emphasising one aspect
rather than another. It is also related to the dilemma of visualising structural
vs. dynamic aspects of fw’s. Citing [14], “every notation highlights some kinds
of information at the expense of obscuring other kinds”.

7 Conclusions

The state-of-the-art for visual modelling of fw’s comprises a wide range of tech-
niques, each taking into account specific aspects of application domains, but
overlooking their common foundational concepts. In this work we identified two
challenging issues concerning design-oriented fw visual modelling: how to handle
complex data structures such as data cubes, and how to specify the semantics
of the involved data transformations in a formal and straightforward mode. For
this reason, we devised an fw visual modelling framework where two kinds of
diagrams are provided by using UML as scaffolding. Their suitability to visu-
ally manage the complexity involved in fw’s is shown by applying them to an
example scenario relying on the Eclipse platform.

The results of this work have interesting implications for data warehouse
practitioners. Regarding the integrated vision of fw’s, the current modelling
tools, that were conceived for a specific kind of fw, may be reused for the others.
This fact sets a bridge between current visual modelling techniques. Thanks
to the unifying definition of fw’s, we presented a general framework for their
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modelling. This proposal is aligned with model-driven technologies [1] such as
those presented in [15] for designing data warehouses.

Some challenging new research topics appear next. Two of them are spe-
cially encouraged: automatic code generation from these diagrams by applying
model transformations (according to [15]), and the empirical validation of their
enhancement in cognitive issues such as readability.
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Abstract. In the context of data stream research, taming the multi-
dimensionality of real-life data streams in order to efficiently support
OLAP analysis/mining tasks is a critical challenge. Inspired by this
fundamental motivation, in this paper we introduce CAMS (Cube-based
Acquisition model for Multidimensional Streams), a model for efficiently
OLAPing multidimensional data streams. CAMS combines a set of data
stream processing methodologies, namely (i) the OLAP dimension flat-
tening process, which allows us to obtain dimensionality reduction of
multidimensional data streams, and (ii) the OLAP stream aggregation
scheme, which aggregates data stream readings according to an OLAP-
hierarchy-based membership approach. We complete our analytical con-
tribution by means of experimental assessment and analysis of both
the efficiency and the scalability of OLAPing capabilities of CAMS on
synthetic multidimensional data streams. Both analytical and experi-
mental results clearly connote CAMS as an enabling component for next-
generation Data Stream Management Systems.

1 Introduction

A critical issue in representing, querying and mining data streams [3] consists
of the fact that they are intrinsically multi-level and multidimensional in nature
[6,18], hence they require to be analyzed by means of a multi-level and a multi-
resolution (analysis) model accordingly. Furthermore, it is a matter of fact to note
that enormous data flows generated by a collection of stream sources naturally
require to be processed by means of advanced analysis/mining models, beyond
traditional solutions provided by primitive SQL-based DBMS interfaces. Con-
ventional analysis/mining tools (e.g., DBMS-inspired) cannot carefully take into
consideration these kinds of multidimensionality and correlation of real-life data
streams, as stated in [6,18]. From this, it follows that, if one tries to process mul-
tidimensional and correlated data streams by means of such tools, rough errors
are obtained in practice, thus seriously affecting the quality of decision making
processes that found on analytical results mined from streaming data. Contrary
to conventional tools, multidimensional analysis provided by OnLine Analytical
Processing (OLAP) technology [7,17], which has already reached an high-level
of maturity, allows us to efficiently exploit and take advantages from multidi-
mensionality and correlation of data streams, with the final aim of improving
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the quality of both analysis/mining tasks and decision making in streaming en-
vironments. OLAP allows us to aggregate data according to (i) a fixed logical
schema that can be a star or a snowflake schema, and (ii) a given SQL aggre-
gate operator, such as SUM, COUNT, AVG etc. The resulting data structures, called
data cubes [17], which are usually materialized within multidimensional arrays
[2], allow us to meaningfully take advantages from the amenity of querying and
mining data according to a multidimensional and a multi-resolution vision of the
target domain, and from the rich availability of a wide set of OLAP operators,
such as roll-up, drill-down, slice-&-dice, pivot etc, and OLAP queries.

According to the OLAP stream model, being practically very hard to sup-
port OLAPing of multidimensional data streams in an online manner (i.e., on
the fly), as even clearly stated in [6,18], a popular solution to this end consists
in computing summarized representations of data stream readings in an off-line
manner, and then making use of these summarized representations in order to
efficiently answer aggregate queries that represent the baseline operations for
OLAP analysis/mining tasks over multidimensional data streams. It should be
noted that (i) aggregate queries are a “natural” way of extracting useful
knowledge from summarized data repositories (like data cubes), thus they can
easily support OLAPing of multidimensional data streams, and (ii) the above-
illustrated OLAP analysis paradigm is perfectly compliant with the idea of
supporting even complex decision making processes over multidimensional data
streams, as highlighted by recent studies [6,14,16,18]. In past research experi-
ences [9,10], we have proposed an approach for supporting efficient approximate
aggregate query answering over data streams that makes use of (i) the off-line
processing approach above, and (ii), in order to further enhance the performance
of query evaluation, the data compression paradigm [4], which, initially proposed
in the context of massive database and data cube compression, has been then
even applied to the context of voluminous data stream compression (e.g., see
[8]). In more detail, in [9,10] we propose compressing summarized data stream
readings in order to obtain faster approximate answers to aggregate queries
over data streams. This approach is fully motivated by the well-known asser-
tion stating that approximation is completely tolerable in OLAP analysis, where
decimal precision is not necessary, and, rather, decision makers are more inter-
ested in performing “qualitative” and trend analysis. With respect to research
results provided in [9,10], where simple raw data stream readings are considered,
without any particular OLAP undertone, in this research effort we focus on (i)
multidimensional data streams, i.e. data streams whose readings embed a cer-
tain multidimensionality, and (ii) data stream sources characterized by a set of
OLAP hierarchies associated to the dimensions of their proper multidimensional
(data) models. Both these two aspects, which are fundamental constructs of the
OLAP stream model, have not been investigated in [9,10].

Although more or less sophisticated instances of the OLAP stream model for
analyzing and mining multidimensional data streams can be devised (e.g., [6,18]),
depending on particular application requirements, a leading research challenge in
this context is represented by the issue of effectively and efficiently collecting and
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representing multidimensional data streams, being the latter two critical phases
of OLAPing multidimensional data streams. In fact, it is easy to understand how
both these phases heavily affect the quality of later OLAP analysis/mining tasks
over multidimensional data streams, not only from a performance-oriented point
of view but also with regard to the proper semantics of these tasks. A feasible
solution to face-off this leading OLAP stream research challenge is represented
by the so-called acquisition models for data streams (e.g., [12,13,21]). Starting
from these considerations, in this paper we introduce and experimental assess an
innovative acquisition model for OLAPing multidimensional data streams effi-
ciently, called CAMS (Cube-based Acquisition model for Multidimensional Streams),
which combines a set of methodologies in order to tame the multidimensional-
ity kept in real-life data streams, and efficiently support OLAP analysis/mining
tasks over multidimensional data streams.

2 CAMS Overview

Fig. 1 shows an overview of CAMS and, at the same, the OLAPing multidi-
mensional data streams technique underlying our proposed (acquisition) model.
As shown in Fig. 1, we assume a reference application scenario according to
which multidimensional data streams are analyzed and mined on the basis of an
off-line OLAP approach (see Sect. 1). In such a scenario, a repository of
summarized (multidimensional) data stream readings, namely MDSR (Multi-
dimensional Data Stream Repository), is collected and stored with the aim of
executing OLAP analysis/mining tasks in an off-line manner. As highlighted in
Sect. 1, CAMS combines a set of data stream processing methodologies in order to
tame the multidimensionality of data streams, thus efficiently supporting OLAP-
ing of such streams. Basically, in the global workflow defined by CAMS, two main
stages can be identified (see Fig. 1).

In the first stage of CAMS, the N -dimensional data stream produced by the
target data stream source is “flattened” by means of our innovative OLAP di-
mension flattening process, which is a fundamental component of our OLAP
stream model (instance). This stage originates a flattened data stream, whose
dimensionality M is lower than the dimensionality of the original data stream
(i.e., M << N). As we describe in Sect. 4, the OLAP dimension flattening pro-
cess basically consists in flattening a multidimensional data cube model (the one
associated to the original data stream) onto a lower data cube model (the one

Fig. 1. CAMS overview
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associated to the flattened data stream), whose dimensions, called flattening di-
mensions, are selected from the original dimension set of the data stream source
in dependence on specific application requirements. The process is performed via
systematically merging original hierarchies defined on dimensions of the multi-
dimensional data stream source model. The final flattening dimensions are thus
equipped with specialized hierarchies generated in dependence on application-
oriented requirements. We first introduced the OLAP dimension flattening pro-
cess in [11], with the goal of efficiently supporting semantics-aware advanced
OLAP visualization of multidimensional data cubes. In the actual research, this
process is specialized to the more interesting and challenging case of dealing with
OLAPing multidimensional data streams efficiently. It should be noted that the
data stream application scenario poses more problematic issues than the corre-
sponding case experienced in OLAP over conventional data sources. In fact, the
so-called curse of dimensionality problem (e.g., [5,20]), which, briefly, consists
in the fact that when the number of dimensions and size of the target data cube
increase, multidimensional data cannot be accessed and queried efficiently, gets
worse in data stream environments. As a consequence, the usage of our proposed
OLAP dimension flattening process makes sense perfectly towards ensuring ef-
fective and efficient OLAPing of multidimensional data streams.

In the second stage of CAMS, readings of the flattened data stream are used to
populate the summarized data stream repository MDSR, according to a proper
OLAP stream aggregation scheme. Basically, this scheme determines how read-
ings of the flattened data stream participate to the aggregations defined by the
OLAP storage model of MDSR. This, in turn, finally determines the way of pop-
ulating MDSR. In more detail, in this stage CAMS makes use of efficient search
algorithms that inspect the OLAP hierarchies associated to dimensions of MDSR
in order to determine the membership of dimensional attribute values of data
stream readings to OLAP classes defined by members of these hierarchies, thus
finally determining the way of simultaneously aggregating data stream readings
within MDSR cells along multiple (flattened) dimensions.

3 The Multidimensional Data Stream Model

Consider a set S of N data stream sources denoted by S = {s0, s1, . . . , sN−1}.
Let MS = 〈D(MS),H(MS),M(MS)〉 be the N -dimensional (OLAP) model of
S, such that: (i) D(MS) = {d0, d1, . . . , dN−1} denotes the set of N dimensions
of MS ; (ii) H(MS) = {h0, h1, . . . , hN−1} denotes the set of N hierarchies of
MS , where hk ∈ H(MS) denotes the hierarchy associated to the dimension
dk ∈ D(MS); (iii) M(MS) denotes the set of measures of MS. For the sake of
simplicity, in the following we will assume to deal with single-measure OLAP
models, i.e. M(MS) = {m}. However, models and algorithms presented in this
paper can be straigthforwardly extended to the more challenging case in which
multiple-measure OLAP models (i.e., |M(MS)| > 1) are considered.

For the sake of simplicity, the stream source name si ∈ S will also denote the
data stream generated by the source itself. Each stream source si ∈ S produces
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a multidimensional stream of data, si, composed by an unbounded sequence of
(data stream) readings of kind: ri,j , i.e. si = 〈ri,0, ri,1, ri,2, . . .〉 with |si| → ∞.
In more detail, ri,j denotes the j-th reading of the data stream si, and it is
defined as a tuple ri,j = 〈idi, vi,j , tsi,j , ai,j,k0 , ai,j,k1 , . . . , ai,j,kP−1〉, where: (i)
idi ∈ {0, .., N − 1} is the stream source (absolute) identifier; (ii) vi,j is a non-
negative integer value representing the measure produced by the stream source
si identified by idi, i.e. the reading value; (iii) tsi,j is a timestamp that indicates
the time when the reading ri,j was produced by the stream source si identified
by idi, i.e. the reading timestamp; (iv) ai,j,kp is the value associated to the
dimensional attribute Akp of the P -dimensional model of the stream source si

identified by idi, denoted by Msi = 〈D(Msi),H(Msi),M(Msi)〉, being D(Msi),
H(Msi) and M(Msi) the set of dimensions, the set of hierarchies and the set of
measures of Msi , respectively.

The definition above adheres to the so-called multidimensional data stream
model, which is a fundamental component of the OLAP stream model introduced
in Sect. 1. According to the multidimensional data stream model, each reading
ri,j embeds a dimensionality, which is used to meaningfully handle the overall
multidimensional stream. This dimensionality is captured by the set of values
DimV al(ri,j) = {ai,j,k0 , ai,j,k1 , . . . , ai,j,kP−1} associated to the set of dimensional
attributes DimAtt(ri,j) = {Ai,k0 , Ai,k1 , . . . Ai,kP−1} of Msi . Also, dimensional
attribute values in ri,j are logically organized in an (OLAP) hierarchy, denoted
by hi,j .

For the sake of simplicity, in the following we will refer the set S of stream
sources as the “stream source” itself. To give insights, S could identify a sen-
sor network that, in the vest of collection of sensors, is a stream source itself.
Another important assertion states that the OLAP stream model assumes that
the multidimensional model of S, MS , is a-priori known, as happens in several
real-life scenarios such as sensor networks monitoring environmental parameters
(e.g., temperature, pressure, humidity etc).

Given a stream source S and its multidimensional model, MS, the multi-
dimensional model of each stream source si ∈ S, Msi , can either be totally
or partially mapped onto the multidimensional model of S, MS. The total or
partial mapping relationship only depends on the mutual correspondence be-
tween dimensions of the multidimensional models, as the (single) measure is
always the same, thus playing the role of invariant for both models. In the
first case (i.e., total mapping), Msi and MS are equivalent, i.e. Msi ≡ MS .
In the second case (i.e., partial mapping), Msi is a multidimensional (proper)
sub-model of MS , i.e. Msi ⊂ MS . Basically, this defines a containment relation-
ship between models, and, consequentially, a containment relationship between
the multidimensional data models. It should be noted that mapping relation-
ships above are able to capture even complex scenarios occurring in real-life
data stream applications and systems. Also, in our research, mapping rela-
tionships define the way readings are aggregated during the acquisition phase
(see Sect. 5).
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4 Flattening Multidimensional Data Streams

The OLAP dimension flattening process allows us to obtain a transformation
of the N -dimensional data stream into a flattened M -dimensional data stream,
on the basis of application requirements (see Sect. 2). For the sake of simplicity,
in order to describe our proposed OLAP dimension flattening process, here we
consider as running example the case in which the N -dimensional data stream
is flattened into a two-dimensional data stream (i.e., M = 2). The more general
process for the case M > 2 is a straightforward generalization of the one we next
describe.

In the running example, the two flattening dimensions, denoted by df0 and df1 ,
respectively, are selected from the set D(MS) and then equipped with special-
ized hierarchies, denoted by hf0 and hf1 , respectively, such that each hierarchy
hfi , with i ∈ {0, 1}, is built by meaningfully merging the “original” hierarchy
of dfi with hierarchies of other dimensions in D(MS), according to application
requirements driven by specific OLAP analysis goals over the target multidi-
mensional data stream. To theoretical consistency purposes, here we assume
that hf0 ∈ H(MS) and hf1 ∈ H(HS), respectively.

The final shape of each hierarchy hfi , with i ∈ {0, 1}, depends on the so-
called ordered definition set FDef(dfi), with i ∈ {0, 1}, which constitutes an
input parameter for the OLAP dimension flattening process. This set is com-
posed by tuples of kind: 〈Lj, dj+1, Pj+1〉, such that, given two consecutive tuples
〈Lj , dj+1, Pj+1〉 and 〈Lj+1, dj+2, Pj+2〉 in FDef(hdi), the sub-tree of hj+2 (i.e.,
the hierarchy of dj+2) rooted at the root node of hj+2 and having depth equal
to Pj+2, said TPj+2(hj+2), is merged to hj+1 (i.e., the hierarchy of dj+1) via
(i) appending a clone of TPj+2(hj+2) to each member σi,Lj+1 of hj+1 at level
Lj+1, and (ii) erasing the original sub-tree rooted at σi,Lj+1 . This process is
iterated for each tuple 〈Lj , dj+1, Pj+1〉 in FDef(dfi) until the final hierarchy
hfi is obtained.

To give an example, consider Fig. 2, where the two hierarchies hj+1 and hj+2
are merged in order to obtain the new hierarchy hfj+1 that can also be intended as
a “modified” version of the original hierarchy hj+1. Specifically, hfj+1 is obtained
via setting both Lj+1 and Pj+2 equal to 1.

Algorithm MergeOLAPHierarchies implements the merging of two OLAP hi-
erarchies. It takes as arguments the two OLAP hierarchies to be merged, hj+1
and hj+2, and the parameters needed to perform the merging task (i.e., the level
of hj+1, Lj+1, to which clones of the sub-tree of hj+2 rooted at the root node of
hj+2 have to be appended, and the depth Pj+2 of such sub-tree), and returns the
modified hierarchy h′

j+1 ≡ hfj+1 . Finally, algorithm
FlattenMultidimensionalCubeModel implements the overall OLAP dimension
flattening process by merging the target OLAP hierarchies pair-wise via algo-
rithm MergeOLAPHierarchies, which thus plays the role of baseline procedure.
Since an N -dimensional data cube model is flattened onto an M -dimensional
data cube model, with M << N , a flattening map FM determines the way
groups of OLAP dimensions of the original data cube model must be flattened
onto one new OLAP dimension of the flattened data cube model. Each entry of
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Fig. 2. Merging OLAP hierarchies

FM , denoted by fmi, stores the definition set FDef(fmi) of the group of Mi di-
mensions of the original data cube model to be flattened onto one new dimension
of the flattened data cube model. Recall that, for each definition set FDef(fmi)
in FM , the first hierarchy to be processed, hfi , is the one associated to the first
of the Mi flattening dimensions, dfi . This property univocally determines the
flattening dimensions in FM . Algorithm FlattenMultidimensionalCubeModel
takes as arguments the multidimensional model of the stream source S, MS ,
and the flattening map FM , and returns the M flattening dimensions DM =
{df0 , df1 , . . .dfM−1} with modified hierarchies HM = {hf0 , hf1 , . . . hfM−1}, re-
spectively. It clearly follows that (i)

⊕|FM|−1
i=0 Mi = M , and (ii) |FM | = M .

5 Computing OLAP Aggregations over Multidimensional
Data Streams

Consider a stream source S and its multidimensional model MS . Given the M -
dimensional flattened data stream sMD ∈ S, which is generated by the OLAP
dimension flattening process (see Sect. 4), the OLAP stream aggregation scheme
deals with the problem of populating the summarized repository of data stream
readings MDSR by means of sMD and according to the underlying OLAP stream
model (see Sect. 2). As regards storage issues, we assume that MDSR is repre-
sented in memory as a multidimensional array [2], like data cubes of conventional
OLAP architectures [7]. According to this storage representation model, MDSR
can be viewed as a collection of data cells that are indexed by means of a certain
multidimensional access method [15], such that each cell stores an SQL-based
aggregation of readings of sMD (e.g., SUM, COUNT, AVG etc). The M dimensions
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of MDSR are those originated by the OLAP dimension flattening process, and
are equipped with specialized hierarchies. The main idea of the OLAP stream
aggregation scheme consists in determining how readings in sMD participate to
data cell aggregations of MDSR. This, in turn, finally determines the way of
populating MDSR.

Similarly to what done with the OLAP dimension flattening process (see Sect.
4), for the sake of simplicity, in order to describe our proposed OLAP stream
aggregation scheme, here we consider the case in which MDSR is materialized
as a two-dimensional array (i.e., M = 2). As a consequence, sMD ≡ s2D. The
more general scheme for the case M > 2 is a straightforward generalization of
the one we next describe.

In the running example, we consider the case in which MDSR is characterized
by the following two flattening dimensions: the normal flattening dimension
dfN , and the temporal flattening dimension dfT . Both hierarchies of dfN and
dfT , denoted by hfN and hfT , respectively, are obtained by means of the OLAP
dimension flattening process. Indeed, to further simplify, we assume that hfT fol-
lows the natural temporal hierarchy (e.g., Y ear → Quarter → Month → Day),
thus, without loss of generality, we assume that hfT is properly obtained by a
void flattening process. It should be noted that the temporal dimension allows
us to meaningfully capture how data streams evolve over time. However, our
OLAP stream model is general enough to handle any kind of dimension arising
in real-life data stream applications and systems (e.g., categorial dimensions of
retail scenarios).

Given a reading r2D,j embedded in s2D of S, on the basis of traditional
OLAP aggregation schemes over conventional data sources like relational data
sets stored in DBMS (e.g., [2]), the measure v2D,j of r2D,j has to be aggregated
along all the dimensions of the multidimensional model Ms2D . In our proposed
OLAP stream model, this means that the measure v2D,j contributes to a certain
(array) cell of MDSR (and updates its value) based on the membership of dimen-
sional attribute values DimV al(r2D,j) = {a2D,j,k0 , a2D,j,k1 , . . . , a2D,j,kP−1} and
the timestamp ts2D,j of the reading r2D,j with respect to the normal and tem-
poral hierarchy associated to dimensions of MDSR, respectively. This way, we
obtain a specialized aggregation scheme for our proposed OLAP stream model
able of (i) taming the curse of dimensionality problem arising when multidimen-
sional data streams are handled (see Sect. 2), and (ii) effectively supporting the
simultaneous multidimensional aggregation of data stream readings.

It should be noted that the OLAP dimension flattening process plays a role
in the final way readings are aggregated during the acquisition phase. Focus the
attention on the normal flattening dimension dfN and the associated hierarchy
hfN . Assume that DN (MS) = {dk0 , dk1 , . . . , dkF−1} is the sub-set of D(MS)
used to generate dfN (DN (MS) ⊂ D(MS)). Let us now focus on the collection
of stream sources of S. Although each stream source si ∈ S could define a to-
tal (i.e., Msi ≡ MS) or partial (i.e., Msi ⊂ MS) containment relationship with
respect to the multidimensional model of S, MS , the OLAP dimension flatten-
ing process essentially combines dimensions in DN (MS) and, as a consequence,
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the final multidimensional model of the flattened two-dimensional data stream
s2D, Ms2D , results to be a “combination” of the multidimensional models of
data stream sources in S. Intuitively enough, it is easy to observe that, if the
multidimensional models Ms2D and MS are coincident (i.e., Ms2D ≡ MS), then
readings embedded in s2D are simultaneously aggregated along all the dimen-
sions in MS to obtain the final aggregate value in the corresponding MDSR cell.
Otherwise, if the multidimensional models Ms2D and MS define a proper con-
tainment relationship (i.e., Ms2D ⊂ MS), then readings embedded in s2D are
simultaneously aggregated along a partition of the dimensions in MS to obtain
the final aggregate value in the corresponding MDSR cell.

Formally, given a reading r2D,j = 〈id2D, v2D,j , ts2D,j , a2D,j,k0 , a2D,j,k1 , . . . ,
a2D,j,kP−1〉 embedded in s2D, on the basis of a top-down approach, starting
from the dimensional attribute value at the highest aggregation level of h2D,j

(i.e., the hierarchy associated to dimensional attribute values in r2D,j – see Sect.
3), a2D,j,k0 , we first search the hierarchy of the normal flattening dimension dfN ,
hfN , starting from the member at the highest aggregation level, denoted by σN

0,0,
by means of a breadth-first tree visiting strategy, and we check whether a2D,j,k0

belongs to the OLAP class defined by the current member of hfN , σN
i,Lj

(when
i = 0, then σN

i,Lj
≡ σN

0,0). When a member of hfN such that a2D,j,k0 belongs to
the class it defines, denoted by σN

i∗,L∗
j
, is found, then (i) the breadth-first search

is contextualized to the sub-tree of hfN rooted at σN
i∗,L∗

j
, denoted by T ∗(hfN ),

and (ii) the current search dimensional attribute value becomes the value that
immediately follows a2D,j,k0 in the hierarchy h2D,j , i.e. a2D,j,k1 . After that, the
whole search is repeated again, and it ends when a leaf node of hfN is reached,
denoted by σN

i∗,Depth(hfN ), such that Depth(hfN ) denotes the depth of hfN . Note
that the search should end when the last dimensional attribute value a2D,j,kP−1

is processed accordingly, but, due to the OLAP dimension flattening process and
the possible presence of imprecise or incomplete data, it could be the case that
the search ends before that. For the sake of simplicity, hereafter we assume to
deal with hierarchies and readings adhering to the simplest case in which the
search ends by reaching a leaf node of hfN while the last dimensional attribute
value a2D,j,kP−1 is processed. The described search task allows us to determine an
indexer on the first dimension of MDSR, dfN . Let us denote as I∗N this indexer.
The other indexer on the second dimension of MDSR, dfT , denoted by I∗T , is
determined by means of the same approach exploited for the previous case, with
the difference that, in this case, the search term is fixed and represented by the
reading timestamp ts2D,j . When both indexers I∗N and I∗T are determined, an
MDSR cell is univocally located, and the reading measure v2D,j is used to finally
update the value of this cell.

Let us now focus on a running example showing how our proposed OLAP
stream aggregation scheme for multidimensional data stream readings works
in practice. Fig. 3 shows the hierarchy hfN associated to the normal flatten-
ing dimension dfN of the running example, whereas Fig. 4 shows instead the
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Fig. 3. The hierarchy associated to the normal flattening dimension of the running
example

Fig. 4. The hierarchy associated to the temporal flattening dimension of the running
example

hierarchy hfT associated to the temporal flattening dimension dfT . As suggested
by Fig. 3 and Fig. 4, the multidimensional data stream model of the running ex-
ample describes an application scenario focused on sales of electric and personal
computer parts sold in Europe, Asia and America during 2008. The hierarchy
hfN derives from the OLAP dimension flattening process, whereas the hierarchy
hfT follows the natural temporal hierarchy organized by months and groups of
months (i.e., a void flattening process). Readings are produced by different loca-
tions distributed in Europe, Asia and America, thus defining a proper network
of data stream sources. In more detail, the described one is a typical application
scenario of modern Radio Frequency IDentifiers (RFID) [19] based applications
and systems.

Fig. 5 shows the array-based repository MDSR that represents summarized in-
formation on readings produced by RFID sources, equipped with the normal and
temporal hierarchies. In particular, each MDSR cell stores a SUM-based OLAP
aggregation of readings according to both the normal and temporal dimension,
simultaneously.
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Fig. 5. The array-based repository of summarized data stream readings MDSR of the
running example

Now consider the reading r2D,k = 〈id2D, 5, 6/15/08, India, Delta − Power,
Power2500〉 embedded in s2D, which records the sale of a Power2500 trans-
former, produced by the company Delta-Power at the price of 5 RP, sold in India
on June 15, 2008. Focus the attention on how the value of r2D,k is aggregated
within cells of MDSR. On the basis of our proposed OLAP stream aggregation
scheme, the final MDSR cell to be updated is finally located by means on two
distinct paths on the respective hierarchies hfN and hfT determined by the si-
multaneous membership of dimensional attribute values and timestamp of the
reading r2D,k to classes defined by members of these hierarchies, in a top-down
manner. Fig. 6 shows the configuration of MDSR after the update. Note that the
old value 69 of the target cell has been updated to the new value 69 + 5 = 74.

Finally, algorithm PopulateRepository implements the proposed OLAP
streamaggregation scheme that allows us topopulate the target array-based repos-
itory of summarized data stream readings MDSR by means of the M -dimensional
flattened stream sMD. It takes as arguments the repository MDSR and the in-
put reading rMD,j of sMD, and updates MDSR by the measure value embedded in
rMD,j , vMD,j , according to the simultaneousmembership-based multidimensional
aggregation approach described above. Furthermore, since, to efficiency purposes,
data streams are usually processed with the aid of a buffer B (e.g., [1]) having a
certain memory CB, such that CB > 0, CAMS also implements the buffered version
of algorithm PopulateRepository, called BufferedPopulateRepository. Algo-
rithm BufferedPopulateRepository takes as arguments the repository MDSR
and the buffer ofM -dimensional readingsBMD, and updates MDSR via iteratively
invoking algorithm PopulateRepository, which thus plays the role of baseline
procedure.



CAMS: OLAPing Multidimensional Data Streams Efficiently 59

Fig. 6. The array-based repository of summarized data stream readings MDSR of
Fig. 5 after the update

6 Experimental Assessment and Analysis

In order to test the OLAPing capabilities of CAMS over multidimensional data
streams, we conducted a series of experiments where we stressed both the effi-
ciency and the scalability of CAMS. The hardware/software platform of our ex-
perimental environment was characterized by a 2 GHz Pentium equipped with 2
GB RAM and running Microsoft Windows XP. Microsoft Analysis Services 2000
was the OLAP platform chosen as data layer of the experimental setting. Both
the CAMS framework and the experimental environment have been implemented
in Sun Microsystems Java 1.5. Java software has been interfaced with OLAP
data stored in the Analysis server by means of a “neutral” XML-based API
library. We engineered a synthetic data stream generator producing readings
whose values are distributed according to a Uniform distribution over a given
range [L0, L1], with L1 > L0. Our experiments were focused to stress the overall
amount of memory space taken by CAMS for computing OLAP aggregations over
multidimensional data streams when populating the repository MDSR.

In our experimental environment, we introduced the following (experimental)
parameters: (i) N , which models the number of dimensions of the original data
cube model; (ii) M , which models the number of dimensions of the flattened
data cube model; (iii) PM = {Pf0 , Pf1 , . . . , PfM−1}, which models the depths
of hierarchies associated to dimensions of the flattened data cube model, such
that Pfi denotes the depth of the hierarchy hfi ∈ HM ; (iv) L0, which models the
lower bound of the range of the Uniform distribution generating the data stream
reading values; (v) L1, which models the upper bound of the range of the Uniform
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distribution generating the data stream reading values; (vi) S, which models
the overall size of data stream readings expressed in terms of K readings. We
combined all these parameters in order to study the variation of memory space,
expressed in MB, needed to compute the final OLAP aggregations of MDSR. In
our experimental environment, the whole experimental setting, denoted by E,
was thus modeled as follows: E = 〈N, M, {Pf0 , Pf1 , . . . , PfM−1}, L0, L1, S〉. Each
experimental campaign was characterized by an instance of E, denoted by Ê,
which is obtained via setting the values of all the experimental parameters in E.

Fig. 7 (a) shows the variation of memory space with respect to the variation
of the size of data stream readings, S, for several values of the number of di-
mensions of the flattened data cube model, M , ranging over the interval [4 : 8].
For this experimental campaign, we set the experimental parameters as follows:
Ê = 〈16, {4, 6, 8}, Pf0 = Pf1 = . . . = PfM−1 = 15, 100, 500, [400K, 800K]〉. It
should be noted that this campaign was focused to stress the efficiency of CAMS,
i.e. the capability of CAMS in efficiently computing OLAP aggregations over mul-
tidimensional data streams. Fig. 7 (b) shows instead the variation of memory
space with respect to the variation of the number of dimensions of the origi-
nal data cube model, N , for several values of the size of data stream readings,
S, ranging over the interval [600K: 800K]. For this experimental campaign, we
set the experimental parameters as follows: Ê = 〈[16, 24], 8, Pf0 = Pf1 = . . . =
PfM−1 = 15, 100, 500, {600K, 700K, 800K}〉. It should be noted that this cam-
paign was focused to stress the scalability of CAMS, i.e. the capability of CAMS
in efficiently scaling-up over data stream sources characterized by increasing-in-
dimensionality data cube models.

From the analysis of the our experimental results shown in Fig. 7, it clearly
follows that CAMS allows us to effectively and efficiently computing OLAP ag-
gregations over multidimensional data streams, while also ensuring a good scal-
ability when data cube models grow in number of dimensions and size. All these

Fig. 7. Variation of memory space needed to compute OLAP aggregations over mul-
tidimensional data streams with respect to the variation of the size of data stream
readings (a) and the number of dimensions of the original data cube model (b)
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amenities make CAMS an enabling component for next-generation DSMS towards
the support of OLAP analysis/mining tasks over multidimensional data streams.
In particular, the scalability of CAMS, as demonstrated by our experimental re-
sults, plays a critical role in real-life data stream applications and systems, as
the latter are very often characterized by massive and high-dimensional flows of
data stream readings.

7 Conclusions and Future Work

CAMS, a model for efficiently OLAPing multidimensional data streams has been
presented in this paper. CAMS combines a set of data stream processing method-
ologies in order to tame the multidimensionality of data streams, which is a
leading challenge in OLAP stream research. Our experimental assessment and
analysis have clearly highlighted the benefits deriving from integrating CAMS
within any data-stream-oriented OLAP tool of next-generation DSMS. A further
experimental analysis of CAMS will regard stressing other important and critical
experimental parameters not considered in this research, such as time needed
to compute OLAP aggregations over multidimensional data streams, along with
the assessment of CAMS against real-life data stream sets. However, a clear re-
sult of the research presented in this paper states that, in the context of OLAP
tools for next-generation DSMS, CAMS plays the role of enabling component.
Despite this, the new frontier for OLAP stream research is represented by mod-
els, techniques, algorithms and architectures for effective on-the-fly OLAPing of
multidimensional data streams, which is postponed as future work.
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Abstract. In this paper, we propose a new technique for time-series pre-
diction. Here we assume that time-series data occur depending on event
which is unobserved directly, and we estimate future data as output
from the most likely event which will happen at the time. In this inves-
tigation we model time-series based on event sequence by using Hidden
Markov Model(HMM), and extract time-series patterns as trained HMM
parameters. However, we can’t apply HMM approach to data stream
prediction in a straightforward manner. This is because Baum-Welch
algorithm, which is traditional unsupervised HMM training algorithm,
requires many stored historical data and scan it many times. Here we ap-
ply incremental Baum-Welch algorithm which is an on-line HMM train-
ing method, and estimate HMM parameters dynamically to adapt new
time-series patterns. And we show some experimental results to see the
validity of our method.

Keywords: Forecasting, Data Stream, Hidden Markov Model, Incre-
mental Learning.

1 Introduction

Recently there have been a lot of knowledge-based approaches for huge databases,
and much attention have been paid on time-series prediction techniques [2]. Es-
pecially prediction on data stream, which is assumed huge amount of data and
high speed updating, is important technique in many domains.

There have been many prediction approach proposed so far [4]. One of the
traditional approach is Exponential Smoothing that is a heuristic method based
on weighted mean of past data. In exponential smoothing method, we assume
weight of data decrease with time exponentially. Then we can obtain the weighted
mean at time t using the weighted mean at time t − 1 as an aggregated value.

Holt-Winters method is one of the famous prediction approach proposed based
on exponential smoothing [3]. In this method they estimate future data based
on the weighed mean ỹt and mean of ỹt’s variation Ft. ỹt and Ft are updated at
each time as follows:

ỹt = λ1yt + (1 − λ1)(ỹt−1 + Ft−1)

Ft = λ2(ỹt − ỹt−1) + (1 − λ2)Ft−1

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 63–74, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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λ1 and λ2 are called as smoothing parameters. Here 0.0 ≤ λ ≤ 1.0. If λ is
set to bigger value, the weight of past data will decrease more quickly. They
estimate future data at time t + h using ỹt and Ft as follows:

ỹt+h|t = ỹt + hFt

However, by Holt-Winters method it is hard to estimate data depending on
event. For example, wind velocity data occur depending on event such as ap-
proach of typhoon, does not depend on previous data directly.

In Hassan [5], they discuss how to predict stock market using Hidden Markov
Model (HMM) which is a stochastic model assumed simple Markov process with
hidden state. They estimate hidden state at each observation and estimate future
observations based on state transition. We believe we can estimate time-series
depending on event sequence effectively by this approach, since the estimated
data doesn’t depend on previous observation.

However this approach can’t estimate a data following new pattern which
didn’t be appeared in training data, because they train HMM parameters in ad-
vance by EM-algorithm which requires large computational time. This is serious
problem especially in data stream forecasting. Data stream is assumed as infi-
nite time-series and distribution of data changes dynamically [6] [10]. We should
train the model incrementally while forecasting data since given training data
contain only a part of patterns in whole data stream.

There are some research about incremental learning for HMM [1]. In Stenger
[11], they discuss how to update HMM parameters incrementally and propose
incremental Baum-Welch algorithm. Incremental Baum-Welch algorithm does
not require historical data, and we can compute very quickly. They apply this
approach to background modeling in real-time video processing.

In this investigation we propose a new forecasting approach using incremental
Baum-Welch algorithm. We believe we can achieve adaptive time-series estima-
tion on data stream by using incremental HMM learning. We compare our ap-
proach to conventional batch Baum-Welch algorithm and show the effectiveness
of proposal method.

In this work, we discuss time-series forecasting issue on data stream in section
2. In section 3 we review incremental Hidden Markov Model and we develop the
forecasting technique using incremental HMM. Section 4 contains experimental
results. We conclude our discussion in section 5.

2 Time-Series Forecasting Based on Event

First of all, we describe how we predict time-series on data stream. We illustrate
our approach in a figure 1. Let us assume a sales history of goods in a store as
time-series, such that has a large sale for coffees at day t, beer at day t + 1, and
fruit juice at day t + 2.

In this investigation, we assume that observation in time-series occurs depend-
ing on unknown (hidden) state. In the figure 1, we interpret the day t as a busy
day for many customer by examining the sales data, because of few beers and
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Fig. 1. Modeling Time-Series based on Event Sequence

many coffees saled. We consider the day t + 1 as a day before holiday because
many customers want to drink alcohol, and many customers have hangover at
day t + 2 because of many fruit juices sold.

On this interpretations of data, we see transition from a busy day to a drink-
ing day, and transition from a drinking day to a hangover day. If we see these
transition pattern in past data many times, we may estimate sales of goods at
t + 1 or t + 2 when we are at the day t.

In this approach, although we estimate future observation by considering tran-
sition of hidden state, we don’t have to interpret these unknown state [12]. In this
investigation we formalize hidden state explicitly using Hidden Markov Model
(HMM), and estimate observation by HMM trained using past observations with-
out interpreting states.

However, during the passage of long time, some change of transition pattern
may occur. For example, if a new high school opens near by the store, many
students will come to the store and sales of snacks and juices will increase. For
such changes of pattern, we should consider adaptation to new pattern even
while processing estimation of future observations.

Unfortunately, it is not easy to update HMM parameters on-line, that means
training model using new observations dynamically after start of process for es-
timation. This is because we can’t obtain the most likely parameters directly
from observation sequence, but we must estimate hidden state sequence before
parameter estimation. Generally, for unsupervised learning of HMM, we em-
ploy Baum-Welch algorithm which requires training observation sequence and
scans them many times. However, it is hard to recalculate HMM parameters by
Baum-Welch algorithm at each time we get new observation, from the aspect of
computational time.

Especially in data stream environment, we can’t memorize historical observa-
tion sequence because of infinite amount of observation, then we should apply
incremental parameter updating. In this investigation, we employ incremental
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Baum-Welch algorithm which doesn’t require historical observations for on-line
update of HMM parameters. We apply incremental Baum-Welch algorithm to
estimating future observation and we discuss how we can achieve adaptive fore-
casting with on-line training.

3 Forecasting Using Incremental Hidden Markov Model

3.1 Hidden Markov Model

A Hidden Markov Model (HMM) is nothing but an automaton with output
where both the state transition and the output are defined in a probabilistic
manner. The state transition arises according to a simple Markov model but it
is assumed that we don’t know on which state we are standing now1, and that
we can observe an output symbol at each state. We could estimate the transition
sequences through observing output sequence.

A HMM model consists of (Q, Σ, A, B, π) defined below[8]:

(1) Q = {q1, · · · , qN} is a finite set of states
(2) Σ = {o1, · · · , oM} is a set of output symbols.
(3) A = {aij , i, j = 1, ..., N} is a probability matrix of state transition where

each aij means a probability of the transition at qi to qj . Note ai1+...+aiN =
1.0.

(4) B = {bi(ot), i = 1, ..., N, t = 1, ..., M} is a probability of outputs where
bi(ot) means a probability of an output ot at a state qi.

(5) π = {πi} is an initial probability where πi means a probability of the initial
state qi. In this work, we assume all states occur in the same probability as
initial state, that is πi = 1

N .

The probability matrix A shows the transition probability within a framework
of simple Markov model, which means state change arises in a probabilistic
manner depending only on the current state. Thus, for instance, the (i, j)-th
component of A2 describes the transition probability from qi to qj with two
hops of transitions. Similarly the output appears depending only on the current
state.

Since we consider multidimensional observation, we define output symbol as
numeric vector in this work. We assume each values in vector occurs from nor-
mal distribution independently. That is, when ot = ot1, ot2, ..., otD, we define
probability of ot at state qi as:

bi(otk) =
1√

2πσik

e
− (otk−µik)2

2σ2
ik

µik and σik are the mean and variance of normal distribution respectively,
and both are parameters of our HMM.
1 This is why we say hidden.
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We should think about how to obtain parameters, since it is hard to determine
the transition probability matrix A and the output probability B definitely. This
problem is called a model calculation of HMM. Usually we do that by means of
some machine learning techniques[9].

One of the typical approach is supervised learning. In this approach, we assume
labeled training data in advance to calculate the model, but the data should be
correctly classified by hands since we should extract typical patterns them by
examining them. Another approach comes, called unsupervised learning. Assume
we can’t get labeled training data but a mountain of unclassified data except a
few. Once we obtain strong similarity between the classified data and unclassified
data (such as high correlation), we could extend the training data in a framework
of Expectation Maximization (EM) approach[7].

One of the typical approach is known as a Baum-Welch algorithm. The algo-
rithm has been proposed based on EM approach. That is, the algorithm adjusts
the parameters many times to maximize the likelihood for the generation of the
output symbols given as unsupervised data. The process goes just same as EM
calculation, i.e., we calculate the expect value of the transition probability and
the output probability, then we maximize them. We do that until few change
happens.

3.2 Incremental Baum-Welch Algorithm

Let γt(qi) be the stay probability on state qi at time t, and RT (qi) be the
summation of stay probabilities γt(qi), that is:

RT (qi) =
T∑

t=1

γt(qi) (1)

When we obtain a new observation oT at time T , we update HMM parameters
by using incremental Baum-Welch algorithm. In first, we calculate γT (qx) which
is likelihood that we stay state qx at time T . Here we assume γT−1(qi) and
RT−1(qi) are memorized in advance for all i. Then, we obtain γT (qi, qx) which
is the probability of the transition at time T from state qi to qx using current
HMM parameters as:

γT (qi, qx) = γT−1(qi)
aixbx(oT )∑N

x=1 aixbx(oT )

We obtain γT (qx) using γT (qi, qx) as:

γT (qx) =
N∑

i=1

γT (qi, qx)

Then the HMM parameters are updated as [11]:

a′
ij =

RT−1(qi)aij + γT (qi, qj)
RT (qi)
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µ′
i =

∑T
t=1 γt(qi)ot∑T
t=1 γt(qi)

=
RT−1(qi)µi + γT (qi)oT

RT (qi)

σ′
i =

∑T
t=1 γt(qi)(ot − µi)2∑T

t=1 γt(qi)
=

RT−1(qi)σi + γT (qi)(oT − µi)2

RT (qi)

By using incremental Baum-Welch algorithm, we can update parameters quickly
without historical data.

However, change of parameters become smaller and smaller with time because
RT increase directly with time and the weight of new observation become rel-
atively small. Therefore we define forget function wλ(t) to reduce the weight of
old observations as:

wλ(t) = λt

Here let t be the time elapsed since the data observed, λ be constant of
forgetting speed and 0.0 ≤ λ ≤ 1.0. In this paper, we call λ′ = (1.0−λ) as forget
coefficient.

We redefine RT (qi) to reduce the weight of old observations as below:

RT (qi) =
T∑

t=1

γt(qi)λT−t

=
T−1∑
t=1

γt(qi)λT−1−tλ + γT (qi)λT−T

= λRT−1(qi) + γT (qi)

We can derive RT (qi) recursively. By applying this new definition, we can up-
date HMM parameters using observations weighted based on forget function by
incremental Baum-Welch algorithm.

3.3 Estimating Observation

We develop our theory to estimate future data using incremental Hidden Markov
Model. Since incremental Baum-Welch algorithm does not execute iterative pa-
rameter estimation such as EM-algorithm, it requires many observations for
convergence HMM parameters initialized random values. Here we apply Baum-
Welch algorithm as off-line learning to obtain initial model.

First, we generate random numbers for HMM parameters A and µ, and assign
1.0 to all σ. Then we apply Baum-Welch algorithm to given training sequence
which contains T observations. After convergence, we calculate γt(qi), the stay
probabilities on state qi at time t for 1 ≤ t ≤ T . We obtain its summation∑T

t=1 γt(qi) and the stay probabilities at final time T , γT (qi).



Data Stream Prediction Using Incremental Hidden Markov Models 69

Then we discuss how to estimate the observation at next time T + 1 using
HMM. Since observation at time T + 1 is unknown, we estimate the likelihood
which we stay on state qi at time T + 1 as:

γT+1(qi) =
N∑

j=1

γT (qj)aji

If we are standing at state qi, the most likely observation at time T + 1
is µi = (µi1, µi2, ..., µiD). Therefore, the expected value of the observation is
estimated as:

N∑
j=1

γT+1(qi)µi

We generate this value as our estimated observation at time T + 1.
When we observe a new data at time T + 1, we update HMM parameters

by using incremental Baum-Welch algorithm. After updating parameters, we
calculate γT+1(qi) and RT+1(qi) on each state qi at time T + 1 using updated
HMM parameters. That is:

γT+1(qi) =
N∑

j=1

γT (qj)a′
jib

′
i(oT+1)

RT+1(qi) = λRT (qi) + γT+1(qi)

We use γT+1(qi) to estimate next observation.

4 Experimental Results

Here we discuss some experimental results to show the usefulness of our ap-
proach. First we show how to obtain the results and to evaluate them, then we
show and examine the results.

4.1 Preliminaries

As a test data for our experiments, we take 5 years (1828 days) data in Himawari
Weather Data 1996 to 2000 in Tokyo, and select 6 schema, maximum temperature
(̊ C), minimum temperature (̊ C), humidity (%), maximum wind velocity (m/s),
duration of sunshine (hour) and day rainfall amount (mm). Table 1 show a part
of observation sequence.

We take 10% of observation sequence (182 days) for off-line training data,
and we predict the last 90% of observations (1646 days). Here we apply 2 al-
gorithms to estimate observations, HMM method with batch training by con-
ventional Baum-Welch algorithm periodically (batch HMM), and HMM method
with incremental training by incremental Baum-Welch algorithm at every obser-
vation(Incremental HMM). In batch HMM method, we memorize data observed
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Table 1. Test Data

Day Max. Temp. Min. Temp. Humidity Max. Wind Sunshine Rainfall
3/26/1997 17.5 10.4 49 11.3 9.4 0.0
3/27/1997 11.9 8.4 84 16.1 0.1 14.5
3/28/1997 17.2 6.3 47 14.4 9.6 0.0
3/29/1997 17.4 12.0 64 16.9 0.0 10.5
3/30/1997 25.1 10.4 63 17.8 9.9 40.0
3/31/1997 14.6 7.9 47 10.6 7.5 0.0
4/1/1997 15.7 8.0 50 11.5 8.4 0.0

at past w1 days, and update parameters at every w2 days. In this experiment we
set w1 (window size) to 100, 200, 400, 800,∞, and w2 (interval) to 1, 10, 20, 40,
and we examine results. In incremental HMM method, we set λ′ (forget co-
efficient) to 0.0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, and we examine
results.

We evaluate the prediction accuracy of method using Mean Square Error
(MSE). Let pt be the estimated value, xt be the actual value at time t, then
MSE is defined as follows:

MSE =
1
T

T∑
t=1

(pt − xt)2

We also examine execution time of estimating observation sequence (1646
days) by batch HMM and incremental HMM method. We evaluate MSE and
execution time by average of 10 trials. In the following experiments, we give 15
HMM states.

4.2 Results

Table 2 shows the MSE results. In result of maximum temperature and minimum
temperature, we got the best MSE 10.17, 5.01 by incremental HMM method in
condition of λ′ = 0.2, 0.5, respectively. The best MSE of maximum and minimum
temperature prediction by batch HMM method is 18.21, 14.93 respectively, both
are given by condition of w1 = 200 and w2 = 10. From this result, we can say
that new observations are more important to forecast future temperature data,
because the weight of old observations are reduced quickly by setting λ′ to 0.2,
0.5 or w1 to 200. We can see same characteristic in humidity results, that we
got the best MSE by incremental HMM method in condition of λ′ = 0.2, and in
batch HMM method we got the best MSE in condition of w1 = 200 and w2 = 10.

On the other hand, in result of rainfall amount, we see that better result comes
from conditions of lower forget coefficient, larger window size, and small interval
of update. We got the best MSE of rainfall prediction, 175.17, by incremental
HMM method in condition of λ′ = 0.01. In batch HMM result we got the best
MSE, 177.01, in condition of w1 = ∞ and w2 = 10. From this result we can
say that both new and old observations are important to forecast future data,
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Table 2. Prediction Accuracy (MSE)

Method MSE
Max. Temp. Min. Temp. Humidity Max. Wind Sunshine Rainfall

Batch HMM
window interval

100 1 22.42 18.96 191.46 19.16 16.79 186.45
100 10 25.64 22.75 194.54 19.06 16.54 185.43
100 20 23.85 20.87 191.25 19.20 16.61 186.29
100 40 24.31 21.06 195.50 19.23 16.67 186.64
200 1 19.68 17.08 177.19 19.03 15.87 177.34
200 10 18.21 14.93 169.79 18.92 15.62 177.71
200 20 28.87 27.63 185.51 18.86 15.66 180.10
200 40 28.79 26.35 181.91 18.94 15.66 181.16
400 1 33.16 31.83 204.17 18.81 15.67 176.75
400 10 25.55 23.21 188.69 18.90 15.70 177.64
400 20 32.87 32.15 196.62 19.14 15.71 179.52
400 40 24.60 22.09 179.01 19.12 15.65 181.05
800 1 57.52 59.54 244.36 18.88 15.87 177.64
800 10 20.80 17.82 179.98 18.94 15.63 177.59
800 20 29.62 27.90 187.00 19.01 15.60 180.15
800 40 30.98 29.33 188.29 19.05 15.68 180.81
∞ 1 56.68 58.34 246.79 18.94 15.81 177.63
∞ 10 20.29 17.32 178.78 18.91 15.61 177.01
∞ 20 31.82 30.25 190.85 18.94 15.62 178.95
∞ 40 31.97 30.36 188.47 18.96 15.67 180.63
Inc. HMM

λ′

0.0 59.93 61.58 236.72 18.91 15.62 175.25
0.001 57.35 58.69 232.39 18.86 15.60 175.99
0.002 58.15 59.76 233.40 18.92 15.58 176.21
0.005 53.94 54.99 225.99 18.79 15.40 175.50
0.01 48.09 47.89 217.26 19.01 15.34 175.17
0.02 40.58 34.79 255.31 21.10 15.82 176.73
0.05 15.97 12.34 166.98 18.29 15.33 179.76
0.1 11.88 7.69 158.14 18.50 15.35 183.70
0.2 10.17 5.61 151.93 19.04 15.64 188.39
0.5 10.52 5.01 167.52 22.19 17.80 220.41

because frequent parameter update using many past observations cause better
MSE.

Table 3 shows the execution time of estimating observations. In batch HMM
method, the execution time increase directly with window size and inversely
with interval of update. By incremental HMM method we can predict very
quickly compared to batch HMM method. For instance, compared to batch HMM
method in condition of w1 = 800 and w2 = 1 that takes 3568244.20ms, we can
execute incremental HMM method for about 1/6500 of time.
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Table 3. Execution Time

Method Execution Time(ms)
Whole Data per 1 Data

Batch HMM
window interval

100 1 537782.10 326.72
100 10 53922.80 32.76
100 20 27141.00 16.49
100 40 13535.20 8.22
200 1 1060462.50 644.27
200 10 105598.40 64.15
200 20 52573.70 31.94
200 40 26112.40 15.86
400 1 2042269.70 1240.75
400 10 139620.30 84.82
400 20 59092.60 35.90
400 40 27025.40 16.42
800 1 3568244.20 2167.83
800 10 139652.60 84.84
800 20 58978.80 35.83
800 40 27006.90 16.41
∞ 1 5342431.90 3245.71
∞ 10 141042.70 85.69
∞ 20 59390.80 36.08
∞ 40 26963.00 16.38
Inc. HMM

λ′

0.0 550.10 0.33
0.001 537.60 0.33
0.002 551.90 0.34
0.005 545.40 0.33
0.01 542.10 0.33
0.02 561.00 0.34
0.05 545.40 0.33
0.1 543.60 0.33
0.2 542.20 0.33
0.5 545.60 0.33

4.3 Discussions

Here we discuss how we can think about our experimental results and especially
about our approach.

In result of maximum temperature, minimum temperature and humidity, we
got better MSE when we reduce the weight of old observations quickly. This is
because these attribute have strong characteristic of seasonality, for instance, in
summer period it is around 30 C̊ of temperature and 70 % of humidity at most
day, and in winter period 10 C̊ of temperature and 35 % of humidity. Because
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season changes with long period, we can construct specific model for each seasons
by reducing weight of old observations quickly, and get good prediction accuracy.

On the other hand, in rainfall amount prediction, we got better MSE by using
many past observations. This is because we have to learn the weather patterns
based on observation vector sequence to forecast rainfall amount. In other words,
rainfall amount strongly depends on weather event (like sunny, rain or typhoon).
Frequent update of parameters is also nessesary to forecast rainfall because small
w2 cause better MSE.

In the result of execution time, incremental HMM method requires few exe-
cution time compared to batch HMM method. Especially, rainfall amount pre-
diction requires large window size and small update interval, therefore it takes
a lot of time for good forecasting by batch HMM method. By using proposal
method, we can forecast observations very quickly with about the same accu-
racy as batch HMM method. In addition, proposal method doesn’t require large
storage to keep old observations, therefore any storage access doesn’t happen
even if data amount become huge.

5 Conclusion

In this investigation we have proposed how to estimate future data on data
stream by modeling time-series as stochastic process. We have presented adap-
tive future data estimation using HMM by applying incremental Baum-Welch
algorithm. We have discussed some experimental results and shown the useful-
ness of our approach.

In this work we have given the number of state to HMM in advance. But we
need some techniques which can vary number of state concurrently for adapting
new patterns more accurately and quickly.

In this case, we have examined numeric vector as observations, but it is possi-
ble to apply our approach to nonnumeric time-series. For example, we may have
some sort of forecast for accidents by applying our approach to news stream.
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Model. In: Kedad, Z., Lammari, N., Métais, E., Meziane, F., Rezgui, Y. (eds.)
NLDB 2007. LNCS, vol. 4592, pp. 84–95. Springer, Heidelberg (2007)



History Guided Low-Cost Change Detection in
Streams�

Weiyun Huang, Edward Omiecinski, Leo Mark, and Minh Quoc Nguyen

College of Computing, Georgia Institute of Technology, Atlanta, USA
{wyhuang,edwardo,leomark,quocminh}@cc.gatech.edu

Abstract. Change detection in continuous data streams is very useful
in today’s computing environment. However, high computation overhead
prevents many data mining algorithms from being used for online mon-
itoring. We propose a history-guided low-cost change detection method
based on the “s-monitor” approach. The “s-monitor” approach monitors
the stream with simple models (“s-monitors”) which can reflect changes
of complicated models. By interleaving frequent s-monitor checks and
infrequent complicated model checks, we can keep a close eye on the
stream without heavy computation overhead.

The selection of s-monitors is critical for successful change detection.
History can often provide insights to select appropriate s-monitors and
monitor the streams. We demonstrate this method using subspace cluster
monitoring for log data and frequent item set monitoring for retail data.
Our experiments show that this approach can catch more changes in a
more timely manner with lower cost than traditional approaches.

The same approach can be applied to different models in various appli-
cations, such as monitoring live weather data, stock market fluctuations
and network traffic streams.

1 Introduction

With the development of network, data management and ubiquitous computing
technology, data streams have become an important type of data source and
have attracted much attention [2,7,8,9,12]. A data stream is a sequence of data
points which usually can only be read once and does not support random access.
Generally the data points are time ordered. Change detection in data streams has
become a popular research topic in the data mining community [3,4,10,14,15,18].

Stream data change detection usually involves two steps: model generation
and model comparison. We call this a “compute-and-compare” approach, or
“C&C” for short. This approach repeatedly generates models from the data
stream and then compares them to see if there is any change among these models.
Therefore, it incurs very high cost. In some cases, the inherent complexity of the
models prevents the algorithms to be executed frequently. Therefore we may fail
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to detect any change that only lasts for a short duration, and even if we do
discover the change, it may be too late to act on.

Previous work [13] proposes an “s-monitor” approach to tackle this difficult
problem. An s-monitor with respect to an expensive data model is a simple
model that costs much less to compute, and its change reflects the change of
the expensive model. By putting ”monitors” into the stream of the data, the
expensive step of model generation can be avoided as much as possible.

We model a data stream using sliding windows. A window is the portion of
data that enters the system within a certain range. Windows may or may not
overlap. A checkpoint is the point where the stream is checked for changes, usu-
ally at the end of a window. The distance between two consecutive checkpoints
is called the “check interval”. The s-monitors approach reduces the length of the
check interval, therefore can result in better performance for many applications.

How to place the s-monitors is non-trivial and critical to the success of this
approach. [13] shows heuristic sampling based methods to allocate s-monitors.
In many cases history can provide better selection of monitors. Instead of using
heuristcs, this paper divides the whole process into one offline phase and one
online phase. The offline phase studies the history and tries to deduce the pattern
of changes; and the online phase makes use of the knowledge learned by the offline
phase and determines where to put the s-monitors to catch the possible changes
in the future.

This paper is organized as follows. Section 2 reviews the related work on change
detection. Section 3describes the “s-monitor” approach and introduces our history-
guided s-monitor selection. Section 4 discusses our approach in detail using real
and synthetic data as example. Section 5 presents another example using retail
data. Section 6 addresses the future work and section 7 concludes the paper.

2 Related Work

Recently more and more attention has been paid on mining the evolution of the
data [3,4,13,15,18,19]. Aggarwal [3] uses the velocity density estimation concept
to diagnose the changes in an evolving stream. Wang et al. [18] use ensemble
methods to detect concept drift. Aggarwal et al. [4] also propose a framework
for clustering evolving numerical data streams with the use of both an on-line
algorithm and an off-line processing component. Kifer et al [15] lay theoretical
foundation by designing statistical tests for one dimensional data. Our approach
is different from previous research in that we try to tackle the complexity problem
by strategically choosing part of data to process and/or performing low-cost
model processing.

Subspace clustering algorithms [5,16,17], although unfortunately not very ef-
ficient, are very effective in high dimensional data sets. The MAFIA algorithm is
one such algorithm. Like many other subspace clustering algorithms, it divides
each dimension into bins and find dense bins, uses them to generate 2-D grids
and find dense ones, then goes up to three dimensions, and so forth. This pro-
cess requires multiple passes of data. Subspace clustering algorithms can capture
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arbitrary shapes of clusters, and the results do not depend on the initialization
of the clusters. The generated model is easy to interpret. Apriori algorithm [6]
is widely used to analyze retail data but its complexity is also high. These two
algorithms cannot handle high speed streams. We use them to demonstrate how
to integrate low-cost s-monitors with expensive model generation algorithms.

Aggarwal et al. [1] propose a framework to maintain “fading cluster struc-
tures” for data streams and compute projected clusters for current and histori-
cal data. This work examines subsets of dimensions as we do, but it is different
from our research. We focus on detecting changes from sliding windows of data,
rather than designing a clustering algorithm. Our subspace clustering example
uses low-cost s-monitors together with an off-the-shelf algorithm to detect the
changes in the data.

Selection of s-monitors is similar to prediction. Using history to predict data
values in time series [11] is a common practice. The selection of s-monitors is
critical to the success of our approach, and there are multiple ways to allocate
the s-monitors. In this paper, we focus on using history to guide the allocation
of s-monitors.

3 Proposed Method

3.1 The “S-monitor” Approach

This paper is based on the “s-monitor” approach proposed by [13], therefore we
briefly introduce it before we discuss our history-guided s-monitor selection.

A change is the difference between an earlier state and a later state, or rather,
an earlier value and a later value of a particular model. “Detection delay” and
“detection rate” are two important metrics to measure a change detection algo-
rithm. The former measures the time it takes a detection algorithm to report a
change since it happens. The latter measures how much percentage of changes
can be captured.

Suppose we need to monitor a stream for the change of a complicated model
M . The rationale for “s-monitors” is that in many cases, one does not have
to compute the whole model M in order to know that it has changed, and
some easy-to-compute models (i.e. “s-monitors”) can be a good indicator of the
changes. If we can find good s-monitors, then we can check them frequently
because of their low cost. Since s-monitors usually cannot reflect all the changes,
we may interleave infrequent M checks with those s-monitor checks to improve
the detection rate. A similar but more common practice is that to monitor a
high-speed stream, one can mainly process a data sample of each window, but
occasionally (maybe offline) spend time processing all the data in a window to
get a thorough view.

Figure 1 shows two example scenarios in which we can benefit from the s-
monitor approach. Suppose we are watching a one-dimensional data stream. The
C&C approach generates and compares expensive models at checkpoints M1 and
M2, while our approach can check the stream more frequently using the set of s-
monitors (ms). The arrows in figure 1 indicate the checkpoints for both models.
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M1
M2 Alarmms1 ms2 ms3 Alarm

time

(b)

M1 M2ms1 ms2 ms3 Alarm
time

(a)

Fig. 1. Change detection examples

In figure 1(b), after getting M2, the C&C approach detects the change, while
we can do that after ms3. In figure 1(a), because the stream changes back to the
initial state before M2 is obtained, no changes can be detected by C&C, while
we can still report a change after ms3.

In summary, s-monitors can detect changes with less detection delay. And
when the changes are relatively short-lived, the s-monitor approach has a good
chance to achieve a higher detection rate than the C&C approach, since the
latter will miss the changes happened (and recovered) between two consecutive
M checks (see detailed proof in [13]).

3.2 Defining S-monitors from Historical Knowledge

Selecting monitors for a real data set requires understanding the data set. S-
monitor selection is similar to approximate an unknown data distribution with
a function: we first decide which function can best describe this kind of distri-
bution, and then decide the parameters of the function. For example, a common
practice of statistics is linear regression. We first assume a linear function, then
decide the parameters. Whether we should use linear regression to the data,
however, depends on the data’s characteristics.

We can analyze history using multiple methods, such as time-series analy-
sis [11], data visualization, and aggregation against certain features. Patterns
learned from the history can then be used in online stream monitoring. Figure 2
shows the basic steps of low-cost change detection using history.

The whole process is divided into an offline phase and an online phase. The
two phases share common knowledge repository (“causal relationship” in the
figure) and a processing module (feature selection).

The offline phase processes a history of data, using the expensive algorithm C.
The result models (with timestamps on them) are then sent through the feature
selection module, to extract some features (denoted by capital letters A, B,
· · ·, in the figure) that can describe these models. Then, a training module will
process the timestamped feature values, find causal rules between earlier values
and later values and store these rules in the knowledge repository (knowledge
can be of other representation than the rules).

The online phase processes the stream of current data. The rectangles on
the stream represent sliding windows. For a window at time tk we can run the
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Fig. 2. Using history to guide s-monitor selection

expensive algorithm once and get a model k. Model k will be converted into a set
of feature values, which is then fed into the s-monitor selection module. Next,
the s-monitors are selected and output to the checking module c.

Knowledge learned from history can degrade or expire over time. Therefore,
offline history analysis may need to be repeated periodically.

4 Example: Subspace Cluster Change Detection

In this section, we demonstrate the s-monitor approach using change detection
for subspace clusters.

4.1 Web Server Log Data

This data set is the log of a web server which is used to distribute software
(mainly linux software). The log contains about 4 months of data, 3414082
entries. We extracted 7 features from the log, namely domain (of the client
host), method (GET, POST, etc), server response code, file path, file type, agent
(Mozilla, Wget, etc), and file size.

We set every day as a window. We want to find out whether the access pat-
tern in each window changes with respect to the subspace clusters with a given
threshold. Such information can be used to maintain the web servers. For exam-
ple, a subspace cluster {(1, 1), (3, 6), (5, 5), (6, 0)} can be translated as: “clients
are .com hosts, getting a ‘404 not found’ response while trying to access some
rpm files under /pub/linux directory”. A sudden emergence of such a cluster
can imply broken web links for some popular files, especially when some web
pages are updated shortly before the time this cluster starts to appear. Sub-
space clusters can also help the administrator to configure the server so as to
provide better performance and screen the users.
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We use the MAFIA algorithm [16] as the model generation algorithm C. The
subspace clusters make up the high cost model M . The density threshold is set
to 5%. All the experiments (including the retail data experiment in section 5)
are performed on a Pentium IV 2.80GHz PC with 1GB memory, running Redhat
7.2. Data are in binary format.

4.2 S-monitor Selection Based on Association Rules

Our goal is to discover at least one changed subspace when the model changes.
Dimensions and bins essentially divide the whole data spaces into multidimen-
sional grids and subspaces are simply grid cells or a collection of grid cells. With
limited system resources (such as memory), we want to choose a subset of the
grids/collection of grids that are most likely to change.

By studying the history we find out that the subspace clusters in one window
and the changed clusters in next window often show up together. Therefore,
we analyze the changes that happened in the past and deduce the “causal”
relationship between earlier and later phenomena. For example, we may get a
rule like “subspace A is dense in window i and subspace B’s density changed
either from dense to sparse, or sparse to dense, in window i + 1”. We keep the
number of occurrences in the history as the score for each rule. Such a rule is
essentially an association rule [6]. That is, given the set of all subspaces Σ, and
a rule 〈A, B, sAB〉, A ∈ Σ and B ∈ Σ, the score sAB is the support of the
association rule. The number of times that A appears in a window is called the
support of A, or sA. The confidence of the rule is then sAB/sA, which is an
approximation of the probability P (B|A).

In the online phase, after each M generation, we match the subspace clusters
in M with all the rules, and choose the ones with highest confidences to follow.
Each matched rule will produce a candidate s-monitor, and one candidate s-
monitor can be produced by multiple rules. We associate each candidate with
the highest confidence of its rules. For an s-monitor set of size n, the top-n
candidates (with the highest confidences) are selected as the s-monitors.

Example. Current window contains subspace clusters A and B, and we have
a list of rules 〈A, C, 30〉, 〈B, C, 20〉, 〈A, D, 10〉, 〈B, D, 20〉. The challenge is to
choose one s-monitor to watch in the next window.

First we compute the confidence of each rule and get 〈A, C, 0.75〉, 〈B, C, 0.50〉,
〈A, D, 0.25〉, 〈B, D, 0.50〉. Since all these rules can be matched with A or B, we
get candidates C and D, with C associated with confidence 0.75 (since it is
higher than 0.50) and D associated with confidence 0.50. Therefore we choose
C over D.

4.3 Result

In practice, we interleave one expensive model generation with r s-monitor checks
to detect the changes. In this experiment, to show the effectiveness, we run the
MAFIA algorithm and our online learning algorithm side by side so we can
make more comparisons. We use static data set to simulate a stream so MAFIA
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Table 1. Effectiveness of history analysis: predict changes of subspaces with more than
3 dimensions. Total number of changed windows = 67.

|ms| training
∑

Ccr

∑
Cms No. missed success

cost (sec) (sec) (sec) windows rate
10 0.1449 0.3768 0.6555 20 70.2%
20 0.1479 0.4016 1.3515 14 79.1%
40 0.1473 0.4393 2.4985 7 89.6%

can have enough time processing. For every window, our algorithm predicts the
s-monitors in the next window, and we use the result of MAFIA for the next
window to test if the prediction is accurate. Table 1 shows the result using 10,
20 and 40 s-monitors.

We analyze 68 non-overlapping windows and consider the subspace clusters
with 3 or more dimensions. Out of 68 windows, 67 are changed, and with 40
s-monitors, we capture 89.6% changes. The training cost (offline phase) is triv-
ial. The s-monitor creation cost (Ccr) and checking cost (Cms) are much less
compared with the execution time of the expensive algorithm C, which is about
18 seconds for the same 68 windows.

4.4 Knowledge Update

Accurate prediction depends on the accuracy of the knowledge. As we process
the online stream, we need to pay attention to the “freshness” of our knowl-
edge. Our knowledge repository basically stores the causal relationship between
subspaces. As time goes by, new causal relationship may be discovered, and
the support of old rules may change. In such case, we repeatedly update the
knowledge repository by adding new rules and updating the supports. Since this
processing mainly involves counting, it can be done in an incremental way. If
some knowledge is considered stale, we should remove it. This is more compli-
cated since we need to keep track of timestamps of the rules. In the experiment
below we use incremental update only.

4.5 Result for Synthetic Data

Since the web log data set is not very large, we create a synthetic data set
to demonstrate the efficiency of our algorithm. We design the data so that the
pairwise causal relationship between windows can be used for s-monitor selection.

The synthetic data is a data stream containing 130 non-overlapping windows.
Each window can be in one of the three states, each state corresponding to a
set of subspace clusters. The first 30 windows are used as “history”, in which
each window has exactly 1

3 chances of being in any of the states. In the next 40
windows, the probabilities of being in state 1, 2, 3 are 10%, 70%, 20%, respec-
tively. In the last 60 windows, these probabilities changed to 10%, 20%, 70%. We
interleave expensive model generation with 4 s-monitor checkpoints. We report
the result for two strategies: the first one without knowledge update, i.e., the
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Fig. 3. Effectiveness of change detection algorithms (100 online windows)

s-monitor selection is purely based on the learned knowledge from the first 30
windows. The second strategy updates the knowledge repository after every four
times the expensive model is generated.

Figure 3(a) shows the 100 online windows of one such synthetic data set (y
values 1,2 and 3 represent the three states each window is in). Figure 3(b) shows
the detection output of the expensive model. If C detects a change, we set a value
“1”, otherwise we set a value “0”. At the position where C is not run (where the
s-monitor checkpoints are), we set a value “-1”. We can see that it captured 9
changes (there are 9 dots on the line y=1). Note that some changes are missed
since they did not last long enough.

The third plot (figure 3(c)) is about interleaved M and ms checks, without
knowledge update. Five s-monitors are checked for each ms checkpoints. A ms
check may fail to discover a change if the set of s-monitors are not set to the
regions actually changed. If a ms check detects a change, we cancel the following
ms checkpoints until the next M -checkpoint. This method captured 27 changes,
while ms checkpoints are actually executed 51 times (out of which 5 checks fail
to detect changes).

The fourth plot (figure 3(d)) describe the interleaved method with knowledge
update. This method captured 28 changes, where ms checkpoints are checked
48 times (out of which 3 checkpoints fail to detect changes).

Table 2 displays the overhead of these methods. The column “
∑

Cup” is the
cost to update the knowledge repository.

Table 2. Change detection performance for synthetic data, 3 states (online phase only)

Curve No. changes
∑

CM

∑
Ccr

∑
Cms No. Failed

∑
Cup

in Fig. 3 captured (sec) (sec) (sec) ms ms (sec)
(b) 9 28.0632 - - - - -
(c) 27 29.1555 0.0339 1.0108 51 5 -
(d) 28 28.2248 0.0343 1.0896 48 3 0.0120
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Table 3. Change detection performance for synthetic data, 20 states (online phase
only)

Method No. changes
∑

CM

∑
Ccr

∑
Cms No. Failed

∑
Cup

captured (sec) (sec) (sec) ms ms (sec)
M only 19 35.8403 - - - - -

M & ms, no updates 43 35.8426 0.1948 1.2602 64 17 -
M & ms, w/ updates 44 35.9972 0.2150 1.1320 57 12 0.1634

We can see that the creation time and average running time of ms is very
small compared with the cost of M . By adding r = 4 s-monitor checkpoints
between every two M -checkpoints, we only increase the processing time by about
4%, while we detect more changes than only using expensive models (28 with
updated knowledge vs. 9 with M -checks only).

The 3-state experiment is to make the result easy to visualize and understand.
Our algorithm can certainly handle more states. As another example, table 3
shows the result of a similar experiment for a 20-state stream, using 5 s-monitors,
over 140 online windows.

5 Retail Data Change Detection

This section shows the effectiveness of our approach with another application.
Nowadays many data sources are distributed, homogeneous in nature while a
global model is required. A typical example is a retailer chain. Physically dis-
tributed stores make transactions every day and large amount of data has to be
transferred to a central site for data mining. The data contains sensitive infor-
mation of each individual customer, such as one’s purchasing patterns, therefore
the data communication from local stores to processing site has to be secure.
More and more research has been focusing on the related security and privacy
issues.

Our experiment intends to reduce the data communication by interleaving s-
monitor checkpoints between global model generations. To show the effectiveness
of our approach, we omit the interleaved expensive model generation. Instead,
we put the s-monitor checks and the expensive model checks side by side to see
how good the approximation is, with much less data communication needed.

Our global model here is the frequent item sets. To make things easy we only
look at item sets containing two items. This method can easily be extended to
multiple item case.

Our goal is to use the information from only a few stores to deduce if there
is any change in the global model. Usually, with the same support threshold, a
local store can generate more frequent item sets than the global model, among
those local results, some are common to most of the stores, thus they would
make up the global model. If we check all the local frequent item sets, we will
be considering many item sets that can never make the global model. We want
to limit the sets we need to check. The other knowledge we want to have is that
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which local stores best reflect the global model. The changes of these stores can
better indicate the change of global models than other stores.

Therefore, we use history to deduce two parts of knowledge. One is a collection
of item sets that changes most in history (named “feature set”), and the other
part is a collection of stores whose local models match the global model the
best. In online phase, we check the selected local stores for the frequency of
those selected item sets.

Each store maintain a bit vector (called “set vector”) for every window – with
the ith bit set to 1 if the ith item set is frequent in this window, 0 otherwise. If
a set vector is different from the one from previous window, we say there is a
change. Also, for each store, we maintain another bit vector for all of its windows,
called window vector. Each bit stands for a window, and a “1” means there is
a change in this window compared with its predecessor, while a “0” means no
change.

Example. Suppose the feature set contains three item sets A, B and C. For
store i, A and C are frequent (their support exceeds the threshold) in window 1
but B is not, so a set vector 101 is generated. In window 2 and 3, all A, B and
C are frequent, thus the set vectors are both 111. 101 �= 111, so we say there
is a change in window 2 for store i, and set the second bit of store i’s window
vector to 1. Window 3 has the same set vector as window 2 so the third bit of
store i’s window vector is set to 0. The first bit is discarded (denote as “-”) as
it does not have a predecessor.

By comparing store i’s window vector Vi with the global window vector Vg, we
can evaluate how well store i reflects the global change. Given a window vector
Va, we call the number of bits Va and Vg disagree in the online phase the testing
error, while the number of disagreeing bits in offline phase the training error.
Accuracy is computed by dividing testing error with the number of windows in
online phase.

We select stores with the lowest training error as the “voters” for online
phase. In online phase, for every window, each store generates its set vector and
compare it with the one from last window. If there is a change, this store vote
“1”, otherwise it votes “0” (no change). We then take the majority of the votes
to approximate the change in the global model.

The data set used in this experiment is the Sam’s club data1 provided by
Walmart, Inc. It contains the sales data between January 1 and January 31,
2000, from 130 stores. We use overlapped sliding window model. Based on the
observation that change of number of transactions has a weekly pattern, the
window length is set to seven days and sliding step size is one day. We use
Christian Borgelt’s implementation2 of Apriori algorithm to mine the frequent
item sets. The support threshold is set to 0.2%.

We put 13 windows in offline phase and 13 for online. Table 4 shows the
window vectors and performance for both offline and online phases. The approx-
imation is made with 5, 10, 20 local stores (voters), respectively. The first row
1 http://enterprise.waltoncollege.uark.edu/tun.asp
2 http://fuzzy.cs.uni-magdeburg.de/˜borgelt/apriori.html
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Table 4. Change detection accuracy for Sam’s club data

offline online Training Testing online
windows windows Error Error accuracy

Actual -111000010101 1011011100001 - - -
5 voters -111000010111 1000011000001 1 3 77%
10 voters -111000010111 1111011100101 1 2 85%
20 voters -111000010101 1110011100001 0 2 85%

shows the changes of the actual global model. Apparently, with small number
of voters (out of the 130 stores), we can have a good approximation of those
changes. We only need to check the frequency of the selected item sets from a
few voters, which saves a great deal of data communication. Of course the com-
putation cost is also lower, but that is trivial compared with the reduction in
data communication cost.

6 Future Work

The idea of deploying low-cost s-monitors into the data space can be applied to
various applications. People often think of sampling when large amounts of data
need to be processed, similarly, s-monitors can help in many occasions when
expensive models are needed for stream change detection. We intend to apply
our approach to other types of models and to look for good s-monitors with
theoretically guaranteed accuracy.

When history analysis is used to guide the s-monitor selection, the gradual
removal of stale knowledge can be necessary for some applications. How to effi-
ciently downgrade the effect of stale data is also an interesting problem.

7 Conclusion

In this paper, we present a new approach for data stream change detection,
with respect to the widely used “compute-and-compare” approach. When the
stream monitoring task requires the repeated generation of complicated mod-
els, we can interleave the model generation with low-cost s-monitor checking, so
that we can detect more changes in a more timely manner. We propose a history
guided method to select appropriate s-monitors. Then we take subspace cluster
monitoring and frequent item set monitoring as examples and demonstrate the
effectiveness and performance of our approach. Our analysis and experiments
show that in many cases, our low-cost approach can provide much better per-
formance than the traditional approach.
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Abstract. In this paper we propose a hierarchically organized bitmap
index (HOBI) for optimizing star queries that filter data and compute
aggregates along a dimension hierarchy. HOBI is created on a dimen-
sion hierarchy. The index is composed of hierarchically organized bitmap
indexes, one bitmap index for one dimension level. It supports range
predicates on dimensional values as well as roll-up operations along a
dimension hierarchy. HOBI was implemented on top on Oracle10g and
evaluated experimentally. Its performance was compared to a native Or-
acle bitmap join index. Experiments were run on a real dataset, coming
from the biggest East-European Internet auction platform Allegro.pl. The
experiments show that HOBI offers better star query performance than
the native Oracle bitmap join index.

1 Introduction

A data warehouse architecture has been developed in order to integrate data
originally stored in multiple distributed, heterogeneous, and autonomous data
sources (DSs) deployed across a company. A core component of this architecture
is a database, called a data warehouse (DW), that stores current and historical
integrated data from DSs. The content of a DW is analyzed by the so-called
On-Line Analytical Processing (OLAP) queries (applications), for the purpose
of discovering trends, patterns of behavior, anomalies, and dependencies between
data.

In order to support such kinds of analyses, a DW uses a dimensional model. In
this model [7], an elementary information being the subject of analysis is called
a fact. It contains numerical features, called measures that quantify the fact and
allow to compare different facts. Values of measures depend on a context set
up by dimensions that often have a hierarchical structure composed of levels.
Following a dimension hierarchy from bottom to top, one may obtain more ag-
gregated data in an upper level, based on data computed in a lower level. The
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dimensional model is often implemented in relational OLAP servers (ROLAP)
[3], where fact data are stored in a fact table, and dimension data are stored in
dimension level tables. In the paper we will focus on a ROLAP implementation
of a DW.

OLAP queries access large volumes of data by means of the so-called star
queries. Such queries frequently join fact tables with multiple dimension level
tables, filter data by means of query predicates, and compute aggregates along
multiple dimension hierarchies. Reducing execution time of star queries is crucial
to a DW performance. Different techniques have been developed for reducing ex-
ecution time of such queries. The techniques include among others: materialized
views and query rewriting, partitioning of tables and indexes, parallel processing,
and multiple index structures that are discussed below.

1.1 Related Work

The index structures applied to optimizing access to large volumes of data can
be categorized as: (1) multi-dimensional indexes, (2) B-tree like indexes, (3) join
indexes, (4) bitmap indexes, and (5) multi-level indexes.

For indexing data in multiple dimensions some multi-dimensional indexes have
been proposed in the research literature, like for example the family of R-trees
[5,18], Quad-tree [4], and K-d-b-tree [16]. Due to their inefficiency in indexing
many dimensions and large sizes they have not gained popularity in data ware-
houses.

The most common indexes applied in traditional relational databases are in-
dexes from the B-tree family [8]. They are efficient only in indexing data of high
cardinalities (i.e., wide domains) and they well support queries of high selectiv-
ities (i.e., when few records fulfill query criteria). Since OLAP queries are often
expressed on attributes of low cardinalities (i.e., narrow domains), B-tree indexes
are inappropriate for such applications.

For efficient executions of star queries a B-tree based index, called a join index,
was developed [24]. This index stores in its leaves a precomputed join of a fact
and a dimension level table. An extension to the join index was made in [14]
where the authors represent precomputed joins by means of bitmaps.

Concepts similar to the join index were developed for object databases for
the purpose of optimizing the so-called path queries, i.e., queries that follow the
chain of references from one object to another (oi → oi+1 → . . . oi+n). Persistent
(precomputed) chains of object references are stored either in the so-called access
support relation [9] or in the so-called join index hierarchy [6].

For indexing data of low cardinalities, for efficient filtering large data volumes,
and for supporting OLAP queries of low cardinalities the so-called bitmap in-
dexes have been developed [13,15]. A bitmap index is composed of bitmaps, each
of which is the vector of bits. Every value from the domain of an indexed at-
tribute A.T (in table T ) has associated its own bitmap. The number of bits in
each bitmap is equal to the number of rows in T . In a bitmap created for value
v of A, bit number n is set to ’1’ if the value of A of the n-th row is equal to v.
Otherwise the bit is set to ’0’.
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Queries whose predicates involve attributes indexed by bitmap indexes can
be answered fast by performing bitwise AND, or OR, or NOT operations on
bitmaps. The size of a bitmap index increases when the cardinality of an indexed
attribute increases. As a consequence, bitmap indexes defined on attributes of
high cardinalities become very large or too large to be efficiently processed in
main memory [27]. In order to improve the efficiency of accessing data with
the support of bitmap indexes defined on attributes of high cardinalities, either
different kinds of bitmap encodings have been proposed, e.g., [2,10,17,23,26] or
compression techniques have been developed, e.g., [1,21,22,25].

In [11,12,19,20] indexes of multi-level structures have been proposed. The so-
called multi-resolution bitmap index was presented in [19,20] for the purpose of
indexing scientific data. The index is composed of multiple levels. Lower levels,
are implemented as standard bitmap indexes offering exact data look-ups. Upper
levels, are implemented as binned bitmaps, offering data look-ups with false
positives. An upper level index (the binned one) is used for retrieving a dataset
that totally fulfills query search criteria. A lower level index is used for fetching
data from boundary ranges in the case when only some data from bins fulfill
query criteria.

In [11,12], the so-called hierarchical bitmap index was proposed for set-valued
attributes for the purpose of optimizing subset, superset, and similarity queries.
The index, being defined on a given attribute, consists of the set of index keys,
where every key represents a single set of values. Every index key comprises sig-
nature S. The length of the signature, i.e. the number of bits, equals the size of
the domain of the indexed attribute. S is divided into n-bit chunks (called index
key leaves) and the set of inner nodes. Index key leaves and inner nodes are or-
ganized into a tree structure. Every element from the indexed set is represented
once in the signature by assigning value ’1’ to an appropriate bit in an appropri-
ate index key leaf. The next level of the index key stores information only about
these index key leaves that contain ’1’ on at least one position. A single bit in
an inner node represents a single index key leaf. If the bit is set to ’1’ then the
corresponding index key leaf contains at least one bit set to ’1’. The i-th index
key leaf is represented by j-th position in the k-th inner node, where k = �i/l�
and j = i − (�i/l� − 1) ∗ l. Every upper level of the inner nodes represents the
lower level in an analogous way. This procedure repeats recursively up to the
root of the tree.

From the index structures discussed above none was proposed for indexing
hierarchical dimensional data in a data warehouse. Moreover, none of the above
index structures reflects the hierarchy of dimensions. Such a feature may be
useful for computing aggregates in an upper level of a dimension based on data
computed for a lower level.

1.2 Paper Contribution and Organization

In this paper we propose a hierarchically organized bitmap index (HOBI) for
indexing data in a dimension hierarchy. HOBI is composed of hierarchically
organized bitmap indexes. One bitmap index is created for one dimension level.
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Thus, an upper level bitmap index can be perceived as the aggregation of lower
level bitmap indexes. HOBI supports: (1) query range predicates expressed on
attributes from dimension level tables at any level of a dimension hierarchy
and (2) roll-up operations along a dimension hierarchy. HOBI was implemented
as a software layer located on top of Oracle10g DBMS. The performance of
HOBI has been evaluated experimentally and compared to the performance of
a native Oracle bitmap join index that is built in the DBMS. Experiments were
run on a real dataset, coming from the biggest East-European Internet auction
platform Allegro.pl. As our experimental results demonstrate, HOBI offers better
star query performance than the native Oracle bitmap join index, regardless the
data volume fetched by test queries.

This paper is organized as follows. Section 2 presents examples that moti-
vate the need for an index along a dimension hierarchy. Section 3 presents the
hierarchically organized bitmap index that we developed. Section 4 discusses
the experimental results evaluating the performance of HOBI. Finally, Section 5
summarizes and concludes the paper.

2 Motivating Examples

2.1 Example Data Warehouse

Let us consider as an example a simplified DW schema, cf. Figure 1, built for the
purpose of analyzing Internet auction data. The schema includes the Auctions
fact table storing data about finished Internet auctions. The schema allows to
analyze the number of finished auctions, and aggregate purchase costs with re-
spect to time, location of a customer, and product sold. To this end, Auctions
is connected to three dimensions via foreign keys, namely Product, Location,
and Time, all of them composed of hierarchically connected levels 1. For exam-
ple, dimension Location is composed of three levels, namely Cities, Regions, and
Countries, such that Cities belong to Regions that, in turn, belong to Countries.

In the example schema multiple analytical range, set, roll-up, and drill-down
queries are executed. Some of them are discussed below.

2.2 Range Query

Let us consider the below query counting the number of auctions that started
between April 13th and July 31st, 2007. Typically, the query can be optimized
first, by fetching from level table Days rows that fulfill the query criteria, and
second, by joining the fetched rows with the content of Auctions. The query could
be optimized by means of a join index on attribute Days.d_date. For queries of
low selectivities (wide range of dates) a query optimizer will not profit from
this index. Moreover, for queries specifying ranges of months or years, the index
will not prevent from joining upper level tables, resulting in query performance
deterioration.
1 For simplicity reasons table attributes are not shown in Figure 1.
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Fig. 1. An example data warehouse schema

SELECT COUNT(1)
FROM auctions, days
WHERE auctions.start_day = days.d_date
AND days.d_date BETWEEN to_date(’13-04-2007’,’dd-mm-yyyy’)

AND to_date(’31-07-2007’,’dd-mm-yyyy’);

2.3 Set Query

Let us consider the below query counting the number of auctions concerning all
products from category ’Handheld’, namely ’Mio DigiWalker’, ’HP iPaq’, ’Palm
Treo’, ’Asus P320’, and ’Toshiba Portege’, as well as only one product from
category ’Mini Notebooks’, namely ’Asus Eee PC’. Typically, the query can be
optimized by means of a join index on attribute Products.name. Notice that all
products from category ’Handheld’ have been selected by the query. Therefore,
if an additional data structure existed at level Categories that could point to
appropriate auctions, then the query could be executed more efficiently.

SELECT COUNT(1)
FROM auctions, products
WHERE auctions.product = products.id
AND products.name IN (’Mio DigiWalker’,’HP iPaq’, ’Palm Treo’,
’Asus P320’, ’Toshiba Portege’,’Asus Eee PC’);

2.4 Roll-Up/Drill-Down Query

Let us consider the below query computing the sum of sales prices of products,
per cities where customers live.
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SELECT cities.name, SUM(auctions.price)
FROM auctions, cities
WHERE auctions.city = cities.id
GROUP BY cities.name;

By rolling up the result of the above query along the hierarchy of dimension
Location, one can compute sum of product sales prices per regions (cf. the below
query) and, further, per countries. In order to perform these roll-ups, a query
optimizer has to join level tables Cities and Regions and join them with fact
table Auctions. Having an additional data structure at level Regions, pointing
to appropriate regional auctions, the query could be better optimized.

SELECT regions.name, SUM(auctions.price)
FROM auctions, cities, regions
WHERE auctions.city = cities.id AND cities.region = region.id
group by regions.name;

3 Hierarchically Organized Bitmap Index

In order to optimize queries joining fact and dimension level tables along a
dimension hierarchy, we propose the so-called hierarchically organized bitmap
index (HOBI). HOBI is composed of bitmap indexes created for every level of a
dimension hierarchy. The bitmap indexes are also organized in a hierarchy that
reflects the dimension hierarchy, such that a bitmap index at an upper level
aggregates bitmap indexes from a lower level.

In order to present the concept of HOBI let us assume that dimension D is
composed of level tables LT1, . . . , LTn. We assume that every level table includes
a key attribute.

Level tables form a hierarchy in D. The hierarchy is denoted as LT1 → LT2 →
. . . → LTn, where symbol → represents a relationship between a lower level table
and its direct upper level table, cf. Figure 2. The relationship also exists between
level data (table rows), such that multiple rows from a lower level LTi are related
to one row from a direct upper level LTi+1. Rows from level LTi are represented
by values of the key attribute of LTi and they are denoted as keyLTi

j , where
j = {1, 2, . . .}.

Let LTi → LTi+1. Let LTi store rows denoted as keyLTi

j (j = {1, 2, . . . , m})
and keyLTi

k (k = {m + 1, . . . , q}). Let further LTi+1 store rows denoted as
key

LTi+1
o and key

LTi+1
p . Let further keyLTi

j → key
LTi+1
o and keyLTi

k → key
LTi+1
p .

In the hierarchy of D, every key attribute of LTi (i = {1, 2, . . .}) has de-
fined its bitmap index that is denoted as BIi. BIi is composed of the set of
bitmaps {bi

1, b
i
2, . . . , b

i
m, bi

m+1, . . . , b
i
q}, where q represents the cardinality of the

indexed key attribute of LTi. In a direct upper level LTi+1, bitmap bi+1
o for

key value key
LTi+1
o is computed as follows: bi+1

o = bi
1 OR bi

2 OR . . . OR bi
m.

Bitmap bi+1
p for key value key

LTi+1
p is computed as follows: bi+1

p = bi+1
m+1 OR
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Fig. 2. The concept of HOBI

bi+1
m+2 OR . . . OR bi+1

q . This procedure repeats recursively up to the root of the
hierarchy.

In order to illustrate the concept of HOBI let us consider fact table Auctions
storing 10 auction sales rows, cf. Figure 3. Since Auctions is connected to di-
mension Product composed of two levels, namely Products and Categories, HOBI
consists of two levels. At the level of Products there are 8 bitmaps, each of which
describes auction sales of one product. At the upper level Categories there are 2
bitmaps, one bitmap for one category of sold products. The ’Handheld’ bitmap
describes auction sales of all products from this category, i.e., ’Mio DigiWalker’,
’Toshiba Portege’, ’Asus P320’, ’HP iPaq’, and ’Palm Treo’. The ’Handheld’
bitmap is computed by OR-ing the bitmaps from level Products. Similarly, the
’Mini notebook’ bitmap describes auction sales of products from this category
and it is constructed by OR-ing bitmaps for ’MSI Wind’, ’Asus Eee PC’, and
’Macbook Air’.

In order to illustrate the usage of HOBI for range queries (cf. Section 2.2) let
us consider a query computing the sum of sales of products ’Mio DigiWalker’,
’Toshiba Portege’, ’Asus P320’, ’HP iPaq’, and ’Palm Treo’, as well as ’Macbook
Air’. Since all products from category ’Handheld’ are selected by the query, the
’Handheld’ bitmap index, defined for level Category, is used for retrieving all
auction sales concerning products from this category, rather than using indi-
vidual bitmaps for products. For retrieving auction sales of ’Macbook Air’ the
bitmap index on level Products will be used.

In order to illustrate the usage of HOBI for roll-up queries (cf. Section 2.4) let
us consider a query computing the sum of sales concerning products in category
’Mini notebook’. In order to answer this query, a query optimizer uses bitmap
’Mini notebook’ (defined for level Categories) for finding appropriate auction
sales rows. In this case, fact table Auctions need not be joined with the Product
dimension level table.
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Fig. 3. An example HOBI

4 Experimental Evaluation

The performance of HOBI was evaluated experimentally and compared to the
performance of a native Oracle bitmap join index that is built in the DBMS
(the usage of a particular index in Oracle can be forced by the INDEX hint).
In the experiments we focused on the performance of range queries (cf. Section
2.2) and roll-up queries (cf. Section 2.4). The test queries were executed in a
simplified auctions DW, shown in Figure 1. The experiments were run on a real
dataset acquired from the Allegro Group, which is the leader of on-line auctions
market in Eastern Europe. The test dataset contained 100,000,000 of fact rows
describing finished auctions from the period of time between April 2007 and
March 2008.

Data were stored in an Oracle 10g DBMS. HOBI was implemented as an
application on top of the DBMS. The experiments were run on a PC (Intel Dual
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Core 2GHz, 2GB RAM) under Ubuntu Linux 8.04). In order to eliminate the
influence of caching, database buffer cache and shared pool were cleared before
executing every query. The same query was run 10 times in order to check the
repeatability of obtained results.

In the experiments we have measured times of finding rows fulfilling query
selection criteria, and we have not measured times of fetching data rows from
disk, since for both compared indexes identical number of rows was being fetched.
For this purpose, in the test queries we used count as an aggregate function.

4.1 Range Scan

This experiment aimed at measuring the efficiency of HOBI for a range scan
query. The test query computed the number of auctions created by sellers in a
given time period defined on the Days level, as shown below. For this experiment,
the bitmap join index was created on attribute Days.d_date and HOBI was
created for the Time dimension. Time period was parameterized and equaled to
1, 3, 6, and 9 months.

SELECT COUNT(1)
FROM auctions, days
WHERE auctions.start_day = days.d_date
AND days.d_date >= date-A AND days.d_date <= date-B;

The obtained average query execution times are shown in Figure 4. As we
can observe from the chart, HOBI offers better performance than the bitmap

Fig. 4. Different time ranges selected by a test query
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join index for every tested time range. For the data visualized in Figure 4 we
computed ratio tBJI/tHOBI , where tBJI and tHOBI are average query response
times using the bitmap join index and HOBI, respectively. The ratio ranges from
1.16 (for the 3-months query) to 1.48 (for the 1-month and 9-months queries).

4.2 Roll-Up/Drill-Down

This experiment aimed at measuring the efficiency of HOBI for roll-up oper-
ations. The query used for the experiment computed the number of auctions
created by sellers in a given time period defined on the upper level Months.
The bitmap join index was created on attribute Days.d_date and HOBI was
created for the Time dimension, as in the previous experiment. Time period
was parameterized and encompassed from 10% to 100% of days stored in the
database.

SELECT COUNT(1)
FROM auctions, days, months
WHERE auctions.start_day = days.d_date and days.month = months.id
AND months.month >= date-A AND months.month <= date-B;

The obtained average query execution times are shown in Figure 5. As we
can observe from the chart, HOBI offers better performance than the bitmap
join index regardless the selectivity of the test query. For the data visualized in
Figure 5 we computed ratio tBJI/tHOBI , similarly as in Section 4.1. The ratio
ranges from 1.22 (for the selectivity 10%-20%) to 1.50 (for the selectivity of
75%-85%).

Fig. 5. Variable selectivity of a test query
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4.3 Observation

In both of the above experiments HOBI offered better performance than the na-
tive Oracle bitmap join index. HOBI profited from the fact that days are grouped
to months. For those time periods where queried days formed full months, a
bitmap index on Months was used instead of an index on Days. This way fewer
bitmaps were read. Note that HOBI was implemented as an application on top
of the DBMS resulting in some additional time overheads. One may expect yet
better performance of HOBI while building it in the DBMS so that it is efficiently
managed by a system and efficiently used by a query optimizer.

5 Conclusions

In this paper we proposed the HOBI index for indexing hierarchical dimensions.
The index is composed of hierarchically organized bitmap indexes, where one
bitmap index is created for one dimension level. HOBI supports range predicates
expressed on different levels of a dimension hierarchy as well as roll-up operations
along a dimension hierarchy. Experimental evaluation of HOBI on a real auction
dataset shows its better performance as compared to a native Oracle bitmap
join index.

Future work will focus on: (1) developing algorithms for maintaining HOBI
after a DW refreshing, (2) evaluating the algorithms experimentally, (3) running
the experiments on both real auction data and on synthetic data from the TPC-H
benchmark, (4) applying bitmap compression techniques to HOBI for attributes
of high cardinalities, (5) developing algorithms for processing compressed HOBI.
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Abstract. Traditionally, designing a parallel data warehouse consists
first in fragmenting its schema and then allocating the generated frag-
ments over the nodes of the parallel machine. The main drawback of this
approach is that interdependency between fragmentation and allocation
processes is not taken into account during the design phase. This inter-
dependency is characterized by the fact that generated of fragments are
one of the inputs of the allocation problem and both processes optimize
the same set of queries. In this paper, we present a new approach for de-
signing parallel relational data warehouses on a shared nothing machine,
where the fragmentation and the allocation are done simultaneously. To
allocate efficiently query workload over nodes, a load balancing method
is given. Finally, a validation of our proposals is presented.

1 Introduction

Over the last decade, the size of most data warehouses has grown by a factor
of 10 according to The Data Warehouse Institute (TDWI) [7]. Given this fact,
implementing highly performing complex queries becomes a big challenge. The
sole use of classical query optimization techniques such as materialized views,
indexing, data partitioning, data compression is insufficient [18]. Parallel pro-
cessing is becoming increasingly important in the world of database computing.
More and more organizations are relying on parallel processing technologies to
achieve the performance, scalability, and reliability they need [13]. Most of the
major commercial database systems support parallelism. Rather than relying on
a single monolithic processor, parallel systems exploit fast and inexpensive micro
processors to achieve high performance. Designing traditional parallel databases
was largely studied [1,6,10,11,14,15,17] compared to the parallel data warehouse
design, where it did not get the same attention from the research community
which concentrates its efforts on the selection of classical optimization tech-
niques, except in the work done by [9,12,18].

Designing a parallel data warehouse consists of five main steps: (i) choosing the
hard architecture, (ii) fragmenting the data warehouse schema, (iii) allocating
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the generated fragments, (iv) balancing the load over the nodes of the parallel
machine and (v) processing queries. There are three widely used architectures
for parallelizing work: (a) shared memory (b) shared disk and (c) shared nothing.
Shared nothing architectures are especially well suited to the star queries running
on data warehouses modelled using a star schema, as only a very limited amount
of communication bandwidth is required to join one or more (typically small)
dimension tables with the (typically much larger) fact table [7]. In this work we
adopt this architecture.

Once the architecture chosen, data warehouse designer partitions its schema.
Fragmentation is a pre condition of parallel data warehouse design. It may be
horizontal, where table instances are decomposed into disjoint partitions or ver-
tical, where tables are split in disjoint sets of attributes. The horizontal parti-
tioning is mainly used for designing parallel data warehouses [18,19,9,12].

The data allocation is the process that places generated fragments over nodes
of parallel machine. This allocation may be either redundant (with replication) or
non redundant (without replication). Once fragments are placed, global queries
are then rewritten over fragments and executed on the parallel machine. During
their execution phase, the load balancing should be verified. Load balancing
refers to workload allocation over nodes [17].

By exploring the most important works done on designing traditional paral-
lel databases, in general, and parallel data warehouse, in particular, we identify
two mains limitations: (1) The fragmentation and allocation processes are usu-
ally done in an isolation way (or iteratively): the designer first partitions his/her
data warehouse using his/her favourite fragmentation algorithm and then allo-
cates generated fragments on the parallel machine using his/her favourite alloca-
tion algorithm. The data partitioning and fragment allocation are usually done
to optimize the same set of queries. The iterative design ignores interdependency
between fragmentation and allocation processes. This ignorance led to the birth
of two research communities: one working on the problem of selecting optimal
fragmentation schema [3,4] and other one on allocating fragments/tables over
various sites (nodes) [1,14,15,10]. Consequently, most of work done on data al-
location does not care about of the generation of fragments [15,10]. Note that
the fragments are one of the inputs of data allocation problem. (2) There does
not exist a complete methodology including the five above steps of parallel data
warehouse design, except the work done by [18], where it considers fragmenta-
tion and allocation problems in an iterative way on a shared disk machine. In
this paper, we propose a complete methodology for designing parallel relational
data warehouses overtaking the above limitations. To the best of our knowledge,
this work is the first one addressing this issue.

This paper is divided into six sections: Section 2 summarizes existing work
done on iterative design of parallel data warehouses. Section 3 details the steps of
the iterative approach and identifies its limitations. Section 4 describes our joint
approach, where partitioning and allocation are done simultaneously. Section 5
presents the query rewriting phase and proposes an algorithm that balances the
load between nodes. Section 6 shows the experimental results obtained using the
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APB-1 release II benchmark. Section 7 concludes the paper summarizing the
main findings and suggesting future work.

2 Related Work

In this section, we describe the main works done on the fragmentation and
allocation in the context of parallel data warehouses [9,12,18,19].

In [18], the authors propose an approach to construct and manage a relational
data warehouse on a disk shared parallel machine. This warehouse is modelled
using a star schema composed of one fact table and a number of dimension ta-
bles. A Multi-dimensional hierarchical fragmentation method is used to partition
the warehouse. It consists in horizontally fragmenting each dimension table1 by
Range mode based on its attributes belonging to lower levels of the dimension
hierarchy, then using the fragmentation schemes of dimension tables to parti-
tion the fact table. Dimension tables and their mono-table indexes (B-Trees)
are duplicated over each disk the parallel machine. Multi-table indexes (bitmap
join indexes) are selected using attributes of dimension tables belonging to higher
levels of the dimension hierarchy. Therefore, the allocation process concerns frag-
ments of the fact table and bitmap join indexes. Note that the number of gen-
erated fragments may be largely greater than the number of disks. To ensure a
high parallelism degree and efficient load balancing, a round robin allocation of
fact fragments over disks is used. Bitmap fragments belonging to the same fact
fragment are placed onto consecutive disks to enable intra-query parallelism. In
[19], an allocation tool called Warlock is proposed. The main particularity of this
tool is that it allows data warehouse designer to control the number of generated
fragments of the fact table to avoid its explosion [2].

Furtado [9] discussed partitioning strategies for node-partitioned data ware-
house. He recommended partitioning the fact table based on the largest dimen-
sion tables. Each largest dimension table is partitioned using the Hash mode
based on its primary key. The fact table is also partitioned using the Hash mode
using foreign keys referencing the largest dimension tables. The generated frag-
ments are allocated in a round robin and random ways. Smallest dimension tables
are replicated over all nodes. This fragmentation does not take into account star
join query requirements2 and it does not care about the number of generated
fragments as in [3,19].

In [12], a data allocation problem on a Database Cluster (DBC) is discussed.
A DBC is a cluster of interconnected machines, each running an independent
DBMS, that are linked together by a middleware layer so that they can col-
laboratively manage one database and process queries against this database.
A key issue in this setting is how to place the data on the different machines.
Two obvious approaches are to fully replicate the database on all machines or
to partition the data on the machines. The authors present an approach that
1 Dimension tables are virtually partitioned.
2 A star join query is characterized by selections defined on dimension tables and joins

between the fact and dimension tables.



102 L. Bellatreche and S. Benkrid

combines partitioning and replication for OLAP style workloads. The fact table
is partitioned and replicated across nodes using chained declustering; and the
dimension tables are fully replicated. This enables the middleware layer to do
load balancing among the replicas to improve query response time. They rec-
ommend using chained declustering for replicating fact table partitions without
detailing how designer choose the number of replicas to use. As in [9], this work
does not control the number of generated fragments of the fact table.

To summarize, the most existing works are mainly concentrated on partition-
ing and allocation phases done iteratively.

3 Steps of Iterative Design Approach

In this section, we briefly describe the two main steps of parallel data warehouse
design which are fragmentation and allocation.

The data horizontal partitioning is the core of parallel design. It consists
in fragmenting virtually/really dimension tables using selection predicates of
queries and using their fragmentation schemes to partition the fact table. The
fact table partitioning is known by referential partitioning, which was recently
supported by Oracle11G [8]. Such a decomposition of the fact table may gen-
erate a large number of fragments [18,2,3]. There is some consensus on giving
designers the possibility to control this number [18,3]. Consequently, horizontal
partitioning problem (HPP) may be defined as follows:
Given a data warehouse with a set of d dimension tables D = {D1, D2, ..., Dd}
and a fact table F , a workload Q of queries Q = {Q1, Q2, ..., Ql} and a mainte-
nance constraint W fixed by data warehouse designer that represents the maxi-
mal number of fact fragments that he/she wants. The HPP consists in splitting
the fact table into NFF fragments based on fragmentation schemas of dimen-
sion tables, such that: (a) the cost of evaluating all queries is minimized and
(b) NFF ≤ W .

This problem is known as a NP-complete problem [3]. Consequently, several
algorithms have been proposed to solve it [2,3,18,9]. Let FF = {F1, ..., FK} be
the set of generated fact fragments.

The data allocation problem consists in finding an efficient distribution of FF
over M nodes of the parallel machine such as performance of queries executed
over nodes is satisfied. This problem is known as a NP-complete [10]. As we said
before (Section 1), the iterative approach does not consider the interdependency
between fragmentation and allocation problems. To overcome this limitation, we
propose a joint approach in the next section.

4 Our Joint Design Approach

Before presenting in details our design approach, we formalize it as an optimiza-
tion problem.
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Fig. 1. Steps of our Joint Approach

4.1 Formalisation of the Joint Approach

Given:

– A shared nothing parallel machine with M nodes NO = {N1, N2, ..., NM}.
– A transfer matrix indicating the communication cost between nodes. It con-

tains nodes as rows and as columns.
– data warehouse schema composed of d dimension tables {D1, ..., Dd} and

one fact table F . As in [9,12], we suppose that all dimension tables are
replicated over the nodes of shared nothing parallel machine and are in their
main memory.

– A set of queries Q = {Q1, Q2, ..., Ql} to be executed over the parallel ma-
chine. Each query Qk (1 ≤ k ≤ l) has an access frequency fk.

– A maintenance constraint W representing the number of fragments that data
warehouse designer considers relevant for his/her allocation process. This
number shall be greater than the number of nodes (see recommendations of
Stöhr et al. [18]).

Our problem of designing a parallel data warehouse consists in fragmenting the
fact table into NFF of fragments and allocating them simultaneously so that
the cost of executing all queries over all nodes is minimized. Figure 1 illustrates
the steps of our approach. Contrary to the iterative approach that uses two
cost models, our approach uses only one that monitors whether the generated
fragmentation schema is useful for the allocation process.

In the next section, we propose an algorithm dealing with joint design
problem.

4.2 Fragmentation and Allocation Procedures

Our design algorithm is composed of two procedures: one for fragmenting the
data warehouse and other for allocating the generated fragments over nodes.
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Partitioning Procedure. For the fragmentation, we adapt our genetic algo-
rithm proposed in a centralized environment [2]. It generates a random pop-
ulation that contains several chromosomes 3. For each chromosome CRi, our
algorithm checks if it satisfies the maintenance constraint (NFFi ≤ W ), where
NFFi represents the number of fragments of CRi. If it is the case, this chro-
mosome is kept in the population, otherwise, merges operations are applied to
reduce its number of fragments [3]. Once initiation population created, our ge-
netic algorithm performs operators such as crossover and mutation in order to
improve the quality of this population. The application of these operators is
monitored by an evaluation function, which allocates the generated fragments
of each valid chromosome over the nodes of the parallel machine. Once this
allocation done, the cost of executing queries over nodes is calculated. At the
end of this algorithm, the chromosome that offers the minimum cost represents
the fragmentation schema. In the next section, we describe how the fragment
allocation is done.

