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Abstract. Exchanging messages between nodes of a network (e.g., em-
bedded computers) is a fundamental issue in real-time systems involving
critical routing and scheduling decisions. In order for messages to arrive
on time, one has to determine a suitable (short) origin-destination path
for each message and resolve conflicts between messages whose paths
share a communication link of the network. We provide efficient routing
strategies yielding origin-destination paths of bounded dilation and con-
gestion. In particular, we can give good a priori guarantees on the time
required to send a given set of messages which, under certain reasonable
conditions, implies that all messages can be scheduled to reach their des-
tination on time. Our algorithm uses a path-based LP-relaxation and
iterative rounding. Finally, for message routing along a directed path
(which is already NP-hard), we identify a natural class of instances for
which a simple scheduling heuristic yields provably optimal solutions.

1 Introduction

In a distributed real-time system, processes residing at different nodes of the
network communicate by passing messages. One of the most challenging and
important tasks for the design of a distributed system is the problem of sending
a given set of messages through the network from the respective origin- to the
destination nodes on time.

The message routing problem. To model the problem we represent the commu-
nication network by a (directed or undirected) graph G = (V, E), whose edges
correspond to the communication links of the network. In the message routing
problem, each message Mi = (si, ti, di) of a given set of messages {Mi}i∈I con-
sists of di packets of unit size that have to be sent from the origin node si ∈ V
to the destination node ti ∈ V within a certain time horizon T > 0. Usual
constraints are (see e.g., [1,2], or [3, Chapter 37]):

(i) it takes one time unit to send a packet on any edge e ∈ E,
(ii) at most one packet can traverse an edge per time unit,
(iii) a message has to be completely received by a node before the node can

start to transmit it to any other node.
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The last constraint is due to integrity checks performed by each node and implies
that each message Mi has to be sent along a unique path Pi from its origin to
its destination node.

Example 1. Consider the problem illustrated in Figure 1 where three messages
need to be routed through a grid graph within a time horizon of twelve time
units. Suppose we decide to send each message along the (unique) shortest path.
Then, after three time steps there is a conflict between the second packet of
message 1 and the first packet of message 2 that both want to traverse edge e in
time step four. No matter which message is assigned a higher priority, we need at
least 13 time steps to send all message from their sources to their destinations.
On the other hand, if we choose the longer path {a, b, c, d, f, g} for message 1, all
messages can be sent within twelve time units since all paths are edge-disjoint.

Store-and-forward packet routing. In the special case where each message con-
sists of only one packet, message routing reduces to store-and-forward packet
routing, a fundamental routing problem in interconnection networks (see, e.g.,
Leighton’s survey [4]). Store-and-forward packet routing can be formulated as
an integral dynamic multicommodity flow problem with unit capacities and unit
transit times on the edges. While this problem is known to be NP-hard [5],
store-and-forward packet routing can be solved efficiently by calculating a max-
imum flow over time in case all packets share the same origin and destination.
In contrast, the message routing problem turns out to be NP-hard even in the
special case where all messages have the same origin and destination [1]. Thus,
message routing is considerably harder than packet routing.

We would like to mention that the possibility of storing packets is crucial in the
message routing model we consider, since packets need to wait at intermediate
nodes for the entire message. Therefore, our problem considerably differs from
the well-studied direct routing problem in which the packets are not allowed to
be stored at intermediate nodes on the way to their destination.
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Fig. 1. Message routing problem with three messages and time horizon twelve. The
messages consist of two, three, and four packets, respectively.
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Routing and scheduling. A natural approach for solving the message routing
problem is the following two-stage strategy. In the first stage (the routing stage),
determine the set of paths {Pi}i∈I . Then, in the second stage (the scheduling
stage), resolve conflicts between messages sharing an edge. Of course, in order
to determine good solutions, the paths chosen in the routing stage must feature
certain desirable properties that guarantee the existence of good solutions to the
second stage scheduling problem.

