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Abstract. Recently, Hazan and Krauthgamer showed [12] that if, for a
fixed small ε, an ε-best ε-approximate Nash equilibrium can be found in
polynomial time in two-player games, then it is also possible to find a
planted clique in Gn,1/2 of size C log n, where C is a large fixed constant
independent of ε. In this paper, we extend their result to show that if an
ε-best ε-approximate equilibrium can be efficiently found for arbitrarily
small ε > 0, then one can detect the presence of a planted clique of size
(2+ δ) log n in Gn,1/2 in polynomial time for arbitrarily small δ > 0. Our
result is optimal in the sense that graphs in Gn,1/2 have cliques of size
(2 − o(1)) log n with high probability.

1 Introduction

The computational complexity of finding a Nash equilibrium in a given game has
been the focus of extensive research in recent years: The problem of finding a best
Nash equilibrium (i.e., an equilibrium that maximizes the sum of the expected
payoffs) in a two-player game has been shown to be NP-hard by Gilboa and
Zemel [9] in 1989. The easier problem of computing an arbitrary equilibrium in
a finite two-player game was shown to be PPAD-complete by Chen et al [4] and
Daskalakis et al [6].

Given these results, it is unlikely that Nash equilibria can be computed in
polynomial time. However, some positive results show that Nash equilibria can
at least to some extent be approximated. The most recent result, following ex-
tensive work in the area, provides a polynomial time algorithm that computes
a 0.3393-equilibrium [15]. Another algorithm due to Lipton et al computes an
ε-equilibrium in quasi-polynomial time N log N/ε2

, where N ×N is the dimension
of the game matrix. The latter result also extends to the case of an ε-equilibrium
that maximizes the sum of payoffs.

Having a quasi-polynomial time approximation algorithm probably means
that finding ε-equilibria is not NP-hard. It is however still not known whether
the problem has a polynomial time approximation scheme.

Recently, Hazan and Krauthgamer [12] showed that for sufficiently small yet
constant ε the problem of computing an ε-equilibrium whose sum of payoffs is
off by at most ε from the best Nash equilibrium (for short, we call this problem
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ε-best ε-equilibrium) is at least as hard as finding a planted k-clique in the
random graph Gn,1/2, where k = c log n 1, and c ≈ 106 is a fixed large constant
(by “hard” we mean the standard notion of polynomial – maybe randomized –
reductions). The planted k-clique problem consists of finding a clique of size k
that was planted into an otherwise random graph with density 1/2. This problem
is a well-known notoriously hard combinatorial problem.

– Despite considerable efforts, the currently best known efficient algorithm to
solve the planted clique problem [2] needs a clique size of k = Ω(

√
n).

– The planted k-clique problem is (for certain values of k) related to the as-
sumption that refuting low-density 3CNF formulas is hard on the average.
This fact was used by Feige [7] to derive constant-factor hardness of approx-
imation for several well-known problems.

1.1 Our Contribution

In this paper, we strengthen the result of Hazan and Krauthgamer in the fol-
lowing sense: We show that if a polynomial time approximation scheme exists
that finds for any ε > 0 an ε-best ε-equilibrium, then for any δ > 0 there is a
polynomial time algorithm that detects the presence of a planted clique of size
(2 + δ) log n with high probability (whp for short).

Note that random graphs contain a clique of size (2 − o(1)) log n. Hence the
2 logn threshold that we achieve is a natural boundary implied by the problem
statement. See in this context also the work of Juels and Peinado [11] for the
planted clique problem when k < 2 log n.

More formally, our main result can be stated as follows.

Theorem 1. There exists a positive constant ε0 so that if there is a polynomial
time algorithm that finds in a two-player game the ε-best ε-equilibrium, 0 < ε ≤
ε0, then there is a probabilistic polynomial time algorithm that distinguishes whp
between two graphs: G ∈ Gn,1/2 and H, an arbitrary graph on n nodes with a
clique of size (2 + 28ε1/8) log n.

As explained in Section 3.3, our analysis gives ε0 = 32−8, although this estimate
is somewhat loose. The probability in the statement is taken over the choices of
the algorithm and the distribution Gn,1/2.

