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Abstract. A random walk on a graph is a process that explores the graph in
a random way: at each step the walk is at a vertex of the graph, and at each
step it moves to a uniformly selected neighbor of this vertex. Random walks are
extremely useful in computer science and in other fields. A very natural prob-
lem that was recently raised by Alon, Avin, Koucky, Kozma, Lotker, and Tuttle
(though it was implicit in several previous papers) is to analyze the behavior of k
independent walks in comparison with the behavior of a single walk. In particular,
Alon et al. showed that in various settings (e.g., for expander graphs), k random
walks cover the graph (i.e., visit all its nodes), Ω(k)-times faster (in expectation)
than a single walk. In other words, in such cases k random walks efficiently “par-
allelize” a single random walk. Alon et al. also demonstrated that, depending on
the specific setting, this “speedup” can vary from logarithmic to exponential in k.

In this paper we initiate a more systematic study of multiple random walks.
We give lower and upper bounds both on the cover time and on the hitting time
(the time it takes to hit one specific node) of multiple random walks. Our study
revolves over three alternatives for the starting vertices of the random walks: the
worst starting vertices (those who maximize the hitting/cover time), the best start-
ing vertices, and starting vertices selected from the stationary distribution. Among
our results, we show that the speedup when starting the walks at the worst ver-
tices cannot be too large - the hitting time cannot improve by more than an O(k)
factor and the cover time cannot improve by more than min{k log n, k2} (where
n is the number of vertices). These results should be contrasted with the fact that
there was no previously known upper-bound on the speedup and that the speedup
can even be exponential in k for random starting vertices. Some of these results
were independently obtained by Elsässer and Sauerwald (ICALP 2009). We fur-
ther show that for k that is not too large (as a function of various parameters of
the graph), the speedup in cover time is O(k) even for walks that start from the
best vertices (those that minimize the cover time). As a rather surprising corollary
of our theorems, we obtain a new bound which relates the cover time C and the
mixing time mix of a graph. Specifically, we show that C = O(m

√
mix log2 n)

(where m is the number of edges).
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1 Introduction

A random walk on a graph is a process of exploring the graph in a random way. A
simple random walk starts at some node of a graph and at each step moves to a ran-
dom neighbor. Random walks are fundamental in computer science. They are the ba-
sis of MCMC (Markov-Chain Monte-Carlo) algorithms, and have additional important
applications such as randomness-efficient sampling (via random walks on expanders)
[AKS87], and space-efficient graph connectivity algorithms [AKL+79]. Random walks
became a common notion in many fields, such as computational physics, computational
biology, economics, electrical engineering, social networks, and machine learning.

Assume that we have some network (e.g. a communication or a social network),
and some node u sends a message. Assume that at each step this message is sent to
a random neighbor of the last recipient. The message will travel through the network
as a random walk on a graph. The expected time until the message will arrive to some
other node v is called the hitting time h(u, v). The expected time until the message will
visit all the nodes is called the cover time Cu. The hitting time and the cover time of a
random walk are thoroughly studied parameters (see surveys [AF99, LWP, Lov96]).

In this paper we consider the following natural question: What happens if we take
multiple random walks instead of a single walk? Assume that instead of one copy, k
copies of the same message were sent. How long would it take for one of these copies
to reach some node v? How long would it take until each node receives at least one of
the k copies? What are the speedups in the hitting and cover times of multiple walks
compared with a single walk?

Multiple random walks were studied in a series of papers [BKRU89, Fei97, BF93]
on time-space tradeoffs for solving undirected s-t connectivity. These papers consid-
ered upper bounds for the cover time of multiple random walks, each paper giving a
different answer for different distributions of the starting vertices of the random walks.
In randomized parallel algorithms, multiple random walks are a very natural way of
exploring a graph since they can be easily distributed between different processes. For
example, multiple random walks were used in [HZ96, KNP99] for designing efficient
parallel algorithms for finding the connected components of an undirected graph.