Congestion and dilation. If the paths {Pi}i∈I are given, we immediately ob-
tain two trivial lower bounds on the minimum amount of time needed to send
all messages, which we call the makespan of the problem. The first one is the
congestion

C = max
e∈E

∑

i∈I:e∈Pi

di,

i.e., the maximum number of packets that have to traverse a single edge. The
second one is the dilation

D = max
i∈I

(di|Pi|),

i.e., the maximum time necessary to send a message without any delays from its
origin to its destination. As usual, |Pi| denotes the number of edges in path Pi.
As we will see in the following, C and D not only provide lower bounds on the
makespan but also good upper bounds in terms of C and D can be determined.

A related job shop scheduling problem. Given paths {Pi}i∈I , it remains to declare
priorities on the messages whenever two packets of different messages meet at
an intermediate node and want to use the same outgoing edge. However, this
is exactly an instance of the well-studied acyclic preemptive job shop scheduling
problem. Every edge corresponds to a machine and a message is a job that
has to be consecutively processed on the machines corresponding to the edges
on its path. In shop scheduling, the processing requirement of a job is usually
machine-dependent. In our case, however, we have the special property that the
processing requirement of a job/message is identical (namely equal to the size
of the message) on each machine/edge on its path.

It is well-known that even this special case of acyclic preemptive job shop
scheduling is NP-hard and even NP-hard to approximate1 with performance
guarantee 5

4 − ε for any ε > 0 [6]. On the positive side, Feige and Schei-
deler [7] prove the existence of a schedule with makespan O(C + D log log dmax)
for the preemptive job shop scheduling problem in general by using the non-
constructive General Lovász Local Lemma (LLL). (Here, dmax denotes the max-
imum operation-length, resp. message-size.) An algorithmic version of the
General LLL can be found in [8]. In the special case where all operation lengths

1 An α-approximation algorithm for an optimization problem is a polynomial-time
algorithm which computes a solution whose value is at most a factor α away from
the optimum. The number α is called the performance guarantee of the algorithm.
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are identical, Leighton et al. [9,10] even establish an efficient randomized al-
gorithm which computes a schedule with makespan O(C + D). Busch,
Magdon-Ismail, and Mavronicolas [11] prove that intermediate storage of pack-
ets can be avoided at the cost of an additional poly-logarithmic factor in the
makespan.

Desirable properties of paths. We now return to our discussion of the two-stage
approach to message routing discussed above. As a consequence of the schedul-
ing results mentioned in the previous paragraph, a promising approach is to
determine a set of paths in the routing stage such that C +D is relatively small.
The first constant-factor approximation for the special case of store-and-forward
packet routing, established by Srinivasan and Teo [12], is also based on this
idea. Basically, Srinivasan and Teo establish a constant-factor approximation
for the problem to find paths minimizing C + D. Combining this result with
the O(C + D)-schedule for acyclic job shop scheduling with constant opera-
tion lengths (proved in [9,10]), they obtain a constant-factor approximation for
packet routing. A similar idea has been used by Fleischer and Skutella [13] in
the general context of dynamic network flow problems.

Our contributions. In Section 2 we describe an algorithm that, given a set of
messages {Mi}i∈I on a communication network, and a desired dilation Δ, finds a
set of paths of dilation at most Δ and congestion smaller than C∗(Δ)+Δ, where
C∗(Δ) denotes the congestion of an optimal fractional solution with dilation at
most Δ. The dilation Δ that is given to the algorithm as an input can be chosen
arbitrarily (e.g., Δ = T/2). Of course, the smaller the dilation Δ is, the larger
is the optimal congestion C∗(Δ). In practice it is thus reasonable to try several
values of Δ ≤ T in order to find a good tradeoff between dilation and congestion.
In theory, one can, for example, use binary search in order to determine Δ such
that Δ + C∗(Δ) or Δ + (C∗(Δ) + Δ) (or some other function of Δ and C∗(Δ))
is minimal.