Our result in particular implies that finding an ε-best ε-equilibrium is at least
as hard as distinguishing between Gn,1/2 and Gn,1/2,k (i.e., Gn,1/2 with a planted
k-clique) for k = (2 + 28ε1/8) log n.

Let us also briefly mention that our analysis implies that for every fixed
δ > 0, given an efficient algorithm for finding an ε-best ε-equilibrium, one can
efficiently find a planted clique of size (3 + δ) log n in Gn,1/2. For details, see
section 4.

In the next section we describe our technical contribution.

1 In this paper, log denotes the base-2 logarithm.
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1.2 Techniques

The main idea of the reduction, as put out by [12], is to incorporate the graph
with the planted clique into a game so that the ε-best ε-equilibrium reflects in
some useful sense that clique.

More formally, let G be a simple graph with self-loops added, and let A be its
adjacency matrix. Construct the following game matrices R and C, composed
of four blocks. C = RT so let us just describe R.

R =
(

A −BT

B 0

)

Here, 0 stands for the all-0 matrix. The matrix B is constructed as follows. The
constants t ≤ 2, p and s, whose values depend on ε, are chosen as in the proof of
Proposition 1. B is an ns × n matrix, each entry of which is a scaled Bernoulli
random variable Bi,j which takes the value t with probability p and 0 otherwise.

The difference from the construction in [12] is our different choice of param-
eters for the matrix B. The heart of the analysis outlined in [12] lies in proving
that if a clique of size c1 log n is planted in Gn,1/2 then a graph of size c2 log n,
c2 ≤ c1, with edge-density greater than, say, 0.55 can be recovered using the
above construction and the ε-best ε-equilibrium which one assumes can be found
efficiently. Since this graph is denser than what one expects in Gn,1/2, and the
constant c2 is sufficiently large, it has whp many edges in common with the
planted clique. This fact can then be used to recover the clique. In [12], c1 was
a large constant, and so was c2, and the question of how tight the gap between
them can be was not considered. This is however exactly our main question. Our
new choice of parameters and a refined analysis (based on [12]) allows us to get
essentially the best possible ratio between c1 and c2 (which would be 1), and
essentially the best value for c1 (which would be 2). The “price” we pay for those
optimal constants is that we are unable to find the planted clique, but rather
distinguish between a random graph and a random graph with a slightly larger
clique planted in it.

1.3 Notations

Let R and C (for “row” and “column”) be two N×N -matrices with entries in R.
Let x, y be in R

N , with non-negative entries, and such that
∑N

i=1 xi =
∑N

i=1 yi =
1; such a pair (x, y) is called a pair of mixed strategies. The (expected) payoff of
the row player is xT Ry, and the one of the column player is xT Cy.

The strategies (x, y) is an ε-equilibrium if none of the players can increase his
payoff by more than ε by changing his strategy. In other words, the pair (x, y)
is an ε-equilibrium if for all strategies x̃ and ỹ, we have

x̃T Ry ≤ xT Ry + ε and xT Cỹ ≤ xT Cy + ε.

(For the definition of approximation we use the following conventional assump-
tions: the value of the equilibrium lies in [0, 1] and the approximation is additive).
A 0-equilibrium is more succinctly called a Nash equilibrium.
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A Nash equilibrium is best if it maximizes the average payoff of the players,
i.e., if it maximizes its value

1
2
xT (R + C)y.

A pair of strategies (x, y) is an ε-best ε-equilibrium if it is an ε-equilibrium and its
value is at least as large as the value of the best Nash equilibrium minus ε, i.e.,

(
max
x̃,ỹ

1
2
x̃T (R + C)ỹ

)
− ε ≤ 1

2
xT (R + C)y,

where (x̃, ỹ) runs over the Nash equilibria of the game.

2 Preliminaries: Properties of the Matrix B

In this section we describe several properties that the matrix B has whp, which
play a crucial role in our proof. We remind the reader that the entries of B are
scaled Bernoulli variables of some scale t and probability p, i.e.,

Bi,j =

{
0 with probability 1 − p,
t with probability p,

where t and p are parameters to be selected.