Multiple random walks were suggested as a topic of independent interest by Alon,
Avin, Koucky, Kozma, Lotker, and Tuttle [AAK+07]. Alon et al. [AAK+07] studied
lower bounds on the relation between the cover time of a simple random walk and of
multiple random walks when the walks start from the same node. The paper proves
that if the number of random walks k is small enough (i.e., asymptotically less than

C
hmax

, where C and hmax are the maximal cover time and hitting time respectively) then
the relation between the cover time of a single random walk and of multiple random
walks is at least k − o(k). In such a case, we can argue that multiple random walks
“parallelize” a single walk efficiently (as they don’t increase the total amount of work
by much). [AAK+07] also showed that there are graphs with logarithmic speedup (e.g.,
the cycle), and there are graphs with an exponential speedup for specific starting point
(e.g., the so called barbell graph; we will shortly discuss a related example). [AAK+07]
leaves open the question of upper bounds for the speedup.

The goal of this paper is to systematically study multiple random walks. In addition
to the cover time of multiple random walks we will also discuss the hitting time, proving
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both lower and upper bounds on the speedup. We will extend the discussion to the case
where not all the walks start from the same node.

Before getting into the details of our results, let us consider an example which il-
lustrates how multiple random walks behave differently according to the choice of their
starting vertices. Consider a graph G which is composed of two cliques of size n con-
nected by a single edge (see Figure 1).

Fig. 1. Two cliques graph - how the speedup changes according to the starting vertices

While the cover time of a single random walk will not depend on the starting ver-
tex and is Θ(n2), the cover time of multiple random walks will be very different for
different starting vertices of the random walks. When the walks start from the worst
vertices (all walks start from the same clique) the cover time is Θ(n2

k ). Even for k = 2,
when the random walks start from the best vertices (one walk starts at one clique and
the other from another clique) the cover time is Θ(n log n). When the starting vertices
of k random walks are drawn independently from the stationary distribution, then the
probability that all starting vertices will fall into the same clique is 2−k. Therefore,
for k ≤ log n − log log n, the cover time in this case is Θ(2−kn2). When consider-
ing the hitting times, we get the same behavior for the worst starting vertices and for
randomly-chosen starting vertices. The case of the best starting vertices is uninteresting
when discussing the hitting time as the hitting time in such a case is zero (even for a
single walk).

As we can see from the aforementioned example, both the cover and the hitting
times heavily depend on the starting vertices. Therefore, we study these three scenarios
separately: (1) The case when the random walks start from the nodes which maximize
the cover/hitting time (worst starting vertices). (2) The case when the random walks
start from the nodes which minimize the cover time (best starting vertices). (3) The
case when the starting vertices are drawn independently according to the stationary
distribution (random starting vertices).

Our Contribution

In this paper we systematically study multiple random walks and their speedup both
in terms of the cover time and in terms of the hitting time. We give various lower and
upper bounds for different ways of choosing the starting vertices. Our main bounds on
the speedup of multiple random walks are summarized in Table 1.



How Well Do Random Walks Parallelize? 479

Table 1. Summary of main bounds on the speedup. Notation: n - number of vertices; k - the
number of walks; C - maximal cover time; hmax - maximal hitting time; mix - mixing time.

Worst case Average Case Best Case

Hitting time O(k) k + o(k) Not applicable
Upper bounds for any k, Theorem 4 for k log n = o(hmax

mix
)

Theorem 20
Hitting time Ω(k) k Not applicable

Lower bounds for k log n = O(hmax
mix

) for any k
Theorem 8 Theorems 6

Cover time O(min{k2, k log n}) k + o(k) k + o(k)
Upper bounds Theorems 12 & 13 for k log k = o( C

mix
) for k = o( C

hmax
)

Theorem 19 Theorem 15
Cover time ( k

log n
)(1 − o(1)) for k log n = o(hmax

mix
)

Lower Bounds Theorem 14 =⇒ =⇒
k − o(k) for k = o( C

hmax
)

Theorem 5 in [AAK+07]

