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Preface

This volume contains the papers presented at the 12th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems
(APPROX 2009) and the 13th International Workshop on Randomization and
Computation (RANDOM 2009), which took place concurrently at the HP Au-
ditorium in UC Berkeley, USA, during August 21–23, 2009. APPROX focuses
on algorithmic and complexity issues surrounding the development of efficient
approximate solutions to computationally difficult problems, and was the 12th
in the series after Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berke-
ley (2001), Rome (2002), Princeton (2003), Cambridge (2004), Berkeley (2005),
Barcelona (2006), Princeton (2007), and Boston (2008). RANDOM is concerned
with applications of randomness to computational and combinatorial problems,
and was the 13th workshop in the series following Bologna (1997), Barcelona
(1998), Berkeley (1999), Geneva (2000), Berkeley (2001), Harvard (2002), Prince-
ton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton
(2007), and Boston (2008).

Topics of interest for APPROX and RANDOM are: design and analysis of
approximation algorithms, hardness of approximation, small space algorithms,
sub-linear time algorithms, streaming algorithms, embeddings and metric space
methods, mathematical programming methods, combinatorial problems in graphs
and networks, game theory, markets, and economic applications, geometric prob-
lems, packing, covering, scheduling, approximate learning, design and analysis
of online algorithms, randomized complexity theory, pseudorandomness and de-
randomization, random combinatorial structures, random walks/Markov chains,
expander graphs and randomness extractors, probabilistic proof systems, error-
correcting codes, average-case analysis, property testing, computational learning
theory, and other applications of approximation and randomness.

The volume contains 25 contributed papers, selected by the APPROX
Program Committee out of 56 submissions, and 28 contributed papers, selected
by the RANDOM Program Committee out of 57 submissions.

We would like to thank all of the authors who submitted papers and the
members of the Program Committees:

APPROX 2009

Nikhil Bansal IBM T. J. Watson Research Center
Ziv Bar-Yossef Google
Artur Czumaj University of Warwick
Michel Goemans MIT
Sudipto Guha University of Pennsylvania
Magnus Halldorsson Reykjavik University
Dorit Hochbaum University of California, Berkeley
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Elias Koutsoupias University of Athens
Robert Krauthgamer Weizmann Institute of Science
Ravi Kumar Yahoo! Research
Lap Chi Lau Chinese University of Hong Kong
Joseph (Seffi) Naor Technion - Israel Institute of Technology

(Chair)
Tim Roughgarden Stanford University
Bruce Shepherd McGill University
Tami Tamir The Interdisciplinary Center, Herzliya

RANDOM 2009

Irit Dinur Weizmann Institute of Science (Chair)
Vitaly Feldman IBM Almaden Research Center
Parikshit Gopalan Microsoft Research
Danny Gutfreund MIT
Prahladh Harsha University of Texas, Austin
Avinatan Hassidim MIT
Russel Impagliazzo University of California, San Diego
Mark Jerrum University of Edinburgh
Tali Kaufman MIT
Subhash Khot New York University
J. Radhakrishnan Tata Institute of Fundamental Research
Dana Randall Georgia Institute of Technology
Michael Saks Rutgers University
Adi Shraibman Weizmann Institute of Science
Emanuele Viola Northeastern University

We would also like to thank the external subreferees: Dimitris Achlioptas, Adi
Akavia, Andris Ambainis, Alexandr Andoni, Eli Ben-Sasson, Nayantara
Bhatnagar, Arnab Bhattacharya Andrej Bogdanov, Niv Buchbinder, Arkadev
Chattopadhyay, Bernard Chazelle, Kai-Min Chung, Amin Coja-Oghlan, Artur
Czumaj, Amit Deshpande, Robert Elsasser, Joseph Emerson, Funda Ergun,
Vitaly Feldman, Elena Grigorescu, Moritz Hardt, Jason Hartline, Tom Hayes,
Elad Hazan, Rahul Jain, T.S. Jayram, Adam Kalai, Swastik Kopparty, Robert
Krauthgamer, Oded Lachish, Homin Lee, Troy Lee, Yury Lifshits, Shachar
Lovett, Aleksander Madry, Arie Matsliah, Or Meir, Manor Mendel, Sarah Mir-
acle, Michael Mitzenmacher, Michael Molloy, Dana Moshkovitz, Elchanan Mos-
sel, Hariharan Narayanan, Jelani Nelson, Marc Noy, Ryan O’Donnell, Krzysztof
Onak, Amanda Pascoe, Seth Pettie, Prasad Raghavendra, Sofya Raskhodnikova,
Ran Raz, Omer Reingold, Atri Rudra, Alex Samorodnitsky, Shubhangi Saraf,
Nitin Saxena, Pranab Sen, Rocco Servedio, C. Seshadhri, Devavrat Shah, Asaf
Shapira, Mohit Singh, Sasha Sodin, Daniel Spielman, Srikanth Srinivasan, Salil
Vadhan, Rakesh Venkat, Elad Verbin, Eric Vigoda, Danny Vilenchik, Andrew
Wan, Enav Weinreb, Udi Wieder, and Yi Wu.



Preface VII

We gratefully acknowledge the support from the Deptartment of Computer
Science at the Technion in Israel, the Deptartment of Computer Science and
Applied Mathematics of the Weizmann Institute in Israel, the Institute of Com-
puter Science of the Christian-Albrechts-Universität zu Kiel and the Department
of Computer Science of the University of Geneva.

The invited talk this year was dedicated to the memory of Rajeev Motwani
from Stanford University who died in tragic circumstances on June 5, 2009.
Throughout his career Rajeev made fundamental contributions to many areas of
computer science including foundations, search and retrieval, databases, privacy,
robotics, and more. Some of the most striking contributions were algorithmic in
nature, in many branches of the field. The talk was given by Prabhakar Raghavan
who is the head of Yahoo! Research and was a close friend and collaborator of
Rajeev.

Finally, many thanks to Parvaneh Karimi-Massouleh for editing the
proceedings.

August 2009 Irit Dinur
Klaus Jansen

Joseph (Seffi) Naor
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Approximation Algorithms and Hardness

Results for Packing Element-Disjoint Steiner
Trees in Planar Graphs

Ashkan Aazami1, Joseph Cheriyan1, and Krishnam Raju Jampani2

1 Dept. of Comb. & Opt., U. Waterloo, Waterloo ON Canada N2L 3G1
aaazami@uwaterloo.ca, jcheriyan@uwaterloo.ca

2 Dept. of Comp. Sci., U. Waterloo, Waterloo ON Canada N2L 3G1
krjampani@uwaterloo.ca

Abstract. We study the problem of packing element-disjoint Steiner
trees in graphs. We are given a graph and a designated subset of termi-
nal nodes, and the goal is to find a maximum cardinality set of element-
disjoint trees such that each tree contains every terminal node. An
element means a non-terminal node or an edge. (Thus, each non-terminal
node and each edge must be in at most one of the trees.) We show that
the problem is APX-hard when there are only three terminal nodes, thus
answering an open question.

Our main focus is on the special case when the graph is planar. We
show that the problem of finding two element-disjoint Steiner trees in a
planar graph is NP-hard. We design an algorithm for planar graphs that
achieves an approximation guarantee close to 2. In fact, given a planar
graph that is k element-connected on the terminals (k is an upper bound
on the number of element-disjoint Steiner trees), the algorithm returns⌊

k
2

⌋
− 1 element-disjoint Steiner trees. Using this algorithm, we get an

approximation algorithm for the edge-disjoint version of the problem on
planar graphs that improves on the previous approximation guarantees.
We also show that the natural LP relaxation of the planar problem has
an integrality ratio approaching 2.

1 Introduction

In the Steiner Tree Packing problem we are given an (undirected) graph
G = (V, E) and a subset of nodes R ⊆ V ; each node in R is called a terminal
node, and each node in V −R is called a Steiner node or a non-terminal node.
A Steiner node or an edge is called an element. A tree that contains all terminal
nodes in R is called an R-Steiner tree (or Steiner tree, for short). The goal is to
find a set of element-disjoint R-Steiner trees of maximum cardinality; that is, find
as many R-Steiner trees as possible such that each Steiner node and each edge
is in at most one of the trees. Our main focus is on approximation algorithms
and hardness results for this problem. There is a closely related problem that we

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 1–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 A. Aazami, J. Cheriyan, and K.R. Jampani

call the Edge-disjoint Steiner Tree Packing problem; here, the goal is to
find a set of edge-disjoint R-Steiner trees of maximum cardinality; that is, find
as many R-Steiner trees as possible such that each edge is in at most one of the
trees.

1.1 Previous Literature

Consider the special case of the Steiner Tree Packing problem where all
of the nodes are terminal nodes (i.e., R = V ). Then the problem is the same
as finding a maximum-cardinality set of edge-disjoint spanning trees. Tutte [26]
and Nash-Williams [22] independently proved the following min-max theorem
for this special case: An undirected graph G has k edge-disjoint spanning trees if
and only if for any partition P of V into |P| non-empty subsets we have e(P) ≥
k(|P| − 1), where e(P) is the number of edges in G with end-nodes in different
sets of P . Frank, Kiraly and Kriesell [7] extended this result to hypergraphs via
the notion of partition-connectivity (see Section 2 for details): A hypergraph
H decomposes into k hyperedge-disjoint partition-connected hypergraphs if and
only if the partition-connectivity of H is at least k.

We say that the set of terminals R is k-element connected if there exist k
element-disjoint paths between every pair of nodes in R; that is, for any two
nodes s, t ∈ R, there exist k paths between s and t such that each element occurs
in at most one of these k paths. Similarly, we say that the set of terminals R is
k-edge connected if there exist k edge-disjoint paths between every pair of nodes
in R. We use n to denote the number of nodes in the input graph. Also, we call
the terminal nodes black nodes, and the non-terminal nodes white nodes. An
edge between two white nodes is called a white edge.

Kaski [16] proved that the problem of finding two edge-disjoint Steiner trees
is NP-hard, and also showed that the Edge-disjoint Steiner Tree Packing

problem is NP-hard even with 7 terminals. The problem was proved to be APX-
hard even with 4 terminals in [3]. Jain, Mahdian and Salavatipour [15] presented
an approximation algorithm with a guarantee of O(|R|). Later, Lau [19,20], using
the result of Frank et al. [7], proved that if the terminals are 24k-edge connected,
then there exist k edge-disjoint Steiner trees, and he gave an approximation
algorithm with a guarantee of 24.

Cheriyan and Salavatipour [4] studied the element-disjoint Steiner Tree

Packing problem; they observed that the problem is hard to approximate within
a factor of Ω(log n), and they designed a randomized approximation algorithm
with a guarantee of O(log n). Subsequently, Calinescu, Chekuri and Vondrak [1]
designed a simpler algorithm with a similar approximation guarantee, and also,
they derandomized their algorithm.

To the best of our knowledge, the systematic study of problems of this type
was started by Grötschel et al., see [10,8,11,9,12]. They were motivated by ap-
plications in VLSI circuit design, see [12,21]. They focused on a generalization
of the Edge-disjoint Steiner Tree Packing problem, where we are given
a list of terminal sets, R1, R2, R3, . . . , Rq and the goal is to find edge-disjoint
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Steiner trees T1, T2, T3, . . . , Tq such that Ti contains (and connects) all the ter-
minal nodes in Ri, for i = 1, . . . , q. Their problem is quite different from the
problems of interest to us, and is more general; for example, their problem con-
tains the Edge-disjoint Paths problem as a special case, namely, the special
case where each terminal set Ri has size two. Consequently, any hardness result
that applies to the Edge-disjoint Paths problem applies also to the general-
ization of the Edge-disjoint Steiner Tree Packing problem of Grötschel
et al., but those hardness results may not apply to the problems of interest to
us. Further results and applications of the generalized problem are discussed by
Wagner [27] and Korte et al., [17], also see Naves and Sebő [23], but note that the
NP-hardness results in [17] (where different Steiner trees have different terminal
sets) do not apply to the problems of interest to us. The main focus of the work
on the generalized problem was to obtain computational procedures for finding
an optimal solution, based on mathematical programming. Some algorithmic re-
sults on the generalized problem are presented by Wagner [27], but those results
are “disjoint” from our results.

The generalized problem has other well-known applications including multi-
casting in wireless networks [6], and broadcasting large data streams, such as
videos, over the Internet [15].

Chekuri and Korula [2] recently obtained some related results, including a 5-
approximation algorithm for the element-disjoint Steiner Forest Packing problem
on planar graphs. The two papers are independent of each other.

1.2 Results in This Paper

Our focus is on approximation algorithms and hardness results for the element-
disjoint Steiner Tree Packing problem on planar graphs. We call this the
Planar Steiner Tree Packing problem. Our main results are as follows:

– In Section 2, we present an approximation algorithm with a guarantee of
(almost) 2 for the Planar Steiner Tree Packing problem; more pre-
cisely, given a planar graph and a set of terminal nodes R such that R is
k-element connected, our algorithm finds at least max(1,

⌊
k
2

⌋
− 1) element-

disjoint Steiner trees; here, k is a positive integer. Based on this, we get an
approximation algorithm with a guarantee of (almost) 4 for the edge-disjoint
version of the problem on planar graphs. To the best of our knowledge, this
improves on the known approximation guarantees for the Edge-disjoint

Steiner Tree Packing problem on planar graphs. The planarity of the
graph is used at only one point in our analysis, and there we use the up-
perbound on the number of edges in a planar bipartite simple graph. Our
methods extend to larger classes of graphs, namely, graphs that exclude a
fixed minor, to give approximation guarantees that depend on the order of
the forbidden minor.

We conjecture that a planar graph that is k-element connected on the
terminals has at least

⌊
k
2

⌋
element-disjoint Steiner trees.
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– In Section 3, we prove that the Steiner Tree Packing problem is APX-
hard even with three terminals (i.e., |R| = 3). This answers an open question
in the literature, see Floréen, et al. [6, Page 119].

Then, we show that the problem of finding two element-disjoint Steiner
trees in a planar graph is NP-hard. An immediate implication is that one can-
not improve on the approximation guarantee of 2 for the Planar Steiner

Tree Packing problem without further assumptions.
– In Section 4, we show that even on planar graphs the standard LP (linear

programming) relaxation of the element-disjoint Steiner Tree Packing

problem has an integrality ratio ≥ 2− 2
|R| − ε, where the additive term ε is

a function of |R| and the element-connectivity of the terminals, k, and for
fixed |R|, ε → 0 as k → ∞. Our approximation guarantee of (almost) 2 for
planar graphs (mentioned above) implies that the integrality ratio on planar
graphs approaches 2 as k →∞.

The significance of our lower bound on the integrality ratio comes from
the fact that the optimal value of this LP relaxation gives the best upper
bound known (as far as we know) on the maximum number of element-
disjoint Steiner trees. Thus, for planar graphs, our result shows that the
approximation guarantee of 2 cannot be improved by any algorithm or anal-
ysis that relies on an upper bound that is dominated by the LP bound.

Moreover, we modify our construction to get a similar lower bound on the
integrality ratio for the edge-disjoint version of the problem on planar graphs.

2 Approximation Algorithms

2.1 Element-Disjoint Steiner Trees

We present an approximation algorithm for packing element-disjoint Steiner
trees in planar graphs that achieves an approximation guarantee close to 2 (de-
tails below). Our method consists of two steps. First, we transform to a planar
bipartite graph, while preserving the terminals and their element-connectivity.
Then, we view the bipartite graph as a hypergraph, and apply a method of Frank
et al. [7] to decompose the set of hyperedges E into a number of disjoint sets
E1, E2, . . . such that each set Ei induces a Steiner tree of our bipartite graph. Each
of these “bipartite” Steiner trees transforms back to a Steiner tree of the origi-
nal graph. The planarity of the graph is used at only one point in our analysis,
and there we use the upperbound on the number of edges in a planar bipartite
simple graph. Our methods extend to larger classes of graphs, namely, graphs
that exclude a fixed minor, to give approximation guarantees that depend on
the order of the forbidden minor.

The following theorem is the main result of this section.

Theorem 1. Let G = (V, E) be an undirected planar graph, let R ⊆ V be the set
of terminals, and assume that R is k-element connected. Then there are at least⌊

k
2

⌋
−1 element-disjoint Steiner trees in G. Moreover, there is an algorithm with

a running time of O(|V |4.5) that finds at least
⌊

k
2

⌋
− 1 element-disjoint Steiner

trees in G.
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(c) Contracting
{t4, t5}

Fig. 1. A Hypergraph and its bipartite representation

We define the Bipartite Steiner Tree Packing problem to be a subproblem
of the element-disjoint Steiner Tree Packing problem such that the graph
is bipartite, all terminal nodes are in one part of the bipartition, and all Steiner
nodes are in the other part. Consider a planar instance of the element-disjoint
Steiner Tree Packing problem, i.e., the associated graph is planar. We can
transform it into a planar instance of Bipartite Steiner Tree Packing by
using the following theorem. The theorem is due to Hind and Oellermann, see
[14], and a short proof is given in [4].

Theorem 2. [14] Consider a graph G = (V, E) that has a set of terminals R
such that R is k-element connected. There is a polynomial-time algorithm that
repeatedly deletes or contracts white edges to obtain a bipartite graph G′ from G
such that R stays k-element connected, and moreover, R forms one part of the
bipartition of G′.

A hypergraph is a pair H = (V, E) where V is the node-set of H and E is a
collection of non-empty subsets of V . A subset Z ∈ E is called a hyperedge of H.
Given a partition P = {V1, . . . , Vt} of V into non-empty subsets, a hyperedge
Z ∈ E is called a crossing hyperedge if it intersects at least two subsets of P and
otherwise it is called an internal hyperedge. We use |P| to denote the number of
sets Vi in P , and we denote the number of crossing hyperedges corresponding to
the partition P by eH(P) (or simply, by e(P)). Given a hypergraph H = (V, E),
we associate a bipartite graph GH = (V, U ; E) to H as follows. Corresponding
to each hyperedge Z ∈ E we have a node uZ ∈ U . A node v ∈ V is adjacent to
uZ ∈ U if v ∈ Z; note that the degree of uZ in GH is the size of Z.

Consider the hypergraph H shown in Figure 1(a). The node-set of H is V =
{t1, t2, t3, t4, t5}, and the hyperedges of H are Z1 = {t1, t2}, Z2 = {t2, t3, t5},
Z3 = {t1, t2, t3, t4} and Z4 = {t4, t5}. Figure 1(b) shows the bipartite graph, G =
(V, U ; E), associated with H. Consider the partition P = {{t1, t2} , {t3, t4, t5}}
of V ; this partition is shown in dashed lines in Figure 1(b). The hyperedges
Z2, Z3 are crossing hyperedges w.r.t. (with respect to) P , and hyperedges Z1, Z4
are internal hyperedges w.r.t. P . Thus, e(P) = 2, since there are two crossing
hyperedges in P . Given a partition P , a useful operation is to contract an internal
hyperedge: we identify all nodes in Z into a single node and remove Z from the
hypergraph. For example, Figure 1(c) shows the bipartite representation of the
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hypergraph obtained by contracting the internal hyperedge Z4 = {t4, t5}. If we
further contract Z1 = {t1, t2} we get a copy of K2,3. If we contract some internal
hyperedges (w.r.t. P) of H, then we obtain a “shrunk” hypergraph H′ and a
partition P ′ of V (H′); note that the crossing hyperedges of H (w.r.t. P) are the
same as the crossing hyperedges of H′ (w.r.t. P ′).

Let G = (R, U ; E) be an instance of the Bipartite Steiner Tree Packing

problem, where R is the set of terminal nodes and U is the set of Steiner nodes.
We associate a hypergraph HG = (R, E) to G as follows. The terminal nodes
of G are the nodes in HG, and corresponding to each Steiner node u ∈ U we
have a hyperedge Zu that contains the set of neighbors of u in G. Also, given
any hypergraph H, we may view its associated graph GH as an instance of the
Bipartite Steiner Tree Packing problem.

A hypergraph H is k-partition connected if eH(P) ≥ k(|P| − 1) for every
partition P of V . A 1-partition connected hypergraph is simply called partition-
connected. If a hypergraph H is partition-connected, then it is easy to see that
the associated bipartite graph GH is connected, and so it contains a Steiner
tree (with terminal set V (H)). But the converse does not hold: for a connected
instance of Bipartite Steiner Tree Packing, the associated hypergraph may
not be partition-connected. Frank et al. [7] proved the following generalization
of the Tutte–Nash-Williams theorem.

Theorem 3 (Theorem 2.8 in [7]). A hypergraph H = (V, E) is k-partition
connected if and only if E partitions into k subsets E1, . . . , Ek such that each of
the sub-hypergraphs Hi = (V, Ei) is partition-connected.

Therefore, we can obtain � element-disjoint Steiner trees in G if HG is �-partition
connected. Now we prove the following lemma that completes the proof of
Theorem 1.

Lemma 1. Let G = (R, U ; E) be a bipartite planar graph such that R is k-
element connected. Then the hypergraph HG = (R, E) associated with G is

⌊
k−2
2

⌋
-

partition connected.

Proof. We may assume that G is connected. Consider the hypergraph H and
define the fractional partition-connectivity, λ∗, as follows:

λ∗ = min
P

e(P)
|P| − 1

, (1)

where the minimum is over all partitions P of R with |P| ≥ 2. Let λ de-
note the partition-connectivity of H. It follows from the definition of partition-
connectivity that λ = �λ∗�. Let P∗ = {X1, X2, . . . , X�} be a partition that
achieves the minimum ratio λ∗. In the rest of the proof, except where mentioned
otherwise, crossing hyperedges and internal hyperedges are w.r.t. P∗.

Consider the Steiner nodes of G that correspond to the internal hyperedges.
We contract all the edges of G that are incident to these Steiner nodes, and
we call the resulting graph G′. In more detail, consider each internal hyperedge
Zu ∈ E and contract all edges in G adjacent to the Steiner node u corresponding
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to hyperedge Zu. We may ignore all parallel edges in G′ formed by these edge
contractions.

Claim. The obtained graph G′ is a bipartite planar graph and has the following
properties: 1) All of the remaining Steiner nodes in G′ correspond to crossing
hyperedges in H, and they form one part of the bipartition 2) The other part of
the bipartition has |P∗| nodes, and each node has degree at least k.

Proving this completes the lemma. This follows because G′ has at least k |P∗|
edges and at most 2(e(P∗) + |P∗|)− 4 edges since it is a bipartite planar graph.
Hence, we have

k |P∗| ≤ 2(e(P∗) + |P∗|)− 4 =⇒ e(P∗) ≥ (k − 2) |P∗|
2

+ 2 =⇒ λ∗ >
k − 2

2
.

Proof of the above claim: Consider a set Xi ∈ P∗ of size at least 2 and arbi-
trarily partition it into two non-empty sets X ′

i and X ′′
i , and let P ′ be the obtained

partition. Since P∗ is the minimum ratio partition, we have λ′ = e(P′)
|P′|−1 ≥ λ∗.

Hence, e(P ′) ≥ λ∗(|P ′| − 1) > λ∗(|P∗| − 1) = e(P∗). Hence, there exists a hy-
peredge that is crossing w.r.t. P ′ but is not crossing w.r.t. P∗; that is, one of the
internal hyperedges w.r.t. P∗ intersects both X ′

i and X ′′
i . This reasoning applies

to each set Xi ∈ P∗ and to each 2-partition X ′
i, X

′′
i of Xi; hence, for each Xi ∈ P∗,

the subgraph of G induced by Xi and the Steiner nodes corresponding to the hy-
peredges internal to Xi is connected. Thus, contracting all edges in G adjacent to
the Steiner nodes corresponding to the internal hyperedges (w.r.t. P∗) will shrink
each set Xi ofP∗ into a single node. The obtained graph G′ is planar, and it is easy
to see that it is bipartite with all the Steiner nodes corresponding to the crossing
hyperedges (w.r.tP∗) in one part of the partition and all of the “contracted” nodes
in the other part. Now we prove that the degree of each contracted node is at least
k using the fact that the terminals are k-element connected in G. To see this, con-
sider a shrunk node vi corresponding to a subset Xi ∈ P∗, and assume that it has
less than k neighbors in G′. Let Y ′ be the set of neighbors of vi, so |Y ′| < k. Note
that Y ′ separates vi from any other contracted node vj in G′, i.e., vi and vj are in
different connected components of G′ \ Y ′. Now focus on the original hypergraph
H and note that Y ′ (viewed as a subset of E(H)) contains all hyperedges that in-
tersect both Xi and R \Xi; thus, in the original graph G, we see that Y ′ (viewed
as a subset of U) separates Xi from the rest of the terminals, because Y ′ contains
all Steiner nodes that are adjacent to both Xi and R \Xi. This is a contradiction
because the terminals are k-element connected in G; that is, for any set of white
nodes Y whose deletion separates a pair of terminals, we must have |Y | ≥ k. This
shows that each contracted node has degree at least k in G′. �

We have planar examples showing that the analysis in Lemma 1 is tight, but we
are omitting these examples here.

Running time of the above algorithm: The algorithm has two steps. In
the first step, we reduce the given graph G = (V, E) to an instance G′ of the
Bipartite Steiner Tree Packing problem using Theorem 2. In the second
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step, using results of Frank et al. [7] and Edmonds [5], we decompose the as-
sociated hypergraph H of G′ into the maximum number of partition-connected
sub-hypergraphs. The running time of the first step is O(kn2 |R|), and the sec-
ond step can be implemented using the Matriod intersection algorithm in time
O(n4.5). Hence, the total running time of our algorithm on planar graphs is
O(n4.5).

2.2 Edge-Disjoint Steiner Trees

The above result extends to the packing of edge-disjoint Steiner trees in planar
graphs, to give the following result. The proof is given in the full paper.

Theorem 4. Let G = (V, E) be an undirected planar graphs, let R ⊆ V be the
set of terminals, and assume that R is k-edge connected. Then there are at least⌊

k
4

⌋
− 1 edge-disjoint Steiner trees in G. Moreover, there is an algorithm with a

running time of O(|V |4.5) that finds at least
⌊

k
4

⌋
− 1 edge-disjoint Steiner trees

in G.

2.3 Element-Disjoint Steiner Trees in H-Minor-Free Graphs

It is known that an H-minor-free graph G has at most cH · |V (G)| edges [18,25],
where cH = c

2 |V (H)|
√

log2 |V (H)| for some constant c ≤ 324. Our analysis for
planar graphs extends to the H-minor-free graphs to give the following result.

Theorem 5. Let H be a fixed graph. Let G = (V, E) be an undirected graph that
has no H minor, let R ⊆ V be the set of terminals, and assume that R is k-
element connected. Then there are at least

⌊
k

cH

⌋
−1 element-disjoint Steiner trees

in G. Moreover, there is an algorithm with a running time of O(n4.5+k |R| c2
Hn2)

that finds this number of element-disjoint Steiner trees in G.

3 Hardness Results

This section has two main results. In the first subsection, we show that the edge-
disjoint Steiner Tree Packing problem with 3 terminal nodes is APX-hard;
then we extend this to prove APX-hardness for the element-disjoint Steiner

Tree Packing problem on three terminal nodes. This settles an open question
in the literature, see [6, Page 119 second column]. In the second subsection, we
show that the problem of finding two element-disjoint Steiner trees in a planar
graph is NP-hard.

3.1 APX-Hardness for General Graphs with 3 Terminal Nodes

In this subsection, we prove that the edge-disjoint Steiner Tree Packing

problem with 3 terminals is APX-hard. Our result is obtained by a reduc-
tion from the Integer2Commodity problem that is known to be APX-hard
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[13, Corollary 4.1]. We also show that the element-disjoint Steiner Tree Pack-

ing problem with 3 terminals is APX-hard, by using a simple reduction from the
edge-disjoint version.

Theorem 6. The edge-disjoint Steiner Tree Packing problem with 3 ter-
minals is APX-hard.

We prove our result by a reduction from the Integer2Commodity problem,
which is as follows: We are given an undirected graph G = (V, E) and distinct
nodes x1, y1, x2, y2 ∈ V ; the goal is to find a maximum-size collection of edge-
disjoint paths, each joining either x1 to y1 or x2 to y2.

Theorem 7 ([13, Corollary 4.1]). The Integer2Commodity problem is
APX-hard.

In the hardness construction in the proof of the above theorem (see [13, Sec-
tion 4.1.1]), the nodes x1 and y1 both have degree d1, and the node y2 has
degree d2; so there are at most di edge-disjoint paths between xi and yi for each
i ∈ {1, 2}. In the “yes” instances of the problem the objective value is d1 + d2,
whereas in the “no” instance the objective value is at most (d1 + d2)(1− ε), for
some ε > 0. We denote this instance of the Integer2Commodity problem by
I = (G; x1, y1, d1; x2, y2, d2).

Reduction
Let I = (G; x1, y1, d1; x2, y2, d2) be an instance of the Integer2Commodity

problem.

1. Start from a copy of G and add 3 terminal nodes {t, t1, t2} and two non-
terminal nodes s1, s2 to G.

2. Add d1 parallel edges from s1 to each of t, t2, x1, and similarly we add d2
parallel edges from s2 to each of t, t1, x2.

3. Finally, we add d1 parallel edges from y1 to t1, and d2 parallel edges from
y2 to t2.

4. Let H be the obtained graph, and let R = {t, t1, t2} (see Figure 2 for an
illustration).

For the analysis of the above construction and the reduction to the element-
disjoint version of the problem refer to the full paper.

t1

t2

t G

d1 d1 d1

d1

d2

d2
d2

d2

x1

x2

y2

y1

s1

s2

Fig. 2. Hardness construction

t1

t2

n1 n2

Fig. 3. Basic Gadget
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3.2 NP-Hardness of Packing 2 Element-Disjoint Steiner Trees in
Planar Graphs

Our NP-hardness proof is based on two previous results, namely, Kaski’s proof
[16] that the problem of finding two edge-disjoint Steiner trees in general graphs
is NP-hard, and Plesńık’s proof [24] that the Hamiltonian cycle problem in planar
digraphs with degree bound two is NP-hard.

A Basic Gadget or BG is a complete bipartite graph with 3-terminals and 2-
Steiner nodes (see Figure 3). In any planar embedding of this graph, the outer
face consists of two terminals and the two Steiner nodes. If H is a BG we use
H(t1) and H(t2) to denote its terminals on the outer face and H(n1) and H(n2)
to denote its Steiner nodes (also on the outer face). Note that any solution to
the (planar) 2-element disjoint trees problem on H , contains H(n1) and H(n2)
in different trees.

Reduction: Let I = Q1 ∧ Q2 ∧ · · ·Qm, be an instance of NAE-3SAT where
clause Qj = Pj1 ∨Pj2 ∨Pj3 , with literals Pjk

∈ {x1, x̄1, x2, x̄2, · · · , xn, x̄n}. Given
I, we describe how to create an instance G = (U ∪R, E) of the planar 2-element
disjoint Steiner trees problem, such that I has two complimentary satisfying
assignments if and only if G has two element-disjoint Steiner trees. We first
describe the construction of a partial planar graph Gp along with its embedding,
which would aid us in constructing G. We define Gp and its embedding as follows.
(See Figure 4(a) for an example).

1. We add a sequence of “clause” BG’s C1, C2, · · · , C3m such that adjacent
BG’s share their outer terminals: i.e. for i ∈ {1, · · · , 3m− 1}, Ci(t2) =
Ci+1(t1) and all nodes Ci(n2) are on the same side in the embedding (see
Figure 4(a)).

2. For each clause Qi, we add a terminal qi and connect it to Steiner nodes
C3i−2(n1), C3i−1(n1) and C3i(n1).

3. We add a sequence of “literal” BG’s L1, L2, · · · , L2n such that adjacent BG’s
share their outer terminals: i.e for i ∈ {1, · · · , 2n− 1}, Li(t2) = Li+1(t1) and
all nodes Li(n1) are on the same side in the embedding.

4. For each pair of BG’s L2i−1 and L2i (where 1 ∈ {1, · · · , n}), we add a new
terminal vi and connect it to L2i−1(n2) and L2i(n2).

5. We add the edges (C1(t1), L1(t1)) and (C3m(t2), C2n(t2)).
6. Finally, we add certain constraints between the Steiner nodes of Gp called

switching lines. A switching line (s1, s2) between Steiner nodes s1 and s2
ensures the two nodes are in different Steiner trees in any solution to G.
Later in the section, we give a procedure to replace the switching lines with
certain gadgets that “implement” them. For each clause Qi = Pi1 ∨Pi2 ∨Pi3 ,
let Lj1 , Lj2 and Lj3 be the literal BG’s corresponding to Pi1 , Pi2 and Pi3 . (e.g.,
If Pi1 = xk then j1 = 2k − 1 and if Pi1 = x̄k, then j1 = 2k). We add the
following switching lines to Gp:

(C3i−2(n2), Lj1(n1)), (C3i−1(n2), Lj2(n1)), (C3i(n2), Lj3(n1)).
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(a) Graph Gp for the instance I =
(x1 ∨ x̄2 ∨ x3) ∧ (x1 ∨ x2 ∨ x̄3)
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(b) The graph obtained by applying
the Uncross operation on the switch-
ing line (C5(n2), L3(n1))

Fig. 4. Planar construction

7. Embedding of Gp: Let H be the graph Gp without the switching lines.
We embed H in the plane such that the clause BG’s are aligned verti-
cally to the left, the literal BG’s are aligned vertically to the right and the
cycle Bp = C1(t1), C1(n2), C2(t1), C2(n2), · · · , C3m(t1), C3m(n2), C3m(t2),
L2n(t2), L2n(n1), L2n(t1), L2n−1(n1), L2n−1(t1), · · · , L1(n1), L1(t1) forms an
(internal) face of H (see Figure 4(a)). We refer to Bp as the boundary of Gp.
We define a boundary as a cycle whose interior contains no nodes or edges
but may contain switching lines. Now, we represent each switching line of
Gp with a straight (dashed) line joining its end nodes. Note that these line
segments would all be present inside (the embedding of) Bp. Also the line
segments may cross each other. But without loss of generality, we assume
that no three switching lines cross at the same point.

We now describe the procedure for obtaining G from Gp. Given a boundary B
and a switching line e in B, the following operation replaces e with a subgraph
Ŝe and adjusts the interior of B, splitting it into two boundaries.

Uncross (B, e)

1. If e doesn’t cross any other switching line, then define Ŝe to be a path of
length two connecting the nodes of e and having a (new) terminal in the
middle. Delete e and embed Ŝe along the straight line corresponding to e.

2. Otherwise let e crosses switching lines e1, e2, · · · , ek. In this case, define Ŝe

as a sequence of BG gadgets R1, R2, · · · , Rk, such that adjacent BG’s share an
outer terminal (i.e., Ri(t2) = Ri+1(t1) for i ∈ {1, · · · , k − 1}). Now connect
the terminal nodes R1(t1) and Rk(t2) to the end nodes of e.

Delete e and embed Ŝe such that all terminals in Ŝe lie along the straight
line corresponding to e and for each Ri the Steiner nodes Ri(n1) and Ri(n2)
lie along the straight line corresponding to ei. Also, for each i (∈ {1, · · · , k}),
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replace ei with two switching lines, from Ri(n1) and Ri(n2) to the end nodes
of ei. These switching lines are embedded as (disjoint) line segments that are
contained in the line segment corresponding to ei. Figure 4(b) illustrates this
with an example.

Note that Ŝe divides the boundary B into two boundaries B1 and B2 such that
B1 and B2 share the end nodes of e and the outer terminals of Ŝe. To construct
G from Gp, we apply the above operation on the boundary Bp and an arbitrary
switching line ep in Bp. This splits Bp into boundaries B1

p and B2
p such that

any new or remaining switching line is present in either B1
p or B2

p. We use the
above operation recursively to eliminate all the switching lines in B1

p and B2
p. Let

SLT (Gp) be the recursion tree obtained by this procedure. SLT (Gp) is a binary
tree in which each node is represented by a pair (B, e), where B is a boundary
and e is a switching line in B. A node (B′, e′) is a child of (B, e) if boundary B′ is
one of the two boundaries obtained by applying the uncross operation at (B, e).
If (B, e) is a leaf node then B doesn’t contain any switching lines inside it, and
we define e to be empty. We assign an integer number called the level to each
pair (B, e) in the above construction. The level of the pair (Bp, ep) is defined to
be 0. If (B′, e′) is a child of a pair (B, e) at level i, then we define the level of
(B′, e′) to be i + 1. Let h denote the maximum level over all pairs; i.e., h is the
height of the recursion tree SLT (Gp). In the construction of G, we assign a level
to each of the following objects: terminal nodes, Steiner nodes, boundary faces,
and switching lines. The objects in Gp (before applying any uncross operation)
are defined to be at level 0. When we apply the uncross operation to a pair
at level i in SLT (Gp), we define the level of new objects (i.e., terminal nodes,
Steiner nodes, switching lines, and the two new boundary faces) to be i + 1.

Our NP-hardness result follows from the next theorem (proved in the full
paper).

Theorem 8. The instance I of NAE-3SAT is satisfiable if and only if G has
two element-disjoint Steiner trees.

4 Integrality Ratio for Packing Steiner Trees in Planar
Graphs

In this section, we show that the following “standard” linear programming relax-
ation of the element-disjoint Steiner Tree Packing problem has integrality
ratio approaching 2, even on planar graphs. For notational convenience, we as-
sume there are no edges between terminals, by subdividing edges if needed.

(LP-element) zLP (G) =max
∑

T∈T
xT

subject to
∑

T∈T :v∈T

xT ≤ 1 ∀v ∈ V \R

xT ≥ 0 ∀T ∈ T
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t1 t2 ti td

i-th row

j-th row

Fig. 5. Integrality ratio example for the element-disjoint problem

Construction: Start from a 2k× 2kd grid and subdivide the alternate edges of
the last row of the grid. Now add d terminal nodes R = {t1, . . . , td} to the outer
face of the grid. Next connect each terminal node ti to k consecutive subdivided
nodes (see Figure 5 for an illustration). Let G be the obtained graph. First, we
prove that G has at most kd

2(d−1) + d− 2 element-disjoint Steiner trees. Next, we
claim that LP-element has optimal value of zLP = k. We give a sketch of our
construction; the details can be found in the full paper. We construct k pairs
of half-integral Steiner trees. Each pair is obtained from two consecutive rows
by connecting each terminal to these two rows using two consecutive columns.
Figure 5 shows two pairs of half-integral Steiner trees and shows how they cross
each other. It is easy to check that these 2k Steiner trees form a feasible solution
to LP-element. Thus, we have zLP ≥ k. This gives us the following theorem.
The above construction extends to give the same lower bound on the integrality
ratio for the planar edge-disjoint Steiner Tree Packing problem.

Theorem 9. The LP relaxation of the element-disjoint Steiner Tree Pack-

ing problem has an integrality ratio ≥ 2− 2
|R| − ε even on planar graphs, where

the additive term ε is a function of k and |R| and for fixed |R|, ε → 0 as k →∞
(here, k denotes the element-connectivity of the terminals).
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Abstract. We show that adaptively sampled O(k) centers give a con-
stant factor bi-criteria approximation for the k-means problem, with a
constant probability. Moreover, these O(k) centers contain a subset of k
centers which give a constant factor approximation, and can be found us-
ing LP-based techniques of Jain and Vazirani [JV01] and Charikar et al.
[CGTS02]. Both these algorithms run in effectively O(nkd) time and ex-
tend the O(log k)-approximation achieved by the k-means++ algorithm
of Arthur and Vassilvitskii [AV07].

1 Introduction

k-means is a popular objective function used for clustering problems in computer
vision, machine learning and computational geometry. The k-means clustering
problem on given n data points asks for a set of k centers that minimizes the
sum of squared distances between each point and its nearest center. To write it
formally, the k-means problem asks: Given a set X ⊆ Rd of n data points and
an integer k > 0, find a set C ⊆ Rd of k centers that minimizes the following
potential function.

φ(C) =
∑

x∈X

min
c∈C

‖x− c‖2

We denote by φA(C) =
∑

x∈A minc∈C ‖x− c‖2 the contribution of points in a
subset A ⊆ X . Let COPT be the set of optimal k centers. In the optimal solution,
each point of X is assigned to its nearest center in COPT . This induces a natural
partition on X as A1 ∪A2 ∪ · · · ∪Ak into disjoint subsets.

There is a variant of the k-means problem known as the discrete k-means
problem where the centers have to be points from X itself. Note that the optima
of the k-means problem and its discrete variant are within constant factors of
each other. There are other variants where the objective is to minimize the sum
of p-th powers of distances instead of squares (for p ≥ 1), or to be more precise,

(
∑

x∈X

min
c∈C

‖x− c‖p

)1/p

.

The p = 1 case is known as the k-median problem and the p = ∞ case is known
as the k-center problem. Moreover, one can also ask the discrete k-means problem
over arbitrary metric spaces instead of Rd.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 15–28, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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1.1 Previous Work

It is NP-hard to solve the k-means problem exactly, even for k = 2 [ADHP09],
[Das08, KNV08] and even in the plane [MNV09]. Constant factor approximation
algorithms are known based on linear programming techniques used for facility
location problems but their running time is super-linear in n [JV01]. Kanugo
et al. [KMN+04] give a (9 + ε)-approximation via local search but in running
time O(n3ε−d) that has exponential dependence on d. There are polynomial time
approximation schemes with running time linear in n and d but exponential or
worse in k [dlVKKR03, HPM04, KSS04, Mat00, Che09]. Such a dependence on k
may well be unavoidable, as shown in the case of the discrete k-median problem
[GI03].

On the other hand, the most popular algorithm for the k-means problem is a
simple iterative-refinement heuristic due to Lloyd [Llo82]: start with k arbitrary
(or random) centers, compute the clusters defined by them, define the means
of these clusters as the new centers, re-compute clusters and repeat. Lloyd’s
method is fast in practice but is guaranteed to converge only to a local optimum.
In theory, the worst-case running time of Lloyd’s heuristic is exponential even in
the plane [Vat09]; however, a plausible explanation for its popularity could be
its polynomial smoothed complexity [AMR09].

In attempts to bridge this gap between theory and practice, several random-
ized algorithms have been proposed based on the idea of sampling a subset
of points as centers to get a constant factor approximation in time effectively
O(nkd). These centers could then be used to initialize the Lloyd’s method. Mettu
and Plaxton [MP02] and Ostrovsky et al. [ORSS06] give constant factor approx-
imations but their results do not work unconditionally for all data sets.

The most relevant to our paper is a randomized algorithm called k-means++
due to Arthur and Vassilvitskii [AV07]. They propose a simple adaptive sam-
pling scheme (they call it as D2 sampling): in each step, pick a point with
probability proportional to its current cost (i.e, its squared distance to the near-
est center picked so far) and add it as a new center. This is similar to a greedy
2-approximation algorithm for the k-center problem that picks a point with
the maximum cost in each step [Gon85]. Arthur and Vassilvitskii show that
adaptively sampled k centers give, in expectation, an O(log k)-approximation
for the k-means problem. This also means, by Markov inequality, that we get an
O(log k)-approximation with a constant probability.

Similar sampling schemes have appeared in the literature on clustering of data
streams [GMM+03, COP03] and online facility location [Mey01]. However, these
sampling schemes are not as simple and their analysis is quite different.

Arthur and Vassilvitskii’s analysis of their O(log k)-approximation relies heav-
ily on a non-trivial induction argument (Lemma 3.3 of [AV07]). Reverse engi-
neering the same argument, they show a lower bound example where adaptively
sampled k centers give Ω(log k)-approximation, in expectation. However, their
lower bound is misleading in the sense that even though the expected error for
adaptive sampling on this example is high, it gives an O(1)-approximation with
high probability. The starting point for our work was the following question: Do
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adaptively sampled k centers always give a constant factor approximation, with
a constant probability?

1.2 Our Results

In Section 2, we extend the results of Arthur and Vassilvitskii to show that
adaptively sampled O(k) centers give a constant factor bi-criteria approximation
for the k-means problem, with a constant probability. This probability of success
can be boosted to arbitrary (1−δ) by repeating the algorithm O (log(1/δ)) times
and taking the best solution.

In Section 3, we show that our adaptively picked O(k) centers contain a subset
of k centers that gives a constant factor approximation for the k-means problem,
and this k-subset can be found by solving a weighted k-means problem on O(k)
points using the LP-based techniques of Jain and Vazirani [JV01] and Charikar
et al. [CGTS02]. This gives us a randomized O(1)-approximation for the k-means
problem with running time effectively O(nkd).

Our proof techniques bypass the inductive argument of [AV07] and are general
enough so as to be applicable in a wide range of other problems, such as facility
location, where adaptive sampling could be useful.

In Appendix 4, we give a simpler proof of Arthur and Vassilvitskii’s Ω(log k)
lower bound on the expected error of adaptively picked k centers to explain why
their lower bound is misleading.

2 Bi-criteria Approximation by Adaptive Sampling

For a given set of centers, the current cost that each point pays in the k-means
objective is its squared distance to the nearest center. In each step of adaptive
sampling, we pick a point with probability proportional to its current cost and
make it a new center. In this section, we show that adaptively sampling O(k)
points from the given data set itself gives a constant factor approximation for
the k-means problem, with a constant probability.

Bi-criteria approximation by adaptive sampling
Input: a set X ⊆ Rd of n points and k > 0.
Output: a set S ⊆ X of size t = �16(k +

√
k)�.

Initialize S0 = ∅.
For i = 1 to t do:

1. Pick a point x from the following distribution:
Pr (picking x) ∝ φ{x}(Si−1) = minc∈Si−1 ‖x− c‖2.
(Note: For i = 1 step, the distribution is uniform.)

2. Si ← Si−1 ∪ {x}.
3. i ← i + 1.

Return S ← St.
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Theorem 1. Let S ⊆ X be the subset of t = �16(k+
√

k)� = O(k) points picked
by the sampling algorithm given above. Then

φ(S) ≤ 20φ(COPT ),

with probability at least 0.03. (This probability could be boosted to 1 − δ by re-
peating the algorithm log(1/δ) times and picking the best of the subsets.) The
running time of our algorithm is O(nkd).

To prove correctness of our algorithm, we first analyze one step. Let Si−1 be the
set of points obtained after the (i − 1)-th step of our algorithm. In step i, we
define

Goodi = {Aj : φAj (Si−1) ≤ 10φAj (COPT )}
Badi = {A1, A2, . . . , Ak} \ Goodi

Observe that at each step we pick a point with probability proportional to its
cost at the current step. We first show that at each step, either we are already
within a small constant factor of the optimum or we pick a point from Badi with
high probability.

Lemma 1. In the i-th step of our algorithm, either φ(Si−1) ≤ 20φ(COPT ) or
else the probability of picking a point from some cluster in Badi is ≥ 1/2.

Proof. Suppose φ(Si−1) > 20φ(COPT ). Then the probability of picking x from
some cluster in Badi is equal to

Pr (x ∈ Aj from some Aj ∈ Badi) =

∑
Aj∈Badi

φAj (Si−1)

φ(Si−1)

= 1−
∑

Aj∈Goodi
φAj (Si−1)

φ(Si−1)

≥ 1−
10

∑
Aj∈Goodi

φAj (COPT )

20φ(COPT )
≥ 1− 1/2
= 1/2.

Note that once a cluster becomes good at some stage then it continues to remain
good, i.e. Goodi ⊆ Goodi+1. Good clusters are those clusters that are being
covered well enough by the centers we have chosen so far. We analyze a bad
cluster and show how the algorithm makes it good.

Here is an important fact about the mean of a point set that we will use
throughout the analysis. It can be thought of as an analog of the parallel axis
theorem about moment of inertia from elementary physics.

Proposition 1. Let μ be the mean of a set of points A ⊆ Rd and let y ∈ Rd be
any point. Then

∑

x∈A

‖x− y‖2 =
∑

x∈A

‖x− μ‖2 + |A| ‖y − μ‖2 .
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Proof. Folklore. See Lemma 2.1.

Consider a cluster A ∈ Badi. Let μ be the center of A in COPT and let |A| =
m. (We drop the subscript j in Aj for the sake of simplicity.) Define r =√

φA(COPT )/m, the root-mean-square optimal cost for points in A. Further-
more, let y be the point closest to μ in Si−1 and d = ‖μ− y‖. Observe that since
A ∈ Badi,

10φA(COPT ) ≤ φA(Si−1) because A ∈ Badi

=
∑

x∈A

min
c∈Si−1

‖x− c‖2

≤
∑

x∈A

‖x− y‖2

= φA(COPT ) + m ‖μ− y‖2 by Proposition 1

= φA(COPT ) + md2

Therefore,

d ≥
√

9φA(COPT )
m

= 3r.

Define B(α) = {x ∈ A : ‖x− μ‖ ≤ αr}, where 0 ≤ α ≤ 3 ≤ d/r. This is the
set of points from A which are close to the center. The set B(α) is a good set
to sample points from because any point b ∈ B(α) makes A a good cluster as
shown below.

Lemma 2. Let A be any cluster defined by COPT and let b ∈ B(α), for 0 ≤
α ≤ 3. Then

φA(Si−1 ∪ {b}) ≤ 10φA(COPT ).

Proof

φA(Si−1 ∪ {b}) =
∑

x∈A

min
c∈Si−1∪{b}

‖x− c‖2

≤
∑

x∈A

‖x− b‖2

= φA(COPT ) + m ‖μ− b‖2 by Proposition 1

≤ φA(COPT ) + m(αr)2

= (1 + α2)φA(COPT )
≤ 10φA(COPT ) since α ≤ 3.

Now we show that B(α) contains a large fraction of points in A.

Lemma 3

|B(α)| ≥ m

(
1− 1

α2

)
, for 1 ≤ α ≤ 3.
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Proof

φA(COPT ) ≥ φA\B(α)(COPT )

=
∑

x∈A\B(α)

min
c∈COP T

‖x− c‖2

=
∑

x∈A\B(α)

‖x− μ‖2

≥ |A \B(α)| (αr)2

=
(

1− |B(α)|
m

)
m(αr)2

=
(

1− |B(α)|
m

)
α2φA(COPT ),

which implies that

|B(α)| ≥ m

(
1− 1

α2

)
.

The following lemma states that the cost of B(α) is a substantial fraction of
the cost of A with respect to the current Si−1 and thus also lower bounds
the probability of the next point being chosen from B(α) given that it belongs
to A.

Lemma 4

Pr (x ∈ B(α) | x ∈ A and A ∈ Badi) =
φB(α)(Si−1)
φA(Si−1)

≥ (3− α)2

10

(
1− 1

α2

)
.

Proof. To prove the above lemma, we obtain an upper bound on φA(Si−1) and
a lower bound on φB(α)(Si−1) as follows.

φA(Si−1) =
∑

x∈A

min
c∈Si−1

‖x− c‖2

≤
∑

x∈A

‖x− y‖2

= φA(COPT ) + m ‖μ− y‖2 by Proposition 1

= m(r2 + d2).

Observe that αr ≤ d and d = ‖μ− y‖minc∈Si−1 ‖μ− c‖. For any b ∈ B(α) and
any c ∈ Si−1, we have

‖b− c‖ ≥ ‖μ− c‖ − ‖b− μ‖ ≥ d− rα by triangle inequality.

Thus, minc∈Si−1 ‖b− c‖ ≥ d − rα. Using this, we lower bound φB(α)(Si−1) as
follows.
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φB(α)(Si−1) =
∑

b∈B(α)

min
c∈Si−1

‖b− c‖2

≥ |B(α)| (d− αr)2

≥ m

(
1− 1

α2

)
(d− αr)2 from Lemma 3.

Putting these together we get

Pr (x ∈ B(α) | x ∈ A and A ∈ Badi) =
φB(α)(Si−1)
φA(Si−1)

≥ (1 − 1/α2)(d − αr)2

r2 + d2 .

Observe that (d− αr)2/(r2 + d2) is an increasing function of d for d ≥ 3r ≥ αr.
Therefore,

Pr (x ∈ B(α) | x ∈ A and A ∈ Badi) ≥
(

1− 1
α2

)
(3 − α)2

10
.

Lemma 5. Suppose the point x picked by our algorithm in the i-th step is from
A ∈ Badi and Si = Si−1 ∪ {x}. Then

Pr (φA(Si) ≤ 10φA(COPT ) | x ∈ A and A ∈ Badi) ≥ 0.126.

Proof. Immediately follows from Lemma 2 and Lemma 4 using α = 1.44225 (by
numerically maximizing the expression in α).

We want to show that in each step, with high probability, we pick a bad cluster
A and make it good. Our proof uses the following well known facts about super-
martingales.

Definition 1. A sequence of real valued random variables J0, J1, . . . , Jt is called
a super-martingale if for every i > 1, E [Ji | J0, . . . , Ji−1] ≤ Ji−1.

Super-martingales have the following concentration bound.

Theorem 2. (Azuma-Hoeffding inequality) IfJ0, J1, . . . , Jt is a super-martingale
with Ji+1 − Ji ≤ 1, then Pr (Jt ≥ J0 + δ) ≤ exp(−δ2/2t).

Proof. (Proof of Theorem 1) By Lemma 1 and Lemma 5, we have

Pr (|Badi+1| < |Badi|)
=Pr (x ∈ A for some A ∈ Badi)Pr (φA(Si) ≤ 10φA(COPT ) |x∈A and A∈Badi)

≥ 1
2
· 0.126

= 0.063.

For each step define an indicator variable Xi as follows.

Xi =

{
1 if |Badi+1| = |Badi|
0 otherwise.
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Thus, Pr (Xi = 0) ≥ p = 0.063 and E [Xi] ≤ 1− p. Further, we define

Ji =
∑

1≤j≤i

(Xj − (1− p)) .

Then Ji+1 − Ji ≤ 1 and

E [Ji | J0, . . . , Ji−1] = E [Ji−1 + Xi − (1− p) | J0, . . . , Ji−1]
= Ji−1 + E [Xi | J0, . . . , Ji−1]− (1− p)
≤ Ji−1,

which means that J1, J2, . . . , Jt is a super-martingale. So using Theorem 2 we
get the following bound.

Pr (Jt ≥ J0 + δ) ≤ exp(−δ2/2t),

which means

Pr

(
t∑

i=1

(1 −Xi) ≥ pt− δ

)

≥ 1− exp(−δ2/2t).

Choosing t = (k +
√

k)/p ≤ 16(k +
√

k) and δ =
√

k, we obtain

Pr

⎛

⎝
(k+

√
k)/p∑

i=1

(1−Xi) ≥ k

⎞

⎠ ≥ 1− exp
(

−pk

2(k +
√

k)

)

≥ 1− exp(−p/4).

Therefore,

Pr
(
there are no bad clusters after (k +

√
k)/p steps

)
≥ 1− exp(−p/4) ≥ 0.03,

or equivalently
Pr (φ(S) ≤ 10φ(COPT )) ≥ 0.03.

There is nothing special about the approximation factor 20 in the proof above.
One could start with any factor more than 4 and repeat the same proof. The
higher the approximation factor, the better are the bounds on the probability
and the number of centers picked. We get the following result as a straightforward
generalization.

Theorem 3. Our bi-criteria algorithm, when run for t = O (k/ε · log(1/ε))
steps, gives a (4 + ε)-approximation for the k-means problem, with a constant
probability.
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3 Picking a k-Subset of S

If we use our bi-criteria solution S to cluster X , then every x ∈ X is assigned to
its closest point in S. This induces a natural partition of X = X1∪X2 ∪· · ·∪Xt

into t disjoint subsets. Let |Xi| = ni and μi be the mean of points in Xi. Then
for all i,

φXi ({μi}) ≤ φXi(S)

Weighted k-means clustering: Given a set X ⊆ Rd and weights wi for each
point xi ∈ X , find a set C ⊆ Rd of k centers that minimizes the following
potential function.

φ′(C) =
∑

xi∈X

min
c∈C

wi ‖xi − c‖2 .

We denote by φ′
A(C) =

∑
xi∈A minc∈C wi ‖xi − c‖2 the contribution of points in

a subset A ⊆ X .
Using the bi-criteria solution S, we define a weighted k-means problem with

points X ′ = {μi : 1 ≤ i ≤ t} and weights ni assigned to point μi, respectively.
Let C′

OPT denote the optimal solution for this weighted k-means problem.

Lemma 6
φ′(C′

OPT ) ≤ 2φ(COPT ) + 2φ(S).

Proof. By triangle inequality, for any x ∈ X we have

min
c∈COP T

‖μi − c‖ ≤ ‖μi − x‖+ min
c∈COP T

‖x− c‖ .

Therefore,

min
c∈COP T

‖μi − c‖2 ≤ 2 ‖μi − x‖2 + 2 min
c∈COPT

‖x− c‖2

Summing over all x ∈ Xi,

min
c∈COP T

ni ‖μi − c‖2 ≤
∑

x∈Xi

2 ‖μi − x‖2 + 2 min
c∈COPT

‖x− c‖2)

≤ 2φXi(S) + 2φXi(COPT ).

Thus,

φ′(C′
OPT ) ≤ φ′(COPT )

=
∑

1≤i≤t

min
c∈COP T

ni ‖μi − c‖2

≤
∑

1≤i≤t

2φXi(S) + 2φXi(COPT )

= 2φ(S) + 2φ(COPT )
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Theorem 4. Let C be an β-approximation to the weighted k-means problem,
i.e., φ′(C) ≤ βφ′(C′

OPT ). Then,

φ(C) ≤ (2β + 1)φ(S) + 2βφ(COPT ).

Proof. In the solution C, let μi be assigned to the center cj ∈ C.
∑

x∈Xi

min
c∈C

‖x− c‖2 ≤
∑

x∈Xi

‖x− cj‖2

=
∑

x∈Xi

‖x− μi‖2 + ni ‖μi − cj‖2 by Proposition 1

≤ φXi(S) + ni min
c∈C

‖μi − c‖2 .

Therefore,

φ(C) =
∑

x∈X

min
c∈C

‖x− c‖2

=
∑

1≤i≤t

∑

x∈Xi

min
c∈C

‖x− c‖2

≤
∑

1≤i≤t

φXi(S) + ni min
c∈C

‖μi − c‖2

= φ(S) + φ′(C)
≤ φ(S) + βφ′(C′

OPT )
≤ (2β + 1)φ(S) + 2βφ(COPT ).

Note that Theorem 4 implies that a constant factor approximation to the
weighted k-means problem constructed from our bi-criteria solution S is also a
constant factor approximation to our original k-means problem. The advantage
is that the weighted k-means problem is defined only on O(k) points instead of n
points. Interestingly, previous works on k-means clustering and a closely related
problem of k-median clustering ([JV01],[CGTS02]) generalize to weighted k-
means problem as well. This is because [CGTS02] solves the weighted k-median
problem and the solution generalizes to distances where even a weak triangle
inequality is satisfied. In case of squared Euclidean distance, for example,

‖x− z‖2 ≤ 2
(
‖x− y‖2 + ‖y − z‖2

)
.

We omit the details as the proofs are essentially the same as in [CGTS02]. These
are LP-based algorithms and since the number of variables in our weighted k-
means instance is O(k) the overall running time of our sampling coupled with
the LP-based algorithm for the resulting weighted k-means problem has running
time O(nkd + poly(k, log n)), which is effectively O(nkd).

4 Simplified Lower Bound

Arthur and Vassilvitskii [AV06] prove that adaptive sampling for the k-means
clustering gives an O(log k) approximation, in expectation. They also show an
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example where adaptive sampling gives expected error at least Ω(log k) times
the optimum. Both these proofs are based on a tricky inductive argument.

In this note, we give a simplified proof of their lower bound. The example for
lower bound is the same. Consider n points where they are grouped into k sets
S1, S2, . . . , Sk of size n/k each. The points in each Si form vertices of a regular
simplex and the centers of these simplices S1, S2, . . . , Sk form vertices of a larger
regular simplex. The smaller simplices live in different dimensions so that

‖x− y‖ =

{
δ if x, y ∈ Si for the same i

Δ if x ∈ Si and y ∈ Sj for i �= j

The optimal k-means clustering uses centers of these regular simplices S1, S2, . . . ,
Sk and has error

OPT =
n− k

2
δ2.

The probability that adaptive sampling picks all k centers from different Si’s is

Pr (adaptive sampling covers all S1, S2, . . . , Sk)

=
k−1∏

i=1

⎛

⎝1−
i
(n

k
− 1

)
δ2

n

k
(k − i)Δ2 + i

(n

k
− 1

)
δ2

⎞

⎠

≥
k−1∏

i=1

(
1− i(n− k)δ2

n(k − i)Δ2

)

≥ 1−
k−1∑

i=1

i(n− k)δ2

n(k − i)Δ2 by Weierstrass product inequality

= 1− n− k

n

δ2

Δ2

k−1∑

i=1

i

k − i

≥ 1− δ2

Δ2

k−1∑

i=1

k − i

i

≥ 1− δ2

Δ2 k

(
k−1∑

i=1

1
i
− 1

)

≥ 1− δ2

Δ2 k log k.

In fact, we will fix n, k, δ and use Δ� n, k, δ.

Pr (adaptive sampling covers all S1, S2, . . . , Sk)

=
k−1∏

i=1

⎛

⎝1−
i
(n

k
− 1

)
δ2

n

k
(k − i)Δ2 + i

(n

k
− 1

)
δ2

⎞

⎠
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≤
k−1∏

i=1

(
1− i(n− k)δ2

2n(k − i)Δ2

)

≤ 1− 1
2

k−1∑

i=1

i(n− k)δ2

2n(k − i)Δ2 for Δ� kδ

= 1− n− k

2n

δ2

Δ2

k−1∑

i=1

i

k − i

≤ 1− δ2

4Δ2

k−1∑

i=1

k − i

i
for n � k

≤ 1− δ2

8Δ2 k

(
k−1∑

i=1

1
i
− 1

)

= 1− δ2

8Δ2 k log k.

Thus

Pr (adaptive sampling covers all S1, S2, . . . , Sk) = 1−Θ

(
δ2

Δ2 k log k

)
.

If our adaptive sampling covers all S1, S2, . . . , Sk then it’s error is

Errno miss = (n− k)δ2,

whereas even if we miss (i.e., do not cover) one of the Si’s the error is at least

Errsome miss ≥
n

k
Δ2.

So the expected error for adaptive sampling is given by

E [Err] ≥
(

1−Θ

(
δ2

Δ2 k log k

))
Errno miss + Θ

(
δ2

Δ2 k log k

)
Errsome miss

≥
(

1−Θ

(
δ2

Δ2 k log k

))
(n− k)δ2 + Θ

(
δ2

Δ2 k log k

)
n

k
Δ2

≥ (n− k)δ2 +
1

Δ2 · some term + Θ(log k)nδ2

= Ω(log k)
n− k

2
δ2 using n � k and Δ → ∞

= Ω(log k)OPT.

Notice that even though the expected error is Ω(log k)OPT, we get a constant
factor approximation when the adaptive sampling covers all S1, S2, . . . , Sk, which
happens with a high probability.
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5 Conclusion

We present a simple bi-criteria constant factor approximation algorithm for the
k-means problem using adaptive sampling. Our proof techniques can be general-
ized to prove similar results for other variants of the k-means problem such as the
k-median problem, or more generally, the 
p version where we want to minimize
the sum of p-th powers of distances rather than squares. This follows because of
the weak triangle inequalities satisfied by the p-th powers of Euclidean distances,
which gives us a weak form of the parallel axis theorem (i.e., Proposition 1). For
the 
p version, we get a similar bi-criteria algorithm where the number of centers
picked by the algorithm is O(k), where the constant depends exponentially on p.

Arthur and Vassilvitskii [AV07] show that adaptively sampled k centers give
an O(log k)-approximation for the k-means problem, in expectation (and hence
also with a constant probability, by Markov inequality). In this paper, we show
that adaptively sampled O(k) centers give an O(1)-approximation for the k-
means problem, with a constant probability. Looking at the lower bound example
example (see Appendix 4) it is tempting to conjecture that adaptively sampled
k centers give an O(1)-approximation for the k-means problem, with a constant
probability. It would be nice to settle this conjecture.

Acknowledgements. The second author would like to thank Kasturi Varadara-
jan for several helpful discussions and Jaikumar Radhakrishnan for suggesting
the analogy of Proposition 1 with the parallel axis theorem in elementary physics.
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[AMR09] Arthur, D., Manthey, B., Röglin, H.: k-means has polynomial smoothed
complexity (2009), http://arxiv.org/abs/0904.1113

[AV06] Arthur, D., Vassilvitskii, S.: How slow is the k-means method?. In: An-
nual Symposium on Computational Geometry (SOCG) (2006)

[AV07] Arthur, D., Vassilvitskii, S.: k-means++: The advantages of careful seed-
ing. In: ACM-SIAM Symposium on Discrete Algorithms (SODA) (2007)

[CGTS02] Charikar, M., Guha, S., Tardos, M., Shmoys, D.: A constant factor ap-
proximation for the k-median problem. Journal of Computer and System
Sciences (2002)

[Che09] Chen, K.: On coresets for k-median and k-means clustering in metric and
euclidean spaces and their applications. Submitted to SIAM Journal on
Computing (SICOMP) (2009)

[COP03] Charikar, M., O’Callaghan, L., Panigrahy, R.: Better streaming algo-
rithms for clustering problems. In: ACM Symposium on Theory of Com-
puting (STOC), pp. 30–39 (2003)

[Das08] Dasgupta, S.: The hardness of k-means clustering, Tech. Report CS2008-
0916, UC San Diego (2008)

http://arxiv.org/abs/0904.1113


28 A. Aggarwal, A. Deshpande, and R. Kannan

[dlVKKR03] de la Vega, F., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation
schemes for clustering problems. In: ACM Symposium on Theory of
Computing (STOC), pp. 50–58. ACM Press, New York (2003)

[GI03] Guruswami, V., Indyk, P.: Embeddings and non-approximability of ge-
ometric problems. In: ACM-SIAM Symposium on Discrete Algorithms
(SODA) (2003)

[GMM+03] Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clus-
tering data streams: Theory and practice. IEEE Transactions on Knowl-
edge and Data Engineering 15(3), 515–528 (2003)

[Gon85] Gonzalez, T.: Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science 38, 293–306 (1985)

[HPM04] Har-Peled, S., Mazumdar, S.: On core-sets for k-means and k-median
clustering. In: ACM Symposium on Theory of Computing (STOC), pp.
291–300 (2004)

[JV01] Jain, K., Vazirani, V.: Approximation algorithms for metric facility
loca- tion and k-median problems using the primal-dual schema and
Lagrangian relaxation. Journal of ACM 48, 274–296 (2001)

[KMN+04] Kanugo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu,
A.: A local search approximation algorithm for k-means clustering. Com-
putational Geometry 28(2-3), 89–112 (2004)

[KNV08] Kanade, G., Nimbhorkar, P., Varadarajan, K.: On the NP-hardness of
the 2-means problem (unpublished manuscript) (2008)

[KSS04] Kumar, A., Sabharwal, Y., Sen, S.: A simple linear time (1 + ε)- approx-
imation algorithm for k-means clustering in any dimensions. In: IEEE
Symposium on Foundations of Computer Science (FOCS), pp. 454–462
(2004)

[Llo82] Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on In-
formation Theory 28(2), 129–136 (1982)
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Abstract. We consider the problem of aligned coloring of interval and
chordal graphs. These problems have substantial applications to regis-
ter allocation in compilers and have recently been proven NP-Hard. We
provide the first constant approximations: a 4

3 -approximation for inter-
val graphs and a 3

2 -approximation for chordal graphs. We extend our
techniques to the problem of minimizing spillage in these graph types.

1 Introduction

One of the most complex and time-consuming aspects of a compiler is the register
allocation process where variables are assigned to registers. The implementation
of the register allocator is of upmost importance as it has a substantial impact
on the efficiency of code generated [10]. The seminal works of Chaitin et al. [7, 8]
established a connection between register allocation and graph coloring. Since
these results, a number of heuristic techniques based on splitting of live ranges
and hierarchical divide and conquer have been proposed [4, 5, 6, 9, 13]. How-
ever, provably good approaches have eluded researchers, primarily because graph
coloring in the general case is NP-Hard and also difficult to approximate [15].

Despite these hardness results, graph coloring is more tractable on special
classes of graphs. Two examples are the class of chordal graphs and its subclass of
interval graphs, for which coloring can be computed optimally in linear time [12].
These graphs arise in many applications and, fortunately, many real programs
do in fact correspond to chordal and interval graphs [14, 17]. Thus, algorithmic
results for these classes are meaningful to register allocation and a broad range
of other applications.

Modern work in register allocation [1, 2, 3, 16, 18, 20] now focuses on heteroge-
neous register architectures where variables are either single-word (requiring one
register) or double-word (requiring two registers). Double-word variables must
be stored in adjacent registers starting on an even address (i.e. the registers must

� Douglas Carroll’s contribution to this research was conducted while he was a Ph.D.
student at UCLA.
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be aligned). Indeed, most modern architectures are heterogeneous which stresses
the importance of this model. The corresponding coloring problem is called the
aligned coloring problem, introduced by Lee, Palsberg, and Pereira [16] who
prove it to be NP-Hard even when restricted to chordal or interval graphs. We
give the first approximation results for aligned coloring: a 4

3 -approximation for
interval graphs and a 3

2 -approximation for chordal graphs.
We also consider the problem of minimizing spillage both in the aligned and

unaligned case. Here, we are given a specific number of colors (or registers)
and asked to color as many graph nodes as possible subject to this constraint.
This problem relates directly to register allocation since the number of colors
(registers) is a fixed property of the machine architecture. The unaligned problem
is known to be NP-Hard even for chordal graphs [21]. We show that it is hard
to approximate to Ω(log n) based on a reduction from set cover [11] and give a
matching O(log n)-approximation. If we are permitted to run in time exponential
in the number of colors, there is an exact algorithm for chordal graphs with
running time O(nm(τ + 1)c) for c colors, n nodes, m edges, and tree-width τ .
We show that if we are willing to accept a 1 + ε approximation, we can improve
this running time to O(nm(c + c

ε )
c) (independent of the tree-width).

For the aligned version over chordal graphs, we can apply dynamic program-
ming to get a 1 + ε approximation in running time O(nm(c + 1)c+c/ε). If we
are willing to accept a bicriteria approximation in which we use extra colors to
obtain at most the spillage needed by optimum using c colors, then we can give
bounds of (3

2 , log n) and (4
3 , 1) for chordal and interval graphs respectively, where

the first factor is on the number of colors and the second is on the spillage.

2 Preliminaries and Notation

Our work will be restricted to the class of chordal and interval graphs. A graph
is chordal if every cycle of four or more vertices has a chord (an edge joining two
non-adjacent vertices in the cycles). A graph is interval if its vertices correspond
to intervals of the real line and two vertices are adjacent if and only if their
corresponding intervals intersect. For convenience, we will sometimes express
an interval graph using a collection of intervals rather than show the graph
representation.

We consider a generalization of graph coloring in which certain vertices require
two colors instead of just one. Thus, graphs G = (V, E) will have vertex weights
w : V → {1, 2} indicating the number of colors a vertex requires. We will call
these 1,2-vertex-weighted graphs. We extend the notion of clique number ω(G) to
be the maximum total weight of any clique of G. We represent colors numerically
starting with color 0 and any vertex requiring two colors also requires that the
colors are 2i and 2i + 1 for integer i. Formally:

Definition 1 (Aligned c-Coloring). An aligned c-coloring for a 1,2-vertex-
weighted graph G = (V, E) with weights w is a mapping φ : V → {0, . . . , c − 1}
such that for all (u, v) ∈ E we have φ(u) �= φ(v). Additionally, if w(u) = 2, then
φ(u) must be even and for all (u, v) ∈ E we must have φ(u) + 1 �= φ(v). This
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(a) (b)

Fig. 1. Colorings of a collection of intervals of time. Thick intervals have weight 2 while
thin intervals have weight 1. (a) A proper aligned coloring. (b) A minimum unaligned
coloring.

corresponds to assigning any vertex u with w(u) = 2 to two consecutive colors
starting from an even value.

At times we will say weight-1 vertex v blocks color 2i (and accordingly, 2i is
blocked by v) if φ(v) = 2i or φ(v) = 2i + 1. Figure 1 gives examples of aligned
and unaligned colorings of a collection of intervals of time (thus, corresponding
to an interval graph). Note that Figure 1 also shows that an aligned coloring
may require more than ω(G) colors.

We use aχ(G) to denote the aligned chromatic index of G (i.e., the smallest c
for which G is aligned c-colorable). Note that we can easily lower bound aχ(G)
using the clique number of G:

ω(G) ≤ aχ(G). (1)

For any integer k ≥ 0, we let aχ(k) denote the maximum aligned chromatic
index over all 1,2-vertex-weighted graphs G with ω(G) = k.

3 The Aligned Coloring Problem

Problem 1 (Aligned Coloring Problem). Given 1,2-vertex-weighted graph
G = (V, E), find an aligned c-coloring φ of G where c is minimal.

In this section we give approximations for the aligned coloring problem. Since the
problem is hard to approximate for general graphs [15], we restrict our attention
to either chordal graphs or interval graphs. Although standard minimum coloring
can be solved in linear time for either class [12], the aligned coloring problem
remains NP-Complete [16]. It is straightforward to produce a 2-approximation
for the problem by simply splitting the graph into two subgraphs based on vertex
weights and then coloring each using a distinct set of colors. We will provide
the first approximation algorithms which improve upon this factor, giving a 3

2 -
approximation for chordal graphs and a 4

3 -approximation for interval graphs.
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3.1 Chordal Graphs

For any chordal graph G, we can produce a tree decomposition of minimum tree
width in polynomial time [12]. Each set Xi in this decomposition represents a
clique, thus w(Xi) =

∑
v∈Xi

w(v) ≤ ω(G). We will color G greedily by consider-
ing sets of the tree decomposition from the root downwards. For each set X , we
consider all uncolored nodes in arbitrary order and assign the minimum color
which does not conflict with any color of another member of X . We can show
that this uses at most 3

2ω(G) colors.

Theorem 1. The above algorithm successfully produces an aligned coloring us-
ing at most 3

2ω(G) colors. Thus it is a 3
2 -approximation to the problem of aligned

coloring of a chordal graph.

Proof. First we show that a valid aligned coloring is produced. Consider any
edge (u, v) ∈ E. Let X be the first tree decomposition set we consider which
contains both u, v ∈ X . Since we consider sets from the root downwards and
since we know that u, v were not both in the parent of X , one of u, v must be
appearing for the first time. Thus, we can assign a color such that there are no
conflicts.

Now we bound the number of colors. Consider any node u with w(u) = 1. Let
X be the tree decomposition set in which we first encounter u. Since w(X) ≤
ω(G), at least one of colors 0 through ω(G) − 1 must be available. Thus, all
weight-1 vertices are assigned a color at most ω(G)− 1.

Now consider a node u with w(u) = 2 and let X be the tree decomposition
set in which we first encounter u. Suppose that there are x1 weight-1 nodes and
x2 weight-2 nodes (excluding u) in X . Then w(X − u) = x1 + 2x2 ≤ ω(G) − 2.
When we assign a color to u, suppose the color assigned were at least 3

2ω(G).
It would follow that since all nodes with w(v) = 1 are assigned colors at most
ω(G), we must have at least x2 ≥ 1

4ω(G) as otherwise we could have selected a
smaller color. On the other hand, each node in X can block at most one even
color, so we must have x1 +x2 ≥ 3

4ω(G). Combining these two inequalities gives
a contradiction. ��

3.2 Chordal Graph Lower Bound

There do in fact exist aligned chordal graph coloring problems where we need
3
2ω(G) colors. This does not necessarily imply hardness of approximation, but
it does indicate that we will need to use a different lower bound on optimum if
we are to improve upon our 3

2 -approximation.
Fix n > 0. We build a 1,2-vertex weighted graph Gn with ω(Gn) = 4n as

follows: Gn will have a clique of 4n weight-1 vertices. Call this clique K1 and let
V1 be its vertices. For each S ⊆ V1 with |S| = 2n, we add a distinct clique KS

of n weight-2 vertices and all possible edges between vertices in S and KS . It is
easy to check that Gn is chordal and that ω(Gn) = 4n.

Theorem 2. For each n > 0, there exists no aligned coloring of Gn using less
than 3

2ω(Gn) = 6n colors.
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Proof. Assume, by way of contradiction, that we have an aligned coloring of Gn

using at most 6n − 1 colors. Consider V1. These vertices form a clique so they
must all be given unique colors. Then at least 2n even colors are blocked by
vertices in V1. Let X ⊂ V1 be a set of 2n vertices that each block a distinct even
color. Then notice that there are n − 1 even colors that are not blocked by X .
But then KX does not have enough even colors for its n weight-2 vertices. This
contradicts the existence of our coloring and proves the claim. ��

3.3 Interval Graphs

We will show that every 1,2-vertex-weighted interval graph G has an aligned
coloring using 4

3ω(G) colors. Our algorithm works by first decomposing G into
multiple smaller graphs, then approximately coloring each of the smaller graphs
with disjoint sets of colors. We perform this decomposition as described below:

Theorem 3. For every integer α ≥ 1, every 1,2-vertex-weighted interval graph
G with ω(G) > α + 1 can be decomposed (in polynomial-time) into 1,2-vertex-
weighted interval graphs H and G′ such that ω(H) ≤ α+1 and ω(G′) = ω(G)−α.

Proof. Order the vertices of G so that for each vertex v all its neighbors ap-
pearing before it in the ordering form a clique (i.e. in a reverse perfect vertex
elimination scheme). Such an ordering can be computed in linear time [19]. We
partition the vertices of G into VH and V ′ and let H = G[VH ] and G′ = G[V ′]
(where G[X ] is the subgraph of G induced by vertex set X). This is done by
taking vertices one at a time in order. We add the next vertex to VH if it can be
added without increasing ω(H) beyond α + 1. Otherwise, we add it to V ′.

It is clear that ω(H) will lie between α and α+1. Suppose a vertex v is added
to V ′ resulting in ω(G[V ′]) > ω(G)−α. Let j = w(v). Since v was not added to
VH , there must be set of vertices of total weight α+2−j adjacent to v. Similarly,
there must be a set of vertices of total weight ω(G) − α + 1 − j adjacent to v
in V ′. By our ordering, all of these neighbors of v must form a clique. Thus,
we’ve found a clique of total weight ω(G) + 3− j > ω(G). This contradicts the
definition of ω(G). ��

We can now recursively apply our theorem to obtain a decomposition of G into⌈
ω(G)

α

⌉
interval graphs of clique index bounded by α + 1. Thus, if we can find

aligned c-colorings for all H with ω(H) = α + 1 then we can color each graph
in the decomposition using a disjoint set of colors and obtain an approximate
solution.

Corollary 1. Suppose for some α, we have a polynomial-time algorithm which
can color any 1,2-vertex-weighted interval graph H with ω(H) ≤ α + 1 using at
most c colors. Then we have a polynomial-time c

α -approximation algorithm for
any 1,2-vertex-weighted interval graph.

We remark that there is a small additive term in our approximation, induced by
the ceiling in our division. This can be eliminated by providing a solution with
approximation factor c

α whenever ω(H) ≤ α.



34 D.E. Carroll, A. Meyerson, and B. Tagiku

We now show how to reduce all interval graphs to a restricted form. This allows
us to enforce a problem structure that can be later exploited. We will assume
that the corresponding intervals have integer start and end points and are closed
towards −∞ and open towards ∞. Moreover, we assume that all intervals have
non-negative endpoints and we let B denote the latest endpoint of any interval.
Thus, the entire instance is bounded within [0, B]. We say interval u and interval
v are tightly compatible if the startpoint of one is the endpoint of another. We
will enforce the following restrictions:

1. Uniform: For t ∈ [0, B] the total weight of intervals containing t is ω(G).
2. United: No two tightly compatible intervals have the same weight.
3. Unique: No two weight-1 intervals have identical endpoints.
4. Nested: If two weight-2 intervals intersect, one is contained in the other.
5. Staged: No two weight-2 intervals share a common endpoint.

We will show that given any interval graph G, we can produce a new interval
graph G′ of equal clique index and satisfying the above properties such that
a coloring of G′ can be used to efficiently compute a coloring of G (with equal
number of colors). We will then describe a polynomial-time algorithm to compute
a coloring of G′ using at most 4

3ω(G′) colors.

Theorem 4. Every 1,2-vertex-weighted interval graph G can be transformed
into a 1,2-vertex-weighted interval graph G′ (in polynomial time) with ω(G′) =
ω(G) such that all five of the above properties hold. Any aligned c-coloring of G′

can be used to construct an aligned c-coloring of G (in polynomial time).

Proof. Any interval graph G can be made uniform by adding an appropriate
amount of weight-1 intervals during the deficient times. Since this is an extension
of G, any aligned c-coloring directly gives us an aligned c-coloring of G.

We can make this graph united and unique by merging any tightly compatible
weight-1 intervals, then merging any identical weight-1 intervals into a weight-2
interval, then merging any tightly compatible weight-2 intervals. While we may
have aχ(G′) ≥ aχ(G), an aligned c-coloring of G can be recovered from an
aligned c-covering of G′ by recording which intervals were merged and assigning
colors appropriately.