Proposition 1. Fix small enough β > 0, and let c1 = 2+7β1/2, c2 = 2+6β1/2.
There exists parameters t, p and s such that the matrix B of size ns × n, filled
with independent and identically distributed scaled Bernoulli-variables of scale t
and parameter p, enjoys the following properties whp:

(i) Fix a set I ⊆ [1, n] of c1 log n indices (independently of B). For every row
i of B,

1
c1 log n

∑
j∈I

Bi,j ≤ 1.

(ii) For every set J ⊆ [1, n] of c2 log n indices, there exists a row i = i(J) in B
so that Bi,j ≥ 1 + 9β for every j ∈ J .

The proof uses the following variant of the Chernoff bound. If X1, . . . , Xm are
m independent Bernoulli variables of scale t and parameter p, then

Pr

(
m−1

m∑
i=1

Xi ≥ tp(1 + δ)

)
≤ emp[δ−(1+δ) ln(1+δ)], (1)

for any δ > 0.
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Proof. The c1-calculation. Write m = c1 log n, and fix a row j. Using (1), we
see that

Pr

(
m−1

m∑
i=1

Aj,i ≥ 1

)
≤ exp

(
m[1 − tp + ln(tp)]

t

)
.

Hence using the union bound over all the rows, the first property does not hold
with probability at most

ns+c1[1−tp+ln(tp)]/(t ln 2).

So the first property holds with high probability if

s <
c1

t ln 2
[tp − 1 − ln(tp)]. (2)

The c2-calculation. For the second property to hold, we need t ≥ 1 + 9β.
Fix a set I = {i1, . . . , ic2 log n} ⊂ [n] of c2 log n indices. Then for a fixed row

j, the probability that Bj,i ≥ t for every i ∈ I is pc2 log n, so the probability that
there is no good row for the indices I is

(1 − pc2 log n)ns

,

hence by the union bound, the probability that there is a set of indices with no
good row is at most

(
n

c2 log n

)
(1 − pc2 log n)ns ≤ exp

(
c2 log n lnn + ns ln(1 − pc2 log n)

)
,

which tends to 0 with n → ∞ if

ns ln(1 − pc2 log n) < −c2 log n ln n.

i.e., if −ns−c2 log(p−1) < −c2 log n ln n. So, for the second property to hold, it
suffices to require that

s > c2 log(p−1), (3)

in which case ns ln(1 − pc2 log n) goes polynomially fast to −∞.

Choice of p and t. We can now deduce a sufficient condition by combining (2)
and (3), which gives

c1

t ln 2
[tp − 1 − ln(tp)] > c2 log(p−1).

Plugging in the values for c1 and c2 we obtain the following condition on p and t.

2 + 7β1/2

2 + 6β1/2
>

t ln(p−1)
tp − 1 − ln(tp)

.
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Now, the limit of the right hand side as p → 0 equals t, hence if we set t = 1+9β,
we see that the right hand side is indeed smaller than the left hand side for
sufficiently small (yet constant) p, provided that

(2 + 7β1/2) − (1 + 9β)(2 + 6β1/2) > 0.

The left hand side of the above is a polynomial in β1/2 with no constant term
and whose dominant term, the coefficient in β1/2, is positive (in fact, equal to
one). Hence this polynomial is positive for small positive values.

3 Proof of Theorem 1

Before giving the actual details let us outline the proof in general lines.

3.1 Proof Outline

For the graph H (with the clique of size (2+28ε1/8) log n) we show that whp the
game has a Nash equilibrium of social welfare at least 1. Then, given an ε-best ε-
equilibrium, we show that a 3ε-best 7ε-equilibrium can be efficiently calculated
whose support lies entirely on A (this is very similar to [12]). Then we show
how to efficiently extract a very-dense subgraph D from that strategy (here our
density is much higher than [12], we need this higher density as we don’t have
slackness in the size of the planted clique). On the other hand, we prove that
G ∈ Gn,1/2 whp does not contain such subgraph, causing the algorithm to fail
at some point. The graph D then allows us to distinguish H from G.

3.2 Formal Proof

In this section, we assume that the matrix B satisfies the properties of Propo-
sition 1, which is the case whp. We assume that c1 and c2 are chosen according
to Proposition 1, that is c1 = 2 + 7β1/2, c2 = 2 + 6β1/2.