Upper bounds on the speedup. [AAK+07] left open the question of upper bounding
the speedup of multiple random walks. In this work we show that the answer depends
on how the starting vertices are selected. In Theorem 4 we show that for the worst
starting vertices, the speedup on hitting time is at most O(k). In Section 4, we use this
theorem to show that the speedup on the cover time is at most O(min(k2, k log n)).
As we can see from the example above, the speedup for the best or even for random
starting vertices may be very large (e.g., exponential in k). Still, we are able to show
in Section 4 that even in these cases, if the number of walks is small enough then the
speedup will be at most k + o(k). In Theorem 15 (see also Corollary 17 ) we show
that for k � C

hmax
the speedup for the best starting vertices is at most k + o(k). This

result is interesting for graphs with a large gap between the cover time and the hitting
time. For random starting vertices, Theorem 19 (see also Corollary 21) shows that if
k log k � C

mix , then the speedup is at most k + o(k). The mixing time, mix, of a graph
is the number of steps a random walk has to make until its position is distributed almost
according to the stationary distribution.

Lower bounds on the speedup. In Theorem 6 we show that the speedup for the hitting
times is at least k when all the starting vertices are drawn from the stationary distribu-
tion. This theorem also allows us to prove lower bounds for the case of worst starting
vertices for graphs with small mixing time. Using this theorem we prove in Theorem 8
that when the number of walks is less than Õ(hmax

mix ) the speedup for the hitting times
is at least Ω(k). We get similar results for the cover time (Theorem 14). Namely, we
show that the speedup for the cover time is at least ( k

log n )(1 + o(1)), when k is less

than õ(hmax
mix ). This result improves the lower bound of Ω( k

log n·mix) from [AAK+07].

A new relation between the cover time and the mixing time. Finally, our study of multi-
ple random walks gives a rather surprising implication on the study of a single random
walk. Our results, together with the results of [BKRU89] about multiple random walks,
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imply a new relation between the cover time and the mixing time of a graph. Specifi-
cally, we prove that C = O(m

√
mix log2 n). The best previous result we are aware of

is due to Broder and Karlin [BK88]. In [BK88] it was proven that C = O( m log n
1−λ(G) ),

where λ(G) is the second eigenvalue of the normalized adjacency matrix. A known
relation between λ(G) and mix is that Ω( 1

1−λ(G) ) ≤ mix ≤ O( log n
1−λ(G) ) (cf. [Sin92],

Proposition 1). Therefore a corollary of [BK88] is that C = O(mixm logn). Our result
improves this bound whenever mix = ω(log2 n).

Our new relation also has an application in electrical engineering. View a graph G
as an electrical network with unit resistors as edges. Let Rst be the effective resistance
between nodes s and t. Then it was shown in [CRRS89] that for any two nodes s and
t it holds that mRst ≤ C. Therefore, together with our result it implies that Rst =
O(

√
mix log2 n). The best previous upper bound on the electrical resistance in terms

of the mixing time was also obtained by Chandra et al. [CRRS89] and was Rst ≤
2

1−λ(G) = O(mix).

Related Work. Independently of our work, Elsässer and Sauerwald [ES09] recently
studied multiple random walks. Their most related results are upper bounds and lower
bounds on the speed-up of cover time for worst case starting points. In fact, [ES09]
gives an upper bound of O(k log n) on the speed-up of any graph (similarly to our Theo-
rem 12) and a lower bound of Ω( k

log n ) under some conditions on mixing time (similarly
to our Theorem 14). Under some mild conditions, they are also able to prove an upper
bound of O(k). Another recent work on multiple random walks is due to [CCR09]. This
work studies multiple random walks in random graphs, and among other result show
that for random d-regular graph the speed-up is O(k).

2 Notation

We will use standart definitions of the hitting time, the cover time and the mixing time.
We briefly review the notation that will be used throughout the paper: The mixing time
of a graph G is denoted mix. Let ς(u, v) be the time it takes for a random walk that starts
at u to reach v i.e. ς(u, v) = min{t | Xu(t) = v}. Note that ς(u, v) is a random vari-
able. Let the hitting time h(u, v) = E(ς(u, v)) be the expected time for the random walk
to traverse from u to v. Let hmax = maxu,v∈V h(u, v) and hmin = minu,v∈V h(u, v)
be the maximal and minimal hitting times. Similarly let τu be the time for the simple
random walk to visit all the nodes of the graph. Let Cu = E(τu) be the cover time for
a simple walk starting at u. The cover time C = maxu(Cu) is the maximal (over the
starting vertex u) expected time it takes for a single walk to cover the graph. It will be
convenient for us to define the following parameter of a graph: H(G) = C

hmax
.