Fragment Allocation Procedure. To allocate each chromosome, we propose
a new allocation procedure based on affinity between fragments. This idea is bor-
rowed from Navathe et al.’s work [16] who developed an algorithm for vertically
decomposing relational tables. The attributes with high affinity are grouped to-
gether to form a vertical fragment. The steps of our allocation procedure are:

1. Construction of Fragment Usage Matrix (FUM): it indicates the usage of
fragments according to the set of queries. FUM contains queries as rows and
fragments as columns. The value FUMij (1 ≤ i ≤ l, 1 ≤ j ≤ NFF ) is equal
1 if the query Qi uses the fact fragment Fj , otherwise, it is equal to 0. An
additional column is added to represent the access frequency of each query.

2. Construction of Fragment Affinity Matrix (FAM): it contains fragments as
rows and as columns4 It indicates the affinity between two fragments Fi and
Fj . Each value fami,j of FAM represents the sum of frequencies of queries
accessing simultaneously the fragments Fi and Fj .

3. Fragments Clustering: in order to generate groups of fragments, we adapt
Navathe et al.’s algorithm [16]. The FAM matrix is transformed into a com-
plete graph called the Affinity Graph (AG). An edge in AG is labelled with
a weight representing the affinity between its vertices. It starts by choosing
randomly a fragment of AG and then, forming a linearly connected span-
ning tree, it generates all meaningful cycles simultaneously. Contrary to the
original Navathe et al.’s algorithm [16], where attributes are grouped based
on their high affinities, our approach groups fragments based on their low
affinities to increase inter parallelism between nodes. At the end of this step,
a set of cycles C = {C1, ..., CH} is generated, where each one represents a
sub set of fragments.

3 Each chromosome represents a potential fragmentation schema.
4 FAM is a symmetric matrix.
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4. Allocating Cycles over Nodes: Cycles are placed in round robin fashion over
nodes. Since each fragment belongs to one and only one cycle, it will be
allocated to only one node (non redundant allocation). Our allocation pro-
cedure differs from [18,9], since our allocation unit is a cycle and not a single
fragment.

The allocation schema of each chromosome may be represented by a matrix
called, Fragment Allocation Matrix (FAAM). Rows and columns of this matrix
represent respectively fragments and nodes. Each value of this matrix is defined
as follows: faamij = 1 if the fragment Fi is allocated at the node Nj , 0 otherwise.
Once allocation process done, we calculate the cost of executing the set of queries
Q over M nodes in terms of number of inputs outputs (IOs)5. It is given by the
following equation:

l∑
k=1

Max1≤j≤M

( N∑
i=1

FUMki × FAAMij × |Fi|
)

(1)

with l, M, N et |Fi| represent, respectively the number of queries, nodes, frag-
ments and the size of the fragments Fi in terms of number of pages (|Fi| =⌈
||Fi||×Length

PS

⌉
, where ||Fi||, Length and PS represent respectively the cardinal-

ity of the fact fragment Fi, length of each fact tuple and page size of a node (we
suppose that all nodes have the same page size). The final allocation schema is
the schema that minimizes the above cost.

5 Query Processing and Load Balancing

The main advantage of our allocation algorithm is its simplicity and low com-
plexity O(NFF 2), where NFF represents the number of fact fragments6. Its
main drawbacks is that it may suffer from the load balancing problem, since it
takes into account only query access frequencies to generate cycles of fact frag-
ments. In this section, we propose an algorithm that enhances the performance
of our allocation algorithm and ensures the load balancing between nodes. Load
balancing is the major resource allocation problem in order to effectively utilize
all available resources. It can be applied for different workload granularities de-
pending on the level of parallelism [17]. At the highest level, we have inter-query
parallelism with a concurrent execution of independent and queries (multi-user
mode). Intra-query parallelism requires additional forms of load balancing for
assigning sub queries to nodes. In this work we concentrate on intra query par-
allelism.

To execute a given query, we should first identify its valid fragments and
their localisations. To ensure a load balancing between nodes, a reallocation of

5 The IOs cost for a given query executed over all nodes corresponds to the cost of
the loaded node.

6 Navathe et al.’s algorithm [16] has this complexity.



106 L. Bellatreche and S. Benkrid

fragments is required when executing each query. The reallocation problem is
formalized as follows: Given (i) a Fragment Allocation matrix FAAM , (ii) a
set of M nodes, and (iii) a communication matrix. The redistribution problem
consists in migrating fragments from high loaded nodes (HLN) to less loaded
nodes (LLN). This migration shall minimize the communication and query pro-
cessing costs. To obtain the optimal solution, we need to consider all reallocation
combinations that are expensive and infeasible.

To resolve this problem, a measurement of the load of each node is required.
To do so, we present the following definition:

Definition 1. The loading level of a node Ni (denoted by LL(Ni)) corresponds
to the number of sub queries executed on that node.

Based on this definition, we can define a node to be highly loaded/lowly loaded
if its loading level is greater/less than a threshold. This threshold may be fixed
by the data warehouse designer. In this work, it is computed as follows:

Threshold =
⌈

Number of all sub queries
M

⌉
Each node Ni of (HLN) is associated with a weight (WHLN(Ni)) representing
the number of queries making it highly loaded. WHLN(Ni) is computed as
follows: WHLN(Ni) = LL(Ni) − threshold.

Similarly, each node of LLN is assigned to weight WLLN(Ni) representing
the number of queries that can receive. WLLN(Ni) is computed as follows:
WHLN(Ni) = Threshold−LL(Ni). HLN and LLN are sorted based on their
weights.

Based on this definition, our load balancing algorithm first identifies highly
loaded nodes and lowly loaded nodes and then migrates nodes from HLN to
LLN till all nodes become balanced.

6 Experimental Results

Intensive experimental studies are conducted to evaluate our parallel data ware-
house design methodology that includes data partitioning, data allocation, query
processing and load balancing.

Dataset: We use the dataset from the APB1 benchmark [5]. The star schema
of this benchmark has one fact table Actvars (24 786 000 tuples, tuple length
is 74 bytes) and four dimension tables: Prodlevel (9 000 tuples), Custlevel (900
tuples), Timelevel (24 tuples) and Chanlevel (9 tuples).

Workload: We have considered a workload of 55 single block queries (i.e., no
nested sub queries) with 40 selection predicates defined on 9 different attributes
(Class Level, Group Level, Family Level, Line Level, Division Level, Year Level,
Month Level, Retailer Level, All Level). The domains of these attributes are
split into: 4, 2, 5, 2, 4, 2, 12, 4, and 5 sub domains, respectively to perform the
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Fig. 2. Average vs. Variance Fig. 3. Quality of Allocation using Low
and High Affinities

genetic algorithm [2]. We do not consider update queries. Note that each selection
predicate has a selectivity factor computed using SQL queries executed on the
data set of APB1 benchmark.

We considered a shared nothing machine with 12 nodes. The page size is 65536
bytes. The crossover and mutation rates used by our experiments are 80% and
20%. These values are obtained by running our genetic algorithm several times.

Our algorithms are implemented using Java performed under Intel Pentium
IV 2.8 GHZ with a memory of 1 Go.

The first experiment that we conducted studies the impact of the criteria
used for generating cycles of fragments on performance of queries. Recall that
our allocation unit is a cycle of fragments. Each cycle is generated as follows:
we start with a random fragment of graph affinity, and we try to expand it by
considering other fragments. A fragment can join a current cycle, if it has a
reasonable affinity compare the existing ones. In this experiment, we evaluate
two acceptance criteria Average and Variance: a fragment can join the current
cycle if its affinity is less than the average of affinities (or the variance) of the
existing ones. We set the fragmentation threshold to 200, and we vary nodes
from 1 to 8. For each value, the cost of executing the 55 queries is computed.
Figure 2 describes the obtained results. The two criteria give practically the
same results, with a slight advantage to the average. Accordingly, we use this
criterion in the following experiments.

To make sure that our grouping criterion that consists in forming cycles of
fragments based on their low affinities is interesting than that used by [16],
we conduct an experiment as follows: fragmentation threshold is set to 200
and the number of nodes is varied from 1 to 7. For each value, the num-
ber of inputs outputs required to execute the 55 queries is estimated in both
variants of the allocation procedure (low affinity and high affinity). Figure 3
summarizes the results of this comparison. The low affinity criterion is slightly
better than that with high affinity. This is because it increases the degree



108 L. Bellatreche and S. Benkrid

Fig. 4. Speed up of Iterative and Conjoint
Approaches

Fig. 5. Reduction offered by our Ap-
proach

of parallelism. Accordingly, we opt for this criterion for the remaining
experiments.

Figure 4 compares the performance of our conjoint and iterative approaches.
Iterative approach is done as follows: we fragment data warehouse schema using
the genetic algorithm proposed in [2], and then we allocate the generated frag-
ments over the nodes using our allocation procedure. This comparison is done
based on the speed up factor. For a fragmentation threshold of 200, we vary the
number of nodes from 1 to 12 and for each value; we calculate the speed up for
each approach. We note that our approach has a linear speed up, whereas the
iterative one has a sub-linear speed up. This result confirms that our approach
is more suitable for designing a parallel data warehouse. Note that the speed up
of our approach is not ideal, since the load balancing module is discarded. We
conduct the same experiment, but instead of measuring the speed up, we calcu-
late the IO cost required for each approach. Figure 5 shows the obtained results.
Our approach outperforms largely the iterative one, where it offers 14%-31%
savings.

Figure 6 studies the effect of the fragmentation threshold on the performance
of our approach. To do this, we set the number of nodes to 10 and we vary the
fragmentation threshold W from 50 to 300. We note that increasing the thresh-
old improves significantly the performance of queries. Increasing this threshold
allows more attributes to participate in the partitioning process.

Figure 7 studies the behaviour of our approach with taking into account the
load balancing module. For a fragmentation threshold of 200, we varied the
number of nodes from 1 to 12 and for each value we calculate the speed up to
run the 55 queries before and after adding load balancing. We note that the
speed up is linear for both cases. The speed up offered by our approach with
load balancing is nearly perfect.



A Joint Design Approach of Partitioning and Allocation 109

Fig. 6. Effect of Number of Fragments
on Query Performance

Fig. 7. Speed up of Balanced and non
Balanced Approaches

7 Conclusion and Perspective

The size of data warehouses does not cease increasing in recent years. To opti-
mize complex OLAP queries, traditional optimization techniques are not suffi-
cient. Consequently, parallel processing has become a necessity. The design of
a parallel data warehouse passes through five stages: the choice of hardware
architecture, data warehouse fragmentation, fragments allocation, query pro-
cessing and load balancing among the nodes. When exploring the majority of
works on designing parallel data warehouses, we figure out that fragmentation
and allocation are usually treated in an isolation way. In this paper, we showed
the interest of addressing the problems of selecting partitioning and allocation
schemes simultaneously. We proposed an algorithm composed of two procedures,
one for fragmenting the data warehouse (using a genetic technique) and another
for allocating the fragments generated (using an affinity technique). The main
particularity of fragmentation procedure is that it evaluates the quality of the
generated partitioning schema based on its allocation effectiveness. Since our
allocation procedure is based on the affinity between fragments, there is a risk
that it does not balance the load between nodes. Consequently, we propose an
algorithm for that. It consists in migrating fragments from highly nodes to lowly
nodes in order to ensure intra query parallelism. Our proposed methodology
is validated using data set of APB1 benchmark by considering a shared noth-
ing parallel machine. The results are encouraging and show the interest of our
approach.

In future work, it would be interesting to use other algorithms to partition
the data warehouse schema, since, our genetic algorithm is costly in terms
of computation time, and to conduct more experiments by considering more
nodes.
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Abstract. For efficient query processing, a relational table should be indexed in 
multiple ways; for efficient database loading, indexes should be omitted. Moer-
kotte’s “small materialized aggregates” can be used to alleviate this tension,  
notably in the form of Netezza’s “zone maps.” Their most significant advanta-
geous characteristics are that (i) load bandwidth is maximized by avoiding the 
cost of index maintenance, (ii) there is no need for complex index tuning, and 
(iii) scans for typical queries are very fast. Their most significant limiting char-
acteristics are that (iv) they are effective only for query predicates on columns 
correlated with the load sequence, (v) individual outlier values can sharply re-
duce their effectiveness, and (vi) they fail to improve search performance 
within a zone. 

In this research, we introduce zone filters and zone indexes that address 
these limitations without reducing the advantages. The new data structures can 
be created as side effects of the load process, with all required analyses accom-
plished while a moderate amount of new data still remains in the buffer pool. 
Traditional sorting and indexing are not required. Nonetheless, query perform-
ance matches that of zxone maps where those apply, exceeds it for predicates 
for which zone maps are ineffective, and can be comparable to query processing 
in a database with traditional indexing, as demonstrated in our simulations. 

1   Introduction 

In relational data warehousing, there is a tension between load bandwidth and query 
performance, between effort spent on maintenance of an optimized data organization 
and effort spent on large scans and large, memory-intensive join operations. For ex-
ample, appending new records to a heap structure can achieve near-hardware band-
width. If, however, the same data must be integrated into multiple indexes organized 
on orthogonal attributes, several random pages are read and written for each record 
insertion. Some optimizations are possible, notably sorting new data and merging 
them into the old indexes, thus reducing random I/O but still moving entire pages to 
update individual records [GKK 01]. Nonetheless, load bandwidth will be a fraction 
of the hardware bandwidth. 

The difference in query performance is just as clear. A fully indexed database per-
mits efficient index-to-index navigation for many queries, with all memory available 
for the buffer pool. With index-only retrieval, non-clustered indexes may serve as 
vertical partitions similar to columnar storage. With a few optimizations, index 
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searches can be very fast. For example, IBM’s Red Brick product supports memory-
mapped dimension tables. If, on the other hand, the load process leaves behind only a 
heap structure with no indexes, query processing must rely on large scans, large hash 
joins, etc. Shared scans may alleviate the pain to some degree, but general sharing of 
more complex intermediate query results has remained a research idea without practi-
cal significance. 

In the proposed design using zone filters and zone indexes, loading writes each 
item to disk only once and never revisits items with multi-pass algorithms such as 
external merge sort or B-tree reorganization. Nonetheless, predicates on all columns 
are supported. Compared to traditional B-trees, the data structure left after loading 
and used by query evaluation is less refined. The advantage of the technique is that 
there is no need for reorganization after the load is complete or for index tuning, yet 
query processing can be almost as efficient as in a fully indexed database, as demon-
strated in our experiments. 

2   Prior Work 

2.1   Small Materialized Aggregates 

Moerkotte [M 98] seems to have been the first to suggest parsimonious use of materi-
alized view for query answering and for efficiency in query execution plans. The  
latter is based on a correlation of load sequence with time-related data attributes. Ob-
vious examples include attributes of type “date” or “time;” less obvious examples 
with nonetheless strong correlation include sequentially assigned identifiers such as 
an order number, invoice number, etc. For example, if most or even all orders are 
processed within a few days of receipt, references to order numbers in shipments are 
highly correlated with the time when shipments occurred and were recorded in the 
database. 

For those cases, Moerkotte proposed small materialized aggregates (SMAs) de-
fined by fairly simple SQL queries. For example, for each day or month of ship-
ments, the minimal and maximal order number might be recorded in a materialized 
view. Based on this materialized view, a query execution plan searching for a cer-
tain set of order numbers can quickly and safely skip over most days or months. In 
other words, the materialized view indicates the limits of actual order numbers 
within each day or month, and it can thus guarantee the absence of order numbers 
outside that range. 

Figure 1 reproduces an illustration by Moerkotte [M 98]. It shows three buckets 
(equivalent to database segments or zones). Each bucket contains many records, with 
three records per bucket shown. Several small materialized aggregates are kept for 
each bucket, in this case three different aggregates, namely minimum and maximum 
values as well as record counts. The number of values for each of these aggregates is 
equal to the number of buckets. A query about a date range within the year 1998 can 
skip over all buckets shown based on the maximum date values in the appropriate file 
of small materialized aggregates. 
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97-03-11

97-04-22

97-02-02

Bucket 1

97-04-01

97-05-07

97-04-28

Bucket 2

97-05-02

97-05-20

97-06-03

Bucket 3

97-05-07 97-06-03SMA-file 2: max 97-04-22

SMA-file 1: min 97-02-02 97-04-01 97-05-02

3 3SMA-file 3: count 3

 
Fig. 1. Moerkotte's illustration 

Omission of maintenance during deletion results in possible inaccuracy, e.g., dele-
tion of the last instance of the lowest or highest value. Such inaccurate aggregates can 
still be used to guide query execution plans. Specifically, they indicate the lowest or 
highest value that ever existed, not the lowest or highest value that currently exists. 
Thus, they can guarantee that values outside the range currently do not exist, even if 
the current values may not span the entire range. 

2.2   Zone Maps 

Netezza employs a closely related technique that has proven itself in practice, both 
during proof-of-concept benchmarks and in production deployments. In order to sim-
plify the software and to speed up query processing, only one record type is permitted 
within each database segment or “zone” (as far as we know). To avoid the need for 
manual tuning, zone maps cover all columns in a table. For each column and each 
physical database segment (e.g., 3 MB of disk space), minimal and maximal value are 
gathered during loading and retained in the database catalogs. During insertions into a 
database segment, the values are updated accurately. During deletion, maintenance of 
these values is omitted. 

Query processing in data warehousing often involves query predicates on a time at-
tribute. Often, there is a high correlation between the load sequence and data attrib-
utes capturing a time dimension, e.g., the date of sales transactions. In those cases, the 
information in the zone maps enables table scans to skip over much of the data. 

Columns without correlation and predicates on those columns do not benefit from 
zone maps. For example, if there is a query predicate on product identifier, it is 
unlikely that the range of product identifiers within a database segment is substan-
tially smaller than the entire domain of product identifiers. Thus, there will rarely be 
an opportunity to combine zone map information about multiple columns. 
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The date ranges of neighboring zone maps may overlap. As there usually is a 
strong correlation between load sequence and dates, these overlaps are limited in 
practice. The ranges of product identifiers overlap between zone maps; in fact, there 
does not seem to be any correlation between product identifiers and date or load se-
quence. Therefore, a range query on the date column likely benefits from the zone 
maps, whereas a range query on product identifiers typically does not. 

After zone maps reduce the number of zones that must be inspected in detail, 
Netezza relies on hardware support (FPGAs) to scan zones and all their records 
quickly. For generality and portability, we propose a data organization within zones 
(or equivalent data segments) that enables efficient loading as well as efficient query 
processing. 

2.3   Partitioned B-trees 

Partitioned B-trees are normal B-trees with a hidden artificial leading key field to cre-
ate flexibility during loading and query processing [G 03]. One of the design goals 
was to combine loading at hardware speed and query processing as in a fully indexed 
database. 

Loading includes the logic for run generation during external merge sort and ex-
tends each B-tree being loaded with sorted partitions, which separated by an artificial 
leading key field containing partition identifiers or run numbers. Incremental index 
reorganization may exploit idle times between loading and query processing. The 
required logic is the same as merging in a traditional external merge sort. 

Figure 2 illustrates a partitioned B-tree with 3 partitions. B-tree reorganization into 
a single partition uses the merge logic of external merge sort. Index search prior to 
full index optimization needs to probe all existing partitions just like a query with no 
restriction on a leading B-tree column [LJB 95]. If a partition is small, it might be 
more efficient to scan all its records than to probe it using standard B-tree search. B-
tree optimizations for prefix and suffix truncation make it likely that partition bounda-
ries coincide with leaf boundaries. 

If multiple indexes exist for a table being loaded, one can either sort each memory 
contents once in each desired sort order and append the sorted records as a new seg-
ment to all appropriate indexes, or one can append the new data to only one index, say 
the clustered index of the table. In the latter case, the load process can achieve near-
hardware bandwidth. Later, the incremental optimization steps not only move data 
from the appended segments to the main segment but also propagate the insertions to 
the table’s other indexes. 

3 4Partition no. 0
 

Fig. 2. Partitioned B-tree 
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2.4   In-Page Organization 

When an entire database segment or zone is read and processed as a single unit, its 
internal organization is even more important than the internal organization of tradi-
tional database pages of much more moderate size. Nonetheless, several research  
efforts have focused on evaluation and improvement of the internal organization of 
database pages, both for unsorted heap files and for B-tree indexes. An advanced in-
ternal organization has been employed in at least one database product [BB 02]. 

For the former, the most promising direction seems to have been a columnar or-
ganization or vertical partitioning, with “mini-pages” dedicated to individual fields of 
the records stored on the page [ADH 01]. For the latter, the initial paper on B-trees 
suggested binary search [BM 70] whereas recent proposals include caching keys fre-
quently used in binary search [GL 01, L 01], organizing those keys as a B-tree of 
cache lines [RR 00], or optimizing a page for interpolation search [G 06]. 

3   Zone Filters 

Starting with this section, we introduce our proposals for zone filters and zone in-
dexes. These techniques improve and integrate prior techniques and thus combine and 
exceed their benefits. Zone filters generalize small materialized aggregates and zone 
maps; and zone indexes speed up search within a database segment. Our design for 
zone filters differs from Moerkotte’s small materialized aggregates by exploiting ag-
gregates beyond those expressible in SQL. It differs from Netezza’s zone maps in two 
ways: multiple low and high values and bit vector filters. 

3.1   Multiple Extreme Values 

For each zone and each column, our design retains the m lowest and the n highest 
values. If m = n = 1, this aspect of zone filters equals zone maps. By generalizing be-
yond a single value at each end of the range, zone filters can be effective in cases for 
which zone maps fail, without substantial additional effort during loading. 

If the Null value for a domain “sorts low,” it may be the “lowest” value for a col-
umn in many zones. By retaining at least m = 2 low values, the lowest valid value is 
always included in the zone filter even in the presence of Null values. Thus, queries 
with range predicates can always test whether a zone indeed contains values in the 
desired range of values, and Null values do not create a problem or inefficiency. 

In addition, retaining m+n extreme values per zone and column permits efficient 
query processing even in the presence of outliers. For example, if the column in ques-
tion describes the business value of sales transactions, a single sales transaction of 
high value might greatly expand the range as described by the very lowest and the 
very highest value. Many sets of real-world measurements include outliers, not only 
values but also sizes, weights, distances, intervals, etc. Even a few low and high val-
ues, ideally one more value than actual outliers, can ensure that query predicates can 
be handled effectively, i.e., only those zones are inspected in detail that probably con-
tribute to the query result. 
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97-02-02; 4711; …
97-03-11; 6400; …
97-04-01; 0528; …
97-03-31; 0911; …
97-03-29; 2002; …
…

97-04-22; 1200; …
97-04-28; 5817; …
97-05-02; 3333; …
97-05-01; 1740; …
97-04-24; 1492; …
…

97-02-02; 0528; …
97-03-11; 0911; …
97-03-31; 4711; …
97-04-01; 6400; …

2× low values
2× high values

97-04-22; 1200; …
97-04-24; 1492; …
97-04-28; 3333; …
97-05-02; 5817; …

Data records

97-04-28; 6192; …
97-05-20; 6400; …
97-06-03; 0635; …
97-05-01; 1795; …
97-05-05; 1848; …
…

97-04-28; 0635; …
97-05-01; 1795; …
97-05-20; 6192; …
97-06-03; 6400; …

 

Fig. 3. Zone filter with m = 2 and n = 2 

Figure 3 shows a zone filter with m = n = 2 or four synopsis records per database 
segment or zone. Notice that there is only a single data record for month 97-02, which 
may therefore be considered an outlier. For a query with predicate “= 97-02-22” or 
“between 97-02-16 and 97-02-28,” zone maps cannot exclude that zone, whereas the 
zone filters in Figure 3 do based on their multiple low and high values. 

If there are fewer than m+n distinct values, some of the m+n values in the zone fil-
ter might be Null. The lowest value actually found in the domain is always retained as 
the lowest value in the zone filter. 

In such cases, or if the search key is smaller than the largest among the m lowest 
values or larger than the smallest among the n highest values, the set of extreme val-
ues in the zone filter supports not only range (“<”, “between”) predicates but also 
equality (“=”, “in”) predicates, even for query constants that are within the range be-
tween low and high values. For example, if the m = 3 lowest values retained in a zone 
filter are (4, 7, 12), a search for value 9 can safely skip the zone. Thus, in the case of 
domains with few distinct values, the generalization from Moerkotte’s SQL aggre-
gates and Netezza’s zone maps to m+n extreme values not only handles Null values 
and outliers but also offers new functionality and performance improvements for an 
additional set of queries. 

Some readers might fear the cost of maintaining m+n values, in particular for non-
trivial values of m and n. In that case, the load process should employ two priority 
queues for the lowest and highest values seen so far. The values are the roots of these 
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priority queues are the mth lowest and the nth highest value seen so far. The priority 
queues are initialized with the first m+n distinct values in the load stream. Each sub-
sequent value in the load stream is compared with these root values, and if necessary 
a pass through one priority queue is required with log2(m) or log2(n) comparisons. 
The two required comparisons are comparable to the 2 comparisons required while 
building a zone map. 

3.2   Bit Vector Filters 

If the values in a database column have no correlation with the load sequence of the 
table, the range between minimal and maximal actual value in each zone will ap-
proach the entire domain of the column. In those cases, even m+n extreme values 
will provide hardly any reduction in the number of zones that need to be scanned in 
detail. 

Each zone might contain only a few distinct actual values, or at least substantially 
less than the entire domain. For those cases, we propose to include bit vector filtering 
in the zone filter. For each zone and for each column, a bit vector filter provides a 
synopsis of the actual values, and scans with equality predicates can exclude zones 
where the constant literal in the query predicate maps to an “off” bit in the bit vector 
filter. 

For example, consider a sales table in an organization with seasonal products, or 
any other domain in which items are introduced and discontinued over time. Depend-
ing on the assignment of product identifiers for new products, zone maps may con-
ceivably be effective for their highest values. Old products are usually discontinued in 
a more random numeric sequence, so zone maps would not help with the lowest val-
ues. Bit vector filters, on the other hand, are independent of the sort order of product 
identifiers, their introduction, and their discontinuance, whereas zone maps depend on 
the correlation between column values and the load sequence. 

Figure 4 illustrates a zone filter with a bitmap per column; the m+n records with 
low and high values are omitted from the diagram. For this illustration, the last deci-
mal digit of the date or the product identifier is used as bit position. For example, 
value 0528 in the second column maps to bit position 8 in the second bitmap within 
the zone filter. 

It might be useful to reserve one bit position in the bitmap for Null values. By do-
ing so, queries specifically searching for missing values (Null values) can be proc-
essed very efficiently, with little impact on all other queries. If the bit vector filter 
indicates the presence of a Null value, there is no need to include it among the lowest 
m values in the zone filter. Thus, an additional actual value can be included in the 
zone filter for a slight increase in effectiveness. 

As there is no need to capture occurrence of a particular value twice in a zone fil-
ter, and as the zone filter is the combination of extreme values and bit vector filter, the 
m+n extreme values are not represented in the bit vector filter. Thus, if no more than 
m+n distinct values occur in a zone (in one column), the bit vector filter is entirely 
clear. 
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97-02-02; 4711; …
97-03-11; 6400; …
97-04-01; 0528; …
97-03-31; 0911; …
97-03-29; 2002; …
…

97-04-22; 1200; …
97-04-28; 5817; …
97-05-02; 3333; …
97-05-01; 1740; …
97-04-24; 1492; …
…

01100 00001;
11100 00010; …

Bitmap per column

01101 00010;
10110 00100; …

Data records

97-04-28; 6192; …
97-05-20; 6400; …
97-06-03; 0635; …
97-05-01; 1795; …
97-05-05; 1848; …
…

11010 10010;
10100 10010; …

 

Fig. 4. Zone filters with bitmaps per column 

Bit vector filters typically do not support range predicates very well. If a query 
range is small, it may be possible to enumerate the values in the range. For example, 
the predicate “between 4 and 6” can be rewritten to “in (4, 5, 6)” for an integer do-
main. In order to solve the problem more generally, some bit positions in the bit vec-
tor filter may be dedicated to ranges. For example, the column value 154 might be 
mapped to a bit position for the specific value as well as another bit position dedicated 
to the range 100-199. A query with the predicate “between 167 and 233” might be 
able to skip over many zones even if some data values such as 154 might create false 
positives. 

Bit vector filters are really a special form of aggregate. Thus, as records are added 
to a zone during load processing, each record adds to the bit vector filter. They are 
different than traditional aggregates in that record deletions are not reflected in a bit 
vector filter. In that sense, a bit vector filter does not reflect the current actual values 
in a zone but the set of values that have existed in the zone and column since the bit 
vector filter was created. If deletions are frequent, it might be useful to recomputed bit 
vector filters every now and then in the affected database segments or zones. 

4   Zone Indexes 

While zone filters let scans skip over many parts of a table or database, zone indexes 
are a technique that enables efficient search within a zone. 
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The essence of zone indexes is to embed in each zone or database segment infor-
mation comparable to a traditional index, limited in scope to the records within that 
zone or segment. Embedding zone indexes within the zone or database segment aids 
both load and query performance. During loading, a zone index can be created with-
out accesses to external storage while the segment is assembled in the buffer pool. 
During query processing, any zone or segment not eliminated by zone filters can be 
searched efficiently using the indexes within the zone. Since the zone filters are em-
bedded, they are loaded into the buffer pool in memory together with the detail data in 
the segment.  

Our proposed default for zone indexes is to index every column. If the data records 
are sorted according to one column only, this is analogous to clustered and non-
clustered indexes in traditional databases. The main difference to traditional indexes 
is that that all these indexes may share data values very much in the spirit of T-trees 
optimized for in-memory indexing [LC 86]. Thus, every value needs to be stored only 
once. Moreover, the indexes may be optimized for CPU caches [GL 01, L 01]. The 
reason these techniques are applicable is that entire database segments are moved 
between memory and disk as a unit during database loading and during query  
processing. 

Like zone filters and unlike traditional indexes, zone indexes can be constructed 
quite inexpensively as part of the load process, with little processing effort and mem-
ory. Creation of a traditional index requires sorting the future index records; for a 
large index, an external merge sort requires external storage for intermediate runs and 
multiple passes over the data. Maintenance of such an index during a large load re-
quires either many random insertions or sorting the change set followed by merging 
the change into the existing index. Partitioned B-trees do not reduce this effort; they 
merely create the ability to perform the work later and incrementally. 

Encoding and compression may differ from one database segment or zone to an-
other, for example, due to a different set of distinct values in a column. Even the set 
of indexes may differ among zones. The important points here are that indexes are 
applied within database segments used as contiguous disk storage and as in-memory 
data structures, they are created during high-bandwidth database loading with moder-
ate processing and memory requirements, and storage formats may differ among  
database segments or zones. 

5   Performance 

In order to assess the value of zone filters and zone indexes, we implemented an ap-
proximation using a commercial database product and the “line item” table of the 
well-known TPC-H database. The following three sub-sections demonstrate the value 
of zone maps with low and high values, of zone filters with bit vector filters, and of 
zone indexes. 

Instead of building multiple non-clustered indexes, we created only a clustered in-
dex on two of the three date columns in each table. Given that this particular database 
has no outlier values, we kept the number of low and high values to one each in the 
experiments (m = n = 1). Instead of bit vector filters, we used small tables. 
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The table contains about 60 M rows (~6 GB). It is stored in a clustered B-tree in-
dex organized on “commit date,” with 2,466 distinct values and about 2½ MB of data 
per distinct commit date. The “ship date” is a secondary sort column in the clustered 
index. For the “receipt date,” there is only an incidental order due to correlation; this 
is not exploited during query processing. 

The hardware is a dual-core Intel T7200 CPU running at 2 GHz, 2 GB of RAM, a 
SATA drive with all system files, and a PATA drive with the test database (and its 
recovery log, but nothing else). Both drives use NTFS file systems recently defrag-
mented. The database server is limited to 128 MB of workspace in RAM. While the 
system ran other applications concurrently, the CPU utilization was very low 
throughout all experiments and the times reported below reflect I/O times very accu-
rately. Each statement started with a warm procedure cache (queries compiled ahead 
of time) and a cold buffer pool. 

5.1   Effect of Zone Maps 

To emulate a zone filter with lowest and highest values, the database also contains a 
materialized view with lowest and highest receipt date for each ship date. These col-
umns have high correlation, but the ranges of receipt dates overlap for a number of 
neighboring commit dates. In other words, this is precisely the constellation for which 
Netezza’s zone maps are designed, with the ordering on commit dates emulating a 
load sequence. 

Table 1. Effect of zone maps 

Experiment SQL Text 
Query using a 
clustered index
3.75 sec

Select count (*)
From lineitem
Where l_commitdate between

'06/16/1994' and '06/30/1994'
Query without 
a useful index
682 sec

Select count (*)
From lineitem
Where l_receiptdate between

'06/16/1994' and '06/30/1994'
Zone map 
creation
691 sec

Select l_commitdate as zone
min (l_receiptdate) as low
max (l_receiptdate) as high

Into map_receiptdate
From lineitem
Group by l_commitdate

Zone map us-
age
54.8 sec

Select count (*)
From map_receiptdate, lineitem
Where low <= '6/30/1994'

and high >= '6/16/1994'
and l_commitdate = zone
and l_receiptdate between
'6/16/1994' and '6/30/1994'

option (loop join)
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Table 1 shows relevant SQL text and the observed performance. All queries in our 
experiments are variations on the first query shown. If this query can exploit a clus-
tered index, it merely scans a contiguous key range and counts 374,382 rows at about 
100,000 rows per second or about 10 MB per second. 

The first variation of this query forces a complete scan of the table. Scanning 6 GB 
in 682 seconds indicates also about 9 MB per second. The difference in performance 
between a disk-order scan and an index-order scan is probably not significant as the 
database was recently defragmented. 

Creation of a zone map employs a very simple plan here, effectively a complete 
scan of the clustered index with very moderate effort for aggregation calculations plus 
insertion into a new table serving as zone map in our emulation of this technology. 
The small performance difference between the prior query and the creation of a zone 
map indicates that creation of a zone as side effect of loading will hold up in practice. 

The final query in Table 1 shows the effect of zone maps. The “option” syntax en-
sures the desired query execution plan. Using the auxiliary table as zone maps, the 
plan completes 10 times faster than the equivalent query without zone maps. This 
mirrors the fact that about 9% of all zones (220 of 2,466) contain receipt dates that 
satisfy the query predicate. The overhead of scanning the auxiliary table containing 
the zone maps is negligible. 

5.2   Effect of Bit Vector Filtering 

In order to emulate bit vector filtering in a zone filter, the database contains a materi-
alized view that captures the distinct part numbers for each commit date. The  
performance difference between query execution plans that do or do not use this ma-
terialized view indicates the value of bit vector filtering in zone filters. 

Table 2. Effect of zone filters 

Experiment SQL Text
Zone filter 
creation
1,656 sec

Select distinct l_commitdate as zone,
checksum (l_partkey) %

64000 as value
Into filter_partkey
From lineitem

Zone filter 
usage
300 sec

Select count (*)
From (select distinct zone

from filter_partkey
where value = checksum (

1705409) % 64000
) as filter,
lineitem

Where l_commitdate = zone
and l_partkey = 1705409

option (loop join)  
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Table 2 shows SQL statements for creation and usage of emulated zone filters. 
64,000 bits might seem relatively large compared to a zone map with only minimum 
and maximum value, but 64,000 bits or 8 KB are a fairly dense synopsis for a data-
base segment or zone of 2½ MB and a domain of 2,000,000 values. 

In the emulation, however, due to the lack of an appropriate bitmap data type, indi-
vidual records are created such that the materialized view contains 50,000,000 records 
or about 2,000 records per distinct value in the commit date column. The size of the 
table is about 1 GB. With the experimental system, a scan of 1 GB requires about 
100 seconds. Nonetheless, even this poor zone filter eliminates a large number of da-
tabase segments from the scan of the line item table, sufficient for a faster query exe-
cution time than a table scan without indexes and zone filters. 

With proper bitmaps, the size of all zone filters would be about 2,466 × 8 KB = 
20 MB. If not kept in memory, they could be scanned in 2 seconds. The observed 
query time would not be 300 seconds but about 200 seconds. Without bit vector filter-
ing, all database segments or zones need to be scanned, and the query execution time 
equals that of the query without a useful index in Table 1. In other words, the benefit 
of zone filters with bit vector filters can be substantial, even for columns and predi-
cates for which traditional zone maps completely fail. 

5.3   Effect of Zone Indexes 

In order to assess the value of zone indexes, another variation of the base query of 
Table 1 restricts the ship date, as shown in Table 3. This query is very similar to the 
last query of Table 1. Both queries exploit zone maps to skip over irrelevant database 
segments or zones. The difference is that a restriction on receipt date in Table 1 must 
scan each relevant database segment in its entirety, whereas a restriction on ship date 
can exploit the index where ship date is the minor key. A scan of the auxiliary table 
produces zones indicated as search keys for the first column of the index; for each 
zone, the index is searched as the remaining query predicate matches the second col-
umn of the index. This second index key is equivalent to an index on ship date within 
each zone or database segment. 

The performance difference demonstrates the value of an index within each data-
base segment, with 55.8 seconds versus 7.95 seconds. In fact, the elapsed time of the 
 

Table 3. Effect of zone indexes 

Experiment SQL Text
Zone index 
usage
7.95 sec 

Select count (*)
From map_shipdate, lineitem
Where low <= '6/30/1994'

and high >= '6/16/1994'
and l_commitdate = zone
and l_shipdate between
'6/16/1994' and '6/30/1994'

option (loop join)  
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query in Table 3 is remarkable not only for the performance difference relative to the 
last query of Table 1 but also for the performance similarity relative to the first query 
of Table 1. Their difference is merely a factor of 2 in spite of the fact that creation and 
maintenance of a traditional clustered index requires effort and indeed reduces load 
bandwidth to a fraction of the hardware bandwidth. Zone filters and zone indexes, on 
the other hand, can easily be created as side effects as the unsorted load stream passes 
through memory. 

6   Summary and Conclusions 

In summary, we identified three advantageous characteristics and three limiting ones 
in Moerkotte’s “small materialized aggregates” and Netezza’s “zone maps.” Our gen-
eralization of those prior designs overcomes their limitations yet retains their  
advantages. 

Together, these techniques enable efficient query processing immediately after a 
high-bandwidth load. Load processing, with moderate memory and processing needs, 
creates these structures as a side effect. Intermediate database reorganization is not 
required. Query evaluation relies only on data structures left behind by the load opera-
tion yet it can skip many database segments in most cases and can search the remain-
ing ones efficiently. 

In addition to loading traditional data warehouses, the technique might prove  
useful in capturing and indexing very large data streams. The effort for sorting data-
base segments in memory is comparable to creation of in-memory indexes, yet zone 
filters and zone indexes are equally suitable for disk storage and thus for large data 
streams. 

Figure 5 illustrates the tradeoffs among alternative techniques. Multiple traditional 
indexes permit high query performance at the expense of poor load performance. 
Heaps without indexes permit loading at hardware write bandwidth but lead to poor 
query performance, in particular for highly selective queries. Partitioned B-trees com-
bine high load bandwidth and high query performance but only at the expense of in-
termediate operations that reorganize and optimize the B-trees. Zone maps permit the 
load bandwidth of heaps and enable good query performance but only in cases of cor-
relation between load sequence and columns in query predicates. Finally, a table with  
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zone filters and zone indexes can be loaded at hardware write bandwidth, requires no 
reorganization or optimization after loading, and instantly enables query performance 
comparable to multiple traditional indexes. 

Acknowledgements 

Harumi Kuno’s many insightful suggestions on contents, text, and diagrams have im-
proved this paper and are greatly appreciated. 

References 

[ADH 01]  Ailamaki, A., DeWitt, D.J., Hill, M.D., Skounakis, M.: Weaving relations for cache 
performance. In: VLDB 2001, pp. 169–180 (2001)  

[BB 02] Bumbulis, P., Bowman, I.: A compact B-tree. In: SIGMOD 2002, pp. 533–541 
(2002)  

[BM 70] Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dexes. In: SIGFIDET Workshop 1970, pp. 107–141 (1970)  

[G 03] Graefe, G.: Sorting and indexing with partitioned B-trees. In: CIDR 2003(2003)  
[G 06] Graefe, G.: B-tree indexes, interpolation search, and skew. In: DaMoN 2006, p. 5 

(2006)  
[GKK 01] Gärtner, A., Kemper, A., Kossmann, D., Zeller, B.: Efficient bulk deletes in rela-

tional databases. In: ICDE 2001, pp. 183–192 (2001)  
[GL 01] Graefe, G., Larson, P.-Å.: B-Tree indexes and CPU caches. In: ICDE 2001, pp. 

349–358 (2001)  
[L 01] Lomet, D.B.: The evolution of effective B-tree page organization and techniques: A 

personal account. SIGMOD Record 30(3), 64–69 (2001)  
[LC 86] Lehman, T.J., Carey, M.J.: A study of index structures for main memory database 

management systems. In: VLDB 1986, pp. 294–303 (1986)  
[LJB 95] Leslie, H., Jain, R., Birdsall, D., Yaghmai, H.: Efficient search of multi-

dimensional B-trees. In: VLDB 1995, pp. 710–719 (1995)  
[M 98] Moerkotte, G.: Small materialized aggregates: A light weight index structure for 

data warehousing. In: VLDB 1998, pp. 476–487 (1998)  
[RR 00] Rao, J., Ross, K.A.: Making B+-trees cache conscious in main memory. In: SIG-

MOD 2000, pp. 475–486 (2000)  
 



TidFP: Mining Frequent Patterns in Different
Databases with Transaction ID

C.I. Ezeife� and Dan Zhang

School of Computer Science, University of Windsor,
Windsor, Ontario,
Canada N9B 3P4

cezeife@uwindsor.ca, zhang3d@uwindsor.ca

http://www.cs.uwindsor.ca/~cezeife

Abstract. Since transaction identifiers (ids) are unique and would not
usually be frequent, mining frequent patterns with transaction ids, show-
ing records they occurred in, provides an efficient way to mine frequent
patterns in many types of databases including multiple tabled and dis-
tributed databases. Existing work have not focused on mining frequent
patterns with the transaction ids they occurred in. Many applications
require finding strong associations between transaction id (e.g., certain
drug) and the itemsets (e.g., certain adverse effects) to help deduce some
pertinent lacking information (like how many people use this product in
total) and information (like how many people have the adverse effects).

This paper proposes a set of algorithms TidFPs, for mining frequent
patterns with their transaction ids in a single transaction database, in a
multiple tabled database, and in a distributed database. The proposed
technique scans the database records only once even with level-wise
Apriori-based mining techniques, stores frequent 1-items with their trans-
action id bitmap, outperforms traditional approaches and is extendible to
other tree-based mining techniques as well as sequential mining.

Keywords: Data mining, Transaction id, Frequent Patterns,
Distributed Mining, Multiple Table Mining.

1 Introduction

Mining frequent itemsets from a database table has been solved largely by al-
gorithms that are Apriori based (e.g., the Apriori algorithm [1]) and those that
are pattern-tree growth techniques (e.g., FP-tree [6]). Algorithms for mining
frequent patterns from sequential databases also exist and include GSP [11],
PrefixSpan [10], SPADE [12], SPAM [2], WAP [9] and PLWAP [4]. The focus
of all these existing techniques does not include generating frequent patterns,
showing the records where they occurred or with their transaction ids as may
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Table 1. Example Drug/Side Effects Database Records

Tid (Drug) Items (Side Effects)
D1 1 3 4
D2 2 3 5
D3 1 2 3 5
D4 2 5

be needed by some applications. Existing algorithms are also designed for single
table mining and not for mining multiple related tables in a not necessarily nor-
malized database. Assume a pharmacovigilance database table which contains
reports about the adverse events of certain drugs from medical professionals as
well as patients as depicted in Table 1 where the set of items (adverse side ef-
fects) I = {1, 2, 3, 4, 5} and the set of transaction ids (Drugs) Tids = {D1, D2,
D3, D4}.

Mining all drugs that have similar frequent side effects at minimum support
of 50% would require generating frequent itemsets (or frequent side effects) with
the transaction id (or Drug id) in the format [< itemset > Tid-list] that allows
mining more informative large itemsets as L = { [< 1 > D1D3], [< 2 > D2D3D4],
< 3 > D1D2D3], [< 5 > D2D3D4], [< 1, 2 > D2D3D4],[< 1, 3 > D1D3],
[< 2, 3 > D2D3], [< 2, 5 > D2D3D5], [< 3, 5 > D2D3], [< 2, 3, 5 > D2D3]}.

1.1 Contributions and Outline

This paper proposes a series of algorithms for mining frequent patterns with
their transaction ids on different types of databases, including (i) from a single
table, (ii) from a multiple database set of related tables, (iii) from a horizon-
tally distributed database tables, and (iv) from a vertically distributed database
tables. The objectives of the proposed techniques are:

1. Enabling more informative mining: For many applications, just producing
the frequent patterns without linking them to the specific transactions they
occurred in, may not be adequate. Also, enabling mining of multiple related
tables either in a single or distributed database environment, provides answers
to more complex queries.

2. Improving Mining Efficiency: This system aims at improving the mining
efficiency by cutting down from several to one, the number of times the original
database is scanned for purposes of support counting.

Section 2 presents related work, Section 3 presents the proposed systems:
TidFP, TidFP-multi, TidFP-hordist and TidFP-vertdist miners for respectively
mining single table, multiple tables, horizontally distributed tables, and ver-
tically distributed tables. Section 4 describes the experimental results, while
section 5 presents conclusions and future work.
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2 Related Work

Association rule can be used to find correlation among items in a given trans-
action. Association rule mining was proposed in [7], where the formal definition
of the problem is presented as: Let I = {i1, . . . , in} be a set of literals, called
items. Let database, D be a set of transaction records, where each transaction T
is a set of items such that T ⊆ I. Associated with each transaction is a unique
identifier, called its transaction id (TID). We say that a transaction T contains
X, a set of some items in I, if X ⊆ I. An association rule is an implication of
the form X → Y , where X ⊆ I, Y ⊆ I, and X ∩ Y = ∅. The rule X → Y
holds in the transaction set D with confidence c if c% of transactions in D that
contain X also contain Y. The rule X → Y has support s in the transaction set
D if s% of transactions in D contain X ∪ Y . An example database is shown in
Table 1. Here, there are four transactions with TID D1, D2, D3, and D4. The
rule {side effect 1} → {side effect 2} is an association rule because with a
given minimum support of 50% or 2 out of 4 transactions, the 2-itemset (1,2)
which, this rule is generated from, has a support of 3/4 or 75%. The confidence
for this rule is 1/2=50%.

Several important association rule mining algorithms including the Apriori
[7], [1], and Fp-growth [6] exist. The basic idea behind the Apriori algorithm
[7], [1], is to level-wise, use shorter frequent k-itemsets (Lk) to deduce longer
frequent (k+1)-itemsets (Lk+1) starting from candidate 1-itemsets consisting of
single items in the set I defined above, until either no more frequent itemsets
or candidate itemsets can be found. Thus, the Apriori algorithm finds frequent
k-itemsets Lk from the set of frequent (k-1)-itemsets Lk−1 using the following
two main steps involving joining the L(k − 1) with L(k − 1) Apriori-gen way
to generate candidate k-itemsets Ck, and secondly, pruning the Ck of itemsets
not meeting the Apriori property or not having all their subsets frequent in
previous large itemsets. To obtain the next frequent Lk from candidate Ck,
the database has to be scanned for support counts of all itemsets in Ck. A
modified version of the Apriori algorithm called AprioriTid [1] avoids re-scanning
the database to enumerate frequent patterns. AprioriTid maintains a candidate
set C′

k. Every entry of C′
k has two parts. One is transaction ID and the other

is a list of k-itemsets. Instead of scanning the database to count the support
for every candidate itemset, the algorithm iterates C′

k. Simultaneously, Ck+1
is generated to enumerate (k+1)-itemsets. Although transaction Ids for every
frequent itemsets can be obtained with this algorithm, experiments show that
AprioriTid approach slows down performance once it processes large datasets.
Since level-wise candidate generation as well as numerous scans of the database
had been seen as a limitation of this approach, optimization techniques in the
literature and alternative tree-based solution proposal with Frequent pattern
tree growth FP-growth [5], [6] had also been used. The FP-growth approach
scans the database once to build the frequent header list, then, represents the
database transaction records in descending order of support of the F1 list so that
these frequent transactions are used to construct the FP-tree. The FP-tree are
now mined for frequent patterns recursively through conditional pattern base



128 C.I. Ezeife and D. Zhang

of the conditional FP-tree and suffix growing of the frequent patterns. None of
the frequent itemset mining algorithms considers mining frequent patterns with
their transaction ids.

Some existing sequential pattern mining algorithms with techniques using
transactions IDs to generate frequent sequential patterns and count supports
include SPADE [12] and SPAM [2]. SPADE uses a vertical id-list database format
that associates each sequence to a list of objects in which it occurs along with the
time-stamps and all frequent sequences are enumerated through temporal joins
(or intersections) on id-lists. SPADE only needs to access the original database
3 times for support counting. Algorithm SPAM [2] has similar ideas as SPADE.
However, instead of vertical representation of id-list, SPAM uses vertical bitmap
representation of the entire database that fits in main memory. These sequential
mining techniques are not focussed on generating Fps with their Tids and incur
such limitations as inefficient memory utilizations and not suitable to scale to
very large databases.

3 The Proposed TidFP Algorithms

Section 3.1 presents the main algorithm TidFp, being proposed for mining fre-
quent patterns with the transaction ids where they occurred. Section 3.2 presents
the version of the algorithm for mining multiple tables called TidFp-multi,
section 3.3 presents the version of the algorithm for mining horizontally dis-
tributed database tables called TidFp-hordist, while section 3.4 provides the
TidFp-vertdist for mining vertically distributed database tables.

3.1 TidFp for Mining Fps with Transaction Ids on a Single Table

Since an important goal of the TidFp algorithm is linking all frequent patterns to
the database records or transactions where they came from, the TidFp algorithm
represents each frequent k-itemset as an m-attribute tuple of the form < Fk1 ,
T1k1 , T2k1 , . . . , Tmk1 >, where Fk1 is the first frequent k-itemset, and Tmk1 is
the mth transaction id of the first frequent k-itemset. For example, given Table
1 and minimum support of 50%, the list of frequent 1-itemsets is F1 ={< 1, D1,
D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >, < 5, D2, D3, D4 >}. This implies
as well that the candidate 1-itemsets listed by this technique is in the same
form as: C1 ={< I1, T11, T21, . . . , Tm1 >}, where I1 is the the first candidate
1-itemset, and Tm1 is the mth transaction id of the first candidate 1-itemset. For
our example drug database, the candidate 1-itemset is given as C1 ={< 1, D1,
D3 >, < 2, D2, D3, D4 >, < 3, D1, D2, D3 >, < 4, D1 >, < 5, D2, D3, D4 >}.
Thus, with this TidFp technique, the database is scanned only once to obtain
the candidate 1-itemsets with a list of their Tids. The Tids of each candidate
itemset is implemented either as a bitmap stored for each itemset or as only
one stored bitmap that itemsets point to. Then, the count of each candidate
itemset’s Tids is equivalent to the support of the itemset. The itemsets having
support less than the minimum support are excluded from the frequent 1-itemset
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list, leading to the itemset < 4, D1 > being deleted from the C1 list to get F1.
In order to get the higher order candidate and frequent (k+1)-itemsets Fk+1,
given a frequent k-itemset Fk, TidFp algorithm applies a modification of the
Apriori-gen join function called the map-gen join function, which works on two
components of the itemsets consisting of the itemset part and the transaction
id part and obtaining higher order frequent (k+1)-itemsets does not require re-
scanning the database for their supports as is needed with the Apriori-gen join.
With the TidFp, the candidate (k+1)-itemsets Ck is obtained from the frequent
k-itemsets for k ≥ 1, by joining frequent k-itemsets Fk with itself mapgen way
such that Ck+1 = Fk � Fk. To join mapgen way, for each pair of itemsets M
and P ∈ Fk where each Fk itemset has the two parts “< itemset, transaction id
list >”, the following three conditions have to be satisfied: M joins with P to
get itemset M ∪ P if the following conditions are satisfied.
(a) itemset M comes before itemset P in Fk,
(b) the first k-1 items in M and P (excluding just the last item) are the same,
(c) the transaction id list of the new itemset M ∪ P represented as T idM∪P is
obtained as the intersection of the Tid lists of the two joined k-itemsets M and
P and thus, T idM∪P = T idM ∩ T idP .
The formal algorithm TidFp is presented as Algorithm 1.

Algorithm 1. (TidFp:Computing Frequent Patterns with Tids)

Algorithm TidFp()
Input: A list of 1-items, Transaction Table of 1-items,

minimum support s%.
Output:A list of frequent patterns Fps.
Other variables: candidate sets Ck, Frequent k-itemsets Fk, k = 1 initially.
begin

1. Scan the DB once to compute
Ck = {< itemk1,T idlistitemk1 >, . . ., < itemkm,T idlistitemkm >}.
2. Compute frequent k-itemset Fk from candidate k-itemsets
Ck as Fk = {list of k-itemset with Tidlist count ≥ minsupport }.
3. While (Fk �= ∅) do
begin
3.1. k = k+1
3.2. Compute the next candidate set Ck+1 as Fk map-gen join Fk.
i.e. Each itemset M ∈ Fk joins with another itemset
P ∈ Fk if the following conditions are satisfied.

(a) itemset M comes before itemset P in Fk

(b) the first k-1 items in M and P (excluding just the last
item) are the same.
(c) Tid list of the two joined k-itemsets M and P is:
T idM∪P = T idM ∩ T idP .

3.3. For each itemset in Ck do
3.3.1. Calculate all subsets and prune if not previously large.

3.4.If Ck = ∅ then break and go to step 4
end
4.Compute all Frequent patterns as FP = F1 ∪ . . . Fk

end
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Table 2. Example Patient/Drugs Database Records

Patient Drugs
P1 D1 D2

P2 D1 D2 D3

P3 D3 D4

P4 D1 D2 D4

3.2 TidFp-multi: Mining FPs on Multiple Tables with Transaction
Ids

One advantage of mining frequent patterns with transaction ids is that it facil-
itates discovering more meaningful knowledge from not just a single database
table but a database with a multiple of related tables. It can also be extended
to distributed databases having partitioned tables distributed across a number
of sites. For example, consider a pharmacovigilance database, which has reports
about adverse events of certain drugs from medical professionals and patients
and there is need to answer queries from two related database tables Drug/Side
Effects (as in Table 1) and Patient/Drug shown as Table 2. We might be inter-
ested in answering with frequent pattern mining, questions like the following,
which will not be easily answered with simple SQL or stored procedure queries.
1. How many people have various patterns and frequent patterns of adverse ef-
fects given minimum 50% total occurrence?
2. How many people use frequent combinations of products having minimum
total occurrence of 50%?
3. Which drugs have dangerous combinations of adverse effects?
Answering query 1 above requires finding the TidFp of Table Drug/Side Effect
(Table 1) to get T idFpDrug, also finding TidFp of Table Patient/Drug (Table 2)
to get T idFpPatient and getting the count of T idFpDrug ∩ T idFpPatient. Query
2 is answered by mining TidFp on table Patient, while query 3 is answered by
mining TidFp on Table Drug.

Thus, mining more complex knowledge from a multiple of related tables in a
database, would normally entail applying the TidFp algorithm on the individual
database tables and answering the queries by either integrating the mined FPs
from different tables using set operations of intersection, union, minus as is
suitable to answer the queries. Having the Tids with FPs makes this integration
easy and possible.

3.3 TidFp-hordist: Mining Horizontally Distributed Tables with
TidFp

Most existing algorithms on mining distributed databases including [3], [8] fo-
cus on privacy-preserving distributed mining of association rules, whereby the
data at different sites are secure data that are not shared with other sites. Many



TidFP: Mining Frequent Patterns in Different Databases 131

applications belong to the same organization (e.g., an automobile company), lo-
cated at different sites and collaborative mining of distributed data at different
sites would provide both local and global knowledge for marketing promotions
among others. There are two main techniques for partitioning global data or ta-
ble T, belonging to an organization into f fragments of the table based on some
fragmentation criteria, to be distributed at perhaps f locations. First method is
horizontal fragmentation where each horizontal fragment, Fi, has a number nFi

of records of the global table T such that
∑f

i=1 nFi = |T | meaning that the sum
of the number of records in all f fragments will give back the cardinality of the
global table T. On the other hand, each vertical fragment of T has only some
attributes of T but has the same cardinality as T giving that the sum of the
arity (number of attributes) in each of the f vertical fragments Fi, is the same as
the arity of the global table T, that is,

∑f
i=1 arityFi = arityT . Thus, although

the global data T, is distributed either horizontally or vertically, the goal of dis-
tributed frequent pattern mining given a minimum support s threshold is to find
all global frequent patterns GFPs and local frequent patterns LFPs that meet
the minimum support threshold.

An Existing Algorthm on Distributed Mining
The FDM algorithm [3] for distributed FP mining first generates global candi-
date k-itemset CGi(k) by apriori-gen joining of global large (k-1)-itemsets at site
i, GLi(k−1) with itself. The global (k-1)-itemsets at each site i, GLi(k−1), are
obtained by intersecting the global large (k-1)-itemsets with the local large (k-
1)-itemsets LLi(k−1). Next, the local database is scanned to prune the itemsets
in the candidate k-itemset CGi(k) whose local support is less than the minsup-
port s%, while the rest are put in the local large k-itemsets at site i, LLi(k−1).
Each site then broadcasts its local large k-itemsets LLi(k) to all sites, the union
of all the LLi(k) will give the LLi(k) from where each site computes the support
of items in LLi(k), which are broadcasted to all sites so that they can combine
them to compute the global frequent itemsets Gk.

The Proposed TidFp-Hordist Algorithm
The difference between the proposed TidFp-Hordist algorithm approach for min-
ing horizontally distributed table and other approaches like those of the FDM
[3] summarized above, is that the TidFp-Hordist takes advantage of the Tid’s of
each Fp when forming global large itemsets and thus, requires only one initial
broadcasting of the first local frequent 1-itemsets from all sites to each site and
global frequent 1-itemset GFP1 is computed as the union of all local LFPi(1)
itemsets while the next global candidate (k+1)-itemset, Ck+1 is computed as
global GFPk map-gen join GFPk. Thereafter, subsequent global GFPk and
candidate Ck are computed without any further broadcast and support count-
ing from local databases. The formal TidFp-Hordist algorithm is presented as
Algorithm 2.
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Algorithm 2. (TidFp-Hordist:FPs with Tids in Horizontally Distributed DBs)

Algorithm TidFp-Hordist()
Input: A list of 1-items, a number i of sites,

a set of i horizontally fragmented Transaction
Tables of 1-items DBi, minimum support s%.

Output:A list of global frequent patterns GFps.
Other variables: global candidate sets GCk, global

Frequent k-itemsets GFk, local Frequent k-itemsets LFk

k = 1 initially.
1. Scan each local DBi once to compute
LCi(k) = {< itemk1,T idlistitemk1 >, . . ., < itemkm,T idlistitemkm >}.
2. Compute each local i frequent k-itemset LFi(k)

from local candidate k-itemsets LCi(k) as
LFi(k) = {list of k-itemset with Tidlist count ≥ minsupport}.
3. Let each site i broadcast its local frequent LFi(k).
4. Compute global GFk as itemsets in the union of all local LFi(k)

with support ≥ s% of global |DB|.
5. At each site i, while global (GFi(k) �= ∅) do
begin
5.1. k = k+1
5.2. Compute the next global candidate set GCk from GFk−1

as GFk−1 map-gen join GFk−1.
5.3. For each itemset in global GCk do

5.3.1. Calculate all subsets and prune if not previously large.
5.4.If GCk = ∅ then break and go to step 6
5.5. Compute GFk as itemsets in GCk with support count ≥ minsupport.
end
6.Compute all global Frequent patterns as
GFP = GF1 ∪ . . . GFk

end

Application of the TidFp-Hordist Algorithm
EXAMPLE 2: Given the two horizontally fragmented tables shown as Tables 3
and 4, which are equivalent to the example database of Table 1, and a minimum
support threshold of 50%, use the TidFp-Hordist algorithm to obtain the global
frequent patterns GFP, across the two distributed tables at two sites.

SOLUTION 2: Applying the algorithm TidFp-Hordist to the two horizontally
distributed database tables above at minsupport of 50% to mine global frequent
patterns GFPs would entail executing the steps of the algorithm as follows: Step 1,

Table 3. Horizontally Distributed Drug Table 1

Tid (Drug) Items (Side Effects)
D1 1 3 4
D2 2 3 5
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Table 4. Horizontally Distributed Drug Table 2

Tid (Drug) Items (Side Effects)
D3 1 2 3 5
D4 2 5

we compute the local for site 1 candidate C1(1)= { < 1, T1 >, < 2, T2 >, <
3, T1, T2 >, < 4, T1 >, < 5, T2 > }. Then, we compute the local for site 2
candidate C2(1)= { < 1, T3 >, < 2, T3, T4 >, < 3, T3 >, < 5, T3, T4 > }. Step
2, we compute the local frequent LFi(k) as: LF1(1) = { < 1, T1 >, < 2, T2 >, <
3, T1, T2 >, < 4, T1 >, < 5, T2 > }. LF2(1)={ < 1, T3 >, < 2, T3, T4 >, < 3, T3 >,
< 5, T3, T4 > }. Step 3 entails each site having all local LFi(k) through broadcast.
Step 4, we now get global GF1 = itemsets in ∪2

i=1LFi(k) with support of 50%
of global DB cardinality with count of at least 2. GF1 is from LF1(1) ∪ LF2(1)
= { < 1, T1, T3 >, < 2, T2, T3, T4 >, < 3, T1, T2, T3 >, < 5, T2, T3, T4 > }. Step 5
computes the next global candidate set at each site GC2 as: GF1 map-gen GF1 =
{ < 1, 2, T3 >, < 1, 3, T1, T3 >, < 1, 5, T3 >, < 2, 3, T2, T3 >, < 2, 5, T2, T3, T4 >,
< 3, 5, T2, T3 >}. The next global frequent GF2 is computed from GC2 as {<
1, 3, T1, T3 >, < 2, 3, T2, T3 >, < 2, 5, T2, T3, T4 >, < 3, 5, T2, T3 >}. Back to
beginning of step 5, next global candidate GC3 = GF2 map-gen GF2 = {<
2, 3, 5, T2, T3 >} and the frequent GF3 = {< 2, 3, 5, T2, T3 >}. The global GFPs
= ∪3

i=1GFPi, which are the same as the table mined undistributed.

3.4 TidFp-Vertdist: Mining Vertically Distributed Tables with
TidFp

The version of the TidFp algorithm for mining vertically distributed database is
verymuch like the one formining the horizontallydistributeddatabase discussed in
detail above. The difference is in how the tables are fragmented, which only affects
how the supports of the local and global tables are computed. In the horizontally
fragmented tables, the local support counts are different and based on the local
cardinality, which is less or equal to the cardinality of the global database. On the
other hand, in the vertically distributed tables, the support counts of the vertical
fragments and the global database are the same. As defined in the previous section,
a vertical fragment of a table has only some of the attributes of the original table
but has all records of the table. For example, the exampleDrugTableT(Tid, Attr1,
Attr2, Attr3, Attr4), can be fragmented vertically into two tables with schemas Tv1
(Tid, Attr1, Attr2) and Tv2 (Tid, Attr3,Attr4). Our application of the algorithm
on the vertically fragmented tables produced the same correct results as well.

4 Experiments and Performance Analysis

To test the proposed TidFp algorithm, we conducted experiments to
(1) determine performance gain in terms of CPU execution time gain of the
TidFp in comparison with the Apriori algorithm, which also determines Tids.
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In this case, we first ran the Apriori algorithm and then scanned the database
for each frequent pattern to collect the TIDs they appeared in.

(2) determine memory usages of the proposed TidFp in comparison with the
Apriori algorithm.

Comparing TidFp and Apriori Execution Times and Memory Usages
The two algorithms Apriori with Tid and our proposed TidFp algorithm were im-
plemented in C++ with the same data structure in UNIX environment, where
the programs are compiled with “g++ filename” and executed with “a.out”.
Then, the CPU execution times for the two algorithms were tested for trans-
actional databases of different sizes of 250K (or 250 thousand) records, 500K,
750K, 1M (or 1 million), and 2M records generated with the IBM quest synthetic
data generator publicly available at at http://www.almaden.ibm.com/cs/quest/
and used by other pattern mining research. The characteristics of the generated
data are described as follows: |D|: Number of records in the database, |C|: Av-
erage length of the records, |S|: Average length of maximal potentially frequent
itemset, |N |: number of items (attributes).

With the average length of records (C) in our data as 10, and number of
attributes (N) as 10 with S as 5, a full description of one set of experimen-
tal data with number of records as 250 thousand is C10.S5.N20.D250K. All
experiments are performed on on a more powerful multiuser UNIX SUN mi-
crosystem with a total of 16384 MB memory and 8 x 1200 MHz processor speed,
which generally produces faster execution times than when run on microcom-
puter environment. The minimum support for the experiments range between
10% and 50%. The result of the experiments are summarized in five tables below
to show:

(1) Execution time efficiencies of the algorithms at medium minimum support
threshold of 40% and for different database sizes as shown in Table 5.
(2) scalability of the algorithms with a large database of 2 million records at
different minimum supports with data C10.S5.N20.D2M as shown in Table 6.
(3) feasibility and scalability at a medium sized database of 500K records at
different minimum supports with data C10.S5.N20.D500K as shown in Table 7.
(4) feasibility and scalability of the algorithms at a small sized database of 250K
records at different minimum supports C10.S5.N20.D250K as shown in Table 8.
(5) Memory usages of the algorithms at medium minimum support threshold of
40% for different database sizes as shown in Table 9. The RES memory usage
value is collected for the program process of “a.out” on UNIX with the “top -u”
command.

It can be seen from the experiments that the proposed TidFp outperforms the
Apriori algorithm to the tune of 25 times better in execution time and is more
scalable than the Apriori algorithm and in particular, at low minimum support
thresholds and large data sizes. From experiment 5 on Table 9, it can be seen
though that the proposed TidFp algorithm requires more running memory than
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Table 5. Execution times for different datasets at MinSupport of 40%

Algorithms Runtime (in secs) for different Data sizes)
250K 500K 750K 1M 2M

TidFp 22 47 64 94 187
Apriori 542 1071 1623 2239 4495

Table 6. Execution times for dataset at different MinSupports (large data 2M)

Algorithms Runtime (in secs) at different supports(%)
10% 20% 30% 40% 50%

TidFp 23236 1472 330 187 147
Apriori crashed 39434 11571 4495 2141

Table 7. Execution times for dataset at different MinSupports (medium data 500K)

Algorithms Runtime (in secs) at different supports(% )
10% 20% 30% 40% 50%

TidFp 6231 391 90 47 38
Apriori crashed 8702 2729 1071 509

Table 8. Execution times for dataset at different MinSupports (small data 250K)

Algorithms Runtime (in secs) at different supports(% )
10% 20% 30% 40% 50%

TidFp 2853 176 37 22 17
Apriori crashed 4329 1348 542 267

Table 9. Memory Usages for Different Data Sizes at Minsupport of 40%

Algorithms Memory Usages for Different Data Sizes
250K 500K 750K 1M 2M

TidFp 10MB 14MB 18MB 22MB 42MB
Apriori 2872KB 3664KB 4408KB 5424KB 10M

the Apriori algorithm but this is a reasonable tradeoff. This good performance
of the TidFp algorithm is because the TidFp only needs to scan the database
once, while the Apriori algorithm re-scans the database for every support count-
ing. When the TidFp algorithm intersects the transaction IDs for 2 items sets,
it uses bitmap representation. For example, the transaction ID bitmaps from
the two F1 itemsets [< 1 > D1D3] and [< 1 > D2D3D4] obtained when the
TidFp executes the operation [< 1 > D1D3] mapgen-Join [< 1 > D1D3D4] are
shown in Table 10. The Tid list of the resulting 2-itemset < 1, 2 > obtained by
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Table 10. Bitmaps for Itemsets < 1 >, < 2 > and < 1, 2 > Tids

Itemset Transaction id Bitmap
D1 D2 D3 D4

< 1 > 1 0 1 0
< 2 > 0 1 1 1
< 1, 2 > 0 0 1 0

mapgen-joining the two 1-itemsets < 1 > and < 2 > is shown as the third row
of Table 10. The Tid list of the resulting (k+1)-itemset is obtained from inter-
secting the Tid lists of the two joining k-itemsets, which is accomplished with
bitmap AND operation.

5 Conclusions and Future Work

This paper proposes an intuitive approach for mining frequent patterns with
transaction ids, which is useful for addressing the needs of several applications in-
cluding mining multiple related tables in a database for more informative knowl-
edge discovery. The paper also introduced versions of this algorithm for mining
horizontally and vertically distributed databases and multiple related tables in a
database. It has also been shown through experiments that TidFp execution time
is up to 25 times better than the Apriori algorithm. It has also been shown that
both number of database scans needed for support counting and communication
costs are drastically reduced when this approach is employed. This approach is
extendible to other types of mining like mining sequences and on pattern growth
techniques for mining frequent patterns. Future work should also determine or
analyze the gain made through saving broadcast delays and resources as well as
execution time when mining distributed tables.

References

1. Agrawal, R., Srikant, R.: Fast Algorithms for Mining Association Rules in Large
Databases. In: Proceedings of the 20th International Conference on very Large
Databases Santiago, Chile, pp. 487–499 (1994)

2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential Pattern Mining using A
Bitmap Representation. In: Proceedings of the ACM SIKDD conference, Edmon-
ton, Alberta, Canada, pp. 429–435 (2002)

3. Cheung, D.W.-L., Ng, V., Fu, A.W.-C., Fu, Y.: Efficient Mining of Association
Rules in Distributed Databases. Transactions on Knowledge and Data Engineer-
ing 8(6), 911–922 (1996)

4. Ezeife, C.I., Lu, Y.: Mining Web Log sequential Patterns with Position Coded Pre-
Order Linked WAP-tree. The International Journal of Data Mining and Knowledge
Discovery (DMKD) 10, 5–38 (2005)

5. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, New York (2001)



TidFP: Mining Frequent Patterns in Different Databases 137

6. Han, J., Pei, J., Yin, Y., Mao, R.: Mining Frequent Patterns without Candidate
Generation: A Frequent-Pattern Tree approach. International Journal of Data Min-
ing and Knowledge Discovery 8(1), 53–87 (2004)

7. Imielinski, T., Swami, A., Agarwal, R.: Mining association rules between sets of
items in large databases. In: Proceeding of the ACM SIGMOD conference on man-
agement of data, Washington D.C., May 1993, pp. 207–216 (1993)

8. Kantarcioglu, M., Clifton, C.: Privacy-preserving Distributed Mining of Associ-
ation Rules on Horizontally Partitioned Data. In: The proceedings of the ACM
SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discov-
ery, DMKD 2002, pp. 24–31 (2002)

9. Pei, J., Han, J., Mortazavi-asi, B., Zhu, H.: Mining Access Patterns Efficiently
from web logs. In: Proceedings, Pacific-Asia conference on Knowledge Discovery
and data Mining, Kyoto, Japan, pp. 396–407 (2000)

10. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
PrefixSpan: Mining Sequential Patterns Efficiently by Prefix-Projected Pattern
Growth. In: Proceedings of the 2001 International Conference on Data Engineering
(ICDE 2001), Heidelberg, Germany, pp. 215–224 (2001)

11. Srikanth, R., Aggrawal, R.: Mining Sequential Patterns: generalizations and perfor-
mance improvements, Research Report, IBM Almaden Research Center 650 Harry
Road, San Jose, CA 95120, 1–15 (1996)

12. Zaki, M.J.: SPADE: An Efficient Algorithm for Mining Frequent Sequences. Ma-
chine learning 42, 32–60 (2001)



T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 138–150, 2009. 
© Springer-Verlag Berlin Heidelberg 2009 

Non-Derivable Item Set and Non-Derivable Literal Set 
Representations of Patterns Admitting Negation 

Marzena Kryszkiewicz 

Institute of Computer Science, Warsaw University of Technology 
Nowowiejska 15/19, 00-665 Warsaw, Poland 

Abstract. The discovery of frequent patterns has attracted a lot of attention of 
the data mining community. While an extensive research has been carried out 
for discovering positive patterns, little has been offered for discovering patterns 
with negation. The main hindrance to the progress of such research is huge 
amount of frequent patterns with negation, which exceeds the number of 
frequent positive patterns by orders of magnitude. In this paper, we examine 
properties of derivable and non-derivable patterns, including those with negated 
items. In particular, we establish important relationships among patterns 
admitting negation that have the same canonical variant. By analogy to frequent 
non-derivable itemsets, which constitute a concise lossless representation NDR 
of frequent positive patterns, we introduce frequent non-derivable literal sets 
lossless representation NDRL of frequent positive patterns admitting negation. 
Then we use the derived properties of literal sets to offer a concise 
representation NDIR of frequent patterns admitting negation that is built only 
from positive non-derivable itemsets. The relationships between the three 
representations are identified. The transformation of the new representations 
into not less concise lossless closure representations is discussed. 

1   Introduction 

Discovering of frequent patterns in large databases is an important data mining 
problem. The problem was introduced in [1] for a sales transaction database. Frequent 
patterns were defined there as sets of items that are purchased together frequently. 
Frequent patterns are commonly used for building association rules. For example, an 
association rule may state that 80% of customers who buy fish also buy white wine. 
This rule is derivable from the fact that fish occurs in 5% of sales transactions and set 
{fish, white wine} occurs in 4% of transactions. Patterns and association rules can be 
generalized by admitting negation. A sample association rule with negation could 
state that 75% of customers who buy coke also buy chips and neither beer nor milk. 
The knowledge of this kind is important not only for sales managers, but also in 
medical areas, where both the occurrence and lack of symptoms of illnesses is of 
importance. Similarly, the knowledge of co-occurrence and lack of co-occurrence of 
terms with a given term is useful in discovering synonyms and homonyms [27]. 

Admitting negation in patterns usually results in an abundance of mined patterns, 
which makes analysis of the discovered knowledge infeasible. It is thus preferable to 
discover and store a possibly small fraction of patterns, from which one can derive all 
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other significant patterns when required. Lossless representations of frequent positive 
patterns were discussed e.g., in [5-8,11-14,18-21,23-25]. Among them, the 
generalized disjunction-free set representations [11-14,20-21] and the frequent non-
derivable itemsets NDR [6-7], as well as their closures [18,24], are most concise ones. 
It is worth noting that these representations are even by two orders of magnitude more 
concise than the approximate ones, which were offered in [4,26]. However, to the best 
of our knowledge, only two concise lossless representations of frequent patterns 
admitting negation were offered in the literature [15-16]: the one based on generalized 
disjunction-free patterns admitting negation, and the one based on generalized 
disjunction-free positive patterns. The latter representation is by orders of magnitude 
more concise than the set of all frequent patterns with negation. As follows from the 
experiments [15], the direct discovery of all frequent patterns with negation from data 
sets is often impossible, but the discovery of the latter representation is usually 
feasible. Indeed, frequent patterns with negation that were not computable from data 
sets, were usually derivable from the representation. 

Pattern representations are often used for efficient building of different types of 
rules, e.g. concise representations of association rules [9,12,25], dependence rules 
[28], decision rules [2,17], episode rules [10], and for clustering documents [22]. In 
particular, dependence rules are built only from such non-derivable patterns the 
frequencies of which are significantly different from their expected frequencies, 
which are calculated from the supports of their sub-patterns. In the case of derivable 
patterns, their real and expected frequencies are identical, and thus uninteresting. 

In this paper, we examine properties of derivable and non-derivable patterns, 
including those with negated items. In particular, we establish important relationships 
among patterns admitting negation that have the same canonical variation. By analogy 
to frequent non-derivable itemsets, which constitute a concise lossless representation 
of frequent positive patterns, we introduce frequent non-derivable literal sets lossless 
representation NDRL of frequent positive patterns admitting negation. Then we use 
the derived properties of literal sets to offer a concise representation NDIR of frequent 
patterns admitting negation that is built only from positive non-derivable itemsets. 
The relationships between the three representations are identified. The transformation 
of the new representations into not less concise closure representations is discussed. 

The layout of the paper is as follows: Section 2 recalls the notions of frequent 
itemsets, downward closed sets, generalized disjunctive rules. There, we show how 
these rules can be used to derive and/or estimate the supports of itemsets. Finally, we 
recall the non-derivable itemset representation. In Section 3, we generalize a notion of 
an itemset to a literal set, which admits negation, introduce a notion of a variation of a 
pattern and canonical pattern, and recall the relationship between certain generalized 
disjunctive rules and supports of literal set variations. Our main contribution in this 
paper is presented in Sections 4 and 5. In Section 4, we examine properties of 
derivable and non-derivable literal sets, which we use later to offer an efficient 
representation of frequent patterns admitting negation. In Section 5, we propose and 
examine properties of two variants of non-derivable patterns: 1) built from non-
derivable literal sets, 2) built from non-derivable itemsets. We also note that instead 
of the new representations one may use the closures of their elements without any loss 
in the pattern derivation power. Section 6 concludes our work. Appendix contains 
proofs not included in the main part of the paper. 
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2   Basic Notions 

2.1   Itemsets, Frequent Itemsets, Downward Closed Sets 

Let I = {i1, i2, ..., im}, I≠∅, be a set of distinct items. In the case of a transactional 
database, a notion of an item corresponds to a sold product, while in the case of a 
relational database an item will be a pair (attribute, value). Any set of items is called 
an itemset. Let D be a set of transactions (or tuples, respectively), where each 
transaction (tuple) T is a subset of I. Without any loss of generality, we will restrict 
further considerations to transactional databases. Support of itemset X is denoted by 
sup(X) and is defined as the number (or percentage) of transactions in D that contain 
X. Itemset X is called frequent if its support is greater than some user-defined 
threshold minSup, where minSup ∈ [0, |D|]. 

A set X ⊆2I is defined as downward closed, if for each itemset in X, all its subsets 
are also in X; that is, if ∀X∈X, Y⊂X ⇒ Y∈X. Please note that all supersets of an 
itemset which does not belong to a downward closed set X do not belong to X either. 

Property 2.1.1 [1]. 
a) Let X,Y⊆I. If X⊂Y, then sup(X) ≥ sup(Y). 
b) The set of all frequent itemsets is downward closed. 

2.2   Generalized Disjunctive Rules 

In this section, we recall the notion and properties of generalized disjunctive rules [12, 
20], which are useful for reasoning about the supports of itemsets. 

Let Z⊆I. X→a1∨ ... ∨an is defined a generalized disjunctive rule based on Z (and Z 
is the base of X→a1∨ ... ∨an), if X ⊂ Z and {a1, ..., an} = Z\X. 

In the sequel, \/A, where A = {a1, ... ,an}, will denote a1∨ ... ∨an. One can easily 
note that {Z\A→\/A)| ∅≠A⊆Z} is the set of all distinct generalized disjunctive rules 
based on Z. Hence, there are 2|Z|−1 distinct generalized disjunctive rules based on Z. 

Support of X→\/A is denoted by sup(X→\/A) and is defined as the number (or 
percentage) of transactions in D in which X occurs together with at least one item 
from A. Please note that e.g. sup(X→a) = sup(X∪{a}), and sup(X→a∨b) = 
sup(X∪{a}) + sup(X∪{b}) – sup(X∪{ab}). 

Table 1. Sample database D Table 2. Generalized disjunctive rules based on {abc} 

Id Transaction  r: X→a1∨ ... ∨an sup(X) sup(r) err(r) certain? 
T1 {abce}  {ab}→c 4 3 1 No 
T2 {abcef}  {ac}→b 4 3 1 No 
T3 {abceh}  {bc}→a 4 3 1 No 
T4 {abe}  {a}→b∨c 5 5 0 Yes 
T5 {aceh}  {b}→a∨c 5 5 0 Yes 
T6 {bce}  {c}→a∨b 5 5 0 Yes 
T7 {h}  ∅→a∨b∨c 7 6 1 No 
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Theorem 2.2.1 [12, 20]. Let X→\/Y be a generalized disjunctive rule. Then: 

sup(X→\/Y) = Σ∅≠Z⊆Y (–1)|Z|–1 × sup(X∪Z). 

It follows from Theorem 2.2.1 that the support of X→\/Y depends on the supports 
of only non-empty subsets of X∪Y. 

Error of X→\/A is denoted by err(X→\/A) and is defined as the number (or 
percentage) of transactions containing X that do not contain any item from A; that is, 

err(X→\/A) = sup(X) − sup(X→\/A). 

X→\/A is defined a certain rule if err(X→\/A) = 0. Clearly, if X → \/A is a certain 
rule, then each transaction containing X contains also at least one item from A. Table 
2 shows all generalized disjunctive rules based on sample itemset {abc} that were 
found in database D from Table 1, and indicates which of the rules are certain. 

Property 2.2.1. If X→\/A is a certain rule, then ∀X’⊃X, X’→\/A is certain and 
∀A’⊃A, X→\/A’ is certain. 

Corollary 2.2.1 [12, 20]. Let X→\/Y be a generalized disjunctive rule. The error of 
X→\/Y is derivable from the supports of subsets of X∪Y: 

err(X→\/Y) = ΣZ⊆Y (–1)|Z| × sup(X∪Z). 

In the sequel, we will denote the sub-expression ΣZ⊂Y (-1)|Z| × sup(X∪Z), which is 
derivable only from proper subsets of X∪Y, by b(X→\/Y). 

Corollary 2.2.2. Let X→\/Y be a generalized disjunctive rule. Then: 

err(X→\/Y) = (–1)|Y| × sup(X∪Y) + b(X→\/Y). 

Corollary 2.2.3. Let X→\/Y be a generalized disjunctive rule. Then: 

err(X→\/Y) = 0 iff sup(X∪Y) = (–1)|Y|+1 × b(X→\/Y). 

Thus, if X→\/Y is a certain generalized disjunctive rule, then sup(X∪Y) is 
determinable from the supports of only proper subsets of X∪Y.  

Please note that Corollary 2.2.3 allows us to calculate the support of an itemset, 
provided we know at least one certain generalized disjunctive rule based on this 
itemset. In the sequel, we discuss the case of estimating the support of an itemset 
when we do not know if any generalized disjunctive rules based on it are certain. 

2.3   Using Generalized Association Rules to Estimate Supports of Itemsets 

Combining Corollary 2.2.2 with the observation that the error of any rule X→\/Y is 
greater than or equal to 0 allows us to formulate Corollary 2.3.1, showing the way of 
estimating the support of the base X∪Y of the rule by means of b(X→\/Y). 

Corollary 2.3.1. Let X,Y⊂I and X→\/Y be a generalized disjunctive rule. Then: 

sup(X∪Y) ≥ (–1)|Y|+1 × b(X→\/Y) = –b(X→\/Y), when |Y| is even, and 

sup(X∪Y) ≤ (–1)|Y|+1 × b(X→\/Y) = b(X→\/Y), when |Y| is odd. 

Since an itemset B is the base of 2|B|−1 distinct generalized disjunctive rules based 
on it, 2|B|−1 inequalities bounding the support of B can be formed. Please recall that the 
bounds are derivable only from the proper subsets of B. One may also add trivial 
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inequality bounding the support of itemset B; namely, sup(B) ≥ 0. Hence, we obtain 
the following set of 2|B| inequalities bounding sup(B): 

• ∀Y⊆B (|Y| is odd ⇒ sup(B) ≤ b(B\Y→\/Y)), 
• ∀Y⊆B (Y≠∅ and |Y| is even ⇒ sup(B) ≥ –b(B\Y→\/Y)), 
• sup(B) ≥ 0. 

Using these inequalities, we may define the following bounds: 
Upper bound on sup(B), B≠∅, denoted as u(B), is defined as: 

u(B) = min({b(B\Y→\/Y)| Y⊆B and |Y| is odd}). 

Lower bound on sup(B), B≠∅, denoted as l(B), is defined as:  

l(B) = max({–b(B\Y→\/Y)| ∅≠Y⊆B and |Y| is even}∪{0}). 

Property 2.3.1. Let B⊆I. Then:  
a) l(B) ≤ sup(B) ≤ u(B). 
b) If l(B) = u(B), then l(B) = sup(B) = u(B). 

Theorem 2.3.1 [Appendix]. Let ∅≠Y⊆B⊆I and err(B\Y→\/Y) = 0 Then: 
a) If |Y| is odd, then sup(B) = b(B\Y→\/Y) = u(B). 
b) If |Y| is even, then sup(B) = –b(B\Y→\/Y) = l(B). 

Theorem 2.3.2 [Appendix]. Let ∅≠B⊆I. Then: 
a) (∃Y⊆B, err(B\Y→\/Y) = 0 ∧ |Y| is odd) iff sup(B) = u(B). 
b) Let sup(B) ≠ 0. (∃Y⊆B,  err(B\Y→\/Y) = 0 ∧ Y≠∅  ∧ |Y| is even) iff sup(B) = l(B). 
c) (sup(B) = 0 ∨ (∃Y⊆B, err(B\Y→\/Y) = 0 ∧ Y≠∅ ∧ |Y| is even)) iff sup(B) = l(B). 

Corollary 2.3.2 [Appendix]. Let ∅≠B⊆I. Then: 
a) If there is a certain generalized disjunctive rule based on B, then ∀X⊃B, 
l(X) = sup(X) = u(X). 
b) If sup(B) = 0, then ∀X⊃B, sup(X) = 0. 
c) If sup(B) = 0 or there is a certain generalized disjunctive rule based on B, then 

∀X⊃B, l(X) = sup(X) = u(X). 

Corollary 2.3.3. Let ∅≠B⊆I. If sup(B) = l(B) or sup(B) = u(B), then ∀X⊃B, l(X) = 
sup(X) = u(X). 

Proof: By Corollary 2.3.2 and Theorem 2.3.2. (For a different proof see [6-7].) 

2.4   Representing Frequent Itemsets with Non-derivable Itemsets  

The equivalent formulae for the bounds l(B) and u(B) for sup(B), which we 
introduced in the Subsection 2.3, were derived in a different way earlier in [6-7]. The 
bounds were used there to define non-derivable and derivable itemsets as follows. 

An itemset X is defined as non-derivable if l(X) ≠ u(X); otherwise, it is defined as 
derivable. Beneath we provide an important property of derivable and non-derivable 
itemsets, which follows immediately from Property 2.3.1b and Corollary 2.3.3. 

Property 2.4.1. Let X⊆I. 
a) If X is derivable, then ∀Y⊃X, Y is derivable. 
b) If X is non-derivable, then ∀Y⊂X, Y is non-derivable. 
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Non-derivable itemsets were used in [6-7] to define the NDR representation of 
frequent itemsets. NDR was defined there as the set of all frequent non-derivable 
itemsets stored altogether with their supports: 

NDR = {(X, sup(X))| X⊆I, u(X) ≠ l(X) and sup(X) > minSup}. 
Please, note that for each itemset in NDR, all its proper subsets are in NDR and for 

each maximal itemset in NDR, all its proper supersets are either derivable or 
infrequent, or both. The determination whether an itemset X from outside NDR is 
frequent or not may be carried out as follows: first l(X) and u(X) are calculated 
(potentially in a recursive way). If u(X) ≠ l(X), then X is non-derivable infrequent. 
Otherwise, it is frequent and its support can be determined as sup(X) = u(X) (or 
alternatively, sup(X) = l(X)). Hence, NDR guarantees the derivation of the supports of 
all frequent itemsets and potentially the supports of some infrequent itemsets. 

3   Patterns Admitting Negation 

3.1   Sets Admitting Negated Items 

In this section, we introduce the notions related to patterns with negated items and 
their properties based on [15]. Let L = I ∪ {−a |a∈I}. Each element in L will be called 
a literal. Elements in L \ I will be called negative literals. By analogy, items in I will 
be also called positive literals. Each pair of literals a and −a in L is called 
contradictory. For the sake of convenience, we will apply the following notation: if l 
stands for a literal, then −l will stand for its contradictory literal. 

A literal set (or briefly liset) is defined as a set consisting of non-contradictory 
literals in L. A liset is called positive if all literals contained in it are positive. A liset 
is called negative if all literals contained in it are negative. Lisets X and Y are called 
contradictory if |X| = |Y| and for each literal in X there is a contradictory literal in Y. A 
liset contradictory to X will be denoted by −X. 

Support of liset X is denoted by sup(X) and defined as the number (or percentage) 
of transactions in D that contain all positive literals in X and do not contain any 
negative literal from X.  

Instead of an original database D, it is sometimes convenient to consider an 
extended database D’ in which each transaction T in D is extended with all negative 
literals contradictory to the items that do not occur in T. 

Table 3 is such an extended version of the database from Table 1. Clearly, all 
transactions in the extended database will be of the same size equal to |I|. 

Table 3. Extended version D’ of database D from Table 1 

Id Transaction 
T1 {(  a)(  b)(  c)(  e)(−f)(−h)} 
T2 {(  a)(  b)(  c)(  e)(  f)(−h)} 
T3 {(  a)(  b)(  c)(  e)(−f)(  h)} 
T4 {(  a)(  b)(−c)(  e)(−f)(−h)} 
T5 {(  a)(−b)(  c)(  e)(−f)(  h)} 
T6 {(−a)(  b)(  c)(  e)(−f)(−h)} 
T7 {(−a)(−b)(−c)(−e)(−f)( h)} 
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Using the extended database, the support of liset X can be calculated as the number 
(or percentage) of transactions containing all literals (both positive and negative) in X. 
Though we do not recommend this method for evaluating lisets, this interpretation 
allows us to obtain immediately concepts, properties and theorems related to patterns 
with negation by analogy to those presented in Sections 1-2; simply words item and 
itemset should be replaced by literal and liset, respectively. 

A canonical variation of a liset X (denoted by cv(X)) is defined as an itemset 
obtained from X by replacing all negative literals in X by contradictory literals; that is,  

cv(X) = P∪(−N), 
where P is the set of all positive literals in X and N is the set of all negative literals in 
X. Clearly, if X is a positive liset, then cv(X) = X. 

All lisets having the same canonical variation as liset X are denoted by V(X); that 
is, 

V(X) = {Y⊆L| cv(Y) = cv(X)}. 

Each liset in V(X) is called a variation of X.  
V(X) contains only one positive liset, which is cv(X), and only one negative liset, 

namely −cv(X). Clearly, the number of all variations of X equals 2|X| and the sum of 
the supports of all variations of X equals |D|.  

Property 3.1.1. Let X be a liset. 
a) V(Z) = V(X) for any Z∈V(X).  
b) |V(X)| = 2|X|. 

c) ΣZ∈V(X) sup(Z) = |D|. 

Property 3.1.2. A liset may have at most ⎡|D| / minSup⎤ - 1 frequent variations. 

3.2   Errors of Generalized Disjunctive Rules and Supports of Liset Variations 

There is an interesting relationship between the errors of rules for a liset and the 
supports of its variations, which we formulate beneath.  

Property 3.2.1. Let A, X and Z be lisets such that A, X ⊂ Z and Z\X = A and A ≠ ∅. 
The error of rule X→\/A, which is based on Z, equals the number of transactions in the 
extended database D’ in which X occurs and no literal from the set A occurs; that is,  

err(X→\/A) = sup(X∪(−A)). 

Example 3.2.1. By Property 3.2.1, err({ab}→c∨d) = sup({ab(−c)(−d)}), 
err({ab}→(−c)∨(−d)) = sup({abcd}), err({(−a)b}→(−c)∨d) = sup({(−a)bc(−d)}).     
 

By Property 3.2.1, the antecedent (or alternatively, consequent) of a generalized 
disjunctive rule r based on a liset Z uniquely determines the variation V of Z, V ≠ Z, 
the support of which equals the error of r.  

Corollary 3.2.1 [29]. Let A∪X ⊆ I. sup(X∪(−A)) = ΣZ⊆A (–1)|Z| × sup(X∪A) 

Proof: By Property 3.2.1 and Corollary 2.2.1.                                                               
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Corollary 3.2.2 [29]. Let X be an itemset. The supports of all variations in V(X) that 
differ from X are computable from the supports of only X and its proper subsets.  

Proof: Follows from Corollary 3.2.1.                                                                             

4   Properties of Derivable and Non-derivable Lisets 

By definition, a liset X is derivable if l(X) = u(X). In this section, we formulate and 
prove another necessary and sufficient condition of being a derivable liset. The new 
condition will be expressed in terms of the supports of variations of X. In addition, we 
investigate the relationship between (non-)derivability of a liset and (non-)derivability 
of its variations. Eventually, we derive a bound on the length of a non-derivable liset. 

Lemma 4.1 [Appendix]. Let B be a liset. If two variations of B differ from each other 
on an odd number of literals, then one of the variations differs from B on an odd 
number of literals and the other variation differs from B on an even number of literals. 

Lemma 4.2 [Appendix]. Let B⊆L. If one of the variations of B differs from B on an 
odd number of literals and another variation of B differs from B on an even number of 
literals, then the two variations differ from each other on an odd number of literals. 

Theorem 4.1. Let B⊆L. There are at least two variations of B that have supports equal 
to 0 and differ from each other on an odd number of literals iff B is derivable. 

Proof: (⇒) Let Y, Z be variations of B that have supports equal to 0 and differ from 
each other on an odd number of literals. Hence, by Lemma 4.1, either |B\Y| is odd and 
|B\Z| is even, or |B\Y| is even and |B\Z| is odd. Without any loss of generality, we will 
further assume that |B\Y| is odd and |B\Z| is even. 

We note that B=(B∩Y)∪(B\Y) and Y=(B∩Y)∪(−(B\Y)). Since 
sup((B∩Y)∪(−(B\Y))) = sup(Y) = 0 and |B\Y| is odd (*), and by this B\Y contains at 
least one literal from B, Property 3.2.1 allows us to derive: B∩Y→\/(B\Y) is a 
generalized disjunctive rules based on B and err(B∩Y→\/(B\Y)) = 0 (**). Hence, by 
(*), (**), and Theorem 2.3.2a, sup(B) = u(B). 

Now, we will consider the variation Z of B. In this case |B\Z| is even. We will 
consider two cases: 1) |B\Z| > 0, 2) |B\Z| = 0. 

Case 1. By Property 3.2.1 and Theorem 2.3.2b, sup(B) = l(B) (the proof is analogous 
as in the case of variation Y). 

Case 2. B = Z. Hence, sup(B) = sup(Z) = 0. Thus, by Theorem 2.3.2c, sup(B) = l(B). 
Thus, we have proved that l(B) = sup(B) = u(B), so B is derivable. 
(⇐) Since B is derivable, l(B) = sup(B) = u(B). Since sup(B) = u(B), by Theorem 

2.3.2a, there is a proper subset of B, say Y, such that |Y| is odd and err(B\Y→\/Y) = 0. 
Hence, |Y| is odd and, by Property 3.2.1, sup((B\Y)∪(−Y)) = 0 and (B\Y)∪(−Y) ∈V(B) 
(*). Since l(B) = sup(B), by Theorem 2.3.2c, 1) sup(B) = 0 or 2) there is a proper 
subset of B, say Y’, such that Y’≠∅, |Y’| is even, and err(B\Y’→\/Y’) = 0. In the former 
case, B is its own variation that has support equal to 0 (**). In the latter case, |Y’| is 
even and, by Property 3.2.1, sup((B\Y’)∪(−Y’)) = 0 and (B\Y’)∪(−Y’) ∈V(B) (***). 
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Hence, by (*), (**), and (***), and Lemma 4.2, there are variations of B that have 
supports equal to 0 and differ from each other on an odd number of literals.                

Theorem 4.2. Let B be a liset. 
a) B is derivable iff all variations of B are derivable.  
b) B is non-derivable iff all variations of B are non-derivable.  

Proof: Ad a) (⇐) Trivial.  
(⇒) Let B be derivable and X∈V(B). Then, by Property 3.1.1a and Theorem 4.1, 

there are lisets in V(B) =V(X) that have supports equal to 0 and differ from each 
other on an odd number of literals. Hence, by Theorem 4.1, X is derivable. 

Ad b) (⇐) Trivial. 
(⇒) Let B be non-derivable and X∈V(B). Then by Property 3.1.1a and Theorem 

4.1, there are not zero support lisets in V(X) =V(B) that differ from each other on an 
odd number of literals. Hence, by Theorem 4.1, X is non-derivable.                             
 

Now, we will derive the bound on the length of non-derivable lisets. Let Z be a non-
derivable liset. Then, by Theorem 4.1, at most one of its variations has support equal 
to 0. Thus, at least 2|Z|-1 variations of Z have supports greater than 0. Hence, 2|Z|-1 
cannot exceed the number of transactions in D. Thus, 2|Z|-1 ≤ |D|, so |Z| ≤ 
⎣log2(|D|+1)⎦. 

Corollary 4.1. A non-derivable liset contains at most ⎣log2(|D|+1)⎦ literals.  

5   Representing Frequent Positive and Negative Patterns 

First we propose a non-derivable liset representation of frequent patterns admitting 
negation (NDLR) as an analog of NDR. We define NDLR as the family of all 
frequent non-derivable lisets stored altogether with their supports: 

NDLR = {(X,sup(X))| X⊆L ∧ u(X)≠l(X) ∧ sup(X)>minSup)}. 
Clearly, it is a lossless representation of all frequent lisets, and can be used in the 

same way as NDR for deriving frequent lisets and theirs supports.  
Now, we offer another representation of frequent lisets called non-derivable 

itemset representation of frequent patterns admitting negation (NDIR). NDIR is 
defined as non-derivable itemsets stored altogether with their supports each of which 
has at least one frequent variation: 

NDIR = {(X,sup(X))| X⊆I ∧ u(X)≠l(X) ∧ (∃Z∈V(X) sup(Z)>minSup)}. 

Property 5.1. NDIR = {(cv(X),sup(cv(X)))| X⊆L ∧ u(X)≠l(X) ∧ sup(X)>minSup}. 

Proof: {(cv(X),sup(cv(X)))| X⊆L ∧ u(X)≠l(X) ∧ sup(X)>minSup} =  
/* by Theorem 4.2b, u(X)≠l(X) iff u(cv(X))≠l(cv(X)) */ =  

{(cv(X),sup(cv(X)))| X⊆L ∧ u(cv(X))≠l(cv(X)) ∧ sup(X)>minSup)} =  

{(Y,sup(Y))| X⊆L ∧ Y⊆I ∧ Y = cv(X) ∧ u(Y)≠l(Y) ∧ sup(X)>minSup} =  

{(Y,sup(Y))| Y⊆I ∧ u(Y)≠l(Y) ∧ (∃X∈V(Y), sup(X)>minSup)}=NDIR.                     
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By Property 5.1, for any liset in NDLR, NDIR contains its canonical variation (and 
the support of this variation). 

Property 5.2. 
a) If X∈NDIR, then ∀Y⊂X, Y∈NDIR. 
b) If X∉NDIR, then ∀Y⊃X, Y∉NDIR. 

Proof: Follows from properties of frequent lisets and derivable lisets.                         

Theorem 5.1. NDIR is a lossless representation of all frequent lisets. 

Proof: The supports of all variations of each itemset in NDIR are determinable 
(according to Corollary 3.2.1) from the supports of only the itemset and its proper 
subsets, which also belong to NDIR (by Property 5.2a) (*). By Property 5.1, for any 
liset in NDLR, NDIR contains its canonical variation, and the support of this 
variation. Hence, and by (*), the supports of all lisets in NDLR are determinable from 
the supports of itemsets in NDIR. Thus, NDIR is a lossless representation of NDLR, 
and by this, NDIR is a lossless representation of all frequent lisets.                              

Property 5.3. 
a) NDR ⊆ NDIR ⊆ NDLR. 
b) If X∈NDIR, then at most ⎡|D| / minSup⎤ - 1 variations of X belong to NDLR. 
c) The number of literals in elements of NDR, NDIR, and NDLR does not exceed 

⎣log2(|D|+1)⎦. 
d) If minSup = 0, then NDIR = NDR. 
e) If minSup = 0 and X∈NDIR, then 2|X| variations belongs to NDLR. 

Proof: Ad b) By Property 3.1.2.  
Ad c) By Corollary 4.1.                                                                                              

 

Clearly, NDR, NDRL, and NDIR are downward closed sets. In addition, in the case of 
each of these representations, the support of an element not belonging to the 
representation can be determined from the supports of only its proper subsets. It was 
shown in [18] that all downward closed representations that satisfy the above 
condition can be transformed to even more concise representations, which preserve 
the original derivation power, by replacing all their elements with their closures, 
where a closure of a set X is defined as the greatest superset of X that occurs in the 
same transactions as X. Since several distinct sets may have the same closure, the 
transformed representations cannot have more elements than the original 
representations.  

Corollary 5.1. The sets of the closures of the elements of NDR, NDIR, and NDLR 
are not more numerous representations than NDR, NDIR, and NDLR, respectively 
and preserve the derivation power of the original representations. 

Lack of space disallows us to present experimental results related to the 
conciseness of the new representations in detail. So, we conclude them only briefly. 
The conciseness of NDIR and NDLR is of the same order as respective 
representations based on generalized disjunction-free sets and lisests, respectively 
(please, see [15] for the experimental results). While the discovery of all frequent 
patterns with negation is often impossible even for minimal support threshold close to 
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100%, all the four types of representations are derivable even for threshold values 
close to 0%. 

6   Summary and Conclusions 

In this paper, we derived a number of properties of derivable and non-derivable lisets. 
In particular, we have proved that a liset is derivable if at least two of its variations 
have supports equal to 0 and differ from each other on an odd number of literals. We 
have also proved that whenever a liset is non-derivable, then all its variations are also 
non-derivable, and whenever a liset is derivable, then all its variations are also 
derivable. We have shown that, for a given data set D, the number of literals in a non-
derivable literal set does not exceed ⎣log2(|D|+1)⎦. 

We have introduced two lossless representations of frequent patterns admitting 
negation: 1) NDLR that consists of all frequent non-derivable lisets, and 2) NDIR that 
consists of all non-derivable itemsets having at least one frequent variation. We found 
that for any value of minSup: NDR⊆NDIR⊆NDLR. Also, we found that for minSup = 
0, NDIR = NDR and for each itemset X in NDIR, there are 2|X| lisets in NDLR. 

Based on [18], we concluded that the elements of NDIR and NDLR can be 
replaced with their closures and the resultant representations will be still lossless 
representations of all frequent patterns admitting negation, not less concise than 
NDIR and NDLR, respectively. 
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Appendix - Proofs 

Proof of Theorem 2.3.1. Ad a) Let |Y| be odd. Hence, by Corollary 2.2.3, sup(B) = 
b(B\Y→\/Y), and by Corollary 2.3.1, the following holds for each rule B’\Y’→\/Y’, 
where ∅≠Y’⊆B and |Y’| is odd: sup(B) ≥ b(B’\Y’→\/Y’). Thus, sup(B) = b(B\Y→\/Y) = 
min({b(B’\Y’→\/Y’)| ∅≠Y’⊆B and |Y’| is odd}) = u(B). 

Ad b) Proof is analogous to the proof of Theorem 2.3.1a.                                         

Proof of Theorem 2.3.2. Ad a) (⇒) Follows immediately from Theorem 2.3.1a. 
(⇐) By definition of u(B), there is a rule, say B\Y→\/Y, where Y⊆B and |Y| is odd, 

such that u(B) = b(B\Y→\/Y) (*). Since sup(B) = u(B), we conclude further sup(B) = 
b(B\Y→\/Y). Hence, by Corollary 2.2.3, err(B\Y→\/Y) = 0 (**). The theorem follows 
from (*) and (**). 

Ad b) Proof is analogous to the proof of Theorem 2.3.2a.  
Ad c) Follows from Theorem 2.3.2b and the definition of l(B).                                

Proof of Corollary 2.3.2. Ad a) Let X⊃B. Since there is a certain generalized 
disjunctive rule based on B, then by Property 2.2.1, there is a certain generalized 
disjunctive rule based on X with an even number of items in the consequent and there 
is a certain generalized disjunctive rule based on X with an odd number of items in the 
consequent. Hence, by Theorem 2.3.2a-b, l(X) = sup(X) = u(X).  

Ad b) By Property 2.1.1a. 
Ad c) By Corollary 2.3.2a-b.                                                                                      

Proof of Lemma 4.1. Let Y,Z∈V(B) and Y differs from Z on an odd number, say k, of 
literals. Let C = Y∩Z and D = Y\Z. Then, (−D) = Z\Y and k = |D| = |(−D)|, Y = C∪D, Z 
= C∪(−D). Hence, |Y\B| = |C\B| + |D\B| and |Z\B| = |C\B| + |(−D)\B|. Let m = |C\B|, k1 
= |D\B|, and k2 = |(−D)\B|. Hence, |Y\B| = m + k1 and |Z\B| = m + k2. We note that k1 + 
k2 = |D\B| + |(−D)\B| = k, which is odd. Thus, if k1 is odd, then k2 is even, and if k1 is 
even, then k2 is odd. Hence, if |Y\B| = m + k1 is odd, then |Z\B| = m + k2 is even, and if 
|Y\B| = m + k1 is even, then |Z\B| = m + k2 is odd.                                                           

Proof of Lemma 4.2. Let Y,Z∈V(B) and Y differs from B on an odd number of 
literals (i.e. |B\Y| is odd) (*) and Z differs from B on an even number of literals (i.e. 
|B\Z| is even) (**). Since Y,Z∈V(B), then Y,B∈V(Z) (***). By (*), (***), and Lemma 
4.1, either |Y\Z| is odd and |B\Z| is even, or |Y\Z| is even and |B\Z| is odd. Taking into 
account (**), we conclude |Y\Z| is odd. Hence, the variations Y and Z of liset B differ 
from each other on an odd number of literals.                                                                
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Abstract. We investigate the problem of finding frequent patterns in a continu-
ous stream of transactions. In the literature two prominent approaches are often
used: (a) perform approximate counting (e.g., lossy counting algorithm (LCA) of
Manku and Motwani, VLDB 2002) by using a lower support threshold than the
one given by the user, or (b) maintain a running sample (e.g., reservoir sampling
(Algo-Z) of Vitter, TOMS 1985) and generate frequent itemsets from the sam-
ple on demand. Both approaches have their advantages and disadvantages. For
instance, LCA is known to output all frequent itemsets (recall = 1) but it also out-
puts many false frequent itemsets (low precision). Sampling is fast, but it outputs a
large number of false itemsets as frequent itemsets, particularly when sample size
is not large. Although both approaches are known to be practically useful, to the
best of our knowledge there has been no comparison between the two approaches.
In addition, we propose a novel sampling algorithm (DSS). DSS selects transac-
tions to be included in the sample based on histogram of single itemsets. An em-
pirical comparison study between the 3 algorithms is performed using synthetic
and benchmark datasets. Results show that DSS is consistently more accurate than
LCA and Algo-Z, whereas LCA performs consistently better than Algo-Z. Fur-
thermore, DSS, although requires more time than Algo-Z, is faster than LCA.

1 Introduction

In this paper, we focus on frequent pattern mining (FPM) over streaming data. FPM
is extremely popular particularly amongst researchers of data mining. On static data,
many algorithms on FPM have been proposed. This research has led to further efforts
in various directions [1]. But for streaming data the advancement in research has not
been so spectacular. Although for several years many researchers have been propos-
ing algorithms on FPM over streaming data (first prominent paper appeared in VLDB
2002 [2] 1), even the recent papers on the topic [5] show that FPM in streaming data is
not trivial. Manku and Motwani nicely described this problem in their seminal work -
Lossy Counting Algorithm (LCA) [2]. Their work led to many other similar papers that
use approximate counting [6,7,8].

At the heart of approximate counting is the fact that for stream data one cannot keep
exact frequency count for all possible itemsets. Note that here we are concerned with

1 Prior to this work, Misra and Gries [3] proposed the deterministic algorithm for ε-approximate
frequency counts. The same algorithm has been rediscovered recently by Karp et al [4].
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datasets that have 1000s of items or more, not just toy datasets with less than 10 items.
The power set of the set of items cannot be maintained in today’s memory. To solve this
memory problem, LCA maintains only those itemsets which are frequent in at least a
small portion of the stream, but if the itemset is found to be infrequent it is discontinued.
As LCA does not maintain any information about the stream that has passed by, it adds
an error frequency term to make the total frequency of a “potentially” frequent itemset
higher than its actual frequency. Thus, LCA produces 100% recall but suffers from poor
precision. These facts are described in [9].