Proposition 2. If A represents a graph H with a clique of size at least c1 log n,
then every equilibrium that maximizes the utilities of the players has value at
least 1.

Proof. Let C be a clique of H of size c1 log n. Consider the following strategies
for both players: each player puts probability |C|−1 on every row (column) of
that clique. The value of that strategy is clearly 1 for both players. The first
property of Proposition 1 guarantees that none of the players has an incentive
to defect, thus ensuring that the strategies we chose indeed constitute a Nash
equilibrium.

Proposition 3. If (x, y) is a δ-equilibrium of value at least 1 − δ then every
player has at least 1 − 2δ of his probability mass on A.
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Proof. The sum of payoffs of both players from the entries outside A is 0. If one
player has more than 2δ of his probability mass outside A, then the value of the
game cannot exceed (observing that the maximal entry in A is 1)

1
2

(1 + (1 − 2δ)) = 1 − δ.

This contradicts our assumption on the value of the game.

Proposition 4. Given a δ-equilibrium of value 1−δ one can efficiently compute
a 7δ-equilibrium of value at least 1 − 3δ whose support is entirely on A.

Proof. Given a δ-equilibrium (x, y), define (x′, y′) as follows: take the proba-
bilities outside A in both x and y and spread them arbitrarily over A. Let us
consider the row player (the column player is symmetric). The maximal entry
outside A has value at most 2 (since t ≤ 2), hence the payoff of the row player
from the entries outside A is (in absolute value) at most 2δ · 2 = 4δ. The gain
of relocating 2δ-probability to A is at most 1 · 2δ (he does not gain from the
upper-right part of the matrix). Thus (x′, y′) is a δ + 4δ + 2δ = 7δ-equilibrium.
As for its new total value, the total probability mass relocated for both players
is 4δ, thus gaining at most 0.5 · 4δ · 1 = 2δ (0.5 factor comes from the definition
of game-value, and the 1 is the maximal entry in A. The game outside A is
zero-sum, so is disregarded).

Proposition 5. Let (x, y) be a 7δ-equilibrium played entirely on A. Suppose also
that the matrix B is generated with parameter β ∈ [δ, 1/9]. Then every subset of
the rows Σ whose probability in x is at least 1 − β satisfies |Σ| ≥ c2 log n. The
same applies for y.

Proof. We shall prove for the column player, the proof of the row player is
symmetric. For contradiction, say there exists a set Σ of columns whose total
probability is at least 1 − β but |Σ| ≤ c2 log n (recall: c2 = (2 + 6β1/2)). By
the second property of B in Proposition 1, there exists a row in B in which all
corresponding entries have value at least 1 + 9β. If the row player relocates all
his probability mass to that row, his new payoff is at least (1 + 9β)(1 − β) >
1 + 7β ≥ 1 + 7δ (the last inequality is true for our choice of β). His current
payoff is at most 1 (as all entries in A are bounded by 1), and so he will defect,
contradicting the 7δ-equilibrium.

For two sets of vertices (not necessarily disjoint), we let e(V, W ) be the number
of edges connecting a vertex from V with a vertex from W . We use e(V ) as a
shorthand for e(V, V ). It is easy to see that the maximal number of edges is

K(V, W ) = |V | · |W | −
(|V ∩ W |

2

)
. (4)

The density of the two sets is defined to be

ρ(V, W ) =
e(V, W )
K(V, W )

. (5)
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Proposition 6. Assume we are given a 7δ-equilibrium of value 1−3δ played en-
tirely on A, and the matrix B was generated with β = 16δ1/4. One can efficiently
find two sets of vertices S1, S2 that enjoy the following properties:

– |S1|, |S2| ≥ (2 + 6β1/2) log n,
– ρ(S1, S2) > 1 − β.