The following theorem provides fundamental bounds on the cover time in terms of
the hitting time (for more details see [LWP] Chapter 11 or [Mat88]):

Theorem 1 (cf. [Mat88]). For every graph G with n vertices

hmin · log n ≤ C ≤ hmax · log n.
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Note that there also exists a trivial bound of hmax ≤ C. It will be convenient for us
to define the following parameter of a graph: H(G) = C

hmax
. Note that 1 ≤ H(G) ≤

log n. Also note that there exist graphs where H(G) = O(1) (for example the cycle),
and there exist graphs with H(G) = Ω(log n) (for example the complete graph).

For k parallel independent random walks we have the following notation:
ς({u1, u2, . . . uk}, v) = mink

i=1 ς(ui, v) is the random variable corresponding to the
hitting time of k random walks, where some of the ui’s may be equal. Let
h({u1, u2, . . . uk}, v) = E(ς({u1, u2, . . . uk}, v)) be the hitting time of k random
walks starting at vertices ui. If all the walks start at the same vertex u we will write
it as hk(u, v). Let hk

max = maxui,v h({u1, u2, . . . uk}, v) be the maximal hitting time
of k random walks. Similarly, for the cover time we define τu1,u2,...uk

= min{t |
⋃k

i=1{Xui(1), Xui(2), . . . Xui(t)} = V } and define Cu1,u2,...uk
= Eτu1,u2,...uk

to be
the expected cover time. Let Ck = maxu1,u2,...uk

Cu1,u2,...uk
.

The proof of Theorem 1 (see [LWP] Chapter 11) easily extends to multiple walks
implying the following theorem:

Theorem 2. For every (strongly connected) graph G with n vertices, and for every k

Ck

hk
max

≤ log n.

3 Hitting Time of Multiple Random Walks

In this section we study the behavior of the hitting time of k random walks. The first
question we will consider is: what are the starting vertices of multiple random walks
which maximize the hitting time? Later, we will give a lower bound on the maximal
hitting time of multiple random walks. We will prove that hmax

hk
max

= O(k). Then we will
consider the case where the walks’ starting vertices are chosen independently according
to the stationary distribution. Note that in this setting the ratio between hitting times is
not upper bounded by O(k); in fact it may even be exponential in k. We will prove that
in this setting the ratio between the hitting time of the single walk and the hitting time
of k walks is at least k. Next we will use this theorem in order to prove that for graphs
with small mixing time the ratio hmax

hk
max

= Ω(k). Finally we consider the evaluation of
hitting times.

3.1 Worst to Start in a Single Vertex

Let us prove that the maximal hitting time is achieved when all the walks start from the
same node.

Theorem 3. For every graph G = (V, E), for every v ∈ V it holds that

max
u1,u2,...uk

h({u1, u2, . . . uk}, v) = max
u

hk(u, v).

The proof of the theorem (which employs a generalization of Hölder’s Inequality) is
deferred to the full version.
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3.2 Upper Bound on the Speedup of the Hitting Time of Multiple Random
Walks

We will now prove that the ratio between the hitting time of a single random walk and
the hitting time of k random walks is at most O(k).

Theorem 4. For any graph G it holds that hmax ≤ 4khk
max.

Loosely, the theorem is proved by deducing a bound of 1
2k on the probability that a

single walk will hit the target vertex in 2hk
max steps. The formal proof is deferred to the

full version. By a slightly more complicated argument we can replace the constant 4 in
Theorem 4 by e + o(1). However it seems plausible that the right constant is 1.

Open Problem 5. Prove or disprove that for any graph G it holds that hmax ≤ khk
max.