Sampling is another approach that is used in [10,11,12,13] to produce frequent item-
sets. The idea is very simple: maintain a sample over the stream and when asked, run
the frequent pattern mining algorithm, such as the Apriori algorithm, to output the fre-
quent itemsets. Research in sampling focuses on how to maintain a sample over the
streaming data. On one hand approximate counting such as LCA does not keep any
information about the stream that has passed by but keeps exact information starting
from some point in the stream. On the other hand sampling keeps information about the
whole stream (one can use a decaying factor to decrease or increase the influence of the
past) but only partially. So, unlike approximate counting, sampling will have both false
positives and false negatives. A researcher would love to know how these two compare
against each other. This is the focus of this paper.

We have an additional contribution in this paper. Simple random sampling (SRS),
or its counterpart reservoir sampling in streaming data, is known to suffer from a few
limitations: First, an SRS sample may not adequately represent the entire data set due
to random fluctuations in the sampling process. This difficulty is particularly apparent
at small sample ratios which is the case for very large databases with limited memory.
Second, SRS is blind towards noisy data objects, i.e., it treats both bona fide and noisy
data objects similarly. The proportion of noise in the SRS sample and the original data
set are almost equal. So, in the presence of noise performance of SRS degrades.

In this paper a new sampling algorithm called DSS (Distance based Sampling for
Streaming data) is proposed for streaming data. The main contributions of this proposed
method are: DSS elegantly addresses both issues (very large size of the data or in other
words, very small sampling ratio, and noise) simultaneously. Experiments in FPM are
conducted, and in all three of them the results show convincingly that DSS is far superior
than SRS at the expense of a slight amount of processing time. Later in the conclusion
the trade-off analysis between accuracy and time shows that it is worthwhile to invest
in DSS than other approaches including SRS particularly when the domain is very large
and noisy. Experiments are done mainly using synthetic datasets from IBM QUEST
project and benchmark dataset, Kosarak.

2 Preliminaries

The problem of mining frequent patterns online can be formally stated as follows: Let D
denote a transactional data stream, which is a sequence of continuously arriving trans-
actions, e.g., t1, t2, ..., tN . We denote N as the number of transactions processed so far.
Let I = {i1, i2, . . . , in} be a set of distinct literals, called items. Each transaction has
a unique identifier (tid) and contains a set of items. An itemset X is a set of items such
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that X ∈ (2|I| − {Ø}) where 2|I| is the power set of I. Next, the frequency of an
itemset X , denoted by freq(X), is the number of transactions in D that contain X .
The support of an itemset X, denoted by σ(X), is the ratio of the frequency of X to
the number of transactions processed so far, i.e., σ(X) = freq(X)/N . Given a pre-
defined support threshold σmin, an itemset X is considered a frequent itemset (FI) if its
frequency, freq(X), is more than or equal to σmin × N .

2.1 Approximate Counting

For online mining, one typically cannot obtain the exact frequencies of all itemsets,
but has to make an estimation. In general, approximate solutions in most cases may
already be satisfactory to the need of users. Indeed, when faced with an infinite data
set to analyze, many existing works explicitly trade off accuracy for speed where the
quality of the final approximate counts are governed by an error parameter, ε [2,6,8].
Unfortunately, we note that defining a proper value of ε is non-trivial [7]. Usually, we
end up facing a dilemma. That is, by setting a small error bound, we achieve good ac-
curacy but suffer in terms of efficiency. On the contrary, a bigger error bound improves
the efficiency but seriously degrades the mining accuracy [9]. Note that ε is actually a
minimum support threshold used to control the quality of the approximation of the min-
ing result (ε ≤ σmin). We refer the reader to the super exponential growth mentioned
in [14]. The paper reported that even a slight decrease in the support threshold might
create a deep impact on the performance of most mining algorithms. In this paper, LCA
is chosen for discussion due to its popularity. In fact, several recent algorithms also
adopted error bound approach of LCA [6]. We refer the reader to [2] for more detailed
discussion on the technical aspects of LCA.

2.2 Reservoir Sampling

The issue of how to maintain a sample of a specified size over data that arrives online has
been studied in the past. The standard solution is to use reservoir sampling proposed by
J. S. Vitter [15]. The technique of reservoir sampling is, in one sequential pass, to select
a random sample of n transactions from a dataset of N transactions where N is unknown
and n � N . In [15], algorithm Z (Algo-Z) is introduced. If the time for scanning the
dataset is ignored, Algo-Z has expected CPU time O(n(1+log(N

n ))), which is optimum
up to a constant factor. However, there are limitations of reservoir sampling. They are:
(a) a reservoir sample may not adequately represent the entire dataset due to random
fluctuations in the sampling process. This difficulty is particularly apparent at small
sample ratios which is the case for data streams with limited memory; (b) reservoir
sampling is blind towards noisy data objects, i.e., it treats both bona fide and noisy data
objects similarly; and (c) Vitter’s reservoir sampling cannot handle deletions.

3 Distance Based Sampling

We propose a distance based sampling that is designed to work “count” dataset, that is,
dataset in which there is a base set of “items” and each data element (or transaction)
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is a vector of items. Usually, for distance based sampling, the strategy is to produce a
sample whose “distance” from the complete database is minimal. The main challenge
is to find an appropriate distance function that can accurately capture the difference
between the sample (S) and all the transactions seen so far (D) in the stream.

For distance based sampling, the basic intuition is that if the distance between the
relative frequency of the items in S and the corresponding relative frequency in D is
small, then S is a good representative of D. Ideally, one needs to compare the frequency
histograms of all possible itemsets: 1-itemsets, 2-itemsets, 3-itemsets, and so on. But ex-
periments suggest that often it is sufficient to study the 1-itemset histograms [16,17,18].

We define a few distance functions which are all based on frequencies of each item.
Here, the relative frequency of item A in S and D is given by Sup(A; S) = freq(A;S)

|S| and
Sup(A; D) = freq(A;D)

|D| , respectively. freq(A; U) is the frequency of A in a set of trans-
actions U . In this paper, we use Dist2 (also known as Euclidean distance) in our
discussion–

Dist2(S, D) =
∑
A∈I

(Sup(A; S) − Sup(A; D))2. (1)

3.1 Distance Based Sampling for Streaming Data

Like any other reservoir sampling method designed for data stream, the initial step of
DSS is to insert the first n transactions into a “reservoir”. The rest of the transactions are
processed sequentially; transactions can be selected for the reservoir only as they are
processed. Because n is fixed, whenever there is an insertion of transaction, there is sure
to be a deletion. In DSS, a local histogram (HistL) and a global histogram (HistG) are
employed to keep track of the frequency of items generated by S and D respectively.
Ideally, for a sample to be a good representation of the entire data, the discrepancy
between HistL and HistG should be small. In other words, both HistL and HistG
should look similar. Any insertion or deletion of transaction on the sample will affect
the shape of HistL.

To maintain the sample, DSS prevents an incoming transaction from entering S if its
existence in S increases the discrepancy. In addition, DSS helps to improve the quality
of the sample by deleting transaction whose elimination from S maximally reduces (or
minimally increases) the discrepancy. Therefore, there is a ranking mechanism in DSS
to rank the transactions in S so that the “weakest” transaction can be replaced by the
incoming transaction if the incoming transaction is better. The transactions in the initial
sample are ranked by “leave-it-out” principle, i.e., distance is calculated by leaving out
the transaction. Higher ranks are assigned to the transaction removal of which leads to
higher distance. Mathematically, the distance is calculated as follows for ranking:

Distt = Dist2 (S − {t}, D) (2)

where t ∈ S. For the initial ranking, both S and D contain the first n transactions. Table
1 shows the conceptual idea of ranking. Tid 10 is ranked highest because its removal
produces the maximum distance of 25.0. Similarly, Tid 3 is ranked lowest because its
removal produces the minimum distance of 2.0. Let LRT denotes the lowest ranked
transaction.
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Table 1. Conceptual Ranking of Transactions

Rank Distance Tid
—- ——– ———————-
1st 25.00 10
2nd 15.00 20
: : :
nth 2.00 3

When a new transaction tnew arrives, HistG is immediately updated. A decision
is made whether to keep it in the sample by comparing the distances computed when
HistL is ‘with’ and ‘without’ tnew. First, we use Eq. 3 to calculate the distance between
HistG and HistL when tnew is absent. Next, LRT is temporarily removed from the
sample. We use Eq. 4 to calculate the distance between HistG and HistL when tnew is
present. Note that because of the incoming tnew, the D in Eq. 3 and 4 is updated (D =
D + tnew). If Distwithout tnew > Distwith tnew , then tnew is selected to replace LRT
in the current sample. LRT is permanently removed. tnew will be ranked in the sample
using Distwithout t value. On the other hand, if Distwithout tnew ≤ Distwith tnew ,
then tnew is rejected and LRT is retained in the reservoir.

Distwithout tnew = Dist2(S, D) (3)

Distwith tnew = Dist2((S − LRT + tnew), D) (4)

Ideally, all transactions in the current sample should be re-ranked after processing each
incoming transaction because HistG is modified. Re-ranking is done by recalculating
the distances using ‘leave-it-out’ principle for all transactions in the current sample and
those which are rejected already. But this can be computationally expensive because
of the nature of data stream. We need a trade-off between accuracy and speed. Thus,
re-ranking is done after selecting R new transactions in the sample. We do not consider
the rejected transactions while countingR. For our later experiments, we set R equal to
10. DSS tries to ensure that the relative frequency of every item in the sample is as close
as possible to that of the original data stream. In the implementation, DSS stores the
sample in an array of pointers to structures which holds the transaction and its distance
value. Initial ranking and re-ranking of the sample according to the distances involve
two steps. The first step is to calculate the distances of the transactions in the sample
and the second step is to sort the sample by increasing distances using the standard
quick sort technique. When Dist2 is well implemented, the distance based sampling
can have computational cost at most O(|tmax|), where |tmax| is the maximal length of
the transaction vector –see next section. We summarize DSS as follows:

1. Insert the first n transactions into S.
2. Initialize HistG and HistL to keep track of the number of transactions containing each item

A in S and D.
3. Rank the initial S by ‘leave-it-out’ method using Eq. 2.
4. Read the next incoming tnew .
5. Include tnew into HistG .
6. Compare the distances of S ‘without’ and ‘with’ tnew using Eq. 3 and 4.

a. If Distwithout tnew > Distwith tnew , then replace LRT with tnew and update HistL.
b. Else, reject tnew .
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7. If R new transactions are already selected, re-rank the transactions in the current sample.
Eg. R = 10.

8. Repeat steps 4 to 7 for every subsequent incoming transaction tnew.

3.2 Complexity Analysis

When finding LRT , we need to compute Dist2 for each t ∈ S. This is the distance
between HistG and HistL when a transaction t is removed from S. Here, St denotes
S − {t}. We let FAS , FASt and FAD represent the absolute frequency of item A in S,
St and D respectively. Note that,

FASt =
{
FAS − 1 if A ∈ t
FAS else A �∈ t.

To search for the weakest transaction in S, the set of n distances that are generated from
Eq 2 has to be compared with one another such that

t∗ = argmin
1≤t≤n

Dist2(S − t,D) = argmin
1≤t≤n

∑
A∈I

(FASt

|St|
− FAD

|D|
)2

. (5)

Unfortunately, the determination of t∗ can be computationally costly. The worst case
time complexity is O(n.|I|), where |I| � 1. However, we note that even though re-
moving a transaction from S will affect relative frequencies of all items, most absolute
frequencies will remain unchanged. Only those items contained within the transaction
t are affected. In addition, we can make use of the fact that, in general,

argmin
x∈U

f(x) = argmin
x∈U

cf(x) + d. (6)

For any constant c and real number d that we introduced, the final outcome will still
remain the same. With this understanding, we can rewrite Eq. 5 as

t∗ = argmin
1≤t≤n

∑
A∈I

((
FASt −

FAD

|D| |St|
)2

−
(
FAS − FAD

|D| |St|
)2

)

t∗ = argmin
1≤t≤n

∑
A∈t

(
1 − 2FAS + 2

FAD

|D| |St|
)

From the above representation of t∗, it is possible to reduce the worst-case cost of
ranking from O(n.|I|) to O(n.|Tmax|). Similarly, for comparing between LRT and
tnew, we can apply the same strategy. The cost will then be O(|Tmax|).

3.3 Handling Noise in DSS

Noise here means a random error or variance in a measured variable. The data object
that holds such noise is a noisy data object. Such noisy transaction have very little or no
similarity with other transactions. This “aloof” nature of noise is used to detect and re-
move them. These noisy transactions can also be called outliers. Such outlier detection
and removal has been studied abundantly, for example in [19]. These methods typi-
cally use some kind of similarity measurement and a similarity threshold to determine
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whether an object is noise, that is if a data object has lesser similarity than the threshold,
it is considered noise.

In this paper the focus is to maintain a small sample of transactions over a streaming
data. DSS not only maintains a good representative sample, it also removes noise by
not selecting them in the sample. DSS banks on the aloofness of the transactions to
determine whether an incoming transaction is corrupted by noise. Removal of a noisy
transaction will induce smaller distance than removal of a bona fide transaction. As
DSS selects transactions into the reservoir sample by the distance it induces, it naturally
rejects the noisy transactions. Later experimental results show that DSS has a better
ability to handle noise than LCA and Algo-Z.

4 Performance Study

This section describes the experimental comparison between DSS and LCA in the con-
text of FPM. In addition, we also compared DSS with simple random sampling (SRS)
using Algo-Z. All experiments were performed on a 1.7GHz CPU Dell PC with 1GB
of main memory and running on the Windows XP platform. We used the code from
the IBM QUEST project [21] to generate the datasets. We set I = 10k unique items.
The two datasets that we generated are T 10I3D2000K and T 15I7D2000K . Note that
T 15I7D2000K is a much denser dataset than T 10I3D2000K and therefore requires
more time to process. In addition, to verify the performance of all the 3 algorithms on
real world dataset, we used a coded log of a clickstream data (denoted by Kosarak) from
a Hungarian on-line news portal [22]. This database contains 990002 transactions with
average size 8.1. We fixed the minimum support threshold σmin = 0.1% and the batch
size Bsize = 200K . For comparison with LCA, we set ε = 0.1σmin which is a popular
choice for LCA.

4.1 Performance Measure

To measure the quality of the mining results, we use two metrics: the recall and the
precision. Given a set AFItrue of all true frequent itemsets and a set AFIappro of all
approximate frequent itemsets obtained in the output by some mining algorithms, the
recall is |AF Itrue

⋂
AF Iappro|

|AF Itrue| and the precision is |AF Itrue
⋂

AF Iappro|
|AF Iappro| . If the recall equals

1, the results returned by the algorithm contains all true results. This means no false neg-
ative. If the precision equals 1, all the results returned by the algorithm are some or all of
the true results, i.e., no false positive is generated. To evaluate the quality of the sample,
we can apply the symmetric difference SD =

|(AF Itrue−AF Iappro)∪(AF Iappro−AF Itrue)|
|AF Itrue|+|AF Iappro| .

Alternately, we define the overall accuracy with Acc = 1 − SD.

4.2 Time and Accuracy Measurements

Figure 1 depicts the number of frequent itemsets uncovered during the operation of the
3 algorithms for the 3 different datasets. Note that for DSS and Algo-Z, the size of the
reservoir is 5k transactions. In the figure, ORG indicates the true size of frequent item-
sets generated when the Apriori algorithm operates on the entire dataset. Interestingly,
we can observe that the general trends of the sampled datasets resemble the true result.
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Fig. 1. Itemset size vs Number of Frequent Itemsets
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Fig. 2. Execution time on T10I3D2000K, T15I7D2000K and Kosarak

This is also similar with the output from LCA. However, Algo-Z tends to drift very far
away from ORG. LCA is caught in between the two sampling algorithms. DSS gives
the most appealing results in term of fidelity. The graphs from DSS are the closest to
ORG. Figure 2 shows the execution time on the 3 datasets. The results of the algorithms
are computed as an average of 20 runs. Each run corresponds to a different shuffle of
the input dataset. Note that for DSS and Algo-Z, the execution time consists of the time
spent for obtaining the sample as well as using the Apriori algorithm to generate the fre-
quent patterns (AFIappro) from the sample. As we can see, the cumulative execution
time of DSS, Algo-Z and LCA grows linearly with the number of transactions processed
in the streams. In particular, Algo-Z is the fastest because it only needs to maintain a
sample by randomly selecting transaction to be deleted or inserted in the reservoir. Un-
like Algo-Z, DSS processes every incoming transaction by computing its distance in
the sample. As a result, its processing speed is slower than Algo-Z. However, the slow-
est algorithm is LCA. In all 3 datasets, LCA spent the most amount of time. Figure 3
displays the Acc of the 3 algorithms against the number of transactions processed. As
expected, Algo-Z achieved the worst performance. As the number of transactions to be
processed increases, we see that its accuracy drops significantly. Since the reservoir is a
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fixed size, the sampling ratio decrease at every test point. DSS achieved good accuracy
even for small sampling ratio. Its accuracy remains stable for all the test points. Al-
though LCA guarantees to produce 100% recall, its performance was heavily affected
by its poor precision. This can be clearly seen in the figure.

4.3 Handling Noise

Removing transactions that are corrupted with noise is an important goal of data clean-
ing as noise hinders most types of data analysis. This section shows how DSS is not only
able to produce high quality sample from normal dataset, but it is also able to cope with
dataset having corrupted transactions and thus preventing these transactions from being
inserted into the reservoir. To demonstrate the robustness of DSS against noise, we let
the 3 algorithms to operate on a noisy dataset. For this experiment, we added 5% of
noise to T 15I7D2000K . Noise was added using the rand function. With a probability
of 5%, we corrupt an item in a transaction by replacing it with any item in I. Similar
to the previous experiments, we made use of the true frequent patterns uncovered from
the original dataset to compare with the approximate frequent patterns uncovered from
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the corrupted dataset. Figure 4 illustrates the performances of the 3 algorithms against
noise. For reference, the results for the algorithms operating on the noise free dataset
are also included in the plot. From the graph, DSS suffers the least in term of accuracy
when noise was added to the data. Its overall accuracy is maintained at about 75% and
its maximun drop in performance is at most 2% when the test point is at 400k. However,
for LCA and Algo-Z, the gap between the original result without noise and the result
with noise is wider when compared with the one by DSS. The greatest drop in accuracy
is by 5% for LCA when the test point is at 2000k and by 6% for Algo-Z when the test
point is at 1600k.

4.4 Comparison with Theoretical Bounds

In [12], it was shown how to apply Chernoff bounds for FPM. Denote by X as the
number of transactions in the sample containing the itemset I . Random variable X has
a binomial distribution of n trials with the probability of success σmin. For any positive
constant, 0 ≤ ε ≤ 1, the Chernoff bounds state that

P (X ≤ (1 − ε)nσmin) ≤ e−ε2nσmin/2 (7)

P (X ≥ (1 + ε)nσmin) ≤ e−ε2nσmin/3 (8)

Chernoff bounds provide information on how close is the actual occurrence of an item-
set in the sample, as compared to the expected count in the sample. Accuracy is given
as 1−ε. The bounds also tell us the probability that a sample of size n will have a given
accuracy. We call this aspect confidence of the sample (defined as 1 minus the expres-
sion on the right hand side of the equations). The first equation gives the lower bound –
the probability that the itemset occurs less often than expected and the second one gives
the upper bound – the probability that the itemset occurs more often than expected, for
a desired accuracy.

The following plots in Figure 5 show the results of comparing theoretical Chernoff
bound with experimentally observed results. We show that for the databases we have
considered the Chernoff bound is very conservative. We can obtain the theoretical con-
fidence value by evaluating the right hand side of the equations. For example, for the up-
per bound the confidence C = 1−e−ε2nσmin/3. We can obtain experimental confidence
values as follows. We take s samples of size n, and for each item we compute the confi-
dence by evaluating the left hand side of the two equations as follows. Let i denote the
sample number, 1 ≤ i ≤ s. Let lI(i) = 1 if (nσmin − X) ≥ nσminε in sample i, oth-
erwise 0. Let hI(i) = 1 if (X−nσmin) ≥ nσminε in sample i, otherwise 0. The confi-
dence can then be calculated as 1−

∑m
i=1 hI(i)/s, for the upper bound. We take s = 100

samples for both Algo-Z and DSS for each of the three datasets. We cover our discus-
sion on all single itemsets. Using the theoretical and experimental approaches we deter-
mine the probabilities (1-confidence) and plot them in the following figures. Figure 5
compares the distribution of experimental confidence of simple random sampling and
DSS to the one obtained by Chernoff upper bounds. The graphs show the results using
T 15I7D2000K , n = 2000 with ε = 0.01%. From the figure, Chernoff bounds, with a
mean probability of 99.95%, suggests that this sample size is ‘likely’ unable to achieve
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the given accuracy. Obviously, this is very pessimistic and over conservative. In actual
case, Algo-Z and DSS gave a mean probability of 75% and 43% respectively.

Figures 6, provides a broader picture of the large discrepancy between Chernoff
bounds and experimental results. Using T 15I7D2000K , we plot the mean of the prob-
ability distribution for different Epsilon (ε). Different values of sample size are used
(from 0.1% to 10%). The higher the probability, the more conservative the approach is.
So we can see that DSS samples are the most reliable, followed by Algo-Z sample, and
the theoretical bounds are the most conservative.

5 Conclusions

In this paper we compared approximate counting (lossy counting LCA) with random
sampling (reservoir sampling Algo-Z) over data streams. Our results show that LCA is
more accurate than Algo-Z. But LCA requires more time than Z. We also proposed a
novel histogram based sampling algorithm DSS. DSS outperformed the other two sig-
nificantly in accuracy. It required more time than Algo-Z but less time than LCA.
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Abstract. We introduce a feature-based method to detect unusual pat-
terns. The property of normality allows us to devise a framework to
quickly prune the normal observations. Observations that can not be
combined into any significant pattern are considered unusual. Rules that
are learned from the dataset are used to construct the patterns for which
we compute a score function to measure the interestingness of the un-
usual patterns. Experiments using the KDD Cup 99 dataset show that
our approach can discover most of the attack patterns. Those attacks
are in the top set of unusual patterns and have a higher score than the
patterns of normal connections. The experiments also show that the al-
gorithm can run very fast.

1 Introduction

Outlier detection is an interesting topic in data mining. Historically, outliers
were considered noise that would adversely affect the quality of the data analysis
process and would need to be removed from the dataset. However, the devia-
tion of outliers from other data may indicate interesting or fraudulent activities
that require our attention instead of simply discarding them [8]. In practice, an
outlier detection method can be used as an unsupervised technique for fraud-
ulent activity detection, network instrusion detection and system monitoring.
Outlier detection methods can be divided into two categories: statistical-based
[8] and distance-based [5]. The statistical based approach can discover outliers
by computing the probability of the observation from the underlying distribu-
tions of the dataset. However, those distributions are usually unknown in many
data mining applications. In constrast, the distance-based approach [5] can de-
tect the outliers without knowing the underlying distributions. Breunig et al
[2] introduced a local outlier factor (LOF) that can detect density-based out-
liers which can not be detected by the former method. The main advantage of
these methods is that it can detect local outliers without knowing the distribu-
tion of the dataset. However, their methods only focus on detecting individual
outliers.

In this paper, we introduce a method to detect unusual patterns very fast.
From our perspective, the outliers may simply be noise due to data sparsity
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in high dimensions [1,17]. Thus, it may be more interesting to detect patterns
of unusual observations instead of individual outliers. In the following section,
we will show that the unsual patterns in our definition possess such unique
characteristics that they can not be detected by using clustering algorithm or
applying clustering algorithm on the detected outliers. We will call this feature-
based unsual patterns.

2 Motivation

Table 1a consists of four items with three attributes A1, A2 and A3. In table
1b, each column contains the statistics for the items in the column. The rows in
the table show the k-distance [2] with k = 3, the average distance of all KNNs
(3 nearest neighbors) and the LOF factors of the items. We assume that the set
of four items is a subset of a larger dataset with the ranges of the attributes
from 0 to 1000. Thus, the normalization is unneccessary. According to table 1b,
X1 and X2 are highly ranked outliers due to their LOF score and X4 is the
lowest ranked outlier in the group. X1 and X2 are more unusual than X4. A
closer look at table 1a shows that this is not necessarily true. According to the
table, the values for attributes A2 and A3 are actually almost similar for all
the items. The values vary uniformly from 150 to 350. The items are similar in
term of A2 and A3. For atttribute A1, there are two distinct groups: the group
of X1, X2 and X3 with the mean of 9 and a group of X4. The first attribute
of X4 deviates significantly from the other items in the table. It is five times
greater than the average of group of X1, X2 and X3. Despite this abnormality,
X4 is considered less of an outlier than X1 and X2 according to the definition
of LOF. Even though the range of A1 is smaller than those in A2 and A3, the
deviation is significant. In this example, X4 is unusual whereas X1, X2 and X3
are normal. We consider an alternative approach to discover the unusual item
X4. The approach is to compute the outliers on all subspaces. However, the
number of subspace is exponential. In addition, it can not detect this type of
feature-based anomalies. The example shows the scenarios where unusual records
are undetectable by the traditional approach. In the next section, we formally
define the problem and introduce a method to detect the feature-based unusual
patterns.

Table 1.

ID A1 A2 A3

X1 8 250 300
X2 9 250 250
X3 10 350 150
X4 50 300 200

(a) Example

X1 X2 X3 X4

k-distance 180.29 141.42 180.29 119.43
Mean 116.58 91.06 134.32 94.14

LOF Score 1.55 1.55 1.34 1.27

(b) Metrics
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3 Formal Definitions

We extend the definition of the relational algebra to incorporate the concept of
an interval tuple and the operations on an interval tuple. Recall that a relation
R consists of n attributes A1, . . . , An, a tuple t of R is an ordered list of values
corresponding to the attributes. The notation t.Ai refers to attribute Ai of tuple
t. Where applicable, we drop the attribute name and use the subscript, i.e. ti,
to refer to the attribute in order to simplify the definitions. In addition, we use
the terms feature and attribute interchangably.

An interval is a set of real numbers bounded by two end points, which can be
represented by [a, b]. An interval-tuple I is an order list of intervals {Ii}. The
interval selection operation σI(R) selects a subset S of the tuples from R such
that each t in the subset S satisfies the following condition: ti ∈ Ii ,∀Ii �= NULL.
We say that S is covered by I, I is a cover interval-tuple of S and Ii is a cover
interval of S. If I has only one interval, say Ii, σIi(R) can be used. In this case,
we say σIi(R) is an interval selection operation on interval Ii for R.

In example 1a, a relation R consists of X1, X2, X3 and X4. The operation
σI(R) and σI1(R) on I ≡< [7, 10], [250, 250], [250, 350] > return {X1, X2} and
{X1, X2, X3} respectively. S ≡ {X1, X2} is covered by I.

We also define the function ω(S) that returns the smallest intervals that cover
S. It is an inverse function of the function σ. In the example above, ω(S) returns
J ≡< [8, 9], [250, 250], [250, 300] >.

Definition 1. α function between two interval-tuples on attribute i is defined
by:

α(Ii, Ji) =
max(inf Ii, inf Ji) − min(sup Ii, sup Ji)

min(sup Ii, sup Ji)
, (1)

if Ii ∩ Ji ≡ ∅

and α(Ii, Ji) = 0 if Ii ∩ Ji �= ∅ (2)

The function α measures the dissimarity between two intervals on an attribute i
based on the ratio of the difference between two intervals instead of the distance
between two intervals. When the ratio on all the attributes for two interval-tuples
I and J is small, they are considered close. We then can measure the closeness
between any two sets as follows:

Definition 2. Two sets S and S′ are close under αc, denoted by close(S, S′/αc)
≡ true if and only if α(ωi(S), ωi(S′)) < αc, ∀i ∈ 1 . . .n.

After generating rules using the feature-based samples (which will be discussed
later), we will try to combine the related rules into common patterns. Two rules
will be combined into a pattern (definition 3) if they are close to each other as
follows:

Definition 3. Given P = {Si}, if ∀Si ∈ P , there is at least one Sj ∈ P such
that Si and Sj are close under αc, we say {Si} forms a pattern P under αc. We
define supp(P ) =

∑
|Si| as the support of P.
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Definition 3 implies the chain property that can result in very high support
patterns. We can define the normal and unsual patterns as follows:

Definition 4. We say a pattern P is normal under Nu if supp(P ) > Nu, where
Nu is a user defined value.

Definition 5. We say a pattern P is unusual under Nu if supp(P ) ≤ Nu.

We exploit the chain property to combine observations into groups of related
observations. If an observation does not belong to any large group, it is unsual.
We also observe that the normal observations should account for the majority
of the dataset.

In our paper, we need to produce rules to learn normal patterns. A rule is a
set of strongly correlated observations. We will use an interval splitting function
fS to generate rules. First, the split function on a set R divides each column into
at least k intervals. Each interval is split into smaller intervals if the ratio of the
difference between two consecutive ordered values from R on the same column in
the interval is greater than αs. The combinations of the intervals from different
attributes produces the interval-tuples. We use fS(R/k, αs) to denote the set of
interval-tuples returned from the split function on R.

The sampling is then performed based on an attribute as follows:
Given an interval Ii on attribute i, we select a sample R from dataset D such

that R ≡ σIi (D). We then perform the split function fS on R to obtain the set
of interval-tuples V ≡ fS(R/k, αs). For each interval tuple I ∈ V , we create a
set S of tuples from R where S ≡ σI(R). If S does not satisfy the condition
|fS

i (S/αs)| = 1, ∀i, which means S can be divided into smaller sets, we split
interval tuple I into smaller interval tuples by performing the split function
fS(S/k = 1, αs) on S (the value of one for k means that we only split an interval
when there is a change of the values in the interval). We say {S} are the rules
generated from sample R. The rules are used to create patterns. In the algorithm,
we compare the unusual patterns against other normal patterns and try to merge
the unusual patterns. Therefore, the normal observations that are mistakenly
flagged as unusual will be grouped into the normal patterns.

Definition 6. The o-score function between two interval tuples is defined by

o-score(I,J) ≡
√∑

α2(Ii, Ji) (3)

Definition 6 defines the score between two interval tuples. The score of a pattern
against another pattern o-score(P,P’) is the smallest score between the two in-
terval tuples of two patterns. As we see, the score of an unusual pattern is used
to measure the deviation of an unusual observation from the normal observation.
Thus, the u− score of an unusual pattern P is the smallest score between it and
the normal patterns.
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1: procedure RuleBase(D)
2: for all i ∈ n do
3: U ← makeSamples(D, i)
4: for all R ∈ U do
5: V ← fS(R/k, αs)
6: for all I ∈ L do
7: S ← makeRules(R,I)
8: put S into RP
9: end for

10: makePatterns(RP,NP, UP )
11: for all p ∈ UP do
12: compute o-score(p, NP )
13: end for
14: P ← matchNorm(NP, P )
15: UP ← matchUnusual(UP, P )
16: P ← combine(P, UP )
17: end for
18: end for
19: end procedure

4 Framework

The outline for the algorithm is shown in the procedure RULEBASE. The algo-
rithm consists of n rounds where n is the number of attributes. In the ith round,
the makeSamples function creates a set of samples from dataset D on attribute
i. In this implementation, the samples are created as follows. The data set is
sorted on attribute i and divided into chunks of the size Nc. Each chunk R is a
sample from which to learn rules on attribute i.

The split function fS(R/k, αs) outputs a set V of interval-tuples. The set of
rules {S} are created for each interval-tuple I ∈ V . The makePatterns function
merges all the rules and outputs a set NP of normal patterns and a set UP
of unusual pattern candidates according to definitions 3, 4 and 5. The unusual
score for all unusual pattern candidates is also computed against set NP in lines
11 to line 13.

The algorithm from line 3 to line 13 creates the normal patterns and unusual
pattern candidates for each sample R. As discussed in the introduction, we need
to rule out the normal patterns. Variable P at line 14 contains the set of unusual
pattern candidates. For each candidate p ∈ P , p will be removed from P if there
exists a normal pattern pn ∈ UP such that p and pn are close under αc (line 14).
This is done since those candidates are shown to be normal in another pattern.
For the first round, no action is performed on UP from line 15 to 16 and all the
unusual pattern candidates are put into P. P contains the set of candidates for
the first attribute. The items which do not belong to any pattern in this set of
candiates are normal.

For the next rounds, the unusual pattern candidates will be removed from
UP if they are not in P (line 15) because they were flagged as normal. The
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function at line 16 combines the unusual pattern candidates into larger patterns
according to the close function under parameter αc. The candidates which are
normal after the combination are removed from P. The new unusual score of each
new pattern is the lowest score from the candidates for which the new pattern is
created. When the computation is finished for all rounds, all the unsual pattern
candidates in P that do not match any normal pattern or do not have the support
sufficient enough to be normal are unsual patterns.

The close and score functions are computed from the α function which requires
the dividends to be non zero. For each round, we replace the zeros with the
average of the next c items when the dataset is sorted on attribute i. The zeros
can be replaced by 0.5 if the dataset contains only 0 and 1 for attribute i.

4.1 Parameter Setting

The algorithm consists of five parameters: αc, αs, k, Nc, Nu, which can be de-
termined in a straightforward manner. Nu is a user-defined parameter indicating
the size of a pattern to be considered unusual. Nc is the sample size. k is choosen
based on the number of possible patterns in a sample. The number of patterns
increases in the sample when k increases. However, if those patters are simi-
lar, they will be combined together eventually. The value of k does not impact
the output significantly. Typically, k can be around 4 and Nc can be computed
from k × Nu. Besides k, αs is used to split an interval if there is an abnormal
change in the interval. The parameter αc defines the cutoff point for the unusual
observations. Heuristically, we can choose αc and αs between 0.3 and 0.6.

4.2 Running-Time Complexity

We denote |NP |, |UP | and |P | as the total number of items in NP , UP and
P respectively. From line 5 to 9, it takes O(Nc) time to make the rules. The
makePattern function needs to combine all the patterns and has a worst case
of O(N2

c ). The running time from line 11 to 13 is O(|UP | × |NP |). We can use
hashtables to store patterns for NP, UP and P in order to execute the matching
functions (line 14, 15) in linear time with respect to the number of items. The
execution time for the two lines are O(min(|NP |, |P |)) and O(min(|UP |, |P |))
respectively. Since |NP | + |UP | = Nc, the execution time for them is less than
O(Nc). The running time for line 16 is O(|UP | × |P |). The total running time
from line 3 to 16 is O(Nc + N2

c + |UP | × |NP |+ Nc + |UP | × |P |). Since Nc and
|UP | ∗ |NP | are less than N2

c , the formula can be reduced to O(max(N2
c , |UP |×

|P |)). In general N2
c is small and does not grow with the dataset and |UP |× |P |

is small on the average. The running time can be considered constant, O(c).
There are n rounds. It takes O(NlogN) time to sort the data according to

the attribute of the current round. Each round has N
Nc

chunks and the execution
time for each chunk is O(c). Therefore, the total execution time is O(c × n ×
N
Nc

+n×NlogN). Since ( c
Nc×logN +1) is small and inversely proportional to N ,

we replace it by ς , the formula can be written as O(ς × n × N × logN). The
formula shows that the algorithm can be executed very fast.
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Table 2. List of Attacks

Type #attacks Type #attacks Type #attacks

pod 210 teardrop 179 loadmodule 9
ipsweep 209 back 168 ftp write 8

warezclient 203 guess passwd 53 multihop 7
portsweep 200 bufferoverflow 30 phf 4

nmap 200 land 21 perl 3
smurf 200 warezmaster 20 spy 2
satan 197 imap 12

neptune 196 rootkit 10

5 Experiments

We ran experiments using the KDD CUP 99 Network Connections Data Set
from the UCI repository [16]. The data was compiled from a wide variety of in-
trusions simulated in a military network environment prepared by MIT Lincoln
Labs. Each record has 42 features containing the network connection informa-
tion. Among them, 34 features are continuous and 8 features are symbolic. The
last feature labels the type of connection. About 80% of the data set are normal
connections and 20% are attack connections. Because the rate of attack connec-
tions is very high for regular network activities, we follow the data generation
approach in [4] to create a new dataset with a very low number of attacks ran-
domly drawn from the KDD Cup Dataset to test whether the small patterns
would be discarded by the sampling method in a large dataset. The new dataset
contains 95,174 normalized connections in total and the total number of attacks
account for only 2.2% of the dataset. To make the experimental results less bi-
ased by the possible special characteristics of some types of attack, the data
set contains 22 types of attack with the number of records for each attack type
varying from 2 to 210. The attack with the largest size accounts for only 0.2% of
the dataset. The details of the number of connections for each attack are shown
in table 2.

5.1 Competing Methods

First, we run an oultier detection algorithm on the dataset to obtain the list
of outliers. In this experiment, we use the well-known outlier detection method
LOF [2] to compute outliers in the experiments. The local outlier factor of a
point p is the ratio between the kdist(p) and the average of the kdists of all the
KNNs of p where kdist(p) is the distance from p to the kth nearest neighbor of p.
The records with high LOF scores are considered as outliers. In LOF, min ptsth

is the number of nearest neighbors to compute kdist.
Figure 1a shows the LOF precision/recall curve for different values of min pts.

Generally, min pts = 100 performs better than the other two values of min pts.
As we see, LOF obtains the highest precision rate (56%) when the recall
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rate = 2.6%. When the recall rate reaches 20%, the precision rate drops dramas-
tically to 10%.

Since the precision is low for a high recall rate, we apply different clustering
algorithms on the outliers to group them into their corresponding attack types.
First, we ran KMEAN on the top outliers which account for 10% of the dataset.
There are 40 clusters. We then filtered the output by removing clusters with
the size greater than 250. There are 30 such clusters. Ten of them have at least
50% attacks. Table 3a shows the corresponding rank of the first five clusters that
contain the attack connections. As we can see, 13 out of 18 top clusters do not
contain any attack.

In the next experiment, we used a shared nearest neighbor (SNN) clustering
algorithm to cluster the top outliers. SNN returns one cluster of size 3814 and
292 clusters of size less than 143. There are 19 clusters with the size from 50 to
143. Table 3b shows the top three clusters that contains the attack connections.
The first attack cluster ranks 9th and its size is 78. In those two experiments,
the attack connections are not shown as strong unusual patterns.

The clustering of the top outliers could not detect all the top ten groups of
attacks. Because of this, we want to cluster the entire dataset with the hope that
those groups can be discovered. It is difficult to set the parameter k for KMEAN
in this large dataset. With large k, KMEAN will return many clusters whereas
small values of k may group the normal connections with attack connections.
Therefore, we used SNN for this experiment since it can discover small clusters
with different densities in large datasets [6] without requiring the number of
clusters as input. The algorithm returns 131 clusters with the size from 50 to
250. Among them, there are six clusters that contain attack connections (see
table 4). The first cluster that contains the attack connections is ranked 35th. As
we can see, the attack and normal connections are divided into smaller clusters.
The attack patterns are not shown clearly in this experiment. The result shows
that even though SNN can discover small clusters, they will return many of
them.
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5.2 Our Method

In the next experiment, we ran our method on the dataset to discover the unusual
patterns. We set the parameters according to the parameter setting from the
algorithm section (Nu = 250, αc = 0.5, k = 4, αs = 0.5, and Nc = 1200). The
algorithm returns 20 unsual patterns with the size of at least 50. Table 5a shows
the top 10 unusual patterns by size. The size of those patterns varies from 67
to 243. The first two patterns are of the attack type. Seventy percent of those
patterns contain 100% attacks. The other 9 smaller patterns containing attacks
are shown in table 5b. According to table 5a, we see that satan, neptune and
portsweep follow strong patterns. In the table, we see that warezclient attacks
also follow a pattern but its score is low (6.5) relative to those attack types,
which means that its pattern is slightly different from normal patterns.

As mentioned above, the data set contains 10 attack patterns with a size of at
least 100. In our method, eight of ten are identified in the top unusual patterns
(by size).

Table 7 shows the recall rate for each attack type found in table 5a. With the
low false alarm rate, we still get a high recall rate.

We then take all the unusual patterns with the size of at least 50 and order
them by score. Table 6 shows the ranking, score and attack type of the patterns.
According to the table, our method correctly identifies some of the attacks in the
first six unusual patterns. All of these patterns have the detection rate of 100%.
Among them, the attack type of Satan has the highest score which is 203.5. The
score of the first normal connection pattern in the table is only 29.6 and its size
is only 54.

In ranking either by size or by score (after the patterns with very low sizes
are pruned), we can see that the attack types of satan, portsweep, neptune, and
nmap are discovered by our approach. The results imply that these types of at-
tack follow some patterns which are strongly different from normal connections.

Table 3. Top outliers (10%)

ID Rank Size Connections Rate(%)

1 7 159 neptune 95.0
portsweep 1.3

2 12 114 satan 0.9
teardrop 89.5
ipsweep 0.9

3 13 110 nmap 100.0
4 16 107 smurf 73.8
5 18 101 satan 1.0

ipsweep 4.0
portsweep 87.1

(a) Clustered by KMEAN

ID Rank Size Connections Rate(%)

1 9 78 neptune 100.0
2 15 58 smurf 77.6
3 16 56 smurf 100.0

(b) Clustered by SNN
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Figure 1b shows the PR curve of our method versus LOF. The figure shows
that our method yields a precision rate of 80% at very low recall rates. The
method outperforms the LOF approach. Since we quickly prune the patterns
with an unusual score below the cutoff threshold, the attacks with a very low
unsual score are removed from the output. That is why the figure only shows
the recall rate up to 90%. However, this does not affect the result much since
the precision rate is usually low at this recall rate.

According to the experiments, the following interesting observations are found.
Most unsual patterns with normal connections do not form highly supported pat-
terns. Even though they may have high scores, they appeared as very low support
patterns, whereas the attack connections form patterns with high support. The
normal connections that can form patterns with high support tend to have a very
low score. Few discovered unusual patterns have mixed results. Another impor-
tant observation is that the number of unusual patterns with high support is
very small.

In conclusion, we have performed a variety of experiments with different com-
binations of outlier detection and density-based clustering algorithms. The pre-
cision is low when the recall rate increases to 20%. For the clustering algorithms,
the normal connections were also grouped into small clusters. However, our

Table 4. SNN on the entire dataset

ID Rank Size Connections Rate(%)

1 35 112 nmap 100.0
2 57 89 warezclient 73.0

rootkit 1.1
3 74 79 neptune 100.0
4 90 65 ipsweep 100.0
5 112 59 smurf 78.0
6 118 58 smurf 100.0
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Table 5. Top Unusual Patterns Ordered by Size

Rank Size Score Types Rate(%)

1 243 24.1 smurf 79.4
normal 20.6

2 192 43.6 nmap 100
3 170 12.9 normal 100
4 169 203.5 satan 100
5 150 104.1 neptune 100
6 129 26.1 ipsweep 100
7 114 14.2 back 100
8 84 6.5 warezclient 100
9 72 15.6 normal 100
10 67 107.7 portsweep 100

(a) Top 10

Rank Size Score Types Rate(%)

13 66 11.8 teardrop 100
14 64 54. pod 100
20 50 48.8 pod 100
22 48 83.1 guesspwd 100
23 44 156.6 neptune 100
33 31 20.0 teardrop 100
35 29 30.0 back 100

(b) Others

algorithm grouped the attack and normal connections almost correctly accord-
ing to their connection type even though there were 22 types of attacks of small
size. They are shown clearly as unusual patterns in terms of size and score.

6 Performance

We implement a memory-based version of the algorithm in Java. For each round,
the dataset can be sorted in O(NlogN) time. We use a hashtable data structure
to store the list of unusual candidate items so that the matching functions,
matchNorm and matchUnusual, can be performed in constant time. At first,
we ran the program with different initial attributes. The number of unusual
candidates vary from 30K to 60K. During the first round, we don’t combine
the unusual patterns, therefore, the performance is not affected. In the next few

Table 6. Unusual Patterns Ordered by Score

Rank Type Score Size Rank Type Score Size

1 satan 203.5 169 11 smurf 24.1 243
2 portsweep 107.7 67 12 normal 15.6 72
3 neptune 104.1 150 13 normal 14.9 64
4 pod 54.6 64 14 back 14.2 114
5 pod 48.8 50 15 normal 12.87 170
6 nmap 43.6 192 16 teardrop 11.8 66
7 normal 29.6 54 17 normal 10.5 67
8 normal 26.2 63 18 normal 9.7 56
9 ipsweep 26.1 127 19 warezclient 6.6 84
10 normal 25.9 59 20 normal 4.2 67
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Table 7. The Recall Rate of the Attack Types in Top 10 Patterns

smurf nmap satan neptune back ipsweep warezclient portsweep
96.5 96 85.8 76.5 67.9 61.2 41.4 33.5

rounds, the matching functions reduce the number of unusual items dramatically
before the combining step.

Figure 2a shows the performance of the algorithm with different random or-
ders of the attributes. According to the figure, we see that the order of the
attributes does not affect the running time significantly. Also, the results are
almost the same for different orders of the attributes. The attack connections
are consistently in the top unusual patterns.

In the next experiment, we ran the program on the KDD dataset with the
size varying from 40K to 200K. Figure 2b shows that the execution time of the
program is linear with the growth of the data size. By replacing the memory-
based hashtable data structure and merge sort algorithm with the disk-based
versions, the algorithm can be used for any large dataset.

7 Related Work

Outlier detection has been extensively studied in the field of statistics [8]. The
method relies on using the underlying distribution of the dataset to detect the
outliers. The limitations of the statistical-based approach is that the underly-
ing distribution is usually unknown and that approach does not perform well
in high dimensions. The distance-based approach can discover outliers without
knowing the underlying distribution [5,2]. However, we have shown that there are
cases where the unusual observations can not be detected by the distance-based
approach.

A method [4] was introduced to discover anomalous records in categorical
datasets by performing the conditional probability tests on combinations of the
attribute values. The test requires that the values must be discretized into the
set of values. Hence, it is more suitable for a categorical dataset. Spiros et al
[18] introduces LOCI method to detect outliers by using multi-granualarity de-
viation factor (MDEF). The authors then propose an approximate version to
speed up the method. The method is mainly based on the modification of an
approximate nearest neighbor search algorithm (quad-tree) in order to avoid the
cost of computing the MDEF scores for all the points in data set. Thus, the
method will depend on the performance of the index tree in order to speed up
the method. Minh et al [15] introduced the adaptive dual-neighbor method in
order to detect small groups of outliers. The advantage of the method is that
it reduces the number of noise clusters. However, its time complexity is O(n2)
and it can not detect the feature-based unsual patterns. Recently, Kriegel et al
[12] have proposed the angle-based method that computes outlier scores based
on the angles of the points with respect to their local regions. The method aims
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to provide more accurate rankings of the outliers in high dimensions. The major
limitation of the algorithm is its time complexity. The naive implementation of
the algorithm runs in O(n3), whereas the approximate O(n2) version only pro-
duces top l outliers in high dimensions. In addition, the method can not detect
outliers if they are surrounded by other points.

Density-based clustering methods cluster the dataset based on the local den-
sity of the nearby items. The nearby items with the same density are clustered
together [6,9]. Density-based clustering can discover the clusters with different
sizes and shapes [6]. The main difference between this method and our method
is that this method focuses on clustering the dataset, whereas our method fo-
cuses on discovering unusual patterns based on individual features. We use the
similarity in the values of items in an individual feature to generate patterns.
The items that belong to large patterns are quickly removed from the learning
process. As a result, our algorithm can run fast.

8 Conclusion

We have introduced a fast method that can discover unusual observations by
generating rules from the feature-based samples. A rule is a set of strongly related
observations. The rules are then combined into patterns by using the α function.
When a pattern gains high support, it is considered normal. Otherwise, we will
try to merge the pattern with other patterns. If they still can not gain enough
support. It is considered unusual. The unusual patterns are ranked based on
their supports. In the experiments, we have compared our algorithm with other
possible alternatives, namely outlier detection and clustering, to discover unusual
patterns. According to the results, our approach yields the highest detection rate
with the most unusual items grouped into the correct corresponding patterns.
We have also introduced the score function to measure the degree of deviation of
the unusual patterns from the normal patterns. The running time complexity of
the method is O(ς × n×N × logN). The experiments confirm that our method
can run very fast in large datasets.
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Abstract. In-memory OLAP systems require a space-efficient representation of 
sparse data cubes in order to accommodate large data sets. On the other hand, 
most efficient online aggregation techniques, such as prefix sums, are built on 
dense array-based representations. These are often not applicable to real-world 
data due to the size of the arrays which usually cannot be compressed well, as 
most sparsity is removed during pre-processing. A possible solution is to iden-
tify dense regions in a sparse cube and only represent those using arrays, while 
storing sparse data separately, e.g. in a spatial index structure. Previous dense-
region-based approaches have concentrated mainly on the effectiveness of the 
dense-region detection (i.e. on the space-efficiency of the result). However, es-
pecially in higher-dimensional cubes, data is usually more cluttered, resulting in 
a potentially large number of small dense regions, which negatively affects 
query performance on such a structure. In this paper, our focus is not only on 
space-efficiency but also on time-efficiency, both for the initial dense-region 
extraction and for queries carried out in the resulting hybrid data structure. We 
describe two methods to trade available memory for increased aggregate query 
performance. In addition, optimizations in our approach significantly reduce the 
time to build the initial data structure compared to former systems. Also, we 
present a straightforward adaptation of our approach to support multi-core or 
multi-processor architectures, which can further enhance query performance. 
Experiments with different real-world data sets show how various parameter 
settings can be used to adjust the efficiency and effectiveness of our algorithms. 

1   Introduction 

Online analytic processing (OLAP) allows users to view aggregate data from a data 
warehouse displayed on demand, using a model that is usually referred to as the data 
cube [5], which includes operations such as slicing and dicing as well as roll-up and 
drill-down along hierarchies defined over dimensional attributes. Depending on the 
architecture of the OLAP system, the aggregate values are either pre-computed and 
stored or calculated from the base data on the fly, i.e. only when the respective value 
is requested. (Combinations of both approaches are also very common.) The latter 
strategy may result in longer times for retrieving and aggregating the necessary base 
values – especially if they have to be loaded from secondary storage media – but it is 
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usually faster regarding the changes of cell values, as expensive re-computation of 
stored aggregates is avoided. In addition, this approach is used by most in-memory 
OLAP databases which try to store all of the base data in RAM and calculate all ag-
gregate values online (except for recently computed aggregates residing in a cache).  

Efficient online aggregation can be achieved by transforming the base data accord-
ing to some pre-processing strategy. Well-known examples are the prefix-sum ap-
proach [8] and its variants, which allow the computation of arbitrary range queries in 
constant time, usually at the expense of update costs. More sophisticated strategies 
provide a variety of tradeoffs between query and update times [4, 9, 12]. The iterative 
data cube (IDC) [12] allows the combination of several of those strategies by choos-
ing a separate one for each dimension.  

One common feature of these methods is that that they are based on an (multidi-
mensional) array representation of the data. The advantage is a convenient and effi-
cient access to each cell through its coordinates. However, a serious drawback of the 
above strategies is that the pre-processing step usually requires filling also the empty 
cells and hence effectively turns sparse cubes into dense ones. This prevents an effi-
cient compression of the arrays, which thus require much more space than the original 
sparse data. In particular, this means that data which might otherwise easily fit into 
main memory cannot be accommodated any more in such a representation.  

As a way out of this dilemma, dense-region-based representations have been pro-
posed [2, 3, 11]. These approaches try to exploit what has been called the “dense-
region-in-sparse-cube” property [2]: in many real-world datasets, the majority of 
filled cells are not distributed evenly within the universe of all possible cells but are 
clustered in certain regions. Each of these regions can be represented as a sub-cube 
using any of the above methods, while outliers (filled cells that do not belong to any 
dense region) can be stored separately. Previous approaches have concentrated mainly 
on effectiveness, i.e. the reduction of sparsity, but have neglected efficiency, both for 
the pre-processing step of detecting dense regions and for the queries carried out on 
the resulting data structure. 

2   Preliminaries and Related Work 

For the purposes of this work, we consider a data cube C as a d-dimensional hyper-
rectangle of cells. Each dimension Di is a discrete range of all ni possible base values 
in that dimension; for simplicity, we assume Di = {1, …, ni}. We call ni the length or 
cardinality of dimension Di. 

It is obvious that a data cube C consists of ∏
=

d

i
in

1

cells. We refer to this number the 

capacity of C. The capacity must be distinguished from the size of C, which is defined 
as the number of cells which actually hold a value (other than zero). The size thus cor-
responds to the number of base records stored in the fact table for the cube. The den-
sity of C is the ratio of filled cells to all cells, i.e. density(C) = size(C) / capacity(C). 
The density of most cubes in real-world OLAP scenarios is very low (usually much 
less than 1%); this is what is referred to as cube sparsity.  
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Dense-region-based OLAP representations aim at identifying dense sub-cubes 
within a sparse cube. Each of them can be represented efficiently using the methods 
discussed above. They must then be maintained in some index structure allowing 
quick access to them during queries. An additional data structure is required for stor-
ing and accessing the outlier cells, which are not located inside any dense region. 

Clearly the main goal of any dense-region-based approach is the reduction of spar-
sity, i.e. the effective identification of clusters of cells. The sparsity reduction can be 
measured by the global density of the resulting set S of sub-cubes, which is defined as  
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Many clustering methods for identifying dense regions have been proposed, espe-

cially in the data mining literature, and we refer to [13] for an overview. Since in our 
scenario, however, the regions will be represented as hyper-rectangles, we aim at 
identifying rectangular regions and can thus use more straightforward methods. 

One of first approaches to dense-region-based OLAP was given in [2]. It proposes 
extracting dense sub-cubes through an algorithm called ScanChunk and then inserting 
these sub-cubes in an R-tree [7] structure, while outliers are indexed in ROLAP table 
form. However, the ScanChunk algorithm is not efficient for large data cubes. The 
reason is that its time complexity depends on the capacity of the data cube. The ca-
pacity of cubes can be extremely large, especially in higher dimensions. Our goal is to 
find a procedure whose complexity is a function of the size of the data cube rather 
than its capacity. Also, the clustering result is measured only by the global density. 
This overlooks another important factor, the number of resulting sub-cubes, which is 
a decisive factor for query performance.  

3   Data Structure and Query Processing 

Our data structure for dense-region OLAP is a combination of two variants of the R-
tree and the IDC [12]. The basic idea is to transform the extracted dense sub-cubes 
into IDCs and make them accessible through an R*-tree [1]. The outlier cells are 
stored in an aR-tree [10] with additional aggregate information in the inner nodes. 

An aggregate query on our proposed date structure is split into two sub-queries; 
one on the set of sub-cubes, the other one on the outliers. A range query in the R*-tree 
returns a list L of all the sub-cubes that intersect with the query range. The query is 
then translated into the appropriate range query for each cube in L. An IDC represen-
tation of these cubes will answer each of these queries efficiently, in our implementa-
tion in time O(1), independent of the size of the sub-cube or the query range. The 
combined aggregate of the results is the answer of the first sub-query.  

The second sub-query is carried out on the outlier cells, which are stored in the leaf 
nodes of the aR-tree (see Figure 1). A range query in this augmented tree does not 
have to return all cells in the query range. Instead, if the MBR of a whole subtree is 
contained in the query range, the aggregate value stored in the inner node pointing to 
this subtree can be used, making the query more efficient. In the example in Figure 1, 
if the MBR of entry P4 is fully contained in the range of a query, the aggregate value 
18 stored with P4 is used directly instead of descending further down the tree. 
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Fig. 1. Outliers are strored in an aR-tree [10] 

A straightforward way of further enhancing query processing, especially on multi-
core architectures, is the parallel computation of the two parts of a query in separate 
threads, since the two queries are completely independent of each other. Of course the 
workload in an arbitrary query will often not be divided evenly between the two sub-
queries. However, queries usually arrive in bulks because users request complete 
“views” usually consisting of hundreds or even thousands of range queries. Hence, 
each thread can process its share of all queries before the final result is created. We 
have achieved significant speedups in several of our tests using this strategy.  

4   Efficient Sub-cube Extraction 

Our approach is based on the method proposed in [3, 11], which divides the procedure 
into four basic steps – splitting, shrinking, merging, and filtering – where the merge 
step aims at reducing the number of sub-cubes. However, we identified several short-
comings in this step, which are avoided in our new merge procedure. In addition, we 
dispose of the shrinking step and improve the splitting algorithm, turning it more 
time-efficient, especially in higher-dimensional cubes. The tests described in [3, 11] 
were done using artificial data of rather low dimensionality (d ≤ 5). In our own ex-
periments, we were able to use real-world data cubes provided by an industrial part-
ner, where dimensionalities ranged from 6 to 13. Table 1 and Figure 2 illustrate the 
overall effect of the extraction for four example cubes.  

The table lists the global capacities (which corresponds the required space) before 
and after the extraction. The changes in (global) density through the sub-cube extrac-
tion can be seen in Figure 8. Obviously, the sparsity is reduced dramatically (except 
for DC1, which was very dense already). In the following subsections, we outline the 
different steps of the extraction procedure. 
 

Table 1. Capacities before/after extraction 

 DC1 DC2 DC3 DC4 

Original  
capacity 

171,000 3.9×1014 5.4×109 8.1×108 

Sum of 
subcube 
capaci-

ties 

164,160 361,033 25,078,968 

5,257,635 

Fig. 2. Densities before/after sub-cube 
extraction 
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4.1   Recursive Splitting 

We adopt the basic splitting method from [11], where for each dimension of the cube 
a histogram is computed which divides the dimension in dense and sparse intervals. 
The histogram hi of Di is an array of length ni, where the value hi[j] is the number of 
filled cells in the j-th slice of the cube when sliced along Di (see Figure 3). The histo-
grams are then used to detect dense intervals in each dimension by comparing the 
values against a predefined threshold α. The dense intervals then will only include 
cells with value greater than or equal to α. In Figure 2, using α = 1 will produce two 
dense intervals in each dimension of the initial cube. 

The Cartesian product of all dense intervals over all dimensions creates a set of 
sub-cubes, which are candidates for dense regions. The extraction procedure in [11] 
instantiates all these sub-cubes and then invokes the same splitting procedure recur-
sively for them. Apparently, many of these candidate cubes will be empty, and com-
puting the histograms for them is neither necessary nor useful. Our initial tests found 
that even checking them for emptiness to filter them out takes a lot of time. Moreover, 
the method suggested in [11] for computing the histograms using a Boolean array is 
not very efficient either. First, the array has a size proportional to the capacity of cube 
C (rather than its size) and hence should be compressed in order to be handled. Sec-
ond, in order to compute a histogram, all cells (filled or not) of the current cube are 
checked, which greatly decreases performance. (Recall that the histograms count 
filled cells, hence ideally only they should be looked at.)  

Our approach proceeds the opposite way: a coordinate list of only the filled cells 
for the current cube is created and processed. For each one, we identify the dense in-
terval to which it belongs in each dimension, using the histograms. We then check 
whether or not that sub-cube has already been created. If yes, we add the cell to the 
coordinate list of that sub-cube. If not, the cube must be created before. This way, 
only those cubes are initialized which actually contain any filled cells, which dramati-
cally reduces execution time. After all existing sub-cubes have been created, the same 
procedure is called recursively for each of them and a variable µ  storing the current 
recursion depth is adjusted (cf. Figure 3). The recursive splitting stops if a sub-cube is 
continuous, i.e. if all its dimensions consist of only one dense interval. 

The main bottleneck in our procedure is the time to check whether a sub-cube al-
ready exists, since this involves searching a potentially large collection of created 
cubes. This is especially relevant in the initial call of the recursive procedure, when 
the histograms contain a large number of dense intervals. To reduce the number of 
possible sub-cubes, a technique known as histogram flattening can be used. Flattening 
reduces the differences between adjacent histogram cells by averaging the value of 
each cell with those of its neighbours. The reduction is controlled by a flattening fac-
tor f, which defines the number of neighbours considered on each side. Details about 
flattening can be found in [11], where it is also proposed. However, it is neither moti-
vated there why flattening should be used, nor does the procedure improve the ex-
perimental results there; on the contrary, the sub-cube extraction always deteriorated 
the quality of the output (i.e. the global density) in the tests. In our own experiments 
we found that flattening can greatly reduce the time needed for splitting, especially 
during the first split of the initial cube. Therefore, in our work, a new factor called the 
flattening threshold µ is introduced to the flattening process. Flattening is applied only  
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l = 0 l = 1 l = 2 l = 3  
 

Fig. 3. Recursive splitting of a cube (l represents the recursion level) 

to sub-cubes whose depth l in the recursion is less than or equal to µ . So, if µ = 0, 
there is no flattening at all. For µ = 1, we apply flattening only to the original cube. If 
µ = 2, besides the original sub-cube flattening is applied to the sub-cubes resulting 
from the first split. Setting µ = ∞ will apply flattening to all sub-cubes on all levels.  

The effects of flattening vary for different values of µ. The speedup achieved for 
splitting is big when flattening is applied to the first level of splitting (µ  = 1), but does 
hardly increase further when splitting is called to further levels of the split procedure. 
The reason is that sub-cubes produced at a deeper level of splitting will not be split 
into many new ones. On the other hand, applying flattening only to the sub-cubes at 
the first levels of splitting will not reduce the final number of sub-cubes and outliers 
much. The number of sub-cubes and outliers resulting from the splitting is reduced as 
flattening is applied to sub-cubes down to deeper or all levels in the split procedure (µ 
is big or µ  = ∞). This enhances the query performance but requires more space as the 
resulting sub-cubes are less dense. Flattening when applied to only the first levels of 
the recursive split tree (i.e. small µ) does not significantly increase the overall capac-
ity of the resulting sub-cubes. Detailed results on flattening are given in section 5.1. 

4.2   Sub-cube Merging  

In order to reduce the number of sub-cubes, nearby cubes can be merged into one if 
the resulting cube is not too sparse, i.e. if its density is over a certain given threshold. 
The result of merging a set S of sub-cubes is the smallest cube encompassing all cubes 
in S, i.e. the minimum bounding region (MBR) of S. The merge step is very impor-
tant, as a lower number of sub-cubes improves query performance. Hence, the choice 
of the density threshold is one way of trading memory for query performance.  

A merge step is also proposed in [3] and [11]; however, we identified some serious 
shortcomings there. First of all, only pairs of sub-cubes are considered for merging. 
Such a method may miss potential candidates if, for instance, a set of k sub-cubes to-
gether could be merged but no single pair of them would reach the density threshold 
after merging just those two. The second shortcoming is that no method is described 
for efficiently detecting “nearby” candidate pairs. An exhaustive comparison of all 
possible pairs of sub-cubes will result in a number of checks that is quadratic in the 
number of sub-cubes before merging. This number will of course be much higher if 
triples or even larger subsets of sub-cubes are also considered as candidates. Third, 
the method does not check for potential overlaps of the merged cubes with other ex-
isting sub-cubes (in fact, the merge condition in [11] would not even detect if another 
sub-cube is completely inside the merged area and thus increase its density). While 
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overlapping sub-cubes will not result in incorrect answers if handled appropriately, it 
is surely undesirable, as reserving space for the same cells twice wastes memory.  

We propose the following improved method for merging sub-cubes, which uses an 
important property of the R*-tree, in which the set of sub-cubes is maintained: objects 
in close spatial proximity are likely to be stored in the same subtree [1]. Hence, on the 
leaf level we can expect that nearby sub-cubes will be stored as siblings. 

 
Algorithm. merge(set of subcubes S ,χ) 
1.  insert subcubes from S into R*-tree r1 
2.  r2 = new R*-tree 
3.  repeat 
4.      for each leaf node l in r1 do 
5.         if density(l.MBR) ≥ χ and r1.intersect(l.MBR) = l.entries 

and  r2.intersect(l.MBR) = Ø then 
6.             subcube c = merge(l.entries) 
7.             insert c in r2 
8.         else 
9.             insert l.entries in r2 
10.       end if 
11.    end for   
12.    r1 = r2 
13.    empty r2 
14.  until no more merging during for-loop 
15.  return set of subcubes in r1 

 
First, the sub-cubes resulting from the previous steps are inserted into an R*-tree 

r1. An additional R*-tree r2 is created for the newly merged sub-cubes and the sub-
cubes that will not be merged.  Each leaf in r1 is checked for merging. For each leaf 
MBR (i.e. the minimum bounding hyper-rectangle containing all its entries), we com-
pute the density (sum of sizes of the contained sub-cubes divided by the MBR capac-
ity). If it is greater than or equal to the merge threshold χ, we also check whether the 
leaf MBR overlaps any of the newly merged sub-cubes (stored in r2) or if it overlaps 
any entries of other leaves in its own R*-tree r1. If no merging is done (the leaf MBR 
was not dense enough or it overlaps with other sub-cubes), the leaf entries are inserted 
in r2 without merging. Otherwise, the leaf MBR forms a new sub-cube and is inserted 
in r2. When all the leaves in r1 have been checked (lines 4-11), we replace r1 with r2 
and empty r2. If any cubes were merged in the for-loop, the procedure is repeated. 
Otherwise, the set of sub-cubes in r1 is reported as the result of the merge. (To restrict 
the time taken for this step, the procedure could alternatively terminate after a fixed 
number of iterations given as an upper limit.) 

This method for merging overcomes the shortcomings of the approach in [11]. In-
stead of checking all pairs of sub-cubes, our method only checks candidate sub-cubes 
that are spatially close, based on the properties of the R*-tree. This reduces the num-
ber of candidate sets to be checked in each iteration from ⎡n2/2⎤ to ⎡n/m⎤, where n is 
the number of sub-cubes before merging and m is the minimum number of entries in 
each node of the R*-tree. In addition, there is no limitation to pairs of cubes in our 
approach. If a leaf is dense enough, it will be merged regardless of how many entries 
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Fig. 4. Effects of merging: change in density (left), reduction rate of sub-cubes (centre), and 
speedup rate of query performance (right) 

 it includes. Finally, no overlapping occurs in our merge procedure. This check is 
done quite efficiently through two R*-tree range queries (one each in r1 and r2). Still, 
the performance of our procedure can be affected negatively if the size of the R*-tree 
gets very big and the insertion and search becomes slower. This can happen if hun-
dreds of thousands of sub-cubes result from splitting. However, this problem can be 
handled by reducing the input set through the use of histogram flattening during the 
split step.  

The effects of merging can be seen in Figure 4. We chose χ = 0.5 (i.e. newly 
merged sub-cubes must be at least 50% dense). As can be seen, merging causes the 
global density of the sub-cubes to decrease. This was expected since merging nearby 
sub-cubes will usually add sparse regions. However, this reduction of density is not 
nearly as drastic as the gain in density due to the splitting step.  

Apparently, merging can significantly reduce the number of sub-cubes (which is 
the main goal of this step). As can be seen in Figure 4 (centre), a reduction by 28% to 
85% was achieved in our tests. (This number can be increased by lowering the merge 
threshold, if memory is available.) The effects of this reduction on query performance 
are significant, as shown in Figure 4 (right). The speedup for queries is almost propor-
tional to the reduction rate. Hence, significant speedup can be obtained through a re-
duction of sub-cubes, achieved in a trade-off with extra space. One might expect DC1 
to give a better speedup ratio than DC3, because it had a bigger sub-cubes reduction 
rate. The reason it did not occur is that in DC1 the number of sub-cubes was just re-
duced from two to one through merging, which hardly changed the R*-tree size.  

4.3   Filtering 

Since splitting is recursive, it will often produce very small sub-cubes, many of which 
may still be left after merging. If the size of such a cube is below a certain threshold δ, 
it makes more sense to consider the filled cells as outliers than to maintain a large 
number of such small sub-cubes. The value of δ is crucial for the balance between the 
number of sub-cubes and the number of outliers. A good choice of this threshold is 
mostly based on the strategy chosen for the representation of sub-cubes but can also 
depend on the distribution of the data. Figure 5 shows experimental results for three 
different cubes (the merge threshold used was χ = 0.5 in all cases).  

Obviously, with increasing δ the number of sub-cubes (left column) decreases and 
the number of outliers (centre column) goes up. The right column shows the time 
taken for 10,000 aggregate queries in the resulting structure (the R-trees were not que-
ried in parallel in this test). For the first two cubes, a good balance between sub-cubes 
and outliers is reached at δ = 32 and δ = 16, respectively, while for the third one  
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(b) Number of sub-cubes and outliers, and query time for example cube 2.

(a) Number of sub-cubes and outliers, and query time for example cube 1.

(c) Number of sub-cubes and outliers, and query time for example cube 3.  

Fig. 5. Effects of filtering with different values of δ on the number of sub-cubes (left), number 
of outliers (centre), and processing time (in sec.) for 10,000 queries (right) 

(bottom row), the number of (small) sub-cubes is so low that filtering with δ ≤ 64 has 
hardly any effect. 

5   Further Experimental Results 

5.1   Histogram Flattening 

To test all the effects of flattening method mentioned in section 4.1, we performed a 
set of experiments on an extremely sparse cube (density ≈ 5.2 × 10-16) with 13 dimen-
sions, which produced more than 385,000 sub-cubes during the splitting step. In this 
experiment, we applied flattening using different values of the flattening level thresh-
old µ. The horizontal axis in all figures represents different values for µ . Again, µ  = 0 
means no flattening, µ  = 1 means that flattening is applied only to the original cube, 
and so on. In order to reduce the large number of sub-cubes, we also aimed to in-
crease the number of merges by chose a very low merge threshold χ = 0.01. 

Figure 6 illustrates the change in the number of sub-cubes after each step and the 
final number of outliers after merging. As shown in this figure, the number of sub-
cubes and outliers decreases as flattening is applied down to deeper levels in the split 
procedure. From Figures 6a and 6b, we can see that the reduction rate in the number 
of sub-cubes between µ values 4, 5, 6 and ∞ is higher than between values 0, 1, 2 and 
3. The reason why the number of outliers also goes down with deeper flattening is 
that many outliers are “swallowed”, as the sub-cubes grow larger. This can be seen in 
Figure 7, which shows how the capacities increase as the flattening is applied further 
to deeper levels of splitting. However, the capacity is still far away from that of the 
original data cube (≈ 6.1 x 1021). 
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 (d) Number of outliers. (c) Number of sub-cubes after merging.

(b) Number of sub-cubes after filtering ( =8). (a) Number of sub-cubes after splitting.

 

Fig. 6. Effects of flattening with different values for µ 

  (a) Sum of sub-cube capacities after splitting  (b) Sum of sub-cube capacities after merging 
 

Fig. 7. Effects of flattening on capacities 

  (a) Time for splitting (sec)   (b) Time for merging (sec)   (c) Time for 10K queries (sec) 
 

Fig. 8. Effects of flattening on performance 

As mentioned before, when flattening is only applied to a few levels (up to 3), it 
does hardly affect the overall capacity. However, as is illustrated in Figure 8, even 
when only flattening at the first two levels, it greatly reduces the time required for the 
split (a) and merge (b) procedures. Also, the time for querying in the final data struc-
ture decreases due to the lower number of sub-cubes (c). 

To summarize, flattening has effects on both efficiency and effectiveness of our ex-
traction procedure. If it is applied with a small value for µ, we can expect a faster 
splitting with no significant change in the output of the procedure. Hence, we advice 
to use flattening at least with flattening level µ = 1. If memory limits are less impor-
tant, flattening gives us the ability to use some extra space to reduce the number of 
sub-cubes after splitting; this speeds up the extraction procedure (especially the merge 



 Efficient Online Aggregates in Dense-Region-Based Data Cube Representations 187 

 

Fig. 9. Comparison between sequential (blue) and parallel (red) query computation times (in 
sec) for different values of δ in the same data cubes as in Figure 5 

step) and most importantly enhances the performance of queries. Hence, the flattening 
level threshold µ  is another way to adjust the trade-off between query time and space.  

5.2   Parallel Query Computation 

Several experiments were performed to test the effects of carrying out sets of queries 
in parallel. First, a set of 10,000 “bad case” queries was created for each cube and 
executed sequentially. Then a parallel version was carried out using two separate 
threads, where one thread computed the outputs from the sub-cube R*-tree and the 
other thread the outputs from the outlier aR-tree. Four cubes were tested. The results 
are shown in Figures 9 and 10. Just like in Figure 5, the horizontal axis represents the 
different values of filtering threshold minimum size δ. 

As can be seen in Figure 9, if either (almost) only sub-cubes or only outliers exist 
(i.e. very small or very big δ), the parallel version will not provide any significant 
speedup, as one sub-query always dominates the search time by far. However, even if 
the parallel version does not necessarily enhance the performance at the optimal point 
of the sequential computation, the parallel version is never slower at that point. Thus, 
if we have a good configuration in the sequential version of the program with both 
outliers and sub-cubes, the parallel version can be expected to give a better or at least 
the same performance (but not worse). 

For the sparsest cube in our test, the parallel computation of queries showed the 
biggest effects, as can be seen in Figure 10. For example, when δ = 8 and χ = 0.01, the 
time required by the parallel version is about 30% less than for the sequential version. 
Hence, our approach seems to be effective especially in cases with high sparsity of the 
original cube and a low merge threshold. 

 

Fig. 10. Sequential vs. parallel queries in a very sparse cube 
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6   Conclusions 

We have presented a dense-region-based data structure for in-memory OLAP, which 
can be constructed a lot more efficiently than earlier approaches. The resulting global 
density can be influenced by two parameters, the flattening level and the minimum 
merge threshold, which allows for an adjustable trade-off between query performance 
and memory usage. In addition, a filtering threshold can be used to fine-tune the ratio 
of sub-cubes to outliers for faster query processing. Tests with several real-life data 
cubes have confirmed the usefulness of our approach, especially for very sparse 
cubes, and have shown good choices of the parameters for different cubes. 

The most important future work involves a possible automation of the selection of 
parameter values on the basis of heuristics derived from our tests, which will greatly 
improve the usability of the approach when integrated in commercial OLAP systems. 
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Abstract. Enhancing on line analytical processing through efficient cube
computation plays a key role in Data Warehouse management. Hashing,
grouping and mining techniques are commonly used to improve cube
pre-computation. BitCube, a fast cubing method which uses bitmaps
as inverted indexes for grouping, is presented. It horizontally partitions
data according to the values of one dimension and for each resulting frag-
ment it performs grouping following bottom-up criteria. BitCube allows
also partial materialization based on iceberg conditions to treat large
datasets for which a full cube pre-computation is too expensive. Space
requirement of bitmaps is optimized by applying an adaption of the
WAH compression technique. Experimental analysis, on both synthetic
and real datasets, shows that BitCube outperforms previous algorithms
for full cube computation and results comparable on iceberg cubing.

Keywords: Data Mining, Cubing, Data Warehouse, Bitmap.

1 Introduction

Since the introduction of Data Warehouse and OLAP systems, research has fo-
cused in the design of efficient algorithms for cube pre-computation. Given a
base table R, the data cube can be defined as a generalization of the standard
GROUB-BY operator in which the aggregation of every combinations of at-
tributes, appearing in the group-by clause, are computed. A n-dimension data
cube is composed of cells of the following form (v1, v2, · · · , vn, c) where c is a list
of measures. A cell can have a value vj or a * symbol to indicate that all values
of that dimension have been grouped. A cell is called m-dimensional, if and only
if there are exactly m (m ≤ n) values among (v1, v2, · · · , vn) which are not ∗. It
is called a base cell if m = n and aggregate cell if m = 0.

Different kinds of cubing are possible. The full cube computation allows the
pre-computation of all parts (cuboids) of a data cube [6]; the iceberg cube intro-
duces conditions to materialize only a subset of a cube satisfying them [3]; the
closed cube compresses a cube by representing only closed cells and predicting
the remaining from them [14]; and shell-fragment cube selects in advance the
dimensions of interest [7]. In [13], full and iceberg cubing computations are rec-
ognized as fundamental step for other categories. However, iceberg cubes can be
efficiently computed only for measures having the anti-monotonic property [2].
For iceberg conditions involving non antimonotonic complex measures, such as
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AVERAGE, pruning strategies cannot be applied. Therefore, full cube mate-
rialization is needed. Nevertheless, in the cases in which full materialization is
inefficient, complex measures can be transformed into weaker, but antimonotonic
measures (i.e. average can be changed into top-k average measure [13]).

Cubing algorithms perform aggregations following two major approaches: top-
down and bottom-up. In a top-down model, group-bys with a small number of di-
mensions are obtained from the ones with a higher number of dimensions through
caching intermediate computations [1,15,10,4]. Generally, these algorithms are
not suitable for iceberg cubing, since before pruning, the whole cube must be
computed. In the bottom-up approach, nodes associated with a small number
of dimensions are ancestors of nodes with a higher number of dimensions. This
model (introduced by BUC [3]) uses the a-priori based strategy [2] to compute
only cubes satisfying the iceberg condition. Other works include hybrid algo-
rithms [13], cube compressions [5], and cubes for very high dimensional data [7].
More recently, in the case of Relation-OLAP, the management of hierarchies has
been taken into account [8], see [9] for a survey also.

In this paper, BitCube, a bottom-up algorithm for full and iceberg cube com-
putation over sparse relations is introduced. It partitions the base table into hor-
izontal fragments with respect to leftmost ordered dimension and unlike BUC, it
does not recursively sort the remaining dimensions into partitions. BitCube uses
bitmaps as lookup tables, that is inverted indexes [7], to identify values shared by
the same records in a partition, allowing fast aggregation computations. Bitmaps
are compressed by using an adaptation of the Word-Aligned Hybrid (WAH) [12]
algorithm. Such a compression leads to a significative improvement of the perfor-
mance of BitCube in terms of both space requirements and running time when
skewed data is used. BitCube has been compared with full and iceberg cubing
algorithms (BUC [3], MM-Cubing [11], StarCubing [13] and CURE [8]) on real
and synthetic datasets. Experiments show that BitCube outperforms all other
compared systems on full cubing and results comparable on iceberg cubing.

The paper is organized as follows. Section 2 briefly reviews previous meth-
ods. Section 3 introduces BitCube algorithm. Experiments and comparisons are
reported in Section 4. Section 5 concludes the paper and draws future research
directions.

2 Related Work

In what follows, the main algorithms for full and iceberg cubing are summarized.
Algorithms are described according to their computation strategy: top-down,
bottom-up and mixed. Finally, approaches to treat very large amounts of data
and to deal with hierarchies are reviewed.

Top-down Approaches. Following a top-down spanning tree, group-bys with a
small number of dimensions are obtained from the ones with a higher number
of dimensions through caching intermediate computations. Top-down methods
include PipeSort, PipeHash, Overlap [1], MultiWay Array Cube [15],
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PartitionCube [10], and Grouping Set Query [4]. MultiWay is usually taken as a
representative example. The main idea is the following: since group-bys need at
the time only a portion of the data, the base table is compressed and partitioned
into subcubes (chunks) small enough to fit into main memory. Morever, different
group-bys are computed in one pass by properly defining chunks computation
order. Such a strategy results inefficient when the dimensionality is high and
data are sparse. Generally, top-down cube approaches are not suitable for ice-
berg cubing, since, in order to compute all cuboids in parent nodes, it requires
to know if children cuboids exceed minimum support.

Bottom-up Approaches. In the bottom-up spanning tree, nodes associated with
a small number of dimensions are ancestors of nodes with a higher number of
dimensions. This model (introduced by BUC [3]) allows to prune unnecessary
computations by introducing a-priori based strategy [2] (iceberg condition). If a
node does not meet the minimum support, its descendants do the same. BUC
reads the base table and partitions it based on the ordered values of a dimension.
For each partition, all its cuboids are calculated and recursively the algorithm
continues on the remaining dimensions. Full cubing is straightforward computed
by setting the iceberg condition to 1. The method proposed here, BitCube, fol-
lows also a bottom-up approach. It partitions the base table into fragments with
respect to leftmost ordered dimension. However, unlike BUC, it does not recur-
sively sort the remaining dimensions into partitions.

Mixed Approaches. Star-Cubing [13] combines top-down and bottom-up ap-
proaches. Inspired by MultiWay [15], it simultaneously aggregates multiple di-
mensions. Then, it partitions parent nodes in a bottom-up fashion and prunes
descendants that do not satisfy the threshold. It organizes input tuples in hyper-
tree structure (star-tree). To build the star-tree, the star-table is needed. The
star-table is constructed by traversing the associated subtree and counting the
frequencies of each attribute.

Approaches for Very Large Amount of Data. Range Cube [5] allows the construc-
tion of compressed cubes without any loss of precision. Range Cube exploits
correlations among attributes values and uses them to compress the base ta-
ble. It uses a hyper-tree structure (range-trie). Unlike star-tree, where one node
represents one dimension, in a range-trie a node represents shared attributes
values, i.e., a distinct group of tuples to aggregate. In [7], a new computational
model for high dimensional datasets is proposed. The method is based on the pre-
computation of “shell fragments” (i.e. vertical partitions of the dataset) together
with their materializations. Efficiency is obtained by using “inverted indexes”
(i.e. for each value in each dimension, a list of record-ids associated with it is
stored). Finally, intersection among fragments is performed online by computing
full group-bys on desiderated dimensions. BitCube uses inverted indexes also and
following suggestion in [7], it optimizes them by using bitmaps. However, unlike
previous methods, BitCube uses bitmaps also as lookup tables to identify values
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shared by the same records. Therefore, this allows to speed-up the aggregation
process by reducing the number of possible candidates to group.

Hierarchical Relational OLAP. Most of the existing Relation OLAP cubing sys-
tems focus on flat datasets and do not include hierarchies in the dimensions.
Recently in [8], authors proposed CURE, a method to construct data cubes on
large datasets with arbitrary hierarchies. Hierarchies make cube computation
harder since the search space becomes bigger. Authors designed a framework
based on the fact that cubes contain a large amount of redundant data. Their
algorithm is able to efficiently compute cubes on flat and hierarchical data.

3 BitCube

BitCube is a bottom-up cubing algorithm. In what follows full and iceberg cube
computation are presented.

3.1 Full Cubing

Let R be a base table on dimensions d1, d2, . . . , dn. Let Ci be the cardinality of
di for i = 1, . . . , n. BitCube partitions the base table into fragments with respect
to the leftmost ordered dimension.

For each dimension dj the values present in a partition and the number of
their occurrences are stored in a dynamic vector called Ddj . For example, in
Figure 1, a partition of a dataset having 4 dimensions (A,B,C,D) is reported.
Each dimension in the dataset has cardinality 9. The dataset was ordered with
respect of dimension A. The dynamic vector for B contains the values of B

Fig. 1. BitCube Data Structures. A partition of a dataset having 4 dimensions
(A,B,C,D).
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present in the partition, {5, 7, 8}, together with the number of records containing
them, i.e. count of 5 is 3. BitCube uses bitmaps (i) as inverted indexes to locate
positions of dimension values into records (first level bitmaps) and (ii) as lookup
tables to identify values shared by the same records (second level bitmaps).

Definition 1 (First Level Bitmap). Let P be a partition of k records of a
base table R. For each dimension di and for each value v in P , a first level
bitmap BFL

di
[v] is a bitmap of k bits where BFL

di
[v][j] = 1 if the dimension di has

value v in the j-th record of P .

In Figure 1, the first level bitmap of B, BFL
B , is defined for each value that B

assumes in the partition. BFL
B [5] = 10101. Since the first, the third, and the fifth

bits are set, value 5 appears in records 1, 3, and 5.

Definition 2 (Second Level Bitmap). Let P be a partition of k records of a
base table R. Let Ddi be the dynamic vector of di with respect to P . For each
value v of di and for each dimension dt of cardinality Ct, t > i, a second level
bitmap BSL,dt

di
[v] is a bitmap of h bits, h = min(Ct, k), where BSL,dt

di
[v][j] = 1 if

both Ddt [j] and v appear in at least one record of P .

For example, in Figure 1, BSL,C
B [5] = 11000. Since the bit in position 2 is set,

value 5 of B is present together with the second value of the dynamic vector of
C, that is 4 (DC [2] = 4), in at least one record. Notice that, in the partition,
the values 5 of B and 4 of C are present together in two records. This can
not be deduced by looking at the second level bitmap only. The intersection
of BFL

B [5] = 10101 and BFL
C [4] = 00111 will yield the records sharing values

5 and 4.
BitCube uses a tree, called BitCubeTree, to guide the aggregation process. It

is defined as follows.

Definition 3 (BitCubeTree). Given R(ds, . . . , dn) a BitCubeTree is a bottom-
up spanning tree T , with the following properties:

– the root of T contains d1;
– a node in the tree storing the dimension di has n-i children representing

di+1, . . . , dn;
– a node of level i allows the aggregation of (i+1) dimensions stored in the

path from the node up to the root (i.e., level 1 means group-by on pairs, level
2 group-by on triples and so on).

Figure 1 reports a bitCube computation on a partition of a dataset having four
dimensions.

A Header-table dynamically maintains the dimension values of the BitCube-
Tree path under analysis. Moreover, for each entry, it stores a bitmap resulting
from the intersection of the first level bitmaps of the values in the path from that
entry up to the root. In Figure 4, the header table related to the aggregation of
ABCD on values (5, 5, 4, 1) is given; the quadruple is present two times in the
partition (see Figure 1).
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Figure 2 (top left), reports the details of BitCube algorithm. BitCube iterates
for k = n, . . . , 1 over the relation R(dk, . . . , dn). At each time a BitCubeTree
with root dk is built (Line:3), records of R with respect to dk are sorted, and
partitioned into horizontal fragments P1, P2, . . . PCk

(Line:4). For each value of
di its aggregation value is stored (Line:7). Next, first and second level bitmaps
are constructed (Lines:8-12) and the aggregation process runs on the current par-
tition (Line:13). Notice that, the second level bitmaps can not be constructed
for the dimension dn (Lines:9-12) since there are no further dimensions with
which it can be combined. Moreover, when the partition is made for the last
dimension dn, no further aggregations need to be computed and the computa-
tion stops (Line:8). In Figure 2 (top right), details of the Aggregate procedure
are reported. The algorithm recursively computes all the group-bys inside the
partition through an in-order visit of the BitCubeTree (see Figure 3 for all ag-
gregations related to partition in Figure 1). At each step the aggregation of the
dimensions in the path from the root to the current dimension is computed. The
aggregation of k dimensions is obtained by using knowledge from the grouping
of the previous k − 1 dimensions in the following way. Let dk be the dimen-
sion of the child of the root (Line:2). Candidate values to be aggregated are
obtained by computing the intersection of second level bitmaps BSL,dk of dk

BitCube(R, d1)
// R: Base table
// d1: Dimension used to start computation
1 for k = n to 1 do
2 T ← BitCubeTree(dk);
3 r ← root[T ]; // the dimension of r is dk

// each part. has the same value on dk
4 Partition(R, dk);
5 for each partition Pi do

6 if |Pi| ≥ minSup then //iceberg cond
7 WriteOutputRec;
8 if k < n then
9 for j = k to n-1 do

10 BF L
dj

← Build first level bitmap;

11 BSL
dj

← Build second level bitmap;

12 BF L
dn

← Build first level bitmap;

13 Store in a Header-Table BF L
dk

and the

value of the dimension dk;
14 Aggregate(r,|Pi|);

end BitCube.

Aggregate(r, size)
1 for each child c of r do
2 dk ← dimension of c;

// Comp. the candidates vals to aggregate
3 Compute ISL

dk
as the and of BSL,dk of

dk ancestors current values;
//Verify candidates with first lev. bitmaps

4 for each candidate value v of dk in ISL
dk

do

5 Compute IF L
dk

as the and of BF L
dk

[v] and

IF L of the father of dk;
6 Store IF L

dk
in the entry dk of the header table;

7 count ← # of bits 1 in IF L
dk

;
8 if count ≥ minSup then //iceberg cond
9 WriteOutputRec;

10 if c is not a leaf then
11 if count = 1 then

12 DirectAggregate(IF L
dk

);

13 else
14 Aggregate(c, size);

end Aggregate.

AggregateFirstLevel(c, size)
// dk is the dimension of c

1 for each value v of Ddk
such that

count of v ≥ minSup do //iceberg
2 WriteOutputRec;
3 if node c is not a leaf then //iceberg
4 if count of v is 1 then
5 DirectAggregate(dk, v);
6 continue;
7 else
8 Aggregate(c, size);

end AggregateFirstLevel.

Fig. 2. BitCube Algorithm and the Aggregate procedure called by BitCube. On the
bottom, the procedure to aggregate pairs. This can be added in the pseudo-code of
Aggregate and executed if the level of the child node is 1.
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Fig. 3. BitCubeTree and all aggregations related to partition in Figure 1. Notice that,
the tree is visited from right to left.

ancestors current values (Line:3). This allows to fast identify dimension values
that may be shared by the same records in the current partition. For example,
in Figure 4, the intersection of BSL,D

B [5] = 11000 and BSL,D
C [4] = 11000 yields

that values of D in position 1 and 2 in the dynamic vector, that are 1 and 3
respectively, are the candidates to be aggregated with the triple (5,5,4). In order
to discard false positives, for each candidate value v of dk, its first level bitmap
BFL

dk
[v] is intersected with the bitmap IFL of its father dimension (Lines:4-5).

The resulting bitmap, IFL
dk

, is then stored in the entry header table related to
current value v of dk (Line:6). In Figure 4, by intersecting BFL

D [3] = 10010 and
IFL
C = 00101 the bitmap 00000 is obtained. This means that no record in the

partition has the tuple (5,5,4,3). Therefore value 3 is a false positive. If the num-
ber of bits in IFL

dk
equal to 1 satisfies the iceberg condition, the aggregation is

written (Lines:7-8). The algorithm proceeds recursively until the current node is
not a leaf (Line:14). However, if this number is 1, the aggregation of v with the
ancestors values (vs, . . . , vk−1, v) is present in one record only (in Figure 3, these
cases are represented by paths in which all nodes have a single child in the tree).
This allows to obtain all higher dimensional cuboids directly from candidates as
follows. The tuple (vs, . . . , vk−1, v) is grouped with all values of the remaining
dimensions dt (t > k) having position j in their dynamic vector for all j such
that BSL,dt

dk
[v][j] = 1 (Line:12). Notice that, since bitmaps for the root dimension

are trivial, by slightly modifying the Aggregate algorithm, their computation
can be avoided.

The aggregation procedure discussed above has been optimized when the al-
gorithm analyzes nodes of level 1 of the BitCubeTree. Here group-bys on pairs
are computed. Since the first dimension (root) in each partition assumes only
one value, aggregations with children dimensions can be simply computed using
the count of occurrences of their values stored in the dynamic vector. If the
count of a value v satisfies the iceberg condition the aggregation is written. For
example, the measure of the aggregation pair (5,5,*,*), see Figure 3, can be di-
rectly obtained by the count of value 5 for B (see Figure 1). Figure 2 (bottom)
reports the pseudo-code for pair aggregation. This can be added in pseudo-code
of Figure 2 and executed if the level of the child node is 1.
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Fig. 4. BitCube aggregation major steps

Notice that, the above algorithm and the related examples uses the COUNT
operator as aggregation measure. The proposed method can be extended to
support other aggregation functions in the following way. During the AND op-
erations, the offset of set bits in the first level bitmaps will be used to retrieve
the measure values of the records in the partition. These values will be used
to compute the needed aggregation functions (SUM, MAX or MIN of measure
values).

3.2 Iceberg Cubing

In the iceberg cube construction, BitCube allows to prune unnecessary com-
putations by introducing a-priori based strategy. It discards partitions with a
number of records less than the minimum support. For each value of dimension
di meeting the constraint (Figure 2 top left, Lines:5-6), its aggregation value is
stored (Line:7).

During the iceberg cube computation, the visit of the BitCubeTree is per-
formed from right to left. Such a visit allows to compute pair aggregations which
will be used to speed-up higher dimensional aggregations located at the left side
of the tree. For example, in the aggregation tree of Figure 3, dimensions A and
D are first aggregated. Then, this knowledge is used to optimize the aggregation
of A, C and D in the following way. First, a third level bitmap (iceberg bitmap)
is introduced. It is associated to each dynamic vector of each dimension di.

Definition 4 (Iceberg Bitmap). Let P be a partition of a base table R with
respect to a value w. Let Ddi be the dynamic vector of di with respect to P . Let
t be the size of Ddi in the partition. An iceberg bitmap Biceberg

di
is a bitmap of t

bits where Biceberg
di

[v] = 1 if the group-by of the pair (w,v), where v is a value of
di, satisfies the iceberg condition.
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Fig. 5. BitCube Iceberg aggregation with iceberg condition count(*)>1. The aggregat-
ing process of dimensions ACD on values (5, *, 2, 3) is reported.

An example of iceberg bitmap follows. Let consider the partition of Figure 1
in which 5 is the value of the dimension A, and let the iceberg condition be
count(*)>1. In Figure 5, Biceberg

D [1] = 1 because the pair group-by (5,1) satis-
fies the iceberg condition. The same applies for the pair (5,3), whereas the bit
Biceberg

D [9] = 0 because the count of group-by (5,9) is 1. During the execution
of AggregateFirstLevel procedure (Figure 2 bottom), the iceberg bitmap
of dimension dk is computed. Moreover, iceberg bitmaps of dimensions di, for
k < i ≤ n have been already computed. Before starting the tuple aggregation
(line 8 of Figure 2), the entries of BSL

dk
in the current value of dk, correspond-

ing to values of dimensions di, for k < i ≤ n, which do not satisfy the iceberg
condition, are set to 0. This is done by intersecting BSL

dk
in the current value

of dk with the iceberg bitmaps of dimensions di, for k < i ≤ n. Such an in-
tersection yields the set of candidates of each dimension di, k < i ≤ n, that
must be verified. The verification will be done through the aggregate procedure
(Figure 2, Lines 4-9). In the running example, Figure 5, the group-by between
dimension A and C in the values (5,2), satisfies the iceberg condition (recall that
the condition is count(*) >1). The candidate elements of dimension D which can
be aggregated with A and C (in the values (5,2)) are the ones obtained by in-
tersecting BSL,D

C [2] = 01100 with Biceberg
D = 110. The filtered bitmap will be

BSL,D
C [2] = 01000. The bit set in BSL,D

C [2] corresponds to value 3 of dimension
D. Candidates are verified through the procedure of Figure 2 (lines 4-9). That is,
BFL

C [2] = 01100 is intersected with BFL
D [3] = 10010. The tuple (5 * 2 3,1) does

not satisfy the iceberg condition. Therefore, BSL,D
C [2] = 00000. This implies that

value 2 of dimension C cannot be further aggregated.

3.3 Management of Large Bitmaps

A non trivial shortcoming of the proposed method is memory requirement. Large
datasets generate big bitmaps which influence the behavior of the proposed sys-
tem in terms of used space. For example, in the case of skewed data, long runs
of zeros, which can be compressed, are stored inside bitmaps. A variation of
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the Word-Aligned Hybrid (WAH) [12] bitmap compression algorithm has been
applied. WAH is an efficient compression method based on the run-length en-
coding. A bitmap is represented using a counter and a mixture of 0s and 1s. The
basic idea of run-length code is to represent list of consecutive identical bits by
its length together with its value. The leftmost bit of a word (a word has 32
bits) is used to distinguish a literal word or a fill word. A literal word contains a
list of 31 bits values. The second bit of a fill word indicates the fill bit (0/1) and
the 30 lower bits store the length. Our variation of WAH maintains the words
literal only. For each run of literals (one or more word literals) a pair of integer
values are stored (compressed literal range). The first represents the position of
the word literal in the non compressed bitmap, the second stores the number
of consecutive words literal present in the run increased by the length of the
previous run of literals. Such an algorithm is able to produce smaller bitmaps
and has been equipped with the AND boolean operator. In the next section, the
compressed version of BitCube will be referred as CBitCube.

4 Results

To evaluate the efficiency of the proposed method, experimental analysis on both
synthetic and real-world datasets has been performed. BitCube and CBitCube
have been comparedwith full and iceberg cubing algorithms (BUC [3], MM-Cubing
[11] and StarCubing [13]) using the C++ implementations of the Illimine pack-
age1. BitCube has been compared with the implementation of CURE [8] provided
by the authors.Comparisons ofBitCube with MultiWay [15] arenot provided since
its implementation is no longer available. However, StarCubing, in [13], has been
shown to be more efficient than MultiWay in full cube computation. Experiments
were performed on a server HP Proliant DL380 with 4GB RAM, equipped with
Linux Debian Operating System. BitCube was implemented in C++ language2.
In the experiments, S represents the data skewness (zipf) of the data (i.e. as big-
ger is S as more skewed are the data, S = 0 represents uniform data). Synthetic
datasets have been obtained using the generator provided in the Illimine pack-
age. Following [13], two kinds of distribution have been considered, uniform and
skewed with Zipf. Input data have been generated as flat files of integer ranging
from 0 to 10000. Algorithms running times include output writing. Data reading
is not considered because it is negligible. All the algorithms were executed using
the COUNT operator as aggregation measure.

Concerning real dataset the Weather Dataset3 and the Retail Dataset have
been used. The Weather dataset consists of 9 dimensions and 1,015,367 tuples.
It represents weather conditions in September 1985. The following dimensions
with the respective cardinalities have been selected: station-id (7037), longi-
tude (352), solar-altitude (179), latitude (152), present-weather (101), day (30),

1 http://illimine.cs.uiuc.edu/download/index.php
2 All the experiments together with the source code will be available at:

http://ferrolab.dmi.unict.it/bitcube/
3 http://cdiac.ornl.gov/ftp/ndp026b/
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weather-change-code (10), hour (8), and brightness(2). Many of the attributes
were highly skewed, and some of them were also significantly correlated (e.g.
latitude, longitude). The Retail Dataset4 was obtained from a small enterprise
operating in the field of information systems for retail. It is a sparse relation con-
sisting of 6 dimensions and 300,000 tuples. It represents detail of transactions of
December 2004. The following dimensions with the respective cardinalities have
been selected: customer-id (10439), transaction-id (55323), year-month-day-hour
(58628), quantity (15), item-id (8456), and item-description (8428). Two of these
attributes were significantly correlated (e.g. item-id, item-description).

In what follows, comparisons with CURE are not reported because CURE is
released on Windows system whereas our system is optimized for Linux. How-
ever, we tried, on uniform data and for flat cube computation, the behavior of
the two methods on the two different platforms. Experiments showed that they
are comparable.

Full cube computation. In the first set of experiments (Figure 6, Figure 7)
BitCube is compared with all other algorithms with respect to the full cube
computation on uniform synthetic datasets. Cardinalities and dimensions have
been analyzed in order to measure sparseness and the dimensionality effects.
Figure 6 depicts algorithms behavior varying the dimensions from 3 to 10 with
cardinalities from 10 to 10000. Experiments showed that BitCube performances
increased with respect to the sparsity of the relations and the number of dimen-
sions. For dense relations, it outperformed the other methods with a number
of dimensions greater than 6. For example, with 10 dimensions (cardinalities
10 and 100) it showed a speed up, compared to StarCubing, ranging from 9%
to 13%. Notice that, when a line of a competing algorithm extends off the top
of the graph means that the algorithm was stopped when its running time ex-
ceeded such a time. In sparse relations (from cardinality 1000), results clearly
showed that BitCube outperformed the compared algorithms yielding a speed
up ranging from 30% to 90%.

Figure 7 measures the algorithms behavior with respect to the effect of sparse-
ness (by increasing the cardinality) using respectively 5 and 10 dimensions.
BitCube clearly outperformed the compared algorithms and it was not sensitive
to the effect of sparseness. Moreover, it considerably improved as the cardinality
of each dimension increased. This was due to the fact that since the sizes of
partitions decrease the bitmaps operations got faster. From these experiments,
BitCube clearly outperforms the compared algorithms. Note that BitCube and
CBitCube have almost the same behavior, however, for uniform data, the com-
pression does not lead to any space saving.

Iceberg cube computation. For iceberg cubing, the anti-monotonicity of
COUNT operator is exploited by all the compared algorithms. The algorithms be-
haviorwere analyzed on uniform dataset of 1M tuples, varying the cardinalities, di-
mensions and min sup. In Figure 8 the effect of sparseness together with min sup is

4 The dataset is available from the authors un request.
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Fig. 6. Comparisons of full cubing on uniform datasets with 1M tuples
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Fig. 7. Comparisons of full cubing on uniform datasets with 1M tuples on dimensions
5 and 10 varying cardinalities

reported. Algorithms were executed varying the dimensions from 5 to 13 with car-
dinalities from 10 to 100, and min sup 100 and 1000. In higher dimensions BitCube
exhibited the best behavior, showing a running time 19% faster than StarCubing
with min sup 100, and 55% faster than MM-Cubing with min sup 1000. Also for
the iceberg cube case, BitCube and CBitCube show almost the same behavior in
the running time but with no any gain in the memory usage.

Data Skew. In this section, experiments show how data skewness affected the
performances of cubing algorithms. Zipf has been used to control the skew of the
data, varying from 1 to 2. In Figure 9 (a) and (b) experiments on full cubing are
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Fig. 8. Comparisons on Iceberg cubing on uniform datasets having 1M tuples
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Fig. 9. Comparisons on skewed dataset with 1M tuples, on dimension 5, varying the
cardinality from 10 to 10000, with Zipf 1 (a) and 2 (b). (c) Memory used by the two
versions of the BitCube algorithm.
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Fig. 10. Comparisons using real datasets: the Weather Dataset (a) and the Retail
Dataset (b)

reported. These were done on dimension 5 with Zipf 1 and 2, varying the cardi-
nality from 10 to 10000. Both BitCube and CBitCube perform better than the
compared systems scaling very well with the cardinality of the data. Furthermore
using skewed data CBitCube has a better behavior than BitCube on both running
time and memory usage. In Figure 9 (c), the memory used by the two versions of
BitCube is reported. CBitCube shows a compression ratio with respect BitCube
up to 60%. BitCube requires more memory than competitors however, by making
use of WAH compression, the space overhead is not significant.

Real Data.Concerning real data, Figure 10 reports algorithm comparisons
on the two described datasets. BitCube outperformed all other algorithms for
full cube computation. Concerning iceberg cubing BitCube resulted comparable
with the other algorithms (the same behavior has been observed on synthetic
data). Experiments (Figure 10 (a)) show that BitCube is negatively affected
by skewness together with low cardinalities. For such kind of data MM-Cubing
outperformed the other systems. However, for sparse relations (Figure 10 (b))
with medium cardinality and moderate skewness, BitCube resulted more effi-
cient.

5 Conclusions

BitCube, a bottom-up algorithm for full and iceberg cube computation over
sparse relation was presented. It partitions the base table into horizontal frag-
ments with respect to leftmost ordered dimension. It uses bitmaps as inverted
indexes to locate positions of dimensions values into records. Unlike previous
methods, it does not recursively sort the remaining dimensions into partitions.
Moreover, bitmaps are also used as lookup tables to identify values shared by the
same records in a partition and are compressed using and adaptation of the WAH
algorithm. Experiments showed that BitCube outperforms all the compared sys-
tems on full cubing and results comparable on iceberg cubing. Furthermore, the
compression of the bitmaps on skewed data resulted very effective. Finally the
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extension of BitCube for approximate and compressed cubing computations will
be exploited. Algorithms for cube maintenance will be investigated.
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Abstract. In various approaches, data cubes are pre-computed in or-
der to efficiently answer Olap queries. The notion of data cube has been
explored in various ways: iceberg cubes, range cubes, differential cubes
or emerging cubes. Previously, we have introduced the concept of convex
cube which generalizes all the quoted variants of cubes. More precisely,
the convex cube captures all the tuples satisfying a monotone and/or an-
timonotone constraint combination. This paper is dedicated to a study
of the convex cube size. Actually, knowing the size of such a cube even
before computing it has various advantages. First of all, free space can
be saved for its storage and the data warehouse administration can be
improved. However the main interest of this size knowledge is to choose
at best the constraints to apply in order to get a workable result. For
an aided calibrating of constraints, we propose a sound characterization,
based on inclusion-exclusion principle, of the exact size of convex cube
as long as an upper bound which can be very quickly yielded. Moreover
we adapt the nearly optimal algorithm HyperLogLog in order to pro-
vide a very good approximation of the exact size of convex cubes. Our
analytical results are confirmed by experiments: the approximated size
of convex cubes is really close to their exact size and can be computed
quasi immediately.

1 Introduction and Motivations

The data cube is a key concept for data warehouse management. Research work
has proposed different variations around this concept. For instance, iceberg cubes
are partial cubes inspired from frequent patterns. They capture only sufficiently
significant trends by enforcing minimal threshold constraints over measures [1].
Range cubes can be seen as extending the previous ones because measures are
constrained in order to belong to a given range [2]. Users are then provided with
trends fitting in a particular “window”. New trends appearing (or established
trends disappearing) when a data warehouse is refreshed are exhibited by dif-
ferential cubes [3]. The latter can be perceived as the result of a set difference
between two cubes. Depending on the order of the two operands, appearing or
disappearing trends are exhibited. Finally, emerging cube [4] captures trends
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which are not significant at a moment but which grow significant later. In a dual
way, it can exhibit relevant trends which become irrelevant. In addition with
the appearing or disappearing trends of the differential cube, the emergent cube
provides the decision maker with trend reversals. Such a knowledge is strongly
required in multidimensional analysis of data stream [5] and Olap.

Frequently these different types of cubes, by starting with the original data
cube itself [6], have not been grasped as concepts but rather as the result of
queries or more efficient algorithms. This is why, we have proposed a unifying
structure which offers a soundly founded framework for characterizing the vari-
ous quoted cubes : The Convex Datacube [7]. The convex cube gathers all the
tuples of a datacube satisfying a combination of monotone and/or antimono-
tone constraints. Moreover it can be represented in a condensed way through its
borders (the two sets of tuples which surround the solution space).

Knowing the size of convex cubes, without computing them, can be of great
interest. First of all, this size is a critical parameter for the data warehouse ad-
ministrator who must assess that free space is available for result storage before
running a costly computation. It is also relevant when choosing the cuboid set to
be materialized. Another important reason behind the knowledge of the convex
cube size is related to the choice of the constraints. Actually if the constraints
are not suitable to collected data, the user can be provided with a huge amount
of tuples difficult or impossible to manage. In contrast, if too strong constraints
are applied, only very few exceptional trends can be isolated. Thus in any case,
knowing the size of the convex cube can really help the user for calibrating the
constraints and the underlying thresholds without useless computations. Finally
an alternative method for computing convex cubes using borders (and not by
applying directly the constraints) would be workable and fruitful under the con-
dition that borders reduce significantly the size of manipulated data. Once more,
predicting the result size is very attractive in order to know what method can
apply at best.

Our study of the convex cube size encompasses the following contributions:

(i) we provide a sound characterization of the exact size of convex cubes. It
is based on the concept of order ideal and makes use of the borders of
the convex cube. We give a method for computing the size of an order
ideal based on the inclusion-exclusion principle. However, computing such
an exact size is particularly costly. This is why we continue our work as
follows;

(ii) we give an upper bound for the convex cube size and its analytical estima-
tion. This result can be yielded to the user very quickly. Thus he can have
quasi immediately a rough idea of the size of the expected cube;

(iii) we also investigate an approach in order to approximate the exact size
of convex cubes. Our probabilistic estimation adapts the nearly optimal
algorithm HyperLogLog [8]. The method has two main advantages. On
one hand the estimated size of convex cubes is obtained very quickly and on
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the other hand it is really close to the exact size (observed error is typically
less than 5%);

(iv) finally we perform various experiments with a twofold objective: comparing
the exact size, the approximated size and the upper bound for the convex
cubes and measuring the response time necessary to achieve these results.
Experiments are convincing. They show that the approximated size is really
suitable to the user expectations: it is really very close to the exact size of
convex cubes. Moreover it can be obtained nearly immediately. Thus if a
user is not satisfied by the returned size (too voluminous or in contrast
too small), he can modify the expressed constraints by strengthening or
relaxing them.

The article is organized as follows. Section 2 presents the background of our
proposal by describing convex cubes and characterizing various variants of cubes
on the basis of convex cube. Section 3 is dedicated to the study of the convex
cube size. Experimental evaluations are reported in section 4. The conclusion
resumes the strenghs of our approach.