Proof. First observe that if the value of the game (played on A) is 1 − 3δ, then
each player’s payoff is at least 1 − 6δ (as the maximum payoff on A is 1). Let
ei ∈ R

n be the unit vector whose entries are 0 except the ith which is 1. Consider
the following set of columns:

Γt = {i : xT Aei ≥ t}, Γ̄t = {i : xT Aei < t}. (6)

Since the payoff of the column player is at least 1−6δ (and in particular at least
1 − 6δ1/2), Γ1−6δ1/2 �= ∅. We now claim that the total probability mass of y on
the columns in Γ̄1−7δ1/2 is at most 16δ1/2. If not, by relocating 16δ1/2-probability
from Γ̄1−7δ1/2 to Γ1−6δ1/2 the gain is at least (7 − 6)δ1/2 · 16δ1/2 = 16δ > 7δ,
which contradicts the 7δ-equilibrium. Thus, by Proposition 5,

|Γ1−7δ1/2 | ≥ (2 + 6β1/2) log n

(we can use Proposition 5 since 1 − 16δ1/2 ≥ 1 − β = 1 − 16δ1/4).
For a set T of vertices, let UT ∈ R

n be the uniform distribution over T and
0 elsewhere. The condition of Γt implies that (this is just a simple averaging
argument)

xT AUΓ
1−7δ1/2 ≥ 1 − 7δ1/2. (7)

Now define a set of rows Σ according to:

Σ = {j : eT
j AUΓ

1−7δ1/2 ≥ 1 − 8δ1/4}. (8)

We claim that
∑

j∈Σ xj ≥ 1 − δ1/4. If not,

xT AUΓ
1−7δ1/2 ≤

(
1 − δ1/4

)
· 1 + δ1/4 · (1 − 8δ1/4) = 1 − 8δ1/2.

This contradicts (7). Applying Proposition 5 once more yields |Σ| ≥ (2 +
6β1/2) log n. Equation (8) implies (again, averaging argument):

UT
ΣAUΓ

1−7δ1/2 ≥ 1 − 8δ1/4. (9)

Finally we show how this gives the subgraph of correct density. Set S1 = Σ, S2 =
Γ1−7δ1/2 . They are both of the required size, denoted s1, s2 respectively. The
number of edges is (by dS(v) we denote the degree of v in the set S):

e(S1, S2) =

( ∑
v∈S1

dS2(v)

)
− e(S1 ∩ S2).
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Here,
∑

v∈S1
dS2(v) is just the total number of one-entries in the sub-matrix of

A corresponding to S1 × S2, which, by Equation (9), is at least (1− 8δ1/4)s1s2,
and we subtract the number of edges in the intersection (since they were counted
twice). Thus,

e(S1, S2) ≥ (1 − 8δ1/4)s1s2 − e(S1 ∩ S2).

Recalling the definition of the density ρ(S1, S2), Equation (5), we get

ρ(S1, S2) =
e(S1, S2)
K(S1, S2)

≥ (1 − 8δ1/4)s1s2 − e(S1 ∩ S2)

s1s2 −
(|S1∩S2|

2

)

≥ (1 − 8δ1/4)s1s2 −
(|S1∩S2|

2

)
s1s2 −

(|S1∩S2|
2

) .

This in turn equals

1 − 8δ1/4s1s2

s1s2 −
(|S1∩S2|

2

) .

Observing that s1s2 −
(|S1∩S2|

2

) ≥ s1s2/2, we get

ρ(S1, S2) ≥ 1 − 2 · 8δ1/4 = 1 − 16δ1/4 = 1 − β.

Finally we present the property of Gn,1/2 that we require.

Proposition 7. The following assertion holds whp for Gn,1/2. For no 0 ≤ α ≤
1/8, there exist two sets of vertices S1, S2 of size at least (2+6α) logn each and
such that e(S1, S2) ≥ (1 − α2)K(S1, S2).

Proof. The proof idea is as follows. The expected number of such sets S1, S2 is
at most (summing over all possible sizes for S1 and S2 and intersection size)

μ ≤
∑

y,z≥(2+6α) log n

min{y,z}∑
x=0

(
n

x

)(
n

y − x

)(
n

z − x

)
2−K

α2K∑
i=0

(
K

i

)

where K = K(S1, S2). The first term accounts for choosing the intersection
vertices, then completing each of S1 and S2. Next choose which edges are present
and finally multiply by the probability for edges/non-edges. We need to show
that μ = o(1), and then the claim follows from Markov’s inequality.