A united interval graph can be made nested by taking any non-nested, inter-
secting weight-2 intervals u, v and replacing them with weight-2 intervals u ∩ v
and u ∪ v. We repeat until G′ is nested. Again, an aligned c-coloring of G can
be recovered from an aligned c-coloring of G′ if we remember how intervals were
spliced; we take the color pairs of u ∩ v and of u ∪ v and exchange their roles
after the splice point. Figure 2 illustrates this process.

We can make an interval graph staged by arbitrarily perturbing one of the
intervals and two tightly-compatible weight-1 intervals (selected arbitrarily as
well). ��

We define a stage to be a maximal interval of time during which the number of
weight-2 intervals is constant. An i-stage will be a stage during which i weight-2
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(a)

(b)

Fig. 2. Splicing colors. (a) Coloring of a non-nested instance. (b) Coloring of a corre-
sponding nested instance.

intervals are active. Once all the requirements are enforced, there are a number of
nice properties we can exploit. First, as time progresses, stages can only increase
or decrease by one level. Second, intervals only start and end when the instance
is changing stages. Third, when going from an i-stage to an (i+1)-stage, exactly
one weight-2 interval begins and two weight-1 intervals end. Lastly, when going
from an (i + 1)-stage to an i-stage, exactly two weight-1 intervals begin and one
weight-2 interval ends.

We will show that aχ(10) = 12 for instances satisfying the five properties
described (and thus for all instances) and that such colorings can be found in
polynomial-time. Our coloring algorithm will color an instance by its stages.

Theorem 5. aχ(10) = 12. Moreover, we can construct an aligned 12-coloring
in polynomial time.

Proof. We start by removing all weight-2 intervals active during a 1-stage (and
thus bordering a 0-stage) and give them color 10 (and 11). The remainder of the
instance never has more than total weight 8 of active intervals except for the
times where no weight-2 intervals are active but 10 weight-1 intervals are active.
Call these times (-1)-stages, thus the remainder of our instance now has stages
of level -1 through level 4. Notice that exactly two weight-1 intervals start at
the beginning of a (-1)-stage and exactly two end when the (-1)-stage concludes.
We will show that we need only 10 additional colors for the remainder of this
instance.

Starting from the first stage, greedily assign colors to the active weight-2
intervals, then to the active weight-1 intervals. This will use no more than 10
colors since the maximum weighted overlap during the first stage is at most 10.
We proceed by coloring from stage to stage.
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When going from an i-stage to an (i − 1)-stage (for i > 0) we simply assign
the starting weight-1 intervals the colors that the terminating weight-2 interval
was assigned. When going from a (-1)-stage to a 0-stage, there are no incoming
intervals to color. When going from a 0-stage to a (-1)-stage, we can simply give
the two incoming weight-1 intervals the two remaining colors. When going from
a 3-stage to a 4-stage at most 3 even colors can be blocked, so the incoming
weight-2 interval can choose amongst the remaining 2 even colors. When going
from a 2-stage to a 3-stage, two even colors are blocked by the continuing weight-
2 intervals and at most two even colors are blocked by the continuing weight-1
intervals. This still leaves one open even color for the incoming weight-2 interval.

The interesting cases occur when we go from a 1-stage to a 2-stage and from a
0-stage to a 1-stage. Consider the former case first. We assume that the weight-2
from the 1-stage occupies colors 0/1. There are also 4 weight-1 intervals that
conflict with the incoming weight-2. Notice that if we cannot color the weight-
2, it must be that each weight-1 is blocking colors 2/3, 4/5, 6/7, 8/9. Thus,
WLOG, we assume that these weight-1s are in colors 2, 4, 6, and 8. Then one of
the following cases must hold:

1. All weight-2 intervals seen so far are colored 0/1.
2. Let t be the ending time of the latest weight-2 that isn’t colored 0/1 (without

loss of generality, we’ll assume its colored 2/3). At least one of the colors 4
through 9 either have a weight-1 interval starting at t OR are unoccupied
between t and t + 1.

3. None of the colors 4 through 9 have a (weight-1) interval starting at t and
all are occupied between t and t + 1.

In the first case, where no weight-2’s have been colored 2 through 9, it is clear
that we can simply swap colors 3 and 4, then color the incoming weight-2 colors
4/5. Now consider the second case. Let the “culprit” color be the color that either
contains a weight-1 starting at t or is unoccupied at t. If the culprit color is either
4, 6 or 8, then we can swap that color with color 3 from time t onwards. This allows
us to assign the incoming weight-2 to the culprit color and its partner. If the culprit
color is 5, 7 or 9, then we can swap that color with color 2 from time t onwards.
This allows us to color the incoming weight-2 colors 2/3.

Let us consider the last case. Since just prior to time t, we had a weight-2,
this means that the stage immediately following time t cannot be a (-1)-stage.
In particular, there are 4 colors at time t that either have no assigned active
interval or have a weight-1 starting at t. Since case 2 doesn’t hold, it follows
that these four colors are 0,1,2 and 3. Moreover, since no two weight-2 intervals
share endpoints (by nestedness), color pair 0/1 cannot have an active weight-2
between times t − 1 and t. Thus, we can swap the contents of colors 0/1 with
those of colors 2/3 from time 0 up until t. The result is a coloring in which no
weight-2 appears in colors 3-10 after time t − 1. Thus, one of case 1, case 2 or
case 3 with t strictly earlier must hold. If case 3 holds, we can repeat this process
only finitely many times (at most B times) until case 1 or case 2 must hold.

Finally, let us check that we can color when going from a 0-stage to a 1-stage.
Note that there must be 6 weight-1 intervals intersecting the incoming weight-2
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Fig. 3. Example where aχ(G) = ω(G) + 2

interval. Collectively, these must block all color pairs. Thus, we assume that two
of these are in colors 0/1 and the others are colored 2,4,6,8. However, from this
point on, we can use the same argument as in the proof of going from a 1-stage
to a 2-stage (this proof did not rely on a weight-2 being in 0/1).

Thus, we can modify our coloring to accomodate all stages in the instance.
This proves that aχ(10) ≤ 12. Figure 3 gives a tight example showing aχ(8) ≥ 10
(which can be extended to show aχ(10) ≥ 12 by simply adding intervals).

To color, we do the following for each interval. We retrieve the available colors
and their last appearing weight-2 interval and swap some color assignments in
linear time. We repeat this process until we can place the interval. However, since
there are a linear number of timesteps, we can color a sub-instance in quadratic
time. Since we need only record the current color assignment, a linear amount
of space suffices. ��

Theorems 3, 4 and 5 give us a 4
3 -approximation for aligned coloring of general

interval graphs. This algorithm decomposes the graph into subgraphs and colors
each subgraph independently. Let ni be the size of subgraph i. Since we can color
each subgraph in time O(n2

i ) and space O(ni), it follows that our algorithm has
time complexity O(n2) and space complexity O(n).

4 Minimum Spillage

We now consider the Minimum Spillage Problem defined as follows:

Definition 2 (Minimum Spillage Problem). We are given a graph G =
(V, E) and a number of colors c. We wish to select a minimum cardinality set
V ′ ⊆ V and a c-coloring φ of the subgraph G[V − V ′] of G induced by V − V ′.
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We also consider the Aligned Spillage problem, which asks for a minimum car-
dinality set V ′ such that G[V − V ′] is aligned c-colorable. The aligned spillage
problem corresponds to the problem of minimizing the number of variables that
need to be “spilled” into memory such that the remaining variables can be as-
signed to the available registers. We note that the Minimum Spillage Problem
is complementary to the Maximum c-Colorable Subgraph problem.

4.1 Unaligned Spillage

For general graphs, unaligned spillage is NP-Complete since 0 spillage indicates
c-colorability (thus, solving the unaligned coloring problem). This also indicates
that a polynomial-time constant-factor approximation is unlikely to exist. How-
ever, given a tree decomposition of width τ , we can use dynamic programming
on this decomposition to exhaustively search all possible colorings and get a
O(nm(c + 1)τ+1)-time exact algorithm.

Unaligned spillage on chordal graphs is known to be NP-Hard [21]. However,
the reduction of [21] is not approximation-preserving and thus does not give a
bound on hardness of approximation. We offer an alternative reduction which es-
tablishes that unaligned spillage cannot be approximated to within a logarithmic
factor.

Theorem 6. The unaligned spillage problem is NP-complete even for chordal
graphs. There is no o(log |V |)-approximation unless NP ⊆ DPTIME(nO(log n)).

Proof. This can be shown via a simple approximation-preserving reduction from
set cover. Suppose we would like to solve a set cover instance with n elements
and m sets. We create a vertex for each of the m sets, and connect all of these
vertices into a clique. For each element x we create m + 1− δ(x) vertices, where
δ(x) is the number of sets containing x. We connect all of these vertices into a
clique. Additionally, we connect each of these vertices to the vertices representing
sets containing x. It is simple to check that this graph is chordal.

We now ask to color the graph with c = m colors. Suppose that we can
compute a partial coloring in polynomial time, which approximately minimizes
the number of spilled vertices. We observe that for any vertex representing an
element, that vertex and its neighbors form a clique of size exactly m + 1, from
which it follows that for every element, either one of the vertices representing
that element is spilled, or one of the vertices representing a set containing that
element is spilled. If a vertex representing an element is spilled, we can pick a set
containing that element and swap its color for the spilled vertex. This does not
increase the number of spilled vertices, and also cannot violate the validity of the
coloring. We conclude that we can find a partial coloring with the same number
of spilled vertices, where only set vertices are spilled, and for every element
one of the sets containing that element has a spilled vertex. Thus the spilled
vertices imply a set cover. Conversely, we can spill the vertices of any set cover
and get a valid coloring (color other vertices greedily). This approximation-
preserving reduction from set cover combined with [11] implies the hardness
results given. ��
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On a chordal graph, we can obtain a O(log |V |)-approximation by reducing
to a set multicover instance. Our elements are supernodes Xi of a tree decom-
position and our sets are {Xi | v ∈ Xi} for each v ∈ V . We now wish to find
a minimum collection of sets so that each element Xi is covered |Xi| − c times.
Alternately, we can use dynamic programming to obtain a O (cnm(τ + 1)c)-time
exact algorithm [21].

We can remove the dynamic program runtime’s dependence on τ by doing the
following: Fix α > 1. For each Xi in the tree decomposition with |Xi| ≥ αc, we
will spill all of Xi, then remove every vertex in Xi from the tree decomposition.
We repeat this process until all supernodes of the tree decomposition have weight
less than αc. At this point, we can use dynamic programming to find the best
coloring in O(nm(αc + 1)c)-time.

Theorem 7. The dynamic programming algorithm yields a α
α−1 -approximation.

Proof. Order the supernodes of the tree decomposition X1, . . . , Xp. Let I =
{i1, i2, . . . , iq} be the set of indices corresponding to the Xi that were declared
spilled. Let Nk =

⋃
j<k Xij and N∗

k be the set of nodes of Nk that were spilled
by the optimum solution. We would like to show that |N∗

q | ≥ α−1
α |Nq|. We prove

this by induction:
Clearly,

|N∗
1 | ≥ |X1| − c ≥ |X1|

(
1− 1

α

)
= |N1|

(
1− 1

α

)

where the second inequality follows from the fact that |X1| ≥ αc.
Now, assume that |N∗

j−1| ≥ α−1
α |Nj−1|. We know that since Xj was declared

spilled we have |Xj − Nj−1| ≥ αc which gives c ≤ |Xj−Nj−1|
α . By definition of

Nj , we also have Nj −Nj−1 = Xj −Nj−1. Then notice:

|N∗
j −N∗

j−1| ≥ |Xj −N∗
j−1| − c ≥ |Nj −Nj−1|

(
1− 1

α

)

Summing this with our inductive hypothesis gives us |N∗
j | ≥ |Nj|

(
1− 1

α

)
. ��

We note that unaligned spillage on interval graphs is polynomial-time solvable
by a standard greedy removal of intervals to get a clique index of c [21]. We
simply find the smallest time t during which more than c intervals are active,
remove the interval with latest endpoint and repeat the process.

4.2 Aligned Spillage

The dynamic programming algorithm for chordal graphs is faster than for gen-
eral graphs because we do not actually need to track the colorings, only the
set of spilled nodes. This will not work for aligned spillage, because in an
aligned chordal graph the number of colors needed can be greater than the
clique index. However, we can still apply the general spillage algorithm in time
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O(nm(c + 1)τ+1). We can make use of the technique of theorem 7 to obtain a
α

α−1 -approximation in time O(nm(c + 1)αc+1), an improvement if τ � c.
Alternately, we can produce a bicriterion approximation by first reducing the

clique number to c by spilling the minimum number of nodes (for an interval
graph) or log |V | times the minimum number of nodes (for a chordal graph), then
apply our approximation algorithms for aligned coloring. This yields (4

3 , 1) and
(3
2 , log |V |) approximations for interval and chordal graphs respectively, where

an (α, β) approximation implies that we color with αc colors while spilling at
most β times the number of nodes which optimum would have to spill in order
to color with c colors.

Acknowledgements. We would like to thank Professor Jens Palsberg and Dr.
Fernando Magno Quintão Pereira for introducing us to the Aligned Coloring
problem and for many useful discussions about register allocation.
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Abstract. We consider the unsplittable flow problem (UFP) and the
closely related column-restricted packing integer programs (CPIPs). In
UFP we are given an edge-capacitated graph G = (V, E) and k request
pairs R1, . . . , Rk, where each Ri consists of a source-destination pair
(si, ti), a demand di and a weight wi. The goal is to find a maximum
weight subset of requests that can be routed unsplittably in G. Most
previous work on UFP has focused on the no-bottleneck case in which the
maximum demand of the requests is at most the smallest edge capacity.
Inspired by the recent work of Bansal et al. [3] on UFP on a path without
the above assumption, we consider UFP on paths as well as trees. We
give a simple O(log n) approximation for UFP on trees when all weights
are identical; this yields an O(log2 n) approximation for the weighted
case. These are the first non-trivial approximations for UFP on trees. We
develop an LP relaxation for UFP on paths that has an integrality gap
of O(log2 n); previously there was no relaxation with o(n) gap. We also
consider UFP in general graphs and CPIPs without the no-bottleneck
assumption and obtain new and useful results.

1 Introduction

In the Unsplittable Flow Problem (hereafter, UFP), the input is a graph G(V, E)
(directed or undirected; in this paper, we chiefly focus on the latter case) with a
capacity ce on each edge e ∈ E, and a set R = {R1, R2, . . . Rk} of requests. Each
request Ri consists of a pair of vertices (si, ti), a demand di, and a weight/profit
wi. To route a request Ri is to send di units of flow along a single path (hence
the name unsplittable flow) in G from si to ti. The goal is to find a maximum-
profit set of requests that can be simultaneously routed without violating the
capacity constraints; that is, the total flow on an edge e should be at most ce.
A special case of UFP when di = 1 for all i and ce = 1 for all e is the clas-
sical maximum edge-disjoint path problem (MEDP). MEDP has been exten-
sively studied, and its approximability in directed graphs is better understood
— the best approximation ratio known is is O(min{

√
m, n2/3 log1/3 n)}) [20,33],

while it is NP-Hard to approximate to within a factor better than n1/2−ε [18];
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here n and m are the number of vertices and edges respectively in the input
graph. For undirected graphs there is a large gap between the known upper and
lower bounds on the approximation ratio: there is an O(

√
n)-approximation [13]

while the best known hardness factor is Ω(log
1
2−ε n) under the assumption that

NP �⊆ ZPTIME(nO(polylog(n))) [1]. Thus UFP is difficult in general graphs even
without the packing constraints imposed by varying demand values; one could
ask if UFP is harder to approximate than MEDP. Most of the work on UFP
has been on two special cases. One is the uniform capacity UFP (UCUFP) in
which ce = C for all e and the other is UFP with the no-bottleneck assumption
(UFP-NBA) where one assumes that maxi di ≤ mine ce. Note that UCUFP is
a special case of UFP-NBA. Kolliopoulos and Stein [22] showed, via grouping
and scaling techniques, that certain linear programming based approximation
algorithms for MEDP can be extended with only an extra constant factor loss to
UFP-NBA. This reduction holds even when one considers restricted families of
instances, say, those induced by planar graphs. See [15] for a precise definition of
when the reduction applies. In [7,30], a different randomized rounding approach
was used for UFP-NBA.

In this paper we are primarily interested in UFP instances that do not neces-
sarily satisfy the no-bottleneck assumption. UCUFP and UFP-NBA have many
applications and are of interest in themselves. However, the general UFP, due
to algorithmic difficulties, has received less attention. One can extend some re-
sults for MEDP and UFP-NBA to UFP by separately considering requests that
are within say a factor of 2 of each other; this geometric grouping incurs an
additional factor of log dmax/dmin in the approximation ratio, which could be
as large as a factor of n [18]. Azar and Regev showed that UFP in directed
graphs is Ω(n1−ε)-hard unless P = NP ; note that the hardness for UFP-NBA
is Ω(n1/2−ε) [18]. Chakrabarti et al. [12] observed that the natural LP relaxation
has Ω(n) integrality gap even when G is a path. In contrast, the integrality gap
for the path is O(1) for UFP-NBA [12,15]. One could argue that the integrality
gap of the natural LP has been the main bottleneck in addressing UFP.

This paper is inspired by the recent work of Bansal et al. [3] who gave an
O(log n) approximation for UFP on a path. Interestingly, this was the first non-
trivial approximation for this problem; previously there was a quasi-polynomial
time approximation scheme [4], provided the capacities and demands are quasi-
polynomially bounded in n. We note that UFP even on a single edge is NP-
Hard, since it is equivalent to the knapsack problem. UFP on a path has received
considerable attention, not only as an interesting special case of UFP, but also as
a problem that has direct applications to resource allocation where one can view
the path as modeling the availability of a resource over time. See [5,6,9,12,4,3] for
previous work related to UFP on a path. The algorithm in [3] is combinatorial
and bypasses the Ω(n) lower bound on the integrality gap of the natural LP. An
open problem raised in [3] is whether UFP on trees also has a poly-logarithmic
approximation. The difficulty of UFP on paths and trees is not because of routing
(there is a unique path between any two nodes) but entirely due to the difficulty
of choosing the subset to route. We note that this subset selection problem is easy
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on a path if di = 1 for all i (the natural LP is integral since the incidence matrix
is totally unimodular) while this special case is already NP-Hard (and APX-Hard
to approximate) on capacitated trees [17]. A constant factor approximation is
known for UFP-NBA on trees [15]. We prove the following theorem, answering
positively the question raised in [3].

Theorem 1. There is an O(log n) approximation for UFP on n-vertex trees
when all weights are equal. There is an O(log n ·min{log n, log k}) approximation
for arbitrary non-negative weights.

We borrow a crucial high-level idea from [3] of decomposing the given instance
into one in which the demands all intersect. We, however, deviate from their
approach of using dynamic programming for “large” demands which does not
(seem to) generalize from paths to trees; our algorithm for trees is significantly
simpler than the complex dynamic programming for the path used by [3]. We
show that for the unit-weight case, a greedy algorithm is a 2-approximation if all
requests go through a common vertex in the tree. This insight into the perfor-
mance of the greedy algorithm allows us to develop a new linear programming
relaxation for paths.

Theorem 2. There is a linear programming relaxation for UFP on the path that
has an integrality gap of O(log n·min{logn, log k}) and there is a polynomial time
algorithm that obtains a feasible O(1)-approximate solution to the relaxation.

The separation oracle for the exponential-sized relaxation we develop is non-
trivial. The integrality gap of the relaxation may very well be O(1); resolving this
is an interesting open problem. We underscore the novelty of our relaxation by
showing that some reasonable approaches to strengthening the natural relaxation
fail to improve the gap. In particular we show that the relaxation obtained
after applying t rounds of the Sherali-Adams lift-and-project scheme [29] to the
natural relaxation has a gap of Ω(n/t).

Column-Restricted Packing Integer Programs: UFP on paths and trees
are special cases of column-restricted packing integer programming problems
(CPIP). A packing integer program (PIP) is an optimization problem of the
form max{wx | Ax ≤ b, x ∈ {0, 1}n} where A is a non-negative matrix; we
use (A, w, b) to define a PIP. A CPIP has the additional restriction that all the
non-zero entries in each column of A are identical. It is easy to write UFP on
a tree as a CPIP (see Section 5 for formal details). The common coefficient of
each column is the “demand” of that column. UFP on general graphs can also
be related to CPIPs by using the path formulation and additional constraints
[22]. A 0-1 PIP is one in which all entries of A are in {0, 1}; note that it is
also a CPIP. 0-1 PIPs capture the maximum independent set problem (MIS)
as a special case and the strong inapproximability results for MIS [19] imply
that no n1−ε-approximation is possible for 0-1 PIPs unless P = NP ; here n is
the number of columns of A. However, an interesting question is the following.
Suppose a 0-1 PIP has a small integrality gap because A has some structural
properties. For example, if A is totally unimodular, then the integrality gap is
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1. What can be said about a CPIP that is derived from A? In other words, one
is asking how the “demand version” of a CPIP is related to its “unit-demand”
version (see [22,28,15]). A CPIP satisfies the no-bottleneck assumption (NBA)
if maxi,j Aij ≤ mini bi. Kolliopoulos and Stein [22] showed that for CPIPs that
satisfy the NBA, one can relate the integrality gap of a CPIP to the gap of its
underlying 0-1 PIP; there is only an extra constant factor. These ideas are what
allows one to relate UFP-NBA to MEDP.

As with UFP, we are interested in this paper in CPIPs where we do not make
the NBA assumption. As above, one could ask whether the integrality gap for
the demand version of CPIP can be related to its unit-demand version. (Here,
we refer to the “natural” relaxation in which one simply relaxes the integrality
constraints.) However, the gap example for UFP on the path shows that unlike
the no-bottleneck case, such a relationship is not possible. The unit-demand
version of UFP on the path has integrality gap 1 while the demand-version
has a gap of Ω(n). It is therefore natural to look for an intermediate case. In
particular, suppose we have a CPIP (A, w, b) such that maxj Aij ≤ (1− δ)bi for
each i; this corresponds to the assumption that each demand is at most (1− δ)
times the bottleneck capacity for that demand. We call such a CPIP a δ-bounded
CPIP. We informally state below a result that we obtain; the formal statement
can be found in Section 5.

The integrality gap of a δ-bounded CPIP is at most O(log(1/δ)/δ3) times the
integrality gap of its unit-demand version.

The proof of the above is not difficult and is based on the grouping and scaling
ideas of [22] with an additional trick. However, this has not been observed or
stated before and the corollary below was not known previously.

Corollary 1. For each fixed δ > 0, there is an O(log(1/δ)/δ3) approximation
for UFP on paths and trees if the demand of each request is at most (1−δ) times
the capacity of the edges on the unique path of the request.

One class of CPIPs that have been studied before are those in which the maxi-
mum number of non-zero entries in any column is at most L. Baveja and Srini-
vasan [7] showed that the integrality gap of such CPIPs is O(L) if A satisfies
the no-bottleneck assumption. In recent and independent work, Pritchard [25]
considered PIPs that have at most L non-zero entries per column, calling them
L-column-sparse PIPs, and gave an O(2LL2) approximation for them. We follow
his notation, but obtain a tighter bound by restricting our attention to L-sparse
CPIPs.

Theorem 3. There is an O(L)-approximation for L-sparse CPIPs via the nat-
ural LP relaxation, even without the no-bottleneck assumption. If w is the all 1’s
vector then a simple greedy algorithm gives an L-approximation to the integral
optimum (not necessarily with respect to the LP optimum).

As corollaries we obtain the following results. We refer to UFP in which the paths
for the routed requests have to contain at most L edges as L-bounded-UFP.
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Corollary 2. There is an O(L)-approximation for L-bounded-UFP in directed
graphs.

The demand-matching problem considered by Shepherd and Vetta [28] is an
instance of a 2-bounded CPIP and therefore we have.

Corollary 3. There is an O(1)-approximation for the demand-matching prob-
lem. Moreover, there is a 2-approximation for the cardinality version.

Note that [28] gives a 3.264 approximation for general graphs and a 3-
approximation for the cardinality version, both with respect to the LP optimum.
Our O(L) bound for L-bounded CPIPs has a larger constant factor since it does
not take the structure of the particular problem into account, however the al-
gorithm is quite simple. On the other hand, the greedy 2-approximation for the
cardinality case was not noticed in [28].

Due to space constraints, we omit most of the proofs. A full version of the
paper will be available on the authors’ websites.

Other Related Work and Discussion: UFP and MEDP are extensively stud-
ied and we refer the reader to [1,13,14,16,20,21] for various pointers on approx-
imation algorithms and hardness results. Schrijver [27] discusses known results
on exact algorithms in great detail. We focus on UFP on paths and trees and
have already pointed to the relevant literature. We mention some results on UFP
for the special case when wi = di. Kolman and Schiedeler [24] considered this
special case in directed graphs and obtained an O(

√
m)-approximation. Kolman

[23] extended the results in [33] for UCUFP to this special case. We note that
the Ω(n) integrality gap for the path [12] does not hold if wi = di. In a techni-
cal sense, one can reduce a UFP instance with wi = di to an instance in which
the ratio dmax/dmin is polynomially bounded. Two approximation techniques for
UFP-NBA are greedy algorithms [20,22,2] and randomized rounding of the multi-
commodity flow based LP relaxation [30,7,9,12]. These methods when dealing
with UFP-NBA classify demands as “large” (di ≥ dmax/2) and “small”. Large
demands can be reduced to uniform demands and handled by MEDP algorithms
(since dmax ≤ mine ce) and small demands behave well for randomized round-
ing. This classification does not apply for UFP. A simple observation we make is
that if we are interested in the cardinality problem then it is natural to consider
the greedy algorithm that gives preference to smaller demands; under various
conditions this gives a provably good algorithm. Another insight is that the ran-
domized rounding algorithm followed by alteration [31,12] has good behaviour
if we sort the demands in decreasing order of their size — this observation was
made in [12] but its implication for general UFP was not noticed. Finally, the
modification of the grouping and scaling ideas to handle δ-bounded demands is
again simple but has not been noticed before. Moreover, for UFP on paths and
trees one obtains constant factor algorithms for any fixed δ. We remark that
this result is not possible to derive from the randomized rounding and alteration
approach for paths (or trees) because the alteration approach needs to insert
requests based on left end point to take advantage of the path structure while
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one needs the requests to be sorted in decreasing demand value order to handle
the fact that we cannot separate small and large demands any more.

Strengthening LP relaxations by adding valid inequalities is a standard
methodology in mathematical programming. There are various generic as well as
problem specific approaches known. The knapsack problem plays an important
role since each linear constraint in a relaxation can be thought of inducing a
separate knapsack constraint. Knapsack cover inequalities [10] have been found
to be very useful in reducing the integrality gap of covering problems [10,25].
However, it is only recently that Bienstock [8], answering a question of Van Vyve
and Wolsey [32], developed an explicit system of inequalities for the knapsack
packing problem (the standard maximization problem) that yields an approxi-
mation scheme. Wolsey (as reported in [15]) raises the question of how multiple
knapsack constraints implied by the different linear constraints of a relaxation
interact since that is what ultimately determines the strength of the relaxation.
UFP on a path is perhaps a good test case for examining this question. The Ω(n)
gap example shows the need to consider multiple constraints simultaneously —
we hope that our formulation and its analysis is a step forward in tackling other
problems.

2 UFP on Trees

Recall that each request Ri consists of a pair of vertices si, ti, a demand di and
a profit/weight wi, and if selected, the entire di units of demand for this request
must be sent along a single path. When the input graph is a tree, there is a
unique path between each si and ti. For such instances, we refer to this unique
path Pi as being the request path for Ri.

The following flow-based LP relaxation is natural for UFP on trees: Here, xi

indicates whether flow is routed from si to ti.

max
∑k

i=1 wixi s.t.
∑

i: Pi	e dixi ≤ ce (∀e ∈ E(G))

xi ∈ [0, 1] (∀i ∈ {1, . . . , k})

This relaxation has an O(1) integrality gap for UFP-NBA on trees [15]. Unfor-
tunately, without NBA, the gap can be as large as Ω(n) even when the input
graph is a path, as shown in [12] (see Section 3). No relaxations with gap o(n)
were previously known, even for UFP on paths. The difficulty appeared to lie
in dealing with requests for which the demands are very close to the capacity
constraints; we confirm this intuition by proving Corollary 1 in Section 5: For
UFP on trees, if each di ≤ (1 − δ)mine∈Pi ce, the natural LP relaxation has
an integrality gap of O(poly(1/δ)). In Section 4, we show how to handle large
demands for UFP on paths by giving a new relaxation with an integrality gap
of O(log n ·min{logn, log k}).

In this section, we give a simple combinatorial algorithm that achieves an
O(log n ·min{logn, log k})-approximation for UFP on trees. We first obtain an
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O(log n) approximation for unit-profit instances of UFP on trees with n vertices.
To do this, we note that if all the request paths must pass through a common
vertex, a simple greedy algorithm achieves a 2-approximation.

Lemma 1. Consider unit profit instances of UFP on trees, for which there ex-
ists a vertex v such that all request paths pass through v. There exists a 2-
approximation algorithm for such instances.

Proof Sketch: We order the requests in increasing order according to their de-
mands. We consider the requests in this order and, if adding the current request
maintains feasibility, we add the request to our set. �

Lemma 2. There exists an O(log n)-approximation algorithm for unit profit in-
stances of UFP on trees.

Proof Sketch: It is well known that any n-vertex tree T has a vertex v, called
a center, such that each component of T \v has at most n/2 vertices. If many
request paths pass through the center v, we use Lemma 1 and are done; if not,
most paths are entirely contained in the subtrees (each of size at most n/2)
obtained after deleting v from T , and we can recurse. �

Theorem 1 now follows from Lemma 2 and Lemma 3 below, which is proved
using standard profit-scaling.

Lemma 3. Suppose there exists an r-approximation algorithm for unit profit
instances of UFP on a given graph. Then there exists an O(r min{log n, log k})-
approximation algorithm for arbitrary instances of UFP on the graph, where k
is the number of requests.

3 LP Relaxations for UFP on Paths

The following Linear Programming relaxation is natural for UFP on paths. There
is a variable xi for each request Ri to indicate whether it is selected, and the
constraints enforce that the total demand of selected requests on each edge is at
most its capacity.

Standard LP max
∑

i wixi

∑
i: e∈Pi

dixi ≤ ce (∀e ∈ E(G))
xi ∈ [0, 1] (∀i ∈ {1, . . . , k})

It is shown in [12] that the integrality gap of this LP relaxation is Θ(log dmax
dmin

)
where dmax and dmin are maxi di and mini di respectively. Unfortunately, this
gap can be as bad as Ω(n), as shown in the following example from [12]: the
input path has n edges with edge i having capacity 2i; request Ri is for 2i units of
capacity on edges i through n, and has profit 1. (See Fig. 1.) An integral solution
can only route a single request, for a profit of 1; however, setting xi = 1/2 for
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Fig. 1. An instance of UFP on paths with large integrality gap

each i is a feasible fractional solution to the LP, for a total profit of n/2. We
refer to this instance as the canonical integrality gap example.

Though an O(log n)-approximation algorithm for UFP on paths was given
in [3], no LP with an integrality gap of o(n) was known for this problem, and
obtaining such an LP has been an interesting open question. One could attempt
to write a configuration LP for the problem, or to consider strengthening the
natural LP, for instance, via the Sherali-Adams hierarchy of relaxations. We
remark that these relaxations also have feasible fractional solutions of profit Ω(n)
for the canonical integrality gap example. For both of the relaxations below, we
use Re to denote the set of requests passing through edge e.

A Configuration LP: In the configuration LP below, there is a variable xS,e for
each set S ⊆ Re if the total demand dS of the requests in S is at most the capacity
ce. Though this LP has an exponential number of variables, we can separate
over its dual, which has a polynomial number of variables and constraints that
are essentially equivalent to the knapsack problem (with polynomially bounded
profits, since we assume that the profits of the original instance are integers in
{1, . . . , k2}). However, the integrality gap of the configuration LP is also n/2, as
shown by the canonical example; set xi = 1/2 for each i, and for the jth edge
ej , set x{Rj},ej

= 1/2, and xSj ,ej = 1/2, where Sj = {1, . . . , j− 1}. (On edge e1,
set x∅,e1 = 1/2.)

Config LP max
∑

i wixi

∑
S: S⊆Re

xS,e = 1 (∀e ∈ E(G))
xi ≤

∑
S: S⊆Re

xS,e (∀i ∈ {1, . . . , k}, e ∈ Pi)
xS,e ≥ 0 (∀e ∈ E(G), S ⊆ Re, dS ≤ ce)

The Sherali-Adams hierarchy for the Standard LP: For a zero-one program-
ming problem, let P denote the feasible integer polytope, and P0 denote the
convex polytope of an LP relaxation for P . The Sherali-Adams Hierarchy [29]
is a sequence P0, P1, P2 . . . Pn = P of (successively tighter) relaxations of P . We
refer the reader to [29] for a more complete description of the Sherali-Adams
Hierarchy; here, we simply note that the integrality gap of Pt is Ω(n/t).

Theorem 4. After applying t rounds of the Sherali-Adams hierarchy to the re-
laxation Standard LP, the integrality gap of the LP obtained is Ω(n/t).
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The two preceding examples show that it is difficult to write an LP relaxation
with small integrality gap by only considering “local” constraints, which bound
the capacity used on each edge in isolation. A stronger LP needs to introduce
constraints that are more global in nature, taking into account that different
edges may prevent different subsets of requests from being routed.

4 A New Relaxation

We now describe a Linear Programming Relaxation for the UFP on paths with
an O(log2 n) integrality gap. Corollary 1 implies that Standard LP has small
integrality gap if the demand of each request is small compared to the capacity
constraints; recall that in the canonical example with integrality gap n/2, every
request, if routed, uses the entire capacity of the leftmost edge on its path. In the
new LP relaxation, we keep the previous constraints to handle “small” requests,
and introduce new rank constraints to deal with “big” requests.

For each request Ri, let the bottleneck for Ri be the edge in Pi with least
capacity. (If multiple edges have the same minimum capacity, let the bottleneck
be the leftmost edge.) Let S ⊆ R be the set of all requests R such that the
demand of R is smaller than (3/4) · c(e) where e is the bottleneck edge for R.
Let B = R\S denote the remaining (“big”) requests, and let Be denote the set
of requests R in B such that the path for R passes through edge e. For each
request Ri, we have a variable xi denoting whether this request is selected or
not. For each set B ⊆ B of big requests, let f(B) denote the maximum number of
requests in B that can be simultaneously routed without violating the capacity
constraints. For each set B of “big” requests that pass through a common edge,
we introduce a rank constraint which requires that the total extent to which
requests in B are selected by the LP must be at most the number of requests in
B that can be routed integrally.

UFP-LP max
∑

i wixi

∑
i: e∈Pi

dixi ≤ ce (∀e ∈ E(G)) [capacity constraints]∑
Ri∈B xi ≤ f(B) (∀e ∈ E(G), B ⊆ Be) [rank constraints]

xi ∈ [0, 1] (∀i ∈ {1, . . . , k})

The new constraints enforce a small integrality gap; we prove Theorem 5 in
Section 4.2. The upper bound on the integrality gap is not known to be tight;
the integrality gap could be O(log n) or even O(1).

Theorem 5. The LP relaxation UFP-LP has integrality gap
O(log n·min{log n, log k}) for instances of UFP on paths, where n is the
length of the path and k is the number of requests.

An interesting question is obtaining a separation oracle for UFP-LP, which has
an an exponential number of constraints. We describe an algorithm Separa-

tion Oracle and prove the following theorem in Section 4.1 below; together,
Theorems 5 and 6 imply Theorem 2.
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Theorem 6. Let x ∈ [0, 1]n and suppose there exists a set B ⊆ Be such that∑
Ri∈B xi > 18f(B). Then the algorithm Separation Oracle(e) returns a

violated constraint.

An approximate separation oracle such as the one guaranteed by Theorem 6 can
be used to find an approximate solution to UFP-LP; this follows for a large
class of packing and covering problems (see [11]); we omit details.

One can write a relaxation similar to UFP-LP for UFP on trees; though it
has small integrality gap, we do not know a separation oracle as in Theorem 6.

4.1 A Separation Oracle

We now describe an approximate separation oracle for UFP-LP. We can obvi-
ously check in polynomial time whether there exists a capacity constraint that is
violated (and return such a constraint if one exists). Therefore we may assume
that all the capacity constraints are satisfied and hence we can safely ignore the
requests in S. We give an algorithm to detect a violated rank constraint at edge
e if some rank constraint at e is violated by a factor of at least 18. We first
introduce some notation:

We define x(S) =
∑

Ri∈S xi. Let Bleft(e) ⊆ Be be the set of requests Ri such
that the bottleneck for Ri is to the left of edge e, and Bright(e) be the set of
requests Ri with bottleneck to the right of e. (If the bottleneck for Ri ∈ Be is
edge e, Ri can be added to either Bleft(e) or Bright(e).)

Let left(e) denote the set of edges to the left of e, together with edge e, and
let right(e) be the set of edges to the right of e (again including e). For requests
Ri, Rj both in Bleft(e) (respectively, both in Bright(e)) we say that Ri blocks Rj

if there is an edge e′ ∈ left(e) (respectively, right(e)) such that di + dj > ce′ and
both Pi and Pj pass through e′.

Separation Oracle(edge e):
for each request Ri ∈ Bleft(e)

let S = {Ri} ∪ {Rj|Rj ∈ Bleft(e), dj > di, Ri blocks Rj}
if x(S) > 1

return S 〈〈f(S) = 1 by construction〉〉

for each request Ri ∈ Bright(e)
let S = {Ri} ∪ {Rj|Rj ∈ Bright(e), dj > di, Ri blocks Rj}
if x(S) > 1

return S 〈〈f(S) = 1 by construction〉〉

Lemma 4. For any set S returned by Separation Oracle, f(S) = 1.

Thus, if this algorithm returns a set S ⊆ Be, the constraint corresponding to S
and e is violated, as x(S) > 1. To prove Theorem 6, it remains only to show
that if constraints are sufficiently violated, the algorithm will always return some
set S corresponding to a violated constraint. The proof is somewhat involved,
though the outline is simple: Given a set B ⊆ Be such that x(B) > 18f(B), we
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show the existence of a set S ⊆ B with “simpler” structure, such that f(S) = 1
and x(S) > 1; that is, S is a violated set. The structure of S is such that the
algorithm Separation Oracle(e) can find it.

Given an edge e and a set S′ ⊆ Be, we say that S′ is feasible on the left
(respectively, on the right), if all requests in S′ can be routed simultaneously
without exceeding the capacity of any edge in left(e) (respectively, right(e)). For
any set S ⊆ Be, let f�(S) denote the maximum size subset of S that is feasible
on the left and fr(S) denote the maximum size subset of S that is feasible on
the right. (Equivalently, f�(S) is f(S) in the instance obtained by truncating all
requests at the right endpoint of e.)

Lemma 5. If there exists a set B ⊆ Be such that x(B) > αf(B), there exists
a set B′ ⊆ Bleft(e) such that x(B′) > α

2 f�(B′) or a set B′′ ⊆ Bright(e) such that
x(B′′) > α

2 fr(B′′).

By symmetry, we assume w.l.o.g. that there exists B′ ⊆ Bleft(e) such that
x(B′) > (α/2)f�(B′). For brevity, we complete the proof of Theorem 6 by only
stating the remaining lemmas for the “left” side.

Lemma 6. If there exists a set S′ ⊆ Bleft(e) such that f�(S′) = 1 and x(S′) > 1,
the algorithm Separation Oracle returns such a set.

The previous two lemmas show that: (a) If there is a constraint violated by a
factor α, there is one violated by a factor of α/2 either “on the left” or “on the
right”, and (b) If there is a constraint corresponding to set S′ violated on the
left (or on the right) such that f�(S′) (or fr(S′)) = 1, the algorithm detects it.
To complete the proof of Theorem 6, our final lemma shows that if there is a
constraint violated on the left by a large factor, there is a violated constraint
corresponding to a set S′ such that f�(S′) = 1.

Lemma 7. If there exists a set B ⊆ Bleft(e) such that x(B) > βf�(B) for some
β > 9, there exists a set S′ ⊆ B such that f�(S′) = 1 and x(S′) > 1.

4.2 Bounding the Integrality Gap

Given an fractional solution to the LP of profit OPT, we show how to round
it to obtain an integral solution of comparable profit. For any set S of requests,
we define profit(S) as

∑
Ri∈S wixi. We round “small” and “big” jobs separately;

note that one of profit(S) or profit(B) is at least OPT/2. If profit(S) ≥ OPT/2
then one obtains from Corollary 1 that there is an integral solution of value
Ω(OPT); recall that for each request Ri ∈ S, we have di ≤ (3/4)mine∈Pi ce.

The difficulty in bounding the integrality gap of LPs has been in dealing with
the “big” requests. However, the new rank constraints allow one to overcome this.
The proof essentially follows the combinatorial algorithm from Section 2. We
apply the same arguments as in Section 2, now with respect to the LP solution
instead of an integral optimum solution, to reduce the problem to an intersecting
instance with unit weights; this loses an O(log n min{log n, log k}) factor. For an
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intersecting instance with unit weights, the rank constraints trivially show that
the LP optimum is equal to the integral optimum. We omit further details. This
completes the proof of Theorem 5.

5 UFP and Column-Restricted Packing Integer Programs

In this section, we consider a class of packing problems, so-called Column-
Restricted Packing Integer Programs (hereafter, CPIPs), introduced by Kol-
liopoulos and Stein [22]. Let A be an arbitrary m × n {0, 1} matrix, and d be
an n-element vector with dj denoting the jth entry in d. Let A[d] denote the
matrix obtained by multiplying every entry of column j in A by dj . A CPIP
is a problem of the form maxwx, subject to A[d]x ≤ b, x ∈ {0, 1}n, for some
integer vectors w, d, b.1 (Intuitively, a CPIP is a 0-1 packing program in which
all non-zero coefficients of a variable xj are the same.) It is easy to see that the
natural LP for UFP in paths and trees is a CPIP.

CPIPs were studied in [22,15], and it was shown that the integrality gap
of a CPIP with maxj dj ≤ mini bi is at most a constant factor more than the
integrality gap of the corresponding “unit-demand” version; we explain this more
formally below, using the notation introduced by [15].

Let P be a convex body in [0, 1]n and w ∈ Rn be an objective vector; for
any choice of P, w, we obtain a maximization problem max{wx : x ∈ P}. Let γ
denote the fractional optimum value of this program, and γ∗ denote the optimum
integral value, which is given by max wx over all integer vectors x ∈ P . The
integrality gap of P is γ/γ∗, the ratio between the value of the optimal fractional
and integral solutions. A class P of integer programs is given by problems induced
by pairs P, w as above; the integrality gap for a class of problems P is the
supremum of integrality gaps for each problem in P .

We say that a collection of vectors W ⊆ Zn is closed if for each w ∈ W ,
replacing any entry wi with 0 gives a vector w′ ∈ W . Subsequently, for each
m × n matrix A and closed collection of vectors W in Zn, we use P(A, W ) to
denote the class of problems of the form max{wx : Ax ≤ b, x ∈ [0, 1]n}, where
w ∈W and b is a vector in Zm

+ . We let Pdem(A, W ) denote the class of problems
of the form max{wx : A[d]x ≤ b, x ∈ [0, 1]n} where w ∈ W, b ∈ Zm

+ , d ∈ Zn
+.

Finally, we use Pdem
nba (A, W ) to denote the class of problems of the same form that

satisfy maxj dj ≤ mini bi. For UFP, the condition maxj dj ≤ mini bi corresponds
to the no-nottleneck assumption.

Using techniques introduced in [22], the following theorem was proved in [15]:

Theorem 7 ([15]). Let A be a {0, 1} matrix and W be a closed collection of
vectors. If the integrality gap for the collection of problems P(A, W ) is at most
Γ , then the integrality gap for the collection of problems Pdem

nba (A, W ) is at most
11.542Γ ≤ 12Γ .

The above theorem is used in [15] to give an O(1)-approximation for UFP-NBA
on trees. Unfortunately, the analogous theorem is not true for Pdem(A, W ), as
1 If vectors w, d, b are rational, we can scale them as necessary.
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shown by the canonical integrality gap example for the UFP linear program
Standard LP. In this section, we note that if there exists δ < 1 such that for
each i, we have maxj Aijdj ≤ (1 − δ)bi, we can obtain an analogous theorem,
with integrality gap depending on δ. More precisely, let Pdem

δ (A, W ) denote the
class of problems of the form max{wx : A[d]x ≤ b, x ∈ [0, 1]n} where w ∈ W, b ∈
Zm

+ , d ∈ Zn
+, and ∀i, maxj Aijdj ≤ (1− δ)bi.

Theorem 8. Let A be a {0, 1} matrix and W be a closed collection of vectors. If
the integrality gap for P(A, W ) is at most Γ , the integrality gap for Pdem

δ (A, W )
is at most O( log(1/δ)

δ3 · Γ ).

Thus, we obtain Corollary 1 as a special case of Theorem 8.

6 Concluding Remarks

Is there an O(1)-approximation for UFP on paths, and more generally on trees?
Is the integrality gap of UFP-LP O(1)? Is there an LP relaxation for UFP on
trees with poly-logarithmic integrality gap?

We recently obtained an O(L2)-approximation ratio and integrality gap bound
for L-sparse PIPs using the iterated rounding idea of Pritchard [25]; this improves
his bound of O(2LL2). Can the bound be improved to O(L), matching the lower
bound on the integrality gap?
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Abstract. An important research thread in algorithmic game theory studies the
design of efficient truthful mechanisms that approximate the optimal social wel-
fare. A fundamental question is whether an α-approximation algorithm translates
into an α-approximate truthful mechanism. It is well-known that plugging an α-
approximation algorithm into the VCG technique may not yield a truthful mech-
anism. Thus, it is natural to investigate properties of approximation algorithms
that enable their use in truthful mechanisms.

The main contribution of this paper is to identify a useful and natural property
of approximation algorithms, which we call loser-independence; this property is
applicable in the single-minded and single-parameter settings. Intuitively, a loser-
independent algorithm does not change its outcome when the bid of a losing
agent increases, unless that agent becomes a winner. We demonstrate that loser-
independent algorithms can be employed as sub-procedures in a greedy iterative
packing approach while preserving monotonicity. A greedy iterative approach
provides a good approximation in the context of maximizing a non-decreasing
submodular function subject to independence constraints. Our framework gives
rise to truthful approximation mechanisms for various problems. Notably, some
problems arise in online mechanism design.

1 Introduction

Algorithmic aspects of mechanism design have become an important area of research
in recent years. A central research theme focuses on the design of efficient mechanisms
for algorithmic problems in strategic settings. These mechanisms must take into account
both standard computational efficiency considerations and strategic behavior of the par-
ticipants. The latter goal commonly correlates with the development of truthful mech-
anisms, namely, mechanisms that are robust against manipulation by the participants.
The primary technique of mechanism design, i.e., VCG mechanisms [17, 25, 41], is
known to be truthful for optimizing social welfare. Unfortunately, implementing VCG is
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computationally intractable in many (even simple) settings of interest since the underly-
ing optimization problem that needs to solved is NP-Hard. An important research thread
in algorithmic game theory, starting with the work of Nisan and Ronen [37], focussed
on designing efficient truthful mechanisms that approximate the optimal social welfare.
A fundamental question is whether an α-approximation algorithm translates into an α-
approximate truthful mechanism. It is well-known that plugging an α-approximation
algorithm into the VCG mechanism may not yield a truthful mechanism [31, 38]. Thus,
it is natural to investigate properties of approximation algorithms that enable their use
in truthful mechanisms.

The problem of combinatorial auctions has gained the status of the paradigmatic
problem in the field of algorithmic mechanism design. For a detailed overview, see [11].
In the context of single-minded agents, Lehmann, O’Callaghan and Shoham [31] estab-
lished that an approximation algorithm can support a truthful mechanism if it satis-
fies a monotonicity property. Consequently, monotone approximation algorithms and
techniques have been developed for various combinatorial optimization problems that
underlie special cases of combinatorial auctions such as multi-unit auctions [12, 34].
One interesting set of techniques, devised by Mu’alem and Nisan [34], enables one to
combine approximation algorithms while preserving monotonicity. In particular, they
identified a special case of monotonicity, which they name bitonicity, and demonstrated
that bitonic algorithms may be combined via the “max” operation.

1.1 Our Results

The main contribution of this paper is to identify a useful and natural property of
approximation algorithms, which we name loser-independence. Intuitively, a loser-
independent algorithm does not change its outcome when the bid of a losing agent
increases, unless that agent becomes a winner. We demonstrate that loser-independent
algorithms can be employed as sub-procedures in a greedy iterative packing approach
while preserving monotonicity. A greedy iterative approach provides good approxi-
mation in the context of maximizing a non-decreasing submodular function subject
to independence constraints such as matroid constraints [22, 24, 35]. There are vari-
ous interesting problems that can be cast as special instances of this family (see, e.g.,
[13, 42]). We note that our loser-independence property is somewhat orthogonal to the
notion of composability presented by Aggarwal and Hartline [1]. Intuitively, a compos-
able algorithm does not change its outcome when the bid of a winning agent varies
above its critical winning bid. Moreover, combining our property with the composabil-
ity property yields, in the current setting, the stability condition suggested by Dobzinski
and Sundararajan [19]. This condition states that if the bid of an agent changes but its
allocation stays the same then the allocations to all other agents also do not change.

Our framework gives rise to efficient truthful approximation mechanisms for sev-
eral problems. Notably, some of these problems arise in online mechanism design. We
view the framework and the identification of the loser-independence property as the
key contribution, and hence, we focus on those rather than the improvements for spe-
cific problems. We illustrate the applicability of the framework by briefly outlining two
representative results that we derive.
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An offline setting. A truthful (2 + ε)-approximate mechanism for the multiple knap-
sack problem (MKP) among single-minded agents. This result improves and general-
izes a 6-approximation mechanism for a special case of MKP among single-parameter
agents [4]. In addition, we show that an almost identical mechanism attains an approx-
imation ratio of 2 + ε for the generalized assignment problem (GAP) among single-
parameter agents. This is the first non-trivial approximate truthful mechanism for this
problem when the number of knapsacks is part of the input; a monotone PTAS exists
for this problem when the number of knapsacks is a fixed constant [12].

An online setting. A truthful 2-competitive mechanism for the online problem of
dynamic auction with expiring items. This mechanism is essentially identical to the
mechanism devised by Hajiaghayi et al. [27]. Furthermore, we achieve a truthful (2+ε)-
competitive mechanism for the generalization of the problem in which the underlying
auction in each time-slot is a multi-item auction among single-minded agents rather
than a single-item auction.

1.2 Related Work

It is widely known that many common techniques that are broadly used by approxima-
tion algorithms cannot be used in a strategic setting since they violate certain mono-
tonicity properties which are imperative for truthfulness. Correspondingly, recent years
have seen an ever-growing line of work addressing the development of monotone al-
gorithmic alternatives. Mu’alem and Nisan [34] seem to have been the first to pay
attention to this issue. They presented sufficient conditions for composing monotone
algorithms via two basic operators, namely “max” and “if-then-else”. Briest, Krysta
and Vöcking [12] devised a general approach to transform a pseudo-polynomial algo-
rithm into a monotone FPTAS, and demonstrated that primal-dual greedy algorithms
may be used to derive truthful mechanisms. Lavi and Swamy [30] designed a general
technique to convert approximation algorithms in packing domains to randomized ap-
proximation mechanisms that are truthful in expectation. Babaioff, Lavi and Pavlov [8]
presented a method that translates any given algorithm to a truthful mechanism in sin-
gle parameter domains. However, their method degrades the performance guarantee of
the resulting mechanism by a factor of O(logρ), where ρ denotes the ratio between the
largest and smallest valuations. Recently, Azar and Gamzu [4] presented a monotone
partition framework for approximating packing integer programs.

Focusing on the previously-mentioned representative problems from a purely algo-
rithmic point of view, MKP is known to admit a PTAS by the work of Chekuri and
Khanna [14], while GAP is known to be approximable within a factor that is slightly
better than e/(e− 1) ≈ 1.582 by the work of Feige and Vondrák [21]. The dynamic auc-
tion with expiring items problem is equivalent to online scheduling of unit-length jobs
on a single machine to maximize weighted throughput. The best known deterministic
online algorithm for this problem has a competitive ratio of about 1.828 [20] (see also
[32]), while it is known that no deterministic online algorithm can achieve a competi-
tive ratio better than φ ≈ 1.618 [2, 16, 26]. Turning to the randomized setting, the best
online algorithm attains a ratio of e/(e − 1) [9, 15], while it is known that no online
algorithm can attain a ratio better than 1.25 [16]. This problem can be solved optimally
in the offline setting.
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2 The General Setting

In this section, we study the truthfulness properties of an iterative packing approach
for a general class of maximizing assignment problems with packing constraints. We
illustrate our ideas by restricting attention to the separable assignment problem [23].
In Section 4, we discuss our approach in the context of maximizing a non-decreasing
submodular function subject to independence constraints. Note that the separable as-
signment problem is an instance of maximizing a non-decreasing submodular function
over a partition matroid [13, 23].

An instance of the single-parameter variant of the separable assignment problem
consists of a collection B of m bins and a set U of n items. Each bin j ∈ B has a
separable independence system I j ⊆ 2U , representing the subsets of items that may be
packed in that bin1. Each item i ∈ U has a positive value vi, which is gained by assigning
the item to one of the bins. The objective is to find a maximum value subset of items
S ⊆ U, along with an assignment of these items to the bins, so that all the items in S
can be simultaneously placed in their designated bins, while preserving the constraints
induced by the independence systems. In particular, the set of items assigned to bin j,
namely, S j, must satisfy S j ∈ I j. In the game theoretic version of this problem there
are n strategic single parameter agents, each of which controls an item, and may be
untruthful about its value.

We consider the following iterative packing approach for approximately solving the
mentioned problem: assume the existence of an α-approximation oracle for the single
bin sub-problem, and build a solution by iteratively packing each of the bins (without
backtracking) using the oracle. More precisely, the single bin sub-problem correspond-
ing to bin j is to find a maximum value subset S j that satisfies S j ∈ I j, and the iterative
packing approach utilizes the approximation oracle to generate a packing S 1 ⊆ U for
the first bin, then it is used to generate a packing S 2 ⊆ U \ S 1 for the second bin,
and so on. In what follows, we investigate the truthfulness properties of the iterative
packing approach. Specifically, we focus on the approximation oracle, and establish a
sufficient condition which guarantees that the iterative approach will lead to a monotone
algorithm, and hence, a truthful mechanism.

2.1 Preliminaries

We introduce some notation and terminology that will be used throughout the paper, and
describe a characterization that links monotone algorithms with truthful mechanisms.
The reader is encouraged to refer to [11, 36] for a more comprehensive overview of the
underlying concepts.

We will mainly concentrate on two types of agents: single-parameter and single-
minded. Single-parameter agents have private data that consists of a single number,
namely, their value. Single-minded agents [12, 31] have private data which consists of

1 An independence system I ⊆ 2U is a family of subsets that is downward closed, that is, A ∈
I and B ⊆ A implies that B ∈ I. Note that the packing constraints are implicit from the
independence systems which guarantee that if some subset of items is feasible for a bin then
any subset of it is also feasible.
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a pair (o, v), where o is an object that the agent is interested in and v is the valuation of
the agent for attaining o. Remark that the interpretation of the object o depends on the
problem at hand. For example, an object may represent a bandwidth demand of an agent
(as in network routing), and it might stand for a set of items that an agent wants (as in
combinatorial auctions). The valuation function of an agent whose data is (o, v) is a step
function with respect to o. Specifically, if the agent obtains the object o or any object that
extends it then its valuation is v; otherwise, its valuation is 0. We use the notation õ � o
to indicate that object o extends object õ. Again, the interpretation of the term extension
depends on the problem at hand. For instance, if the object õ represents bandwidth
demand then the object o extends it if it represents a higher bandwidth demand, and if
the object õ stands for a set of items then the object o extends it if it stands for a superset
of the items.

We now present the notion of monotonicity for single-minded agents, and then turn
to describe a characterization that reduces the goal of designing truthful mechanisms to
that of designing monotone algorithms. Note that similar definitions can be made for
single-parameter agents by refining the monotonicity property and the characterization
theorem. Specifically, both of them need to be defined only with respect to the value of
every agent, and the objects-related terms need to be cast off. We say that an agent is a
selected if it is assigned the object o or any object that extends it.

Definition 1. An algorithm A is said to be monotone with respect to the bid of an
agent if it satisfies the following property: if algorithmA selects the agent when its bid
is (o, v) then it selects the agent when its bid is (õ, ṽ), where õ � o and ṽ ≥ v, and the
bids of all the other agents are fixed.

Theorem 2. ([12]) If algorithm A is monotone with respect to the bid of every agent
then there exists a corresponding truthful mechanism which can be efficiently computed
using algorithmA.

2.2 A Motivating Example

Let us consider the single-parameter variant of MKP. This problem is a special case of
the separable assignment problem, where the single bin sub-problem is the knapsack
problem. Specifically, an instance of the multiple knapsack problem (MKP) consists
of a collection B of m bins, and a set U of n items. Each bin j ∈ B has a capacity
W j, and each item i ∈ U is characterized by a pair (wi, vi), where wi is the size of the
item and vi is its positive value. The goal is to select a maximum value subset of items
S ⊆ U, along with an assignment of these items to the bins, so that all the items in S
can be simultaneously placed in their designated bins while preserving the capacities
of the bins. Note that the single bin sub-problem that corresponds to bin j is to find a
maximum value subset of items whose overall size does not exceed W j.

We focus on algorithm MaxGreedy, formally described below, which approximately
solves the knapsack problem. This algorithm initially computes two assignments: one
based on a greedy approach with respect to the values of the items, and another based on
a greedy approach with respect to the profit density ratio of the items, that is, a value to
size ratio. Then, it returns the assignment having maximum value. This algorithm was
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considered by Mu’alem and Nisan [34], who proved that it is monotone with respect
to the value, and that it achieves 2-approximation. Due to its monotone properties, it
may seem natural to use this algorithm as the single bin approximation oracle in the
iterative approach attending to MKP. Unfortunately, as the following theorem states,
the resulting iterative algorithm fails to be monotone.

Algorithm 1. MaxGreedy
Input: A set of items U, and the capacity of the bin W
Output: A set of items S to be assigned to the bin

1: U1 ← U, U2 ← U, S 1 ← ∅, S 2 ← ∅
2: while U1 � ∅ do
3: remove the item i that has a maximum value from U1

4: if
∑
�∈S 1

w� + wi ≤ W then add i to S 1

5: end while

6: while U2 � ∅ do
7: remove the item i that has a maximum profit density from U2

8: if
∑
�∈S 2

w� + wi ≤ W then add i to S 2

9: end while

10: return the maximum value allocation between S 1 and S 2

Theorem 3. The iterative packing approach that employs algorithm MaxGreedy as the
single bin approximation oracle is not monotone.

It is worth noting that algorithm MaxGreedy is not only monotone, but also bitonic
with respect to the value [34]. Informally, an algorithm is bitonic if its outcome value as
a function of the value of any single agent i has the pattern that it does not increase as
long as agent i is not selected, and it does not decrease as long as agent i is selected. This
implies that both monotonicity and bitonicity of the single bin oracle are not sufficient
to ensure the monotonicity of the corresponding iterative packing approach.

2.3 A Sufficient Condition

In the following, we establish a sufficient condition for the single bin approximation
oracle. This condition guarantees that the iterative packing approach, which employs
the oracle as the single bin sub-procedure, will satisfy monotonicity. We present the
condition for single-minded agents, and an analogous condition for single-parameter
agents can be derived in a similar manner.

We briefly motivate the sufficient condition by using the algorithm and the MKP in-
stance described in the previous subsection. Recall that monotonicity guarantees that if
a selected agent improves its bid then it continues to be selected. In particular, the mono-
tonicity of algorithm MaxGreedy implies that if an agent that is selected for the first bin
increases its value then it continues to be selected for that bin. However, the key diffi-
culty appears when we consider an agent that was selected in a later bin, say the second
one. In this case, when that agent increases its value then (from the perspective of the
first bin) it is like a non-selected agent increases its value. Consequently, no guarantees
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can be made with respect to the assignment generated for the first bin. As a result, the
agent that increased its value may compete against a different set of agents for the second
bin, and may not be selected. One way to deal with this difficulty is to restrict the set of
algorithms that may be employed by the iterative packing approach to those that are loser-
independent, as formally defined below. Intuitively, a loser-independent algorithm does
not disturb an assignment when the value of a losing agent increases, unless that agent be-
comes a winner. Note that this requirement is satisfied by an optimal (1-approximation)
algorithm.

Definition 4. An algorithmA is said to be loser-independent with respect to the bid of
an agent if it satisfies the following property: if algorithmA generates the solution a in
which the agent is not selected when its bid is (o, v) then algorithmA either generates
the same solution a or selects the agent when its bid is (õ, ṽ), where õ � o and ṽ ≥ v,
and the bids of all the other agents are fixed.

Theorem 5. If algorithmA is loser-independent and monotone with respect to the bid
of every agent then the iterative packing approach, which employs it as the single bin
oracle, is monotone with respect to the bid of every agent.

2.4 Applications

The domain of problems for which the mentioned characterization is useful is broad.
Essentially, one may take any single-minded or single-parameter version of a social
welfare maximization packing problem π, and design a new “multiple” variant of this
problem via the separable assignment problem paradigm. In what follows, we demon-
strate the applicability of the characterization by utilizing it in the context of sev-
eral well-known or highly-motivated problems. Note that the characterization reduces
the task of designing a monotone algorithm for the “multiple” variant of π to that of
designing a loser-independent and monotone algorithm for π.

We begin by pointing out two known approximation properties of the iterative pack-
ing approach. We will utilize these properties when analyzing the approximation ratio
of the iterative approach for problems under consideration. The first property states that
given an α-approximation oracle for the single bin sub-problem of the separable as-
signment problem, the iterative packing approach has an approximation ratio of at most
α + 1 [13, 22, 24]. The second property pertains to the special case of the separable
assignment problem in which all the separable independence systems are identical, that
is, I1 = · · · = Im. In this case, it is known that given an α-approximation oracle for the
single bin sub-problem, the iterative packing approach achieves approximation ratio of
at most e1/α/(e1/α − 1) [24, 35]. Note that these properties are additional motivation for
our use of the iterative packing approach as they show that the approximation ratio of
the iterative approach for the “multiple” variant problem degrades by constants with
respect to that of the single bin oracle.

The multiple knapsack and generalized assignment problems. In the following, we
consider the single-minded variant of MKP, and the single-parameter variant of the
GAP. Both problems are special cases of the separable assignment problem, where the
single bin sub-problem is the knapsack problem. The single-minded variant of MKP
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generalizes the single-parameter variant presented in Subsection 2.2 by allowing each
agent i to be dishonest about the pair (wi, vi), that is, it may by untruthful about both
the size and the value of the corresponding item. The single-parameter variant of the
generalized assignment problem (GAP) extends the single-parameter variant of MKP
by characterizing each item i with a pair (wi, vi), where wi is a vector of length m that
represents the size that item i occupies in each of the bins, and vi is its positive value.
Note that the private data of agent i consists only of the value vi, while the vector wi is
public knowledge.

We demonstrate the utility of the new condition via these problems. We begin by de-
signing a relatively simple 2-approximate algorithm for the knapsack problem that may
be utilized as the single bin oracle. It is instructive to measure our algorithm against
algorithm MaxGreedy as our algorithm is loser-independent. Algorithm HalfGreedy,
formally described below, begins by computing two assignments: one which consists
only of the maximum value item, and another that is based on a greedy approach with
respect to the profit density ratio. Note that profit density greedy approach in our algo-
rithm has three key differences from the profit density greedy approach applied by algo-
rithm MaxGreedy. The first is that it only considers small items, namely, items whose
size is no more than half the capacity of the bin; the second is that it stops adding items
to the assignment once their overall size is at least half of the capacity of the bin; and
the third is that it defines the value of the assignment, marked by V2, to be the overall
value of the items that fill exactly half of the capacity of the bin (unless the overall size
of all small items is less than that). Particularly, in the former case, only a portion of
the value of the last item included in the assignment is taken into account. This portion
corresponds to the portion of the size of the item contained before the half-way mark
of the bin. Note that V2 is a lower bound on the overall value of the items in the profit
density greedy assignment. Then, the algorithm returns the assignment corresponding
to a greater assignment value.2

Theorem 6. Algorithm HalfGreedy achieves 2-approximation and maintains mono-
tonicity and loser-independence with respect to the bid of every agent.

Theorem 6, Theorem 5 and the previously mentioned approximation properties imply
the following corollary.

Corollary 7. There is a truthful 3-approximation mechanism for MKP among single-
minded agents. This mechanism attains an approximation ratio of e1/2/(e1/2 − 1) ≈
2.541 when bin capacities are identical. Moreover, there is a truthful 3-approximation
mechanism for GAP among single-parameter agents.

As we are interested in better performance guarantees, we turn to study the monotone
FPTAS for the knapsack problem, developed by Briest, Krysta and Vöcking [12]. We
prove that this algorithm is loser-independent, and thus, may be employed by an itera-
tive packing approach.

2 There are high-level similarities between algorithm HalfGreedy and algorithm AK of [1];
however, the properties for which the algorithms designed for are quite different. We thank
Tim Roughgarden for pointing out [1].
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Algorithm 2. HalfGreedy
Input: A set of items U, and the capacity of the bin W
Output: A set of items S to be assigned to the bin

1: U1 ← U, U2 ← {i ∈ U : wi ≤ W/2}, S 1 ← ∅, S 2 ← ∅
2: let S 1 be the singleton set that consists of the maximum value item of U1

3: let V1 be the value of the single item in S 1

4: while
(∑
�∈S 2

w� < W/2 and U2 � ∅) do
5: remove the item i that has a maximum profit density from U2

6: add i to S 2

7: end while
8: let i1, . . . , ik be the items selected to S 2 according to their inspection order.
9: let V2 =

∑k−1
�=1 vi� + vik/wik ·min{wik ,W/2 −

∑k−1
�=1 wi� }

10: if V1 ≥ V2 then return S 1 else return S 2

Theorem 8. There is an FPTAS for the knapsack problem that maintains monotonicity
and loser-independence with respect to the bid of every agent.

Corollary 9. There is a truthful (2 + ε)-approximation mechanism for MKP among
single-minded agents. This mechanism attains an approximation ratio of e/(e − 1) +
ε ≈ 1.582 when bin capacities are identical. In addition, there is a truthful (2 + ε)-
approximation mechanism for GAP among single-parameter agents.

Additional applications. In what follows, we briefly list several additional packing
problems whose “multiple” variant can be solved by exploiting the characterization. In
particular, we identify the corresponding loser-independent algorithms.

Combinatorial auctions. The multi-unit combinatorial auction problem (see, e.g., [3,
10]) is a natural generalization of the celebrated combinatorial auction problem in
which each good has several copies. One may interpret the “multiple” variant of this
problem as adding group constraints to the basic problem. Specifically, in this variant,
each good is associated with a group, and goods from different groups cannot be used
to form a bundle satisfying an agent. One can demonstrate that the algorithm for single-
minded combinatorial auction [31], and the algorithms for the single-minded multi-unit
version [5, 12] maintain loser-independence.

The single value combinatorial auction problem is a special case of the combinatorial
auction problem in which the valuation of each agent is represented by a single value.
Particularly, each (multi-minded) agent is interested in several different bundles, but ob-
tains the same value from any non-zero outcome. It is clear that our characterization
is not applicable since the agents are multi-minded. Still, if the agents are known, that
is, all their data besides their values is publicly known, then one can establish that the
characterization is still suitable. Essentially, this follows from the observation that truth-
fulness in known agents setting reduces to value monotonicity. Similarly to before, one
may interpret the “multiple” variant of this problem as adding group constraints to the
basic problem, and may prove that the algorithm for single value combinatorial auction
among known multi-minded agents [7] maintains loser-independence.
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Advertisement space auctions. The theme of selling advertisement space on a news-
paper page can be modelled by packing convex figures in a plane. One may interpret
the “multiple” variant of this problem as increasing the advertisement space to sev-
eral pages, and may demonstrate that the algorithms presented in [6] maintain loser-
independence.

Network routing. The task of routing in networks is commonly modelled using the un-
splittable flow problem. One may interpret the “multiple” variant of this problem as
adding wavelength constraints to the basic problem. These constraints prevent serv-
ing requests across different wavelengths. One can verify that the algorithms presented
in [5, 12] maintain loser-independence.

3 The Online Setting

In this section, we extend our results for an online environment in which agents arrive
and leave dynamically over time and there is uncertainty about the set of decisions to
be made in the future. We illustrate our ideas by considering the online version of the
separable assignment problem. In this variant, bins are aligned with discrete time slots,
and items arrive and depart dynamically. In particular, an item is not known prior to its
arrival and cannot be assigned after its departure. The goal is to generate a maximum
value assignment of items to bins in an online fashion. Specifically, any assigned item
must be packed in a bin that corresponds to a time slot between its arrival and departure
times. In the game theoretic version of this problem, each agent controls an item, and
may be untruthful about its value, arrival time, and departure time. In adherence with
previous results in an online setting [27, 40], we assume no early-arrival and no late-
departure misreports. That is, agents cannot report an arrival time earlier than their
true arrival time or a departure time later than their true departure time. Note that Lavi
and Nisan [29] considered the special case of separable assignment problem in which
any bin can only accommodate a single item, and proved that it is impossible to attain
bounded competitive ratio without restricting the misreports.

Our approach to solve this online variant is identical to before. Namely, we assume
the existence of an α-approximation oracle for the single bin sub-problem, and build a
solution by iteratively employing it to generate an assignment for each of the bins. No-
tice that a single bin oracle optimizes with respect to a current state of agents and does
not take into account the global system-wide view, and hence, if bins are considered
according to their time order then the iterative approach constitute an online algorithm.

3.1 A Sufficient Condition

In what follows, we reformulate the sufficient condition for the single bin approxima-
tion oracle, exhibited in Subsection 2.3, for online environments. We begin by present-
ing revised definitions of single-minded agents and monotonicity for an online setting.
Remark that the forthcoming definitions can be refined for single-parameter agents in
a similar manner to before. Additionally, we encourage the reader to refer to [39] for a
more detailed overview of online mechanisms.
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The private data of single-minded agent in an online setting consists of a quadruple
(o, v, a, d), where o is an object that the agent is interested in, v is the valuation of the agent
for attaining o, and a and d are the arrival and departure times of the agent, respectively.

Definition 10. An online algorithm A is said to be monotone with respect to the bid
of an agent if it satisfies the following property: if algorithmA selects the agent when
its bid is (o, v, a, d) then algorithmA selects the agent when its bid is (õ, ṽ, ã, d̃), where
õ � o, ṽ ≥ v, ã ≤ a and d̃ ≥ d, and the bids of all the other agents are fixed.

Theorem 11. ([39]) If online algorithmA is monotone with respect to the bid of every
agent then there exists a corresponding truthful mechanism which can be computed
using algorithmA.

We are ready to prove that an online iterative packing approach, which employs a mono-
tone and loser-independent oracle as the single bin sub-procedure, satisfies monotonic-
ity. Note that the monotonicity and loser-independence of the oracle are with respect to
the non-temporal part of the bid, that is, the object-value pair (o, v).

Theorem 12. If algorithm A is loser-independent and monotone with respect to the
non-temporal bid of every agent then the online iterative packing approach, which em-
ploys it as the single bin oracle, is monotone with respect to the bid of every agent.

3.2 Applications

Similarly to the offline setting, the domain of problems for which the mentioned char-
acterization is useful is broad. Basically, one may take any single-minded or single-
parameter version of a social welfare maximization packing problem, and design an
online variant of this problem via the online separable assignment problem paradigm.
Several straightforward examples are the problems presented in Subsection 2.4. Note
that the online iterative packing approach achieves a competitive ratio of at most α + 1,
assuming an α-approximation oracle for the single bin sub-problem. This claim can be
established by using nearly identical arguments to the ones used to prove the corre-
sponding offline claim.

An additional interesting application is the problem of dynamic auction with expir-
ing items. This problem is a special case of the online separable assignment problem,
where the single bin sub-problem is a single-item auction. An instance of this problem
consists of a collection of unit-capacity bins, each associated with a distinct time-slot.
An additional ingredient of the input is an online sequence of unit-size items, each of
which is characterized by a triple (v, a, d), where v is its positive value, a is its arrival
time, and d is its departure time. The objective is to generate a maximum value assign-
ment of items to bins in an online fashion. In particular, this assignment should place at
most one item in each bin, and each assigned item must be placed in a bin that corre-
sponds to a time slot between its arrival and departure times. Focusing on the single bin
sub-problem, one can notice that it admits a trivial optimal algorithm which places the
most valuable item in a bin. As previously mentioned, any optimal algorithm is mono-
tone and loser-independent. Hence, the characterization and the claimed approximation
property imply the following corollary.

Corollary 13. There is a truthful 2-competitive mechanism for dynamic auction with
expiring items among single-parameter agents.



Truthful Mechanisms via Greedy Iterative Packing 67

Interestingly, this simple online iterative packing algorithm is identical to the algorithm
presented by Hajiaghayi et al. [27], and it is best possible [18, 27]. Specifically, no
deterministic truthful mechanism can obtain a competitive ratio better than 2. A natural
generalization of this problem can be obtained by replacing the single bin sub-problem
of single-item auction with multi-item auction. We refer to this problem as dynamic
auction with expiring multi-items. It is well-known that the combinatorial optimization
problem that underlie multi-unit auction among single-minded agents is the knapsack
problem. In correspondence with previous results, we yield the following corollary.

Corollary 14. There is a truthful (2 + ε)-competitive mechanism for dynamic auction
with expiring multi-items among single-minded agents.

4 Additional Applications via Submodular Function Maximization

As mentioned before, the greedy iterative approach provides good approximation in the
broad context of maximizing a non-decreasing submodular function subject to inde-
pendence constraints. More formally, let f : 2N → R+ be a non-decreasing submodular
function on a finite ground set N, and let (N,I) be an independence family. In other
words, I ⊆ 2N is a family of subsets that is downward closed, that is, A ∈ I and B ⊆ A
imply B ∈ I. The optimization problem is then maxS∈I f (S ). Interesting independence
families are matroids, intersection of a small number k of matroids, and somewhat more
general notions such as k-independence and k-extendible systems (see [13, 28, 33]). The
greedy approach is then simple; start with an empty set, and incrementally build a solu-
tion by greedily adding an element that (approximately) improves the current solution
the most while maintaining its independence. It is known that the greedy approach gives
a (kα+1)-approximation for the above problem if there is an α-approximation for pick-
ing the element that most improves the current solution [22] (see [13, 24] for recent and
more easily available proofs).

When the underlying optimization problem of mechanism design, in particular the
winner determination problem, can be cast as a special case of submodular function
maximization subject to independence constraints, one may be able to use the greedy
approach. In this case, if the (approximation) algorithm employed by the greedy incre-
mental step is monotone and loser-independent then one can show that the overall greedy
approach is monotone. We remark that the greedy approach here is somewhat different
from the one presented in Section 2 for separable assignment problems; for the latter
case, we employed a local greedy approach which considers the bins according to an
arbitrary ordering and packs each bin with the approximate best solution. However, a
global greedy approach would have considered all empty bins in each step and then pack
the bin that most improves the solution. We note that the local greedy approach works for
partition matroids [22], and is essential for the applications in online settings. Still, more
general independence constraints requires the global greedy approach. As we remarked,
loser-independence is still applicable. We give a concrete application to illustrate it.

Consider MKP (or GAP), and suppose we add a constraint that at most m′ < m
of the bins can be used in the packing. The resulting optimization problem becomes a
submodular function maximization problem subject to a laminar matroid constraint (as
observed in [13]). In this setting, the global greedy approach needs to pick in each step
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the best bin to pack by trying all remaining bins. One can easily extend Theorem 5 to
this setting, and prove that if the single bin algorithm is monotone and loser-independent
then the greedy approach is monotone. We hope that additional applications to mecha-
nism design problems will be found by using the above high-level approach.

Acknowledgments. The authors thank Yossi Azar, Jason Hartline, Tim Roughgarden
and Jan Vondrák for useful discussions and comments on topics related to this paper.
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Abstract. Given a set J of jobs, where each job j is associated with re-
lease date rj , deadline dj and processing time pj , our goal is to schedule
all jobs using the minimum possible number of machines. Scheduling a
job j requires selecting an interval of length pj between its release date
and deadline, and assigning it to a machine, with the restriction that
each machine executes at most one job at any given time. This is one
of the basic settings in the resource-minimization job scheduling, and
the classical randomized rounding technique of Raghavan and Thomp-
son provides an O(log n/ log log n)-approximation for it. This result has
been recently improved to an O(

√
log n)-approximation, and moreover

an efficient algorithm for scheduling all jobs on O((OPT)2) machines has
been shown. We build on this prior work to obtain a constant factor
approximation algorithm for the problem.

1 Introduction

In one of the basic scheduling frameworks, the input consists of a set J of jobs,
and each job j ∈ J is associated with a subset I(j) of time intervals, during which
it can be executed. The sets I(j) of intervals can either be given explicitly (in this
case we say we have a discrete input), or implicitly by specifying the release date
rj , the deadline dj and the processing time pj of each job (continuous input).
In the latter case, I(j) is the set of all time intervals of length pj contained in
the time window [rj , dj ]. A schedule of a subset J ′ ⊆ J of jobs assigns each
job j ∈ J ′ to one of the time intervals I ∈ I(j), during which j is executed. In
addition to selecting a time interval, each job is also assigned to a machine, with
the restriction that all jobs assigned to a single machine must be executed on
non-overlapping time intervals.

In this paper we focus on the Machine Minimization problem, where the goal
is to schedule all the jobs, while minimizing the total number of machines used.
We refer to the discrete and the continuous versions of the problem as Discrete
and Continuous Machine Minimization, respectively. Both versions admit an
O(log n/ log logn)-approximation via the Randomized LP-Rounding technique
of Raghavan and Thompson [8], and this is the best currently known approxi-
mation for Discrete Machine Minimization. Chuzhoy and Naor [7] have shown
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that the discrete version is Ω(log logn)-hard to approximate. Better approxima-
tion algorithms are known for Continuous Machine Minimization: an O(

√
logn)-

approximation algorithm was shown by Chuzhoy et. al. [6], who also obtain
better performance guarantees when the optimal solution cost is small. Specifi-
cally, they give an efficient algorithm for scheduling all jobs on O(k2) machines,
where k is the number of machines used by the optimal solution. In this paper
we improve their result by showing a constant factor approximation algorithm
for Continuous Machine Minimization. Combined with the lower bound of [6],
our result proves a separation between the discrete and the continuous versions
of Machine Minimization.

Related Work. A problem that can be seen as dual to Machine Minimization
is Throughput Maximization, where the goal is to maximize the number of jobs
scheduled on a single machine. This problem has an

(
e

e−1 + ε
)
-approximation

for any constant ε, in both the discrete and the continuous settings [5]. The
discrete version is MAX-SNP hard even when each job has only two inter-
vals [9] (i.e., |I(j)| = 2 for all j), while no hardness of approximation results
are known for the continuous version. In the more general weighted setting of
Throughput Maximization, each job j is associated with weight wj , and the
goal is to maximize the total weight of scheduled jobs. The best current approx-
imation factor for this problem is 2 for both the discrete and the continuous
versions [2].

A natural generalization of Throughput Maximization is the Resource Allocation
problem, where each job j is also associated with height (or bandwidth) hj . The
goal is again to maximize the total weight of scheduled jobs, but now the jobs are
allowed to overlap in time, as long as the total height of all jobs executed at each
time point does not exceed 1. For the weighted variant of this problem, Bar-Noy
et. al. [3] show a factor 5-approximation, while the unweighted version can be
approximated up to factor (2e − 1)/(e − 1) + ε for any constant ε [5]. For the
special case of Resource Allocation where each job has exactly one time interval
(i.e., |I(j)| = 1 for all j), Calinescu et. al. [4] show a factor (2+ε)-approximation
for any ε, and Bansal et. al. [1] give a Quasi-PTAS.

Our Results and Techniques. We show a constant factor approximation al-
gorithm for Continuous Machine Minimization. Our algorithm builds on the
work of Chuzhoy et. al. [6]. Since the basic linear programming relaxation for
the problem is known to have an Ω(log n/ log logn) integrality gap, [6] design a
stronger recursive linear programming relaxation for the problem. The solution
of this LP involves dynamic programming, where each entry of the dynamic pro-
gramming table is computed by solving the LP relaxation on the corresponding
sub-instance. Using the LP solution, [6] then partition the input set J of jobs into
k = �OPT� subsets, J1, . . . , Jk. They show that each subset J i can be scheduled
on O(ki) machines, where ki is the total number of machines used to schedule
all jobs in J i by the fractional solution. Since in the worst case ki can be as large
as k for all i, they eventually use O(k2) machines to schedule all jobs.
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We perform a similar partition of jobs into subsets. One of our main ideas is
to define, for each job class J i, a function fi(t), whose value is the total frac-
tional weight of intervals of jobs in J i containing time point t. We then find
a schedule for each job class J i, with at most O(�fi(t)�) jobs being scheduled
at each time point t. The algorithm for finding the schedule itself is similar
to that of [6], but more work is needed to adapt their algorithm to this new
setting.