2 Convex Datacubes

Let us consider a relation r with a set of attributes dimensions D (denoted by
D1, D2, . . . , Dn) and a set of measure (noted M). The Convex Datacube char-
acterization fits in the more general framework of the cube lattice of the relation
r: CL(r) [2]. The latter is a suitable search space which is to be considered
when computing the data cube of r. It organizes the tuples, possible solutions
of the problem, according to a generalization / specialization order, denoted by
�g [9]. These tuples are structured according to the attributes dimensions of r
which can be provided with the value ALL [6]. Moreover, we append to these
tuples a virtual tuple which only encompasses empty values in order to close the
structure. Any tuple of the cube lattice generalizes the tuple of empty values.
For handling the tuples of CL(r), the operator + is defined. This operator is
a specification of GLB (Greatest Lower Bound) operator applied to the cube
lattice framework [2]: provided with a couple of tuples, it yields the most specific
tuple in CL(r) which generalizes the two operands.

Example 1. Let us consider the relation Document (cf. Table 1) giving the
quantities of books sold by Type, City, Publisher and Language. In CL(Docu-
ment), let us consider the sales of Novels in Marseilles, whatever the publisher
and language are, i.e. the tuple (Novel, Marseilles, ALL, ALL). This tuple is spe-
cialized by the two following tuples of the relation: (Novel, Marseilles, Collins,
French) and (Novel, Marseilles, Hachette, English). Furthermore, (Novel, Mar-
seilles, ALL, ALL) �g (Novel, Marseilles, Collins, French) exemplifies the gener-
alization order between tuples. Moreover we have (Novel, Marseilles, Hachette,
English) + (Novel, Marseilles, Collins, French) = (Novel, Marseilles, ALL, ALL).
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Table 1. Relation example Document

Type City Publisher Language Quantity

Novel Marseilles Collins French 100
Novel Marseilles Hachette English 100

Textbook Paris Hachette French 100
Essay Paris Hachette French 600

Textbook Marseilles Hachette English 100

Definition 1 (Measure function)
Let f be an aggregation function, r a database relation and t a tuple (or cell) of
CL(r). We denote by fval(t, r) the value of the aggregation function f associated
to the tuple t in CL(r).

Example 2. If we consider the Novel sales in Marseilles, for any Publisher and
Language, i.e. the tuple (Novel, Marseilles, ALL, ALL) of CL(Document) we
have: SUMval((Novel, Marseilles, ALL, ALL), Document) = 200.

In the remainder of this section, we study the cube lattice structure faced with
conjunctions of monotone and antimonotone constraints according to the gen-
eralization order. We show that this structure is a convex space which is called
convex cube. We propose condensed representations (with borders) of the convex
cube with a twofold objective: defining the solution space in a compact way and
deciding whether a tuple t belongs or not to this space.

We take into account the monotone and antimonotone constraints the most
used in database mining [10,11]. They are applied on:

– measures of interest like pattern frequency, confidence, correlation. In these
cases, only the dimensions of D are necessary;

– aggregates computed from measures of M and using statistic additive func-
tions (Count, Sum, Min, Max).

We recall the definitions of convex space, monotone and/or antimonotone con-
straints according to the generalization order �g.

Definition 2 (Convex Space). Let (P ,≤) be a partial ordered set, C ⊆ P
is a convex space [12] if and only if ∀x, y, z ∈ P such that x ≤ y ≤ z and
x, z ∈ C then y ∈ C. Thus C is bordered by two sets: (i) an “Upper set”, noted
U , defined by U = max≤(C), and (ii) a “Lower set”, noted L and defined by
L = min≤(C).

Definition 3 (Monotone/antimonotone constraints).

1. A constraint Const is monotone according to the generalization order if and
only if: ∀ t, u ∈ CL(r) : [t �g u and Const(t)] ⇒ Const(u).

2. A constraint Const is antimonotone according to the generalization order if
and only if: ∀ t, u ∈ CL(r) : [t �g u and Const(u)] ⇒ Const(t).
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Notations: We note cmc (camc respectively) a conjunction of monotone con-
straints (antimonotone respectively) and chc an hybrid conjunction of constraints.
By resuming the symbols U and L according to the considered case, the intro-
duced borders are indexed by the type of the constraint in question. For instance,
Ucamc symbolizes the set of the most specific tuples satisfying the conjunction
of antimonotone constraints.

Example 3. - In the multidimensional space of our relation example Document
(cf. Table 1), we would like to know all the tuples for which the measure value
is greater than or equal to 300. The constraint “ Sum(Quantity) ≥ 300 ” is
antimonotone. If the amont of sales by Type, City and Publisher is greater than
300, then the quantity satisfies this constraint at a more aggregated granularity
level e.g. by Type and Publisher (all the cities merged) or by City (all the types
and publishers together). In a similar way, if we aim to know all the tuples for
which the quantity is lower than 600, the underlying constraint “ Sum(Quantity)
≤ 600 ” is monotone.

Theorem 1. - The cube lattice with monotone and/or antimonotone constraints
is a convex space which is called convex cube, CC(r)const = {t ∈ CL(r) such that
const(t)}. Its upper set Uconst and lower set Lconst are:

1. if const = cmc,

{
Lcmc = min
g (CC(r)cmc)
Ucmc = (∅, . . . , ∅)

2. if const = camc,

{
Lcamc = (ALL, . . . ,ALL)
Ucamc = max
g(CC(r)camc)

3. if const = chc,

{
Lchc = min
g (CC(r)chc)
Uchc = max
g(CC(r)chc)

The upper set Uconst represents the most specific tuples satisfying the constraint
conjunction and the lower set Lconst the most general tuples respecting such
a conjunction. Thus Uconst and Lconst result in a condensed representation of
the convex cube faced with a conjunction of monotone and/or antimonotone
constraints.

The characterization of the convex cube as a convex space makes it possible to
know whether a tuple satisfies or not the constraint conjunction by only knowing
borders of the convex cube. Actually if a conjunction of antimonotone constraints
holds for a tuple of Space(r) then any tuple generalizing it also respects the
constraints. Dually if a tuple fulfils a monotone constraint conjunction, then all
the tuples specializing it also satisfy the constraints.

In [7] we give different variants of data cubes and their characterization as
convex cube. For each one, we give the Sql query which computes it, its char-
acterization as a convex cube and the expression of its borders. Let us underline
that the original data cube can be achieved from the iceberg cube definition by
setting the minimal threshold to 1.
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3 Sizes of Convex Datacubes

In this section we address the issue of characterizing and computing the size of
convex cubes. The main interest of providing such a knowledge to the user is to
help him during the constraint calibrating process.

3.1 Exact Size

In this section, we characterize the exact size of the convex cube by using the
borders and the concept of order ideal [13].

Definition 4 (Order Ideal)
Let T ⊆ CL(r) be a set of tuples. An order ideal generated by T is denoted by
↓ T and encompasses all the tuples generalizing at least a tuple of T . ↓ T is
defined as follows:

↓ T = {t ∈ CL(r) | ∃t′ ∈ T such that t �g t′}

Definition 5 (Order Filter)
Let T ⊆ CL(r) be a set of tuples. An order filter generated by T is denoted by
↑ T and encompasses all the tuples generalized by at least a tuple of T . ↑ T is
defined as follows:

↑ T = {t ∈ CL(r) | ∃t′ ∈ T such that t′ �g t}

Provided with the maximal tuples satisfying an anti-monotone constraint, the
whole solution set is the order ideal generated by such maximal tuples. Con-
versely, the order filter generated by the minimal tuples verifying a monotone
constraint gives the solution space.

By using this feature, we characterize the exact size of the Convex Cube
through the following proposition.

Proposition 1. Let [L, U ] be borders of the convex cube CC(r). The size of
the latter can be expressed in the following way according to the used couple of
borders:

|CC(r)| = | ↓ U∩ ↑ L|

Adapting the inclusion-exclusion principle to the cube lattice, we give a method
for compute the size of the order ideal generated by a set of tuples T = {t1, t2, . . .
, tn}. We define before two tool sequences (E) and (I) :⎧⎪⎪⎪⎨⎪⎪⎪⎩

E0 = ∅
E1 = {t1}

...
En = {t1, t2, . . . , tn}

⎧⎪⎪⎪⎨⎪⎪⎪⎩
I1 = ∅
I2 = {t2 + t1}

...
In = {tn + t | t ∈ En−1}
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Proposition 2. Let T ⊆ CL(r) be a set of tuples. The following recursive func-
tion computes the cardinality of the order ideal generated by T :⎧⎨⎩

| ↓ T | = | ↓ En|
| ↓ En| = | ↓ En−1| + | ↓ tn| − | ↓ In|
| ↓ tn| = 2|Attr(t)|

Unfortunately, computing the exact size of an order ideal is as costly as com-
puting an iceberg cube. Thus the size expressions that we introduce should be
approximated with a good accuracy. To meet this objective, we give two upper
bounds and adapt an estimation method to our research context.

3.2 Upper Bound

A standard result for estimating the size of a data cube when data are supposed
to be uniformly distributed is the following [14,15]: if P elements are chosen
uniformly and at random from a set of N elements, the expected number of
distinct elements is N − N(1 − 1/N)P .

The formula can be adapted to quickly find the upper bound of the size of
Convex Cube since in the worst case the convex cube is the data cube of r. Thus
we have:

|CC(r)| ≤ |DataCube(r)|
|DataCube(r)| ≤

∑
X⊆D

min(NX − NX(1 − 1
NX

)|r|, |r|)

|CC(r)| ≤
∑

X⊆D
min(NX − NX(1 − 1

NX
)|r|, |r|)

where NX =
∏

Di∈X |r(Di)| and r(Di) the projection of r on the dimension Di

and NX is the size estimation of the cuboid according to a dimension set X , of
course NX ≤ |r|

3.3 Probabilistic Estimation

Computing the exact size of convex cubes is hard and as costly as yielding
the convex cubes. This is why we propose another upper bound which is more
refined than the previous one, and which can be approximated in an efficient
and accurate way.

Proposition 3. Let [L, U ] be borders of the convex cube CC(r). The size of the
latter can be approximated in the following way according to the used couple of
borders:

|CC(r)| ≤ | ↓ U | − | ↓ L| + |L|

In order to estimate a multi-set size, [8] proposes a cardinality estimator de-
vised to perform suitable and concise enough observations on the hashed values
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Algorithm 1. HyperLogLog adapted in order to estimate the cardinality of
an order ideal generated by a set of tuples T

Input: T (T ⊆ CL(r))
Output: Cardinality estimation of ↓ T

define m = 2b with b = 6
and αm = 0.709
let M be a collection of m registers initialized to 0
let ρ(y) be the rank of the first 1-bit from the left in y
let h : CL(r) → {0, 1}32 be a good hashing function
for all t ∈ T do

for all t′ such that t′ �g t do
x := h(t′)
j := 〈x1, x2, . . . , xb〉2 {the first b bits of x}
w := xb+1, xb+2, . . .
M [j] := max(M [j], ρ(w))

end for
end for
E := αmm2.

(∑m−1
j=0 2−M[j]

)−1

E∗ := E

if E ≤ 5
2
m then

let V be the number of registers equal to 0
if V �= 0 then E∗ := m.log(m/V )

end if
if E ≥ 1

30
232 then

E∗ := 232log(1 − E/232)
end if
return E∗

computed from the input multi-set. The method works fine because on one hand
it is particularly efficient and requires a single pass over data and a very small
amount of memory and on the other hand it estimates the cardinality of the
multi-set with a very good accuracy (observed error is typically less than 5%).

We are provided with borders which condense a convex cube. By applying the
algorithm HyperLogLog (cf. algorithm 1) over all the tuples generalizing an
element of the borders, we can estimate the cardinality of an order ideal gen-
erated by U or L and thus obtain the proposed upper bound (cf. proposition
3). The intuition behind the algorithm is the following. The used hashing func-
tion randomizes data in order that it becomes binary and nearly uniform and
independent. Within the binary word obtained, the probability to find the first
1-bit at the position n is: 2−n. By observing this value for all the tuples, a rough
idea of the cardinality can be obtained. By simulating the effect of m experi-
ments the cardinality is refined until achieving a good approximation (stochastic
averaging). The algorithm returns an approximate cardinality with a very con-
venient accuracy. Once this cardinality is yielded, we use proposition 1 to get
the estimated cardinality of the convex cube.
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4 Experimental Evaluations

In order to validate our whole approach, we perform various experiments. For
these experiments, we choose to compute a type of convex cube: the range cube
which encompasses all the tuples provided with a measure value in the range
[M1;M2]. The experimental evaluations are conducted on data issued from a
large and various scope of domains similar to the data sets used in [16]. It is
well known that synthetic data are weakly correlated [17,18] while many real
and statistical databases are highly correlated. For synthetic data1, we use the
following notations to describe the relations: D the number of dimensions, C the
cardinality of each dimension, T the number of tuples in the relation, M1 and
M2 the thresholds corresponding to the range constraints and S the skewness or
zipf of the data. When S is equal to 0, the data are uniform. When S increases,
the data are more skewed. S is applied to all the dimensions in a particular
database relation. For real data, we use the weather relations SEP83L.DAT and
SEP85L.DAT used by [19], which have 1,002,752 tuples with 8 selected dimen-
sions. The attributes (with their cardinalities) are as follows: year month day
hour (238), latitude (5260), longitude (6187), station number (6515), present
weather (100), change code (110), solar altitude (1535) and relative lunar lumi-
nance (155).

(a) Exact and approximate sizes of the
Range Cube with D = 10, C = 100, S
= 0

(b) Exact and approximate sizes of the
Range Cube with D = 10, T = 1000K,
S = 0

First of all, we evaluate and compare the exact size, the upper bound and
the approximated size of range cubes. We compute the cubes by adapting the
algorithm Star-Cubing [16] in order to achieve their real size. We use the al-
gorithm HyperLogLog in order to yield their approximate size and we also
compute the analytical upper bound. For each database, we study the influence,
on the computed size or bound, of various parameters like the number of tuples
in the original relations, the dimension cardinality, the data skewness and the
user given thresholds. The obtained results are presented in figures 1a to 1b. In

1 The synthetic data generator is given at: http://illimine.cs.uiuc.edu/

http://illimine.cs.uiuc.edu/
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any case, the exact size and the approximate one are very close. These results
reinforce our idea that a good and quick approximation works fine.

Then we compare the execution times required to achieve the previous results,
and of course the approximation method is more efficient. But above and over
that, our intention is to show that our strategy for calibrating the constraints is
workable since the approximate size is achieved specially quickly (very less than
1 second).

We measure and compare the execution times necessary to on one hand
achieve the range data cube and its size and on the other hand obtain its esti-
mated size. The gain factor varies from 300 to 500 (cf. figures 1a to 1b).

5 Conclusion

In this paper, we take benefit of the unifying structure of the convex cube in order
to study the size of a family of datacubes: Iceberg, range, differential, emergent
cubes and the datacube itself. The convex cube is expected to have a workable
size in order that the knowledge discovery is fruitful. However this size depends
on the constraints specified by the user. It is thus especially relevant to predict
the size of the convex cube. Supplied with this information, the user can adjust
the constraints and choose relevant thresholds. The condition behind this pre-
diction is to get a quasi-immediate result, then the thresholds can be calibrated
at best. In order to meet this objective, we propose a very fast computation of
an upper bound of the size in question. Then we soundly characterize the exact
size of convex cubes. Such a characterization is based on the borders U and L.
We also adapt the algorithm HyperLogLog which implements a probabilistic
counting method. Its input is the borders of the convex cube and its result an
approximate size of such a cube with a good accuracy. Finally, to validate our
whole method, we perform experiments. We compute and compare the exact
and approximate sizes of convex cubes. Obtained results are convincing: com-
puting the exact size is costly (even with algorithms proved to be efficient) while
achieving the approximate size is specially efficient and gives results really close
to the exact size.

(a) Exact and approximate sizes of the
Range Cube with D = 10, C = 100, T
= 1000K

(b) Exact and approximate sizes of the
Range Cube for weather relations
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Abstract. Clothes should fit consumers well, be aesthetically pleasing and com-
fortable. However, repeated studies of customers’ levels of satisfaction indicate 
that this is often not the case. For example, more robust males often find it dif-
ficult to find pants that are the correct length and fit their waists well. What, 
then, are the typical body profiles of the population? Would it be possible to 
identify the measurements that are of importance for different sizes and gen-
ders? Furthermore, assuming that we have access to an anthropometric database 
would there be a way to guide the data mining process to discover only those 
relevant body measurements that are of the most interest for apparel designers? 
This paper describes our results when addressing these questions through clus-
ter analysis and interestingness measures-based feature selection. We explore a 
database containing anthropometric measurements as well as 3-D body scans, 
of a representative sample of the Dutch population.  

Keywords: Utility-based data mining, anthropometry, interestingness meas-
ures, feature selection, cluster analysis, classification, relational and 3-D data. 

1   Introduction 

Apparel manufacturers develop sizing systems with the goal of satisfying consumers’ 
needs for apparel that fits. Sizing is the process used to establish a size chart of key 
body measurements for a range of apparel sizes. To produce garments that fit the 
population, it follows that the sizes must correspond to real grouping. However, this is 
often not the case, as indicated by the results obtained by Shofield and LaBat [1]. 
Their study of forty size charts for women’s clothing showed that the different sizes 
are defined using arbitrary constant intervals between sizes,  all vertical measure-
ments increase as the size increases and that the differences between the principal 
girths are constant for all sizes. Considering this situation, it is easily understandable 
that repeated studies of the degree of satisfaction with apparel show that consumers’ 
needs are not being met. For example, a North American study found that about 50% 
of women and 62% of men cannot find satisfactorily fitting clothes [2]. According  
to Ashdown et al. [3] two main issues have limited the ability of the apparel compa-
nies to produce garments with quality fit. First, there has been a lack of up-to-date 
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anthropometric data to describe the civilian population. Second, there is a lack of 
information about the principal aspects to consider when designing garments for a 
variety of body sizes and shapes. 

Recent work has addressed, to some extent, these problems. Anthropometric sur-
veys such as the CAESARTM project [4], Size USA [5] and Size UK [6] have been 
carried out on civilian populations. The CAESARTM project [4] includes several body 
measurements such as waist circumference, hip circumference, height, weight, etc. 
together with 3-D body scans of each participant. In Size USA [5] and Size UK [6] 
subjects were scanned in 3-D, and the body measurements were then extracted from 
the 3-D scans. Some recent studies attempt to find the most important aspects to be 
taken into account when designing garments. Viktor et al. [7] finds body size group-
ings in a sample of the North American male population. Veitch et al. [8] aim to  
produce a well fitting bodice for Australian women. After selecting twelve out of 
fifty-four measures and applying Principal Component Analysis (PCA), they define 
thirty-six categories: twelve sizes and three body shapes within each size. Hsu et al. 
[9] identify three body types and thirty-eight sizes for the female adult Taiwanese 
population by applying PCA on eleven anthropometric measures. 

Although the abovementioned work attempt to address the problem of identifying 
the main aspects that should be consider for the design of garments, they focus only 
either on a specific body part, or on a gender. Moreover, they do not account for the 
economic factors of the data mining process. That is, they do not attempt to find the 
subset of body measurements that would be of the most interest when designing ap-
parel for different sizes within each gender. This paper addresses this issue. Our goals 
are as follows. We aim to understand the typical consumers’ body profile by identify-
ing the natural body size groups and their distinctive characteristics. Also, we attempt 
to find the most important body measurements that define each size, and study how 
these measurements interrelate. Importantly, we aim to reduce the cost of the mining 
process, and the subsequent cost of apparel design, by reducing the number of body 
measurements to be used. To this end, we employ interestingness measures to identify 
the minimal sets of body measurements that are relevant for the different sizes, within 
each gender. In this way, we obtain reduced body measurements (both anthropometric 
and 3-D) of high utility, to be used to optimize apparel design. 

This paper is organized as follows. Section 2 introduces utility-based data mining 
and, in particular, objective interestingness measures, which is used to guide our data 
mining process. This section explains the need for, and usefulness of, these measures 
when evaluating the results of the data mining process and when used for feature 
selection. This is followed, in Section 3, with an introduction to the CAESARTM an-
thropometric database. This section also explains our methodology and results when 
characterizing the population. In this section, we describe the cluster analysis of both 
the anthropometric measurements and 3-D shapes. In Section 4, we present the ap-
proach followed when reducing the number of body measurements, through the use of 
interestingness measures-based feature selection together with feature extraction. This 
section also discusses the results obtained for the various body sizes, within each 
gender. Section 5 concludes the paper. 
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2   Finding Interesting Patterns 

Over the past years, research in data mining mainly focused on producing accurate 
models with little consideration of the economic aspects of the data mining process. 
For most real scenarios such as our case study, however, it becomes important to 
consider economic aspects of the mining process. This has lead to the emerging field 
of utility-based data mining which aims to consider all utility aspects in the data min-
ing process, and maximize the utility of the entire process [10, 11]. In particular, a 
subset of utility-based approaches focuses on reducing the time and mining space cost 
by using interestingness measures. Interestingness measures are “measures” that 
narrow the search space and find the truly interesting patterns allowing pruning, 
evaluating, selecting and ranking patterns according to their potential interest to the 
user. Thus, using interestingness measures to identify interesting patterns allows the 
time and space cost of the mining process to be reduced [12].  Some criteria have 
been proposed to determine whether a pattern is interesting. These criteria are: Gen-
erality, Reliability, Conciseness, Peculiarity, Diversity, Novelty, Surprisingness, Util-
ity and Actionability [12, 13]. The first five criteria are considered objective while the 
remaining four are considered subjective. Based on these criteria, interestingness 
measures are then divided into two categories: objective and subjective. For classifica-
tion rules, the most important role of objective interestingness measures is to act as 
heuristics. However, interestingness measures such as Information gain, Gain ratio 
and Chi-squared are not only used as heuristics, but are also used for feature selection 
[14, 15]. In our case study, we consider the results of the data mining process to be 
interesting if it is able to correctly and accurately characterize the bodies of different 
sizes, within each gender. Furthermore, our aim is to find only those body measure-
ments which are crucial when designing a garment for a size and therefore need spe-
cial consideration to ensure that the clothes fit well. 

3   Characterization of the Population 

One of the most important challenges for the clothing industry is to produce garments 
with quality fit. Poor fitting garments may never be sold or customers may return 
them. In order to produce better fitting garments, accurate and up-to-date measure-
ments need to be further analyzed in order to be able to better characterize the popula-
tion [3]. To address the aforementioned issue, we aim to find the natural body size 
groupings using the anthropometric measurements and the 3-D shapes as contained in 
the CAESARTM anthropometric database. From these groups we identify size Arche-
types and their most important characteristics. 

The CAESARTM database [4] includes traditional anthropometric measurements of 
a large number of individuals from North America, Italy and the Netherlands. This 
number is forty-four (44) for the males, and forty-five (45) for the females, since 
under bust circumference is not appropriate for the male subjects. These measure-
ments include height, weight, acromial height, waist circumference, thigh circumfer-
ence and foot length, amongst others, which were recorded by domain experts.  
Additionally, the shape of each person was scanned in three dimensions using a full 
body scanner. That is, a laser scanning device measured and recorded detailed geome-
try of the subjects’ body surface. The 3-D body scans were described using a global 



 Finding Clothing That Fit through Cluster Analysis 219 

shape-based descriptor, which is an abstract and compact representation of the three-
dimensional shape of the corresponding body. In essence, each scan is represented by 
a set of three histograms, which constitutes a 3-D shape index or descriptor for the 
human body [16].  This index characterizes the radial and angular distribution of the 
surface elements associated with a given body. The index is designed to be orientation 
invariant and robust against pose variation [16].  

All our experiments are implemented in WEKA, a collection of machine learning 
algorithms for data mining tasks [17]. We use the Cleopatra visual data mining tool 
[16] to determine whether our results correspond to reality. We proceed as follows. 
Firstly, we use the anthropometric data to find the clusters therein, as described in 
Section 3.1. Next, we determine the Centroids of each cluster. For each Centroid, we 
use the Cleopatra system to retrieve the human body corresponding to it, together 
with the N nearest neighbours, where N is the number of bodies in this cluster. We 
verify the cluster membership by visually inspecting the results. This process is re-
peated for the 3-D body scans, as shown in Section 3.2. Next, we apply dimensional-
ity reduction, as discussed in Section 4, to find reduced sets of anthropometric body 
measurements, and 3-D descriptors, respectively. In this study we consider the Dutch 
population, both males and females. The data was then first separated based on the 
gender of the subjects. The resulting sets consist of 567 males and 700 females. 

3.1   Clustering of Anthropometric Measurements 

In order to identify the natural body size groupings, we first apply cluster analysis 
techniques to the anthropometric data. Cluster analysis is an unsupervised learning 
data mining technique used to partition a set of physical or abstract objects into sub-
sets or clusters based on data similarity [14, 17].  

In the context of tailoring, the ideal scenario is to cover the greatest number of 
people with the fewest number of sizes [9]. Therefore, we aim to find the minimum 
number of clusters that fully characterize the population. Since three clusters is the 
minimum number that makes sense from a tailoring point of view, i.e. small, medium  

 

 

Fig. 1. Cluster visualization for (a) male population and (b) female population. The y axis 
represent the clusters, the x axis is the weight range. 
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and large, we start partitioning the data into three clusters. Then, by inspecting the-
cluster distribution we decide whether is worth splitting the clusters, as described in 
[17]. This process is repeated until the clusters appear well-defined.  

For our cluster analysis experimentation, a number of clustering algorithms was 
considered. These included partitioning, hierarchical, density-based, model-based and 
grid-based approaches. By inspection of the cluster distribution and through the 
analysis of the results using Cleopatra, we found that the male population is best char-
acterized with five clusters and the female population with six clusters. We also ob-
served that the best partition is achieved using a density-based algorithm with k-
means components. The clusters obtained with this algorithm are shown in figure 1, 
where it may be observed that the clusters are compact and well defined. In order to 
visually validate the quality of the clusters produced by the density-based algorithm 
with k-means components, we use the cluster information to navigate through the 3-D 
body scans using the Cleopatra system and retrieve the body scans of the Archetypes 
or Centroids, as identified from the anthropometric data. Tables 1 and 2 indicate some 
of the characteristics of the Centroids of the male and female populations, respec-
tively. Figures 2 and 3 show the 3-D body scans of the human subjects that corre-
spond to these measurements, highlighting the difference in body types of the  
clusters. Thus, by inspecting the mean values in tables 1 and 2, the cluster distribu-
tion, and through the analysis of the results using Cleopatra, we observe that the an-
thropometric clusters discriminate between the different body sizes.  

Table 1. Body measurements of male Centroids. The table shows the means (in cm), the stan-
dard deviation in parenthesis, and the number of subjects on each cluster.  

 Small Medium Large X-Large XX-Large 
Chest Circumference 93.1 (6.0) 96.5 (4.8) 107.8 (6.7) 104.9 (6.2) 121.2 (7.0) 
Waist Circumference 82.5 (6.9) 86.5 (5.7) 96.3 (7.4) 97.4 (5.7) 112.5 (9.1) 
Hip Circumference 95.3 (4.6) 98.5 (3.6) 103.1 (4.5) 108.1 (4.0) 116.3 (6.2) 
NeckBase Circumference 45.4 (2.4) 47.4 (2.5) 50.3 (2.7) 51.0 (2.3) 55.2 (3.4) 
Shoulder to Wrist 60.3 (3.3) 65.4 (2.6) 62.4 ( 3.0) 67.2 (3.2) 65.6 (3.6) 
Stature 173.0 (6.6) 184.8 (4.6) 176.1 (5.6) 193.2 (6.2) 188.1 (8.3) 
Shoulder Breadth 44.0 (1.6) 46.6 (1.8) 47.8 (2.0) 48.8 (2.0) 52.0 (3.4) 
Weight (lbs) 149.9(14.8) 171.5(12.2) 198.9(17.5) 214.4(16.9) 264.1(29.2) 
Num. of Subjects 126 (22%) 173 (31%) 139 (25%) 82 (14%) 47 (8%) 

Table 2. Body measurements of female Centroids. The table shows the means (in cm), the 
standard deviation in parenthesis, and the number of subjects on each cluster.  

 X-Small Small Medium Large X-Large XX-Large 
Bust Circumf. 90.7(5.9) 92.1 (5.0) 98.4 (6.2) 106.1(6.7) 117.5(8.3) 120.6(9.2) 
Waist Circumf. 74.1 (6.4) 76.4 (5.9) 83.5 (7.1) 90.7 (8.0) 103.3(9.4) 107.9(11.0) 
Hip Circumf. 97.2 (5.1) 101.2(5.4) 106.4(5.1) 110.1(5.8) 117.5(7.7) 121.6(10.4) 
Shoulder to Wrist 55.1 (2.4) 58.5 (1.8) 62.0 (2.2) 56.8 (1.9) 58.6 (2.2) 63.0 (2.0) 
Stature 160.0(4.7) 169.7(3.7) 176.9(4.8) 162.4(5.1) 167.1(4.3) 176.9(5.6) 
Shoulder Breadth 40.3(1.7) 41.7(1.7) 44.0(2.1) 43.6(2.4) 47.0(2.9) 47.6(2.9) 
Weight (lbs) 126.5(13.1) 141.1(12.4) 165.3(14.5) 171.1(13.3) 210.0(21.8) 234.3(28.9) 
Num. of Subjects 130 (19%) 198 (28%) 125 (18%) 125 (18%) 83 (12%) 39 (6%) 
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Fig. 2. Cluster Centroids for the male population. (a) Small, (b) Medium, (c) Large, (d) X-
Large and (e) XX-Large. 

 

Fig. 3. Cluster Centroids for the female population. (a) X-Small, (b) Small, (c) Medium, (d) 
Large, (e) X-Large and (f) XX-Large. 

By inspecting the body measurements of the male Centroids shown in table 1, it 
may be observed that the XX-Large subjects are generally shorter than the X-Large 
subjects. This is an important feature to consider when designing, for example, pants; 
the legs should have short lengths for the XX-Large size. We also observe that the 
Large and X-Large subjects have similar waist circumference, but the former have 
slightly wider chest. Subsequently, when designing jackets or shirts for the Large size 
subjects, these should be wider and shorter than the ones designed for the X-Large 
subjects. 

For the female population is noticeable that the tallest individuals are among the 
Medium and XX-Large sizes. Also, the longest arm length is among the Medium and 
XX-Large populations, surpassing importantly the Large and X-Large size subjects. 
This may be interpreted as follows. The Large and X-Large subjects do not have the 
same constitution as the Medium size individuals. They are shorter and more robust 
than the Medium size subjects. This provides valuable information about garment 
design, for different sizes. For the Medium size, the clothes have to be designed 
mainly for tall subjects, while the design of garments for the Large and X-Large sizes, 
the girths are the primary aspect to take into account. 

3.2   Clustering of 3-D Shapes 

Following the same approach as with the anthropometric data, we subsequently per-
formed cluster analysis on the 3-D data, which allows for the analysis of individuals 
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Table 3. Number of subjects per cluster 

 Males Females 
X-Small - 132 (20%) 
Small 135 (25%) 63 (10%) 
Medium 79 (15%) 103 (16%) 
Large  166 (31%) 149 (22%) 
X-Large 106 (20%) 147 (22%) 
XX-Large 56 (10%) 69 (10%) 

 
 

based on their 3-D shape. There are many motivations for using the 3-D shapes di-
rectly. For products for which the shape is of critical importance like protective 
equipments, considering primarily the 3-D scans may yield superior results.  In this 
case, one is most interested in determining which 3-D shape features are potentially 
the most relevant.  We proceeded as follows. The 3-D data was separated into two 
sets based on the gender of the subject. The resulting sets consist of 542 males and 
663 females and we applied the density-based algorithm with k-means components to 
the data. The number of subjects per cluster is given in table 3. We verify the cluster 
membership through querying the 3-D scans using the Cleopatra system, in order to 
determine whether our results correspond to the reality. The 3-D body scans of the 
Centroids of the male and female populations are shown in figures 4 and 5, respec-
tively. From the figures, it may be observed that the Centroids highlight the difference 
in body types of the different clusters. Thus, the results indicate that the 3-D clusters 
distinguish between the different body sizes. 

By inspecting the number of subjects per cluster in tables 1 to 3, we notice the num-
ber of subjects is not the same when the clustering is performed using the anthropomet-
ric measurements and the 3-D data. In our attempt to find the reasons for this situation, 
we analyze the anthropometric measurements and 3-D scans information of a set of 
representative individuals. Our results indicate that the clustering of 3-D body scans, as 
may be expected, group together subjects with similar body shape. On the other hand, 
when the clustering is performed on the anthropometric data, the algorithm finds the 
clusters containing those subjects with similar height, weight, bust circumference, and 
so on. A possible “change” in size, by a subject, is thus due to the fact that even though 
two subjects may have similar body measurements; their body shape may be different. 
For example, two female subjects may have the same bust circumference. However, one 
 

 

Fig. 4. Cluster Centroids from 3-D data for the male population. (a) Small, (b) Medium, (c) 
Large, (d) X-Large and (e) XX-Large. 
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Fig. 5. Cluster Centroids from 3-D data for the female population. (a) X-Small, (b) Small, (c) 
Medium, (d) Large, (e) X-Large and (f) XX-Large.  

of the subjects has a wide back and shoulders, while the other has a narrow back and-
large bust, making their body shapes different. Thus, the clustering of the 3-D data and 
the clustering of anthropometric data provide a different perspective on the subject char-
acterization and are therefore complementary to one another.  

In the clothing industry, the design and manufacture of garments is based on body 
measurements. Therefore, the clustering obtained from the anthropometric measure-
ments is most suitable for the direct application to tailoring and garments design. The 
clustering of 3-D shapes is, on the other hand, more useful when designing e.g. masks 
for protection against hazardous materials or custom made products such as artificial 
legs or helmets, where the goal is to produce a good fit for different shapes. Here, the 
anthropometric measurements are not enough to constraint the shape of an individual 
and consequently cannot replace a description based on the 3-D shape.  Consequently, 
it is important, from the start, to determine if the particular application is based on 
measurements or shape. 

4   Reducing the Number of Measurements 

Recall from Section 2 that utility-based data mining accounts for the economic as-
pects that impact the mining process, and aims to maximize the utility of the process. 
In the previous section, we used in our analysis the total number of body measure-
ments. We now aim to reduce the costs and time of the mining process by utilizing 
interestingness measures to reduce the number of body measurements and the size of 
the 3-D index.  Our reasoning is as follows. The CAESARTM database contains a 
large number of attributes, making difficult for domain experts to interpret.  Further-
more, even though it is the most comprehensive study of its kind to date, our aim is to 
develop a scalable solution for future studies which may involve a very large number 
of participants. Reducing the number of measurements increases the efficiency of the 
learning process, enhances comprehensibility of the learned results and improves the 
learning performance (predictive accuracy) [14]. Moreover, the reduced set of body 
measurements may help identify the measures that require special attention when 
designing garments, thus potentially reducing the cost and complexity of this process. 
To this end, we perform two kinds of dimension reduction techniques, namely feature 
selection and feature extraction. These techniques allow the reduction of the dataset 
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size by removing irrelevant or redundant dimensions, or attributes, according to some 
metric [14]. 

Recall, from section 2, that interestingness measures are used in feature selection to 
remove the attributes with little or no predictive information. In our case study, this 
means that we use interestingness measures to identify the subset of the body meas-
urements, or the 3-D descriptor, which is of most importance when describing an 
Archetype. For feature selection we thus apply Information Gain, Gain Ratio, Chi 
Squared, the Consistency subset evaluator and the CFS subset evaluator. These are 
measures that have been widely used in the context of feature selection and have been 
found to produce good results [18]. For feature extraction we use Principal Compo-
nent Analysis (PCA), a well-known feature extraction method. 

In order to verify our results, we consider the full set of anthropometric measure-
ments (forty-four for the males, and forty-five for the females since under bust  
circumference was only recorded for the females) and the subsets produced by the 
feature selection and feature extraction. To this end, we constructed a number of clas-
sifiers, where the clusters we discovered during the characterization phase acted as 
class labels. For our experimentation, we consider three different classifiers, namely 
RIPPER, C4.5 and PART. In the experiments we used ten-fold cross validation to test 
the accuracy of the classification models. The results of applying PCA and feature 
selection on the anthropometric data are shown in tables 4 and 5 for males and fe-
males, respectively. Shown are the predictive accuracy and, in parenthesis, the num-
ber of attributes in the subset. 

From table 4 it may be seen that for the males, PCA and all feature selection 
methods produce good results. That is, the subsets contain a small number of attrib-
utes (except for the subsets obtained using the CFS evaluator) and improve the 
accuracy we obtained using the full (original) set of attributes. We observe that,  
in general; the highest accuracy is achieved using the subsets produced by Gain 
Ratio and PCA. Although PCA produces accurate results, its application in a tailor-
ing scenario presents additional challenges, because PCA do not produce a subset of 
the original attributes. Instead, PCA produces a linear combination of the original 
set of attributes, preventing the direct application of PCA results in the tailoring 
process. We therefore select the subset containing six attributes produced by Gain 
Ratio, because this produces the best trade-off between accuracy and the number of  
attributes. 

Table 4. Results of the attribute reduction for the male population 

 Original PCA Info 
Gain 

Gain Ratio Chi 
Squared 

Consistency 
Subset 

CFS 
Subset 

PART 80.3% 82.9% 
(12) 

82.7% 
(13) 

82.2% 
(14) 

81.1% 
(14) 

80.3% 
(12) 

81.3% 
(25) 

RIPPER 80.6% 81.5% 
(7) 

81.3% 
(9) 

82.4% 
(14) 

81.3% 
(13) 

82.0% 
(8) 

80.3% 
(25) 

C4.5 78.5% 82.0% 
(7) 

81.8% 
(9) 

82.2% 
(6) 

80.6% 
(13) 

80.4% 
(12) 

80.3% 
(31) 
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Table 5. Results of the attribute reduction for the female population 

 Original PCA Info 
Gain 

Gain Ratio Chi 
Squared 

Consistency 
Subset 

CFS 
Subset 

PART 81.1% 80.4% 
(19) 

83.9% 
(12) 

82.3% 
(13) 

84.7% 
(7) 

83.1% 
(7) 

81.9% 
(35) 

RIPPER 77.9% 77.3% 
(19) 

83.4% 
(13) 

82.9% 
(17) 

82.7% 
(7) 

81.3% 
(7) 

81.9% 
(25) 

C4.5 77.4% 77.4% 
(19) 

82.9% 
(13) 

83.3% 
(11) 

82.7% 
(7) 

81.7% 
(7) 

79.3% 
(25) 

 
For the females (table 5), the best results are obtained using Information Gain, 

Gain Ratio and Chi Squared. These three interestingness measures produced subsets 
that highly improve the accuracy. However, the number of attributes in the subsets 
generated by Information Gain and Gain Ratio is larger than the number of attrib-
utes in the subset produced by Chi Squared. We therefore select the subset with 
seven attributes produced by Chi Squared. The reduced sets of body measurements 
for both males and females are presented in table 6. For the males, the reduced set 
of measurements indicates that the most significant measurements are the waist 
circumference, the chest girth at scye and the vertical trunk circumference. When 
tailoring shirts, sweaters or jackets, for the male population, these measurements 
should be considered carefully to produce garments that fit this population properly. 
For the females, the most important measurements are the bust circumference and, 
as in the case of the males, the chest girth at scye and the vertical trunk circumfer-
ence. Therefore, when tailoring clothes for the Dutch females, the bust circumfer-
ence requires special attention in order to design garments that fit the population 
better. 

We also apply the abovementioned approach to the 3-D shapes. The goal here is to 
determine which part of the radial-angular distribution of the surface elements is the 
most relevant, both in terms of design and in terms of time to search. It follows that, 
in very large databases; the smaller the index, the faster the search.  Tables 7 and 8 
show the results for the males and females, respectively. The original number of indi-
ces used to describe the 3-D body scans is hundred and twenty for both males and 
females. Shown are the predictive accuracy and, in parenthesis, the number of attrib-
utes in the subset. 

Table 6. Reduced set of anthropometric body measurements 

Males Females 
1. Chest Girth at Scye 1. Arm Length (Spine-Wrist) 
2. Hip Breadth Sitting  2. Bust Circumference 
3. Stature 3. Chest Girth at Scye 
4. Vertical Trunk Circumference 4. Stature 
5. Waist Circumference 5. Thumb Tip Reach 
6. Weight 6. Vertical Trunk Circumference 
 7. Weight 
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Table 7. Results of the attribute reduction of 3-D shapes for the male population 

 Original PCA Info 
Gain 

Gain Ratio Chi 
Squared 

Consistency 
Subset 

CFS 
Subset 

PART 78.8% 81.6% 
(19) 

85.2% 
(58) 

81.0% 
(56) 

83.1% 
(51) 

82.3% 
(24) 

81.0% 
(52) 

RIPPER 76.8% 80.6% 
(15) 

80.8% 
(54) 

79.3% 
(54) 

81.2% 
(51) 

78.8% 
(8) 

79.2% 
(52) 

C4.5 79.3% 78.8% 
(21) 

80.3% 
(56) 

79.5% 
(56) 

80.4% 
(53) 

80.1% 
(8) 

80.4% 
(72) 

Table 8. Results of the attribute reduction of 3-D shapes for the female population 

 Original PCA Info 
Gain 

Gain Ratio Chi 
Squared 

Consistency 
Subset 

CFS 
Subset 

PART 78.6% 75.5% 
(32) 

78.4% 
(57) 

79.2% 
(54) 

78.0% 
(54) 

78.0% 
(44) 

81.9% 
(59) 

RIPPER 75.1% 76.0% 
(9) 

80.4% 
(55) 

80.1% 
(55) 

78.4% 
(55) 

79.8% 
(8) 

79.0% 
(88) 

C4.5 78.7% 74.1% 
(12) 

77.5% 
(58) 

77.2% 
(54) 

77.1% 
(54) 

78.1% 
(24) 

79.8% 
(59) 

 
Table 7 shows that for the male population, Information Gain and Chi Squared 

achieve the best accuracy. However, the number of attributes in the subsets produced 
by these measures is much higher than the number of attributes in the subsets pro-
duced by the Consistency subset evaluator. Moreover, there is a set produced by the 
Consistency subset evaluator that contains only eight indices, and the accuracy 
achieved by this set it is just slightly lower than the one obtained using the subsets 
generated by Information Gain and Chi Squared. The best trade-off between accuracy 
and the number of attributes is then achieved by the subset produced using the Con-
sistency subset evaluator containing eight indices. 

For the females (table 8), the highest accuracy is achieved by the subsets produced 
by the CFS subset evaluator. However, the numbers of attributes in these subsets are 
big. We also notice that PCA and the Consistency subset evaluator produced subsets 
containing a smaller number of attributes. Moreover, the accuracy, in the case of the 
subset produced by the Consistency subset evaluator containing eight indices, is com-
parable to the accuracy obtained using the subsets produced by the CFS subset 
evaluator. Therefore, the subset produced by Consistency subset containing eight 
indices, shows the best trade-off between the number of attributes and accuracy. Re-
call also that PCA provides linear combinations of the various elements of the de-
scriptor, which might be difficult both to interpret and implement in the production 
line. Consequently, CFS would be preferred in most industrial applications. The sub-
set of elements obtained with CFS provides us not only with a more compact index 
which higher descriptive power. In addition, it also gives us a set of distances and 
directions that are the most relevant in general in a 3-D shape; i.e. the distances and 
directions on which a design may be based.  This information may subsequently be 
used in the scanning process, in order to generate an “intelligent” scan in which the 
most relevant regions of the body are scanned with higher resolution. 
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By inspecting the results of applying PCA and feature selection techniques on the 
anthropometric and 3-D data, it may be observed that in both anthropometric and 3-D 
data the accuracy is improved using a smaller set of attributes. When comparing the 
reduction achieved on the anthropometric data, the reduction of the 3-D data is higher. 
The reduced sets of attributes contain around eight attributes in both the anthropomet-
ric and 3-D data, but the original number of indices used to describe the 3-D body 
scans is hundred and twenty, while the original number of body measurement is forty-
five for the females and forty-four for the males. Even though a smaller reduction 
ratio is achieved on the anthropometric data compared with the 3-D data, this is still 
significant, since approximately 80% of the body measurements are of less impor-
tance. Moreover, this reduction improves the efficiency of the classification results 
and reduces the complexity of the mining process by using only around 20% of the 
original attributes. 

5   Conclusions 

One of the greatest challenges for the apparel industry is to produce garments that fit 
the customers properly, are aesthetically pleasing and comfortable. In order to pro-
duce garments that fit us well, better characterizations of our populations are needed. 
Furthermore, the different sizes must correspond to real body shapes, in the sense that 
one or more archetypes should represent the individuals belonging to the same size 
accurately. Consequently, it is important to define clusters that may be characterized 
by one archetype, i.e. a truly representative of all other individuals that belong to the 
same cluster. Based on the assumption that the cluster has a convex or quasi convex 
symmetry, the archetype then corresponds to the closest individual to the Centroid of 
the cluster. We might also choose one of the individuals belonging to the sub-region 
with the highest density in terms of number of individuals. If the resulted clusters are 
not convex, more than one archetype might be necessary to fully characterize the 
cluster. In the context of tailoring, however, the optimal scenario is to cover the larg-
est number of people with the fewest number of sizes. In this context then, it is pre-
ferred to have only one archetype, since each new size or sub-size involves more 
tailoring and increases the complexity in the manufacturing.  

The method we utilize in this work satisfies the aforementioned requirements, 
since we were able to group the individuals into clusters with a well defined Centroid. 
Our verification, when using the Cleopatra system, indicates that the cluster member-
ship corresponds to the reality, in the sense that the bodies correspond to our expecta-
tions of the cluster membership. Also, our results indicate that the number of body 
measurements may be significantly reduced by applying interestingness measure-
based feature selection and feature extraction. Moreover, these new sets of reduced 
body measurements improve the predictive accuracy. These sets therefore contain the 
most important body measurements for defining the body sizes, and may be used in 
garment design to identify those body measurements that require special attention, 
when tailoring clothes for a specific population and gender.    

What then, are the general conclusions and lessons to be learned from this data 
mining effort? Our experience shows that techniques, such as PCA, that combine 
attributes are difficult to interpret or, at least, to apply in a real world situation, such 
as when tailoring clothes.  In our case study, we obtained better accuracy through 



228 I. Peña, H.L. Viktor, and E. Paquet 

dimensional reduction while improving the understandability of the model.  It follows 
that using less attributes is more efficient from a “production” perspective, both from 
a monetary and procedural point of view.  Furthermore, when considering both de-
scriptive (relational) and multimedia data, the relationship is not necessarily intuitive. 
That is, it not clear if one should replaced the other and which one are more suitable 
for use; rather, they seem complimentary. 
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Abstract. Although churn prediction has been an area of research in the
voice branch of telecommunications services, more focused studies on the
huge growth area of Broadband Internet services are limited. Therefore,
this paper presents a new set of features for broadband Internet customer
churn prediction, based on Henley segments, the broadband usage, dial
types, the spend of dial-up, line-information, bill and payment informa-
tion, account information. Then the four prediction techniques (Logistic
Regressions, Decision Trees, Multilayer Perceptron Neural Networks and
Support Vector Machines) are applied in customer churn, based on the
new features. Finally, the evaluation of new features and a comparative
analysis of the predictors are made for broadband customer churn pre-
diction. The experimental results show that the new features with these
four modelling techniques are efficient for customer churn prediction in
the broadband service field.

1 Introduction

Services companies of telecommunication service businesses in particular suffer
from a loss of valuable customers to competitors; this is known as customer
churn. In the last few years, there have been many changes in the telecommuni-
cations industry, such as, the liberalisation of the market opening up competition
in the market, new services and new technologies. The churn of customers causes
a huge loss of telecommunication service and it becomes a very serious problem.

Recently, data mining techniques have emerged to tackle the challenging prob-
lems of customer churn in telecommunication service field [4,16,15,3,11,7,17].
As one of the important measures to retain customers, churn prediction has
been a concern in the telecommunication industry and research [3]. Until now
the majority of churn prediction has been focused on voice services available
over mobile and fixed-line networks. Most of the literature introduces the us-
age of variables/features (which are customer demographics, contractual data,
customer service logs, call details, complain data, bill and payment, structure
of monthly service fees, as so on)[3,8,11,15,16,18], and the common modelling
techniques (which are Logistic Regressions (LR) Decision Trees (DT), Artificial
Neural Networks (ANN) and Random Forest (RF)) [7,8,11,16,19].
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Broadband Internet services are potentially one of the greatest sources of
revenue for providers and consequently feature highly in their marketing cam-
paigns. However, the above techniques have not been applied to the specific area
of churn prediction in broadband service field. Until now either very little churn
prediction has been carried out on the broadband Internet services over fixed-
line networks, or the literature of churn prediction in telecommunication does
not provide the details of methodologies for churn prediction using broadband
information [4,16,15,3,11,7,17]. Therefore, it is necessary to investigate the churn
prediction in Broadband Internet service field.

This paper presents a new set of features with four modelling techniques for
customer churn prediction in one telecommunication service field – broadband
Internet. The new set of features are extracted from Henley segmentation, broad-
band usage, dial types, the spend of dial-up, line-information, bill and payment
information, account information, call details and service log data. The mod-
elling techniques used to predict churns are LR, DT, ANN and Support Vector
Machines (SVM). Finally, based on the proposed features and the modelling
techniques, experiments are carried out. The experimental results show that
the presented features with the modelling techniques are efficient for broadband
customer churn prediction.

The rest of this paper is organised as following: next section introduces the
evaluation criterias of churn prediction systems. Section 3 describes our method-
ology which includes the techniques of feature extraction, normalisation and pre-
diction. Experimental results with discussion are provided in Section 4, and the
conclusion of this paper and future works are made in Section 5.

2 Evaluation Criterias

After a classifier or predictor is available, it will be used to predict the further
behaviour of customers. As one of important step to ensure the model generalise
well, the performance of the predictive churn model have to be evaluated. Table
1 shows a confusion matrix [10], where a11 is the number of the correct predicted
churners, a12 is the number of the incorrect predicted churners, a21 is the number
of the incorrect predicted nonchurners, and a22 is the number of the correct
predicted nonchurners. From the confusion matrix, the most common evaluation
criterias for a predictive model are introduced as follows:

– The overall accuracy (AC) is the proportion of the total number of predic-
tions that were correct, calculated by a11+a22

a11+a12+a21+a22
.

Table 1. Confusion Matrix

predicted
CHUN NONCHU

Actual CHU a11 a12

NONCHU a21 a22
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– The accuracy of true nonchurn (TN) is the proportion of nonchurn cases
that were correctly identified, written as a22

a21+a22
.

– The accuracy of true churn (TP) is defined as the proportion of churn cases
that were classified correctly, calculated by a11

a11+a12
.

– The false churn rate (FP) is the proportion of nonchurn cases that were
incorrectly classified as churn, written as a21

a21+a22
.

– The false nonchurn rate (FN) is the proportion of churn cases that were
incorrectly classified as nonchurn, written as a12

a12+a11
.

There are other evaluation criterias and the details of them can be found in [10].
In this paper, we are more interested in the high accuracy of true churn and the
low false churn rate.

3 Methodology

The proposed churn prediction system for broadband Internet consists of sam-
pling data, preprocessing, and classification/prediction phases. Data sampling
randomly selects a set of customers and their relative information, according
the definition of churn. The preprocessing (also called data preparation) in-
cludes data cleaning, feature extraction and normalisation steps. The main task
of data cleaning is to remove the irrelevant information which includes wrong
spelling words caused by human errors, special mathematical symbols, miss-
ing values, strings ”NULL”, duplicated information, and so on. The task of
feature extraction is to select features to address customers. The process
of normalisation is to normalise the values of features into a range. The task
of prediction phase is to predict the further behaviour of customers. The fol-
lowing subsections describe the features/variable extraction, normalisation and
prediction/classification steps.

3.1 Feature/Variable Extraction

The feature extraction plays the most important role which can directly influ-
ence the performance of predictive models in the term of prediction rates. If a
robust set of features is extracted in this phase, a significant improvement will
be yielded. However, it is not easy to obtain such a set of features. Until now,
most of the feature sets have been introduced for churn prediction in mobile tele-
coms industry [8,11,16,3,15] and fixed-line telecommunication [3,18]. However, in
these existing feature sets, the broadband Internet information is not included.
Thus, it is difficult to use the existing feature set for churn prediction in broad-
band Internet service field. Based on broadband Internet service information,
the following features are selected for broadband Internet churn prediction in
telecommunication:

– Demographic profiles: describe a demographic grouping or a market seg-
ment and the demographic information contains likely behaviour of cus-
tomers. Usually, this information includes age, social class bands, gender,
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etc. The available demographic information for this research is gender and
country. Therefore, these information may be useful for predicting the fur-
ther behaviour of a customer.

– Information of grants: Some customers have obtained some special grants
resulting in their bills being paid fully or partly by other parties. For example,
a customer with a disability or over 80 are more unlikely to churn from that
service.

– Account information: includes the account status, creation date, the bill
frequency, the service packages, the account balance, payment types, dial-up
types, dial-up cost, broadband opening date, download and upload capac-
ity, total duration usage, average download and upload speeds, and gen-
eral service usage information which includes the summarised call duration,
the number of calls and standard prices, current outstanding charges and
charges paid. Account information is very useful for predicting the customer
behaviour for the next observation period.

Based on these new features, the average of call duration, the number
of calls, the standard prices and the actual fees payed for 30 days (note
the duration is a number of minutes) are also considered as new features.
Let “DN”, “CN” , “SPN” and “FPN” be the average of call duration, the
number of calls, the standard prices and the fees payed in 30 days of the
most recent bill, respectively. They are obtained by equation 1:

CN =
nCalls M

nDays
∗ 30

DN =
Duration M

nDays
∗ 30

SPN =
Fees M

nDays
∗ 30 (1)

FPN =
Fee C

nDays
∗ 30

where “nCalls M” is the number of calls in the most recent bill,
“Duration M” is the duration of the most recent bill, “Fees M” is the fees
of the most recent bill, “Fee C” is the fees from customers, and “nDays” is
the number of day of the bill, which can be obtained by equation 2.

nDays = endDate − startDate (2)

where “endDate” and “startDate” are the dates of bill starting and ending.
In addition, the ratio between the actual fees that should be pay and the
call-duration of the current bill is extracted as a new feature, which is written
as equation 3.

R AMNT DUR =
Fees M

Duration M
(3)
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– Service orders: describe the services ordered by the customer. The quantity
of the ordered services, the rental charges are selected as new features.

– Henley segments: The algorithm of Henley segmentation [2] splits cus-
tomers and potential customers into different groups or levels according to
characteristics, needs, and commercial value. There are two types of Henley
segments: the individual and discriminant segments. The individual segment
includes ambitious Techno Enthusiast (ATE) and Comms Intense Families
(CIF) Henley segments. The discriminant segments are the mutually exclu-
sive segments (DS) and can represent the loyalty of customers. The Henley
segments (”DS”, ”ATE” and ”CIF”) of the most recent 2 six-months are se-
lected as new input features. Similarly, the missing information of the Henley
segments are replaced by neutral data.

– Broadband Internet and telephone line information: this includes in-
formation about voice mail service (provided or not), the number of broad-
band lines, the number of telephone lines, and so on. The customers who
have more telephone or broadband Internet lines might prefer the services
more and they might be more willing to continues using the services. This
information cant be useful for a prediction model. Therefore, the number
of telephone and broadband lines, and the voice mail service indicator are
selected as part of new features.

– The historical information of payments and bills : this concerns the
billing information for each customer and service for a certain number of
years. Each bill includes the total cost, prices, rental charges, call duration,
charges paid so far, etc. Attributes monthly cost, rental charges, call dura-
tion and paid charges are extracted as new features. They are denoted by
”mnCost”, ”mnRent fees”, ”mnDur” and ”paidfee”, respectively. New other
features are also created; the changed-cost, changed call-duration and rental
changed-fees and are included in the set of new features. They are obtained
by equation 4.

changed costi,i−1 =
|mnCosti − mnCosti−1|∑T

j=2 |mnCostj − mnCostj−1|

changed Durationi,i−1 =
|mnDuri − mnDuri−1|∑T

j=2 |mnDurj − mnDurj−1|
(4)

changed rental Feesi,i−1 =
|mnRent feesi − mnRent feesi|∑T

j=2 |mnRent feesj − mnRent feesj|
where mnCosti, mnDurationi and mnRent feesi are the cost, call-duration
and rental fees of the bill for the month ith.

– Broadband monthly usage information: This information is used to
record the details of the broadband monthly usage for each customer. Monthly
information can show frequency of broadband use, total upload/download,
connection duration. The following types of customers may often churn:
i) those who have short online sessions, ii)Those who have small upload/
download totals, iii) those who have greatly fluctuating monthly usage fig-
ures. Therefore features which capture this information must be included.
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Therefore, some new features should be extracted from the usage informa-
tion of broadband Internet for churn prediction in telecommunication service
fields, especially in broadband Internet service field. Based on this informa-
tion, the new extracted features are the sizes of the information downloaded
and uploaded, the duration of using Internet every month, the changed sizes
of the information downloaded and uploaded, and the changed the online du-
ration of every consecutive two month, and the ratio between the total sizes
of information downloaded/uploaded and the duration of online broadband
Internet for a month.

Consider the sizes of the information downloaded and uploaded, the du-
ration for month i are “DOWi”, “UPi” and “ONTi”, respectively. If the
change sizes of information downloaded and uploaded, and the duration of
online on Internet are “CH DOWi,i−1”, “CH UPi,i−1” and “CH ONTi,i−1”
respectively, they can be calculated by equations (5), (6) and (7), respec-
tively.

CH DOWi,i−1 =
|DOWi − DOWi−1|∑M ′

j=2 |DOWj − DOWj−1|
(5)

CH UPi,i−1 =
|UPi − UPi−1|∑M ′

j=2 |UPj − UPj−1|
(6)

CH ONTi,i−1 =
|ONTi − ONTi−1|∑M ′

j=2 |ONTj − ONTj−1|
(7)

Consider the ratio between the total sizes of information downloaded/
uploaded and the duration of online broadband Internet for month i is
“R GB ONTi”. The ratio can be calculated by equation (8).

R GB ONTi =
DOWi + UPi

ONTi
(8)

– Call details: If the customers did not use the services, he might cease
the services in the future. If the fees of services are suddenly increased or
decreased, the customer might cease the services sooner. Call-details can
reflect this information – how often customer have used the services with
relative payment, and so on. The use of call details in churn prediction is
reported in [16,18]. The call-detail contain call duration, price and types
of call (e.g. International or local call) of every call. It is difficult to store
all call details of every call every month for every customer. Most of the
telecommunication companies keep the call details of a few months. The
limited call details can be used for churn prediction in telecommunication.

Based on these month call details, the aggregated number of calls, duration
and fees are extracted as new features. The basic idea for extracting features
is to segment the call details into a number of defined periods, then to
aggregate the duration, fees and the number of calls for each period for
every customer. In literature [16,18], it is reported that the call-details of
every 15 or 20 days are efficient. In this paper, the six-month call details
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are segmented into 15-day period, then number of calls, duration and fees of
each 15-day period are aggregated for each customer. For a segment i of a
customer’s call details, let the aggregated number of calls, duration and fees
be ”CALL Ni”, ”DURi” and ”COSTi”, respectively. The changed number of
calls, changed-duration and changed-cost between two consecutive segment
of call details can be obtained by Equation 9.

CH DURi,i−1 =
|DURi − DURi−1|∑M ′

j=2 |DURj − DURj−1|

CH Ni,i−1 =
|CALL Ni − CALL Ni−1|∑M ′

j=2 |CALL Nj − CALL Nj−1|
(9)

CH Ci,i−1 =
|COSTi − COSTi−1|∑M ′

j=2 |COSTj − COSTj−1|

where M ′ is the number of call-detail segments; i and j are the indexes of
call-detail segment, and 2 =< i, j <= M ′. In addition, the increment rates
of the number of calls, duration and fees are calculated Equation 10.

R DURi,i−1 =
CH DURi,i−1

CH DURi,i−1 + DURi−1

R Ni,i−1 =
CH Ni,i−1

CH Ni,i−1 + CALL Ni−1
(10)

R Ci,i−1 =
CH Ci,i−1

CH Ci,i−1 + COSTi−1

Thus, the new features includes the number of calls, duration, fees, the
changed number of calls, changed-duration, changed-fees, the rates of the
increased number of calls, the rates of the increased duration and the rates
of the increased fees.

3.2 Normalisation

In the extracted features (See subsection 3.1), some predictors or classifiers (e.g.
Artificial Neural Networks) have difficulties in accepting the string values of
features, such as, genders, county names. The value of a feature was rewritten
into binary strings.

In addition, the values of each of these features (e.g the number of lines,
the sizes of information downloaded/uploaded, the duration of online on In-
ternet, “R GB4 ONTi”, “CN”, “CALL N1”, “DUR1”, “COST1”, “CALL NM”,
“mnDur1” and “paidfee1”, etc.), lie in different dynamical ranges. The large val-
ues of features have larger influence over the cost functions than the small ones.
However, it cannot reflect that the large values are more important in classifier
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design. To solve this problem, the values of these features can be normalised into
a similar range by Equation 11.

x̄j =
1
N

N∑
i=1

xij , j = 1, 2, · · · , ι

σ2
j =

1
N − 1

N∑
i=1

(xij − x̄j)

y =
xij − x̄j

rσj

x̃ij =
1

1 + e−y
(11)

Where xj is the feature jth, ι is the number of features, N is the number of
instances or patterns and r is a Constant parameter which is defined by a user.
In this study, r is set by one.

3.3 Prediction/Classification

Many techniques have been proposed for churn prediction in telecommunication.
Three popular modelling techniques (Logistic Regression, Multilayer Perceptron
neural networks and Decision Tree C 4.5) and one promising modelling technique
(Support Vector Machines), are selected as predictors from the broadband churn
prediction. These four modelling techniques are outlined as follows:

Logistic Regressions: Logistic regression [9] is a widely used statistical mod-
elling technique for discriminative probabilistic classification. Logistic regression
estimates the probability of a certain event taking places. The model can be
written as:

prob(y = 1) =
eβ0+

∑K
k=1 βkxk

1 − eβ0+
∑

K
k=1 βkxk

(12)

where Y is a binary dependent variable which presents whether the event occurs
(e.g. y=1 if event takes place, y=0 otherwise), x1,x2,· · ·,xK are the independent
inputs. β0,β1, · · ·, βK are the regression coefficients that can be estimated by the
maximum likelihood method, based on the provided training data. The detail of
the logistic regression models can be found in [9].

Decision trees: A method known as “divide and conquer” is applied to con-
struct a binary tree. Initially, the method starts to search an attribute with best
information gain at root node and divide the tree into sub-tree. Summarily, the
sub-tree is further separated recursively following the same rule. The partition-
ing stops if the leaf node is reached or there is no information gain. Once the
tree is created, rules can be obtained by traversing each branch of the tree. The
details of Decision Trees based on C4.5 algorithm are in literature [13,12].

Artificial neural networks: A MLP is a supervised feed-forward neural net-
work and usually consists of input, hidden and output layers. Normally, the
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activation function of MLP is a sigmoid function. If an example of MLPs with
one hidden layer, the network outputs can be obtained by transforming the acti-
vation functions of the hidden unit using a second layer of processing elements,
written as follows:

Outputnet(j) = f(
L∑

l=1

wjlf(
D∑
i

wlixi))

j = 1, · · · , J (13)

where D, L and J are total number of units in input, hidden and output layer
respectively, and f is a activation function. The Back-Propagation (BP) or quick
back-propagation learning algorithms would be used to train MLP. The more
details with learning algorithm can be found on [14].

Support Vector Machines: An SVM classifier can be trained by finding a
maximal margin hyper-plane in terms of a linear combination of subsets (support
vectors) of the training set. If the input feature vectors are nonlinearly separable,
SVM firstly maps the data into a high (possibly infinite) dimensional feature
space by using the kernel trick [5], and then classifies the data by the maximal
margin hyper-plane as following:

f(x) = sgn

(
M∑
i

yiαiφ(xi, x) + δ

)
(14)

where M is the number of samples in the training set, xi is a support vector
with αi > 0, φ is a kernel function, x is an unknown sample feature vector, and
δ is a threshold.

The parameters {αi} can be obtained by solving a convex quadratic program-
ming problem subject to linear constraints [6]. Polynomial kernels and Gaussian
radial basis functions (RBF) are usually applied in practice for kernel functions.
δ can be obtained by taking into account the Karush-Kuhn-Tucker condition [6],
and choosing any i for which αi > 0 (i.e. support vectors). However, it is safer
in practice to take the average value of δ over all support vectors.

4 Experimental Results and Discussion

The 139000 customers were randomly selected from the real-world database pro-
vided by Eircom[1] in our experiments. In the training dataset, there are 6000
churners, 94000 nonchurners and total 100000 customers. In the testing dataset,
there are 39000 customers which includes 2000 churners and 37000 nonchurners.
Each customer is represented by the features which are described in Section 3.1.
Based on the datasets, three sets of experiments were carried out in this papers,
independently.

In the first set of experiments, a number of different feature subsets were used.
The features that describe demographic profiles, information of grants, account
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Algorithm 1. The procedure of an experiment for a feature subset
1. Select the subset of features
2. Base on the selected feature subset, load the data from the training set.
3. When the predictive model is available, load the data from testing set, based on
the selected subset of features.
4. Evaluate the the outputs from the predictive model.

information, henley segments, broadband Internet and telephone line informa-
tion, 6-month call details and details of broadband usage information depending
on the number of months selected, were used. The broadband monthly usage
information for a number of months is formed using the current months data in
addition to all previous months data e.g. the 3-month data subset contains the
data for month 3, 2, and 1 and the 7-month data subset contains the information
for month 7, 6, 5, 4, 3, 2 and 1. In the first set of experiments, the number of
months is between 1 and 11. Thus, 11 different subsets of features were used.
For each subset of features, the general procedure of an experiment which is
described by Algorithm 1 was carried out. Four prediction modelling techniques
LR, DT, MLP and SVM were used for each subset of features.

For the second set of experiments, the features that describe the details of
broadband usage information depending on the number of months selected (in-
cluding the summary information of broadband usage on the bills), were used.
Similarly, the same procedure of selecting feature subsets and the same number
of months (from 1 to 11) used in the first set of experiments, were used for the
second set of experiments. Therefore, the second set of experiments also used 11
different subsets of features. For each subset of features, the general procedure
described by Algorithm 1 was applied to each experiment. In addition, in the
second set of experiments, the same modelling techniques were used for each
subset of features.

For the third set of experiments, the features without broadband usage infor-
mation were used. For this subset of features, four prediction modelling techniques
(LR, DT, MLP and SVM) were used. Based on this subset of features, the proce-
dure (see Algorithm 1) was carried out for each of these modelling techniques.

In each subset of features, LR, DT, MLP and SVM were trained and tested.
The training and testing datasets were not normalised for the DT, but were
normalised for the LR, MLP or SVM. All the predictors were trained by 10 folds
of cross-validations in each experiment.

In each set of experiments, each MLP with one hidden layer was trained. The
number of input neurons of a MPL network is the same as the number of the
dimensions of a feature vector. The number of output neurons of the network is
the number of classes. Therefore, the number of output neurons is two in this
application: one represents a nonchurner, the other represents a churner. If the
numbers of input and output neurons are n and m, respectively, the number
of hidden neurons of the MLP is m+n

2 . The sigmoid function is selected as the
activation function for all MLPs in the experiments. Each MLP was trained
by 3 folds of cross-Validation and BP learning algorithm with learning rate
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(a) (b)

Fig. 1. ROC plot of false and true churn rates of the different number of months, where
(a) and (b) presents the results of the first and second set of experiments, respectively

0.1, maximum cycle 1800 and tolerant error 0.05 were used to train the MLPs,
based on the training dataset. The number of training cycles to yield the highest
accuracy is about 600 for the MLPs.

Based on the extracted and normalised features, each SVM was trained to
find the separating decision hyper-plane that maximises the margin of the clas-
sified training data. Two sets of values: the regularisation term C ∈ {28, 27, · · · ,
2−8} and σ2 ∈ {2−8, 2−7, · · · , 28} of radial basis functions (RBF) were attempted
to find the best parameters for the churn prediction. All together, 289 combi-
nations of C and σ2 with 3 folds of cross-validation were used for training each
SVM. The optimal parameter sets (C, σ2) yielding a maximum classification ac-
curacy of standard SVMs were (2−6, 28) for each set of experiments. The optimal
parameter sets (C, σ2) yielding a maximum classification accuracy of SVMs were
(2−6, 27) for the first and second set of experiments. For the third set of exper-
iments, the optimal parameter sets (C, σ2) yielding a maximum classification
accuracy of SVMs were (2−5, 28) .

Table 3 shows the prediction rates (AC, TP, FP) for the third set of exper-
iments, and Table 2 shows the prediction rates (AC, TP, FP) for the first and
second sets of experiments. The prediction rates on the left hand side of Table
2 summarise the results of the four techniques (LR, DT, MLP and SVM) per-
formed on the first set of experiments. The results on the right hand side of the
Table 2 were obtained from the second set of experiments (that used broadband
usage information only). Based on Table 2, Figures 1(a) and 1(b) plot the re-
ceiver operating characteristics (ROC) graphs, which are TP against FP for the
first and second sets of experiments, respectively. A point in the plots presents a
pair of prediction rates (FP, TP) from a modelling technique based on a subset
of features. Figures 1(a) and Figures 1(b) present the prediction rates for the
first and second sets of experiments, respectively. The results of LR, DT, MLP
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Table 2. Prediction rates based on different datasets, where BU presents number
months of broadband usage information

All data/variables Only Broadband usage info.
LR DT MLP SVM LR DT MLP SVM

BU 1 month 1 month
AC 98.27 98.42 98.19 98.26 96.59 97.39 95.18 96.77
TP 73.90 76.55 75.05 77.90 49.15 62.45 53.95 55.65
FP 0.42 0.40 0.55 0.64 0.84 0.72 2.59 1.01
BU 2 months 2 months
AC 98.22 98.38 98.03 98.24 96.55 97.52 94.82 95.33
TP 73.55 76.75 75.45 77.60 51.15 63.10 53.50 56.45
FP 0.45 0.45 0.75 0.65 0.99 0.62 2.95 2.56
BU 3 months 3 months
AC 98.29 98.41 98.03 98.22 96.62 97.46 95.78 96.06
TP 74.70 76.25 75.45 77.35 50.00 63.80 54.20 63.20
FP 0.43 0.40 0.75 0.65 0.86 0.72 1.97 2.16
BU 4 months 4 months
AC 98.27 98.26 97.33 98.19 96.60 97.48 95.44 95.42
TP 74.80 77.50 76.70 77.70 50.30 64.10 54.60 63.55
FP 0.46 0.62 1.55 0.70 0.90 0.71 2.35 2.85
BU 5 months 5 months
AC 98.22 98.24 97.83 98.17 96.61 97.47 95.66 96.37
TP 74.60 77.65 76.55 78.00 51.05 64.10 55.30 62.70
FP 0.50 0.65 1.02 0.74 0.93 0.73 2.16 1.81
BU 6 months 6 months
AC 98.27 98.27 97.92 98.12 96.59 97.44 94.71 96.23
TP 74.60 77.55 75.60 77.90 51.40 63.90 56.40 62.75
FP 0.45 0.61 0.88 0.79 0.97 0.75 3.22 1.96
BU 7 months 7 months
AC 98.26 98.26 97.98 98.05 96.60 97.38 94.53 95.98
TP 74.55 77.90 75.30 78.25 51.05 63.65 55.40 60.60
FP 0.46 0.64 0.79 0.88 0.94 0.80 3.35 2.11
BU 8 months 8 months
AC 98.27 98.16 98.12 98.05 96.58 97.32 94.49 96.52
TP 74.80 77.25 74.95 78.05 50.60 63.75 54.90 58.05
FP 0.46 0.71 0.63 0.87 0.94 0.86 3.36 1.41
BU 9 months 9 months
AC 98.22 98.21 98.22 98.05 96.49 97.28 94.40 96.55
TP 74.60 77.20 74.20 77.70 49.70 63.45 53.50 59.35
FP 0.51 0.65 0.49 0.85 0.98 0.89 3.39 1.44
BU 10 months 10 months
AC 98.17 98.20 98.19 97.96 96.44 97.03 94.89 96.40
TP 73.40 77.15 74.85 77.65 48.05 60.05 53.00 59.25
FP 0.49 0.66 0.55 0.95 0.94 0.97 2.84 1.59
BU 11 months 11 months
AC 98.21 97.96 98.06 96.60 96.37 96.87 94.82 96.47
TP 72.75 73.45 67.15 64.70 47.05 58.25 50.10 52.35
FP 0.42 0.71 0.27 1.68 0.96 1.04 2.76 1.14
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Table 3. Prediction rates based on the data without broadband usage information

LR DT C4.5 MLP SVM
AC 97.941 97.723 96.828 97.744
TP 69.600 72.300 69.200 72.950
FP 0.527 0.903 1.678 0.916

Fig. 2. ROC plot of false and true churn rates vs. the three different sets of data

and SVM models are shown in yellow, red, green and black, respectively, in these
Figures. Table 2 Figures 1(a) and 1(b) show that:

1. The number of months of broadband usage information is between 3 to 9 to
obtain better prediction rates

2. For the same subset of features, which type of modelling techniques would
get higher prediction rates (TP) with lower prediction rates (FP) (e.g. the
DT and SVM would get higher prediction rate (TP) than the LR and MLP;
the DT and LR would get lower prediction rates (FP) than the SVM and
MLP; the SVM would get slight high rates (TP) than than DT, etc.)

3. because the prediction rate (TP) is more significant when the FP is not very
different, the SVM and DT outperform the LR and MLP.

As mentioned above, the number of months of broadband usage information
is between 3 to 9 to obtain better prediction rates. In order to compare the
efficiency of the feature subset that excludes broadband usage information with
the feature subsets that include the broadband usage information, the average of
prediction rates (FP, TP) for the months from 3 to 9 for each modelling technique
were calculated. These pairs of the average prediction rates and the pairs of
the prediction rates (FP,TP) from the third set of experiments are plotted in
Figure 2: the yellow points are from the second set of experiment, the black
points are from the first set of experiments, and the magenta points are from
the third set of experiments. Figure 2 shows that:
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1. For all the modeling techniques, the prediction rates for TP are reasonably
high (above 73%) and the prediction rates for FP are very low (about max
1%)in the case of the first set of experiments.

2. The prediction rates (TP) are higher and the prediction rates (FP) are lower
when all the information were used in the first set of experiments.

3. when the same data were used, the SVMs and DTs can obtain the highest
prediction rates (TP) and lowest rates (FP); LR can get the lowest rates
(TP), and MLP can provide the lower rates (TP) with highest rates (FP).

4. The prediction rates ( TP, FP) obtained on the information without broad-
band information are also high (about TP of 71% and FP of 1.1%).

5. The prediction rates (TP, FP) obtained on the information with only broad-
band information are about 50% and 2%), which are quite good, considering
the condition of the experiments, in which the number of customer that are
churning is very low in comparison with the non-churners.

The computation overhead is very different when the different modelling tech-
niques were used for the churn prediction. The most expensive computational cost
was spent on using the MLP, the computational cost of using the SVM is more
expensive, the lower and lowest ones were spent on using the DT and LR respec-
tively. In addition, the outputs of these modelling techniques are different. DT
can provide churn reasons without likelihood. LR and MLP can give the likeli-
hood/probability for customer behaviour. The SVM can provide only binary out-
put which presents churn or nonchurn. Therefore, which types of modelling tech-
niques should be used depends on the objectives of an application. For examples,
if interested in churn reasons, the DT should be used; if the probabilities of churns
and nonchurns is required, the MLP or LR might be more suitable to use.

5 Conclusions

This paper presented a new set of features, based on Henley segmentation, the
broadband usage, dial types, the spend of dial-up, line-information, bill and pay-
ment information, account information, call details and service log data. Four
modelling techniques (LR, DT, MLP and SVM) were used for customer churn
prediction in telecommunication service field, especially broadband Internet. Fi-
nally, based on this new set of features, the comparative experiments of the four
modelling techniques were carried out. The experimental results showed that the
high true churn of 77% with the low false churn rate of 2% can be achieved using
the proposed features. Experimental results also showed which modelling tech-
nique is more suitable for broadband churn prediction depends on the objective
of the churn prediction. For examples, DT and SVM should be used if interested
in the true churn rate and false churn rate; the logistic regressions might be used
if looking for the churn probability.

However, there are some limitations with our proposed techniques. In the fu-
ture, other information (e.g. complain information, contract information, more
fault reports, etc.) should be added into the new feature set in such a way to im-
prove features. The dimensions of input features also should be reduced by using
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the principal components analysis methods and genetic algorithms. In addition,
because the imbalance classification problem takes place in this application, the
methods of imbalance classifications should be focused in the future.
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Abstract. Construction gene regulation networks can provide insights
into the understanding the molecular mechanisms underlying important
biological processes. We present a novel association rule mining for build-
ing large-scale gene regulation networks from microarray data. Gene ex-
pression microarray data typically contains a very high gene dimension
and a very low sample size, rendering a great challenge for existing associ-
ation rule mining algorithms. In this paper, we develop a novel algorithm,
HCMiner, to mine high-correlation association rules from microarray
data. HCMiner initially overlapping partitions the dimension of genes
according to their correlations and introduces the support-free frame-
work for mining association rules. Several experiments on Yeast dataset
show that the proposed algorithm outperforms existing algorithms with
respect to scalability and effectiveness.

1 Introduction

The recent development of high-throughput bio-techniques for functional ge-
nomics has generated a large amount of gene expression microarray data. Ana-
lyzing microarray data can provide novel insights in understanding basic mech-
anisms controlling cellular processes. Various data mining techniques have been
employed to extract useful biological information from the huge and fast-growing
gene expression data. One main objective of such data mining tasks is to uncover
gene regulation networks from microarray data in order to deeper understanding
the underlying complex genetic regulatory process, which has important implica-
tions in the pharmaceutical industry, complex disease treating, and many other
biomedical fields.

One of the current widely used methods to derive gene regulatory from mi-
croarray data is association rule mining [5,9,13,21]. Association rules can capture
biological correlation between genes, as well as reveal the direction of relation-
ships. An association rule is an implication of the form LHS ⇒ RHS, where
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LHS and RHS are sets of genes and relevant facts describing the cellular en-
vironment of the genes, the RHS set is likely to occur whenever the LHS set
occurs. An example of an association rule mined from expression data might be
geneA ⇒ geneB, meaning that, for the expression profile experimental data set,
when gene A was measured as expressed, gene B is likely to be expressed.

While association rules can facilitate analysis of gene expression data sets,
there are several limitations with the existing algorithms: (1) existing associa-
tion rule mining techniques employ global analysis of microarrays which may
not adequately capture co-regulation of genes. The rules generated may involve
uncorrelated genes. (2) existing algorithms still suffer from the inherent dimen-
sionality problem in microarray data. The traditional association rule mining
algorithms work by enumerating the relationships among columns and often
result in itemset explosion due to the high dimensionality of microarray data.
Although the concept of row-enumeration have been introduced to efficiently
prevent itemset explosion [7,18], a common problem of these algorithms is the
limitation of support-confidence framework. For instance, many rules that a bi-
ologist would consider highly interesting are pruned if the support is set too
low, as well as the rules with low support but correlated items are missed out
if the support is set too high. (3) The rules generated by the existing associa-
tion rule mining algorithms do not reveal the complex regulation relations from
microarray data. According to biological interpretations, there are three types
of regulation relations between genes: activation, inhibition, and dependency.
However, the rules generated do not consider the inhibition relations.

Motivated by these concerns, we develop a novel algorithm, HCMiner, to
mine highly correlated association rules from microarray data. Initially we pro-
pose a overlapping partitioning method to detect the groups within the dimen-
sion of genes according to their correlations. The items (genes) within a group
are highly correlated and are considered as the candidates of co-regulated genes.
Then, we propose a support-free framework for mining association rules within
groups. The technical contributions of our work are summarized as follows:

– We investigate the complexity of the situation in high-dimensional gene ex-
pression data, and propose an overlapping partitioning method to allow one
gene to be assigned to several groups according to their correlations.

– We develop a support-free framework for mining association rules and exploit
new effective techniques to prune the search space.

– We consider both activation and inhibition relations between genes and de-
liver more valuable regulation information of gene network.

The remainder of this paper is organized as follows. In Section 2, we describe
our investigate on the presence of groups within genes based on correlation re-
lationships and present the method for overlapping partitioning gene expression
data. The methods for mining highly correlated association rules are examine in
Section 3. We report, in Section 4, evaluation results of applying the method to
several datasets obtained from experimental observations of the gene expression
data of yeast. Related work is illustrated in Section 5. We then summary the
paper in Section 6 and discuss the possible future work.
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2 Overlapping Partitions of Genes Expression Data

Association analysis has been extensively studied over the last decades, which is
a task of find correlations between items in a dataset [2]. Recent results [1,20]
have shown that correlated patterns may not always exist globally due to items
do not correlate with each other uniformly. For instance, genes are not cor-
related in full dimensional space but correlated only in subset of dimensions.
This phenomena can help get extra insights by finding association rules in small
groups consisting of items with significant intra-group correlations but insignifi-
cant inter-group correlations. By partitioning the high-dimensional gene expres-
sion data we form the genes into groups. In addition, one gene may be involved
in multiple pathways [12], thus identifying overlapping partitions is important in
biological applications. In the following section, we describe an overlapping par-
titioning method to detect the groups within the dimension of genes according
to their correlations.

2.1 Problem Formulation

Technically, gene expression data can be modeled using an undirected, un-
weighted gene coherence graph G = (V, E) of a set of vertices V and a set of edges
E, where each vertex represents a unique gene and each edge is a pair of genes
if and only if their expression patterns are similar according to a user-specified
similarity measure (e.g, Euclidean distance or Pearsons correlation coefficient).
The degree of a vertex vi, denoted as Deg(vi), is the number of edges incident
to the vertex vi.

Fig. 1. An example graph G
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Definition 1: Let V = {v1, v2, ..., vn} be a set of all vertices in Graph G. The
correlation between two vertices vi and vj ∈ V , Cor(vi,vj), is defined as follows.

Cor(vi,vj) = m
n1×n2

where m represents the number of common interaction neighbors shared by
two vertices, i and j. n1 and n2 denotes the degree of the vertex vi and vj ,
respectively. Considering a pair of vertices {A, B} in Figure 1, Cor(A,B) = 1

4×3
= 0.08.

Definition 2: A pair of vertices is highly-correlated if their correlation is not
less than a predefined minimum threshold.

2.2 Partitioning Method

The procedure to partition the dimension of genes is based on the determination
of highly-correlated genes. A näıve approach for this procedure is described as
the following operations:

1. Calculate the correlation between all pairs of genes;
2. Keep the edges of G that the corresponding vertices is highly-correlated;
3. Find all the connected partitions of G. Each partition corresponds to a group

of the genes.

There is an issue remaining in the näıve approach, that is, one gene only holds
in one group. Such operation could lead to unbalanced partitions especially for
gene coherence graph with the presence of highly connected hub nodes that
are connected to a large number of other nodes [4,3]. To avoid the above bias,
we propose an overlapping partitioning method, Partitioning, as outlined in
Algorithm 1. Partitioning consists of two phases. In phase 1, the vertices are
ordered in the degree descending order in order to avoid repeatedly checking pairs
of vertices and speed up the process. For two vertices, vi and vj , Partitioning
do the following examinations:

1. If vi and vj belong to the same group, there is no need to examine the pair;
2. If both vi and vj do not appear in an existing group, create a new group;
3. If only vi belongs to an existing group, check whether vj is high correlation

with the other vertices in the groups that vi belongs to; If yes, combine vi

and vj to the same group. Otherwise, create a new group including vi and
vj .

In phase 2, Partitioning do the merging process to combine small groups
for the purpose of identifying more meaningful partitions and speeding up the
process. For two groups, if the number of common genes shared by two groups
satisfies a threshold, the two groups should be merged. As demonstrated in the
example in Figure 1, Partitioning is able to discover two partitions: F,E,G,H
and F,A,C,B,D if we set the correlation threshold is 0.09, which näıve approach
cannot find.



248 X. Shang, Q. Zhao, and Z. Li

Algorithm 1: Partitioning
begin
sort the vertices in a given graph G = (V, E) in degree
descending order;
for each vertex vi in V do

if vi belongs to an existing partitions then
for each vertex vj connected to the vertex vi

and Deg(vj) ¡ Deg(vi) do
if vi and vj belong to the same group then

do nothing;
else if vj is high correlation with the other vertices

in the groups that vi belongs to then
combine vi and vj to the same partition;

else if
create a new partition including vi and vj ;

end for
else if create a new partition including vi;

end for
call Merging

end

Fig. 2. Algorithm for Partitioning

3 HCMiner: Mining Highly Correlated Association
Rules

For the set of genes in each partition we have to find association rules with
confidence higher than the predefined minimum threshold. Most of existing as-
sociation rule mining algorithms adopted support-confidence framework and con-
sisted of two steps: discovery of frequent itemsets that satisfy with the predefined
support threshold and then generation association rules that satisfy with the
predefined confidence threshold from frequent itemsets. As we discussed above,
there is a fundamental limitation of support-confidence framework especially to
the case with microarrays. To overcome the aforementioned limitations of ex-
isting algorithms for mining association rule from microarray data, we propose
support-free association rule mining algorithm, HCMiner, to extract gene ac-
tivation and inhibition relations from microarray data.

Before the algorithm is presented, let us give some definitions. According to
biological interpretations, there are three types of regulation relations between
genes A and B: activation, inhibition, and dependency. They can be respectively
defined as follows:

1. A activates B (A ↑ B) if A is expressed (A ↑), then B is expressed (B ↑); or
if A is depressed (A ↓), then B is depressed (B ↓);

2. A inhibits B (A ↓ B) if A is expressed (A ↑), then B is depressed (B ↓); or
if A is depressed (A ↓), then B is expressed (B ↑);

3. A and B is independent if A is expressed (or depressed), then B shows both
expressing and depressing, or even remains unchanged.
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Definition 3: Given two genes, A and B, the confidence of an activation rule
in form of A ↑ B is defined as follows:

conf(A ↑ B) = ‖A↑andB↑‖+‖A↓andB↓‖
‖A↑orA↓‖

Definition 4: Given two genes, A and B, the confidence of an inhabitation rule
in form of A ↓ B is defined as follows:

conf(A ↓ B) = ‖A↑andB↓‖+‖A↓andB↑‖
‖A↑orA↓‖

3.1 Algorithm Description

The HCMiner is an algorithm which can generate all activation and inhabita-
tion rules with confidence above predefined confidence threshold. Figure 3 gives
an overview of the HCMiner.

HCMiner exploits two confidence-based pruning methods that allows us to
effectively prune the search space without the support requirement. Unlike sup-
port, confidence does not have the anti-monotone property. But confidence has
weak anti-monotone property which is based on the following definitions.

Definition 5: Given an itemset L, a rule r is an L − consisting rule if
antecedent(r) ∪ consequent(r) = L and |antecedent(r)| = 1. For example, the
itemset L = A, B, C, D, the rule A ⇒ BCD is an L − consisting rule.

Definition 6: Given an itemset L = i1, i2, ..., im, the maximum confidence of
the L − consisting rule is defined as max{conf(i1 ⇒ i2, ..., im), conf(i2 ⇒
i1, i3, ..., im), ..., conf(im ⇒ i1, ..., im−1)}.

Definition 7: Given an itemset I, let a rule r = X ⇒ Y , where X ∪Y = I. The
set of extensionrules ER is the set of all rules generated from the rule r such
that for each er ∈ ER, antecedent(er) = antecedent(r) and consequent(er) =
consequent(r)∪Z, where Z is an itemset and Z ⊆ I. For example, the rule r is
A ⇒ B, the rule A ⇒ BC is an extension rule of r.

There are two pruning techniques which can enforce the algorithm HCMiner.
To take advantage of the pruning power of minimum confidence threshold,

Algorithm 2: HCMiner
begin
get size-1 items, sort all size-1 items in support ascending order;
for size of items in (2,3,...,k-1) do

generate candidate confidence rules
prune based on the L − consisting Pruning
prune based on the Extension Pruning
generate confidence rules

end for
end

Fig. 3. Algorithm for HCMiner
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Fig. 4. Rule enumeration tree

HCMiner adopts a bottom-up search method and a rule enumeration tree,
as shown in Figure 4.

1. L-consisting Pruning. We can prune rules generated from the same L-
consisting rule by the anti-monotone property. If the maximum confidence
of a L-consisting rule < minconf (the predefined minimum confidence
threshold), then the set of the L-consisting rules are not confident and are
pruned. For instance as shown in Figure 4, the itemset L = A, B, C, D. If the
maximum confidence of L-consisting rules is conf(A ⇒ BCD), which is less
than the minimum threshold, then B ⇒ ACD, C ⇒ ABD, and D ⇒ ABC
is not confident and are pruned.

2. Extension Pruning. We can prune extensionrules by the anti-monotone
property. If a rule is not confident, then the extension rules are not confident
and pruned. For instance, the rule r is A ⇒ B. If A ⇒ B is not confident,
then A ⇒ BC, A ⇒ BD, and A ⇒ BCD are not confident and are pruned.

4 Performance Evaluation

In this section, we present extensive experiments to evaluate the effectiveness
of the proposed methods on gene expression data. We demonstrate the effect of
the overlapping partition method and a computation performance comparison
between the HCMiner algorithm, standard row-set enumeration algorithm, and
standard column-set enumeration algorithm. All experiments were performed on
a PC with a 2.53GHz Interl(R)2CPU and 2G RAM.

4.1 Datasets

In this study, we use the gene expression data CDC28 downloaded from
http://cellcycle-www.stanford.edu. The CDC28 data set [10] generated by
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temporal microarray experiments records the mRNA transcript levels of the
budding yeast S. cerevisiae during the cell cycle. In the data, the number of
genes is 6178, and the number of transactions is 82. The reasons we use this
dataset are as follows: (1) The accuracy of identification co-regulated genes from
coexpressed microarray experiments is high in the case of the number of mi-
croarray experiments at between 50 and 100 [24]. (2) The time-series microarray
data is widely used for inferring gene regulation schemes and metabolic pathways
due to the capability of capture the dynamicity of biological networks. (3) The
evaluation of the biological significance of the mining results is straightforward
since the extensive study on the gene regulation schemes of S. cerevisiae. Missing
values are filled using BPCAfill by Oba et al. [16] that performs much better
than the existing methods for missing value estimation. The expression level of
each gene is discretized by binning the log2 of the expression level into the three
levels, i.e. up-regulated, normal, or down-regulated, and represented by one sin-
gle variable. For example, for gene A, an expression level can be represented as
up-regulated (A=1), normal (A=0), or down-regulated (A=-1), respectively.

4.2 Performance Comparison

In this set of experiments, we demonstrate the performance of HCMiner in com-
parison with row-set enumeration algorithm and column-set enumeration algo-
rithm, by varying several parameters, such as support threshold and confidence
threshold. Row-set enumeration methods have recently emerged to facilitate the
mining of microarray data. The results of these are illustrated in Figure 5(a) and
(b). Notice that, the execution time for HCMiner consists of partitioning time and
mining time. In Fig. 5(a), we can observe that the running time can be increased
with the decrease of support thresholds. As expected, HCMiner outperforms row-
set enumeration and column-set enumeration for lower support thresholds. How-
ever, row-set enumeration has better performs than HCMiner when the support
threshold is set high. The major reason is that the cost of partitioning does not pay-
off for high support thresholds since the mining time are very small. In Fig. 5(b)
for the support of 0, the running time of the column-set enumeration were so large
that we had to abort the runs in the case of confidence threshold of 0. This is be-
cause that, for the column-set enumeration approach, a lower support threshold
leads to a long computational time to extract a huge number of frequent patterns
and the subsequent rule generation process is unable to proceed due to the limita-
tion of memory. In addition, HCMiner is significantly more efficient than row-set
enumeration and column-set enumeration when support threshold is free.

We compare the association rules extracted by HCMiner approach with
those extracted by row-set enumeration approach to evaluate the capability of
capture co-regulation of genes by overlapping partitioning method. The results
show that row-set enumeration identifies rules containing uncorrelated genes.
For example, the rule between Gene YBR088C and Gene YCL040W is gen-
erated by row-set enumeration approach. However, there is no such rules dis-
covered by HCMiner. Looking into the original data of Gene YBR088C and
Gene YCL040W in Fig. 6(a), we say that the changing tendency of those two
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(a) (b)

Fig. 5. (a) The run time vs. support threshold when the confidence threshold is 0.8,
(b) the run time vs. confidence threshold when the support threshold is 0

(a) (b)

Fig. 6. (a) Gene YBR088C and Gene YCL040W, (b) Gene YBL032W and Gene
YGR279C

genes are not co-regulated (the Pearson correlation coefficient between them is
0.0905056). So does the rule between Gene YBL032W and Gene YGR279C (the
Pearson correlation coefficient between them is 0.361191), as shown in Fig. 6(b).
This indicates that the association rule mining on gene expression data under
row enumeration without overlapping partition may generate the rules on un-
correlated genes.

To evaluate the biological significance of discovered rules from gene microarray
data, we use the Gene Ontology (GO) [8] to see if our rules are contained in
GO gene relationships. If a rule contains an antecedent gene that shares a GO
annotation with any genes in the consequent items, we say the rule describes
biologically meaning relationships. We found that the higher percentage of rules
contained a GO relationship as minconf is increased. These results strengthen our
argument that support-free framework is effective for identifying relationships
from microarray data sets.

5 Related Work

Association rule mining was originally designed to market analysis on transac-
tion databases [2]. Recently some researches applying association rule mining to
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extract knowledge from biological data sets have already been completed. Oyama
et al. [17] and Kotlyar et al. [14] combined multiple protein features such as se-
quence motifs and functional annotation to protein-protein interactions. Each
transaction consists of a protein pair annotated with various features. When the
form of dataset is given, various kind of rules can be expected. For example, let α
and β denote the set of domains that appear in the LHS and RHS, respectively.
Then, one of the found rules looks like: α → β. In fact, such rules enables us to
make a predictions like ”the protein having domain α will probably interact with
the protein having domain β” or access the reliability of proposed interactions. A
major reason that association rule mining has been used in these applications is
due to the need to take a large number of variables into consideration. In another
study [23], a new type of association mining, hyperclique pattern discovery, was
applied to protein complex data to find functional modules. Gaurav et al. [19]
use the concept of hyperclique to transform the original protein interaction net-
works by removing or adding edges in order to produce new graphs that are more
suitable for protein function prediction. Recently, the association rule mining al-
gorithms based on row-enumeration for mining interesting gene relationships
from classified microarray data sets have been proposed. These include CAR-
PENTER [18] and RERII [7]. Other data mining techniques, such as Bayesian
network learning [15,11,13], neural network [22], bicluster models [6] have been
employed to uncover the biological relationships of genes from microarray data.
However, the poor scalability of most existing data mining analysis techniques
has still limited the empirical value of gene microarray analysis.

6 Summary and Conclusion

Microarray data renders new challenges that make many traditional data min-
ing techniques infeasible for mining the hidden gene relationships due to its high
density. In this paper, we give the insight about the presence of groups deter-
mined by correlations between the genes and present an overlapping partition
method to detect the groups within the dimension of genes. Additionally, we
describe a support-free framework for mining association rules. Several experi-
ments on Yeast dataset show that the proposed algorithm outperforms existing
algorithms with respect to scalability and effectiveness.

However, the problem of analyzing gene microarray data sets is still chal-
lenging. There remain lots of further investigations. We will plan to investigate
the proposed method on other more microarray data sets to evaluate its perfor-
mance in terms of scalability and the biological significance of discovered rules.
It is known that these data sets may contain high levels of errors in terms of
both false positives and false negatives. Integration of different gene microarray
data provides a way to improve data quality and recover missing data. We will
plan to explore the proposed method to mine association rules from multiple
microarray data sets for inferring gene regulation network.
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Abstract. Running analytics computation inside database engines through the 
use of UDFs (User Defined Functions) has been extensively investigated, but 
not yet become a scalable approach due to two major limitations. One limitation 
lies in that the existent UDFs are not relation-in, relation-out and schema-aware, 
unable to model complex applications, and cannot be composed with relational 
operators in a SQL query. Another limitation lies in the difficulty of program-
ming UDFs for efficient interaction with query processing, since that requires 
hard-to-follow system knowledge beyond the analytics expertise. These limita-
tions actually keep away most users from using UDFs for their analytics appli-
cations.  

To solve these problems, we extend the UDF technology in both semantic 
and system dimensions. We first expand our investigation on Relation Valued 
Functions (RVFs) with the goal of having RVF executions tightly integrated 
with query processing, but allowing RVF developers to be liberated from 
DBMS internal details. We separate an RVF into two parts: RVF shell that con-
tains the system utilities, and user-function that contains application logic only. 
We provided focused system support based on the notion of invocation pattern, 
and developed the mechanism for generating an RVF-shell automatically based 
on the schemas of its argument and return relations, the well understood invoca-
tion pattern, and the common data conversion protocol. A complete RVF is 
made by plugging the “user function” in the RVF-shell.  

We have prototyped the proposed approach on the open-sourced database 
engine Postgres. Our experience reveals its advantages in making UDF tightly 
integrated with the query executor but relieving analytics users from dealing 
with system details – a fundamental data engineering requirement to make UDF 
technology practically usable for converging data intensive analytics and 
data management.  

1   Introduction 

Running data-intensive analytics computations outside database causes significant 
overhead in data access and transfer, which has been recognized as the major per-
formance bottleneck in business intelligence applications, and has given rise to the 
need of pushing down data-intensive computations to the database engine. To reach 
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the analytics operations which are beyond the standard relational operations, we rely 
on User Defined Functions (UDFs) [1, 10,14]. 

1.1   The Challenge 

However, the current UDF technology has several limitations. One limitation lies in 
the lack of formal support of relational input and output. Existing SQL systems offer 
scalar, aggregate and table functions, where a scalar or aggregate function cannot re-
turn a set; a table function does return a set but its input is limited to a single-tuple 
argument. These types of UDFs are not relation-in, relation-out and schema-aware, 
unable to model complex applications, and cannot be composed with relational opera-
tors in a SQL query. Further, they are typically executed in the tuple-wise pipeline of 
query processing, which may prohibit in-function batch and parallel processing. Al-
though the notion of relational UDF has been studied by us [3] and others [1,10], it is 
not yet realized on any product due to the cumbersome in interacting with the query 
executor.  

  

Next, there exists a conflict between UDF execution efficiency and easy-coding. A 
UDF is run in the query processing environment with a number of interactions with 
the query executor, for parsing parameter, converting data, switching memory con-
texts, etc. Coded using DB engine internal data structures and system calls, a UDF 
can be executed efficiently, but the analytics users have to deal with the hard-to-
follow system details, which is often beyond their discipline; and this situation actually 
keeps them away from using the UDF technology.  

1.2   Related Work  

Integrating data-intensive analytics and data management in terms of UDFs has been 
extensively investigated [2-9], and the notion of relational UDF has been studied by 
[1,10] as well as by us [3] in different contexts. However, how to realize RVF effi-
ciently has not yet been explored.  

To ease the development and utilization of UDFs, some systems such as SQL 
Server, convert UDF’s input data to strings from their system internal formats, which 
causes significant overhead in converting data and parsing parameters. With such a 
mechanism, as reported in [12,13], on SQL Server, no matter how simple a UDF is, it 
sharply underperforms compared with a system function or expression.  

On the other hand, in some database systems such as Postgres, UDFs are coded in 
exactly the same way as system functions, which allows the UDFs to be executed 
efficiently, but requires the UDF developer to deal with tedious DBMS internal data 
structures and system calls, which, in fact, significantly contrasts to the easy coding of 
map() and reduce() functions on a MapReduce platform such as Hadoop where the 
system support are completely transparent to users [1,8].  

 

1.3   The Proposed Solutions 

We extend our previous work on Relation-Valued Functions (RVF) [3] by addressing 
the key implementation issues. We classify RVFs based on their “invocation pat-
terns”, namely, the mechanisms for dealing with input (e.g. passing in an input  
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relation tuple by tuple, or as a whole) and return values (e.g. per-tuple return or set 
return).  A well-defined invocation pattern with designated input-mode and return-
mode underlies well-understood behavior and system interface, as well as focused 
system support.  

Without any constraint, in a function body, the code for system utilities and for ap-
plication logic may be interleaved in multiple ways. However, constrained by a spe-
cific invocation pattern, the steps of system interaction can be made deterministic, 
making it possible to single out the application logic from the system utilities, and to 
abstract high-level APIs for interacting RVF execution with query processing. 

To convert relation objects from their DBMS internal data structures into simpli-
fied ones to be manipulated by applications, we introduced the Simple Relation  
Object Mapping (SROM) protocol. SROM also covers the User Defined Types 
(UDTs) composed from primitive types and collections. Based on SROM, the data 
structure declarations (in header files) of the involved relation objects, which are 
much simpler their DBMS internal formats, can be generated from the corresponding 
relation schemas.  

In order to distinguish user’s responsibility and system’s responsibility, we separate 
an RVF into two parts: the RVF shell and the “user-function”; the RVF-shell contains 
the system utilities for running the RVF in the query processing environment, and the 
“user-function” contains application logic only without DBMS internal system calls. An 
RVF is made by plugging a user function in its shell. Since coding RVF shells requires 
the familiarity of system internal details which is in general beyond the expertise of ana-
lytics users, we developed the system utilities to generate an RVF shell from its function 
declaration, data mapping scheme and the designated invocation pattern.  

Our solution stack is shown in Fig 1, where an RVF shell is generated, together 
with the above header files, The RVF developer is only responsible for providing the 
plugged in user-function which is free of DBMS internal data structures and system 
calls.   

The proposed solutions have been prototyped on the open-sourced Postgres  
database engine, and we plan to transfer the implementation to a commercial and pro-
prietary parallel database engine. We show how RVFs can be used intelligently to 
alleviate the shortcomings of SQL being cumbersome in expressing data flow logic, 
and in gaining high performance. Our experiment also reveals the system intelligence 
for separating RVF shell and user-function and for generating the shell automatically, 
which greatly scales the UDF applications for data-intensive analytics.  

 

“user-function” 
contains
application code 
only

Query 
Executor

RVF Container

RVF Shell

User-function

 
 

Fig. 1. SQL RVF on DB Engine 
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The rest of this paper is organized as follows: Section 2 outlines the need and char-
acteristics of RVF; Section 3 describes RVF invocation patterns wrt input and return 
modes; Section 4 discusses the separation of RVF-shell and user-function; Section 5 
introduces the RVF-shell generation approach; Section 6 illustrates experimental re-
sults; Section 7 concludes.  

2   Extend Relation Operation with Relation Valued Function 

In order to have data intensive applications executed inside database engine for fast 
data access and reduced data move, and composed with relational operators to form 
integrated dataflow pipelines, we extend our investigation on relation-input, relation-
output and schema-aware Relation Valued Functions (RVFs) [3]. Although RVFs 
coded in non-SQL language such as C, have not yet supported by any database prod-
uct at the SQL level, it is not our intention to reinvent the wheel. 

 
Here, for the sake of 

completeness, we provide a short description of this notion, motivate and justify our 
choice of using RVF to support data-intensive analytics inside database engine.  

In the following we will explain the need for RVFs from the following dimensions: 
expressive power, execution efficiency, and seamless integration with relational op-
erators in SQL queries.  

2.1   Expressive Power 

Usually, the set of tuples in a relation represent a set of objects; when an application 
involves the inter-relationship and global behavior of these objects, coding the appli-
cation in a UDF with per-tuple input becomes impossible.  

2.2   Execution Efficiency 

Tuple-wise computation by scalar UDFs often leads to performance penalties incurred 
from parameter setups of large volume of calls and from repeatedly loading the data 
commonly used across calls. We explain this using the video image analysis example 
shown in Fig 2. 
 

In soccer games, a corner kick is awarded 
to the attacking team when the ball leaves 
the field of play by crossing the goal line 
without a score, having been last touched 
by a defending player. A corner kick may 
result in a good scoring opportunity such 
as by a "header". The defending team may 
choose to form a wall of players in an 
attempt to force the ball to be played to an 
area which is more easily defended.  

 

Fig. 2. Images on Corner-Kick 
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To analyze the strategies in taking and defending a corner statistically, given a 
collection of sample images of “typical” corner kick scenes, we want to rank them 
by their popularity through comparing them with a large set of images on corner 
kicks.  

From each corner kick image the SIFT features are extracted which consist of hun-
dreds to thousands of key points, each is a 128-dimensional vector.  Since we only 
compare the similarity of the whole image, we leverage the order-less bag-of-features 
model [11] to avoid the expensive pairwise point matching. It works as follows: in an 
image the key points, or SIFT feature vectors are extracted and clustered, and the his-
togram of key points in clusters is generated as the signature of the image, that is itself 
a vector, referred to as the composite feature vector of the image. Then, for simplicity, 
the closeness of two images is determined by the similarities of their composite 
feature vectors using dot product. The computation involves a large table of corner 
kick images. 

CKImages [ID, feature]  
and a small table of  sample corner kick images, CKSamples, with the same 
schema. An image has several feature vectors but we compose them into a single 
long vector. A UDT (User Defined Type) is defined for feature vector. Function sim 
computes the similarity of two images based on the similarity of their composite 
feature vectors. 

The following SQL query first derives the closest sample image of each corner 
kick image (by maximal similarity), then for each sample image s, calculates the 
number of corner images taking s as the closest sample, and ranks the sample images 
by that number.  

 

[Q1]   SELECT Sid, COUNT(Neighbor) AS n FROM  

            (SELECT P.ID AS Neighbor, (SELECT S.ID FROM CKSamples S  

                   WHERE sim(P.feature, S.feature) = (SELECT MAX(sim(P2.feature, S2.feature))  

                  FROM CKSamples S2, CKImages P2 WHERE P2.ID = P.ID)) AS Sid   

             FROM CKImages P)  

           GROUP BY Sid ORDER BY n; 
 

where the closest sample image of each corner-kick image, say p, is computed by 
comparing p with all the sample images. Since the UDF, sim, is invoked on the per-
tuple basis but unable to receive the whole CKSamples relation as input argument, 
then 
 

− the CKSamples relation is not cached but retrieved for each CKImages instance p; 

− the CKSamples relation is also retrieved in a nested query (Query Optimizer turns 
it to join) for each (tuple) instance p of CKImages, for the MAX similarity between 
p and the sample images.  

 

Our experiment shows quantitatively that such repeated relation retrieval becomes 
the performance bottleneck. In fact this kind of inefficient computation pattern widely 
exists in SQL queries due to the lack of RVFs. 
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2.3   Composed with Relational Operator in Queries 

An RVF has at least one input relation, or tuple-set returned from a query; it cannot 
update its input relations but can generate a new relation as its output, and in this way 
viewed as a relational operator and a relation data source. An RVF can be defined, for 
instance, in the way outlined in Fig. 3.  

 

The relation schemas R1, R2 and R3 denote 
the “schema” of f, the actual relation 
instances or query results compliant to those 
schemas can be bound to f as actual 
parameters.
The BLOCK input mode means the input 
relations are passed in at once. 
The SET return mode means all the resulting 
tuples are returned at once. 

DEFINE RVF f (x, y, R1, R2)
  RETURN R3 { 

float a, b; 
Relation R1 (/*schema1*/);
Relation R2 (/*schema2*/); 
Relation R3 (/*schema3*/); 
PROCEDURE fn(/*dll name*/); 
RETURN MODE SET_MODE; 
INVOCATION PATTERN BLOCK 

}

 

Fig. 3. How an RVF is specified 

The above nature allows RVFs to be naturally composed with other relational op-
erators or sub-queries in a SQL query; the relation arguments of an RVF can be 
exressed by queries as well, such as illustrated in the following query. 

SELECT * FROM rvf1(Q4, rvf2(Q1, Q2, Q3)); 
Like other SQL constructs, our notion of RVF is an extension at SQL level which 

is supported by extending the query processor, rather than by ad-hoc user programs. 
This also allows us to construct an inter-query dataflow process [5], using RVFs as 
actors. 