Although our algorithm can be applied for arbitrary message lengths, it even
improves upon the performance guarantee of [12] for the special case of store-
and-forward packet routing by a multiplicative factor of two. The main difference
between our approach and the approach in [12] is our use of a path-based lin-
ear programming formulation which turns out to be efficiently solvable as the
corresponding separation problem is a special case of the length-bounded short-
est path problem. (The latter can be solved with a modification of Dijkstra’s
algorithm). Given an optimal solution to the linear program, we apply iterative
rounding to turn the fractional solution into an integral one, and guarantee that
the congestion is not increased by more than Δ.

Our path-finding algorithm works for arbitrary directed or undirected graphs.
Combined with either approximation algorithms for the acyclic job shop schedul-
ing problem, or with suitable priority heuristics, it therefore returns solutions
for the message routing problem in general. In many situations in practice, how-
ever, the communication graphs are very simple. It therefore makes sense to
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consider the problem on special graph classes. In Section 3 we consider the
message routing problem on directed paths (which is already NP-hard [1]),
and show that the Farthest-Destination-First Algorithm works optimally on a
directed path P in case the messages are not nested, i.e., in case

si <P sj =⇒ ti ≤P tj ∀i, j ∈ I.

2 Routing with Small Congestion and Dilation

Note that any set of edge-disjoint paths {Pi}i∈I , where the length of each path Pi

is bounded by T
di

, forms a solution to the message routing problem: all messages
can be sent directly without any delay from their origin to their destination
nodes where they arrive before time T . Of course, such length-bounded edge-
disjoint paths do not necessarily exist (it is NP-hard to decide whether they do
exist or not [14]). However, some delays are allowed if the path-lengths do not
meet the upper bounds ( T

di
)i∈I . Thus, we restrict to shorter paths on which we

minimize the congestion.
Given a suitable value Δ ≤ T (which can, for example, be determined by

binary search), we define for each i ∈ I the set of paths

Pi :=
{

si, ti-paths in G of length at most
Δ

di

}

and P :=
⋃

i∈I Pi. Among P , we are looking for a set of representatives {Pi}i∈I

with minimal congestion. That is, we are interested in an optimal integral solu-
tion to the following linear program

min C

s.t.
∑

P∈Pi

xP ≥ 1 ∀i ∈ I,

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C ∀e ∈ E,

xP ≥ 0 ∀P ∈ P .

Note that the paths in the support of any feasible integral solution x̂ ∈ {0, 1}|P|

of the linear program above with objective value Ĉ yield a set of representatives
{Pi}i∈I with dilation at most Δ and congestion Ĉ: the first set of constraints
ensures that at least one path is found for each message, while the second set of
constraints guarantees that the total number of packets traversing a single edge
does not exceed Ĉ.

2.1 Optimal Fractional Solutions

To find a good integral solution to the linear program above, we first determine
an optimal fractional solution x∗ with objective value C∗, and then, in a second
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step, round x∗ to an integral solution x̂ ∈ {0, 1}|P| whose congestion is at most
C∗ + Δ. At first sight, it seems to be impossible to find an optimal fractional
solution in polynomial time, since the number of variables is in general exponen-
tial in the size of the underlying network G. However, if we consider the dual
linear program, we get

max
∑

i∈I

zi

s.t.
∑

e∈E

ye ≤ 1

∑

e∈P

ye ≥
zi

di
∀P ∈ Pi, i ∈ I

ye, zi ≥ 0 ∀e ∈ E, i ∈ I.

The corresponding separation problem can be formulated as a length-bounded
shortest path problem: find a shortest si, ti-path with respect to the edge costs
ye among those paths containing at most Δ

di
edges. In contrast to the general

length-bounded shortest path problem with arbitrary edge lengths (which is
known to be NP-hard [14]), this problem can be solved efficiently with a modi-
fication of Dijkstra’s algorithm (sketch: in each iteration of Dijkstra’s algorithm
determine a shortest path among those with at most 1, 2, . . . edges). Thus, by the
equivalence of optimization and separation [15], an optimal fractional solution
to the dual and thus also to the primal linear program can be found in polyno-
mial time. (I.e., we do not need to consider all path-variables in the LP. Instead,
we iteratively solve the LP for small subsets of variables, where in each step a
variable corresponding to the shortest length-bounded path is added to the LP
in case the reduced costs are negative.) In practice, column generation seems to
be the most suitable technique to actually solve the primal linear programming
problem.