2 Preliminaries

In the Continuous Machine Minimization problem the input consists of a set J
of jobs, and each job j ∈ J is associated with a release date rj , a deadline dj

and a processing time pj . The goal is to schedule all jobs, while minimizing the
number of machines used. In order to schedule a job j, we need to choose a time
interval I ⊆ [rj , dj ] of length pj during which job j will be executed, and to
assign the job to one of the machines. The chosen intervals of jobs assigned to
any particular machine must be non-overlapping.

We denote by I(j) the set of all time intervals of job j, so I(j) contains all
intervals of length pj contained in the time window [rj , dj ]. For convenience we
will assume that these intervals are open. If I ∈ I(j), then we say that interval
I belongs to job j. Notice that |I(j)| may be exponential in the input length.
Given any solution, if interval I is chosen for job j, we say that j is scheduled
on interval I, and for each t ∈ I we say that j is scheduled at time t. We de-
note by T the smallest time interval containing all the input job intervals, and
denote by OPT both the optimal solution and its cost. We refer to the time
interval [rj , dj ] as the time window of job j. We will use the following simple
observation.

Claim. Let S be a set of intervals containing exactly one interval I ∈ I(j) for
each job j ∈ J . Moreover, assume that for each t ∈ T , the total number of
intervals in S containing t is at most k. Then all jobs in J can be scheduled on
k machines, and moreover, given S, such a schedule can be found efficiently.

Proof. Consider the interval graph defined by set S. The size of the maximum
clique in this graph is at most k, and therefore it can be efficiently colored by k
colors. Each color will correspond to a distinct machine. �

Our goal is therefore to select a time interval I ∈ I(j) for each job j, while
minimizing the maximum number of jobs scheduled at any time point t.

The Linear Programming Relaxation. We now describe the linear program-
ming relaxation of [6], which is also used by our approximation algorithm. We
start with the following basic linear programming relaxation for the problem.
For each job j ∈ J , for each interval I ∈ I(j), we have an indicator variable
x(I, j) for scheduling job j on interval I. We require that each job is scheduled



Resource Minimization Job Scheduling 73

on at least one interval, and that the total number of jobs scheduled at each
time point t ∈ T is at most z, the value of the objective function.

(LP1) min z

s.t.
∑

I∈I(j) x(I, j) = 1 ∀j ∈ J
∑

j∈J

∑
I∈I(j):

t∈I
x(I, j) ≤ z ∀t ∈ T

x(I, j) ≥ 0 ∀j ∈ J, ∀I ∈ I(j)

It is well-known however that the integrality gap of (LP1) is Ω
(

log n
log log n

)
(e.g.

see [6]). To overcome this barrier, Chuzhoy et. al. [6] propose a stronger relax-
ation for the problem. Consider first the special case where the optimal solution
uses only one machine, that is, OPT = 1. Let I ∈ I(j) be some job interval,
and suppose there is another job j′ 
= j, whose entire time window [rj′ , dj′ ]
is contained in I. Then interval I is called forbidden interval for job j. Since
OPT = 1, job j cannot be scheduled on interval I. Therefore, we can add the
valid constraint x(I, j) = 0 to the LP for all jobs j and intervals I, where I is
a forbidden interval for job j. Chuzhoy et. al. show an LP-rounding algorithm
for this stronger LP relaxation that schedules all jobs on a constant number of
machines for this special case of the problem.

When the optimal solution uses more than one machine, constraints of the
form x(I, j) = 0, where I is a forbidden interval for job j, are no longer valid.
Instead, [6] define a function m(T ) for each time interval T ⊆ T , whose intuitive
meaning is as follows. Let J(T ) be the set of jobs whose time window is com-
pletely contained in T . Then m(T ) is the minimum number of machines needed
to schedule jobs in J(T ). Formally, m(T ) = �z�, where z is the optimal solution
of the following linear program:

(LP(T)) min z

s.t.
∑

I∈I(j) x(I, j) = 1 ∀j ∈ J(T )
∑

j∈J(T )
∑

I∈I(j):
t∈I

x(I, j) ≤ z ∀t ∈ T (1)
∑

j∈J(T )
∑

I∈I(j):
T ′⊆I

x(I, j) ≤ z −m(T ′) ∀T ′ ⊆ T (2)

x(I, j) ≥ 0 ∀j ∈ J(T ), ∀I ∈ I(j)

Observe that for integral solutions, where x(I, j) ∈ {0, 1} for all j ∈ J, I ∈ I(j),
the valuem(T ) is precisely the number of machines needed to schedule all jobs in
J(T ). Constraint (2) requires that for each time interval T ′ ⊆ T , the total number
of jobs scheduled on intervals containing T ′ is at most m(T )−m(T ′). This is a
valid constraint, since at least m(T ′) machines are needed to schedule all jobs
in J(T ′). Therefore, �OPT(T )� ≤ OPT. Notice that the number of constraints
in LP (T ) may be exponential in the input size. This difficulty is overcome in [6]
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as follows. First they define, for each job j ∈ J a new discrete subset I ′(j) of
time intervals, with |I′(j)| = poly(n). Sets I ′(j) of intervals for j ∈ J define a
new instance of Discrete Machine Minimization, whose optimal solution cost is
at most 3 OPT. Moreover, any solution for the new instance implies a feasible
solution for the original instance of the same cost. Next they define the set
D ⊆ T of time points, consisting of all release dates and deadlines of jobs in J ,
and all endpoints of intervals in {I ′(j)}j∈J . Clearly, the size of D is polynomially
bounded. Finally they modify LP (T ), so that Constraint (1) is only defined for
t ∈ D and Constraint (2) is only applied to time intervals T with both endpoints
in D. The new LP relaxation can be solved in polynomial time and its solution
cost is denoted by OPT′. We are guaranteed that

⌈
OPT′⌉ ≤ 3 OPT. Moreover,

any feasible solution to the new LP implies a feasible solution to the original LP.
From now on we will denote by x this near-optimal fractional solution, and by
OPT′(T ) its value,

⌈
OPT′(T )

⌉
≤ 3 OPT. For each job j ∈ J , let I∗(j) ⊆ I(j)

be the subset of intervals I for which x(I, j) > 0. For any interval I ∈ I∗(j), we
call x(I, j) the LP-weight of I.

3 The Algorithm

Our algorithm starts by defining a recursive partition of the time line into blocks.
This recursive partition in turn defines a partition of the jobs into job classes
J1, J2, . . . Our algorithm then defines, for each job class J i, a function fi : T →
R, where fi(t) is the summation of values x(I, j) over all jobs j ∈ J i and intervals
I ∈ I(j) containing t. We then consider each of the job classes J i separately, and
show an efficient algorithm for scheduling jobs in J i so that at most O(�fi(t)�)
jobs of J i are executed at each time point t ∈ T .

3.1 Partition into Blocks and Job Classes

Let T be any time interval, and let B be any set of disjoint sub-intervals of T .
Then we say that B defines a partition of T into blocks, and each interval B ∈ B
is referred to as a block. Notice that we do not require that the union of the
intervals in B is T .

Let k = �m(T )� be the cost of the near-optimal fractional solution. We define
a recursive partition of the time interval T into blocks. We use a partitioning
sub-routine, that receives as input a time interval T and a set J(T ) of jobs whose
time windows are contained in T . The output of the procedure is a partition B
of T into blocks. This partition in turn defines a partition of the set J(T ) of jobs,
as follows. For each B ∈ B, we have a set JB ⊆ J(T ) of jobs whose time window
is contained in B, so JB = {j ∈ J(T ) | [rj , dj ] ⊆ B}. Let J ′′ = ∪B∈BJB, and let
J ′ = J(T ) \ J ′′. Notice that J ′ ∪̇ (

⋃̇
B∈BJB) is indeed a partition of J(T ), and

that for each j ∈ J ′, rj and dj lie in distinct blocks. The partitioning procedure
will also guarantee the following properties: (i) For each job j ∈ J ′, each interval
I ∈ I∗(j) has a non-empty intersection with at most two blocks; and (ii) For
each B ∈ B, there is a job j ∈ J ′ and a job interval I ∈ I∗(j), with B ⊆ I.
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A partitioning procedure with the above properties is provided in [6]. For the
sake of completeness we briefly sketch it here. Let T = [L,R]. We start with
t = L and B = ∅. Given a current time point t, the next block B = (�, r) is
defined as follows. If there is any job j ∈ J(T ) with a time interval I ∈ I∗(j)
containing t, we set the left endpoint of our block to be � = t. Otherwise, we
set it to be the first (i.e., the leftmost) time point t for which such a job and
such an interval exist. To define the right endpoint of the block, we consider
the set S of all job intervals with non-zero LP-weight containing �, so S =
{I | � ∈ I and ∃j ∈ J(T ) : I ∈ I∗(j)}. Among all intervals in S, let I∗ be the
interval with rightmost right endpoint. We then set r to be the right endpoint
of I∗. Block B = (�, r) is then added to B, we set t = r and continue.

We are now ready to describe our recursive partitioning procedure. We have
k iterations. Iteration h, for 1 ≤ h ≤ k, produces a partition Bh of T into blocks,
refining the partition Bh−1. Additionally, we produce a partition of the set J of
jobs into k classes J1, . . . , Jk. In the first iteration, we apply the partitioning
procedure to time interval T and the set J of jobs. We set B1 to be the partition
into blocks produced by the procedure. We denote the corresponding partition of
the jobs as follows: J1 = J ′, and for all B ∈ B1, we denote JB by J1

B. In general,
to obtain partition Bh, we run the partitioning algorithm on each of the blocks
B ∈ Bh−1, together with the associated subset Jh−1

B of jobs. For each block
B ∈ Bh−1, we denote by BB the new block partition and by Jh−1

B = (J ′
B, J

′′
B)

the new job partition computed by the partitioning procedure. We then set
Bh =

⋃
B∈Bh−1 BB, Jh =

⋃
B∈Bh−1 J ′

B , and for each block B′ ∈ Bh, let Jh
B′

denote the subset of jobs in Jh−1, whose time windows are contained in B′. This
finishes the description of the recursive partitioning procedure. An important
property, established in the next claim, is that every job is assigned to one of
the k classes J1, . . . , Jk. Due to lack of space the proof is omitted.

Claim. J = J1 ∪ · · · ∪ Jk.

We have thus obtained a recursive partition B1, . . . ,Bk of T into blocks, and a
partition J =

⋃k
h=1 J

h of jobs into classes. For simplicity we denote B0 = {T }.
The algorithm of [6] can now be described as follows. Consider the set Jh of

jobs, for 1 ≤ h ≤ k, together with the partition Bh−1 of T into blocks. Recall
that for each block B ∈ Bh−1, Jh−1

B is the subset of jobs whose time windows are
contained in B, and Jh ⊆

⋃
B∈Bh−1 J

h−1
B . Consider now some block B ∈ Bh−1

and the corresponding subset J̃ = Jh ∩ Jh−1
B . Let B′ = BB be the partition

of B into blocks returned by the partitioning procedure when computing Bh.
This partition has the property that each interval I ∈ I∗(j) of each job j ∈ J̃
has a non-empty intersection with at most two blocks in B′, and furthermore
for each j ∈ J̃ , the window of j is not contained in any single block B ∈ B′.
These two properties are used in [6] to extend a simpler algorithm for the special
case where OPT = 1 to the more general setting, where an arbitrary number of
machines is used. In particular, if OPTh is the fractional number of machines
used to schedule jobs in Jh (i.e., OPTh is the maximum value, over time points
t, of

∑
j∈Jh

∑
I∈I(j):t∈I x(I, j)), then all jobs in Jh can be efficiently scheduled
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on O(�OPTh�) machines. In the worst case, OPTh can be as large as OPT for
all h : 1 ≤ h ≤ k, and so overall O(k2) machines are used in the algorithm of [6].

In this paper, we refine this algorithm and its analysis as follows. For each
h : 1 ≤ h ≤ k, we define a function fh : T → R, where fh(t) is the total
fractional weight of intervals containing t that belong to jobs in Jh. Clearly, for
all t,

∑
h fh(t) ≤ k. We then consider each one of the job classes Jh separately.

For each job class Jh we find a schedule for jobs in Jh, such that for each time
point t ∈ T , at most O(�fh(t)�) jobs are scheduled on intervals containing t. The
algorithm for scheduling jobs in Jh and its analysis are similar to those in [6].
We partition all jobs in Jh into a constant number of subsets, according to the
way the fractional weight is distributed on their intervals. We then schedule each
one of the subsets separately. The analysis is similar to that of [6], but does not
follow immediately from their work. In particular, more care is needed in the
analysis of the subsets of jobs j that have substantial LP-weight on intervals
lying inside blocks to which rj or dj belong.

We now proceed to describe our algorithm more formally. For each job class
Jh : 1 ≤ h ≤ k, let fh : T → R be defined as follows. For each t ∈ T ,
fh(t) =

∑
j∈Jh

∑
I∈I(j):

t∈I
x(I, j). Our goal is to prove the following theorem:

Theorem 1. For each job class Jh : 1 ≤ h ≤ k, we can efficiently schedule jobs
in Jh so that, for each time point t ∈ T , at most O(�fh(t)�) jobs are scheduled
on intervals containing t.

We prove the theorem in the next section. We show here that a constant fac-
tor approximation algorithm for Continuous Machine Minimization follows from
Theorem 1. For each time point t ∈ T , the total number of jobs scheduled
on intervals containing point t is at most

∑
hO(�fh(t)�). Since

∑
h fh(t) ≤ k,

∑k
h=1 �fh(t)� ≤ 2k, and so the solution cost is O(k).

3.2 Proof of Theorem 1

Consider a job class Jh and the block partition Bh−1. For each block B ∈ Bh−1,
let J∗

B = Jh−1
B ∩Jh be the set of jobs whose windows are contained in B, and so

Jh =
⋃

B∈Bh−1 J∗
B . Clearly, for blocks B 
= B′, the windows of jobs in J∗

B and J∗
B′

are completely disjoint, and therefore they can be considered separately. From
now on we focus on scheduling jobs in J∗

B inside a specific block B ∈ Bh−1. For
simplicity, we denote J∗ = J∗

B, and B∗ is the partition of B into blocks obtained
when computing Bh. Recall that we have the following properties: (i) For each
job j ∈ J∗, rj and dj lie in distinct blocks of B∗; and (ii) For each job j ∈ J∗,
each interval I ∈ I∗(j) has a non-empty intersection with at most two blocks.

For each t ∈ B, let g(t) = �fh(t)�. Observe that g(t) is a step function. Our
goal is to schedule all jobs in Jh so that, for each t ∈ B, at most O(g(t)) jobs are
scheduled on intervals containing t. The rest of the algorithm consists of three
steps. In the first step, we partition the area “below” the function g(t) into a
set R of rectangles of height 1. In the second step we assign each job interval
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I ∈ I∗(j) for j ∈ J∗ to one of the rectangles R ∈ R, such that the total LP-
weight of intervals assigned to R at each time point t ∈ R is at most 5. In the
third step, we partition all jobs in J∗ into 7 types, and find a schedule for each
one of the types separately. The assignment of job intervals to rectangles found
in Step 2 will help us find the final schedule.

Step 1: Defining Rectangles. A rectangle R is defined by a time interval
W (R), and we think of R as the interval W (R) of height 1. We say that time
point t belongs to R iff t ∈ W (R) and we say that interval I is contained in R
iff I ⊆W (R). We denote by �R and rR the left and the right endpoints of W (R)
respectively. We find a nested set R of rectangles, such that for each t ∈ T , the
total number of rectangles containing t is exactly g(t).

To compute the set R of rectangles, we maintain a function g′ : B → Z.
Initially g′(t) = g(t) for all t and R = ∅. While there is a time point t ∈ B with
g′(t) > 0, we perform the following: Let I be the longest consecutive sub-interval
of B with g′(t) ≥ 1 for all t ∈ I. We add a rectangle R of height 1 withW (R) = I
to R and decrease the value g′(t) for all t ∈ I by 1. Consider the final set R of
rectangles. For each t ∈ B, let R(t) ⊆ R be the subset of rectangles containing
the point t. Then for each t ∈ B, |R(t)| = g(t). Furthermore, it is easy to see
that R is a nested set of rectangles, and for every pair R,R′ ∈ R of rectangles
with non-empty intersection, either W (R) ⊆ W (R′) or W (R′) ⊆ W (R) holds.
Notice also that a rectangle R ∈ R may contain several blocks or be contained
in a block. Its endpoints also do not necessarily coincide with block boundaries.

Step 2: Assigning Job Intervals to Rectangles. We start by partitioning
the set R of rectangles into k layers as follows. The first layer L1 contains all
rectangles R ∈ R that are not contained in any other rectangle in R. In general
layer Lz contains all rectangles R ∈ R \ (L1 ∪ · · ·Lz−1) that are not contained
in any other rectangle in R\ (L1∪· · ·Lz−1) (if we have identical rectangles then
at most one of them is added to each layer, breaking ties arbitrarily). Since R is
a nested set of rectangles, each R ∈ R belongs to one of the layers L1, . . . , Lk,
and the rectangles in each layer are disjoint.

Let I = {I ∈ I∗(j) | j ∈ J∗} be the set of all intervals of jobs in J∗ with non-
zero weight. For I ∈ I, we say that I belongs to layer zI iff zI is the largest index,
for which there is a rectangle R ∈ Lz containing I. If I belongs to layer LzI ,
then for each layer Lz′ , 1 ≤ z′ ≤ zI , there is a unique rectangle R(I, z′) ∈ Lz′

containing I. Let Iz ⊆ I be the set of intervals belonging to layer z. Then
I =

⋃k
z=1 Iz .

We process intervals in I1, . . . , Ik in this order, while intervals belonging to
the same layer are processed in non-increasing order of their lengths, breaking
ties arbitrarily. Let I ∈ Iz be some interval, and assume that I ∈ I∗(j). Consider
the rectangles R(I, 1), . . . , R(I, zI). For each z′ : 1 ≤ z′ ≤ zI , we say that I is
feasible for R(I, z′) iff, for each time point t ∈ I, the total LP-weight of intervals
currently assigned to R that contain t is at most 5 − x(I, j). We select any
rectangle R(I, z′), 1 ≤ z′ ≤ zI , for which I is feasible and assign I to R(I, z′). In
order to show that this procedure succeeds, it is enough to prove the following:
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Claim. When interval I is processed, there is at least one rectangle R(I, z′), with
1 ≤ z′ ≤ zI , for which I is feasible.

Proof. Assume otherwise. Let I ′ ∈ I be any interval that has already been
processed. It is easy to see that I ′ 
⊂ I: If I ′ and I belong to the same layer, then
the length of I ′ should be greater than or equal to the length of I, so I ′ 
⊂ I. If I ′

belongs to some layer z and I belongs to layer zI > z, then by the definition of
layers it is impossible that I ′ ⊆ I (since then any rectangle containing I would
also contain I ′). Therefore, any job interval that has already been processed and
overlaps with I must contain either the right or the left endpoint of I. Let � and
r denote the left and the right endpoints of I, respectively.

Let R be any rectangle in {R(I, 1), . . . , R(I, zI)}. Let w�(R) denote the total LP-
weight of job intervals assigned to R that contain �, and define wr(R) similarly
for r. Since I cannot be assigned to R, w�(R) + wr(R) > 4. Therefore, either∑zI

z=1 w�(R(I, z)) > 2zI or
∑zI

z=1 wr(R(I, z)) > 2zI . Assume w.l.o.g. that it is
the former. So we have a set S of job intervals belonging to layers 1, . . . , zI , all
containing point �, whose total LP-weight is greater than 2zI . Let t1, t2 be the
time points closest to � on left and right respectively, such that g(ti) < zI +1 for
i ∈ {1, 2}. Then there is a layer-(zI + 1) rectangle R ∈ R with W (R) = [t1, t2].
Let I ′ be any interval in S. Since I ′ belongs to one of the layers 1, . . . , zI , it is
not contained in W (R), and so either t1 ∈ I ′ or t2 ∈ I ′. Therefore, either the
total LP-weight of intervals I ′ in S containing t1 is more than zI , or the total
LP-weight of intervals I ′ in S containing t2 is more than zI . But this contradicts
the fact that g(ti) < zI + 1. �

Step 3: Scheduling the Jobs Given a rectangle R ∈ R, let I(R) ⊆ I be the
set of job intervals assigned to R. For simplicity from now on we denote J∗ by
J and the block partition B∗ by B. As before, for each time point t, R(t) ⊆ R
denotes the set of rectangles containing t. We partition the jobs into 7 types
Q1, . . . , Q7. We then schedule each of the types separately. Each job j ∈ J will
be scheduled on one of its time intervals I ∈ I(j). If I ∈ I(R), then we say that
j is scheduled inside R. Given a subset S of jobs scheduled inside a rectangle
R, we say that the schedule uses α machines iff for each time point t ∈ R, the
total number of jobs of S scheduled on intervals in I(R) containing t is at most
α. We will ensure that for each job type Qi, for each rectangle R ∈ R, all jobs
of Qi scheduled inside R use a constant number of machines. Since |R(t)| = g(t)
for all t ∈ B, overall we obtain a schedule where the number of jobs scheduled
at time t is at most O(g(t)) for all t ∈ B, as desired. We start with a high
level overview. The set Q1 contains jobs with a large LP-weight on intervals
intersecting block boundaries. The set Q2 contains all jobs with large LP-weight
on intervals I whose length is more than half the length of R(I). These two
job types are taken care of similarly to type 1 and 2 jobs in [6]. The sets Q3
and Q5 contain jobs j with large LP-weight on intervals belonging to rectangles
that contain dj . These sets corresponds to jobs of type 3 in [6]. However, in our
more general setting, we need to consider many different rectangles contained
in a block simultaneously, and so these job types require more care and the
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algorithm and its analysis are more complex. Job types 4 and 6 are similar to
types 3 and 5, except that we use release dates instead of deadlines. Finally,
type 7 contains all remaining jobs, and we treat them similarly to jobs of type
5 in [6]. We now proceed to define the partition of jobs into 7 types, and show
how to schedule jobs of each type.

Type 1. Let P be the set of time points that serve as endpoints of blocks in B.
We say that I ∈ I is a type-1 interval, and denote I ∈ I1, iff it contains a point in
P . We define the set of jobs of type 1: Q1 =

{
j ∈ J |

∑
I∈I(j)∩I1

x(I, j) ≥ 1/7
}
.

These jobs are treated similarly to type-1 jobs in [6], via a simple max flow
computation. We omit the details due to lack of space.

We will now focus on the set I ′ = I \ I1 of intervals that do not cross block
boundaries. We can now refine our definition of rectangles to intersections of
blocks and rectangles. More formally, for each R ∈ R, the partition B of B into
blocks also defines a partition of R into a collection C(R,B) of rectangles. We
then define a new setR′ =

⋃
R∈R C(R,B) of rectangles. The set I(R′) of intervals

assigned to R′ ∈ C(R,B) is the set of intervals in I(R) that are contained in R′.
We will schedule the remaining jobs inside the rectangles of R′, such that the
schedule inside each R ∈ R′ uses a constant number of machines. Recall that for
each R,R′ ∈ R, if R ∩ R′ 
= ∅, then either W (R) ⊆ W (R′) or W (R′) ⊆ W (R).
It is easy to see that the same property holds for rectangles in R′.

Type 2. An interval I ∈ I′ is called large iff the length of the rectangle R ∈
R′, where I ∈ I(R), is at most twice the length of I. Let I2 denote the set
of all large intervals. We define Q2 =

{
j ∈ J \Q1 |

∑
I∈I(j)∩I2

x(I, j) ≥ 1/7
}
.

These jobs are scheduled similarly to type-2 jobs in [6], using a simple max-flow
computation. We omit details due to lack of space.

Type 3. Consider an interval I ∈ I(j) for some job j ∈ J\(Q1∪Q2), and assume
that I ∈ I(R) for R ∈ R′. We say that I is deadline large iff dj ∈ R and pj >
1
2 (dj−�R). Let I3 be the set of all deadline large intervals. We define the setQ3 of

jobs of type 3 as follows: Q3 =
{
j ∈ J \ (Q1 ∪Q2) |

∑
I∈I(j)∩I3

x(I, j) ≥ 1/7
}
.

For each job j ∈ Q3, define the interval Γj = (dj − pj , dj). Notice that Γj is the
right-most interval in I(j). We simply schedule each job j ∈ Q3 on interval Γj .

Claim. The total number of jobs ofQ3 scheduled at any time t is at mostO(g(t)).

Proof. For each job j ∈ Q3, for each rectangle R ∈ R′, with I(j) ∩ I(R) ∩
I3 
= ∅, we define a fractional value x′′R(Γj , j). We will ensure that for each
j ∈ Q3,

∑
R∈R′ x′′R(Γj , j) = 1, and for each rectangle R ∈ R′, for each t ∈ R′,∑

j:t∈Γj
x′′R(Γj , j) ≤ 70. Since for each point t, |R(t)| = g(t), the claim follows.

Consider now some fixed rectangle R ∈ R′. We change the fractional schedule
of intervals inside R in two steps. In the first step, for each j ∈ Q3, we set
x′(I, j) = x(I, j)/

∑
I∈I3∩I(j) x(I, j) for each I ∈ I(j) ∩ I(R) ∩ I3. By the

definition of jobs of type 3, we now have that
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∀t ∈ R
∑

j∈Q3

∑

I∈I(j)∩I(R):
t∈I

x′(I, j) ≤ 35 (3)

Next, for each job j ∈ Q3 with Γj ⊆ R, we set x′′R(Γj , j) =
∑

I∈I(R) x
′(I, j).

Notice that since j ∈ Q3,
∑

R∈R′ x′′R(Γj , j) = 1. It is now enough to prove that
for each time point t ∈ R,

∑
j∈Q3:t∈Γj

x′′R(Γj , j) ≤ 70.
Assume otherwise. Let t be some time point, such that

∑
j∈Q3:t∈Γj

x′′R(Γj , j) >
70. Let St be the set of jobs j ∈ Q3 with t ∈ Γj and x′′R(Γj , j) > 0, and let j′ ∈ St

be the job with smallest processing time. Consider the time point t′ = dj′ − pj′ .
We claim that for each j ∈ St, for each interval I ∈ I(j) ∩ I(R), either t′ ∈ I or
t ∈ I. If this is true then we have that either

∑
j∈Q3

∑
I∈I(j)∩I(R):

t∈I
x′(I, j) > 35

or
∑

j∈Q3

∑
I∈I(j)∩I(R):

t′∈I
x′(I, j) > 35, contradicting (3).

Consider some job j ∈ St and assume for contradiction that there is some
time interval I ∈ I(j) ∩ I(R) that contains neither t nor t′. Then I must lie
completely to the left of t′ and hence to the left of Γj′ . But since pj ≥ pj′ , we
have that t′ − �R ≥ pj ≥ pj′ , and so dj′ − �R ≥ 2pj′ , contradicting the fact that
j′ ∈ St. �

Type 4. Same as type 3, but for release date instead of deadline. Is treated
similarly to Type 3. The set of type 4 jobs is denoted by Q4.

Type 5. Consider some interval I ∈ I(j) for j ∈ J \ (Q1∪· · ·∪Q4), and assume
that I ∈ I(R) for R ∈ R′. We say that I is of type 5 (I ∈ I5) iff dj ∈ R and
I 
∈ I3 (so dj − �R ≥ 2pj). We define the set Q5 of jobs of type 5 as follows:

Q5 =
{
j ∈ J \ (Q1 ∪ · · · ∪Q4) |

∑
I∈I(j)∩I5

x(I, j) ≥ 1/7
}
.

For a job j ∈ Q5 and a rectangle R ∈ R′, we say that R is admissible for j iff
dj ∈ R and dj − �r ≥ 2pj. We say that an interval I ∈ I(j) is admissible for
j iff I ∈ I5. Notice that if j ∈ Q5 then the sum of values x(I, j) where I is
admissible for j is at least 1/7. Let R ∈ R′ be any rectangle, and let S ⊆ Q5 be
any subset of jobs of type 5. We say that set S is feasible for R iff R is admissible
for each j ∈ S, and, for each time point t ∈ R,

∑
j∈S:dj≤t pj < 70(t− �R). We

now proceed as follows. First we show that if S is feasible for R, then we can
schedule all jobs of S inside R on at most 140 machines. After that we show
how to assign all jobs of Q5 to rectangles such that each rectangle is assigned a
feasible subset. We start with the following lemma.

Lemma 1. If S ⊆ Q5 is a feasible subset of jobs for R then all jobs in S can be
scheduled inside R on at most 140 machines.

Proof. We will schedule all jobs of S on 140 machines inside the time interval
W (R). We scan all 140 machines simultaneously from left to right starting from
time point �R. Whenever any machine becomes idle, we schedule on it the job
with earliest deadline among all available jobs of S. It is easy to see that all
jobs are scheduled: Assume otherwise, and let j be the first job that we are
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unable to schedule. Consider the time point t = dj − pj . All the machines are
occupied at time t, and they only contain jobs whose deadline is before dj .
Therefore,

∑
j′∈S:dj′ <dj

pj′ ≥ 140(t− �R). But since dj − �R ≥ 2pj , we have that
t − �R = dj − pj − �R ≥ 1

2 (dj − �R), and so
∑

j′∈S:dj′<dj
pj′ ≥ 70(dj − �R),

contradicting the fact that S is feasible for R. �

We now show how to assign jobs of Q5 to rectangles, such that each rectangle
is assigned a feasible subset. Consider some block B′ ∈ B. Let R(B′) ⊆ R′ be
the set of rectangles contained in B′, and let H(B′) ⊆ Q5 be the subset of jobs
of type 5 whose deadline is inside B′. We will assign jobs in H(B′) to rectangles
in R(B′). Recall the partition of the set R(B′) of rectangles into layers. Layer
i, denoted by Li, consists of all rectangles that are not contained in any other
rectangle of R(B′) \ (L1 ∪ · · · ∪ Li−1) (if we have identical rectangles then at
most one of them is assigned to each layer and we break the ties arbitrarily).
Consider some job j ∈ H(B′). Let z(j) be the maximum index i, such that some
rectangle R ∈ Li is admissible for j. Then for each z : 1 ≤ z ≤ z(j), there is a
unique layer-z rectangle Rz(j) that is admissible for j.

We will assign a subset A(R) of jobs to each rectangle R ∈ R(B′). We start
with A(R) = ∅ for all R. We process jobs of H(B′) in non-decreasing order of
their deadlines. When job j is processed, it is assigned to Rz(j), where z is the
maximum index, 1 ≤ z ≤ z(j), such that A(R) ∪ {j} is feasible for R. It now
only remains to prove is that every job j can be assigned to a rectangle. The
next lemma will finish the analysis of the algorithm for type-5 jobs.

Lemma 2. For each job j ∈ H(B′), when j is processed, there is a rectangle
Rz(j), 1 ≤ z ≤ z(j), such that j can be assigned to Rz(j).

Proof. Assume otherwise, and let j be the first job that cannot be assigned to any
such rectangle. We now proceed as follows. We construct a subset R̃ ⊆ R(B′) of
rectangles, and for each R ∈ R̃ we define a time point tR ∈ R. For each R ∈ R̃,
we define a subset J̃(R) ⊆ A(R) of jobs whose deadline is before tR and show
that the total processing time of jobs in J̃(R) is more than 35(tR − �R). On the
other hand, we ensure that for each j ∈

⋃
R∈R̃ J̃(R), for each admissible interval

I for j, if I ∈ I(R), then R ∈ R̃ and I ⊆ [�R, tR]. This leads to a contradiction,
since for each j ∈ J̃ , at least 1/7 of the LP weight is on admissible intervals, and
all such intervals are contained in the intervals [�R, tR] for R ∈ R̃. On the other
hand, for each rectangle R ∈ R̃, for each time point t ∈ R, the total LP-weight
of intervals of R containing t is at most 5.

Let R ∈ R(B′) be any rectangle, and let t ∈ R. We say that R is overpacked for
t iff

∑
j′∈A(R):dj′≤t pj′ > 35(t− �R). We process the rectangles layer-by-layer. At

the beginning, we set R̃ = ∅ and J̃ = ∅. In the first iteration, we consider the
rectangles of layer L1. Let R = R1(j). We add R to R̃ and set tR = dj . Note
that since j could not be assigned to R, rectangle R must be overpacked for tR.
We add to J̃ all jobs in A(R) ∪ {j}.

In iteration i, we consider rectangles R ∈ Li. Consider the set Y (R) of jobs j′

for which z(j′) ≥ i and Ri(j′) = R. If J̃ ∩ Y (R) is non-empty, we add R to R̃,
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and set tR to be the maximum deadline of any job j′ ∈ J̃ ∩ Y (R). Notice that
since j′ was not assigned to R, rectangle R is overpacked for tR. Let J̃(R) be
the set of all jobs j′′ ∈ A(R) with dj′′ ≤ tR. We add jobs in J̃(R) to J̃ .

Consider the final set R̃ of rectangles and the set J̃ of jobs. Clearly, the set J̃
of jobs is the disjoint union of sets J̃(R) for R ∈ R̃. Recall that J̃(R) contains all
jobs j′ ∈ A(R) with dj′ ≤ tR. Since each rectangle R ∈ R̃ is overpacked for tR,
we have that

∑
j∈J̃ pj > 35

∑
R∈R̃(tR − �R). On the other hand, the next claim

shows that for each job j ∈ J̃ , for each admissible interval I of j, if I ∈ I(R),
then R ∈ R̃ and I lies to the left of tR.

Claim 2. Let j ∈ J̃ , let I be any admissible interval for j, and assume that
I ∈ I(R). Then R ∈ R̃, and I ⊆ [�R, tR].

We now obtain a contradiction as follows. We have shown that
∑

j∈J̃ pj >

35
∑

R∈R̃(tR−�R). On the other hand, for each job j ∈ J̃ , at least 1/7 LP-weight
lies on admissible intervals. Since al these admissible intervals are contained in-
side intervals [�R, tR] for R ∈ R̃, we have that

∑
R∈R̃

∑
j

∑
I∈I(j)∩I(R):
I⊆[�R,tR]

x(I, j) ≥
1
7

∑
j∈J̃ pj > 5

∑
R∈R̃(tR−�R). This contradicts the fact that for every rectangle

R ∈ R′, for each t ∈ R,
∑

j

∑
I∈I(j)∩I(R):t∈I x(I, j) ≤ 5. It now only remains to

prove Claim 2.

Proof (Of Claim 2). Consider some job j′ ∈ J̃ , and suppose it was added to J̃ in
iteration i. Let I be any admissible interval of j′. Then there must be an index
z : 1 ≤ z ≤ z(j′) such that I ∈ I(Rz(j)). We now consider three cases. First, if
z = i, then let R = Ri(j′). Then, since j′ was added to J̃ in iteration i, j′ ∈ J̃(R)
and so I ⊆ [�R, tR]. Clearly, R ∈ R̃. Assume now that z > i and let R = Rz(j′).
Then j′ ∈ J̃ in iteration z, and so when R was considered, j′ ∈ Y (R) ∩ J̃ . So
R has been added to R̃ and tR has been set to be at least dj′ . Finally, assume
that z < i. Let R = Ri(j′) and R′ = Rz(j′). Then R ⊆ R′. It is then enough to
prove the following claim:

Claim. Let R ∈ Li and R′ ∈ Li−1, with R ⊆ R′. Assume that R ∈ R̃. Then
R′ ∈ R̃, and moreover tR′ ≥ tR.

Proof. Consider the iteration i when R was added to R̃, and let j′′ ∈ Y (R) be
the job which determined tR, so tR = dj′′ . Two cases are possible. If j′′ ∈ A(R′),
then j′′ has been added to J̃ in iteration i−1 when R′ was processed. So R′ ∈ R̃
and tR′ ≥ dj′′ = tR. Otherwise, j′′ was in J̃ when R′ was processed. Since R ⊆ R′

and R is admissible for j′′, so is R′. Therefore, j′′ ∈ Y (R′) ∩ J̃ and so R′ ∈ R̃
and tR′ ≥ dj′′ = tR. � � �

Type 6. Like type 5, but for release date.

Type 7. All other jobs. The algorithm for these jobs is the same as the one used
in [6], substituting rectangles for blocks. We omit details due to lack of space.
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Abstract. Scheduling jobs on unrelated parallel machines so as to min-
imize the makespan is one of the basic, well-studied problems in the area
of machine scheduling. In the first part of the paper we prove that the
power of preemption, i.e., the ratio between the makespan of an opti-
mal nonpreemptive and an optimal preemptive schedule, is exactly 4.
This result is a definite answer to an important basic open problem in
scheduling. The proof of the lower bound is based on a clever iterative
construction while the rounding technique we use to prove the upper
bound is an adaptation of Shmoys and Tardos’ rounding for the gen-
eralized assignment problem. In the second part of the paper we apply
this adaptation to the more general setting in which orders, consisting
of several jobs, have to be processed on unrelated parallel machines so
as to minimize the sum of weighted completion times of the orders. We
obtain the first constant factor approximation algorithms for the preemp-
tive and nonpreemptive case, improving and extending a recent result by
Leung et. al.

1 Introduction

Problem description and basic results. Consider the classical scheduling problem
of minimizing the makespan on unrelated parallel machines. In this problem we
are given a set of jobs J = {1, . . . , n} and a set of machines M = {1, . . . ,m} to
process the jobs. Each job j ∈ J has associated processing times pij , denoting
the amount of time that it takes to process job j on machine i. Every job has
to be scheduled on exactly one machine without interruption and each machine
can schedule at most one job at a time. The objective is to find a schedule min-
imizing the point in time at which the last job is completed, i.e., minimizing
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Cmax := maxj∈J Cj , where Cj is the completion time of job j. In the stan-
dard three-field scheduling notation (see, e.g., Lawler et al. [14]) this problem is
denoted by R||Cmax.

In a seminal work, Lenstra, Shmoys and Tardos [16] give a 2-approximation
algorithm for R||Cmax, and show that the problem is NP-hard to approximate
within a factor better than 3/2. On the other hand, Lawler and Labetoulle [13]
show that the preemptive version of this problem, denoted R|pmtn|Cmax, where
jobs can be interrupted and resumed later on the same or a different machine,
can be formulated as a linear program and thus be solved in polynomial time.

Power of preemption. The power of preemption is the worst-case ratio between
the makespan of an optimal preemptive and an optimal nonpreemptive solution.
This ratio has been studied in the literature for various scheduling problems
[4,21,22]. One contribution of this work is to prove that this ratio is exactly 4
for the considered problem on unrelated machines. The proof consists of two
steps — proving an upper and a lower bound of 4. For the upper bound, we
consider an optimal solution to the linear programming formulation of Lawler
and Labetoulle [13] for R|pmtn|Cmax, and round it to obtain an assignment of
jobs to machines in which the makespan is increased at most by a factor of 4. The
rounding consists in setting to zero all variables whose corresponding processing
time is too large compared to the makespan, and then amplifying the remaining
values so that a feasible fractional assignment is maintained. Then, the technique
of Shmoys and Tardos [23] is applied to obtain a nonpreemptive solution. The
proof of the lower bound is based on a clever recursive construction, where in
each iteration the gap of the instance is increased.

Scheduling orders of jobs. In the second part of the paper, we apply the rounding
technique used for the previous result to a more general setting. Consider the
natural scheduling problem where clients place orders, consisting of several prod-
ucts, to a manufacturer owningm unrelated parallel machines. Each product has
a machine dependent processing requirement. The manufacturer has to find an
assignment of products to machines (and a schedule within each machine) so as
to give the best possible service to his clients.

More precisely, we are given a set of machines M = {1, . . . ,m}, a set of jobs
J = {1, . . . , n} (as before) and a set of orders O ⊆ 2J , such that

⋃
L∈O L = J .

Each job j ∈ J takes pij units of time to be processed in machine i ∈ M , and
each order L has a weight factor wL depending on how important it is for the
manufacturer and the client. Also, job j is associated with a release date rij , so
it can only start being processed on machine i by time rij . An order L ∈ O is
completed once all its jobs have been processed. Therefore, if Cj denotes the time
at which job j is completed, CL = max{Cj : j ∈ L} denotes the completion time
of order L. The goal of the manufacturer is to find a nonpreemptive schedule on
them available machines so as to minimize the sum of weighted completion times
of orders, i.e., min

∑
L∈O wLCL. Let us remark that in this general framework

we are not restricted to the case where the orders are disjoint, and therefore one
job may contribute to the completion time of more than one order.
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We adopt the standard three-field scheduling notation by denoting this prob-
lem R|rij |

∑
wLCL, or R||

∑
wLCL in case all release dates are zero. When the

processing times pij do not depend on the machine, we replace “R” with “P”.
Also, when we impose the additional constraint that orders are disjoint subsets
of jobs we will add part in the second field of the notation.

Relation to other scheduling problems. It is easy to see that this setting gener-
alizes several classical machine scheduling problems. In particular our problem
becomes R||Cmax when the total number of orders is one. Thus, it follows from
[16] that R||

∑
wLCL cannot be approximated within a factor better than 3/2,

unless P = NP . On the other hand, if orders are singletons our problem becomes
R||

∑
wjCj . In this setting each job j ∈ J is associated with a processing time pij

and a weight wj , and the goal is to find a schedule of the jobs so as to minimize
the sum of weighted completion times. In other words, if Cj denotes the comple-
tion time of job j in a given schedule, the goal is to minimize

∑n
j=1 wjCj . As in

the makespan case, this problem was shown to be APX-hard [12] and therefore
there is no PTAS, unless P = NP . Using randomized rounding techniques based
on a linear relaxation, Schulz and Skutella [22] proposed an approximation algo-
rithm for this problem with performance guarantee 3/2 + ε in the case without
release dates, and 2 + ε in the more general case. Later, Skutella [25] slightly
improved this result by using randomized rounding over a convex cuadratic re-
laxation, obtaining approximation algorithms with performance guarantee 3/2
and 2, respectively.

However, for the more general setting R|rij |
∑
wLCL, there is no constant

factor approximation known. The best known result, due to Leung, Li, Pinedo,
and Zhang [18], is an approximation algorithm for the special case of related
machines without release dates, denoted Q||

∑
wLCL, where pij = pi/si and si

is the speed of machine i. The performance ratio of their algorithm is 1 + ρ(m−
1)/(ρ+m− 1), where ρ is the ratio of the speed of the fastest machine to that
of the slowest machine. In general this guarantee is not constant and can be as
bad as m/2.

Identical parallel machines. For the special case of identical parallel machines,
our problem P ||

∑
wLCL also generalizes P ||Cmax and P ||

∑
wjCj . These two

problems are well known to be NP-hard, even for the case of only two machines,
since the well-known PARTITION problem can be reduced to them. For the
makespan objective, Graham [9] showed that a simple list scheduling algorithm
yields a 2-approximation algorithm. Furthermore, Hochbaum and Shmoys [11]
present a PTAS for the problem. On the other hand, for the sum of weighted
completion times objective, a sequence of approximations algorithms had been
proposed until Skutella and Woeginger [24] found a PTAS (see also [1]).

On the even more restricted setting of a single machine, the two previously
mentioned problems 1||Cmax and 1||

∑
wjCj can be easily solved, the first one by

any feasible solution with no idle time, and the second one by applying Smith’s
rule [26]. However, our problem 1||

∑
wLCL is NP-hard, as it is equivalent to

1|prec|
∑
wjCj . In the latter problem, there is a partial order � over the jobs,

meaning that job j must be processed before job k if j � k.
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Lemma 1. The approximability thresholds of 1|prec|
∑
wjCj and 1||

∑
wLCL

coincide.

Due to space restrictions, the proof of the lemma is omitted. The scheduling
problem 1|prec|

∑
wjCj has attracted much attention since the sixties. Lenstra

and Rinnooy Kan [15] showed that this problem is strongly NP-hard even with
unit weights. On the other hand, several 2-approximation algorithms have been
proposed [10,6,5,20]. Furthermore, the results in [2,7] imply that 1|prec|

∑
wjCj

is a special case of vertex cover. However, hardness of approximation results were
unknown until recently Ambühl, Mastrolilli and Svensson [3] proved that there
is no PTAS unless NP-hard problems can be solved in randomized subexpo-
nential time. In particular, the same result holds for P ||

∑
wLCL. Nonetheless,

the reduction used in the previous lemma does not work on the more restrictive
case where orders are disjoint, P |part|

∑
wLCL, and thus the question whether

there is a PTAS for this latter problem remains open. However, we were able to
develope a PTAS for the special cases in which either the orders are of constant
size, or there is a constant number of orders, or there is a constant number of
machines. Due to space restrictions this result is left for the full version of the
paper (see [27] for details).

Our Contribution. Our tight result on the power of preemption for unrelated
parallel machine scheduling with makespan objective have already been outlined
above. In addition to the result stated in Lemma 1, we present the first constant
factor approximation algorithm for the general problem R|rij |

∑
wLCL and its

preemptive variant R|rij , pmtn|
∑
wLCL. This is achieved by considering the

interval indexed linear programs proposed by Dyer and Wolsey [8] and Hall et
al. [10], and then applying essentially the same rounding technique that is used
to prove the upper bound on the power of preemption. This approximation result
improves upon the previously mentioned result of Leung, Li, Pinedo, and Zhang
[18] for the special case Q||

∑
wLCL.

2 A Simple Rounding Technique

We start by showing that the power of preemption for R||Cmax is at most 4.
As shown by Lawler and Labetoulle [13], we can obtain the optimal value of
the preemptive version of this problem by solving the following linear program,
whose variables xij denote the fraction of job j that is processed on machine i,
and C the makespan of the solution: [LL] minimize C such that

∑
i∈M xij = 1

for all j ∈ J ,
∑

j∈J pijxij ≤ C for all i ∈M ,
∑

i∈M pijxij ≤ C for all j ∈ J and
xij ≥ 0 for all i, j.

Let xij and C be any feasible solution to [LL]. To round this fractional so-
lution we proceed in two steps: First, we eliminate fractional variables whose
corresponding processing time is too large; Then, we use the rounding technique
developed by Shmoys and Tardos [23] for the general assignment problem. In the
general assignment problem, we are given m machines and n jobs with machine
dependant processing times pij . We also consider a cost of assigning job j to



88 J.R. Correa, M. Skutella, and J. Verschae

machine i, denoted by cij . Given a total budget B and makespan C, the ques-
tion is to decide whether there exists a schedule with total cost at most B and
makespan at most C. The main result of [23] is subsumed in the next theorem.

Theorem 1 (Shmoys and Tardos [23]). Given a nonnegative fractional so-
lution to the following system of equations:

∑

j∈J

∑

i∈M

cijxij ≤ B, (1)

∑

i∈M

xij = 1, for all j ∈ J, (2)

there exists an integral solution x̂ij ∈ {0, 1} satisfying (1),(2), and also,

xij = 0 =⇒ x̂ij = 0 for all i ∈M, j ∈ J, (3)
∑

j∈J

pij x̂ij ≤
∑

j∈J

pijxij + max{pij : xij > 0} for all i ∈M. (4)

Furthermore, such integral solution can be found in polynomial time.

To proceed with our rounding, let β > 1 be a fixed parameter that we will specify
later. We first define a modified solution x′ij as follows:

x′ij =

{
0 if pij > βC,
xij

Xj
else,

where Xj =
∑

i:pij≤βC

xij for all j ∈ J.

Note that,
1−Xj =

∑

i:pij>βC

xij <
∑

i:pij>βC

xij
pij

βC
≤ 1/β,

where the last inequality follows from [LL]. Therefore, x′ij satisfies that x′ij ≤
xijβ/(β − 1) for all j ∈ J and i ∈ M , and thus

∑
j∈J x

′
ijpij ≤ Cβ/(β − 1)

for all i ∈ M . Also, note that by construction
∑

i∈M x′ij = 1 for all j ∈ J , and
x′ij = 0 if pij > βC. Then, we can apply Theorem 1 to x′ij (for cij = 0), to obtain
a feasible integral solution x̂ij to [LL], and thus a feasible solution to R||Cmax,
such that for all i ∈M ,

∑

j∈J

x̂ijpij ≤
∑

j∈J

x′ijpij + max{pij : xij > 0} ≤ β

β − 1
C + βC =

β2

β − 1
C.

Therefore, by optimally choosing β = 2, the makespan of the rounded solution is
at most β2/(β−1) = 4 times larger than the makespan of the fractional solution.

Power of Preemption for R||Cmax

We now give a family of instances showing that the integrality gap of [LL] is ar-
bitrarily close to 4. Surprisingly, this implies that the rounding technique showed
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in the last section is best possible. Note that this is equivalent to saying that
the optimal nonpreemptive schedule is within a factor of 4, and no better than
4, of the optimal preemptive schedule.

Let us fix β ∈ [2, 4), and ε > 0 such that 1/ε ∈ N. We now construct an
instance I = I(β, ε) such that its optimal nonpreemptive makespan is at most
(1 + ε)C, and that any nonpreemptive solution of I has makespan at least βC.
The construction is done iteratively, maintaining at each iteration a preemptive
schedule of makespan (1 + ε)C , and where the makespan of any nonpreemptive
solution is increased at each step. Due to the equivalence between [LL] and
R|pmtn|Cmax we can use assignment variables to denote preemptive schedules.

Base Case. We begin by constructing an instance I0, which will later be our first
iteration. To this end consider a set of 1/ε jobs J0 ={j(0; 1), j(0; 2), . . . , j(0; 1/ε)}
and a set of 1/ε+1 machines M0 = {i(1), i(0; 1), . . . , i(0; 1/ε)}. Every job j(0; �)
can only be processed in machine i(0; �), where it takes βC units of time to
process, and in machine i(1), where it takes a very short time. More precisely,
for all � = 1, . . . , 1/ε we define,

pi(0;�)j(0;�) := βC and pi(1)j(0;�) := εC
β

β − 1
.

The rest of the processing times are defined as infinity. Note that a feasible
fractional assignment is given by setting xi(0;�)j(0;�) = 1/β, xi(1)j(0;�) := f0 :=
(β−1)/β and setting to zero all other variables. The makespan of this fractional
solution is exactly (1 + ε)C. Indeed, the load of each machine i ∈M0 is exactly
C, and the load associated to each job in J0 equals C + εC. Furthermore, any
nonpreemptive solution with makespan less than βC must process all jobs j(0; �)
in i(1). This yields a makespan of C/f0 = βC/(β−1). Therefore, the makespan of
any nonpreemptive solution is min{βC,C/f0}. If β is chosen as 2, the makespan
of any nonpreemptive solution must be at least 2C, and therefore the gap of the
instance tends to 2 when ε tend to zero.

Iterative Procedure. To increase the integrality gap we proceed iteratively as
follows. Starting from instance I0, which will be the base case, we show how to
construct instance I1. An analogous procedure can be used to construct instance
In+1 from instance In.

Begin by making 1/ε copies of instance I0, I�
0 for � = 1, . . . , 1/ε, and denote

the set of jobs and machines of I�
0 as J�

0 and M �
0 respectively. We impose that

jobs in J�
0 can only be processed on machines in M �

0 by setting pij =∞, for all
j ∈ J�

0 and i ∈ Mk
0 such that k 
= �. Also, denote as i(1; �) the copy of machine

i(1) belonging to M l
0. Consider a new job j(1) for which pi(1;�)j(1) = Cβ −C/f0

for all � = 1, . . . , 1/ε (and ∞ otherwise), and define xi(1;�)j(1) = εC/pi(1;�)j(1).
This way, the load of each machine i(1; �) in the fractional solution is (1 + ε)C,
and the load corresponding to job j(1) is exactly C. Nevertheless, depending on
the value of β, job j(1) may not be completely assigned. A simple calculation
shows that for β = (3 +

√
5)/2, job j(1) is completely assigned in the fractional
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In+1
T 1

n+1

I1,1
n I1,1/ε

n

j(n + 1; 1)

xij = fn+1xij = fn+1

i(n + 2)

T
1/ε
n+1

I1/ε,1
n I1/ε,1/ε

n

j(n + 1; 1/ε)

C εC

. . .. . . . . .

| {z } | {z }

Fig. 1. Construction of instance In+1(β)

assignment. Furthermore, as justified before, in any nonpreemptive schedule of
makespan less than βC, all jobs in J l

0 must be processed in machine i(1; �). Since
also job j(1) must be processed in some machine i(1; �), the load of that machine
must be

∑
j∈J�

0
pi(1;�)j + pi(1;�)j(1) = C/f0 + C(β − 1/f0) = βC. Then, the gap

of the instance already constructed converges to β = (3 +
√

5)/2 ≈ 2.618 when
ε tend to 0, thus improving the gap of 2 shown before.

On the other hand, for β > (3 +
√

5)/2 (as we would like) there will be some
fraction of job j(1), f1 := 1 −

∑1/ε
�=1 xi(1;�)j(1) = ((β − 1)f0 − 1)/(βf0 − 1)

that must be processed elsewhere. To overcome this, we do as follows. Let
us denote the instance consisting of jobs

⋃1/ε
�=1 J

l
0 and machines

⋃1/ε
�=1M

�
0 as

T1, and construct 1/ε copies of instance T1, T k
1 for k = 1, . . . , 1/ε. Define

the processing times of jobs in T �
1 to infinity in all machines of T k

1 , for all
k 
= �, so that jobs of T �

1 can only be processed in machines of T �
1 . Also, con-

sider 1/ε copies of job j(1), and denote them by j(1; k) for k = 1, . . . , 1/ε.
As shown before, we can assign a fraction 1 − f1 of each job j(1; k) to ma-
chines of T k

1 . To assign the remaining fraction f1, we add an extra machine
i(2), with pi(2)j(1;�) := εC/f1 (and ∞ for all other jobs), so that the frac-
tion f1 of each job j(1; �) takes exactly εC to process in i(2). Then, defining
xi(2)j(1;�) = f1, the total load of each job j(1; �) equals (1+ε)C, while the load of
machine i(2) is exactly C. Let us denote the instance we have constructed so far
as I1.

Following an analogous procedure to the one just described, we can construct
a sequence of instances and fractional assignments (see Figure 1). Each instance
In satisfies the following properties:
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(i) The fraction of each job j(n; 1), . . . , j(n, 1/ε) assigned to machine i(n+ 1)
is given by fn = ((β − 1)fn−1 − 1)/(βfn−1 − 1).

(ii) Job j(n+1) (or any of its copies) has processing time equal to C(β−1/fn)
on each machine i(n; �).

(iii) In any nonpreemptive solution of makespan less than βC, every job j(n+
1; �) must be processed in machine i(n+2). Therefore the makespan of any
nonpreemptive solution is at least min{βC,C/fn+1}.

(iv) The makespan of the fractional solution constructed is (1+ε)C. In particular
the load of machine i(n + 2) is C, and therefore a fraction of a job which
takes less than εC can still be processed in this machine without increasing
the makespan.

To finish the construction procedure, notice that if there is some n∗ such
that f(n∗−1) ≤ 1/(β − 1), then there is no need to construct the whole instance
In∗ , but rather instance Tn∗ suffices. Indeed, if this is the case job j(n∗) can
be totally assigned to machines i(n∗; �) on the fractional solution, by defining
xi(n∗;�)j(n∗) = ε for all � = 1, . . . , 1/ε. This yields a valid assignment since
∑1/ε

�=1 pi(n∗;�)j(n∗)xi(n∗;�)j(n∗) = C(β−1/fn∗−1) ≤ C. Also, by Property (iii), any
nonpreemtpive solution of makespan less than βC assigns a load of C/fn∗−1 to
any machine i(n∗; �). Furthermore, job j(n∗) must be processed in some machine
i(n∗; �), which will have a makespan of C/fn∗−1 + (βC −C/fn∗−1) = βC. With
this we have sketched the proof of the following lemma.

Lemma 2. If the procedure finishes, then it returns an instance with a gap of
at least β/(1 + ε).

Then, we just need to show that the construction terminates, i.e., that fn∗−1 ≤
1/(β − 1) for some n∗. For that, notice the following.

Lemma 3. For each β ∈ [2, 4), if fn > 1/β, then fn+1 ≤ fn.

Lemma 4. The procedure finishes.

Proof. If the procedure does not finish, then fn > 1/(β−1) > 1/β for all n ∈ N.
Then Lemma (3) implies that {fn}n∈N is a decreasing sequence. Therefore fn

must converge to some real number L ≥ 1/(β − 1). Thus, Property (i) implies
that L = ((β − 1)L − 1)/(βL − 1), and therefore L is a real root of equation
−βx2 + βx− 1 which is a contradiction if β ∈ [2, 4). ��

Theorem 2. The integrality gap of relaxation [LL] is 4.

3 A (4 + ε)-Approximation for R|rij, pmtn|
∑

wLCL

In this section we adapt the rounding technique discussed in the previous chap-
ter to derive a (4 + ε)-approximation algorithm for the preemptive version of
R|rij |

∑
wLCL. Our algorithm is based on a time-indexed linear program, whose

variables correspond to the fraction of each job processed at each time in each
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machine. This kind of linear relaxation was originally introduced by Dyer and
Wolsey [8] for 1|rj |

∑
wjCj , and was extended by Schulz and Skutella [22], who

used it to obtain a (3/2 + ε)-approximation and a (2 + ε)-approximation for
R||

∑
wjCj and R|rj |

∑
wjCj respectively.

Let us consider a time horizon T , large enough so it upper bounds the greatest
completion time of any reasonable schedule, for instance T = maxi∈M,k∈J{rik +∑

j∈J pij}. We divide the time horizon into exponentially-growing time intervals,
so that there is only polynomially many of them. For that, let ε be a fixed
parameter, and let q be the first integer such as (1 + ε)q−1 ≥ T . Then, we
consider the intervals [0, 1], (1, (1+ε)], ((1+ε), (1+ε)2], . . . , ((1+ε)q−2, (1+ε)q−1].
To simplify the notation, let us define τ0 = 0, and τ� = (1 + ε)�−1, for each
� = 1 . . . q. With this, the �-th interval corresponds to (τ�−1, τ�]. In what follows
we will assume, without loss of generality, that all processing times are positive
integers.

Given any preemptive schedule, let yij� the fraction of job j that is processed
in machine i in the �-th interval. Then, pijyij� is the amount of time that job j
is processed in machine i in the �-th interval. With this interpretation is easy to
see that the following linear program is a relaxation of R|rij , pmtn|

∑
wLCL:

[DW] min
∑

L∈O

wLCL

∑

i∈M

q∑

�=1

yij� = 1 for all j ∈ J, (5)

∑

j∈J

pijyij� ≤ τ� − τ�−1 for all � = 1, . . . , q and i ∈M, (6)

∑

i∈M

pijyij� ≤ τ� − τ�−1 for all � = 1, . . . , q and j ∈ J, (7)

∑

i∈M

(

yij1 +
q∑

�=2

τ�−1yij�

)

≤ CL for all L ∈ O and j ∈ L, (8)

yij� = 0 for all j, i, � : rij > τ�, (9)
yij� ≥ 0 for all i, j, �. (10)

Let y∗ij� and C∗
L be the optimal solution of [DW]. Using the same ideas as in

Section 2, we round this solution by taking to zero all variables y∗ij� having a co-
efficient that is too large in (8), and then rescale to obtain a feasible assignment.
Then, we use the result in [13], to construct a feasible preemptive schedule inside
each interval. More precisely, let j ∈ J , and L = argmin{C∗

L′ |j ∈ L′ ∈ O}. For
each parameter β > 1, we define:

y′ij� =

{
0 if τ�−1 > βC

∗
L,

y∗
ij�

Yj
else,

where Yj =
∑

i∈M

∑

�: τ�−1≤β·C∗
L

y∗ij�. (11)
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Lemma 5. The modified solution y′ obtained by applying Equation (11) to y∗,
satisfies Equation (5). Furthermore, y′ij� = 0 if τ�−1 > βC

∗
L, for all L ∈ O and

j ∈ L, and y′ satisfies equations (6) and (7) when their righthand sides are
amplified by a factor of β/(β − 1).

The proof of the lemma follows the ideas of the rounding in Section 2. Note
that since y′ only satisfy equations (6) and (7) when their righthand side are
amplified, the amount of load assign to each interval may not fit in the avail-
able space. Thus, we will have to increase the size of every interval in a factor
β/(β−1). Furthermore, the variables y′ij� only assign jobs to intervals that start
before βC∗

L in case j ∈ L, allowing us to easily bound the cost of the solution.
With the latter observations, we are ready to describe the algorithm.

Algorithm: Greedy Preemptive LP

1. Solve [DW] to optimality and call the solution y∗ and (C∗
L)L∈O.

2. Define y′ij� using Equation (11).
3. Construct a preemptive schedule S as follows.

(a) For each � = 1, . . . , q, define xij = y′ij� and C� = (τ� − τ�−1)β/(β − 1),
and apply the algorithm by Lawler and Labetoulle [13] to this fractional
solution, to obtain a preemptive schedule (i.e., no job is processed in
parallel by two machines) of makespan C�. Call the preemptive schedule
obtained S�.

(b) For each job j ∈ J that is processed by schedule S� at time t ∈ [0, C�]
in machine i ∈ M , make schedule S process j in machine i at time
τ�−1β/(β − 1) + t.

Theorem 3. Algorithm: Greedy Preemptive LP yields a feasible schedule
where the completion time of each order L ∈ O is less than C∗

L(1+ ε)β2/(β−1).
Moreover, for β = 2, the algorithm is a (4+ε)-approximation for the preemptive
version of R|rij |

∑
wLCL.

4 A Constant Factor Approximation for R|rij|
∑

wLCL

In this section we propose the first constant factor approximation algorithm
for the nonpreemptive version of the problem just described, R|rij |

∑
wLCL,

improving the results in [18]. Our algorithm consists on applying the rounding
shown in Section 2 to an adaptation of the interval-index linear programming
relaxation developed by Hall, Schulz, Shmoys and Wein [10].

Let us consider a large enough time horizon T as in last section. We divide
the time horizon into exponentially-growing time intervals, so that there is only
polynomially many. For that, let α > 1 be a parameter which will determine
later and let q be the first integer such as αq−1 ≥ T . With this, consider the
intervals [1, 1], (1, α], (α, α2], . . . , (αq−2, αq−1].

To simplify the notation, let us define τ0 = 1 and τ� = α�−1 for each � =
1, . . . , q. With this, the �-th interval corresponds to (τ�−1, τ�]. Note that, for
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technical reasons, these definitions slightly differ from the ones on the previous
section.

To model the scheduling problem we consider the variables yij�, indicating
whether job j is finished in the machine i and in the �-th interval. These variables
allow us to write the following linear program based on that in [10], which is
a relaxation of the scheduling problem even when integrality constraints are
imposed,

[HSSW] min
∑

L∈O

wLCL

∑

i∈M

q∑

�=1

yij� = 1 for all j ∈ J, (12)

�∑

s=1

∑

j∈J

pijyijs ≤ τ� for all i ∈M and � = 1, . . . , q, (13)

∑

i∈M

q∑

�=1

τ�−1yij� ≤ CL for all L ∈ O and j ∈ L, (14)

yij� = 0 for all i, �, j : pij + rij > τ�, (15)
yij� ≥ 0 for all i, j, �. (16)

It is clear that [HSSW] is a relaxation of our problem. Indeed, (12) guarantees
that each job finishes in some time interval. The left hand side of (13) corresponds
to the total load processed on machine i and interval [0, τ�], and therefore the
inequality is valid. The sum in inequality (14) corresponds exactly to τ�−1, where
� is the interval where job j finishes, so that is at most Cj , and therefore it is
upper bounded by CL if j ∈ L. Also, it is clear that (15) must hold since no job
j can finish processing on machine i before pij + rij .

Let (y∗ij�)ij� and (C∗
L)L be an optimal solution to [HSSW]. To obtain a feasible

schedule we need to round such solution into an integral one. To this end, Hall
et. al. [10] used Shmoys and Tardos’ result given in Theorem 1. If in [HSSW]
all orders are singleton (as in Hall et al’s situation), (14) becomes an equality
so that one can use Theorem 1 to round a fractional solution to an integral
solution of smaller total cost and such that the righthand side of equation (13)
is increased to τ� + max{pij : yij� > 0} ≤ 2τ�, where the last inequality follows
from (15). This can be used to derive a constant factor approximation algorithm
for the problem. In our setting however, it is not possible to apply Theorem
1 directly, due to the nonlinearity of the objective function. To overcome this
difficulty, consider j ∈ J and L = argmin{C∗

L′ |j ∈ L′ ∈ O}, and apply (11) to
y∗, thus obtaining a new fractional assignment y′. With this we obtain a solution
in which job j is never assigned to an interval starting after βC∗

L. Moreover, the
following lemma holds.
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Lemma 6. The modified solution y′ij� ≥ 0 satisfies (12), (15), and:

�∑

s=1

∑

j∈J

pijy
′
ijs ≤

β

β − 1
τ� for all i ∈M, (17)

y′ij� = 0 if τ�−1 > βC
∗
L, for all i, j, �, L : j ∈ L. (18)

With the previous lemma on hand we are in position to apply Theorem 1 by
interpreting a machine-interval pair (i, �) on [HSSW] as a virtual machine on the
theorem. We thus obtain a rounded solution ŷij� ∈ {0, 1} satisfying (12), (15),
(18) and

∑

j∈J

pij ŷij� ≤
∑

j∈J

pijy
′
ij� + max

j∈J
{pij : y′ij� > 0} ≤

∑

j∈J

pijy
′
ij� + τ�, (19)

where the first inequality follows from (4) and the second follows since y′ satisfies
(15).

To obtain a feasible schedule we do as follows. Define Ji� = {j ∈ J : ŷij� = 1},
and greedily schedule in each machine i all jobs in

⋃q
�=1 Ji�, starting from those

in Ji1 until we reach Jiq (with an arbitrary order inside each set Ji� ), respecting
the release dates. Let us call the algorithm just described Greedy-LP.

For simplicity, we only show that Greedy-LP is a constant factor approxi-
mation algorithm for the case in which all release dates are zero. The case with
nontrivial release dates follows from a similar argument.

Theorem 4. Procedure Greedy-LP is a (27/2)-approximation algorithm for
R||

∑
wLCL.

Proof. Let us fix a machine i and take a job j ∈ L such that ŷij� = 1, so that
j ∈ Ji�. Clearly, Cj , the completion time of job j in algorithm Greedy-LP, is
at most the total processing time of jobs in

⋃�
k=1 Jik. Then,

Cj ≤
�∑

s=1

∑

k∈J

pikŷiks ≤
�∑

s=1

(
∑

k∈J

piky
′
iks + τs

)

≤ β

β − 1
τ� +

�∑

s=1

τs

≤
(
βα

β − 1
+

α2

α− 1

)
τ�−1 ≤ βα

(
β

β − 1
+

α

α− 1

)
C∗

L.

The second inequality follows from (19), the third from (17), and the fourth
follows from the definition of τk. The last inequality follows since, by condition
(3), ŷij� = 1 implies y′ij� > 0, so that by (18) we have τ�−1 ≤ βC∗

L. Optimizing
over the approximation factor, the best possible guarantee given by this method
is attained at α = β = 3/2, and thus we conclude that Cj ≤ 27/2 · C∗

L for all
L ∈ O and j ∈ L. ��

Theorem 5. Greedy-LP is a (27/2)-approximation for R|rij |
∑
wLCL.
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5 Further Results

Beyond the results shown in this paper, we have also considered the problem
P |part|

∑
wLCL, where no job can simultaneously belong to more than one

order. Following Afrati et al. [1], we were able to develope a PTAS for some
restricted versions of this problem, namely, when the number of jobs in each
order is constant, the number of machines is constant, or the number of orders
is constant. Thus, our algorithm generalizes the known PTAS’s in [1,11,24].
The main extra difficulty compared to the case in [1], is that we might have
orders that are processed through a long period of time, and their costs are only
realized when they are completed. To overcome this issue, and thus be able to
apply the dynamic programming ideas of Afrati et al., we simplify the instance
and prove that there is a near-optimal solution in which every order is fully
processed in a restricted time span. This requires some careful enumeration plus
the introduction of artificial release dates. Due to space restrictions this result
is left for the full version of this paper (see [27] for details).
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Abstract. We revisit simultaneous Diophantine approximation, a classi-
cal problem from the geometry of numbers which has many applications
in algorithms and complexity. The input to the decision version of this
problem consists of a rational vector α ∈ Qn, an error bound ε and a
denominator bound N ∈ N+. One has to decide whether there exists
an integer, called the denominator Q with 1 ≤ Q ≤ N such that the
distance of each number Q · αi to its nearest integer is bounded by ε.
Lagarias has shown that this problem is NP-complete and optimization
versions have been shown to be hard to approximate within a factor
nc/ log log n for some constant c > 0. We strengthen the existing hardness
results and show that the optimization problem of finding the smallest
denominator Q ∈ N+ such that the distances of Q · αi to the nearest in-
teger are bounded by ε is hard to approximate within a factor 2n unless
P = NP.

We then outline two further applications of this strengthening: We
show that a directed version of Diophantine approximation is also hard
to approximate. Furthermore we prove that the mixing set problem with
arbitrary capacities is NP-hard. This solves an open problem raised by
Conforti, Di Summa and Wolsey.

1 Introduction

Diophantine approximation is one of the fundamental topics in mathematics.
Roughly speaking, the objective is to replace a number or a vector, by another
number or vector which is very close to the original, but less complex in terms of
fractionality. A famous example is the Gregorian calendar, which approximates
a solar year with its leap year rule.

Since the invention of the LLL algorithm [15], simultaneous Diophantine ap-
proximation has been a very important object of study also in computer science.
One powerful result, for example, is the one of Frank and Tardos [7] who pro-
vided an algorithm based on Diophantine approximation and the LLL algorithm
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which, among other things, shows that a combinatorial 0/1-optimization prob-
lem is polynomial if and only if it is strongly polynomial.

Let us denote the distance of a real number x ∈ R to its nearest integer by
{x} = min{|x − z| : z ∈ Z} and the distance of a vector v ∈ Rn to its nearest
integer vector w.r.t. the infinity norm �∞ by {{v}} = min{‖v − z‖∞ : z ∈ Zn}.

Lagarias [14] has shown that it is NP-complete to decide whether there exists
an integer Q ∈ {1, . . . , N} with {{Q ·α}} ≤ ε, given α ∈ Qn, N ∈ N+ and ε > 0.
The best approximation error δN of a vector α ∈ Qn with denominator bound
N ∈ N+ is defined as δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. Lagarias [14]
showed also that the existence of a polynomial algorithm, which computes on
input α ∈ Qn and N ∈ N+ a number Q ∈ {1, . . . , 2n/2 ·N} with {{Q ·α}} ≤ δN
implies NP = co-NP.

Lagarias’ reduction was then sharpened to an inapproximability result by
Rössner and Seifert [21] and Chen and Meng [1] to the extent that, given α ∈ Qn

and N as above, it is NP-hard to compute a Q ∈ {1, . . . , �nc/ log log n�N} with
{{Q · α}} ≤ nc/ log log nδN where c > 0 is a constant. We revisit the reduction
technique of Lagarias [14] and its sharpening by Rössner and Seifert [21] to
obtain the following theorem.

Theorem 1. There exists a constant c > 0 and a polynomial time transforma-
tion which maps an instance C of SAT to an instance α ∈ Qn, N ∈ N+, ε ∈ Q+
of simultaneous Diophantine approximation such that the following holds.

i) If C is satisfiable, then there is a Q ∈ {�N/2�, . . . , N} with {{Q · α}} ≤ ε.
ii) If C is not satisfiable, then one has {{Q · α}} ≥ nc/ log log n · ε for each
Q ∈ {1, . . . , 2n ·N}.

iii) The error bound ε satisfies ε ≤ 1/(22n).

The crucial differences between our result and the result in [21] are as follows. In
case i), there exists a good Q which is at least �N/2� whereas the result in [21]
guarantees only a good Q in the interval {1, . . . , N}. In case ii) each Q which
is bounded by 2n ·N is violating the distance bound by nc/ log log n, whereas the
reduction of [21] together with the result of [1] guarantees this violation only
for Q ∈ {1, . . . , �nc/ log log n� ·N}. These differences facilitate the application of
our hardness result to other problems from the geometry of numbers and integer
programming. We describe three such applications in this paper.

Applications

One immediate consequence of Theorem 1 is that the best denominator problem

min{Q ∈ N+ : {{Q · α}} ≤ ε}

cannot be approximated within a factor of 2n unless P = NP, see Corollary 1.
Furthermore, it follows that the existence of a polynomial algorithm, which com-
putes on input α ∈ Qn, N ∈ N+ a numberQ ∈ {1, . . . , 2n·N} with {{Q·α}} ≤ δN
implies P = NP improving the result of Lagarias [14] mentioned above to the
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extent of replacing the factor 2n/2 and the assumption NP 
= co-NP by 2n and
P 
= NP respectively, see Corollary 2.

We then provide a strong inapproximability result for directed Diophantine
approximation, where the distance to the nearest integer vector which is greater
than or equal to Q ·α has to be small. Directed Diophantine approximation was
for example considered by Henk and Weismantel [12] in the context of an inte-
ger programming problem and an optimization version of directed Diophantine
approximation was shown to be hard to approximate within a constant factor
by the authors of this paper [6].

Finally we apply our results to solve an open problem raised by Conforti,
Di Summa and Wolsey [3] concerning the complexity of a linear optimization
problem over a mixing set with arbitrary capacities, a type of integer program
which frequently appears in production planning.

2 A Strengthening of the Lagarias, Rössner-Seifert
Reduction

The goal of this section is to prove Theorem 1. To do this, we rely on several
results from the literature. Our starting point is a similar result for the shortest
integer relation problem. Here, one is given a vector a ∈ Zn and the goal is to
find a nonzero integral solution x ∈ Zn of the equation aTx = 0 of minimum
infinity norm. By modifying a reduction from Super-Sat to shortest vector in
the infinity norm by Dinur [5], Chen and Meng [1] showed that there exists a
reduction from SAT to shortest integer relation with the property that if C is
satisfiable, then the optimum value of the shortest integer relation problem is one
and if C is unsatisfiable, then the optimum value of the shortest integer relation
problem is at least nc/ log log n for some constant c > 0. This can be extended to
the following result which we prove in the appendix. The only difference to the
stated result above is the presence of condition c).

Lemma 1. There exists a constant c > 0 and a polynomial time algorithm,
which maps a SAT-formula C to an instance a ∈ Zn of shortest integer relation-
with the following properties:

a) If C is satisfiable, then min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} = 1.
b) If C is not satisfiable, then min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} ≥ nc/ log log n.
c) There exists an optimum solution x of min{‖x‖∞ : aTx = 0, x ∈ Zn−0} with
x1 ≥ 1.

We proceed from Lemma 1 to show the existence of a reduction from SAT to
simultaneous Diophantine approximation with properties i), ii) and iii). For this,
by Lemma 1 it is enough to provide a reduction from a shortest integer relation
problem min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} with the property that there exists
an optimum solution x with x1 ≥ 1 to an instance of simultaneous Diophantine
approximation α0, . . . , αn, ε,N such that the following assertions hold.
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I) If the optimum value of the shortest integer relation problem is one, then
there exists a Q ∈ {�N/2�, . . . , N} with {{Q · α}} ≤ ε.

II) For each ρ ∈ {1, . . . , n} the following statement is true: If the optimum
value of the shortest integer relation problem is larger than ρ, then {{Q ·
α}} > ρ · ε for each Q ∈ {1, . . . , 2n ·N}.

III) The error bound ε satisfies ε ≤ 1/(22n).

The rest of the proof of Theorem 1 follows closely the proof of Lagarias [14] and
the one of Rössner and Seifert [21]. Let min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} be
the instance of shortest integer relation. One can efficiently find different primes
p, q1, . . . , qn as well as natural numbers R and T in polynomial time, such that

1. n ·
∑n

j=1 |aj | < pR < qT1 < q
T
2 < . . . < q

T
n < (1 + 1

n ) · qT1
2. p and all qi are co-prime to all aj

3. qT1 > 22n · pR

4. The values of T,R, p, q1, . . . , qn are bounded by a polynomial in the input
length of a.

A proof of this claim with weaker bounds is presented in [14,21]. The crucial
difference to the results in these papers is the bound 3), which before stated
that pR times a polynomial in the input encoding is at most qT1 . Here we have
the exponential factor 22n instead. The full proof is in the Appendix.

The following system of congruences appears already in [16] and is also crucial
in the reductions presented in [14,21].

rj ≡pR aj (1)
rj ≡qT

i
0 ∀i 
= j (2)

rj 
≡qj 0 (3)

For each j, this is a system of congruences with co-prime moduli and thus, the
Chinese remainder theorem (see, e.g. [18]) guarantees that there exists a solution
rj for each j = 1, . . . , n.

Lemma 2. The systems
n∑

j=1

xjaj = 0 and
n∑

j=1

xjrj ≡pR 0 (4)

have the same set of integral solutions x ∈ Zn with ‖x‖∞ ≤ n.
Proof. Since aj ≡pR rj , each solution x ∈ Zn of the equation on the left is also a
solution of the congruence equation on the right. If x ∈ Zn is a solution for the
congruence on the right, then

∑n
j=1 ajxj ≡pR 0. Assume furthermore ‖x‖∞ ≤ n.

If we can infer that the absolute value of
∑n

j=1 ajxj is strictly less than pR, then∑n
j=1 ajxj = 0 follows. But

|
n∑

j=1

xjaj | ≤ n ·
n∑

j=1

|aj | < pR

by the choice of the prime numbers. ��
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We now provide the construction of the instance α0, . . . , αn, ε,N of the simul-
taneous Diophantine approximation problem for our reduction. By r−1

j ∈ Z we
denote the unique integer in {1, . . . , qTj − 1} with rj · r−1

j ≡qT
j

1. This must exist
since rj 
≡qj 0 implies that rj is a unit in the ring ZqT

j
. The instance is

α0 =
1
pR

αj =
r−1
j

qTj
, j = 1, . . . , n

N =
n∑

j=1

rj

ε =
1
qT1
.

The bound iii) on ε follows from qT1 > 22n · pR. Let x ∈ Zn be a solution
of the shortest integer relation problem with ‖x‖∞ ≤ 1. Consider the integer
Q =

∑n
j=1 rj ·xj whose absolute value is bounded by N =

∑n
j=1 rj . What is the

distance of Q · α to the nearest integer vector in the infinity norm?
Since

∑n
j=1 rj ·xj ≡pR

∑n
j=1 aj ·xj = 0 it follows that pR divides

∑n
j=1 rj ·xj

which means that {Qα0} = 0. For i ≥ 1 one has r−1
i ·

∑n
j=1 rj · xj ≡qT

i
xi (since

rj ≡qT
i

0 for i 
= j) and since xi ∈ {0,±1} one has {Q·αi} ≤ 1/qTi ≤ 1/qT1 = ε. In
other words,Q is an integer whose absolute value is bounded by N which satisfies
{{Q·α}} ≤ ε. This is almost condition I), except that Q ∈ {�N/2�, . . . , N}might
not be satisfied.

To achieve this additional bound on Q we use the fact that there exists an
optimal solution of the shortest integer relation problem which satisfies x1 ≥ 1
and we choose r1 significantly larger than the other rj . Consider again the system
of congruences (1-3). Let B = pR

∏n
j=1 q

T
j and let 0 ≤ r′j ≤ B/qTj be a solution

to (1) and (2). If r′j 
≡qT
j

0, then rj = r′j otherwise rj = r′j + B/qTj . Thus each
rj is bounded by 0 ≤ rj ≤ 2 · B/qTj . We choose r1 however considerably larger,
namely r1 = r′1+12nB/qT1 or r′1+(12n+1)B/qT1 . In this way we have r1 ≥ 6n·rj .
By choosing the rj in this way, we obtain the following lemma.

Lemma 3. If min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} = 1, then there exists a Q ∈
{�N/2�, . . . , N} such that {{Q · α}} ≤ ε.

Proof. By our assumption, there exists an optimum solution x ∈ Zn of the
shortest integer relation problem with x1 = 1. Let Q, as in the discussion above,
be Q =

∑n
j=1 rjxj . We have already seen that {{Q · α}} ≤ ε holds and clearly

Q ≤
∑n

j=1 rj = N . On the other hand x1 ≥ 1, ‖x‖∞ = 1 and r1 ≥ 6nrj for each
j = 2, . . . , n implies Q ≥ N/2. ��

The next lemma provides condition II.
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Lemma 4. Let ρ be any number in {1, . . . , n} and suppose there exists a Q ∈
{1, . . . , 2nN} with {{Q · α}} ≤ ρ · ε. Then, the optimum value of the shortest
integer relation problem is at most ρ.

Proof. We construct a solution x of the shortest integer relation instance: Let
xj be the smallest integer in absolute value with

Qr−1
j ≡qT

j
xj .

We need to show three things, namely

‖x‖∞ ≤ ρ, x 
= 0 and aTx = 0. (5)

The first assertion of (5) follows from the fact that qT1 < qTj < (1 + 1/ρ) · qT1
which implies the strict inequality in

∣
∣
∣∣
∣
xj

qTj

∣
∣
∣∣
∣
=

{
Qr−1

j

qTj

}

≤ ρ · ε =
ρ

qT1
<
ρ+ 1
qTj

.