3   Invocation Pattern wrt Input Mode and Return Mode 

In relational database engines, the argument of a relation operator may be fed in tuple 
by tuple (e.g. at the probe site of hash-join), or by a set of tuples (e.g. at the build-site 
of hash-join). If an operator has any tuplewise input, it is called multiple times wrt to 
that input during execution. In a tuple-wise evaluated query, a parent operator de-
mands its child operator to return the “next” tuple, and recursively the child operator 
demands its own child operator to return the “next” tuple, ... in the top-down demand 
driven and bottom-up dataflow fashion. How to deal with input/output relation data 
constitutes the invocation patterns. 

The analogy between RVFs and relational operators allows them to be invoked 
compositionally in a query and allows the notion of invocation pattern to be applied to 
RVFs. The input mode and return mode of an RVF represents the specific mecha-
nisms for applying the RVF to its input relations and to deliver the resulting relation.  

PerTuple Input Mode. The simplest input mode, PerTuple, can be defined such that 
applying PerTuple to RVF f with a single input relation R means f is to be invoked for 
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every tuple in R (pipelined). In the query shown in Fig. 4, RVF per_image_summery 
is applied to table CKSamples and plays as the relation data source although it is in-
voked under the PerTuple mode. This is the only input mode under which the use of 
an RVF and a scalar UDF is interchangeable. 

SELECT ID, Summary FROM  
per_image_summery_rvf

    (“SELECT feature FROM CKSamples”); 

per_image_s
ummery_rvfCKSamples

 

Fig. 4. PerTuple input mode 

Block Input Mode. Under the Block input mode, as the query shown in Fig 5 for our 
corner-kick image ranking example, the RVF, ck_ rvf1, is called only once in process-
ing a query, with both relations, CKImages and CKSamples, are cached in. The block 
input mode opens the potential for “in-RVF data parallel computation”; however, 
when the input relation is sizable, this invocation mode is inappropriate as it may run 
out memory.  
 

SELECT r.sid, COUNT(r.neighbor) AS n  FROM  
 ck_ rvf1 (“SELECT * FROM CKImages”,  

   “SELECT * FROM CKIsamples”) r  
GROUP BY r.sid ORDER BY n; 

ck_rfv1 CKImages

CKSamples

 

Fig. 5. Block input mode 

An input relation can be cached in a RVF as a whole provided that the relation is 
declared as static (by default). An RVF can be treated as a block operation only If all 
its input relations are static. 

PerTuple/Block Input Mode.  Under this input mode, apply RVF f to 2 or more in-
put relations where the first argument relation is denoted by Rleft, means that f is to be 
invoked for every tuple in Rleft (pipelined), in combination of the whole tuple-sets of 
other relations, under the assumption that the instances of the other relations are small 
enough to be reside in memory. For the above corner-kick image ranking example, 
the query with RVF under this invocation mode is specified as below; it is executed 
image by image on the CKImages table, but caches in all sample images as initial data 
(Fig 6).  
 

 [Q2] SELECT Sid, COUNT(Neighbor) AS n  FROM ( 
   SELECT P.ID AS Neighbor,  ck_ rvf2 (P.ID, P.feature,  

                “SELECT * FROM CKIsamples”) AS Sid 
           FROM CKImages P) 
        GROUP BY Sid ORDER BY n; 

ck_rfv2 

CKImages

CKSamples

 

Fig. 6. Block input mode 
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Tuple Return Mode.  An RVF under TUPLE_MODE returns one tuple-per-call in 
multiple calls when invoked in a query, typically once for each input tuple.  

Set Return Mode.  An RVF under SET_MODE returns the entire resulting tuple-set 
in a single call. 

Additional batch modes in between the above modes might be added in the future. 
Confining RVF invocation to designated input and return mode underlies focused 
system support to interact RVF execution with query processing efficiently.   

4   Separating RVF Shell and User-Function 

Let us consider two parts of an RVF (and in general a UDF): RVF shell and user-
function where the RVF shell deals with the interaction with query processing in pa-
rameter passing, data conversion, initial data preparation, memory management, etc. 
and the user-function contains application logic only and is plugged in the shell.    

To describe the functionalities of RVF shell, let us provide some background on 
how functions are executed in query processing. Like other relational operators, a 
function executed in a query may be called multiple times, one for each returned tu-
ple. Accordingly a function is coded with three cases: FIRST_CALL, NOR-
MAL_CALL and LAST_CALL (also referred to as INIT_CALL, NEXT_CALL and 
FINAL_CALL). The FIRST_CALL is executed only once in the first time the func-
tion is called in the hosting query which provides initial data; the NORMAL_CALL is 
executed in each call including the first call, for doing the designated application; 
therefore there would be multiple NORMAL_CALLs if the function is called one 
tuple at a time, or only a single NORMAL_CALL if it is called only once. 
LAST_CALL is made after the last normal call for cleanup purpose. The query ex-
ecutor keeps track the number of calls of the UDF during processing a query, and 
checks the end-of-data condition for determining these cases.  

With the above background information, let us describe the functionality of RVF 
shell in interacting the RVF execution with the host query processing. 

 

− When an RVF is defined, the information about its name, arguments, input mode, 
return mode, dll entry-point, etc, is registered into the FUNCTIONS meta-table and 
the FUNCTION_PARAMS meta-table. These tables are to be retrieved by the RVF 
shell programs.  
 

− When the RVF is invoked, several handle data structures are provided by sub-
classing the corresponding ones in query executor. Handle of RVF Execution 
(hFE) keeps track, at a minimum, the information about input/output relation ar-
gument schemas, input mode, return mode, result set, etc.  Handle of RVF Invoca-
tion Context (hFIC) is used to control the execution of the RVF across calls. hFIC 
has a pointer to the hFE, and at a minimum keeps track the information on number 
of calls, end-of-data status, memory context (e.g. life span one or multi-calls), and 
a pointer to user-provided context known as scratchpad for retaining certain appli-
cation data between calls. hFIC has a pointer to hARG, a data structure generated 
from RVF definition for keeping actual argument values across calls. 
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− During function execution, the RVF container uses several system functions and 
macros to manipulate the hFIC structure and perform RVF execution. For instance 
of multi-calls, the steps of RVF invocation include the following. 
a) In the first call (only), initialize the hFIC to persist across calls; evaluate each 

relation argument expressed by a relation name or a query in terms of launching 
a query evaluation sub-process where the argument query is parsed, planned 
and executed; convert the complex DBMS internal tuple structures to an array 
of simple data structures to be passed in the “user-function”; initiate other ar-
guments and possibly the scratchpad. 

b) In every function call, including the first, set up for using the hFIC and clearing 
any data left over from the previous pass; get non-static input argument values; 
invoke user-function where the input and returned relations are array of struc-
tures defined in the corresponding header files (there is no DBMS internal call 
within the user-function body); convert the data generated by user-function 
back to DBMS internal data structures, and store them in the result-set pointed 
by hFE. If the return mode is TUPLE_MODE, return the first resulting tuple to 
the caller; otherwise if the return mode is SET_MODE, return the entire result-
set. 

c) Finally, do clean up and end the RVF execution.  
 

In order to ease the development of RVFs, we further investigate the follows: 
− separate an RVF into two parts: RVF shell and user-function under specific input 

and return modes; 
− provide high-level RVF Shell APIs for building the shell but shading the DBMS 

internal details from RVF developers; 
− generate RVF shells based on RVF specifications, input and return modes and 

SROM. 
 

With the above solutions, the major task left to analytics users is to plug in the 
shell the “user-function” that contains only application logic and free of DBMS inter-
nal data structures and calls. 

5   Automate RVF Shell Generation 

Our further goal is to allow RVF shell provisioning automated, i.e. system generated 
from RVF specifications under the given input mode and return mode.   

 

5.1   Simple Relation-Object Mapping (SROM) 

A common functionality provided by RVF shells is to convert DBMS internal data 
structures for relation objects into simplified data structures to be manipulated in 
“user-functions”. This is opposite to converting system internal data into string argu-
ments as supported by some DBMSs, which can only deal with simple data and often 
sacrifices performance. However, coding such conversion in terms of DBMS “system 
programs” requires the familiarity of system internal details which is in general  
beyond the expertise of analytical users. To free the RVF development from such 
burden, we defined the mappings from a relation schema to the data structures of the 
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corresponding tuple (as C-struct) and tuple-set (as array of such C-structs). A lan-
guage specific simple relation-object mapping protocol (SROM) is introduced to un-
derlie the above data mapping. The SROM for C is used to generate C typedefs in a 
header file based on the given relation schema and the correspondence between SQL 
types and C-types. User Defined Types (UDTs) with basic components are also cov-
ered. 

In the above image analysis example, the composite feature vector of an image is 
represented by a FloatVector object. Our implementation is based on the well-known 
LIBSVM, which represents sparse vectors with (index:value) pairs to avoid storing 
too many 0’s. For example, (1:32  2:44  4:69 6:89) stands for the vector (32, 44, 0, 69, 
0, 89). In Postgres, these types are declared as the following composite UDTs. 

 
 

    CREATE TYPE FloatVectorType AS (                
        mask BIT VARYING(100),                                  
        floatVector float4 []                                          
    );   
Then we create the following tables using these types. 
 

    CREATE TABLE CKImages (                             CREATE TABLE CKSamples  ( 
         ID INTEGER NOT NULL,                                       ID INTEGER NOT NULL, 
         feature FloatVectorType                                         feature FloatVectorType 
    );                                                                              ); 
Based on the above relation declarations, the following header file is generated for 

the use-function (some type reuse intelligence is under development).  
  typedef struct {             
    byte * mask;             
    float4 * vector;           
  } FloatVectorType;           
                                     

  typedef struct {                   typedef struct { 
    int ID;                            int ID;   
    FloatVectorType feature;           FloatVectorType feature; 
  } CKImage;                         } CKSample; 
  typedef struct {                   typedef struct { 
    CKImage * CKImageArray;            CKSample * CKSampleArray; 
    int tuple_num;                     int tuple_num; 
} CKImages;                          } CKSamples; 
 

 

Then based on these typedefs the user can provide functions allocCKImages(n), 
deallocCKImages(), etc. These functions are invoked in some API functions and 
passed in as pointers – a coding trick allowing us to separate generic APIs and appli-
cation specific functions. The hARG data structure for holding the initial arguments 
of this RVF, say, ck_rvf2_args, is also generated. 

5.2   RVF-Shell APIs 

Based on RVF specifications, invocation patterns and SROM, a set of high-level RVF 
Shell APIs are provided for building the shell; these APIs shade the DBMS internal 
details from RVF developers. Below we use RVF ck_rvf2 given above as an example 
to show the use of these APIs.  

The RVF is constructed with TUPLE_MODE return for the closest sample image 
of each given image. The user-function, find_closest_sample() does not involve any 
DBMS system internal data structure and function. It takes ID, feature of an image 
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and the array of KCSamples as input, and returns a relation as output. These in-
put/output data are converted from/to the query processing internal objects by the 
appropriate Shell APIs. We illustrate these APIs (upper-case with RVF_ prefix) by 
the following pseudo RVF that is specific to the already registered input and return 
mode. For simplicity we omitted all exception handling and on-error early returns. 
Note that an FIRST_CALL is also a NORMAL_CALL. 

 
 

SQLUDR_INT32 ck_rvf2(RVF_ARGS) { 
 int rv; RVFCallContext *h; ck_rvf2_args *hARGS; CKSamples *samples;  
 if (RVF_IS_FIRST_CALL()) { 
   h = RVF_FIRST_CALL_BEGIN();  
   RVF_ALLOC_ARGS(h->hARGS, &allocCk_rvf2_args); 
   h->hARGS->Samples = (Samples *) 
       RVF_GET_INPUT_RELATION(RVF_ARG(2), &allocSamples); 
   RVF_FIRST_CALL_END(h); 
 } 
 if (RVF_IS_NORMAL_CALL()) { 
   h = RVF_NORMAL_CALL_BEGIN();  
   Samples *samples = h->hARG->Samples; 
   int ID = (int) RVF_GET_INPUT_TUPLE_FIELD(RVF_ARGS(0)); 
   FloatVectorType *feature = (FloatVectorType *)  
     RVF_GET_INPUT_TUPLE_FIELD(RVF_ARGS(1), &allocFeature()); 
 
   /*user-function*/  
   int sid = find_closest_sample (ID, feature, samples);  
 
   RVF_RETURN_NEXT(sid); 
   RVF_NORMAL_CALL_END(h); 
  } 
  if (RVF_IS_LAST_CALL()) { 
   RVF_FREE (samples, &deallocSamples); 
   RVF_FREE (h->hARGS, &deallocCk_rvf2_args); 
   RVF_FINALIZE(h); 
  } 
  return rv; 
} 
 
Some of the APIs involved above can be explained as below. API 

RVF_GET_INPUT_RELATION() retrieves the tuple-set of the specified relation or 
query result and populate the corresponding C-structure objects based on SROM; API 
RVF_RETURN_NEXT() converts result into the tuple format recognized by the 
query processor; API RVF_FREE de-allocates memory;  using both the DBMS spe-
cific memory management utilities and those provided for the data structures used 
inside the user-function, with the later passed in as function pointer for keeping the 
generality of the API. 

5.3   RVF-Shell Generation 

Based on a well defined invocation pattern, it is possible to single out the  
development of the “user-function”, that contains application logic only, from the 
development of the RVF-shell, and to provide tools for generating the RVF-shell 
automatically.  
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The proposed RVF-shell generation mechanism is illustrated in Fig 7, where the re-
sponsibilities of system and user are well separated, and the system responsibility for 
generating RVF shell is automated. With this approach, an RVF is developed in the 
following way. 

− Based on the RVF declaration stored in system meta tables, the system generates 
the header file containing the RVF argument data structure declarations to be used 
in the “user-function”; the RVF shell skeleton including FIRST_CALL, NOR-
MAL_CALL, LAST_CALL, etc; and the API calls for retrieving argument rela-
tions, converting data structures; switching memory contexts, allocating and de-
allocating memories. 

− The user provides the user-function containing application logic only without 
DBMS internal system calls and data structures. Optionally the user also deals with 
other initial data accessible to the user-function using the scratchpad. 

− A complete RVF is made by plugging the user-function in the RVF-shell. 

 

RVF declaration

header file

Cross-call init data 
from static arg (e.g. 
input relation)

Scratchpad for 
other cross-
call init, carry-
on data

User-function

RVF- Shell

Generate

argument evaluation,   

final cleanup. 

return value wrapping, 
memory context switching, 
tuple-set and object array 
conversion,                   
initial value handling,    
cross-call data carrying, 

System 
responsibility relation schema

Object struct
converted from

Plug in

User 
responsibility

 

Fig. 7. RVF-shell Generation 

For example, given the declaration of RVF, ck_rvf2, which is stored in meta-
tables, it is built with the following mechanisms.  
− A header generation utility 

 RVF_RO_META_GEN (“ck_rvf2“) 

• is responsible for generating the header files in the way described above.  

− A shell generation utility is responsible for generating the RVF shell. 

 RVF_SHELL_GEN (“ck_rvr2”) 
 

The FIRST_CALL, NORMAL_CALL, LAST_CALL in the generated RVF shell 
provide the following functionalities in the execution of the RVF.  
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− The RVF developer ends up with coding a function  
 

 find_closest_sample (ID, feature, samples);  
 

• The scratchpad for holding other initial data (rather than CKSamples) is null in this 
example; but in general it is an extern pointer to user defined initial values, and the 
user has the opportunity to add any other data to be carried-on across calls. 

− The complete RVF is built by plugging the user-function in the shell. 
 

In this way the pure application oriented user-function is made independent of plat-
form specific system calls, just like what featured by a MapReduce platform. While 
the common set of invocation patterns are provided, many applications can be easily 
pushed down to the DBMS layer as RVFs. 

6   Experimental Results 

We use the open-sourced Postgres database engine as our prototyping vehicle to test 
this innovated approach. The experiments are set up on a HP ProLiant DL360 G4 
server with 2 x 2.73 Ghz CPUs and 7.74 GB RAM, running Linux 2.6.18-92.1.13.el5 
(x86_64). With the goal of studying the computation workload, we used a moderate set 
of feature vectors extracted from real images, and a large set of features derived from 
them as the generated test data. We grouped the image SIFT features to up to 2048 
clusters but in this experiment only 100 clusters are used, therefore a histogram vector 
(image signature), or so called composite feature vector, has 100 dimensions. Our ex-
periments show the proven scalability of RVF based computation in data size and in 
applications, and superior performance compared with using conventional UDF.  

We compare running the query Q2 using RVF ck_rvf2 in PerTuple/Block mode 
with running Q1 using scalar UDF. We ran these queries with different data load 
(number of CKImages) with 100 CKSamples. The performance comparison is shown 
in Fig 8. 
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Fig. 8. Using RVF over-performs using client side and scalar UDF 
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The following is indicated in this experiment. The inability of the scalar UDF to 
cache-in the CKSamples relation forces the engine to perform multiple joins, to make 
repeated retrieval of CKSamples and for each sample, repeated MAX similarity cal-
culation (since the MAX state cannot be kept in SQL). Such overhead is added to 
processing each CKImages instance and is proportional to the number of them, there-
fore becomes serious when the CKImages table is sizable. 

The RVF-version, in contrast, is executed with a very streamlined data flow, where 
the state of the input relation can be traced – the CKSamples can be cached in and the 
closest sample of an image is calculated only once; all these contribute to the high-
performance of the query invoking RVF ck_rvf2.  
 

7   Conclusions 

In this research we tackled two major limitations found in the existent UDF technol-
ogy: lack of set input or output which causes the inability of application modeling and 
the inefficiency of execution, and the difficulty in integrating UDFs with the query 
engine. These limitations actually prohibit the use of UDFs for complex applications. 
For solving these problems, we extended the UDF technology in both semantic and 
system dimensions.  

We have implemented the system support to RVFs. For efficiency, we opt to have 
RVF execution tightly integrated with the query engine. However, we also focused on 
relieving analytics users from the system internal details. We treat an RVF as two 
separated parts: the user-function containing application logic only, and the RVF-shell 
for executing the RVF in the query processing environment, and provided the system 
tools for generating RVF-shells automatically. With this approach, the responsibility 
of an analytics user is limited to plugging the “user-function” in the RVF-shell with-
out dealing with DBMS internal details. 

Prototyped on Postgres, our experience reveals the benefits of the proposed solu-
tions in integrating complex applications to the SQL framework, in significantly en-
hanced performance, and in easing the UDF development. All these are essential data 
engineering requirements for making the UDF technology practically usable in the 
syntheses of data intensive analytics computation and data management.  
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Abstract. Contemporary data warehouses now represent some of the
world’s largest databases. As these systems grow in size and complexity,
however, it becomes increasingly difficult for brute force query process-
ing approaches to meet the performance demands of end users. Cer-
tainly, improved indexing and more selective view materialization are
helpful in this regard. Nevertheless, with warehouses moving into the
multi-terabyte range, it is clear that the minimization of external mem-
ory accesses must be a primary performance objective. In this paper, we
describe the R3-cache, a natively multi-dimensional caching framework
designed specifically to support sophisticated warehouse/OLAP environ-
ments. R3-cache is based upon an in-memory version of the R-tree that
has been extended to support buffer pages rather than disk blocks. A
key strength of the R3-cache is that it is able to utilize multi-dimensional
fragments of previous query results so as to significantly minimize the
frequency and scale of disk accesses. Moreover, the new caching model
directly accommodates the standard relational storage model and pro-
vides mechanisms for pro-active updates that exploit the existence of
query “hot spots”. The current prototype has been evaluated as a com-
ponent of the Sidera DBMS, a “shared nothing” parallel OLAP server
designed for multi-terabyte analytics. Experimental results demonstrate
significant performance improvements relative to simpler alternatives.

1 Introduction

Online Analytical Processing (OLAP) has become one of the cornerstones of
contemporary data warehousing systems. By offering an intuitive, easily naviga-
ble multi-dimensional perspective of corporate data, OLAP empowers decision
makers with the ability to assess and quantify operational trends and patterns
that underly the growth of the organization. Moreover, by largely shielding the
users from the often overwhelming volume of transactional data in the “raw”
warehouse, OLAP systems and interfaces have at least the potential to support
a much more interactive form of analysis for non-experts users.

Of course, in order to realize this potential, the underlying systems must not
only hide the scale and complexity of the data warehouse, but they must also
offer performance in keeping with the requirements of interactive or real time
analysis. In the data warehousing context, this has lead to innovations such
as selective materialization of OLAP views or group-bys, as well as the design
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of DW-specific indexing structures. Nevertheless, such methods are primarily
disk-oriented and, while certainly important in the current context, still place
significant processing burdens on the OLAP/DW DBMS.

As is the case with DBMS systems in general, memory-resident caches can
and should be used to improve query response. In fact, caches can be even more
important to OLAP systems, given the massive processing costs often associ-
ated with analytical queries on tera-scale data sources. Unlike traditional DBMS
caches, however, the fundamental structure of OLAP queries can be exploited to
dramatically improve the capabilities of the cache manager. Specifically, OLAP
queries tend to be “cubic” in nature; in other words, the most common pattern
is a multi-dimensional range query that defines a contiguous hyper-cubic region
in the data space. That being the case, existing buffer pages in OLAP-aware
caches can subsume future queries that fall within the hyper-cubic boundary.
More powerfully still, new queries that spatially overlap multiple existing pages
can be dynamically transformed so as to minimize the number of disk accesses
required. Efficiently exploiting this notion of the geometric cache is a crucial
performance concern for real world OLAP servers.

In this paper, we present the R3-cache, a cube-oriented caching framework
that supports the spatial manipulation of both full and partial query matches.
Structurally, R3-cache is in fact based upon the R-tree, a multi-dimensional
disk-based indexing structure often seen in research and industrial settings. In
addition to modifications to the tree structure that reduce bounding box over-
lap, the cache manager is also capable of pro-actively pre-filling targeted query
regions. The caching model is, in turn, integrated into the Sidera OLAP DBMS,
a fully parallelized “shared nothing” server that seeks to provide robust, high
performance analytics for today’s massive decision support environments.

The remainder of the paper is organized as follows. In Section 2, we review
related work. Section 3 briefly presents the architecture of the larger Sidera
DBMS, with the new R3-cache then presented in Section 4. Experimental results
are provided in Section 5, followed by final conclusions in Section 6.

2 Related Work

The interest in OLAP as a research pursuit grew out of the seminal data cube
paper by Gray et al [8]. Subsequently, researchers focused on fundamental con-
struction algorithms for OLAP cubes, with a particular emphasis on the efficient
generation of all 2d sub-cubes or group-bys in the d-dimensional space [1,2].
As it became clear that the computational storage requirements of this model
were prohibitive, numerous algorithms for partial cube generation were pro-
posed. Such research focused on both the identification of the optimal subset of
group-bys [18], as well as the computation of the selected subset [3]. A common
theme of more recent OLAP research has been the design of algorithms and data
structures that support hierarchical dimension representation. By this we mean
that dimensions often define a multi-level aggregation hierarchy (e.g., product
– brand – category) that gives rise to interactive “drill down” and “roll up’
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analysis. Hierarchy-aware data structures include the Cure Cube [13], map-
Graph [7], and the Cube File [10]. We note that the notion of dimension hierar-
chies is particularly relevant in the current context as caches must be amenable
to hierarchical processing.

The R-tree, the fundamental indexing model underlying the current research,
has had a long and rich academic history since it was first presented by
Guttman [9], who described the structure, processing model, and algorithms
for node splitting. In the context of data warehousing, it has been used by
Roussopoulos et al. to define the cube tree, a data cube indexing model based
upon the concept of a packed R-tree [16]. Eavis and Cueva have also described
compression and block organization mechanisms for OLAP-centric R-tree imple-
mentations [5].

Finally, a great deal of work has been presented in the general area of database
caching. A common theme is the use of materialized views to reduce response
time in large database environments. Recent proposals in this vein include the
Materialized Query Table of Phan and Li [15], and Luo’s “partial materialized
views” [12], though neither could be regarded as warehouse-specific. An earlier
approach by Kotidis and Roussopoulos [11] that employs a dynamic framework
to materialize and re-use previous query fragments does, in fact, target data
warehouse settings. Still, we note that materialization-based mechanisms repre-
sent a very rudimentary form of caching. With respect to true, data warehouse
specific caches, the literature is actually quite thin. Shim et al. describe an in-
memory caching model for partial query re-use [17]. However, their approach
is limited to subsumption-only processing. To date, the most flexible caching
model is that presented by Deshpande and Naughton [4]. This framework sup-
ports true partial matches, as well as hierarchical aggregation facilities. Unlike
the approach described in this paper, however, it is intended primarily for chunk-
based MOLAP servers (as opposed to relational systems), and excels in lower
dimensional spaces (e.g, 2–3 dimensions).

3 The Sidera Parallel OLAP DBMS

In the next section, we will present a concise overview of the R3-cache frame-
work. However, because the system is in fact fully integrated into the larger
Sidera OLAP DBMS [6], we begin with a brief description of the structure and
function of the OLAP server itself. As previously noted, Sidera has been designed
from the ground up as a parallel “shared nothing” platform for the resolution
of complex multi-dimensional analytic queries. The current system consists of
approximately 70,000 lines of C++ code and runs on a 17-node, 34-processor
HP Proliant Linux cluster. Subsystems exist for data cube generation and dis-
tribution, as well as multi-dimensional selectivity estimation, OLAP indexing,
and the manipulation of dimensional hierarchies. Current projects are extend-
ing the server with conceptual modeling facilities, high availability and fault
tolerance features, and object oriented query interfaces. Figure 1(a) provides a
simple illustration of the architectural framework. Note that Sidera is essentially



274 T. Eavis and R. Sayeed

Server

Frontend

External Interface
Query Reception
Interpretation

Authentication
User Sessions

Parallel Service Interface

End User End User

User API User API

Query Distribution
Result Collection

Disk

Disk

Local OLAP 
Server

Instance

PSI
Hook

Server

BackendDisk

Disk

Local OLAP 
Server

Instance

PSI
Hook

Disk

Disk

Local OLAP 
Server

Instance

PSI
Hook

(a)

Parallel Service Interface

Query Processor

Cache Manager

OLAP Metadata
Manager

Cube Indexing and Access

Berkeley Storage Engine

Hierarchy
Manager

OLAP Storage

Commodity
Relational DBMS

(b)

Fig. 1. (a) The Sidera architecture (b) The OLAP stack

constructed as a series of logically independent back end servers that are trans-
parently bound together by a Parallel Service Interface (constructed on top of
the Message Passing Interface). In essence, each server knows nothing of the
existence of its sibling servers and operates solely on the cube fragments associ-
ated with its local resources. Specifically, individual cuboids are striped — as per
their position along a Hilbert space filling curve — onto each of the p processors
in the cluster. Distributed R-tree indexes then allow the query resolution engine
to extract and integrate records encapsulated by common bounding boxes on
each node. Ultimately, each server contributes equally to the resolution of every
individual query, ensuring full parallelization across arbitrary load levels.

Each of the local servers supports its own OLAP stack , of which the caching
module is but one component. Figure 1(b) depicts the basic elements of the stack
and the relationship between them. Note that the caching subsystem sits below
the query processor and hierarchy manager but above the low level indexing and
storage components. In fact, both the cache and storage engine are oblivious to
the hierarchies themselves and represent data solely at the base level of each
dimension. It is the job of the hierarchy manager to transparently map final
result sets — with the aid of the query processor — between arbitrary levels of
the dimension hierarchies (i.e., roll-up and drill-down). This modular approach
dramatically simplifies the processing logic of both the caching and indexing
subsystems. A full discussion of the Hierarchy Manager is provided in [7]. Finally,
we note that Sidera is designed specifically as an analytics server, and does not
attempt to function as an “all things to all people” system. As such, detail-level
ad hoc querying is (transparently) funneled to a local data warehouse partner
(i.e, a commodity DBMS).

4 The R3-Cache

A primary motivation when investigating new caching models for Sidera was the
importance of building upon the current framework, so as to exploit both existing
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software and facilities. With respect to the resolution of multi-dimensional queries,
we note that Sidera employs a (parallelized) R-tree model in which group-by frag-
ments are distributed to the p nodes of the cluster and subsequently packed and
compressed via a Hilbert space filling curve. Recall that the R-tree is a hierarchi-
cal, d -dimensional tree-based index that organizes the query space as a collection
of nested, possibly over-lapping hyper-rectangles. In practice, R-trees are one of
the few true multi-dimensional indexes that have been consistently utilized in pro-
duction settings.

As such, we chose to leverage our previous experiences in designing disk based
multi-dimensional indexing structures by exploiting the strengths of the R-tree.
That being said, it must be noted that a direct implementation of the R-tree
would be ill-suited to a caching framework. In particular, the tendency of the tree
to produce bounding box overlap — particularly at the wide leaf level — repre-
sents a serious constraint on cache responsiveness. For this reason, we propose
in this paper a variation on the R-tree that we call the Non-overlapping R-tree
(NOR-tree). In the remainder of this section, we describe how the NOR-tree is
used to provide efficient OLAP cache support.

4.1 NOR-Tree Search and Query Decomposition

In order to illustrate how the NOR-tree structure differs from that of a con-
ventional R-tree, we will begin with a look at the process of resolving a typical
multi-dimensional query. Let us assume that an R-tree style cache currently
holds one or more previous query results and that a new query Q has just ar-
rived. If Q does not intersect the boundaries of any existing query in the cache,
then we clearly must go to disk for the result. Likewise, if Q is fully subsumed
by an existing query, then the cache manager can process the contents of the
cache buffer and return the result immediately.

However, if Q intersects an existing query, then we have what we call a partial
match. The R3-cache manager resolves such queries by decomposing the new
query Q into two query sets, A and B. The first set contains Ai ∈ A, where
0 ≤ i ≤ d and A = N ∩ Q, with N indicating the node to be searched. In effect,
the set A consists of one or more queries representing that portion of Q that
intersects the cache node N . The second set contains Bi ∈ B, where 0 ≤ i ≤ d
and B = (N ∪ Q)−Q. In this case, B consists of sub-queries whose boundaries lie
outside of N . Moreover, the constituent sub-queries of A and B are constructed
so as to be non-overlapping. In terms of the mechanism for defining the sub-
query regions, the search algorithm essentially uses the “corner points” of the
subsumed box to define new hyper-rectangles. We will look at this process more
closely in Section 4.3.

At this point, results from the query set A can be processed directly from the
cache, while the query set B is sent to the backend storage engine. Data returned
from the storage engine is inserted into the buffers corresponding to query set
B and subsequently combined with A and returned to the user. Algorithm 1
formally describes the process.
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Algorithm 1. Basic search: Search(Q, M, L)
Input: The d-dimensional query box Q, the NOR-tree M , and a list L to contain

newly created NOR-tree boxes.
Output: Result set R consisting of cached records + database records
1: for each leaf level bounding boxe m in M that touches Q do
2: if Q ⊆ m then
3: Return R directly from box m
4: if Q ∩ m �= ∅ then
5: Insert ((Q ∪ m) − m) into L
6: Add cached data in (Q ∩ m) to R
7: if L ≡ ∅ then
8: Retrieve Q from database and return as R
9: else

10: Retrieve L from database, add cached data, and return as R

Figure 2 demonstrates how this would work with a simple example. In this
case, “Query 1” has already been executed and its contents are now stored in the
cache. When “Query 2” arrives, the cache manager determines a partial intersec-
tion with the “Query 1” object in the cache. “Query 2” is now decomposed into
a pair of hyper-rectangular query sets, A and B. A is processed from the cache,
while the two B queries are delivered to the disk backend. When the results
for the two B sub-queries are retrieved, they are first inserted into the cache as
independent buffer pages. A and B are subsequently combined and returned to
the user.

Figure 3 concisely illustrates the difference between a standard R-tree search
and the one performed by the R3-cache. In both models, we begin at the same
point. In Stage 1, the R-tree is empty; it has no data points, child nodes, or
bounding boxes. When the first query, “Query 1”, is executed, the R-tree is
searched and no match is found. Subsequently, “Query 1” is sent to the backend
data warehouse. Query results returned from the warehouse are then stored in
the root node. At this point, the root is also the leaf node. In Stage 2, when
“Query 2” is executed, the root node is searched and we find that “Query 2”
partially matches the root. The root node expands to hold both “Query 1” and
“Query 2”. At this stage, our data structure is essentially a standard R-tree in
that it houses overlapping leaf nodes. In the final phase, however, overlapping
leaf nodes in the R3-cache are split into multiple leaf nodes (in this case, four).
More importantly, none of the cache objects — Q1, Q2, Q3, or Q4 — share any
portion of the space.

As a final point, we note that the non-overlapping characteristic of the NOR-
tree refers exclusively to the leaf nodes. Parent level bounding boxes are still free
to intersect. In practice, this is an advantage, rather than a disadvantage as it
permits a much simpler tree maintenance algorithm. Little is sacrificed in terms
of performance since, as noted previously, most of the nodes in an R-tree are in
fact found at the leaf level.
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4.2 Cache Insertion and Partitioning

In general, our insertion mechanism is similar to that of the standard R-tree.
In short, we insert data points into leaf nodes. If the leaf node grows larger
than its maximum size (i.e., a user-defined multiple of the OS page size), we
split it recursively into sub-nodes. It is crucial, of course, to minimize the num-
ber of intersections between the leaf nodes and incoming range queries since
an increased number of intersections negatively impacts cache performance. In
fact, our partitioning approach is based upon the mechanism first proposed by
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Muralikrishna and DeWitt [14]. Here, an equi-depth histogram called an hTree
is used to recursively partition the space by halves. So, for a dimension count
d and D = {d1, d2, ...dd}, where D is the set of dimensions in our data space,
the root node A will be split on the medians along the sequence {d1, d2, ...dd}.
As Figure 4 demonstrates, the generation of an equi-depth tree results in B
rectangles, such that each rectangle encloses approximately R

B points within it,
where R denotes the total number of points in the data space. Note how the
box-like subdivisions of the space minimize intersection with the user query. In
contrast, naive partitioning algorithms tend to create partitioning “stripes” that
can exaggerate the effect of overlap. Algorithm 2 compactly describes the core
logic for insertion and node-splitting.

Algorithm 2. Cache insertion: Insert(Dnew , N, SN)
Input: The set of points to be inserted Dnew , the targeted leaf node N , and the

dimension upon which N was previously split SN . For convenience, we also define
the maximum node size M .

Output: The updated cache
1: Insert Dnew into N
2: if sizeof (N) > M then
3: Split N on (SN + 1) to get new leaf-nodes N1 and N2

4: if sizeof (N1) > M then
5: Insert (∅, N1, (SN + 1))
6: if sizeof (N2) > M then
7: Insert (∅, N2, (SN + 1))

4.3 Leaf Node Merging

One of the problems with the query decomposition model — at least as we’ve
described it thus far — is that it has the potential to create a significant number
of new cache buffers. In the worst case, when a new query completely subsumes
an existing node, it can generate O(d3) new queries, where d is the number
of dimensions. Strictly speaking, the number of new boxes in the worst case
is exactly d3 − d + 2. So, for a two-dimensional cache, the worst case scenario
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generates 23 − 2 + 2 = 8 new boxes. Likewise, for a three dimensional cache,
the worst case scenario would be 33 − 3 + 2 = 26 new boxes. The second box in
Figure 5 illustrates the basic problem. Here, a new query in the two-dimensional
space subsumes the existing node N . In this case, 8 new back end queries could
be generated. These numbers are simply unsustainable in caching scenarios.

To address this problem we utilize a technique whereby adjacent query ele-
ments are merged. Let d represent the number of dimensions for queries A and
B. Further, let the set of ranges RA = (RA1 , RA2 , ...RAd) define the range-set
for A, while the set of ranges RB = (RB1 , RB2 , ...RBd) defines the range-set
for B. For query A and query B to be merged, we need to satisfy the follow-
ing criteria. For j = d − 1, RAi ≡ RBi must hold for the dimension count j,
where 1 ≤ i ≤ d, and RAk �= RBk must hold true for just one dimension k,
which can be any dimension between 1 to d. In addition, we must have either
(i) RAk , RAk1 = RBk0 − 1, where RBk0 is the lower dimension for RBk , or (ii)
RBk , RBk1 = RAk0 − 1, where RAk0 is the lower dimension for RAk . Simply put,
application of this logic combines contiguous hyper-rectangles so as to reduce
the number of new queries from O(d3) to O(2d).

In Figure 6, we demonstrate how the technique is used in order to reduce
the worst case decomposition of a 3-D space from 26 query boxes to just six
by merging adjacent cache buffers. In (b), we have nine adjacent boxes on the
front plane. We can therefore combine them to reduce the number of boxes to
one. Similarly in (c), we can combine the nine adjacent boxes and reduce them
to one. In (d) and (e), we merge the three adjacent boxes on each side plane
to reduce six boxes to just two. Finally, (f) and (g) are already single boxes,
so there is nothing to merge here. We are therefore left with a total of just six
boxes.

We can formally verify the proposition that box merging guarantees a reduc-
tion from O(d3) to O(2d) as follows. We begin with the original decomposition
process, which we indicated produced a worst case box count of d3 − d + 2.
In the first step, the algorithm splits the box in any one direction. This cre-
ates d − 1 box sets, with each set consisting of d2 adjacent boxes. The total is
therefore d2 × (d − 1) boxes. During the second step, the remaining area of the
boxes is split again. But this time the process creates d − 1 sets, with each set
consisting of d adjacent boxes, for a total of d × (d − 1) boxes. After the first
two steps of splitting, there will always be two boxes remaining. Combining all
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Fig. 6. Query merging in a 3-D cache

individual boxes now gives a total of d2 × (d − 1) + d × (d − 1) + 2. Therefore,
d2 × (d − 1) + d × (d − 1) + 2 ⇒ d3 − d2 + d2 − d + 2 ⇒ d3 − d + 2. Now,
let us apply the query merging solution. Since our query merge combines adja-
cent boxes into a single box, the previous equation can be rewritten simply as
(1 × (d − 1)) + (1 × (d − 1)) + 2 = 2d.

As a final point, we note that actually decomposing subsumption queries
into the full set of O(d3) boxes, many of which will subsequently merged, is
unnecessary in practice. Instead, the process can be made more efficient by
integrating the two mechanisms so that the O(2d) boxes are directly generated.
In practice, the overhead of the modified decomposition phase is negligible for
the modest dimension counts seen in OLAP environments.

4.4 Hot Spots and Pro-active Insertion

The system, as described thus far, is capable of supporting both full match
and partial match queries against a relational backend. Initial testing of the
system, however, revealed performance improvements that were less dramatic
than expected. A closer examination of the cache logs revealed that while the
subsystem was working exactly as expected, much of the potential performance
improvement was lost as user queries consistently required a small percentage of
records to be retrieved from disk. Because the cost of disk access relative to RAM
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Fig. 7. Comparison of R-tree with pre-fetching and without pre-fetching

access is so extreme, partial match caching — while theoretically attractive —
can be surprisingly ineffective in real systems.

We address this shortcoming by building upon a fundamental observation
that underlies much of the Sidera design. Specially, in contrast to the “small
query/high volume” character of transaction processing systems, data warehous-
ing and OLAP platforms tend to be “big query/low volume” systems. As such,
the Sidera philosophy is, as much as possible, to utilize its resources between
queries to improve later response times. In other words, “make the system wait,
not the user.” The R3-cache manager therefore monitors the cache on an ongoing
basis in order to identify hot spots in the cache; in other words, it locates regions
deemed to have high cache value. As it identifies these areas, it “fills gaps” in
hot regions in anticipation of future requests. At the same time, it may release
pages that it deems to be of little value.

Of course, pre-fetching data is not terribly useful by itself (or might even be
counter-productive) if the pre-fetched data has a low probability of being queried.
For this reason, it’s important to fetch only those data points that have a high
probability of eventual query access. As such, each cache node is augmented with
the following meta data: query size (query result-set size in bytes), frequency
(number of node accesses versus time in the cache), and response time (the time
it would take to refresh this node from disk). A heat estimate is then generated
by normalizing each value into a (0,1) range and calculating the sum. It should be
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clear that the heat estimate is more that a measure of frequency. It also identifies
cache regions that would be expensive to re-compute. While relatively simple,
the heat estimate provides a concise picture of the value of the various nodes in
the tree. More importantly, heat estimates can be aggregated into parent boxes
so as to identify broad regions of interest in the cache.

Let’s look at a graphical illustration of the effectiveness of pre-fetching. Fig-
ure 7 starts with a “non pre-fetching” NOR-tree containing a number of previ-
ous queries. The first image shows a query Q overlapping the nodes R7.2, R7.4,
R7.5, R7.6, plus two empty areas beneath. The resulting NOR-tree shows two
new nodes R7.7 and R7.8. Not only do these two nodes result in a cumber-
some R-tree that has the potential to create many small nodes along the narrow
edges, but the associated data had to be fetched at query time from the backend
database which, of course, reduces cache efficiency. If we compare this outcome
to that of the second image, where the NOR-tree actively pre-fetches data, we
see that the cache does not have to create any new nodes or fetch any data from
the disk. In effect, this has already been done in the expectation that future
queries would hit this general region.

5 Experimental Results

While the caching framework continues to evolve, we have undertaken numerous
tests to assess its ability to tangibly improve OLAP query performance. Due to
the space limitations of this paper, we will highlight just a handful of the key
results here. We note at the outset that although Sidera is an inherently parallel
system, the results included in this section are restricted to a single node so
as not to complicate their interpretation. With respect to the test parameters
themselves, we synthetically generate data sets using a data generator devel-
oped for the Sidera system. Using the generator allows us to test the platform
under a variety of conditions, including pronounced skew patterns (we use a
zipfian skew factor of 1.0 for the tests shown in this section). Query streams
are also generated using a system constructed specifically for Sidera. Queries are
multi-dimensional in nature (i.e., range queries), with the dimension count and
dimensional ranges randomly defined. The generator produces Roll Up and Drill
Down queries by iteratively adjusting new queries in several follow-up passes.
To encourage the appearance of hot spots, we automatically generate the first
300 queries, then manually replicate and slightly modify subsets of these queries
to repeatedly hit specific areas in the space. We note that there is no standard
way to evaluate OLAP caches so we believe that this configuration represents a
reasonable starting point.

In Figure 8, we provide a baseline evaluation illustrating performance for the
R3-cache versus the same Sidera system without the caching option available.
Tests were run for input sets of one million and ten million records (using at-
tribute cardinalities between 10 and 1000) with the cache capacity set at 10%
of the size of the input set (note that the fully materialized aggregated cubes
would be much larger). At both input sizes, we see a run-time for the cache based
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(a) (b)

Fig. 8. Cache performance relative to standard DBMS indexes (a) 1 M records (b) 10
M records

system that is about half that of the non-cache system at low dimensions, and
about one third the cost at higher dimensions. We note that result sets in higher
dimensions tend to be smaller due to increased specificity of the queries. How-
ever, costs do not necessarily drop proportionally as even small queries require
some degree of disk access.

We also looked at the effect of our pro-active insertion model. Figure 9 provides
a comparison of pro-active insertion versus a standard “static” cache, using the
data sets from the running example. The performance pattern is similar to that
seen in the previous test. In fact, this result underscores a very important point.
Without pro-active caching, the performance of the standard caching system is
essentially equivalent to a well indexed database with no caching system at all!
In fact, this should not be so surprising. Specifically, given that a disk access may
be several orders of magnitude more expensive that an equivalent, in-memory
access, a single miss in the cache effectively destroys much of the benefit of a
multi-dimensional cache.

We use the same test sets and parameters to compare the relative perfor-
mance of the relational R3-cache and the chunk-style MOLAP cache proposed by

(a) (b)

Fig. 9. Pro-active caching performance versus static caching (a) 1 M records (b) 10 M
records
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(a) (b)

Fig. 10. ROLAP performance versus the MOLAP alternative on (a) 1 M records (b)
10 M records

Deshpande and Naughton [4]. Specifically, we wanted to assess performance be-
yond the two or three dimensional spaces in which MOLAP sytems typically
excel. The results are provided in Figure 10. Note that the chunking cache does
indeed provide superior performance in the simple 2-d space. This is not unex-
pected as a considerable amount of subsumption resolution takes place in two
dimensions. At higher dimensions, however, the space becomes much more frag-
mented and the MOLAP cache has no mechanism to find or fill hot spot regions.
The result is a fairly flat performance curve. In fairness, we note that our im-
plementation of the MOLAP cache was relatively simple and could undoubtedly
be further optimized. Still, at this juncture, it seems unlikely that the MOLAP
model would offer superior performance in higher dimensions.

In the final two graphs, we look more closely at the ROLAP/MOLAP com-
parison. In Figure 11(a), we depict the cache hit ratio for the two systems, using
the test set of Figure 10(a). As we move towards 600 queries, we see the “pre-
fetch” ROLAP solution producing a hit ratio that is approximately double that
of the “fetch-less” MOLAP solution. These results are in keeping with those of
Figure 9. Figure 11(b), on the other hand, displays the results for the same test
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parameters, but removes all limitations on the size of the cache. Here, we can see
a modest improvement for the MOLAP system. In short, this is due to the fact
that a larger number of “memory hungry” MOLAP arrays can be materialized
in memory (by default, MOLAP arrays must store empty cells). We emphasize,
however, that limitless caches are highly unrealistic in practice. The existence
of memory constraints in fact strongly supports the implementation of ROLAP
caches that only store valid data points.

6 Conclusions

We have described a new relational caching framework that has been integrated
into the Sidera parallel OLAP DBMS. The cache — based upon an in-memory
variation on the classic R-tree — has shown considerable promise in the low to
medium dimensional spaces commonly found in OLAP query environments. In
particular, experimental work has demonstrated the importance of incorporating
pro-active insertion policies into cubic caching schemes so as to mitigate the
effects of extraneous disk accesses. Furthermore, by exploiting the synergies that
naturally exist between Sidera’s R-tree based disk indexes, the R-tree oriented
caching subsystem, and the hierarchy translation facilities that transparently
operate on results returned from either the cache or the disk, we believe that
the current system represents a concrete blueprint for the design of practical
high performance OLAP servers.
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Abstract. While in the past the BI market was strictly dominated by closed 
source and commercial tools, the last few years were characterized by the birth 
of open source solutions: first as single BI tools, and later as complete BI plat-
forms. An Open Source BI platform provides a full spectrum of BI capabilities 
within a unified system that reduces the overhead for the development and 
management of each application, and lets the user feel like he/she was using a 
single BI solution. This paper proposes a comparative evaluation of three dif-
ferent Open Source BI platforms (namely JasperSoft, Pentaho and SpagoBI) 
aimed at understanding their current features, their future potentialities and their 
limits when adopted in real projects as well as a basis for research prototyping. 
Overall we try to understand if the open source phenomenon will be able to be-
come a valid alternative to commercial platforms within the BI context. 

1   Introduction 

While in the past the BI market was strictly dominated by closed source and commer-
cial tools (see for example [1] for different vendors’ market shares), the last few years 
were characterized by the birth of open source (OS) solutions. At first OS BI tools 
covered isolated portions of the DW process with a limited set of functionalities that 
made them appear as toys if compared to large commercial BI platforms. Consider for 
example the initial releases for Octopus as to ETL, Mondrian as to OLAP servers, and 
JPivot as to OLAP clients (see [2] for a complete listing). While single tools still keep 
evolving with an increasing number of features and a higher level of reliability, the 
turning point in OS BI was the birth of OS BI platforms. An OS BI platform provides 
a full spectrum of BI capabilities within a unified system that reduces the overhead 
for the development and management of each application, and lets the user feel like 
he/she was using a single BI solution. 

Commercial platforms are commonly considered superior to OS ones. Neverthe-
less, we believe that OS BI platforms will evolve much faster than commercial ones 
since they are not constrained by compatibility problems and rigid (or even obsolete) 
architectures. Furthermore, OS solutions can exploit the contributions of the OS de-
velopment community, that relies on hundreds of programmers and designers as well 
as on the direct involvement of researchers. 

This paper presents a comparative evaluation of three different OS BI platforms 
(namely JasperSoft, Pentaho and SpagoBI) aimed at understanding their current  
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features, their future potentialities and their limits when adopted in real projects. 
Overall we try to understand if the open source phenomenon will be able to become a 
valid alternative to commercial platforms within the BI context. OS BI platforms are 
not only attracting practitioners but also researchers since the availability of the 
source code makes them a perfect framework for prototyping and testing research 
findings. Furthermore both the European Community [3] and the United States gov-
ernment, as well as many other countries [4] are urging for the adoption of open 
source solutions in their research programs and more in general in the ICT area as a 
lever for increasing competitiveness [5]. Nowadays, in several areas such as e-health 
and e-government, funding calls suggest (or occasionally require) the use of open 
source. 

The diffusion of OS BI technologies is also supported by private companies and 
consortiums. For example, BI Initiative [6] is an interesting OW2 project aimed at the 
diffusion of OS BI technologies. In particular BI Initiative is aimed at improving the 
coordination effort in the OS BI context, increasing the use of OS BI solutions at 
enterprise level, strengthening connections between integrators, vendors, users and 
the research communities and finally attracting more attention from the research ac-
tivities to foster innovative BI solutions and practices. 

The only scientific paper focusing on OS BI is the one proposed by Thomsen and 
Pedersen [2]: this interesting survey focuses on functionalities available in single tools 
but it does not consider BI platforms. A large number of comparative analyses are 
periodically published by software vendors, that obviously report a biased point of 
view, as well as independent groups. These reports (see for example [7,8]) are  
typically tailored on practitioners’ needs and focus on technical aspects rather than 
studying the overall characteristics of the suite. The quality of OS software has been 
studied in three projects funded by the European Union, namely Flossmetric – 
Free/Libre Open Source Software Metrics - [9], Qualoss - Quality in Open Source 
Software - [10], and SQOOS - Software Quality Observatory for Open Source Soft-
ware - [11]. The three projects converged to a unique initiative, named flossquality, 
aimed at developing a high level methodology to benchmark the quality of OS soft-
ware and to apply it to a large number of OS projects. None of the platforms  
considered have currently been analyzed. 

Our paper is thus the first one studying the added value of OS BI platforms; it 
evaluates comparatively the philosophy of the different platforms as well as their 
architecture, functionalities and usability. We will not consider efficiency aspects 
since they are strictly determined by the single BI tools which are often shared by the 
different platforms. 

The paper is structured as follows. Section 2 briefly describes how the comparison 
has been conducted and introduces the key aspects that have been analyzed. Section 3 
describes the platforms from different points of view, while in section 4 the results of 
the comparison are reported and discussed. 

2   Method of Conducting the Comparison 

This work comes from the interest in exploring the OS BI platforms shared by our 
research group and three Italian consulting firms that intend to propose OS based 
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applications to their customers. The outcome of the analysis is the fusion of our inde-
pendent analysis and their work on field testing and evaluation. All the consulting 
firms1 involved are specialized in BI projects and they usually develop their applica-
tions using commercial BI suites. 

We initially defined an evaluation grid describing in details the aspects to be inves-
tigated. The evaluation criteria were derived from the models available in the litera-
ture for general purpose software [12,13] and they were specialized to fit BI software 
specificities. The resulting grid was shared with the consultant firms and further dis-
cussed and integrated. Each consultant firm carried out one or more porting of real 
projects previously implemented through commercial BI suites. The compiled grids 
were finally shared and discussed with the other participants. In the current work we 
only report and summarize the evaluations concerning the platforms while we do not 
study in depth the features of each single BItool. The comparison hinges on the fol-
lowing key aspects: 

 
• Non-technical: platform philosophy, type of licensing and availability of enterprise 

editions. 
• Architectural: in terms of the global framework, modules and their relationships, 

programming languages and supported operational systems. 
• Functional: in terms of functionalities provided natively by the platforms or made 

available to the users through the integrated BI tools.  
• Meta-data: in terms of expressiveness, completeness, standardization and level of 

reusability. 
• Security: in terms of functionalities provided for authentication and profiling of the 

users, interfaces to external authentication systems and secure data transmission. 
• Usability: both from the user viewpoint, in terms of level of transparency in using 

the different tools, and from the developers’ and system administrators’ viewpoint 
in terms of complexity of installation and administration as well as development of 
applications, quality of manuals and forums. 

3   Platforms Description 

The platforms we considered are JasperSoft BI Suite [14], Pentaho BI Suite [15] and 
SpagoBI [16] and the versions considered are those released by December 31 2008. In 
the following will refer to them with the names Jasper, Pentaho and SpagoBI, respec-
tively. Please note that in many cases there is a gap between the functionalities that 
are actually available to the users and those expected by the project road map for a 
given release. We will adopt a strict policy and we will disregard those features that 
have been only sketched.  

3.1   Non-technical Aspects 

The three platforms adopted two different open source models: 

                                                           
1 We do not report the company names since they required to remain anonymous in order to 

avoid marketing activities by both open source and commercial software producers. 
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• Commercial open source: this model provides for an open source product that 
meets the user’s basic needs (i.e. community edition); an enterprise edition of the 
product can be purchased and it usually includes enhanced features as well as sup-
port and training services. Jasper and Pentaho fit into this model. Their community 
editions are covered by the GNU General Public License (GPL) and Mozilla Public 
Licence (MPL) respectively while commercial agreements are needed for the en-
terprise releases.  

• Free and Open Source Software (FOSS): the product is completely free, no enter-
prise solution is available, thus all the functionalities are available to the commu-
nity for free. SpagoBI fits into this model. It is distributed under the GNU LGPL 
license. 

 
Without entering into details, the right to freely use, modify, and redistribute software 
is fundamental to the GNU GPL agreements [17] and if you release a modified ver-
sion of a software, you may be obliged to contribute your entire work to the open 
source community under the same type of agreement. On the other hand, a commer-
cial agreement typically allows you to use but not to distribute the software. Usually, 
a different type of agreement (OEM license) is needed for profit developers who want 
to include BI capabilities in their applications. 

According to the OS philosophy, platform functionalities can either be developed 
internally by the software house that owns the platform (e.g. JasperReport was born 
within JasperSoft Corporation) or, more frequently, they can be achieved by plugging 
a module implemented in a different OS project. Module plugging can be obtained 
by: 

 

• Integration: a software interface is defined in order to control and to exploit mod-
ule functionalities directly and transparently through the platform. The intellectual 
property of the software does not change, and the original developers remain in 
charge of maintaining and evolving the module. 

• Acquisition: the intellectual property of the software is acquired and the original 
project terminated. The buyer will be in charge of maintaining and evolving the 
module. 

• Technological partnership: stands in the middle between integration and acquisi-
tion. The original project remains alive and it is maintained by the original devel-
opers. The partner that incorporates the module influences its evolution and col-
laborates to its maintenance. The module usually appears with a different name in 
the new platform. 
 

The policy adopted changes depending on the complexity of modules and on its rele-
vance to the platform. Pentaho often has recourse to acquisition (e.g. Pentaho ETL 
comes from the Kettle project) while SpagoBI is strictly based on integration; finally 
Jasper mainly exploits partnerships (e.g. JasperETL was developed through a partner-
ship with Talend that still maintains Talend Open Studio that is also integrated in 
SpagoBI). 

Platforms that acquire the BI engines or have strong partnerships with their original 
developers can steer and control the engine evolutions and ensure a higher level of 
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quality; on the other hand, platforms that integrate third-party modules can lean on 
wider developer communities and can more easily include new BI projects. 

3.2   Architectural Aspects 

An OS BI platform provides a full spectrum of BI capabilities within a unified system 
that reduces the overhead for the development and management of each application, 
and lets the user feel like he/she was using a single BI solution. 
 

 

Fig. 1. Reference architecture for BI OS platforms. Arrows entering group of modules mean 
that communication concerns all the modules. 

OS BI platforms are developed using Java since the modules they rely on are based 
on this technology. They typically require an application server and the users, as well 
as system administrators and developers, access them through a web browser. The 
platforms adopted the same architecture that is sketched in Figure 1: the platform core 
is a web application that stands in the middle between BI engines that implement each 
single BI functionality and the databases that store the required information. The users 
access the system through a web client that can be connected either to a portal or 
directly to a web server. A meta knowledge layer completes the picture and is crucial 
to provide the platforms with the necessary “intelligence”. A typical user-platform 
interaction includes the following steps: (1) the user requiring a given document logs 
into the portal or directly into the platform server; (2) the platform server verifies if 
the user profile allows him/her to access the document requested; (3) the platform 
server opens the connection to the data source; (4) the platform server also activates 
the BI engine involved and passes it the user credentials, the necessary meta-
information as well as the connection to the data source; (5) the BI engine produces 
the document and makes it available to the user through the web server or the portal. 
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Table 1. Modules building up the considered BI OS platforms, alternative configurations are 
possible 

 
 

Beside front-end functionalities the platforms include back-end ones as for ex-
ample ETL services and scheduling services necessary to automate report updates. 
In all these cases engines are activated directly by the platform or by the system 
administrator. 

Table 1 shows the main modules building up the platforms considered. Many  
of the modules are shared, some of them are evolutions of a different open source 
project (e.g. Jasper ETL comes from Talend Open Studio), others have been devel-
oped internally and belong to the same software house that is charge of the platform  
 

Modules JasperSoft Pentaho SpagoBI 

Application Server JBoss JBoss  JBoss 

Authentication and 
user profiling 

Acegi Acegi 
Integrated in eXo 

Portal 

Collaboration - - Dossier 

Dashboard JFreeChart JFreeChart Openlaszlo 

Data Mining - Weka Weka 

DBMS 
MySQL, Oracle, 

SQL Server, 
PostgreSQL, etc.

MySQL, Oracle, SQL 
Server, PostgreSQL, 

etc. 

MySQL, Oracle, 
SQL Server, 

PostgreSQL, etc. 

ETL JasperETL  
Pentaho Data 
Integration 

Talend Open Studio 

Geo-referencing Google Maps Google Maps GEO  

Job Scheduler Quartz Quartz Quartz 

OLAP  Mondrian&Jpivot Mondrian&Jpivot Mondrian&Jpivot 

Portal Liferay JBoss Portal ExoPortal, Liferay 

Query by Example - - Hibernate 

Reporting JasperReport 
Pentaho Report 

Designer, 
JasperReport, BIRT 

JasperReport, BIRT 

Single sign on Acegi CAS CAS 

Web Server Tomcat Tomcat Tomcat 
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(JasperReport is the most widespread modules for BI reporting, while GEO is  
the module developed by SpagoBI team for geo-referenced analysis) - reusing and 
sharing underlie OS software development. Table 1 also shows that some modules are 
standard de facto within BI OS: in particular the Mondrian OLAP engine and the 
JPivot graphical interface are the standard solutions for OLAP, while Weka is the 
standard data mining module.  

3.3   Metadata 

Within a BI platform, metadata largely determine the behavior it can exhibit, and the 
expressivity of reports and OLAP analyses. Metadata store the structure of data 
sources and multidimensional cubes, the content of the reports and the actions to be 
executed within an ETL process. Metadata also store user profiles as well as informa-
tion related to scheduling and auditing. 

We distinguish between platform metadata and BI engine metadata. In fact, 
metadata necessary to specific BI functionalities are usually created outside the 
platforms by editing an XML file or by exploiting simple graphical tools. Only 
afterwards can they be imported in the BI platform. Although, they model the same 
information, metadata belonging to different engines are differently coded and can-
not be reused. This obviously affects development and maintenance negatively. For 
example, the multidimensional structure of a cube must be defined repeatedly if the 
cube is involved in an OLAP analysis, in a report or in a ETL process. We believe 
that this is the main shortcoming of OS BI platforms compared to commercial ones 
that are typically based on a unique and integrated metadata repository. Within 
community editions metadata are stored in XML files, while the two enterprise 
editions provide for a DBMS based metadata repository. Although all three plat-
forms declare that their metadata are CWM-compliant [18] no interoperability tools 
have been released yet. 

3.4   Functional Aspects 

Table 2 reports the main functionalities made available by the platforms. If we con-
sider the completely free version of the suites (i.e. community editions) SpagoBI 
overcomes Pentaho and Jasper that make available many of the advanced features 
only in the enterprise editions. We will not discuss in detail each single item in the 
table since most of them are self explaining, we will briefly describe the infrequent 
terms instead. The term Query by Example refers to the capability of running free 
inquiring over a database schema using a graphical interface that does not require 
the user to be an SQL expert, while Ad-hoc reporting refers to the availability of a 
graphical interface that allows each user to create his own reports directly from a 
web interface. The term collaborative BI refers to functionalities that allow BI  
results to be shared between managers in order to reach a concerted decision.  
Finally, report validation workflow stands for the possibility of defining a set of 
states and approval steps a report and its data must pass through before being finally 
published. 
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Table 2. Main functionalities made available by the platforms; community and enterprise re-
leases are distinguished 

 

Security issues are particularly relevant in data warehousing. All the platforms al-
low secure data transmission as well as user authentication, while they offer pretty 
different functionalities for user profiling. Typically DBMSs are not suitable for de-
fining the security policies relevant in a BI application, thus BI platforms are in 
charge of their definition. In advanced commercial solutions profiling is based on 
security models that govern, in a centralized fashion, three fundamental areas of every 
BI application: (1) objects (e.g. a specific report or an OLAP analysis) each user can 
use, (2) cell-level data each user can access; and (3) BI functionalities each user gets 
(i.e. choosing the types of actions users may perform in the system such as printing, 
saving, exporting, drilling, pivoting, sorting, formatting and creating reports). As to 
OS BI platforms only two of these areas are covered; in fact user profiles can grant or 
deny access to different objects and allow filters to be applied on data retrieval but 
they cannot restrict the set of BI functionalities a user can run on a given document. 
More in detail user profiling is made available for free by SpagoBI while Jasper and 
Pentaho offer this feature only in their enterprise editions: Pentaho community edition 
only provides user authentication, while Jasper community edition provides a simpli-
fied profiling where the access is granted/denied for an entire directory usually con-
taining mode reports or analysis. 

As concerns the comparison between community - including SpagoBI - and enter-
prise editions, differences are not only in terms of functionalities available to the users 

Functionalities SpagoBI Pentaho Pentaho 
Ent. Ed. 

Jasper Jasper 
Ent. Ed. 

Activities scheduling √ × √ × √ 

Ad-hoc reporting × × √ × √ 
Auditing  √ × √ √ √ 

Collaborative BI √ × × × × 
Data Mining √ √ √ × × 
Dashboard √ √ √ × √ 

Document export √ √ √ √ √ 
ETL √ √ √ √ √ 

Geo-referenced analysis √ √ √ × √ 
OLAP √ √ √ √ √ 

Query by Example √ × × × × 
Report validation workflow √ × √ × × 

Reporting √ √ √ √ √ 

User profiling √ × √ × √ 
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(see Table 2) but also in terms of utilities for administrators and developers. The main 
improvements we identified in enterprise editions are: 

 
• Improved administration consoles: the improvement is particularly relevant in 

Pentaho where the Enterprise console fills the gap with Jasper as concerns usability 
and functionalities. 

• Wizard based configurations: most configuration activities are based on wizards 
and do not require a manual access to configuration files or multiple access to 
menus. 

• Process monitoring: front-end (e.g. query execution) as well as back-end (e.g. 
ETL) processes can be monitored and analyzed in order to optimize their execu-
tion.  

• ETL debugging environment: it is available and determines a strong reduction of 
the development effort. 
 

Administrators and developers are further supported through a wider documentation, 
a knowledge base as well as consultant and training services. Obviously such en-
hancements, together with warranties and certification of the software on a larger 
number of operating systems, applications servers, DBMSs, etc., become more and 
more relevant when you are developing a mission-critical application or when you are 
planning to adopt the platform in a large and complex organization. 

3.5   Usability 

Usability enables the users to easily access BI functionalities and it ensures develop-
ers and administrators a high productivity.  

From the user point of view platforms usability is largely determined by the BI en-
gines composing them. We consider the usability of those engines qualitatively satis-
factory. Although they do not reach the level of refinement of the commercial suites, 
their graphical features give the developed applications an appreciable look-and-feel. 
OS BI platforms also succeed in hiding the access to different tools. 

From the administrators’ point of view usability is determined by the easiness in 
administering the platform and adding new functionalities, in particular: 

 
• Complexity of the installing and configuring process: installing procedures are in 

general quite easy. This is particularly true for Pentaho and JasperSoft whose in-
stallation procedures completely rely on a wizard that also includes the installation 
of the BI engines. SpagoBI installation requires manually modifying eXoPortal 
configuration files and it does not include BI engines that must be installed sepa-
rately. 

• Administration complexity: the different usability is well perceived when you 
register a new report or analysis. As described in Section 3.2 functionalities (e.g. a 
report, an OLAP analysis, an ETL process) are usually developed outside the plat-
form and then imported before making them available. In SpagoBI and even more 
in Jasper we appreciated the easiness of the form-based procedure. Much effort is 
needed in Pentaho where functionalities registration is based on Action Sequences: 
an Eclipse procedure that may become quite complex since it is not adequately 
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supported by appropriate debug information and documentation. This problem is 
partially solved in the enterprise edition that includes a debug tool for Action Se-
quences. 

• Problem solving and training effort: manuals have a good quality and they allow 
most of the problems to be solved. Besides, in line with OS philosophy, several 
practitioners’ forums make available a high number of technical tips. The quality 
of information and the activeness of the forums are strictly related to the number of 
the platform users. During our analysis, the richness and most active forum was the 
one from Pentaho (more than 20,000 registered users). The Jasper community is 
even larger (about 90,000 registered users) but we experienced in many cases 
longer response time (about 2-3 days for receiving an answer). SpagoBI commu-
nity is definitely smaller and so the activeness of its forum (the number of regis-
tered users is unavailable, but only six thousands posts have been submitted since 
2006). Finally, the adoption of standard and well-known programming languages 
does not require programmers and administrators to have any particular skill. 

4   Discussion and Conclusions 

Our analysis shows that OS BI platforms determine an added value with respect to 
single BI tools since they allow several functionalities to be accessed transparently 
and a set of processes to be centralized and simplified thus reducing the administra-
tion and development effort. We believe that the main shortcoming of the platform is 
the absence of a fully centralized and unified metadata layer, as this reduces reusabil-
ity and integration. The capabilities of the administrative tools could also be improved 
in the community editions – this concerns in particular Pentaho. 

SpagoBI makes available a remarkable number of BI functionalities even if it 
adopts a free open source model. As concerns the functionalities offered to the users 
SpagoBI is comparable to the enterprise editions by Jasper and Pentaho. From that 
observation we can infer that integration (instead of acquisition) allows an easier plug 
of new modules and gives the original developers the possibility to improve them. On 
the other hand, acquisition ensures a higher quality of the modules and a road map 
compatible with the owner’s one. These are mandatory needs for distributing certified 
editions. 

Although OS BI platforms are still not as sophisticated as commercial ones we can 
state that they got a sufficient level of reliability and must be considered a valid alter-
native to commercial suites. This is particularly true in small and medium-sized en-
terprises where the quantity of data and the workload are not critical points. Several 
companies are evaluating the use of OS BI in pilot projects where budget constraints 
are typically very tight. The main risks related to an investment in OS technology 
come from unexpected termination of the project that will no longer be maintained 
and evolved or, even worse, from the adoption of a more restrictive licensing of the 
new releases that prevents using or distributing them. Finally, due to the short history 
of such products, it is impossible to predict if, apart from the initial investment, the 
companies that are in charge of the platforms will earn enough from services and 
application developments to stay on the market. 
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According to their road maps and evolution trends OS BI platforms will equal 
commercial ones in a few years. In order to really do better than commercial solu-
tions, we argue, OS BI platforms should not only replicate commercial functionalities 
with lower costs for the final users, but should also propose innovative functionalities 
according to the most sophisticated requirements of business users. Coupling twenty 
years of experience in building BI software with the more recent results on BI re-
search can really make the difference.  
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Abstract. Business users define calculated facts based on the dimen-
sions and facts contained in a data warehouse. These business calculation
definitions contain necessary knowledge regarding quantitative relations
for deep analyses and for the production of meaningful reports. The
business calculation definitions are implementation and widely organi-
zation independent. But no automated procedures facilitating their ex-
change across organization and implementation boundaries exist. Sepa-
rately each organization currently has to map its own business calcula-
tions to analysis and reporting tools. This paper presents an innovative
approach based on standard Semantic Web technologies. This approach
facilitates the exchange of business calculation definitions and allows for
their automatic linking to specific data warehouses through semantic
reasoning. A novel standard proxy server which enables the immediate
application of exchanged definitions is introduced. Benefits of the ap-
proach are shown in a comprehensive case study.

1 Introduction

For decision support business users have to perform analyses and create reports
based on large data sets from heterogeneous sources. Data warehouses (DW)
facilitate this decision support by integrating data from different systems and
providing them in a consistent multidimensional (MD) model to analysis and
reporting tools [1][2]. With the help of these tools business users build queries
using the dimensions and facts contained in the MD model and define additional
calculated facts based on them. These business calculation definitions contain
necessary knowledge regarding quantitative relations for the performance of deep
analyses and the production of meaningful reports. Although they are implemen-
tation and, to a large extend, organization independent, no automated proce-
dures facilitating their exchange across organization and implementation bound-
aries exist. Therefore, each organization currently has to map its own business
calculations to online analytical processing (OLAP) tools separately.

A major obstacle for the exchange of business calculation definitions is its
missing division into organization independent and organization specific parts
as well as its missing abstraction from implementation specific details. Moreover,
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organizations and implementations use different names for entities with the same
meaning and describe the relations between these entities in different languages.

In order to overcome these obstacles, this paper presents an innovative ap-
proach which structures business calculation definitions for OLAP into distinct
layers of ontologies and enables business users to exchange definitions using stan-
dard technologies, e. g. by means of office documents or web pages. Exchanged
definitions are automatically linked to specific data warehouses and immediately
provided for OLAP.

The benefits of this proposal are demonstrated in a comprehensive case study
in which business calculation definitions are created, exchanged and consolidated
as well as automatically linked to a specific data warehouse and used as a se-
mantic middleware layer while querying Microsoft Analysis Services (MSAS) [3],
Penhao Analysis Services (PAS) [4] and SAP NetWeaver Business Intelligence
(SAPBI) [5].

The remainder of this paper is structured as follows: Section 2 presents an
overview of related work. Section 3 describes the approach for the ontology-
based exchange and immediate application of business calculation definitions for
OLAP. A comprehensive case study is provided in section 4. Finally, section 5
points out the conclusions.

2 Related Work

In the last few years, there has been a growing interest in metamodels and
ontologies [6]. As these terms are closely related [7], the most relevant approaches
are briefly described for both of them.

The Common Warehouse Metamodel (CWM) is a standardized metamodel
for data warehouse metadata [8] and can be used in conjunction with the CWM
Metadata Interchange Patterns (CWM MIP) [9] and XML Metadata Interchange
(XMI) [10] for exchange. Januszewski and Pankowski use the Behavioral Meta-
model part of the CWM to create an implementation independent description of
a calculation function for a business quantity [11]. This description is primarily
intended for the subsequent implementation of the function on a data warehouse
platform and does not distinguish between business entities and their data ware-
house representations. Futhermore, the description does not define the meaning
of the contained terms. The authors suggest to use the Business Nomenclature
part of the CWM to define those terms. However, this part is far less expressive
than the available ontology languages.

The Model-Driven Architecture (MDA) is an approach which emphasizes the
use of models in software development [12]. The requirements and the vocab-
ularity of business users are described in the Computation Independent Model
(CIM), which forms the basis to create the Platform Independent Model (PIM).
Finally, the PIM is used to derive a Platform Specific Model (PSM). These
models can be described using the Unified Modeling Language (UML) [13],
transformed using Query/View/Transformations (QVT) [14] and exchanged us-
ing XMI. Mazón and Trujillo describe a comprehensive MDA approach for the
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development of data warehouses [15]. They use UML profiles to create a PIM for
the multidimensional model and derive a corresponding PSM in the CWM using
QVT transformations. A similar approach for queries is presented by Pardillo et
al. [16]. None of these approaches deals with the modeling of calculated facts.

The Web Ontology Language (OWL) is a machine interpretable knowledge
representation language [17]. OWL provides its three sublanguages OWL Lite,
OWL DL and OWL Full. As OWL Lite and DL are both based on description
logics (DL), they can be used in conjunction with available semantic reasoners.
Xie et al. use an extended OWL DL to represent a conceptual enterprise data
model and a conceptual multidimensional model [18]. Based on these models,
business users define analysis requirements. Afterwards IT specialists map new
entities to the data warehouse model and use a deployment engine to create
a dedicated data mart. As an exchange of entities and their relations is not
intended, the approach does not distinguish between organization independent
and organization specific parts and provides for the definition of calculated facts
in a proprietary language.

Diamantini and Potena propose to annotate data cubes by describing the
contained facts with a business and a mathematic ontology [19]. The business
ontology is described using OWL while the mathematic ontology is described
using MathML [20] and OpenMath [21]. Both ontologies are maintained exclu-
sively by IT specialists after they made changes to data cubes. The exchange of
entities and their relations is not discussed.

This contribution is the first approach which facilitates the exchange of busi-
ness calculation definitions between business users across organization and imple-
mentation boundaries and enables their immediate application to specific data
warehouses. Moreover, the approach exclusively uses standard technologies and
is therefore easy to implement and maintain.

3 Ontology-Based Exchange and Immediate Application
of Business Calculation Definitions for OLAP

As business and data warehousing are different domains, their entities and rela-
tions are mapped to distinct ontologies. Business entities and their relations are
only contained in the business ontology while data warehouse entities and their
relations are only contained in the data warehouse ontology. The business on-
tology is divided into an organization independent and an organization specific
part to facilitate the exchange of business calculation definitions. Likewise, the
data warehouse ontology is divided into an implementation independent and an
implementation specific part to increase its reusability. Business and data ware-
house ontology are combined with each other by the mapping ontology. The
mapping ontology consists of a manually created and an automatically inferred
part. All ontologies are defined in OWL DL and are used in conjunction for
OLAP. This is illustrated in Figure 1 and concisely described in the following
subsections.
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Fig. 1. Business calculation definitions and DW models are structured into distinct
ontologies. They are solely combined with each other by the mapping ontology. All
ontologies are used in conjunction for OLAP. Arrows ( ) correspond to dependencies.

3.1 Business Ontology

The business ontology is based on the concepts function, term, operator, quan-
tity, object and set. Functions have exactly one calculation term and return a
quantity with its result. Additionally, functions may have one restriction term
which constrains the domain of application. Terms are either single quantities,
objects or sets, or they have exactly one operator and at least one other term as
an operand. Operands may take on different roles, e. g. the role of a dividend or
divisor, depending on the used operator. Operators, quantities, objects and sets
are uniquely identified by their name. Individuals are sorted into the organization
independent respectively specific ontology according to their nature. Figure 2
illustrates the concepts and relations of the business ontology.

Provided that an ontology is defined in a prevalent language, like OWL, it is
well suited for its exchange and consolidation with other ontologies [22]. How-
ever, it is also desirable to facilitate the exchange of single functions. Prevalent
languages for the description of mathematical functions are MathML and Open-
Math. MathML provides its sublanguages MathML Presentation and MathML
Content. MathML Presentation focuses on the display of expressions while
MathML Content and OpenMath focus on their semantic meaning. Functions
of the business ontology can be transformed to MathML Content or OpenMath
expressions and vice versa. Therefore, it is also possible to use business calcula-
tion definitions which were originally created for other purposes than OLAP, e.
g. for their description on wiki pages. As MathML and OpenMath provide for
the definition of symbols in Content Dictionaries (CD), operators may refer to a
corresponding CD and CD base. Additionally, terms may possess a correspond-
ing MathML Content, MathML Presentation and/or OpenMath expression.
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Fig. 2. Concepts, associations ( ) and generalizations ( ) of the business ontology.
OWL supports many relation types, e. g. generalized as well as transitive relations.

As MathML and OpenMath expressions can be embedded in any Extensible
Markup Language (XML) [23] document, e. g. office documents [24] or web pages
[26], their technical exchange is simple. However, their businesslike exchange
requires the consolidation of external and internal terms. Therefore, business
users have to decide for every external quantity, object or set referred by an
exchanged expression whether it has to be replaced by an already existing or
taken over as a new individual. To allow for the globally unique identification of
these individuals, they may refer to a corresponding CD and CD base as well.

Although functions are stored in a tree structure, the quantities, objects
and/or sets required for their evaluation can be inferred using a transitive rela-
tion. The business ontology contains an object property dependsOn which is
transitive and is a super property of the object properties hasOperand and
hasTerm. The inverse object property of dependsOn is requiredBy. Using these
relations, the set of quantities required for the evaluation of on individual func-
tion F can be defined in Manchester OWL Syntax [25] by the class expression
Quantity and requiredBy value F.

3.2 Data Warehouse Ontology

The data warehouse ontology is based on the concepts cube, fact and dimension.
Cubes possess an arbitrary number of facts and dimensions. However, each of
them may only belong to one cube. All individuals possess a unique identifier.

Individuals can be generated from data warehouse models, e. g. based on
CWM or UML, or using data warehouse application programming interfaces
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Fig. 3. Alternative information flows ( ) for the generation of the DW ontology

(APIs), e. g. OLE DB for OLAP (ODBO) [27] or XML for Analysis (XMLA)
[28], with an OWL API [29] and sorted into the implementation independent
respectively specific ontology according to their nature. Figure 3 illustrates the
generation of the data warehouse ontology.

3.3 Mapping Ontology

The manually created mapping ontology solely consists of the symmetric object
property isMappedTo which maps objects to dimensions respectively quanti-
ties to facts. These mappings can be either created manually by IT special-
ists or, if possible, inferred from Semantic Web Rule Language (SWRL) [30]
rules. E. g., the SWRL rule Quantity(?q) ∧ hasName(?q, ?n) ∧ Fact(?f) ∧
hasIdent(?f, ?i) ∧ equal(?n, ?i) → isMappedTo(?q, ?f) maps a quantity
to a fact, if quantity name and fact identifier equal.

Based on the other ontologies, a semantic reasoner creates the automatically in-
ferred mapping ontology. In particular, it infers which quantities can be provided
by which cubes using which functions and mappings. A cube is able to provide an
object if it is mapped to one of its dimensions and is able to provide a quantity
if it is mapped to one of its facts and/or returned by one of its supported func-
tions. This can be defined by the property chains hasDimension ◦ isMappedTo→
isAbleToProvideObject,hasFact ◦ isMappedTo→ isAbleToProvideQuantity
and supportsFunction ◦ returnsQuantity → isAbleToProvideQuantity.
A cube supports a function if it only uses quantities and objects which the cube
is able to provide. The class of functions supported by a cube C can be defined by
the expression Function and dependsOn only ((not Object and not Quantity)
or (isObjectAvailableForCube value C) or (isQuantityAvailableForCube
value C)) and is a subclass of Function and isSupportedByCubevalue C, where
isObjectAvailableForCube is the inverse of isAbleToProvideObject,
isQuantityAvailableForCube the inverse of isAbleToProvideQuantity and
isSupportedByCube the inverse of supportsFunction.

As these definitions use universal quantifiers, a semantic reasoner which makes
the open world assumption requires closure axioms in order to infer the
supported functions. These closure axioms can be created automatically by a



304 M. Kehlenbeck and M.H. Breitner

Fig. 4. Workflow from the exchange of a business calculation definition to its utilization
for OLAP. Business users predominantly exchange definitions without IT specialists.

tool which enumerates all objects, quantities and sets and complements the ob-
ject property assertions based on dependsOn for all functions with corresponding
negative object property assertions. Likewise, the class of supported functions
can be defined automatically for each cube.

3.4 Online Analytical Processing

A workflow which describes the activities from the exchange of a definition to
its utilization for OLAP is illustrated in Figure 4. It allows for a predominant
exchange of business calculation definitions between business users without the
participation of IT specialists. As the aforementioned ontologies contain all re-
quired information, a defined quantity can be provided automatically, if a data
warehouse supports the corresponding function. This provision may take place
on the client side, on the server side or in between. A provision on the client or
server side would probably require as many different implementations as plat-
forms. However, a provision in between may achieve platform independence by
using a data warehouse API. Prevalent data warehouse APIs are ODBO and
XMLA. ODBO is based on the proprietary Component Object Model (COM)
[31] while XMLA is based on the platform independent SOAP [32] standard.
SOAP web services can be described using the Web Services Definition Lan-
guage (WSDL) [33]. As WSDL documents are available for several data ware-
house servers, like MSAS and SAPBI, corresponding client and server side inter-
faces can be created automatically using a web service framework, e. g. Apache
CXF [34]. These interfaces enable the implementation of an XMLA proxy which
provides the defined quantities by modifying the communication between client
and server. In particular, the responses of XMLA discovery methods and the



Ontology-Based Exchange and Immediate Application 305

Fig. 5. Immediate application of definitions via XMLA compliant proxy server

requests to XMLA execute methods can be modified. Figure 5 illustrates this
approach. As a bridge driver which allows to use an ODBO client in conjunction
with an XMLA server exists [35], a wide variety of clients can be used.

4 Case Study

This section contains a case study in which the definitions for two business quan-
tities are produced using a MathML editor, exchanged as an XML document,
consolidated with an existing ontology and immediately made available by means
of semantic reasoning and an XMLA proxy.

A business user defines the quantities EBIT Margin and EBIT using a
MathML editor, e. g. Integre MathML Equation Editor [36].

EBIT Margin =
EBIT

Net Sales
. (1)

EBIT = Net Income − (Interest Income + Tax Income) . (2)

They are saved to an XML document. E. g., the quantity EBIT Margin may be
represented by the following MathML Content fragment:

<mml:apply>
<mml:csymbol cd="relation1">eq</mml:csymbol>
<mml:ci>EBIT Margin</mml:ci>
<mml:apply>
<mml:csymbol cd="arith1">divide</mml:csymbol>
<mml:ci>EBIT</mml:ci>
<mml:ci>Net Sales</mml:ci>

</mml:apply>
</mml:apply>

A different business user adopts these definitions. The quantities as well as their
corresponding functions and terms are created in the organization independent
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business ontology. E. g., the quantity EBIT Margin may be represented by the
following OWL DL fragment:

<Quantity rdf:about="#EBITMarginQuantity">
<hasName>EBIT Margin</hasName>

</Quantity>
<Function rdf:about="#EBITMarginFunction">
<hasCalculationTerm rdf:resource="#EBITMarginCalculationTerm"/>
<returnsQuantity rdf:resource="#EBITMarginQuantity"/>

</Function>
<Term rdf:about="#EBITMarginCalculationTerm">
<hasOperator rdf:resource="#DivisionOperator"/>
<hasDividend rdf:resource="#EBITQuantity"/>
<hasDivisor rdf:resource="#NetSalesQuantity"/>

</Term>

In this case study, the referred quantity Interest Income is already defined in
the organization independent business ontology by the calculation term Inte-
rest Revenue − Interest Expense. Likewise, the referred quantities Net Income,
Net Sales and Tax Income as well as the required quantities Interest Revenue
and Interest Expense are already defined in the organization specific business
ontology by calculation terms based on the quantity Account Balance and re-
striction terms based on the object Account and a corresponding set. E. g.,
the quantity Interest Expense is defined by the calculation term − Account Ba-
lance and the restriction term Account ∈ Interest Expense Accounts. Therefore,
the quantities EBIT Margin and EBIT ultimately only depend on the quantity
Account Balance, the object Account and the sets Net Income Accounts, Net
Sales Accounts, Tax Income Accounts, Interest Revenue Accounts and Interest
Expense Accounts. The quantity Account Balance is mapped to a correspon-
ding fact and the object Account is mapped to a corresponding dimension of
the cube AdventureWorksCube. Therefore, a semantic reasoner, e. g. Pellet [37],
infers that AdventureWorksCube supportsFunction EBITMarginFunction as
well as AdventureWorksCube supportsFunction EBITFunction and therefore
AdventureWorksCube isAbleToProvideQuantity EBITMarginQuantity as well
as AdventureWorksCube isAbleToProvideQuantity EBITQuantity. These ax-
ioms are saved to the automatically inferred mapping ontology.

An XMLA proxy makes the quantities immediately available for OLAP. It
was implemented as a web service based on the Java API for XML Web Services
(JAX-WS) [38] and is currently able to access MSAS, PAS and SAPBI as a
web service consumer. XMLA defines two methods: discover and execute. Re-
quests to the discover method of the XMLA proxy are passed unmodified to the
responsible server. However, the proxy modifies the received results for the re-
quest types MDSCHEMA_MEASUREGROUPS and MDSCHEMA_MEASURES before passing
them on to the client. Results for the request type MDSCHEMA_MEASUREGROUPS
are complemented by an XMLA fragment like
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<MEASUREGROUP_NAME>XMLA Proxy</MEASUREGROUP_NAME>
<MEASUREGROUP_CAPTION>XMLA Proxy</MEASUREGROUP_CAPTION>

in order to create an additional measure group. Similarly, results for the request
type MDSCHEMA_MEASURES are complemented by XMLA fragments like

<MEASURE_NAME>EBIT Margin</MEASURE_NAME>
<MEASURE_UNIQUE_NAME>[Measures].[EBIT Marg.]</MEASURE_UNIQUE_NAME>
<MEASURE_CAPTION>EBIT Margin</MEASURE_CAPTION>
<MEASURE_AGGREGATOR>127</MEASURE_AGGREGATOR>
<MEASUREGROUP_NAME>XMLA Proxy</MEASUREGROUP_NAME>

which correspond to the facts that can be additionally provided based on the in-
formation contained in the ontologies. This information is used to create expres-
sion trees, as illustrated in Figure 6, which are subsequently supplemented with
the original results for the request type MDSCHEMA_MEASURES to determine the
corresponding values of the MEASURE_AGGREGATOR. The latter indicates whether
a measure was derived using a single aggregation function (e.g. SUM), a combi-
nation of aggregation functions, or using a more complex function. Due to the
complementary XMLA fragments, the OLAP client regards the additional facts
as available on the data warehouse server.

Requests to the execute method of the XMLA proxy contain commands which
can contain queries defined using Multidimensional Expressions (MDX) [39]. The

Fig. 6. Expression tree for the exchanged quantity EBIT Margin. Triangles represent
parts which are not shown in full details due to space restrictions.
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Fig. 7. Microsoft Excel connected to MSAS through the XMLA proxy and an ODBO
bridge. Queries may use facts that can be additionally provided based on the informa-
tion contained in the ontologies just like the original facts from a data warehouse.

XMLA proxy modifies the queries before passing them on to the responsible data
warehouse server by complementing them with MDX fragments like

MEMBER [Measures].[EBIT Marg.] AS
[Measures].[EBIT] / [Measures].[Net Sales]

which result from transformations of the supplemented expression trees. The re-
ceived results are passed on unmodified to the client. Due to the MDX fragments,
queries can use the additional facts from the ontologies just like the original facts
from the data warehouse.

The proxy has been successfully tested with the MSAS, PAS and SAPBI
servers as well as the IBM DataQuant for Workstation XMLA [40] and Mi-
crosoft Excel [41] ODBO clients. A positive side effect is that the proxy in-
creases compatibility by unifying web service definitions, e. g. enabling to use
IBM DataQuant for Workstation with SAPBI. Figure 7 contains a screenshot of
Microsoft Excel connected to MSAS through the XMLA proxy and an ODBO
bridge.

5 Conclusions and Outlook

This paper focuses on the problem of exchanging business calculation definitions
across organization and implementation boundaries. An innovative approach
based on Semantic Web technologies which facilitates the exchange of business
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calculation definitions is presented. This approach also supports the utilization of
definitions which were created for other purposes than OLAP. Automatic linking
of business calculation definitions to specific data warehouse models through
semantic reasoning is enabled. A novel standard proxy server between analysis
and reporting clients as well as data warehouse servers is introduced. This proxy
server immediately provides exchanged definitions and enables business users to
exchange their definitions independently from IT specialists. The benefits of the
approach have been outlined in a comprehensive case study.

Research is now dedicated to the design, implementation and evaluation of
more advanced analysis and reporting tools with direct support for Semantic
Web technologies. In particular, the presented approach will be extended to
facilitate the exchange of entire queries. This will require the inclusion of further
parts of the multidimensional model.
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Abstract. Skyline queries have gained much attention as alternative
query semantics with pros (e.g.low query formulation overhead) and cons
(e.g.large control over result size). To overcome the cons, subspace skyline
queries have been recently studied, where users iteratively specify rele-
vant feature subspaces on search space. However, existing works mainly
focuss on centralized databases. This paper aims to extend subspace sky-
line computation to distributed environments such as the Web, where the
most important issue is to minimize the cost of accessing vertically dis-
tributed objects. Toward this goal, we exploit prior skylines that have
overlapped subspaces to the given subspace. In particular, we develop
algorithms for three scenarios– when the subspace of prior skylines is
superspace, subspace, or the rest. Our experimental results validate that
our proposed algorithm shows significantly better performance than the
state-of-the-art algorithms.

1 Introduction

Skyline queries have gained much attention as alternative query semantics with
pros (low query formulation overhead) and cons (large control over result size).
Example 1 describes a skyline query finding “interesting” hotels.

Example 1 (Skyline query). Consider a user looking for hotels that are close to
the beach and reasonably priced. Among 10 hotels plotted in Fig. 1, we say
that A is more interesting than I, i.e., A dominates I, since A is closer and
cheaper than I. After eliminating all “dominated” hotels, remaining hotels are
A, B, and E that are viewed as interesting ones regardless of a user-specific
preference. They are called skyline which is a set of objects not dominated by
any other objects.

While the skyline query identifies a subset of interesting objects, it is hard to
control the skyline size. In particular, as the number of attributes increases, e.g.,
to consider additional attributes such as star rating, the skyline size increases
exponentially. To address this drawback, subspace skyline queries [14,16,19,20]
have been recently studied to control the skyline size with respect to user-
specific needs. However, these solutions focus on centralized environments and

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 312–324, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Fig. 1. Illustration of a skyline query

pre-materialize skyline over all possible subspaces, it is non-trivial to extend
them to support distributed environments such as the Web.

This paper studies the subspace skyline problem in distributed environments
such as the Web [4,5,7]. Specifically, datasets can be distributed over several
databases provided by different providers. A key challenge is thus to optimize
the cost of accessing objects vertically distributed in different sources. Skyline
processing in such environments has been only considered for full feature space
[2,12]. In a clear contrast, we study how to efficiently support multiple skyline
queries defined in diverse subspaces.

In summary, we believe that our paper has the following contributions:

– When there exist no prior results, we improve basic algorithms to exploit
data-driven cost estimations and significantly reduce the overall cost.

– Otherwise, we can further reduce cost by reusing previously identified sky-
lines, i.e., skyline views. Specifically, to compute the skyline results for a
given feature subspace U , we focus on leveraging the subspace skylines on
subspace U ′ that are not disjointed to U , by reusing prior query results.
To significantly reduce the cost, we develop algorithms for three scenarios–
when U ′ is the super-space, the subspace, or the rest.

The remainder of this paper is organized as follows. Section 2 states recent
studies related to our framework. Section 3 discusses preliminaries to help our
framework. Section 4 and Section 5 propose our baseline algorithms with no
skyline views and view-based skyline algorithms respectively. Section 6 reports
our experimental results, and Section 7 concludes this paper.

2 Related Work

This section first provides an overview of skyline computation in centralized
database environments. We then discuss existing skyline algorithms over the
distributed environments and how our work distinguishes itself.

Skyline computation in centralized environments: Börzsönyi el at. [3]
introduced skyline queries in the database community. Next, Tan et al. [15] pro-
posed a progressive skyline algorithm using bitmap and B-tree structures. Later,
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Kossmann et al. [10] and Papadias et al. [13] proposed efficient skyline algorithms
based on R-tree. Recently, Lee et al. [11] proposed skyline computation using
ZBtree, storing data based on a Z-order curve. The algorithms, however, only
focused on full space skyline computations.

Meanwhile, there is recent work for effective subspace skyline computation.
Yuan et al. [20] and Xia et al. [19] proposed a skycube structure that computes
the skylines of all possible subspaces in a batch, and Pei et al. [14] studied the
semantic structure between subspace skylines, i.e., decisive subspace. Tao et al.
[16] proposed a 2D index supporting subspace skyline computation. However,
since these algorithms assume centralized database environments, they do not
consider the cost model of accessing objects in distributed environments, i.e.,
sorted access and random access [4,5,7]. In a clear contrast, our work aims to
identify subspace skylines with minimal cost in distributed scenarios, by reusing
prior skyline results.

Skyline computation in distributed environments: The above skyline
query processing algorithms have only been studied in centralized environments.
Recently there has been growing interest in distributed skyline computations,
where objects are distributed vertically or horizontally over data sources.

Vertical model: In the Web scenarios, data are often vertically distributed, e.g.,
price information residing in hotels.com and distance in maps.com, as typically
assumed in [2,12]. Balke et al. [2] first proposed a distributed skyline computa-
tion. Further, Lo et al. [12] proposed a progressive skyline computation under
the same model and studied how to find a good “terminating object” using a
linear regression technique for early termination. Our paper is also based on the
same distributed data model, but our work distinguishes itself from these efforts,
by (a) devising a more desirable cost estimation model for finding a terminating
object, and (b) reusing prior query results for subspace skyline computation.

Horizontal model: In peer to peer scenarios, data are often horizontally dis-
tributed, as studied in [6,17,18]. Specifically, Hose et al. [6] focused on Peer
Data Management Systems (PDMS) and proposed an algorithm identifying re-
laxed skyline results. Vlachou et al. [17] addressed skyline computation in a
super-peer network, where each peer stores their own local data and computes
local skylines for themselves. To support an index structure for skyline compu-
tation on the peer-to-peer network, Wang et al. [18] proposed a tree structure
like BATON [8], which exploits Z-curve traversal to map multi-dimensional data
into one-dimensional space.

3 Preliminaries

This section first presents notations and preference notions to define the skyline
problem. Table 1 summarizes notations used in this paper. (Throughout this
paper, we use attribute and dimension interchangeably.) For simplicity, suppose
that user preference follows a strict total order on each attribute di, denoted
as �di . (In Section 6, we will extend the preference into general order as �di.)
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Table 1. Notations used in this paper

Notation Definition
m Number of attributes
n Number of objects
D Dimension set (d1, ..., dm)
O Dataset (o1, ..., on)
S(U) Subspace skyline on U
SA.next(di) SA for next preferred objects on di

RA(o, D′) RA for o’s unknown values on D′

Based on this notion, we formally state dominance and skyline on user-specified
subspace U . (These definitions are consistent with the preceding work.)

Definition 1 (Dominance on U). An object o dominates another object o′ on
U if and only if ∀ di ∈ U : o �di o′ and ∃ dj ∈ U : o �dj o′.

Definition 2 (Skyline on U). An object o belongs to skyline on U , denoted as
S(U), if and only if ∀o′(�= o) ∈ O does not dominate o on U .

We adopt a vertically distributed data model, as the environment to compute
the skyline. This stores different attribute values in multiple distributed data
sources, as widely adopted in [4,5,7]. In this model, unknown attribute values
are retrieved from such sources through one of the following two access modes:

– Sorted access (SA): Each sorted access on attribute di, denoted as SA.next(di),
retrieves the next object in the descending order of user preference on di.

– Random access (RA): For an object o, each random access on attribute set
D′ retrieves its unknown values.

Full space skyline computation to optimize such access cost in the distributed
environments has been proposed [2,12].

In a clear contrast, we aim to support “subspace” skyline processing, where
users specify arbitrary subset U of D that represents their information needs.
Our goal is, in finding subspace skyline results S(U) for user-specified attribute
space U , to reuse the prior query results S(U ′). More formally, we study how
to exploit prior query results S(U ′) for finding S(U), which falls into one of the
following three cases. (For the sake of representation, each case is described with
a tree structure in which full space is represented as a root node.)

1. Child skyline view: U ′ is a child of U (i.e., U ′ ⊂ U).
2. Parent skyline view: U ′ is a parent of U (i.e., U ′ ⊃ U).
3. Sibling skyline view: U ′ is a sibling of U (i.e., U ′ − U �= φ, U − U ′ �= φ,

and U ′ ∩ U �= φ).

4 Baseline Skyline Algorithm

This section presents our first proposed algorithm, Baseline Skyline Algorithm
(BSA), when no prior query results can be leveraged. While IDS [2] and PDS
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Table 2. Toy dataset with 3-dimensional 10 objects

rank 1 2 3 4 5 6 7 8 9 10
d1 a g c j d i f b e h
d2 b d h f i e a c j g
d3 c j e b f h d a i g

[12] have similar limitation, our work significantly improves these algorithms by
exploiting systematic cost estimation based on data statistics, e.g., histograms
and rank index [1]. BSA will later serve as a baseline as well, when evaluating
other proposed algorithms reusing prior results.

As the first step to build a BSA, we observe the commonality of the two
algorithms IDS and PDS, which is to perform sorted accesses SA(di) on ∀di ∈ D,
until we access a common object ox from all dis. (Due to the limitation of space,
all proofs are presented in our extended paper [9].)

Lemma 1 (Termination condition [2]). At any point, if an object o has been
accessed from every sorted access on di ∈ U , any objects yet to be accessed cannot
be a skyline object.

From a toy dataset (Table 2), the termination condition holds after one access
on d1 (accessing a), and 7 and 8 accesses each on d2 and d3 respectively. Alter-
natively, a smarter algorithm can satisfy such condition with much less sorted
accesses, when c is accessed from all dis, after 2, 6, and 1 accesses on d1, d2, and
d3, respectively. Based on this observation, existing algorithms aimed at finding
the “terminating object” causing the minimal sorted access cost C [2,12]. In this
paper, we call such a cost-minimal object a watermark object, where its cost can
be represented as the following function.

ow = argmin
i

C(oi)

We observe how existing algorithms find such object. IDS [2] assumes that
the dataset has an uniform distribution so IDS estimates the number of sorted
accesses, using the attribute value itself. PDS [12] enhances such estimation us-
ing a linear regression approach of iteratively updating the prediction based on
the costs incurred for previously accessed objects. However, experimental result
shows that the estimation of PDS also works well only when the dataset has an
uniform distribution. In contrast, we develop more enhanced cost estimation for
finding a better watermark object. Specifically, our proposed method is catego-
rized into (a) histogram-based estimation and (b) exact evaluation. (They are
illustrated as Algorithm 2.)

– BSA(histogram): Using histograms on attribute values, we can estimate
the rank of the given object. Unlike the estimation schemes of IDS and PDS
that work best over uniform distribution, this estimation scheme can adapt
to various distributions, as we report in Section 6.

– BSA(exact): Using rank based index [1], we can retrieve the rank of each
object in each list, from a random access, based on which we can exactly
compute the sorted access cost C of the given object.
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Algorithm 1. BSA(O, U)
1: dc = d1, ow = φ.
2: SKYdi = φ. {Store final skyline on di}, P = φ. {Store pruned objects.}
3: while ow is not seen on any attribute on U do
4: oc ← SA.next(dc).
5: if oc has a missing value then
6: RA(oc,U − {dc}).
7: end if
8: if oc ∈ P or oc ≺ ∃ox {ox ∈ SKYdc} then
9: Push oc into P .

10: else
11: Push oc into SKYdc , (ow, dc) = Cost(oc, ow, dc), Output oc if not found yet.
12: end if

13: end while

Algorithm 2. Cost(oc, ow, dc)
1: RA(oc, a set of attributes with missing values).
2: Update and Estimate C(ow), C(oc). {When we use a histogram-based estimation.}
3: if C(oc) < C(ow) or oc ≡ ow then
4: ow ← oc.
5: dc ← One of attributes on U that ow is not seen.
6: end if

7: return (ow, dc).

We now illustrate BSA (Algorithm 1) using the cost estimation above. First,
using a sorted access on some attribute di, BSA finds a skyline candidate oc

(Line 4-7). Unlike IDS waiting until the termination to decide whether it actually
becomes a skyline object or not, BSA “progressively” outputs oc, if determined
as a skyline object. Next, once oc becomes a skyline object, we update the
watermark object ow if it has a lower cost than the current watermark, i.e.,
C(oc) < C(ow). When the new ow is determined, we update dc as some attribute
yet to be evaluated for the new watermark object in the Cost module (Algorithm
2), and then perform SA on dc at the next iteration. Such iteration continues
until the current watermark object is accessed in all SA(di), which satisfies the
termination condition (Lemma 1).

To illustrate BSA, we describe an example using a toy (Table 2). First, we
perform SA(d1) to access the top object a. BSA then performs RA on a to
evaluate missing values of a. As SKYd1 = φ, no object dominates a so a becomes
a skyline object. At this point, a can be returned progressively and pushed into
SKYd1 . Meanwhile, object a also becomes the watermark object ow and BSA
changes dc to some attribute yet to be evaluated on object a. For simplicity,
we change the attributes in a round robin manner. In the next iteration, we
perform SA(d2) to access b and b becomes a skyline object. Furthermore, as
C(b) = 13 < C(a) = 16, ow is updated to b, and dc is changed. From SA(d3), we
access c and c becomes a new skyline object and ow. dc is changed back to d1
and SA(d1) accesses g, which is dominated by a in SKYd1 . BSA thus pushes g
into P , and continues to access c, and pushes c into SKYd1 because c is already
identified as a skyline object. BSA then changes dc = d2 because oc ≡ ow. From
SA(d2), d is accessed, which is not dominated by any object in SKYd2 = {b}.
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Table 3. Toy dataset with 4-dimensional 10 objects extended from Table 2

rank 1 2 3 4 5 6 7 8 9 10
d1 a g c j d i f b e h
d2 b d h f i e a c j g
d3 c j e b f h d a i g
d4 h b d f e i a g c j

d thus becomes a skyline object, BSA pushes d into SKYd2 but ow does not
change as C(d) = 14 > C(c) = 12. After few more SA(d2), ow = c is finally
accessed, which makes c accessable from all sorted accesses and terminates BSA.

5 Reusing Skyline Algorithm

This section studies how we can enhance BSA using prior query results. Specif-
ically, we consider two main properties as follows:

– Pruning rules: Based on prior results, we can identify some objects that
can never become skyline. In Algorithm 1, we can initialize P as such objects
to avoid any access. Alternatively, instead of evaluating all the missing values
RA(oc, U −{dc}) before deciding whether to prune out, we can save RA cost
by performing “selective RA” using P .

– Pre-qualification: From the prior results, we can identify some objects
that are guaranteed to qualify as skylines, before performing any access.
Such objects can be returned to users in a progressive manner.

Based on the properties, we propose algorithms that reuse prior results S(U ′)
for computing S(U), for three scenarios when U ′ is a parent, a child, or a sibling
of U . Assume that we only have the prior skyline object IDs not the real values.
In the extended version of this paper [9], we discuss how to reuse sibling skyline
view by combining the advantages of parent and child views in detail.

5.1 Parent Skyline View (PSV)

We develop how to find S(U) using prior results S(U ′) when U ′ is the superset
of the U , i.e., U ′ ⊃ U . Specifically, we develop the following pruning condition
for computing S(U), using S(U ′), as we formally state below.

Lemma 2 (Pruning Condition). If oc �∈ S(U ′) and oc has distinct value, oc

cannot be a new skyline object of U when U ⊂ U ′.

We develop Algorithm PSV using Lemma 2. This identifies the non-skyline ob-
jects early on using S(U ′) to eliminate the unnecessary access cost or dominance
checks on such objects. This pruning condition can be easily added to BSA, by
populating pruned object set P (Line 2) in Algorithm 1 ,i.e., P = O − S(U ′).

We now illustrate how PSV works with our toy example (Table 3), when
U = {d1, d2, d3} and U ′ = {d1, d2, d3, d4}. Using prior query results S(U ′) =
{a, b, c, d, e, f, h}, we can initialize P as {g, i, j} using Lemma 2. First, from
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SA(d1), we access a, which is not dominated by any other object at d1 and
thus becomes a SKYd1 . PSV then performs SA(d2) to access b and pushes it to
SKYd2 and updates b as a new ow, as its SA cost is lower than a. PSV performs
SA(d3) to access c, which becomes a SKYd3 and new ow. Next object g from
SA(d1) is in P . PSV can thus save the cost by skipping g. As the next object
c is already selected, PSV pushes c into SKYd1 and selects d2. PSV continues
SA(d2) to access until ow = c is discovered at d2 (and all other dis). S(U) is
thus finalized as ∪3

i=1 SKYdi = {a, b, c, d, e, f}.

5.2 Child Skyline View

We move on to the Child Skyline View (CSV) problem, of computing S(U) using
S(U ′) when U ′ is subset of the attribute U , i.e., U ′ ⊂ U , based on the property
below.

Lemma 3 (Pre-qualification Rule). Let U ′ ⊂ U . Object, oc ∈ S(U ′), can
become the skyline of U if oc has distinct value.

One naive solution is to simply adopt Lemma 3, to “eagerly” populate ∀i :
SKYdi = S(U ′). With this eager population, a candidate object oc can be pruned
out early on, if it is dominated by some object in S(U ′). However, this naive
adoption leads to unnecessary comparisons between objects. For example, when
some object ox ranks the second highest with respect to di, ox can only be
dominated by the top object on di and dominance checking with any other
object is unnecessary. However, with eager population, ox has to be compared
with all objects in S(U ′).

Because of this problem, we study “lazy population”. We divide skyline can-
didates SKYdi into OSKYdi (for original skyline for U ′) and NSKYdi (for new
skyline for U), to store the skyline results that belong to S(U ′) and that not
belong to S(U ′) respectively, i.e., SKYdi = OSKYdi ∪NSKYdi , and delay the
population of OSKYdi as much as possible. Specifically, the object accessed oc

is added to OSKYdi iteratively, which enables to restrict dominance checks only
to those objects that are already accessed from SA(di).

We also develop another pruning rule, which enables us to prune out a can-
didate object with only “selective RA”.

Lemma 4 (Pruning Rule). Let oc be the current retrieved object on dc, dc ∈
U ′, by doing SA and oc �∈ S(U ′). If oc ≺U−U ′ ∀ox, ox ∈ S(U ′) that satisfies
rankdc(ox) < rankdc(oc), then oc cannot be a new skyline object.

Using this lemma, instead of performing RAs for all the unknown attributes for
each candidate object, we can restrict it to “selective RA” on RA(oc, U − U ′)
for some skyline objects (lines 12-13). More specifically, CSV algorithm works
as follows: If oc ∈ S(U ′), CSV pushes oc into OSKYdc . If not, CSV performs RA
for U −U ′ values first. If oc is dominated by all objects in OSKYdc with respect
to U − U ′, oc can be pruned out immediately (and thus saves RA cost). Only
for the remaining cases, we fully evaluate all the unknown values.
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Algorithm 3. CSV(O, U, U ′, S(U ′))
1: dc = One of attributes on U ′, ow = φ, P = φ. {Store pruned objects.}
2: OSKYdi = φ, NSKYdi = φ. {Store original and new skyline of attribute on di.}
3: while ow is not seen on any attribute on U do
4: oc ← SA.next(dc).
5: if oc ∈ P then
6: Continue.
7: else if oc ∈ S(U ′) then
8: Push oc into OSKYdc , (ow, dc) = Cost(oc, ow, dc).
9: Output oc if not found yet.

10: else
11: RA(oc, U − U ′)
12: if oc ≺U−U′ ∀ox, ox ∈ OSKYdc and dc ∈ U ′ then
13: Push oc into P .
14: else
15: RA(oc, U ′)
16: if oc ≺U ∃ox, ox ∈ OSKYdc ∪NSKYdc then
17: Push oc into P .
18: else
19: Push oc into NSKYdc , (ow, dc) = Cost(oc, ow, dc).
20: Output oc if not found yet.
21: end if
22: end if
23: end if

24: end while

We now illustrate how CSV works with our toy example (Table 2) when
U = {d1, d2, d3} and U ′ = {d1, d2}. CSV first performs SA on d1 and accesses
the top object a. Because a ∈ S(U ′) = {a, b, d}, CSV pushes a into OSKYd1 and
a becomes the first ow. CSV selects the next attribute as d2 and pushes the top
object b into OSKYd2 . As C(b) = 13 < C(a) = 16, ow is updated to b. Next, c
is accessed from SA(d3). As c is a skyline object and c /∈ S(U ′), CSV pushes c
into NSKYd3 and changes ow again to c as C(c) < C(b). Going back to SA(d1),
we access g �∈ S(U ′). CSV thus performs “selective RA” on U − U ′ = {d3}.
As g ≺d3 ∀ox ∈ OSKYd1 = {a}, g can be pruned out without additional RAs.
Since the next object c is already found as a skyline object, CSV selects the
next attribute d2. CSV continues sorted accesses until it reaches h and performs
selective RA(h, {d3}). As h is is partially dominated by b in OSKYd2 = {b, d},
CSV fully evaluates h, which is still dominated by b. Thus, h is pruned. After a
few more sorted accesses, CSV reaches ow = c which is discovered at all dis and
the final result S(U) is

∑
OSKYdi ∪NSKYdi = {a, b, c, d, e, f}.