2.2 Iterative Rounding

Given the upper bound Δ on the dilation of paths and an optimal fractional
solution x∗ with objective value C∗ to the corresponding linear program, we now
describe how to round the fractional solution to an integral one while increasing
congestion at most by Δ.

In the rounding algorithm described below, we iteratively solve a linear pro-
gramming relaxation and fix a path Pi for message i as soon as the corresponding
variable xPi attains value 1. In the following, F is the set of those messages i for
which a path Pi has already been fixed. Initially, F is empty. The messages in
F are removed from I such that I only contains the messages for which a path
remains to be fixed. In each step of the algorithm, we thus solve the following
linear program (LP ):
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min C
∑

P∈Pi

xP ≥ 1 ∀i ∈ I (1)

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C −
∑

i∈F :e∈Pi

di ∀e ∈ E (2)

xP ≥ 0 ∀P ∈ P .

The basic idea of the algorithm is as follows: in each iteration, we fix the integral
variables and drop at least one of the constraints, before we solve the (LP ) again.
That is, in each iteration, whenever there is an index i with x∗

P = 1 for some
P ∈ Pi, we move index i from I to F . Moreover, we remove all paths not in the
support of x∗ from P . After fixing the integral variables, we can easily find a
constraint of type (2) which can be dropped from the updated (LP ): the reason
is that even if all remaining variables are rounded up to 1, the right-hand side
of the inequality is not violated by more than Δ (see Theorem 1).

Algorithm 1 (Iterative Rounding Algorithm)
1. Initialize: F ← ∅;
2. Compute a basic optimum solution x∗ to (LP );
3. For i ∈ I, let Pi ← {P ∈ Pi | x∗

P > 0};
4. WHILE ∃i ∈ I and Pi ∈ Pi with x∗(Pi) = 1 DO

– Set I ← I \ {i};
– Set F ← F ∪ {i};

5. Set P ←
⋃

i∈I Pi;
6. WHILE P �= ∅ DO

– Drop a constraint of type (2) with
∑

i∈I

∑

P∈Pi:e∈P

di < C∗ −
∑

i∈F :e∈Pi

di + Δ;

– GoTo step 2;

Note that in a single iteration of our algorithm, we do not round fractional
variables explicitly, but simply fix the integral variables. The “rounding” is thus
done by solving in each iteration the modified linear program corresponding to
the remaining fractional variables. It remains to show that the algorithm is well-
defined, i.e., we need to show the following: in case the set P of non-integral
components is non-empty, we can find an edge e ∈ E such that the congestion
cannot be violated by more than Δ, even if all non-integral components are
rounded up to one.

Theorem 1. If x∗ is a basic optimum solution to (LP ) with 0 < x∗
P < 1 for all

P ∈ P, then there exists a constraint of type (2) such that for the corresponding
edge e ∈ E holds

∑

i∈I

∑

P∈Pi:e∈P

di < C∗ −
∑

i∈F :e∈Pi

di + Δ.
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The theorem can be derived from a more general result shown in [16], stating that
any fractional solution x∗ of a linear equality system Ax = b can be rounded
to an integral vector x̂ satisfying Ax̂ < b + Δ, whenever the sum of positive
entries in each column of matrix A is bounded from above by Δ, and the sum
of negative entries in each column is bounded from below by −Δ. However, the
proof turns out to be much simpler for our special inequality system:

Proof. Let n = |P|. Since x∗ is a basic feasible solution, there exist linearly
independent tight constraints T1 and T2 of type (1) and (2), respectively, such
that

n = |T1|+ |T2|.