Observe that Q is a multiple of pR. If this was not the case, then

{Qα0} =
{
Q

pR

}
≥ 1
pR
>
ρ

qT1
= ρ · ε,

since qT1 > 22·npR and ρ ≤ n. We next show that Q =
∑n

i=1 xiri. This implies
directly that x 
= 0, since Q ≥ 1. Furthermore Q ≡pR 0 and Lemma 2 imply
together with ‖x‖∞ ≤ ρ that aTx = 0 and (5) is proved.

Multiplying the equation Q · r−1
j ≡qT

j
xj with rj yields Q ≡qT

j
rjxj . Let

D =
∏n

j=1 q
T
j . We have Q ≡qT

i
rixi and 0 ≡qT

i
rjxj for j 
= i and thus

Q ≡qT
i

∑n
j=1 rjxj . Since the moduli qTi are co-prime, this implies that Q ≡D∑n

j=1 rjxj . We are done with the proof, once we have shown that Q < D/2 and
|
∑n

j=1 xjrj | < D/2, since then both values must coincide if they are congruent
to each other modulo D.

We first bound the value of |
∑n

j=1 xjrj |. This is at most ρ ·
∑n

j=1 rj ≤ n ·N .
Applying the bound rj ≤ 13 · npRD/qT1 and qT1 > 22n · pR we can bound N by

N ≤ 13 · n2 ·D/22n.

Consequently

|
n∑

j=1

xjrj | ≤ 13 · n3 ·D/22n

which is smaller than D/2 for n sufficiently large. Finally Q is bounded by 2nN
which is also bounded by D/2 for n large enough. The claim follows. ��

This proves Theorem 1.
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2.1 Hardness of the Best Denominator

We now discuss the hardness of the best denominator problem. The input to
this problem is α1, . . . , αn, ε ∈ Q and the task is to find a smallest Q ∈ N+
with {{Q · α}} ≤ ε. The following corollary is an immediate consequence of
Theorem 1.

Corollary 1. If P 
= NP, then there does not exist a polynomial time approx-
imation algorithm for the best denominator problem with an approximation
factor 2n.

Furthermore we can strengthen the result of Lagarias [14] which states that, if
there exists a polynomial time algorithm which, on input α ∈ Qn and N ∈ N+
computes a Q ∈ {1, . . . , 2n/2N} with {{Q · α}} ≤ δN , then NP = co-NP. Recall
that δN = min{ {{Q · α}} : Q ∈ {1, . . . , N} }. The strengthening is as follows.

Corollary 2. If there exists a polynomial time algorithm which computes on
input α ∈ Qn and N ∈ N+ a Q ∈ {1, . . . , 2n · N} with {{Q · α}} ≤ δN , then
P = NP.

Proof. Consider an instance α,N, ε which stems from the reduction of a SAT-
formula C as in Theorem 1 and suppose that there exists an algorithm which
computes in polynomial time a Q ∈ {1, . . . , 2nN} with {{Q · α}} ≤ δN . If
{{Q · α}} ≤ ε, then C is satisfiable. Otherwise, C is unsatisfiable. This implies
the assertion. ��

3 Directed Diophantine Approximation

In this section we consider a variant of the classical Diophantine approximation
problem, in which we measure the distance of the vector Q · α to the nearest
integer vector which is in each component greater or equal than Q ·α. We use the
notation {x}↑ for the distance of the real number x ∈ R to the nearest integer
which is greater or equal to x, {x}↑ = min{z − x : z ∈ Z, z ≥ x}. For a vector
α ∈ Rn we denote its distance to the nearest integer greater or equal to α by
{{α}↑}, in other words

{{α}↑} = min{‖x− α‖∞ : x ∈ Zn, x ≥ α}.

An instance of directed Diophantine approximation consists of α1, . . . , αn, ε,N
with αi ∈ Q, ε ∈ Q and N ∈ N+. The goal of this section is to show the following
theorem.

Theorem 2. There is a constant c > 0 and a polynomial time transformation
which maps a SAT instance C to an instance α0, . . . , αn, ε,N of directed Dio-
phantine approximation such that the following conditions hold.

i’) If C is satisfiable, then there exists a Q ∈ {�N/2�, . . . , N} with {{Q · α}↑}
≤ ε.
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ii’) If C is unsatisfiable, then for each Q ∈ {1, . . . , �nc/ log log n�N} one has
{{Q · α}↑} > 2nε.

iii’) The error bound ε satisfies ε ≤ 3/2n.

Proof. For the proof of this theorem, we rely on Theorem 1. Let α1, . . . , αn, ε,N
be a simultaneous Diophantine approximation instance which results from the
transformation from SAT. From this, we construct an instance of directed
Diophantine approximation α′

1, . . . , α
′
2n, N, ε

′ with

α′
i = αi − δ i = 1, . . . , n

α′
i+n = −αi − δ i = 1, . . . , n
ε′ = 3ε,

where δ = 2ε/N .
Suppose that there exists a Q ∈ {�N/2�, . . . , N} with {{Qα}} ≤ ε and let zi

be the nearest integer to Q ·αi. Since Q · δ ≥ ε it follows that Q(αi + δ) ≥ zi and
thus that the distance of Q(αi+δ) to �Q(αi+δ)� is bounded by |Q(αi+δ)−zi| ≤
|Qαi−zi|+|Qδ| ≤ 3ε. This means that {Q(−αi−δ)}↑ ≤ 3ε. Similarly,Q(αi−δ) ≤
zi and thus {Q(αi− δ)}↑ is bounded by |Q(αi− δ)−zi| ≤ |Qαi−zi|+ |Qδ| ≤ 3ε.
This implies property i’).

Next let ρ ∈ {1, . . . , n} and suppose that there exists a Q ∈ {1, . . . , ρN} with
{{Qα′}↑} ≤ 2nε′. We show that this implies that {{Qα}} ≤ 2ρε which in turn
shows that property ii’) holds.

For each i ∈ {1, . . . , n} there exists an integer zi which lies between Q(αi− δ)
and Q(αi + δ), since otherwise one of the values {Q(αi− δ)}↑ or {Q(−αi− δ)}↑
is at least 1/2. But {{Q · α′}↑} ≤ 2nε′ = 2n3ε < 1/2, a contradiction. Then
Q(αi − δ) ≤ zi ≤ Q(αi + δ) implies

|Qαi − zi| ≤ Qδ ≤ 2ρε. ��

4 Hardness of Mixing Set

In recent integer programming approaches for production planning the study of
simple integer programs which are part of more sophisticated models has become
very successful in practice, see, e.g. [19]. One of these simple integer programs
is the so-called mixing set [9,2]. The constraint system of a mixing set problem
is of the form

s+ ai yi ≥ bi i = 1, . . . , n,
s ≥ 0
yi ∈ Z i = 1, . . . , n,
s ∈ R.

(6)

where ai, bi ∈ Q. Optimizing a linear function over this mixed integer set can be
done in polynomial time if all ai are equal to one [9,17] or if ai+1/ai is an integer
for each i = 1, . . . , n− 1 [22], see also [3,4] for subsequent simpler approaches.
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Conforti et al. [3] pose the problem, whether one can optimize a linear function
over the set of mixed-integer vectors defined by (6) also in the general case, to
which they refer as the case with arbitrary capacities, in polynomial time. In
this section, we apply our results on directed Diophantine approximation to
show that this problem is NP-hard.

Suppose we have an instance of the directed Diophantine approximation prob-
lem α,N, ε, where we are supposed to round down to the nearest integer vec-
tor. By using the notation {x}↓ = min{x − z : z ≤ x, z ∈ Z} for x ∈ R and
{{v}↓} = min{‖v−z‖∞ : z ∈ Zn, z ≤ v} and the observation that {x}↓ = {−x}↑
it follows that Theorem 2 is also true if the rounding up operation is replaced by
rounding down. We next formulate an integer program to compute a Q which
yields a good approximation by rounding down and satisfies the denominator
bound Q ∈ {1, . . . , N}.

min
∑n

i=1Q(αi − yi)

Q− 1/αi · yi ≥ 0 i = 1, . . . , n
Q ≥ 1
Q ≤ N

Q, y1, . . . , yn ∈ Z.

The goal is to transform this integer program into a linear optimization problem
over a mixing set. Consider the following mixing set.

Q− 1/αi · yi ≥ 0 i = 1, . . . , n
Q+ 0 · y0 ≥ 1
Q− y−1 ≥ 0

Q ∈ R

y−1, y0, y1, . . . , yn ∈ Z.

(7)

We now argue that, if the linear optimization problem over this mixing set can
be done in polynomial time, then P = NP.

Suppose that the linear optimization problem can be solved in polynomial
time. Then, we can also solve the linear optimization problem over the non-
empty face of the convex hull of the solutions which is induced by the inequality
Q− yi−1 ≥ 0, see, e.g., [8]. This enforces Q to be an integer. Next consider the
following objective function

min
n∑

i=1

Q(αi − yi) + (2n−1ε/N)(Q−N). (8)

The sum on the left is measuring the distance of Q·α to its nearest integer vector
from below in the �1-norm. The term on the right stems from the removal of the
constraint Q ≤ N , which would not be allowed in a system defining a mixing set.
In fact, we thereby follow a Lagrangian relaxation approach, which is common
in approximation algorithms, see e.g. [20], in order to show a hardness result.
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Theorem 3. Optimizing a linear function over a mixing set is NP-hard.

Proof. Let α1, . . . , αn, N, ε be an instance of directed Diophantine approxima-
tion with rounding down, which stems from a transformation from SAT, as in
Theorem 2 and suppose that one can solve the linear optimization problem with
objective function (8) over the convex hull of the mixing set. Then we can also
optimize this over the face induced by Q− y−1 ≥ 0. This merely means that we
can find a pure integer optimum solution over the mixing set (7).

Our instance α1, . . . , αn, N, ε has the following property. If the originating
SAT formula is satisfiable, then there exists a Q ∈ {�N/2�, . . . , N} with {{Q ·
α}↓} ≤ ε and if not, then there does not exist a Q ∈ {1, . . . , �nc/ log log n�N}
with {{Q · α}↓} ≤ 2nε.

In the case where the SAT formula is satisfiable, let Q ∈ {�N/2�, . . . , N} with
{{Q · α}↓} ≤ ε. The objective function value of this Q with the appropriate yi

yields an objective function value bounded by n · ε.
Suppose now that the SAT formula is not satisfiable and consider a solution

Q with appropriate yi of the mixing set problem. If Q ∈ {1, . . . , �nc/ log log n�N},
then the objective function is at least

2nε− 2n−1ε = 2n−1ε.

If Q is larger than �nc/ log log n�N , then the objective function value is at least

2n−1ε(�nc/ log log n� − 1).

Thus problem of optimizing a linear function over a mixing set with arbitrary
capacities is NP-hard. ��
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Appendix

Shortest Integer Relation

By modifying a reduction from Super-Sat to shortest vector in the infinity norm
by Dinur [5], Chen and Meng [1] showed that there exists a reduction from
SAT to shortest integer relation with the property that if C is satisfiable, then
the optimum value of the shortest integer relation problem is one and if C is
unsatisfiable, then the optimum value of the shortest integer relation problem
is at least nc/ log log n for some constant c > 0. Here, we show that this can be
extended such that there exists an optimum solution of shortest integer relation,
whose first component is nonzero, thus give a proof of Lemma 1.
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Let min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} be an instance of a shortest integer
relation problem. Consider the matrix

A =

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 aT 0T . . . 0T

0 0T aT . . . 0T

...
...

...
. . .

...
0 0T 0T . . . aT

−1 eT1 e
T
2 . . . e

T
n

⎞

⎟⎟
⎟
⎟
⎟
⎠
∈ Z(n+1)×(n2+1)

containing n copies of aT on a shifted diagonal and having (−1, eT1 , eT2 , . . . , eTn )
as last row, where ei is the i-th n-dimensional unit column vector. The rest is
filled by zeros.

Clearly, the optimization problems min{‖x‖∞ : aTx = 0, x ∈ Zn − 0} and
min{‖x‖∞ : Ax = 0, x ∈ Zn2+1 − 0} are equivalent and the second optimization
problem has the property that there is always an optimum solution with nonzero
first entry. Kannan [13] provided an algorithm replacing a system Ax = 0 by
one equation a′Tx = 0 in polynomial time such that the sets {x ∈ Zn2+1 : Ax =
0, ‖x‖∞ ≤ μ} and {x ∈ Zn2+1 : a′x = 0, ‖x‖∞ ≤ μ} are identical. His algorithm
is polynomial in the encoding length of A and μ. Choosing μ = n is enough
for our purposes so that Kannan’s algorithm yields the desired shortest integer
relation instance min{‖x‖∞ : a′Tx = 0, x ∈ Zn2+1 − 0}.

Computing Dense Primes

In the reduction from shortest integer relation to simultaneous Diophantine ap-
proximation (Sect. 2) we rely on the fact that one can efficiently compute prime
numbers p, q1, . . . , qn and integers R and T with

1. n ·
∑n

j=1 |aj | < pR < qT1 < q
T
2 < . . . < q

T
n < (1 + 1

n ) · qT1 ,
2. p and all qi are co-prime to all aj ,
3. qT1 > 22n · pR,
4. the values of T,R, p, q1, . . . , qn are bounded by a polynomial in the input

length of a.

The algorithm which we now present is almost identical, up to better bounds, to
the one proposed by Lagarias [14] and uses two deep results from number theory.
The first one is the prime number theorem, which states that π(n) ≈ n/ logn,
see, e.g. [18]. The second result is the following theorem by Heath-Brown and
Iwaniec [10,11].

Theorem 4. For each δ > 11/20, there exists a constant cδ such the interval
[z, z + zδ] contains a prime for each z > cδ.

Let m be the binary encoding length of a. The number of different primes which
divide a component of a is bounded by m. We can compute the first m + 1
prime numbers with the sieve of Eratosthenes. Here the prime number theorem
is used, since we run the sieve on the first O(m logm) natural numbers. Out of
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these primes we choose one which is co-prime to all components of a. This is the
prime p from above. Next, we compute the smallest integers R and T such that
pR > n ·

∑n
j=1 |aj | and 2T > 22npR. The values of R and T are bounded by a

polynomial in m.
Next, the result of Heath-Brown and Iwaniec comes into play. Let δ = 3/5

and consider the sequence

zi = T 20 + i · (2T )12, for i = 0, . . . , T 2 − 1.

Each interval [zi, zi + z
3/5
i ] contains a prime number, since may may assume

T > cδ. The number z3/5
i can be bounded by

z
3/5
i =

(
T 20 + i(2T )12

)3/5

<
(
T 20 + T 2(2T )12

)3/5

≤ (2T )12.

From this it follows that zi + z
3/5
i < zi+1, which implies that the interval

[T 20, T 20 + T 2(2T )12] contains T 2 prime numbers. Since T 2(2T )12 < T 15 for
T large enough, we infer that the interval

[T 20, T 20 + T 15]

contains T 2 primes. If we denote the largest and smallest prime in this interval
by pmax and pmin respectively, then pmax/pmin ≤ 1 + (1/T )5 and consequently

(pmax/pmin)T ≤ (1 + (1/T )5)T ≤ e1/T 4 ≤ 1 + 2/T 4 ≤ 1 +
1
n
.

Here, we used the inequality 1 + x ≤ ex and ex ≤ 1 + 2x for x ∈ [0, 1].
By choosing T larger than m + n + 1, we may obtain prime numbers q1 <

. . . < qn from the interval [T 20, T 20 + T 15], which are co-prime to p and each aj

and hence satisfy the conditions (1–4).
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Abstract. We introduce a new framework for designing and analyzing
algorithms. Our framework applies best to problems that are inapprox-
imable according to the standard worst-case analysis. We circumvent
such negative results by designing guarantees for classes of instances,
parameterized according to properties of the optimal solution. We also
make sure that our parameterized approximation, called PArametrized
by the Signature of the Solution (PASS) approximation, is the best pos-
sible. We show how to apply our framework to problems with additive
and submodular objective functions such as the capacitated maximum
facility location problems. We consider two types of algorithms for these
problems. For greedy algorithms, our framework provides a justification
for preferring a certain natural greedy rule over some alternative greedy
rules that have been used in similar contexts. For LP-based algorithms,
we show that the natural LP relaxation for these problems is not optimal
in our framework. We design a new LP relaxation and show that this LP
relaxation coupled with a new randomized rounding technique is optimal
in our framework.

In passing, we note that our results strictly improve over previous re-
sults of Kleinberg, Papadimitriou and Raghavan [JACM 2004] concerning
the approximation ratio of the greedy algorithm.

1 Introduction

Many important optimization problems in practice are inapproximable in the-
ory. Practitioners deal with inapproximability issues by designing heuristics that,
while provably bad on some instances, appear to perform well in practice. But
for theoreticians, designing a formal framework to help guide algorithmic devel-
opment for inapproximable problems has proved largely elusive.
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In this paper, we present a new framework, called PArametrized by the Signa-
ture of the Solution (PASS) approximations. Our framework attempts to catego-
rize instances according to how “easy” or “hard” they are, and design guarantees
for all instances simultaneously with a single algorithm (the offered guarantee de-
pends on the class of the instance and will degrade to arbitrarily bad factors for
inapproximable problems, but in a controlled way). We show how this framework
can be applied to a general class of optimization problem, including capacitated
maximum facility location, that can be described as maximizing a non-decreasing
submodular revenue function minus a linear cost function. We then show how the
new framework affects the choice of algorithms. Two standard approaches for han-
dling such problems are via greedy and LP-based algorithms. We study a natural
greedy algorithm and prove that it is an optimal PASS approximation whereas
other greedy algorithms that give optimal worst-case approximations are not. For
LP-based algorithms, we show that a natural LP relaxation cannot be used to
design an optimal PASS approximation. Instead, we provide a different LP relax-
ation and an associated rounding technique that is optimal. Our new LP relax-
ation is unconventional in the sense that instead of providing an upper bound on
the optimal solution (this is a maximization problem), it provides a lower bound.

The current paper outlines the theory of PASS approximations. We describe
the general technique and how to apply this technique to a wide range of the-
oretical problems using both greedy and LP-based algorithms. In a companion
paper [3], we apply the notion of approximation developed here to a specific
problem (banner advertising) of practical significance. This problem is a special
case of the broad class of problems studied in this paper.

The rest of the paper is organized as follows. After defining the problems, in
Section 2, we describe the theory of PASS approximation, and compare it with
previous approaches proposed to deal with the hardness of approximation. The
summary of results is given in Section 3. The greedy and an LP-based algorithms
for these problems are presented respectively in Sections 4 and 5.

Problem Studied

In this paper, we mainly focus on the maximum facility location problem [1,2]:

Maximum Facility Location (MFL). A set F of m facilities is given. For
every facility i, there is an opening cost of ci. There is also a set J of n clients.
The revenue of connecting client j to facility i is uij ≥ 0 (this may be interpreted
as a client revenue minus a connection cost). Every client can connect to at most
one open facility (or none). The goal in MFL is to open some facilities and
connect clients to them so as to maximize the total revenue from the connected
clients minus the total cost of the opened facilities.
For comparison with some previous work [6], we shall discuss also the following
problem that [6] call the variable catalog segmentation problem.

Catalog Segmentation Problem. A company has a collection of products and
a collection of potential clients. Clients have various levels of interest associated
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with each type of product. The company wishes to produce several types of cata-
logs, each type containing a subset of the products (the number of products in a
catalog may be limited by considerations such as weight), and mail to every po-
tential client at most one catalog (presumably, of a type that would be of interest
to the client). Assuming that producing a catalog-type has unit cost, and that for
each type i and client j there is a expected revenue of uij from mailing a catalog
of type i to client j, which catalogs should the company produce in order to maxi-
mize its expected profit (expected benefit minus production cost)? If all potential
types of catalogs can be listed beforehand and all values uij are known, then this
is a special case of MFL, with the catalogs serving as facilities. (In [6] it is assumed
that all types of catalogs cost the same to produce, and we follow this assumption
in our presentation. More generally, we may associate a cost ci for producing the
catalog of type i, and then the problem becomes equivalent to MFL.).

Most of our results apply to a general class of maximizing submodular set
functions, called submodular maximum facility location, that can be described
as maximizing a non-decreasing submodular revenue function minus a linear cost
function.

Submodular Maximum Facility Location (SMFL). Consider a set N of
n facilities and a set function f : 2N → R+. For any subset S ⊂ N , f(S) =
R(S)− c(S), where R is a non-negative non-decreasing submodular set function
corresponding to the revenue, and c(S) =

∑
i∈S ci is a linear cost function. As

a result, set function f is a non-monotone submodular function and the goal
is to find a subset S that maximizes f(S).1 We assume a value oracle for the
revenue function R and a description for the cost c (this is of polynomial size)
are given.

MFL is a special case of SMFL. Moreover, one can show (details omitted)
that capacitated maximum facility location (CMFL), in which every facility has
a capacity that limits the number of clients that it can serve, is also a special case
of SMFL. Other examples include a variety of optimization problems such as set
buying, catalog segmentation [6], banner ad allocation problem with guaranteed
delivery [3], maximizing influence in social networks [5,8], and optimal sensor
installation for outbreak detection [7].

2 The Theory of PASS Approximation

In this section we describe the notion of PASS approximation for the maximum
facility location problem; in Section 4.2 we show how this notion extends to
submodular maximum facility location. First note that for these problems the
value of the objective function may be negative for some feasible solutions. As
is often the case with objective functions that may be negative, the MFL prob-
lems are NP-hard to approximate within any constant factor (see for example
Theorem 1). Therefore, researchers have attempted to present other types of

1 Note that function f can be possibly negative and therefore the result of
Feige et al. [4] does not apply.
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performance guarantees. As we discuss in the next section, most of previous
attempts suffer in that they do not prove guarantees with regard to the real
optimum value on every instance. Nonetheless, there are large classes of inter-
esting instances in which the approximation ratio can be much better than the
worst-case guarantees, for example if the cost of opening facilities is far from
the revenue one can get from the open facilities. Our goal is to get a better un-
derstanding of the approximation ratio, exposing classes of input instances for
which a constant approximation ratio is possible.

Let us first describe an attempt that fails to resolve our concerns.

Relatively small costs. Based on the intuition of the previous paragraph,
for 0 < α < 1, let us call an instance α-bounded if for every facility, the cost
of opening the facility is at most α times the revenue one gets by connecting
all clients to the facility. Is it the case that when α is sufficiently small there
is a constant approximation for MFL for α-bounded instances? The answer is
negative. The proof involves starting from a hard to approximate instance of
MFL, and adding an additional client that provides revenue max(ci/α) regardless
of which facility services it. This forces the instance to be α-bounded, while
increasing the value of an optimal solution by only max(ci/α). An appropriate
choice of parameters leads to the desired hardness result.

We now discuss a performance measure introduced by Kleinberg et al [6].
Unlike the notion of an α-bounded instance discussed previously, the idea is to
use the notion of α-boundedness not with respect to the input instance, but
rather with respect to its optimal solution. Namely, call a solution α-bounded if
the total cost of opening the facilities in this solution is at most an α-fraction of
the total revenue derived from all clients in the solution.2 In [6], it is shown that
for the catalog segmentation problem, whenever α is bounded away from 1, the
approximation ratio of a natural greedy algorithm is a constant (that tends to 1
as α tends to 0). An exact statement of this result of [6] appears in Theorem 4.
Our notion of performance guarantee can be viewed as a generalization of the
notion used in [6]. A more detailed comparison between our work and that of [6]
will appear in Section 4.

Consider an arbitrary MFL instance I and an arbitrary feasible solution S.
For each facility i open in S, let ci be its opening cost, and let ri =

∑
uij (where

the sum is taken over clients j connected to facility i in S) be the total revenue
derived from clients connected in S to facility i. 3 Let αi denote the ratio ci/ri.
Intuitively, a value of αi close to 0 indicates that opening the facility i was a
favorable decision, because the revenue ri that resulted from this opening came
at relatively little cost. A value of αi close to 1 indicates that the opening of
facility i may have been questionable, as most of the revenue ri is offset by the
cost ci. On a global scale, the total revenue of S is R(S) =

∑
i∈S ri, the total cost

2 Technically, in [6] a different parameter μ is considered, which in our terminology is
μ = 1

α
−1. It is straightforward to translate results expressed in terms of μ to results

expressed in terms of α and vice versa.
3 A better notation might be to write ri(S) instead of ri, but we use ri for brevity.



PASS Approximation 115

is C(S) =
∑

i∈S ci, and the value of solution S is V (S) = R(S)−C(S). Similar to
the local values αi, we shall use α to denote an aggregate value α = C(S)/R(S).

Definition 1. Given an instance I of MFL and a feasible solution S, and using
notation as above.

– The expanded signature of S is the collection {(qi, αi)}, where i ranges over
all facilities open in S, qi = ri/R(S), and αi = ci/ri.

– The signature sig(S) of S is the collection {(qi, αi)} obtained from the ex-
panded signature by unifying components that share the same value of αi.
Namely, in the signature i no longer refers to a specific facility, all αi are
distinct, ri denotes the total revenue that comes from open facilities which
share the same αi value (namely ri =

∑
facilities i′:α′

i=αi
ri′), and qi denotes

the fraction of revenue that comes from open facilities which share the same
αi value (namely, qi = ri/R(S)).

Fig. 1. An instance of the facility location problem: the costs of the facilities and the
revenue from the clients (on the edges). An optimal solution is depicted by solid lines.
The expanded signature is {( 1

2 , 1
2 ), ( 1

4 , 1
2 ), ( 1

4 , 3
4 )}, the signature is {( 3

4 , 1
2 ), ( 1

4 , 3
4 )}, and

the summary signature is 9
16 .

Note that for every signature
∑

qi = 1, and that if all open facilities in S have
the same value αi then the signature is (1, α), in which case we abbreviate it to
α. When open facilities have different values of αi we may view α = C(S)/R(S)
as a parameter that to some extent summarizes the signature, even though it
does not have the same distinguishing power among solutions as the signature
does. Using α as a summary signature will be convenient when we compare
our results against previous results of [6]. Also, it is important to distinguish
between the expanded signature and the signature in order to be able to talk
about asymptotics in the hardness results as for any fixed expanded signature
there are a fixed number of facilities. For the positive results, the notions of
expanded signature and signature are interchangeable by changing the index of
summation, and the reader may find it easier to interpret the positive results
using the expanded signature.

In our framework of PASS approximation, we express the approximation ratios
of algorithms as a function of the signature. Observe that an instance may have
multiple different signatures (one for each feasible solution). Our approximation
ratios will apply to all of them (and hence to the best of them). Nevertheless,
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the reader may find it convenient to think of the signature of an instance as
that of (one of) its optimal solution(s). Given any feasible solution (e.g., an
optimal one) with signature S, for every index i solution S generates a value
of ri(1 − αi) from facilities with α value equal to αi. Our algorithms may open
facilities different than those opened by S, but our accounting method will show
that our algorithms recover value at least v̂i = ri(1− αi − αi ln 1

αi
) in exchange

to the value generated by S from index i. This parameter v̂i is therefore called
the recoverable value, and, as we will prove, it is the optimal recoverable value
(i.e., it is NP-hard to recover more). Note that 0 ≤ v̂i ≤ ri, with v̂i = 0 when
αi = 1 (i.e., we can’t recover any value from facilities whose cost equals their
revenue) and v̂i = ri when αi = 0 (i.e., we can recover all the revenue from
facilities with zero cost). To simplify the presentation in this paper, and with no
significant effect on the results, we pretend that quantities such as lnx can be
computed exactly in polynomial time for every x.

3 Our Results

We first present a hardness result and then give tight greedy and LP-based
algorithms for MFL. The proof is omitted in the current version.

Theorem 1. Let sig = {(qi, αi)} be an arbitrary signature, and consider the
class of MFL instances that have an optimal solution with signature sig. For
simplicity of notation, for each such instance, normalize the costs and revenues
such that the revenue of the optimal solution having signature sig is 1, and hence
its value is 1 −

∑
qiαi. Then on this class of instances, for every ε > 0, it is

NP-hard to find a solution of value
∑

v̂i + ε where v̂i = qi(1− αi − αi ln 1
αi

).

Corollary 1. For any ε > 0 and α = C(S)/R(S), for any optimal solution S,
it is NP-hard to approximate MFL within a ratio better than 1−α−α ln 1

α

1−α + ε.

We show that there are algorithms with approximation ratios that match the
hardness results, and moreover do so for wider classes of problems. The first
class of algorithms that we consider is that of greedy algorithms. We shall dis-
tinguish between two types of greedy algorithms depending on whether it is
greedy with respect to margin or to rate. Only one of these versions is optimal
in our framework.

Theorem 2. Let I be an arbitrary instance of MFL, let S be an arbitrary fea-
sible solution and let {(qi, αi)} be the signature of S. For simplicity of notation,
normalize the costs and revenues in I such that the revenue of S is 1, and hence
its value is 1 −

∑
qiαi. Then the greedy-rate algorithm produces a solution of

value at least
∑

v̂i where v̂i = qi(1 − αi − αi ln 1
αi

).

Corollary 2. The greedy-rate algorithm approximates MFL within a ratio of at
least 1−α−α ln 1

α

1−α , where α = C(S)/R(S) for any optimal solution S.
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Remark: As shown in Section 4.2, the result above holds for SMFL problem,
under the appropriate definition of signature. We also remark that Corollaries 1
and 2 are each stronger than previous results proved in [6]. These issues will be
discussed in Section 4.

The next class of algorithms that we consider is based on linear program-
ming. It is also possible to show that the natural linear programming relax-
ation does not result in approximation ratios that match the hardness results of
Theorem 1 (the details are omitted in this version). Hence, we introduce a new
linear program, called the recoverable value LP, whose objective is to maximize
the (fractional) recoverable value rather than the (fractional) true value.4 We
then show that the LP can be rounded to give a feasible solution of value not
lower than the recoverable value of the LP.

Theorem 3. The recoverable value LP for MFL can be solved in polynomial
time. For every input instance and feasible solution S with signature {(qi, αi)},
the LP has a solution of value at least as high as

∑
v̂i, where v̂i = ri(1 − αi −

αi ln 1
αi

). Any solution of the LP can be rounded in random polynomial time
to give a feasible solution of expected value at least as high as the value of the
objective function in the LP solution.

3.1 Why Use Our Notion of PASS Approximation?

In this section we present arguments in favor of our notion of PASS approxima-
tion. The point that we will try to make is that performance measures guide the
design of algorithms, and our performance measure appears to us to be a very
good guide. We assume in the discussion below that the true goal is to maximize
revenue minus cost, and compare various approaches that can be used in order
to circumvent the inapproximability results for this measure. Recall that our
approach of PASS approximation is to express the approximation ratio not as a
function of the size of the input instance, but as of its signature.

As mentioned, MFL and SMFL are NP-hard to approximate. Therefore, re-
searchers have attempted to present other types of performance guarantees. One
existing theoretical approach for coping with inapproximable problems is to
change the objective function in a way that preserves the spirit of the origi-
nal problem. For example, one might consider the complement of the objective
(e.g., vertex cover as opposed to independent set), or bicriteria approximations
(e.g., bisection in graphs). In [2,1] the approach taken was to measure the quality
of a solution on a shifted scale which is always nonnegative. This is equivalent to
changing the objective function by adding to it a sufficiently large constant that
ensures that all solutions have nonnegative value. As an example, consider algo-
rithms for MFL based on linear programming. In [1] a combination of a linear
program and rounding technique is designed. They show that the approxima-
tion ratio of 2(

√
2− 1) that they obtain is best possible (matches the integrality

4 We note this relaxation is not a relaxation in the usual sense, because the value of
the objective function of the LP is a lower bound on the value of an optimal solution,
rather than an upper bound.
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gap), but with respect to a shifted scale of the objective function. As we do
not claim the same about our linear programming approach, then clearly there
are instances in which the algorithm of [1] is better than ours. Likewise, there
are instances on which our LP plus rounding gives better results (because we
are optimal with respect to the structural approximation measure, whereas [1]
are not). Hence it appears as if the results are incomparable. Nevertheless, we
would like to convince the reader that even though the result of [1] is interest-
ing mathematically, it does not really provide the kind of algorithmic insights
that are relevant to the original problem. To obtain an approximation ratio of
2(
√

2− 1) with respect to the shifted scale, it is safe to open every facility with
probability at least 1− 2(

√
2− 1) (and at most 1), regardless of the cost of the

facility, and regardless of whether any client wants to connect to the facility.
This is a simple (and obviously counterproductive) rule of thumb that comes
out of the shifted scale performance measure, and in fact the algorithm of [1]
follows it. We view this as evidence that the shifted scale performance measure
is not a good guide in the design of algorithms (with respect to the original
objective function).

One can also show that other approaches designed to analyze heuristics, in-
cluding optimizing with respect to a budget constraint, average-case and
smoothed analysis, do not provide a desirable performance measure for the MFL
problem. Details are omitted.

In comparison with [6], note that the approximation ratio in [6] is expressed
as a function of one parameter that we refer to as the summary signature α.
What is the advantage of presenting the more complicated signature {(qi, αi)}?
We see two advantages (beyond the obvious advantage of always providing a
performance guarantee that is at least as good as that provided by the summary
signature). One is prescriptive: the design of our LP is a natural consequence
of our signature, valuing each star according to its own recoverable value. It
would have been very difficult to design and analyze it without having at least
implicitly a notion similar to the detailed signature. The other advantage is
conceptual: our signature enjoys closure properties that the summary signature
does not have. Given two disjoint instances of SMFL, the detailed signature
becomes simply the union of the original detailed signatures, and the output
guarantee (approximation ratio times value of optimal solution) is simply the
sum of output guarantees of the two instances. For the summary signature, this
is not true.

LP-based vs. greedy algorithms. The performance guarantees that we prove
for the greedy algorithm and the LP-based algorithm are the same, and for
the greedy algorithm we prove this performance guarantee for a wider range
of instances (SMFL rather than just MFL). So what is the point of having an
LP-based algorithm? There are several reasons to do this.

Most importantly, there is a conceptual difference between the use of PASS
approximation framework for our greedy versus LP-based algorithms. For our
greedy algorithm, the theory of structural approximation is descriptive. It de-
scribes the approximation ratios of existing algorithms, and may guide us in the
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choice of the greedy rule to use. For the LP-based approach, however, the theory
of PASS approximation is not only descriptive, but also prescriptive. It guides us
in the design of new algorithms. The definitions of the signature and recoverable
value define for us the linear program and the rounding technique. While in our
examples, the greedy algorithms happens to be tight, the LP-based approach
may still be of value for other problems precisely because of it’s prescriptive
nature – it is designed to produce tight algorithms. For this reason, we consider
the LP-based approach to be a significant contribution of our paper.

Another reason is so as to diversify our algorithmic toolbox. Even though the
current paper is concerned with a class of problems for which the LP approach
does not seem to offer significant advantages over the greedy approach, this need
not be the case for other classes of problems. The development of a methodology
of how to use linear programming relaxations in the context of structural ap-
proximation (which turns out to be different than the way linear programming
relaxations are typically used in “classical” approximation) is anticipated to lead
to rewards in future work.

4 A Greedy Approach

One standard approach for the MFL problems are greedy algorithms. In this
section, we describe two plausible greedy algorithms for SMFL, and prove that
one of them is optimal with regards to the PASS approximation. Given a set S
of facilities, let C(S) denote the total cost of facilities in S, let R(S) denote the
revenue of the optimum assignment given that the open facilities are those in S,
and let V (S) = R(S) − C(S) denote the total value of S. Given a facility i, let
M(i|S) denote the marginal revenue of i with respect to S. Namely, M(i|S) =
R(S ∪ {i})−R(S). If i ∈ S then M(i|S) = 0.

The greedy algorithms construct a solution iteratively by selecting facilities
that maximize some function of the marginal revenue M(i|S). Given a partial
solution (set of open facilities) S, the greedy-rate algorithm opens the facility i

which maximizes the rate of increase in value, i.e., M(i|S)−ci

M(i|S) , provided that this
rate is positive. The greedy-margin algorithm simply opens the facility with the
largest marginal value, i.e., M(i|S)− ci, provided that this value is positive.

The greedy step can be implemented in polynomial time for the special cases
of SMFL mentioned in Section 1. (For example, for CMFL, implementing the
greedy step involves computing the optimal assignment of clients to the open
facilities subject to the capacity constraints. This can be solved in polynomial
time via an algorithm for the so called B-matching problem in bipartite graphs.)
However, in general, the greedy step for SMFL might be NP-hard.

4.1 Comparison to KPR

The greedy-margin algorithm was studied by Kleinberg, Papadimitriou, and
Raghavan [6] for the catalogue segmentation problem (and generalizations which
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maintain the property of uniform-cost facilities).5 They proved the following
theorem (Theorems 2.3 and 2.4 in [6]):

Theorem 4. [Kleinberg, Papadimitriou and Raghavan.] For the catalogue
segmentation problem, the greedy-margin algorithm achieves an approximation
ratio of at least 1 + α − 2

√
α, where α = C(S)/R(S) for any optimal solution

S. There are instances on which the approximation ratio of the algorithm is no
better than 1− α.

In this section, we will improve upon this result by generalizing the analysis
to accommodate non-uniform facility costs and providing improved approxi-
mation guarantees (Theorem 2) together with a matching NP-hardness result
(Theorem 1). In doing so, we must be careful with our choice of greedy algo-
rithm. We have defined two natural greedy algorithms – the greedy-rate and
the greedy-margin algorithm – and in fact in uniform-cost settings such as that
of [6] these two algorithms coincide as the rate of a facility is monotone in its
marginal revenue. But for non-uniform facility costs, as the following simple
example illustrates, the greedy-margin algorithm gives very poor results.

Example. There are n clients and n + 1 facilities. Facility i, 1 ≤ i ≤ n, has
cost 1, revenue 2 for client i, and 0 revenue for all other clients; Facility n+1 has
cost n − 2 and revenue 1 per client. The optimal solution will open the first n
facilities for a value of n, whereas the greedy-margin rule will open only facility
n + 1 for a value of 2.

By contrast, for the greedy-rate algorithm, the approximation ratio that
we prove is strictly better than that proved in [6]. See Figure 2 for a detailed
comparison of our bounds with those of [6].

4.2 Approximation as a Function of α

In this section, we first prove Corollary 2 which gives an approximation factor
for the greedy rate algorithm as a function of the summary signature α. Later
in this section,we give an approximation factor as the function of the signature,
proving Theorem 2.

The following simple observation (appearing in [6]) is of key importance, and
hence we state it as a lemma.

Lemma 1. Let i be a facility and let S and T be sets of facilities. Then the
marginal revenue of facility i with respect to S is at least as large as the loss in
marginal revenue of T when facility i is added to S.

M(i|S) ≥M(T |S)−M(T |S ∪ {i})

5 The greedy algorithm specified prior to Theorem 2.3 in [6] does not specify a rule of
which facility to open next, as long as its marginal revenue is larger than its cost.
However, the proof of Theorem 2.4 in [6] is based on the use of a greedy-margin rule,
without stating this explicitly.
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Fig. 2. The solid line is the approximation ratio of the greedy-rate algorithm plotted
for α ∈ [0, 1], as proved in Corollary 2. For every value of α improving over this
approximation ratio is NP-hard, as proved in Theorem 1. The dashed and dotted lines
depict the lower and upper bounds proved in [6].

Proof. By the fact that the revenue function is nondecreasing, we have R(S ∪
{i} ∪ T ) ≥ R(S ∪ T ). Breaking each revenue to a sum of marginal revenues we
have R(S)+M(i|S)+M(T |S∪{i}) ≥ R(S)+M(T |S). Canceling the R(S) and
subtracting M(T |S ∪ {i}) from both sides, the lemma is proved.

We now proceed to prove our improved bounds. As stated, our analysis applies
to any problem with a nondecreasing submodular revenue function and linear
cost function.

Lemma 2. The value of the greedy-rate algorithm is at least R(O)(1−α−α ln 1
α )

where O is an optimal solution, and α = C(O)/R(O).

Proof. We analyze the value of greedy-rate up to the first point in time in which
its total revenue meets or exceeds R(O)−C(O). Let μ(x) denote the rate at which
the value obtained by the greedy-rate algorithm increases when it has already
made a revenue of x. Observe that at a point when greedy has already made a
revenue of x < R(O)−C(O), the marginal revenue of O is at least R(O)−x (by
Lemma 1). By submodularity of the revenue function, at this point there must
be at least one facility of O with rate R(O)−x−C(O)

R(O)−x . The rate at which the value
increases at each point in time is at least as high as the rate one would get by
choosing the highest rate among the facilities of O at the same time. Therefore,
μ(x) ≥ R(O)−x−C(O)

R(O)−x . As the total value of greedy-rate, V (G), is the integral of
the rate of increase of the value, we have:

V (G) =
∫

μ(x)dx ≥
∫ R(O)−C(O)

0

R(O) − x− C(O)
R(O)− x

dx

= R(O)
∫ 1−α

0

1− x/α− α

1− x/α
dx

= R(O)(1 − α− α ln
1
α

)
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The approximation ratio of Corollary 2 follows from Lemma 2 together with the
fact that V (O) = R(O)(1 − α). The NP-hardness results appear in Theorem 1,
and they naturally provide examples where the approximation ratio of greedy-
rate is no better than claimed even in the special case of linear revenue functions
and uniform costs.

4.3 Approximation as a Function of the Signature

The approximation ratio in Corollary 2 is expressed as a function of the summary
signature α, whereas stronger performance guarantees can be given by expressing
the approximation ratio as a function of the signature {qi, αi}, as stated in
Theorem 2.

In fact, we prove Theorem 2 for the general submodular facility location prob-
lems. To do so, we should extend the notion of a signature to a solution for
submodular maximum facility location. The difficulty is that even though the
cost of every open facility is well defined, its revenue is not. Hence we refine the
notion of a solution to be represented not as a set of open facilities, but as an
ordered set (a tuple). Namely, the open facilities are given (after renaming) in
some order 1, 2, . . . (even though this order is irrelevant to the actual value of
the solution). Thereafter, a refined parameter α′

i in the expanded signature is
defined relative to the marginal revenue of facility i with respect to this order.
That is, α′

i = ci/Mi, where here Mi is shorthand notation for M(i|{1, . . . , i− 1}).
Likewise, we define q′i = Mi/

∑
Mj. Using this notation, we can now strengthen

Lemma 2. The proofs of the lemmas are omitted.

Lemma 3. Let S be an arbitrary (ordered) solution for submodular maximum
facility location with expanded signature {(q′i, α′

i)} and total revenue normalized
to 1. Then the value of the greedy-rate algorithm is at least

∑
i∈S q′i(1 − α′

i −
α′

i ln 1
α′

i
).

To motivate the following lemma, observe that Lemma 3 by itself does not cap-
ture the notion of PASS approximation that we have for the special case of
MFL. For a given set of open facilities in MFL, the optimal choice of allocation
of clients might not correspond to revenues ri per facility that are equal to Mi for
any ordering of facilities. For example, if there are two facilities and two clients,
where client i has revenue 2 if connected to facility i and revenue 1 if connected
to the other facility, then in the optimal solution r1 = r2 = 2, whereas for any
ordering M1 = 3 and M2 = 1.

Lemma 4. Let S be an arbitrary solution for maximum facility location with
expanded signature {(qi, αi)}. Then there is an ordering of the facilities of S
giving

∑
i∈S q′i(1− α′

i − α′
i ln 1

α′
i
) ≥

∑
i∈S qi(1− αi − αi ln 1

αi
).

The combination of Lemmas 3 and 4 imply Theorem 2 (and also the generaliza-
tion of Theorem 2 to SMFL).



PASS Approximation 123

5 A Linear Programming Approach

In this section, we develop an LP-based approach for MFL. It is based on an
interplay between the notions of the true value of a solution and the recover-
able value of the solution. Recall that the recoverable value (see definition in
Section 2), which in general is lower than the true value, represents our approx-
imation goal in the sense that we wish to find a solution of true value at least
equal to that of the recoverable value of the best integral solution. First we in-
troduce a new LP relaxation for the general problem called the recoverable value
relaxation. This LP captures the natural constraints for the MFL problem, but
has an objective function describing the recoverable value of the solution rather
than the true value. Hence the LP provides a fractional solution that maximizes
the recoverable value, and we denote this value by V̂f . We round this fractional
solution to an integral one of (expected) true value at least V̂f , thus meeting
our approximation goal. Moreover, we can solve the recoverable value LP in
polynomial time.

While our approach is general, we have been unable to analyze it for CMFL
or more general variants, and leave this as an open question.

5.1 An LP Relaxation

Recall that in the MFL problem, each facility i ∈ F has an opening cost of ci

and each client j ∈ J has a revenue uij for being connected to facility i. We
call pair (i, T ) of a facility i and a subset T of clients connected to it a star.
Let xiT be an indicator variable of star (i, T ), i.e., that facility i is opened and
connected to clients j ∈ T . The revenue of connecting the clients in T to facility
i is riT =

∑
j∈T uij . For every star (i, T ) we associate a recoverable value which

is v̂iT = riT (1−αiT −αiT ln 1
αiT

), where αiT = ci

riT
. Then the optimal fractional

recoverable value is described by the following LP, called the recoverable value
LP relaxation.

maximize
∑

v̂iT xiT (1)

subject to
∑

i,T :j∈T

xiT ≤ 1 j ∈ J

∑

T⊆J
xiT ≤ 1 i ∈ F

xiT ≥ 0 i ∈ F , T ⊆ J

The first inequality guarantees that each client contributes revenue to at most
one facility and the second inequality guarantees that each facility is opened at
most once. Every integral solution satisfies these constraints. Hence the value of
the LP is at least as large as the recoverable value of the best integer solution
(the one maximizing the recoverable value).

Let V̂f be the optimal fractional recoverable value, namely, the optimal value
to the above LP. Let Vf be the fractional true value associated with this solu-
tion, namely

∑
(riT −ci)xiT . Typically, LP-relaxations provide upper bounds for
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maximization problems. In contrast, it is not in general true that Vf provides an
upper bound on the true value of the best integer solution. Instead, as Lemma 5
will show, V̂f provides a lower bound.

Our LP has exponentially many variables; however, we can solve it using the
ellipsoid method. We solve the separation oracle of the dual linear program using
a greedy algorithm. This algorithm exploits concavity of the recoverable values
and some other structural properties of the dual.

Our randomized rounding procedure is composed of two steps: The first step
considers facilities independently. Facilities of 0-cost are always opened. For the
remaining facilities, αiT > 0. For each such facility i and each star (i, T ) let
βiT = xiT ln 1

αiT
. Let βi =

∑
T βiT . We open facility i with probability min[βi, 1].

The first step might open several facilities with overlapping sets of clients. In
the second step, we assign any over-demanded client j to the facility to which it
contributes the maximum revenue. The following lemma yields Theorem 3. For
the lack of space, the proof is omitted here.

Lemma 5. Consider an optimal fractional solution of LP (1), with fractional
recoverable value V̂f . For the MFL problem, our randomized rounding technique
achieves an integral solution of expected (true) value at least V̂f .
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Abstract. This work considers the problem of approximating fixed
predicate constraint satisfaction problems (MAX k-CSP(P )). We show
that if the set of assignments accepted by P contains the support of a
balanced pairwise independent distribution over the domain of the in-
puts, then such a problem on n variables cannot be approximated better
than the trivial (random) approximation, even using Ω(n) levels of the
Sherali-Adams LP hierarchy.

It was recently shown [3] that under the Unique Game Conjecture,
CSPs with predicates with this condition cannot be approximated better
than the trivial approximation. Our results can be viewed as an uncon-
ditional analogue of this result in the restricted computational model
defined by the Sherali-Adams hierarchy. We also introduce a new gen-
eralization of techniques to define consistent “local distributions” over
partial assignments to variables in the problem, which is often the crux
of proving lower bounds for such hierarchies.

1 Introduction

A constraint satisfaction problem (CSP) consists of a set of constraints that seek
a universal solution. In the maximization version (MAX-CSP) one tries to max-
imize the number of constraints that can be simultaneously satisfied. The most
standard family of CSPs arise from Boolean predicates P with bounded support
k. In their generality, the predicates are defined over an alphabet {0, 1, . . . , q −
1} = [q] and they can be thought as functions P : [q]k → {0, 1}. A constraint is
defined by the predicate P applied to a k-tuple of literals (x1+b1 mod q, . . . , xk+
bk mod q), where bi ∈ [q], and is said to be satisfied by some assignment on
(x1, . . . , xk) if the predicate evaluates to 1. Given some predicate P , an instance
of the MAX k-CSP(P) problem is a collection of constraints as above and the
objective is to maximize the number of constraints that can be satisfied simul-
taneously. As a special case, we can obtain all well studied MAX-CSP problems,

� Funded in part by NSERC.
�� Supported by the NSF grants CCF-0515231 and CCF-0729137 and by US-Israel BSF

grant 2006060.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 125–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



126 K. Georgiou, A. Magen, and M. Tulsiani

e.g. MAX k-SAT, MAX-CUT etc. When the predicate to be used in different
constraints is not fixed we simply refer to the problem as MAX k-CSP.

The MAX k-CSP problem is NP-hard for k ≥ 2, and a lot of effort has been
devoted in determining the true inapproximability of the problem. In general,
the inapproximability of the MAX k-CSP depends on the size of alphabet over
which literals are valued. For the case of Boolean variables, Samorodnitsky and
Trevisan [19] proved that the problem is hard to approximate better than a
factor of 22

√
k/2k, which was improved to 2

√
2k/2k by Engebresten and Holmerin

[9]. Later Samorodnitsky and Trevisan [20] showed that it is Unique-Games-
hard to approximate the same problem with factor better than 2log k+1�/2k.
For the more general case of q-ary variables (MAX k-CSPq), Guruswami and
Raghavendra [13] showed a hardness ratio of q2k/qk when q is a prime.

In a very general result which captures all the above ones, Austrin and Mos-
sel [3] showed that if P : [q]k → {0, 1} is a predicate such that the set of ac-
cepted inputs P−1(1) contains the support of a balanced pairwise independent
distribution μ on [q]k, then MAX k-CSP(P ) is UG-hard to approximate better
than a factor of |P−1(1)|/qk. Considering that a random assignment satisfies
|P−1(1)|/qk fraction of all the constraints, this is the strongest result one can
get for a predicate P . Using appropriate choices for the predicate P , this then
implies hardness ratios of kq2(1 + o(1))/qk for general q ≥ 2, q(q− 1)k/qk when
q is a prime power, and (k +O(k0.525)/2k for q = 2.

We study the inapproximability of such a predicate P (which we call promising)
in the hierarchy of linear programs defined by Sherali and Adams. In particular,
we show an unconditional analogue of the result of Austrin and Mossel in this
hierarchy.

Hierarchies of Linear and Semidefinite Programs. A standard approach
in approximating NP -hard problems, and therefore MAX k-CSP, is to formulate
the problem as a 0-1 integer program and then relax the integrality condition
to get a linear (or semidefinite) program which can be solved efficiently. The
quality of such an approach is intimately related to the integrality gap of the
relaxation, namely, the ratio between the optimum of the relaxation and that of
the integer program.

Several methods (or procedures) were developed in order to obtain tighten-
ings of relaxations in a systematic manner. These procedures give a sequence
or a hierarchy of increasingly tighter relaxations of the starting program. The
commonly studied ones include the hierarchies defined by Lovász-Schrijver [16],
Sherali-Adams [24], and Lasserre [14] (see [15] for a comparison). Stronger re-
laxations in the sequence are referred to as higher levels of the hierarchy. It is
known for all these hierarchies that for a starting program with n variables, the
program at level n has integrality gap 1, and that it is possible to optimize over
the program at the rth level in time nO(r).

Many known linear (semidefinite) programs can be captured by constant
many levels of the Sherali-Adams (Lasserre) hierarchy. Fernández de la Vega
and Kenyon-Mathieu [11] have provided a PTAS for Max Cut in dense graphs
using Sherali-Adams. In [17] it is shown how to get a Sherali-Adams based PTAS
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for Vertex-Cover and Max-Independent-Set in minor-free graphs, while recently
Mathieu and Sinclair [18] showed that the integrality gap for the matching poly-
tope is asymptotically 1+1/r, and Bateni, Charikar and Guruswami [4] that the
integrality gap for a natural LP formulation of the MaxMin allocation problem
has integrality gap at most n1/r, both after r many Sherali-Adams tightenings.
Chlamtac [7] and Chlamtac and Singh [8] gave an approximation algorithm for
Max-Independent-Set in hypergraphs based on the Lasserre hierarchy, with the
performance depending on the number of levels.

Lower bounds in these hierarchies amount to showing that the integrality
gap remains large even after many levels of the hierarchy. Integrality gaps for
Ω(n) levels can be seen as unconditional lower bounds (as they rule out even
exponential time algorithms obtained by the hierarchy) in a restricted (but still
fairly interesting) model of computation. Considerable effort was invested in
proving lower bounds (see [2,26,25,23,5,10,1,22,12,11]). For CSPs in particular,
strong lower bounds (Ω(n) levels) were proved recently for the Lasserre hierarchy
(which is the strongest) by [21] and [27], who showed a factor 2 integrality gap
for MAX k-XOR and factor 2k/2k integrality gap for MAX k-CSP respectively.

Our Result and Techniques. Both the results in the Lasserre hierarchy (and
previous analogues in the Lovász-Schrijver hierarchy) seemed to be heavily rely-
ing on the structure of the predicate for which the integrality gap was proven, as
being some system of linear equations. It was not clear if the techniques could
be extended using only the fact that the predicate is promising (which is a much
weaker condition). In this paper, we try to explore this issue, proving Ω(n) level
gaps for the (admittedly weaker) Sherali-Adams hierarchy.

Theorem 1. Let P : [q]k → {0, 1} be predicate such that P−1(1) contains the
support of a balanced pairwise independent distribution μ. Then for every con-
stant ζ > 0, there exist c = c(q, k, ζ) such that for large enough n, the integrality
gap of MAX k-CSP(P ) for the tightening obtained by cn levels of the Sherali-

Adams hierarchy applied to the standard LP1is at least
qk

|P−1(1)| − ζ.

We note that Ω(nδ)-level gaps for these predicates can also be deduced via
reductions from the recent result of [6] who obtained Ω(nδ)-level gaps for Unique
Games, where δ → 0 as ζ → 0.

A first step in achieving our result is to reduce the problem of a level-t gap to
a question about family of distributions over assignments associated with sets of
variables of size at most t. These distributions should be (a) supported only on
satisfying (partial) assignments and (b) should be consistent among themselves,
in the sense that for S1 ⊆ S2 which are subsets of variables, the distributions
over S1 and S2 should be equal on S1. The second requirement guarantees that
the obtained solution is indeed feasible, while the first implies that the solution
achieves objective value that corresponds to satisfying all the constraints of the
instance.
1 See the resulting LP in section 2.3.
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The second step is to come up with these distributions! We explain why the
simple method of picking a uniform distribution (or a reweighting of it accord-
ing to the pairwise independent distribution that is supported by P ) over the
satisfying assignments cannot work. Instead we introduce the notion of “advice
sets”. These are sets on which it is “safe” to define such simple distributions.
The actual distribution for a set S we use is then the one induced on S by a sim-
ple distribution defined on the advice-set of S. Getting such advice sets heavily
relies on notions of expansion of the constraints graph. In doing so, we use the
fact that random instances have inherently good expansion properties. At the
same time, such instances are highly unsatisfiable, ensuring that the resulting
integrality gap is large.

Arguing that it is indeed “safe” to use simple distributions over the advice sets
relies on the fact that the predicate P in question is promising, namely P−1(1)
contains the support of a balanced pairwise independent distribution. We find it
interesting and somewhat curious that the condition of pairwise independence
comes up in this context for a reason very different than in the case of UG-
hardness. Here, it represents the limit to which the expansion properties of a
random CSP instance can be pushed to define such distributions.

2 Preliminaries and Notation

2.1 Constraint Satisfaction Problems

For an instance Φ of MAX k-CSPq, we denote the variables by {x1, . . . , xn}, their
domain {0, . . . , q− 1} by [q] and the constraints by C1, . . . , Cm. Each constraint
is a function of the form Ci : [q]Ti → {0, 1} depending only on the values of the
variables in the ordered tuple Ti with |Ti| ≤ k.

For a set of variables S ⊆ [n], we denote by [q]S the set of all mappings
from the set S to [q]. In context of variables, these mappings can be understood
as partial assignments to a given subset of variables. For α ∈ [q]S , we denote
its projection to S′ ⊆ S as α(S′). Also, for α1 ∈ [q]S1 , α2 ∈ [q]S2 such that
S1 ∩ S2 = ∅, we denote by α1 ◦ α2 the assignment over S1 ∪ S2 defined by α1
and α2.

We shall prove results for constraint satisfaction problems where every con-
straint is specified by the same Boolean predicate P : [q]k → {0, 1}. We denote
the set of assignments which the predicate evaluates to 1 by P−1(1). A CSP in-
stance for such a problem is a collection of constraints of the form of P applied
to k-tuples of literals. For a variable x with domain [q], we take a literal to be
(x+ a) mod q for any a ∈ [q]. More formally,

Definition 1. For a given P : [q]k → {0, 1}, an instance Φ of MAX k-CSPq(P )
is a set of constraints C1, . . . , Cm where each constraint Ci is over a k-tuple of
variables Ti = {xi1 , . . . , xik

} and is of the form P (xi1 + ai1 , . . . , xik
+ aik

) for
some ai1 , . . . , aik

∈ [q]. We denote the maximum number of constraints that can
be simultaneously satisfied by OPT(Φ).
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2.2 Expanding CSP Instances

For an instance Φ of MAX k-CSPq, define its constraint graphGΦ, as the following
bipartite graph from L to R. The left hand side L consists of a vertex for each
constraint Ci. The right hand side R consists of a vertex for every variable xj .
There is an edge between a constraint-vertex i and a variable-vertex j, whenever
variable xj appears in constraint Ci. When it is clear from the context, we will
abbreviate GΦ by G.

For Ci ∈ L we denote by Γ (Ci) ⊆ R the neighbors Γ (Ci) of Ci in R. For a set
of constraints C ⊆ L, Γ (C) denotes ∪ci∈CΓ (Ci). For S ⊆ R, we call a constraint
Ci ∈ L, S-dominated if Γ (Ci) ⊆ S. We denote by G|−S the bipartite subgraph
of G that we get after removing S and all S-dominated constraints. Finally, we
also denote by C(S) the set of all S-dominated constraints.

Our result relies on set of constraints that are well expanding. We make this
notion formal below.

Definition 2. Consider a bipartite graph G = (V,E) with partition L,R. The
boundary expansion of X ⊂ L is the value |∂X |/|X |, where ∂X = {u ∈ R :
|Γ (u)∩X | = 1}. G is (r, e) boundary expanding if the boundary expansion for all
subsets of L of size at most r is at least e.

2.3 The Sherali-Adams Hierarchy

Below we present a relaxation for the MAX k-CSPq problem as it is obtained
by applying a level-t Sherali-Adams tightening of the standard LP formulation
of some instance Φ of MAX k-CSPq. A well known fact states that the level-n
Sherali-Adams tightening provides a perfect formulation, i.e. the integrality gap
is 1 (see [24] or [15] for a proof).

The intuition behind the level-t Sherali-Adams tightening is the following.
Note that an integer solution to the problem can be given by a single mapping
α0 ∈ [q][n], which is an assignment to all the variables. Using this, we can define
0/1 variablesX(S,α) for each S ⊆ [n] such that |S| ≤ t and α ∈ [q]S . The intended
solution is X(S,α) = 1 if α0(S) = α and 0 otherwise. We introduce X(∅,∅) which
is intended to be 1. By relaxing the integrality constraint on the variables, we
obtain the level-t Sherali-Adams LP tightening.

Level-t (for t ≥ k) Sherali-Adams LP tightening for a MAX k-CSPq instance Φ

maximize
m∑

i=1

∑

α∈[q]Ti

Ci(α)·X(Ti ,α)

subject to
∑

j∈[q]

X(S∪{i},α◦j) = X(S,α) ∀S s.t. |S| < t, ∀i /∈ S, α ∈ [q]S

X(S,α) ≥ 0 ∀S s.t. |S| ≤ t, ∀α ∈ [q]S

X(∅,∅) = 1
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For an LP formulation of MAX k-CSPq, and for a given instance Φ of the
problem, we denote by FRAC(Φ) the LP (fractional) optimum, and by OPT(Φ)
the integral optimum. For the particular instance Φ, the integrality gap is then
defined as FRAC(Φ)/OPT(Φ). The integrality gap of the LP formulation is the
supremum of integrality gaps over all instances.

Next we give a sufficient condition for the existence of a solution to the level-t
Sherali-Adams LP tightening for a MAX k-CSPq instance Φ.

Lemma 1. Consider a family of distributions {D(S)}S⊆[n]:|S|≤t, where each
D(S) is defined over [q]S. If for every S ⊆ T ⊆ [n] with |T | ≤ t, the distri-
butions D(S),D(T ) are equal on S, then

X(S,α) = PrD(S)[α]

satisfy the above level-t Sherali-Adams tightening.

Proof. Consider some S ⊆ [n], |S| < t, and some i 
∈ S. Note that the distribu-
tions D(S),D(S ∪ {i}) are equal on S, and therefore we have

∑

j∈[q]

X(S∪{i},α◦j) =
∑

j∈[q]

Prβ∼D(S∪{i})[β = α ◦ j]

=
∑

j∈[q]

Prβ∼D(S∪{i})[(β(i) = j) ∧ (β(S) = α)]

= Prβ∼D(S∪{i})[β(S) = α]
= Prβ′∼D(S)[β′ = α]
= X(S,α).

The same argument also shows that if S = ∅, then X(∅,∅) = 1. Finally, it is clear
that all linear variables are assigned non negative values completing the lemma.

2.4 Pairwise Independence and Approximation Resistant Predicates

We say that a distribution μ over variables x1, . . . , xk, is a balanced pairwise
independent distribution over [q]k, if we have

∀j ∈ [q].∀i. Prμ[xi = j] =
1

q
and ∀j1, j2 ∈ [q].∀i1 �= i2. Prμ[(xi1 = j1) ∧ (xi2 = j2)] =

1

q2
.

A predicate P is called approximation resistant if it is hard to approximate the
MAX k-CSPq(P ) problem better than using a random assignment. Assuming
the Unique Games Conjecture, Austrin and Mossel [3] show that a predicate is
approximation resistant if it is possible to define a balanced pairwise independent
distribution μ such that P is always 1 on the support of μ.

Definition 3. A predicate P : [q]k → {0, 1} is called promising, if there exist a
distribution supported over a subset of P−1(1) that is pairwise independent and
balanced. If μ is such a distribution we say that P is promising supported by μ.
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3 Towards Defining Consistent Distributions

To construct valid solutions for the Sherali-Adams LP tightening, we need to
define distributions over every set S of bounded size as is required by Lemma 1.
Since we will deal with promising predicates supported by some distribution μ,
in order to satisfy consistency between distributions we will heavily rely on the
fact that μ is a balanced pairwise independent distribution.

Consider for simplicity that μ is uniform over P−1(1) (the intuition for the
general case is not significantly different). It is instructive to think of q = 2 and
the predicate P being k-XOR, k ≥ 3. Observe that the uniform distribution over
P−1(1) is pairwise independent and balanced. A first attempt would be to define
for every S, the distribution D(S) as the uniform distribution over all consistent
assignments of S. We argue that such distributions are in general problematic.
This follows from the fact that satisfying assignments are not always extendible.
Indeed, consider two constraints Ci1 , Ci2 ∈ L that share a common variable
j ∈ R. Set S2 = Ti1 ∪ Ti2 , and S1 = S2 \ {j}. Assuming that the support of
no other constraint is contained in S2, we get that distribution D(S1) maps any
variable in S1 to {0, 1} with probability 1/2 independently, but some of these
assignments are not even extendible to S2 meaning that D(S2) will assign them
with probability zero.

Thus, to define D(S), we cannot simply sample assignments satisfying all
constraints in C(S) with probabilities given by μ. In fact the above example
shows that any attempt to blindly assign a set S with a distribution that is
supported on all satisfying assignments for S is bound to fail. At the same time
it seems hard to reason about a distribution that uses a totally different concept.
To overcome this obstacle, we take a two step approach:

1. For a set S we define a superset S such that S is “global enough” to contain
sufficient information, while it also is “local enough” so that C(S) is not too
large. We require the property of such sets that if we remove S and C(S),
then the remaining graph G|−S still has good expansion. We deal with this
in Section 3.1.

2. The distribution D(S) is going to be the uniform distribution over satisfying
assignments in S. In the case that μ is not uniform over P−1(1), we give a
natural generalization to the above uniformity. We show how to define distri-
butions, which we denote by Pμ(S), such that for S1 ⊆ S2, the distributions
are guaranteed to be consistent if G|−S1 has good expansion. This appears
in Section 3.2.

We then combine the two techniques and define D(S) according to Pμ(S). This
is done in section 4.

3.1 Finding Advice-Sets

We now give an algorithm below to obtain a superset S for a given set S, which
we call the advice-set of S. It is inspired by the “expansion correction” procedure
in [5].
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Algorithm Advice

The input is an (r, e1) boundary expanding bipartite graph G = (L, R,E), some e2 ∈
(0, e1), and some S ⊆ R, |S| < (e1 − e2)r, with some order S = {x1, . . . , xt}.

Initially set S ← ∅ and ξ ← r
For j = 1, . . . , |S| do

Mj ← ∅
S ← S ∪ {xj}
If G|−S is not (ξ, e2) boundary expanding then

Find a maximal Mj ⊂ L in G|−S, such that |Mj | ≤ ξ in G|−S and
|∂Mj | ≤ e2|Mj |

S ← S ∪ ∂Mj

ξ ← ξ − |Mj |
Return S

Theorem 2. Algorithm Advice, with internal parameters e1, e2, r, returns S ⊆
R such that (a) G|−S is (ξS , e2) boundary expanding, (b) ξS ≥ r − |S|

e1−e2
, and

(c) |S| ≤ e1|S|
e1−e2

.

Proof. Suppose that the loop terminates with ξ = ξS . Then
∑t

j=1 |Mj| = r−ξS .
Since G is (r, e1) boundary expanding, the setM = ∪t

j=1Mj has initially at least
e1(r−ξS) boundary neighbors in G. During the execution of the while loop, each
setMj has at most e2|Mj| boundary neighbors in G|−S . Therefore, at the end of
the procedure M has at most e2(r− ξS) boundary neighbors in G|−S . It follows
that |S|+ e2(r − ξS) ≥ e1(r − ξS), which implies (b).

From the bound size of S we know that ξS > 0. In particular, ξ remains
positive throughout the execution of the while loop. Next we identify a loop
invariant: G|−S is (ξ, e2) boundary expanding.

Indeed, note that the input graph G is (ξ, e1) boundary expanding. At step j
consider the set S ∪ {xj}, and suppose that G−(S∪{xj}) is not (ξ, e2) boundary
expanding. We find maximal Mj, |Mj| ≤ ξ, such that |∂Mj| ≤ e2|Mj|. We claim
that G−(S∪{xj}∪∂Mj) is (ξ − |Mj|, e2) boundary expanding (recall that since ξ
remains positive, |Mj| < ξ). Now consider the contrary. Then, there must be
M ′ ⊂ L such that |M ′| ≤ ξ − |Mj | and such that |∂M ′| ≤ e2|M ′|. Consider
then Mj ∪M ′ and note that |Mj ∪M ′| ≤ ξ. More importantly |∂(Mj ∪M ′)| ≤
e2|Mj ∪M ′|, and therefore we contradict the maximality of Mj; (a) follows.

Finally note that S consists of S union the boundary neighbors of allMj . From
the arguments above, the number of those neighbors does not exceed e2(r− ξS)
and hence |S| ≤ |S|+ e2(r − ξS) ≤ |S|+ e2|S|

e1−e2
= e1|S|

e1−e2
, which proves (c).

3.2 Defining the Distributions Pµ(S)

We now define for every set S, a distribution Pμ(S) such that for any α ∈ [q]S ,
PrPμ(S)[α] > 0 only if α satisfies all the constraints in C(S). For a constraint Ci



Optimal Sherali-Adams Gaps from Pairwise Independence 133

with set of inputs Ti, defined as Ci(xi1 , . . . , xik
) ≡ P (xi1 + ai1 , . . . , xik

+ aik
),

let μi : [q]Ti → [0, 1] denote the distribution

μi(xi1 , . . . , xik
) = μ(xi1 + ai1 , . . . , xik

+ aik
)

so that the support of μi is contained in C−1
i (1). We then define the distribution

Pμ(S) by picking each assignment α ∈ [q]S with probability proportional to∏
Ci∈C(S) μi(α(Ti)). Formally,

PrPμ(S)[α] =
1
ZS
·

∏

Ci∈C(S)

μi(α(Ti)) (1)

where α(Ti) is the restriction of α to Ti and ZS is a normalization factor given
by

ZS =
∑

α∈[q]S

∏

Ci∈C(S)

μi(α(Ti)).

To understand the distribution, it is easier to think of the special case when
μ is just the uniform distribution on P−1(1) (like in the case of MAX k-XOR).
Then Pμ(S) is simply the uniform distribution on assignments satisfying all the
constraints in C(S). When μ is not uniform, then the probabilities are weighted
by the product of the values μi(α(Ti)) for all the constraints2. However, we still
have the property that if PrPμ(S)[α] > 0, then α satisfies all the constraints in
C(S).

In order for the distribution Pμ(S) to be well defined, we need to ensure
that ZS > 0. The following lemma shows how to calculate ZS if G is sufficiently
expanding, and simultaneously proves that if S1 ⊆ S2, and if G|−S1 is sufficiently
expanding, then Pμ(S1) is consistent with Pμ(S2) over S1.

Lemma 2. Let Φ be a MAX k-CSP(P) instance as above and S1 ⊆ S2 be two
sets of variables such that both G and G|−S1 are (r, k−2−δ) boundary expanding
for some δ ∈ (0, 1) and |C(S2)| ≤ r. Then ZS2 = q|S2|/qk|C(S2)|, and for any
α1 ∈ [q]S1

∑

α2∈[q]S2
α2(S1)=α1

PrPμ(S2)[α2] = PrPμ(S1)[α1].

Proof. Let C = C(S2)\C(S1) be given by the set of tmany constraintsCi1 , . . . , Cit

with each Cij being on the set of variables Tij . Some of these variables may be
fixed by α1. Also, any α2 consistent with α1 can be written as α1 ◦ α for some
α ∈ [q]S2\S1 . Below, we express these probabilities in terms the product of μ on
the constraints in C(S2) \ C(S1).

2 Note however that Pμ(S) is not a product distribution because different constraints
in C(S) may share variables.
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Note that the equations below are still correct even if we haven’t shown ZS2 >
0 (in that case both sides are 0). In fact, replacing S1 by ∅ in the same calculation
will give the value of ZS2 .

ZS2 ·
∑

α2∈[q]S2
α2(S1)=α1

PrPμ(S2)[α2] =
∑

α∈[q]S2\S1

∏

Ci∈C(S2)

μi((α1 ◦ α)(Ti))

=

⎛

⎝
∏

Ci∈C(S1)

μi(α1(Ti))

⎞

⎠
∑

α∈[q]S2\S1

t∏

j=1

μij
((α1 ◦ α)(Tij

))

=
(
ZS1 · PrPμ(S1)[α1]

) ∑

α∈[q]S2\S1

t∏

j=1

μij
((α1 ◦ α)(Tij

))

=
(
ZS1 · PrPμ(S1)[α1]

)
· q|S2\S1| E

α∈[q]S2\S1

⎡

⎣
t∏

j=1

μij ((α1 ◦ α)(Tij ))

⎤

⎦

The following claim, whose proof can be found in the Appendix, lets us cal-
culate this expectation conveniently using the expansion of G|−S1 .

Claim. Let C be as above. Then there exists an ordering Ci′
1
, . . . , Ci′

t
of con-

straints in C and a partition of S2 \S1 into sets of variables F1, . . . , Ft such that
for all j, Fj ⊆ Ti′

j
, |Fj | ≥ k − 2, and

∀j Fj ∩
(
∪l>jTi′

l

)
= ∅.

Using this decomposition, the expectation above can be split as

E
α∈[q]S2\S1

[
t∏

j=1

μij (α1 ◦ α(Tij ))

]

= E
βt∈[q]Ft

[

μi′
t
. . . E

β2∈[q]F2

[

μi′
2

E
β1∈[q]F1

[
μi′

1

]
]

. . .

]

where the input to each μi′
j
depends on α1 and βj , . . . , βt but not on β1, . . . , βj−1.

We now reduce the expression from right to left. Since F1 contains at least
k − 2 variables and μi′

1
is a balanced pairwise independent distribution,

E
β1∈[q]F1

[
μi′

1

]
=

1
q|F1|

· Prμ[(α1 ◦ β2 . . . ◦ βt)(Ti′
1
\ F1)] =

1
qk

irrespective of the values assigned by α1 ◦ β2 ◦ . . . ◦ βt to the remaining (at most
2) variables in Ti′

1
\ F1. Continuing in this fashion from right to left, we get

that

E
α∈[q]S2\S1

⎡

⎣
t∏

j=1

μij ((α1 ◦ α)(Tij ))

⎤

⎦ =
(

1
qk

)t

=
(

1
qk

)|C(S2)\C(S1)|

Hence, we get that

ZS2 ·
∑

α2∈[q]S2
α2(S1)=α1

PrPμ(S2)[α2] =
(
ZS1 ·

q|S2\S1|

qk|C(S2)\C(S1)|

)
PrPμ(S1)[α1]. (2)
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Summing over all α1 ∈ [q]S1 on both sides gives

ZS2 = ZS1 ·
q|S2\S1|

qk|C(S2)\C(S1)|
.

Since we know that G is (r, k − 2 − δ) boundary expanding, we can replace S1
by ∅ in the above equation to obtain ZS2 = q|S2|/qk|C(S2)| as claimed. Also note
that since C(S1) ⊆ C(S2), ZS2 > 0 implies ZS1 > 0. Hence, using equation (2)
we get ∑

α2∈[q]S2
α2(S1)=α1

PrPμ(S2)[α2] = PrPμ(S1)[α1]

which proves the lemma.

4 Constructing the Integrality Gap

We now show how to construct integrality gaps using the ideas in the previ-
ous section. For a given promising predicate P , our integrality gap instance will
be random instance Φ of the MAX k-CSPq(P ) problem. To generate a random
instance with m constraints, for every constraint Ci, we randomly select a k-
tuple of distinct variables Ti = {xi1 , . . . , xik

} and ai1 , . . . , aik
∈ [q], and put

Ci ≡ P (xi1 + ai1 , . . . , xik
+ aik

). It is well known and used in various works on
integrality gaps and proof complexity (e.g. [5], [1], [22] and [21]), that random in-
stances of CSPs are both highly unsatisfiable and highly expanding. We capture
the properties we need in the lemma below (for a proof see e.g. [27]).

Lemma 3. Let ε, δ > 0 and a predicate P : [q]k → {0, 1} be given. Then there
exist γ = O(qk log q/ε2), η = Ω((1/γ)10/δ) and N ∈ N, such that if n ≥ N and
Φ is a random instance of MAX k-CSP(P ) with m = γn constraints, then with
probability 1− o(1)

1. OPT(Φ) ≤ |P −1(1)|
qk (1 + ε) ·m.

2. For any set C of constraints with |C| ≤ ηn, we have |∂(C)| ≥ (k − 2− δ)|C|.

Let Φ be an instance of MAX k-CSPq on n variables for which GΦ is (ηn, k−2−δ)
boundary expanding for some δ < 1/2, as in Lemma 3. For such a Φ, we now
define the distributions D(S).

For a set S of size at most t = ηδn/4k, let S be subset of variables output
by the algorithm Advice when run with input S and parameters r = ηn, e1 =
(k − 2− δ), e2 = (k − 2− 2δ) on the graph GΦ. Theorem 2 shows that

|S| ≤ (k − 2− δ)|S|/δ ≤ ηn/4.

We then use (1) to define the distribution D(S) for sets S of size at most δηn/4k
as

PrD(S)[α] =
∑

β∈[q]S
β(S)=α

PrPμ(S)[β].
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Using the properties of the distributions Pμ(S), we can now prove that the
distributions D(S) are consistent.

Claim. Let the distributions D(S) be defined as above. Then for any two sets
S1 ⊆ S2 ⊆ [n] with |S2| ≤ t = ηδn/4k, the distributions D(S1),D(S2) are equal
on S1.

Proof. ThedistributionsD(S1),D(S2) aredefinedaccording toPμ(S1) andPμ(S2)
respectively. To prove the claim, we show that Pμ(S1) and Pμ(S2) are equal to the
distribution Pμ(S1 ∪ S2) on S1, S2 respectively (note that it need not be the case
that S1 ⊆ S2).

Let S3 = S1 ∪ S2. Since |S1|, |S2| ≤ ηn/4, we have |S3| ≤ ηn/2 and hence
|C(S3)| ≤ ηn/2. Also, by Theorem 2, we know that both G|−S1

and G|−S2
are

(2ηn/3, k − 2 − 2δ) boundary expanding. Thus, using Lemma 2 for the pairs
(S1, S3) and (S2, S3), we get that

PrD(S1)[α1] =
∑

β1∈[q]S1
β1(S1)=α1

PrPμ(S1)[β1]

=
∑

β3∈[q]S3
β3(S1)=α1

PrPμ(S3)[β3]

=
∑

β2∈[q]S2
β2(S1)=α1

PrPμ(S2)[β2]

=
∑

α2∈[q]S2
α2(S1)=α1

PrD(S2)[α2]

which shows that D(S1) and D(S2) are equal on S1.

It is now easy to prove the main result.

Theorem 3. Let P : [q]k → {0, 1} be a promising predicate. Then for every
constant ζ > 0, there exist c = c(q, k, ζ), such that for large enough n, the
integrality gap of MAX k-CSP(P ) for the tightening obtained by cn levels of the

Sherali-Adams hierarchy is at least
qk

|P−1(1)| − ζ.

Proof. We take ε = ζ/qk, δ = 1/4 and consider a random instance Φ of MAX
k-CSP(P ) withm = γn as given by Lemma 3. Thus, OPT(Φ) ≤ |P −1(1)|

qk (1+ε)·m.

On the other hand, by Claim 4 we can define distributions D(S) over every set of
at most δηn/4k variables such that for S1 ⊆ S2, D(S1) and D(S2) are consistent
over S1. By Lemma 1 this gives a feasible solution to the LP obtained by δηn/4k
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levels. Also, by definition of D(S), we have that PrD(S)[α] > 0 only if α satisfies
all constraints in C(S). Hence, the value of FRAC(Φ) is given by

m∑

i=1

∑

α∈[q]Ti

Ci(α)X(Ti ,α) =
m∑

i=1

∑

α∈[q]Ti

Ci(α)PrD(Ti)[α] =
m∑

i=1

∑

α∈[q]Ti

PrD(Ti)[α] = m.

Thus, the integrality gap after δηn/4k levels is at least

FRAC(Φ)
OPT(Φ)

=
qk

|P−1(1)|(1 + ε)
≥ qk

|P−1(1)| − ζ.
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Appendix

Proof. (of Claim 3.2) We build the sets Fj inductively using the fact that G|−S1

is (r, k − 2− δ) boundary expanding.

Start with the set of constraints C1 = C. Since |C1| = |C(S2) \ C(S1)| ≤ r, this
gives that |∂(C1) \ S1| ≥ (k − 2 − δ)|C1|. Hence, there exists Cij ∈ C1 such that
|Tij ∩ (∂(C1) \S1)| ≥ k− 2. Let Tij ∩ (∂(C1) \S1) = F1 and i′1 = ij. We then take
C2 = C1 \ {Ci′

1
} and continue in the same way.

Since at every step, we have Fj ⊆ ∂(Cj) \ S1, and for all l > j Cl ⊆ Cj, Fj

shares no variables with Γ (Cl) for l > j. Hence, we get Fj ∩
(
∪l>jTi′

l

)
= ∅ as

claimed.



An Approximation Scheme for Terrain Guarding

Matt Gibson, Gaurav Kanade, Erik Krohn, and Kasturi Varadarajan�

Department of Computer Science
University of Iowa

Iowa City, IA 52242-1419, USA
{mrgibson,gkanade,eakrohn,kvaradar}@cs.uiowa.edu

Abstract. We obtain a polynomial time approximation scheme for the
terrain guarding problem improving upon several recent constant factor
approximations. Our algorithm is a local search algorithm inspired by
the recent results of Chan and Har-Peled [2] and Mustafa and Ray [15].
Our key contribution is to show the existence of a planar graph that
appropriately relates the local and global optimum.

1 Introduction

A 1.5D terrain is a polygonal chain in the plane that is x-monotone, that is,
any vertical line intersects the chain at most once. A terrain T consists of a set
of m vertices {v1, v2, . . . , vm}. The vertices are ordered in increasing order with
respect to their x-coordinates. There is an edge connecting vi with vi+1 for all
i = 1, 2, . . . ,m− 1. For any two points a, b ∈ T , we say that a sees b if the line
segment ab lies entirely above or on the terrain.