6 Experiments

This section validates the efficiency of our algorithms using synthetic datasets.
Specifically, the parameters used and their default values are described in Table
4. (For brevity, we have omitted the results for correlated and anti-correlated
datasets, which were consistent with the results reported in this section).

As for performance metrics, we use the following two measures: (1) the num-
ber of objects accessed, and (2) the number of random accesses, which directly
affect the overall cost in distributed environments. (We do not report the number
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Table 4. Parameters for experimental settings

Parameter Value : Default
Data size n [100K,500K] : 100K
Dimensionality m [3,7] : 5
Data distribution Uniform, Gaussian, Zipfian : Gaussian
Correlation Correlated, Independent, Anti-Correlated : Independent

of sorted accesses, as it is proportional to the number of objects accessed.) Ex-
periments were carried out on an Intel(R) Pentium(4) with 3.00 GHz processor
and 1GB RAM running Windows XP.

We implemented the following five algorithms with C# language as follows:

– Improved Distributed Algorithm (IDS) [2]
– Progressive Distributed Skyline Algorithm (PDS) [12].
– BSA: Our baseline algorithm when there are no prior skyline results. We

implement it in two versions:
• BSA(histo): estimating the cost of accessing an object using attribute

value histograms.
• BSA(exact): exactly computing the object access cost using rank index.

– Our framework: Our skyline view algorithms, PSV, CSV, and SSV are com-
bined into a single framework. Given a skyline query, we randomly select a
skyline view, and compute the skyline.

While we assume a strict total order for user preference on attribute values,
it can be easily extended to support a general total order.

6.1 Experiments on No Skyline Views

We validated the efficiency of BSA(histo) and BSA(exact) against previous dis-
tributed skyline algorithms. For BSA(histo), we set BucketSize = � n × 0.01 �.
All objects within the same bucket tie as the same rank, i.e., HistRank(oi) = �
RealRank(oi) / BucketSize � × BucketSize + 1, which is synthetically generated.
The histogram is pre-constructed by scanning an entire dataset once.

Fig. 2 reports our comparison results of BSA with IDS and PDS. Significantly
lower costs of BSA suggest that the rank estimation of our proposed algorithm is
more accurate than that of IDS and PDS. IDS, assuming uniform distribution,
performs comparably with BSA in the uniformly distributed data, but its per-
formance deteriorates for other distributions, Gaussian and Zipfian. Meanwhile,
PDS, leveraging linear regression for rank estimation, incurs high cost, due to
the following reasons: First, linear regression assumes linear relationship between
values and rankings which does not hold for Gaussian and Zipfian distributions.
Second, even for distributions where such relationship holds, the accuracy de-
pends on the quality of samples used for regression. Meanwhile, samples used in
PDS are biased to highly ranked objects, which negatively affects the estimation
quality.
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Fig. 2. Comparisons of distributed skyline algorithms without skyline views
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Fig. 3. Comparison between existing algorithms and our reusing skyline views

6.2 Experiments on Skyline Views

We validated the effectiveness of our framework reusing prior skyline views
against IDS and PDS. Given a skyline query, we first generated skyline views
with m ± 1 overlapped dimensions with respect to the skyline query with m-
dimensional space– The subspace size of a child view and a parent view is m− 1
and m + 1, where the overlapped subspace is m − 1 and m, respectively. Simi-
larly, the size of a sibling view is m in which its overlapped subspace is m − 1.
We then randomly selected one of the three algorithms, and identified the sky-
line.

We empirically confirmed that our framework effectively reuses prior skyline
results, which contributes to saving overall computational costs. Figure 3 de-
scribes that our framework outperforms IDS and PDS with various parameter
settings. Due to the limitation of space, we do not report the number of object
accesses. However, based on the consistent behaviors of object access costs and
RA costs in Figure 3, we can infer similar behaviors.
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7 Conclusion

This paper studies the subspace skyline query processing problem in distributed
environments. In particular, we first design a baseline distributed skyline com-
putation with an improved cost estimation method. We then study how to reuse
prior skyline results for the space that is a superset or a subset of the given sub-
space. Our experiments validate that our proposed framework can significantly
save overall costs by reusing prior results.
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Abstract. Transactional data mining (association rules, decision trees
etc.) has been effectively used to find non-trivial patterns in categorical
and unstructured data. For applications that have an inherent structure
(e.g., social networks, proteins), graph mining is useful since mapping
the structured data into a transactional representation will lead to loss
of information. Graph mining is used for identifying interesting or fre-
quent subgraphs. Database mining uses SQL and relational representa-
tion to overcome limitations of main memory algorithms and to achieve
scalability.

This paper presents a scalable, SQL-based approach to graph mining
– specifically, interesting substructure discovery. The most general form
of graphs including directed edges, multiple edges between nodes, and
cycles are handled by our approach. Our primary goal in this work has
been to address scalability, and map difficult and computationally expen-
sive problems such as pseudo duplicate elimination, canonical labeling,
and isomorphism checking into SQL-based counterparts. The notion of
minimum description length (MDL) has been cast into corresponding
metric for relational representation. Our experimental analysis shows
that graphs with Millions of nodes and edges can be handled by the
algorithm and the approach presented in this paper.

1 Introduction

Transactional data mining is widely used in detecting interesting patterns from
unstructured data using techniques such as association rule mining. Graph min-
ing is appropriate for mining data with inherent complex structure. Although
main memory based data mining algorithms exist, they typically face two prob-
lems with respect to scalability: i) storing the entire graph (or its adjacency
matrix) in main memory may not be possible, and ii) the computational space
requirements of the algorithm may be more than what is available.

Database mining has been an answer to scalability without having to incor-
porate complex buffer management strategies in mining algorithms. Database
mining uses SQL and relational representation to overcome limitations of main
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memory algorithms – buffer management and scalability. Several database min-
ing algorithms [5] have been proposed for transactional data mining demonstrat-
ing portability of code, scalability, and the ability to mine directly over relations
where the data is collected in the first place. Simply put, database mining brings
algorithms to data instead of taking data to algorithms as is the case for con-
ventional mining. This paper presents an SQL-based approach to graph mining
(specifically, interesting substructure discovery. The most general form of graphs
including directed edges, multiple edges between nodes, and cycles are handled
by our approach. Our primary goal in this work has been to address scalabil-
ity, and map difficult and computationally expensive problems such as pseudo
duplicate elimination, canonical labeling, and isomorphism checking into SQL-
based counterparts. The notion of minimum description length (MDL) has been
cast into corresponding metric using relational representation. Our experimental
analysis shows that graphs with millions of nodes and edges can be handled by
the proposed algorithm. Hierarchical reduction used for inferring second order
and meta concepts is also handled by our approach.

The rest of the paper is structured as follows: Section 2 presents the HDB-
Subdue algorithm along with graph representation and candidate generation.
section 3 details the key steps – pseudo duplicate elimination, canonical labeling,
and counting using SQL on the relational representation. Section 4 illustrates
the experimental analysis and comparison with Subdue and other relational
approaches. Section 6 briefly places our work in the context of graph mining.
Section 7 contains conclusions.

2 Relational Approach to Graph Mining

HDB-Subdue [6] closely follows the Subdue algorithm in candidate generation
(expanding substructure of size n to size n+1) using joins. However pseudo
duplicate elimination and canonical ordering are the difficult components to
map to SQL. Algorithm 1 outlines the steps in HDB-Subdue

Algorithm 1. HDB-Subdue Steps
Bulk load vertices and edges from flat file into vertex and edge table
for i = 1 to numOfCompressions do

Create oneedge table from vertex and edge table
for j = 1 to MaxSize do

Join instance j table and oneedge table to generate instance j+1
Canonically order instance j+1 table on vertex numbers
Eliminate pseudo duplicates from instance j+1
Canonically order instance j+1 on vertex labels
Group By vertex and edge labels to obtain instance count and insert into sub fold j+1
Calculate DMDL Value for substructures in sub fold j+1
Apply Beam on sub fold j+1 to pick top ’Beam’ number of substructures
Retain only the instances of substructures in current sub fold j+1

end for
Pick the best substructure based on highest DMDL Value
Compress the graph by removing the vertices and edges that are in the best substructure
if achievedCompression = ZERO then

Break
end if

end for
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Graph Representation and Candidate Generation: We first describe how
graphs are represented in a database and expanded to generate subgraphs of
different sizes. Since databases only support relations, we need to represent a
graph as a tuple in a relation. The vertices in the graph are inserted into a relation
called Vertices, and the edges are inserted into a relation called Edges. For the
graph shown in Figure 1, the corresponding vertices and the edges relations are
shown in Table 1 and Table 2.

Fig. 1. Example Graph 1 Fig. 2. Example graph 2

From the vertices and edges relations, one edge substructures are created by
joining the vertices and edges relations into a relation called oneedge (shown
in Table 5). This table contains all substructures of size one. For a one edge
substructure, the edge direction is always from the first vertex to the second
vertex. In order to represent a graph completely, it is necessary to represent
all the edge details including their directionality. Merely representing the di-
rectionality does not allow one to represent multiple edges between two ver-
tices with the same edge label. In order to support multiple edges, we assign a
unique edge number for each edge in the edges table. In general, substructures
of size i are generated by joining instance (i-1) relation with oneedge relation.
In case of substructures that have 2 or more edges, we would need attributes
to denote the direction of the edges. The From and To (F and T for short)
attributes in the instance n table serve this purpose. An n edge substructure
is represented by n+1 vertex numbers, n+1 vertex labels, n edge numbers, n
edge labels and n From and To pairs. In general, 6n+2 attributes are needed
to represent an n-edge substructure. Note that the edge numbers are not part
of the input. Edge numbers are assigned by the system to distinguish between
edges between the same vertices and have the same edge label. Though edge

Table 1. Vertices

Vert No Vert Name
1 A
2 B
3 C
4 D
. .

10 C

Table 2. Edges

Vert 1 Vert 2 Edge
1 2 AB
1 3 AC
2 4 BD
. . .
8 10 AC

Table 3. Instance 2

V1 V2 V3 VL1 VL2 VL3 E1 E2 EL1 EL2 F1 T1 F2 T2
1 2 4 A B D 1 3 AB BD 1 2 2 3
1 2 3 A B C 1 2 AB AC 1 2 1 3
2 4 5 B D A 3 4 BD DA 1 2 2 3
4 5 6 D A B 4 5 DA AB 1 2 2 3
5 6 7 A B C 5 6 AB AC 1 2 1 3
4 5 7 D A C 4 6 DA AC 1 2 2 3
8 9 10 A B C 7 8 AB AC 1 2 1 3
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Table 4. Sub Fold 2

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 COUNT DMDL
A B C AB AC 1 2 1 3 3 1.8
A B D AB BD 1 2 2 3 1 0.9
B D A BD DA 1 2 2 3 1 0.9
D A B DA AB 1 2 2 3 1 0.9
D A C DA AC 1 2 2 3 1 0.9

Table 5. Oneedge table

V1 V2 EdgeNo EdgeLabel V1 Name V2 Name
1 2 1 AB A B
1 3 2 AC A C
2 4 3 BD B D
4 5 4 DA D A
5 6 5 AB A B
5 7 6 AC A C
8 9 7 AB A B
8 10 8 AC A C

Table 6. Updated Sub Fold 2

VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2 COUNT DMDL
A B C AB AC 1 2 1 3 3 1.8

numbers are part of every instance n table, owing to the space constraint, we
will be showing it only in sections where they are necessary. Instance 2 rela-
tion for the graph in Figure 1 is shown in Table 3. The Fi and Ti are rel-
ative to the substructure. That is, the values of the attributes Fi and Ti do
not indicate the actual vertex numbers but the attributes whose value cor-
respond to the vertex numbers. Once substructure instances of a particular
size has been generated, we need to find isomorphic substructures and count
them. If everything is in order, projecting on the vertex labels, edge labels and
connectivity attributes in the instance n table (i.e., not including the vertex
number and edge number) and doing a GROUP BY on the same attributes
will produce the count of each substructure. Using this count we calculate the
DMDL [1] value of each substructure and insert it into a table called Sub Fold n.
Sub Fold 2 is shown in Table 4. Substructures of count 1 are eliminated from the
Sub Fold 2 as they do not contribute to the repeated higher edge substructures
(using the principle of subsumption which is valid for subgraphs) The updated
Sub Fold 2 is shown in Table 6. Removal of single instance edges (based on
the subsumption property) is applicable to exact match. Often we may be in-
terested only in expanding k best substructures. To achieve this we sort the
Sub Fold n in the descending order of the evaluation metric (DMDL or Count)
and retain only the top k substructures (k corresponds to the beam parameter
value in Subdue). In order to get at the instances corresponding to the sub-
structures in Sub Fold n, we join the updated Sub Fold n with Instance n and
insert the resulting instances into another table called InstanceIter n. Only the
instances present in InstanceIter n participate in the next level of expansion.

3 Details of HDB-Subdue

Although a single edge substructure (substructure of size 1) can be readily rep-
resented using a few attributes, for larger substructures, edge connectivity, di-
rections of the edge are very important to check for duplicates and isomorphism.
Further, there is a need to manipulate them in various ways to compensate for
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Table 7. HDB-Subdue instances

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 - A D C - AD AC CD 1 2 1 3 3 2
1 4 3 - A D C - AD AC CD 1 2 1 3 3 2
1 4 3 2 A D C D AD AC CD 1 2 1 3 3 4

unconstrained expansion. Based on these requirements, the following represen-
tation has been used1.

3.1 Connectivity Map

It is necessary and sufficient to have both originating and terminating vertex
numbers for each edge in the substructure. Consider the graph shown in Figure 2.

Table 7 shows the connectivity map where all its instances of size 3 are
properly represented. When we project on the vertex and edge labels we will
get the correct count of instances if there are any duplicates (assuming that the
subgraphs have been ordered canonically).

The number referred by the connectivity attributes correspond to the column
position where the vertex occurs and does not refer to the actual vertex number.
Also in case of cycles or multiple edges – when the vertices repeat – we set the
repeating vertex’s vertex number and vertex label to vertex invariant markers,
‘0’ and ‘-’ respectively. In the connectivity map, when referring to a vertex index,
we always use the first occurrence of that vertex and never point to the attributes
containing the vertex invariant markers.

3.2 Iterative Expansion/Duplicate Elimination

The substructure expansion in HDB-Subdue is not constrained2 to make sure
that all possible substructures of size i+1 are generated from substructures of size
i. This leads to the possibility of the same i+1 size substructure being generated
in more than one way. For example, let us consider a two edge expansion for
the graph in Figure 3. The edge ‘AB’ can grow into ‘AB, CA’ or the edge ‘CA’
can grow into ‘CA, AB’ as shown in Table 8. These two substructures are
essentially the same substructures but has been grown in two different ways. We
term these as pseudo duplicates as they are indeed duplicates once the vertex and
connectivity are rearranged in the table without changing the graph structure.
Similarly ’AD’ can grow into ‘AD, CA’ or ‘CA’ can grow into ‘CA, AD’. In
general an n edge substructure (with n+1 vertices) can grow into an n+1 edge
substructure in n+1 (one way from each vertex) ways. If we do not eliminate
the pseudo duplicates, the same substructure will come out as different ones.
Eventually, this will result in some genuine substructures being pruned when we
apply the beam (choose the top beam structures to expand in the next iteration
as is done in Subdue).

1 Our earlier representation in EDB-Subdue had less number of attributes, but made
assumptions on connectivity which failed to identify all duplicates.

2 If the expansion is constrained in any way, there is no guarantee that all substructures
will be generated for an arbitrary graph input.
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Fig. 3. Pseudo duplicates

Table 8. Instance table - Before canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 1 2 3 A B C AB CA 1 2 3 1
2 3 1 2 C A B CA AB 1 2 2 3
3 1 3 4 A C D AD CA 1 3 2 1
4 3 1 4 C A D CA AD 1 2 2 3

In order to identify two or more substructure instances as pseudo duplicates
of each other, vertex numbers and the connectivity attributes are necessary.
If two instances have the same vertex numbers and edge directions then we
can identify them as pseudo duplicates. In SQL we can identify the pseudo
duplicates only if the vertex numbers and connectivity map of all the instances
are canonically ordered. Since databases do not allow rearrangement of columns,
to obtain canonical ordering, we have to transpose the rows of each substructure
into columns, sort them and reconstruct them to get the canonical order.

Owing to the table space constraints, canonical ordering of only the second
and fourth instance of Table 8 are shown below, as the first and third instances
are already sorted on vertex numbers. We project the vertex numbers and vertex
names from the instance table and insert them row wise into a relation called
unsorted as shown in Table 9. We also include the position in which the vertex
occurs in the original instance. To differentiate between the vertices of different
instances we carry the primary key Id from the instance table onto the unsorted
table. Next we sort the table on Id and vertex number and insert it into a table
called Sorted as shown in Table 10 with its New attribute pointing to the new
position of the vertex within its instance (identified by Id) and the attribute Old
pointing to the old position of the vertex.

Similarly the connectivity attributes are also transposed into a table called
Old Ext as shown in Table 11. Since the sorting on vertex numbers has changed
its position we need to update the connectivity attributes to reflect this change.
Therefore we do a 3-way join of two copies of Sorted and one copy of Old Ext
tables on the Old attribute of the Sorted table to get the updated connectivity
attributes which we call New Ext as in Table 12. Next we sort the New Ext
table on Id and the attributes F (From vertex) and T (Terminating vertex) to
create Sorted Ext as in Table 13.

Now that we have the ordered vertex as well as connectivity map tables,
we can do a 2n+1 way join (where n is the current substructure size) of n+1
Sorted tables and n Sorted Ext tables to reconstruct the original instance in the
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Table 9. Unsorted

Id V VL Pos
2 3 C 1
4 3 C 1
2 1 A 2
4 1 A 2
2 2 B 3
4 4 D 3

Table 10. Sorted

Id V VL Old New
2 1 A 2 1
2 2 B 3 2
2 3 C 1 3
4 1 A 2 1
4 3 C 1 2
4 4 D 3 3

Table 11. Old Ext

Id EL F T
2 CA 1 2
2 AB 2 3
4 CA 1 2
4 AD 2 3

Table 12. New Ext

Id EL F T
2 CA 3 1
2 AB 1 2
4 CA 2 1
4 AD 1 3

Table 13. Sorted Ext

Id EL F T
2 AB 1 2
2 CA 3 1
4 AD 1 3
4 CA 2 1

Table 14. Instance table - After canonical ordering

Id V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 1 2 3 A B C AB CA 1 2 3 1
2 1 2 3 A B C AB CA 1 2 3 1
3 1 3 4 A C D AD CA 1 3 2 1
4 1 3 4 A C D AD CA 1 3 2 1

canonical order. Table 14 shows the substructures after canonically ordering
the vertex numbers and the connectivity attributes. After having the instances
ordered, a GROUP BY on the vertex numbers and the connectivity attributes
will bring all the pseudo duplicates together and we can retain the instance with
highest Id value and eliminate the rest. The choice of highest Id value is arbitrary
and one could have chosen smallest Id value too.

The pseudo duplicate identification and removal essentially eliminates identi-
cal graphs represented by two different tuples as they were expanded in different
ways. This turns out to be computationally expensive (2n+1 joins and group
by). We are currently investigating an efficient alternative.

3.3 Canonical Label Ordering

Since the substructure expansion is unconstrained it is likely that two instances
of the same structure start from different initial edge and grow in a different
order. Although these instances are similar they may not group together when
counting for instances. For example consider a two edge substructure ‘AB, AC’
in Figure 1. There are three instances of this substructure as shown in Table 15.
When we project by the vertex and edge labels to count the number of instances
of the substructure the second and third instance will group together resulting
in a count of two instead of three. This is because the first instance started with
the edge AB and expanded to ‘AB, AC’ and other two instances started with
AC to grow to ‘AC, AB’.

Table 15. Before ordering

V1 V2 V3 VL1 VL2 VL3 E1 E2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
5 7 6 A C B AC AB 1 2 1 3
8 10 9 A C B AC AB 1 2 1 3

Table 16. After ordering

V1 V2 V3 VL1 VL2 VL3 EL1 EL2 F1 T1 F2 T2
1 2 3 A B C AB AC 1 2 1 3
5 6 7 A B C AB AC 1 2 1 3
8 9 10 A B C AB AC 1 2 1 3
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To make the count independent of the order of substructure growth, we re-
arrange the vertex and edge labels (remember that vertex numbers and connec-
tivity were rearranged for pseudo duplicate elimination) in lexicographic order
so that all instances of same substructure have their vertex and edge labels oc-
curring in the same order. The sorting is done in the same way as it was done
in pseudo-duplicate elimination. Canonical label ordering, although similar to
vertex and connectivity ordering, serves a different purpose. Here we are order-
ing the instances, so that the instances of the same substructure, even though
grown in different order, would group together when we do a GROUP BY on the
vertex and edge labels and connectivity attributes. In contrast, canonical vertex
and connectivity ordering helped us identify duplicate structures that were due
to the growing of the same structure in different ways.

3.4 Multiple Edges

Most often one can find double or triple bonds occurring in chemical compounds.
The atoms (such as carbon, hydrogen etc.) can be treated as vertices and the
double and triple bonds can be viewed as multiple edges between the vertices as
shown in Figure 4. Social networks are also gaining popularity in the applications
of graph mining and often one can find multiple relationships existing between
two people. These examples substantiate the need for handling multiple edges
correctly during graph mining..

The multiple edges between the same pair of vertices have the same starting
and ending vertex number, same connectivity map and may have the same edge
label. Hence, to distinguish between the multiple edges we use edge numbers
which are unique across all the edges. From the edge number one can differentiate
two substructures based on the edge numbers associated with the edges. One-
edge table in Table 17 shows the Edge No attribute with unique edge numbers
for multiple edges as well as other edges.

Fig. 4. Acetylene Fig. 5. Cycle

Table 17. Oneedge table with multiple edges

Vertex1 Vertex2 EdgeNo EdgeLabel Vertex1Name Vertex2Name
1 2 1 HC H C
2 3 2 CC C C
2 3 3 CC C C
2 3 4 CC C C
3 4 5 CH C H



HDB-Subdue: A Scalable Approach to Graph Mining 333

Table 18. Instance table without Vertex invariants

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 1 A B C A AB BC CA 1 2 2 3 3 4
2 3 1 2 B C A B BC CA AB 1 2 2 3 3 4

Table 19. Instance table with Vertex invariants

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
1 2 3 0 A B C - AB BC CA 1 2 2 3 3 1
2 3 1 0 B C A - BC CA AB 1 2 2 3 3 1

Table 20. Instance table after canonical ordering

V1 V2 V3 V4 VL1 VL2 VL3 VL4 EL1 EL2 EL3 F1 T1 F2 T2 F3 T3
0 1 2 3 - A B C AB BC CA 2 3 3 4 4 2
0 1 2 3 - A B C AB BC CA 2 3 3 4 4 2

3.5 Handling Cycles in Input Graph

A figure similar to one shown in Pseudo duplicate elimination section, but with
a cycle is shown in Figure 5. From this figure two valid 3-edge expansions are
possible. One starting with vertex 1, adding vertex 2 (edge AB), adding vertex 3
(edge BC) and then terminating at vertex 1 (edge CA). Another expansion can
start with vertex 2, adding vertex 3 (edge BC), adding vertex 1 (edge CA) and
then terminating at vertex 2 (edge AB). Both the expansions occur because of
HDB-Subdue’s unconstrained expansion.

The instance table with these expansions is shown in Table 18. Both these
instances are essentially the same, the second being the duplicate of the first. To
identify the duplicate we would order the vertex numbers and the connectivity
attributes canonically. Even when we order the instances canonically, we will
not be able to identify the pseudo duplicate because the first instance would
have the vertex numbers ordered as ‘1 1 2 3’ and the second instance would
have the vertex numbers ordered as ‘1 2 2 3’. So a GROUP BY query on the
vertex numbers and connectivity attributes will not group these two instances
together.

The solution to this problem is to mark each repetition of the vertex by vertex
invariants, ’0’ for a repeating vertex number and a ’-’ for the corresponding vertex
label. For this example, in the first instance the second occurrence of 1 is marked
with ’0’ and its vertex label marked with ’-’. In the second instance the second
occurrence of 2 is marked with ’0’ and its vertex label marked with ’-’. The
instance table with vertex invariant markers is shown in Table 19. Now if we
canonically order the instances by vertex numbers and connectivity attributes
the vertex numbers of the first instance, ’1 2 3 0’ will be ordered as ’0 1 2 3’,
and the vertex numbers of the second instance ’2 3 1 0’ will be ordered as ’0
1 2 3’ as shown in Table 20. Now when we group by the vertex numbers and
the connectivity attributes we can easily identify that the second instance is a
duplicate of the first and eliminate the second. Observe that the connectivity
attributes do not refer to the columns marked with vertex invariants.
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4 Experimental Analysis

This section gives the experimental results of HDB-Subdue and compares it
with that of Subdue (and EDB-Subdue). A configuration file is used to input
parameters for one or more experiments and the results are written to a log
file. Graphs and timing analysis is done using the log file. Experiments were
conducted on several data sets of different sizes – from very small to very large to
verify the trend of computation time as the data size increases. For the purposes
of comparison with Subdue and EDB-subdue, graphs with and without multiple
edges, with and without cycles were used. All the experiments were performed
on a Linux machine using Oracle9i Release 9.2.0.1.0. The machine was running
on dual processors with 2 GBytes of memory. All experiments were performed
4 times and the last 3 were used for computing the average time. The cold start
case was discarded.

Without cycles and multiple edges: The substructures that were embedded
are shown in Figure 6. The number of instances embedded is proportional to
the size of the data set. We embedded roughly two times more substructures
when the data set doubles. The graphs were generated by a synthetic graph
generator.

The same values of parameters (Maxsize (=5), beam (=4), and iterations
(=1)) were used. Additionally, we disabled the ties while using beam to limit
substructures, and the substructure evaluation metric was set to DMDL. Subdue,
EDB-Subdue and HDB-Subdue discovered the same substructures with all the
embedded instances. The performance comparison is shown in Figure 7. The X-
axis shows the data set size and the Y-axis shows the running time in seconds.
From the graph we can observe that Subdue performs well for very small data
sets, but slows down when the data set grows more than 2500 vertices and 5000
edges. From this point HDB-Subdue performs better than Subdue. Also we can
notice that EDB-Subdue performs slightly better than HDB-Subdue because
it does not perform pseudo-elimination, canonical ordering and other functions
that HDB-Subdue does. A log scale is used to keep the presentation meaningful
to understand.

Fig. 6. No cycles, multiple edges Fig. 7. No cycles, multiple edges



HDB-Subdue: A Scalable Approach to Graph Mining 335

Fig. 8. With cycles, multiple edges Fig. 9. Graph with cycles and multiple edges

Multiple Edges and Cycles: We present the experiments performed on Sub-
due and HDB-Subdue for data sets in which cycles and multiple edges are
present. EDB-Subdue is not compared because it does not handle multiple edges
in the input. The embedded substructures are shown in Figure 8. Same param-
eter settings as in the previous experiments are used.

Subdue and HDB-Subdue discovered the same substructure and all the em-
bedded instances. From the comparison chart shown in Figure 9, we can clearly
see that HDB-Subdue starts to outperform Subdue when the input graph size
crosses 2500 vertices and 5000 edges as before. We can also observe that, in the
presence of multiple edges, a data set of same size takes more time to complete
than the data set without multiple edges. This is due to the fact that the num-
ber of tuples generated and retained in each iteration is more in the presence of
multiple edges and cycles.

5 Observations

Apart from conducting experiments on various data sets, we also analyzed the
performance of different types of SQL queries and their alternatives. We also
explored the use of index on frequently used tables to study the performance
improvement of HDB-Subdue.

In-place Deletes: The canonical table contains the instances and their du-
plicates ordered by the vertex numbers and the connectivity attributes. Each
instance is identified by a unique identifier attribute called Id. To identify the
duplicate instances we do a GROUP BY on the Id, vertex number and canon-
ical attributes and select the instance with the maximum Id from each group

Table 21. In-place delete Vs Join query (Time in Secs)

200KE400KE 200KE400KE 400KE800KE 400KE800KE
Module In-place New Table In-place New Table

Pseudo 2 9474.58 1103.37 36028 2229.14
Pseudo 3 676.7 284.51 2119.24 590.29
Pseudo 4 252.31 185.01 641.19 383.53
Pseudo 5 2.72 3.05 4.97 4.24
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and insert it in a table called instance N pseudo (The choice of max Id is ar-
bitrary. One could choose min Id too.) To delete the duplicate instance, earlier
we used an in-place delete query that deletes instances whose Id is not in the
instance N pseudo table. This query took a longer time to complete. So we tried
an alternate query that creates a canonicaltemp table by joining the canonical
table with the instance N pseudo table on the Id attribute. Since this join pro-
duces only the instances we indented to retain, we can drop the canonical table
and rename the canonicaltemp table as the canonical table. The in-place delete
and join query are shown below.

IN-PLACE DELETE: DELETE FROM canonical_N
WHERE Id NOT IN

(SELECT Id FROM instance_N_pseudo)

ALTERNATIVE: Create a new table using a join query
INSERT INTO canonicaltemp (
SELECT c.v1, .. c.vN+1, c.v1L, .. c.vN+1L,

c.e1 .. c.eN, c.e1L, .. eN+1L, c.f_1,
c.t_1, ..., c.f_N, c.t_N, c.Id

FROM canonical_N c , instance_N_pseudo i
WHERE c.Id = i.Id)

DROP TABLE canonical_N
CREATE TABLE canonical_N

AS SELECT * FROM canonicaltemp

The comparison of running time of HDB-Subdue using the In-place query
versus creating a new table using join query is show in Table 21. The table
shows the results for two data sets, one with 200K vertices and 400K edges and
the other with 400K vertices and 800K edges. We can observe from the table
that the time taken by the pseudo duplicate elimination module in each iteration
(the entries Pseudo 1, Pseudo 2, etc..) for join query is much lesser than that of
the in-place delete query, corresponding to 85-90% improvement in iteration 2
and 50-60% on an average in all iterations.

Correlated Queries: A correlated subquery is a subquery that contains a
reference to a table that appears in the outer query. During earlier phase of
implementation of this algorithm, we used a correlated subquery to delete edges
that appear only once, from the one-edge relation. The beamdel relation contains
the edges that appear only once. So a delete query identifies those substructures
of one-edge that appear in beamdel table and deletes them. The query for this
delete is given below.

DELETE FROM oneedge o
WHERE EXISTS (

SELECT *
FROM beamdel b where b.v1L = o.v1L and

b.v2L=o.v2L and b.e1L=o.Label)

DELETE FROM oneedge o
WHERE edgeno IN (SELECT edgeno

FROM beamdel)

Table 22. Performance of Correlated queries (TimeUnit: Sec)

15KV30KE 15KV30KE 50KV100KE 50KV100KE
Module Non-Correlated Correlated Non-Correlated Correlated
Iter1 1 19.25 77.94 57.38 694.36
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Table 23. Performance using Indexes (Time Unit: Seconds)

15KE30KE 15KE30KE 50KE100KE 50KE100KE
Module Without With Without With
Total 311.41 319.62 1844.1 1885.72

The second query shown above is a non-correlated alternative for the corre-
lated query to do the same function. The time taken in seconds for the correlated
versus the non-correlated query with the percentage improvement is shown in
Table 22. From this we can conclude that it is useful to avoid correlated queries
and adopt an alternate form without correlation (a join query) where possible.

Using Indexes: To speed up the execution of queries, one option is to create
an index on the tables that are repeatedly used. One of the tables on which an
index was created is the one-edge table, because it is joined with instance i during
each expansion. We also created indexes on Sorted and the Sorted Ext tables
because we perform a 2n+1 way join during instance i table reconstruction in
pseudo-duplicate elimination step. Contrary to our expectations the performance
of HDB-Subdue did not improve. We used the data set without multiple edges
and cycles shown in Figure 6 with a beam of 4 and for one iteration. The running
times of the individual modules for 15KV30KE data set and 50KV100KE data
set without and with indexing is shown in Table 23. From the total time, we can
see that the performance dropped down by little more than 2%. Usage of index
needs to be carefully analyzed and cannot be taken for granted.

6 Related Work

During the past decade, the field of graph mining has emerged as a novel field
of research, investigating interesting research issues and developing algorithms
for challenging real-life applications [8]. Seminal work in this area include Sub-
due [2], FSG [4], gSpan [9], AGM [3,8], and PrefixScan [7]. Subdue [2] identifies
the best substructure in a graph (or a forest) that compresses the graph using
the minimum description length (or MDL). MDL has been shown to be domain
independent and uses the information theoretic measure of the number of bits
used to represent the graph. The downside in Subdue main memory algorithm
is its inability to scale to large problems. This motivated the development of
a preliminary version EDB-Subdue [1], a graph mining algorithm using SQL
and stored procedures which did not address cycles, duplicate elimination, and
canonical label ordering. FSG [4] (Frequent SubGraphs) mines frequent sub-
graphs from a set of graphs using user-supplied support. FSG is analogous to
frequent-itemset mining except that it is applied to graphs instead of transasc-
tions. gSpan [9] (graph based Substructure pattern mining) is an alternative
approach to perform frequent graph mining. It overcomes some of the chal-
lenges faced by Apriori-like algorithms. AGM [3] (Apriori based Graph Mining)
approach mines induced frequent subgraphs in graph structured transactions.
Similar to market-basket Analysis, the interestingness of a subgraph is defined
along the support and the confidence of the Apriori algorithm.
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7 Conclusions

In this paper, we have presented an scalable, SQL-based graph mining approach.
We have shown how some of the complex aspects (pseudo duplicate elimination
and canonical labeling) can be accomplished efficiently in SQL. Our observations
shed light on optimization aspects.
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Abstract. Frequent constraint violations on the data stored in a
database may suggest that the represented reality is changing, and thus
the database does not reflect it anymore. It is thus desirable to devise
methods and tools to support (semi-)automatic schema changes, in or-
der for the schema to mirror the new situation. In this work we propose a
methodology and the RELACS1 tool, based on data mining, to maintain
the domain and tuple integrity constraints specified at design time, in or-
der to adjust them to the evolutions of the modeled reality that may occur
during the database life. The approach we propose allows to isolate fre-
quent and meaningful constraint violations and, consequently, to extract
novel rules that can be used to update or relax the no longer up-to-date
integrity constraints.

1 Introduction

The information related to a specific reality is represented in a database by
means of data; the correct interpretation and correlation of the stored data allows
one to capture information about the represented reality. For these reasons,
data stored in a database have to satisfy certain semantic conditions that are
usually observed in the underlying application context as well. The real-world
semantics of a database instance is expressed by the schema plus other properties,
called integrity constraints. Typically, a database management system checks the
satisfaction of integrity constraints and rejects those updates that violate them.
However, there exist several database applications where data are not necessarily
always consistent[13,19].

A first and important example of a possible data-inconsistent scenario is the
case of data integration: it is possible that, while each data-source satisfies the
constraints when considered separately from other data-sources, after the inte-
gration step some constraints do not hold any more on the integrated scenario.
Another typical case is the modification produced in the reality by a change in
government policies: for example, in Italy a recent change in the school regula-
tions allowed 5-year-old children to access primary school, which was forbidden
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before. Accordingly, the constraint saying that only 6-year-old pupils can be
enrolled must be relaxed.

One of the main related problems that have been investigated is query answer-
ing in the presence of inconsistency – e.g., when a double value is inserted for the
same object [6,11]. Its solution may be complex and costly, and the related infor-
mation loss undesirable. Several works, proposed in the database literature, try
to solve or reduce inconsistency and define different notions of consistent query
answering [14,15,16,20,9]; thoroughly discussed in Section 5. Differently from the
above cited works, this paper’s main goal is to propose a data mining methodology
to modify integrity constraints, in order to adjust them to the evolutions of the
modeled reality that may occur during database life. In particular, we focus our
attention on frequent attempts at constraint violations; in our opinion frequent vi-
olations of the same constraints may suggest that the semantics of the represented
reality is changing with respect to what has been statically modeled at design time.
Our idea is to analyze such frequent violations, and learn from them in order to
produce “relaxed” constraints that they satisfy. Data mining algorithms allow us to
automatically discover frequent correlations of values in the data, thus represent
an efficient and effective alternative to querying the data sources for discovering
constraint violations – i.e., facts satisfying the denial form of the constraint [9].

Contributions
We propose a strategy and a tool, RELACS, to keep trace of attempted con-
straint violations, in order to compare the legal information (contained in the
current database) with the violating one –the so-called anomalies– and to pro-
pose to the user modifications of the integrity constraints which are frequently
violated. The main result is the application of data mining algorithms (i) to
isolate the frequent and significant anomalies, which represent constraint viola-
tions that have to be considered, (ii) to extract itemsets that can be used to
update/relax tuple and domain integrity constraints and, consequently, (iii) to
restore into the database the formerly violating tuples which now do not violate
the (new) constraints any more.

In this work we focus on tuple constraints, and suppose that violations be
injected into the database by means of tuple insertions or modifications: a vio-
lation that is caused by an update operation is considered as the deletion of the
original tuple followed by the insertion of a new, violating one. A prototype of
RELACS has been implemented, to test the effectiveness of our approach.

Structure of the paper
Section 2 sets the background on the relational database model, integrity con-
straints and data mining concepts. Section 3 describes how, by means of data
mining techniques, we are able to extract frequent constraint violations. The re-
laxing phase of the analyzed constraints and the main properties of our approach
are presented in Section 4. Our contribution with respect to the related studies
is presented in Section 5. Section 6 presents the RELACS prototype and some
experiments performed on a real relational dataset. Future work and concluding
remarks are reported in the last section.
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2 Background and Notation

In this section we summarize some background definitions and notations that
are commonly accepted in database theory [11,17].

Let U be a finite set of attribute names; we denote attributes by capital
letters from the beginning of the alphabet (e.g., A, B, C, A1, etc.), while capital
letters from the end of the alphabet (e.g., U , X , Y , Z, X1, etc.) are used to
denote sets of attributes. Let D be a finite set of domains, each containing
atomic values for the attributes; the domain Dj contains the possible values for
the attribute Aj . Without loss of generality, in the following each Di may be
either the domain C of uninterpreted constants or the domain N of numbers.
Moreover, assume that domain elements with different names be different. The
set OP = {=, �=, <, >,≤,≥} contains the numerical predicates, while the domain
C has only equality (=) and inequality (�=) as built-in predicates. The special
value null, considered to be included both in C and N , is used to represent
the null value. A relation (or relation state or instance) r of the relation schema
R(A1, A2, . . . , An), is a finite set of tuples of the form t = (v1, v2, ..., vn), where
each value vk, 1 ≤ k ≤ n, is an element of Dk. We recall that t[Ai] denotes
the value assumed by the attribute Ai in the tuple t (i.e., vi), and, given an
instance r on R(U) and a subset X of U , R[X ] is the set of tuples of r obtained
by considering only the values assumed by the attributes X .

Given a set X of attributes, let x represent the associated variables; we deal
with the following intra-relation integrity constraints:

– Domain constraints: Let Aj be an attribute of the relational schema R(A1, . . . ,
An), and γj a formula describing a simple constraint of the form γj

def= xjθkvk

where vk ∈ Dj and θk ∈ OP . Let Γj be an n-ary conjunction of simple basic
constraints on the possible values assumed by the attribute Aj : Γj

def=
∧n

h=1 γjh

The general LR-formula for the description of a domain constraint on the
attribute Aj is a (m-ary) disjunction of non-contradictory conjunctions 2 of
basic formulae γj : ∀x1, . . . , xj , . . . , xn. R(x1, . . . , xj , . . . , xn) →

∨m
k=1 Γjk

A special case of domain constraint is the Not-Null constraint, where the
right-hand side part of the implication γj is composed by one basic constraint
of the form xj �= null.

– Tuple constraints are a generalization of domain constraints, involving more
than one attribute of the same tuple. The right hand side of the implication
(1) is a disjunction of conjunctions of γ formulae, containing comparisons be-
tween attributes of R or between an attribute and a value of the correspond-
ing domain3. In the rest of the paper we will use the term “tuple constraint”

2 A conjunction of Γ -formulae on the attribute Aj is contradictory when it reduces
the set of admissible values for Aj to the empty set.

3 We do not deal with tuple constraints imposing that the value of an attribute be
obtained as an (arithmetic) expression on the values assumed by other attributes
(e.g, in a database storing information about goods, the net weight of a good is
obtained as gross weight minus tare). This limitation is due to the fact that data
mining algorithms extract values but do not perform computations on them.
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for both domain and tuple constraints, and denote by ∀x.R(x) → Γ (y) with
y ⊆ x, their general form.

Our proposal to relax constraints makes use of itemsets extracted from
datasets. Itemsets describe the co-occurrence of data items in a data collection
[2]. In our framework, a data item is a pair (attribute,value). An itemset is a set
of correlated data items that occur together, and each itemset is characterized
by the frequency of the co-occurrence in the dataset, which is called support. An
itemset formed by k co-occurring data items is called k-itemset, and we call k
the itemset dimension.
Example 1. Suppose we have the following relational schema R of a school:
Pupil(P_ID, Pname, Psurname, Pbirthyear, sex, citizenship, Paddress, Pcity,
Pprovince)
Teacher(T_ID,Tname,Tsurname,Tbirthyear,Taddress,Tcity,Tprovince,role)
Enrolment(P_ID,Penrolyear,class,section)
Course(T_ID,year,subject,class,section)
SchoolReport(P_ID,Pschoolyear,subject,mark)
Subject(S_ID,description,program,area)

Besides the primary key and the intuitive foreign key constraints, assume that
the following additional integrity constraints be defined on this schema:

∀s, d, p, a.Subject(s, d, p, a) → (p �= null) (C1)
∀s, d, p, a.Subject(s, d, p, a) → (a = math ∨ a = art ∨ a = sport) (C2)
∀p, y, s, m.SchoolReport(p, y, s, m) → (m = A ∨ m = B ∨ m = C ∨ m = D)

(C3)

That is, constraint C1 requires that the program of a subject cannot be null,
constraint C2 establishes the admissible values for the area of a subject, and
constraint C3 states that the mark assigned to a pupil, for a given subject, must
belong to the set {A, B, C, D}. �

3 Mining Constraint Violations

In this section we describe our proposal to extract – by means of data mining
techniques – frequent constraint violations, and then analyze interesting anoma-
lies that will be used to relax constraints that are no longer up-to-date.

3.1 Storing Constraint Violations

In general, when we access a database by using one of the common DBMSs,
user operations that violate the design-time defined constraints are rejected.
Our strategy keeps trace of the rejected insertions and updates. For each such
operation, we keep the violating tuple, i.e., in case of INSERT operation, the
tuple the user has attempted to insert, in case of UPDATE, the tuple which
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would have resulted after the update. The set of violating tuples is analyzed by
using mining techniques to find out frequent anomalies.

We assume the user is “not intentionally cheating”; that is, s/he does not try
to correct an operation that has been previously aborted by the DBMS, for
instance by inserting new attribute values with a different semantics w.r.t. those
causing the violation. This assumption is needed because in the mining phase
we use both the violating tuples and the tuples of the database, thus for the
approach to be effective the database must adhere to the constraints’ intended
semantics. Consider the case of a user who tries to insert, into the Subject table,
information about a course having a null program, because the program for that
course does not exist. We do not want to consider the possibility that, in this
case, after the violation notification, the user tries to insert a new tuple with
a fictitious program (e.g., “Program XYZ”) because our aim is to analyze the
semantics of violations in order to adjust constraints that are too strict (e.g., the
outcome of the process is to admit null programs only for certain courses).

According to our technique, for each relation R an associated relation with
the same schema, Rv, is created, containing the violating tuples. By storing
violations, it is possible to compare the information contained into the original
instance r with the violating one, represented by the tuples of rv.

Let the pair (r, IC) denote the instance r with the associated set of (intra and
inter) integrity constraints IC. A tuple s is in rv if it contains a violation to some
constraint(s) of IC. For each constraint C ∈ IC, let rv

C be the set of tuples of rv

violating C.
Our proposal can be sketched as follows.

– For each constraint C ∈ IC, we isolate frequent and significant anomalies,
i.e., those tuples that appear in rv with a support greater than a fixed thresh-
old supmin. Consequently, we extract itemsets I that can be used to relax
the original set of integrity constraints IC.

– Once the extraction phase is completed, a relaxation phase is applied, and
each constraint C which has been relaxed into a new constraint, denoted by
C∗, is submitted to the designer for approval.

– For each constraint C ∈ IC, if C∗ has been approved by the designer, the
tuples of rv used to mine the useful itemsets I, denoted by rv

I, do not violate
the updated constraint C∗ any more, thus if they do not violate another
constraint as well, they can be safely integrated within r.

It is important to highlight that rv
I ⊆ rv

C because our data mining approach
considers only frequent anomalies w.r.t. a constraint C, i.e., it considers only
those itemsets having a support greater than the fixed threshold value.

3.2 Mining Violations for Tuple Constraints

As described in Section 2, a tuple constraint C can be written as an implication
of the form ∀x.R(x) → Γ (y), with y ⊆ x.

We call length of C (denoted as len(C)), the number of variables in y; con-
straint (C1) of Example 1 is a constraint of length 1.
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Definition 1. Given a tuple constraint

C
def= ∀x.R(x) → Γ (y)

with y ⊆ x, an itemset I = {〈A1, v1〉, . . . , 〈Ak, vk〉}, formed by k values for the
attributes {A1, . . . , Ak} is C-dependent iff for each yi ∈ y, 〈Ai, vi〉 ∈ I, with
Ai = att(yi) and vi ∈ Di.
An itemset I is C-dependent when it describes the correlation among (at least)
the values assumed by all the attributes involved in Γ (y) (i.e., the set of at-
tributes Y ), thus, I contains at least the data items 〈Ai, vi〉 for each attribute
Ai ∈ Y .

Given a tuple constraint C, we extract from the table rv the C-dependent
itemsets containing the data items which cause Γ (y) to be false, and their corre-
lation with other attributes values. This is because we want to see whether the
anomaly is regularly associated to some specific value(s) of other attributes.

For example, for the not-null constraint C1 = ∀a, s, d, p Subject(s, d, p, a) →
(p �= null) we have to mine from the table Subjectv the frequent itemsets that
are C1-dependent, i.e., they contain the data item 〈Subjectv.program, null〉 and
highlight correlations of the attribute program with other attributes. In other
words, we see whether the attempts to insert a null program for some subject
are caused by the nature of that subject, which is expressed by its properties
(the other attributes of the relation Subject). Suppose for instance that we mine
the itemset I1 = {〈program, null〉, 〈description, lab〉} with support 0.95. This
might be an indication that lab courses do not provide a program, thus the
constraint has to be relaxed in order to accommodate this exception.

Suppose that, for the aforementioned not-null constraint C1, we mine also the
itemset I2 = {〈program, null〉, 〈description, lab〉, 〈area, math〉} with support
0.85. We have to understand which one, between I1 and I2, is a “good-candidate”
for relaxing C1, i.e., it is not too generic. In fact, even if in I1 the program
attribute of the Subject table assumes the value null when its description is
lab, it could still be that some labs – not in the math area – have a non-null
program in the Subject table. However, if this were the case, we should find
some lab tuples with non-null program in the real database, which would tell
us that having a null-program is not a peculiarity of all the lab subjects. Thus,
further analysis of the exceptions is in order, and we discover, by mining I2, that
a particular area –the math one– co-occurs with the lab subject in the violations
of the constraint C1.

Once we choose the candidate itemset, we have to check this itemset against
the database, and may discover that it is more appropriate to relax C1 using
I2 instead of I1. Note that I2 has an additional condition, thus is more specific
than the previous one.

We say that a C-dependent k-itemset I, with support s, is a “good-candidate”
for relaxing a constraint C on R, if I is “significantly frequent”, and C is violated
by those tuples of rv which contain the values specified in the items of I.
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The concept is formalized by the following definition.

Definition 2. Given a tuple constraint

C
def= ∀x.R(x) → Γ (y)

on R, with y ⊆ x, we say that an itemset I =
{
〈Ã1, ṽ1〉, . . . , 〈Ãk, ṽk〉

}
with sup-

port si, is a C-good candidate of dimension k w.r.t. an a-priori established
minimal support supmin iff

1. I is a C-dependent k-itemset, with k > len(C);
2. si ≥ supmin;
3. Q �|= C, where Q = {t|t ∈ rv, ∀i ∈ {1, . . . , k} . t[Ãi] = ṽi}.

Note that point 1 requires that R be strictly greater than len(C), because we
are looking for correlations between violations and at least one more attribute.
To choose the C-good candidates to relax a tuple constraint C on R, we propose
the algorithm ItemExtractor, reported in Algorithm 1.

Algorithm 1 The pseudocode of ItemExtractor algorithm.
Input: a tuple constraint C on R with len(C) = l;

r and rv denoting the consistent and the inconsistent instances of R;
kmax the maximal dimension of mined itemsets;
supmin minimal support value;

Output: I a minimal set of itemsets representing interesting anomalies or the empty set;

1: I = ∅, Υ = ∅
2: k = l + 1
3: Let Ik =

˘
Ii

˛̨
Ii is a C-good candidate with dimension k w.r.t. supmin

¯
4: while k ≤ kmax and Ik �= ∅ do
5: Ik+1 = ∅
6: for all Ii = {〈A1, v1〉, . . . , 〈An, vn〉, 〈fA1, ev1〉, . . . , 〈fAl, evl〉} ∈ Ik, n + l = k,

∀yi ∈ y att(yi) = fAi do

7: Let q∗(Ii) =
j

t ∈ r

˛̨̨
˛∀j ∈ {1..n} . t[Aj ] = vj∧
∀i ∈ {1..l} . t[fAi] = wi, Γ[{y1,...,yl}←{w1,...,wl}] is true

ff
8: if q∗(Ii) = ∅ then
9: I = I ∪ {Ii}

10: else
11: Υ = Υ ∪ {Ii}
12: end if
13: end for
14: end while
15: for all Ii ∈ Υ do

16: Ik+1 = Ik+1∪
j

Ij

˛̨̨
˛ Ij is a C-good candidate with dimension k+1 w.r.t. supmin,
Ij ⊇ Ii, ∀Ix ∈ I. Ij �⊃ Ix

ff
17: end for
18: k = k + 1

.
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Observe that, given a constraint C, among the different itemsets satisfying
¬C, it is convenient to choose minimal itemsets to relax C. In fact, our purpose
is to characterize classes of frequent violations that are as general as possible,
and moreover, by considering minimal itemsets we also limit the complexity of
the mining process. Thus we have a trade-off between generality – i.e., small,
possibly too generic itemsets – and precision – i.e., large, but inefficient and
less “inclusive” itemsets. Intuitively, in the extreme case, each itemset coincides
with a unique violating tuple, and the system would propose as new constraint
that includes a disjunction of the violating tuples, which of course is not our
objective.

The goal of the algorithm ItemExtractor is thus to produce a set I of good
candidates that will be used to relax a constraint C. We remark that good can-
didates are mined having fixed a support threshold; thus, if no frequent itemsets
representing anomalies for a constraint are found, the result of the algorithm is
the empty set and the constraint cannot be relaxed.

According to Definition 2, the first step (line 3) produces the mined set Ik of
frequent k-itemsets (with k = len(C)+1) containing the data items violating C,
i.e.,

{
〈Ã1, ṽ1〉, . . . , 〈Ãl, ṽl〉

}
. For each k-itemset in Ik (cyclic construct of line 6),

we check whether it is a minimal “good-candidate” to relax C. For this purpose,
we apply the query q∗ (line 7) to check if in the instance r there is any tuple t
that is C-consistent, it assumes values different from ṽi and does not violate the
considered constraint C, but for the other attributes A1 . . . , An present in the
current itemset it assumes exactly the mined values ṽ1, . . . , ṽl. If q∗ has an empty
result, then the current itemset Ik is a minimal “good-candidate” and is added
to the set I (line 9). If not, we add Ik to an auxiliary set Υ . After considering
all the k-itemset, we have to look for frequent (k + 1)-itemsets, extending the
Ik itemsets in Υ , but not using attributes that are in k-itemsets that have been
previously included in I. Example 2 will clarify the rationale behind this.

In order to guarantee determinism, all the mined itemsets with a given di-
mension k are first analyzed to check whether they are good candidates, and
only after this phase non-good candidates are extended.

Example 2. Suppose that for constraint C1 we have mined the set S = {I1, I2} =
{{〈program, null〉, 〈description, gym〉}, {〈program, null〉, 〈description, lab〉}}

For the 2-itemset I1, we verify that in the Subject table there is no tuple
with gym value for the description and a non-null value for the program, i.e.,
that q∗(I1) = ∅. This means that the relation Subject does not contain any gym
course with a non-null program, thus, probably, a null program is allowed for all
gym courses. We conclude that I1 is a “good-candidate” that should be added
to I.

For the 2-itemset I2, since q∗(I2) �= ∅, we find a tuple t in the Subject table
with t[description] = lab and t[program] �= null. Thus, we have to conclude
that I2 expresses a too generic condition, that is, there might be some further
property that, associated to the description “lab”, accounts for the empty pro-
gram. Thus, we try to extend I2 by mining 3-itemsets. Suppose now that we mine
with a sufficient support only the 3-itemset I3 = {〈program, null〉, 〈description,
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lab〉, 〈area, math〉} which extends I2. If we do not find any tuple in Subject with
lab value for description, math value for the area attribute, and a non-null value
for program (i.e., q∗(I3) = ∅), then we add I3 to I and the algorithm stops, re-
turning I = {I1, I3}. �

Note that, for the previous example, line 12 specifies that I3-itemsets must
extend I2, because I2 is not a good candidate, but without including the 2-
itemset I1, that has already been added to I. The reason is that the condition
program = null ∧ description = gym derived from I1 will be used to relax
C1, and thus using it for further extending itemsets would be redundant.

Once again, note that line 4 of ItemExtractor limits the itemset we check to
be below a maximum length, because the computation time increases with the
itemset dimension.

Consider now a generic tuple constraint. In this case, the right part of the
implication is not an atomic inequality, but a more complex combination of
boolean comparisons applied to attributes of a relation R. Thus, the cause of
inconsistency is not as easily recognizable as it was for the non-null case.

For example, considering constraint C3, in line 3 of Algorithm 3.2, where C2-
good candidates are defined, I2 is the set of 2-itemsets which contain a data item
〈mark, m〉, where m is any value that differs from A, or B, or C, or D. The same
consideration holds for line 12, where the (k + 1)-itemsets are good-candidates
that must violate C2.

A frequent 2-itemset we could obtain from the algorithm ItemExtractor for
this constraint is I = {〈mark, passed〉, 〈subject, A0010〉} stating that the mark
“passed” is frequently associated with the Subject with code “A0010”. By using I to
relax C2 we obtain the constraint C∗

2 = ∀p, y, z, m. SchoolReport(p, y, z, m) →
(m = A ∨ m = B ∨ m = C ∨ m = D) ∨ (m = passed ∧ z = A0010)

Theorem 1. Soundness and Completeness. Given a pair (r, IC) and a con-
straint C ∈ IC, ItemExtractor produces as output the minimal set I containing
all and only the minimal C-good candidates Ii having support greater than supmin

and such that q∗(Ii) = ∅.

Proof. The proof can be found in [18].

4 Relaxing Tuple Constraints

The procedure to relax violated constraints is based on the previously mined
anomalies. For each tuple constraint C

def= ∀x.R(x) → Γ (y) with y ⊆ x, we con-
sider the set of itemsets I = {I1, . . . , In} produced by the algorithm
ItemExtractor, with Ii = {〈A1, v1〉, . . . , 〈Ami , vmi〉} ∀i ∈ {1..n} and modify
the constraint C as follows:

C∗ = ∀x.R(x) →
(
Γ (y)

∨
i∈{1,...,n}

(
∧

j∈{1,...,mi}
yj = vj)

)
(1)
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After the violated constraints Ci, with i = 1, . . . , n, have been successfully
relaxed by producing the new constraints C∗

i , we can re-introduce the tuples of
rv
Ii

within the original instance r, in the way r ← r ∪ {t} if and only if

1. t ∈ rv
Ii

and
2. ∀C∗

j . t |= C∗
j , with j ∈ {1, . . . , n} and j �= i

i.e., a tuple t originally violating a constraint Ci and such that t participates in
the construction of the itemsets for deriving C∗

i , can be safely integrated in the
legal instances of the relation r, only if t does not violate any other (relaxed or
not) constraint C∗

j .

Example 3. Consider, for example, the two constraints C1 and C2 on the Subject
table. Now suppose, as shown in Example 2, that the algorithm ItemExtractor
returns the set I composed by the itemsets I1 = {〈program, null〉, 〈description,
gym}〉 and I3 = {〈program, null〉, 〈description, lab〉, 〈area, math〉} whereas, the
output for C2 is the empty set (i.e., no frequent violations are mined). Suppose,
for example, that t = (gymcourse, gym, null, gym) ∈ SubjectvI cannot be in-
serted in the Subject table, because it still violates constraint C2. �

We recall that, when it is not possible to perform the relaxing process (due to
insufficient support of the mined itemsets), C∗

i coincides with Ci.
The computational complexity of the integration phase described above is

lower or equal to O(|rv | × |IC∗|). This worst case occurs if each tuple in rv

violates all the constraints in IC, thus, we must check the satisfiability of rv

w.r.t. each (new) constraint.

Example 4. For constraint C1, the output of ItemExtractor is: I={{〈program,
null〉, 〈description, gym〉}, {〈program, null〉, 〈description, lab〉〈area, math〉}}
where the itemsets have been mined with a support 0.90 and 0.85, respectively.
This means that the table Subjectv contains a high number of anomalies asso-
ciating a null program either to a gym course, or to a lab course in the math
area.

Thus, we decide that these frequent anomalies indicate real life situations and
consider them as a common and acceptable behavior. The constraint is relaxed
as follows:

C∗
1

def= ∀s, d, p. Subject(s, d, p, a) →
(
(p �= null) ∨ (p = null ∧ d = gym)∨

(p = null∧ d = lab ∧ a = math)
)

�

We are now ready to prove some interesting properties. We recall that the nota-
tion rv

C denotes the set of violating tuples for the constraint C ∈ IC, while rv
IC

denotes the set of (violating) tuples used by the algorithm ItemExtractor to
produce the set of itemsets IC for constraint C (i.e., those tuples that will help
relax the constraint C).
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Definition 3. Given a pair (r, IC) and C ∈ IC, r is said to be C-consistent if
rv
C is empty, and C-inconsistent otherwise.

Theorem 2. Local correctness. Given a constraint C ∈ IC and the instances r
and rv

C , let IC be the set of itemsets returned by ItemExtractor for C, and C∗

the relaxed constraint. Then, if I �= ∅, rv
IC

and r ∪ rv
IC

are C∗-consistent.

Proof. The proof can be found in [18].

Assuming that the application of ItemExtractor returns a non empty set, we
are able to state:

Corollary 1. Effectiveness of the reparation. Suppose that C ∈ IC is the
only constraint on r that has been violated. Given the instances r and rv, if rv

has cardinality n and rv
I has cardinality m (with n ≥ m) then, after the relaxing

phase of the constraint C with C∗, the cardinality of rv is exactly n − m.

Lemma 1. Let C1 and C2 be violated constraints of IC such that rv
C1

∩ rv
C2

�= ∅.
Then rv

I1
∩ rv

I2
is both C∗

1 - and C∗
2 -consistent.

Proof. The proof can be found in [18].

After the relaxing phase of each constraint the integration phase can be safely
performed and the number of tuples that remain in rv will be greater than or
equal to n −

∑l
i=1 mi, where mi ≤ |rv

Ii
|.

Theorem 3. Global correctness. Let r be both C1-inconsistent and C2-consistent.
Then, r ∪ rv

I1
is C∗

1 -consistent and C2-consistent.

Proof. The proof can be found in [18].

5 Related Work

In the database literature there have been a number of proposals that investigate
the problem of constraint violations. There is a basic distinction between works
that consider the problem of querying inconsistent databases [10,12,6,11] – which
try to re-establish consistency in an information system by (minimally) changing
the facts that violate the database constraints – and proposals for modifying
constraints in order to take into account abnormal data w.r.t. the reality modeled
at design-time, without changing the database instance (e.g., [19]).

In [6] the authors formalize the notion of consistent information, called consis-
tent query answer, obtained from a (possibly inconsistent) database in response
to a user query. A database instance r′ is a repair database instance of r with
respect to a set of integrity constraints IC if (i) r′ is defined on the same schema
and domain of r, (ii) r′ satisfies IC, and (iii) r′ differs from r by a minimal
set of changes (insertions or deletions) of tuples. By using the concept of repair
database, i.e., a database that is consistent and minimally differs from the orig-
inal one, the authors define a consistent answer to a query as a set of tuples
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that are answers (to the same query) in every repair of the considered database.
Other works consider also preferences or priorities in repairing [14,15]; the main
idea is to introduce a numeric utility function assigning different reliability levels
to multiple data sources involved in the query answering process.

These approaches differ from ours for one main reason: in [6,14,15,10,12,11] the
authors consider the problem of inconsistent databases from a query answering
point of view, thus, they discard those data that can produce inconsistency
with respect to a static set of integrity constraints. By contrast, our proposal’s
main goal is to modify the integrity constraints with the aim of maintaining
the semantics of the database as adhering as possible to the changing reality.
To achieve this goal, tuples that represent constraint violations are no more
considered as abnormal facts, but used as a guide to update the no longer up-
to-date constraints.

More similar to our proposal is [19]: the authors introduce a framework for
dealing with irregularities in a human-oriented system supporting errors and
also tolerating deviations from the normal behavior. In their conceptual model,
when there are facts in a database that violate integrity constraints, the human
user has the possibility to evaluate whether they represent an error in the facts
recorded, or an exception that must be tolerated. In this latter case, the facts
are not changed, but marked as “exceptional”, and the violated constraints are
minimally modified in order to allow the presence of those exceptional facts. On
the contrary, for us only frequent anomalies have to be taken into account, in
order to better understand the underlying reality.

Other works and approaches to anomaly or outlier detection have been de-
veloped in the past years, whose aim is not to modify either abnormal facts or
violated constraints. They are based on database [8] or data mining techniques
[4,5,7], including knowledge discovery [1], and logic programming [3].

In [3], outliers have been formalized in the context of logic programming-based
knowledge systems. The authors propose a basic framework where observations
(outliers) are described by means of a set of facts encoding some aspects of
the current status of the world, while the background knowledge of the system
is described by means of a logic program. Outliers are identified on the basis
of some disagreement with the background knowledge and supported by some
evidence in the observed data, called witness sets.

In [8] the authors introduce the notion of pseudo-constraints, which are not in-
tegrity constraints specified by the designer, but predicates representing schema-
level properties that have significantly few violations in the database instance.
The authors use this pattern to identify rare, but interesting, events in databases.
The spirit of the work is similar to our main purpose; however, our approach
differs for two reasons. First, they focus on cyclic pseudo-constraints and pro-
pose an algorithm for extracting this kind of cyclic pattern, whereas we mine
violations to the classical notion of integrity constraint. Moreover, we also in-
vestigate how, once significant violations have been mined, the constraints can
evolve (semi-) automatically.



Mining Violations to Relax Relational Database Constraints 351

6 RELACS Prototype and Preliminary Results

The RELACS prototype has been developed, it uses the aforementioned strategy
to store and analyze tuple constraint violations in a relational databases by using
the PostgreSQL DBMS. The architecture of RELACS is sketched in Fig. 1, where
we show our methodological approach.

We validated our approach by means of experiments on the TPC-H relational
database [21] performed on a 3.2GHz Pentium IV system with 2GB RAM, run-
ning Kubuntu 6.10. We considered (a copy of) the LINEITEM table which has
about 6.000.000 tuples and whose schema is

LINEITEM(OrderKey, PartKey, SuppKey, LineNumber, Quantity,
ExtendedPrice, Discount, Tax, ...)

We have imposed the two constraints (derived by analyzing the instance of the
table):

– LINEITEM.Tax > 0
– LINEITEM.Discount≥ 0 ∧ LINEITEM.Discount≤ 0.5

Then, we injected violations in the table LINEITEMv by using a suitable Jave
module: in particular 1000 violating tuples were inserted, among which 200 had
the values 10000 for the Quantity attribute, 0 for Tax, and 0.7 for Discount.

In the RELACS implementation, Rv actually contains an additional attribute,
which is necessary in order to be able to store in Rv also primary key violations.
Indeed, commercial DBMSs do not allow to create a relation without defining
its primary key, thus we add a new, ad-hoc primary key attribute (e.g., an
automatic counter), so that Rv can also contain tuples that violate the primary
key constraint of R.

For the itemset extraction we have used a publicly available version of Apriori
[2]. The good-candidates extraction produced as output the set

I ={{〈Quantity, 10000〉, 〈Tax, 0〉} ,

{〈Quantity, 10000〉, 〈Discount, 0.7〉}}

Each 2-item in I has been mined with support 20%.
The execution time of the 2-itemset extraction increases almost linearly with

the scale factor (i.e., with the number of violating records).
By following our methodology, the two constraints are relaxed as follows:

– LINEITEM.Tax > 0 ∨ (LINEITEM.Tax = 0 ∧ LINEITEM.Quantity= 10000)
– (LINEITEM.Discount≥ 0 ∧ LINEITEM.Discount≤ 0.5) ∨

(LINEITEM.Discount= 0.7 ∧ LINEITEM.Quantity= 10000)

The two relaxed constraints cited above are quite specific (due to the set of
tuples inserted as violations), but a contribution on the part of the designer, who
knows the semantics of the considered scenario, can further generalize the two con-
straints by stating, for instance, that a value 0 for TAX (or a higher DISCOUNT)
is allowed for high-quantity orders. The final relaxed constraints could be:
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Fig. 1. The architecture of the system

– LINEITEM.Tax > 0 ∨ (LINEITEM.Tax = 0 ∧ LINEITEM.Quantity≥ 10000)
– (LINEITEM.Discount≥ 0 ∧ LINEITEM.Discount≤ 0.5) ∨

(LINEITEM.Discount≤ 0.7 ∧ LINEITEM.Quantity≥ 10000)

7 Conclusions and Future Work

The approach we have presented in this paper proposes a mining-based support
to the evolution of integrity constraints which do not reflect the reality of interest
any more. The main idea of our methodology is to analyze frequent abnormal
facts, which are considered as an indication of a changing reality, and learn from
them the relaxing condition(s). Current research is focused on the extension of
our proposal to functional and inclusion dependencies.

Currently, we are applying our methodology to peer-to-peer data integration
systems; since by nature, the data coming from the various peers may be uncer-
tain and often inconsistent with one-another.

Futureworkalso concerns the applicationof this strategy tobiologicaldatabases,
where anomalies w.r.t. predefined constraints are very frequent. In this particular
context, the problem of discovering the new “laws” of natural phenomenons plays
a crucial role. By applying RELACS to this kind of data, we want to derive appro-
priate values for the minimal support thresholds and to analyze the performance,
in term of execution time, of the itemsets extracting phase.
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Abstract. A process, based on argumentation theory, is described for classify-
ing very noisy data. More specifically a process founded on a concept called 
“arguing from experience” is described where by several software agents “ar-
gue” about the classification of a new example given individual “case bases” 
containing previously classified examples. Two “arguing from experience” pro-
tocols are described: PADUA which has been applied to binary classification 
problems and PISA which has been applied to multi-class problems. Evaluation 
of both PADUA and PISA indicates that they operate with equal effectiveness 
to other classification systems in the absence of noise. However, the systems 
out-perform comparable systems given very noisy data.  Keywords: Classifica-
tion, Argumentation, Noisy data. 

1   Introduction 

Argumentation is concerned with the logical reasoning processes required to arrive at 
a conclusion given two or more alternative view points. The process of argumentation 
can be conceptualised as a discussion about some issue that requires a solution, be-
tween a group of individuals with different points of view; where each member of the 
group attempts to persuade the others that his/her point of view, and the consequent 
solution, is the correct one. The discussion is conducted using a set of logical reason-
ing rules linking antecedents to consequents. Computer automation and modelling of 
the argumentation process has applications in legal reasoning, online auctions and so 
on. There is much reported work on automated argumentation, especially in the “two 
player” setting. In automated argumentation (persuasion dialogue games) each 
“player” typically has access to their own Knowledge Base (KB) which is used to 
propose arguments founded on the rules and facts contained in the KB [19]. Argu-
ments can be advanced to either promote a player’s own desired outcome or to attack 
arguments advanced by other players. However, the use of a KB to support argumen-
tation has several disadvantages. Firstly the construction of the KB requires domain 
experts and entails the well established knowledge acquisition bottle neck reported in 
the Knowledge Based System and Expert System literature. Secondly the KB is never 
up to date. 

An alternative to the KB approach to argumentation, and that promoted in this pa-
per, is for each player to use data mining techniques to “mine” the desired rules from 
a live database. The authors refer to this process as “arguing from experience” in the 



 Arguing from Experience to Classifying Noisy Data 355 

sense that each player’s database can be considered to encapsulate that player’s “ex-
perience”. The arguing from experience idea was first explored by the authors in [25], 
where the PADUA two player argumentation system was introduced; and further 
developed in [26] where the PISA multi-player argumentation system was proposed. 
Both systems provided a mechanism for two (PADUA) or more (PISA) software 
agents to conduct dialogues to resolve disputes concerning the correct categorisation 
of particular examples. Both operate using an Association Rule Mining (ARM) tech-
nique to extract rules from their database repository of experience. The evidence pre-
sented in [25] and [26] indicated that the arguing from experience approach provides 
a natural representation of the participant’s experience as a set of records, and the 
arguments as Association Rules (ARs). 

In this paper the authors explore the application of the “arguing from experience” 
paradigm, advocated by both PADUA and PISA, to resolve classification (categorisa-
tion) problems, especially with respect to noisy data. The ability to handle noisy data 
is seen as important because it must be recognised that classification data will often 
contain wrongly classified examples, representing misconceptions and mistakes. In 
certain domains, such as welfare benefits, it is estimated that 30% or more of previous 
examples may have been wrongly classified [18]. Any classifier relying on such data 
must therefore be robust in the face of quite high levels of noise. Conceptually exam-
ple cases are presented for classification, to either PADUA or PISA, and in each case 
the (PADUA or PISA) agents will argue for a particular classification through a per-
suasion process. The investigation, reported here, establishes that arguing from ex-
perience in this manner provides a classification mechanism that can produce similar 
accuracies to those produced by other classification systems in the absence of noise, 
but can cope more readily given noisy input data (noise levels of up to 50%). The rest 
of the paper is organised as follows. Section 2 provides some background information 
about the problem of classifying noisy data. Then in section 3 we give a summary of 
the argumentation from experience process and an overview of both PADUA and 
PISA. In section 4 an evaluation of PADUA, in the context of the binary classification 
of noisy data is presented. This is followed up in Section 5 by an evaluation of PA-
DUA in a multi-class classification setting. Some final conclusions are presented in 
Section 6.   

2   Background 

The data classification (categorization) problem is well established in the Knowledge 
Discovery in Data (KDD) and data mining community. A substantial number of 
mechanisms have been developed to generate classifiers, including Neural Networks 
and Support Vector Machine, Decision Tree algorithms and Rule Induction ap-
proaches, various mechanisms influenced by ideas take from genetic programming 
and bio-computation, and Classification Association Rule Mining (CARM). Both 
PISA and PADUA operate using CARM [17]. The basic idea of CARM is to generate 
a set of Classification Association Rules (CAR) (a subset of the complete set of ARs) 
using ARM technology [1]. CARM offers a number of advantages including compu-
tational efficiency and, unlike many other classifier generators, easy understandability 
of the resulting classifier. One of the challenges of the classification problem is how 
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to deal with very noisy data (and data with many missing values). Of course in an 
ideal domain the training data will contain no noise, no errors and no missing attrib-
utes; but unfortunately, in most real world domains, this is not the case. Tolerating 
noise is particularly important when designing classifiers, as the accuracy of classifi-
cation depends on the quality of the input dataset. Noise can also be artificially intro-
duced to the datasets for different purposes such as preserving privacy [2, 5].  

Coping with noise can be addressed in different ways. One approach is to develop 
robust systems that allow for noise by avoiding over-fitting the model to the data ([2, 
7]). Another approach is to pre-processing the input data before learning [6, 24] so as 
to eliminate tainted records [6, 24], but entails some major drawbacks: 1) Eliminating 
whole records of “bad data” eradicates “potentially” useful information such as the 
associations between uncorrupted attributes. 2) When there is a large amount of noise 
in the dataset, the amount of information in the remaining clean dataset may not be 
sufficient for building the classifier. And 3) In some cases eliminating “bad data” 
records is not possible because identifying these records can be an exhausting task, 
and may even require consulting expert opinion. This can be the case in datasets rep-
resenting legal scenarios where the legislation can be misinterpreted. A number of 
preprocessing techniques have been developed to correct corrupted (noisy) data such 
as: 1) Deleting the corrupted fields and using the remaining, non-corrupted, fields for 
subsequent modeling and analysis [15]. 2) Cleaning of the dataset to remove noise 
(for example using Bayesian methods to clean corrupted data that have dependencies 
among features as described in [23]). Or 3) Correcting the misclassified data to im-
prove classification accuracy based on the other predicted feature values as well as the 
corrected feature values [13].  

However, such preprocessing is not always feasible as it often requires expert con-
sultation (for example to provide the model for the Bayesian network in [23]), or 
because the noise level is so high that the correction of the corrupted data is neither 
easy nor effective.  The following sections provide an overview of how the proposed 
arguing from experience framework can cope with noisy data, without any need for 
(i) pre-processing or (ii) initial removal of corrupted data by providing a moderation 
mechanism; whereby several agents engage in an argumentation dialogue, each using 
their own database of cases (representing their former experience). The idea is that 
this will allow the agents to correct each others “misconceptions”. 

3   Classification through Argumentation Using PISA and PADUA 

The objective of both PADUA and PISA is to allow a number of agents, each with 
their own “private” database of examples, to debate the correct classification of a new 
case. The classification can be binary (PADUA) or non-binary (PISA). In PADUA 
(Persuasive Argumentation Using Association Rules), a protocol to enable two agents 
to argue about the classification of a case was established. PISA (Pooling Information 
from Several Agents) extended the PADUA protocol to allow any number of software 
agents to engage in a dialogue. This was found to be particularly useful for multi-class 
classification (i.e. non-binary classification), since each possible classification can 
then have its own champion. As noted above the distinguishing feature of both PA-
DUA and PISA was that the arguments used by the agents were derived directly from 
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a database of previous examples using ARM [25]. In PADUA the background dataset 
of each agent was represented by the means of a T-tree (Total tree) data structure, a 
reverse set enumeration tree structure with fast look up properties [9].  Both PADUA 
and PISA operate using a basic set of speech acts for argument from experience dia-
logues between two or n parties respectively. These speech acts are supported by 
three different forms of dynamic ARM request:  1) Find a subset of the possible set of 
ARs that conform to a given set of constraints. 2) Distinguishing a given AR by add-
ing additional attributes. And 3) Generalising a given AR by removing attributes. 
Using their distinct databases PADUA and PISA agents produce reasons for and 
against classifications. 

ARs [1] are probabilistic relationships which can be viewed as rules of the form X 
 Y (read as if X is true then Y is likely to be true, or X is a reason to think Y is true) 

where X and Y are disjoint subsets of some global set of attributes. Likelihood is 
usually represented in terms of a confidence value expressed as a percentage. This is 
calculated as support(XY)×100/support(X) where the support of an itemset is the 
number of records in the data set in which the itemset occurs. To limit the number of 
ARs generated only itemsets whose support is above a user specified support thresh-
old, referred to as frequent itemsets, are used to generate associations. To further limit 
the number of ARs only those rules whose confidence exceeds a user specified confi-
dence threshold are accepted. In the context of this paper the antecedent of an AR 
represents a set of reasons for believing the example should be classified as expressed 
in the consequent. Neither PADUA nor PISA use a specialized CARM algorithm, 
instead they are found on the Apriori-T ARM algorithm described in [9] and then 
classify the test cases by the means of the dialogue. 

There are six speech acts (moves) used in PADUA [25] and PISA [26] dialogues 
which form three categories of “move” as follows: 1) Propose Rule: Move that allows 
generalizations of experience to be cited, by which a rule (AR) with a confidence 
higher than a certain threshold is proposed. 2) Attacking Moves: These moves argue 
that the reasons given in a rule proposed by another agent are not decisive in this case. 
This can be achieved using one of the following three speech acts: a) Distinguish: 
Add one or more premises (antecedent items) to a previously proposed rule, so that 
the confidence of the new rule is decreased. b) Counter Rule: Similar to the “propose 
rule” move, but used to cite a generalization leading to a different classification; and  
c) Unwanted Consequence: Move to suggest that a certain consequent (conclusion) of 
the proposed rule does not match the case under consideration. 3) Refining Moves: 
Moves that enable a rule to be refined to meet objections. This can be achieved using 
either of the following two speech acts: a) Increase Confidence: Replace one or more 
premises (antecedent items) in a previously proposed AR so as to increase the confi-
dence of the rule; and b) Withdraw unwanted consequences: Exclude unwanted con-
sequences of a rule that has been previously proposed (while maintaining a certain 
level of confidence).  In other words, by trying to withdraw unwanted consequences, 
the player aims to refine a rule it previously proposed (instead of proposing a new 
rule). For each of the above six moves a set of legal next moves (i.e. moves that can 
possibly follow each move) is defined. Table 1 summarizes the rules for “next 
moves”, and indicates where a new set of reasons is introduced to the discussion. 
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Table 1. Speech acts (moves) in PADUA-PISA 

Move Label Next Move New AR 
1 Propose Rule 3, 2, 4 Yes 
2 Distinguish 3, 5, 1 No 
3 Unwanted Cons 6, 1 No 
4 Counter Rule 3, 2, 1 Yes 
5 Increase Conf 3, 2, 4 Yes 
6 Withdraw Unwanted Cons 3, 2, 4 Yes 

4   Evaluation Using Welfare Benefits Dataset 

In this section we assess the effectiveness and robustness of PADUA as a classifier with 
respect to noise using a Welfare Benefits dataset. The model used to introduce noise 
was the same as that reported in [18]; for an N% noise level in a dataset of I instance, 
(N*D) instances were randomly selected and the class label changed to some other 
randomly selected value (with equal probability) from the set of available classes. The 
noise levels used in this study are: 2%, 5%, 10%, 20% and 40%. The noise was intro-
duced to training sets only and not to the test sets. The rest of this section is organised as 
follows. The Welfare benefits dataset, used for the evaluation, is discussed in Sub-
section 4.1. The various classifiers with which PADUA was compared are presented in 
Sub-Section 4.2. The ensuing results are discussed in Sub-Section 4.3. 

4.1   The Welfare Benefits Dataset 

The Welfare Benefits dataset was originally developed by Bench-Capon [3] and has 
been used in several experiments [18, 4, 14]. The data in this dataset concerns a fic-
tional welfare benefit paid to pensioners to defray expenses for visiting a spouse in 
hospital. The benefit is payable if six conditions are satisfied: 1) The person is of 
pensionable age (60 for a woman, 65 for a man); 2) The person has paid contributions 
in four out of the last five relevant contribution years; 3) The person is a spouse of the 
patient; 4) The person is not absent from the UK; 5) The person does not have capital 
resources amounting to more than 3000; and  6) If the patient is an in-patient the hos-
pital should be within a certain distance: if an out-patient, beyond that distance. 

Conditions 3 and 4 are Boolean necessary conditions, one which must be true and 
one which must be false. Condition 5 is a threshold on a continuous variable repre-
senting a necessary condition. Condition 2 relates five Boolean variables, only four of 
which need be true. Conditions 1 and 6 relate the relevance of one variable to the 
value of another: in 1 gender is relevant only for ages between 60 and 65, and in 6 the 
effect of the distance variable depends on the Boolean saying whether the patient is an 
in-patient or an outpatient. The wide range of conditions covered by this dataset, is 
one of the reasons why the dataset was selected to evaluate PADUA, as it demon-
strates how well PADUA can cope with noise and how well it can cope with corre-
lated conditions (as well as the other types of conditions used in this dataset). The 
dataset comprises of 2400 records such that half are classified as “entitled” (to bene-
fit) and the other half to “not entitled”. 70% of these rows were used as the training 
set and the rest (30%) as the test set. Noise was then applied to the training set (as 
defined above). The training set used for each of the noise levels, was split into two 
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equal subsets, one given to the proponent and the other to the opponent in PADUA.  
The two players argued to classify the 720 cases in the testing set.  

4.2   Comparator Classifiers 

The operation of PADUA was compared against a variety of standard classifiers, 
covering a range of classification paradigms, as follows: 

Decision Trees: Classification using decision trees was one of the earliest reported 
classification approaches. Quinlan’s C4.5 is arguably the most referenced decision 
tree algorithm [22]. One of the most significant issues in decision tree generation is 
deciding on the splitting criteria. Of the approaches have been proposed in the litera-
ture, two have been used in the evaluation described here: 1) Selects most frequently 
occurring item; the Random Decision Tree (RDT) algorithm. And 2) Selects accord-
ing to highest information gain; the Information Gain Decision Tree (IGDT) algo-
rithm. Information gain [20] is one of the standard measures used in decision tree 
construction. 

TFPC (Total From Partial Classification) ([10]), is a CARM algorithm founded on 
the TFP (Total From Partial) ARM algorithm ([11], [12]); which, in turn, is an exten-
sion of the Apriori-T (Apriori Total) ARM algorithm. TFPC is designed to produce 
Classification Association Rules (CARs) whereas Apriori-T and TFP are designed to 
generate Association Rules (ARs).  

CBA (Classification Based on Associations) is another CARM algorithm developed 
by Liu et al [16]. CBA operates using a two stage approach to generating a classifier: 
(i) generate a complete set of CARs, (ii) prune the set of CARs, using the cover prin-
ciple, to produce a classifier. 

CMAR (Classification based on Multiple Association Rules) is a further CARM 
algorithm developed by Li et al [17]. CMAR also operates using a two stage approach 
to generating a classifier: (i) generate the complete set of CARs according to a user 
supplied support threshold to determine frequent (large) item sets, and a confidence 
threshold to confirm CRs, (ii) prune this set to produce a classifier.  

FOIL – CPAR – PRM:  FOIL (First Order Inductive Learner) is an inductive learn-
ing algorithm for generating Classification Association Rules (CARs) developed by 
Quinlan and Cameron-Jones [21]. This algorithm was later further developed by Yin 
and Han to produce the PRM (Predictive Rule Mining) CAR generation algorithm 
PRM was then further developed, by Yin and Han, to produce CPAR (Classification 
based on Predictive Association Rules) [27]. 

CN2 and ABCN2: The CN2 algorithm [7, 8] consists of a “covering” algorithm and a 
search procedure that finds individual rules by performing a beam search. Roughly, 
the covering algorithm starts by finding a rule, and then it removes from the set of 
learning examples those examples that are covered by this rule, and adds the rule to 
the set of rules. This process is repeated until all the examples are removed. ABCN2 
(Argument Based CN2) [18] is an extension of CN2. ABCN2 augmented the original 
CN2 algorithm to take into account arguments that explain misclassified examples: 
another pass uses these arguments to constrain the rules generated. 
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Table 2. Accuracy versus Noise (PADUA – Welfare Dataset). The CN2 and ABCN2 results 
are those given in [18]. 

Noise PADUA Rand 
DT 

Info 
Gain  
DT 

TFPC CBA CMAR FOIL CPAR PRM CN2 ABCN2 

0 99.86 100 92.50 98.47 99.17 96.81 99.72 67.08 66.67 99.47 99.76 

2 99.86 98.6 88.19 98.33 100 98.75 100 65.36 65.36 97.78 98.42 

5 99.31 99.6 93.33 99.86 98.75 98.1 94.17 65.36 65.36 96.36 96.96 

10 98.47 98.3 92.78 97.08 91.94 97.19 93.19 64.44 64.44 93.51 94.69 

20 97.78 97.3 90.97 98.75 86.94 97.33 88.89 61.67 63.61 88.69 92.00 

40 97.08 96.4 90.44 96.25 94.03 96.80 89.44 58.06 57.92 83.26 85.03 

4.3   The Results 

For the experiments the support threshold value was fixed to 1% and the confidence 
threshold value to 70% for all the relevant classifiers (including PADUA). Table2 
shows the affect of adding noise to the Welfare dataset on the accuracy of each classi-
fier. As expected the accuracy of all the classifiers drops as the noise level increases. 
When using clean data (no noise) RDT out performs all the other classifiers, with 
PADUA producing acceptable results. However, as the noise level increases it can be 
observed that PADUA is more tolerant to noise: the PADUA accuracy drops only 
2.78% even when the noise level is increased to 40%, while the accuracy of RDT 
drops 3.61%. The other classifiers suffer more severe drops in their accuracy levels, 
for example the FOIL accuracy drops 10.28% between the noise levels. The results 
therefore indicate that PADUA is more tolerant to noise than all the other classifiers. 
The results for CN2 and ABCN are taken from [18], while the others were produced 
as part of the experiment. 

5   Experimenting with Housing Benefit Dataset 

In the above section PADUA, a two player argumentation protocol, was evaluated in 
the context of binary valued classification using an artificial welfare benefits dataset. 
In this section multi-class classification problems are considered using a second artifi-
cial housing benefits data set where benefits are again payable if certain conditions 
are satisfied. This dataset, although also originally a two class set, was selected be-
cause it is easy to modify from two classes to three, four, or five classes so as to 
evaluate the operation of PISA. For completeness PADUA was also applied to the 
dataset. The scenario that the housing benefits dataset is intended to reflect is a fic-
tional benefit Retired Persons Housing Allowance (RPHA), which is payable to a 
person who is of an age appropriate to retirement, whose housing costs exceed one 
fifth of their available income, and whose capital is inadequate to meet their housing 
costs. Such persons should also be resident in the UK, or absent only by virtue of 
“service to the nation”, and should have an established connection with the UK labour 
force. These conditions need to be interpreted and applied [25]. For this data set we 
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used an interpretation very similar to the previous example, the only difference was 
that here we employed more flexible contribution and residency conditions. We also 
removed the patient-distance correlated condition. This simplified the dataset, and 
made modification, for the purpose of PISA, an easier task. 

5.1   Evaluation Using PADUA  

In this sub-section PADUA is further evaluated by applying it to the above housing 
benefits set configured in terms of two classes: entitled and not entitled. For the 
evaluation 2400 records were again generated distributed evenly over the two classes. 
The not entitled cases were generated such that they fail to meet one and only one 
condition of the five conditions listed above. Noise was then applied to this dataset in 
the same manner as in the previous evaluation. However, in this case an extra noise 
level of 50% was added to this experiment. The dataset was randomly split into a 70% 
training set and a 30% test set. Noise was then applied to the training set in the same 
manner as reported above. Again the training dataset used for each of the noise levels 
was split equally between two PADUA players and the two players allowed to “ar-
gue” to classify the 720 cases in the test set (using the same support\confidence level 
as in the previous test). This experiment was not applied to CN2 or ABCN2, which 
were not available to us.  

Table3 shows the affect of adding noise to the housing benefit dataset on the accu-
racy of each classifier. Here it can be notice that FOIL is the best classifier when 
using correct data (unlike the previous experiment), but again it can be observed that 
as the accuracy of all the classifiers drops with the increase in noise level in the data, 
PADUA is again more tolerant of noise that the other classifiers. The accuracy of 
PADUA drops 5.83% as the noise level is increased from 0% to 50% whereas the 
accuracy of FOIL drops 21.81% and the accuracy of RDT drops 10.97%.  

Table 3. Accuracy versus Noise (PADUA – Hosuing Benefit Dataset) 

Noise  PADUA RDT IGDT TFPC CBA CMAR FOIL CPAR PRM 

0% 99.86 99.72 77.00 98.33 97.36 99.31 100.00 64.03 66.81 

2% 99.72 97.78 76.25 98.61 99.86 98.01 96.67 63.75 64.72 

5% 99.58 98.89 64.31 96.53 97.50 98.61 94.44 65.28 65.14 

10% 98.61 98.75 73.61 93.61 91.11 95.69 87.08 63.61 64.92 

20% 96.81 98.19 73.06 93.89 96.25 96.50 86.39 62.28 64.58 

40% 96.11 92.22 64.44 83.06 92.08 92.92 86.11 60.97 61.25 

50% 94.03 88.75 62.22 54.72 84.17 85.31 78.19 59.58 61.81 

5.2   Evaluation Using PISA 

In order to use the Housing Benefits datasets to test PISA, the conditions mentioned in 
the previous sections were interpreted such that the final output would be increased 
from just two classes (entitled or not entitled). For the purpose of the example presented 
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here a fourfold classification was used: fully entitled, entitled with priority, partially 
entitled and not entitled. The requirements for each class were defined as follows:  

1. Fully Entitled: Candidates will be entitled to full housing benefit allowance if they 
satisfy all the above five conditions. 

2. Entitled with Priority: candidates will entitle to housing benefit allowance with 
priority if they satisfy the entitling conditions and also satisfy the following: 1) 
Paid Contribution in four out of the last five years and either a) Have less capital 
than the original limit (this is interpreted as 1000£ less than the original limit).  Or 
b) Have has less income (5%) than the original limit. Or 2) They are member of the 
armed forces and have paid the contribution fees in five out of the last five years. 

3. Partially Entitled: Candidates will be entitled to a lower rate of benefit if they 
satisfy the age condition but they either: 1) Have slightly more capital than the 
original limit (e.g. +1000£ more than the original limit), but have paid contribu-
tions in 4 (or 5) years out of the last five. Or 2) they have slightly more available 
income (i.e. +5%) than the original limit, but have paid contributions in 4 (or 5) 
years out of the last five. Also 3) Merchant navy members are also partially enti-
tled if they satisfy all the other conditions and have paid the contribution in five out 
of the last five years. 

4. Not Entitled: If the candidate fails to satisfy the conditions for full or partial enti-
tlement. 

In the same manner as reported above 2400 records were generated equally distrib-
uted over the 4 possible classifications. The same noise levels used for PADUA were 
applied to the dataset. The training dataset used for each of the noise levels, was split 
into four equal subsets, each subset was given to one PISA player, and the four play-
ers in each subtest argued to classify the 720 cases in the test set. The support value 
was again fixed to 1% and confidence to 50% for all the CARS classifiers. Table 4 
shows the affect of adding noise to the housing benefit dataset on the accuracy of each 
classifier. From the table it can be seen that the overall accuracy level is lower than 
that recorded for the binary classification. The best overall classifier is PISA with an 
accuracy level starting with 98.47% for clean data and dropping to 93.75% when a 
50% noise level is introduced indicating that the PISA protocol copes extremely well 
with noisy data compared to the other classifiers used in the evaluation.  

Table 4. Accuracy versus Noise (PISA) 

Noise  PISA RDT IGDT TFPC CBA CMAR FOIL CPAR PRM 

0% 98.47 94.44 68.19 92.56 90.28 86.75 92.25 75.83 75.83 

2% 97.64 90.56 67.75 91.81 90.14 86.25 92.22 75.42 68.06 

5% 97.36 93.47 62.92 89.72 90.69 85.00 91.39 73.33 73.89 

10% 96.53 92.92 60.97 86.81 89.17 84.25 92.36 70.83 72.64 

20% 95.69 91.94 60.56 80.83 88.89 83.75 89.31 70.78 70.61 

40% 94.44 90.31 56.35 69.86 86.81 81.75 80.56 63.06 63.06 

50% 93.75 88.36 61.81 45.83 62.71 80.50 70.42 63.06 65.83 
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6   Further Evaluation 

The tests described above, use artificial datasets, mainly because we have full under-
standing of these datasets. But relying on just artificial datasets is not enough to dem-
onstrate the tolerance to noise of PISA and PADUA. In this section we list some of 
the results obtained when testing PISA and PADUA using 7 real datasets. PADUA 
was used with the datasets containing 2 classes only (Mushrooms, Congress and 
PIMA) while PISA was applied to datasets with 3 classes (Wave Forms), 4 classes 
(Nursery and Car Evaluation) and 5 classes (Page Blocks). This test compares the 
operation of both PADUA and PISA with the same classifiers as above, but in this 
section we only report on the comparison with decision trees classifiers, because deci-
sion trees were found to be the closest “competitors” to PADUA and PISA. The  
results of this evaluation (figure 1(a) and figure 1(b)) show a similar pattern to the 
benefits experiments: the accuracy of almost all the classes dropped when the noise 
percentage was increased. The only case in which PADUA or PISA performed worse 

 

 

Fig. 1 (a). Real datasets study (1) (the horizontal axe represents the noise level and the verti-
cal represents the accuracy – white squares = RDT, dark squares =PISA/PADUA and white 
Triangles = GDT) 

 

Fig. 2 (b). Real datasets study (2) (same representation as fig 1(a)) 
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than random trees with high level of noise is when the Congress dataset was used. 
The reason is that this dataset is very small (435 rows), therefore each player has only 
152 cases from which they should mine their arguments (ARs). This is rather a small 
size when a high level of support or confidence is used. 

7   Conclusions 

In this paper we have presented an overview of PADUA and PISA, two argumenta-
tion from experience systems applicable to two and multiplayer argumentation re-
spectively. We have described how both systems can be applied to the classification 
problem and illustrated this by detailed experiments using two artificial welfare sce-
narios/data sets, and summary results for seven real datasets. Of note, other than the 
operation of the two systems is that the argumentation from experience concept can 
successfully be applied to address classification. The results obtained indicate that the 
systems’ performance is comparable to, or better than, other classification approaches. 
The particular advantage that the approach offers is that it operates very successfully 
in noisy environments, outperforming competitor classification systems. Ability to 
handle noisy data sets is of significant importance in many domains where sufficient 
data can only be obtained at the cost of including misclassified records. The authors 
are greatly encouraged by the reported results and are currently undertaking further 
investigation to evaluate the systems performance on a wider range of datasets. 
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Abstract. The appropriate choice of a method for imputation of missing data 
becomes especially important when the fraction of missing values is large and 
the data are of mixed type. The proposed dynamic clustering imputation (DCI) 
algorithm relies on similarity information from shared neighbors, where mixed 
type variables are considered together. When evaluated on a public social sci-
ence dataset of 46,043 mixed type instances with up to 33% missing values, 
DCI resulted in more than 20% improved imputation accuracy over Multiple 
Imputation, Predictive Mean Matching, Linear and Multilevel Regression, and 
Mean Mode Replacement methods. Data imputed by 6 methods were used for 
prediction tests by NB-Tree, Random Subset Selection and Neural Network-
based classification models. In our experiments classification accuracy obtained 
using DCI-preprocessed data was much better than when relying on alternative 
imputation methods for data preprocessing. 

Keywords: data pre-processing, data imputation, clustering, classification. 

1   Introduction 

A common approach to analyzing data with missing values is to remove attributes 
and/or instances with a large fraction of missing values. Such data preprocessing is 
appealing because it is simple and also reduces dimensionality. However, this is not 
applicable when missing values cover a lot of instances, or their presence in essential 
attributes is large [1]. 

Another common and practical way to address the problem of missing values in 
data is to replace them as estimates derived from the non-missing values by a linear 
function. The missing attribute j from an instance i, denoted as xi,j

ms, is estimated as: 
                                                           
∗ Coressponding author: alternative e-mail: zoran.obradovic@temple.edu 
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( ), 1, 2, , ,, , , , ,
j

ms
i j j j p j P jx f x x x x= K K  , (1)

 
where f is a linear function of Pj variables; Pj is the number of instances in the data 
with non-missing values for attribute j; and xp,j is a non-missing attribute j from an 
instance p. 

A special case of (1), which is simple, fast, and often provides satisfactory results 
when the number of missing values is relatively small and their distribution is ran-
dom, is mean (or mode for categorical attributes) value based imputation: 

, ,
1

1 jP
ms
i j p j

pj

x x
P =

= ∑  . (2)

 
The limitation of mean value based imputation and its variations is its focus on a 

specific variable without taking into account the overall similarities between in-
stances. For example, consider the following 5 data points with 6 attributes, where a 
categorical attribute (fifth column) is missing one value (denoted as “ms”): 

1 10.2 1 1 1

1 9.8 1 1 2 1

0 1.1 0 0 1 0

0 1.1 0 0 1 1

1 0.3 0 0 1 0

ms⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 . (3)

 
Here, it would be reasonable to replace “ms” by “2” since the first two instances 

are very similar. However, mean/mode value-based imputation methods would re-
place “ms” by “1” as it is the most common value for this attribute in the dataset. 

One of the most powerful approaches to missing values estimation is replacement 
by multiple imputation [1, 2]. The idea is to generate multiple simulated values for 
each incomplete instance, and iteratively analyze datasets with each simulated value 
substituted in turn. The purpose is to obtain estimates that better reflect the true vari-
ability and uncertainty in the data than are done by regression. Multiple imputation 
methods yield multiple imputed replicate datasets each of which is analyzed in turn. 
The results are combined and the average is reported as the estimate. For continuous 
attributes and a fairly small fraction of missing values, reliable estimates are obtained 
by combining only a few imputed datasets. 

A clustering based approach for missing data imputation was considered as a local 
alternative to global estimation [3]. The premise was that instances could be grouped 
such that all the imputations in identified groups are independent from other groups. 
However, previous distance-based [4] clustering work was focused mainly on devel-
opment of supervised clustering methods and mean/mode based imputations in these 
clusters. Also, prior studies were based on a strict separation for objects within clus-
ters, such that it was assumed that there is no influence of instances in one cluster to 
an imputation process in other clusters. 
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 In our DCI approach an independent cluster of similar instances with no missing 
values for a particular attribute is constructed deterministically around each instance 
with a missing value. In contrast to a typical clustering method, we allow cluster in-
tersections such that the same instance may be included in many clusters. DCI relies 
on a distance measure that considers both categorical and continuous variables and is 
applicable for estimation of missing values in high dimensional mixed type data. 

2   Methodology 

We assume that the given data consist of M instances with N attributes where N is a 
mixture of tens to hundreds of categorical and continuous attributes. For the proposed 
Dynamic Clustering based Imputation (DCI) we use a dissimilarity measure between 
instances in a mixed type dataset described in Section 2.1. This measure is used in a 
clustering algorithm for identification of similar instances as described in Section 2.2 
to perform a dynamic cluster-specific imputation of missing values as described in 
Section 2.3. An evaluation method and alternative imputation approaches are de-
scribed in Section 2.4. 

2.1   Measuring Dissimilarity between Instances in Mixed Type Data for DCI 

The Minkowski distance, the Simple Matching Coefficient, the Jacquard Similarity 
Coefficient or other metrics could be used separately to measure the distance between 
instances for each type of attribute. However, such approaches are of limited applica-
bility for mixed type data consisting of categorical and continuous attributes in the 
presence of many missing values [5]. In DCI, given N dimensional data, to measure 
the dissimilarity between two instances xi and xj of mixed type in the presence of 
missing values, we compute [6]: 

( ) ( ) ( ) ( )
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where “max” and “min” means the minimal and maximal value computed over all 
non-missing vales of the n-th attribute. 

2.2   Clustering for Identification of Similar Instances in DCI 

To identify similar instances in DCI we employ a new clustering algorithm consisting 
of the following steps: 
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1. Computing the similarity matrix (SM) for all instances: 
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2. Computing the neighborhood matrix (NM): 
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where nmi,j is the number of common neighbors among K nearest neighbors for in-
stances i and j, and M is the total number of instances in the dataset. 

3. Constructing an ordered list listi,j of all neighbor instances with no missing value in 
j-th attribute for each missing value xi,j

ms by ascending sort according to the key 
value: 

( ) , ,dst , , where 1, ; 0ms
i p i p j i px x nm p P nm= >  , (7)

 
where xi

ms denotes i-th instance with missing value in j-th attribute, and xp denotes 
p-th instance with no missing in j-th attribute. Here, if two instances have the same 
dst/nm rate, the one with fewer missing attributes is listed first in the list. 

4. Constructing a cluster Ci,j for each missing value xi,j
ms by using first R elements of 

listi,j, where R is a user-specific parameter that defines a cluster size, and R < |listi,j|. 

2.3   Cluster-Specific Imputation Methods for Mixed Type Data  

In a cluster constructed as described in Section 2.2 using the similarity measure intro-
duced in Section 2.1, a missing value could be imputed based on (a) the mean value 
of the corresponding attribute in other items contained in this cluster, or (b) similarity 
to the nearest instance with a non-missing value. Averaging in (a) and identification 
of the nearest instances from the same cluster in (b) could be based on various met-
rics. The dynamic nature of DCI derives from the ability to recalculate SM and NM 
for adding a newly imputed value (or all values from the certain attribute) into further 
imputation process. In DCI, we use the following categorical and continuous data 
specific metrics aimed to provide a balance in terms of imputation quality and compu-
tational complexity: 
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Categorical variable: A missing value is estimated by the corresponding attribute in 
an instance from the same cluster that has the largest number of common neighbors 
with the imputed instance:  

( ) { },

, , , ,
1

such that maxi jCms
i j q j i q i r

r R
x x nm nm

=
= =

K
 . (8)

Continuous variable: A missing value is estimated based on all instances in the same 
cluster where each non-missing value is weighted by the appropriate entry of the 
neighborhood matrix NM:  
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2.4   Evaluation Measures and Alternative Imputation Methods 

For evaluating imputation quality, different measures were used when comparing 
imputed categorical and imputed numerical data versus the corresponding true values. 

The mean and absolute squared error measurements tend to be very sensitive to 
outliers. Therefore, for continuous attributes and for a given tolerance τ we measured 
a Relative Imputation Accuracy (RIA, also known as relative prediction accuracy [7]) 
defined as 

[ ] 100%RIA n Qτ τ= ×  , (10)

 
where nτ is the number of imputed elements estimated within τ percent of accuracy 
from the true value of the corresponding missing value and Q is the total number of 
imputed values in the data. In practice, RIA is a very useful as an approximation for 
an absolute precision imputed continuous values, which is often not needed. A nice 
property of RIA measure is that it is not affected by an individual incorrect imputation 
(e.g. large value instead of small) that could affect considerably some statistical 
measures (e.g., MSE-based [8]). 

In categorical attributes we measured a fraction of Correct Imputations (CI) de-
fined as 

[ ] 100%CI s Q= ×  , (11)

 

where s is the number of correctly estimated imputed elements. 
As a simple imputation alternative to DCI, we used a WEKA implementation [9] 

of Mean and Mode Replacement (denoted here as MMR). We also compared DCI to 
four statistically well-founded techniques: Multiple Imputation [1, 2], Predictive 
Mean Matching [10] (denoted here as PMM), Linear Regression [11], and Multilevel 
Regression [11] (denoted here as MLR). 

The Multiple Imputation Method used for comparison and implemented in Ame-
lia II software [12] enables the drawing of random simulations from the multivari-
ate normal observed data posterior, and uses standard Expectation Maximization 
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(EM) for finding an appropriate set of starting values for data argumentation. Mul-
tiple Imputation begins with EM and adds an estimation of uncertainty for receiving 
draws from the correct posterior distribution followed by a resampling based on 
importance.  

The Predictive Mean Matching comparison method implemented in WinMICE 
software [13] combines both parametric and nonparametric techniques. It imputes 
missing values by means of the nearest neighbors where the distance is computed as 
the expected values of the missing variables conditional on the observed covariates, 
instead of directly on the values of the covariates. 

Linear and Multilevel Regression models, also implemented in WinMICE, are well 
known statistical approaches that allow variance in imputed variables to be analyzed 
at multiple hierarchical levels, whereas in linear regression all effects are modeled to 
occur at a single level. 

3   Results and Discussion 

We first performed experiments on a social science dataset with mixed-type attributes 
to compare quality of imputation by the proposed method and alternatives in presence 
of various fractions of missing values. In another set of experiments mixed-type data 
preprocessed by various imputation methods was used for classification by several 
algorithms to determine practical effects of an imputation method on classification 
accuracy (reported in Section 3.2). 

A public domain Adult dataset [14] from the UCI Machine Learning Repository 
was used for comparing different data imputation methods. The dataset contained a 
subset of records about the US population collected by the US Census Bureau. The 
48,842 individuals in this database are described by 8 categorical and 6 continuous 
attributes (with some missing data) related to prediction of annual income. In our 
experiments etalon data with 46,043 instances were constructed by removing all in-
stances from the Adult dataset with missing values. To make the dataset balanced in 
terms of different attribute types, two categorical attributes (“education” and “native 
country”) were also removed. 

Eight test datasets with missing values (“holes”) were constructed by randomly 
hiding 0.2%, 0.5%, 1.1%, 1.8%, 5.4%, 10.9%, 16.3% and 32.6% of data elements 
(which correspond to 1,000; 3,000; 6,000; 10,000; 30,000; 60,000; 90,000 and 
180,000 missing values) in both categorical and continuous attributes of the etalon 
data. Each test database was fully independent from others, which means that places 
of “holes” were independent. 

3.1   Evaluation of Imputation Quality on Mixed Type Data 

The DCI and other imputation algorithms described in section 2.4 were compared 
using the eight datasets with different fractions of introduced missing values. Imputed 
values were compared to the true values in Adult dataset. To provide a comparison to  
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Table 1. Fraction of correct imputation (CI) in categorical attributes for 0.2%-32.6% imputed 
values 

CI for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 66.0 69.2 67.5 70.0 71.0 71.5 70.6 65.6 
MMR 54.5 38.0 53.7 56.2 54.4 54.7 54.7 54.7 
PMM 34.2 37.8 35.9 36.1 36.8 35.9 35.6 35.2 
Linear Regression 28.1 30.3 28.8 29.0 29.0 28.4 28.4 28.1 
Multiple Imputation 46.9 49.1 49.0 49.8 48.1 47.8 47.3 45.5 
MLR 29.3 29.7 27.9 29.8 28.8 28.5 28.6 28.2 
Random 19.1 20.8 19.3 21.1 19.9 20.3 19.7 20.2 

 
a trivial estimate, we also report the results obtained by using the corresponding at-
tribute value in a randomly selected instance (denoted here as Random). The imputa-
tion accuracy by DCI and alternative methods are summarized in Tables 1-4. Allre-
ported DCI results were obtained for 50 nearest neighbors and 9 the most common 
neighbors (K=50, R=9 defined in section 2.2). Very similar findings (within 5% of 
reported) were obtained for 40<K<60 and R=7 or R=11 (stability results are omitted 
due to lack of space). 

Imputation accuracy results for estimation of categorical attributes (Table 1) re-
vealed that for all fractions of missing values. DCI was much more accurate than the 
alternative five imputation methods (1.2-1.4 times more accurate than the best of the 
remaining methods). Mean Mode Replacement was the second most accurate imputa-
tion method for categorical attributes. The results of the remaining imputation meth-
ods had more than 50% imputation error, but were still much better than random  
replacements.  

The Relative Imputation Accuracy of DCI for imputation of continuous attributes 
(Tables 2-4) was also much better than alternative imputation methods. Here, Predic-
tive Mean Matching was the second most accurate method. For 5% tolerance DCI 
provided 1.4-1.8 times better accuracy than PMM and was 6-9 times other better than 
the other alternatives (Table 2). Still, even the weak imputation methods were signifi-
cantly more accurate than random replacements.  