3.3 Lower Bounds on the Speedup of the Hitting Time of Multiple Random
Walks

In this section, we consider the case where the starting vertices of the random walks
are selected according to the stationary distribution. Theorem 4 shows that for worst-
case starting vertices the ratio between the hitting times of a single walk and multiple
walks is at most O(k). But as we will soon show, when the starting vertices of all walks
are drawn independently from the stationary distribution then, loosely speaking, this
ratio becomes at least k. Note that in some graphs the ratio of hitting times, when the
starting vertices are selected according to the stationary distribution, may even become
exponential in k. Indeed, such an example is given in Figure 1 and is discussed in the
introduction (the discussion there is for the cover time but the analysis for the hitting
time is very similar)

The next theorem gives a lower bound on the ratio between hitting times for random
starting vertices.

Theorem 6. Let G(V, E) be a (connected) undirected graph. Let X be a random walk
on G. Let u, u1, . . . uk ∈ V be independently chosen according to the stationary distri-
bution of G. Then:

Eu(h(u, v)) ≥ k (Euih({u1, u2, . . . uk}, v) − 1) .

Remark 7. In this theorem we assume continues model of random walk.

As we will later see (in Corollary 22), when k log k = o(h(u, v)/mix) then the speedup
is at most k + o(k) in the scenario of random starting vertices. Thus when k log k =
o(h(u, v)/mix) the speedup is k up to lower order terms.

The proof of the theorem is deferred to the full version.

Lower bound on the speedup for worst starting vertices. The lower bound on the
speedup for walks starting at the stationary distribution translates into a lower bound
that also applies to walks starting at the worst vertices: First let the walks converge to
the stationary distribution and then apply the previous lower bound. The bounds that
we obtain are especially meaningful when the mixing time of the graph is sufficiently
smaller than the hitting time.
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Theorem 8. Let G(V, E) be a (connected) undirected graph. Then

hk
max ≤ hmax

k
+ O(mix(log n + log k)).

As a corollary we get:

Corollary 9. Let G(V, E) be a (connected) undirected graph such that kmix(log n +
log k) = o(hmax). Then:

hmax

hk
max

≥ k(1 − o(1)).

3.4 Calculating the Hitting Time of Multiple Random Walks

We would like to address a question which is somewhat orthogonal to the main part of
this paper. Namely, we would like to discuss how the hitting time of multiple walks can
be calculated. Let us observe that multiple random walks on graph G can be presented
as a single random walk on another graph Gk .

Definition 10. Let G = (V, E) be some graph. Then the graph Gk = (V ′, E′) is
defined as follows: The vertices of Gk are k-tuples of vertices of G i.e.

V ′ = V ⊕ V . . . ⊕ V︸ ︷︷ ︸
k times

= V k.

For every k edges of G, (ui, vi) for i = 1, . . . , k we have an edge between u′ =
(u1, u2, . . . uk) and v′ = (v1, v2 . . . vk) in Gk.

One can view k random walks on G as a single random walk on Gk where the first co-
ordinate of Gk corresponds to the first random walk, the second coordinate corresponds
to the second random walk, and so on.

Let A ⊂ V k be the set of all nodes of Gk which contain the node v ∈ V . Assume
that we have k random walks beginning at u1, u2, . . . uk. Then the time it will take to hit
v is equal to the time for a single random walk on Gk beginning at node (u1, u2, . . . uk)
to hit the set A. Thus instead of analyzing multiple random walks we can study a single
random walk on Gk. There is a polynomial time algorithm for calculating hitting times
of a single random walk (cf. [Lov96]). This gives us an algorithm, which is polynomial
in nk, for calculating h({u1, u2, . . . uk}, v). A natural question is whether there exist
more efficient algorithms.

Open Problem 11. Find a more efficient algorithm for calculatingh({u1, u2, . . . uk}, v).

4 Cover Time of Multiple Random Walks

Let us turn our attention from the hitting time to the cover time. As in the case of
the hitting time, the cover time heavily depends on the starting vertices of the random
walks. The graph given by Figure 1 and discussed in the introduction gives an example
where the speedup in cover time of k random walks is linear in k for worst-case starting
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vertices, it is exponential in k for random starting vertices, and even for k = 2 it is
Ω(n/ log n) for the best starting vertices.