Observe that for each constraint j ∈ T1 we have

Δ
∑

P∈Pj

x∗
P = Δ. (3)

Suppose by contradiction that for each e corresponding to a constraint in T2, we
have ∑

i∈I

∑

P∈Pi:e∈P

di ≥ C∗ −
∑

i∈F :e∈Pi

di + Δ. (4)

Since ∑

i∈I

∑

P∈Pi:e∈P

dix
∗
P = C∗ −

∑

i∈F :e∈Pi

di

holds by the tightness of the constraint, equation (4) turns out to be equivalent
to ∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗
P ) ≥ Δ. (5)

Summing up the inequalities of type (3) and (5) for all constraints in T1 and T2,
we get

nΔ ≤
∑

j∈T1

Δ
∑

P∈Pj

x∗
P +

∑

e∈T2

∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗
P )

=
∑

i∈I

∑

P∈Pi

(
χT1

i Δx∗
P +

∑

e∈T2∩P

di(1 − x∗
P )

)

≤
∑

i∈I

∑

P∈Pi

(
Δx∗

P + Δ(1− x∗
P )

)
= nΔ,

where χT1
i ∈ {0, 1} is an indicator variable with χT1

i = 1 iff i ∈ T1. Since
0 < x∗

P < 1 for all P ∈ P , the second inequality in the derivation above is an
equality only if for all i ∈ I and all paths P ∈ Pi the following two conditions
are satisfied.

1. χT1
i = 1, and

2.
∑

e∈T2∩P di = Δ.
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If we now consider each column of (LP) separately, add the column’s entries
corresponding to constraints of type (2) and subtract the column’s entries cor-
responding to constraints of type (1), we achieve a result of 0 in each column.
This demonstrates that T1 and T2 must be linearly dependent constraints. A
contradiction! �

Thus, after at most |E| iterations, the algorithm terminates with an integral
vector x̂ ∈ {0, 1}|P|, whose support contains a path Pi for each message i ∈ I.
It is guaranteed that each path Pi does not contain more than Δ

di
edges, and

that the congestion of the paths violates the congestion of the optimal fractional
solution by at most Δ.

Corollary 1. Given Δ, the rounding algorithm determines a set of paths {Pi}i∈I

with dilation ≤ Δ and congestion ≤ C∗ + Δ, where C∗ is the minimum possible
congestion of fractional paths with dilation Δ.

2.3 Individual Deadlines

In a more general model of the message routing problem, each message Mi is
additionally equipped with a certain deadline Di > 0, denoting the latest point
in time when the message must be received by the destination node ti. We want
to emphasize that our algorithm might as well be applied in this more general
setting: we simply restrict the path lengths with respect to the deadlines. That is,
instead of choosing a value Δ which is not greater than the overall time horizon
T , we choose a factor q ∈ (0, 1] and consider for each message Mi the collection
of paths

Pi :=
{

si, ti-paths in G of length at most q
Di

di

}
.

This guarantees a dilation of at most

Δ = max
i∈I

qDi

and a congestion of at most C∗ + Δ.

2.4 Arbitrary Travel Times

The algorithm above can also be applied in a further extension of the message
routing problem, where travel times τ(e) ∈ N>0 are associated with all edges
e ∈ E. Here τ(e) denotes the time it takes for one packet to traverse e. Thus, a
message of size di completely traverses edge e in τ(e)+di−1 time units. Further,
if message i ∈ I is to be sent along path Pi, it takes at least

τ i(Pi) :=
∑

e∈Pi

(di + τ(e)− 1)
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time steps before the message is completely received by its destination node ti.
These observations show that the dilation for a given set of paths {Pi}i∈I in this
more general model becomes

D := max
i∈I

τ i(Pi),

while the congestion C = maxe∈E

∑
i∈I:e∈Pi

di remains unchanged. Note that
we can adopt our algorithm to handle travel times by defining for a given value
Δ ≤ T the collections of paths

Pi := {si, ti-paths with τ i(P ) ≤ Δ} ∀i ∈ I.