Table 2. Relative imputation accuracy (RIA) with 5% tolerance in continuous attributes for 
0.2%-32.6% imputed values 

RIA (τ = 5%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 33.8 28.3 28.1 31.2 29.5 30.3 30.2 28.3 
MMR 3.7 4.9 1.4 5.5 1.2 1.5 1.4 5.5 
PMM 18.6 20.9 20.0 20.2 18.7 19.6 19.4 19.4 
Linear Regression 3.7 4.5 4.4 4.5 4.2 4.3 4.4 4.2 
Multiple Imputation 5.5 11.8 3.9 4.7 4.6 4.7 4.6 4.5 
MLR 3.7 4.3 4.6 4.0 4.2 4.4 4.4 4.3 
Random 1.8 2.1 2.9 3.3 3.0 3.2 3.0 3.0 
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Table 3. Relative imputation accuracy (RIA) with 10% tolerance in continuous attributes for 
0.2%-32.6% imputed values 

RIA (τ = 10%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 38.7 35.4 35.6 37.4 36.7 37.2 37.2 35.6 
MMR 10.2 11.8 12.0 11.9 11.5 11.6 11.6 12.0 
PMM 25.6 30.0 29.2 28.8 27.6 28.5 28.2 28.2 
Linear Regression 10.7 13.6 13.6 13.0 13.1 13.3 13.2 13.1 
Multiple Imputation 13.3 20.4 13.4 13.5 13.3 13.3 13.4 13.3 
MLR 10.7 12.9 13.9 13.0 13.1 13.2 13.3 13.2 
Random 10.5 12.2 13.2 12.8 12.8 13.0 12.9 12.8 

Table 4. Relative imputation accuracy (RIA) within 15% tolerance in continuous attributes for 
0.2%-32.6% imputed values 

RIA (τ = 15%) for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 42.0 40.1 40.0 41.8 41.5 42.0 42.0 40.5 
MMR 15.6 17.6 17.5 17.4 17.4 17.4 17.4 17.8 
PMM 30.3 34.7 33.9 33.5 32.6 33.5 33.1 33.3 
Linear Regression 15.4 18.3 18.4 17.7 18.1 18.3 18.2 18.1 
Multiple Imputation 17.0 25.5 18.1 17.8 18.2 18.1 18.2 18.1 
MLR 15.0 18.1 18.5 17.5 18.2 18.2 18.2 18.2 
Random 15.8 17.7 18.0 17.9 18.2 18.3 18.2 18.2 

 
 
Experiments with double and triple tolerance for allowed estimation errors of 10% 

and 15% (Tables 3 and 4) resulted in reduced differences in accuracy between impu-
tation methods. However, even for larger tolerance DCI was still 20-50% more accu-
rate (in relative difference) than the second best PMM method. These experiments 
suggest that the Mean Mode Replacement, Regression methods, and even Multiple 
Imputation methods are not appropriate for larger tolerance estimation in continuous 
variables as the corresponding results were comparable to random replacement. On 
the other hand, all methods outperformed the Mean Mode Replacement, which is 
commonly used in practice due to its simplicity.  

3.2   Effect of an Imputation Method on Classification Accuracy for Mixed Type 
Data 

The next stage of our experiments was devoted to practical comparison of how well 
different imputation techniques would suit for real life classification tasks. The idea 
was to explore a scenario where clean mixed type data provided by excluding all 
instances with missing values were used for training a classification model while it 
was applied to real data with various fractions of missing values. For this purpose we 
built several kinds of classifiers by training them on the first 16,043 subjects from the 
etalon Adult database, where for each instance all 12 attributes were available. For a 



374 V.V. Ayuyev et al. 

test subject drawn from the remaining 30,000 instances the task was to predict if 
he/she makes over 50,000 U.S. dollars a year where a fraction of variables was miss-
ing at random. Different fractions of missing values were considered and preprocess-
ing was achieved by 6 imputation methods described in Section 2. As a measure of 
accuracy, the percent of correctly classified instances was calculated. 

As a classification method we applied three models implemented in WEKA: NB-
Tree [15], Random Subset Selection [16] and Multilayer Perceptron [17]. NB-Tree 
is considered as one of the best classification methods for the Adult database ac-
cording to [14]. Random Subset Selection and Multilayer Perceptron were used as 
alternative solutions that in other domains has shown good speed and classification 
accuracy, respectively. The classification results reported in Tables 5-7 are com-
pared to the upper bound obtained by testing on complete data without missing 
values. 

All imputation methods resulted in very similar accuracy for small fractions (0.2-
1.8%) of missing values (Table 5). However, the difference was substantial when 
more than 10% of missing values were imputed. Though DCI provided the most accu-
rate NB-Tree classifier for all fractions of missing values, its advantage was the most 
evident for the largest fraction of missing values (32.6%) where it had 14-22% less 
relative difference in error (3-7% difference in accuracy) than alternatives. 

Table 5. Classification Accuracy (CA) of NB-Tree classification model applied to datasets with 
0.2%-32.6% imputed values 

CA of NB-Tree for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 86.1 86.1 86.0 86.0 85.8 85.4 84.8 83.6 
MMR 86.1 86.0 85.9 85.9 85.1 84.2 83.0 79.6 
PMM 86.1 86.1 85.9 85.9 85.0 84.5 83.6 81.0 
Linear Regression 86.1 86.0 85.7 85.6 84.3 82.9 81.4 76.8 
Multiple Imputation 86.1 86.1 85.7 85.7 84.6 83.1 81.4 77.1 
MLR 86.1 86.0 85.8 85.6 84.3 82.9 81.4 76.8 
Complete data 86.1 86.1 86.1 86.1 86.1 86.1 86.1 86.1 

Table 6. Classification Accuracy (CA) of Random Subspace Selection classification model 
applied to datasets with 0.2%-32.6% imputed values 

CA of Random Subset for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 84.9 84.9 84.9 84.8 84.8 85.0 84.7 84.8 
MMR 84.9 84.9 84.9 84.8 84.5 84.3 83.8 81.6 
PMM 84.9 84.9 84.8 84.7 84.4 84.2 84.1 83.1 
Linear Regression 84.8 84.9 84.8 84.7 84.2 83.7 83.4 82.1 
Multiple Imputation 84.9 84.9 84.8 84.8 84.5 84.2 83.7 82.6 
MLR 84.9 84.9 84.8 84.7 84.3 83.8 83.3 81.8 
Complete data 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 
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Table 7. Classification Accuracy (CA) of Multilayer Perceptron classification model applied to 
datasets with 0.2%-32.6% imputed values 

CA of Multilayer Perceptron for different fractions of missing values Imputation Methods 
0.2% 0.5% 1.1% 1.8% 5.4% 10.9% 16.3% 32.6% 

DCI 84.5 84.6 84.5 84.6 84.6 84.7 84.5 84.7 
MMR 84.5 84.5 84.4 84.4 84.1 83.6 83.0 80.8 
PMM 84.5 84.5 84.3 84.3 83.8 83.2 82.7 80.8 
Linear Regression 84.5 84.5 84.2 84.1 83.2 82.0 81.0 77.4 
Multiple Imputation 84.5 84.5 84.3 84.2 83.4 82.3 81.2 77.5 
MLR  84.5 84.5 84.3 84.2 83.2 82.2 80.9 77.5 
Complete data 84.5 84.5 84.5 84.5 84.5 84.5 84.5 84.5 

 
When using the Random Subset Selection classifier, the overall results were con-

sistent to classification by NB-Tree classifier (Table 6). However, Random Subset 
Selection classifier was more tolerant to an increase in fraction of missing values. 
Once again, DCI outperformed other approaches on the largest fractions of missing 
values for an 11-20% relative difference in error (2-3% difference in accuracy). 

The Neural Network based classifier, represented by a 3-layer Perceptron, showed 
similar characteristics to NB-Tree and Random Subspace Selection (Table 7). DCI 
imputation resulted in more accurate classification in all datasets with a large fraction 
of missing values. For 0.5%, 1.8%, 5.4% 10.9%, and 32.6% imputed values a neural 
network achieved somewhat better accuracy than the upper bound obtained on com-
plete data without missing values. This may be due to the Multilayer Perceptron’s 
tolerance to noise in data. 

To address class misbalance for the target variable in the Adult dataset (12,092 sub-
jects in one class vs. 3,951 in another for the training subset, and 22,529 vs. 7,471 
subjects for the test subset), we also measured Kappa coefficient [18] and F-score 
[19] for the three classification models when imputing 32.6% of missing values by the 
six methods (Table 8). 

Table 8. Kappa coefficient and F-score of NB-Tree, Random Subspace Selection, and Multi-
layer Perceptron classification models applied to datasets with 32.6% of missing values im-
puted by 6 methods and to complete data without missing values 

NB-Tree 
Random  
Subset 

Multilayer 
Perceptron 

Imputation  
Methods 

κ F κ F κ F 
DCI 0.52 0.83 0.54 0.84 0.54 0.83 
MMR  0.42 0.79 0.49 0.81 0.45 0.80 
PMM 0.47 0.81 0.47 0.81 0.44 0.80 
Linear Regression 0.37 0.77 0.44 0.80 0.37 0.77 
Multiple Imputation 0.40 0.77 0.48 0.81 0.38 0.77 
MLR  0.37 0.77 0.43 0.80 0.38 0.77 
Complete data  0.61 0.86 0.55 0.84 0.53 0.83 
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Here, Kappa coefficient is defined as: 

( ) ( )1Ra Pa Paκ = − −  , (12)

where Ra is the relative observed agreement, and Pa is the hypothetical probability of 
chance agreement, using the observed data to calculate the probabilities of each clas-
sifier randomly choosing each category. 

F-score is defined as: 

( )2F precision recall precision recall= × +  , (13)

where, in a classification context, precision denotes the number of true positive pre-
dictions divided by the total number of items labeled as positive in the test set, while 
recall denotes the number of true positive predictions divided by the total number of 
items that were predicted as positive. 

The obtained results clearly suggest that DCI based pre-processing results in accu-
racy nearest to the upper bound in terms of both Kappa coefficient and F-score statis-
tics. We also observe that our results on imputed data confirms previous findings 
obtained on complete data that NB-Tree based classifier is a good choice for classifi-
cation of Adult data. However, we also observe that the most stable results in terms of 
accuracy were obtained by Random Subset classifier. 

4   Conclusion 

Data imputation to replace missing values is often an important preprocessing step in 
data analysis. This study identified some limitations of a commonly used heuristic and 
of four known statistical methods when applied to mixed type data with a large frac-
tion of missing values. In our approach, the main idea was to make all replacements 
independently for data within clusters created around each missing value. Our ex-
periments on social science mixed type data provide evidence that the proposed data 
imputation method is more accurate than the evaluated alternatives and is effective 
when a large fraction of data is missing. 

While the computational complexity of the proposed imputation method of 
O(M3logM) could be a limiting factor in large scale applications, many possibilities 
for improvements remain. For example, cluster-specific imputation techniques based 
on DCI idea could be developed. Also, specialized algorithms for defining the optimal 
size of specific clusters may be created. Finally, organizing data to KD-trees may 
improve the overall matrix processing speed. 

An assumption of our research was that data were missing at random. This is not 
necessarily the case in real problems like the ProDES [20] data set that initiated this 
study. Therefore, in future research, we will explore how to tailor the proposed 
method to properties of missing data of a specific problem. 
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Abstract. Within data mining, clustering can be considered the most
important unsupervised learning problem which deals with finding a
structure in a collection of unlabeled data. Generally, clustering refers to
the process of organizing objects into groups whose members are simi-
lar. Among clustering approaches, those methods based on probabilistic
models have been extensively developed, such as Näıve Bayes (NB) with
a latent class (cluster identifier) found via an EM algorithm.

Probabilistic Decision Graphs (PDGs) are a class of graphical mod-
els that can naturally encode some context specific independencies that
cannot always be efficiently captured by other commonly used models.
In this paper we propose to use a mixture of PDG models in cluster
discovery, and an algorithm for automatic induction of the mixture and
the models is introduced.

The proposed approach was experimentally evaluated on both syn-
thetic and real-world databases, and the presentation of the results in-
cludes a comparison with related techniques. The comparison demon-
strates competitive performance of the mixture of PDG models with
respect to likelihood. Also, the mixture of PDG models have a tendency
to use fewer models (clusters) to represent domains where other models
use large amounts of clusters.

Keywords: Probabilistic graphical models, clustering, data mining.

1 Introduction

The increasing availability of data in our information society has led to the need
for valid tools for its modeling and analysis. One core task in data mining is
classification. Classification is the process of assigning labels to data instances
using a function that takes a unlabeled data-instance as input and outputs a
label. Unlike classification (aka supervised classification), which analyzes class-
labeled data objects, clustering (aka unsupervised classification) analyzes data
objects without consulting a known class label. In general, the class labels are not
present in the training data simply because they are not known to begin with.
Clustering can be used to generate such labels. The data instances are clustered
or grouped based on the principle of maximizing the intraclass similarity and
minimizing the interclass similarity. Each formed cluster can be viewed as a
class of objects. Clustering can also facilitate taxonomy formation, that is, the
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organisation of observations into a hierarchy of classes that group similar events
together. Clustering also facilitates knowledge discovery through learning of new
concepts that characterize common features or patterns, being used in many
fields such as pattern recognition, image analysis and bioinformatics.

Among the different existing approaches, we will focus on the so called model-
based methods [1]. Model-based clustering assumes that the data were generated
by a specific model and tries to recover the original (generative) model from the
data. The model that we recover from the data then defines clusters and can
be used to assigns a label (or a set of possible labels) to new unlabeled data
instances. EM and COBWEB belongs to this family [1].

Another possible classification on clustering methods uses as parameter the
nature of the produced clusters and distinguishes Hard, Soft, Hierarchical and
Probabilistic. These do not necessarily have to be disjoint sets, for example the
Independency Tree [2] clustering is both hierarchical and probabilistic. The Prob-
abilistic Decision Graph (PDG) [3] was originally proposed as an efficient repre-
sentation of probabilistic transition systems. In this study, we consider the more
generalized version of PDGs proposed by [4]. PDGs constitute a class of proba-
bilistic graphical models that can represent some context specific independencies
that can not efficiently be captured by other commonly used models.

The performance of the PDG model w.r.t. general probability estimation has
previously been studied and results suggest that the model performs competitively
when compared to state of the art models[5]. The PDG model has also been suc-
cessfully applied to supervised classification problems [6] and to the problem of
learning from incomplete data[7]. In this paper we extend the application area of
PDGs to include also the clustering problem. The motivation for initiating this
study was not only the previous successes of the PDG model to related problems
such as classification and learning from incomplete data. But also the natural way
in which a mixture of PDG models can take advantage of common sub-patterns
in different clusters by reusing of parameters. As a result, a mixture of PDG mod-
els may provide a more compact model than conventional probabilistic clustering
models. Furthermore, if context specific independencies exists within the same
cluster, a PDG model may be able to capture this in a single model of this cluster,
while other model that does not have this flexibility in representation may need
to break the cluster into different clusters conditioning on the context.

2 Notation

We will denote random variables by uppercase letters, e.g. X , and sets with
boldface uppercase letters, e.g. X. When Xi is a discrete categorical random
variable, we will by lowercase letter xi,j refer to the j’th state of Xi under
some ordering. We will by R(Xi) refer to the set of possible states of Xi, and by
R(X) = ×Xi∈XR(Xi) when X is a set of variables. We will use ri as a shorthand
for |R(Xi)|. By lowercase bold letters we refer to joint states of sets of variables,
e.g. x ∈ R(X). When Xi ∈ X and x ∈ R(X) we denote x[Xi] the projection of
x onto coordinate Xi.
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By P (X) we will denote a joint probability distribution over X, and by
P (Y|Z) for disjoint Y and Z the conditional distribution of Y given Z. To
refer the probability of X = x we use P (X = x) or simply P (x). When comput-
ing a probability using a model M , we may indicate this by conditioning on the
model P (x|M), however, we will use only P (x) when M is clear from context.

Let G=〈V,E〉 be a directed graph structure with set of nodes V={V1, . . . , Vn}
and set of directed edges E ⊂ V×V. We will then by chG(Vi) and paG(Vi) refer
the set of children of Vi and parents of Vi respectively in structure G, hence
chG(Vi) = {Vj ∈ V : (Vi, Vj) ∈ E} and paG(Vi) = {Vj ∈ V : (Vj , Vi) ∈ E}.
When G is clear from context we drop the subscript. A tree is a directed acyclic
graph where one unique node Vr ∈ V is designated root and has no parents
paG(Vr) = ∅ while all other nodes have exactly one parent. A forest structure is
a set of such trees.

3 Techniques That Perform Probabilistic Clustering

Expectation-Maximisation and Näıve Bayes. In statistical computing, an
expectation-maximisation (EM) algorithm [8] is an algorithm for finding maxi-
mum likelihood estimates of parameters in probabilistic models, where the model
depends on unobserved latent variables. EM is frequently used for data cluster-
ing in machine learning and computer vision. EM alternates between performing
an expectation (E) step, which computes the expected sufficient statistics by in-
cluding the latent variables as if they were observed, and a maximization (M)
step, which computes the maximum using expected sufficient statistics of the pa-
rameters by maximizing the expected likelihood on the observed cases found in
the E step. The parameters found on the M step are then used to begin another
E step, and the process is repeated.

In a probabilistic clustering task, one often includes in the model a special
latent variable C that is never observed. Each states of this C then corresponds
to a cluster, and inferring cluster membership is then done by answering queries
like P (C = ci|X = x). The Näıve Bayes (NB) model for clustering takes this
approach, and represents a joint probability distribution that incorporate one
strong independence assumptions which often have no bearing in reality, hence
are (deliberately) näıve: all the variables are independent given cluster member-
ship. The NB model is a special instance of a Bayesian Network model [9]with
the structure shown in Fig. 1.(a).

The independencies that are assumed by the NB model yields the factorisation
of the joint probability distribution P (X, C) over the domain X of observed
variables and cluster variable C: P (X, C) = P (C)

∏
X=X P (X |C). For a given

observation y of variables Y ⊆ X, the probability of y being a member of cluster
ci is P (C = ci|Y = y) = 1

P (Y=y)P (C = ci)
∏

Y ∈Y P (Y = y[Y ]|C = ci) where
P (Y = y) =

∑
c∈R(C) P (C = c)

∏
Y ∈Y P (Y = y[Y ]|C = c).

For learning the parameters in the NB model one needs to reason from in-
complete data as no data contains observations for C, and the standard approach
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Cluster

X1 X2 X3 Xn

X1

X2: "0" [1] "1" [0]
X3: "0" [1] "1" [0]

"1""0"

"1""0"

X5: "0" [0.5] "1" [0.5]
X4: "0" [0.5] "1" [0.5]

X1: "0" [0.67] "1" [0.33]

X3: "0" [0] "1" [1] X3: "0" [1] "1" [0]

X2

X2: "0" [0.5] "1" [0.5]

(a)NB structure (b) A simple Independency Tree

Fig. 1. Two examples of probabilistic structures for clustering

is to use EM. For estimating the optimal number of clusters (states of C) a
common approach is to use cross-validation.

Independency Trees. In [2] the Independency Tree (IT) was presented as a
model able to perform clustering and also as an approximate way for factorisa-
tion. In Fig. 1(b) we show an example of an IT model. In general, the IT model
can be interpreted as an extended probability tree [10] which introduces a new
and very important element: a list of probabilistic marginal potentials associated
to every node.

Given a leaf-node n in an IT structure, let Xn be the variables for which a
marginal potential is associated with n, then all Xn are pair-wise marginally
independent given the path to n. So, if the distribution for a given variable is
shared by all leaves in a sub-tree, it can be stored in the root of that sub-tree
for simplicity. For example, in Fig. 1(b) variables X4 and X5 are independent
w.r.t. all the rest, and that is why their distributions appear in the root node.

Then, when one variable appears in a list for a node n it means that this
distribution is common for all levels from here to a leaf, including intermediate
nodes. On the other hand, there might be distributions that vary depending on
the branch. For instance, in Fig. 1.(b) X2 distribution is different depending on
the path (left or right) taken from the root, that is if X1 = 0 or X1 = 1.

The intuition underlying this model is based on the idea that inside each clus-
ter the variables are independent. When we have a set of data, groups are defined
by common values in certain variables, while the rest of the variables may vary
independently. In an IT every cluster will be represented by a complete branch,
with an associated factorisation. For the example, three clusters have been found,
each one with a probability of 1

3 . If we look at the second branch/cluster it is
characterised by {X1 = 0, X2 = 1} + [X3 : 1.0/0.0, X4 : 0.5/0.5, X5 : 0.5/0.5]1.

3.1 The Probabilistic Decision Graph Model

A PDG encodes a joint probability distribution over a set of categorical random
variables X = {X1, . . . , Xn} by a factorisation defined by a structure over a set
of local distributions.
1 X1 to X5 are binary, Xi:p1/p2 indicates that P (Xi = 0) = p1 and P (Xi = 1) = p2.
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X0

X1

X3

X2

X4

X5

X6 X7

(a)

X0 ν0,0

X1 ν1,0 ν1,1 X2 ν2,0 ν2,1

X3 ν3,0 ν3,1 ν3,2

X4 ν4,0

X5 ν5,0 ν5,1

X6 ν6,0 ν6,1 X7 ν7,0 ν7,1

(b)

pν0,0 = P (X0) pν3,0 = P (X3|X0 = 0, X1 = 1) pν5,1 = P (X5|X4 = 0)
pν1,0 = P (X1|X0 = 0) pν3,1 = P (X3|X1 = 0) pν6,0 = P (X6|X4 = 1, X5 = 1)
pν1,1 = P (X1|X0 = 1) pν3,2 = P (X3|X0 = 1, X1 = 1) pν6,1 = P (X6|X4 = 0 ∨ {X4 = 1, X5 = 0})
pν2,0 = P (X2|X0 = 0) pν4,0 = P (X4) pν7,0 = P (X7|X4 = X5)
pν2,1 = P (X2|X0 = 1) pν5,0 = P (X5|X4 = 1) pν7,0 = P (X7|X4 �= X5)

(c)

Fig. 2. A forest F over binary variables X = {X0, . . . , X7} is shown in (a), and a
PDG-structure over X w.r.t. variable forest F is shown in (b). In the PDG-structure
in (b), solid edges are labelled with value 1 and dashed edges are labelled with value
0. In (c), we have indicated the probabilistic interpretation of the parameters for each
node in the PDG structure of (b).

Definition 1 (The PDG Structure). Let F be a forest structure over X =
{X1, . . . , Xn}. A PDG-structure G = 〈V,E〉 for X w.r.t. F is a set of rooted
acyclic directed graphs over nodes V, such that:

1. Each node ν ∈ V represents a unique Xi ∈ X and all Xi ∈ X are represented
by at least one node ν ∈ V. We will by νi,j refer to the j’th node representing
Xi under some ordering of the set of nodes representing Xi.

2. For each node νi,j, each possible state xi,h of Xi and each successor Xk ∈
chF (Xi) there exists exactly one edge (νi,j , νk,l) ∈ E with label xi,h, where
νk,l is some node representing Xk.

Let Xk ∈ chF (Xi). By succ(νi,j , Xk, xi,h) we refer to the unique node νk,l rep-
resenting Xk that is reached from νi,j by following the edge with label xi,h.

Example 1. A forest F over binary variables X = {X0, . . . , X7} can be seen in
Figure 2(a), and a PDG structure over X w.r.t. F in Figure 2(b). The labelling
of nodes in the PDG-structure is indicated in subscripts and (redundant) by
the dashed boxes, e.g., the nodes representing X2 are {ν2,0, ν2,1}. Dashed edges
correspond to edges labelled 0 and solid edges correspond to edges labelled 1,
for instance succ(ν5,0, X6, 0) = ν6,1.

A PDG structure is instantiated by assigning to every node a local probability
distribution over the variable that it represents. By a PDG model over discrete
random variables X = {X1, . . . , Xn} we refer to a pair G = 〈G, Θ〉 where G is a
PDG structure over X and Θ is an instantiation of G. We denote by pνi,j the
local distribution assigned to node νi,j , and by p

νi,j
xi,h the probability for state xi,h

in local distribution pνi,j . The semantics of the local distribution pνi,j is defined
by the path(s) leading to the node νi,j from the root, that is, how νi,j can be
reached. Let G be a PDG structure over variables X w.r.t. forest F . A node νi,j

in G is reached by x ∈ R(X) if
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– νi,j is a root in G, or
– Xi ∈ chF (Xk), νk,l is reached by x and νi,j = succ(νk,l, Xi,x[Xk]).

By reachG(Xi,x) we denote the unique node representing Xi reached by x in
PDG-structure G.

A PDG model G = 〈G, Θ〉 over variables X represents a joint distribution
P (X) by the following factorisation:

P (X = x) =
∏

Xi∈X

p
reachG(Xi,x)
x[Xi]

. (1)

Example 2. To instantiate the PDG structure in Fig. 2(b), we assign a local
distribution to each node in the structure with the probabilistic interpretation
given in Fig. 2(c). We can read some context specific independencies of this table,
e.g. X6 is independent of X5 only in the context X4 = 0.

4 Mixtures of PDG Models

In this section, we will describe our approach to probabilistic clustering using
mixtures of PDG models.

In the previous Section 3.1 we introduced the PDG model for representing
joint probability distribution over a finite set of discrete random variables. A
typical approach to probabilistic clustering is to use a mixture of models. We
propose a model that is a mixture of k PDG models by introducing a latent
variable with one categorical state for each of the k PDGs. The marginal distri-
bution of the latent variable defines the mixture of the k models. In Example 3
a specific mixture of 2 PDG models is presented.

Example 3. Consider 3 binary random variables X0, X1 and X2. Let the dis-
tribution of X2 be depending on X0 and X1, and furthermore, let the specific
dependence be governed by an unobserved random variable C such that:

P (X2|C = 0) =

{
P1(X2) if X0 and X1 have even parity,
P2(X2) otherwise.

(2)

P (X2|C = 1) =

{
P3(X2) if X0 ∧ X1 is true
P4(X2) otherwise.

(3)

The PDGs in Fig. 3(a) and (b) encodes the relations of Eq. (2) and (3) respec-
tively when solid edges ecode value 0 and dashed encode value 1. For the numer-
ical part of the models we have in Fig. 3(a): pν3 = P1(X2) and pν4 = P2(X2),
while in (b): pν3 = P3(X2) and pν4 = P4(X2). Finally, by introducing the la-
tent variable C in Fig. 3(c) we mix the two models to obtain a PDG model
representing the full domain, and prior distribution of C is specified in pν0 .

In Ex. 3 we introduced an example of a mixture over two specific PDG models.
Please note that the logical expressions as those used here (Eq. (2) and Eq. (3))
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X0 ν0

X1 ν1 ν2

X2 ν3 ν4

(a)

X0 ν0

X1 ν1 ν2

X2 ν3 ν4

(b)

C ν0

X0 ν1 ν′
1

X1 ν2 ν3 ν′
2 ν′

3

X3 ν4 ν5 ν′
4 ν′

5

(c)

Fig. 3. In all structures, solid edges represent value 0 while dashed edges represent
value 1. (a) A PDG encoding the relation in Eq. (2). (b) A PDG encoding the relation
in Eq. (3). (c) A PDG that represents a mixture of the two PDG models of (a) and
(b) through the latent variable C.

demonstrates some of the representation power of PDG models. While most
other models has structures that grow exponentially by the number of variables
included in such logical expressions, PDGs usually grow only linearly. For the
toy-example presented here the difference obviously diminishes.

4.1 Learning Mixtures of PDG Models

In order to induce a PDG mixture model from data, we will have to establish a
strategy for learning both k, a strategy for learning the variable structure to be
shared between all component models, and both parameters and local structure
of each of the k models. Lastly, the marginal distribution P (C) also needs to be
estimated.

Learning PDG models from complete data was addressed in [11], and for the
case of incomplete data in [7]. We will combine these two approaches in a new
algorithm that learns PDG mixture models.

Learning a common variable structure. The first step of our approach will in-
duce a good structure over the variables to be shared between all k mixture
component models. Here we use the approach presented in [11]. A statistical
test of independence is used to decide the best organisation of variables. Ini-
tially, marginally dependent variables are grouped together. Then, incrementally
the a tree is build for each group by inducing PDG models including more and
more variables, placing variables that are conditionally independent in different
subtrees, where the condition used in the test of independence is defined by a
partition of the state space induced by the current PDG structure. The reader
is referred to [11] for details.

Introducing the mixture. Once having learned an initial structure over the vari-
ables (as described above), we continue by adding a latent variable C to the
model with k = 1 states, R(C) = {c0}. One outgoing edge with label c0 is con-
nected to each of the roots of the PDG structure induced in the first step. We
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X ν1

Y ν2 ν3 ν4

(a)

C ν0

X ν1 ν′
1

Y ν2 ν3 ν4 ν′
2

(b)

C ν0

X ν1 ν′
1

Y ν2 ν3 ν4 ν′
2 ν′

3 ν′
4

(c)

Fig. 4. (a) An inital model learned without latent variable. (b) The initialisation of
the mixture by adding latent variable C to the model and extending the model with a
new component by method 1. (c) Equivalent to (b) but method 2 is used for extending
with a new component.

then extend C by adding one new state (incrementing k by one) and optimise
structure and parameters by the structural-EM. If the likelihood of a separate
hold-out dataset was increased by incrementing k, we loop and increment k once
more.

Incrementing k. We consider two different strategies for introducing a new latent
state.

1. We can extend the model with a new parameter node for each non-latent
variable in the model. These new nodes are connected linearly without fur-
ther bifurcations, and the edge labelled ck+1 is connected to the new root.

2. We can extend the model with a copy of the subtree(s) corresponding to an
existing latent state ci, 1 < i ≤ k. We choose the latent state with highest
prior probability.

After extending the latent variable with a new variable state, splitting and
merging is performed to refine the model. In Ex. 4 we give examples of the two
methods listed above.

Example 4. Fig. 4(a) shows an initial PDG structure over two random variables
X and Y . In Fig. 4(b) the latent variable C is added and a new latent state
is initialise by method 1, that is, using a single new node for each variable. In
Fig. 4(c) we show the structure resulting from initialising the new latent state
by method 2, that is, using a copy of one of the existing subtrees.

When incrementing k, the new marginal probability pν0
ck+1

= P (C = ck+1) is ini-
tialised to 1

k+1 , and the existing probabilities of the old k states pν
i : 1 < i ≤ kare

scaled accordingly by a factor k
k+1 . For the new parameter nodes created for

each of the variables in the domain, the initialisation depends on the method
we used for creating them (the two described above). When using method 1,
the new parameter node for variable X is initialised by either using the relative
frequency (empirical marginal distribution) P̂ (X). When using method 2, the
parameters are copied from the relevant sub-tree. We then draw a data instance
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d at random from the data set used for training, and use this as the “centre” of
the new cluster, hence, we want to increase the probability assigned to d given
the new cluster, P (X = d|C = ck+1). This achieved by tuning parameter pν

where ν represents X and reach(X, {d, ck+1}) = ν as follows:

pν
xi

←
{ 1.1+0.1pν

xi

1.1 if d[X ] = xi, and
0.1pν

xi

1.1 otherwise.
(4)

We finally arrive at framework presented as Algorithm 1. Please note that in
line 3 we optimise the BIC score of the model using the score+search method
presented in [11]. In this method the score of a model is optimised by iteratively
splitting and merging parameternodes in a given structure. In lines 4 and 8 we use
the structural-EM approach of [7] optimising the expected BIC score. Basically,
this approach uses the same operators (split and merge of parameternodes) but
uses expected score instead of actual score as the actual score is not tractable
to compute in the precense of missing values. Finally, in lines 4 and 7 we need
to choose either method 1 or 2 for extending the latent variable, yielding two
different versions of the algorithm.

Algorithm 1.
1: procedure LearnMixtureOfPDGs(D)
2: Divide D into Dv being random sample of 10% of D and Dt = D \ Dv .
3: Learn PDG G from Dt .
4: Initialise mixture G0 from G, and optimise G0 by structural-EM and Dt .
5: k ← 0.
6: repeat
7: Gk+1 ← {Gk extended with 1 latent state}.
8: Optimise Gk+1 by structural-EM and Dt.
9: k ← k + 1.
10: until P (Dv |Gk) < P (Dv |Gk−1)
11: return Gk−1.

5 Empirical Evaluation

In this section we perform a comparative analysis based on experimentation
on 10 datasets. The Exclusive dataset is a dataset that is artificially generated
from a boolean formula containing 5 boolean variables. Three of the variables
are dependent such that one of them always assumes the value true while the
other two assumes false. The last two variables are independent. The TicTacToe
dataset is taken from the USI repository[12], and encodes the complete set of
possible board configurations at the end of tic-tac-toe games. The Greenhouse
datasets belong to data obtained when analysing an important economical factor
in the south-east of Spain, greenhousing production at Almeŕıa. Some of these
datasets were studied in [13] by using Bayesian networks. The Sheep datasets are
historical data of sheep and has previously been used to analyse genetic merit
for milk production[14]. The PDG-mixture data is a dataset artificially generated
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Table 1. Datasets used in the empirical evaluation

Id Name # Vars size train size test
1 Exclusive 5 48 24
2 TicTacToe 9 641 317
3A Greenhouse-A 8 830 410
3B Greenhouse-B 17 981 484
3C Greenhouse-C 33 883 435
3D Greenhouse-D 6 1026 506
3E Greenhouse-E 6 981 484
4A Sheep-A 24 2068 1019
4B Sheep-B 23 2068 1019
5 PDG-mixture 3 1000 500
6 NB 5 1000 500
7 IT 6 1000 500

Table 2. Results of Independency Tree (IT) learning, Näıve Bayes (NB) learning
and the mixture of PDG models, the mixt-PDG-1 and mixt-PDG-2 columns refers to
variation 1 and 2 of Alg. 1, respectively. The table contain log-likelihood (LL) of the
learnt model measured over a separate test dataset, the number of clusters identified by
the model (C), and the size of the model (S) measured in the number of independent
parameters the model contains.

IT NB mixt-PDG-1 mixt-PDG-2
Id LL C S LL C S LL C S LL C S
1 -2.5481 3 8 -2.7920 3 17 -2.6942 4 16 -2.6383 4 17
2 -9.3111 5 78 -9.4090 2 37 -9.2862 7 308 -9.4228 3 396
3A -6.3433 18 392 -6.3760 6 221 -6.3487 4 326 -6.2743 3 501
3B -7.5005 7 214 -7.3797 4 151 -7.4285 5 332 -7.4957 3 604
3C -17.0196 16 1270 -16.7899 10 1059 -16.8512 10 1345 -16.8505 11 6905
3D -5.0027 6 96 -5.0174 5 124 -5.0191 3 166 -5.0609 3 262
3E -5.6823 8 152 -5.6948 5 134 -5.7372 4 224 -5.7250 4 378
4A -19.7172 63 3526 -19.7393 13 948 -19.3950 10 2163 -18.8837 6 7367
4B -18.8637 53 2835 -18.4460 24 1679 -19.1973 6 1736 -18.8946 8 7852
5 -2.7918 7 22 -2.8033 7 48 -2.7976 3 32 -2.7943 3 40
6 -2.3400 4 14 -2.3440 2 11 -2.7526 4 31 -2.7528 5 46
7 -3.2364 3 12 -3.2768 2 13 -3.2541 4 32 -3.2592 3 29

from a mixture of 3 PDG models. The NB dataset has been sampled from a NB
model with 3 latent states and 5 observable variables. Finally, the IT dataset
was sampled from a IT model defining 3 clusters over 6 random variables. A
brief description of the datasets can be found in table 1.

For learning IT models from the databases in Tab. 1, we have used the method
presented in [2]. NB models was learnt using the Weka[15] system, using default
settings of EM. When establishing the number of clusters, Weka uses cross-
validation. The mixture of PDG models was learned using the algorithm dis-
cussed in Section 4.1.

In Tab. 2 we have listed log-likelihood (LL) for the learnt models measured
over the test data which is a special separate dataset only brought in after the
learning process to assess the quality of the learnt model. In Tab. 2 we also list the
number of clusters (C) identified by the models and the size (S) of the models
measured in the number of independent parameters defined by the respective
models.
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6 Discussion

We have compared the four algorithms over the ten datasets by using non-
parametric Wilcoxon paired Signed-Ranks Test (α=0.05). From this statistical
study we are in a position to say that the four models perform equally well
in terms of log-likelihood but that some significant differences appear in the
other two studied parameters (size and clusters). Clearly, IT produces a greater
number of clusters than NB and both PDGs, but no significant difference is
obtained when comparing pairwise NB, mixt-PDG-1 and mixt-PDG-2. However,
the average number of clusters identified are 6.92 for NB, 5.33 for mixt-PDG-1
and 4.67 for mixt-PDG-2, which we find quite remarkable. With respect to size,
there is no surprise, and the simplicity of NB makes it statistically superior in
this parameter with respect to PDG models, and almost statistically superior (p-
value = 0.0639) with respect to IT (average number of parameters is 370 (NB) vs
718 (IT)). There exist also statistically difference between PDG-2 and the other
three models, indicating that PDG-2 is the model needing more parameters.
Finally, no statistical difference appear between PDG-1 and IT, although PDG-
1 needs 23% fewer parameters than IT.

Having done this general comparison, we continue with the analysis of the
behaviour of the algorithms in some particularly interesting cases. Thus, when
investigating the number of clusters identified by the different models, one inter-
esting behaviour is evident. Both the IT and NB models uses many more clusters
to model the Sheep domains than does the mixture of PDG models. This is inter-
esting with respect to the practical use of the model for clustering, where usually
a smaller number of clusters is preferable as it may be easier to assign meaning-
ful semantics to each cluster. The two databases Sheep-A and Sheep-B differs
only in that Sheep-A includes a variable that represents the breeding value of
the sheep, while Sheep-B excludes this variable. Following domain experts (the
shepherds), this variable can naturally be used as a classification of the given
sheep into 4 different classes (the 4 possible values of this variable). For Sheep-B
we see that the IT model identifies 53 clusters, NB identifies 24 while our mixt-
PDG-1 and mixt-PDG-2 approaches identify only 6 and 8 clusters respectively,
though with a somewhat lower score in likelihood.

Finally, investigating the datasets 5, 6 and 7, sampled from a mixture of PDGs,
a NB and an IT respectively, we find one surprise: IT scores higher likelihood
than both PDGs and NBs on all three datasets. We expected each model to
provide the closest representation of data sampled from that exact model type.
However, when investigating the number of clusters identified we see that for
dataset 5 only PDG approaches identifies the correct number of clusters. For
dataset 6 non of the methods identifies the correct number of clusters, and
finally for dataset 7 both IT and mixt-PDG-2.

7 Conclusion

In this paper we have shown how the PDG model can be used in data clustering
by extending the model with a latent variable, yielding a mixture of PDG models.
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We have shown how to induce such models from data using EM and score based
model-selection. Using two variations over the framework for induction of PDG
mixtures, we have shown our proposal to be competitive with IT and NB model
approaches, the latter being a standard technique in probabilistic clustering. On
average, the PDG based approach identifies fewer numbers of clusters than both
IT and NB, though non of the differences are statistically significant.
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Abstract. The paper deals with an application of clustering we used as one of 
data reduction methods included in processing huge amount of video data pro-
vided for TRECVid evaluations. The problem we solved by means of clustering 
was to partition the local feature descriptors space so that thousands of  
partitions represent visual words, which may be effectively employed in video 
retrieval using classical information retrieval techniques. It has proved that 
well-known algorithms as K-means do not work well in this task or their com-
putational complexity is too high. Therefore we developed a simple clustering 
method (referred to as MLD) that partitions the high-dimensional feature space 
incrementally in one to two database scans. The paper describes the problem of 
video retrieval and the role of clustering in the process, the MLD method and 
experiments focused on comparison with other clustering methods in the video 
retrieval application context.  

Keywords: Incremental clustering, MLD, Leader, ART, video retrieval, feature 
extraction, SURF, MSER, SIFT, cosine distance. 

1   Introduction 

Currently, the amount of multimedia data stored in repositories or processed as 
streams is rapidly increasing. This data is an important source of potentially useful 
information. There are two important and required operations on video data – content-
based retrieval and high-level feature extraction. The objective of content-based re-
trieval in video, also known as video search is to retrieve effectively and accurately 
key frames and shots containing particular objects or events. High-level feature ex-
traction in video is a classification of shots to classes of concepts that should reflect as 
most as possible the human perception of presence or absence of concepts in the 
frame. Examples of concepts are a person, a group of people, a hand, telephone or 
a bus driver. 

An activity the aim of which is to compare methods and techniques related to video 
retrieval is the TREC Video Retrieval Evaluation (TRECVid). It is a series of confer-
ences sponsored by the National Institute of Standards and Technology (NIST). The 
main goal of TRECVid is to promote progress in content-based analysis and retrieval 
from digital video via open, metrics-based evaluation. TRECVid is a laboratory-style 
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evaluation that attempts to model real world situations or significant component tasks 
involved in such situations. It is also a forum for presentation and communication 
between the participants [17]. Automatic video retrieval plays the pivotal role of 
TRECVid evaluations. The task models a work of somebody looking for segments of 
video containing persons, objects or events of interest - the goal is to find shots of the 
video which best satisfy a given multimedia query. The query could have a form of a 
reference to an image (as in figure 1) or a reference to a video clip (e.g. people enter-
ing a vehicle). Both are supplemented with a brief textual clarification as “Find shots 
of a president entering or leaving a vehicle (e.g., car, airplane, helicopter), he and the 
vehicle both visible at the same time.” 

The video search task is considered to be hard. The procedure is based on the 
automatic extraction of low-level features, usually based on visual properties of video 
frames. The metadata representing a content of a frame or its region is referred to as 
feature vector. The video search can be based on finding the most similar feature 
vectors – similarity search task. Or it can be based on relations to high-level concepts. 
In such a case the low-level feature vectors classify to high-level concept classes. 

The main problem of the task is enormous amount of video data and of low-level 
feature vectors derived from them. For example, the data sets provided to participants 
for purposes of methods development and testing for TRECVid 2008 evaluation con-
tained 438 videos, which took about 120GB. There were extracted about 74 million 
low-level feature vectors. The metadata database size to be searched was more than 
100 GB. Under these conditions it is practically unfeasible to search this data directly, 
even with support of indexing. Therefore, it is necessary to apply appropriate reduc-
tion methods - clustering of local feature vectors to find a set of classes (visual 
words), referred to as a visual vocabulary. Then low-level feature vectors are replaced 
with vectors representing the occurrence of the visual words in video frames, simi-
larly as words in text documents [16]. This allows us to use text retrieval techniques 
[2] and to perform the video search in tenths of seconds. 

 

 

Fig. 1. An example of a successful retrieval of an image query (the top one) 
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Though, we had to cope with several problems related to the clustering itself. First, 
the data set is very large and also the data dimensionality is high. Second, this cluster-
ing task is specific in that the data objects we need to cluster are similar to each other 
and they cover the feature space almost continuously. As a result, it is difficult to find 
a division of the elements to very high number of clusters, which would correspond to 
the classical idea of a sufficiently large aggregations separated by an empty (or low 
density) space [19]. We tried several common clustering methods but they failed 
either because of their computational complexity or their inability to create an appro-
priate number of clusters. Thus we developed a simplified method we named later 
MLD (Modified LeaDer), according to Hartigan’s Leader principle published in 1975 
[5] and later used in BIRCH, DBSCAN or ART [19]. 

The reminder of the paper is organized as follows: Section 2 describes in more de-
tails the process of video retrieval, including a brief introduction to techniques and 
data formats that we used. Section 3 summarizes the state of the art in clustering large 
data sets of high-dimensional data. The MLD method is presented in Section 4. Ex-
periments are described and results discussed in Section 5. Finally, Section 6 presents 
conclusions and future research issues. 

2   Video Retrieval Based on Local Features 

The goal of the video retrieval is to retrieve information contained in the video in 
a way as close as possible to the human perception. The content-based retrieval based 
on high-level semantic concepts suffers both from subjectivity of the human percep-
tion and the absence of effective methods. For example, the best automatic search 
system on TRECVid 2008 returned on average 1 or 2 of the top 10 shots containing 
the desired information [17]. This even has not been improved by a human-assisted 
query reformulation, but only by intensive and interactive assistance. 

In general, the video retrieval is based on similarity search in a database containing 
the video metadata. A video query has a form of an example – a multimedia object 
(image, image video, sound) from which visual or high-level conceptual features are 
extracted. The features are then compared to the features in the database that represent 
objects in video. The objects represented in the database by the most similar features 
are selected as a result of the query.  

Feature extraction is an automated process of extracting structured information 
from the unstructured, both representing the same object. Its output is a feature vector 
describing the object. In our case, the object is a multimedia shot – a sequence of 
frames between two cuts. The shot may be represented by several keyframes, camera 
and object motion or by speech and sound. The paper deals only with visual features. 
They can be either global - concerning the whole video frame (e.g. color histograms, 
layout or an amount of motion), or local – concerning regions in a frame. Video 
search based on local feature descriptors currently seems to outperform other ap-
proaches [17].  

Local features represent visual objects as a compound of statistically interesting 
regions as points, edges or homogenous regions (in color) [12]. The local feature 
extraction process consists of two steps – detection of remarkable objects in images 
and their description. The main property of these steps is the repeatability – an ability 
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to detect and describe the same object uniformly under various fotometric, geometric 
conditions and noise. We have employed two types of detectors and descriptors.  

Maximaly Stable Extremal Regions (MSER, [10]) is used to find connected 
components of a tresholded image to be maximally stable. Here the ‘extremal’ means 
that pixels inside are lighter or darker than the surroundings. For description of these 
regions we use Scale Invariant Feature Transform (SIFT, [10]). SIFT captures 
information about (an eliptical) region using histogram of localy oriented gradients 
[18] (8 orientations, 4x4 locations), thus the feature vector is 128-dimensional. The 
second technique we use is the Speeded Up Robust Features (SURF, [1]) for region 
detection, based on the computation of determinant of Hessian matrix (second partial 
derivations) of an integral (summarized) image. Moreover it describes the region 
using Haar Wavelet Transform [18], similarly to SIFT. These regions are illustrated in 
figure 3. 

If a multimedia object is represented by many (thousands) local feature vectors, 
their processing, storing and similarity search are time and space consuming. This 
problem solved as the first Josef Sivic in 2003 [16] by clustering high-dimensional 
local vectors into a large number (thousands to hundreds of thousands) classes and 
treated them as visual words to be searched in multimedia documents using informa-
tion retrieval (IR) methods [2]. We applied this approach too. 

The process consists of four basic steps, as illustrated in figure 2. Local visual 
features are extracted from objects (video frames) first. Each local feature is 
represented by a 128-bit feature vector. Then the clustering is applied to discover 
clusters representing visual words. The set of visual words forms a visual vocabulary 
and the more words the better [14]. Each shot is represented by a weighted vector, 
which we call document vector (in analogy to IR terminonogy [2]). We use Term 
Frequency–Inverse Document Frequency (TF – IDF) weighting: 

tf-idf(w) = tf(w)idf(w), where ⎟
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where |d| is the number of words in a document d, |d(w)| is number of occurences of 
a word w in d, D is a document database and D(w) means all documents containg 
word w [2]. Weighted document vectors are indexed using the Generalized Inverted 
Index (GIN, [15]), which is an effective implementation of a structure holding pairs of 
keys (words) and pointers to the documents containing them. 

Same procedure is applied to the visual query – local visual features are extracted, 
classified by means of the visual vocabulary and the weighted document vector 
representing the query is created. Finally, the database si searched and the most 
similar document vectors are selected. They identify the visual documents most 
similar to the query. We use the Cosine distance r as a similarity measure of the query 
document vector dq to any document dd in the database: 
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Fig. 2. The visual document retrieval process 

3   Clustering of Large Data Sets of High-Dimensional Data 

We have already mentioned in the Introduction that there are four main problems 
related to the clustering of local feature vectors: 

 

• The large number of vectors (order of 107) 
• The high dimensionality (more than 100) 
• The large number of clusters required to represent visual words (104 to 106) 
• Nearly uniform distribution of the vectors in some subspace contra outliers. 
 

Most of clustering algorithms which are often used in other application domains 
are not suitable for these conditions. Table 8.1 on page 214 in [19] summarizes com-
putational complexity of clustering algorithms. Classical hierarchical algorithms are 
not appropriate for clustering large-scale data because of their quadratic time and 
space complexity. Well-known and often used the K-means algorithm has time com-
plexity O(NKdT) where N is number of vectors, K is number of clusters, d is dimen-
sionality and T is the number of iterations. Its time and space complexity is linear to 
the number of vectors but it also grows linearly with dimensionality and with the 
number of clusters. In our case the product Kd gives the value of the order close to the 
order of N. There are modifications of the K-means algorithm that employ a kd-tree to 
speed up the access to centroids [8], [13] but the problems of high dimensionality and 
large number of clusters remain. 

There are several approaches to cope with large scale data, which include [19]: 
 

• Random sampling – a random sample of original data is used instead of the entire 
data set. The minimum size of the sample can be estimated by using Chernoff 
bounds. We can apply this principle in MLD method by interrupting its first step as 
described in chapter 4. 

• Data condensation – the clustering algorithm works with calculated summary sta-
tistics instead of the entire data set. A representative of this approach is the algo-
rithm BIRCH [20] that we used in experimental evaluation described in section 5. 
Our algorithm is based on this principle. 

• Density-based approach – relies on the density of data points in the data set. The 
representative of this and the following approach is DBSCAN [4]. However, 
a relatively uniform distribution of the data is a problem when joining clusters. 
MLD separates clusters based on the density (outliers). 
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• Grid-based approach – uses a grid to partition a data space at different resolution 
levels. The clustering algorithm then usually applies data condensation and den-
sity-based approaches to find clusters.  

• Divide and conquer – approach that divides a data set into several subsets that can 
fit to the main memory and does clustering separately on the subsets. After that it 
merges these partial results to get the final result. The reverse (top-down) principle 
is employed in [14] for visual object retrieval. MLD is capable of data division. 

• Incremental learning – in this approach clusters are built incrementally. In addition, 
an algorithm based on Adaptive Resonance Theory (ART) [Hudík] is another algo-
rithm used in the experimental evaluation. MLD is of this type. 

• Common approach that allows coping with large data is parallelization. A parallel 
data-clustering tool, P-CLUSTER, designed to execute on a network of worksta-
tions, is described in [7]. MLD is capable of parallelization. 

 

Because of unsatisfactory results of several mentioned methods that we tried, we 
developed a simplified clustering method. The MLD method is similar to the Leader 
algorithm [5] (as we found out later), but this partitioning strategy is similar to [20], 
[4] and [6]. It is described in the next section. 

4   The MLD Clustering Method 

The method requires one (if summarized information is sufficient) or two passes over 
data set containing feature vectors extracted from video frames. Our goal was to de-
velop a method able to cope with problems mentioned in the previous section. In 
addition, we aimed to meet some of requirements specified by Bradley et al. for their 
scalable framework for large-scale data clustering [3]. We have focused on minimiz-
ing the number of database scans and the possibility of early termination if appropri-
ate; ability to incrementally incorporate additional data; utilization of variety of  
possible scan modes and on ability to operate on forward-only cursor over a view of 
the database. 

The method has three basic steps (third is optional). Representatives of candidate 
clusters are selected during the first step. Let mindistance be a minimum distance of two 
representatives of two clusters. Feature vectors are processed sequentially. Let fvi be a 
feature vector being processed, Clusters be a set of candidate clusters ccj represented by 
representative feature vectors fvj (j = 1, 2, ..., ||Clusters||) selected so far. In addition, 
distance(fvk, fvl) be a distance of two feature vectors fvk and fvl in the feature space. Then 
fvi becomes a representative feature vector of a new candidate cluster cci if 

min{distance(fvi − fvj), j = 1, 2, ..., ||Clusters||, i ≠ j} > mindistance (3)

We will use a SQL-like pseudocode to describe the three steps more formally. Let 
fvectors(vector_id, vector, cluster), clusters(cluster_id, vector, n_vectors) be two 
database tables containing data of feature vectors and clusters, respectively. In the 
fvector relation, the attribute vector_id is an identificator of a feature vector, vector is 
the feature vector itself and cluster identifies a cluster which the feature vector be-
longs to. In the clusters relation, the attribute cluster_id is an identificator of a cluster, 
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rvector is a representative feature vector of the cluster and n_vectors is the number of 
feature vectors assigned to the cluster. 

The pseudocode for the first step of the MLD method could be the following: 

 for each ( SELECT f.vector_id, f.vector  
           FROM fvectors as f ) { 
   SELECT c.cluster_id,  
          distance( f.vector, c.vector ) AS dist 
   FROM clusters AS c 
   ORDER BY dist LIMIT 1; 
   if ( dist > mindistance ) 
      INSERT INTO clusters  
      VALUES ( next(cluster_id), f.vector, 1 ); 

    else 
      UPDATE clusters SET n_vectors += 1 
      WHERE cluster_id = c.cluster_id 
}; 

The first step requires the first database scan (the table fvectors). The number of 
clusters is much lower; therefore we ignore the time of the scan of the clusters table. 
Thus, it can be well parallelized except the situation, when a new cluster is detected 
(minor database load). If running in parallel, there is additionally a summarization of 
feature vectors count (from the local copy) at the end. 

This step scan can be terminated and the threshold mindistance changed if the 
number candidate clusters seems to be too high or too low with respect to the number 
of required classes, i.e. visual words. Other (recommended) possibility is to count (in 
parallel) more minimum distance thresholds during the only database scan. 

The objective of the second step, which is performed after the first step is com-
pleted, is to exclude candidate clusters the density of which is low (represent outliers 
or visual words that appear very rarely). Let minvectors be a threshold for the mini-
mum number of feature vectors in a cluster, maxclusters be a maximum number of 
clusters and Nccj be the number of feature vectors in a candidate cluster ccj. Then 
a candidate cluster ccj becomes a final cluster cj if it contains at least minvectors fea-
ture vectors and belongs to the maxclusters number of clusters with the highest  
density: 

Nccj ≥ minvectors  and ||{cci | Ncci > Nccj }|| < maxclusters (4)

The pseudocode for the second step could be: 

DELETE FROM clusters  
WHERE n_vectors < minvectors 
   OR 
   cluster_id NOT IN ( 
      SELECT cluster_id FROM clusters 

      ORDER BY n_vectors DESC LIMIT maxclusters ); 
 

The minvectors and maxclusters thresholds allow controlling the number of clus-
ters during the second step. However, in comparison to other methods, these pa-
rameters can be determined easily upon the process using pre-counted aggregate 
candidate clusters information - using the distribution of items in candidate clusters. 
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For example, a graph of candidate cluster count dependency on minvectors or max-
clusters or both can help to determine these values intuitively. 

The third step assigns feature vectors that have not yet been assigned to clusters (if 
needed). The feature is assigned to a cluster whose representative feature vector is the 
closest – the third step requires another database scan, but it can be well parallelized. 
As a result, the feature space is partitioned as a Voronoi tessellation. The pseudocode 
of the step could be the following: 

for each ( SELECT f.vector_id, f.vector  
           FROM fvectors as f ) { 
   SELECT c.cluster_id,  
          distance(f.vector, c.vector) AS dist 
   FROM clusters AS c 
   ORDER BY dist LIMIT 1; 
   UPDATE fvectors SET cluster=c.cluster_id  
   WHERE vector_id = f.vector_id; 
}; 

The number of feature vectors Ncj in a cluster cj represented by a feature vector fvj 
and some other summary statistics (e.g. centroid and standard deviation) of the cluster 
cj are also calculated and stored during the third step. They can be used later to find 
medoids, to apply other clustering algorithms on condensed clusters etc. 

5   Evaluation 

For the experimental evaluation of the MLD method and its comparison, we chose K-
means, K-medoids, DBSCAN, BIRCH and ART algorithms [19]. The input datasets 
contained the local feature vectors extracted from the frames of the first five videos 
from the TRECVid 2008 developmental video keyframes sets. We had two data sets 
named here SURF and SIFT/MSER with respect to the applied feature extraction 
technique. 

The dimensionality of feature vectors was 128 for both techniques. The domain of 
each dimension was quantized to an interval 0 .. 255. The standard deviation of values 
in the dimensions was between 40 and 60 for both techniques, independently on the 
video being processed. The number of shots in the videos was 1,765. For the sake of 
simplicity, each shot was represented by one (middle) frame in our experiments. 
There was detected up to 1 000 regions of interest in each frame. As a result we got 
179,000 SIFT/MSER and 302,000 SURF feature vectors (more than 62 and 109 MB 
in plain text; 223 and 367 MB in the database).  

We used post-relational database PostgreSQL [15], feature vectors were stored as 
integer fields (Int32 []). K-means and DBSCAN implementation come from an excel-
lent machine learning tool RapidMiner [11]. There are implemented all common 
techniques of machine learning – both supervised and unsupervised. The ART 
method has been implemented by Tomas Hurdik [6] and we have our own implemen-
tation of BIRCH. All the methods run at 2x AMD Opteron (2 cores 2.8GHz), 8GB 
RAM 4TB RAID-5 machine with single PostgreSQL database. 
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Table 1. Methods comparison - the number of created classes and the execution time [hours] 

MSER/SIFT SURF Setup 
Classes Duration Classes  Duration  

100 classes 100 18:36 100 15:20 
Method 

1000 classes 0 >> 500 0 >> 320 
100 classes 100 550 100 296 

BIRCH 
1000 classes 0 >> 500 0 >> 500 

DBSCAN E 1-512 1 >> 320 1 >> 320 
ART V 0.0001-0.8 74 000 17:38 302 000 138 

D 128 11 257 8:05 50 594 6:11 
D 256 21 776 5:45 44 0:03 MLD 
D 512 24 0:02 1 0:02 

 
 

We have performed three kinds of experiments. The first one was focused on time 
complexity of the methods and the ability to find number of classes large enough to 
represent a visual word vocabulary. The results are summarized in table 1. The Setup 
column shows the values of main method parameters, values in the column Classes 
denote the number of classes created and values in Duration the time consumed, re-
spectively. The value 0 in Classes indicates that the method hasn’t finished in time 
mentioned in column Duration. 

Table 1 also shows the scalability of compared methods for the required amount of 
data while maintaining a reasonable performance. For comparison, in [16] are refer-
ences to innovated K-means methods, which both referred to as working with up to 
one million vectors or 5 000 classes in [14] as their maximum (except the divide and 
conquer strategy, which results doesn’t fit in our servers memory). In our case, even 
with the reduced (1%) data set, the RapidMiner implementation of K-means (and K-
medoids) consumed 1.9GB of memory. This makes these methods definitely unusable 
on large data sets, which is concluded in chapter 6. In addition, K-means do not con-
verge well (there is no K-medoids in table 1, because it has similar results). 

The DBSCAN method has two compound disadvantages in comparison to “an 
ideal method”. The first is setting the Epsilon (or maximum distance, E in table 1) too 
high, resulting in the only class created. Second is setting it lower, then the calculation 
lasted a very long time that, which was caused by many neighborhood searches.  

BIRCH seemed to satisfy us first; however the weakest link is the final hierarchical 
clustering of the produced CF-tree. The problem is that the tree was not shaped cor-
rectly using these datasets and the hierarchical clustering method had not enough 
information about hierarchies - there were just about 2% of generated classes in dif-
ferent levels and thus it degraded to simple K-means.  

As the best alternative method, we found ART [6]. However, setting up the three 
parameters: Vigilance (V in the table 1), Alpha and Beta and using the trial and error 
method to acquaint the serious number of classes is a burden task. We tried it and 
with the MSER/SIFT dataset we were lucky in contrast to the SIFT dataset. However 
even for MSER/SIFT, the ART method didn’t converge - at each pass (60-100th) it 
was replaced about 40% of objects in different classes, we expected 5% only.  

The MLD method gave us good results. In the table 1 D next to the MLD method 
refers to the mindistance measure. Moreover, we have proved that out method can 
cluster 25 and 38 million vectors in less than 100 hours and it can create  thousands of 
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clusters consuming about 100MB of memory (both the client and server side except 
the caches) without any parallelization. However, there might be objections to the 
quality of created classes.  

Thus we have also performed tests according to the Quality measure [9]:  

 ∑ ∑
∈ ∈Ki Nj

iji

ci

fvcentroiddistance
..1 ..1

),(  (5)

where centroidi is the centroid of a cluster or the medoid, depending on the method. 
We found out, that the Quality measure depends most on the number of classes. For 
instance the “best” (0) Quality was achieved clustering SURF dataset using ART to 
302 000 classes (which is the count of all objects). Moreover, all methods have very 
similar Quality (~106) while analyzing thousands of clusters, so we don’t present an 
extensive overview table. 

Thus, the only experiment, how to validate the clusters quality is human assess-
ment of the retrieval process, similarly to TRECVid [17], which is summarized in the 
following figure 3. The three graphs there show the ratio of first 50 retrieved docu-
ments (Positive) to the relevant documents (True Positive). A retrieved document was 
 

 

 

Fig. 3. The retrieval performance analysis of three queries (a) – Face, Visible Text and Crowd, 
extracted local features using SURF (b) and retrieval performance (c) of MLD and K-means 
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assessed relevant if it contained the high-level concept present in the query image 
(selected randomly, but having a human-recognizable concept): Face – at least one 
face recognizable; Text visible in a shot; and Crowd – four or more people together.  

6   Conclusions 

In brief, we have developed an incremental clustering technique suitable for cluster-
ing large datasets of high dimensional data when a large number of clusters is ex-
pected, later called MLD.  

We have successfully tested properties of the method on local feature descriptors 
reduction into visual words used for video retrieval. The advantage of MLD lies in the 
stream-like data processing, a simple parallelization and effective outliner elimina-
tion. In addition, it is possible to stop execution and restart it with changed parameter 
(mindistance) in an early stage if the values of parameters seem to be inappropriate. In 
fact, several instances of the method can be executed simultaneously with different 
minimal cluster distances. Moreover, the number of clusters and the minimal cluster 
cardinality can be discovered easily using simple aggregate queries. 

Although the method includes only one optimization step, the result seems to be 
good in the context of the visual-word-based video retrieval. We have tested several 
other methods, but and none of them provided better results if we consider time and 
space complexity, ability to create large number of clusters and subjective assessment 
of the result of video retrieval on the tested data set. Based on our experiments, we 
summarize in table 2 our recommendations for clustering large data sets of high-
dimensional data when a large number of clusters are expected. The second best 
method we consider ART, but its result requires a lot of try-error parameter settings.  

Our future research will be focused on more in-depth evaluation of the quality of 
the clusters measured in the context of this specific domain, fuzzy clustering and 
adaptation of semi-supervised learning and OLAP principles in clustering. 

 

Table 2. Methods recommendations based on the theory and our experiments 

                           Recommendations Method Complexity 
(theoretical) Large dataset High dimension Many clusters 

k-Means O(NKd) No Yes No 
DBSCAN O(NlogNd) No No Yes 
BIRCH O(Nd) Yes Yes No 
ART O(Nd) Yes Yes Hard 
MLD O(Nd) Yes Yes Yes 
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Abstract. Extracting interesting information from large unstructured
document sets is a time consuming task. In this paper, we describe an
approach to analyze the temporal trends of a given topic in a time-
stamped document set based on time series segmentation. We consider
topics containing multiple keywords and use a fuzzy set based method
to compute a numeric value to measure the relevance of a document set
to the given topic. The measure of relevance is then used to assign a
discrepancy score to a segmentation of the time period associated with
the document set. The discrepancy score of a segmentation represents
the likelihood of the topic across all segments in a segmentation. Given
a user specified value k, we then define a min different k segmentation
to capture the k-segmentation with the maximum possible discrepancy
score and describe a dynamic-programming based algorithm to compute
it. The proposed approach is illustrated by several experiments using a
subset of the TDT-Pilot Corpus data set. Our experiments show that
the min difference k segmentation successfully highlights the temporal
trends of a topic using k segments.

Keywords: Temporal Text Mining, Temporal Segmentation, Topics,
Fuzzy sets.

1 Introduction

Unstructured data is pervasive in the information age. The time stamp associ-
ated with each document in a stream of text, such as news articles, blogs, emails
and so on, can be used to extract information of different topics and their tem-
poral progression. Temporal text segmentation is aimed to find such temporal
patterns and is important for many natural language processing tasks, including
information retrieval [6], summarization [12], and other analysis [11].

The activity related to a topic/event may be different in different time inter-
vals. Identifying these different periods of activity related to a topic may provide
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rich and useful information [3,4,8,16]. To analyze the temporal trends of the ac-
tivity surrounding a topic, a typical process measures the information related to
a topic in each hour/day/month in the time period and construct a time series
of these numeric values. Visualizing or processing this time series further can
be then be used to identify temporal trends. It has been well-recognized that a
time series of values recorded at fine-grained intervals such as an hour or a day
includes too many values, much of which could be noise. Therefore, analyzing
for trends at the fine-grained level may be unnecessary or time consuming. Time
series segmentation is a well-known technique for removing noise from a time
series so that temporal information such as trends can be more readily identified.
Time series segmentation combines consecutive time points into segments while
replacing the measured values at each of these time points with a single value.
The single value at the segment is typically computed as a function of the values
at each of the time points.

In this paper, we discuss an approach for identifying the temporal trends of a
given topic from a set of time stamped documents based on temporal segmenta-
tion. We assume that we are given a time stamped document set published over
a time period, which is a list of time points. A time point is a unit of time such
as an hour, day, month, etc. We define a topic as a list of one or keywords and
associated weights. We use the fuzzy set theory to compute the relevance of a set
of documents to the topic as a numeric value. We use a variation of the temporal
scan statistic to capture the likelihood of a topic in a time point/interval. In our
earlier work [3,4], we used the temporal scan statistic (http://www.satscan.org)
to identify hot spots of a topic; i.e., the intervals where there is a burst of ac-
tivity surrounding the topic. Scan statistics are well established for identifying
clusters in temporal, spatial, as well as spatio-temporal data in fields such as
epidemiology and astronomy.

A segmentation of a time period simply divides the time period into a de-
sired number of segments specified by the user. The number k of segments in a
segmentation is typically much smaller compared to the number of time points
in the time period. We assign a value called the discrepancy score to each
segmentation which measures the likelihood of a topic across all segments in a
segmentation. We prove that the segmentation where each segment contains a
single time point has the highest discrepancy score and hence captures the likeli-
hood of the topic entirely. However, a user may desire a segmentation containing
only a few segments, say k. Then, we define the min-difference k segmentation
problem which constructs a segmentation containing k segments such that the
difference between the discrepancy score of the k segmentation and that of the
finest segmentation is minimum. We describe a dynamic programming based
algorithm to compute the k segmentation with minimum difference.

We used two data sets – the titles of Reuters and CNN news articles from the
TDT-Pilot Corpus published during 1994-1995, to conduct a preliminary set of
experiments. We constructed 5 topics and the preliminary results of experiments
show that the k segmentation constructed by our method preserves the temporal
trends of the topic in each segment.
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The rest of the paper is organized as follows. After discussing some prelim-
inaries in Section 2, we introduce the definition of a topic and its measure in
Section 3. In Section 4, we mainly discuss the discrepancy score of a segmenta-
tion, definition of a min-difference k segmentation, and describe an algorithm to
compute it. Section 5 describes experimental results. Section 6 discusses some
related work. Section 7 concludes the paper.

2 Preliminaries

2.1 Concepts Related to Segmentation

A time point is an instance of time with a given base granularity, such as a
second, minute, day, month, year, etc. A time point can be represented by a
single numerical value, specifying a given second, minute, day, etc. Let T be a
time period. We use |T | to denote the number of time points in T .

An interval of T is a list of two or more consecutive time points of T . We use
the notation [i, j] (i ≤ j) to denote the interval of T containing time points ti,
ti+1, ...tj . We also use Ti, Tj etc., to denote arbitrary intervals.

A segmentation Γ of a time interval T, is a sequence of subintervals T1, T2,
... Tk, such that Ti+1 immediately follows Ti for 1 ≤ i < k, and T is equal to the
concatenation of the k time intervals, which we can write as T = T1 ∗T2 ∗ ...∗Tk.
Each Ti is called a segment of Γ . The size of segmentation Γ is the number of
segments k in Γ and is denoted by |Γ |. If The time interval associated with a
segmentation Γ is denoted as Γ (T ). Let Γ be a segmentation of a time period
T . If |Γ | = |T |, then Γ is called the finest segmentation of T and is denoted by
Γf . The finest segmentation of a segment Ti is denoted by Γf (Ti).

Let D be a document set spanning over the time period T . Suppose T is a list
of time points t1, . . . , tn. Let bi ⊆ D denote the document set published/created
at time point ti. The document set of an interval [i, j], denoted by bij , is simply
the union of the document sets at each time point in [i, j].

2.2 Fuzzy Set Theory

Fuzzy set theory has been established by L.A.Zadeh in 1965 [18]. Fuzzy set
extends traditional set such that every element has degree of membership. A
fuzzy set F is a pair (A, f), where A is a traditional set and f is a membership
function f : A → [0, 1]. For each x ∈ A, f(x) is the grade of membership of x
belongs to the fuzzy set. If A = {x1, ..., xn} the fuzzy set (A, f) can be denoted
as {f(x1)/x1, ..., f(xn)/xn}. For element xi, if f(xi) = 1, xi certainly belongs to
F , and if f(xi) = 0, then xi certainly does not belong to F .

3 Measure of a Topic

In this section, we define a topic and describe how to compute the measure of a
multi-keyword topic using fuzzy set theory in a document set. The definition of
a topic and its measure were first defined in [4].



Trends Analysis of Topics Based on Temporal Segmentation 405

3.1 Definition of a Topic

We define a topic p as a list of pairs, { (kwi, wi)|1 ≤ i ≤ s}, where kwi’s are topic
keywords and wi’s denote the keyword weights. The value of each wi ∈ (0, 1].
We require that the sum of all wi in a topic p add up to 1. If p contains a single
keyword, then the weight of that keyword is 1.

Given a topic p, Skw(p) denotes the set of keywords in topic p. Function
Ex(kwi, dj) denotes whether keyword kwi appear in the document dj ; if it exists,
the function returns a 1, otherwise it returns 0.

Given a topic p= { (kwi, wi)|1 ≤ i ≤ s} and a document dj , we define a
membership function, denoted by mb, as follows.

mb(p, dj) =
s∑

i=1

wi × Ex(kwi, dj) (1)

3.2 Measure of a Topic

Given the document set D and a topic p, a related topic set Rtp,D is a fuzzy
set (D, mb) where mb is the membership function. For each document d ∈ D,
mb(p, d) reflects how d related to p.

We define the measure of a topic p over a document set D as the sum of the
membership of each document in D to topic p.

m(p, D) = |Rtp,D| =
∑

di∈D

mb(p, di) =
∑

di∈D

∑
kwj∈Kw(p)

wj × Ex(kwj , di) (2)

Measure of a topic p in a time point ti, denoted by mi, is simply m(p, Dii)
and that measure in an interval of [i, j], m(p, Dij), denoted by mij . If p has a
single keyword, then wi is 1 and m(p, D) is the number of documents containing
the keyword. If document di contains all keywords in Skw(p), its mb(p, di) = 1.

The measures of a topic over different document sets qualitatively describes
the relevance of the document set to the specific topic. This value denotes the
amount of presence of the topic in each document set.

4 Discrepancy Score of a Segmentation

Discrepancy score of a segmentation is designed to evaluate the likelihood of
the distribution of the measure (or useful information) of topic p across all the
segments in the segmentation. We define discrepancy score of a segmentation
based on the temporal scan statistic [1]. Scan statistics have been are used to
detect and evaluate clusters of case in temporal, spatial or space-time setting.
The scan statistic considers not only interested information, but also adjusts to
the background knowledge.

The likelihood function for the distribution of the measure of a topic p in
a segmentation is

∏k
i=1(

mi

bi
)mi1, where mi is the measure of p and bi is the

1 This function measures the presence of p as mi
bi

as well as boost the presence of
consecutive signals.
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number of documents (background knowledge) in the ith segment. This must
be contrasted with (M

B )M , where M is sum of all mis, and B is the sum of all
bis, i.e., the whole time period is treated a single segment. If the value of the
likelihood function is high compared to the ratio of the whole period, then there
is a value in partitioning the time period into k segments. We use logarithms to
convert the above formula into summations for ease of computation. Therefore,
we define the discrepancy score of a k size segmentation as follows.

Let Γk be a segmentation containing k segments. Let p be a given topic. Given
a segment [i, j], we first define the segment score d(p, i, j) as follows.

d(p, i, j) = mij(p, D) log (
mij(p, D)

bij
) (3)

We define the discrepancy score of Γk as follows.

ds(Γk, p) =
∑

[i,j]∈Γ

d(p, i, j) (4)

The following theorem proves that the finest segmentation Γf has the highest
discrepancy score of any segmentation.

Theorem 1. Let T be a time period containing n time points. Let Γ be a seg-
mentation of size k where k < n. Then, ds(Γk, p) ≤ ds(Γf , p).

Proof. For function F (mi, ..., mj , bi, ..., bj) =
∑j

l=i ml log ml

bl
with constraints

that
∑j

l=i ml = mij and
∑j

l=i bl = bij . d(i, j) = mij log mij
bij

, Using Lagrange
multipliers method, The minimum value of F (mi, ..., mj , bi, ..., bj) is achieved
when mi

bi
= ... = mj

bj
= mij

bij
. So

∑j
l=i ml log ml

bl
≥ mij log mij

bij
. We can use this

relationship to expand Equation 4

ds(Γk, p) =
∑

[i,j]∈T (Γ )

d(p, i, j) ≤
n∑

l=1

ml,l log
mll

bll
= ds(Γf , p) (5)

Where Γ is any partition with K segments.

We can also prove that the discrepancy score of a segmentation may increase
with its size.

Lemma 1. Let Γ and Γ ′ be two segmentations where |Γ | = k − 1 and |Γ ′| =
k. Then, ds(Γ, p) ≤ ds(Γ ′, p).

4.1 Min-Difference Segmentation

The finest segmentation of the measure of topic p shows the actual progression
of the topic over time. Therefore, the sum of the segment scores of the finest
segmentation gives the maximum likelihood of the measure of the topic over the
entire time period. However, the finest segmentation may contain noise which
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may hide the real temporal change in the measure of a topic. Therefore, we
can find a segmentation that contains fewer segments, say k, than the finest
segmentation where the changes in the measure of p is very similar to that in
the finest segmentation. We call such a segmentation as a min-difference k
segmentation.

The desired number k of segments in a segmentation is specified by the user.
The min-difference segmentation problem can be defined as follows. Given the
desired number k of segments, find a segmentation Γ containing at most k seg-
ments and ds(Γf , p) − ds(Γ, p) is a minimized.

We solve this problem using a dynamic programming based algorithm. The
algorithm works in a bottom-up manner, recording the minimum difference be-
tween the segment score of segment [i, j]’s of finest segmentation and that of the
k segmentation of [i, j].

The biggest discrepancy score for time interval [i, j] is ds(Γf ([i, j]), p), which
is

∑j
l=i d(p, l, l). Our goal is to find a k segmentation, 1 ≤ k < (j − i + 1),

such that the difference between the finest and k segmentation is minimized.
Therefore, k is must result in minΓ ([i,j]) (ds(Γk([i, j]), p) − ds(Γf ([i, j]), p).

For each value of k (1 ≤ k < (j − i + 1), the minimum difference incurred
for partitioning interval [i, j] into k intervals is recorded in a table S as entry
S(k, i, j). The values are computed as follows.

S(k, i, j)=

{
ds(Γf ([i, j]), p) − d(p, i, j) k = 1
minl∈[k−1,j] (S(k−1, i, l)+ ds(Γf ([l+1, j]), p) − d(p, l + 1, j)) k > 1

(6)
In Equation 6, if i > j then d(p, i, j) is undefined. In addition, if segmentations
have the same minimum difference, we select the segmentation with the smaller
size.

4.2 Preparing the Measure

In this section, we describe an efficient method for computing the min-difference
segmentation. To compute S(1, n, k), we need values mij and bij efficiently. Let
us assume that the time period of the given documents T contains n time points.
The input two vectors are Vm and Vb of size n are constructed from the input
document set. Vector Vm[i] contains the values of mi and vector Vb[i] contains
the values of bi for each of the n time points in T . We preprocess the input vectors
Vm and Vb so that values mij and bij in all segments [i, j] can be computed in
constant time. We construct cumulative two vectors CVm and CVb of size n as
follows. It is easy to observe that both vectors CVm and CVb can be constructed
in O(n) time.

CVm[1] = m1;
CVm[i] = CVm[i − 1] + mi; 2 ≤ i ≤ n;

Vector CVb is similarly computed from bi values. We can access mij and bij

in constant time as follows.



408 W. Chen and P. Chundi

mij = CVm[j] − CVm[i − 1];
bij = CVb[j] − CVb[i − 1];

4.3 Computing Discrepancy Score of Min-Difference k
Segmentation

According Equation 3, given time interval [i, j] we can compute d(p, i, j) in con-
stant time.

We can compute ds(Γf [i, j], p) for each [i, j] using cumulative vectors to in
constant time.

CDs[1] = d(p, i, i);
CDs[i] = CDs[i − 1] + d(p, i, i); 2 ≤ i ≤ n;

And ds(Γf ([i, j]), p) can be computed as following

ds(Γf ([i, j]), p) = CDs[j]− CDs[i − 1];

Let k be the desired number of segments specified by the user and recall that
|T | = n. The algorithm uses an array s to store the minimum difference values.
We always set the initial time point i as 1, so we only keep record of s[g][j] which
denote to S(g, 1, j) in Equation 6. Entry s[g][j] stores that minimum difference
value incurred in partitioning the interval [1, j] into g (g ≤ k) segments. In
addition to array s, the algorithm maintains another array called path in which
it stores the information to construct the min-difference segmentation. Entry
path[g][j] records the value l at which the interval [1, j] is partitioned to achieve
the minimum difference value. The min difference value for splitting the time
period T into at most k segments will be stored in s[k, n] and the starting point
of the kth segment will be in path[g][n].

We assume that vectors CVm, CVb and CDs are available to the algorithm
so that segment score d(p, i, j) and ds(Γf ([i, j]), p) can be computed in constant
time. We note that the running time of this algorithm is O(n2k).

Algorithm to construct the k segmentation of the time period T

MinScore (s[][],path[][])

begin
Initiate every unit in s[][] as +infinity;
Initiate every unit in path[][] as 0;
For i=1 to n s[1][i]=Ds(1,i)-d(p,1,i);
For k=2 to K
For i=k to n
s[k][i]=s[k-1][i];
path[k][i]=i;
For l=k-1 to i-1
sd=s[k-1][l]+Ds(l+1,i)-d(p,l+1,i);
if sd<s[k][i] then
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s[k][i]=sd;
path[k][i]=l; // The minScore are stored in s[][]

\\ use path[][] to trace back the partition result
Initiate rp[K] as all 0s;
use path[][] trace back and store partition series into rp[];
return rp[];
end.

5 Experiments

5.1 Data Sets

We applied our approach to document set from the TDT-Pilot Corpus. We ex-
tracted the titles of news articles from the TDT-pilot corpus (http://projects.ldc
.upenn.edu/TDT-Pilot/). The TDT-Pilot corpus covers about 16,000 stories, in
which half is collected from Reuters newswire and half from CNN broadcast
news transcripts from July 1, 1994 to June 30, 1995. This data set contains 365
time points, one for each day.

5.2 Results

We used a Red Hat Linux System with a dual core Intel Xeon 3.73GHz processor
with a 3GB of RAM to conduct experiments. We implemented the algorithms
described in previous section using the R Project (http://www.r-project.org).

To study the performance of the min-difference k segmentation algorithm de-
scribed in the paper, we randomly constructed the following five topics: Simp-
son, Simpson case, Iraq Kuwait, Haiti invasion, North Korea. All key-
words in a topic are weighed equally. We then computed the measure mi of each
topic in each of the time points ti and collected the bi values required to the
segment score and the discrepancy score. We then constructed the cumulative
vectors – CVm, CVb, and CDs and then applied the min-difference k segmenta-
tion algorithm to construct a k segmentation for each of the topics.

In our experiments, we set k to different values to observe the difference (or
S(k, 1, n) in Equation 6) between discrepancy score of the segmentation and the
finest one. In fact, the reduce of difference become smaller or more stable when
k is beyond 20.

In the Figure 1, we show how these difference change with increasing k . In
Figures 1, the X-axis is the value of k, the Y-axis is the difference of discrepancy
score between min-difference k segmentation and finest segmentation, which we
denote as S. To show the trend of S, we pick S of five topics when number of
segmentation is set as 10, 20, 30 and 40.

For example, in Figure 1, for topic ”Simpson”, the value of S at 10 segmen-
tation is 208, and this means that the discrepancy score of min-difference 10
segmentation on topic ”Simpson” is 208 less than finest segmentation and value
of S decreases to 123 when k sets to 40. It is clear that S reduces as k increases
in all 5 topics. This trend confirms to the Lemma 1.
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Fig. 1. The Trends of Min-Difference k Segmentation for Five Topics from CNN

(a) (b)

Fig. 2. (a)The Differential Score in Min-Difference k Segmentation from CNN. (b)The
Differential Score in Min-Difference k Segmentation from Reuters.

Our next experiment analyzed the differential score between min-difference k
and k +1 segmentations to observe changes in discrepancy score of different size
segmentations. The algorithm outputs the minimum difference between the dis-
crepancy score of a min-difference k segmentation and that of the finest segmen-
tation of T . As proved in Lemma 1, k segmentation has a discrepancy score that
is as much as or less than the k+1 segmentation. Therefore, s[k, n] ≥ s[k+1, n].
Differential score analysis studies s[k + 1][n] − s[k][n] (1 ≤ k < n). If the dif-
ferential score is of a high value, then k + 1 segments capture the information
from the finest segmentation more closely than k segments. On the other hand,
if the differential score is a small value, one can conclude that both k and k + 1
segmentations represent the finest segmentation closely. Therefore, the differen-
tial score analysis can be used to decide the value for k that best represents the
finest segmentation without losing significant trends.

In Charts 2a and 2b, X-axis plots k values and the Y-axis plots differential
score. It can be observed that the curve of differential score changes sharply
after the segmentation capture a big trend among data. For example, in Chart
2a, the differential score between the size 17 and size 18 segmentations of topic
”Simpson” is 4.88, after k = 17, the curve of differential score appears much
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(a) (b)

Fig. 3. (a)17 Segmentation of Topic ”Simpson” from CNN. (b)12 Segmentation of
Topic ”Simpson” from Reuter

(a) (b)

Fig. 4. (a)Min-Difference 7 Segmentation of Topic ”North Korea” from CNN. (b)Min-
Difference 9 Segmentation of Topic ”North Korea” from Reuter.

smoother than it was for values of k less than that, therefore, we choose 17 as
the size of min-difference segmentation for the topic ”Simpson” in CNN data.
In the same reason, we choose 7 as the size of min-difference segmentation for
topic ”North Korea” from CNN. Similarly, in Figure 2b we select 12 as size
of segmentation for the topic ”North Korea” in CNN data and 9 as size of
segmentations Reuters data. The results of segmentations for these topics are
showed in Figures 3 and 4.

We use Figures 3 and 4 to display the final segmentation itself. The horizontal
axis in these figures lists all 365 time points, starting from July 1, 1994 and
ending at June 30, 1995. The vertical axis plots the segment score of each of the
time points. Higher difference between the segment scores of ti and tj implies
less likelihood the ti and tj are in the same segment of some min-difference k
segmentation. Therefore, if segment [i, j] is in the min-difference segmentation
of size k, then, values mglog(mg/bg) g ∈ [i, j] should be more similar to each
than to those in consecutive segments.

We use parallel vertical lines to show the segments resulting from a min-
difference segmentation. In Chart 3a, there are 16 vertical lines separating the
time period into 17 segments. For example, it can be observed that the pattern
of mglog(mg/bg) value in the 15th segment is very different than that in the 14th
or 16th segment. We selected the 1st segment from 07-01-94 to 07-04-94, and the
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2nd segment from 07-05-94 to 07-07-94. We checked the CNN document titles
containing the topic ”Simpson” in these two segments. The measure of this topic
is 11 in 1st segment and increases sharply to 33 in 2nd segment. The contents
of the documents in 1st segment and 2nd segment also show the progression
of the topic ”Simpson” from capturing the attention of media to a hot topic
during segments . From this point of view, the segmentation of time on the topic
helps us understand the development of the topic. Similarly, Figure 3b shows
the min-difference 12 segmentation of the same topic ”Simpson” in the Reuters
data set. It can be observed from these two figures that the topic may have had
different progression patterns in different data sets. We conjecture that it is due
to the fact that different media outlets may have different reporting interests.
The difference in progression patterns can also be observed for topic ”North
Korea” as shown in Figure 4.

6 Related Work

Temporal Text Mining is an active area of research. Detecting bursty topic pat-
terns from text streams is an emerging problem [3,4,8,16]. Reference [8] converts
text streams to temporal signals and models them as an automaton to identify
bursty features in their structure. Reference [16] mines multiple coordinated text
streams to identify correlated bursty topic patterns. In our earlier work [3,4], we
used the temporal scan statistic to identify the interval where a topic has an
increased presence.

Time series segmentation is well established field, more information can be
seen in [5], [7], [9] and [15]. An interesting related work is [11] where authors used
a general probabilistic method to capture theme features, construct an evolution
graph of themes and analyze life cycles of themes. The current paper is different
from [11] in that we are focused on capturing the trends of multi-word topics by
segmenting the time period associated with the document set.

Scan statistics such as the temporal statistics scan were proposed by Kulldorff
[10].This approach is an important statistical tool to detect an abnormal clus-
ter and is applied in the public health community for disease trend detection.
Temporal scan statistic has been well studied in [1,13,14].

Fuzzy logic systems was applied to the area of information systems in Europe
in the early 1990s (see [2]). In paper [17] authors provide a fuzzy clustering
algorithm for the analysis of document collections. The method illustrated in
the current paper to compute a numeric value of relevance of a document set to
a multi-keyword topic based on the fuzzy set theory was first discussed in [4].

7 Conclusion

This paper describes an approach based on the segmentation technique to ex-
tract temporal trends of topics from a time stamped document set. We assume
that the time period associated with the document set is a list of time points,
where each time point is an hour, a day, etc. A segmentation of the time period
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of the document partitions the time period into segments where each segment
contains one or more consecutive time points. We define topics with multiple
keywords and give a method based on the fuzzy set theory to compute the rel-
evance of a document set to the topic. The measure of relevance for a given
topic in a document set is used to assign a discrepancy score to a segmentation.
We define the notion of a min difference k-segmentation and give a dynamic-
programming based algorithm to compute it. A min difference k-segmentation
maximizes the likelihood of the topic in each of its segments. We then conducted
a preliminary set of experiments using the titles of Reuters and CNN news arti-
cles from the TDT-Pilot Corpus. The experiments confirm that the discrepancy
score of segmentation increases with its size. Our experiments also show that
the change in the discrepancy score for segmentations of different sizes can be
used to determine the number of segments appropriate for capturing all of the
temporal trends of the topic.
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Abstract. Recently, there has been considerable interest in mining spa-
tial colocation patterns from large spatial datasets. Spatial colocations
represent the subsets of spatial events whose instances are frequently
located together in nearby geographic area. Most studies of spatial colo-
cation mining require the specification of a minimum prevalent threshold
to find the interesting patterns. However, it is difficult for users to provide
appropriate thresholds without prior knowledge about the task-specific
spatial data. We propose a different framework for spatial colocation pat-
tern mining: finding N-most prevalent colocated event sets, where N is
the desired number of event sets with the highest interest measure val-
ues per each pattern size. We developed an algorithm for mining N-most
prevalent colocation patterns. Experimental results with real data show
that our algorithmic design is computationally effective.

1 Introduction

The evolution of location sensing and mobile computing is generating lots of
rich spatial datasets. Examples of such data include geographic search logs,
GPS logs, environmental observation data, climate measurements, disease oc-
currence records, and so on. As one of important spatial data mining tasks,
spatial colocation pattern mining has been popularly studied in spatial data
mining literature [16,21,22,5,14,11,4,18]. A spatial colocation pattern represents
a subset of spatial events whose instances are frequently located together in a
neighborhood area. For example, a mobile service provider may be interested
in service request types frequently queried by geographically neighboring users.
A {‘shopping mall’, ‘parking lot’, ‘restaurant’} might be a colocation pattern
discovered from logs of service search engines. The mining result can be used for
providing location-sensitive advertisements, recommendations, and so on.

Let E be a set of event types, S be a set of their objects, and R be a spa-
tial neighbor relationship over S. A set of event C ⊆ E becomes a colocation
pattern if its instance objects I ⊂ S frequently form cliques under the neighbor
relationship R, that is, the prevalence strength of the colocated event set C on
space, Pi(C), is greater than a given threshold min prev. A common framework
of mining spatial colocation patterns, therefore, requires a user specified mini-
mum prevalence threshold min prev to find the interesting patterns. However,
without prior knowledge about the task-specific spatial data, users may have
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difficulties in setting proper prevalence thresholds to obtain desired results. If
the prevalence threshold is set too high, there may be only a small number of
results or even no result. If the threshold is too low, too many results can be
generated with an exceedingly long computational time. Users also need extra
efforts to screen interesting patterns. Another argument against the use of a
uniform prevalence threshold for all colocation patterns is that the probability
of occurrence of larger size colocations is inherently much smaller than that of
smaller size colocations. To solve these problems, we propose a different frame-
work for colocation pattern mining, in which users specify a threshold on the
amount of results instead of a prevalence threshold. In particular, we explore
the task of mining N-most prevalent colocated event sets from a spatial
dataset, which finds N k-colocated event sets with the highest prevalence values
for each size k up to a certain kmax value.

Similar frameworks such as Top-K frequent association pattern mining were
proposed in classical data mining literature [6,2,1,17,8]. However, it is nontrivial
to reuse the association pattern mining algorithms [6,2,1] for discovering our N -
most prevalent colocation patterns due to the complexity of spatial data types,
spatial relationships and spatial autocorrelation [15]. State-of-the-art algorithms
for spatial colocation discovery [14,11,16,21,22] use generation-and-test methods
like Apriori, and reduce the number of candidate sets for colocation patterns
using the downward closure property of their interest measure [16]. However, the
property does not hold in our problem. Although a colocated event set is in the
result set of the N -most patterns, its subsets cannot be included in the result set.
In the worst case, therefore, we have to consider all possible subsets of events.
It is crucial to effectively reduce the search space of colocated event sets, and
efficiently find their colocation instances from a large spatial dataset.

The main contributions of this work are first to propose a different framework
for spatial colocation pattern mining, and then develop an efficient algorithm
for mining the N -most prevalent colocation patterns. We proved the algorithm
is correct and complete in finding the N -most patterns. Experimental results
with real datasets show that our algorithmic design is effective in reducing the
number of candidates, and the proposed algorithm is scalable in various pa-
rameter settings. The remainder of the paper is organized as follows. Section 2
introduces the basic concepts of colocation pattern mining, and describes our
problem statement and the related work. Section 3 presents our algorithmic de-
sign concepts, and the proposed algorithm. Section 4 discusses the experimental
results. Section 5 ends with the conclusion and future work.

2 Problem Statement and Related Work

2.1 Basic Concepts and Problem Statement

Given a set of event types E = {e1, . . . , em}, a set of their instance objects
S, and a spatial neighbor relationship R over S, a colocation C is a subset
of spatial events, C ⊆ E, whose instance objects frequently form cliques using
R. When the Euclidean metric is used for the neighbor relationship R, two
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spatial objects are neighbors if the distance between them is not greater than
a neighborhood distance bound, e.g., 0.5 mile. Fig. 1 shows an example dataset
with three event types, A, B and C. Each object is represented by its event type
and unique instance id, e.g., A.1. Identified neighbor objects are connected by a
line in the figure. A colocation instance I of a colocation C is a set of objects,
I ⊂ S, which includes all event types of C, and forms a clique relationship. For
example, {A.2, B.4, C.2} is a colocation instance of {A, B, C}. The prevalence
of a colocation is often measured with participation index defined in [16].

Definition 1. The participation index Pi(C) of a colocation C is defined as
Pi(C) = minei∈C{Pr(C, ei)}, where Pr(C, ei) is the participation ratio of
event type ei in a colocation C = {e1, . . . , ek} that is the fraction of objects of
event ei in the neighborhood of instances of colocation C − {ei}, i.e.,
Pr(C, ei) = Number of distinct objects of ei in instances of C

Number of objects of ei
.

Consider the prevalence values of colocation c={A, B, C} in Fig. 1. The instances
of colocation c are {A.2, B.4, C.2} and {A.3, B.3, C.1}. The participation ratio
of event A in the colocation c, Pr(c, A) is 2

4 since only A.2 and A.3 among four
objects of event A are involved in the colocation instances. In the same way, Pr(c,
B) is 2

5 and Pr(c, C) is 2
3 . Thus the participation index of colocation c, Pi(c),

is min{Pr(c, A), Pr(c, B), Pr(c, C)} = 2
5 . In this paper, we use ‘colocation’

and ‘colocated event set’ terms interchangely. A k-colocated event set means
a colocation containing k spatial event types.

Definition 2. The N-most prevalent k-colocated event sets: Let L be a
list of all k-colocated event sets by descending their participation index values,
and let p be the participation index of the N th k-colocated event set in the list L.
The N -most prevalent k-colocated event sets are a set of k-colocated event sets
having participation index ≥ p.

The N-most prevalent colocated event sets are the union of the N -most
prevalent k-colocated event sets for 2 ≤ k ≤ kmax, where kmax is the upper
bound of the size of colocation patterns we would like to find. The problem
statement of finding N -most prevalent colocated event sets is:
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Given:
1) A set of spatial event types E = {e1, . . . , em}
2) A dataset of spatial point objects S = S1 ∪ . . . ∪ Sm where Si(1 ≤ i ≤ m) is
a set of objects of event type ei. Each object o ∈ Si has a vector information of
< event type ei, object id j, location x, y > where 1 ≤ j ≤ |Si|.
3) A spatial neighbor relationship R (a distance function and a distance bound)
4) A maximum size of colocated event sets (maxk), and a number of colocated
event patterns per each size (N)
Objective:
Find N -most prevalent colocated event sets per each size k where 2 ≤ k ≤ maxk

while reducing the computation cost.
Constraints:
R is a distance based neighbor relationship, and is symmetric and reflexive.

2.2 Related Work

The problem of mining association rules based on spatial relationships (e.g.,
proximity, adjacency) was first discussed in [11]. After that, spatial colocation
pattern mining has been popularly studied in [16,21,22,5,14,11,4,18]. Most works
present different approaches in identifying colocation instances and choosing
the interest measures for colocation patterns. Their methods focus on finding
colocation patterns that satisfy a given minimum prevalence threshold. To the
best of our knowledge, there is no previous work in mining colocation patterns
without a prevalence threshold. In classical association pattern mining, Fu, et
al. [6] proposed the first algorithm for discovering N -most interesting itemsets.
Cheung, et al. [2] extended their previous work [6] and developed a different
method based on a frequent pattern-growth algorithm. Arshad, et al. [1] solved
the problem using a support-ordered trie structure. Hirate, et al. [8] proposed
a TF 2P -growth algorithm for mining frequent patterns without any thresholds.
Wang, et al. [17] proposed the problem of mining Top-K frequent closed patterns
without minimum support. It is nontrivial to use these Top-k methods for our
problem due to the complexity of spatial data types and spatial relationships.
A similar framework for graph mining was proposed in [23]. The work locates
top-k graphs matching a given query graph in a large data graph.

3 Algorithmic Design

In this section, we describe our algorithmic design concept for mining N -most
prevalent colocation patterns, and present the proposed algorithm.

3.1 Preprocess

An input spatial dataset can be represented as a neighbor graph with the spatial
objects being its vertex set, and an undirected edge between two objects where
they are neighbors each other. For discovering colocation patterns, we need to
find all colocation instances forming cliques from the neighbor graph, and then
compute a participation index per event set. However, it is computationally
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expensive to find all cliques from a graph [3]. On the other hand, if we can con-
vert a spatial dataset into a graph transaction set, we may consider frequent
subgraph mining algorithms [12,19,10] for our problem. However, it is not easy
to represent a spatial dataset to a set of distinct graphs. An explicit partition-
ing of the data may lose some neighbor relationships across different partitions.
Another difference from a graph data for frequent subgraph mining is that our
object is represented with its event type and instance id. There are many in-
stance objects per event type. Most frequent subgraph mining algorithms do not
consider multiple instances of a subgraph in a transaction. In this paper, we
represent an input spatial data to a set of neighborhood transactions.

Definition 3. Given a spatial object oi ∈ S, the neighborhood transaction
of oi is defined as a set of spatial objects {oi, oj ∈ S|R(oi, oj) = true∧ o′is event
type 
= o′js event type}, where R is a neighbor relationship.

In Fig. 2, the neighborhood transaction of A.1 is {A.1, C.1, D.2, E.1}. All ob-
jects of the set have neighbor relationships with the first object, A.1, which is
called a reference object. This neighborhood transaction approach gives several
advantages for colocation pattern mining. First, the neighborhood transaction
set does not loose any object and neighbor relationship of the original data. Sec-
ond, the neighborhood transactions can be easily constructed from the neighbor
pair objects of the input data. Third, they can give the information of upper
bound of participation index of a colocated event set. Finally, we can also use
the neighborhood transactions for filtering candidate event sets.

3.2 Candidate Generation

The total number of sub event sets examined for the N -most patterns is 2m−m−1
since there is no prevalence threshold given, where m is the number of event types,
and single events and empty set are not considered. Rather than considering all
possible sets, it would be desirable to focus on potential event sets having at least
one colocation instance. We generate colocation candidates using a project based
pattern mining paradigm [7]. The idea was also used in [9].
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1) Event trees

An event tree is similar with an FP-tree which is one of popular data structures
for classical association rule mining [7]. The FP-tree is a prefix-tree structure
for storing compressed information about frequent patterns without generating
candidates. However, it is hard to represent an input spatial data to one FP-
tree with preserving all neighbor relationships among the objects. Instead, we
construct one tree per each event type for storing its neighbor information.

Definition 4. A reference event pattern tree (or event tree in short) is a
tree structure defined: (1) It consists of one root labeled as a reference event type,
a set of event prefix subtrees as the children of the root, (2) Each node consists
of three fields: event-type, count, and node-link, where event-type denotes a event
this node represents, and count registers the number of neighborhood transactions
represented by the portion of the path reaching this node. The transactions start
with an object whose event type is the same with the event type of the root note.
Node-link links to the next node in the tree carrying the same event-type.

For example, in Fig. 2 (c), the transactions which start with ‘A’ event type are
used for building ‘A’ reference event pattern tree. Fig. 3 (a) shows all event trees
constructed from the transactions in Fig. 2 (c).

2) Colocation candidates

We use FP-growth algorithm [7] for generating event sets from each event tree.
The difference from the output of the original FP-growth is that each set has the
event type of root node as the first element. Fig. 3 (b) shows the event sets gen-
erated from each event tree. We call the result sets star candidate sets since all
elements of a set have a neighbor relationship with its first element. The output
also gives the frequency information of an event set, i.e., support. The support
value of a set presents the frequency that its first item event has a neighbor
relationship with the other events in the set. For example, the support value of
{B,A,C} represents how many objects of event B has a neighbor relationship
with the objects of both A and C.

After generating star candidate sets, we combine them for filtering candidates
which can have at least one colocation instance. Fig. 3 (c) shows the combined
candidate set which is called a clique candidate set or a colocation candi-
date set. The colocation candidate inherits the frequency value of each event
from its star candidates. For example, {A,B,C} has the frequency values of A, B,
and C events, i.e., 1

4 , 1
5 and 2

3 from each star candidate {A,B,C}:14 , {B,A,C}: 15
and {C,A,B}:23 . The values represent the upper bound of the chance (i.e., par-
ticipation ratio) that each event has a clique relationship with the other events
in the set. The minimum value of the upper bound participation ratios becomes
the upper bound of participation index of the colocation.

3) Candidate pruning

We present additional scheme to reduce the candidates further. Since our prob-
lem is to discover n most prevalent patterns, there is no prevalence threshold
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initially given. However, during the pattern mining phase, we can maintain a
minimum prevalence threshold θk per size k to determine if an event set can be
included in the result set resultk. We first make a sorted list of candidates with
their upper bound participation index per each size. Any top candidate with its
true participation index is blindly included in the result set. Once we have en-
countered n event sets, we are only interested in event sets whose participation
index is greater than the smallest participation index in the result. θk is set to
the participation index of the nth event set of resultk. If the upper bound par-
ticipation index of a candidate is less than θk, all candidates after the candidate
in the sorted list are pruned without examining their colocation instances. In
addition, we can estimate θk in the beginning stage of size k mining.

Lemma 1. Let θl be the smallest participation index in the result set of the N -
most prevalent l-colocated event sets, resultl, and θ be the participation index
of a N -most prevalent k-colocated event set where k < l. If there are at least N
different event types in resultl, then θ ≥ θl where k < l.

Proof. The participation index is monotonically non increasing with increases
in the size of colocation by the proof of [16]. That is, for a colocation Ck ⊆ Cl,
Pi(Ck) ≥ Pi(Cl). The participation ratio of an event has the monotonicity
property too, i.e., Pr(Ck, ei) ≥ Pr(Cl, ei) where Ck ⊆ Cl, ei ∈ Ck and ei ∈ Cl.
Suppose resultl contains N different events, {e1, e2, ..., eN}. If θl is the smallest
participation index in resultl, the smallest participation ratio of e1, e2, ..., eN is
θl. The number of size k sets (Tk) generated from the different N events is

(
N
k

)
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≥ N , where k < l and k ≤ N . The participation index of any set in Tk is not less
than θl by the monotonicity property of Pi. Therefore, in order that a candidate
from a k-candidate set (Ck), Tk ⊆ Ck, becomes the N -most pattern, the set’s
participation index θ should be at least θl.

Therefore, for mining N -most prevalent size k patterns, θk can be initialized
with the largest θl if the result set of size l has at least N different events,
where k < l ≤ kmax and k ≤ N . If the upper bound participation index of any
candidate of size k is less than θk, the candidate is eliminated.

3.3 Instance Filtering

After generating colocation candidates, the next steps are to gather their colo-
cation instances, compute their true participation index values, and find the N
most prevalent patterns in each size. To find the colocation instances efficiently,
we use the neighborhood transactions generated in the preprocess step.

Definition 5. Let I = {o1, . . . , ok} ⊆ S be a set of spatial objects whose event
types {e1, . . . , ek} are different each other. If all objects in I are neighbors to the
first object o1, I is called the star instance of colocation C={e1, . . . , ek}.

The star instances of a colocation can be gathered from the neighborhood trans-
actions whose first item’s event type is the same as the first event of the colo-
cation. For example, the star instances of {A, C, D} are gathered from the
transactions whose first item’s event type is ‘A’. Therefore the number of candi-
dates examined in each transaction is much smaller than the number of actual
candidates. The true colocation instances can be filtered from the star instances.
If a star instance {A.1, C.1, D.2} has an additional neighbor relationship between
C.1 and D.2, it becomes a colocation instance of {A, C, D}.

3.4 Algorithm

We developed an efficient N-Most Colocation mining algorithm (NMColoc). Al-
gorithm 1 shows the pseudo code of NMColoc algorithm. After generating the
neighborhood transactions and colocation candidates, we first find size 2 patterns
to reuse the neighbor pair information. We then discover the patterns from size
kmax to size 3 to use the property of Lemma 1. Due to the page limit, we omit the
detail explanation of the algorithm. You may refer to [20] for it. The correctness
and completeness of the algorithm are proved in [20].

4 Experimental Evaluation

We compare the efficiency of our proposed algorithm with a general colocation
mining algorithm [16]. For the latter, we used a tuned minimum prevalence
threshold that is the participation index of the nth pattern of size Kmax. We use
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Inputs
E = {e1, . . . , em}:a set of spatial event types
S:a spatial dataset, R:a spatial neighbor relationship
kmax:a maximum size of colocated events of interest
N: a number of the patterns of interest per each size

Variables
ST: a set of all neighborhood transactions.
Treei:an event tree of type ei, k:interest colocation size
θk:a minimum prevalence threshold for N-most k colocated patterns
θ:a minimum prevalence threshold for N-most colocated patterns
C:a set of all candidate sets, Ck:a set of size k candidates
upper pi: an approximate PI of a candidate, pi: true PI
CIc: a set of clique instances of a candidate c
SIc: a set of star instances of a candidate c
SIk: a set of star instances of size k colocated event sets SIc ∈ SIk
Rk:a set of size k patterns, each record has <size, event set, pi, rank>
Rk.last:a Nth prevalent k-colocated event set

Preprocess
1) ST=gen neighbor transactions(S, R);//Generate neighborhood transactions

Candidate generation
2) for i=1 to m do
3) Treei=build event tree(ei, ST); //Build each reference event tree
4) end do
5) C=gen candidates(Tree1, . . . , T reem); //Generate candidate event sets
6) calculate upper pi(C); //Compute the upper bound of PI of candidates

Pattern finding
7) k=2;
8) Ck=get size k candidates(C, k); //Filter size 2 from candidate pool
9) SIk = gather instances(Ck, ST); //Find size 2 colocation instances
10) R2 =find size2 N-most patterns(SIK); //Sort and find size2 results
11) θ=0;
12) for k=kmax to 3 do

13) Rk=∅; θk=θ; // θk is initialized with previous θ
14) Ck=get size k candidates(C, k);
15) sort candidates by upper pi(Ck);

16) for each candidate set c ∈ Ck do //Prune a candidates by Lemma 1
17) if k ≤ N and c’s upper pi < θk then Ck = Ck - c;
18) SIk=gather star instances(Ck, ST);// Find candidate instances
19) for each candidate set c ∈ Ck do

20) if |Rk| == N and c’s upper pi ≤ θk then //All N k-patterns found
21) if(Rk has at least different N events) then θ=Rk.last.pi;
22) exit;

23) CIc=find clique instances(SIc);// Otherwise, filter true instances
24) pi=calculate true pi(CIc); // Compute true participation index
25) if |Rk| < N then // Update the result set
26) insert(c, pi, Rk);

27) else if |Rk|==N and pi > θk then

28) remove(Rk .last); insert(c, pi, Rk); θk=Rk.last.pi;
29) end do

30) end do

31) return
⋃

(R2, . . . , Rk);

Algorithm 1. NMColoc Algorithm



424 J.S. Yoo and M. Bow

 0

 100

 200

 300

 400

 500

 600

 700

6000 12000 24000

Ex
ec

ut
io

n 
tim

e 
(s

ec
)

Data size(# of points)

NMColoc(pattern finding )
NMColoc(candidate generation)

NMColoc(transactionization)
NMColoc(neighbor pairs)

General Coloc(pattern finding)
General Coloc(candidate generation)

General Coloc(neighbor pairs)

(a) Computation costs

candidates

Number of 
possible

candidates

Number of 
N−Most

generated
candidates

N−Most(N=20)
Number of 

*final

N−Most(N=40)
Number of 

*final
candidates

2
3
4
5
6
7

1225
19600

230300
2118760

15890700
99884400

size
476

1273
1718
1390
706
227

20
23
30
37
38
35

45
40

56
57
64
77

* : candidates which examine their colocation instances
.

(b) Number of candidates

Fig. 4. Effect of pruning

GeneralColoc to denote the latter method. A real data about points of interest
in California [13] was used. The total number of points is 104,770. The number
of distinct events is 63. We prepared several test datasets from this base dataset
with selecting a part of data or modifying the data to increase the number of
event types. All the experiments were performed on a Sun SunBlade with 1GB
main memory. The following describes the experimental results.

1) Comparison of the computation performances of subtasks: We compared the
computation times that NMColoc and GeneralColoc perform each subtask: (1)
finding neighbor pairs, (2) generating neighborhood transactions, (3) generating
candidates, and (4) finding the interesting patterns. Fig. 4 (a) shows the results
with three datasets with different size of data points. The number of distinct
event types is 40. We used 1000 for the neighbor distance, 20 for the N parameter,
and 10 for the kmax. Note that GeneralColoc also has a preprocess step for finding
neighbor pairs. The preprocess time for neighborhood transactions is relatively
smaller than other computation times of NMColoc. The candidate generation
cost of NMColoc is much larger than GeneralColoc. However, the performance of
finding the N -most patterns in NMColoc is speeded up. The overall performance
difference is increased with increase of the data size.