Theorem 1 gives a relation between hitting times and cover times. Thus, our results
on hitting times from the previous section also give us results on the cover times. In
Subsection 4.1 we will give these results and will analyze the speedup, C

Ck
, for worst

starting vertices. We show that it is bounded by min{k2, k log n} for any k. We will
also show that for k such that k log nmix = O(hmax) the speedup is Ω( k

log n ).
We will show in Subsection 4.2 that when k random walks begin from the best start-

ing vertices for k = o(H(G)) the speedup is roughly k and is therefore essentially equal
to the speedup for the worst case. In Subsection 4.3 we will show that when the starting
vertices are drawn from the stationary distribution for k such that mixk log(k) = o(C),
the speedup is at most k.

4.1 The Worst Starting Vertices

As a simple corollary of Theorem 4 we obtain the following relation:

Theorem 12. The speedup C
Ck is at most 4kH(G) ≤ 4k log n

Proof. Recall that Ck ≥ hk
max so C

Ck ≤ C
hk
max

= hmax
hk
max

H(G). From Theorem 4

it follows that hmax
hk
max

H(G) ≤ 4kH(G). And finally from Theorem 1 we have that

4kH(G) ≤ 4k log n.

From this theorem it follows that for k = Ω(H(G)) the speedup is O(k2). Theorem 15
implies that if k < 0.01H(G) then the speedup C

Ck is at most 2k. Therefore, we can
conclude a bound for every k:

Theorem 13. For every (strongly connected) graph G and every k, it holds that C
Ck =

O(k2).

From Theorem 8 we can also deduce a lower bound on the speedup for rapidly-mixing
graphs:

Theorem 14. Let G(V, E) be an undirected graph and let k be such that k(log n)mix =
o(hmax) then

C

Ck
≥ k

log n
(1 − o(1)).

Proof. From Theorem 2 it follows that C
Ck

≥ hmax
hk
max log n . Since k log nmix = o(hmax),

Theorem 8 implies that hmax
hk
max

= k(1 − o(1)). Thus: C
Ck

≥ k
log n (1 + o(1)).

4.2 The Best Starting Vertices

As we discussed earlier, multiple random walks can be dramatically more efficient than
a single random walk if their starting vertices are the best nodes (rather than the worst
nodes). In fact, we have seen an example where taking two walks instead of one reduces
the cover time by a factor of Ω(n/ log n). In this section we show that in graphs where
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the cover time is significantly larger than the hitting time, a few random walks cannot
give such a dramatic speedup in the cover time, even when starting at the best nodes:
If k = o(H(G)) (recall that H(G) = C

hmax
), then the speedup C

Cu1,u2,...uk
(where

u1, u2, . . . uk are best possible) is not much bigger than k. Note that in the case where
k = o(H(G)) it has been shown in [AAK+07] that the speedup C

Cu1,u2,...uk
is at least

k − o(k), even if u1, u2, . . . uk’s are worst possible. Combining the two results we get
that the speedup is roughly k regardless of where the k walks start.

We want to show that the cover time of a single random walk is not much larger
than k times the cover time of k random walks. For that we will let the single walk
simulate k random walks (starting from vertices ui) as follows: The single walk runs
until it hits u1, then it simulates the first random walk. Then it runs until it hits u2 and
simulates the second random walk and so on until hitting uk and simulating the k’th
random walk. The expected time to hit any vertex from any other vertex is bounded
by hmax. Thus intuitively the above argument should imply the following bound: C ≤
kCu1,u2,...uk

+ khmax. Unfortunately, we do not know how to formally prove such a
strong bound. The difficulty is that the above argument only shows how a single walk
can simulate k walks for t steps, where t is fixed ahead of time. However, what we
really need is for the single walk to simulate k walks until the walks cover the graph.
In other words, t is not fixed ahead of time but rather a random variable which depends
on the k walks. Nevertheless, we are still able to prove the following bound which is
weaker by at most a constant factor:

Theorem 15. For every graph G and for any k nodes u1, u2, . . . uk in G, it holds that:

C ≤ kCu1,u2,...uk
+ O(khmax) + O

(√
kCu1,u2,...uk

hmax

)
.

The proof will appear in the full version.
In [AAK+07] the following theorem was proved:

Theorem 16 (Theorem 5 from [AAK+07]). Let G be a strongly connected graph and
k = o(H(G)) then C

Ck
≥ k − o(k).