Define

f(x, y, z) =
(

n

x

)(
n

y − x

)(
n

z − x

)
2−K

α2K∑
i=0

(
K

i

)
, (10)

so that

μ ≤
∑

y,z≥(2+6α) log n

min(y,z)∑
x=0

f(x, y, z). (11)
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Our first goal is to estimate the sum
∑α2K

i=0

(
K
i

)
. We start out with the standard

estimate
ρK∑
i=0

(
K

i

)
≤ 2Kh(ρ) for 0 ≤ ρ ≤ 1/2,

where h(ρ) = −ρ log(ρ)− (1−ρ) log(1−ρ) is the binary entropy function. In the
range of interest 0 ≤ ρ = α2 ≤ 1/64, we get

h(ρ) ≤ ρ(− log(ρ) + 64 log(64/63)),

by bounding log(1 − ρ) by the appropriate linear function.
Now, studying the first and second derivatives of −α2 log(α2), we see that this

function is increasing in the range 0 ≤ α ≤ 1/8 and reaches its maximal slope
in this range at α = 1/8. The maximal slope is less than 1.2. Therefore,

h(α2) ≤ 1.2α + 64 log
(

64
63

)
α2 ≤

(
1.2 + 8 log

(
64
63

))
α ≤ 3

2
α,

and so
α2K∑
i=0

(
K

i

)
≤ 2

3
2Kα.

Going back to (10), bounding
(
n
t

)
by nt and recalling that K = yz − (

x
2

)
, we get

log f(x, y, z) ≤ (y + z − x) log n − K

(
1 − 3

2
α

)

= (y + z) log n − yz

(
1 − 3

2
α

)
− x log n +

(
1 − 3

2
α

)
x2

2
.

The maximum of the function x �→ −x log n + (1 − 3
2α)x2/2 in the range x ∈

[0, min{y, z}] is reached at the boundary x = min{y, z}, which, assuming wlog
y ≥ z, is at x = z. Thus,

log f(x, y, z) ≤ (y + z) log n − yz

(
1 − 3

2
α

)
− z log n +

(
1 − 3

2
α

)
z2

2

= y log n −
(

1 − 3
2
α

) (
yz − z2

2

)
.

Observe that yz − z2/2 ≥ yz/2, and hence

log f(x, y, z) ≤ y log n −
(

1 − 3
2
α

)
yz

2
≤ y

(
log n − z

2

(
1 − 3

2
α

))
.

Recall our choice of z: z ≥ (2 + 6α) log n (and the same goes for y). Since
(1 − 3

2α)(2 + 6α) ≥ 2 for our values of α,

log f(x, y, z) = −Ω(log2 n).
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Plugging this into (11) one obtains

μ ≤
∑

y,z≥(2+6α) log n

min{y,z}∑
x=0

2−Ω(log2 n) ≤ n3 · n−Ω(log n) = o(1).

The proposition follows by Markov’s inequality.

3.3 The Distinguishing Algorithm

Let A be a polynomial time algorithm that finds the ε-best ε-equilibrium in a
two player game. We shall show that there exists an algorithm B that runs in
polynomial time and distinguishes whp between a graph randomly chosen from
Gn,1/2 and an arbitrary graph with a clique of size c1 log n.

The algorithm B does the following on an input graph G, which is either a
graph from Gn,1/2 or a graph containing a clique of size at least (2+28ε1/8) log n.

1. If any of the below steps fails, return “G belongs to Gn,1/2”.
2. Generate the game matrix with parameter β = 16ε1/4 in the matrix B.
3. Run A to receive an ε-best ε-equilibrium of that game.
4. Calculate a 7ε-equilibrium of value at least 1−3ε whose support lies entirely

on A(G) (according to the procedure in the proof of Proposition 4).
5. Use this equilibrium to find two sets S1 and S2 satisfying |S1|, |S2| ≥

(2 + 6β1/2) log n and ρ(S1, S2) ≥ 1 − β (use the procedure in the proof
of Proposition 6).