In this paper, we consider the discrete terrain guarding problem in which we
are given a terrain T and finite sets X,G ⊆ T . For a set G′ ⊆ G, we say that G′

covers/sees/guards X if every point in X can be seen by at least one point in
G′. The goal of the problem is to find a minimum cardinality subset of G that
covers X .

The motivation for guarding terrains comes from placing street lights or secu-
rity sensors along roads, as well as constructing line-of-sight networks for radio
broadcasting and other communication networks [1].

A closely related problem is the art gallery problem. Again the goal is to find
a minimum cardinality guarding set, but in this setting we must guard a simple
polygon. The basic version of this problem, vertex guarding, requires guards to
be placed at the vertices of the polygon. Another version, point guarding, allows
guards to be placed anywhere inside the polygon.

The art gallery problem was shown to be NP-complete by Lee and Lin [14]
and was later shown to be APX-hard by Eidenbenz [7]. This means that there
is an ε > 0 such that no polynomial time algorithm can compute a guarding
set whose cardinality is within a (1 + ε) factor of the cardinality of an optimal
guarding set, unless P = NP. Ghosh gives an O(log n)-approximation algorithm
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for vertex guarding an n-vertex simple polygon [11]. The point guarding problem
seems to be much more difficult as not as much is known about it [5]. A constant
factor approximation is given by Nilsson for the special case of the problem when
the polygon is x-monotone [16]. Based on his result, Nilsson gives an O(OPT 2)-
approximation algorithm for rectilinear polygons.

Previous Work on Terrain Guarding. Chen et al. [3] claimed that terrain guard-
ing is NP-hard, but the proof was never completed formally [12]. Most of the
past research has gone into developing approximation algorithms. The first con-
stant factor approximation was a combinatorial algorithm given by Ben-Moshe
et al. [1]. Clarkson and Varadarajan [4] also give a constant factor approxima-
tion based on rounding a linear programming relaxation. King gave a simple
combinatorial 4-approximation which was later determined to actually be a 5-
approximation [12]. Recently, Elbassioni et al. [8] gave a 4-approximation that
also works for the weighted case.

All of the approximation algorithms use the following “order claim”:

Claim. Let a, b, c, d be four points on the terrain in increasing order according
to x-coordinate. If a sees c and b sees d then a sees d.

Natural attempts at constructing NP-hardness reductions for the terrain guard-
ing problem do not work because of the order claim. Recently Krohn and King
[13] were able to get around the order claim and prove NP-hardness.

Our Contribution. We give a polynomial time algorithm that returns a guard
cover whose cardinality is at most (1+ε)·OPT for any ε > 0. Here, OPT denotes
the cardinality of an optimal guard cover. Thus we obtain the first PTAS for the
problem improving upon several recent constant factor approximations. Given
the hardness result [13], this settles the computational complexity of the problem.

The inspiration for our work comes from the recent results of Chan and Har-
Peled [2] and Mustafa and Ray [15]. Chan and Har-Peled show that a local search
algorithm actually yields a PTAS for the maximum independent set problem
given a collection of disks. Unlike a previous PTAS for the problem [9], their
analysis does not use packing arguments and thus also applies to “pseudo-disks”.
Mustafa and Ray consider several geometric hitting set and set cover problems
and describe local search algorithms that yield PTASs. For instance, in a rather
surprising result they obtain a PTAS for the problem of covering a set of points by
the smallest number of a given set of disks. Both papers use separator theorems
for planar graphs. In particular, they show that there exists a planar graph that
relates the locally optimal solution returned by the local search and the global
optimal solution. The separator theorem is then used to show that the locally
optimal solution is not too much worse than the global optimum.

Our PTAS for the terrain guarding problem is also based on local search. Our
key contribution is to show the existence of an appropriate planar graph even
for the terrain guarding context. Having shown this, the rest of the analysis is
very similar to that of Mustafa and Ray [15].
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2 Guarding Terrains via Local Search

Recall that our input is a polygonal terrain, a set X of points on the terrain
that need to be guarded, a set G of possible guard locations, and a parameter
0 < ε < 1. For purposes of exposition, we will initially assume that X ∩G = ∅.
We later show how this assumption can be removed. We describe a polynomial
time algorithm that returns a subset Q ⊆ G that sees X , so that |Q| is at most
a factor (1 + ε) times the size of the smallest subset of G that sees X . Let n
denote the input size – the number of vertices in the terrain, plus |G|, plus |X |.

We say that a subset of G that sees X is b-locally optimal if one cannot obtain
a smaller set of guards that sees X by deleting at most b guards from it and
inserting at most b− 1 guards.

Our algorithm simply returns a b-locally optimal solution for b = α
ε2 , where

α is a suitably large constant, by performing local search. We start with some
arbitrary Q ⊆ G that covers X . For every subset S ⊆ Q of size at most b, we see
if there exists a subset T ⊆ G \Q of size at most |S| − 1 such that (Q \ S) ∪ T
guards X . If so, we set Q← (Q \S)∪T . Every such exchange decreases the size
of Q by at least one, and as such can happen at most n times. Since there are(
n
b

)
subsets S to consider, the running time is bounded by nO(b).

2.1 Approximation Analysis

Let R′ denote the optimal cover for X , and B′ the set of guards output by our
local search algorithm on termination. We show that |B′ \R′| ≤ (1 + ε)|R′ \B′|,
and thus |B′| ≤ (1 + ε)|R′|. Let R ≡ R′ \B′, B ≡ B′ \R′, and abusing notation,
let X denote the set after removing all points seen by R′ ∩ B′. So now both R
and B cover X and we wish to show that |B| ≤ (1+ε)|R|. We will refer to points
in B as blue points and points in R as red points.

The following lemma is our main contribution; it shows that the locality con-
dition of Mustafa and Ray [15] is satisfied.

Lemma 1. There exists a planar graph G = (V ≡ R ∪ B,E) with the property
that for each x ∈ X, there is an edge (r, b) in G between guards r ∈ R and b ∈ B
that both see x.

Before giving the proof, we show how the lemma implies that |B| ≤ (1 + ε)|R|;
this is similar to [2,15]. We need the following partition theorem on planar graphs
due to Frederickson [10]. For U ⊆ V , let Γ (U) denote the set of neighbors in G
of vertices in U with U excluded. Let μ = |V |.

Lemma 2. For any parameter 1 ≤ r ≤ μ, we can find a set S ⊆ V of size at
most c1μ/

√
r and a partition of V \ S into μ/r sets V1, V2, . . . , Vμ/r, satisfying

(i) |Vi| ≤ c2r, (ii) |Γ (Vi)| ≤ c3
√
r, and (iii) (Vi ∪ Γ (Vi)) ∩ Vj = ∅ for i 
= j.

Here, c1, c2, and c3 are absolute positive constants.

Let us apply the lemma with r ≡ b/(c2+c3). We have |Vi∪Γ (Vi)| ≤ c2r+c3
√
r ≤

b. Thus, letting Ri = R∩Vi and Bi = B∩Vi, we must have |Bi| ≤ |Ri|+ |Γ (Vi)|.
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For otherwise, the local search can replace Bi by Ri∪Γ (Vi) and obtain a smaller
set that still covers X (Lemma 1), a contradiction.

Thus

|B| ≤ |S|+
∑

i

|Bi| ≤ |S|+
∑

i

|Ri|+
∑

i

|Γ (Vi)| ≤ |R|+ c
μ√
r

≤ |R|+ c′ |R|+ |B|√
b

,

where c and c′ are positive constants. With b a large enough constant times 1/ε2,
this implies that |B| ≤ (1 + ε)|R|.

2.2 Proof of Lemma 1

We begin with some notation. For points a and b on the terrain, we say a ≤ b
to mean that the x-coordinate a.x of a is at most b.x. We use the notation of
intervals that this implies – for instance, [a, b] denotes all points c on the terrain
so that a ≤ c ≤ b.

We now prove Lemma 1. Let us first construct the planar graph G. For each
x ∈ X , let λ(x) denote the leftmost point that sees x among points in R ∪ B
to the left of x, assuming such a point does exist. Similarly, let ρ(x) denote the
rightmost point that sees x among points in R ∪ B to the right of x, assuming
such a point does exist. Note that at least one of λ(x) or ρ(x) does exist.

Let A1 denote the set of segments λ(x)x, for x ∈ X . Because of the order
claim, these segments do not cross. For each v ∈ R ∪ B, shoot a vertical ray
up from v; if this ray hits some segment in A1, let λ(y)y denote the first such
segment hit; we add the edge (v, λ(y)) to a set E1 if v and λ(y) are of opposite
colors.

Now, the edges in A1∪E1 can be embedded above the terrain in a non-crossing
way. To see this, let A1 be embedded as the original straight line segments. To
embed an edge of the form (v, λ(y)) ∈ E1 as above, we travel straight up from
v till we hit λ(y)y, and then slide along the segment λ(y)y to reach λ(y). See
Figure 1. A more formal argument that A1 ∪E1 can be so embedded is given in
the appendix.

Let A2 denote the set of segments xρ(x), for x ∈ X . Again, these segments
do not cross. For each v ∈ R ∪B, shoot a vertical ray up from v; if this ray hits
some segment in A2, let yρ(y) denote the first such segment hit; we add the edge
(v, ρ(y)) to a set E2 if v and ρ(y) are of opposite colors.

The edges in A2 ∪ E2 can also be embedded above the terrain in a non-
crossing way. We “flip” the embedding of A1 ∪ E1 to obtain a non-crossing
embedding below the terrain; see Figure 2. This gives us a planar embedding of
A1 ∪ E1 ∪A2 ∪ E2.

Finally, for each x ∈ X , we add the edge (λ(x), ρ(x)) to a set E3 if λ(x) and
ρ(x) are of opposite colors. Our graph G consists of the edge set E1∪E2∪E3. This
is a planar graph; just embed E1 and E2 as above, and for each (λ(x), ρ(x)) ∈ E3,
embed it using the embedding of the segments λ(x)x and xρ(x).
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Fig. 1. The embedding of A1∪E1, with X = {x, x′, x′′}, and R∪B = {v0, v1, v2, v3, v4}.
Segments in A1 are shown in dashed lines, and the edges in E1 are embedded as dashed
curves with arrows. Note that v0 = λ(x) = λ(x′′), and v2 = λ(x′).
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Fig. 2. A combinatorial embedding of A1 ∪ E1 from Figure 1, and flipping it so that
A1 ∪ E1 is now embedded below the terrain. Note that only the edges in A1 ∪ E1 are
being flipped to make room for A2∪E2; the vertex set R∪B∪X retains its embedding.

Now we need to show that for each x ∈ X , there are points r ∈ R and b ∈ B
that see x, and (r, b) ∈ E1 ∪ E2 ∪ E3. Fix an x ∈ X . If λ(x) and ρ(x) are of
opposite colors, then (λ(x), ρ(x)) ∈ E3, and we are done. Otherwise, it must be
the case that there are red and blue points to the left of x that see x, or that
there are red and blue points to the right of x that see x.

Let us assume that the first case holds (there are red and blue points to the
left of x that see x), and that λ(x) is red. The other situations are symmetric. Let
b be the leftmost blue point that sees x; it must be that b ∈ (λ(x), x). Thus the
ray shot up from b hits λ(x)x; let λ(y)y be the first segment in A1 that it hits.
See Figure 3. Because segments in A1 don’t cross, it must be that λ(y) ∈ [λ(x), b)
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Fig. 3. Here, λ(y) sees y and b sees x. By the order claim, λ(y) sees x.

and y ∈ (b, x). The order claim (applied to λ(y), b, y, and x) implies that λ(y)
sees x. Now λ(y) cannot be blue, otherwise b is not the leftmost blue point that
sees x. Thus λ(y) ∈ R, b ∈ B, both λ(y) and b see x and (b, λ(y)) ∈ E1. This
completes the proof.

2.3 Relaxing the Disjointness Assumption

For ease of exposition, we have so far assumed that the set of possible guard
locations has an empty intersection with the set of points to be guarded. We now
relax that assumption. The algorithm remains unchanged, and we indicate how
the analysis is modified. For each x ∈ X , the point λ(x) (resp. ρ(x)) denotes the
leftmost (resp. rightmost) point that sees x among points in R∪B strictly to the
left (resp. right) of x, assuming such a point does exist. With this understanding,
the construction of the planar graph G proceeds with the sets A1, E1, A2, and
E2 defined exactly as above.

There is a change in the construction of E3. For each x ∈ X that is not
in R ∪ B, we proceed as before and add the edge (λ(x), ρ(x)) to E3 if λ(x)
and ρ(x) are of opposite colors. For x ∈ X that is also in R ∪ B, we add the
edge (λ(x), x) to E3 if λ(x) exists and λ(x) and x are of opposite colors; we
also add the edge (x, ρ(x)) to E3 if ρ(x) exists and ρ(x) and x are of opposite
colors.

This completes the construction of the graph, which is readily seen to be
planar. To show Lemma 1, we need to argue that for each x ∈ X , there are
points r ∈ R and b ∈ B that see x, and (r, b) ∈ E1 ∪E2 ∪E3. If x 
∈ R ∪B then
the argument is exactly as before. Without loss of generality, assume that x ∈ R.
Since B sees X , there must be a point in B that sees x. Assume that such a blue
point lies to the left of x. The other case is symmetric. In this case, it must be
that λ(x) exists. If λ(x) ∈ B, then we are done since we added (λ(x), x) to E3.
Therefore assume that λ(x) ∈ R. Let b be the leftmost blue point that sees x.
Now we can use the reasoning in the last paragraph of the previous section to
show that there is an edge (b, u) ∈ E1 such that both b and u see x, b is blue,
and u is red.
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3 Conclusions

We have shown that the discrete terrain guarding problem admits a polynomial-
time approximation scheme. We can also obtain a PTAS in the scenario where
the possible guard locations are from a finite set, and we want to see the entire
terrain – this problem is readily reduced to discrete terrain guarding. In the
continuous terrain guarding problem, guards are allowed to be located anywhere
on the terrain. The local search can be seen to work even here, and we can show
that a single iteration of the local search can be implemented in polynomial
time along the lines of Section 4 of [6]. There is one issue that remains, how-
ever, and this is to bound the number of bits needed to represent the guards
maintained by the local search. We are currently investigating how this can be
handled.

Acknowledgements. We thank the anonymous reviewers for useful feedback.
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A Appendix

We present here a more formal argument for a piece of Lemma 1 that shows
that the graph (X ∪ R ∪ B,A1 ∪ E1) has a planar embedding with X ∪ R ∪ B
on a horizontal line and A1 ∪ E1 drawn above the line. We now think of A1 as
a set of combinatorial edges rather than as line segments. Let us say that two
edges in A1 ∪ E1 cross if all four end points are distinct, and can be ordered
as a < b < c < d with the edges being (a, c) and (b, d). Notice that crossing in
this sense is determined entirely by the ordering of the endpoints, and makes no
reference to a drawing of the edges. We first argue that no two edges in A1 ∪E1
cross.

1. Let (λ(x), x) and (λ(y), y) be any two edges in A1. They do not cross, for if
λ(x) < λ(y) < x < y, then by the order claim, y sees λ(x), contradicting the
definition of λ(y).

2. We argue that an edge in A1 and an edge in E1 do not cross. Let us recall how
edges in E1 are defined. Let us say that an edge (λ(x), x) is above v ∈ R∪B
if λ(x) < v < x. We look at all edges in A1 that are above v, and if this
set is non-empty we find the “innermost” such edge (λ(y), y). We add the
edge (λ(y), v) to E1 if λ(y) and v are of opposite colors. Let us say that
(λ(y), y) ∈ A1 defines (λ(y), v) in this case.
Now suppose (λ(y), v) crosses some (λ(x), x) ∈ A1. Now if λ(x) < λ(y) <
x < v, then (λ(x), x) and (λ(y), y) cross, a contradiction. On the other hand,
if λ(y) < λ(x) < v < x, there are two cases: either x ≤ y, in which case the
contradiction is that (λ(y), y) is not the innermost edge in A1 that is above
v; or x > y, in which case the contradiction is that (λ(y), y) and (λ(x), x),
which are both edges in A1, cross.

3. We now show that no two edges in E1 cross. Consider two such edges
(λ(y1), v1) and (λ(y2), v2), defined by (λ(y1), y1) and (λ(y2), y2) respectively.
These edges do not cross, for if λ(y1) < λ(y2) < v1 < v2, then (λ(y1), v1)
crosses (λ(y2), y2), which contradicts the fact that an edge in E1 and an edge
in A1 do not cross.
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Thus, no two edges in A1 ∪ E1 cross. From this, it follows that the required
embedding exists. For instance, embed the vertices X ∪B ∪R as distinct points
in the correct order on the lower half of the unit circle, and draw the edges in
A1 ∪ E1 as straight line segments. Using convexity arguments, this can be seen
to be a planar embedding. Now we “bend” the lower half of the unit circle into
a horizontal segment, allowing the drawing of edges in A1 ∪ E1 to now become
curved.
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Abstract. In classical scheduling problems, we are given jobs and ma-
chines, and have to schedule all the jobs to minimize some objective
function. What if each job has a specified profit, and we are no longer
required to process all jobs? Instead, we can schedule any subset of jobs
whose total profit is at least a (hard) target profit requirement, while
still trying to approximately minimize the objective function.

We refer to this class of problems as scheduling with outliers. This
model was initiated by Charikar and Khuller (SODA ’06) for minimum
max-response time in broadcast scheduling. In this paper, we consider
three other well-studied scheduling objectives: the generalized assign-
ment problem, average weighted completion time, and average flow time,
for which LP-based approximation algorithms are provided. Our main
results are:

– For the minimum average flow time problem on identical machines,
we give an LP-based logarithmic approximation algorithm for the
unit profits case, and complement this result by presenting a match-
ing integrality gap.

– For the average weighted completion time problem on unrelated ma-
chines, we give a constant-factor approximation. The algorithm is
based on randomized rounding of the time-indexed LP relaxation
strengthened by knapsack-cover inequalities.

– For the generalized assignment problem with outliers, we outline a
simple reduction to GAP without outliers to obtain an algorithm
whose makespan is within 3 times the optimum makespan, and whose
cost is at most (1 + ε) times the optimal cost.

1 Introduction

In classical scheduling problems, we are given jobs and machines, and have to
schedule all jobs to minimize some objective function. What if we are given a
(hard) profit constraint, and merely want to schedule a “profitable” subset of jobs?

� Supported in part by NSF awards CCF-0448095 and CCF-0729022, and an Alfred
P. Sloan Fellowship.

�� Work partly done at MPI, Saarbrücken, Germany.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 149–162, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



150 A. Gupta et al.

In this paper, we consider three widely studied scheduling objectives— makespan,
weighted average completion time, and average flow-time—and give approxima-
tion algorithms for these objectives in the model of scheduling with outliers.

Formally, the scheduling with outliers model is defined as follows: given an
instance of some classical scheduling problem, imagine each job j also comes
with a certain profit πj . Given a target profit Π , the goal is now to pick a
subset of jobs S whose total profit

∑
j∈S πj is at least Π , and to schedule them

to minimize the underlying objective function. (Equivalently, we could define
the “budget” B =

∑
j πj − Π , and discard a subset of “outlier” jobs whose

total profit is at most B.) Note that this model introduces two different sources
of computational difficulty: on one hand, the task of choosing a set of jobs to
achieve the profit threshold captures the knapsack problem; on the other hand,
the underlying scheduling problem may itself be an intractable problem.

The goal of picking some subset of jobs to process as efficiently as possible,
so that we attain a minimum level of profit or “happiness”, is a natural one.
In fact, various problems of scheduling with job rejections have been studied
previously: a common approach, studied by Bartal et al. [3], has been to study
“prize-collecting” scheduling problems (see, e.g., [9,2,10,17]), where we attempt
to minimize the scheduling objective plus the total profit of unscheduled jobs.
One drawback of this prize-collecting approach is that we lose fine-grained con-
trol on the individual quantities—the scheduling cost, and the lost profit—since
we näıvely sum up these two essentially incomparable quantities. In fact, this
makes our model (with a hard target constraint) interesting also from a techni-
cal standpoint: while we can reduce the prize-collecting problem to the target
profit problem by guessing the lost profit in the optimal prize-collecting solution,
reductions in the opposite direction are known only for a handful of problems
with very restrictive structure (see Section 1.2 for a discussion).

To the best of our knowledge, the model we investigate was introduced by
Charikar and Khuller [5], who considered the problem of minimizing the max-
imum response time in the context of broadcast scheduling; one of our results
is to resolve an open problem from their paper. Scheduling problems with out-
liers were also implicitly raised in the context of model-based optimization with
budgeted probes: Guha and Munagala [15] gave an LP-based algorithm for
completion-time scheduling with outliers which violated budgets by a constant
factor—we resolve an open problem from their paper by avoiding any violation
of the budgets.

1.1 Our Results

GAP and Makespan. As a warm-up, we study the Generalized Assignment
Problem, a generalization of makespan minimization on unrelated machines, in
Section 2. For this problem, we give a simple reduction to the non-outlier version
to obtain a solution approximating the makespan and cost by factors of 3 and
(1 + ε), respectively. Recall that the best known non-outlier guarantee is a 2-
approximation [27] without violating the cost; however, it is easy to show that,
in the presence of outliers, the (1 + ε) loss in cost is unavoidable unless P = NP.
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Average Completion Time. We then consider in Section 3 the problem of
minimizing the sum of weighted completion times on unrelated machines with re-
lease dates, and propose a randomized O(1)-approximation algorithm. Note that
the best non-outlier upper bound for R|rj |

∑
j wjCj is a 2-approximation due

to Skutella [28]; this problem is also known to be APX-hard [20]. Our approach
is based on approximately solving the time-indexed LP relaxation of Schulz and
Skutella [25], strengthened with knapsack-cover inequalities, followed by ran-
domized rounding. We improve on this result to obtain an FPTAS for unweighted
sum of completion times on a constant number of machines.

Average Flow Time. This is the technical heart of the paper, where the prob-
lem is to minimize the average (preemptive) flow time on identical machines,
P |rj , pmtn, outliers|

∑
j Fj . Our main result is an O(logP )-approximation algo-

rithm for the case of unit-profit jobs, where P is the ratio between the largest and
smallest processing times. This comes close to matching the best known bound
of O(log min{P, n/m}) for the non-outlier version due to Leonardi and Raz [21].
However, this problem seems to be much harder with outliers, as we obtain the
same approximation guarantee even for a single machine, in contrast to the non-
outlier single-machine case, which can be solved optimally. We demonstrate that
our analysis is tight, as the LP relaxation used is shown to have an Ω(logP )
integrality gap.

Due to space limitations, some proofs and technical details are omitted from
this extended abstract. We refer the reader to the full version of this paper
(available online at http://arxiv.org/abs/0906.2020), in which all missing
information is provided.

1.2 Related Work

Scheduling with Rejections. As mentioned above, previous papers on this
topic considered the “prize-collecting” version which minimizes the scheduling
objective plus the total profit of unscheduled jobs. Existing techniques do not
seem to extend to scheduling with outliers, in which we have a strict budget con-
straint on the total penalty of rejected jobs. Bartal et al. [3] considered offline
and online makespan minimization and gave best-possible algorithms for both
cases. Makespan minimization with preemptions was investigated in [17,26]. Ep-
stein et al. [10] examined scheduling unit-length jobs. Engels et al. [9] studied
the prize-collecting version of weighted completion-time minimization (on single
or parallel machines), and gave PTASs or constant-factor approximations; they
also proposed a general framework for designing algorithms for such problems.

Outlier Versions of Other Problems. Also called partial-covering problems,
these have been widely studied: e.g., the k-MST problem [11], the k-center and
facility location problem [6], k-median with outliers [7], partial vertex cover
(e.g., [23] and references therein) and k-multicut [14,22]. Chudak et al. [8] dis-
tilled the ideas of Jain and Vazirani [18] on converting “Lagrange-multiplier
preserving” algorithms for prize-collecting Steiner tree into one for k-MST;
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Könemann et al. [19] gave a general framework to convert prize-collecting al-
gorithms into algorithms for outlier versions (see also [24]). However, in the
context of this paper, it is not clear how to make prize-collecting scheduling
algorithms to also be Langrange-multiplier preserving, or whether the above-
mentioned framework is applicable in scheduling-related scenarios.

2 GAP and Makespan

As a warm-up, we consider the generalized assignment problem, which is an
extension of minimizing makespan on unrelated machines with outliers. Formally,
an instance I has m machines and n jobs. Each job j has a processing time of
pij on machine i, an assignment cost of cij , and a profit of πj . Given a profit
requirement Π , cost bound C and makespan bound T , the goal is to compute a
feasible schedule satisfying these requirements. Of course, since the problem is
NP-hard, we look at finding solutions where we may slightly violate the cost and
makespan bounds, but not the (hard) profit requirement. We now show how to
reduce this problem to its non-outlier version, while incurring small additional
losses in the approximation guarantees.

Theorem 1. Given an instance I of GAP with outliers, there is a polynomial-
time algorithm to compute an assignment with cost at most (1+ε)C and makespan
at most 3T .

Proof. Given the instance I, construct the following instance I′ of the standard
GAP, where there are no profits or outliers. There arem+1 machines: machines
1, . . . ,m are identical to those in I, while machine m + 1 is a “virtual profit
machine”. We have n jobs, where job j has a processing time of pij and an
assignment cost of cij when scheduled on machine i (for 1 ≤ i ≤ m). If job j is
scheduled on the virtual machinem+1, it incurs a processing time of πj and cost
zero, i.e., pm+1,j = πj and cm+1,j = 0. For this instance, we set a cost bound
of C, makespan bound of T for machines 1, . . . ,m, and a makespan bound of∑n

j=1 πj −Π for the virtual profit machine. Note that any feasible solution for
I is also feasible for I ′, with the outliers being scheduled on the virtual profit
machine, since the total profit of the outliers is at most

∑n
j=1 πj −Π .

We can now use the algorithm of Shmoys and Tardos [27] which guarantees an
assignment S for the GAP instance I′ with the following properties: (a) The cost
of S is at most C; (b) the makespan induced by S on machine i (for 1 ≤ i ≤ m)
is at most T + min{maxj pij , T }; and (c) The makespan of S on the virtual
machine m+ 1 is at most (

∑n
i=1 πj −Π) + maxj πj .

Note that the assignment S is almost feasible for the outlier problem I, since
the makespan on any real machine is at most T + maxj pij , and the assignment
cost is at most C. However, the profit of scheduled jobs is only guaranteed
to be at least Π − maxj πj , instead of Π . This shortcoming is easy to fix: we
choose a job j′ assigned by S to the virtual machine which has the largest profit,
and schedule j′ on the machine where it has the least processing time. Now
the modified assignment has cost at most C + maxij′ cij′ , makespan at most
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T + 2 min{maxj pij , T }, and the total profit of scheduled jobs is at least Π . (We
assume that any job j where mini pij > T has already been discarded.) This is
almost what we want, apart from the cost guarantee. To this end, suppose we
“guess” the �1/ε� most expensive assignments in OPT, in time O((mn)1/ε), and
hence we can focus only on the jobs having cij ≤ εC for all possible remaining
assignments. Now the assignment cost is at most C + maxij cij ≤ (1 + ε)C, and
the makespan is at most 3T . ��
In fact, the (1 + ε) loss in cost is inevitable since we can reduce the knapsack
problem to the single machine makespan minimization with outliers problem. As
for the makespan guarantee, the 3/2-hardness of Lenstra et al. [20] carries over.

3 Weighted Sum of Completion Times

We now turn our attention to average completion time with outliers. The main
result of this section is a constant factor approximation for this problem. Not
surprisingly, the integrality gap of standard LP relaxations is unbounded1, and
hence we strengthen the time-indexed formulation with knapsack-cover inequali-
ties [4,29]. We show that a randomized rounding scheme similar to that of Schulz
and Skutella [25] gives us the claimed guarantees on the objective function. In
the full version of this paper, we also give an FPTAS for the single-machine case
of unweighted sum of completion times.

3.1 O(1) Approximation for Weighted Sum of Completion Times

We have a collection of m machines and n jobs, where each job j is associated
with a profit πj , a weight wj , and a release date rj . When job j is scheduled
on machine i, it incurs a processing time of pij . Given a parameter Π > 0,
the objective is to identify a set of jobs S and a feasible schedule such that∑

j∈S πj ≥ Π and such that
∑

j∈S wjCj is minimized. Here, Cj denotes the
completion time of job j.

A Time Indexed LP Relaxation. For the non-outlier version, in which all
jobs have to be scheduled, Schulz and Skutella [25] gave a constant factor ap-
proximation by making use of a time-indexed LP. We first describe a natural
extension of their linear program to the outlier case, while also strengthening it.

minimize
∑n

j=1 wjCj

subject to (1) Cj =
∑m

i=1
∑T

t=0

(
xijt

pij

(
t+ 1

2

)
+ xijt

2

)
∀ j

(2) yj =
∑m

i=1
∑T

t=0
xijt

pij
∀ j

(3)
∑n

j=1 xijt ≤ 1 ∀ i, t
(4)

∑
j /∈A π

A
j yj ≥ Π −Π(A) ∀A : Π(A) < Π

(5) xijt = 0 ∀ i, j, t : t < rj
(6) xijt ≥ 0, 0 ≤ yj ≤ 1 ∀ i, j, t

1 Implicit in the work of Guha and Munagala [15] is an algorithm which violates the
profit requirement by a constant factor. They also comment on the integrality gap,
and pose the problem of avoiding this violation.
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In this formulation, the variable xijt stands for the fractional amount of time
machine i spends on processing job j in the time interval [t, t+1); note that the
LP schedule may be preemptive. The variable Cj , defined by constraint (1), is
a measure for the completion time of job j. In any integral solution, where job
j is scheduled from t to t+ pij on a single machine i, it is not difficult to verify
that Cj evaluates to t + pij . The variable yj, defined by constraint (2), is the
fraction of job j being scheduled. Constraint (3) ensures that machine i spends
at most one unit of processing time in [t, t+ 1).

We first observe that replacing the set of constraints (4) by a single inequality,∑n
j=1 πjyj ≥ Π , would result in an unbounded integrality gap. Consider a single

job of profit M , and Π = 1; the LP can schedule a 1/M fraction of the job,
incurring a cost which is only 1/M times the optimum. We therefore add in the
family of constraints (4), known as the knapsack-cover (KC) inequalities. Let
A be any set of jobs, and let Π(A) =

∑
j∈A πj be the sum of profits over all

jobs in A. Then, [Π − Π(A)]+ is the profit that needs to be collected by jobs
not in A when all jobs in A are scheduled. Further, if A does not fully satisfy
the profit requirement, any job j /∈ A has a marginal contribution of at most
πAj = min{πj , Π − Π(A)}. Therefore, for every set A such that Π(A) < Π ,
we add a constraint of the form

∑
j /∈A π

A
j yj ≥ Π −Π(A). Note that there are

exponentially many such constraints, and hence we cannot naively solve this LP.

“Solving” the LP. We will not look to find an optimal solution to the above
LP; for our purposes, it suffices to compute a solution vector (x̂, ŷ, Ĉ) satisfying
the following:

(a) Constraints (1)-(3) and (5)-(6) are satisfied.
(b) Constraint (4) is satisfied for the single set {j : ŷj ≥ 1/2}.
(c)

∑n
j=1 wjĈj ≤ 2 ·Opt, where Opt is the cost of an optimal integral solution.

We compute this solution vector by first guessing Opt up to a multiplicative
factor of 2 (call the guess Õpt), and add the explicit constraint

∑n
j=1 wjCj ≤ Õpt.

Then, we solve the LP using the ellipsoid algorithm. For the separation oracle, in
each iteration, we check if the current solution satisfies properties (a)–(c) above.
If none of these properties is violated, we are done; otherwise, we have a violated
constraint. We now present our rounding algorithm (in Algorithm 1).

3.2 Analysis

We show that the expected weighted sum of completion times is O(1) ·Opt, and
also that with constant probability, the total profit obtained is at least Π .

Lemma 1. The expected weighted sum of completion times is at most 16 ·Opt.

Proof. Let CR
j be a random variable, standing for the completion time of job j;

if this job has not been scheduled, we set CR
j = 0. Since

∑n
j=1 wjĈj ≤ 2 · Opt,

it is sufficient to prove that E[CR
j ] ≤ 8Ĉj for every j. To this end, note that

E
[
CR

j

]
=

m∑

i=1

T∑

t=0

Pr[τj =(i, t)] · E
[
CR

j

∣
∣
∣ τj = (i, t)

]
≤

m∑

i=1

T∑

t=0

2x̂ijt

pij
· E

[
CR

j

∣
∣
∣ τj =(i, t)

]
,
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Algorithm 1. Weighted Sum of Completion Times
1: Given a solution (x̂, ŷ, Ĉ) satisfying properties (a)–(c), let A∗ = {j : ŷj ≥ 1/2}.
2: For each job j, do the following steps

2a: If j ∈ A∗, for each (i, t) pair, set lijt = x̂ijt/(pij ŷj). Note that for such jobs
j ∈ A∗, we have

∑m
i=1

∑T
t=0 lijt = 1 from constraint (2) of the LP.

2b: If j /∈ A∗, set lijt = 2x̂ijt/pij . In this case, note that
∑m

i=1

∑T
t=0 lijt = 2ŷj .

2c: Partition the interval [0, 1] in the following way: assign each (i, t) pair a sub-
interval Iit of [0, 1] of length lijt such that these sub-intervals are pairwise
disjoint. Then choose a uniformly random number r ∈ [0, 1] and set τj to be
the (i, t) pair such that r ∈ Iit. If there is no such pair, leave j unmarked.

3: For each machine i, consider the jobs such that τj = (i, ∗); order them in increasing
order of their marked times; schedule them as early as possible (subject to the
release dates) in this order.

where the last inequality holds since Pr[τj = (i, t)] = lijt ≤ 2x̂ijt/pij , regardless
of whether j ∈ A∗ or not. Now let us upper bound E[CR

j |τj = (i, t)]. The total
time for which job j must wait before being processed on machine i can be split
in the worst case into: (a) the idle time on this machine before j is processed,
and (b) the total processing time of other jobs marked (i, t′) with t′ ≤ t. If job j
has been marked (i, t), the idle time on machine i before j is processed is at most
t. Also, the total expected processing time mentioned in item (b) is at most

∑

k �=j

pik

t∑

t′=0

Pr [τk = (i, t′)| τj = (i, t)] =
∑

k �=j

pik

t∑

t′=0

Pr [τk = (i, t′)]

≤
∑

k �=j

pik

t∑

t′=0

2x̂ikt′

pik
= 2

t∑

t′=0

∑

k �=j

x̂ikt′ ≤ 2(t+ 1),

where the last inequality follows from constraint (3). Combining these observa-
tions and constraint (1), we have

E
[
CR

j

]
≤ 2

m∑

i=1

T∑

t=0

x̂ijt

pij
(t + 2(t + 1) + pij) ≤ 8

m∑

i=1

T∑

t=0

(
x̂ijt

pij

(
t +

1

2

)
+

x̂ijt

2

)
= 8Ĉj .

��

Lemma 2. With probability at least 1/5, the resulting schedule meets the profit
requirement.

Proof. Clearly, when the jobs in A∗ collectively satisfy the profit requirement,
we are done since the algorithm picks every job in A∗. In the opposite case,
consider the Knapsack Cover inequality for A∗, stating that

∑
j /∈A∗ πA

∗

j ŷj ≥
Π −Π(A∗). The total profit collected from these jobs can be lower bounded by
Z =

∑
j /∈A∗ πA

∗

j Zj , where each Zj is a random variable indicating whether job
j is picked or not.
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Since our rounding algorithm picks all jobs in A∗, the profit requirement is
met if Z is at least Π −Π(A∗). To provide an upper bound on the probability
that Z falls below Π − Π(A∗), notice that by the way the algorithm marks
jobs in Step 2, we have that each job not in A∗ is marked with probability 2ŷj ,
independently of other jobs. Therefore,

E [Z] = E

⎡

⎣
∑

j /∈A∗

πA
∗

j Zj

⎤

⎦ = 2
∑

j /∈A∗

πA
∗

j ŷj ≥ 2(Π −Π(A∗)).

Consequently, if we define αj = πA
∗

j /(Π −Π(A∗)), then

Pr [Z ≤ Π − Π(A∗)] = Pr

⎡

⎣
∑

j /∈A∗

πA∗
j

Π − Π(A∗)
Zj ≤ 1

⎤

⎦

≤ Pr

⎡

⎣
∑

j /∈A∗

αjZj ≤ 1

2
· E[

∑

j /∈A∗

αjZj ]

⎤

⎦ ≤ exp

⎛

⎝−1

8
· E

⎡

⎣
∑

j /∈A∗

αjZj

⎤

⎦

⎞

⎠ ≤ e−1/4 <
4

5
,

where the first and third inequalities hold since E[
∑

j /∈A∗ αjZj ] ≥ 2, and the
second inequality follows from bounding the lower tail of the sum of independent
[0, 1] random variables (see, e.g., [1, Thm. 3.5]). ��

The above two lemmas combine to give the following theorem.

Theorem 2. There is an O(1)-approximation algorithm for minimizing weighted
completion times on unrelated machines with outliers.

While the LP formulation as stated has exponentially many time intervals of
length 1, we can make our algorithm polynomial in the input size (with a small
loss in the approximation guarantee) by considering geometrically increasing
sizes for the time intervals (see, for instance, [16]).

4 Average Flow Time on Identical Machines

Finally, we consider the problem of minimizing the average (preemptive) flow
time on identical machines (P |rj , pmtn, outliers|

∑
Fj) with unit profits. We

present an LP rounding algorithm that produces a preemptive non-migratory
schedule2 whose flow time is within O(logP ) of optimal, where P is the ratio
between the largest and smallest processing times.

This is the technical heart of our paper; in sharp contrast to the problems
in Sections 2 and 3, it is not clear how to easily modify existing algorithms for
this problem to handle its outliers version. While we use the same LP as in
previous papers, our rounding algorithm has to substantially extend previous
non-outlier algorithms. Since our algorithms are somewhat involved, we first

2 That is, no job is scheduled on multiple machines.
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present an algorithm for the single machine case. In the full version of this
paper, we show how to combine our single machine algorithm along with ideas
drawn from [12] to obtain an O(logP ) approximation for the more general case
of identical machines.

For the remainder of this section, consider the following setup: we are given
a single machine and a collection of n jobs, where each job j has a release date
rj ∈ Z and a processing time pj ∈ Z. Given a parameter Π > 0, we want to
identify a set of jobs S and a preemptive schedule minimizing

∑
j∈S Fj subject

to |S| ≥ Π . Here, Fj = Cj − rj is the flow time of job j.

4.1 The Flow-Time LP Relaxation

Our LP relaxation is a natural outlier extension of the one used in earlier flow-
time algorithms [12,13]. We first describe what the variables and constraints
correspond to: (i) fj is the fractional flow time of job j; (ii) xjt is the fraction
of job j scheduled in the time interval [t, t + 1); and (iii) yj is the fraction of
job j scheduled. Constraint (1) keeps track of the flow time of each job, while
constraints (2), (3), and (4) make sure that the solution is feasible with respect
to the profit constraint. Notice that in constraint (1), we use the quantity p̃j ,
which denotes the processing time pj rounded up to the next power of 2, instead
of pj . This modification is present only in constraint (1) which dictates the LP
cost, and not in constraint (2) which measures the extent to which each job is
scheduled. The quantity T is a guess for the time at which the optimal solution
completes processing jobs (in fact, any upper bound of it would suffice). Our
algorithm has a running time which is polynomial in T and n. We also assume
that a parameter k∗ ∈ Z was guessed in advance, such that the optimal solution
only schedules jobs with pj ≤ 2k∗

.

minimize
∑n

j=1 fj

subject to (1) fj =
T∑

t=0

(
xjt

p̃j

(
t+

1
2
− rj

)
+
xjt

2

)
∀ j

(2) pjyj =
∑T

t=0 xjt ∀ j
(3)

∑n
j=1 xjt ≤ 1 ∀ t

(4)
∑n

j=1 yj ≥ Π
(5) xjt = 0 ∀ j, t : t < rj
(6) xjt ≥ 0, 0 ≤ yj ≤ 1 ∀ j, t

Lemma 3 (Relaxation). Opt(LP) ≤ Opt, where Opt denotes the optimal sum
of flow times.

Theorem 3 (Integrality Gap). There are instances in which Opt = Ω(logP )·
Opt(LP), where P is the ratio between the largest and smallest processing times.

Our gap instance is on a single machine, for which the shortest remaining process-
ing time policy (SRPT) is known to be optimal in the non-outlier case. However,
our results eventually show that this is as bad as it gets — we establish an upper
bound of O(logP ) on the integrality gap even for identical machines.
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4.2 The Rounding Algorithm: Game Plan and Some Hurdles

Before we present our algorithm in detail, let us give a high-level picture and
indicate some of the complicating factors over earlier work. Previous LP-based
rounding techniques [12,13] relied on the fact that if we rearrange the jobs of
length roughly 2k — call such jobs “class-k” jobs — among the time slots they
occupy in the fractional solution, the objective function does not change much.
These algorithms then use such rearrangements to make the schedule feasible
(no job simultaneously scheduled on two machines) and even non-migratory
across machines. We are currently considering the single machine case, so these
issues are irrelevant for the time being; however, we need to handle jobs that are
fractionally picked by the LP. In particular, we need to swap “mass” between
jobs to pick an integral number of jobs to schedule, and it is this step which
increases the LP cost even in the single machine case. Note that we essentially
care only about the yj value for each job j, which indicates the extent to which
this job is scheduled — if we could make the yj ’s integral without altering the
objective by much, we would be done!

However, näıve approaches to make the yj’s integral may have bad approxi-
mation guarantees. E.g., consider taking two consecutive fractional jobs j and j′

with similar processing times3 and scheduling more of the first one over the sec-
ond. If the second job j′ has even slightly smaller processing time than j has, we
would run out of space trying to schedule an equal fraction of j over j′, and this
loss may hurt us in the (hard) profit requirement. In such a case, we could try to
schedule j′ over j, observing that the later job j′ would not advance too much
in time, since j and j′ were consecutive in that class and have similar processing
times. The eventual hope is that, given a small violation of the release dates,
we may be able to shift the entire schedule by a bit and regain feasibility. How-
ever, this strategy could lead to arbitrarily bad approximations: we could keep
fractionally growing a job j until (say) 2/3 of it is scheduled, only to meet a job
j′ subsequently that also has 2/3 of it scheduled, but j′ has smaller processing
time and therefore needs to be scheduled over j. In this case, j would shrink to
1/3, and then would start growing again. Repeated occurrences of these events
might cause the flow time for j to be very high.

Indeed, trying to avoid such situations leads us to our algorithm, where we look
at a window of jobs and select an appropriate one to schedule, rather than greedily
running a swapping process. To analyze our algorithm, we charge the total increase
in the fractional flow time to the fractional makespan of the LP solution, and show
that each class of jobs charges the fractional makespan at most twice.

4.3 Notation and Preliminaries

We partition the collection of jobs into classes, with jobs in class Ck having
pj ∈ (2k−1, 2k]. Notice that p̃j = 2k for every j ∈ Ck, and the class of interest with
highest index is Ck∗ . Given a fractional solution (x, y, f), we say that job j is fully

3 Observe that jobs with similar processing times have similar contributions to the
objective, except for the release date component.
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scheduled if yj = 1, and dropped if yj = 0; in both cases, j is integrally scheduled.
Let flow(x, y, f) =

∑n
j=1 fj be the fractional cost; note that this is not the same

as the actual flow time given by this solution, but rather an approximation. Let
P(x, y, f) =

∑n
j=1

∑T
t=0 xjt be the total fractional processing time. Since each

job j gets xjt amount of processing time in [t, t+1), the cost of (x, y, f) remains
unchanged if all jobs are processed during the first part [t, t+

∑n
j=1 xjt) of this

unit interval; we therefore refer to [t+
∑n

j=1 xjt, t+ 1) as the free time interval
in [t, t+ 1).

We say that an LP solution (x, y, f) is non-alternating across each class if
the fractional schedule does not alternate between two jobs of the same class.
Formally, the schedule is non-alternating if for class k and any two class-k jobs j
and j′, if yj , yj′ > 0 and rj < rj′ (or rj = rj′ and j < j′), then for any times t, t′

such that xjt > 0 and xj′t′ > 0, it holds that t ≤ t′. We call a solution packed
if there is no free time between the release date of a job, and the last time it is
scheduled by the LP solution.

Lemma 4. There is an optimal LP solution (x∗, y∗, f∗) that is non-alternating
and packed.

4.4 The Rounding Algorithm

We assume that an optimal LP solution, non-alternating and packed, has already
been computed. At a high level, the rounding algorithm proceeds in two stages.

– In Stage I, for each k, we completely schedule almost as many class-k jobs as
the LP does fractionally (up to an additive two jobs). The main challenge,
as sketched above, is to do this with only a small change in the fractional
flow time and in the processing time of these jobs.

– In Stage II, we add in at most two class-k jobs to compensate for the loss of
jobs in Stage I. Since we add only two jobs per class, we can show that the
additional flow time can be controlled.

Flow-Time Rounding: Stage I. Recall that we want to convert the non-
alternating and packed optimal solution (x∗, y∗, f∗) into a new solution (x′, y′, f ′)
where at least �

∑
j∈Ck

y∗j � − 1 class-k jobs are completely scheduled. The algo-
rithm operates on the classes 1, . . . , k∗ one by one. For each class, it performs a
swapping phase where mass is shifted between jobs in this class (potentially vi-
olating release dates), followed by a shifting phase to handle all the release-date
violations.

Swapping Phase for Class-k. Given the non-alternating and packed solution
(x∗, y∗, f∗), we execute the swapping phase given in Algorithm 2.

Shifting Phase for Class-k. After the above swapping phase for class-k jobs, we
perform a shifting phase to handle any violated release dates. Specifically, consider
the collection of time intervals occupied either by class-k jobs or by free time.By the
process givenabove, this collection remainsfixedover the executionof the swapping
phase. We now shift all class-k jobs to the right by 2k+1 within these intervals. Of
course, we need to prove that this takes care of all release date violations.
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Algorithm 2. Class-k Swapping
1: Set (x′, y′, f ′) := (x∗, y∗, f∗). Repeat steps 2-5 until �

∑
j∈Ck

y∗
j �−1 class-k jobs are

completely scheduled in (x′, y′, f ′).
2: Advance all class-k jobs as much as possible without violating release dates within

the time intervals that are either free or are occupied by class-k jobs. Jobs already
violating their release dates are not advanced any further.

3: Let j1 be the first fractionally scheduled job in the current LP solution (x′, y′, f ′).
Let jq+1 be the first class-k job scheduled after j1 which has processing time pjq+1 <
pj1 , and say the class-k jobs that are scheduled between j1 and jq+1 are j2, . . . , jq.
Note that all these jobs must have processing times greater than pj1 . Also, let free
denote the total free time between j1 and jq+1 in the current schedule.

4: If
∑q

k=2 y′
k + free/pj1 ≥ 1 − y′

j1 , we know that j1 can be completely scheduled over
the jobs j2, . . . , jq and the free time; for k = 2 to q, do the following

– If there is some free time (of total length, say, L) between jk−1 and jk, schedule
a fraction Δ = min(1 − y′

j1 , L/pj1) of j1 in the free time, and delete a fraction
Δ from class-k jobs at the rear end of the schedule. Update (x′, y′, f ′).

– Schedule a fraction Δ = min(1 − y′
j1 , y′

jk
) of j1 over a fraction Δ of job jk

(possibly creating some free space). Update (x′, y′, f ′).
– If k = q and there is some free time (of total length, say, L) between jq and

jq+1, schedule a fraction Δ = min(1 − y′
j1 , L/pj1) of j1 in the free time, and

delete a fraction Δ from class-k jobs at the rear end of the schedule. Update
(x′, y′, f ′).

5: Else if
∑q

k=2 y′
k + free/pj1 < 1 − y′

j1 , do the following

– delete a total fraction of min(
∑q

k=1 y′
k, y′

jq+1 ) from a prefix of jobs j1, . . . , jq,
and advance the current fractional schedule of the job jq+1 to occupy the space
created. Update the solution (x′, y′, f ′). Note that it may or may not have been
possible to schedule j1 in the space fractionally occupied by jobs j2, . . . , jq and
free time in this interval; for accounting reasons we do the same in both cases.

Lemma 5. The following properties are satisfied at the end of Stage I:

(i) P(x′, y′, f ′) ≤ 2P(x∗, y∗, f∗).
(ii) flow(x′, y′, f ′) ≤ 4 · flow(x∗, y∗, f∗) + 6k∗P(x∗, y∗, f∗).
(iii) The total flow time over all fully scheduled jobs is at most 2·flow(x′, y′, F ′)+

k∗P(x′, y′, F ′).

The analysis proceeds by a delicate charging argument, where the basic idea is
the following. In Step 4 of the algorithm, suppose that a Δ fraction of a job
j1 is being scheduled over a Δ fraction of a job jk: we will charge every point
in the interval (rj1 , rjk

) by an amount of Δ. In the case when a Δ fraction of
j1 is being scheduled over an interval of free time beginning at t, we will then
charge every point in the interval (rj1 , t) by the fraction Δ. We then proceed
by showing that flow(x′, y′, f ′)− flow(x∗, y∗, f∗) is not too much more than the
total charge accumulated by the interval [0, T ], where T is the last time at
which the LP scheduled some fractional job. To complete the proof, we argue
that the total charge accumulated is O(logP )P(x∗, y∗, f∗). In the full version,
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we restate Stage I in a slightly different way, where we also define a charging
scheme associated with each step, and give the complete proof of Lemma 5.

Flow-Time Rounding: Stage II. The fractional solution (x′, y′, F ′) may not
be feasible, since we have only scheduled �

∑
j∈Ck

y∗j �−1 jobs from class k. Hence,
for each class k, arbitrarily pick the minimum number of non-fully-scheduled
jobs to bring this number to �

∑
j∈Ck

y∗j � (at most two per class). These jobs are
preemptively scheduled as soon as possible after their release date. Since at most
two jobs per class are added, the flow time does not change much.

Lemma 6. The total flow time of all added jobs is at most k∗(P(x′, y′, F ′) +
2k∗+2).

Proof. For a class k, we may have to complete two additional jobs. When we sched-
ule an extra job as soon as possible, it waits only for jobs that were fully scheduled
during stage II or for jobs thatwere added inprevious iterations of the current stage.
Therefore, its flow time can be at mostP(x′, y′, F ′)+2

∑k∗

k=1 2k, and therefore the
total flow time of added jobs is at most k∗(P(x′, y′, F ′) + 2k∗+2). ��

We now point out that since fj is lower bounded by
∑

t x
∗
jt/2, we have

P(x∗, y∗, f∗) ≤ 2 · Opt. Therefore, Lemmas 5 and 6 in conjunction with the
inequalities P(x′, y′, F ′) ≤ 2P(x∗, y∗, f∗) ≤ 4 ·Opt and k∗ ≤ logP +1, prove the
following result for minimizing flow time on a single machine.

Theorem 4. The problem of minimizing flow time on a single machine with
unit profits can be approximated within a factor of O(logP ).
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Abstract. We study the maximization version of the fundamental graph
coloring problem. Here the goal is to color the vertices of a k-colorable
graph with k colors so that a maximum fraction of edges are properly
colored (i.e. their endpoints receive different colors). A random k-coloring
properly colors an expected fraction 1 − 1

k
of edges. We prove that given

a graph promised to be k-colorable, it is NP-hard to find a k-coloring
that properly colors more than a fraction ≈ 1− 1

33k
of edges. Previously,

only a hardness factor of 1 − O
( 1

k2

)
was known. Our result pins down

the correct asymptotic dependence of the approximation factor on k.
Along the way, we prove that approximating the Maximum 3-colorable
subgraph problem within a factor greater than 32

33 is NP-hard.

Using semidefinite programming, it is known that one can do better
than a random coloring and properly color a fraction 1 − 1

k
+ 2 ln k

k2 of
edges in polynomial time. We show that, assuming the 2-to-1 conjecture,
it is hard to properly color (using k colors) more than a fraction 1 − 1

k
+

O
( lnk

k2

)
of edges of a k-colorable graph.

1 Introduction

1.1 Problem Statement

A graph G = (V,E) is said to be k-colorable for some positive integer k if
there exists a k-coloring χ : V → {1, 2, . . . , k} such that for all edges (u, v) ∈ E,
χ(u) 
= χ(v). For k � 3, finding a k-coloring of a k-colorable graph is a classic NP-
hard problem. The problem of coloring a graph with the fewest number of colors
has been extensively studied. In this paper, our focus is on hardness results for
the following maximization version of graph coloring: Given a k-colorable graph
(for some fixed constant k � 3), find a k-coloring that maximizes the fraction of
properly colored edge. (We say an edge is properly colored under a coloring if its
endpoints receive distinct colors.) Note that for k = 2 the problem is trivial —
one can find a proper 2-coloring in polynomial time when the graph is bipartite
(2-colorable).

� Research supported in part by NSF CCF 0835814 and a Packard Fellowship.
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We will call this problem Max k-Colorable Subgraph. The problem is equivalent
to partitioning the vertices into k parts so that a maximum number of edges are
cut. This problem is more popularly referred to as Max k-Cut in the literature;
however, in the Max k-Cut problem the input is an arbitrary graph that need not
be k-colorable. To highlight this difference that our focus is on the case when
the input graph is k-colorable, we use Max k-Colorable Subgraph to refer to this
variant. We stress that we will use this convention throughout the paper: Max
k-Colorable Subgraph always refers to the “perfect completeness” case, when the
input graph is k-colorable.1 Since our focus is on hardness results, we note that
this restriction only makes our results stronger.

A factor α = αk approximation algorithm for Max k-Colorable Subgraph is an
efficient algorithm that given as input a k-colorable graph outputs a k-coloring
that properly colors at least a fraction α of the edges. We say that Max k-
Colorable Subgraph is NP-hard to approximate within a factor β if no factor β
approximation algorithm exists for the problem unless P = NP. The goal is to
determine the approximation threshold of Max k-Colorable Subgraph: the largest
α as a function of k for which a factor α approximation algorithm for Max
k-Colorable Subgraph exists.

1.2 Previous Results

The algorithm which simply picks a random k-coloring, without even looking
at the graph, properly colors an expected fraction 1 − 1/k of edges. Frieze and
Jerrum [1] used semidefinite programming to give a polynomial time factor 1−
1/k+2 lnk/k2 approximation algorithm for Max k-Cut, which in particular means
the algorithm will color at least this fraction of edges in a k-colorable graph. This
remains the best known approximation guarantee for Max k-Colorable Subgraph
to date. Khot, Kindler, Mossel, and O’Donnell [2] showed that obtaining an
approximation factor of 1 − 1/k + 2 lnk/k2 + Ω(ln ln k/k2) for Max k-Cut is
Unique Games-hard, thus showing that the Frieze-Jerrum algorithm is essentially
the best possible. However, due to the “imperfect completeness” inherent to the
Unique Games conjecture, this hardness result does not hold for Max k-Colorable
Subgraph when the input is required to be k-colorable.

For Max k-Colorable Subgraph, the best hardness known prior to our work
was a factor 1 − Θ(1/k2). This is obtained by combining an inapproximability
result for Max 3-Colorable Subgraph due to Petrank [3] with a reduction from
Papadimitriou and Yannakakis [4]. It is a natural question whether is an efficient
algorithm that could properly color a fraction 1 − 1/k1+ε of edges given a k-
colorable graph for some absolute constant ε > 0. The existing hardness results
do not rule out the possibility of such an algorithm.

For Max k-Cut, a better hardness factor was shown by Kann, Khanna, Lager-
gren, and Panconesi [5] — for some absolute constants β > α > 0, they showed
that it is NP-hard to distinguish graphs that have a k-cut in which a fraction
(1−α/k) of the edges cross the cut from graphs whose Max k-cut value is at most

1 While a little non-standard, this makes our terminology more crisp, as we can avoid
repeating the fact that the hardness holds for k-colorable graphs in our statements.
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a fraction (1−β/k) of edges. Since MaxCut is easy when the graph is 2-colorable,
this reduction does not yield any hardness for Max k-Colorable Subgraph.

1.3 Our Results

Petrank [3] showed the existence of a γ0 > 0 such that it is NP-hard to find a
3-coloring that properly colors more than a fraction (1 − γ0) of the edges of a 3-
colorable graph. The value of γ0 in [3] was left unspecified and would be very small
if calculated. The reduction in [3] was rather complicated, involving expander
graphs and starting from the weak hardness bounds for bounded occurrence satis-
fiability. We prove that the NP-hardness holds with γ0 = 1

33 . In other words, it is
NP-hard to obtain an approximation ratio bigger than 32

33 for Max 3-Colorable Sub-
graph. The reduction is from the constraint satisfaction problem corresponding to
the adaptive 3-query PCP with perfect completeness from [6].

By a reduction from Max 3-Colorable Subgraph, we prove that for every k � 3,
the Max k-Colorable Subgraph is NP-hard to approximate within a factor greater
than ≈ 1− 1

33k (Theorem 2). This identifies the correct asymptotic dependence
on k of the best possible approximation factor for Max k-Colorable Subgraph. The
reduction is similar to the one in [5], though some crucial changes have to be
made in the construction and some new difficulties overcome in the soundness
analysis when reducing from Max 3-Colorable Subgraph instead of MaxCut.

In the quest for pinning down the exact approximability of Max k-Colorable
Subgraph, we prove the following conditional result. Assuming the so-called 2-to-
1 conjecture, it is hard to approximate Max k-Colorable Subgraph within a factor
1 − 1

k + O
( ln k

k2

)
. In other words, the Frieze-Jerrum algorithm is optimal up to

lower order terms in the approximation ratio even for instances of Max k-Cut
where the graph is k-colorable.

Unlike the Unique Games Conjecture (UGC), the 2-to-1 conjecture allows
perfect completeness, i.e., the hardness holds even for instances where an assign-
ment satisfying all constraints exists. The 2-to-1 conjecture was used by Dinur,
Mossel, and Regev [7] to prove that for every constant c, it is NP-hard to color a
4-colorable graph with c colors. We analyze a similar reduction for the k-coloring
case when the objective is to maximize the fraction of edges that are properly
colored by a k-coloring. Our analysis uses some of the machinery developed in
[7], which in turn extends the invariance principle of [8]. The hardness factor we
obtain depends on the spectral gap of a certain k2 × k2 stochastic matrix.

Remark 1. In general it is far from clear which Unique Games-hardness results
can be extended to hold with perfect completeness by assuming, say, the 2-to-1
(or some related) conjecture. In this vein, we also mention the result of O’Donnell
and Wu [9] who showed a tight hardness for approximating satisfiable constraint
satisfaction problems on 3 Boolean variables assuming the d-to-1 conjecture
for any fixed d. While the UGC assumption has led to a nearly complete un-
derstanding of the approximability of constraint satisfaction problems [10], the
approximability of satisfiable constraint satisfaction problems remains a mystery
to understand in any generality.
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Remark 2. It has been shown by Crescenzi, Silvestri and Trevisan [11] that any
hardness result for weighted instances of Max k-Cut carries over to unweighted
instances assuming the total edge weight is polynomially bounded. In fact, their
reduction preserves k-colorability, so an inapproximability result for the weighted
Max k-Colorable Subgraph problem also holds for the unweighted version. There-
fore all our hardness results hold for the unweighted Max k-Colorable Subgraph
problem.

2 Unconditional Hardness Results for Max k-Colorable
Subgraph

We will first prove a hardness result for Max 3-Colorable Subgraph, and then
reduce this problem to Max k-Colorable Subgraph.

2.1 Inapproximability Result for Max 3-Colorable Subgraph

Petrank [3] showed that Max 3-Colorable Subgraph is NP-hard to approximate
within a factor of (1−γ0) for some constant γ0 > 0. This constant γ0 is presum-
ably very small, since the reduction starts from bounded occurrence satisfiability
(for which only weak inapproximability results are known) and uses expander
graphs. We prove a much better inapproximability factor below, via a simpler
proof.

Theorem 1 (Max 3-Colorable Subgraph Hardness). The Max 3-Colorable Sub-
graph problem is NP-hard to approximate within a factor of 32

33 + ε for any
constant ε > 0.

Proof. For the proof of this theorem, we will use reduce from a hard to approx-
imate constraint satisfaction problem (CSP) underlying the adaptive 3-query
PCP given in [6]. This PCP has perfect completeness and soundness 1/2 + ε for
any desired constant ε (which is the best possible for 3-query PCPs).

We first state the properties of the CSP. An instance of the CSP will have
variables partitioned into three parts X ,Y and Z. Each constraint will be of the
form (xi ∨ (Yj = zk)) ∧ (xi ∨ (Yj = zl)), where xi ∈ X , zk, zl ∈ Z are variables
(unnegated) and Yj is a literal (Yj ∈ {yj, yj} for some variable yj ∈ Y). For Yes

instances of the CSP, there will be a Boolean assignment that satisfies all the
constraints. For No instances, every assignment to the variables will satisfy at
most a fraction (1/2 + ε) of the constraints.

Remark 3. We remark the condition that the instance is tripartite, and that the
variables in Z never appear negated are not explicit in [6]. But these can be
ensured by an easy modification to the PCP construction in [6]. The PCP in
[6] has a bipartite structure: the proof is partitioned into two parts called the
A-tables and B-tables, and each test consists of probing one bit A(f) from an
A table and 3 bits B(g), B(g1), B(g2) from the B table, and checking (A(f) ∨
(B(g) = B(g1))∧(A(f)∨(B(g) = B(g2)). Further these tables are folded which is
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Fig. 1. Global gadget for truth value
assignments. Blocks Xi, Yj and Zl

are replicated for all vertices in X ,
Y and Z. Edge weights are shown
next to each edge.

TF

xi zk zlYj

A′ B′

A B

Fig. 2. Local gadget for each constraint
of the form (xi ∨ Yj = zk) ∧ (xi ∨ Yj =
zl). All edges have unit weight. Labels
A, A′, B, B′ refer to the local nodes in
each gadget.

a technical condition that corresponds to the occurrence of negations in the CSP
world. If the queries at locations g1 and g2 are made in a parallel C-table, and
even if the C-table is not folded (though the A and B tables need to be folded),
one can verify that the analysis of the PCP construction still goes through. This
then translates to a CSP with the properties claimed above.

Let I be an instance of such a CSP with m constraints of the above form on
variables V = X ∪ Y ∪ Z. Let X = {x1, x2, . . . , xn1}, Y = {y1, y2, . . . , yn2} and
Z = {z1, z2, . . . , zn3}. From the instance I we create a graph G for the Max
3-Colorable Subgraph problem as follows. There is a node xi for each variable
xi ∈ X , a node zl for each zl ∈ Z, and a pair of nodes {yj, yj} for the two
literals corresponding to each yj ∈ Y. There are also three global nodes {R, T, F}
representing boolean values which are connected in a triangle with edge weights
m/2 (see Fig. 1).

For each constraint of the CSP, we place the local gadget specific to that
constraint shown in Figure 2. Note that there are 10 edges of unit weight in
this gadget. The nodes yj, yj are connected to node R by a triangle whose edge
weights equal wj = Δ(yj)+Δ(yj)

2 . Here Δ(X) denotes the total number of edges
going from node X into all the local gadgets. The nodes xi and zl connected to
R with an edge of weight Δ(xi)/2 and Δ(zl)/2 respectively. The proofs of the
following (simple) lemmas will appear in the full version.

Lemma 1 (Completeness). Given an assignment of variables σ : V → {0, 1}
which satisfies at least c of the constraints, we can construct a 3-coloring of G
with at most m− c improperly colored edges (each of weight 1).

Lemma 2 (Soundness). Given a 3-coloring of G, χ, such that the total weight
of edges that are not properly colored by χ is at most τ < m/2, we can construct
an assignment σ′ : V → {0, 1} to the variables of the CSP instance that satisfies
at least m− τ constraints.
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Returning to the proof of Theorem 1, the total weight of edges in G is

10m+
3m
2

+
n1∑

i=1

Δ(xi)
2

︸ ︷︷ ︸
m

+
n2∑

j=1

3wj +
n3∑

l=1

Δ(zl)
2

︸ ︷︷ ︸
m

=
27
2
m+

3
2

n2∑

j=1

(Δ(yi) +Δ(yj))

︸ ︷︷ ︸
2m

=
33
2
m .

By the completeness lemma, Yes instances of the CSP are mapped to graphs
G that are 3-colorable. By the soundness lemma, No instances of the CSP are
mapped to graphs G such that every 3-coloring miscolors at least a fraction
(1/2−ε)

33/2 = 1−2ε
33 of the total weight of edges. Since ε > 0 is an arbitrary constant,

the proof of Theorem 1 is complete.2

2.2 Max k-Colorable Subgraph Hardness

Theorem 2. For every integer k � 3 and every ε > 0, it is NP-hard to ap-
proximate Max k-Colorable Subgraph within a factor of 1− 1

33(k+ck)+ck
+ ε where

ck = k mod 3 � 2.

Proof. We will reduce Max 3-Colorable Subgraph to Max k-Colorable Subgraph and
then apply Theorem 1. Throughout the proof, we will assume k is divisible by 3.
At the end, we will cover the remaining cases also. The reduction is inspired by
the reduction from MaxCut to Max k-Cut given by Kann et al. [5] (see Remark 4).
Some modifications to the reduction are needed when we reduce from Max 3-
Colorable Subgraph, and the analysis has to handle some new difficulties. The
details of the reduction and its analysis follow.

Let G = (V,E) be an instance of Max 3-Colorable Subgraph. By Theorem 1,
it is NP-hard to tell if G is 3-colorable or every 3-colors miscolors a fraction
1
33 − ε of edges. We will construct a graph H such that H is k-colorable when
G is 3-colorable, and a k-coloring which miscolors at most a fraction μ of the
total weight of edges of H implies a 3-coloring of G with at most a fraction μk of
miscolored edges. Combined with Theorem 1, this gives us the claimed hardness
of Max k-Colorable Subgraph.

Let K ′
k/3 denote the complete graph with loops on k/3 vertices. Let G′ be

the tensor product graph between Kk/3 and G, G′ = K ′
k/3 ⊗ G as defined by

Weichsel [12]. Identify each node in G′ with (u, i), u ∈ V (G), i ∈ {1, 2, . . . , k/3}.
The edges of G′ are ((u, i), (v, i′)) for (u, v) ∈ E and any i, i′ ∈ {1, . . . , k/3}. Next
we make 3 copies of G′, and identify the nodes with (u, i, j), (u, i) ∈ V (G′), j ∈
{1, 2, 3}, then put edges between all nodes of the form (u, i, j) and (u, i′, j′) if

2 Our reduction produced a graph with edge weights, but by Remark 2, the same
inapproximability factor holds for unweighted graphs as well.
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either i 
= i′ or j 
= j′ with weight 2
3du, where du is degree of node u. The total

weight of edges in this new construction H equals

∑

u∈V

((
k

2

)
2
3
du +

3
2

(
k

3

)2

du

)

� k2m .

Lemma 3. If G is 3-colorable, then H is k-colorable.

Proof. Let χG : V (G) → {1, 2, 3} be a 3-coloring of G. Consider the follow-
ing coloring function for H , χH : V (H) → {1, 2, . . . , k}. For node (u, i, j), let

χH((u, i, j)) = πj(χG(u)) + 3(i − 1). Here π is the permutation
(

1 2 3
2 3 1

)
, and

πj(x) = π(. . . (π(
︸ ︷︷ ︸

j times

x))). Equivalently π(x) = x mod 3 + 1.

Consider edges of the form {(u, i, j), (v, i′, j)}. If i 
= i′, then colors of the
endpoints are different. Else we have χ((u, i, j))− χ((v, i, j)) ≡ χ(u)− χ(v) 
≡ 0
mod 3. For edges of the form {(u, i, j), (u, i′, j′)}, if i 
= i′, clearly edge is satisfied.
When i = i′, j 
= j′, χ((u, i, j))−χ((u, i, j′)) ≡ πj(u)−πj′

(u) ≡ j−j′ 
≡ 0 mod 3.

Lemma 4. If H has a k-coloring that properly colors a set of edges with at least
a fraction (1 − μ) of the total weight, then G has a 3-coloring which colors at
least a fraction (1− μk) of its edges properly.

Proof. Let χH be the coloring of H , Sj
u = {χH((u, i, j)) | 1 � i � k/3} and

Su =
⋃

j Sj
u. Denote the total weight of uncut edges in this solution as

Ctotal =
∑

u∈V (G)

2
3
duC

within
u + Cbetween, (1)

where Cwithin
u and Cbetween denotes the number of improperly colored edges

within the copies of node u and between copies of different vertices u, v ∈ V (G)
respectively. We have the following relations:

Cbetween =
∑3

j=1
∑

uv∈E(G)
∑

1�i�i′�k/3 1χH((u,i,j))=χH ((v,i′,j))

�
∑3

j=1
∑

uv∈E(G) |Sj
u ∩ Sj

v|
(2)

Cwithin
u =

∑
c∈Su

(|χ−1
H (c)∩Bu|

2

)
(Bu = {(u, i, j)|∀i, j})

=
∑

c∈Su

|Bu,c|2
2 − k

2 (Bu,c = Bu ∩ χ−1
H (c))

� 1
2|Su|

(∑
c∈Su
|Bu,c|

)2 − k
2 (Cauchy-Schwarz)

� k
2

(
k

|Su| − 1
)

� k
2
|Su|
|Su| � |Su|

2

(3)

Now we will find a (random) 3-coloring χG for G. Pick c from {1, 2, . . . , k}
uniformly at random. If c /∈ Su, select χG(u) uniformly at random from {1, 2, 3}.
If c ∈ Su, set χG(u) = j if j is the smallest index for which c ∈ Sj(u). With this
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coloring χG(u), the probability that an edge (u, v) ∈ E(G) will be improperly
colored is:

Pr [χG(u) = χG(v)] �
3∑

j=1

Prc
[
c ∈ Sj

u ∩ Sj
v

]
+

1
3
Prc

[
c ∈ Su, c ∈ Sv

]

+
1
3
Prc

[
c ∈ Su, c ∈ Sv

]
+

1
3
Prc

[
c ∈ Su, c ∈ Sv

]

�
3∑

j=1

|Sj
u ∩ Sj

v|
k

+
|Su|
3k

+
|Sv|
3k

We can thus bound the expected number of miscolored edges in the coloring χG

as follows.

E

[
∑

(u,v)∈E(G)

1χG(u)=χG(v)

]

�
∑

uv∈E

[( 3∑

j=1

|Sj
u ∩ Sj

v|
k

)
+
|Su|
3k

+
|Sv|
3k

]

� 1
k

(
Cbetween +

∑

u∈V (G)

du

3
|Su|

)
(using (2))

� 1
k

(
Cbetween +

∑

u∈V (G)

2du

3
Cwithin

u

)
=
Ctotal

k

This implies that there exists a 3-coloring of G for which the number of im-
properly colored edges in G is at most Ctotal

k . Therefore if H has a k-coloring
which improperly colors at most a total weight μk2m of edges, then there is a
3-coloring of G which colors improperly at most a fraction μk2m

km = μk of its
edges.

This completes the proof of Theorem 2 when k is divisible by 3. The other cases
are easily handled by adding k mod 3 extra nodes connected to all vertices by
edges of suitable weight. Due to space considerations, the details will appear in
the full version.

Remark 4 (Comparison to [5]). The reduction of Kann et al [5] converts an
instance G of MaxCut to the instance G′ = K ′

k/2⊗G of Max k-Cut. Edge weights
are picked so that the optimal k-cut of G′ will give a set Su of k/2 different colors
to all vertices in each k/2 clique (u, i), 1 � i � k/2. This enables converting a
k-cut of G′ into a cut of G based on whether a random color falls in Su or not.
In the 3-coloring case, we make 3 copies of G′ in an attempt to enforce three
“translates” of Su, and use those to define a 3-coloring from a k-coloring. But we
cannot ensure that each k-clique is properly colored, so these translates might
overlap and a more careful soundness analysis is needed.
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3 Conditional Hardness Results for Max k-Colorable
Subgraph

We will first review the (exact) 2-to-1 Conjecture, and then construct a noise
operator, which allows us to preserve k-colorability. Then we will bound the
stability of coloring functions with respect to this noise operator. In the last
section, we will give a PCP verifier which concludes the hardness result.

3.1 Preliminaries

We begin by reviewing some definitions and d-to-1 conjecture.

Definition 1. An instance of a bipartite Label Cover problem represented as
L = (U, V,E,W,RU , RV , Π) consists of a weighted bipartite graph over node
sets U and V with edges e = (u, v) ∈ E of non-negative real weight we ∈W . RU

and RV are integers with 1 � RU � RV . Π is a collection of projection functions
for each edge: Π = {πvu : {1, . . . , RV } → {1, . . . , RU}

∣
∣u ∈ U, v ∈ V }. A labeling

� is a mapping � : U → {1, . . . , RU}, � : V → {1, . . . , RV }. An edge e = (u, v)
is satisfied by labeling � if πe(�(v)) = �(u). We define the value of a labeling as
sum of weights of edges satisfied by this labeling normalized by the total weight.
Opt(L) is the maximum value over any labeling.

Definition 2. A projection π : {1, . . . , RV } → {1, . . . , RU} is called d-to-1 if
for each i ∈ {1, . . . , RU}, |π−1(i)| � d. It is called exactly d-to-1 if |π−1(i)| = d
for each i ∈ {1, 2, . . . , RU}.

Definition 3. A bipartite Label-Cover instance L is called d-to-1 Label-Cover
if all projection functions, π ∈ Π are d-to-1.

Conjecture 1 (d-to-1 Conjecture [13]). For any γ > 0, there exists a d-to-1 Label-
Cover instance L with RV = R(γ) andRU � dRV many labels such that it is NP-
hard to decide between two cases, Opt(L) = 1 or Opt(L) � γ. Note that although
the original conjecture involves d-to-1 projection functions, we will assume that it
also holds for exactly d-to-1 functions (so RU = dRV ), which is the case in [7].

Using the reductions from [7], it is possible to show that the above conjecture
still holds given that the graph (U ∪ V,E) is left-regular and unweighted, i.e.,
we = 1 for all e ∈ E.

3.2 Noise Operators

For a positive integer M , we will denote by [M ] the set {0, 1, . . . ,M − 1}. We
will identify elements of [M2] with [M ]× [M ] in the obvious way, with the pair
(a, b) ∈ [M ]2 corresponding a+Mb ∈ [M2].

Definition 4. A Markov operator T is a linear operator which maps probability
measures to other probability measures. In a finite discrete setting, it is defined
by a stochastic matrix whose (x, y)’th entry T (x → y) is the probability of
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transitioning from x to y. Such an operator is called symmetric if T (x → y) =
T (y → x) = T (x↔y).
Definition 5. Given ρ ∈ [−1, 1], the Beckner noise operator, Tρ on [q] is defined

by as Tρ(x→ x) = 1
q +

(
1− 1

q

)
ρ and Tρ(x→ y) = 1

q (1− ρ) for any x 
= y.

Observation 1. All eigenvalues of the operator Tρ are given by 1 = λ0(Tρ) �
λ1(Tρ) = . . . = λq−1(Tρ) = ρ. Any orthonormal basis α0, α1, . . . , αq−1 with α0
being constant vector, is also a basis for Tρ.

Lemma 5. For an integer q � 6, there exists a symmetric Markov operator T
on [q]2 whose diagonal entries are all 0 and with eigenvalues 1 = λ0 � λ1 �
. . . � λq2−1 such that the spectral radius ρ(T ) = max{|λ1|, |λq2−1|} is at most

4
q−1 .

Proof. Consider the symmetric Markov operator T on [q]2 such that, for x =
(x1, x2), y = (y1, y2) ∈ [q]2,

T (x↔y) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α if {x1, x2} ∩ {y1, y2} = ∅ and x1 
= x2, y1 
= y2,
β if x1 
∈ {y1, y2} and x1 = x2, y1 
= y2,
β if y1 
∈ {x1, x2} and x1 
= x2, y1 = y2,
0 else,

where α = 1
(q−1)(q−3) and β = 1

(q−1)(q−2) . It is clear that T is symmetric and
doubly stochastic.

To bound the spectral radius of T , we will bound the second largest eigenvalue
λ1(T 2) of T 2. Notice that T 2 is also a symmetric Markov operator. Moreover
λi(T 2) = λ2

i (T ), therefore λ1(T 2) � max(λ2
1(T ), λ2

q2−1(T )) � ρ(T )2.
Notice that T 2(x↔y) > 0 for all pairs x, y ∈ [q]2. Consider the variational

characterization of 1− λ1(T 2) [14]:

minψ

∑
x,y(ψ(x)−ψ(y))2π(x)T 2(x↔y)
∑

x,y(ψ(x)−ψ(y))2π(x)π(y)

� minψ,x,y
π(x)(ψ(x)−ψ(y))2T 2(x↔y)

(ψ(x)−ψ(y))2π(x)π(y) = minx,y q
2T 2(x↔y)

For any two pairs (x1, x2), (y1, y2) ∈ [q]2, let l = |[q] \ {x1, x2, y1, y2}|. Then
we have

T 2((x1, x2)↔(y1, y2)) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

l(l − 1)β2 � (q − 3)2β2 if x1 = x2 and y1 = y2,
l(l − 1)αβ � (q − 4)2αβ if x1 
= x2 and y1 = y2,
l(l − 1)αβ � (q − 4)2αβ if x1 = x2 and y1 
= y2,
l(l− 1)α2 + lβ2 � (q − 4)

[
(q − 5)α2 + β2

]

if x1 
= x2 and y1 
= y2.

� (q − 5)(q − 4)
(q − 3)2(q − 2)(q − 1)

So ρ(T ) �
√
λ1(T 2) �

√
1− (q−5)(q−4)q2

(q−3)2(q−2)(q−1) � 3
q + 8

q2 � 4
q−1 for q � 6.
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3.3 q-Ary Functions, Influences, Noise Stability

We define inner product on space of functions from [q]N to R as 〈f, g〉 =
Ex∼[q]N [f(x)g(x)]. Here x ∼ D denotes sampling from distribution D and D =
[q]N denotes the uniform distribution on [q]N .

Given a symmetric Markov operator T and x = (x1, . . . , xN ) ∈ [q]N , let
T⊗Nx denote the product distribution on [q]N whose ith entry yi is distributed
according to T (xi↔yi). Therefore T⊗Nf(x) = Ey∼T ⊗N x [f(y)].

Definition 6. Let α0, α1, . . . , αq−1 be an orthonormal basis of Rq such that α0

is all constant vector. For x ∈ [q]N , we define αx ∈ RqN

as

αx = αx1 ⊗ . . .⊗ αxN .

Definition 7 (Fourier coefficients). For a function f : [q]N → R, define
f̂(αx) = 〈f, αx〉.

Definition 8. Let f : [q]N → R be a function. The influence of ith variable on
f , Infi(f) is defined by

Infi(f) = E [Var [f(x)|x1, . . . , xi−1, xi+1, . . . , xN ]]

where x1, . . . , xN are uniformly distributed. Equivalently,

Infi(f) =
∑

x:xi �=0

f̂2(αx).

Definition 9. Let f : [q]N → R be a function. The low-level influence of ith

variable of f is defined by

Inf�t
i (f) =

∑

x:xi �=0, |x|�t

f̂2(αx).

Observation 2. For any function f ,
∑

i

Inf�t
i (f) =

∑

x:|x|�t

f̂2(αx)|x| � t
∑

x

f̂2(αx) = t‖f‖22.

If f : [q]N → [0, 1], then ‖f‖22 � 1, so
∑

i Inf�t
i (f) � t.

Definition 10 (Noise stability). Let f be a function from [q]N to R, and let
−1 � ρ � 1. Define the noise stability of f at ρ as

Sρ(f) = 〈f, T⊗n
ρ f〉 =

∑

x

ρ|x|f̂2
i (αx)

where Tρ is the Beckner operator as in Definition 5.

A natural way to think about a q-coloring function is as a collection of q-indicator
variables summing to 1 at every point. To make this formal:
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Definition 11. Define the unit q-simplex as Δq = {(x1, . . . , xq) ∈ Rq |
∑
xi =

1, xi � 0}.

Observation 3. For positive integers Q, q and any function f = (f1, . . . , fq) :
[Q]N → Δq,

∑
i Inf�t

i (f) =
∑

i

∑
j Inf�t

i (fj) � t
∑

j ‖fj‖2 � t.

We want to prove a lower bound on the stability of q-ary functions with noise
operators T . The following proposition is generalization of Proposition 11.4 in [2]
to general symmetric Markov operators T with small spectral radii. The proof
is also very similar, so it is left out and will appear in the full version.

Proposition 1. For integers Q, q � 3, and a symmetric Markov operator T on
[Q] with spectral radius ρ(T ) � c

q−1 , for some c > 0, there is a small enough
δ = δ(q) > 0 and t = t(q) > 0 such that for any function f = (f1, . . . , fq) :
[Q]N → Δq with Inf�t

i (f) � δ, for all i, satisfies

q∑

j=1

〈fj , T
⊗Nfj〉 � 1/q − 2c ln q/q2 − C ln ln q/q2

for some universal constant C <∞.