In the case where k = o(H(G)) then O(khmax) + O(
√

Cu1,u2,...uk
khmax) = o(C)

and therefore C ≤ kCu1,u2,...uk
+ o(C). As a corollary we get:

Corollary 17. Let G be a strongly connected graph and k = o(H(G)) then for any
starting vertices u1, u2, . . . uk it holds that: C

Cu1,u2,...uk
= k ± o(k)

It seems plausible that the speedup is at most k for any starting vertices, also when k
is significantly larger than H(G). When k ≥ eH(G) we can give an example where
kCu1,u2,...uk

<< C. Consider a graph G which is composed of a clique of size n and
t vertices where each vertex is connected by one edge to some node of a clique. We
will assume that n >> t. The maximal hitting time for this graph is O(n2). The cover
time of this graph is O(n2 log t) and H(G) = log t. If k = t then when k multiple
random walks start from the t vertices which are not in the clique, then Cu1,u2,...uk

=
n log n

k + O(1). Therefore, a natural open problem is the following:

Open Problem 18. Prove or disprove that for some constant α > 0, for any graph G,
if k ≤ eαH(G) then C ≤ O(k)Cu1,u2,...uk

.
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4.3 Random Starting Vertices

Finally we consider the cover time of k walks that start from vertices drawn from
the stationary distribution. In this case, Theorem 6 loosely states that the ratio between
the hitting times is at least k. Now let us show an upper bound on the ratio between the
cover time of a single random walk and multiple random walks.

The intuition for the bound is quite similar to the intuition behind the proof of The-
orem 15 (nevertheless, the proofs are quite a bit different). We will simulate k random
walks by a single walk. The single random walk will first run ln(k)mix steps, getting
to a vertex that is distributed almost according to the stationary distribution. The walk
then simulates the first of the k random walks. Next, the walk takes ln(k)mix steps
again and simulates the second random walk and so on until simulating the kth random
walk. Since the start vertex of the k simulated walks are jointly distributed almost as
if they were independently sampled from the stationary distribution it seems that we
should obtain the following upper bound: C ≤ kEuiCu1,u2,...uk

+ k ln(k)mix, where
u1, u2, . . . uk are independently drawn from the stationary distribution. But as before
we can not make this intuition formal, mainly because we do not know ahead of time
how long the k random walks will take until they cover the graph. We will instead prove
the following bound which again may be weaker by at most a constant factor:

Theorem 19. Let G = (V, E) be any (strongly connected) graph. Let u1, u2, . . . uk be
drawn from the stationary distribution of G. Then:

C ≤ kEuiCu1,u2,...uk
+ O(k ln(k)mix) + O

(
k
√

ECu1,u2,...uk
mix

)
.

Under some restrictions, the mixing time cannot be much larger than the maximal hit-
ting time and often will be much smaller. In such cases, Theorem 19 may be more
informative than Theorem 15 in the sense that it implies a bound of roughly k on the
speedup as long as k = Õ( C

mix ) (rather than k = O( C
hmax

) as implied by Theorem 15).
On the other hand, the starting vertices in Theorem 19 are according to the stationary
distribution rather than arbitrary starting vertices as in Theorem 15.

The proof of Theorem 19 will appear in the full version. We note that the proof
also works if we consider the hitting times (rather than the cover times), implying the
following theorem:

Theorem 20. Let G = (V, E) be any (strongly connected) graph. Let u, v be any nodes
of the graph and let u1, u2, . . . uk be drawn from the stationary distribution of G. Then:

h(u, v) ≤ kEuih({u1, u2, . . . uk}, v) + O(k ln(k)mix) + O

(

k
√

Euih({u1, u2, . . . uk}, v)mix

)

.