6. If succeeded, return “G does not belong to Gn,1/2”.

We shall analyze the algorithm for ε ≤ ε0. ε0 is determined by the constraint
of Proposition 7. Specifically, for the algorithm to answer correctly on Gn,1/2,
it suffices if step 5 fails. For this we want to choose β so that whp Gn,1/2 does
not contain two sets S1, S2 of the prescribed size and density. This is achieved
by plugging α = β1/2, that is α = 4ε1/8, in Proposition 7, which translates to
ε0 = (4 · 8)−8.

It remains to prove that the algorithm answers correctly when G has a clique
of size ≥ c1 log n. Assume that the matrix B satisfies Proposition 1, which is the
case whp. Propositions 2 and 4 then guarantee that Step 4 succeeds, and Step 5
succeeds by Proposition 6. Thus again the correct answer is returned.

4 Finding a Clique of Size 3 log n

Let β = 16ε1/4 as in the proof of Theorem 1, and let H ∈ Gn,1/2,k with k ≥
(3 + 14β1/2) log n. Let C be the vertices of the planted clique. Observe that in
no place in Section 1 did we use the actual size of the planted clique, just the
“separation” properties as given by Proposition 1. Proposition 1 can be restated
easily with c1 ≥ (3 +14β1/2) and c2 = (3 +13β1/2) log n. Therefore by the same
arguments as in the Proof of Theorem 1, we are guaranteed to efficiently find
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two sets S1, S2 of size at least c2 log n each and density 1−β. Our first goal is to
show that S1∪S2 must intersect the planted clique on many vertices. Suppose by
contradiction that the intersection size is no more than (1 + β1/2) log n vertices.
Define S′

1 = S1 \ C and similarly S′
2 = S2 \ C. Clearly, S′

1, S
′
2 still contain at

least (2 + 12β1/2) log n vertices, and all edges between S′
1 and S′

2 are random
edges of Gn,1/2. Finally let us compute the density ρ(S′

1, S
′
2). Recall Equation

(9) which guarantees that in A[S1 × S2] there are at most (β/2)S1S2 zeros. As
for A[S′

1 × S′
2], the fraction of zeros is at most

(β/2)|S1||S2|
|S′

1||S′
2|

≤ (β/2)|S1||S2|
(2/3)2|S1||S2| =

9β

8
.

In the inequality we use |S′
1| ≥ 2|S1|/3, |S′

2| ≥ 2|S2|/3. Now the same arguments
that follow Equation (9) give ρ(S′

1, S
′
2) ≥ 1 − 2 · 9β

8 ≥ 1 − 3β. To conclude,
we found two sets of size at least (2 + 12β1/2) log n each, and density 1 − 3β,
involving only edges of Gn,1/2. This however contradicts Proposition 7 (when
plugging α2 = 3β in that proposition).

Let us now assume that S1∪S2 contains at least (1+β1/2) log n vertices from
the planted clique, call this set I. Further assume w.l.o.g. that |S1∪S2| = O(log n)
(we can always do this since in Equations (6) and (8), which define S1, S2, we
can limit the set size). Thus one can find I in polynomial time (using exhaustive
search). Finally, let us compute the probability that a vertex x /∈ C has full
degree in I. Since the planted clique was chosen independently of the random
graph, this probability is at most

2−|I| = 2−(1+β1/2) log n = n−(1+β1/2).

Using the union bound, whp no such vertex exists. Now apply the following
greedy procedure on I: go over the vertices of G and add each vertex if its degree
in I is full. By the latter argument, this algorithm succeeds whp in reconstructing
the planted clique.

5 Discussion

In this work we explored the technique of [12] in the regime where the planted
clique is close to the smallest possible, that is of size (2+δ) log n for small δ > 0.
We showed that for the problem of distinguishing Gn,1/2 from Gn,1/2,k, where
k = (2 + δ) log n, the reduction works for arbitrarily small δ > 0, provided that
ε-best ε-approximate Nash equilibria can be found for a corresponding small
ε(δ) > 0.

We also showed that the problem of finding a planted clique of size (3 +
δ) log n for small δ > 0 can be reduced to finding an ε-best ε-approximate Nash
equilibrium for a sufficiently small ε > 0. But since the maximal clique in Gn,1/2

is only of size (2 − o(1)) log n, this is possibly not optimal, and the question
whether one could achieve the optimal 2 log n clique size barrier for finding the
clique is still open.
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