However, with arbitrary travel times, the corresponding separation problem to
our linear relaxation (LP ) is the general length-bounded shortest path problem.
While this problem is NP-hard, it can be solved approximately in the following
sense: for any ε > 0, one can find in time polynomial in the size of the network
G and 1

ε an si, ti-path P with τ i(P ) ≤ (1 + ε)Δ whose cost is bounded from
above by the cost of a shortest path in P i [17,18,19]. As before, the fractional
solution (which is now a (1+ε)-approximation to the optimal one) can be turned
into an integral solution with the rounding algorithm described above, since the
inequality

∑
e∈P di ≤ Δ still holds for each path P ∈ Pi and i ∈ I. Thus, we

achieve the following result.

Corollary 2. Even if each edge e ∈ E is equipped with a travel time τ(e) ∈ N>0,
a slight modification of the algorithm above returns a set of paths whose dilation
is bounded by (1+ ε)Δ and whose congestion differs from the optimal congestion
by an additive factor of at most (1 + ε)Δ. Here, ε > 0 can be chosen arbitrarily
small.

Given the set of paths {Pi}i∈I with congestion C and dilation D, the remaining
problem of determining priority rules in order to minimize the makespan, can
again be formulated as an acyclic job shop scheduling problem: to incorporate
the travel times, we simply define for each message i ∈ I and each edge e ∈ E
with e ∈ Pi an additional machine ei. After job i has been executed on machine
e for di time steps, it needs to be processed on machine ei for τ(e)−1 time steps,
before it can proceed to the next machine corresponding to the successive edge
of e in Pi.

Note that processing times in the resulting acyclic job shop scheduling problem
depend on both, the job and the machine. However, as already mentioned in the
introduction, schedules of length O(C + D log log �max) can be found for this
more general problem. (In our model, �max denotes the maximum of all travel
times and message sizes).

3 Message Routing on Paths

In this section we consider instances of the message routing problem where the
underlying network is a directed path. Since the path taken by any message
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is unique on such instances, no routing decisions but only scheduling decisions
have to be taken. That is, an algorithm for the message routing problem must
only resolve conflicts if two messages want to traverse the same edge at the same
point in time. This can be done by assigning priorities to the messages such that
a message with higher priority is sent first. More precisely, even if a message is
currently being sent while a message with a strictly higher priority arrives, the
latter message is sent instantaneously. Thus, an interruption of the message of
lower priority occurs.

The following example illustrates that a wrong choice of a priority rule can
lead to arbitrarily bad schedules.

Example 2. Suppose n messages {Mi}n−1
i=0 start at the same origin node and

need to be sent along a directed path. Each message Mi consists of di = 2i

packets and needs to traverse 2n−i edges before it reaches its destination. First
we consider a schedule, where messages with farther destination get a higher
priority. In order to send message i we wait at the origin until the first i − 1
messages are sent and then traverse the path without any additional delay. Thus
message i arrives at its destination at time

∑i−1
k=0 2k +2i ·2n−i ≤ 2n+1. Therefore

the optimal makespan is at most 2n+1.
In contrast, we next consider a schedule where messages with farther desti-

nation are assigned lower priorities. Then the makespan is determined by the
completion time of the smallest message 0. Furthermore, any message i is sent
without additional delay on its last 2n−i − 2n−i−1 + 1 edges and each message
smaller than i is sent immediately after i on these edges. Thus each messages i
adds at least (2n−i−2n−i−1)2i = 2n−2n−1 time units to the completion time of
message 0. Thus the makespan of this schedule is at least n(2n−2n−1) = n

4 2n+1.
This shows that the gap to the optimal makespan can grow linearly in the
number of messages.

In this example the Farthest-Destination-First Algorithm (FDFA for short) leads
to an optimal schedule. FDFA assigns a higher priority to messages which have
a farther destination according to the order of the underlying path. In case of
ties, messages with a later origin node get higher priority. If both origin and
destination of two messages coincide, ties are broken arbitrarily.