As a corollary of Theorems 19 it follows that if k log kmix is negligible relative to the
cover time then the speedup of the cover time is at most k

Corollary 21. Let G = (V, E) be any (strongly connected) graph. Let u1, u2, . . . uk be
drawn from the stationary distribution of G. Then if k log(k) = o(C/mix) then

C

EuiCu1,u2,...uk

≤ k + o(k).
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Similarly, from Theorem 20 we obtain the following corollary:

Corollary 22. Let G = (V, E) be any (strongly connected) graph. Let u1, u2, . . . uk

be drawn from the stationary distribution of G and u, v any nodes. Then if k log(k) =
o(h(u, v)/mix) then

h(u, v)
Euih({u1, u2, . . . uk}, v)

≤ k + o(k).

5 A New Relation between Cover and Mixing Time

In this section we will show how we can use the results proven above in order to prove
a new upper bound on the cover time in terms of mixing time. In order to do this we
will need the following bound from [BKRU89].

Theorem 23 (cf. [BKRU89] Theorem 1). Let G be a connected undirected graph with
n vertices and m edges. Let u1, u2, . . . uk be drawn from the stationary distribution of
G. Then:

Eui(Cu1,u2,...uk
) ≤ O(

m2 log3 n

k2
).

As a rather intriguing corollary of Theorem 23 and Theorem 19 we get the following
bound on the cover time.

Theorem 24. Let G be a connected undirected graph with n vertices and m edges.
Then:

C ≤ O(m
√

mix log2 n).

Proof. From Theorem 19 it follows that:

C(G) ≤ kEuiCu1,u2,...uk
(G) + O(k ln(k)mix) + O

(
k
√

ECu1,u2,...uk
mix

)
.

Thus from Theorem 23 we get the following bound on C(G):

C(G) ≤ O(
m2 log3 n

k
) + O(k ln(k)mix) + O(m log1.5 n

√
mix).

As long as k is at most polynomial in n it follows that log k = O(log n). Thus:

C(G) ≤ O(
m2 log3 n

k
) + O(k ln(n)mix) + o(m log2 n

√
mix).

Setting k = m log n√
mix

implies the theorem.
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6 Future Research

This paper systematically studies the behavior of multiple random walks. While we
have given various upper and lower bounds for the speedup of multiple random walks,
there is still much more that we do not know on this topic, with a few examples being
Open Problems 5, 11 and 18. In this section, we will discuss a few additional directions
for further research.

Our knowledge on the hitting time of multiple random walks is more complete than
our knowledge on their cover time. Indeed, analyzing the hitting time seems easier than
analyzing the cover time. Designing new tools for analyzing the cover time of multiple
random walks is an important challenge. For example, we have proved that the maximal
hitting time of multiple random walks is obtained when all the walks start from the same
vertex (see Theorem 4), but we don’t know if the same is also true for the cover times:

Open Problem 25. Prove or disprove that for any graph G

max
u1,u2,...uk

Ck
u1,u2,...uk

= max
u

Ck
u,u,...u.

We have proved that in the case of worst starting vertices the speedup of the hitting
time is at most 4k, and we raised the question of whether the correct constant is one
(see Open Problem 5). It seems however, that for the cover time the speedup may be
larger than k (though it is still possible that it is O(k)). Consider a walk on a “weighted”
path a − b − c with self loops such that the probability of staying in place is 1 − 1

x . In
other words, consider a Markov chain X(t) with the following transition probabilities:

Pr[X(t) = b|X(t − 1) = a] = Pr[X(t) = b|X(t− 1) = c] = 1
x

Pr[X(t) = c|X(t − 1) = b] = Pr[X(t) = a|X(t − 1) = b] = 1
2x

Calculating the cover times gives the following: The worst starting vertex of a single
random walk is b and the cover time is 5x+o(x). The worst starting vertices of 2 random
walks is when both walks start at a and the cover time in such a case is 2.25x + o(x).
Thus, in this case the speedup for 2 walks is 2.222. It is an interesting question to
find stronger examples (where the speedup is larger than k), and of course it would be
interesting to find a matching upper bound on the speedup.

A technical issue that comes up in our analysis is that in order to understand the
behavior of multiple random walks it may be helpful to understand the behavior of
short random walks. For example, what kind of bound can be obtained on Pr[ς(u, v) ≥
hmax/2] (for an undirected and connected graph).

Finally, it will be interesting to explore additional applications of multiple random
walks, either in computer science or in other fields.
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