Definition 12 (Moving between domains). For any x = (x1, . . . , x2N ) ∈
[q]2N , denote x ∈ [q2]N as

x = ((x1, x2), . . . , (x2N−1, x2N )) .

Similarly for y = (y1, . . . , yN ) ∈ [q2]N , denote y ∈ [q]2N as

y = (y1,1, y1,2, . . . , yN,1, yN,2),

where yi = yi,1 + yi,2q such that yi,1, yi,2 ∈ [q]. For a function f on [q]2N , define
f on [q2]N as f(y) = f(y).

The relationship between influences of variables for functions f and f are given
by the following claim (Claim 2.7 in [7]).

Claim. For any function f : [q]2N → R, i ∈ {1, . . . , N} and any t � 1, Inf�t
i (f) �

Inf�2t
2i−1(f) + Inf�2t

2i (f).

3.4 PCP Verifier for Max k-Colorable Subgraph

This verifier uses ideas similar to the Max k-Cut verifier given in [2] and the
4-coloring hardness reduction in [7]. Let L = (U, V,E,R, 2R,Π) be a 2-to-1
bipartite, unweighted and left regular Label-Cover instance as in Conjecture 1.
Assume the proof is given as the Long Code over [k]2R of the label of every
vertex v ∈ V . Below for a permutation σ on {1, . . . , n} and a vector x ∈ Rn,
x ◦σ denotes (xσ(1), xσ(2), · · · , xσ(n)). For a function f on Rn, f ◦σ is defined as
f ◦ σ(x) = f(x ◦ σ).
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– Pick u uniformly at random from U , u ∼ U .
– Pick v, v′ uniformly at random from u’s neighbors. Let π, π′ be the associated

projection functions, χv, χv′ be the (supposed) Long Codes for the labels of
v, v′ respectively.

– Let T be the Markov operator on [k]2 given in Lemma 5. Pick x ∼ [k2]R

and y ∼ T⊗Rx. Let σv, σv′ be two permutations of {1, . . . , 2R} such that
π(σ−1

v (2i − 1)) = π(σ−1
v (2i)) = π′(σ−1

v′ (2i − 1)) = π′(σ−1
v′ (2i)) (both π and

π′ are exactly 2-to-1, so such permutations exist).
– Accept iff χv ◦ σv(x) and χv′ ◦ σv′(y) are different.

The proofs of the following two lemmas are very similar to the ones in [2], and
they are left out for space considerations.

Lemma 6 (Completeness). If the original 2-to-1 Label-Cover instance L has
a labeling which satisfies all constraints, then there is a proof which makes the
above verifier always accept.

Lemma 7 (Soundness). There is a constant C such that, if the above verifier
passes with probability exceeding 1− 1/k+O(ln k/k2), then there is a labeling of
L which satisfies γ′ = γ′(k) fraction of the constraints independent of label set
size R.

Note that our PCP verifier makes “k-coloring” tests. By the standard conversion
from PCP verifiers to CSP hardness, and Remark 2 about conversion to un-
weighted graphs with the same inapproximability factor, we conclude the main
result of this section by combining Lemmas 6 and 7.

Theorem 3. For any constant k � 3, assuming 2-to-1 Conjecture, it is NP-hard
to approximate Max k-Colorable Subgraph within a factor of 1−1/k+O(ln k/k2).
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Abstract. We consider the two-dimensional bin packing and strip
packing problem, where a list of rectangles has to be packed into a
minimal number of rectangular bins or a strip of minimal height, re-
spectively. All packings have to be non-overlapping and orthogonal, i.e.,
axis-parallel. Our algorithm for strip packing has an absolute approxima-
tion ratio of 1.9396 and is the first algorithm to break the approximation
ratio of 2 which was established more than a decade ago. Moreover,
we present a polynomial time approximation scheme (PTAS) for strip
packing where rotations by 90 degrees are permitted and an algorithm
for two-dimensional bin packing with an absolute worst-case ratio of 2,
which is optimal provided P �= NP.

Keywords: two-dimensional bin packing, strip packing, rectangle
packing, approximation algorithm, absolute worst-case ratio.

1 Introduction

In the two-dimensional bin packing problem, a list I = {r1, . . . , rn} of rectangles
of width wi ≤ 1 and height hi ≤ 1 is given. An unlimited supply of equally-
sized, rectangular bins is available to pack all items from I such that no two
items overlap and all items are packed axis-parallel into the bins. The goal is
to minimize the number of bins used. We assume that the bins have unit size,
which can be achieved by scaling the items appropriately. For the strip packing
problem, the given items have to be packed into a strip of unit width and minimal
height.

Both problems have many applications, for instance in stock-cutting or schedul-
ing on partitionable resources. In many applications, rotations are not allowed be-
cause of the pattern of the cloth or the grain of the wood. This is the main case
that we consider in this paper. Note that the assumption of unit-sized bins is a
restriction in the case where rotations are permitted.

Most of the previous work on two-dimensional packing problems has focused
on the asymptotic approximation ratio, i.e., the behavior of the algorithm on in-
stances with large optimal value. The asymptotic approximation ratio is defined
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as follows. Let ALG(I) be the value, i.e., the height of the strip or the number of
bins, of a packing produced by algorithm ALG on input I. Denote the optimal
algorithm by OPT. The asymptotic approximation ratio of packing algorithm
ALG is defined to be

lim sup
n→∞

sup
I

{
ALG(I)
OPT(I)

∣
∣
∣
∣ OPT(I) = n

}
.

Kenyon & Rémila [12] and Jansen & van Stee [10] gave asymptotic fully polyno-
mial approximation schemes (FPTAS’s) for strip packing without rotations and
with rotations, respectively. The additive constant was recently improved from
O(1/ε2) to 1 by Jansen & Solis-Oba [9] at the cost of a higher running time.

Caprara [5] was the first to present an algorithm with an asymptotic approx-
imation ratio less than 2 for two-dimensional bin packing. Indeed, he considered
2-stage packing, in which the items must first be packed into shelves that are
then packed into bins, and showed that the asymptotic worst case ratio between
two-dimensional bin packing and 2-stage packing is T∞ = 1.691 . . .. Therefore
the asymptotic FPTAS for 2-stage packing by Caprara, Lodi & Monaci [6]
achieves an asymptotic approximation guarantee arbitrarily close to T∞.

Recently, Bansal, Caprara & Sviridenko [2] presented a general framework
to improve subset oblivious algorithms and obtained asymptotic approximation
guarantees arbitrarily close to 1.525 . . . for packing with rotations of 90 degrees or
without rotations. These are the currently best-known asymptotic approximation
ratios for general two-dimensional bin packing problems. For packing squares
into square bins, Bansal, Correa, Kenyon & Sviridenko [4] gave an asymptotic
PTAS. On the other hand, the same paper showed the APX -hardness of two-
dimensional bin packing without rotations, thus no asymptotic PTAS exists
unless P = NP . Chleb́ık & Chleb́ıková [7] were the first to give explicit lower
bounds of 1 + 1/3792 and 1 + 1/2196 on the asymptotic approximability of
rectangle packing with and without rotations, respectively.

It should be noted that for the positive results for bin packing mentioned
above, the approximation ratio only gets close to the stated value for very large
inputs. In particular, the 1.525-approximation by Bansal et al. [2] has an additive
constant which is not made explicit in the paper but which the authors believe
is extremely large [1]. Thus, for any reasonable input, the actual (absolute)
approximation ratio of their algorithm is much larger than 1.525, and it therefore
makes sense to consider alternative algorithms and in particular, an alternative
performance measure.

In the current paper, we consider the absolute approximation ratio. This is
defined simply as supI ALG(I)/OPT(I), where the supremum is taken over all
inputs. Proving a bound on the absolute approximation gives us a performance
guarantee for all inputs, not just for (very) large ones.

Steinberg [15] and Schiermeyer [14] presented absolute 2-approximation al-
gorithms for strip packing. Especially Steinberg’s algorithm has been used in
many subsequent bin packing and strip packing papers as subroutines. Since
one-dimensional bin packing is a natural subproblem of strip packing, there ex-
ists no (3/2 − ε)-approximation for any ε > 0. Jansen & Solis-Oba [9] showed
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an absolute PTAS for strip packing with rotations on instances with optimal
height at least 1.

For the bin packing problem, Zhang [17] presented an absolute 3-approximation
algorithm. For the special case of packing squares into bins, van Stee [16] showed
that an absolute 2-approximation is possible. Moreover,Harren & van Stee [8] gave
an absolute 2-approximation for bin packingwith rotations. They also showed that
the algorithmHybrid First Fit has an absolute approximation ratio of 3 for packing
without rotations, as conjectured by Zhang [17].

Our contribution. We present an approximation algorithm for strip packing with
an absolute approximation ratio of 1.9396. Although Schiermeyer [14] already
expected in his work in 1994 that this bound can be reduced below 2, this is
the first improvement on the absolute approximability of strip packing since
Schiermeyer’s work. For strip packing with rotations we show that an (absolute)
PTAS can easily be derived using a result by Bansal, Caprara & Sviridenko [3].
This improves upon the restricted PTAS from [9].

Moreover, we present an approximation algorithm for two-dimensional bin
packing with an absolute approximation ratio of 2. As Leung et al. [13] showed
that it is stronglyNP-complete to decide whether a set of squares can be packed
into a given square, this is best possible unless P = NP .

2 Important Tools and Preparations

Let I = {r1, . . . , rn} be the set of given rectangles, where ri = (wi, hi). For
δ ≤ 1/2, let Wδ = {ri | wi > 1 − δ} be the set of so-called δ-wide items and let
Hδ = {ri | hi > 1−δ} be the set of δ-high items. To simplify the presentation, we
denote the 1/2-wide items as wide items and the 1/2-high items as high items.
Let W and H be the sets of wide and high items, respectively. The set of small
items, i.e., items ri with wi ≤ 1/2 and hi ≤ 1/2, is denoted by S. Finally, we
call items that are wide and high at the same time big.

For a set T of items, let A(T ) =
∑

i∈T wihi be the total area and let h(T ) =∑
ri∈T hi and w(T ) =

∑
ri∈T wi be the total height and total width, respectively.

Finally, let wmax(T ) = maxri∈T wi and hmax(T ) = maxri∈T hi.
Steinberg [15] proved the following theorem for his algorithm that we use as

a subroutine.

Theorem 1 (Steinberg’s algorithm). If the following inequalities hold,

wmax(T ) ≤ a, hmax(T ) ≤ b, and
2A(T ) ≤ ab− (2wmax(T )− a)+(2hmax(T )− b)+

where x+ = max(x, 0), then it is possible to pack all items from T into R = (a, b)
in time O((n log2 n)/ log logn).

Bansal, Caprara & Sviridenko [3] considered the two-dimensional knapsack prob-
lem in which each item ri ∈ I has an associated profit pi and the goal is to max-
imize the total profit that is packed into a unit-sized bin. Using a very technical



180 R. Harren and R. van Stee

Structural Lemma they derived an algorithm that we call BCS algorithm in this
paper. We use the following corollary of their analysis for the case where we
want to maximize the total packed area, i.e., pi = wihi for all items ri ∈ I. Let
OPT(a,b)(T ) denote the maximum area of items from T that can be packed into
the rectangle (a, b), where individual items in T do not necessarily fit in (a, b).

Corollary 1. For any fixed ε > 0, the BCS algorithm returns a packing of I ′ ⊆ I
in a rectangle of width a ≤ 1 and height b ≤ 1 such that A(I ′) ≥ OPT(a,b)(I)−ε.

3 Strip Packing

An important link between strip packing and two-dimensional bin packing is the
interpretation of a strip of height 1 as a bin of unit size. This link is especially
crucial as handling instances that fit into one bin turns out to be a major chal-
lenge for bin packing. Moreover, strip packing can essentially be reduced to the
packing of instances with optimal value at most 1 as the following lemma shows.

Lemma 1. Let 0 < ε < 1/4. If there exists a polynomial-time algorithm for
strip packing that packs any instance I with optimal value at most 1 into a strip
of height h, then there also exists a polynomial-time algorithm for strip packing
with absolute approximation ratio at most h+ ε.

Proof. Let ALG be the algorithm that packs any instance I with optimal value
at most 1 into a strip of height h and assume that h ≤ 2 by otherwise apply-
ing Steinberg’s algorithm. Let ε′ be the maximal value with ε′ ≤ ε/(4h) such
that 1/ε′ is integer. We guess the optimal value approximately and apply ALG
on an appropriately scaled instance. To do this, we first apply Steinberg’s algo-
rithm on I to get a packing into height h′ ≤ 2 OPT(I). We split the interval
J = [h′/2, h′] into 1/ε′ subintervals Ji = [(1 + ε′(i − 1))h′/2, (1 + ε′i)h′/2] for
i = 1, . . . , 1/ε′. Then we iterate over i = 1, . . . , 1/ε′, scale the heights of all
items by 2/((1+ ε′i)h′) and apply the algorithm ALG on the scaled instance I ′.
Convert the packing to a packing of the unscaled instance I and finally output
the minimal packing that was derived. We eventually consider i∗ ∈ {1, . . . , 1/ε′}
with OPT(I) ∈ Ji∗ . Then we have

1− 2ε′ < 1− ε′h

1 + ε′i∗h
=

1 + ε′(i∗ − 1)h
1 + ε′i∗h

≤ OPT(I ′) ≤ 1 + ε′i∗h
1 + ε′i∗h

= 1

and thus

ALG(I)
OPT(I)

=
ALG(I ′)
OPT(I ′)

<
h

1− 2ε′
= h+

2ε′h
1− 2ε′

≤ h+ 4ε′h ≤ h+ ε. ��

Thus we concentrate on approximating instances that fit into a strip of height 1
and therefore assume OPT(I) ≤ 1 for the remainder of this section. The overall
approach for our algorithm for strip packing consists of two parts. First, we
use the BCS algorithm to pack instances where the total height of the δ-wide
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items is small relative to δ into a strip of height 2− x for some positive value x.
Second, we derive an area guarantee for instances that could not be packed in
the previous step and use this guarantee to successfully pack the instance into
a strip of height 2− x.

Finally, we will show that x can be chosen as large as (1− ln 2)/(3+3 ln2)−ε
and with Lemma 1 we get the following theorem for any 0 < ε < 10−5/2.

Theorem 2. There exists a polynomial-time approximation algorithm for strip
packing with absolute approximation ratio

2− x+ ε =
5 + 7 ln 2
3 + 3 ln 2

+ 2ε < 1.9396.

Assume that we have a fixed x ∈ [0, 1/6− 5/3 ε) and 0 < ε ≤ 10−5/2.

3.1 Small Total Height of the δ-Wide Items

In the following we describe an important subroutine that is used by our algo-
rithms for strip and bin packing. We consider the case that the total height of
the δ-wide items is small relative to some δ, i.e.,

h(Wδ) ≤
δ(1− x)− 2x− ε

1 + 2δ
=: f(δ)

for some δ ∈ ((2x + ε)/(1 − x), 1/2] (the lower bound is required as otherwise
f(δ) < 0). We want to derive a packing of I into two bins such that only a height
of 1 − x is used in the second bin. For strip packing this directly gives a height
of 2 − x by putting the second bin on top of the first. And for bin packing we
get a feasible solution for all x ≥ 0.

Let γ := f(δ)+x = (δ(1+x)−x−ε)/(1+2δ) < 1/2. In the first step, we show
that a packing of almost all items into a unit bin and with a special structure
exists. This special structure consists of a part of width w(Hγ) for the γ-high
items and a part of width 1 − w(Hγ) for the other items. The following lemma
shows that almost all other items can be packed.

Lemma 2. We have OPT(1−w(Hγ),1)(I \Hγ) ≥ A(I \Hγ)− 2γ.

Proof. Consider an optimal packing of I into a bin. Remove all items that are
completely contained in the top or bottom γ-margin. After this step there is no
item directly above or below any item of Hγ = {ri | hi > 1 − γ}. Thus we can
cut the remaining packing at the left and right side of any item from Hγ . These
cuts partition the packing into parts which can be swapped without losing any
further items. Move all items of Hγ to the left of the bin and move all other
parts of the packing to the right. The total area of the removed items is at most
2γ and thus a total area of at least A(I \Hγ)− 2γ fits into the rectangle of size
(1− w(Hγ), 1) to the right of Hγ . ��

In the second step, we actually derive a feasible packing that is based on the
structure described above (see Figure 1(a)). First, pack Hγ into a stack of width
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w(Hγ) at the left side of the first bin. Note that w(Hγ) ≤ 1. This leaves an empty
space of width 1−w(Hγ) and height 1 at the right. We therefore apply the BCS
algorithm on I \Hγ and a rectangle of size (1−w(Hγ), 1) using an accuracy of
ε. Lemma 2 and Corollary 1 yield that at least a total area of A(I \Hγ)−2γ− ε
is packed by the algorithm.

Let T be the set of remaining items with A(T ) ≤ 2γ + ε. Pack the remaining
δ-wide items, i.e., the items of T ∩Wδ, in a stack at the bottom of the second
bin. The total area of the remaining items T \Wδ is

A(T \Wδ) ≤ A(T )− (1− δ)h(T ∩Wδ) ≤ 2γ + ε− (1− δ)h(T ∩Wδ).

We pack these items into the free rectangle of size (a, b) with a = 1 and b =
1−h(T∩Wδ)−x above the stack of T ∩Wδ in the second bin. A short calculation
shows that Steinberg’s algorithm is applicable.

So far we assumed the knowledge of δ ∈ ((2x + ε)/(1 − x), 1/2] for which
h(Wδ) ≤ f(δ). It is easy to see that this value can be computed by calculating
h(Wδ) for δ = 1 − wi for all ri = (wi, hi) with wi > 1/2. As h(Wδ) changes
only for these values of δ, we will necessarily find a suitable δ if one exists. We
therefore have the following lemma.

Lemma 3. For any fixed ε > 0, there exists a polynomial-time algorithm that,
given an instance I with OPT(I) = 1 and h(Wδ) ≤ f(δ) for some δ ∈ ((2x +
ε)/(1 − x), 1/2], returns a packing of I into two bins such that only a height of
1− x is used in the second bin.

3.2 Using an Area Guarantee for the Wide Items

In this section we describe how to use a guarantee on the total area of the
wide items for the instances that cannot be packed into a strip of height 2− x
by Lemma 3. Consider a strip with the lower left corner at the origin of a
cartesian coordinate system and consider the stack of wide items ordered by
non-increasing width and aligned with the lower right corner of the strip. If
there exists a δ ∈ ((2x + ε)/(1 − x), 1/2] such that h(Wδ) ≤ f(δ) then we use
the algorithm of Lemma 3 to pack the instance into a strip of height 2− x (see
Figure 1(a)). Otherwise the stack of wide items exceeds the function f(δ) for all
δ ∈ ((2x+ ε)/(1− x), 1/2] (see Figure 1(b)). Then we have

A(W ) >
∫ 1/2

2x+ε
1−x

δ(1− x)− 2x− ε
1 + 2δ

dδ +
h(W )

2
> ξ(x) +

h(W )
2

(1)

for ξ(x) := 1
4 (1 − ln 2) − 1

4x(1 + 3 ln 2) − 1
2ε ln 2 (this function corresponds to

a lower bound of the area in darker shade below f(δ) in Figure 1(b))—see full
version for the calculation.

We use this lower bound for the area of W to derive a packing into a strip
of height 2 − x. Assume that 2 − h(W ) − x ≥ 1. Stack the wide items in the
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Hγ BCS

Steinberg’s
algorithm

x

T ∩Wδ

(a) Packing into two bins. (b) Using the area guarantee of
ξ(x) + h(W )/2 to pack into height
2 − x.

Fig. 1. Main cases for strip packing

bottom of the strip and use Steinberg’s algorithm to pack I \W above this stack
into a rectangle of size (a, b) with a = 1 and b = 2 − h(W ) − x. Then we have
hmax(I \W ) ≤ 1 ≤ b, wmax(I \W ) ≤ 1/2 and for

2A(I \W ) ≤ 2− 2ξ(x)− h(W ) ≤ 2− h(W )− x
= ab = ab− (2wmax − a)+(2hmax − b)+

we require x ≤ 2 ξ(x). This is satisfied for

x ≤ 1− ln 2
3 + 3 ln 2

− ε ≤ 1− ln 2− 2ε ln 2
3 + 3 ln 2

.

We give a simple algorithm that also has the requirement x ≤ 2 ξ(x) for the
other case in the full version. Thus we can choose x = (1− ln 2)/(3 + 3 ln 2)− ε
and together with Lemmas 1 and 3 we proved Theorem 2.

Strip packing with rotations. The BCS algorithm also works when rotations
by 90 degrees are permitted. Thus by Corollary 1 we can pack a total area
of A ≥ A(I) − ε into a strip of height 1. Rotating the remaining items ri ∈
T such that wi ≥ hi allows us to pack items with wi > 1/2 into a stack of
height at most 2ε. For all other items T ′ we have wmax(T ′) ≤ 1/2, hmax(T ′) ≤√
ε and A(T ′) ≤ ε. Thus Steinberg’s algorithm allows us to pack T ′ into a

height of max(hmax(T ′), 2A(T ′)) ≤
√
ε above this stack. With Lemma 1 and by

appropriately scaling ε we get the following result.

Theorem 3. There exists a polynomial time approximation scheme for strip
packing with rotations.
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4 Two-Dimensional Bin Packing

As the asymptotic approximation ratio of the algorithm by Bansal, Caprara
& Sviridenko [2] is arbitrarily close to 1.525 . . ., there exists a constant k such
that for any instance I with optimal value larger than k, their algorithm gives
a solution of value at most 2 OPT(I). This constant k is not explicitly known
as we already mentioned in the introduction. We show how to approximate the
problem within an absolute factor of 2, provided that the optimal value of the
given instance is less than k. Combined with the algorithm by Bansal et al., this
proves the existence of an algorithm with an absolute approximation ratio of 2.

Our approach for packing instances I with OPT(I) < k consists of two parts.
First, we give an algorithm that is able to pack instances I with OPT(I) = 1
in two bins in Section 4.1 and second, we show how to approximate instances
with 1 < OPT(I) < k within a factor of 2 in Section 4.2. This at first glance
surprising distinction is due to the inherent difficulty of packing wide and high
items together into a single bin. In the case OPT(I) = 1 we cannot ensure
a separation of the wide and high items into easily feasible sets whereas for
OPT(I) > 1 this is possible in many cases.

The approach to solve instances with optimal value greater than some con-
stant k with an asypmotic algorithm is similar to the 2-approximation for two-
dimensional bin packing with rotations in [8] but the methods we use here to
handle the instances with smaller optimal value are much more involved. The
reason for this is that we cannot use rotations to avoid the necessity to com-
bine wide and high items in a bin. Our approach for solving instances I with
1 < OPT(I) < k is comparable to the main algorithm in [8] as it is also based
on an enumeration of the large items. However, a new ingredient in this paper is
a separation of the wide and high items after this enumeration. Another crucial
novelty in our algorithm is the use of the BCS algorithm to ensure a good area
guarantee for at least one bin. In total we show the following theorem.

Theorem 4. There exists a polynomial-time approximation algorithm for
two-dimensional bin packing with absolute approximation ratio 2.

4.1 Packing Instances That Fit into One Bin

Throughout this section we assume that the given instance I can be packed into
a single bin, i.e., OPT(I) = 1. At first glance it seems surprising that packing
such an instance into two bins is difficult. However, we need to carefully analyse
different cases to be able to give a polynomial-time algorithm that solves this
problem.

Let ε := 1/52. In a first step we consider instances I that satisfy the require-
ments of Lemma 3 for x = 0, i.e., we have h(Wδ) ≤ f(δ) = (δ − ε)/(1 + 2δ) for
some δ ∈ (ε, 1/2]. Obviously, we can apply Lemma 3 to the high items instead
of the wide items as well. We get the following Lemma from Inequality (1) for
ξ = 0.075 < ξ(0).



Improved Absolute Approximation Ratios 185

Lemma 4. For any input which cannot be packed in two bins by the methods of
Lemma 3, we have

A(W ∪H) ≥ 2 ξ +
w(H) + h(W )

2
.

It is crucial for our work that we get this additional area guarantee of 2 ξ = 0.15
on top of the trivial guarantee of w(H)/2 + h(W )/2 here. We use this area
guarantee to give different methods to pack the input, depending on the total
height of the wide items. To do this, we assume that we have h(W ) ≥ w(H) by
otherwise rotating the whole instance and apply different methods for w(H) >
1/2 and w(H) ≤ 1/2. In all cases we are able to pack the input into at most
two bins. Before we show how to solve both cases above we need the following
lemma that allows us to pack all wide items and high items of almost half of
their total width (see full version for a proof of this lemma).

Lemma 5. For any fixed ε > 0, there exists a polynomial-time algorithm that,
given sets W and H of wide and high items with OPT(W ∪H) = 1, returns a
packing of W ∪H ′ into a bin with H ′ ⊆ H and w(H ′) > w(H)/2 − ε.

With these preparations, the following lemma is easy to show.

Lemma 6. Let ε > 0 and let I be an instance with OPT(I) = 1, h(W ) ≥
w(H) > 1/2, and h(Wδ) > f(δ) and w(Hδ) > f(δ) for all δ ∈ (ε, 1/2]. There
exists a polynomial-time algorithm that returns a packing of I into two bins.

Proof. Use Lemma 5 to pack W ∪H ′ with H ′ ⊆ H and w(H ′) > w(H)/2 − ε
in the first bin. Build a stack of the remaining high items H \H ′ and align it
with the left side of the second bin. The width of this stack is w(H \ H ′) <
w(H)/2 + ε. Note that w(H \H ′) ≤ 1/2, as otherwise h(W ) ≥ w(H) ≥ 1 − 2ε
and A(W ∪H) ≥ 2ξ+(w(H)+h(W ))/2 ≥ 2ξ+1− 2ε > 1 (by Lemma 4) which
is a contradiction to OPT(I) = 1. Pack the remaining items T with Steinberg’s
algorithm in the free rectangle of size (a, b) with a = 1 − w(H \H ′) and b = 1
next to the stack of H\H ′. This is possible since wmax(T ) ≤ 1/2 ≤ 1−w(H\H ′),
hmax(T ) ≤ 1/2 and with Lemma 4 we have (see full version)

2A(T ) ≤ 2
(
1− 2ξ − w(H) + h(W )

2

)
< 1− w(H \H ′)

= ab− (2wmax − a)+(2hmax − b)+. ��

In the following we assume that w(H) ≤ 1/2 as otherwise we could pack the
instance into two bins with the algorithms of Lemma 3 or Lemma 6. Furthermore,
we still have our initial assumption h(W ) ≥ w(H). Using Steinberg’s algorithm
it is straightforward to prove the following lemma.

Lemma 7. Any set T = {r1, . . . , rm} where ri = (wi, hi) with wi ≤ 1/2, hi ≤
1 − h(W ) for i = 1, . . . ,m and total area A(T ) ≤ 1/2 − h(W )/2 can be packed
together with W .
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Obviously, Lemma 7 can also be formulated such that we pack the high items
together with a set of small items of total area at most 1/2 − w(H)/2 (in this
case we do not need a condition like hi ≤ 1− h(W ), as w(H) ≤ 1/2 and thus all
remaining items fit into the free rectangle next to the stack of H). This suggests
partitioning the small items into sets with these area bounds in order to pack
them with the wide and high items. This is possible in all but two special cases,
which we deal with separately. In the end, we find the following lemma. Details
are in the full version.

Lemma 8. Let ε > 0 and let I be an instance with OPT(I) = 1, w(H) ≤
1/2, and h(Wδ) > f(δ) and w(Hδ) > f(δ) for all δ ∈ (ε, 1/2]. There exists a
polynomial-time algorithm that returns a packing of I into two bins.

This concludes our algorithm for instances I with OPT(I) = 1 as the Lemmas 3,
6 and 8 cover all the cases.

4.2 Packing Instances That Fit into a Constant Number of Bins

In the following we give a brief description of our algorithm that packs the
instances I with 2 ≤ OPT(I) < k into 2 OPT(I) bins.

Let ε := 1/(20k3+2). Let L = {ri | wihi > ε} be the set of large items and let
T = {ri | wihi ≤ ε} be the set of tiny items. As defined in Section 2 we refer to
items as wide (W ), high (H), small (S) and big, according to their side lengths.
Note that the terms large and tiny refer to the area of the items whereas big,
wide, high and small refer to their widths and heights. Also note that, e.g., an
item can be tiny and high, or wide and big at the same time.

We guess � = OPT(I) < k and open 2� bins that we denote by B1, . . . , B�

and C1, . . . , C�. By guessing we mean that we iterate over all possible values for
� and apply the remainder of this algorithm on every value. As there are only
a constant number of values, this is possible in polynomial time. We assume
that we know the correct value of � as we eventually consider this value in an
iteration. For the ease of presentation, we also denote the sets of items that are
associated with the bins by B1, . . . , B� and C1, . . . , C�. We will ensure that the
set of items that is associated with a bin is feasible and a packing is known or
can be computed in polynomial time. To do this we use the following corollary
from Theorem 1 for some of these sets.

Corollary 2 (Jansen & Zhang [11]). If the total area of a set T of items is
at most 1/2 and there are no wide items (except a possible big item) then the
items in T can be packed into a bin.

Obviously, this corollary also holds for the case that there are no high items
(except a possible big item). This corollary is an improvement upon Theorem 1
if there is a big item in T as in this case Theorem 1 would give a worse area
bound.

Let I∗i be the set of items in the i-th bin in an optimal solution. We assume
w.l.o.g. that A(I∗i ) ≥ A(I∗j ) for i < j. Then we have

A(I) = A(I∗1 ) + · · ·+A(I∗� ) ≤ � · A(I∗1 ). (2)
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In a first step, we guess the assignment of the large items to bins. Using this
assignment and the BCS algorithm we pack a total area of at least A(I∗1 ) − ε
into B1 and keep C1 empty. This step has the purpose of providing a good area
bound for the first bin and leaving a free bin for later use. We ensure that the
large items that are assigned to B1 are actually packed. For all other bins we
reserve Bi for the wide and small items (except the big items) and Ci for the
high and big items for i = 2, . . . , �. This separation enables us to use Steinberg’s
algorithm (Corollary 2) to pack up to half of the bins’ area. In detail, the first
part of the algorithm works as follows.

1. Guess Li = I∗i ∩ L for i = 1, . . . , �.
2. Apply the BCS algorithm on L1∪T while ensuring that L1 is actually packed

(see full version for the details). Assign the output to bin B1 and keep an
empty bin C1.

3. For i = 2, . . . , �, assign the wide and small items of Li to Bi (omitting big
items) and assign the high and big items of Li to Ci. That is, Bi = Li \H
and Ci = Li ∩H .

4. For i = 2, . . . , �, greedily add tiny wide items from T ∩W by non-increasing
order of width to Bi as long as A(Bi) ≤ 1/2 and greedily add tiny high items
from T ∩H by non-increasing order of height to Ci as long as w(Ci) ≤ 1.

Corollary 2 shows that using Steinberg’s algorithm the bins B2, . . . , B� can be
packed as there are no wide items and the total area is at most 1/2. The bins
C2, . . . , C� can be packed with a simple stack as they contain only high items of
total width at most 1. Observe that in Step 4 we only add to a new bin Bi if the
previous bins contain items of total area at least 1/2− ε and we only add to a
new bin Ci if the previous bins contain items of total width at least 1− 2ε (as
the width of the tiny high items is at most 2ε) and thus of total area at least
1/2 · (1− 2ε) = 1/2− ε. After the application of this first part of the algorithm,
some tiny items T ′ ⊆ T might remain unpacked. Note that if A(B�) < 1/2− ε,
then there are no wide items in T ′ and if A(C�) < 1/2−ε then there are no high
items in T ′ (as these items would have been packed in Step 4).

In the full version we prove that

A(B1) ≥ A(I∗1 )− ε. (3)

We distinguish different cases to continue the packing according to the filling of
the last bins B� and C�.

Exemplarily assume that A(B�) < 1/2−ε and A(C�) < 1/2−ε. In this case T ′

does not contain any wide or high items as these items would have been packed
to B� or C�. Greedily add items from T ′ into all bins except B1 as long as the bins
contain items of total area at most 1/2. This process packs all remaining items as
otherwise we had a packed area of at least A(I∗1 )−ε+(2�−1)(1/2−ε)> �A(I∗1 )
by Inequality (3) (see full version for the calculation) which is a contradiction
to Inequality (2).

All other cases are more complex and we refer to the full version of the pa-
per for a detailed description. In total we showed the following lemma which
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concludes our presentation of the 2-approximation algorithm for two-dimensional
bin packing.

Lemma 9. There exists a polynomial-time algorithm that, given an instances I
with 1 < OPT(I) < k, returns a packing in 2 OPT(I) bins.
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Abstract. We show that for every α > 0, there exist n-point metric
spaces (X, d) where every “scale” admits a Euclidean embedding with
distortion at most α, but the whole space requires distortion at least
Ω(

√
α log n). This shows that the scale-gluing lemma [Lee, SODA 2005]

is tight, and disproves a conjecture stated there. This matching upper
bound was known to be tight at both endpoints, i.e. when α = Θ(1) and
α = Θ(log n), but nowhere in between.

More specifically, we exhibit n-point spaces with doubling constant
λ requiring Euclidean distortion Ω(

√
log λ log n), which also shows that

the technique of “measured descent” [Krauthgamer, et. al., Geometric
and Functional Analysis] is optimal. We extend this to Lp spaces with
p > 1, where one requires distortion at least Ω((log n)1/q(log λ)1−1/q)
when q = max{p, 2}, a result which is tight for every p > 1.

1 Introduction

Suppose one is given a collection of mappings from some finite metric space (X, d)
into a Euclidean space, each of which reflects the geometry at some “scale” of
X . Is there a non-trivial way of gluing these mappings together to form a global
mapping which reflects the entire geometry of X? The answers to such questions
have played a fundamental role in the best-known approximation algorithms for
Sparsest Cut [6,9,4,1] and Graph Bandwidth [15,6,10], and have found appli-
cations in approximate multi-commodity max-flow/min-cut theorems in graphs
[15,6]. In the present paper, we show that the approaches of [6] and [9] are
optimal, disproving a conjecture stated in [9].

Let (X, d) be an n-point metric space, and suppose that for every k ∈ Z, we
are given a non-expansive mapping φk : X → L2 which satisfies the following.
For every x, y ∈ X with d(x, y) ≥ 2k, we have

‖φk(x)− φk(y)‖ ≥ 2k

α
.

The Gluing Lemma of [9] (generalizing the approach of [6]) shows that the ex-
istence of such a collection {φk} yields a Euclidean embedding of (X, d) with
distortion O(

√
α logn). (See Section 1.1 for the relevant definitions on embed-

dings and distortion.) This is known to be tight when α = Θ(1) [14] and also
when α = Θ(log n) [11,2], but nowhere in between. In fact, in [9], the second
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named author conjectured that one could achieve O(α+
√

logn) (this is indeed
stronger, since one can always construct {φk} with α = O(log n)).

In the present paper, we give a family of examples which shows that the√
α logn bound is tight for any dependence α(n) = O(log n). In fact, we show

more. Let λ(X) denote the doubling constant of X , i.e. the smallest number λ
so that every open ball in X can be covered by λ balls of half the radius. In [6],
using the method of “measure descent,” the authors show that (X, d) admits
a Euclidean embedding with distortion O(

√
logλ(X) log n). (This is a special

case of the Gluing Lemma since one can always find {φk} with α = O(log λ(X))
[5]). Again, this bound was known to be tight for λ(X) = Θ(1) [7,8,5] and
λ(X) = nΘ(1) [11,2], but nowhere in between. We provide the matching lower
bound for any dependence of λ(X) on n. We also generalize our method to give
tight lower bounds on Lp distortion for every fixed p > 1.

Construction and Analysis. In some sense, our lower bound examples are an
interpolation between the multi-scale method of [14] and [7], and the expander
Poincaré inequalities of [11,2,12]. We startwith a vertex-transitive expander graph
G onm nodes. IfD is the diameter of G, then we create D+ 1 copies G1, G2, . . . ,
GD+1 of G where u ∈ Gi is connected to v ∈ Gi+1 if (u, v) is an edge in G, or if
u = v. We then connect a vertex s to every node inG1 and a vertex t to every node
in GD+1 by edges of length D. This yields the graph

−→
G described in Section 2.2.

In Section 3, we show that whenever there is a non-contracting embedding f
of
−→
G into L2, the following holds. If γ = ‖f(s)−f(t)‖

d−→
G

(s,t) , then some edge of
−→
G gets

stretched by at least
√
γ2 +Ω(logm)2, i.e. there is a “stretch increase.” This

is proved by combining the uniform convexity of L2 (i.e. the Pythagorean theo-
rem), with the well-known contraction property of expander graphs mapped into
Hilbert space. To convert the “average” nature of this contraction to information
about a specific edge, we symmetrize the embedding over all automorphisms of
G (which was chosen to be vertex-transitive).

To exploit this stretch increase recursively, we construct a graph
−→
G�k induc-

tively as follows:
−→
G�k is formed by replacing every edge of

−→
G�k−1 by a copy

of
−→
G (see Section 2.1 for the formal definitions). Now a simple induction shows

that in a non-contracting embedding of
−→
G�k, there must be an edge stretched

by at least Ω(
√
k logm). In Section 3.1, a similar argument is made for Lp dis-

tortion, for p > 1, but here we have to argue about “quadrilaterals” instead of
“triangles” (in order to apply the uniform convexity inequality in Lp), and it
requires slightly more effort to find a good quadrilateral.

Finally, we observe that if G̃ is the graph formed by adding two tails of length
3D hanging off s and t in

−→
G , then (following the analysis of [7,8]), one has

logλ(G̃�k) � logm. The same lower bound analysis also works for G̃�k, so since
n = |V (G̃�k)| = 2Θ(k log m), the lower bound is

√
k logm ≈

√
logm logn �

√
logλ(G̃�k) logn,

completing the proof.
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1.1 Preliminaries

For a graph G, we will use V (G), E(G) to denote the sets of vertices and edges of
G, respectively. Sometimes we will equip G with a non-negative length function
len : E(G) → R+, and we let dlen denote the shortest-path (semi-)metric on G.
We refer to the pair (G, len) as a metric graph, and often len will be implicit, in
which case we use dG to denote the path metric. We use Aut(G) to denote the
group of automorphisms of G.

Given two expressions E and E′ (possibly depending on a number of parame-
ters), we write E = O(E′) to mean that E ≤ CE′ for some constant C > 0 which
is independent of the parameters. Similarly, E = Ω(E′) implies that E ≥ CE′

for some C > 0. We also write E � E′ as a synonym for E = O(E′). Finally, we
write E ≈ E′ to denote the conjunction of E � E′ and E � E′.

Embeddings and Distortion. If (X, dX), (Y, dY ) are metric spaces, and f :
X → Y , then we write

‖f‖Lip = sup
x �=y∈X

dY (f(x), f(y))
dX(x, y)

.

If f is injective, then the distortion of f is defined by dist(f) = ‖f‖Lip ·‖f−1‖Lip.
A map with distortion D will sometimes be referred to as D-bi-lipschitz. If
dY (f(x), f(y)) ≤ dX(x, y) for every x, y ∈ X , we say that f is non-expansive. If
dY (f(x), f(y)) ≥ dX(x, y) for every x, y ∈ X , we say that f is non-contracting.
For a metric space X , we use cp(X) to denote the least distortion required to
embed X into some Lp space.

Finally, for x ∈ X , r ∈ R+, we define the open ball B(x, r) = {y ∈ X :
d(x, y) < r}. Recall that the doubling constant of a metric space (X, d) is the
infimum over all values λ such that every ball in X can be covered by λ balls of
half the radius. We use λ(X, d) to denote this value.

We now state the main theorem of the paper.

Theorem 1. For any positive nondecreasing function λ(n), there exists a family
of n-vertex metric graphs G̃�k such that λ(G̃�k) � λ(n), and for every fixed
p > 1,

cp(G̃�k) � (logn)1/q(logλ(n))1−1/q ,

where q = max{p, 2}.

2 Metric Construction

2.1 �-Products

An s-t graph G is a graph which has two distinguished vertices s, t ∈ V (G).
For an s-t graph, we use s(G) and t(G) to denote the vertices labeled s and t,
respectively. We define the length of an s-t graph G as len(G) = dlen(s, t).
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Fig. 1. A single edge H , H � K2,3, and H � K2,3 � K2,2

Definition 1 (Composition of s-t graphs). Given two s-t graphs H and G,
define H $G to be the s-t graph obtained by replacing each edge (u, v) ∈ E(H)
by a copy of G (see Figure 1). Formally,

– V (H $G) = V (H) ∪ (E(H)× (V (G) \ {s(G), t(G)})) .
– For every edge e = (u, v) ∈ E(H), there are |E(G)| edges,
{(

(e, v1), (e, v2)
)
| (v1, v2) ∈ E(G) and v1, v2 /∈ {s(G), t(G)}

}
∪

{(
u, (e, w)

)
| (s(G), w) ∈ E(G)

}
∪

{(
(e, w), v

)
| (w, t(G)) ∈ E(G)

}

– s(H $G) = s(H) and t(H $G) = t(H).

If H and G are equipped with length functions lenH , lenG, respectively, we define
len = lenH�G as follows. Using the preceding notation, for every edge e = (u, v) ∈
E(H),

len ((e, v1), (e, v2)) =
lenH(e)

dlenG
(s(G), t(G))

lenG(v1, v2)

len (u, (e, w)) =
lenH(e)

dlenG
(s(G), t(G))

lenG(s(G), w)

len ((e, w), v) =
lenH(e)

dlenG(s(G), t(G))
lenG(w, t(G)).

This choice implies that H $G contains an isometric copy of (V (H), dlenH ).

Observe that there is some ambiguity in the definition above, as there are two
ways to substitute an edge of H with a copy of G, thus we assume that there
exists some arbitrary orientation of the edges of H . However, for our purposes
the graph G will be symmetric, and thus the orientations are irrelevant.

Definition 2 (Recursive composition). For an s-t graph G and a number
k ∈ N, we define G�k inductively by letting G�0 be a single edge of unit length,
and setting G�k = G�k−1 $G.

The following result is straightforward.

Lemma 1 (Associativity of $). For any three graphs A,B,C, we have (A$
B)$ C = A$ (B $ C), both graph-theoretically and as metric spaces.
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Definition 3. For two graphs G, H, a subset of vertices X ⊆ V (H) is said to
be a copy of G if there exists a bijection f : V (G) → X with distortion 1, i.e.
dH(f(u), f(v)) = C · dG(u, v) for some constant C > 0.

Now we make the following two simple observations about copies of H and G in
H $G.

Observation 2. The graph H $G contains |E(H)| distinguished copies of the
graph G, one copy corresponding to each edge in H.

Observation 3. The subset of vertices V (H) ⊆ V (H $ G) form an isometric
copy of H.

2.2 A Stretched Version of G

Let G = (V,E) be an unweighted graph, and put D = diam(G). We define a
metric s-t graph

−→
G which has D+1 layers isomorphic to G, with edges between

the layers, and a pair of endpoints s, t. Formally,

V (
−→
G) = {s, t} ∪ {v(i) : v ∈ V, i ∈ [D + 1]}

E(
−→
G) = {(s, v(1)), (v(D+1), t) : v ∈ V }

∪
{

(u(i), v(i+1)), (u(j), v(j)) : (u, v) ∈ E, i ∈ [D], j ∈ [D + 1]
}

∪ {(v(i), v(i+1)) : v ∈ V, i ∈ [D]}.

We put len(s, v(1))= len(v(D+1), t)=D for v∈V , len(u(i), v(i+1))= len(u(j), v(j))=
1 for (u, v) ∈ E, i ∈ [D], j ∈ [D + 1] and len(v(i), v(i+1)) = 1 for v ∈ V, i ∈ [D].
We refer to edges of the form (u(i), v(i)) as vertical edges. All other edges are
called horizontal edges. In particular, there are D+ 1 copies G(1), . . . , G(D+1) of
G in

−→
G which are isometric to G itself, and their edges are all vertical.

A Doubling Version, Following Laakso. Let
−→
G be a stretched graph as

in Section 2.2, with D = diam(G), and let s′ = s(
−→
G ), t′ = t(

−→
G). Consider a

new metric s-t graph G̃, which has two new vertices s, t and two new edges
(s, s′), (t′, t) with len(s, s′) = len(t′, t) = 3D.

Claim. For any graph G with |V (G)| = m, and any k ∈ N, we have logλ(G̃�k) �
logm.

The proof of the claim is similar to [7,8], and follows from the following three
results.

We define tri(G) = maxv∈V (G)(dlen(s, v)+dlen(v, t)). For any graphG, we have
len(G̃) = d(s, t) = 9D, and it is not hard to verify that tri(G̃�k) ≤ len(G̃�k)(1+

1
9D−1 ). For convenience, let G0 be the top-level copy of G̃ in G̃�k, and H be the
graph G̃�k−1. Then for any e ∈ E(G0), we refer to the copy of H along edge e
as He.
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Observation 4. If r > tri(G̃�k)
3 , then the ball B(x, r) in G̃�k may be covered by

at most |V (G̃)| balls of radius r/2.

Proof. For any e ∈ E(G0), we have r > len(e)
len(H) tri(H), so every point in He is less

than r/2 from an endpoint of e. Thus all of G̃�k is covered by placing balls of
radius tri(G̃�k)

6 around each vertex of G̃.

Lemma 2. If s ∈ B(x, r), then one can cover the ball B(x, r) in G̃�k with at
most |E(G̃)||V (G̃)| balls of radius r/2.

Proof. First consider the case in which r > len(G̃�k)
6 . Then for any edge e in G̃�k,

we have r > len(e)
len(H) ·

tri(H)
3 . Thus by Observation 4, we may cover He by |V (G̃)|

balls of radius r/2. This gives a covering of all of G̃�k by at most |E(G̃)||V (G̃)|
balls of radius r/2.

Otherwise, assume len(G̃�k)
6 ≥ r. Since s ∈ B(x, r), but 2r ≤ len(G̃�k)

3 , the
ball must be completely contained inside H(s,s′). By induction, we can find a
sufficient cover of this smaller graph.

Lemma 3. We can cover any ball B(x, r) in G̃�k with at most 2|V (G̃)||E(G̃)|2
balls of radius r/2.

Proof. We prove this lemma using induction. For G̃�0, the claim holds trivially.
Next, if anyHe contains all of B(x, r), then by induction we are done. Otherwise,
for each He containing x, B(x, r) contains an endpoint of e. Then by Lemma 2,
we may coverHe by at most |E(G̃)||V (G̃)| balls of radius r/2. For all other edges
e′ = (u, v), x /∈ He′ , so we have:

V (He′ ) ∩B(x, r) ⊆ B(v,max(0, r − d(x, v))) ∪B(u,max(0, r − d(x, u))).

Thus, using Lemma 2 on both of the above balls, we may cover V (He′)∩B(x, r)
by at most 2|E(G̃)||V (G̃)| balls of radius r/2. Hence, in total, we need at most
2|V (G̃)||E(G̃)|2 balls of radius r/2 to cover all of B(x, r).

Proof (Proof of Claim 2.2). First note that |V (G̃)| = m(D + 1) + 2 � m2. By
Lemma 3, we have

λ(G̃�k) ≤ 2|V (G̃)||E(G̃)|2 ≤ 2|V (G̃)|5 � m10.

Hence log λ(G̃�k) � logm.

3 Lower Bound

For any π ∈ Aut(G), we define a corresponding automorphism π̃ of G̃ by π̃(s) = s,
π̃(t) = t, π̃(s′) = s′, π̃(t′) = t′, and π̃(v(i)) = π(v)(i) for v ∈ V, i ∈ [D + 1].
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Lemma 4. Let G be a vertex transitive graph. Let f : V (G̃)→ L2 be an injective
mapping and define f̄ : V (G̃)→ L2 by

f̄(x) =
1

√
|Aut(G)|

(
f(π̃x)

)

π∈Aut(G)
.

Let β be such that for every i ∈ [D + 1] there exists a vertical edge (u(i), v(i))
with ‖f̄(u(i)) − f̄(v(i))‖ ≥ β. Then there exists a horizontal edge (x, y) ∈ E(G̃)
such that

‖f̄(x)− f̄(y)‖2
dG̃(x, y)2

≥ ‖̄f(s)− f̄(t)‖
2

dG̃(s, t)2
+
β2

36
(1)

Proof. Let D = diam(G). We first observe four facts about f̄ .

(F1) ‖f̄(s)− f̄(t)‖ = ‖f̄(s)− f̄(t)‖
(F2) For all u, v ∈ V ,

‖f̄(s)− f̄(v(1))‖ = ‖f̄(s)− f̄(u(1))‖,
‖f̄(t)− f̄(v(D+1))‖ = ‖f̄(t)− f̄(u(D+1))‖.

(F3) For every u, v ∈ V , i ∈ [D],

‖f̄(v(i))− f̄(v(i+1))‖ = ‖f̄(u(i))− f̄(u(i+1))‖.

(F4) For every pair of vertices u, v ∈ V and i ∈ [D + 1],

〈f̄(s)− f̄(t), f̄(u(i))− f̄(v(i))〉 = 0.

Let z = f̄(s)−f̄(t)
‖f̄(s)−f̄(t)‖ . Fix some r ∈ V and let ρ0 = |〈z, f̄(s) − f̄(r(1))〉|,

ρi = |〈z, f̄(r(i))−f̄(r(i+1))〉| for i = 1, 2, . . . , D and ρD+1 = |〈z, f̄(t)−f̄(r(D+1))〉|.
Note that, by (F2) and (F3) above, the values {ρi} do not depend on the
representative r ∈ V . In this case, we have

D+1∑

i=0

ρi ≥ ‖f̄(s)− f̄(t)‖ = 9γD, (2)

where we put γ = ‖f̄(s)−f̄(t)‖
dG̃(s,t) . Note that γ > 0 since f is injective.

Recalling that dG̃(s, t) = 9D and dG̃(s, r(1)) = 4D, observe that if ρ20 ≥(
1 + β2

36γ2

)
(4γD)2, then

max
(
‖f̄(s)− f̄(s′))‖2
dG̃(s, s′)2

,
‖f̄(s′)− f̄(r(1))‖2
dG̃(s′, r(1))2

)
≥ γ2 +

β2

36
,

verifying (1). The symmetric argument holds for ρD+1, thus we may assume that

ρ0, ρD+1 ≤ 4γD

√

1 +
β2

36γ2 ≤ 4γD
(

1 +
β2

72γ2

)
.
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In this case, by (2), there must exist an index j ∈ [D] such that

ρj ≥
(

1− 8β2

72γ2

)
γ =

(
1− β2

9γ2

)
γ.

Now, consider a vertical edge (u(j+1), v(j+1)) with ‖f̄(u(j))− f̄(v(j))‖ ≥ β, and
u′ = f̄(u(j)) + ρjz. From (F4), we have

max(‖f̄(u(j))− f̄(u(j+1))‖2, ‖f̄(u(j))− f̄(v(j+1))‖2) =
‖f̄(u(j))− u′‖2 + max(‖u′− f̄(v(j+1))‖2, ‖u′ − f̄(u(j+1)‖2))

≥ ρ2j +
β2

4

≥
(

1− 2β2

9γ2

)
γ2 +

β2

4

≥ γ2 +
β2

36
,

again verifying (1) for one of the two edges (u(j), v(j+1)) or (u(j), u(j+1)).

The following lemma is well-known, and follows from the variational character-
ization of eigenvalues (see, e.g. [13, Ch. 15]).

Lemma 5. If G = (V,E) is a d-regular graph with second Laplacian eigenvalue
μ2(G), then for any mapping f : V → L2, we have

Ex,y∈V ‖f(x)− f(y)‖2 � d

μ2(G)
E(x,y)∈E ‖f(x)− f(y)‖2 (3)

The next lemma shows that when we use an expander graph, we get a significant
increase in stretch for edges of G̃.

Lemma 6. Let G = (V,E) be a d-regular vertex-transitive graph with m = |V |
and μ2 = μ2(G). If f : V (G̃) → L2 is any non-contractive mapping, then there
exists a horizontal edge (x, y) ∈ E(G̃) with

‖f(x)− f(y)‖2
dG̃(x, y)2

≥ ‖f(s)− f(t)‖
2

dG̃(s, t)2
+Ω

(μ2

d
(logdm)2

)
. (4)

Proof. We need only prove the existence of an (x, y) ∈ E(G̃) such that (4) is
satisfied for f̄ (as defined in Lemma 4), as this implies it is also satisfied for f
(possibly for some other edge (x, y)).

Consider any layer G(i) in G̃, for i ∈ [D+ 1]. Applying (3) and using the fact
that f is non-contracting, we have

E(u,v)∈E ‖f̄(u(i))− f̄(v(i))‖2 = E(u,v)∈E ‖f(u(i))− f(v(i))‖2

� μ2

d
Eu,v∈V ‖f(u(i))− f(v(i))‖2

≥ μ2

d
Eu,v∈V dG(u, v)2

� μ2

d
(logdm)2.
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In particular, in every layer i ∈ [D + 1], at least one vertical edge (u(i), v(i))
has ‖f̄(u(i))− f̄(v(i))‖ �

√
μ2
d logdm. Therefore the desired result follows from

Lemma 4.

We now to come our main theorem.

Theorem 5. If G = (V,E) is a d-regular, m-vertex, vertex-transitive graph with
μ2 = μ2(G), then

c2(G̃�k) �
√
μ2k

d
logdm.

Proof. Let f : V (G̃�k) → L2 be any non-contracting embedding. The theorem
follows almost immediately by induction: Consider the top level copy of G̃ in
G̃�k, and call it G0. Let (x, y) ∈ E(G0) be the horizontal edge for which ‖f(x)−
f(y)‖ is longest. Clearly this edge spans a copy of G̃�k−1, which we call G1. By
induction and an application of Lemma 6, there exists a (universal) constant
c > 0 and an edge (u, v) ∈ E(G1) such that

‖f(u)− f(v)‖2
dG̃�k(u, v)2

≥ cμ2(k − 1)
d

(logdm)2 +
‖f(x)− f(y)‖2
dG̃�k(x, y)2

≥ cμ2(k − 1)
d

(logdm)2 +
cμ2

d
(logdm)2 +

‖f(s)− f(t)‖2
dG̃�k(s, t)

,

completing the proof.

Corollary 1. If G = (V,E) is an O(1)-regular m-vertex, vertex-transitive graph
with μ2 = Ω(1), then

c2(G̃�k) �
√
k logm ≈

√
logm logN,

where N = |V (G̃�k)| = 2Θ(k log m).

3.1 Extension to Other Lp Spaces

Our previous lower bound dealt only with L2. We now prove the following.

Theorem 6. If G = (V,E) is an O(1)-regular m-vertex, vertex-transitive graph
with μ2 = Ω(1), for any p > 1, there exists a constant C(p) such that

cp(G̃�k) � C(p)k1/q logm ≈ C(p)(logm)1−1/q(logN)1/q

were N = |V (G̃�k)| and q = max{p, 2}.
The only changes required are to Lemma 5 and Lemma 4 (which uses orthog-
onality). The first can be replaced by Matoušek’s [12] Poincaré inequality: If
G = (V,E) is an O(1)-regular expander graph with μ2 = Ω(1), then for any
p ∈ [1,∞) and f : V → Lp,

Ex,y∈V ‖f(x)− f(y)‖pp ≤ O(2p)p E(x,y)∈E ‖f(x)− f(y)‖pp.

Generalizing Lemma 4 is more involved.
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Lemma 7. Let G be a vertex transitive graph, and suppose p > 1. If q =
max{p, 2}, then there exists a constant K(p) > 0 such that the following holds.
Let f : V (G̃) → Lp be an injective mapping and define f̄ : V (G̃)
→ Lp by

f̄(x) =
1

|Aut(G)|1/p

(
f(π̃x)

)

π∈Aut(G)
.

Suppose that β is such that for every i ∈ [D + 1], there exists a vertical edge
(u(i), v(i)) which satisfies ‖f̄(u(i))− f̄(v(i))‖p ≥ β. Then there exists a horizontal
edge (x, y) ∈ E(G̃) such that

‖f̄(x)− f̄(y)‖qp
dG̃(x, y)q

≥
‖f(s)− f(t)‖qp
dG̃(s, t)q

+K(p)βq. (5)

Proof. Let D = diam(G). For simplicity, we assume that D is even in what
follows. We first observe three facts about f̄ .

(F1) ‖f̄(s)− f̄(t)‖p = ‖f(s)− f(t)‖p
(F2) For all u, v ∈ V ,

‖f̄(s)− f̄(v(1))‖p = ‖f̄(s)− f̄(u(1))‖p,
‖f̄(t)− f̄(v(D+1))‖p = ‖f̄(t)− f̄(u(D+1))‖p.

(F3) For every u, v ∈ V , i ∈ [D],

‖f̄(v(i))− f̄(v(i+1))‖p = ‖f̄(u(i))− f̄(u(i+1))‖p.

Fix some r ∈ V and let ρ0 = ‖f̄(s) − f̄(r(1))‖p, ρi = ‖f̄(r(2i−1)) − f̄(r(2i+1))‖p
for i = 1, . . . , D/2, ρD/2+1 = ‖f̄(t) − f̄(r(D+1))‖p. Also let ρi,1 = ‖f̄(r(2i−1)) −
f̄(r(2i))‖p and ρi,2 = ‖f̄(r(2i))− f̄(r(2i+1))‖p for i = 1, . . . , D/2.

Note that, by (F2) and (F3) above, the values {ρi} do not depend on the
representative r ∈ V . In this case, we have

D/2+1∑

i=0

ρi ≥ ‖f̄(s)− f̄(t)‖p = 9γD, (6)

where we put γ = ‖f(s)−f(t)‖p

dG̃(s,t) . Note that γ > 0 since f is injective.
Let δ = δ(p) be a constant to be chosen shortly. Recalling that dG̃(s, t) = 9D

and dG̃(s, r(1)) = 4D, observe that if ρq
0 ≥

(
1 + δ βq

γq

)
(4γD)q, then

max

(
‖f̄(s)− f̄(s′))‖qp
dG̃(s, s′)q

,
‖f̄(s′)− f̄(r(1))‖qp
dG̃(s′, r(1))q

)

≥ γq + δβq,
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verifying (5). The symmetric argument holds for ρD/2+1, thus we may assume
that

ρ0, ρD/2+1 ≤ 4γD
(

1 + δ
βq

γq

)1/q

≤ 4γD
(

1 + δ
βq

γq

)
.

Similarly, we may assume that ρi,1, ρi,2 ≤ γ
(
1 + δ βq

γq

)1/q

for every i ∈ [D/2].
In this case, by (6), there must exist an index j ∈ {1, 2, . . . , D/2} such that

ρj ≥
(

1− 8δ
βq

γq

)
2γ.

Now, consider a vertical edge (u(2j), v(2j)) with ‖f(u(2j))− f(v(2j))‖p ≥ β. Also
consider the vertices v(2j−1) and v(2j+1). We now replace the use of orthogonality
((F4) in Lemma 4) with the following well-known 4-point inequalities in Lp

spaces (see [3, App. A]). If 1 < p ≤ 2, then for every u, v, w, x ∈ Lp,

‖u− w‖2p + (p− 1)‖x− v‖2p ≤ ‖u− v‖2p + ‖v − w‖2p + ‖x− w‖2p + ‖u− x‖2p.

On the other hand, if p ≥ 2, then for every u, v, w, x ∈ Lp,

‖u− w‖pp + ‖x− v‖pp ≤ 2p−2 (
‖u− v‖pp + ‖v − w‖pp + ‖x− w‖pp + ‖u− x‖pp

)
.

We apply one of these two inequalities with x = f(u(2j)), v = f(v(2j)), u =
f(v(2j−1)), w = f(v(2j+1)). In the case p ≥ 2, we conclude that

‖f(u(2j))−f(v(2j−1))‖pp+‖f(u(2j))−f(v(2j+1))‖pp≥2−p+2ρp
j +2−q+2βp−ρp

j,1−ρ
p
j,2

≥2γp + 2−p+2βp−34δpβp.

Thus choosing δ = 21−p

34p yields the desired result for one of (u(2j), v(2j−1)) or
(u(2j), v(2j+1)).

In the case 1 ≤ p ≤ 2, we conclude that

‖f(u(2j))− f(v(2j−1))‖2p+‖f(u(2j))− f(v(2j+1))‖2p ≥ ρ2j +(p− 1)β2 − ρ2j,1 − ρ2j,2.

A similar choice of δ again yields the desired result.
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Abstract. We consider the following item pricing problem which has re-
ceived much attention recently. A seller has an infinite numbers of copies
of n items. There are m buyers, each with a budget and an intention to
buy a fixed subset of items. Given prices on the items, each buyer buys
his subset of items, at the given prices, provided the total price of the
subset is at most his budget. The objective of the seller is to determine
the prices such that her total profit is maximized.

In this paper, we focus on the case where the buyers are interested
in subsets of size at most two. This special case is known to be APX-
hard (Guruswami et al [1]). The best known approximation algorithm,
by Balcan and Blum, gives a 4-approximation [2]. We show that there
is indeed a gap of 4 for the combinatorial upper bound used in their
analysis. We further show that a natural linear programming relaxation
of this problem has an integrality gap of 4, even in this special case. Then
we prove that the problem is NP-hard to approximate within a factor
of 2 assuming the Unique Games Conjecture; and it is unconditionally
NP-hard to approximate within a factor 17/16. Finally, we extend the
APX-hardness of the problem to the special case in which the graph
formed by items as vertices and buyers as edges is bipartite.

We hope that our techniques will be helpful for obtaining stronger
hardness of approximation bounds for this problem.

1 Introduction

Many pricing questions in the IT industry stem from a specific cost structure:
high fixed cost of production, but near-zero or zero variable cost of production.
This cost structure characterizes a class of technology products which are collec-
tively termed digital goods. Put differently, the cost of producing the first unit
of a digital good is very high, but the cost of producing each additional unit is
virtually zero. For instance, Microsoft spends hundreds of millions of dollars on
developing each version of its Windows operating system. Once this first copy
of the OS has been developed, however, it can be replicated at no cost. Other
examples of digital goods are pay-per-view television programs, downloadable
audio files, etc.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 202–216, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On Hardness of Pricing Items for Single-Minded Bidders 203

In this paper, we consider a problem of pricing digital goods that has received
a lot of attention in the computer science community recently. Consider a mo-
nopolistic market with a single seller who has n digital goods to sell. Since the
variable cost of production is near-zero, we assume that the seller has infinite
copies of each good. Suppose that there are m buyers, each buyer i associated
with a fixed budget bi > 0, which is the maximum amount of money he is willing
to spend. Each buyer is interested in buying some bundles of digital goods. For
example, a buyer may be interested in buying an operating system together with
an anti-virus software; but he may not be interested in buying them separately.

We further focus on the case where each buyer is interested in exactly one
subset of goods. This setting is often referred to as a market with single-minded
buyers. While this assumption may seem unnatural, it turns out that even this
special case is computationally hard for the optimization problem we consider.
The seller, who is assumed to know the demand and budget information, is then
posed with the following problem of pricing goods. The seller must set a price
pj ≥ 0 for each good j — she is not allowed to price the same item differently
for different buyers. For a subset S of goods, let p(S) =

∑
j∈S pj denote the

total price of goods in S. Once the prices are fixed, each buyer i buys his subset
Si of items if its total price is at most his budget, i.e., p(Si) ≤ bi. If a buyer
i satisfies this condition, he pays p(Si) to the seller. If on the other hand, this
condition is not satisfied, buyer i buys nothing and pays nothing to the seller.
In such a model, a natural objective for the seller is to price the items so as to
maximize the total profit generated, i.e., to find prices {pj} so as to maximize∑

i:p(Si)≤bi
p(Si).

1.1 Related Work

The problem of profit-maximizing pricing of goods in unlimited supply was intro-
duced by Goldberg, Hartline, Karlin, Saks, and Wright [3]. In their setting, the
buyers were interested in single goods and hence the optimization problem was
trivial, and they focused on designing truthful mechanisms to maximize profit.
There has been a lot of subsequent work on this and related models — below,
we briefly survey only those results that are directly relevant to the problem we
consider.

Guruswami, Hartline, Karlin,Kempe, Kenyon, and McSherry [1] considered the
problem of profit maximization in a variety of settings, including single-minded
bidders. They showed a logarithmic approximation guarantee and APX-hardness
for the profit maximization problem. For single-minded bidders, a polylogarithmic
hardness result was obtained by Demaine, Feige, Hajiaghayi, and Salavatipour [4].
The problem of the single-minded bidder case, where the size of the bundles de-
manded by the buyers was at most k, was considered by Briest and Krysta [5] who
gave an O(k2) approximation for the problem, and was improved by Balcan and
Blum [2] to O(k). For the special case of k = 2, they obtain a 4-approximation
algorithm.

The case of k = 2 (also called as the graph pricing problem) can be thought
of as the following graph problem with goods as vertices and buyers as edges.
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Consider an undirected graph on n vertices and m edges. There may be parallel
edges and loops. Each edge e has a budget be ≥ 0. Given prices pv ≥ 0 on the
vertices v, an edge e = (u, v) is satisfied if pu + pv ≤ be. The goal is to set
the prices to maximize the total profit generated:

∑
e=(u,v)∈E:pu+v≤be

(pu + pv).
The 4-approximation algorithm of Balcan and Blum [2] for this case first reduces
the problem to the case where G is a bipartite graph by losing a factor of 2 in
the approximation. It then gives a 2-approximation on the bipartite graphs.
Recently, Krauthgamer, Mehta, and Rudra [6] focused on the case k = 2 with
further restriction that the budgets be are same for all the edges; but the graph
may have self-loops. In such a case, they gave an LP-rounding algorithm that
yields an approximation of 6+

√
2

5+
√

2
≈ 1.15. They also showed a matching integrality

gap for these instances.
If we assume that the goods that are being sold are the edges of a graph

and that buyers are purchasing paths in this graph, we can interpret this as the
problem of pricing network connections, street segments (therefore termed the
tollbooth problem [1]), or other types of transportation links (e.g., railway or
flight connections). If the underlying graph is a path itself, then this problem
is called the highway problem [1]. Interestingly, even this very restricted vari-
ant turns out to be intriguingly complex [5,7,1]. Hartline and Koltun [8] have
presented a near-linear-time FPTAS for the practically relevant case that the
number of goods for sale is a fixed constant.

1.2 Our Results and Techniques

In this paper, we focus on the graph pricing problem described above. The
bundles of the buyers have at most two goods each, i.e., k = 2.

We first prove that the problem is hard to approximate within a factor of 2
assuming the Unique Games Conjecture, and within a factor of 17/16 assuming
P 
= NP . To this end, we introduce a new problem which we call the Restricted
Maximum Acyclic Subgraph problem: we are given a directed graph and our goal
is to arrange its vertices on the real line so as to maximize the number of forward
edges. However, unlike the Maximum Acyclic Subgraph problem, we can place
every vertex v only in a specified set of positions Sv (see Section 2 for details). We
show that the Graph Pricing problem is at least as hard to approximate as the
Restricted Maximum Acyclic Subgraph problem (in Section 3). This immediately
gives us a lower bound of 2, since Maximum Acyclic Subgraph is a special case
of Restricted Maximum Acyclic Subgraph, and Maximum Acyclic Subgraph as
was recently shown by Guruswami, Manokaran, Raghavendra [9], is hard to
approximate within a factor of 2 assuming the Unique Games Conjecture.

MAX DICUT on directed acyclic subgraphs is also a special case of the Re-
stricted Maximum Acyclic Subgraph problem. We can show that MAX DICUT
on directed acyclic subgraphs is at least as hard to approximate as MAX CUT.
(We omit the proof from this extended abstract.) This gives us an unconditional
NP-hardness of 17/16. The inapproximability of MAX CUT was established by
H̊astad [10].
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Then we initiate a study of several algorithmic approaches that might improve
the approximation guarantee. Note the following trivial upper bound on the value
of the optimal solution: allow each node v to collect its maximum profitR(v) from
the incident edges assuming that all its neighbors are priced at 0. The overall
upper bound on the optimum solution is then

∑
v R(v). This observation was

used by Balcan and Blum [2] in their approximation algorithm that computes a
solution of value at least 1

4

∑
v R(v), and thus gives a 4-approximation. It was

not known however whether this analysis of the algorithm could be improved.
We show that this upper bound indeed has a gap of 4. Therefore new upper
bounds are required to get a better approximation factor.

A natural linear programming relaxation (LP) gives such an upper bound.
This linear program can be thought of as a generalization of the one used by
Krauthgamer, Mehta and Rudra [6] to the case of arbitrary budgets. Unfortu-
nately, it turns out that this LP also has an integrality gap of 4. The proof again
uses our reductions from Restricted Maximum Acyclic Subgraph and MAX DI-
CUT on directed acyclic subgraphs. We take a directed acyclic graph G = (V,A)
in which every directed cut contains at most a (1/4 + o(1)) fraction of all edges.
(A family of such graphs was recently constructed by Alon, Bollobàs, Gyàrfàs,
Lehel, and Scott [11].) We show how to transform G to an instance of the Graph
Pricing problem whose solutions correspond to directed cuts in G. Therefore,
every combinatorial solution to this instance has value at most (1/4 + o(1))|A|.
Meanwhile, there is an LP solution that collects a profit 1 from every edge,
and thus has value |A|. We describe this transformation and its analysis in
Section 3.2.

Finally, we analyze the bipartite case. Note that if we improved the algorithm
for bipartite graphs, we would get an improvement over the 4-approximation of
Balcan and Blum for general graphs. In particular, if we could solve the problem
for bipartite graphs exactly, we would get a 2-approximation for general graphs.
Unlike the general case of the graph pricing problem, the bipartite case was not
even known to be NP-hard. We show that it is in fact APX-hard by a reduction
from MAX CUT.

2 Preliminaries

Let us fix some notation. An instance of the Graph Pricing problem Π = (G, b)
is a pair consisting of a graph G = (V,E) and a set of budgets {be}, e ∈ E.
Throughout the paper we assume that the budgets are positive integers and that
the graph does not have parallel edges or self-loops. A solution of the problem
is an arbitrary assignment of prices to the vertices, i.e., a set of nonnegative real
numbers {pv}v∈V . The profit of the solution is

profitΠ(p) =
∑

e=(u,v)∈E

{
pu + pv, if pu + pv ≤ be;
0, otherwise.

We denote the profit of the optimal solution byOPTΠ =maxpv∈R+∪{0} profitΠ(p).



206 R. Khandekar et al.

In the proof we consider a more general version of the Graph Pricing problem,
in which the graph may have parallel edges and edges are weighted. We denote
the weight of an edge e by we. We define the profit of a solution {p̃v}v∈V of the
generalized problem Π̃ = (G̃, b̃) as

profitΠ̃(p̃) =
∑

u,v

∑

e∈E(u,v)

we ·
{

(p̃u + p̃v), if p̃u + p̃v ≤ b̃e;
0, otherwise;

here E(u, v) denotes the set of edges going from u to v. We shall show that the
Generalized Graph Pricing problem, even if we allow budgets and weights to be
exponential in the number of vertices, is not harder than the standard Graph
Pricing problem.

The Generalized Graph Pricing problem is a special case of the general con-
straint satisfaction problem with constraints depending on two variables (MAX
2GCSP). In our case, the variables are vertices; the constraints or payoff
functions are functions

fb̃e
(p̃u, p̃v) =

{
p̃u + p̃v, if p̃u + p̃v ≤ b̃e;
0, otherwise.

Strictly speaking, prices can be arbitrary nonnegative real numbers, and thus
the domain is infinite. However, if all budgets are positive integers in the range
from 1 to B, then the prices in the optimal solution are semi-integral numbers
in the range from 0 to B.

Lemma 1. Consider an instance Π = (G, b) of the Generalized Graph Pricing
problem. Suppose that the budgets {be} are integers in the range from 1 to B,
then prices in one of the optimal solutions are semi-integral numbers in the range
from 0 to B.

Proof (sketch). Consider an arbitrary optimal solution {pv}v∈V . Let E′ be the
set of satisfied edges: E′ = ∪u,v {e ∈ E(u, v) : pu + pv ≤ be}. Then {pv}v∈V is a
solution of the LP: maximize

∑
u,v

∑
e∈E′∩E(u,v) pu + pv subject to pu + pv ≤ be

for all u, v, and e ∈ E′ ∩ E(u, v). The LP is semi-integral and thus either all
the pv’s are semi-integral numbers or another solution with the same objective
value is semi-integral.

Since we consider only problem instances with integral budgets, we shall assume
that all prices are semi-integral. Then the domain size equals 2B+ 1. Note that
we could reduce the domain size even further to O(log(1+ε)B) = O(log(B)/ε)
by rounding prices down to powers of (1 + ε). This reduces the profit of the
solution, but by no more than a factor of (1 + ε).

We now show how to transform an arbitrary Generalized Graph Pricing in-
stance Π̃ = (G̃, b̃) to an unweighted Graph Pricing instance Π = (G, b) without
parallel edges. We use a relatively standard probabilistic construction that works
for arbitrary constraint satisfaction problems. Without loss of generality we as-
sume that the maximum weight is 1.
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Input: an instance of Generalized Graph Pricing problem Π̃ = (G̃ = (Ṽ , Ẽ), b̃); a
positive ε
Output: an unweighted instance of the Graph Pricing problem Π = (G = (V, E), b)

1. Let m be the total number of edges in the graph G̃; let w be the minimum (non-
zero) edge weight.

2. Set N = �m/(wε)�4.
3. For every vertex v of the graph G̃, create N new vertices v1, . . . , vN in the

graph G.
4. For every edge e between vertices u and v add an unweighted edge between ui and

vj with probability αe = εwe/m. Set the budget of the new edge to be b(ui,vj) = b̃e.
We call this edge a copy of e.

5. If an edge (ui, vj) is a copy of e and e′ (e �= e′) then remove (ui, vj) from G.

Lemma 2. Consider an instance of the Generalized Graph Pricing problem Π̃ =
(G̃ = (Ṽ , Ẽ), b̃) and an instance of the of the Graph Pricing problem Π =
(G = (V,E), b) obtained via the reduction above. Let γ = εN2/m. Then G is an
unweighted graph without parallel edges; and with probability 1− e−N ,

OPTΠ

γ OPTΠ̃

= 1 +O(ε).

Proof. Consider an edge e between two vertices u and v in G̃. We add a copy
of e between ui and vj at step 4 with probability αe. The probability that we
remove the edge at the last step is less than αe×mαe ≤ ε. Thus the probability
βe that the obtained graph G has the edge (ui, vj) is between (1− ε)αe and αe.

Let Vu and Vv be arbitrary subsets of {ui : 1 ≤ i ≤ N} and {vj : 1 ≤ j ≤ N}
respectively. Denote by Ee(Vu,Vv) the set of copies of e going from Vu to Vv.
The expected size of Ee(Vu,Vv) is βe|Vu| |Vv|. By a Bernstein or Chernoff type
inequality,

Pr
(∣
∣|Ee(Vu,Vv)| − βe|Vu| · |Vv|

∣
∣ ≤ 4N3/2

)
≤ 2e

− 16N3

2(βe|Vu|·|Vv |+N3/2/3) ≤ e−4N .

The number of ways we can choose sets Vu and Vv is 22N . Thus, by the union
bound, with probability at least 1 − e−2N , for all Vu ⊂ {ui : 1 ≤ i ≤ N} and
Vv ⊂ {vj : 1 ≤ j ≤ N},

∣
∣|Ee(Vu,Vv)| − βe|Vu| · |Vv|

∣
∣ ≤ 4N3/2.

Moreover, since the number of edgesm is less than eN , with probability 1−e−N >
0, for all u, v, e ∈ E(Vu,Vv), Vu ⊂ {ui : 1 ≤ i ≤ N} and Vv ⊂ {vj : 1 ≤ j ≤ N},

∣∣|Ee(Vu,Vv)| − βe|Vu| · |Vv|
∣∣ ≥ 4N3/2. (1)

We fix one of the random instances satisfying this condition. Given an arbitrary
semi-integral solution pvi of the problem Π , we define a probabilistic solution of
the original problem Π̃ as follows: for every vertex v pick a random i from 1 to
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N and set p̃v = pvi . For all v and all semi-integral q, let Vv
q = {vi : p̃vi = q}. The

probability that we assign price q to u and s to v equals |Vu
q ×Vv

s |/N2. Thus the
expected profit of p̃ equals

E [profitΠ̃(p̃)] =
∑

u,v

∑

e∈E(u,v)

∑

q,s

|Vu
q ||Vv

s |
N2 × wefbe(q, s).

The profit of p equals profitΠ(p) =
∑

u,v

∑
e∈E(u,v)

∑
q,s |Ee(Vu

q ,Vv
s )|×fbe(q, s).

Thus,

profitΠ(p)− γ · E [profitΠ̃(p̃)]

=
∑

u,v

∑

e∈E(u,v)

∑

q,s

(|Ee(Vu
q ,Vv

s )| − αe|Vu
q ||Vv

s |)× fbe(q, s)

≤
∑

u,v

∑

e∈E(u,v)

∑

q,s

(|Ee(Vu
q ,Vv

s )| − βe|Vu
q ||Vv

s |)× fbe(q, s) (from (1))

≤ m× 4N3/2 ×max
e
be ≤ ε× γwmax

e
be.

Since OPTΠ ≥ wmaxe be, we have OPTΠ ≥ γ OPTΠ̃(1 +O(ε)).
Similarly, given a solution {pv}v∈V of the problem Π̃ , we define a solution of

Π as p̃vi = pv. Then

(1− ε)εN
2

m
· profitΠ̃(p̃)− profitΠ(p)

≤
∑

u,v

∑

e∈E(u,v)

∑

q,s

∣
∣|Ee(Vu

q ,Vv
s )| − βe|Vu

q ||Vv
s |

∣
∣× fbe(q, s)

≤ m× 4N3/2 ×max
e
be ≤ ε× γwmax

e
be.

Thus, (1− ε)OPTΠ̃ ≥ γ OPTΠ(1 +O(ε)).

Corollary 1. Fix a positive integer B. Suppose that it is NP-hard to approxi-
mate the Generalized Graph Pricing problem within a factor of ρ if all budgets
are bounded by B. Then for every positive ε, it is NP-hard to approximate the
Graph Pricing problem within a factor (1−O(ε))ρ.

Proof. Consider an instance Π̃ = (G̃, b̃) of the Generalized Graph Pricing prob-
lem with budgets bounded by B. Let m be the number of edges in the graph
G̃. Rescale all weights so that the maximum weight equals 1. Remove all edges
with weight less than εm/B. This decreases OPTΠ by at most ε. We now trans-
form the instance Π̃ to Π using the reduction from Lemma 2. By Lemma 2,
OPTΠ̃ = (1 + O(ε))OPTΠ/γ. Thus it is NP-hard to approximate the Graph
Pricing problem within a factor (1−O(ε))ρ.

Theorem 1. Suppose that it is weakly NP-hard to approximate the Generalized
Graph Pricing problem within a factor of ρ (i.e. it is NP-hard to approximate the
problem within a factor of ρ when the budgets and weights can be exponentially
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large in the problem size). Then, assuming the Unique Games Conjecture, for
every positive ε, it is NP-hard to approximate the Graph Pricing problem within
a factor (1−O(ε)ρ).

Proof. We show that there exists a finite set of budgets B such that if we require
all budgets to be from the set B, then the Graph Pricing problem is NP-hard
to approximate within a factor of (1 − O(ε))ρ. This is an easy corollary from
the recent result of Raghavendra [12]. Raghavendra showed that, assuming the
Unique Games Conjecture, the best approximation ratio we can achieve for every
2GCSP problem Λ is at least the integrality gap of the problem Λ (up to any
positive constant ε). The problem Λ is defined by a finite set of possible payoff
functions and their finite domain.

As mentioned above, we may assume that prices take values in a domain of
size O(log(B)/ε). Write the standard assignment SDP relaxation for the Gen-
eralized Graph Pricing problem (see e.g. Raghavendra [12] SDP (I)). This SDP
can be solved in polynomial time. Thus its integrality gap is (1 − O(ε))ρ. Fix
an integrality gap example with gap (1−O(ε))ρ. Let B = {1, . . . , B} be the set
containing all budgets from this example. We now consider MAX 2GSP with the
set of payoff functions {fb}b∈B and domain {0, 1/2, 1, . . . , B}. Its integrality gap
is at least (1 − O(ε))ρ. Thus by Raghavendra’s theorem [12], it is NP-hard to
approximate this MAX 2GCSP problem within a factor (1 − O(1))ρ. However,
this MAX 2GCSP problem is just the Generalized Graph Pricing problem with
budgets bounded by the constant B.

3 Reduction from Maximum Acyclic Subgraph

We introduce a new problem, which we call Restricted Maximum Acyclic Sub-
graph. We are given a graph G = (V,A) and a collection of disjoint label sets
Sv ⊂ N for all vertices v. The goal is to assign a label lv from the set Sv ∪{0} to
every vertex v so as to maximize the number of arcs (u, v) ∈ A for which lu < lv.
The value of a solution is the number of such arcs. We denote the value of the
solution {lv}v∈V by value(G,S)(l); we denote the value of the optimal solution
by OPT(G,S).