FDFA seems to be a good choice for the message routing problem on directed
paths in general. But, since the problem is known to be NP-hard [1], there surely
exist examples where FDFA is not optimal:

Example 3. Consider a directed path consisting of four edges and three messages
1, 2, and 3. Message 1 must be sent from the first to the last edge and has size
1, whereas messages 2 and 3 must be sent from the second to the third edge and
have both size 1 + ε for small enough ε > 0 (see Figure 2).

Then the optimum solution has a makespan of 4+2ε and the solution of FDFA
has a makespan of 5 + 2ε. Thus the performance guarantee of FDFA cannot be
better than 5

4 .

In this section, we identify a large class of problems where FDFA is guaranteed
to be optimal. But before, let us introduce some notation. For a message routing
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Fig. 2. Schedules of Example 3 showing that the approximation ratio of FDFA is not
less than 5

4
. The optimum schedule is illustrated above the FDFA-schedule.
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Fig. 3. Setting of Lemma 1

instance the underlying directed path P is given by node set V (P ) := {v1, . . . , vn}
and edge set E(P ) := {ek := (vk, vk+1) | k = 1, . . . , n − 1}. We say that a
message experiences additional delay or is additionally delayed on edge e in a given
schedule, if the starting time of i on e is strictly greater than the end time of i
on the predecessor edge. The makespan on an edge e is the earliest point in time
when all its messages have been sent through e. A time interval where no message
traverses a particular edge is called idle time. (The infinitely long time interval
after the makespan of an edge is not called idle time).

We show that the Farthest-Destination-First algorithm computes an optimum
solution on non-nested instances. For this we need improved bounds on the
minimum makespan combining dilation and congestion.

Lemma 1. Consider an arbitrary feasible schedule. Let ek, el ∈ E(P ) with k ≤ l
be two edges of P and i ∈ I be a message which must pass these edges. Let θk

i be
the time when i has completely traversed ek and let dk→l

i be the total amount of
messages passing ek and el and traversing ek after time θk

i (see Figure 3). Then
a lower bound on the makespan occurring on el is θk

i + dk→l
i + di(l − k).

Proof. The proof is illustrated in Figure 3. We prove this by induction over l−k.
If l− k = 0 then the statement is of course true. Let MAKl be the makespan of
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edge l. By the induction hypothesis we know for given k and l with l − k ≥ 1
that

MAKl ≥ θk+1
i + dk+1→l

i + di(l − k − 1). (6)

Further let Δ be the total size of messages passing ek and el, traversing ek after
time θk

i and ek+1 before time θk+1
i . Then we get:

θk+1
i ≥ θk

i + di + Δ (7)

Δ ≥ dk→l
i − dk+1→l

i (8)

Combining these inequalities leads to

MAKl ≥ θk
i + dk→l

i + di(l − k). (9)

This completes the proof. �
Note that the bounds in the previous lemma depend on the considered schedule.
The following corollary states a lower bounds on the minimum makespan on a
particular edge over all feasible schedules.

Corollary 3. Let ek, el ∈ E(P ) with k ≤ l be two edges of P and i ∈ I be
a message which must pass both of these edges. Let dk→l be the total size of
messages passing ek and el. Then a lower bound on the minimum makespan on
edge el is dk→l + di(l − k).

Proof. Given an arbitrary schedule and a message i passing ek and el we know
dk→l ≤ θk

i +dk→l
i . Since dk→l and di are independent of the considered schedule,

the corollary follows directly from Lemma 1. �
Next we show that FDFA computes a schedule minimizing the makespan if the
underlying instance does not contain nested messages. Let <P be the topological
order of P . Recall that two messages i1, i2 ∈ I are nested if one is strictly
contained in the other one, i.e., if si1 <P si2 ≤P ti2 <P ti1 or vice versa.

Theorem 2. Consider an instance of the message routing problem where no
two messages are nested. Then FDFA computes a schedule which minimizes the
makespan on each edge simultaneously.

Proof. Due to the lack of space, we refer for the proof to the full version of the
paper. �
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