2) Comparison of the number of candidates: Next, we compared the number
of candidates generated from NMColoc with different N values. The dataset
has 50 event types. Fig. 4 (b) shows the numbers of candidates generated from
NMColoc with the number of possible candidates per each size. The values of
the second column represent the numbers of colocated candidates generated as
combining star candidates from event trees. The values of the third and fourth
columns represent the numbers of candidates left after the theta pruning. Only
these candidates will be examined for finding their colocation instances. We can
notice NMColoc dramatically reduced the numbers of candidates.

3) Effect of the number of data points: In the third experiment, we compared
the effect of the number of data points. We prepared five different datasets in
size. As shown in Fig. 5 (a), the execution time of NMColoc increased much
slower than GeneralColoc.
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4) Effect of the number of event types: We compared the performance with a
function of the number of different event types. We used four different datasets.
The number of data points in each dataset is around 9000. The neighbor distance
is 1000. Fig. 5 (b) shows the results. The overall execution time of GeneralColoc
increased faster than that of NMColoc. We can see that the speedup with the
theta pruning in NMColoc increases with the number of events.

5) Effect of neighbor distance: Next, we examined the effect of different neigh-
bor distances, 400, 600, 800, and 1000. We used a dataset with 12000 data points.
The increase of neighbor distance makes a neighborhood area larger and increases
the number of colocation instances. As shown in Fig. 5 (c), the overall execution
time increased with increase of the neighbor distance.

6) Effect of N and kmax parameters: Finally, we examined the performance
effect with different Ns and kmaxs. With small increases of N , NMColoc showed
similar performance. The execution time of GeneralColoc increased a little due
to the decrease of the tuned minimum prevalence threshold with increase of
N . On the other hand, when kmax is increased, the time of GeneralColoc is
dramatically increased.

5 Conclusion and Future Work

In this paper, we proposed a different problem setting for colocation pattern
mining. Instead of a minimum prevalence threshold, users can control their
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interesting patterns with the number of desired patterns. We developed an effi-
cient algorithm for finding N -most prevalent colocation patterns. The proposed
framework still needs a user specified neighborhood distance threshold. In the
future work, we plan to explore methods to estimate a distance threshold to help
users choose their interesting neighborhood distance bound.
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Abstract. A hierarchical classification framework is proposed for discriminat-
ing rare classes in imprecise domains, characterized by rarity (of both classes
and cases), noise and low class separability. The devised framework couples the
rules of a rule-based classifier with as many local probabilistic generative mod-
els. These are trained over the coverage of the corresponding rules to better catch
those globally rare cases/classes that become less rare in the coverage. Two novel
schemes for tightly integrating rule-based and probabilistic classification are in-
troduced, that classify unlabeled cases by considering multiple classifier rules
as well as their local probabilistic counterparts. An intensive evaluation shows
that the proposed framework is competitive and often superior in accuracy w.r.t.
established competitors, while overcoming them in dealing with rare classes.

1 Introduction

Rule learning is a mainstay of research in the field of concept learning, because of
various desirable properties such as, e.g., its high expressiveness and immediate intel-
ligibility to humans. In particular, associative classification [16] is an advance in rule
learning, that relies upon the associations in the available data between the co-
occurrence of certain combinations of attribute values and their observed class labels.
The resulting classification models, referred to as associative classifiers, consist of as-
sociation rules, whose consequents are restricted to predict the values of the target class
attribute. Associative classification retains the advantages of conventional rule learning
and also tends to achieve a higher predictive accuracy [19]. Indeed, rule induction does
not operate on the whole training data. Rather, it is generally performed as a heuris-
tic separate-and-conquer process, that progressively excludes subsets of the training
data from further consideration as soon as covered by locally-optimal, biased rules.
Instead, associative classification yields rules with an appropriate degree of general-
ity/specificity, that summarize the co-occurrence patterns across the whole training data.

Several approaches to associative classification are available from the literature, with
differences in three major aspects, i.e discovery of classification rules, the extraction of a
compact classifier and the classification of unlabeled cases [16]. Classification rules are
mined through search strategies based on Apriori [1] in [2,14,15], whereas a variant of
the FP-growth algorithm [11] is used in [13]. A row enumeration method is leveraged
in [3]. Often, the huge number of resulting classification rules, that may overfit the
training data, is pruned to distil a compact associative classifier. A variety of methods is
used for this purpose, such as χ2 testing [13], minimum class support [14], complement

T.B. Pedersen, M.K. Mohania, and A M. Tjoa (Eds.): DaWaK 2009, LNCS 5691, pp. 428–440, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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class support [15] as well as database coverage [2,14,15]. As to the classification of an
unlabeled case, some methods exploit the top-quality rule covering the case [14,15].
Other approaches take into account multiple rules applicable to the case [13,19] and
resort to suitable scoring mechanisms as well as voting.

Unfortunately, like most classification models, associative classifiers exhibit a poor
predictive accuracy in highly imprecise learning settings, such as fraud and intrusion
detection, manufacturing line monitoring, risk management as well as medical diagno-
sis, where primary aspects (i.e. cases and classes) of the concept to learn are rare and
noisy. Additionally, cases of distinct classes may be hardly separable, which concep-
tually calls for classification rules with possibly (very) limited coverage and still high
predictive accuracy, especially on the minority classes.

As it is pointed out in [18], rare classes originate several accurate rules targeting the
predominant classes, supplemented by very few (if any) error-prone rules predicting
minority classes, which are of primary interest in practical applications. Rare cases,
instead, tend to materialize within the resulting classifier as strongly inaccurate rules,
referred to as small disjuncts [12]. These difficulties are exacerbated by noise, that may
further skew class imbalance and be nearly indistinguishable from rare cases.

Yet, the decision regions induced by a rule-based classifier and the true distribution
of the classes in the space of data do not match. Indeed, classes form regions with irreg-
ular and interleaved shapes, whereas the induced decision regions are neatly separated
by boundaries parallel to the features of the data space. As a consequence, those cases
falling within and close to the boundary of a decision region may be misleadingly pre-
dicted as belonging to the class associated with that decision region, even if the true
class membership in the surroundings of the boundary is different. This is problematic
when there is a low separability between classes, i.e. when these form true overlapping
(or embedded) regions. In such cases, indeed, the true regions formed by rare classes
may be overlapped by the decision regions associated to the predominant classes.

In this paper, we combine associative classification with probabilistic learning [5] to
improve classification performance on the rare classes. In imprecise environments, this
is preferable with respect to simply increasing classification accuracy, since the latter is
strongly biased against rare classes, which as anticipated may also be hardly discrimi-
nated from predominant classes. The idea is to use the individual rules of an associative
classifier to segment the training data. Segments are used to build as many local proba-
bilistic generative models, that refine the predictions from the corresponding classifier
rules. This is particularly useful both in the surroundings of the rule boundaries as well
as inside the associated decision regions, wherein local probabilistic generative mod-
els act so that classes other than the ones associated to the whole regions influence the
classification of nearby unlabeled cases. In practice, local probabilistic models are in-
volved into the classification of unlabeled cases for more effectively dealing with those
globally rare cases/classes, that become less rare in the corresponding segments. Two
new schemes for tightly combining associative classification and probabilistic learning
are proposed, wherein the class of an unlabeled case is decided by considering mul-
tiple class association rules as well as their relative probabilistic generative models.
An intensive empirical evaluation shows that, although many possible lines of research
for further improvements exist, the hierarchical framework is competitive and often
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superior in accuracy w.r.t. established competitors, while overcoming them in the abil-
ity to deal with rare classes. The paper proceeds as follows. Section 2 presents the
hierarchical classification framework. Section 3 reports on the empirical evaluation of
our approach. Finally, section 4 concludes and highlights future research.

2 The Hierarchical Predictive Framework

In this section, we discuss our approach to learning a hierarchical framework. We start
with some preliminary notions. Let D be a relation storing the labeled training cases.
Also, let the schema of D be a set A = {A1 : Dom(A1), . . . , An : Dom(An), L : L}
of descriptive attributes. Features A1, . . . , An are defined over as many categorical
or numerical domains, whereas the target class attribute L is a categorical feature.
The generic labeled training case t ∈ D is a structured tuple, i.e. t ∈ Dom(A1) ×
. . .Dom(An)×Dom(L). t can also be equivalently represented in a transactional form.
Therein, assume that M = {i1, . . . , im} is a finite set of items denoting relationships
between any attribute of A but L and a corresponding value. Precisely, the generic item
i has the form A [rel ] v where A ∈ A−L, v ∈ Dom(A) and [rel ] ∈ {=,≤,≥} denotes
a relationship between A and v. In our formulation, A = v is admissible iff A is a cate-
gorical attribute. The remaining relationships A ≤ τ and A ≥ τ are instead allowed iff
A is a numeric attribute and, in such a case, τ indicates a generic split point. Split points
reflect the discretization of numeric attributes. Any (un)labeled case defined over A can
be modeled as a suitable subset of items in M. Let L be a finite domain of class labels,
the original dataset D can thus be redefined over M as a collection D = {t1, . . . , tn}
of labeled cases, such that the generic case t ∈ 2M ×L. The class label of t is denoted
as class(t). Henceforth, we shall adopt the transactional notation.

A class association rule (CAR) r : I → c catches an association that occurs in
D between any subset of items I ⊆ M and a class label c ∈ L. Notation class(r)
represents the class c targeted by r.

The notions of support, coverage and confidence are employed to define the interest-
ingness of a rule r. In particular, A training case t ∈ D is said to support rule r : I → c
if it holds that (I ∪ c) ⊆ t. The support of r is the fraction of training cases supporting
r, i.e., supp(r) = |{t∈D|(I∪c)⊆t}|

|D| , where |D| indicates the cardinality of D.
Rule r : I → c is said to cover a training case t ∈ D (and, dually, t is said to trigger

or fire r) if the condition I ⊆ t holds. The set of all training cases covered by r is
denoted by Dr = {t ∈ D|I ⊆ t}. The coverage of r can is the fraction of cases in D
covered by r, i.e. coverage(r) = |Dr |

|D| . The foresaid rule r : I → c is said to cover an
unlabeled case I ′ ⊆ M if I ⊆ I ′ holds. The confidence of a rule r, denoted by conf (r),
is the ratio of support to coverage, i.e. conf (r) = supp(r)

coverage(r) .
An associative classifier C is a suitable disjunction of propositionalif-thenCARs,

that predicts the class of an unlabeled case I , i.e. C(I) = c ∈ L.
Our goal is to learn a hierarchical framework from D, that consists of two classifica-

tion levels. At the higher level, an associative classifier is built such that its component
CARs meet some requirements on the minimum support and confidence. For each CAR
r ∈ C, the lower level of the framework includes a local probabilistic generative model
P (r) that allows to confirm or rectify r in the classification of an unlabeled case.
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The idea is to build, at the higher level, an associative classifier whose CARs are
coupled with local probabilistic generative models, sited at the lower level, that confirm
or rectify the predictions from the corresponding CARs. The overall learning process
is shown in fig. 1. Given a database D of training cases (defined over a set M of items
and a set L of class labels), the algorithm begins (at line 1) by discovering a set R of
association rules from D via the MINECARS search strategy. The latter is essentially an
enhancement of the Apriori algorithm [1] that integrates multiple minimum class sup-
port [15] and complement class support [3] to uncover, within each class, an appropriate
number of interesting association rules, whose antecedents and consequents are posi-
tively correlated. In particular, within the generic class, multiple minimum class support
automatically adjusts the global minimum support threshold σ, provided by the user, to
a minimum support threshold specific for that class. Instead, an important property of
complement class support is used to retain in R positively correlated CARs. These are
CARs for which the ratio of the observed confidence to the confidence expected by
chance (i.e. if the CAR antecedent and consequent were independent) exceeds a class-
specific threshold, that is selected without any additional parameter. The exploitation of
positively correlated rules allows to overcome a flaw with the support and confidence
framework, that produces CARs with poor implicative strength when class distribution
is imbalanced, since antecedents and consequents can be negatively correlated [3].

The rule set R is then sorted (at line 2) according to the total order ≺, which is a
refinement of the one introduced in [14]. Precisely, given any two rules ri, rj ∈ R, ri

precedes rj , which is denoted by ri ≺ rj , if (i) the confidence of ri is greater than that
of rj , or (ii) their confidences are the same, but the support of ri is greater than that of
rj , or (iii) both confidences and supports are the same, but ri is shorter than rj .

The learning process proceeds (at line 3) to distil a classifier C by pruning R, which
is likely to include a very large number of CARs, that may overfit the training cases.
The adopted strategy for overfitting avoidance involves item and rule pruning. Briefly,
rule items and/or whole rules are removed from R whenever this does not worsen the
accuracy of the classifier being distilled. The effects of item and rule pruning on the
accuracy of the resulting classifier are evaluated using statistical arguments, omitted
due to space restrictions. The interested reader is referred to [6] for further details.

The resulting classifier C may leave some training cases uncovered. Therefore, a
default rule rd : ∅ → c∗ is appended to C (at line 5), such that its antecedent is empty
and the targeted class c∗ is the majority class among the uncovered training cases.

Finally, for each CAR r ∈ C other than the default rule rd, a local probabilistic
model P(r) is built (lines 7-9) over Dr to catch a better generalization of those globally
rare cases/classes that become less rare within Dr. This allows to refine the prediction
from r with a local generative model that is better suited to deal with the local facets
of rarity. The TRAINLOCALCLASSIFIER step is treated in the following subsection 2.1,
that covers the classification of unlabeled cases (not reported in fig. 1) in the context of
two schemes for a tight integration between associative and probabilistic classification.

As a concluding remark, notice that, due to the total order ≺ enforced over R, the
associative classifier C is actually a decision list: each training case is classified by the
first CAR in C that covers it. In other words, the CARs in C are mutually exclusive, i.e.
a training case is covered by at most one rule of the classifier. Formally, the definition
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HIERARCHICALLEARNING(M,D,L,σ)
Input: a finite set M of boolean attributes;

a training dataset D;
a set L of class labels in D;
and a support threshold σ;

Output: An associative classifier C = {r1 ∨ . . . ∨ rk} and a set of local classifier Pri ;
1: R ← MINECARS(M,D, σ);
2: R ← ORDER(R);
3: C ← PRUNE(R);
4: if there are cases in D that are not covered by any rule within C then
5: C ← C ∪ {rd};
6: end if
7: for each rule r ∈ C, such that r �= rd do
8: P(r) ← TRAINLOCALCLASSIFIER(r);
9: end for
10: RETURN C and P(r) for each r ∈ C

Fig. 1. The hierarchical learning framework

of the set of training cases covered by the generic CAR r ∈ C hereafter becomes Dr =
{t ∈ D|r ⊆ t∧ 
 ∃r′ ∈ C : r′ ≺ r, r′ ⊆ t}. Moreover, the addition to C (at line 5) of the
default rule rd ensures that the classifier is also exhaustive, i.e. that every training case
of D is covered by at least one CAR of C.

2.1 Training Local Classifiers

To improve the predictive accuracy both in the surroundings of decision boundaries as
well as within the inner areas of decision regions (wherein classes other than the ones
associated to the whole regions may influence the classification of nearby unlabeled
cases), each CAR r ∈ C is associated with a local probabilistic generative model P(r),
trained over the regularities across the training cases local to Dr. In principle, such regu-
larities are likely to be more descriptive of those globally rare cases/classes that become
less rare within Dr. Hence, the individual P(r) can be involved into the classification
process for more accurately dealing with the corresponding forms of rarity.

In the following, we adopt two different probabilistic generative models based, re-
spectively, on the naı̈ve Bayes and nearest neighbor classification models. Precisely,
naı̈ve Bayes naturally allows to incorporate the effects of locality on classes and cases
in terms of, respectively, class priors and item posteriors. To elucidate, an unlabeled
case I ⊆ M is assigned by the generic generative model P(r) to the class c ∈ L with
highest posterior probability

P(r)(c|I) � p(c|I, r) =
p(I|c, r)p(c|r)∑

c∈L p(I|c, r)p(c|r) =
∏

i∈I p(i|c, r)p(c|r)∑
c∈L

∏
i∈I p(i|c, r)p(c|r)

Locality influences factors p(c|r)’s and p(i|c, r)’s, whose values are estimated by
computing p(c) and p(i|c) over Dr, and allows to better value rare cases/classes. In-
deed, if a significant extent of some form of rarity falls within Dr, the corresponding
cases/classes are obviously less rare than in D and, hence, factors p(c)’s and p(i|c)’s
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are accordingly higher (w.r.t. their values in D). Dually, p(c)’s and p(i|c)’s are sensibly
lower, if the density of that form of rarity within Dr is much lower than in D. How-
ever, this is acceptable, since most of that form of rarity is still captured within some
other region(s). An inconvenient behind the adoption of naı̈ve Bayes as the underly-
ing model for local probabilistic classifiers is their performance degrade (e.g. accuracy
loss) due to the violation of the attribute independence assumption. To alleviate such an
issue, the weaker attribute independence assumption postulated in AODE [17] can be
plugged into the above formulation, that simply refines naı̈ve Bayes by considering each
attribute dependent upon at most n other attributes in addition to the class. This is more
realistic in practice and is empirically shown in section 3 to yield a better performance.

Another difficulty behind naı̈ve Bayes is that the estimates of some class priors and
item posteriors may not be reliable when data is too rare within Dr. In such cases, the
nearest neighbor model can be alternatively used to compute probabilities P(r)(c|I)
from the distribution of classes within Dr through the generative approach below

P(r)(c|I) �
∑

I′∈Dr
wI′p(c|I ′)∑

c∈L
∑

I′∈Dr
wI′p(c|I ′)

The above is essentially a probabilistic re-formulation of a distance-weighted voting
scheme, in which each neighbor I ′ votes for the class that should be assigned to I . The
vote from the generic neighbor I ′ is suitably weighted by a corresponding factor w

(r)
I′ ,

which takes into account the actual distance between I ′ and I . Formally,

wI′ =
e−d2(I,I′)∑

I′∈Dr
e−d2(I,I′)

where d(I, I ′) is any suitable function that defines a notion of distance between I and
I ′. Notice that, whatever the distance between cases, the chosen weight-definition at-
tributes higher influences to those neighbors in Dr that are actually closest to I .

Two alternative approaches for refining the predictions from the associative classifier
C through the local probabilistic generative models P(r)’s are discussed next.

Local priors and local instance posteriors. The idea is to reformulate a generative
approach to classification which spans into local generative models. Starting from the
observation that the exhaustive and exclusive rules within C partition the space of cover-
ing events relative to a tuple, it is possible to define the joint probability over unlabeled
cases and a class labels as shown below

p(c, I) =
∑
r∈C

p(c, I, r) =
∑
r∈C

p(c, I|r)p(r) =
∑
r∈C

P(r)(c|I)p(I|r)p(r)

Within the above formula, p(I|r) represents the compatibility of I with the rule r. We
choose to model p(I|r) as the relative number of items that I shares with r: intuitively,
the number of (mis)matches represents the closeness of I to the region bounded by r.
P(r)(c|I) denotes the probability associated with c by the local naı̈ve Bayes classifier
P(r) trained over Dr. p(r) indicates the support supp(r) of CAR r and weights its
contributions to p(c, I) by the relative degree of rarity of its antecedent and consequent.
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Finally, the probability of class c given the unlabeled case I can be formalized as the
following generative model

p(c|I) =
p(c, I)∑

c∈L p(c, I)

Cumulative rule effect. A stronger type of interaction between global and local effects
can be injected into the classification process, if the predictions from a CAR r and un-
related local generative model P(r′) (with r 
= r′) are compared for selecting the most
confident one. The overall approach sketched in fig. 2. Precisely, the generic unlabeled
case I ⊆ M is presented to the associative classifier C and the first CAR r : I → c
(in the precedence order ≺ enforced over C) is chosen (at line N1). If r does not cover
I , it is skipped and the next rule is recursively taken into account (at line N20). Oth-
erwise, r is used for prediction. However, its target class c is not directly assigned to
I . Rather, the local probabilistic generative model P(r) corresponding to r is exploited
to produce a possibly more accurate prediction (at line N4). Some tests are performed
to identify the more confident prediction (lines N9- N15). If both counterparts agree or
one is deemed to be more reliable than the other one, the better prediction (in terms of
class-membership probability distribution) is returned (lines N10 and N12). Otherwise,
in the absence of strong evidence to reject the prediction from P(r) (which is in prin-
ciple preferable to r, being more representative of the local regularities that may come
from globally rare cases/classes that fall within Dr), r is skipped in favor of the next
CAR r′ ∈ C covering I (at line N14). To this point, if P(r′) predicts I more confidently
than P(r) (at line N5), the probability distribution from P(r′) replaces the current best
distribution yielded by P(r) (at line N6) and the choice of a better prediction is hence
made between r′ and P(r′). In the opposite case, the choice involves r′ and the cur-
rent best distribution P(r). If no prediction is clearly eligible as the most confident
throughout the search, the process halts when the default rule is met and the current
best distribution is returned (at line N17). Notice that the sofar best class-membership
probability distribution is remembered throughout the consecutive stages of the search
process via the input arguments p1, . . . , pk (such arguments are individually set to 0
at the beginning of the search process). A key aspect of the overall search process is
represented by the criteria adopted to choose the more confident prediction between the
ones from a CAR rh and a local probabilistic generative model P(ri). Accuracy is used
as a discriminant between the alternatives. In particular, the accuracy acc(c)

(
P(ri)

)
is

the percent of cases in D(r) correctly predicted by P(ri) as belonging to class c.
The accuracy acc(c)(rh) of a CAR rh predicting class c is its confidence conf (rh).

When comparing the accuracies of a CAR rh and a local probabilistic generative model
P(ri) there are four possible outcomes.

1. P(ri) is clearly deemed more reliable than rh (at line N9), if the weighted accuracy
of the former, p∗, is greater than the accuracy of the latter.

2. rh is preferred to P(ri) (at line N11) if the accuracy of the former is greater than or
equal to the weighted accuracy of the latter and both agree anyhow.

3. rh is preferred to P(ri) (again at line N11) if its accuracy is much greater than
the weighted accuracy of P(ri). Therein, p∗

p > p∗ is a prudential threshold, that
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PREDICTION(C,I ,p1, . . . , pk)
Input: An associative classifier C;

an unlabeled case I ⊆ M;
Output: the class distribution for I;
N1: select the first rule r : I ′ → ch in sequence within C;
N2: if r covers I (i.e. I ′ ⊆ I) then
N3: if |C| > 1 (i.e. r is not the default rule) then
N4: let pi = P(r)(ci|I) · acc(ci)

(
P(r)

)
, ∀i = 1, . . . , k;

N5: if max i(pi) > max i(pi) then
N6: let pi = pi, ∀i = 1, . . . , k;
N7: end if
N8: let p∗ = max i(pi) and i∗ = argmax i(pi) and p =

∑
i pi;

N9: if acc(ch)(r) < p∗ then
N10: RETURN the distribution (p1/p, . . . , pk/p);
N11: else if i∗ = h or acc(ch)(r) > p∗

p
then

N12: RETURN the distribution (acc(c1)(r), . . . , acc(ck)(r));
N13: else
N14: PREDICTION(C − {r},I ,p1, . . . , pk);
N15: end if
N16: else
N17: RETURN the distribution (p1/p, . . . , pk/p);
N18: end if
N19: else
N20: PREDICTION(C − {r},I ,p1, . . . , pk);
N21: end if

Fig. 2. The scheme for classifying an unlabeled case under the cumulative rule effect

represents the normalized weighted accuracy from P(ri). In practice, rh is actually
preferable to P(ri) iff its accuracy exceeds p∗

p .

4. There is no strong evidence (at line N16) to reject either rh or P(ri) when the
accuracy of rh lies in the interval (p∗, p∗

p ). In such a case, r is skipped and the
search proceeds to considering the next CAR in the associative classifier C that
covers I (through the recursive call at line N14).

3 Evaluation

We experimentally evaluate the behavior of the hierarchical classification framework
to understand whether it exhibits improvements in classification performance with re-
spect to established competitors. For the comparative evaluation, we use some standard
datasets from the UCI KDD repository [4] with high class imbalance. Tests are per-
formed over two further datasets. kdd99 is the KDD99 intrusion detection dataset,
wherein class distribution is strongly skewed and low-frequency classes are affected by
noise. fraud is a (non-publicly available) real-life fraud detection dataset, with a very
low class separability.



436 G. Costa et al.

We remark that, as pointed out in [18], the effectiveness of a classification strategy
on rare cases cannot be directly evaluated, since these are usually unknown. Notwith-
standing, both rare classes and rare cases are argued to be two strongly related facets of
rarity, whose issues can be addressed with the same methods. Hence, we expect that if
an approach is effective with rare classes, it is also useful for dealing with rare cases.
Experiments consists in comparisons against several established rule-based and asso-
ciative classifiers. The selected rule-based competitors are Ripper [8] and PART [10],
while the associative ones include CBA [14] and CMAR [19]. In particular, we ex-
ploited the implementations of CBA and CMAR in [7]. All tests are conducted on an
Intel Itanium processor with 4Gb of memory and 2Ghz of clock speed running Windows
XP. Numeric attributes in the chosen datasets are discretized for all schemes but Ripper,
through equal-frequency binning. Moreover, the test involving CBA and CMAR are re-
iterated several times, under different settings for the minimum support and confidence
parameters: we next report the results corresponding to the best parameter configuration
allowed by the implementations at [7]. Overall, the results from the individual classifiers
were averaged over ten-fold cross-validation.

Our schemes simply require the specification of a global minimum support. Due to
the adoption of minimum class support [14], such threshold is automatically adjusted
to become a class specific threshold. In particular, we fixed the global support threshold
to 20%, which is transparently adjusted to be, within the individual class in the data
at hand, the 20% of the frequency of that class. The exploitation of complement class
support [15] permits to avoid specifying a minimum confidence threshold.

We compare the approaches using accuracy, some meaningful ROC curves and the
Area Under the Curve (AUC) relative to the minority class. Tables 1 and 2 display the
results. Within the tables, (1) indicates Ripper, (2) corresponds to PART, while (3) and
(4) stand for CBA and CMAR, respectively. Our schemes are instead numbered from
(5) to (10). More specifically, (5) and (6) indicate naive Bayesian smoothing (respec-
tively through local priors or cumulative effect). (7) and (8) stand for nearest-neighbor

Table 1. Classification accuracy

Dataset (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
anneal 96.63 96.66 92.81 96.33 96.76 96.76 96.70 96.63 96.76 96.76
balance-scale 77.29 77.27 68.81 68.49 77.84 77.53 74.04 77.60 79.67 78.01
breast-cancer 71.46 68.54 69.20 67.67 70.52 70.52 72.65 71.92 72.44 72.44
horse-colic 84.26 81.95 81.62 83.96 82.42 82.42 84.12 83.85 82.11 82.11
credit-rating 86.28 85.07 81.74 83.76 85.78 85.78 86.57 86.43 86.06 86.06
german-credit 71.74 72.24 73.10 73.34 74.21 74.21 72.48 71.85 74.53 74.53
pima-diabetes 77.41 76.84 77.87 73.03 78.06 78.06 77.97 76.86 77.63 77.63
glass 71.95 74.94 72.69 74.23 75.63 74.93 73.72 72.94 76.66 75.65
cleveland-14-heart-disease 82.24 80.46 82.12 75.12 81.78 81.97 82.43 82.20 82.34 82.33
hungarian-14-heart-disease 80.48 81.29 82.06 79.69 82.87 82.90 81.60 81.67 83.00 82.97
heart-statlog 82.89 83.33 82.59 84.19 83.34 84.19 82.74 81.93 84.52 84.52
hepatitis 80.58 78.20 79.89 81.08 82.17 81.08 80.38 80.19 80.85 80.85
ionosphere 91.68 90.03 87.89 89.74 93.72 89.74 92.28 92.28 92.85 92.85
labor 83.33 84.63 86.67 88.77 87.17 88.77 83.33 83.33 88.23 88.23
lymphography 79.14 80.20 81.18 80.59 84.16 80.45 79.68 79.54 80.21 80.21
sick 97.60 97.87 97.51 97.64 93.88 97.64 97.51 97.57 97.65 97.65
sonar 79.00 81.26 80.00 82.78 63.36 82.78 80.10 79.67 82.64 82.64
fraud 93.07 93.02 80.82 90.52 91.79 91.79 93.05 92.96 92.61 92.61
kdd99 96.61 96.98 94.65 94.63 95.98 95.98 96.78 96.73 96.65 96.65
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Table 2. Area Under the Curve

Dataset (1) (2) (5) (6) (7) (8) (9) (10)
anneal 0.79 0.91 0.94 0.94 0.93 0.93 0.95 0.95
balance-scale 0.82 0.90 0.94 0.92 0.93 0.92 0.94 0.92
breast-cancer 0.60 0.59 0.68 0.68 0.63 0.63 0.69 0.69
horse-colic 0.83 0.83 0.85 0.85 0.87 0.87 0.87 0.87
credit-rating 0.87 0.91 0.92 0.92 0.91 0.91 0.93 0.93
german-credit 0.63 0.71 0.77 0.77 0.72 0.72 0.78 0.78
pima-diabetes 0.75 0.81 0.84 0.84 0.83 0.82 0.84 0.84
glass 0.87 0.89 0.87 0.85 0.87 0.85 0.87 0.86
cleveland-14-heart-disease 0.83 0.84 0.90 0.90 0.89 0.88 0.90 0.90
hungarian-14-heart-disease 0.78 0.86 0.90 0.90 0.89 0.89 0.90 0.90
heart-statlog 0.83 0.85 0.90 0.90 0.88 0.87 0.90 0.90
hepatitis 0.70 0.69 0.84 0.84 0.78 0.77 0.84 0.84
ionosphere 0.92 0.92 0.95 0.95 0.94 0.94 0.98 0.98
labor 0.81 0.83 0.96 0.96 0.90 0.90 0.96 0.96
lymphography 0.46 0.56 0.99 0.79 0.81 0.68 0.97 0.92
sick 0.91 0.93 0.96 0.96 0.96 0.96 0.96 0.96
sonar 0.81 0.86 0.92 0.92 0.90 0.89 0.92 0.92
fraud 0.68 0.77 0.81 0.81 0.78 0.78 0.92 0.90
kdd99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Predicted -> good bad
good 607 93
bad 155 145

Predicted -> good bad
good 611 89
bad 194 106

AODE local priors (9) Ripper (1)

Fig. 3. The confusion matrices yielded by AODE local priors (9) and Ripper (1)

smoothing (respectively, through local priors or cumulative effect). (9) and (10) are
AODE smoothing (respectively, through local priors or cumulative effect).

The results clearly state that the combination of associative classification and prob-
abilistic smoothing is at least as accurate as the seminal rule-based classifiers chosen
for the comparison. In many cases, however, (5) and (11) achieve improvements in ac-
curacy, reported in bold within table 1, that are statistically significant according to the
t-test. In addition, a deeper analysis reveals that the response versus the classes of in-
terest is strongly improved. Such an improvement can be appreciated by looking at the
details of the individual datasets. We report in fig. 3 the confusion matrices originated
by (1) and (9) over the german-credit dataset: the probabilistic smoothing here
recovers 39 tuples to the minority class, thus allowing to achieve a higher precision.

A further analysis of the results obtained over the fraud and the kdd99 datasets
provides an in-depth into the effects of smoothing. Fig. 4 shows the ROC curves relative
to (1), (2), (5), (7) and (9). There is an evident improvement in the underlying area with
respect to the competitors (1) and (2), whose trends are plotted in red. Results with the
kdd99 dataset are even more surprising, and in particular with the u2r class, as shown
in fig. 5, that represents the curves relative to the schemes (1), (2) and (9). The u2r
class is made of 56 tuples (out of 150K), and still the probabilistic adjustment is capable
of recovering some problematic cases.

Finally, the ability of the approaches at dealing with the classes is compared in ta-
ble 2, which reports the AUC values across the selected datasets. The AUC is a measure
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Fig. 4. ROC curve for the minority class in the fraud dataset

Fig. 5. ROC curve for the minority u2r class in the kdd99 dataset

of the separability of two classes. Therefore, for the two-class datasets, table 2 simply
reports a scalar value, which indicates the capability of the classification schemes at dis-
criminating between the positive (i.e. rare) and negative (i.e. predominant) classes. For
the multi-class datasets, table 2 combines multiple pairwise separability values by fol-
lowing the class reference approach in [9] and reports the weighted sum of the resulting
pairwise AUC values (weights are the occurrence frequencies of each reference class).
The devised schemes exhibit an improved performance across all classes within the
distinct datasets and, in particular, with hepatitis, lymphography and fraud,
where the improvement is over 10%. As witnessed by the graphs in figg. 4 and 5, such
an overall improvement is primarily obtained on the minority classes.
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4 Conclusions and Future Work

This paper proposed two novel smoothing approaches that tightly integrate rule-based
(associative) classification and probabilistic learning [5], to improve the classification
performance on the rare classes in multi-class imprecise learning environments.

We planned to investigate the overhead due to the enrichment of the base associative
classifier with one generative probabilistic model for each rule. The analysis of the
amount of additional time required in the learning and classification steps will be useful
to better balance the accuracy benefits with the computational time requirements.

Also, we intend to improve the accuracy of the local probabilistic generative mod-
els through ROC analysis. The classification threshold used in our framework assigns
a class label when the associated probability is higher than 0.5. However, the latter
may not necessarily be the best threshold, especially if we consider the bias introduced
by the CAR associated with the probabilistic classifier. In general, higher thresholds
produce improvements in recall, by contemporarily degrading precision. However, by
automatically selecting the best class-specific threshold, probabilistic smoothing can
still allow to remove some locality effects within the CAR and maintain high precision
as well.
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Abstract. Handling missing values when tackling real-world datasets is a great
challenge arousing the interest of many scientific communities. Many works pro-
pose completion methods or implement new data mining techniques tolerating
the presence of missing values. It turns out that these tasks are very hard. In this
paper, we propose a new typology characterizing missing values according to re-
lationships within the data. These relationships are automatically discovered by
data mining techniques using generic bases of association rules. We define four
types of missing values from these relationships. The characterization is made
for each missing value. It differs from the well-known statistical methods which
apply a same treatment for all missing values coming from a same attribute. We
claim that such a local characterization enables us perceptive techniques to deal
with missing values according to their origins: the way in which we deal with the
missing values should depend on their origins (e.g., attribute meaningless w.r.t.
other attributes, missing values depending on other data, missing values by acci-
dent). Experiments on a real-world medical dataset highlight the interests of such
a characterization.

Keywords: Data mining, missing values, association rules.

1 Introduction

Many data sets are incomplete and handling missing values is a major challenge in
data analysis. There are two main approaches to analyze incomplete data: using a data
mining method which is adjusted to cope with missing values or completing the data
by imputation. The first approach is clearly expensive. Indeed, even if a technique can
be updated to handle missing values, the process has to be repeated for each technique.
The second is appealing: once a database is completed, it enables us the running of
any method. It may explain why many works deal with imputation. Obviously, this
approach requires accurate imputations in order to provide proper and unbiased data
sets. Basic methods such as the mean, the most common value, a default value, are
not satisfactory because they exaggerate correlations [9]. Several techniques are based
on the Expectation Maximization (EM). It has been shown that EM provides accurate
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probability estimations but it requires a model which has to be chosen according to the
data [7]. By using the minimum description length and the idea that the best completion
is that allowing for the best compression, a method taking into account how specific
values co-occur locally has been proposed in [19]. A rule-based system designed for
symbolic data is presented in [5]. More generally, there are several techniques based
on the exploitation of local regularities, e.g., association rules [2,4,14,17,20], concise
representations of patterns [15] or rough sets [8,11].

Results from the literature show that completion is a very hard task. In these works,
completion methods are evaluated by missing values which are artificially introduced
in a reference dataset. Then, a completion process is applied and the completed dataset
is compared to the reference one. However, missing values are introduced according to
statistical hypotheses, typically by removing values fully randomly or removing values
randomly dependent on a present value. Unfortunately, as recently highlighted in [13],
these assumptions may be wrong in real-world datasets and current approaches do not
avoid the pitfall of non-random missing values. This issue of different types of missing
data mechanisms is addressed in the well-known work of Little and Rubin [10] which
distinguishes three types of missing values (cf. section 2.3). This work is interesting
because it brings out a better understanding of the origin of missing values and the scope
of the completion methods. Not surprisingly, the type NMAR [10] (i.e., Not Missing At
Random) is generally not tackled by the current completion methods [19]. We also think
that these types suffer from limitations in practical uses of the data mining. First, it relies
on a global characterization of the missing values. We claim that completion methods
can benefit from local characterization. For instance, we will see in Section 4 that the
explanation of missing values suggests several completion strategies and it should be
illusory to settle for a unique characterization for all the missing values coming from
one attribute. Second, the types proposed by Little and Rubin are based on both the true
(or complete) data and the available data. But, in real-world data mining tasks, the true
data remain unknown.

We propose in this paper a new typology characterizing missing values according
to relationships within the data. These relationships are automatically discovered by an
association rule-based model. We define four types of missing values leading to a pre-
cise characterization of each missing value. Contrary to [10], these types rely on local
regularities so that each missing value has its own type independently of the other miss-
ing values. Moreover, relationships are only based on the available data. We claim that
such a characterization brings out a twofold advantage. First, it provides a better un-
derstanding of the underlying reasons of the missing values thus contributing to better
control data quality. For instance, in Section 4, we will see that this characterization sug-
gests attributes meaningless w.r.t. other attributes and consequently the data set should
be restructured. Second, this characterization enables us perceptive techniques to deal
with missing values according to their origins. Experiments in Section 4 show that the
type indirect of this characterization highlights missing values which are not tackled by
the current methods [19]. About completion, previous works have already shown the
importance of a preliminary analysis of missing values to propose relevant methods [6].

More generally, we address the following questions that we feel crucial to han-
dle missing values in data mining tasks: what kind of missing values models can be
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recognized from the available data? Is it possible to explain the presence of the miss-
ing values? How can we characterize these missing values? Could we have different
characterizations for the missing values coming from one attribute?

The remainder of the paper is organised as follows. Section 2 presents the terminol-
ogy used throughout the paper and summarizes missing values models from the litera-
ture. Section 3 proposes a new typology of missing values corresponding to our method
characterizing missing values. Experiments (Section 4) on a real-world medical dataset
highlight the interests of this typology.

2 Preliminaries

This section introduces the technical concepts (real and measured contexts, itemsets and
association rules) and the missing values models proposed by Little and Rubin [10].

2.1 Definitions and Notations

Let us consider a database in an “attribute/value” format. Figure 1 provides a toy ex-
ample. Each object is described by four attributes A1, A2, A3 and A4. A domain of
values is associated to each attribute, e.g., dom(A1) = {a, b}, dom(A2) = {c, d},
dom(A3) = {e, f, g} and dom(A4) = {h, i}. An attribute Ai may have an unknown
value, called a missing value, noted by “?”. We give now the definition of a real context
(an example of such a context is given by the left part of Figure 1).

Definition 1 (Real context). A Real Context is a triplet K = (O, I,R), where O is
the set of objects or transactions, I the set of items and R is a function over O × I
which takes its values in {present, absent}. R(o, i) = present indicates that the item
i ∈ I is present in the object o ∈ O. R(o, i) = absent means that i is not in o.

When missing values occur, the real context is converted in a measured context.

Definition 2 (Measured Context)
A missing value modelling operator, noted mv, maps a real context K = (O, I,R)
into a measured context noted by mv(K) = (O, I, mv(R)). The new function mv(R)

A1 A2 A3 A4

a b c d e f g h i
o1 × × × ×
o2 × × × ×
o3 × × × ×
o4 × × × ×
o5 × × × ×
o6 × × × ×
o7 × × × ×
o8 × × × ×

A1 A2 A3 A4

a b c d e f g h i
o1 × × ? ? ? ×
o2 ? ? × × ? ?
o3 × × ? ? ? ×
o4 × × × ? ?
o5 ? ? × × ? ?
o6 × ? ? × ×
o7 × ? ? × ? ?
o8 ? ? × × ? ?

Fig. 1. Boolean context. Left : real context. Right : measured context.
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takes its values in {present, absent, missing} and fulfills the following properties for
value ∈ {present, absent} :

1. mv(R)(o, i) = value ⇒ R(o, i) = value
2. R(o, i) = value ⇒ mv(R)(o, i) ∈ {value, missing}

A real context K corresponds to the complete dataset (which stays unknown in real-
world applications) whereas a measured context mv(K) refers to the available data,
i.e., the data that we have to tackle in practice. The modelling operator mv() models
a data erasing, i.e., some values were deleted (moved to missing). When a value is
missing in mv(K), it becomes impossible to guess its real value in K. However, when
the value is known in mv(K), it corresponds to the same value in the real context K
(first property of Definition 2). The second property ensures that a value (either present
or absent) in K keeps its value or will be missing in mv(K).

Figure 1 (Right) is the measured context associated to the left part of this figure.
As this context comes from an attribute/value format, a missing value affects all the
possible values of an attribute. For example, the missing values on the items a and b in
the object o8 in mv(K) (Figure 1 - Right) hide actually the presence of the item b in K
(Figure 1 - Left).

2.2 Association Rules

An itemset (or pattern) X ⊂ I is a set of items. An object o ∈ O contains the itemset
X and we note X ⊂ o if ∀ i ∈ X , R(o, i) = present. The absolute support of X ,
noted by Supp(X), is defined as follows : Supp(X) = |{o ∈ O|X ⊂ o}|. An associ-
ation rule R, based on a pattern Z , is an expression R : X → Y where X � Z and
Y = Z\X . The itemsets X and Y are respectively called premise and conclusion of
R. An association rule is quantified by its support and confidence: the support is equal
to the one of Z and the confidence is defined as Conf(R) = Supp(Z)

Supp(X) . Valid associa-
tion rules are those whose support and confidence are greater than or equal to minimal
thresholds, respectively noted by minsup and minconf . If Conf(R) = 1, then R is
exact, otherwise it is approximative. For example, fh → c is an exact association rule
(cf. Figure1 - Left).

Presenting all the steps of the association rule mining is out the scope of this paper.
However, we use techniques for non-redundant association rules computation, specially
the basis of proper implications [18]. These rules are composed in their premise part by
a free-set1[3] (aka key [12] or minimal generator), and in the conclusion part, by an
attribute of its closure2, which does not appear in the closure of one of the subsets of
the premise part. This computational technique considerably restricts the number of re-
dundant exact association rules, while faithfully preserving all the induced knowledge.

2.3 Classical Models of the Missing Values Appearance

Little and Rubbin [10] distinguish the following three types of missing values, which
are also called models for missing values appearance.

1 Since exact association rules cannot be built on part of these patterns.
2 The closure of a pattern is composed by attributes which are systematically present with it.
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– MCAR (Missing Completely at Random): the probability that an attribute Ai is
missing is unrelated to the value of Ai nor to the value of any other attributes.
It may affect any record and any object. For example, the missing values in the
attributes A1 and A2 of Figure 1 (Right) are MCAR. These missing values have a
priori no particular explanation.

– MAR (Missing at Random): such a missing value depends on the values of other
attributes but it does not depend on the true value of any of the missing values. In
Figure 1 (Right), the missing values which affect the attribute A3 are examples of
MAR. Note that all missing values on A3 are related to the presence of the itemset
ac.

– NMAR (Not Missing at Random): if the missing value is related to the true value
itself, then the missing value is said to be NMAR. The missing values affecting the
attribute A4 in Figure 1 (Right) are NMAR. If the item i cannot be recorded, then a
missing value arises each time that i should be observed.

2.4 Discussion and Position Statement

The use of the Little and Rubbin models is not easy [16]. A first difficulty is that these
models require knowledge or assumptions on the real context (i.e., the true values)
whereas, in practice, only the measured context is known. With the MAR model, the
missing values coming from an attribute have to satisfy a property of randomness. The
characterization of the NMAR model needs assumptions on the real context. For in-
stance, we can assume that a missing weight is more likely linked to an obese people
than a healthy one. Such an assumption can be formulated by experts but an expert is
not always available. Moreover, there are relationships inside the data which are not
taken into account by these models. For instance, in our experiments (cf. Section 4), we
note that the size of an invasion of a location is missing when there is no ganglion. In
practice, it should be useful to integrate such relationships to deal with missing values
(in this example, this relationship suggests that the attribute on the size is meaningless
when there is no ganglion and thus the data set should be restructured). Finally, note that
these models are based on a global characterization of the missing values: they give the
same explanation for all the missing values coming from one attribute. We think that a
local characterization is more powerful to deal with missing values, especially to pro-
pose completion techniques.

3 A New Missing Values Typology

In this section, we propose a new typology of missing values based on a local charac-
terization of the missing values computed only from the available data.

– Direct missing value: a missing value is said to be direct, whenever it has relations
with other measured values.

– Indirect missing value: a missing value is said to be indirect, whenever it has
relations with other missing values.

– Hybrid missing value: a missing value is said to be hybrid, whenever it has rela-
tions with both measured and missing values.



446 L. Ben Othman et al.

– Random missing value: a missing value is said to be random, whenever it does
not have any relation with other measured values or missing ones.

The next section formally defines this typology. It uses association rules for charac-
terizing the missing values.

3.1 Association Rule Based Model for Missing Values Characterization

The definition of association rules characterizing missing values beforehand requires to
quantify the degree of the presence/absence of an itemset in a measured context mv(K):

Definition 3 (Present itemset). An itemset X ⊂ I is said to be Present, in o ∈ O if
and only if ∀x ∈ X, mv(R)(o, x) = present, and is noted by Present(X, o).

Definition 4 (Missing itemset). An itemset X ⊂ I is said to be missing, in o ∈ O if
and only if ∀x ∈ X , mv(R)(o, x) = missing, and is noted by Missing(X, o).

Definition 5 (Partially present itemset). An itemset X ⊂ I is said to be Partially
present, in o ∈ O if and only if ∀x ∈ X, mv(R)(o, x) 
= absent and ∃x1 ∈
X, mv(R)(o, x1) = present and ∃x2 ∈ X, mv(R)(o, x2) = missing, and is noted
by PartPresent(X, o).

Example 1. In the measured context depicted by Figure 1 (Right), we have
Present(adf, o4), Missing(ah, o8) and PartPresent(bdg, o8).

The regularities allowing the characterization of missing values can be straightfor-
wardly detected by association rules. In practice, these rules are discovered by using
a minimal support value, minsup to only care about regularities that appear frequently.
We propose here a formalization of this new missing value typology as follows:

Definition 6 (direct missing value). A missing value i is said to be direct in T ⊂
O (|T | ≥ minsup) if and only if ∃X ⊂ I \ {i} | ∀ o ∈ T , P resent(X, o) ⇒
Missing(i, o).

Definition 7 (indirect missing value). A missing value i is said to be indirect in T ⊂
O (|T | ≥ minsup) if and only if ∃X ⊂ I \ {i} | ∀ o ∈ T , Missing(X, o) ⇒
Missing(i, o).

Definition 8 (hybrid missing value). A missing value i is said to be hybrid in T ⊂ O
(|T | ≥ minsup) if and only if ∃X ⊂ I \ {i} | ∀ o ∈ T , PartPresent(X, o) ⇒
Missing(i, o).

Definition 9 (random missing value). A missing value i is said to be random in T ⊂
O (|T | ≥ minsup) if and only if ∀X ⊂ I \ {i} , ∃ o ∈ T |Missing(i, o) ∧ ¬
Present(X, o).

Example 2. Let us follow the running example in Figure 1. The rules used for the char-
acterization associated to the context mv(K) (Figure 1 - Right) are given by the left
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Rule Support
R1 a ∧ c → MV (A3) 2
R2 MV (A1) → MV (A4) 3
R3 a ∧ h → MV (A3) 2
R4 c ∧ MV (A4) → MV (A1) 2
R5 c ∧ h → MV (A3) 2
R6 d → MV (A4) 2
R7 g → MV (A4) 2

A1 A2 A3 A4

o1 - {direct} -
o2 {hybrid} - - {indirect}
o3 - - {direct} -
o4 - - - {direct}
o5 {hybrid} - - {indirect}
o6 - {random} - -
o7 - {random} - {direct}
o8 {random} - - {direct, indirect}

Fig. 2. Left: Rules concluding on missing values with minsup=2 from the measured context
mv(K) (cf. Figure 1). Right: Typology of the missing values associated to mv(K).

part of the Figure 2 (Left) with minsup = 2. The notation MV (Ai) indicates a miss-
ing value on the attribute Ai (i.e., on all items of the Ai domain). The column Support
indicates the value of the absolute support of the rule. The characterization of the miss-
ing values is given by the Right part of Figure 2. For example, the rule R4 shows that
when c is present and a missing value occurs on the A4 attribute, then, a missing value
is observed on the A1 attribute. This rule characterizes hybrid missing values on the A1
attribute over the objects o2 and o5 (Figure 2 - Right).

3.2 Impact of the Basis of Proper Implications for the Missing Values
Characterization

As said in Section 2.2, we use the basis of proper implications for building the rules
characterizing the missing values. We now show the interest of this rule basis.

The basis of proper implications can be seen as a nicety of the well-known Bastide’s
basis [1] which provides a cover of the exact association rules. With the Bastide’s basis,
every free pattern is the premise of a rule whose the conclusion is the closure of its
premise (see Section 2.2). The basis of proper implications is a finer cover: a rule is
kept only if its conclusion cannot be inferred from the closures of any subset of its
premise. The rules of the basis of proper implications satisfy the following suitable
properties to characterize missing values:

1. a rule has a minimum premise for a given conclusion. The redundancy, which may
lead to conflicts, is limited.

2. the number of rules of the basis of proper implications is very small compared to
the size of the Bastide’s basis. For example, Table 1 compares the size of these
basis under our experimental conditions on the HODGKIN dataset (see Section 4).
The number of rules is drastically reduced with the basis of proper implications.

From our example (Figure 1), we illustrate the interest of the basis of proper im-
plication for characterizing missing values. Figure 3 presents the rules concluding on
the missing values of the A4 attribute (noted MV (A4)) which are generated by the
Bastide’s basis and the basis of proper implications. We note that the rule R′

4 is not
generated by the basis of the proper implications since that MV (A4) has already ap-
peared in the closure of one subset of the premise of R′

4 i.e., MV (A4) is already in the
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Table 1. Number of rules with the Bastide’s basis and the basis of proper implications on the
HODGKIN dataset

Rules Rules concluding on a missing value
Bastide’s basis 2 923 070 2 681 045
Proper implications basis 49 15

Rule Support
R′

1 MV (A1) → MV (A4) 3
R′

2 d → MV (A4) 2
R′

3 g → MV (A4) 2
R′

4 c ∧ MV (A1) → MV (A4) 2

Rule Support
R′′

1 MV (A1) → MV (A4) 3
R′′

2 d → MV (A4) 2
R′′

3 g → MV (A4) 2

Fig. 3. Rules concluding on MV (A4) Left: Bastide’s basis. Right: basis of proper implications

conclusion of the rule R′′
1 . Consequently, R′′

1 is considered as more interesting than R′
4

when characterizing the missing values on the A4 attribute, since it has a non-redundant
and minimum premise. As expected, the non-redundancy limits conflicts between types:
objects o2 and o5 are characterized only by the type indirect with the basis of proper
implications whereas the Bastide’s basis proposes two types (indirect and hybrid). For
the other objects, the characterization is the same with the two bases. The formalization
of this intuition appears in our perspective, i.e., we are particularly focusing on defining
properties of this characterization.

3.3 Characteristics of the Missing Values Typologies

Table 2 summarizes the differences between the Little and Rubin models and our typol-
ogy. Obviously, we get back the main features that we have introduced. The Little and
Rubbin models need knowledge (or assumptions) on the true data so that their practical
use is difficult. That it is why we qualify these models as “theoretical”. On the contrary,
our typology is only based on the available data. The Little and Rubin models perform a
global characterization: they allocate the same type for all missing values coming from
an attribute. With our typology, the types are evaluated by using local regularities and

Table 2. Characteristics of the missing values typologies

Little and Rubin Typology Our new typology
Data Available + unavailable Available

Framework Theoretical Theoretical + Operational
Characterization Global Local

Types MCAR Random
MAR Direct

NMAR -
- Indirect
- Hybrid
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each missing value has its own type independently of the other missing values. The
last row compares the types of the two typologies. The NMAR model does not appear
in our typology since it is based on the unavailable data. Indirect and hybrid types are
not present in the Little and Rubin typology. Besides, even if there is a matching be-
tween MCAR/Random and MAR/Direct, practical results can be different because our
typology stems from local subsets of objects.

4 Experimental Results

This section describes our experiments carried out on a medical dataset about the
Hodgkin disease. We have chosen this dataset because it addresses a real-world medical
application with many missing values. These missing values are natural (i.e., no sim-
ulation was made for artificially introducing them). Furthermore, this database is used
by physicians and they can provide advice and feedback on the data and results.

The HODGKIN dataset. The Hodgkin disease is a cancer of the lymphatic system. The
HODGKIN dataset contains 3904 patients split in three therapeutic trials (H7, H8 and
H9) realized over successive temporal periods. Each patient is described by 36 attributes
and 29 contain missing values. The percentage of missing values for an attribute varies
between 2% and 88%. The attributes include blood and histological characteristics and
several information on the locations (cervical, hilum, mediastinum, auxiliaries) and the
sizes of the invasions. An invasion is a symptom of a cancer.

Results. The rules were mined with an absolute support equals 700. Only 15 rules con-
cluding on missing values are discovered (recalling that the properties of the rule cover
drastically reduce the number of rules as indicated in Table 1). We have also performed
experiments with rules allowing few exceptions (i.e., non exact rules with very high
confidence) and we found similar results. The 15 rules are reported in Figure 4 (Left).
For example, the rule R4 indicates that all objects containing the item plaq <= 600 and
a missing value on the attribute ctr (right top cervical ganglion) also contain a missing
value on the attribute ctl. It corresponds to an hybrid missing value characterization.

The rules R1 and R2 conclude on a missing value of the invasions of the left or
right top cervical ganglion (ctl or ctr). These rules contain in their premise only the
trial H7 attribute. Therefore, the type of these missing values is direct and the trial H7
explains these missing values. This type highlights a characteristic situation suggesting
to investigate the running of the trial H7: actually this trial did not distinguish the top
and bottom cervical ganglions and that it is why these values are missing. This case of
missing values reveals a classical problem of data merging. Our method enables us to be
aware of such issue and therefore it allows to better control the data quality. Note also
that some missing values on ctl attributes were characterized by other rules as indirect
(R3) and as hybrid (R4). It states a multiple missing value characterization.

Rules R5 until R10 (left part of the Figure 4) characterize missing values having
the type direct. They mean that when a ganglion is not invaded, its invasion size is not
measured. It is interesting to check that such a knowledge is automatically discovered.
Rules R11 and R12 characterize indirect missing values on the sizes of the ganglions
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Premise Conclusion support
R1 trial H7 MV(ctr) 816
R2 trial H7 MV(ctl) 816
R3 MV(axlsiz)∧ MV(ctr) MV(ctl) 811
R4 plaq<=600 ∧ MV(ctr) MV(ctl) 778
R5 ctr not invaded MV(ctrsiz) 2449
R6 ctl not invaded MV(ctlsiz) 2407
R7 cbr not invaded MV(cbrsiz) 1969
R8 cbl not invaded MV(cblsiz) 1690
R9 axl not invaded MV(axlsiz) 3295

R10 axl not invaded MV(axlsiz) 3185
R11 MV(ctr) MV(ctrsiz) 908
R12 MV(ctl) MV(ctlsiz) 910
R13 med not invaded ∧ vs <=30 MV(mtr) 920
R14 med not invaded ∧ relapse= no MV(mtr) 1042
R15 med not invaded ∧ MV(cblsiz) MV(mtr) 717

attribute missing direct indirect hybrid random
values

ctr 908 90% 0 0 10%
ctl 910 10.7% 10% 79% 0.3%

ctrsiz 3435 71% 3% 24 2%
ctlsiz 3398 71% 3% 24% 2%
cbrsiz 2274 87% 0 0 13%
cblsiz 2027 83% 0 0 17%
axlsiz 3444 96% 0 0 4%
axlsiz 3360 95% 0 0 5%
mtr 1512 32% 0 47% 21%

Fig. 4. Left: Exact association rules discovered from the HODGKIN dataset with misnusp=700.
Right: Missing values characterization in the HODGKIN dataset.

ctlsiz and ctrsiz. Missing values on these size attributes are explained by missing
values on other attributes. When we do not know if a ganglion is invaded, then a missing
value always occurs on its size. Rules R13 until R15 characterize missing values on the
attribute ratio mediastinum ganglion width / thorax. The first two rules characterize
direct missing values and the third one hybrid missing values.

The right part of Figure 4 summarizes the different types of the missing values ac-
cording to the attributes. An important result is that most of the missing values are not
due to randomness but they belong to the direct, indirect or hybrid types. As these types
express relationships in the data, it means that our characterization is able to suggest ex-
planations for most of the missing values.

In these experiments, we check that the missing values coming from one attribute
may be characterized according to different types. It is the case for the attributes ctl,
ctrsiz, ctlsiz and mtr. It illustrates the power of the local characterization of our ap-
proach, which does not force to consider only a single type for all the missing values
coming from one attribute.

The database includes other attributes with a low rate of missing values (between
2% and 9%). As we used an absolute support threshold of 700 corresponding to 18% of
the data, we have not discovered rules characterizing these missing values. The charac-
terization depends on the minimal support threshold. Decreasing the minimal support
threshold may lead to discover rules characterizing missing values on these attributes
but it may provide multiple conflicts of characterization.

5 Conclusions and Perspectives

In this paper, we have proposed a new typology of missing values according to the
relationships within the data. These relationships are automatically discovered by an
association rule-based model. Contrary to models from the literature, our approach is
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only based on the available data and it relies on local regularities so that each missing
value has its own type independently of the other missing values. This characteriza-
tion enables us a better understanding of the underlying reasons of the missing values
(e.g., attribute meaningless w.r.t. other attributes, missing values depending on other
data, missing values by accident). We claim that it is precious because it suggests ex-
planations about the quality of the data and also more powerful techniques to deal with
missing values, especially to propose completion methods. Experiments on a real-world
medical dataset highlight the interests of this typology. Among others, they show that
many missing values do not stem from randomness. Further work is to show the impact
of the variation of the minsup over the characterization and on the conflict as well as to
investigate the use of this typology for the completion issue. Association rules have been
shown to be efficient to complete missing values coming from random processes [2].
Our intuition is that missing values characterized by direct, indirect or hybrid types
require the help of background knowledge to be completed since these types express
specific behaviors.
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Abstract. Interactive analysis of datacube, in which a user navigates a
cube by launching a sequence of queries is often tedious since the user
may have no idea of what the forthcoming query should be in his current
analysis. To better support this process we propose in this paper to apply
a Collaborative Work approach that leverages former explorations of the
cube to recommend OLAP queries. The system that we have developed
adapts Approximate String Matching, a technique popular in Informa-
tion Retrieval, to match the current analysis with the former explorations
and help suggesting a query to the user. Our approach has been im-
plemented with the open source Mondrian OLAP server to recommend
MDX queries and we have carried out some preliminary experiments that
show its efficiency for generating effective query recommendations.

1 Introduction

Traditional OLAP users interactively navigate a cube by launching a sequence
of queries over a datawarehouse, which we call an analysis session (or session
for short) in the following. This process is often tedious since the user may have
no idea of what the forthcoming query should be [1]. This difficulty might be
related to the decline of interactive analysis pointed out in [2].

To better support this process, we proposed in [3] a framework for recom-
mending OLAP queries. The idea is to leverage what the other users did during
their former navigations on the cube, and to use this information as a basis for
recommending to the user what his forthcoming query could be.

In this paper, we present a significant extension of this work that results in a
system for recommending multidimensional queries expressed with MDX [4], the
de facto standard. Namely we have changed the core of the framework, that is the
distance between queries and the distance between sessions, to better handle the
peculiarities of OLAP data. We have adapted our system to deal with real-case
cubes and MDX queries. More precisely, our contribution include:

– A measurement of the distance of two MDX queries that leverages the pe-
culiarities of OLAP data,

– A measurement of the distance of two sequences of MDX queries by us-
ing Approximate String Matching [5], a technique popular in Information
Retrieval,
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– A framework for using these measures to search the log of an OLAP server
to find a set of sessions matching the current session and generate recom-
mendations,

– An implementation of this approach into a recommender system that fully
integrates with the open source Mondrian OLAP engine [6] to recommend
MDX queries on the fly during an interactive analysis session,

– Experiments conducted to assess the efficiency and effectiveness of our ap-
proach.

The paper is organized as follows: Section 2 briefly reviews related work. A
motivating simple example is given in Section 3. Section 4 introduces the dis-
tance for comparing two MDX queries, and Section 5 introduces the distance for
comparing two analysis sessions. Finally Section 6 completes the description of
the recommender system by detailing the algorithm for computing recommen-
dations. Section 7 presents our experimental results. We conclude and discuss
future work in Section 8. The proofs of the properties are omitted due to lack of
space.

2 Related Work

The only other work we know that proposes to recommend queries for supporting
database exploration is that of [7]. Although this work shares some common
features with ours, it differs on two important aspects: First it deals only with
SQL Select-Project-Join queries and second, the fact that a session is a sequence
of queries is not taken into account. To the best of our knowledge, our work
is the first work dealing with the problem of recommending multidimensional,
especially MDX, queries.

The only work that proposed a framework for anticipating an OLAP query
is the work of [8,9]. However the main concern of this work is to prefetch data,
not to guide the user based on what other users did. In addition, [8,9] does not
deal with MDX queries, and the similarity between queries only relies on the
schema of the query (i.e., dimensions and levels) whereas the distance that we
use takes the members into account. Finally, a Markov Model is used to predict
the forthcoming query, whereas our approach is based on Approximate String
Matching [5], a technique popular in Information Retrieval.

To support interactive analysis of multidimensional data, Sarawagi et al. in-
troduced discovery driven analysis of OLAP cube in [10]. This and subsequent
work [11,12,1] resulted in the definition of various OLAP operators to guide the
user towards unexpected data in the cube or to propose to explain an unexpected
result. The main difference with our work is that these operators are applied only
on query results and they do not take into account what other users might have
discovered.

Computing distances between queries logged by a database server has already
been investigated by [13]. In this work, language modeling is used to detect
sessions within OLTP query logs. With a different goal (recommending query
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instead of detecting sessions) our work also proposes a way of calculating a dis-
tance between queries where the distance computation takes advantage of the
particularities of OLAP queries, like the possibility of navigating multidimen-
sional data by changing the level of detail.

Our work can be seen as a way to integrate OLAP and Information Retrieval
(IR) a domain where it is very popular to leverage what the other users did to
generate recommendations [14]. Note that there is a recent interest for trying
to combine IR and OLAP. For instance, in [15] the authors propose to query
a datacube with only a set of keywords. Among the potential answers to the
query, only the subcubes that are the most surprising are presented to the user.

3 Example

In this section we illustrate with a simple example the basic idea under our
recommender system. Consider an OLAP server used by several users navigating
a datacube. In what follows, this cube is a simplified version of the FoodMart
datacube (the demo example coming with the open source Mondrian OLAP
engine [6]) that is composed of four dimension tables and the Sales fact table,
having respectively the following schemas:

– sch(Product) = {p id, Name, Brand, SubCateg, Category, Family,
AllProducts},

– sch(Time) = {t id, Day, Month, Quarter, Y ear, AllY ears},
– sch(Customer) = {c id, Name, City, State, Country, AllCustomers},
– sch(Store) = {s id, Name, City, State, Country, AllStores},
– sch(Sales) = {p id, t id, c id, s id, Unit Sales}
Each user can open a session on the server to navigate the cube by launching

a sequence of queries. The server logs these sessions, i.e., the sequences of queries
launched during each analysis session. Suppose the log contains the three sessions
detailed in the appendix. Session s1 analyzes the sales of alcoholic beverages
in the USA, Session s2 analyzes the sales of milk of the brand “Gorilla” in
California, and Session s3 analyzes the sales of milk and cereals in San Francisco.

Imagine now a new session, called the current session (or sc), is performed by
a user. Suppose the user issues the three following queries on the cube, named
respectively q1, q2 and q3, to analyze the sales of milk in San Francisco:

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,
{[Product].[All Products].[Drink].[Dairy].[Milk]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}

The recommender system computes the distance between the current session
and each session of the log in order to find those candidate sessions that resemble
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the current session the most. In our example, suppose that sessions s2 and s3
are found the closest to the current session. Intuitively this is because each ith

query of sc is close to the ith of the session s2 (resp. s3) and, in the case of s3,
having one more query does not increase the distance a lot.

Among the queries composing these candidate sessions, one must be recom-
mended to the user. Considering that the outcome of a session is very often the
result of the last query of this session, the recommender system will compute
the distance between the last query of the current session and each last query of
the candidate sessions. It will then select as the first recommendation the query
that is the closest to the last query of the current session. In our example, this
query is q6 since it is closer to q3 than q5.

4 Comparing MDX Queries

In this section, we present our approach for computing a distance between MDX
queries. We first begin by giving basic definitions.

4.1 Basic Definitions (Cube, References, Queries)

An n-dimensional cube C = 〈D1, . . . , Dn, F 〉 is defined as the classical n + 1
relation instances of a star schema, with one relation instance for each of the
n dimensions and one relation instance for the fact table. Given a particular
dimension table Di, the members of the dimension are the values in this table1.
These members are arranged into a graph Hi (traditionally a hierarchy)2.

Given an n-dimensional cube C = 〈D1, . . . , Dn, F 〉, a cell is a tuple of the fact
table F . A cell reference (or reference for short) is an n-tuple 〈r1, . . . , rn〉 where
ri is a member of dimension Di for all i ∈ [1, n].

MDX queries are modeled in the following way: Considering that the SELECT
and WHERE clauses of an MDX expression define the set of references that the
user wants to extract from the cube, we propose to see MDX queries as sets of
references, for a given instance of a cube.

Formally, let C = 〈D1, . . . , Dn, F 〉 be an n-dimensional cube, M be an MDX
expression and for all i ∈ [1, n], let Ri be the set of members of dimension Di

that is deduced from the SELECT and WHERE clause. The query over C that
corresponds to M is the set of references R1 × . . . × Rn. In what follows, if q is
a query we note r ∈ q to denote that r is a reference of q.
Example 1. The query q2 of section 3 corresponds to the following set of refer-
ences: {〈Drink, alltime, allcustomer, San Francisco〉, 〈Food, alltime,
allcustomer, San Francisco〉}
1 Note that this definition is done without loss of generality w.r.t the calculated mem-

bers defined in MDX by the optional WITH MEMBER clause. Indeed, a calculated
member is associated with a particular dimension, at a particular level of a hierarchy,
and thus it is treated in the following as a regular member.

2 Flat dimensions (like e.g., a measure dimension) are considered as arranged in a
hierarchy as well, where all the members have as common ancestor the root of the
hierarchy.
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4.2 Distance between References

Given a dimension D with its hierarchy H , the distance between two members
m, m′ in this dimension is the shortest path [16] from m to m′ in H . It is noted:
dmembers(m, m′). The distance between references is then defined in the following
way from dmembers.

Definition 1. (Distance between references) Given two references r1=〈r1
1 , ..., rn

1 〉
and r2 = 〈r1

2 , ..., r
n
2 〉 of an n-dimensional cube, the distance between r1 and r2 is:

dreferences(r1, r2) =
∑n

i=1 dmembers(ri
1, r

i
2)

Example 2. As an example, consider the two references of query q2 given in the
previous example. These references only differ on the Product dimension. As
members Drink and Food have the same parent in the hierarchy of the dimension
Product, then dmembers(Drink, Food) = 2. Thus the distance between these two
references is 2+0+0+0=2.

4.3 Distance between Queries

As MDX queries are modeled as sets of references, comparing two MDX queries
boils down to comparing two sets of references. In our approach we use the
classical Hausdorff distance [17] for comparing two sets based on a distance
between the elements of the sets. Informally, two sets are close if every element
of either set is close to some element of the other set.

Definition 2. (Hausdorff distance) Given two queries q1, q2, the distance be-
tween q1 and q2 is:

dh(q1, q2) = max{maxr1∈q1 minr2∈q2 dreferences(r1, r2),
maxr2∈q2 minr1∈q1 dreferences(r1, r2) }

This distance dh is combined with the distance ddim(q1, q2) that gives the number
of dimensions where q1 and q2 differ (if q1 = R1

1×. . .×R1
n and q2 = R2

1×. . .×R2
n,

Di is a dimension where q1 and q2 differ if R1
i 
= R2

i ). Thus the distance between
queries is defined as the following function of these two distances.

Definition 3. (Distance between queries) Given two queries q1, q2, the distance
between q1 and q2 is : dγ

queries(q1, q2) = γ × ddim(q1, q2) + (1 − γ) × dh(q1, q2)
where γ ∈ [0, 1].

Example 3. Consider query q2 described above and the queries given in the
appendix. q2 = {r1 = 〈Drink, alltime, allcustomer, San Francisco〉, r2 =
〈Food, alltime, allcustomer, San Francisco〉} and q2

2 = {r3 = 〈Drink,
alltime, allcustomer, USA〉, r4 = 〈Food, alltime, allcustomer, USA〉}. Note
that q2

2 rolls up q2 from the city level to the country level. Their distance is
computed as follows. dreferences is used to compare r1 to r3 and r4. We have
dreferences(r1, r3) = 2 and dreferences(r1, r4) = 4. The minimum is 2. r2 is also
compared to r3 and r4, the minimum being also 2. Thus the maximum of these
two rounds of comparison is 2. Now r3 is compared to r1 and r2 and so is r4. In
both cases the minimum is 2. Therefore d0

queries(q2, q
2
2) = 2.
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The following property indicates the range of possible values for the distance
dγ

queries. The maximal value for this distance is denoted dmax
queries.

Property 1. Given an n-dimensional cube C, the distance dγ
queries ranges from 0

to dmax
queries = γ×n+(1−γ)×2×

∑n
i=1 hi where hi is the height of the hierarchy

of dimension i.

5 Comparing Analysis Sessions

In this section, we present our approach for comparing two sessions. The basic
idea stems from Approximate String Matching [5], which we introduce briefly in
the following definitions.

5.1 Definitions (Edit Distance, Session, Log)

Given two sequences s1, s2, Approximate String Matching is the problem of
matching the sequences allowing errors. The matching relies on the computation
of a distance between the sequences, which is the minimal cost of the sequences
of operations transforming s1 into s2. The classical Levenshtein (or edit) dis-
tance [18] is commonly used. It allows the following operations: insertions, dele-
tions, substitutions. If the cost associated with each of these operations is 1, this
distance can be thought of as the minimal number of insertions, deletions or
substitutions to make the two sequences equal.

In our approach, the sequences we consider are sequences of MDX queries
which we call analysis sessions (or sessions for short). A log is a set of sessions.

Example 4. Session sc of Section 3 is the sequence 〈q1, q2, q3〉. The log given
in appendix is the set {s1, s2, s3} and session s3 = 〈q1, q

2
2 , q3, q6〉. If insertions,

deletions and substitutions are operations allowed on sessions, a sequence of
operations that transforms sc into s3 is: substitute q2 by q2

2 and insert q6 at the
end. If all operations have the same cost 1, then this sequence costs 2. Another
sequence that transforms sc into s3 is: delete all queries from sc and insert
respectively queries q1, q

2
2 , q3 and q6. Obviously the cost of this sequence is not

minimal.

5.2 Distance between Sessions

we compute a distance that is the minimal cost of a sequence of operations
(called an edit sequence) to transform s1 into s2. As in the edit distance the
operations permitted are:

– The substitution of a query q1 by a query q2. The cost of this operation is the
distance between q1 and q2 as defined in Definition 2, that is dγ

queries(q1, q2).
– The insertion (resp. deletion) of a query in a sequence. The cost of these

operation is a constant α.
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An intuitive reason for a fixed cost for insertion (or deletion) is the following.
Suppose we want to compute a distance between session 〈a〉 and session 〈a, b〉
on the one hand and session 〈a〉 and session 〈a, b′〉 on the other hand. There is
no reason for distinguishing or favoring the adding of b from the adding of b′. In
both cases, a user found these two particular queries of interest, and the sessions
are distant from 〈a〉 only in that a query has been added.

Now, the value for α can range from 0 to dmax
queries. Low values for e.g., insertion

allow not to discriminate longer sessions too much. On the other hand, the value
should be high enough since it should be more expensive to delete and then
insert instead of substituting. Adjusting the value for this cost is part of the
experiments described section 7.

Definition 4. (Distance between sessions) The distance between two sessions s
and s′ is the minimal cost of all edit sequences transforming s into s′. It is noted
dsessions.

The following property states that dsessions is a metric in the mathematical
sense.

Property 2. dsessions is a metric in that it satisfies the following properties: non-
negativity, symmetry, triangle inequality.

Example 5. Consider the sessions sc presented in Section 3, and the sessions
given in the appendix. Suppose γ = 0 and α (the cost for inserting or deleting)
is dmax

queries/2 = 14. The sequence having minimal cost for transforming sc into
s1 is: substitute q2 by q2

2 and then substitute q3 by q4. Substituting q2 by q2
2

costs d0
queries(q2, q

2
2) = 2 and substituting q3 by q4 costs d0

queries(q3, q4) = 6 (cf.
Example 3). Thus dsessions(sc, s1) = 8. The sequence having minimal cost for
transforming sc into s2 is: substitute q2 by q2

3 and then substitute q3 by q5. Its
cost is: dsessions(sc, s2) = 4 (for substituting q2 by q2

3) +3 (for substituting q3
by q5). The sequence having minimal cost for transforming sc into s3 is the first
one given in Example 4. Its cost is: dsessions(sc, s3) = 2 (for substituting q2 by
q2
2) +14 (for inserting q6).

6 The Recommender System

In this section, we present how we use the distances defined above to recommend
MDX queries. The principle is the following: The log is searched for candidate
sessions matching the current session. From these candidate sessions a set of
recommended queries is obtained. These recommended queries are ranked and
presented to the user as recommendations in the resulting order. The best ranked
queries are called the best recommendations.

Before detailing the algorithm we introduce the following definitions. The can-
didate sessions are the closest to the current session in the sense of the distance
between sessions.
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Definition 5. (Candidate sessions) Given a set L of sessions and a session sc,
the set of candidate sessions is defined by Candsessions(sc, L) = {s ∈ L|�s′ ∈
S, dsessions(s′, sc) < dsessions(s, sc)}

To define the recommended queries, we use an analogy with Web search, where it
has been shown that what is seen at the end of a session can be used to enhance
further searches [19]. Indeed, even in our case, it makes sense to consider that if
the session ended on this particular query, it is because the user found something
of interest. We adopt this point of view and simply define a recommended query
to be the last query of a candidate session. The best recommendations are the
recommended queries that are the closest to the last query of the current session,
in the sense of the distance between queries.

Definition 6. (Recommended queries and best recommendations) Given a set
L of sessions and a session sc, the set of recommended queries is defined by
Recoqueries(sc, L) = {last(s)|s ∈ Candsessions(sc, L)} where last(s) is the last
query of session s. Given a set C of recommended queries and a session sc, the
best recommendations are: best(sc, C) = {q ∈ C|�q′ ∈ C, dγ

queries(q
′, last(sc)) <

dγ
queries(q, last(sc))}

Note that changing these definitions can have an important impact on the sub-
jective quality of the recommendations. Assessing this is part of our long-term
goal as discussed in conclusion.

Finally the algorithm for recommending MDX queries is:

Input: A current session sc and a log L
Output: A sequence of recommendations
1. Generate the set C of recommended queries C = Recoqueries(sc, L)
2. Let Output be the empty sequence
3. Repeat until C empty

(a) Generate the best recommendations best(sc, C)
(b) Append best(sc, C) to Output
(c) Remove best(sc, C) from C

Example 6. Consider the distances computed in Example 5. There is only one
candidate session which is s2 since it is the closest to sc. Thus there is only one
candidate query q5 which is then the recommendation. Suppose now the cost
of the insertion operation used to compute the distance between sessions is 5.
This means that there are now two candidate sessions s2 and s3. The candidate
queries are q5 and q6. The query recommended first is q6 since it is closer to q3
than q5.

7 Experiments

In this section, we present the results of the experiments we have conducted to
assess the capabilities of our framework. We used synthetic data produced with
our own data generator. Both our prototype for recommending queries and our
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generator are developed in Java using JRE 1.6.0 13. All tests are conducted with
a Core 2 Duo - E4600 with 4GB of RAM using Linux CentOS5.

7.1 Data Set

We generated a set of sessions over the test database FoodMart supplied with
the Mondrian OLAP engine [6]. Each session is generated in the following way:
The first query of the session is selected by random among the 15 example
queries supplied by Mondrian. Each subsequent queries is generated by choosing
randomly one dimension and applying on the preceding query an OLAP oper-
ation (rollup, drilldown, changing the set of members) on this dimension. Our
generator uses the following parameters: A number (X) of sessions in the log, a
maximum number (Y ) of queries per session. In our tests, we fixed the maximum
number of references at 100 since it is reasonable to consider that users will very
seldom produce a cross table larger than 10×10 as the answer to an MDX query.

7.2 Results

Note that, due to lack of space we have not included all the results of the
experiments we have conducted.

7.2.1 Performance Analysis
Our first experiment assesses the time taken to generate the best recommenda-
tion for various log sizes. The performance is presented in Figure 1 according
to various log sizes. These log sizes are obtained by multiplying parameters X
(number of sessions) and Y (maximum number of queries per session). X ranges
from 25 to 500 and Y ranges from 20 to 50. We thus obtain logs of size varying
between 150 and 25000 queries. The best recommendation is computed for each
of these logs, for current sessions of various sizes, generated with the session
generator.

Figure 1 shows that the time taken to generate one recommendation increases
linearly with the log size but remains highly acceptable and is slightly influenced
by the current session size. Indeed, to recommend a query for a session s, the

Fig. 1. Performance analysis Fig. 2. Precision for various α (cost of in-
sertion or deletion)
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system only compares last(s) to each query of the log and uses the distances
previously computed for s \ last(s).

7.2.2 Precision/Recall Analysis
We use a 10-fold cross validation to assess our framework in the spirit of the
experimental validation done in [7]. The generated set of sessions is partitioned
in 10 equally sized subsets and in each run 9 subsets are used as log and each
session of the remaining subset is used as a basis for the current session. More
precisely for each such session sc of size n, we use the sequence of the first n− 1
queries as the current session, and we compute the recommendations for the
n-th query. The n-th query of sc is called the expected query and is noted qex.

We evaluate the precision and recall [20] of the recommendations using the
following metrics: precision=|members(qex) ∩ members(qrec)|/|members(qrec)|
and recall=|members(qex)∩members(qrec)|/|members(qex)|, where members(q)
is the set of members of query q, qrec is a recommended query and qex is the
expected query. For each session, we report the maximum recall over all the
recommended queries and the precision for the query achieving this maximum
recall.The log generated for these tests has size 5877 queries (750 sessions).

Figures 3 and 4 show the inverse cumulative frequency distribution (inverse
CFD) of the recorded precision, recall and/or F-measure3 for the sessions. A
point (x, y) in these graphes signifie that x% of sessions had precision or recall
or F-measure ≥ y.

The first experiments allow us to tune our system in order to choose for α and
γ the values that achieve best precision and recall. Precision is computed for α
which is the cost of the insertion (or deletion) operation (see Section 5). Figure
2 shows that a precision above 0.9 is obtain for α ∈ [1, 5]. In the subsequent
experiment, the value for α is 2. Precision and recall are computed for γ = 0, 0.5
or 1. Figure 3(a) and Figure 3(b) show that the worse results are obtained
for γ = 1 i.e., when the distance between queries only counts the number of
dimensions that differ (see Section 4). For 0 and 0.5 the curves are confounded.
This shows that for α = 0.5 ddim, ranging only from 0 to n (see Property 1),
contributes for nothing to the distance between queries. Thus in what follows,
γ = 0.

Figure 4 shows the inverse CFD of precision, recall and F-measure of the
recommendations computed with our system for α = 2 and γ = 0. The results
demonstrate the effectiveness of our method since for around 80 % of the sessions,
precision and recall are above 0.8. These good results can be explained by the
density of the log generated, considering the relatively small number of queries
(15) in the pool we used for seeding the generation.

Figure 5 displays the inverse CFD of the recorded F-measure for the ses-
sions for various methods for recommending MDX queries. The first method,
called ClusterH , is the one proposed in [3] that uses a k-medoid clustering

3 The F-measure, F = 2.(precision · recall)/(precision+recall), is a measure of a test’s
accuracy.
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(a) Precision for various γ (b) Recall for various γ

Fig. 3. Precision and Recall of the recommendations (for various γ)

Fig. 4. Precision, Recall and F-Mesure of
the recommendations (α = 2, γ = 0)

Fig. 5. F-Mesure of the recommendations
(α = 2, γ = 0) for the 3 possible methodes

algorithm with a simple Hamming distance to compare references. The second
method, called EdSP (Edit Distance with Shortest Path), is the one proposed
in the present paper for α = 2 and γ = 0. Finally the last method called EdH
combines the Edit distance with the simple Hamming distance for comparing
references. First we note that all methods achieve good results for our dense log.
The method using a clustering algorithm performs slightly bad compared to the
two others. It can also be seen that EdSP and EdH perform similarily, which
may seem surprising at first since the Hamming distance for comparing references
is coarse compared to the Shortest Path. However, it is to be noted that the way
we compute precision and recall (inspired by [7]) favors EdH . Indeed, if EdH
recommends a query close (in the sense of the Hamming distance) to the expected
query it will have good precision and recall. But if EdSP recommends a query
close (in the sense of the Shortest Path) to the expected query it can have bad
precision and recall. Therefore it turns out that EdSP performs as well as EdH
even though it is not favored by the computation of precision and recall.

8 Conclusion and Future Work

In this paper, we present a system for recommending MDX queries that is an
evolution of the framework presented in [3]. Our framework leverages former
navigations on a datacube and is based on two distances that we propose to
compare MDX queries and analysis sessions. Our approach is implemented in a
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system that integrates with the open source Mondrian OLAP engine to recom-
mend MDX queries on the fly. The experiments we have conducted show that
recommendations can be computed on the fly efficiently and that our system
can be tuned to obtain objectively good recommendations.

Our long term goal is to design a platform for generating MDX recommender
systems by giving the user the possibility to adapt the approach to his/her
needs. This can be done by proposing to the user various methods for computing
candidate sessions and/or candidate queries. We are working on the definition
of a new method that takes into account the measures’ values and not only the
references of the cells. A combination of the recommender system with techniques
for OLAP query personalization [21] is also under consideration.

To fulfill this goal, we need to undertake experiments on real data sets with
feedback from users. This will allow not only to improve the overall quality of
the recommended queries but also to determine to which context a particular
approach for computing candidate recommendations is adapted.

On the technical side, we need to propose an indexing method for organizing
the log in order to make the search in the log even more efficient, and thus
making it possible to search very large log files on the fly.
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A Appendix: A Toy Query Log

Session s1 = 〈q1, q2
2, q4〉: Sales of alcoholic beverages in the USA

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA]} ON COLUMNS,

{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].Children} ON COLUMNS,

{[Product].[All Products].[Drink].[Alcoholic Beverages]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}

Session s2 = 〈q1, q2
3, q5〉: Sales of milk of the brand ”Gorilla” in California

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla].Children,
[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA],

[Store].[All Stores].[USA].[CA].Children} ON COLUMNS,
{[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla].Children,
[Product].[All Products].[Drink].[Dairy].[Milk].[Gorilla]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
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Session s3 = 〈q1, q2
2, q3, q6〉: Sales of milk and cereals in San Francisco

SELECT {[Store].[All Stores].Children} ON COLUMNS,
{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA]} ON COLUMNS,

{[Product].[All Products].[Food], [Product].[All Products].[Drink]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk]} ON ROWS
FROM [Sales]
WHERE {[Measures].[Unit Sales]}
SELECT {[Store].[All Stores].[USA].[CA].[San Francisco]} ON COLUMNS,

{[Product].[All Products].[Drink].[Dairy].[Milk],
[Product].[All Products].[Food].[Breakfast Foods].[Breakfast Foods].[Cereal]} ON ROWS

FROM [Sales]
WHERE {[Measures].[Unit Sales]}
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Abstract. This paper presents a framework for integrating OLAP and recom-
mendations. We focus on the anticipatory recommendation process that assists 
the user during his OLAP analysis by proposing to him the forthcoming analy-
sis step. We present a context-aware preference model that matches decision-
makers intuition, and we discuss a preference-based approach for generating 
personalized recommendations. 

Keywords: OLAP analysis, Recommendations, Analysis context, Preferences. 

1   Introduction 

OLAP (On-Line Analytical Processing) systems aim to ease the decision-making 
process with a multidimensional data presentation. Data are organised according to 
subjects of analysis, called facts, and axes of analysis, called dimensions [10].  
Dimensions are usually organized as hierarchies, supporting different levels of data 
aggregation. OLAP analyses are performed through interactive exploration of Multi-
dimensional DataBases (MDB). It has been recognized that the workload of an OLAP  
application can be characterized by the user’s navigational analysis task [4,5]: the user 
defines a first query then successively manipulates the results applying OLAP opera-
tions, such as drill-down, roll-up, slice and dice [7,13]. 

OLAP systems offering multidimensional and large data space cannot solely rely 
on standard exploration of MDB but need to apply recommendations to make the 
analysis process easy and to help users quickly find relevant data for decision-making 
[9]. In this paper, we focus on the conceptual framework and the implementation 
issues for integrating anticipatory recommendations in OLAP: the system guides the 
user navigation through the multidimensional data by proposing to him the forthcom-
ing analysis step. In summary, we make the following contributions: 

 

− We provide an efficient preference model that is intimately related to the multidi-
mensional data model. Our model is conformed to the context-awareness nature of 
the analyst’s interests [8]. 

− We present a preference-based approach to generate and rank recommendations.  
− We present a prototype that implements the proposed approach and we show how 

progressively build recommendations based on user preferences. 
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The rest of the paper is organized as follows: Section 2 presents the OLAP analy-
sis; section 3 introduces our framework, while section 4 discusses its implementation. 
Section 5 presents related work and section 6 concludes the paper. 

2   From Multidimensional Modeling to OLAP Analysis 

The analytical power of OLAP technology comes from its underlying multidimen-
sional data model, called constellation [10,13]. 

2.1   Multidimensional Data Model  

A constellation regroups several facts, which are studied according to several dimen-
sions. It is defined as (NCS, FCS, DCS, StarCS) where NCS is the constellation name, FCS 
is a set of facts, DCS is a set of dimensions, StarCS: FCS → 2DCS  associates each fact to 
its linked dimensions.  

A fact reflects information that has to be analysed through indicators, called 
measures. A fact, noted Fi∈FCS, is defined as (NFi, MFi) where NFi is the fact name, 
MFi={f1(m1),…, fw(mw)} is a set of measures associated to aggregation functions fi. 

A dimension, noted Di∈DCS, is defined as (NDi, ADi, HDi) where NDi is the dimen-
sion name, ADi = {aDi

1,…, aDi
u} is a set of dimension attributes, HDi = {HDi

1,…, HDi
v} 

is a set of hierarchies. Within a dimension, attribute values represent several data 
granularities according to which measures could be analysed. In a same dimension, 
attributes may be organised according to one or several hierarchies 

A hierarchy, noted HDi
j∈HDi, is defined as (NHj, PHj) where NHj is the hierarchy 

name, PHj=<idDi, pHj
1,…, pHj

vj, All> is an ordered set of attributes, called 
parameters, which represent useful graduations along the dimension, ∀k∈[1..vj], 
pHj

k∈ADi. 
Fig. 1 shows an example of a constellation that allows analysing online sales as 

well as the purchase activity of a worldwide distributor. 
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Fig. 1. Example of constellation schema 
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2.2   OLAP Analysis 

An OLAP analysis consists in exploring interactively the MDB. It is considered as 
navigation: the user performs a set of OLAP operations in order to find relevant data 
for decision making. Thus, we define an OLAP analysis by a sequence of OLAP 
operations and intermediate results [9]. Each intermediate result represents an analysis 
context [8]. More precisely, a user analysis is described by a graph, where nodes rep-
resent the analysis contexts and the graph edges represent the user operations to move 
from one context to another [9]. 

Analysis Context Modeling. An analysis context represents a given state of the 
OLAP analysis. It displays analysis subject data that are aggregated according to 
dimension attributes. We assume two disjoint sets of elements that are displayed 
within an analysis context: a set of constellation structures i.e., fact, measures,  
dimensions, and attributes, and a set of values of attributes and aggregated meas-
ures. We call context prototype the set of the constellation structures of an analysis  
context. 

Definition. An OLAP analysis context is defined as (CF, CD, CR) where: 
− C

F
 = F (/ fj

 (mj) ∈ {valmj})+ represents the analysed subject through a fact F, a set of 
displayed measures mj ∈MF associated with aggregate functions fj (AVG, SUM, 
…), and their underlying aggregated values valmj ∈ Type(mj)

1. 
− C

D
 = {C

D1
,…, C

Du
} where ∀ i∈[1..u], C

Di
 = Di (/ pk ∈ {valp})+ represents one 

displayed analysis axis, where pk ∈ ADi and valp ∈ Dom(pk)
2. 

− CR = {pred
F

1, …, pred
F

x, pred
D

1 …, pred
D

y} where pred
F

i = fj
 (mj) operator value is 

a restriction predicate on fact data, and pred
D

j = pj operator value is a restriction 
predicate on dimension data where pj ∈ ADj, Dj∈DCS. 

An analysis context is expressed by means of a tree T(V, E) (where V is the set of 
nodes and E is the set of edges) that reflects the nature of the relationship between the 
components of an OLAP analysis [8]. This tree structure is an internal view which is 
completely independent of the visualization structures of data. 

Example 1. Consider the analysis context of sales revenue over 10K Euro by year 
(year ≥ 2008) according to the countries and cities of customers: C = (CF, {CD1, CD2}, 
CR) where 
− CF = SALES / Sum (Revenue)∈ {14, 13, 11, 20, 24, 18, 16}, 
− CD1=CUSTOMER/Country∈{France,USA}/City∈{Paris,Lyon,N-Y,Washington}, 
− CD2 = DATES / Year∈{2008, 2009}, and 
− CR = {‘Year ≥ 2008’, ‘SUM(REVENUE) > 10’}. 
The internal view of C is shown in Fig. 2 (a). Within the tree structure, the restriction 
predicates are integrated into the nodes of their measures or parameters. 

This analysis context is displayed to the user according to a Multidimensional Ta-
ble (MT) (see Fig. 2 (b)). 

                                                           
1 Type(A) gives the set of all possible values of the attribute A. 
2 Dom(A) represents the set of values of A, i.e., all ai∈A (Dom(A) ⊂ Type(A)). 
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Fig. 2. Example of analysis context 

3   The Framework 

3.1   OLAP Recommendation Scenarios 

In the following, we discuss how to apply recommendations based on the analysis 
pattern graph. From a conceptual standpoint, we argue that OLAP calls for the follow-
ing three kinds of recommendations: 
 

1. A part of an analysis node, e.g. the data granularity level: the system helps the user 
in building the decision-support reports. This consists in an interactive assistance 
in the query composition mechanism (see Fig. 3, step (1)). 

2. An analysis node that the user would ask for by the next query (see Fig. 3, step 
(2)). This leads to expedite matters by anticipating the user navigation strategy and 
proposing the forthcoming analysis context. Such recommendations are called an-
ticipatory recommendations. 

3. Analysis nodes that are provided in addition to the classic result for the user opera-
tion in order to guide users toward relevant alternative results (see Fig. 3, step (3)). 
Alternative nodes do not necessarily belong to the classic analysis graph. 

By recommendation of an analysis context throughout this paper we mean to rec-
ommend an analysis node within the user analysis graph. 

In the following, we show how the recommended analysis contexts are generated. 
This requires a carefully dealing with the user preferences [9]. 
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CALj: Alternative analysis context
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Recommendations

Classic navigation 

(2)

(3)

Notation:
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Fig. 3. Recommendation scenarios upon an OLAP analysis graph 
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3.2   OLAP Preferences Modeling 

Problem Statement. A user preference in OLAP is associated with a specific analysis 
context [8]. The model in [8] captures only preferences on the constellation structures 
(dimensions and parameters). However preferences for values in OLAP are quite 
involved, as the following example shows: the left-hand side of a preference specifies 
the content choice, while the right-hand side represents the context. 

Example 2. Decision-maker preferences include the following: 
− (P1) He is extremely interested in export data when analysing sales of computers. 
− (P2) He likes amounts over 100k Euro for the analysis of sales before 5 years. 
− (P3) He prefers data about the biggest cities, i.e., cities with a population over 

200 000, when analysing sales in Africa. 

We argue that an accurate preference model for OLAP should be at both structures 
and content levels. Such model should depend on the analysis context. In this work, a 
relevance score θi associated with the analysis element e defines the degree of trust 
being the ideal choice for the user in a context ci. 

We now formalize the informal description given above, in the definitions of the 
preference context, the schema-level and the content-level preferences. 

Preference Context. The analyst may have preferences that depend on more or less 
general contexts, e.g. a user preference can be associated with the context of analysis 
of sales or with a more detailed context such as the analysis of sales of a given prod-
uct category. Hence, a preference context cp is a fragment of the analysis context tree. 
The idea behind such assumption is that the context of a user preference does not 
necessarily contain all the analysis context components. 

Schema-level preferences. Preferences associated with a fact define relevant dimen-
sions for the fact analysis in a specific analysis context, whereas preferences related to 
a dimension provide priority parameters for analysing data in a given context. 

Definition. Given a constellation CS, a schema-level preference is a triple (E; θ; cp), 
where E is a dimension (Di∈DCS), or a dimension attribute (pi∈ADi), θ is a real num-
ber in the range [0, 1], and cp is a preference context. 

We say that θ represents the relevance degree of the mapping of E to the context 
cp. The value 0 indicates lack of any trust in E from the user part, while value 1 indi-
cates extreme trust. 

Content-level preferences. The structure of content-level preferences is related to the 
features of MDB content, i.e, we consider preferences over fact data and preferences 
over dimension data. In particular, we assume that user preferences are stored at the 
level of atomic conditions, which are therefore called restriction predicates. 

Definition. Given an attribute A associated with a data type Type(A), a content-level 
preference PA is defined as (pred; θ; cp), where pred is a restriction predicate of the 
form A op ai that specifies condition on the values ai ∈Type(A), θ is a real number 
between 0 and 1, and cp is a preference context. 
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According to A, the predicate pred may be a restriction of fact data, i.e., A is a 
measure associated with an aggregate function fi(m

F
i)∈MF, or a condition on dimen-

sion data, i.e., A is a dimension attribute pi ∈ADi. We assume op∈{=,<,>,≤ ,≥ ,≠} 
for numerical attributes and op∈{=,≠} for the other data types. 

We call the set of user preferences that hold for a MDB, profile P. P consists of a set 
of scored mappings. 

Example 3. Now let’s revisit example 2. P1 and P2 are expressed as follows:  

− P Country
1  = (‘Country ≠ France’; 0.9; c1), where c1 = Sales, Product/Category = 

Computers. 

− P venueRe
2  = (‘Sum(Revenue) > 100 ; 0.6; c2), where c2 = Sales, Dates/Year ≤ 2004. 

The meaning of P Country
1  is that the degree of trust to include the predicate ‘Country ≠ 

France’ into the qualification of the computers sales analysis is very high. 

Notation. In the following, an analysis element denotes a dimension, a parameter or a 
restriction predicate. 

3.3   Preference-Based Recommendations 

Our approach supports three recommendation scenarios. In this paper, we focus on 
the anticipatory recommendation process. The aim of this process can be stated as 
follows: suppose Ci is an analysis context, which represents a node within the OLAP 
analysis graph. The recommendation problem consists in finding an anticipatory node 
Ci+m that follows Ci according to the user classic navigation graph.  

The recommendation process transforms the analysis context Ci which results from 
the user query Qi basing on his preferences. This consists of two stages: 1) recom-
mendations building, where the system generates useful analysis nodes, and 2)  
recommendations ranking, where the candidate nodes are ranked with regard to pref-
erences scores, so, only the best scored one is delivered to the user. 

3.3.1   Generating Recommendations 
This stage aims at generating candidate recommendations with regard to the current 
analysis context of the user, i.e., the user query result. To generate recommendations, 
our framework goes through two steps: preference selection, and preference  
integration. 

Preference Selection. The preference selection step takes as input the current analy-
sis context C and a user profile. The output is a set of candidate mappings for C 
enhancement. We formulate this step as contexts matching problem: candidate pref-
erences under a context C are those associated with contexts that match C. Follow-
ing a total covering approach [8] leads to consider those preferences whose contexts 
are equal to or included in C. A preference context ci (represented by the context 
tree ti) matches C (represented by T) if ti ⊆  T, i.e., all the edges of ti belong to T. 
More specifically, the system checks, for each edge Eij (vik, vkj) into ti, if both nodes 
vik and vkj belong to T and if they are laid in the same order. This leads to process 
with node-to-node matching. Depending on the node v of the preference context tree, 
we distinguish two cases of matching with the node V of T: 
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− v is a composite node (i.e., v includes a restriction predicate): If v.predicate is not 
conflicting with V.predicate, then v matches V; otherwise v does not belong to T. 

− v contains a simple value: If v.value = V.value, then v matches V. 

Definition. We say that two restriction predicates are conflicting, if they target the 
same measure or parameter, and their conjunction returns no results.  

If there are several preference contexts that match C, we consider the preference 
whose context covers more C. Actually, the more a preference context is detailed, the 
more specific the user interest represented by that preference is. Formally: 

Definition (Covering context). Let C be an analysis context, ci and cj two contexts 
that match C, associated respectively with trees ti and tj. We say that ci covers more C 
than cj, if and only if | ti ∩ T |3 > | tj ∩ T | where tk ∩ T = {v1,…,vn} is the common set 
of nodes within tk and T. 

Preference Integration. The preference integration is the process of enhancing an 
analysis context with user related preferences. It proceeds in two steps. 

The first step considers the selected schema-level mappings. The basic idea is to 
gradually construct the analysis context prototype through preferences integration in 
decreasing order of their degrees of hierarchy: relevant dimensions are stated, then 
dimension attributes are specified. 

The second step consists in integrating into the resulting analysis context C restric-
tion predicates from selected content-level mappings. Recall that the current context 
C may include restriction predicates that arise from the user query. These predicates 
are preserved for the recommended node. Hence, a content-level mapping m is ex-
tracted providing that it is related to C, i.e., if its restriction predicate is not conflicting 
with a predicate already there. 

3.3.2   Ranking Recommendations 
As there may be numerous candidate recommendations, we study in the following 
how to rank possible recommendations in order to provide the user with the best one. 
In this scenario, we intend to predict a score S assigned to a generated recommenda-
tion. This score can be seen as the user preference value of an analysis context (i.e., 
an analysis node). Highest relevance is achieved when the recommendation is com-
puted through most relevant elements. Thereby, a global preference value of an analy-
sis context reflects the mutual relevance between the components of the analysis con-
text. This leads to determine the user interest degree in each analysis component when 
integrated with the other ones. This semantic is ensured through the concept of con-
textual relevance degree of an analysis element. 

Recall that an analysis node N is comprised of items that derive from the user 
query, noted NQ, as well as items that are inferred from user preferences, called NP. 
We assume that the score of an analysis node is a real-valued function that satisfies 
the following assumptions: 

                                                           
3 |S| is the number of elements of the set S. 
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− A1: Items that are settled by the user query make a maximal contribution to the 
global score since they traduce certainly the user exact needs as he asked for them. 

− A2: Each analysis element that is inferred from user preferences contributes to the 
score with its contextual relevance degree. 

− A3: A fact or a measure has no contribution to the global score since they are not 
recommended items. 
In our approach, we have decided to place equal score on each member of NQ. We 

define the following scoring function that associates a numeric score between 0 and 1 
with every analysis node N basing on the relevance degrees of its members. 

 F(N) = 

NN PQ

n

i

eif

+

∑
=1

)(
 where f(ei)=  (1)

This score is used to rank candidate recommendations. Then, the best ranked one is 
rendered to the user. 

4   Implementation 

We implement the proposed framework by extending a prototype [13] for OLAP 
manipulations to apply recommendations during OLAP analyses. This prototype 
allows the visualization of OLAP queries results through MT [7, 13] (see Fig. 2). 
Our prototype is summarized by the architectural view of Fig. 4. It consists of three 
layers:  
1. User Interaction Layer. This layer allows users to express their queries through the 
query formulation interface, and to visualize the results as well as recommendations 
within the analysis display interface.  
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Fig. 4. System architecture 

1 if ei ∈  NQ 

θi  if ei ∈  NP, where (ei, θi, cpi)  is 
a scored mapping 
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2. Query execution layer. This consists of the OLAP query engine that is extended 
with a recommendation engine. The query processing can be summarized as follows: 
The query analyser receives the user query and checks out the correctness of its ex-
pressions. A valid query is sent to the data query engine and the result is sent back to 
the recommendation engine which searches for related recommendations. 
3. Data layer. The data layer addresses the representation of the constellation data as 
well as user preferences. We implement the constellation schema and the contextual 
preference model presented above into an R-OLAP database. 

4.1   Recommendation Engine 

The recommendation engine aims at building recommendations with respect to the 
user query result using the stored preferences. The basic idea is to gradually construct 
analysis contexts by integrating analysis elements. In this way, the recommendation 
generator asks at each step for the relevant element in order to enhance the present-
built context. Preference selection is ensured by the metadata query engine that  
selects the most relevant preference under the present-built context. The recommenda-
tion generator updates progressively the context by selected elements. 

Preference Extraction Algorithm. The Preference extraction algorithm generates a 
preference mapping m, that is related to the context C and associated with the prefer-
ence target PT. Recall that a preference associated with a fact F (resp. a dimension D) 
expresses the user interest to include the associated dimension (resp. parameter) into 
the qualification of an analysis context, whereas a preference related to a parameter 
(resp. to a measure) indicates the interest in an analysis context that exactly satisfy the 
associated restriction predicate. 

The algorithm, presented in Fig. 5, is based on a total matching of the analysis con-
text C with the set of contexts appearing in the preferences mappings M. Actually, the 
function Match (M, C, PT) is invoked to generate the set of contexts of preferences 
whose target is PT, that are included in C. 

Only the preference context cm which covers more C is considered. If we are  
interested in a schema-level preference, then the algorithm outputs only the mapping 
related to cm, since there may be a single schema-level preference by context. For 
content-level preferences, the system returns the conjunction of restriction predicates 
that are related to but not conflicting with C. The global score of the conjunction of 
selected predicates is the average of the participating mappings’ scores. 

Recommendation Generation. Preferences that depend on the resulting analysis 
context are used to transform it in order to produce a recommended one. Then, the 
transformed analysis context is enhanced using the related preferences. 

The integration of content-level preferences refines the resulting analysis context 
by keeping only relevant aggregated data. Such preferences allow predicting the user 
focus on a relevant restriction of the dimension or measure data.  

Our prototype implements a scoring function that computes the global score of an 
analysis context (see formula (1)). A recommended analysis context is generated if its 
overall score is over a user threshold. Such threshold represents the average of the 
scores of recommendations the user selected in the past. If there are several generated 
recommendations, the system ranks them and generates the best scored one. 
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Fig. 5. Preference extraction algorithm 

4.2   Recommendation Display Interface  

The recommended analysis context is displayed within the recommendation display 
zone. The system returns only the context prototype in order to not impact the query 
response time negatively: parameters and measure values are loaded when the user 
selects the recommended prototype. As the prototype of a recommended analysis 
context may be not intuitive, a simple explanation of the recommendation choices is 
displayed in the form of “context value that leads to anticipation  displayed item”. 

Example 4. The user has the following preferences:  
 

− PDates
3= (Month; 0.5; c3), and PRevenue

4= (‘Sum(Revenue)>100k Euro’; 0.6; c3), 
where c3= Sales/Sum(Revenue), Product/Description='Toshiba U300'; and 

− PCategory
5= (Category=‘Telephony’; 0.6; c4), where c4 = Sales/Sum(Revenue), Dates/ 

Month). 
 

Consider the analysis of sales revenue by year by city, where data are analysed for 
all products. Suppose the user focuses his analysis on the sales of the product 'Toshiba 
U300'. The system displays the classic result within a MT as well as a recommenda-
tion of the next analysis step (see Fig. 6).  

The classic query result is considered as the current analysis context: CC = 
(Sales/Sum(Revenue); Dates/Year, Customer/City; Product/Description = 'Toshiba 
U300'). The system includes the preference PDates

3 whose context matches CC, which 
leads to change the dimension parameter in Month. This anticipates the user drilling 
up to the parameter month. Then, the system integrates the predicate of PRevenue

4. Note  
 

Preference Selection Algorithm 

Input:     Set of preference mappings M = {(ei, θi, cpi)} 
                Current context C, Preference target PT 
Output:  Selected preference mapping m 
CM ={}, cm ={} 
CM Match (M, C, PT) 
cm cpk ∈  CM such that cpk covers more C  
If (PT is fact or dimension) Then 

m  (ek, θk, cm) where ek is a dimension (resp. parameter) associated with PT 
Else if (PT is parameter or measure) Then 

pred = {}, θ={} 
Foreach mj = (predj, θj, cm) ∈  M 

If (predj is conflicting with C) Then  
        discard mj 

 Else  
       pred  pred ∧  predj ; θ  θ ∪ θj 

 End if 
        m (pred, AVG(θx, …, θy), cm) 
End for 

End if 
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Fig. 6. The result of user operation enhanced with a personalized recommendation 

that PCategory
5 is discarded since its predicate is conflicting with the user query predi-

cate: the category of ‘Toshiba U300’ is different from ‘Telephony’. Therefore, the 
system recommends to the user to analyse sales revenue over 100k Euro by city by 
month. Explanations of the recommendation choices are displayed (see Fig. 6). 

5   Related Work 

We discuss related work regarding recommendation systems and OLAP preferences. 
Recommendation systems are designed either based on content-based filtering or 

collaborative filtering. Content-based methods [12] recommend to the user items 
similar to the ones he preferred in the past, while collaborative filtering [11,15] rec-
ommends to the user items that people with similar preferences liked in the past. Rec-
ommendation approaches have been studied in many research communities, such as 
information retrieval [1], World Wide Web [2], and databases [15]. In OLAP systems, 
[6] proposes to recommend to the user the next query based on the log of the se-
quences of queries launched in the past. Recommendations are provided irrespective 
of user preferences, while in our approach the recommendations generation is a pref-
erence-driven process. 

OLAP preferences are rather under-researched and should get more attention by 
OLAP community [14]. In [3] a preference is defined by a total order over the values 
of dimensions that consist of one attribute. User preferences are used to personalize 
the queries visualisation. Our work, however, targets the recommendation of helpful 
data for decision-making. Moreover, user preferences in [3] are independent from the 
user analysis context. In our earlier work [8], preferences are context-aware. How-
ever, the essence of context-awareness is that items have different relevance depend-
ing on the context of the user. For this reason, we look in this paper, how to capture 
different relevance degrees of the same element under different contexts. We capture 
such variations by mapping a preference to a context with a relevance score. 
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6   Conclusions and Future Work 

We proposed a new framework for generating recommendations for OLAP data ex-
ploration. Our framework deals with three recommendation scenarios, i.e., assisting 
the user in query composition, and providing alternative and anticipatory analysis 
contexts. We focused on the anticipatory recommendation process, which proposes to 
the analyst the forthcoming analysis step. We defined a preference-based approach to 
generate anticipatory recommendations. Recommendations are built progressively 
basing on user preferences. The major step is the contexts’ matching that is kept inde-
pendent from the visualization structure, since it is performed onto the internal view. 
Then candidate recommendations are ranked, so only the best one is delivered. We 
implemented a prototype that displays anticipatory recommendations in addition to 
the user query result. Recommendations are coupled with simple explanations. 

Future work includes the specification of a preference mining technique for detecting 
preferences in the user log data. This technique must elicit the user preferences and 
discover the scored mappings that associate user preferences to their related contexts. 
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