We now reduce the Restricted Maximum Acyclic Subgraph problem to the
Generalized Graph Pricing problem. Given an arbitrary Restricted Maximum
Acyclic Subgraph instance G = (V,A), {Sv}v we construct an instance of the
Generalized Graph Pricing problem Π = (H, b) as follows. The vertices of the
graph H = (V,E) are the vertices of the graph G. The edges are triples (u, v)l,
where (u, v) ∈ A and l ∈ Sv. The edge (u, v)l goes from u to v, has weight M−l

and budget M l(1 + 1/M), where M is a sufficiently large number we specify
later. It is convenient to think that the edges are directed; whenever we write
(u, v)l we mean that (u, v) ∈ A. The profit of a solution {pv}v∈V equals

profitΠ(p) =
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv).
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We define the principal profit of the solution as
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−lpv;

and a principal profit of an edge (u, v)l asM−lpv. We say that a solution {pv}v∈V

is canonical if pv ∈ {0} ∪
{
M l : l ∈ Sv

}
for all v. Every solution {lv}v∈V of

the Restricted Maximum Acyclic Subgraph problem corresponds to a canonical
solution of the Generalized Graph Pricing problem:

pv =

{
M lv , if lv 
= 0;
0, otherwise.

The principal profit of this solution satisfies
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−lpv ≥
∑

(u,v)∈A

pu+pv≤Mlv (1+1/M)

M−lv ·M lv

=
∑

(u,v)∈A

{
1, if lv > lu;
0, otherwise;

= value(G,S)(l).

Thus profitΠ(p) ≥ value(G,S)(l); and OPTΠ ≥ OPT(G,S). We now show that
OPTΠ cannot be much bigger than OPT(G,S). First, we show that the principal
profit of every solution almost equals the total profit.

Lemma 3. The profit of an arbitrary solution {pv}v∈V of the Generalized Graph
Pricing problem Π = (H, b) defined above is bounded as follows:

profitΠ(p) ≡
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv) ≤
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−lpv + 2n.

Proof. We need to show that
∑

(u,v)l∈E:pu+pv≤Ml(1+1/M)M
−lpu ≤ 2n. Fix a

vertex u. All its outgoing edges have distinct weights and all weights are powers
of M . Thus the sequence M−lpu (where (u, v)l ∈ E; pu ≤ M l(1 + 1/M)) is a
subsequence of a geometric progression with the largest term at most (1+1/M).
Hence

∑

v:(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−lpu ≤ (1 + 1/M)
∞∑

l=0

M−l ≤ 2.

We now show how every Generalized Graph Pricing solution can be transformed
into a canonical solution.
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Lemma 4. For every solution {pv}v of the problem Π defined above there exists
a canonical solution {p′v}v with the principal profit

∑

(u,v)l∈E

p′
u+p′

v≤Ml(1+1/M)

M−lp′v ≥
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv)− (m/M + 2n).

Proof. Define

p′v =

{
M l, if M l−1(1 + 1/M) < pv ≤M l(1 + 1/M) for some l ∈ Sv

0, otherwise

We compare the principal profit of {p′v}v∈V with the principal profit of {pv}v∈V .
Consider an edge (u, v)l with a nonnegative contribution to the profit of {pv}v∈V .
Then pu + pv ≤ M l(1 + 1/M) and both p′u, p

′
v ≤ M l. Moreover, since l ∈ Sv

and thus l /∈ Su (the sets Su and Sv are disjoint), p′u ≤ M l−1. Therefore
p′u + p′v ≤ M l(1 + 1/M). If pv > M l−1(1 + 1/M), then p′v = M l; and the
principal profit of the edge is M−lp′v = 1. If pv ≤ M l−1(1 + 1/M), then
M−lpv < 2/M . Hence, the difference M−lpv −M−lp′v is always less than 2/M .
We get

∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−lpv ≤
∑

(u,v)l∈E

p′
u+p′

v≤Ml(1+1/M)

M−lp′v + 2m/M ;

and by Lemma 3,
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv) ≤
∑

(u,v)l∈E

p′
u+p′

v≤Ml(1+1/M)

M−l(p′u + p′v) +m/M + 2n.

Theorem 2. Consider an instance (G = (V,A), S) of the Restricted Max-
imum Acyclic Subgraph problem. Let Π = (H = (V,E), b) be the instance
of the Graph Pricing problem obtained through the reduction described above.
Then

OPTRMAS
(G,S) + 2m/M + 2n ≥ OPTΠ ≥ OPTRMAS

(G,S) . (2)

Proof. We have already proved that OPTΠ ≥ OPTRMAS
(G,S) . Thus we only need to

prove the first inequality. Consider an arbitrary solution {pv}v∈V . By Lemma 4
there exists a canonical solution {p′v}v with the principal profit

∑

(u,v)l∈E

p′
u+p′

v≤Ml(1+1/M)

M−lp′v ≥
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv)− (m/M + 2n).
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Set labels lu as follows: lu = logM pu if pu 
= 0; and lu = 0 otherwise. If the
principal profit of an edge (u, v)l is greater than 1/M then pv = M l and pu ≤
M l−1. Thus lu ≤ lv and the arc (u, v) contributes 1 to the value of solution. We
get

OPTRMAS
(H,S) +m/M ≥

∑

(u,v)l∈E

p′
u+p′

v≤Ml(1+1/M)

M−lp′v

≥
∑

(u,v)l∈E

pu+pv≤Ml(1+1/M)

M−l(pu + pv)− (m/M + 2n).

Hence OPTRMAS
(H,S) + 2m/M + 2n ≥ OPTG.

3.1 UG Hardness

Theorem 3. Assuming the Unique Games Conjecture, it is NP-hard to
approximate the Graph Pricing problem within a factor 2 − ε, for every
positive ε.

Proof. Guruswami, Manokaran, and Raghavendra [9] showed that it is NP-hard
to approximate the Maximum Acyclic Subgraph problem within a factor of 2−ε.
Observe that the Maximum Acyclic Subgraph problem is a special case the Re-
stricted Maximum Acyclic Subgraph problem, where sets Sv are chosen so that
any ordering of vertices is possible. Hence, by Theorem 2 we can transform
any graph G to an instance of the Generalized Graph Pricing problem Π
satisfying

OPTMAS
G + 2m/M + 2n ≥ OPTΠ ≥ OPTMAS

G ,

where OPTMAS
G denotes the size of maximum acyclic subgraph in G. Assume

for a moment that 2m/M + 2n ≤ ε OPTMAS
G . Then (1 + ε)OPTMAS

G ≥
OPTΠ ≥ OPTMAS

G ; and thus the Generalized Graph Pricing problem is NP-
hard to approximate within a factor of 2 − O(ε). Theorem 1 implies that the
Graph Pricing problem is then also NP-hard to approximate within a factor of
2−O(ε).

We now take care of the term 2m/M + 2n. We replace every vertex v in
G by K = �1/ε� new vertices v1, . . . , vK and every edge (u, v) with K2 edges
(ui, vj). The number of vertices in the graph increases K times; the number of
edges and the size of the maximum acyclic subgraph increases exactly K2 times.
(Since vertices v1, . . . vK have exactly the same neighbors they can be arranged
consecutively in the optimal solution.) Pick M = mK2. Then 2m/M + 2n ≤
2 + εOPTMAS

G .
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3.2 LP Integrality Gap

We study the following LP relaxation:

max
∑

(u,v)∈E

∑

q,s
q+s≤b(u,v)

(q + s)yuv(q, s),

subject to
∑

q

xu(q) = 1 for all u

∑

s

yuv(q, s) = xu(q) for all u, v, q

yuv(q, s) = yvu(q, s) for all u, v, q, s
0 ≤ xu(q) ≤ 1 for all u, q

0 ≤ yuv(q, s) ≤ 1 for all u, v, q, s

In the intended integral solution, each xu(q) is the indicator variable of the
event “the vertex u has price q,” i.e., xu(q) = 1, if pu = q; yuv(q, s) = 1, if u has
price s, v has price q; and is equal to 0, otherwise. It is easy to see that in the
intended integral solution all the constraints are satisfied. As before we assume
that budgets {be}e∈V are integral and indexes q,s take semi-integral values in
the range 0 to maxe be. Note that the LP upper bound on the optimal solution
is stronger than the combinatorial upper bound of Balcan and Blum (see the
introduction). Indeed, for all u, we have
∑

v

∑

q,s:q+s≤b(u,v)

yuv(q, s)×q ≤
∑

q

xu(q)
∑

v:q≤b(u,v)

q ≤ max
q

∑

v

f(u,v)(q, 0) = R(u).

Our LP integrality gap example is based on the construction of Alon, Bollobàs,
Gyàrfàs, Lehel, and Scott [11].

Theorem 4 (Alon et al. [11]). There exists a directed acyclic graph G having
m edges and n = o(m) vertices, such that every directed cut of G contains at
most (1/4 + o(1))m edges.

Theorem 5. The integrality gap of the LP is (4− ε), for every positive ε.

Proof. Let G = (V,A) be the graph of Alon et al. [11]. We order the vertices of G
in the reverse topological order. For every v ∈ V , let ov ∈ {1, . . . , n} be the po-
sition of the vertex v in the ordering. Then if (u, v) ∈ A, ou > ov. Fix an integer
parameter T . Construct an instance of the Restricted Maximum Acyclic Sub-
graph problem on graph G. Set Sv = {ov × T, ov × T + 1, . . . , ov × T + T − 1}.
For every edge (u, v) ∈ A, valid assignments of labels lu and lv that satisfy the
inequality lu < lv are lu = 0; lv ∈ Sv. Thus the value of any solution {lv}v∈V

equals the size of the directed cut between the sets {u : lu = 0} and {v : lv ∈ Sv}.
Therefore, the optimal value of the solution is at most (1/4+ o(1))m. We trans-
form (G,S) to an instance of the Generalized Graph Pricing problem (using
Theorem 2) and then to an unweighted instance of the Graph Pricing problem
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(using Lemma 2). The profit of the optimal solution of the obtained problem
Π = (H = (VH , EH), b) is at most (1/4 +O(ε))m× γN2 (if we choose M to be
sufficiently large).

We now describe an LP solution of value (1 − 1/T )m × γN2. Recall that
the vertices of H are pairs in V × {1, . . . , N} denoted vi. The set of edges is
a random subset of triples (ui, vj)l, where (u, v) ∈ A, l ∈ Sv. The budget of
(ui, vj)l is M l. The probability that the edge (ui, vj)l is present in the graph is
α′

(ui,vj)l
= γ/(M lN2)(1 − O(ε)). We choose edges, so that the graph does not

have parallel edges.
Set LP variables xvi(M

l) = 1/T , and xv(0) = 1/T for all vertices vi and l ∈
Sv. Note that Sv contains exactly T −1 elements, thus xvi (0)+

∑
l xvi(M l) = 1.

For every edge (u, v)l set yuivj (0,M l) = 1/T . Set all other yuivj (s, q) arbitrary
to satisfy the LP constraints (e.g. yuv(M l, 0) = 1/T ; yuv(M l′ ,M l′) = 1/T for
l′ 
= l).

If an edge (ui, vj)l is present in the graph, then its contribution to the LP
objective function is at least (0 +M l) × yuivj (0,M l) = M l/T . Thus for every
(u, v) ∈ A, the expected contribution of all edges (ui, vj)l is at least

∑

l∈Sv

∑

1≤i,j≤N

(1−O(ε))γ
M lN2

M l

T
=(T−1)·N2· (1−O(ε)) · γ

N2 · T =(1+O(ε))· (T − 1) · γ
T

.

We have proved that for every positive ε, there exists a graph with the cost of
the optimal solution at most γm/4× (1 +O(ε)) and the cost of the LP at least
γm× (1−O(ε)). Hence the integrality gap is 4−O(ε).

Remark 1. A similar construction shows that the problem is (unconditionally)
at least as hard as MAX CUT, which as was shown by H̊astad [10] cannot be
approximated better than within a factor of 17/16 (unless P = NP ).

4 Hardness of the Bipartite Case

Balcan and Blum achieve a 4-approximation by reducing the general problem
to the bipartite case, and they note that any improvement over the trivial 2-
approximation for the bipartite case would immediately improve the
4-approximation for the general case. Here we show that the bipartite case is
APX-hard, which to the best of our knowledge was previously unknown.

Theorem 6. The Graph Pricing Problem in the bipartite case is APX-hard.

Proof. We reduce the APX-hard problem MAX CUT to graph pricing in a bipar-
tite graph. Let G = (V,E) be a graph. For each vertex u ∈ V , we will construct
a vertex u in our bipartite graph G′ = (V1, V2, E

′). For convenience we will refer
to these corresponding nodes using the same names. All the original nodes in G
will be on the same side of G′, say V1. For each edge (u, v) ∈ E we construct the
gadget shown in Figure 1. The proof of the following claim is omitted from this
extended abstract.
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12
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Fig. 1. Bipartite pricing gadget. Note that despite the layout, u and v belong to the
same side of the bipartition.

Claim. If u and v both charge 0 or both charge 1, the maximum profit that can
be gained from the gadget is 8, whereas profit 9 can be obtained if one charges
0 and the other charges 1.

Unfortunately, profit greater than 8 can be extracted from our gadget via frac-
tional charges at u and/or v. To ensure that each node corresponding to a node
in the original graph charges either 1 or ε for some small ε, we use the gadget
displayed in Figure 2.

ε ε
ε

2ε

ε ε ε2ε
1/ε− 1

1

21 1
a b c d

vz
2

2

1

Fig. 2. Price-enforcing gadget: node v charges 1 or ε

Claim. For any given solution, a solution in which node v charges either 1 or ε
and whose value is at least that of the given solution, can be found in polynomial
time.

It should be clear now that (neglecting at most 2ε per edge), from a solution of
value 24m+C to our bipartite graph pricing instance, we can recover a cut of size
C to the original MAX CUT instance, where m is the number of edges. We can
make the error insignificant by appropriate choice of ε. Thus the APX-hardness
of MAX CUT implies the APX-hardness of the bipartite graph pricing.
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Abstract. Exchanging messages between nodes of a network (e.g., em-
bedded computers) is a fundamental issue in real-time systems involving
critical routing and scheduling decisions. In order for messages to arrive
on time, one has to determine a suitable (short) origin-destination path
for each message and resolve conflicts between messages whose paths
share a communication link of the network. We provide efficient routing
strategies yielding origin-destination paths of bounded dilation and con-
gestion. In particular, we can give good a priori guarantees on the time
required to send a given set of messages which, under certain reasonable
conditions, implies that all messages can be scheduled to reach their des-
tination on time. Our algorithm uses a path-based LP-relaxation and
iterative rounding. Finally, for message routing along a directed path
(which is already NP-hard), we identify a natural class of instances for
which a simple scheduling heuristic yields provably optimal solutions.

1 Introduction

In a distributed real-time system, processes residing at different nodes of the
network communicate by passing messages. One of the most challenging and
important tasks for the design of a distributed system is the problem of sending
a given set of messages through the network from the respective origin- to the
destination nodes on time.

The message routing problem. To model the problem we represent the commu-
nication network by a (directed or undirected) graph G = (V,E), whose edges
correspond to the communication links of the network. In the message routing
problem, each message Mi = (si, ti, di) of a given set of messages {Mi}i∈I con-
sists of di packets of unit size that have to be sent from the origin node si ∈ V
to the destination node ti ∈ V within a certain time horizon T > 0. Usual
constraints are (see e.g., [1,2], or [3, Chapter 37]):

(i) it takes one time unit to send a packet on any edge e ∈ E,
(ii) at most one packet can traverse an edge per time unit,
(iii) a message has to be completely received by a node before the node can

start to transmit it to any other node.
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The last constraint is due to integrity checks performed by each node and implies
that each message Mi has to be sent along a unique path Pi from its origin to
its destination node.

Example 1. Consider the problem illustrated in Figure 1 where three messages
need to be routed through a grid graph within a time horizon of twelve time
units. Suppose we decide to send each message along the (unique) shortest path.
Then, after three time steps there is a conflict between the second packet of
message 1 and the first packet of message 2 that both want to traverse edge e in
time step four. No matter which message is assigned a higher priority, we need at
least 13 time steps to send all message from their sources to their destinations.
On the other hand, if we choose the longer path {a, b, c, d, f, g} for message 1, all
messages can be sent within twelve time units since all paths are edge-disjoint.

Store-and-forward packet routing. In the special case where each message con-
sists of only one packet, message routing reduces to store-and-forward packet
routing, a fundamental routing problem in interconnection networks (see, e.g.,
Leighton’s survey [4]). Store-and-forward packet routing can be formulated as
an integral dynamic multicommodity flow problem with unit capacities and unit
transit times on the edges. While this problem is known to be NP-hard [5],
store-and-forward packet routing can be solved efficiently by calculating a max-
imum flow over time in case all packets share the same origin and destination.
In contrast, the message routing problem turns out to be NP-hard even in the
special case where all messages have the same origin and destination [1]. Thus,
message routing is considerably harder than packet routing.

We would like to mention that the possibility of storing packets is crucial in the
message routing model we consider, since packets need to wait at intermediate
nodes for the entire message. Therefore, our problem considerably differs from
the well-studied direct routing problem in which the packets are not allowed to
be stored at intermediate nodes on the way to their destination.

s1

s

s

2

3

t t

t1

23

f

ea

b

dc

g

Fig. 1. Message routing problem with three messages and time horizon twelve. The
messages consist of two, three, and four packets, respectively.
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Routing and scheduling. A natural approach for solving the message routing
problem is the following two-stage strategy. In the first stage (the routing stage),
determine the set of paths {Pi}i∈I . Then, in the second stage (the scheduling
stage), resolve conflicts between messages sharing an edge. Of course, in order
to determine good solutions, the paths chosen in the routing stage must feature
certain desirable properties that guarantee the existence of good solutions to the
second stage scheduling problem.

Congestion and dilation. If the paths {Pi}i∈I are given, we immediately ob-
tain two trivial lower bounds on the minimum amount of time needed to send
all messages, which we call the makespan of the problem. The first one is the
congestion

C = max
e∈E

∑

i∈I:e∈Pi

di,

i.e., the maximum number of packets that have to traverse a single edge. The
second one is the dilation

D = max
i∈I

(di|Pi|),

i.e., the maximum time necessary to send a message without any delays from its
origin to its destination. As usual, |Pi| denotes the number of edges in path Pi.
As we will see in the following, C and D not only provide lower bounds on the
makespan but also good upper bounds in terms of C and D can be determined.

A related job shop scheduling problem. Given paths {Pi}i∈I , it remains to declare
priorities on the messages whenever two packets of different messages meet at
an intermediate node and want to use the same outgoing edge. However, this
is exactly an instance of the well-studied acyclic preemptive job shop scheduling
problem. Every edge corresponds to a machine and a message is a job that
has to be consecutively processed on the machines corresponding to the edges
on its path. In shop scheduling, the processing requirement of a job is usually
machine-dependent. In our case, however, we have the special property that the
processing requirement of a job/message is identical (namely equal to the size
of the message) on each machine/edge on its path.

It is well-known that even this special case of acyclic preemptive job shop
scheduling is NP-hard and even NP-hard to approximate1 with performance
guarantee 5

4 − ε for any ε > 0 [6]. On the positive side, Feige and Schei-
deler [7] prove the existence of a schedule with makespan O(C +D log log dmax)
for the preemptive job shop scheduling problem in general by using the non-
constructive General Lovász Local Lemma (LLL). (Here, dmax denotes the max-
imum operation-length, resp. message-size.) An algorithmic version of the
General LLL can be found in [8]. In the special case where all operation lengths

1 An α-approximation algorithm for an optimization problem is a polynomial-time
algorithm which computes a solution whose value is at most a factor α away from
the optimum. The number α is called the performance guarantee of the algorithm.
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are identical, Leighton et al. [9,10] even establish an efficient randomized al-
gorithm which computes a schedule with makespan O(C + D). Busch,
Magdon-Ismail, and Mavronicolas [11] prove that intermediate storage of pack-
ets can be avoided at the cost of an additional poly-logarithmic factor in the
makespan.

Desirable properties of paths. We now return to our discussion of the two-stage
approach to message routing discussed above. As a consequence of the schedul-
ing results mentioned in the previous paragraph, a promising approach is to
determine a set of paths in the routing stage such that C+D is relatively small.
The first constant-factor approximation for the special case of store-and-forward
packet routing, established by Srinivasan and Teo [12], is also based on this
idea. Basically, Srinivasan and Teo establish a constant-factor approximation
for the problem to find paths minimizing C + D. Combining this result with
the O(C + D)-schedule for acyclic job shop scheduling with constant opera-
tion lengths (proved in [9,10]), they obtain a constant-factor approximation for
packet routing. A similar idea has been used by Fleischer and Skutella [13] in
the general context of dynamic network flow problems.

Our contributions. In Section 2 we describe an algorithm that, given a set of
messages {Mi}i∈I on a communication network, and a desired dilationΔ, finds a
set of paths of dilation at most Δ and congestion smaller than C∗(Δ)+Δ, where
C∗(Δ) denotes the congestion of an optimal fractional solution with dilation at
most Δ. The dilation Δ that is given to the algorithm as an input can be chosen
arbitrarily (e.g., Δ = T/2). Of course, the smaller the dilation Δ is, the larger
is the optimal congestion C∗(Δ). In practice it is thus reasonable to try several
values of Δ ≤ T in order to find a good tradeoff between dilation and congestion.
In theory, one can, for example, use binary search in order to determine Δ such
that Δ+C∗(Δ) or Δ+ (C∗(Δ) +Δ) (or some other function of Δ and C∗(Δ))
is minimal.

Although our algorithm can be applied for arbitrary message lengths, it even
improves upon the performance guarantee of [12] for the special case of store-
and-forward packet routing by a multiplicative factor of two. The main difference
between our approach and the approach in [12] is our use of a path-based lin-
ear programming formulation which turns out to be efficiently solvable as the
corresponding separation problem is a special case of the length-bounded short-
est path problem. (The latter can be solved with a modification of Dijkstra’s
algorithm). Given an optimal solution to the linear program, we apply iterative
rounding to turn the fractional solution into an integral one, and guarantee that
the congestion is not increased by more than Δ.

Our path-finding algorithm works for arbitrary directed or undirected graphs.
Combined with either approximation algorithms for the acyclic job shop schedul-
ing problem, or with suitable priority heuristics, it therefore returns solutions
for the message routing problem in general. In many situations in practice, how-
ever, the communication graphs are very simple. It therefore makes sense to
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consider the problem on special graph classes. In Section 3 we consider the
message routing problem on directed paths (which is already NP-hard [1]),
and show that the Farthest-Destination-First Algorithm works optimally on a
directed path P in case the messages are not nested, i.e., in case

si <P sj =⇒ ti ≤P tj ∀i, j ∈ I.

2 Routing with Small Congestion and Dilation

Note that any set of edge-disjoint paths {Pi}i∈I , where the length of each path Pi

is bounded by T
di

, forms a solution to the message routing problem: all messages
can be sent directly without any delay from their origin to their destination
nodes where they arrive before time T . Of course, such length-bounded edge-
disjoint paths do not necessarily exist (it is NP-hard to decide whether they do
exist or not [14]). However, some delays are allowed if the path-lengths do not
meet the upper bounds ( T

di
)i∈I . Thus, we restrict to shorter paths on which we

minimize the congestion.
Given a suitable value Δ ≤ T (which can, for example, be determined by

binary search), we define for each i ∈ I the set of paths

Pi :=
{
si, ti-paths in G of length at most

Δ

di

}

and P :=
⋃

i∈I Pi. Among P , we are looking for a set of representatives {Pi}i∈I

with minimal congestion. That is, we are interested in an optimal integral solu-
tion to the following linear program

min C

s.t.
∑

P∈Pi

xP ≥ 1 ∀i ∈ I,

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C ∀e ∈ E,

xP ≥ 0 ∀P ∈ P .

Note that the paths in the support of any feasible integral solution x̂ ∈ {0, 1}|P|

of the linear program above with objective value Ĉ yield a set of representatives
{Pi}i∈I with dilation at most Δ and congestion Ĉ: the first set of constraints
ensures that at least one path is found for each message, while the second set of
constraints guarantees that the total number of packets traversing a single edge
does not exceed Ĉ.

2.1 Optimal Fractional Solutions

To find a good integral solution to the linear program above, we first determine
an optimal fractional solution x∗ with objective value C∗, and then, in a second
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step, round x∗ to an integral solution x̂ ∈ {0, 1}|P| whose congestion is at most
C∗ + Δ. At first sight, it seems to be impossible to find an optimal fractional
solution in polynomial time, since the number of variables is in general exponen-
tial in the size of the underlying network G. However, if we consider the dual
linear program, we get

max
∑

i∈I

zi

s.t.
∑

e∈E

ye ≤ 1

∑

e∈P

ye ≥
zi
di

∀P ∈ Pi, i ∈ I

ye, zi ≥ 0 ∀e ∈ E, i ∈ I.

The corresponding separation problem can be formulated as a length-bounded
shortest path problem: find a shortest si, ti-path with respect to the edge costs
ye among those paths containing at most Δ

di
edges. In contrast to the general

length-bounded shortest path problem with arbitrary edge lengths (which is
known to be NP-hard [14]), this problem can be solved efficiently with a modi-
fication of Dijkstra’s algorithm (sketch: in each iteration of Dijkstra’s algorithm
determine a shortest path among those with at most 1, 2, . . . edges). Thus, by the
equivalence of optimization and separation [15], an optimal fractional solution
to the dual and thus also to the primal linear program can be found in polyno-
mial time. (I.e., we do not need to consider all path-variables in the LP. Instead,
we iteratively solve the LP for small subsets of variables, where in each step a
variable corresponding to the shortest length-bounded path is added to the LP
in case the reduced costs are negative.) In practice, column generation seems to
be the most suitable technique to actually solve the primal linear programming
problem.

2.2 Iterative Rounding

Given the upper bound Δ on the dilation of paths and an optimal fractional
solution x∗ with objective value C∗ to the corresponding linear program, we now
describe how to round the fractional solution to an integral one while increasing
congestion at most by Δ.

In the rounding algorithm described below, we iteratively solve a linear pro-
gramming relaxation and fix a path Pi for message i as soon as the corresponding
variable xPi attains value 1. In the following, F is the set of those messages i for
which a path Pi has already been fixed. Initially, F is empty. The messages in
F are removed from I such that I only contains the messages for which a path
remains to be fixed. In each step of the algorithm, we thus solve the following
linear program (LP ):
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min C
∑

P∈Pi

xP ≥ 1 ∀i ∈ I (1)

∑

i∈I

∑

P∈Pi:e∈P

dixP ≤ C −
∑

i∈F :e∈Pi

di ∀e ∈ E (2)

xP ≥ 0 ∀P ∈ P .

The basic idea of the algorithm is as follows: in each iteration, we fix the integral
variables and drop at least one of the constraints, before we solve the (LP ) again.
That is, in each iteration, whenever there is an index i with x∗P = 1 for some
P ∈ Pi, we move index i from I to F . Moreover, we remove all paths not in the
support of x∗ from P . After fixing the integral variables, we can easily find a
constraint of type (2) which can be dropped from the updated (LP ): the reason
is that even if all remaining variables are rounded up to 1, the right-hand side
of the inequality is not violated by more than Δ (see Theorem 1).

Algorithm 1 (Iterative Rounding Algorithm)
1. Initialize: F ← ∅;
2. Compute a basic optimum solution x∗ to (LP );
3. For i ∈ I, let Pi ← {P ∈ Pi | x∗P > 0};
4. WHILE ∃i ∈ I and Pi ∈ Pi with x∗(Pi) = 1 DO

– Set I ← I \ {i};
– Set F ← F ∪ {i};

5. Set P ←
⋃

i∈I Pi;
6. WHILE P 
= ∅ DO

– Drop a constraint of type (2) with
∑

i∈I

∑

P∈Pi:e∈P

di < C
∗ −

∑

i∈F :e∈Pi

di +Δ;

– GoTo step 2;

Note that in a single iteration of our algorithm, we do not round fractional
variables explicitly, but simply fix the integral variables. The “rounding” is thus
done by solving in each iteration the modified linear program corresponding to
the remaining fractional variables. It remains to show that the algorithm is well-
defined, i.e., we need to show the following: in case the set P of non-integral
components is non-empty, we can find an edge e ∈ E such that the congestion
cannot be violated by more than Δ, even if all non-integral components are
rounded up to one.

Theorem 1. If x∗ is a basic optimum solution to (LP ) with 0 < x∗P < 1 for all
P ∈ P, then there exists a constraint of type (2) such that for the corresponding
edge e ∈ E holds

∑

i∈I

∑

P∈Pi:e∈P

di < C
∗ −

∑

i∈F :e∈Pi

di +Δ.
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The theorem can be derived from a more general result shown in [16], stating that
any fractional solution x∗ of a linear equality system Ax = b can be rounded
to an integral vector x̂ satisfying Ax̂ < b + Δ, whenever the sum of positive
entries in each column of matrix A is bounded from above by Δ, and the sum
of negative entries in each column is bounded from below by −Δ. However, the
proof turns out to be much simpler for our special inequality system:

Proof. Let n = |P|. Since x∗ is a basic feasible solution, there exist linearly
independent tight constraints T1 and T2 of type (1) and (2), respectively, such
that

n = |T1|+ |T2|.

Observe that for each constraint j ∈ T1 we have

Δ
∑

P∈Pj

x∗P = Δ. (3)

Suppose by contradiction that for each e corresponding to a constraint in T2, we
have ∑

i∈I

∑

P∈Pi:e∈P

di ≥ C∗ −
∑

i∈F :e∈Pi

di +Δ. (4)

Since ∑

i∈I

∑

P∈Pi:e∈P

dix
∗
P = C∗ −

∑

i∈F :e∈Pi

di

holds by the tightness of the constraint, equation (4) turns out to be equivalent
to ∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗P ) ≥ Δ. (5)

Summing up the inequalities of type (3) and (5) for all constraints in T1 and T2,
we get

nΔ ≤
∑

j∈T1

Δ
∑

P∈Pj

x∗P +
∑

e∈T2

∑

i∈I

∑

P∈Pi:e∈P

di(1− x∗P )

=
∑

i∈I

∑

P∈Pi

(
χT1

i Δx
∗
P +

∑

e∈T2∩P

di(1 − x∗P )
)

≤
∑

i∈I

∑

P∈Pi

(
Δx∗P +Δ(1− x∗P )

)
= nΔ,

where χT1
i ∈ {0, 1} is an indicator variable with χT1

i = 1 iff i ∈ T1. Since
0 < x∗P < 1 for all P ∈ P , the second inequality in the derivation above is an
equality only if for all i ∈ I and all paths P ∈ Pi the following two conditions
are satisfied.

1. χT1
i = 1, and

2.
∑

e∈T2∩P di = Δ.
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If we now consider each column of (LP) separately, add the column’s entries
corresponding to constraints of type (2) and subtract the column’s entries cor-
responding to constraints of type (1), we achieve a result of 0 in each column.
This demonstrates that T1 and T2 must be linearly dependent constraints. A
contradiction! ��

Thus, after at most |E| iterations, the algorithm terminates with an integral
vector x̂ ∈ {0, 1}|P|, whose support contains a path Pi for each message i ∈ I.
It is guaranteed that each path Pi does not contain more than Δ

di
edges, and

that the congestion of the paths violates the congestion of the optimal fractional
solution by at most Δ.

Corollary 1. Given Δ, the rounding algorithm determines a set of paths {Pi}i∈I

with dilation ≤ Δ and congestion ≤ C∗ + Δ, where C∗ is the minimum possible
congestion of fractional paths with dilation Δ.

2.3 Individual Deadlines

In a more general model of the message routing problem, each message Mi is
additionally equipped with a certain deadline Di > 0, denoting the latest point
in time when the message must be received by the destination node ti. We want
to emphasize that our algorithm might as well be applied in this more general
setting: we simply restrict the path lengths with respect to the deadlines. That is,
instead of choosing a value Δ which is not greater than the overall time horizon
T , we choose a factor q ∈ (0, 1] and consider for each message Mi the collection
of paths

Pi :=
{
si, ti-paths in G of length at most q

Di

di

}
.

This guarantees a dilation of at most

Δ = max
i∈I

qDi

and a congestion of at most C∗ +Δ.

2.4 Arbitrary Travel Times

The algorithm above can also be applied in a further extension of the message
routing problem, where travel times τ(e) ∈ N>0 are associated with all edges
e ∈ E. Here τ(e) denotes the time it takes for one packet to traverse e. Thus, a
message of size di completely traverses edge e in τ(e)+di−1 time units. Further,
if message i ∈ I is to be sent along path Pi, it takes at least

τ i(Pi) :=
∑

e∈Pi

(di + τ(e)− 1)
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time steps before the message is completely received by its destination node ti.
These observations show that the dilation for a given set of paths {Pi}i∈I in this
more general model becomes

D := max
i∈I

τ i(Pi),

while the congestion C = maxe∈E

∑
i∈I:e∈Pi

di remains unchanged. Note that
we can adopt our algorithm to handle travel times by defining for a given value
Δ ≤ T the collections of paths

Pi := {si, ti-paths with τ i(P ) ≤ Δ} ∀i ∈ I.

However, with arbitrary travel times, the corresponding separation problem to
our linear relaxation (LP ) is the general length-bounded shortest path problem.
While this problem is NP-hard, it can be solved approximately in the following
sense: for any ε > 0, one can find in time polynomial in the size of the network
G and 1

ε an si, ti-path P with τ i(P ) ≤ (1 + ε)Δ whose cost is bounded from
above by the cost of a shortest path in P i [17,18,19]. As before, the fractional
solution (which is now a (1+ε)-approximation to the optimal one) can be turned
into an integral solution with the rounding algorithm described above, since the
inequality

∑
e∈P di ≤ Δ still holds for each path P ∈ Pi and i ∈ I. Thus, we

achieve the following result.

Corollary 2. Even if each edge e ∈ E is equipped with a travel time τ(e) ∈ N>0,
a slight modification of the algorithm above returns a set of paths whose dilation
is bounded by (1+ ε)Δ and whose congestion differs from the optimal congestion
by an additive factor of at most (1 + ε)Δ. Here, ε > 0 can be chosen arbitrarily
small.

Given the set of paths {Pi}i∈I with congestion C and dilation D, the remaining
problem of determining priority rules in order to minimize the makespan, can
again be formulated as an acyclic job shop scheduling problem: to incorporate
the travel times, we simply define for each message i ∈ I and each edge e ∈ E
with e ∈ Pi an additional machine ei. After job i has been executed on machine
e for di time steps, it needs to be processed on machine ei for τ(e)−1 time steps,
before it can proceed to the next machine corresponding to the successive edge
of e in Pi.

Note that processing times in the resulting acyclic job shop scheduling problem
depend on both, the job and the machine. However, as already mentioned in the
introduction, schedules of length O(C + D log log �max) can be found for this
more general problem. (In our model, �max denotes the maximum of all travel
times and message sizes).

3 Message Routing on Paths

In this section we consider instances of the message routing problem where the
underlying network is a directed path. Since the path taken by any message
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is unique on such instances, no routing decisions but only scheduling decisions
have to be taken. That is, an algorithm for the message routing problem must
only resolve conflicts if two messages want to traverse the same edge at the same
point in time. This can be done by assigning priorities to the messages such that
a message with higher priority is sent first. More precisely, even if a message is
currently being sent while a message with a strictly higher priority arrives, the
latter message is sent instantaneously. Thus, an interruption of the message of
lower priority occurs.

The following example illustrates that a wrong choice of a priority rule can
lead to arbitrarily bad schedules.

Example 2. Suppose n messages {Mi}n−1
i=0 start at the same origin node and

need to be sent along a directed path. Each message Mi consists of di = 2i

packets and needs to traverse 2n−i edges before it reaches its destination. First
we consider a schedule, where messages with farther destination get a higher
priority. In order to send message i we wait at the origin until the first i − 1
messages are sent and then traverse the path without any additional delay. Thus
message i arrives at its destination at time

∑i−1
k=0 2k +2i ·2n−i ≤ 2n+1. Therefore

the optimal makespan is at most 2n+1.
In contrast, we next consider a schedule where messages with farther desti-

nation are assigned lower priorities. Then the makespan is determined by the
completion time of the smallest message 0. Furthermore, any message i is sent
without additional delay on its last 2n−i − 2n−i−1 + 1 edges and each message
smaller than i is sent immediately after i on these edges. Thus each messages i
adds at least (2n−i−2n−i−1)2i = 2n−2n−1 time units to the completion time of
message 0. Thus the makespan of this schedule is at least n(2n−2n−1) = n

4 2n+1.
This shows that the gap to the optimal makespan can grow linearly in the
number of messages.

In this example the Farthest-Destination-First Algorithm (FDFA for short) leads
to an optimal schedule. FDFA assigns a higher priority to messages which have
a farther destination according to the order of the underlying path. In case of
ties, messages with a later origin node get higher priority. If both origin and
destination of two messages coincide, ties are broken arbitrarily.

FDFA seems to be a good choice for the message routing problem on directed
paths in general. But, since the problem is known to be NP-hard [1], there surely
exist examples where FDFA is not optimal:

Example 3. Consider a directed path consisting of four edges and three messages
1, 2, and 3. Message 1 must be sent from the first to the last edge and has size
1, whereas messages 2 and 3 must be sent from the second to the third edge and
have both size 1 + ε for small enough ε > 0 (see Figure 2).

Then the optimum solution has a makespan of 4+2ε and the solution of FDFA
has a makespan of 5 + 2ε. Thus the performance guarantee of FDFA cannot be
better than 5

4 .

In this section, we identify a large class of problems where FDFA is guaranteed
to be optimal. But before, let us introduce some notation. For a message routing
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Fig. 2. Schedules of Example 3 showing that the approximation ratio of FDFA is not
less than 5

4 . The optimum schedule is illustrated above the FDFA-schedule.
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Fig. 3. Setting of Lemma 1

instance the underlying directed path P is given by node set V (P ) := {v1, . . . , vn}
and edge set E(P ) := {ek := (vk, vk+1) | k = 1, . . . , n − 1}. We say that a
message experiences additional delay or is additionally delayed on edge e in a given
schedule, if the starting time of i on e is strictly greater than the end time of i
on the predecessor edge. The makespan on an edge e is the earliest point in time
when all its messages have been sent through e. A time interval where no message
traverses a particular edge is called idle time. (The infinitely long time interval
after the makespan of an edge is not called idle time).

We show that the Farthest-Destination-First algorithm computes an optimum
solution on non-nested instances. For this we need improved bounds on the
minimum makespan combining dilation and congestion.

Lemma 1. Consider an arbitrary feasible schedule. Let ek, el ∈ E(P ) with k ≤ l
be two edges of P and i ∈ I be a message which must pass these edges. Let θk

i be
the time when i has completely traversed ek and let dk→l

i be the total amount of
messages passing ek and el and traversing ek after time θk

i (see Figure 3). Then
a lower bound on the makespan occurring on el is θk

i + dk→l
i + di(l − k).

Proof. The proof is illustrated in Figure 3. We prove this by induction over l−k.
If l− k = 0 then the statement is of course true. Let MAKl be the makespan of
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edge l. By the induction hypothesis we know for given k and l with l − k ≥ 1
that

MAKl ≥ θk+1
i + dk+1→l

i + di(l − k − 1). (6)

Further let Δ be the total size of messages passing ek and el, traversing ek after
time θk

i and ek+1 before time θk+1
i . Then we get:

θk+1
i ≥ θk

i + di +Δ (7)

Δ ≥ dk→l
i − dk+1→l

i (8)

Combining these inequalities leads to

MAKl ≥ θk
i + dk→l

i + di(l − k). (9)

This completes the proof. ��
Note that the bounds in the previous lemma depend on the considered schedule.
The following corollary states a lower bounds on the minimum makespan on a
particular edge over all feasible schedules.

Corollary 3. Let ek, el ∈ E(P ) with k ≤ l be two edges of P and i ∈ I be
a message which must pass both of these edges. Let dk→l be the total size of
messages passing ek and el. Then a lower bound on the minimum makespan on
edge el is dk→l + di(l − k).
Proof. Given an arbitrary schedule and a message i passing ek and el we know
dk→l ≤ θk

i +dk→l
i . Since dk→l and di are independent of the considered schedule,

the corollary follows directly from Lemma 1. ��
Next we show that FDFA computes a schedule minimizing the makespan if the
underlying instance does not contain nested messages. Let <P be the topological
order of P . Recall that two messages i1, i2 ∈ I are nested if one is strictly
contained in the other one, i.e., if si1 <P si2 ≤P ti2 <P ti1 or vice versa.

Theorem 2. Consider an instance of the message routing problem where no
two messages are nested. Then FDFA computes a schedule which minimizes the
makespan on each edge simultaneously.

Proof. Due to the lack of space, we refer for the proof to the full version of the
paper. ��
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Abstract. We study several multi-criteria undirected network design
problems with node costs and lengths with all problems related to the
node costs Multicommodity Buy at Bulk (MBB) problem in which we
are given a graph G = (V, E), demands {dst : s, t ∈ V }, and a fam-
ily {cv : v ∈ V } of subadditive cost functions. For every s, t ∈ V
we seek to send dst flow units from s to t on a single path, so that∑

v cv(fv) is minimized, where fv the total amount of flow through v.
In the Multicommodity Cost-Distance (MCD) problem we are also given
lengths {�(v) : v ∈ V }, and seek a subgraph H of G that minimizes
c(H) +

∑
s,t∈V dst · �H(s, t), where �H(s, t) is the minimum �-length of

an st-path in H . The approximation for these two problems is equivalent
up to a factor arbitrarily close to 2. We give an O(log3 n)-approximation
algorithm for both problems for the case of demands polynomial in n.
The previously best known approximation ratio for these problems was
O(log4 n) [Chekuri et al., FOCS 2006] and [Chekuri et al., SODA 2007].
This technique seems quite robust and was already used in order to im-
prove the ratio of Buy-at-bulk with protection (Antonakopoulos et al
FOCS 2007) from log3 h to log2 h. See [3].

We also consider the Maximum Covering Tree (MaxCT) problem which
is closely related to MBB: given a graph G = (V, E), costs {c(v) : v ∈ V },
profits {p(v) : v ∈ V }, and a bound C, find a subtree T of G with
c(T ) ≤ C and p(T ) maximum. The best known approximation algo-
rithm for MaxCT [Moss and Rabani, STOC 2001] computes a tree T
with c(T ) ≤ 2C and p(T ) = Ω(opt/ log n). We provide the first non-
trivial lower bound and in fact provide a bicriteria lower bound on ap-
proximating this problem (which is stronger than the usual lower bound)
by showing that the problem admits no better than Ω(1/(log log n)) ap-
proximation assuming NP �⊆ Quasi(P) even if the algorithm is allowed
to violate the budget by any universal constant ρ. This disproves a con-
jecture of [Moss and Rabani, STOC 2001].

Another related to MBB problem is the Shallow Light Steiner Tree
(SLST) problem, in which we are given a graph G = (V, E), costs
{c(v) : v ∈ V }, lengths {�(v) : v ∈ V }, a set U ⊆ V of terminals,
and a bound L. The goal is to find a subtree T of G containing U with
diam�(T ) ≤ L and c(T ) minimum. We give an algorithm that computes

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 231–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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a tree T with c(T ) = O(log2 n) · opt and diam�(T ) = O(log n) · L. Pre-
viously, a polylogarithmic bicriteria approximation was known only for
the case of edge costs and edge lengths.

Keywords: Network design, Node costs, Multicommodity Buy at Bulk,
Covering tree, Approximation algorithm, Hardness of approximation.

1 Introduction

Network design problems require finding a minimum cost (sub-)network that
satisfies prescribed properties, often connectivity requirements. The most fun-
damental problems are the ones with 0, 1 connectivity requirements. Classic exa-
mples are: Shortest Path, Min-Cost Spanning Tree, Min-Cost Steiner Tree/Forest,
Traveling Salesperson, and others. Examples of problems with high connectivity
requirements are: Min-Cost k-Flow, Min-Cost k-Edge/Node-Connected Spanning
Subgraph, Steiner Network, and others. All these problems also have practical
importance in applications.

Two main types of costs are considered in the literature: the edge costs and
the node costs. We consider the latter, which is usually more general than the
edge costs variants; indeed, for most undirected network design problems there
is a very simple reduction that transforms edge costs to node costs, but the
inverse is, in general, not true. The study of network design problems with node
costs is already well motivated and established from both theoretical as well
as practical considerations [5, 6, 8, 10, 12]. For example, in telecommunication
networks, expensive equipment such as routers and switches are located at the
nodes of the underlying network, and thus it is natural to model some of these
problems by assigning costs on the nodes rather than to the edges.

For some previous work on undirected network-design problems with node
costs see the work of Klein and Ravi [10], Guha et al. [8], Moss and Rabani
[12], and Chekuri et al. [5, 6]. We mostly focus on resolving some open problems
posed in these papers.

1.1 Problems Considered

Given a length function � on edges/nodes of a graph H , let �H(s, t) denote the
�-distance between s, t in H , that is, the minimum �-length of an st-path in H
(including the lengths of the endpoints). Let diam�(H) = maxs,t∈V (H) �H(s, t)
be the �-diameter of H , that is the maximum �-distance between two nodes in
H . We consider the following two related problems on undirected graphs.

Multicommodity Buy at Bulk (MBB)
Instance: A graph G = (V,E), a family {cv : v ∈ V } of sub-additive monotone

non-decreasing cost functions, a set D of pairs from V , and positive
demands {dst : {s, t} ∈ D}.

Objective: Find a set {Pst : {s, t} ∈ D} of st-paths so that
∑

v∈V cv(fv) is
minimized, where fv =

∑
{dst : {s, t} ∈ D, v ∈ Pst}.
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Multicommodity Cost-Distance (MCD)
Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {�(v) : v ∈ V }, a set

D of pairs from V , and positive integral demands {dst : {s, t} ∈ D}.
Objective: Find a subgraph H of G that minimizes

w(H,D) = c(H) +
∑

{s,t}∈D

dst · �H(s, t) (1)

As linear functions are subadditive, MCD is a special case of MBB. The following
statement shows that up to a factor arbitrarily close to 2, MCD and MBB are
equivalent w.r.t. approximation.

Proposition 1 ([2]). If there exists a ρ-approximation algorithm for MCD then
there exists a (2ρ+ ε)-approximation algorithm for MBB for any ε > 0.

We consider two other fundamental problems closely related to MBB (see an
explanation below):

Maximum Covering Tree (MaxCT)
Instance: A graph G = (V,E), costs {c(v) : v ∈ E}, profits {p(v) : v ∈ V }, and

a bounds C.
Objective: Find a subtree T of G with c(T ) ≤ C and p(T ) maximum.

Shallow-Light Steiner Tree (SLST)
Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {�(v) : v ∈ V }, a set

U ⊆ V of terminals, and a bound L.
Objective: Find a subtree T of G containing U with diam�(T ) ≤ L and c(T )

minimum.

Each one of the problems MBB and SLST has an “edge version”, where the
costs/lengths are given on the edges. As was mentioned, the edge version admits
an easy approximation ratio preserving reduction to the node version.

1.2 The Unifying Theme of the Problems Considered

A bicriteria approximation algorithm for the following problem was used to
derive an O(log4 n)-approximation algorithm for MBB [9].

k-Buy at Bulk Steiner Tree (k-BBST)
Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {�(v) : v ∈ V }, a

set U ⊆ V of terminals, a root r ∈ V − U , diameter bound L, cost
bound C, and an integer k.

Question: Does G has a subtree T containing r and at least k terminals so that
diam�(T ) ≤ L and c(T ) ≤ C?

Theorem 1 ([9]). Suppose that there exists a polynomial time algorithm that
given a YES-instance of k-BBST finds a tree T containing r with Ω(k) terminals
so that c(T ) = ρ1 ·C and diam�(T ) = ρ2 ·L. Then MBB admits an approximation
algorithm with ratio O(log n) · ρ1 +O(log3 n) · ρ2.
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Theorem 2 ([9]). There exist a polynomial time algorithm that given a YES-
instance of k-BBST finds a a tree T containing at lest k/8 terminals so that
c(T ) = O(log3 n) · C and diam�(T ) = O(log n) · L.

Thus improved algorithm for k-BBST would imply a better approximation al-
gorithm for MBB. It seems hard to improve the bicriteria O(log3 n, logn) ap-
proximation for k-BBST given in [9]. Hence we consider relaxations of k-BBST,
hoping that they may shed light on MBB. Also, MaxCT and SLST are interesting
in their own right. The MaxCT problem is similar to k-BBST. For unit termi-
nal costs, setting cost bound k is the same as seeking a tree with k terminals,
and maximizing the profit. What makes MaxCT much easier than k-BBST is
that MaxCT has no length constrains. In particular, the primal-dual approach
of [12] does not seem suitable to handle lengths constrains as well hence does
not seem suited to handle k-BBST. The SLST is easier than k-BBST from an-
other point of view. In SLST, given a cost and diameter bounds, a tree that
is both shallow and light is required. But this is the case k = |U | namely the
problem of covering all terminals (and not only k as in k-BBST). The difference
seems quite significant, and thus k-BBST seems significantly harder to handle
than SLST. In summary, one may hope that techniques for MaxCT that are able
to find a tree with k terminals and low cost (but cant handle lengths), could
somehow be combined with techniques that do produce a tree that is both shal-
low and light, but work only for k = |U |, getting a better approximation for
k-BBST.

1.3 Related Work

We survey some results on relevant network design problems with node costs.
Klein and Ravi [11] showed that the Node-Weighted Steiner Tree problem is
Set-Cover hard, thus it admits no o(logn) approximation unless P=NP [13]. They
also obtained a matching approximation ratio using a greedy merging algorithm.
Guha et al. [8] showed O(log n) integrality gap of a natural LP-relaxation for
the problem. The MBB problem is motivated by economies of scale that arise in
a number of applications, especially in telecommunication. The problem is stu-
died as the fixed charge network flow problem in operations research. The first
approximation algorithm for the problem is by Salman et al. [14]. For the multi-
commodity version MBB the first non-trivial result is due to Charikar and Kara-
giazova [4] who obtained an O(log |D| exp(O(

√
logn log logn)))-approximation,

where |D| is the sum of the demands. In [5] an O(log4 n)-approximation algo-
rithm is given for the edge costs case, and further generalized to the node costs
case in [6]. See [1] for an Ω(log1/2−ε n)-hardness result.

The MaxCT problem was introduced in [8] motivated by efficient recovery
from power outage. In [8] a pseudo approximation algorithm is presented that
returns a subtree T with c(T ) ≤ 2C and p(T ) = Ω(P/ log2 n), where P is the
maximum profit under budget cost C. This was improved in [12] to produce
a tree T with c(T ) ≤ 2C and p(T ) = Ω(P/ logn). For a related minimization
problem when one seeks to find a minimum cost tree T with p(T ) ≥ P [12] gives
an O(lnn)-approximation algorithm.
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1.4 Our Results

The previously best known ratio for MCD/MBB wasO(log4 n) both for edge costs
[5] and node costs [6], and this was also so for polynomial demands. We improve
this by using, among other things, a better LP-relaxation for the problem.

Theorem 3. MCD/MBB with polynomial demands admits an O(log3 n)-appro-
ximation algorithm.

The technique used is quite robust. It was already used in [3] to improve the
approximation ratio for Buy-at-bulk with protection (see [3]) from O(log3 h) to
O(log2 h).

Our next result is for the MaxCT problem. In [12] it is conjectured that MaxCT
admits an O(1) approximation algorithm (which would have been quite helpful
for dealing with k-BBST). We disprove this conjecture. Since the upper bound
is a bicriteria upper bound, we give a bicriteria lower bound (which is stronger
than the usual lower bound).

Theorem 4. MaxCT admits no constant approximation algorithm unless NP ⊆
DTIME(nO(log n)) even if the algorithm is allowed to use a budget of ρ · B for
any universal constant ρ. MaxCT admits no o(log logn) approximation algorithm
unless NP ⊆ DTIME(npolylog(n)) even if the algorithm is allowed to use ρ · B
budget for any universal constant ρ.

Our last result is for the SLST problem. For SLST with edge costs and edge
lengths, the algorithm of [11] computes a tree T with c(T ) = O(log n) · opt and
diam�(T ) = O(log n) · L. We consider the more general case of node costs and
node lengths.

Theorem 5. SLST with node costs and lengths admits an approximation al-
gorithm that computes a tree T with c(T ) = O(log2 n) · opt and diam�(T ) =
O(log n) · L.

Theorems 3 and 4 are proved in Sections 2 and 3.

2 Improved Algorithm for MBB

In this section we prove Theorem 3. We give an O(log2 n · logN)-approximation
algorithm for MCD with running time polynomial in N , where N is the sum of
the demands plus n. If N is polynomial in n, the running time is polynomial
in n, and the approximation ratio is O(log3 n). We may assume (by duplicating
nodes) that all demands are 1. Then our problem is:

Instance: A graph G = (V,E), costs {c(v) : v ∈ V }, lengths {�(v) : v ∈ V }, and
a set D of node pairs.

Objective: Find a subgraphH of G minimizing w(H,D) = c(H)+
∑

{s,t}∈D

�H(s, t).

For the latter problem, we give an O(log2 n · log |D|)-approximation algorithm.
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2.1 Approximate Greedy Algorithm and Junction Trees

We use a result about the performance of a Greedy Algorithm for the following
type of problems:

Covering Problem
Instance: A groundset Π and functions ν, w on 2Π with ν(Π) = 0.
Objective: Find P ⊆ Π with ν(P) = ν(Π) and with w(P) minimized.

Let ρ > 1 and let opt be the optimal solution value for the Covering Problem.
The ρ-Greedy Algorithm starts with P = ∅ and iteratively adds subsets of Π−P
to P one after the other using the following rule. As long as ν(P) > ν(Π) it
adds to P a set R ⊆ Π − P so that

σP(R) =
w(R)

ν(P)− ν(P +R)
≤ ρ · opt
ν(P)− ν(Π)

. (2)

The following known statement follows by a standard set-cover analysis, c.f.,
[10].

Theorem 6. If ν is decreasing and w is increasing and subadditive, then the ρ-
Greedy Algorithm computes a solution P with w(P) ≤ ρ·[ln(ν(∅)−ν(Π))+1]·opt.

In our setting, Π is the family of all st-paths, {s, t} ∈ D. For a set R ⊆ Π of
paths connecting a set R of pairs in D, let ν(R) = |D| − |R| be the number of
pairs in D not connected by paths in R, and let w(R) = c(R)+

∑
{s,t}∈R �(Pst),

where c(R) denotes the cost of the union of the paths inR, and Pst is the shortest
st-path in R. Note that ν(Π) = 0 and ν(∅) = |D|. We will show how to find such
R satisfying (2) with ρ = O(log2 n). W.l.o.g., we may consider the case P = ∅.
(Otherwise, we consider the residual instance obtained by excluding from D all
pairs connected by P and setting P = ∅; it is easy to see that if R satisfies (2)
for the residual instance, then this is also so for the original instance.) Assuming
P = ∅, (2) can be rewritten as:

σ(R) =
c(R)
|R| +

∑
{s,t}∈R �(Pst)

|R| ≤ ρ · opt
|D| . (3)

The quantity σ(R) in (3) is the density of R; it is a sum of ”cost-part” c(R)/|R|
and the remaining ”length-part”. The following key statement from [5] shows
that with O(log n) loss in the length part of the density, we may restrict ourselves
to very specific R, as given in the following definition; in [5] it is stated for
edge-costs, but the generalization to node-costs is immediate.

Definition 1. A tree T with a designated node r is a junction tree for a subset
R ⊆ D of node pairs in T if the unique paths in T between the pairs in R all
contain r.

Lemma 1 ([5], The Junction Tree Lemma). Let H∗ be an optimal solu-
tion to an MCD instance with {0, 1} demands. Let C = c(H∗) and let L =∑

{s,t}∈D �H∗(s, t). Then there exists a junction tree T for a subset R ⊆ Q of
pairs, so that diam�(T ) = O(log n) · L/|D| and c(T )/|R| = O(C/|D|).
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If we could find a pair T,R as in Lemma 1 in polynomial time, then we would
obtain an O(log |D| · log n)-approximation algorithm, by Theorem 6. In [5] it is
shown how to find such a pair that satisfies (3) with ρ = O(log3 n). We will show
how to find such a pair with ρ = O(log2 n).

Theorem 7. There exists a polynomial time algorithm that given an instance of
MCD with {0, 1} demands computes a set R of paths connecting a subset R ⊆ D
of pairs satisfying (3) with ρ = O(log2 n).

Motivated by Lemma 1, the following LP was used in [5, 6]. Guess the common
node r of the paths in R of the junction tree T . Let U be the union of pairs in
D. Relax the integrality constraints by allowing ”fractional” nodes and paths.
For v ∈ V , xv is the ”fraction of v” taken into the solution. For u ∈ U , yu is
the total amount of flow v delivers to r. In the LP, we require ys = yt for every
{s, t} ∈ D, so ys = yt amount of flow is delivered from s to t via r. For u ∈ U
let Πu be the set of all ur-paths in Π , and thus Π = ∪u∈UΠu. For P ∈ Π , fP is
the amount of flow through P . Dividing all variables by |R| (note that this does
not affect the objective value), gives the following LP:

(LP1) min
∑

v∈V c(v) · xv +
∑

P∈Π �(P ) · fP

s.t.
∑

u∈U yu = 1∑
{P∈Πu|v∈P} fP ≤ xv v ∈ V, u ∈ U∑

P∈Πu
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D
xv, fP , yu ≥ 0 v ∈ V, P ∈ Π, u ∈ U

2.2 The LP Used

Let A · log n ·L/|D| be the bound on the lengths of the paths in R guaranteed by
Lemma 1. We use almost the same LP as (LP1), except that we seek to minimize
the cost only, and restrict ourselves to paths of length at most A · logn · L/|D|,
which reflects better the statement in Lemma 1. For Π ′ ⊆ Π let Π̃ ′ = {P ∈ Π ′ :
�(P ) ≤ A · logn · L/|D|}. Again recall that yu is the flow delivered from u to r.
The LP we use is:

(LP2) min
∑

v∈V c(v) · xv

s.t.
∑

u∈U yu = 1∑
{P∈Π̃u|v∈P} fP ≤ xv v ∈ V, u ∈ U∑

P∈Π̃u
fP ≥ yu u ∈ U

ys − yt = 0 {s, t} ∈ D
xv, fP , yu ≥ 0 v ∈ V, P ∈ Π̃, u ∈ U

Although the number of variables in (LP2) might be exponential, any basic
feasible solution to (LP2) has O(N2) non-zero variables.
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Lemma 2. (LP2) can be solved in polynomial time.

By Lemma 1 there exists a solution to (LP2) of value O(C/|D|). Indeed, let
T,R,R be as in Lemma 1; in particular, c(T )/|R| = O(C/|D|). For u ∈ T let
Pu be the unique ur-path in T . Define a feasible solution for (LP2) as follows:
xv = 1/|R| for every v ∈ T , yu = fPu = 1/|R| for every u that belongs to some
pair in R, and xu, yu, fP are zero otherwise. It easy to see that this solution is
feasible for (LP2), and its value (cost) is c(T )/|R| = O(C/|D|).

2.3 Proof of Theorem 3

We now proceed similarly to [5, 6]. We may assume that max{1/yu : u ∈ U} is
polynomial in n, see [6]. Partition U into O(log n) sets Uj = {u ∈ U : 1/2j+1 ≤
yu ≤ 1/2j}. There is some Uj that delivers Ω(1/ lnn) flow units to r. Focus
on that Uj. Clearly, |Uj | = Θ(2j)/ logn. Setting x′v = min{Θ(2j) · xv, 1} for all
v ∈ V and f ′P = min{Θ(2j) · fP , 1} for all P ∈ Π , gives a feasible solution for
the following LP that requires from every node in Uj to deliver a flow unit to r.

(LP3) min
∑

v∈V c(v) · x′v +
∑

P∈Π �(P ) · f ′P

s.t.
∑

{P∈Πu|v∈P} f
′
P ≤ x′v v ∈ V, u ∈ Uj∑

P∈Πu
f ′P ≥ 1 u ∈ Uj

x′v, f
′
P ≥ 0 v ∈ V, P ∈ Π

We bound the value of the above solution x′, f ′ for (LP3). Since we have∑
v∈V c(v)xv = O(C/|D|),

∑

v∈V

c(v)x′v = O(2j) · C/|D| .

We later see that, since |Uj | = Θ(2j/ logn), an extra logn factor is invoked in
the cost-density part of our solution; if, e.g., |Uj | = 2j would hold, this logn
factor would have been saved. Our main point is that the length-part of the
density does not depend on the size of Uj . We show this as follows. All paths
used in (LP2) are of length O(log n ·L/|D|). First, assure that

∑
P∈Π̃u

f ′P is not
too large. For any u ∈ Uj the fractional values of {f ′P : P ∈ Πu} only affect u,
namely, if u 
= u′ then Π̃u ∩ Π̃u′ = ∅. Therefore, if

∑
P∈Π̃u

fP >> 1, we may
assure that the sum is at most 3/2 as follows. If a single path carries at least
1/2 a unit of flow then (scaling values by only 2) this path can be used as the
solution for u. Else, any minimal collection of paths delivering at least one unit
of flow, delivers at most 3/2 units of flow to r. Hence the contribution of a single
node u to the fractional length-part is

O(log n · L/|D|)
∑

P∈Π̃u

f ′P = O(log n · L/|D|) .

Over all terminals, the contribution is O(|Uj | · logn ·L/|D|). Now, use the main
theorem of [6]:
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Theorem 8 ([6]). There exists a polynomial time algorithm that finds an integral
solution to (LP3) of value O(log n) times the optimal fractional value of (LP3).

Hence we can find in polynomial time a tree T containing r and Uj with c(T ) =
O(log n · 2j · C/|D|) and

∑
u∈Uj

�T (u, r) = O(|Uj | · log2 n · L/|D|).
Note that if the tree contains i terminals then it contains i/2 pairs. This is due

to the constraint ys = yt. Since the tree spans Θ(2j/ logn) pairs, its cost-part
density is O(log2 n) ·C/|D|. Clearly, the length-part density is O(log2 n) ·L/|D|.
This finishes the proof of Theorem 7, and thus also the proof of Theorem 3 is
complete.

3 A Lower Bound for MaxCT

Here we prove the following statement that implies Theorem 4. We first prove a
non-bicriteria lower bound.

Theorem 9. MaxCT admits no better than c-approximation algorithm, unless
NP ⊆ DTIME(nO(c·ln c·exp(5c))).

Clearly, this implies that MaxCT admits no constant approximation algorithm
unless P=NP. Also, the problem admits no B log log n-ratio approximation for
some universal constant B unless NP ⊆ DTIME(npolylog n).
Remark: The size of the instance produced is s = nO(c·ln c·exp(9c)) and thus
c = Θ(log log s). Therefore, it is not possible to get a stronger hardness than
log logn unless we get a better gap in terms of c.

3.1 The Gap of Set-Cover

The Set-Cover problem is as follows. Given a collection A of sets on a groundset
B, find a minimum size subcollection A′ ⊆ A so that the union of the sets in A′

is B. We consider the decision version, and present the problem in terms of the
incidence bipartite graph H = (A + B,E) of A and B, where ab ∈ E if the set
a ∈ A contains the element b ∈ B. For A′ ⊆ A the set of elements covered by A′

is the set Γ (A′) = {b ∈ B : ab ∈ E for some a ∈ A′} of neighbors of A in H . Let
opt denote the optimum solution value for an instance of Set-Cover at hand.

Set-Cover (decision version)
Instance: A bipartite graph H = (A+B,E).
Question: Does there exists A′ ⊆ A with |A′| = opt and |ΓH(A′)| = B?

Theorem 10 ([7]). For any NPC language I with |I| = n there exists an
O(nO(log log n)) time reduction from I to an instance of Set-Cover so that:

- For a YES-instance there exists A′ ⊆ A with |A′| = opt so that Γ (A′) = B.
- For a NO-instance |A′| ≥ opt · ln |B| for any A′ ⊆ A with Γ (A′) = B.

Corollary 1. Unless NP ⊆ DTIME(nO(log log n)), Set-Cover admits no polyno-
mial time algorithm that for some 1 ≤ α < ln |B| finds A′ ⊆ A with |A′| ≤ α ·opt
and |Γ (A′)| ≥ (1− 1/eα+1)|B|.
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Proof. Suppose that we can find in polynomial time A′ ⊆ A with |A′| = α · opt
and Γ (A′) ≥ (1 − β)|B|, β ≤ 1. For the residual instance of Set-Cover, we still
need to cover β|B| nodes in B. We can find a cover of size opt · [1 + ln(b|B|)] of
the remaining nodes using the Greedy Algorithm. So, we can find a cover of size
opt · [α+ 1 + ln(β|B|)] of all B. But this cannot be smaller than opt · ln |B|, by
Theorem 10. So, we get that α+ 1 + ln(β|B|) ≥ ln |B|. This gives β ≥ 1/eα+1.

3.2 The Reduction

Define a sequence of graphs G1, G2, . . . by induction (see Fig. 1). To obtain G1,
take H , add a root r, and connect r to every node in A. Let A1 = A and
B1 = B. To obtain Gi from Gi−1, i ≥ 2, take G1 and |B| copies of Gi−1, each
corresponding to a node in B1, and for every copy identify its root with the node
corresponding to it in B1. As the construction resembles a tree, we borrow some
terms from the terminology of trees. A copy of H has level i if its A sets have
distance 2i− 1 to the root r. The copies of H at level i are ordered arbitrarily.
A typical copy of H at level i is denoted by Hij = (Aij , Bij , Eij) with i the level
of the copy and j the index of the copy. This means that the Aij sets are at
distance 2i− 1 from the root and the index j is the order statistic of the copy
inside level i. Let Ai =

⋃
j Aij and Bi =

⋃
j Bij .

An Hij is an ancestor of a terminal y if y belongs to the subgraph rooted by
some v ∈ Bij ; such v is called the elements ancestor of y in level i and is denoted
ansi(y). Note that ansi(y) is unique.

The terminals of Gh are
⋃

j Bh,j, and each of them has profit 1; other nodes
have profit 0. The cost of every node in Aij is 1/|B|i−1 (so the nodes in A1 = A11
have cost 1), and the cost of any other node is 0. The cost bound is C = h · opt.
The number h of levels in the construction is defined as:

h = 4
c · exp(4c+ 1)

2c− 1
ln c . (4)

(a) (b)r r
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Fig. 1. (a) The graph G1. (b) The graph G2; if instead of copies of G1 we “attach” to
nodes in B1 roots of the copies of Gi−1, then we obtain Gi.
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Fact 11. The size (and the construction time) of the construction is nO(h),
where n = max{|A|, |B|}.

3.3 Analysis

While increasing the level by 1, the number Set-Cover instances grows up by
|B| but the node costs go down by |B|. Hence the total cost of every level i is
|A|, and the total cost of G is h · |A|. We may assume that any solution T to
the obtained instance of MaxCT contains r. Otherwise, we may add the shortest
path from r to T ; the cost added is negligible in our context.

Lemma 3 (The YES-instance). The obtained MaxCT instance G,C admits
a feasible solution T that contains all terminals.

Proof. Consider the graph T induced in G by r and all the copies of A′
ij ∪ Bij

so that |A′
ij | = opt and A′

ij covers Bij . This graph contains all terminals. Since
every A′

ij covers Bij , T is connected. The cost of all copies of A′
ij at any level i

is opt. Summing over all levels gives total cost c(T ) = h · opt = C, as claimed.

We now deal with the MaxCT instance derived from a NO-instance. Fix a feasible
solution T for MaxCT. Intuitively, T has an average cost of opt to spend on every
level i. Averaging over all (Aij , Bij , Eij) copies, |T ∩ Aij | should be about opt
for every i, j. In such a case the total cost would be opt · h.

Definition 2. Level i in G is cheap (w.r.t. T ) if |T∩Ai| < 2opt and is expensive
otherwise. A copy Hij in a cheap level i is called expensive if |T ∩Aij | ≥ 4 ·c ·opt.

Lemma 4 (The NO-instance). If MaxCT derived from a NO-instance then
T contains less than 1/c fraction of the terminals.

Proof. Let us say that a node v is active if it belongs to T ; else v is lost. Initiate
all terminals to be active. We gradually prove that some of them are actually
lost, and at the end we will show that at most 1/c fraction of them can be
active. At each level we are going to have some already lost elements Bij for
several different j. This means that an element ancestor of those Bij was proven
to be lost. This indicates that all their terminals descendants are lost (because
every terminal � has a unique ancestor ansi(�)). The rest will be active elements.

We only consider terminals lost at cheap levels, ignoring those that may get
lost in expensive levels. Let i be a cheap level. and let Ri be the number of
terminals still declared “active” after we go via level i. Let j > i be the next
cheap level. We divide the leaves with respect to level j into automatically active,
and unsure. The automatically active leaves are descendents of heavy Hij copies.

Note that at most 1/2c of the (Aj,k, Bjk, Ejk) copies at level j may be heavy
(because the total cost invested on active copies is still at most 2opt). Thus by
symmetry at most 1/2c fraction of Ri leaves may become automatically active.
The number of unsure leaves is at least |Ri|(1 − 1/2c).
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Those remaining (1 − 1/2c)Ri Hij copies are cheap and satisfy |T ∩ Ajk| ≤
4c · opt. By Claim 1, at least exp(−4c − 1) fraction of the the elements in the
cheap copies at level j become lost. This means that at least

(
1− 1

2c

)
· exp(−4c− 1)

fraction of the previously active terminals are lost at level j. This follows by
symmetry (every element has the same number of leaf descendants) and because
distinct elements have disjoint collection of descendants. Hence, at every cheap
level the active terminals decrease by a factor of at least

1− 2c− 1
2c

· exp(−4c− 1).

Because the total budget bound is C we get that at most half of the levels are
expensive, so at least h/2 levels are cheap. Thus the fraction of active terminals
remaining at the end is at most

(
1− 2c− 1

2c
· exp(4c+ 1)

)h/2

< 1/c.

The last inequality follows by the choice of h in (4). Thus T contains at most
1/c of the terminals, which concludes the proof of the lemma.

Theorem 4 directly follows from Lemma 3 and Lemma 4.
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Introduction

In this paper, we consider the problem of maximizing a non-negative submodular
function f , defined on a (finite) ground set N , subject to matroid constraints.
A function f : 2N → R is submodular if for all S, T ⊆ N , f(S ∪ T ) + f(S ∩
T ) ≤ f(S) + f(T ). Furthermore, all submodular functions that we deal with
are assumed to be non-negative. Throughout, we assume that our submodular
function f is given by a value oracle; i.e., for a given set S ⊆ N , an algorithm
can query an oracle to find the value f(S). Without loss of generality, we take
the ground set N to be [n] = {1, 2, . . . , n}.

We assume some familiarity with matroids [26] and associated algorithmics
[28]. Briefly, a matroid M is an ordered pair (N, I), where N is the ground set
of M and I is the set of independent sets of M. For a given matroid M, the
associated matroid constraint is S ∈ I(M). In our usage, we deal with k matroids
Mi = (N, Ii), i = 1, . . . , k, on the common ground set N . We assume that each
matroid is given by an independence oracle, answering whether S ∈ Ii or not. It
is no coincidence that we use N for the ground set of our submodular function f
as well as for the ground set of our matroids Mi = (N, Ii), i = 1, . . . , k. Indeed,
our optimization problem is

max
{
f(S) : S ∈ ∩k

i=1Ii

}
.

Where necessary, we make some use of other standard matroid notation. For a
matroid M = (N, I), we denote its rank function by rM and its dual by M∗. A
base of M is a maximal independent set J ∈ I, having cardinality rM(N). For
a set S ⊂ N , we let M\S, M/S, and M|S denote deletion of S, contraction of
S, and restriction to S, respectively.

Previous Results. Optimization of submodular functions is a central topic in
combinatorial optimization [22, 28]. While submodular minimization is polyno-
mially solvable [18, 29], maximization variants are usually NP-hard because they
include either Max Cut, variants of facility location, and set coverage problems.

� This work was done while the last author was at Princeton University.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 244–257, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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A classical technique for submodular maximization is the greedy algorithm.
The greedy algorithm was first applied to a wide range of submodular maximiza-
tion problems in the late-70’s and early-80’s [8, 9, 10, 14, 15, 19, 23, 24]. The
most relevant result for our purposes is the proof that the greedy algorithm gives
a 1/(k+1)-approximation for the problem of maximizing a monotone submodu-
lar function subject to k matroid constraints [24]. Due to a simple reduction, this
problem also encapsulates the problem of maximizing a linear function subject
to k + 1 matroid constraints.1 Thus we get a 1/k-approximation for maximiz-
ing a linear function subject to k matroid constraints, k ≥ 3 (this result ap-
peared first in [15]). Until recently, the greedy algorithm had the best established
performance guarantee for these problems under general matroid constraints.

Recently, improved results have been achieved using the multilinear exten-
sion of a submodular function and pipage rounding [1, 5, 6, 30]. In particu-
lar, Vondrák [30] designed the continuous greedy algorithm which achieves a
(1− 1/e)-approximation for our problem with k = 1, i.e. monotone submodular
maximization subject to a single matroid constraint (see also [6]). This result is
optimal in the oracle model even for the case of a uniform matroid constraint [25],
and also optimal unless P = NP for the special case of maximum coverage[11].

Another algorithmic technique that has been used for submodular maximiza-
tion is local search. Cornuéjols et al. [9] show that a local-search algorithm
achieves a constant-factor approximation guarantee for the maximum uncapaci-
tated facility-location problem which is a special case of submodular maximiza-
tion. Analogously, Nemhauser et al. [23] show a similar result for the problem
of maximizing a monotone submodular function subject to a single cardinality
constraint (i.e. a uniform matroid constraint). We remark that local search in
this case is known to yield only a 1/2-approximation, i.e. it performs worse than
the greedy algorithm [23].

The maximum k-dimensional matching problem is a problem of maximizing
a linear function subject to k special partition matroid constraints. Improved
algorithms for maximum k-dimensional matching have been designed using local
search. The best known approximation factors are 2/(k + ε) in the unweighted
case (i.e., 0/1 weights), and 2/(k+1+ε) for a general linear function, even in the
more general cases of weighted set packing [17] and independent set problems
in (k + 1)-claw free graphs [3]. The latter result was obtained after a series of
improvements over the basic local-search algorithm [2, 3, 7].

However, general matroid constraints seem to complicate the matter. Prior to
this paper, the best approximation for the problem of maximum independent set
in the intersection of k ≥ 3 matroids was 1/k (for a recent discussion see [27]).
On the hardness side, it is known that unless P = NP , there is no approximation
better than O(log k/k) for k-dimensional matching [16], and hence neither for the
intersection of k general matroids. The 1/(k +1)-approximation for submodular
maximization subject to k matroids [24] can be improved in the case when all k

1 Given a problem max{w(S) : S ∈
⋂k

i=0 Ii} where w(S) is linear, we can equivalently

consider the problem max{f(S) : S ∈
⋂k

i=1 Ii}, where f(S) = max{w(I) : I ⊆ S, I ∈
I0}, the weighted rank function of M0, is known to be monotone submodular.
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constraints correspond to partition matroids. For any fixed k ≥ 2 and ε > 0, a
simple local-search algorithm gives a 1/(k + ε)-approximation for this variant of
the problem [21]. The analysis strongly uses the properties of partition matroids.
It is based on relatively simple exchange properties of partition matroids that
do not hold in general.

Local-search algorithms were also designed for non-monotone submodular
maximization. The best approximation guarantee known for unconstrained sub-
modular maximization is 2/5−ε [12]. For the problem of non-monotone submodu-
lar maximization subject to k matroid constraints, the best known approximation
is 1/(k + 2 + 1/k + ε) (for any constant k ≥ 1 and ε > 0) [21].

Our Results and Techniques. In this paper we analyze a natural local-search
algorithm: Given a feasible solution, i.e. a set S that is independent in each
of the k matroids, our local-search algorithm tries to add at most p elements
and delete at most kp elements from S. If there is a local move that generates
a feasible solution and improves the objective value, our algorithm repeats the
local-search procedure with that new solution, until no improvement is possible.
Our main result is that for k ≥ 2, every locally-optimal feasible solution S
satisfies the inequality

(k + 1/p) · f(S) ≥ f(S ∪C) + (k − 1 + 1/p) · f(S ∩ C),

for every feasible solution C. We also provide an approximate variant of the local-
search procedure that finds an approximate locally-optimal solution in polyno-
mial time, while losing a factor of 1 + ε on the left-hand side of the above
inequality (Lemma 11). Therefore, for any fixed k ≥ 2 and ε > 0, we obtain a
polynomial-time algorithm with approximation guarantee 1/(k+ε) for the prob-
lem of maximizing a monotone non-decreasing submodular function subject to
k matroid constraints. This algorithm gives a 1/(k−1+ε)-approximation in the
case when the objective function is linear. These results are tight for our local
search algorithm, which follows from [2].

We also obtain an approximation algorithm for non-monotone submodular
functions. In this case, one round of local search is not enough, but applying the
local search iteratively, as in [21], one can obtain an approximation algorithm
with performance guarantee of 1/(k + 1 + 1/(k − 1) + ε).

The main technical contributions of this paper are two new exchange proper-
ties for matroids. One is a generalization of the classical Rota Exchange Prop-
erty (Lemma 8) and another is an exchange property for the intersection of two
matroids (Lemma 5), which generalizes an exchange property based on augment-
ing paths which was used in [21] for partition matroids. We believe that both
properties and their proofs are interesting in their own right.

In §1, we establish some useful properties of submodular functions. In §2, we
establish our exchange properties for matroids. In §3, we describe and analyze
our local-search algorithm.
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1 Some Useful Properties of Submodular Functions

Lemma 1. Let f be a submodular function on N . Let S, C ⊆ N and let {Tl}t
l=1

be a collection of subsets of C \ S such that each element of C \ S appears in
exactly k of these subsets. Then

∑t
l=1 [f(S ∪ Tl)− f (S)] ≥ k (f(S ∪ C)− f(S)) .

Proof. Let s = |S| and c = |C ∪ S|. We will use the notation [n] to denote
the set {1, . . . , n} (by convention [0] = ∅). Without loss of generality, we can
assume that S = {1, 2, . . . , s} and that C \S = {s+1, s+2, . . . , c}. Then for any
T ⊆ C \ S, by submodularity: f(S ∪ T )− f(S) ≥

∑
p∈T [f([p])− f([p− 1])] .

Summing up over all sets Tl, we get
∑t

l=1 [f(S ∪ Tl)− f (S)] ≥
∑t

l=1
∑

p∈Tl
[f([p])− f([p− 1])]

= k
∑c

p=s+1 [f([p])− f([p− 1])] = k [f(S ∪ C)− f (S)] .

The first equality follows from the fact that each element in {s + 1, . . . , c} ap-
pears in exactly k sets Tl, and the second equality follows from a telescoping
summation. ��

Lemma 2. Let f be a submodular function on N . Let S′ ⊆ S ⊆ N , and let
{Tl}t

l=1 be a collection of subsets of S \ S′ such that each element of S \ S′

appears in exactly k of these subsets. Then
∑t

l=1 (f(S)− f (S \ Tl)) ≤ k (f(S)− f(S′)) .

Proof. Let s = |S| and c = |S′|. Without loss of generality, we can assume that
S′ = {1, 2, . . . , c} = [c] ⊆ {1, 2, . . . , s} = [s] = S. For any T ⊆ S, f(S) − f(S \
T ) ≤

∑
p∈T (f([p])− f([p− 1])) by submodularity. Using this we obtain
∑t

l=1 (f(S)− f (S \ Tl)) ≤
∑t

l=1
∑

p∈Tl
(f([p])− f([p− 1]))

= k
∑s

i=c+1 (f([i])− f([i− 1])) = k (f(S)− f(S′)) .

The first equality follows from S \ C = {c + 1, . . . , s} and the fact that each
element of S \ C appears in exactly k of the sets {Tl}t

l=1. The last equality is
due to a telescoping summation. ��

2 New Exchange Properties of Matroids

2.1 Intersection of Two Matroids

An exchange digraph is a well-known construct for devising efficient algorithms
for exact maximization of linear functions over the intersection of two matroids
(for example, see [28]). We are interested in submodular maximization, k ma-
troids and approximation algorithms; nevertheless, we are able to make use of
such exchange digraphs, once we establish some new properties of them.

Let Ml = (N, Il), l = 1, 2, be two matroids on ground set N . For I ∈ I1 ∩I2,
we define two digraphs DM1(I) and DM2(I) on node set N as follows:
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– For each i ∈ I, j ∈ N \ I with I− i+ j ∈ I1, we have an arc (i, j) of DM1(I);
– For each i ∈ I, j ∈ N \ I with I− i+ j ∈ I2, we have an arc (j, i) of DM2(I).

The arcs in DMl
(I), l = 1, 2, encode valid swaps in Ml.

In what follows, we assume that I is our current solution and J is the optimal
solution. We also assume that |I| = |J |. If not, we extend I or J by dummy
elements so that we maintain independence in both matroids (more details later).
When we refer to a matching (or perfect matching) in DMl

(I) for l = 1, 2 we
mean a matching in an undirected graph where the arcs of the graph DMl

(I) are
treated as undirected edges. We use two known lemmas from matroid theory.

Lemma 3 ([28, Corollary 39.12a]). If |I| = |J | and I, J ∈ Il (l = 1 or 2),
then DMl

(I) contains a perfect matching between I \ J and J \ I.

Lemma 4 ([28, Theorem 39.13]). Let |I| = |J |, I ∈ Il, and assume that
DMl

(I) has a unique perfect matching between I \ J and J \ I. Then J ∈ Il.

Next, we define a digraph DM1,M2(I) on node set N as the union of DM1(I)
and DM2(I). A dicycle in DM1,M2(I) corresponds to a chain of feasible swaps.
However, observe that it is not necessarily the case that the entire cycle gives a
valid exchange in both matroids.

If |I| = |J | and I, J ∈ I1 ∩ I2, this means we have two perfect matchings on
IΔJ which together form a collection of dicycles in DM1,M2(I). However, only
the uniqueness of a perfect matching assures us that we can legally perform the
exchange. This motivates the following definition.

Definition 1. We call a dicycle C in DM1,M2(I) irreducible if C ∩DM1(I) is
the unique perfect matching in DM1(I) and C ∩ DM2(I) is the unique perfect
matching in DM2(I) on their vertex set V (C). Otherwise, we call C reducible.

The following, which is our main technical lemma, allows us to consider only
irreducible cycles. The proof follows the ideas of matroid intersection (see [28,
Lemma 41.5α]). This lemma holds trivially for partition matroids with s = 0.

Lemma 5. Let Ml = (N, I1), l = 1, 2, be matroids on ground set N . Suppose
that I, J ∈ I1∩I2 and |I| = |J |. Then there is s ≥ 0 and a collection of irreducible
dicycles {C1, . . . , Cm} (allowing repetition) in DM1,M2(I), using only elements
of IΔJ , so that each element of IΔJ appears in exactly 2s of the dicycles.

Proof. Consider DM1,M2(I) = DM1(I) ∪DM2(I). By Lemma 3, there is a per-
fect matching between I \ J and J \ I, both in DM1(I) and DM2(I). We denote
these two perfect matchings by M1, M2. The union M1∪M2 forms a subgraph of
out-degree 1 and in-degree 1 on IΔJ . Therefore, it decomposes into a collection
of dicycles C1, . . . , Cm. If they are all irreducible, we are done and s = 0.

If Ci is not irreducible, it means that either M ′
1 = Ci ∩ DM1(I) or M ′

2 =
Ci∩DM2(I) is not a unique perfect matching on V (Ci). Let us assume, without
loss of generality, that there is another perfect matching M ′′

1 in DM1(I). We
consider the disjoint union M ′

1+M ′′
1 +M ′

2+M ′
2, duplicating arcs where necessary.
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This is a subgraph of out-degree 2 and in-degree 2 on V (Ci), which decomposes
into dicycles Ci1, . . . , Cit, covering each vertex of Ci exactly twice:

V (Ci1) + V (Ci2) + . . . + V (Cit) = 2V (Ci).

Because M ′
1 �= M ′′

1 , we have a chord of Ci in M ′′
1 , and we can choose the first

dicycle so that it does not cover all of V (Ci). So we can assume that we have
t ≥ 3 dicycles, and at most one of them covers all of V (Ci). If there is such a
dicycle among Ci1, . . . , Cit, we remove it and duplicate the remaining dicycles.
Either way, we get a collection of dicycles Ci1, . . . , Cit′ such that each of them
is shorter than Ci and together they cover each vertex of Ci exactly twice.

We repeat this procedure for each reducible dicycle Ci. For irreducible dicycles
Ci, we just duplicate Ci to obtain Ci1 = Ci2 = Ci. This completes one stage of
our procedure. After the completion of the first stage, we have a collection of
dicycles {Cij} covering each vertex in IΔJ exactly twice.

As long as there exists a reducible dicycle in our current collection of di-
cycles, we perform another stage of our procedure. This means decomposing
all reducible dicycles and duplicating all irreducible dicycles. In each stage, we
double the number of dicycles covering each element of IΔJ . To see that this
cannot be repeated indefinitely, observe that every stage decreases the size of the
longest reducible dicycle. All dicycles of length 2 are irreducible, and therefore
the procedure terminates after a finite number of stages s. Then, all cycles are
irreducible and together they cover each element of IΔJ exactly 2s times. ��

We remark that of course the procedure in the proof of Lemma 5 is very ineffi-
cient, but it is not part of our algorithm — it is only used for this proof.

Next, we extend this Lemma 5 to sets I, J of different size, which forces us to
deal with dipaths as well as dicycles.

Definition 2. We call a dipath or dicycle A feasible in DM1,M2(I), if

– IΔV (A) ∈ I1 ∩ I2, and
– For any sub-dipath A′ ⊂ A such that each endpoint of A′ is either an endpoint

of A or an element of I, we also have IΔV (A′) ∈ I1 ∩ I2.

First, we establish that irreducible dicycles are feasible.

Lemma 6. Any irreducible dicycle in DM1,M2(I) is also feasible in DM1,M2(I).

Proof. An irreducible dicycle C consists of two matchings M1 ∪M2, which are
the unique perfect matchings on V (C), in DM1(I) and DM2(I) respectively.
Therefore, we have IΔV (C) ∈ I1 ∩ I2 by Lemma 4.

Consider any sub-dipath A′ ⊂ C whose endpoints are in I. (C has no end-
points, so the other case in Definition 2 does not apply.) This means that A′

has even length. Suppose that a1 ∈ V (A′) is the endpoint incident to an edge in
M1 ∩A′ and a2 ∈ V (A′) is the other endpoint, incident to an edge in M2 ∩A′.
Note that any subset of M1 or M2 is again a unique perfect matching on its
respective vertex set, because otherwise we could produce a different perfect
matching on V (C). We can view IΔV (A′) in two possible ways:
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– IΔV (A′) = (I − a1)Δ(V (A′)− a1); because V (A′)− a1 has a unique perfect
matching M2 ∩A′ in DM2(I), this shows that IΔV (A′) ∈ I2.

– IΔV (A′) = (I − a2)Δ(V (A′)− a2); because V (A′)− a2 has a unique perfect
matching M1 ∩A′ in DM1(I), this shows that IΔV (A′) ∈ I1. ��

Finally, we establish the following property of possible exchanges between arbi-
trary solutions I, J (not necessarily of the same size).

Lemma 7. Let M1 = (N, I1) and M2 = (N, I2) be two matroids and let I, J ∈
I1 ∩ I2. Then there is s ≥ 0 and a collection of dipaths/dicycles {A1, . . . , Am}
(possibly with repetition), feasible in DM1,M2(I), using only elements of IΔJ ,
so that each element of IΔJ appears in exactly 2s dipaths/dicycles Ai.

Proof. If |I| = |J |, we are done by Lemmas 5 and 6. If |I| �= |J |, we extend the
matroids by new “dummy elements” E, independent of everything else (in both
matroids), and add them to I or J , to obtain sets of equal size |Ĩ| = |J̃ |. We
denote the extended matroids by M̃1 = (N ∪ E, Ĩ1),M̃2 = (N ∪ E, Ĩ2). We
consider the graph DM̃1,M̃2

(Ĩ). Observe that the dummy elements do not affect
independence among other elements, so the graphs DM1,M2(I) and DM̃1,M̃2

(Ĩ)
are identical on I ∪ J .

Applying Lemma 5 to Ĩ , J̃ , we obtain a collection of irreducible dicycles
{C1, . . . , Cm} on ĨΔJ̃ such that each element appears in exactly 2s dicycles.
Let Ai = Ci \ E. Obviously, the sets V (Ai) cover IΔJ exactly 2s times. We
claim that each Ai is either a feasible dicycle, a feasible dipath, or a collection
of feasible dipaths (in the original digraph DM1,M2(I)).

First, assume that Ci ∩ E = ∅. Then Ai = Ci is an irreducible cycle in
DM1,M2(I) (the dummy elements are irrelevant). By Lemma 6, we know that
Ai = Ci is a feasible dicycle.

Next, assume that Ci ∩ E �= ∅. Ci is still a feasible dicycle, but in the ex-
tended digraph DM̃1,M̃2

(Ĩ). We remove the dummy elements from Ci to obtain
Ai = Ci\E, a dipath or a collection of dipaths. Consider any sub-dipath A′ of Ai,
possibly A′ = Ai, satisfying the assumptions of Definition 2. Ai does not contain
any dummy elements. If both endpoints of A′ are in I, it follows from the feasibil-
ity of Ci that ĨΔV (A′) ∈ Ĩ1∩Ĩ2, and hence IΔV (A′) = (ĨΔV (A′))\E ∈ I1∩I2.

If an endpoint of A′ is outside of I, then it must be an endpoint of Ai. This
means that it has a dummy neighbor in Ĩ ∩Ci that we deleted. (Note that this
case can occur only if we added dummy elements to I, i.e. |I| < |J |.) In that
case, extend the path to A′′, by adding the dummy neighbor(s) at either end. We
obtain a dipath from Ĩ to Ĩ. By the feasibility of Ci, we have ĨΔV (A′′) ∈ Ĩ1∩Ĩ2,
and therefore IΔV (A′) = (ĨΔV (A′′)) \ E ∈ I1 ∩ I2. ��

2.2 A Generalized Rota-Exchange Property

Next, we establish a very useful property for a pair of bases of one matroid.

Lemma 8. Let M = (N, I) be a matroid and A, B bases in M. Let A1, . . . , Am

be subsets of A such that each element of A appears in exactly q of them. Then
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there are sets B1, . . . , Bm ⊆ B such that each element of B appears in exactly q
of them, and for each i, Ai ∪ (B \Bi) ∈ I.

Remark 1. A very special case of Lemma 8, namely when m = 2 and q = 1,
attracted significant interest when it was conjectured by G.-C. Rota and proved
in [4, 13, 31]; see [28, (39.58)].

Proof. We can assume for convenience that A and B are disjoint (otherwise we
can make {Bi} equal to {Ai} on the intersection A ∩ B and continue with a
matroid where A ∩B is contracted).

For each i, we define a matroid Ni = (M/Ai)|B, where we contract Ai and
restrict to B. In other words, S ⊆ B is independent in Ni exactly when Ai∪S ∈
I. The rank function of Ni is

rNi(S) = rM(Ai ∪ S)− rM(Ai) = rM/Ai
(S).

Let N ∗
i be the dual matroid to Ni. Recall that the ground set is now B. By

definition, T ⊆ B is a spanning set in N ∗
i if and only if B \ T is independent in

Ni, i.e. if Ai ∪ (B \ T ) ∈ I. The bases of N ∗
i are minimal such sets T ; these are

the candidate sets for Bi , which can be exchanged for Ai . The rank function
of the dual matroid N ∗

i is (by [28, (Theorem 39.3)])

rN ∗
i
(T ) = |T | − rNi(B) + rNi(B \ T ) = |T | − rM(Ai ∪ B) + rM(Ai ∪ (B \ T ))

= |T | − |B| + rM(Ai ∪ (B \ T )) = rM/(B\T )(Ai) .

Observe that the rank of N ∗
i is rN∗

i
(B) = |Ai| .

Now, we consider a new ground set B̂ = B× [q]. We view the elements {(i, j) :
j ∈ [q]} as parallel copies of i. For T ⊆ B̂, we define its projection to B as

π(T ) = {i ∈ B | ∃j ∈ [q] with (i, j) ∈ T }.

A natural extension of N ∗
i to B̂ is a matroid N̂ ∗

i where a set T is independent
if π(T ) is independent in N ∗

i . The rank function of N̂ ∗
i is

rN̂∗
i
(T ) = rN∗

i
(π(T )) = rM/(B\π(T ))(Ai) . (1)

The question now is whether B̂ can be partitioned into B′
1, . . . , B

′
m so that B′

i is
a base in N̂ ∗

i . If this is true, then we are done, because each Bi = π(B′
i) would

be a base of N ∗
i and each element of B would appear in q sets Bi. To prove this,

consider the union of our matroids, N̂ ∗ := N̂ ∗
1 ∨ N̂ ∗

2 ∨ . . .∨ N̂ ∗
m. By the matroid

union theorem ([28, (Corollary 42.1a)]), this matroid has rank function

rN̂∗(B̂) = minT⊆B̂

(
|B̂ \ T |+

∑m
i=1 rN̂∗

i
(T )

)
.

We claim that for any T ⊆ B̂,
∑m

i=1 rN̂∗
i
(T ) =

∑m
i=1 rM/(B\π(T ))(Ai) ≥ q · rM/(B\π(T ))(A) = q|π(T )| .
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The first equality follows from our rank formula (1). The inequality follows from
Lemma 1 applied to the submodular function rM/(B\π(T )), with S = ∅ and
C = A. The last equality holds because both A and B are bases of M and the
rank of the matroid M/(B \ π(T )) is |π(T )|. We also have |T | ≤ q|π(T )|, hence∑m

i=1 rN̂∗
i
(T ) ≥ q|π(T )| ≥ |T | for any T ⊆ B̂. Therefore the rank of N̂ ∗ is

rN̂∗(B̂) = minT⊆B̂

(
|B̂ \ T |+

∑m
i=1 rN̂∗

i
(T )

)
= |B̂| .

This means that B̂ can be partitioned into sets B′
1, . . . , B

′
m, where B′

i is inde-
pendent in N̂ ∗

i . However, the ranks of B̂ in the N̂ ∗
i sum up to

∑m
i=1 rN̂∗

i
(B̂) =

∑m
i=1 |Ai| = |B̂|, so this implies that each B′

i is a base of N̂ ∗
i . Then, each

Bi = π(B′
i) is a base of N ∗

i , and these are the sets demanded by the lemma. ��

Finally, we give a version of Lemma 8 where the two sets need not be bases.

Lemma 9. Let M = (N, I) be a matroid and I, J ∈ I. Let I1, . . . , Im be subsets
of I such that each element of I appears in at most q of them. Then there are
sets J1, . . . , Jm ⊆ J such that each element of J appears in at most q of them,
and for each i, Ii ∪ (J \ Ji) ∈ I.

Proof. We reduce this statement to Lemma 8. Let A, B be bases such that I ⊆ A
and J ⊆ B. Let qe be the number of appearances of an element e ∈ I in the
subsets I1, . . . , Im and let q′ = maxe∈I qe. Obviously, q′ ≤ q. We extend Ii arbi-
trarily to Ai, Ii ⊆ Ai ⊆ A, so that each element of A appears in exactly q′ of
them. By Lemma 8, there are sets Bi ⊆ B such that each element of B appears
in exactly q′ of them, and Ai ∪ (B \ Bi) ∈ I for each i. We define Ji = J ∩ Bi.
Then, each element of J appears in at most q′ ≤ q sets Ji, and

Ii ∪ (J \ Ji) ⊆ Ai ∪ (B \Bi) ∈ I. ��

3 Local-Search Algorithm

At each iteration of our local-search algorithm, given a current feasible solution
S ∈ ∩k

j=1Ij , our algorithm seeks an improved solution by looking at a polynomial
number of options to change S. If the algorithm finds a better solution, it moves
to the next iteration, otherwise the algorithm stops. Specifically, given a current
solution S ∈ ∩k

j=1Ij , the local moves that we consider are:

p-exchange Operation: If there is S′ ⊆ N and S′ ∈ ∩k
j=1Ij such that (i)

|S′ \ S| ≤ p, |S \ S′| ≤ kp, and (ii) f(S′) > f(S), then S ← S′.
The p-exchange operation for S′ ⊆ S is called a delete operation. Our main

result is the following lower bound on the value of the locally-optimal solution.

Lemma 10. For every k ≥ 2 and every C ∈ ∩k
j=1Ij , a locally-optimal solution

S under p-exchanges, satisfies

(k + 1/p) · f(S) ≥ f(S ∪C) + (k − 1 + 1/p) · f(S ∩ C).
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Proof. Our proof is based on the new exchange properties of matroids: Lemmas
7 and 9. By applying Lemma 7 to the independent sets C and S in matroids
M1 and M2 , we obtain a collection of dipaths/dicycles {A1, . . . , Am} (possibly
with repetition), feasible in DM1,M2(S), using only elements of CΔS, so that
each element of CΔS appears in exactly 2s paths/cycles Ai.

We would like to define the sets of vertices corresponding to the exchanges in
our local-search algorithm, based on the sets of vertices in paths/cycles {A1, . . . ,
Am}. The problem is that these paths/cycles can be much longer than the max-
imal cardinality of a set allowable in a p-exchange operation. To handle this, we
index vertices of the set of C \S in each path/cycle Ai for i = 1, . . . , m, in such a
way that vertices along any path or cycle are numbered consecutively. The ver-
tices of S\C remain unlabeled. Because one vertex appears in 2s paths/cycles, it
might get different labels corresponding to different appearances of that vertex.
So one vertex could have up to 2s different labels.

We also define p + 1 copies of the index sets {A1, . . . , Am}. For each copy
q = 0, . . . , p of labeled {A1, . . . , Am}, we throw away appearances of vertices
from C \S that were labeled by q modulo p+1 from each Ai. By throwing away
some appearances of the vertices, we are changing our set of paths in each copy
of the original sets {A1, . . . , Am}. Let {Aq1, . . . , Aqmq} be the resulting collection
of paths for q = 0, . . . , p. Now each path Aqi contains at most p vertices from
C \ S and at most p + 1 vertices from S \ C.

Because our original collection of paths/cycles was feasible in DM1,M2(S)
(see definition 2), each of the paths in the new collections correspond to feasible
exchanges for matroids M1 and M2, i.e. SΔV (Aqi) ∈ I1 ∩ I2 . Consider now
the collection of paths {Aqi|q = 0, . . . , p, i = 1, . . . , mq}. By construction, each
element of the set S \C appears in exactly (p + 1)2s paths, and each element of
C\S appears in exactly p2s paths, because each vertex has 2s(p+1) appearances
in total, and each appearance is thrown away in exactly one out of p+1 copies of
the original sets {A1, . . . , Am}. Let Lqi = S ∩ V (Aqi) denote the set of vertices
in the path Aqi belonging to the locally-optimal solution S, and let Wqi =
C ∩ V (Aqi) denote the set of vertices in the path Aqi belonging to the set C.

For each matroidMi for i = 3, . . . , k, independent sets S ∈ Ii and C ∈ Ii, and
collection of sets {Wqi | q = 0, . . . , p; i = 1, . . . , mq} (note that some of these sets
might be empty), we apply Lemma 9. For convenience, we re-index the collection
of sets {Wqi | q = 0, . . . , p, i = 1, . . . , mq}. Let W1, . . . , Wt be that collection,
after re-indexing, for t =

∑p
q=0 mq. By Lemma 9, for each i = 3, . . . , k there

exist a collection of sets X ′
1i, . . . , X

′
ti such that Wj ∪ (S \X ′

ji) ∈ Ii. Moreover,
each element of S appears in at most p2s of the sets from collection X ′

1i, . . . , X
′
ti.

We consider the set of p-exchanges that correspond to adding the elements of
the set Wj to the set S and removing the set of elements Λj = Lj ∪ (∪k

i=3X
′
ji)

for j = 1, . . . , t. Note that, |Λj | ≤ (p + 1)+ (k− 2)p = (k− 1)p + 1 ≤ kp. By
Lemmas 7 and 9, the sets Wj ∪ (S \ Λj) are independent in each of the matroids
M1, . . . ,Mk. By the fact that S is a locally-optimal solution, we have

f(S) ≥ f
((

S \ Λj

)
∪Wj

)
, ∀j = 1, . . . , t. (2)
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Using inequalities (2) together with submodularity for j = 1, . . . , t, we have

f(S ∪Wj)− f(S) ≤ f ((S \ Λj) ∪Wj)− f (S \ Λj) ≤ f(S)− f (S \ Λj) . (3)

Moreover, we know that each element of the set C \ S appears in exactly p2s

sets Wj , and each element e ∈ S \C appears in ne ≤ (p + 1)2s +(k− 2)p2s sets
Λj .

Consider the sum of t inequalities (3), and add (p + 1)2s + (k − 2)p2s − ne

inequalities
f(S) ≥ f(S \ {e}) (4)

for each element e ∈ S\C. These inequalities correspond to the delete operations.
We obtain

t∑

j=1

[f(S ∪Wj)− f(S)] ≤
t∑

j=1

[f(S)− f (S \ Λj)] +

∑

e∈S\C

((p + 1)2s + (k − 2)p2s − ne) [f(S \ {e})− f(S)] . (5)

Applying Lemma 2 to the right-hand side of the inequality (5) and Lemma 1 to
the left-hand side of the inequality (5), we have

p2s [f(S ∪ C)− f(S)] ≤ ((p + 1)2s + (k − 2)p2s) [f(S)− f(S ∩ C)] ,

which is equivalent to

(k + 1/p) · f(S) ≥ f(S ∪C) + (k − 1 + 1/p) · f(S ∩ C).

The result follows. ��

Simple consequences of Lemma 10 are bounds on the value of a locally-optimal
solution when the submodular function f has additional structure.

Corollary 1. For k ≥ 2, a locally-optimal solution S, and any C ∈ ∩k
j=1Ij ,

the following inequalities hold:

1. f(S) ≥ f(C)/ (k + 1/p) if function f is monotone,
2. f(S) ≥ f(C)/ (k − 1 + 1/p) if function f is linear.

The local-search algorithm defined at the beginning of this section could run
for an exponential amount of time before reaching a locally-optimal solution.
To ensure polynomial runtime, we follow the standard approach of approximate
local search under a suitable (small) parameter ε > 0 as described in Figure 1.
The following is a simple extension of Lemma 10.

Lemma 11. For an approximate locally-optimal solution S and any C ∈ ∩k
j=1Ij,

(1 + ε) (k + 1/p) · f(S) ≥ f(S ∪ C) + (k − 1 + 1/p) · f(S ∩ C),

where ε > 0 is the parameter used in the procedure of Figure 1.
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Input: Finite ground set N := [n], value-oracle access to submodular function
f : 2N → R, and matroids M = (N, Ii), for i ∈ [k].
1. Set v ← arg max{f(u) | u ∈ N} and S ← {v}.
2. While the following local operation is possible, update S accordingly:

p-exchange operation. If there is a feasible S′ such that
(i) |S′ \ S| ≤ p, |S \ S′| ≤ kp, and
(ii) f(S′) ≥ (1 + ε/n4)f(S),

then S ← S′.
Output: S.

Fig. 1. The approximate local-search procedure

Proof. The proof of this lemma is almost identical to the proof of the Lemma 10
— the only difference is that left-hand sides of inequalities (2) and inequalities
(4) are multiplied by 1 + ε/n4. Therefore, after following the steps in the proof
of Lemma 10, we obtain the inequality:

(
k + 1/p + ελ/n4p2s

)
· f(S) ≥ f(S ∪ C) + (k − 1 + 1/p) · f(S ∩ C),

where λ = t +
∑

e∈S\C [(p + 1)2s + (k − 2)p2s − ne] is the total number of in-
equalities (2) and (4). because t ≤ |C|p2s we obtain that λ ≤ (n + k)p2s.
Assuming that n4 >> n + k, we obtain the result. ��

Lemma 11 implies the following:

Theorem 1. For any fixed k ≥ 2 and fixed constant δ > 0, there exists a
polynomial 1/(k + δ)-approximation algorithm for maximizing a non-negative
non-decreasing submodular function subject to k matroid constraints. This bound
improves to 1/(k − 1 + δ) for linear functions.

Remark 2. Combining techniques from this paper with the iterative local-search
from [21], we can improve the performance guarantees of the approximation al-
gorithms for maximizing a general (non-monotone) submodular function subject
to k ≥ 2 matroid constraints from k +2+ 1

k + δ to k +1+ 1
k−1 + δ for any δ > 0.

4 Tightness of Analysis

Next, we demonstrate that our analysis of local search for maximizing monotone
submodular functions is tight. By local search, we mean for fixed p > 0, adding ≤
p elements and removing ≥ kp elements at a time. It was known [2] that such an
algorithm cannot give better than 1/(k−1+1/p)-approximation for the weighted
k-set packing problem (k ≥ 3). From the example of [2], the same bound follows
also for weighted k-dimensional matching and hence also for the more general
problems of maximizing a linear function subject to k matroid constraints, or a
monotone submodular function subject to k − 1 matroid constraints.
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Proposition 1. For any k, p ≥ 2, there are instances of maximizing a linear
function subject to k partition matroids, where a local optimum with respect to
p-exchanges has value OPT/(k − 1 + 1/p).

Proof. Let G = (V, E) be a k-regular bipartite graph of girth at least 2p+2 (see
[20] for a much stronger result), with bipartition V = A ∪ B. We define vertex
weights wi = 1 for i ∈ A and wj = k − 1 + 1/p for j ∈ B. Being a k-regular
bipartite graph, G can be decomposed into k matchings, E = M1∪M2∪. . .∪Mk.
For each Mi, we define a partition matroid Mi = (V, Ii) where S ∈ Ii iff S
contains at most one vertex from each edge in Mi. We maximize w(S) over
S ∈

⋂k
i=1 Ii. Equivalently, we seek a maximum-weight independent set in G.

Clearly, A and B are both feasible solutions. Because |A| = |B|, we have
w(A)/w(B) = 1/(k − 1 + 1/p). We claim that A is a local optimum. Consider
any set obtained by a local move, A′ = (A \K) ∪ L where K ⊆ A, L ⊆ B and
|L| ≤ p. For A′ to be independent, K ∪ L must contain all edges incident with
L. (Otherwise, there is an edge contained in A′.) Also, K ∪ L cannot contain
any cycle, because every cycle in G has at least p + 1 vertices on each side.
Therefore, K ∪L induces a forest with k|L| edges. Hence |K ∪L| ≥ k|L|+ 1, i.e.
|K| ≥ (k − 1)|L|+ 1. The value of A′ is

w(A′) = w(A)− |K|+(k− 1+1/p)|L| ≤ w(A)− |K|+(k− 1)|L|+1 ≤ w(A). ��
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Robust Algorithms for Max Independent Set on

Minor-Free Graphs Based on the Sherali-Adams
Hierarchy
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Abstract. This work provides a Linear Programming-based Polynomial
Time Approximation Scheme (PTAS) for two classical NP-hard problems
on graphs when the input graph is guaranteed to be planar, or more
generally Minor Free. The algorithm applies a sufficiently large number
(some function of 1/ε when 1+ ε approximation is required) of rounds of
the so-called Sherali-Adams Lift-and-Project system. needed to obtain a
(1 + ε)-approximation, where f is some function that depends only on
the graph that should be avoided as a minor. The problem we discuss are
the well-studied problems, the Max Independent Set and Min Vertex

Cover problems. An curious fact we expose is that in the world of minor-
free graph, the Min Vertex Cover is harder in some sense than the
Max Independent Set.

Our main result shows how to get a PTAS for Max Independent

Set in the more general “noisy setting” in which input graphs are not
assumed to be planar/minor-free, but only close to being so. In this
setting we bound integrality gaps by 1 + ε, which in turn provides a
1 + ε approximation of the optimum value; however we don’t know how
to actually find a solution with this approximation guarantee. While
there are known combinatorial algorithms for the non-noisy setting of the
above graph problems, we know of no previous approximation algorithms
in the noisy setting. Further, we give evidence that current combinatorial
techniques will fail to generalize to this noisy setting.

1 Introduction

A common way to handle NP-hard problems is to design approximation algo-
rithms for them. Often, even a good approximation cannot be achieved if one is
concerned with the standard worst-case analysis. For example, it is NP-hard not
only to solve Max Independent Set but also to approximate it to within factor
of |V |δ for any δ < 1 unless NP=ZPP [17]. However, we may be able to to com-
pute good approximations for some classes of inputs. Examples for such classes
in the context of graph problem could be graphs with bounded degree, sparse
graphs, dense graphs, perfect graphs, etc. In some cases a certain restriction on
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the input renders a problem trivial, such as the case of Max Clique restricted
to bounded-degree graphs; in others, such as Sparsest Cut on bounded degree
graphs are still very hard to approximate. More interesting examples are the
semidefinite-programming based algorithm for colouring of perfect graphs [16],
or the classical Polynomial Time Approximation Scheme (PTAS) by Arora for
Euclidean TSP [1].

In this paper we present algorithms based on Linear Programming (LP), which
give rise to a PTAS for the problems of Max Independent Set and Min

Vertex Cover on minor-free graphs, and in particular on planar graphs.
We first explain how Linear Programming approach may lead to a PTAS,

namely algorithms that for each ε > 0 give approximation of 1 + ε and run in
time polynomial in the size of the graph and may depend on ε. One can think of
this as a sequence of algorithms which give approximation factor that approach 1.
To come up with such a sequence using an LP, it is natural to consider a sequence
of LP formulations rather than a fixed one. Systematic methods that give rise to
such sequences are so-called Lift-and-Project methods. Here, the original LP is
tightened repeatedly r times (or levels/rounds). When this process is repeated
for r = n times, the obtained LP is equivalent to the original Integer Program,
and hence solving it will give the exact solution to the original problem, however
the running time of such an algorithm will not be polynomial in general. More
specifically, starting from a poly-size LP it takes nO(r) to optimize over the level
r tightening. In order to obtain a PTAS using the above paradigm, one should
show that lim ηr = 1 where ηr is the approximation guaranteed by the LP after
r rounds of applying the Lift-and-Project operator.

Different variants of Lift and Project methods exist, and in this work we show
that the one due to Sherali-Adams satisfies the condition above with respect to
some classical graph optimization problems on planar graphs and their gener-
alization to minor-free graphs. To the best of our knowledge there is only one
example for PTAS that is obtained by Lift-and-Project systems due to Fernández
de la Vega and Kenyon-Mathieu [14] who have provided a PTAS for Max Cut

in dense graphs using the Sherali-Adams hierarchy.
We further consider the setting where the input graphs are noisy, in the sense

that they are obtained by applying some bounded number of changes to graphs
in the special classes considered above. We show that in this setting the LP-
based approach is still effective: we can bound the integrality gap by 1 + ε when
O(1/ε) rounds of Sherali-Adams are applied. It is important to note that while
the integrality gap is well-bounded by our method (whence the method well-
approximates the optimal value), we don’t know how to translate this guarantee
to a rounding procedure or to any other method that will obtain a solution
approximating the optimum. There aren’t many examples in the literature where
a bound on the integrality gap is known but no integral solution is presented to
achieve the bound, and we note [13] as one example of such a scenario.

Previous Work: Tree graphs, bipartite graphs, small tree-width , outerplanar
and planar graphs all have been well-studied in the context of restrictions on
the type of input of NP-hard problems. Specifically for our problem, algorithms
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for planar graphs were studied by Baker [2] who gave a PTAS with running
time O(f(ε)n log n) for Max Independent Set and Min Vertex Cover on
planar graphs. For the minor-free case, The work of DeVos et al.[11] opened
the way for algorithms in minor-free graph partitioning, as they provided (proof
of existence of) a decomposition of the graph to simple parts. Following their
work, there were a series of algorithms for minor-free graphs which were mostly
nonconstructive1 such as [15]. However, later in a work of Demaine et al.[12]
it was shown that the decomposition can be done in polynomial time which
makes those algorithms constructive. We note that our approach is in general
inferior to the combinatorial approach in [2] in terms of running time as the
time complexity of optimizing in the r-th level of the Sherali-Adams Hierarchy
is nO(r) which means that our algorithm run in time O(n

1
ε .

In contrast to the above work, no algorithms are known for the noisy setting.
In fact, in Section 5 we give evidence that current combinatorial approaches or
modification of them are bound to fail.

In the context of PTAS which are LP-based not many examples are known,
and we mention two here. In [3], Bienstock shows that a Linear Programming
of size polynomial in 1/ε and in n to approxmate upto 1 + ε the knapsack
problem on n items. As in our case, this is an LP-based analogue to an existing
combinatorial algorithm, the well known PTAS for Knapsack by Lawler [18]. A
second example is due to Avis and Unemoto [10] who show that for dense graphs
linear programming relaxations of max cut approximate the optimal solution
upto 1 + ε, where the size of the LP is again polynomial in 1/ε and in n. Unlike
the current work, however, the LPs in these results are not obtained through
the lift-and-project method, but rather they are found in a way customized to
the problem. (In fact, for the first result above, even the choice of variables to
be used is not obvious.)

Techniques: An essential ingredient in our work is a result by Bienstock and
Ozbay [9]. Consider a graph G that has tree-width k, and consider the standard
LP relaxation of Max Independent Problem on G. It is shown in [9] that the
application of the level k Sherali-Adams (SA) operator gives an exact solution
to the problem. In other words, the relaxed and integral optimal solutions are
the same. The graph-theoretic component of our results uses the theorem of
DeVos et. al. [11] mentioned above. The theorem shows that for every positive
integer j there is a partition of the vertices of a minor-free graph into j parts so
that the removal of any of them leaves components of tree-width at most k(j),
where k(j) depends only on j and on the minor and not on n. In the special
case of planar graphs this decomposition theorem is almost straightforward, with
k(j) = j. Our approach essentially uses the following simple schema: (i) apply
the level-k(j) SA operator, where j ∼ 1/ε. (ii) bound the integrality gap obtained
by 1 + ε. This is made possible by separately bounding the contribution of the

1 This means that for every H there is an algorithm for the H-minor-free case, but
there was no uniform algorithm, that given H and an H-minor-free graph provides
the required approximation.
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solution on the different parts relative to the corresponding integral solution.
Notice that ensuring small integrality gap gives an approximation of the value
of the optimum and that in order to provide algorithms that actually supply
good approximated solutions we need to know the decomposition and round the
fractional solution according to this decomposition. We later elaborate on this
interesting aspect of our technique.

The rest of the paper is organized as follows. In Section 2 we give the relevant
graph theoretical definitions as well as the description of the Sherali-Adams Hi-
erarchy. In Section 3 we deal with the Max Independent Set problem. We
first show how to get a PTAS for the simpler case of planar graphs, and then
extend to family of minor-free graphs. In Section 4 we deal with the approxima-
tion of Min Vertex Cover. We show a general lemma that says that under
sufficient conditions it is possible to import results about integrality gaps for
certain LPs for the problem of Max Independent Set into ones about Min

Vertex Cover. Last, we consider the case of graphs which are “noisy versions”
of planar or minor-free graphs.. We show that unlike combinatorial approaches,
our algorithms can extend to this case. More specifically, we show a PTAS for
the value of the maximum independent set in noisy planar graphs and, more
generally, in noisy H-minor-free graphs.

2 Preliminaries

The tree-width of a graph A tree decomposition of the graph G is a pair (T, X)
such that

1. T is tree;
2. for every vertex v ∈ G there is a tree tv;
3. X = {tv : V (tv) ⊆ T } such that each tv is a subtree of T ;
4. and for any edge e(u, v) in E(G), we have tv ∩ tu �= ∅.

We say that a graph G has tree-width k if there exists a tree decomposition of
G such that the intersection of every k + 2 of tv’s is empty.

The Sherali-Adams Hierarchy. Sherali-Adams is a system that given an LP re-
laxation produces a tightened LP, that will eventually produce a program that
is equivalent to the Integer Program describing the problem. More specifically,
given a LP relaxation of some {0, 1} integer-program on n variables and a pa-
rameter r, the Sherali-Adams lifting of the LP in the rth level an LP that is
strictly stronger than the original LP and requires nO(r) time to optimize over.
When r = n, the generated LP is equivalent to the integer program, hence its
solution solves the original problem exactly. While this is not essential for the
purpose of the current paper, we give below a full description of the system.

For every two disjoint sets of variables I and J such that |I ∪ J | ≤ k, we
have a variable w[I, J ]. This variable represents

∏
i∈I xi

∏
j∈J (1 − xj) in an

integer solution, and in particular, an original variable of the LP is associated
with w[{i}, ∅]. The system imposes all possible linear conditions on this set of
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variable that can be derived by (i) the original inequalities of the LP, and (ii)
by the relations of the above products amongst themselves. The inequalities of
type (i) that we get are derived by every LP inequality For the first type, we
obtain the inequality

∑

j �∈J

ajw[I ∪ {j}, J ] ≥ b · w[I, J ]. (1)

for every LP inequality
∑

i aixi ≥ b and every I, J as above.
For type (ii) the following inequalities are obtained.

w[∅, ∅] = 1 (2)

0 ≤ w[I ∪ {j}, J ] ≤ w[I, J ] for j /∈ (I ∪ J) (3)

0 ≤ w[I, J ∪ {j}] ≤ w[I, J ] for j /∈ (I ∪ J) (4)

w[I, J ] = w[I ∪ {j}, J ] + w[I, J ∪ {j}] (5)

The obtained linear program “projects back” to the original set of variables,
namely considers w[{i}, ∅]. We shall denote by SA(t)(G) the polytope of all
solutions of the t-th level of the Sherali-Adams Hierarchy (this is the extension
of the notion of the polytope associated with an LP relaxation).

Noisy Graphs. Consider a class of graphs. Then a noisy version of a graph from
the class is simply a perturbation applied to it. We adopt a standard notion of
distance to quantify this: the distance between two graph is the minimum number
of edges or vertices that should be added or removed from one of the graphs to
become isomorphic to the other graph. We extend this notion to distance between
a graph G and a family of graphs in the standard way, namely as the minimum
distance of G over all the graphs in the family. Notice that when the family is
monotone, that is closed under edge removal, as is the case with the families we
consider, the distance is simply the number of edges needed to be removed from
the graph in order for it to be in the family. It is important not to confuse the
notion of “noise” here, which is deterministic, with the notion of noise used to
describe random perturbation of objects, and the result we supply are stronger
than corresponding results in the random model.

3 A PTAS for Max Independent Set

In the Max Independent Set problem the input is a graph and the output is
an independent set, namely a set of maximum size of vertices that share no edges.
This is a classical NP-hard problem which is notoriously hard to approximate.
Let n be the number of vertices, then it is NP-hard to approximate the problem
to within factor of n1−ε [17]. In other words, in the worst case setting not much
can be done. This motivates looking at special classes of inputs.
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3.1 Planar Graph Case

While the Max Independent Set problem is still NP-hard for planar graphs,
the problem of approximating the solution is quite a bit different. Indeed, any
four colouring of a planar graph gives rise to an independent set of size at
least n/4, and hence 4-approximation algorithm. The next natural is whether a
polynomial time algorithm exists that approximate the optimum to within 1+ ε
and what is the dependency in ε.

The standard Linear Programming relaxation for the problem is:

maximize:
∑

v∈G xv

for uv ∈ E(G)) xv + xu ≤ 1
for u ∈ V (G) 0 ≤ xu ≤ 1

(6)

Notice that this LP is quite weak as the all 1/2 solution is always a feasible
solution. For graphs with sublinear independent sets this LP is therefore quite
useless as it is. However, it is not hard to show that for planar graphs the
integrality gap of the LP above cannot be larger than 2. Our goal now is to
show that by using higher level of the Sherali-Adams hierarchy much better
approximations can be obtained.

Let G be the input graph and α(G) be the size of the largest independent set
of G. Furthermore, let y be the projection of optimal solution of the level k SA
operator applied to LP (6) onto the singleton variables. For a set of vertices S
we define y(S) as

∑
u∈S yu, and y′(S) as

∑
u∈S yu− y2

u. Abusing notation, when
M is a graph, we may write y(M) instead of y(V (M)).

Fix an embedding of a planar graph G into the plane. Graph G is m-outerplanar
for some m > 0. The vertices of the graph can be partitioned into m sets V1, V2 . . .
Vm, where V1 is the set of vertices in the boundary of the outerface, V2 is the set
of vertices in the boundary of the outerface after V1 is removed and so on. Note
that, if u ∈ Vi and w ∈ Vj are adjacent then |i− j| ≤ 1.

We now wish to remove some of the Vi from the graph so that (i) the remaining
graph is k-outerplanar, and (ii) the weight of the removed set in the optimal SA
solution is small. Let

B(i) =
⋃

j=i(mod k+1)

Vj .

For every value of k this partitions V (G) into (k+1)-outerplanar sets. Note that
after removing the vertices in B(i), the resulting graph is k-outerplanar. We now
consider an index j for which y′(B(j)) ≤ y′(G)/(k + 1) and denote B(j) by W .

Let Gi be the subgraph of G induced on Vi = {v : v ∈ Vl, ik + j ≤ l ≤
(i + 1)k + j}. Notice that every edge or vertex of G appear in one or two of
the Gi, and those vertices not in W appear in precisely one of the Gi. A key
observation we need is that applying Sherali-Adams on G and then projecting
onto Vi (more precisely, projecting onto all subsets of size at most t in Vi) is a
solution in SA(t)(Gi). This follows from the fact that the LP associated with G is
stronger than the one associated with the subgraph Gi (on all common variables)
and the same extends to the Sherali-Adams hierarchies. Therefore using [9] we
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can deduce that the projection of y onto the singleton sets in Vi is a convex
combination of integral solutions, namely independent sets of Gi.

Let ρi be the corresponding distribution of independent sets for Gi and con-
sider the following experiment (or random rounding): pick a set Si according to
ρi, independently for each i. We say that a vertex v is chosen if it is in Si when-
ever v ∈ Gi. (Notice that for v /∈ W , v belongs to a unique Gi and the condition
is simply that v ∈ Si, but for v ∈ W , v may belong to both Gi and Gj in which
case it is chosen only when v ∈ Si ∩ Sj .) Denote by S the set of chosen vertices.
We claim that S is an independent set. Indeed, every edge belongs entirely to
some Gi, two neighbours in Gi cannot both be in the independent set Si, and
so they cannot both be chosen.

Since the marginals of ρi on v ∈ Gi is yv, we get that for vertices v /∈ W

Pr[v ∈ S] = yv

and for vertices v ∈ W
Pr[v ∈ S] ≥ y2

v.

From the above conditions we can conclude that

E(|S|) ≥
∑

v/∈W

yv +
∑

v∈W

y2
v =

∑

v

yv −
∑

v∈W

(yv − y2
v) = y(G)− y′(W )

Now, it is easy to see that y′(G) ≤ 3y(G)
4 . It is shown in [4] that a k-outerplanar

graph has tree-width at most 3k−1, therefore in the 3k−1 level of Sherali-Adams
y will be integral on any subgraph of tree-width at most k. We can finish off
with the required bound

IS(G) ≥ E(|S|) ≥ y(G)− 1
k

y′(G) ≥ y(G)− 1
k

(
3y(G)

4

)
=

(
1− 3

4k

)
y(G)

and get

Theorem 1. Let G be a planar graph. Then α(G) is at least 1 − 3
4k times the

solution of level 3k − 1 Sherali-Adams operator applied on the standard LP for
Max Independent Set (LP (6)). Further, the above algorithm gives rise to a
rounding procedure that actually finds an independent set that is at least (1 −
3
4k )α(G)

3.2 Extending to Minor-Free Graphs

Consider a fixed graph H and consider graphs G which are H-minor-free, namely,
they don’t contain H as a minor2 Notice that planar graphs are a special case
as they do not contain K5 (or alternatively, K3,3 as a minor. As with the case of
planar graphs, the special property of a minor-free which is utilized in algorithms
2 A graph G contains H as a minor if H can be obtained from G by applying a

sequence of edge/(isolated)vertex removal and edge contraction.
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is the fact that it can be decomposed into simple components when some limited
part of it is removed. As with the case of planar graph, we would like “simple” to
stand for small tree width. A recent theorem due to DeVos et al. gives precisely
that.

Theorem 2. (DeVos et. al [11]) For every graph H and integer j ≥ 1 there
exist constants kV = kV (H, j) and kE = kE(H, j) such that the vertices of every
graph G with no H-minor can be partitioned into j +1 parts such that the union
of every j of them has tree-width at most kV . In addition, the edges of G can be
partitioned into j +1 parts such that the union of every j of them has tree-width
at most kE.

The above theorem is crucial in the algorithm we present. It is worth noting that
for the special case of planar graphs we may take kV to be as small as O(j).

Theorem 3. For every H and ε > 0 there exists a constant c = c(ε, H) such
that for every graph G with no H-minor, the integrality gap of the level-c Sherali-
Adams operator of LP (6) is at most 1 + ε.

Proof. (sketch) Let c = kV (H, �1/ε�), we claim that applying level c SA operator
is sufficient to derive 1 + ε bound on integrality gap. For any subset of vertices
we define y(S) =

∑
v∈S yv. Using the result from [9]. We know that for any

S ⊆ G with tree-width less than or equal to c, we have y(S) ≤ α(S). Now if we
take the partitioning of vertices into V1, . . . , Vj+1 according to Theorem 2, and
remove the partition with minimum y(Vi) from G the rest of the graph must
have tree-width at most c, and furthermore we have

y(G \ Vi) ≥
j

j + 1
y(G),

and we bound the integrality gap

y(G)/α(G) ≤ (1 + 1/j)y(G \ Vi)/α(G) = (1 + 1/j)α(G\Vi)/α(G) ≤ 1 + 1/j.

4 Vertex Cover

A vertex cover for a graph G is a subset of the vertices touching all edges. The
Min Vertex Cover problem is to find a minimal vertex cover for a graph. For
a graph G we denote the minimum vertex cover by ν(G).

The purpose of this section is to show how to get a SA-based PTAS for Min

Vertex Cover on minor-free graphs from a similar PTAS for Max Inde-

pendent Set. Generally speaking, Min Vertex Cover is easier problem to
approximate than its complement, Max Independent Set, and it can be easily
approximated by a factor of 2. Notice that an exact algorithm for one problem
can be easily converted into an exact algorithm for the other problem. Similarly,
the quality of the additive approximation to the problems is still the same. It is
well known, however, that for the standard measure of approximation namely
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multiplicative approximation, the approximation quality of the problems may
differ dramatically. The most common scenario exhibiting the above difference
are graphs with independent sets of size at most o(n) and vertex covers of size at
least n− o(n). For the purpose of this section, though, we are interested in un-
derstanding the opposite scenario where the size of some vertex covers is o(n);
this is since in these such graphs (the compliment of) a 1 + ε approximation
of Max Independent Set may provide a very poor approximation for Min

Vertex Cover. Now, there is a standard trick that reduces any instance of
Min Vertex Cover into one where the optimal solution is of size at least half
the graph. This trick simply finds an optimal solution for the standard LP, and
removes the vertices who get value 0 in the solution. What we do next avoids
the trick. The advantage of having a direct claim about the integrality gap of
any graph, rather than using it as a subroutine, is that it allows for argument
that involves projection of a solution onto smaller subgraphs. Examples of this
sort was shown in Section 3, and a more interesting one will be supplied later in
Section 5 in the context of noisy graphs.

The LP for Min Vertex Cover is formulated below.

minimize:
∑

v∈G xv

for uv ∈ E(G)) xv + xu ≥ 1
for u ∈ V (G) xu ≥ 0

(7)

The idea behind getting a generic statement allowing us to move from Max

Independent Set to Min Vertex Cover is quite simple. In fact it uses
similar reasoning (even if in a more subtle way) to the “standard trick” described
above. We split the graph into two parts, one that “behaves integrally” on which
no error is incurred, and the other on which the maximum independent set is
smaller than the minimum vertex cover, and then combine the two parts. This
split is achieved by looking at the optimal solution of the standard LP to Max

Independent Set. We start by defining a property of LP relaxations for Max

Independent Set.

Downward Property: We say that an LP relaxation for Max Independent

Set has the downward property if its solution y satisfies that for any S ⊆ V (G),
y(S) ≤ (1 + ε)α(G′), where G′ is subgraph of G induced by S.

Lemma 1. Let y be an optimal solution to an LP relaxation of Max Indepen-

dent Set that has the downward property, then |V (G)| − y(G) ≥ (1− ε)ν(G)

Proof. Consider the standard LP for Max Independent Set (LP(6)) and de-
note its solution by z. It is well known that z can be transformed into a half-
integral solution. Partition V (G) to S0, S1, and S1/2 according to the value of z
on the vertices. Also, let Sint = S0 ∪ S1, Gint be the induced subgraph on Sint,
and G1/2 the induced subgraph on S1/2

We first argue that the restriction of z on Sint is the optimal fractional solution
of LP(6) on Sint. To see that, let w be any fractional solution to LP(6) on Sint
and let u be the extension of w to S according to z, that is u agrees with w on
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Sint and with z on S1/2. We now show that (z + u)/2 is a solution to LP(6) on
G: edges inside Sint as well as edges inside S1/2 are satisfied by both z and u,
and so also by (z+u)/2; edges between S0 and S1/2 sum to at most 1/2 in z and
at most 3/2 in u, and so must sum to at most 1 on (z + u)/2. Since there are
no edges between S1 and S1/2 in G we have that (z + u)/2 is a valid solution.
Optimality of z implies that z(S) ≥ u(S) and hence z(Sint) ≥ w(Sint). Of course
the same holds for any vector which is a solution to a tightening of LP(6) on
Sint. In particular

y(Sint) ≤ z(Sint) = |S1|. (8)

The second fact we require is that maximum independent set in G1/2 is smaller
than the minimum vertex cover of this graph. Since the all-half vector is solution
of LP(6) on G1/2, it is also a solution of the standard vertex cover relaxation.
But then

ν(G1/2) ≥ z(S1/2) ≥ α(G1/2). (9)

With inequalities (8) and (9) we can easily conclude

n− y(G) = |Sint| − y(Sint) + |S1/2| − y(S1/2)
≥ |Sint| − |S1|+ |S1/2| − (1 + ε)α(G1/2)
= |S0|+ ν(G1/2)− εα(G1/2)
≥ |S0|+ ν(G1/2)− εν(G1/2)
≥ ν(G)− εν(G1/2)
≥ ν(G)− εν(G)

where the second last inequality follows since the union of S0 and any vertex
cover of G1/2 is a vertex cover for G.

For any graph G which is H minor-free all its subgraphs are also H minor-
free. This fact shows that we satisfy the conditions of Lemma 1. Now if we use
Theorem 3, we can immediately get that applying level c SA operator is sufficient
to obtain the n− y(G) ≥ (1− ε)ν(G) inequality. Specifically, we have

Theorem 4. After applying level k SA operator the above Linear program, we
have a approximation of 1− 1/f(k) for Min Vertex Cover.

Any subgraph of a H minor-free graph is also a H minor-free graph and there-
fore it satisfies the second condition of Lemma 1. Also it is clear that it satisfies
the first condition as SA is a tightening of the LP (6). and therefore the approx-
imation on independent set follows the approximation of vertex cover for planar
graphs.

5 Main Result: A PTAS for Max Independent Set on
Noisy Minor-Free Graphs

Algorithms that makes assumptions about the nature of their input may com-
pletely break down when this assumption is not totally met, even if by just
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a little. Indeed, try to two-colour a graph that is not quite two-colourable, or
to approximate Max2SAT for formulas that are almost satisfiable by using an
algorithm that solves 2SAT. Perhaps the most obvious example of this sort is
MAX-2LIN, the problem of satisfying a maximal number of linear equations.
This problem can be solved easily using Gaussian elimination if there is an as-
signment satisfying all equations but is hard to approximate when this is not
the case, even when the system is nearly satisfiable.

Of course a better scenario is when the algorithms are robust. Such algorithms
are designed to work well on a special class of inputs but even when the input
slightly inconsistent with the class (of course, “slightly” should be well defined
in some natural way) then the performance (approximation) of the algorithm
may only deteriorate in some controlled way.

As was outlined in the Preliminaries, in the context of graphs we say that a
graph is close to being Minor Free if by removing a small number of edges the
obtained graph is minor-free. With this in mind, we would like to know whether
there are good algorithms when the input graph is either minor-free or it can be
made minor-free after, say, o(n) edges are removed from.

We first argue that previous combinatorial algorithms, or even other algo-
rithms that work in the same spirit, are non-robust. Notice that all previous
algorithms relied on finding a decomposition of the graph into simpler (small
tree-width) parts, in a manner which “resembles” a partition. For simplicity we
will consider the spacial case of robustness with respect to planar graphs. Had
there been robust combinatorial algorithms we would that along the way such
algorithms will provide decomposition of the above nature. But then we should
also expect such algorithms to perform the simpler task of deleting a few nodes
and edges in such graphs so as to make them planar. Two relevant combina-
torial problems come in mind, Maximum Planar Subgraph and Minimum

Non-planar Deletion, the first asking to find a planar subgraph of the input
graph G with maximum number of edges, and the second is the complementary
problem, that is minimizing the number of edges to delete to make G planar.
These problems are well studied and was shown to be APX-hard [8,20].

In contrast, the Sherali-Adams based approach uses such decomposition only
in its analysis and so the algorithmic difficulty in detecting the “wrong edges”
disappears. Here is what we can obtain. We jump right away to the general
minor-free case, although similar argument will provide an algorithm for the
planar case with improved parameters.

Theorem 5. For every H and ε, there exists a constant r = r(ε, H) such after
applying level-r SA operator to LP (6) for Max Independent Set with input
graph G which has distance d = O(n/|H |

√
log|H |) from an H-minor-free graph,

the integrality gap is at most

1 + ε + O(d|H |
√

log |H |/n).

Proof. Let F be an H-minor-free graph that is closest to G. It is easy to verify
that (i) V (F ) ⊆ V (G) (ii) E(F ) ⊆ E(G) and further that |E(G) − E(F )| ≤ d.
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Since the removal of every edge can increase the size of the maximum indepen-
dent set by 1, and since the removal of an isolated vertex will decrease it by 1,
it follows that

|α(G) − α(F )| ≤ d.

The next structural statement we need in order to control the behaviour of G
compared to that of F is the strength of SA(t)(G) compared to that of SA(t)(F).
Let y be the optimal solution of SA(t)(G). Since E(F ) ⊆ E(G) we can use the
monotonicity argument as in the proof of Theorem refmain to deduce that the
restriction of y to F is a valid solution to SA(t)(F). This allows us to bound
y(F ) as if it is obtained in SA(t)(F) and hence we can use Theorem 3, which
sys that there exists a constant r = r(ε, H) such that after applying level r
Sherali-Adams operator, we get a bound

y(F ) ≤ (1 + ε)α(F ). (10)

Recall that y(F ) is just a projection of the vector y onto F , hence we obviously
have

y(G)− y(F ) ≤ d (11)

We next argue that there are large independent sets in F . Indeed, recall that
the greedy algorithm that repeatedly takes a vertex of lowest degree to the
independent set and removes its neighbours, gives an independent set of size
Ω(n/δ) where δ is the average degree in F . It is known [19] that H-minor-free
graphs have on average degree O(|H |

√
log |H |), hence an independent set of

size Ω(n/|H |
√

log |H |) is obtained. Since d = O(n/|H |
√

log |H |) we get that
d = O(α(F )). We will assume from now on that the hidden constant is such that

d ≤ α(F )/4 (12)

We now combine inequalities 10, 11 and 12 to get obtained the desired bound
on the integrality gap of SA(t)(G).

y(G)
α(G)

≤ y(F ) + d

α(F )− d

≤ y(F )
α(F )− 2d

≤ (1 + ε)α(F )
α(F )(1 − 2d/α(F ))

≤ (1 + ε)(1 + 4d/α(F ))

= 1 + ε + O(d|H |
√

log |H |/n).

When Min Vertex Cover is Harder than Min Independent Set: Is it
possible to import the above result to the Min Vertex Cover problem a-la
Section 4? We give a strong evidence that the answer is negative. The idea is
based on two simple facts. First, a graph on d vertices has distance d from the
empty graph. Second, the addition of isolated vertices to a graph the optimal
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value of the vertex cover LP does not change, nd the same holds to the level
r SA operator applied on that LP. By a result of Charikar, Makarychev and
Makarychev [7] there are graphs on d nodes for which the integrality gap is
2 − o(1) even in the r-th level of the Sherali-Adams hierarchy for r = dΩ(1).
Specifically, the fractional solution (in the hierarchy) is roughly d/2 while the
minimum vertex cover is d(1 − o(1)). Now, take a graph G0 on d vertices as
above and add n− d isolated vertices to it. The obtained graph G will have (i)
distance d from the empty graph on n − d vertices (which is of course planar),
and (ii) an optimal value of roughly d/2 in the dΩ(1)-level of the Sherali-Adams
hierarchy. Thinking of d and n as asymptotically the same, say d = n/100 we
get that even linear-level (in number of vertices) of Sherali-Adams has tight
integrality-gap for graphs which are d distance away from planar graph, and so
for the Min Vertex Cover problem, proximity to planarity does not preclude
large integrality gaps.

6 Discussion

We have shown how LP-based algorithms “utilize” graph theoretical concepts in
a different way compared to their combinatorial counterparts: While the combi-
natorial algorithms need to find a partition/decomposition of the graph in order
to define the execution of the rest of the algorithm, in the Sherali-Adams world
the special structure of the graph is used only in the analysis (at least for the
problem of approximating the optimal value). This conceptual difference is what
allows the Sherali-Admas approach to be successful where the combinatorial
approach is limited.

In the introduction we have mentioned the Euclidean TSP result due to
Arora[1]. Other works on connectivity problems for Planar/Euclidean case were
since investigated, see [5,6]. The underlying principle that is employed in these
works is that a discretization of the space can approximate the problem well. The
finer the discretization the better the approximation (at the cost of increased
running time). Showing that a Sherali-Adams based algorithm leads to similar
PTAS would be very interesting. Again, such a result will give rise to a very
simple algorithm, “placing all the difficulty” on the analysis.

Acknowledgement. We thank Robi Krauthgamer who suggested to challenge
lift and project systems with hard problems on planar graphs.
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Abstract. We consider adding k shortcut edges (i.e. edges of small fixed
length δ ≥ 0) to a graph so as to minimize the weighted average shortest
path distance over all pairs of vertices. We explore several variations of
the problem and give O(1)-approximations for each. We also improve the
best known approximation ratio for metric k-median with penalties, as
many of our approximations depend upon this bound. We give a (1 +

2 (p+1)
β(p+1)−1 , β)-approximation with runtime exponential in p. If we set

β = 1 (to be exact on the number of medians), this matches the best
current k-median (without penalties) result.

1 Introduction

Multi-core processors have become popular in modern computer architectures
because they provide large gains in performance at relatively low cost. In many of
these processors the multiple cores are connected as a Network-on-Chip (NoC) as
described in [5]. While each individual core may be slower than a state-of-the-art
single-core processor, together they form a processor well-suited for largely paral-
lel applications. Moreover, NoC designs avoid tedious power and heat constraints
associated with single-core processor design. Instead, the important concern is
how to best connect these multiple cores into a single, efficient network.

NoC designs typically use mesh networks since regular topologies are easier
to manufacture. However, many pairs of nodes are far apart in mesh graphs.
Thus, it becomes necessary to add several long interconnects to decrease average
communication latency. While traditional interconnects become inhibitively slow
when too long (see [13]), radio-frequency (RF) interconnects, introduced in [8],
exhibit much better performance. Unfortunately, RF interconnects require much
more area and cannot completely replace traditional interconnects.

Despite this, Chang et. al. show how to reap the benefits of RF interconnects
without significantly increasing area. They propose in [7,9] a hybrid architecture
which uses an underlying mesh topology (using traditional interconnects) with
an overlay of a small number of RF interconnects, each of which forms a fast
point-to-point connection between otherwise distant nodes. Yet, Chang et. al.
leave open the question of how to best place these RF interconnects given the
traffic profile (between pairs of cores) of a specific application.

We formulate this as a general network design problem which we call the
Average Shortest Path Distance Minimization (ASPDM) problem: Given a graph

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 272–285, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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with weights on pairs of nodes, find k shortcut edges (of length δ ≥ 0) whose
addition minimizes the weighted average shortest path distance over all pairs of
nodes. We give the following results, where α is the best approximation known
for metric k-Median with Penalties:

1. an α-approximation for Single-Source (one-to-all) ASPDM,
2. a 2α-approximation if all pairs have equal weight (Unweighted ASPDM),
3. a (4α, 2)-approximation (i.e. a 4α-approximation using at most 2k edges)

for general ASPDM,
4. an α-approximation if paths can use at most one shortcut (1-ASPDM), and
5. an ( e

e−1 )-approximation on the improvement in cost for 1-ASPDM.

We show all the above versions to be NP-complete. We also improve the approxi-
mation to k-median with penalties by applying local search to (1+2 p+1

β(p+1)−1 , β),
where an (α, β)-approximation implies that we achieve an α-approximation on
cost using at most βk medians. This gives us a smooth tradeoff between allowing
additional medians and reducing the cost, and if we require exactly k medians
(β = 1) it gives α = 3 + ε.

Shortcut addition is frequently used in computer networks to obtain small-world
topologies. Yet, existing techniques are either heuristic approaches [17,20] or con-
sider specific graphs [22,15,18,21]. Other related problems are the Buy-at-Bulk [4],
Rent-or-Buy [12] andCost-Distance [19] problemswhich consider purchasing edges
in a network. However, unlike these problems, ASPDM places a hard limit on the
number of shortcuts. Our results guarantee constant approximations on general
graphs despite this hard constraint.

2 Problem Formulation

LetG = (V,E) be an undirected graph with non-negative edge lengths �e for each
e ∈ E and non-negative weights wuv on each ordered pair of vertices u, v ∈ V .
We use duv to denote the length of the shortest uv-path for vertices u, v ∈ V .
The weighted one-to-all shortest path sum Du(G) from vertex u is defined as

Du(G) =
∑

v∈V

wuvduv.

We then define the weighted all-pairs shortest-path sum D(G) to be

D(G) =
∑

u∈V

Du(G) =
∑

u∈V

∑

v∈V

wuvduv.

Then the weighted average shortest path distance D̄(G) over all pairs of vertices
is simply D(G) divided by the sum of all the ordered pair weights. Throughout
this paper we will be interested in minimizing D̄(G), but it is easy to see that it
is equivalent to minimize D(G).

We can now formally define the Average Shortest Path Distance Minimization
via Shortcut Edge Addition problem (ASPDM) as follows:
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Problem 1 (ASPDM). Given an undirected graph G = (V,E) with lengths �e
on the edges e ∈ E, weights wuv for each ordered pair of vertices u, v ∈ V , a
shortcut edge length δ ≥ 0 and an integer k, find a set F ⊆ V × V of at most k
shortcut edges of length δ such that D̄(G+ F ) is minimized.

Of course, F + G may be a multi-graph if F ∩ E 
= ∅. In some cases we can
consider directed shortcuts, but graph G must remain undirected for reasons
stated in Section 4. For simplicity of analysis we assume that δ = 0, but all our
results extend to arbitrary δ ≥ 0.

We consider several variations of ASPDM. The Single-Source ASPDM prob-
lem (SS-ASPDM) is the case where the only non-zero weights are on pairs
involving a designated source vertex s. Unweighted ASPDM (U-ASPDM) places
equal weight on all pairs (which may be the case for general-application NoC
designs where weights are unknown). Finally, the 1-Shortcut Edge Restricted
ASPDM (1-ASPDM) restricts that each shortest path uses at most one of the
added shortcut edges. 1-ASPDM is a suitable model for NoC design since it re-
duces the complexity of the routing tables that need to be stored in the design
and also reduces congestion along these shortcuts.

3 Preliminaries and Initial Observations

In this section, we review k-median with penalties which we use in many of
our results below. We will also analyze an algorithm for SS-ASPDM, which is a
useful subroutine for more general results.

3.1 Metric k-Median with Penalties

In k-median with penalties, we are given a set of cities and a set of potential
facility locations arranged in a metric space. Each city has a demand that needs
to be served by a facility. Each city also has a penalty cost, which we can pay to
refuse service to the city. If we choose to serve a city, we must pay the distance
between the city and its assigned facility for each unit demand. Our job is to
find a set of k facilities to open, a set of cities to be served, and an assignment
of cities to open facilities such that our total cost is minimized.

Throughout this paper, we use α to denote the ratio of the best approximation
algorithm for k-median with penalties. We use this approximation as a subrou-
tine in many of our algorithms. Because of the inapproximability of asymmetric
k-median ([2]), our algorithms only apply to undirected graphs. However, most
of our algorithms permit directed shortcuts.

3.2 Single Source ASPDM

In this section we consider SS-ASPDM where only the weights wsv may be
non-zero for some designated source s and v ∈ V . Thus, we are simply minimiz-
ing Ds(G). This model will become useful in analyzing the complexity of our
ASPDM variants as well as for obtaining an approximation for U-ASPDM.
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Lemma 1. For every instance of SS-ASPDM, there exists an optimal set F ∗

such that each edge e ∈ F ∗ is incident on s. Moreover, for every v ∈ V , there
exists a shortest sv-path that uses at most one edge in F ∗.

Proof. Let F ∗ be an optimal set of shortcut edges and consider e = uv ∈ F ∗.
Suppose p1 is a shortest sx-path that traverses e in the uv direction and p2 is a
shortest sy-path that traverses e in the vu direction. Then the sy-path p3 that
starts at s, follows p1 until u then follows p2 never crosses e and can be no longer
than p2 (otherwise there would exist a sx-path shorter than p1). Thus, e has an
implicit orientation such that it is only ever used in the correct direction.

Since e is only used in one direction (say, u to v), then moving u closer to s
only improves our cost. Thus, F ∗−uv+sv is at least as good a solution. We can
do this for all other edges so that F ∗ contains only edges incident on s. Notice
that now since every shortcut edge is incident on s, there is never any incentive
to use more than one shortcut in a shortest path. ��

Then we need only find k endpoints for our edges that minimize our cost if for
each vertex v we pay either its weighted distance to the nearest endpoint or a
penalty wsvdsv. This is precisely the k-median with penalties problem, thus we
have an α-approximation algorithm for SS-ASPDM.

Theorem 1. There exists a polynomial-time α-approximation algorithm ALGSS

for SS-ASPDM.

Moreover, this α-approximation holds when adding directed shortcuts (to an
undirected graph) since each edge e ∈ F ∗ is only ever used in a single orientation.

4 Complexity

Consider unweighted (i.e. all non-zero weights are equal) SS-ASPDM. We now
show that this problem is NP-Hard via reduction from the well-known Set Cover
problem (defined in [11]).

Theorem 2. Unweighted SS-ASPDM is NP-Hard. Further, for directed graphs,
unweighted SS-ASPDM is hard to approximate to better than Ω(log |V |).

Proof. Omitted. Here, we give only the construction: Given an instance of set
cover with universe U , subset collection C and integer k, let G have a vertex vx
for every x ∈ U , a vertex vS for every S ∈ C, and a vertex s. There is an edge
of length 1 from s to each vS and an edge of length 1 from vS to each vx where
x ∈ S. Notice that Ds(G) = |C|+ 2|U |. We can now solve set cover by asking if
there is a set F of k shortcut edges such that Ds(G+ F ) ≤ |C| − k + |U |. ��

Unweighted SS-ASPDM is clearly a restriction of SS-ASPDM and ASPDM. By
Lemma 1, SS-ASPDM is also a restriction of 1-ASPDM. The above reduction
works for U-ASPDM when we replace s with a sufficiently large clique (connected
by length-0 edges). Thus, we immediately get that all these problems are NP-
Hard.

Corollary 1. SS-ASPDM, U-ASPDM, 1-ASPDM, ASPDM are all NP-Hard.
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5 Unweighted ASPDM

In this section, we consider U-ASPDM where all pairs have equal weight. We will
give an approximation algorithm which uses our SS-ASPDM algorithm ALGSS
as a subroutine. To do this, we must first claim that there exists a vertex x that
is sufficiently close to all other vertices.

Lemma 2. There exists an x such that when used as the source ALGSS returns
a 2α-approximation.

Proof. Let F ∗ be the optimal solution. The average value of Dv(G+F ∗) over all
v is 1

nD(G+F ∗). Thus, some vertex x must not exceed the average. Try adding
edge set F so as to minimize Dx(G+ F ). By Theorem 1, we can do this within
α of optimal using ALGSS. Since Dx(G+ F ∗) is no better than optimal,

Dx(G+ F ) ≤ α ·Dx(G+ F ∗) ≤ α · 1
n
D(G+ F ∗). (1)

We can also bound D(G+F ) in terms of Dx(G+F ). Since d is a metric, for each
u, v we have duv ≤ dux + dxv. Summing these inequalities over all pairs gives

D(G+ F ) ≤ 2nDx(G+ F ). (2)

Finally, combining Equations 1 and 2 gives the desired result

D(G+F ) ≤ 2nDx(G+F ) ≤ 2nαDx(G+F ∗) ≤ 2αD(G+F ∗). ��

Thus, treating the all-pairs problem as a single-source problem with source vertex
x produces a 2α-approximation. However, since finding x requires knowledge of
F ∗, we must instead try all possible x and take the best solution. We note that
while ALGSS works with directed shortcuts, this algorithm does not since edges
may need to be used in both directions.

Theorem 3. There exists a polynomial-time 2α-approximation algorithm for
U-ASPDM.

6 General ASPDM

We now consider the most general version of the problem where each pair can
have an arbitrary weight associated with it. For this version, we offer a bicri-
teria approximation algorithm that breaks the restriction that only k edges be
added.

Theorem 4. There exists a polynomial-time (4α, 2)-approximation algorithm
for ASPDM. In particular, this algorithm gives at most 2k − 1 edges yielding
cost at most 4α-times the optimum k-edge cost.
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Proof. Let F ∗ be the optimal set of k edges. Notice that these edges involve
j ≤ 2k endpoints. Let F̂ be a set of j − 1 ≤ 2k − 1 edges that connect these
endpoints as a star. Thus, we can travel between any two endpoints using two
shortcuts giving D(G+ F̂ ) ≤ 2D(G+ F ∗).

Since we do not know the set of endpoints used by F ∗ a priori, we try to
find a star F over 2k points that minimizes D(G + F ). We can use 2k-median
with penalties to find this approximate solution F . To do this, we duplicate each
vertex u so that the 2k-median solution can connect u to some vertices and deny
connections to others. We duplicate u a total of 2n−2 times introducing uuv and
uvu for each v 
= u, having weights wuv and wvu and penalties max{0, wuv(duv−
2δ)} and max{0, wvu(dvu−2δ)}, respectively. Since all the vertices corresponding
to u are co-located, we need only choose one representative as a potential facility
location.

For each pair u, v the 2k-median instance pays for “connecting” u and v
through these medians and never pays more than 2wuv(duv − 2δ). Adding the
cost due to traversing shortcuts between these medians shows the optimum 2k-
median solution will have cost less than 2D(G+ F̂ ). Using an α approximation
gives us a cost of:

D(G+ F ) ≤ 2αD(G+ F̂ ) ≤ 4αD(G+ F ∗).

It follows that F gives a 4α-approximation for this problem. ��
Notice that when δ = 0 we can actually improve this to a (2α, 2)-approximation
since we haveD(G+F̂ ) ≤ D(G+F ∗). In this case, we can also deal with directed
shortcuts if we connect the 2k endpoints as a directed cycle (thus, using exactly
2k shortcuts).

7 1-Shortcut Edge Restricted ASPDM

We consider a restriction that each path must use at most one shortcut edge.
This allows us to provide improved approximations (in particular removing the
increase over k shortcut edges). For real NoC designs, this kind of restriction
ensures no pair monopolizes the RF interconnects and permits simplified routing.

7.1 Approximating Total Cost

We first define a metric over pairs of points V × V .

Theorem 5. If (V, d) is a metric, then so is the space (V × V, d̂) where

d̂(x1y1, x2y2) = min(d(x1, x2) + d(y2, y1), d(x1, y2) + d(x2, y1)).

Proof. Omitted. ��
Note that in this space, we can naturally assign weight wuv and penalty wvuduv

to point uv. Moreover, if we select xy as a shortcut edge, then any 1-shortcut
edge restricted shortest uv-path using xy has length d̂(uv, xy). Then adding k
shortcut edges is equivalent to picking k medians in this pairs-of-points space.
Thus, we can use k-median with penalties to obtain an α approximation.



278 A. Meyerson and B. Tagiku

Corollary 2. There exists a polynomial-time α-approximation algorithm for 1-
ASPDM.

This works for directed shortcuts if we instead use d̂(x1y1, x2y2) = d(x1, x2) +
d(y2, y1) which explicitly uses shortcuts in the correct direction.

7.2 Approximating Cost Improvement

The previous result guarantees a solution cost of at most αD(G+F ∗). However, if
D(G+F ∗) ≥ 1

αD(G), then this guarantee can exceed D(G), which even a trivial
solution could satisfy! In such cases, it is more meaningful to approximate the
optimum amount of improvement. We define Δ(G,H) = D(G) − D(H). Then
we want our solution F to satisfy

Δ(G,G+ F ) ≥ 1
ζ
Δ(G,G + F ∗)

for some ζ ≥ 1. We can obtain such an approximation using linear programming.
We first give an ILP formulation for 1-ASPDM. We use binary variables

xxy, f
st
uv, g

st
uv, h

st
xy for each s, t ∈ V , uv ∈ E and shortcut edge xy whose ad-

dition we are considering. If xxy = 1 then edge xy ∈ F . Each pair (s, t) is given
one unit of flow that needs to travel from s to t. Variable fst

uv indicates the
amount of (s, t)-flow over edge uv allowed to use a shortcut edge. Similarly, gst

uv

indicates the amount of (s, t)-flow over edge uv that has already used a short-
cut edge. Finally, hst

xy ∈ {0, 1} indicates the amount of (s, t)-flow over shortcut
edge xy.

Our ILP formulation is as follows:

minimize
∑

s,t

[

wst ·
∑

uv∈E

�uv

(
fst

uv + gst
uv

)
]

(3)

subject to
∑

x,y

xxy = k (4)

hst
xy ≤ xxy ∀s, t, x, y (5)
∑

v∈Γ (s)

fst
sv +

∑

y

hst
sy = 1 ∀s, t (6)

∑

u∈Γ (w)

fst
uw =

∑

v∈Γ (w)

fst
wv +

∑

y

hst
wy ∀s, t, ∀w 
= s, t (7)

∑

u∈Γ (w)

gst
uw +

∑

x

hst
xw =

∑

v∈Γ (w)

gst
wv ∀s, t, ∀w 
= s, t (8)

xxy, f
st
uv, g

st
uv, h

st
xy ∈ {0, 1} ∀s, t, u, v, x, y (9)

where Γ (v) are the neighbors of vertex v in graph G. Equation (4) ensures
that exactly k edges are selected and Equation (5) ensures that we only use
selected shortcuts. Equation (6) enforces that for each pair (s, t), s adds one
unit of (s, t)-flow to the graph. Equation (7) and (8) enforce conservation of flow
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at each vertex other than s, t (this also stipulates that t sink the one unit of
(s, t)-flow). Finally, Equation (9) enforces integrality.

Since solving ILPs is NP-complete in general, we relax the integrality
constraints by replacing Equation (9) with

0 ≤ xxy, f
st
uv, g

st
uv, h

st
xy ≤ 1.

We can now use the solution to this LP as a guide for our edge selection process.
We build F iteratively using the values assigned to each xuv by the optimal LP

solution such that Pr[(uv) ∈ F ] = xuv. Arbitrarily order the edges e1, e2, . . . , em
and set x̂ei = xei for all i and F1 = ∅. In the i-th iteration, we add ei with
probability x̂ei to get Fi+1 = Fi ∪ {ei} or otherwise set Fi+1 = Fi. After doing
this, for each j > i we set

x̂ej ← x̂ej ·
k − |Fi+1|
k − |Fi| − x̂ei

.

We continue this process to get set F = Fn containing at most k shortcut
edges.

Lemma 3. The above process yields a set F of at most k edges such that for each
ei, 1 ≤ i ≤ m, we have Pr [ei ∈ F ] = xei .Moreover, for any Si ⊆ {e1, e2, ..., ei−1}
we have:

Pr [ei ∈ F | Si ∩ F = ∅] ≥ xei .

Proof. Omitted. ��

We can decompose the flow and calculate expected cost to get the following:

Theorem 6. Let F ∗ be the optimal set of edges and F the set of edges generated
by the process above. Then

Ex[Δ(G,G+ F )] ≥
(
e− 1
e

)
Δ(G,G+ F ∗).

Proof. Fix the pair (s, t) and consider its associated flow in the LP solution. De-
compose this flow into simple paths using at most one shortcut. Let p1, p2, . . . , pα

be the paths (in order of non-decreasing length) using exactly one shortcut. Let
fi be the flow over pi and ei the shortcut edge used by pi . We can assume that
each path uses a distinct shortcut (we can reroute the flow from one path to
the other path otherwise). By LP optimality, none of these paths are longer
than dst.

Let qi be the probability that at least one of paths p1, . . . , pi exist in G+ F .
Then notice

qi = 1− Pr[none of paths p1, . . . , pi exist]
= 1− (1− Pr[p1 exists]) · · · (1 − Pr[pi exists | p1, . . . , pi−1 don’t exist])
≥ 1− (1− xe1 )(1− xe2 ) · · · (1 − xei)
≥ 1− (1− f1)(1− f2) · · · (1− fi)
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where the first inequality follows from Lemma 3 and the second follows from
LP-feasibility. Notice this quantity is minimized when all fjs are equal. Let
Si =

∑i
j=1 fj and note that since (s, t) has only one unit of demand we have

Sα = 1. Then since (1− x)1/x ≤ 1
e and 0 ≤ Si ≤ 1 we have

qi ≥ 1− (1− f1)(1− f2) · · · (1− fi) ≥ 1−
(

1− Si

i

)i

≥ 1− 1
eSi
≥

(
1− 1

e

)
Si.

Thus, our expected cost for the (s, t)-pair is precisely

Ex[cost] = dst − (�p2 − �p1)q1 − (�p3 − �p2)q2 − · · · − (dst − �α)qα

≤ 1
e
dst +

(
1− 1

e

)
[�p1S1 + �p2(S2 − S1) + · · ·+ �pα(Sα − Sα−1)]

=
1
e
dst +

(
1− 1

e

)
[�p1f1 + �p2f2 + · · ·+ �pαfα]

Summing this inequality over all (s, t) pairs gives us

Ex[D(G+F )] ≤
(

1− 1
e

)
LP +

(
1
e

)
D(G) ≤

(
1− 1

e

)
D(G+F ∗)+

(
1
e

)
D(G)

where LP is the cost of the LP solution. Subtituting into our definition of
Δ(G,G+ F ) finishes the proof. ��

This shows we have a e
e−1 -approximation algorithm on the total amount of

improvement. While this algorithm uses randomness to select the shorcut edges,
we can easily derandomize the process using conditional expectations. In other
words, when considering ei, we calculate the conditional expected cost given
ei /∈ F and given ei ∈ F . Once this is calculated, we follow the decision that
gives us the smallest expected cost.

Corollary 3. There exists a polynomial-time e
e−1 -approximation algorithm on

the improvement in cost for 1-ASPDM.

We note that this algorithm works on directed graphs. Additionally, it works if
we restrict the possible shortcuts we can add. We also note that the LP used
can be rewritten as a much smaller convex program and may be more efficiently
solved.

8 Improved k-Median with Penalties Approximation

We now show that for k-median with penalties, we can use βk medians, β ≥ 1,
to acheive a cost of at most 1 + 2 p+1

β(p+1)−1 times the optimum cost (using k
medians). For β = 1 this improves upon the 4-approximation for k-median with
penalties given in [10] and matches the best approximation known for standard
k-median given in [3]. This also improves upon the (1 + 5

ε , 3 + ε)-approximation
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given in [16] for standard k-median. We note that standard k-median is hard to
approximate to within 1 + 2

e as shown in [14]. Our approach extends the local
search based approximation algorithm given in [3] by permitting penalties and
by creating a smooth bicriteria tradeoff when the algorithm is permitted to use
additional medians.

Let C be the set of cities, F the set of potential facility locations and c the
metric distance function. City j has demand wj and penalty cost pj . Thus, we
are searching for a set S ⊆ F of k facilities to open, a set T ⊆ C of cities to
serve and an assigment σ : T → S of cities to facilities to minimize cost

cost(S) = serv(S) + deny(S) =
∑

j∈T

wjcj,σ(j) +
∑

j∈C−T

pj.

We say city j is served by facility i if σ(j) = i. Otherwise, city j is denied service.
The neighborhood NS(i) of facility i in solution S is the set of cities served by
i. We abuse notation and write NS(A) to denote the neighborhood of a set A of
facilities. It will be convenient to refer to the cost due only to a set X of cities.
Here we use costX(S), servX(S), denyX(S) to denote the total cost, service cost
and denial cost (respectively) due to cities in X .

8.1 The Local Search Algorithm

Given a set of facilities S, we can easily calculate the best T and σ to use by
greedily choosing to either assign each city to its closest open facility or to deny
it service. Thus, we perform a local search only on the set S. Each iteration
we consider all sets A ⊆ S and B ⊆ F − S with |A| = |B| ≤ p for some fixed
parameter p ≥ 1. We choose A,B such that cost(S − A + B) is minimized and
iterate until no move yields a decrease in cost. We denote swapping the sets A
and B by 〈A,B〉.

8.2 Analysis

We now bound the locality gap of our algorithm:

Theorem 7. The local search algorithm in Section 8.1 has a locality gap of at
most 1 + 2 p+1

β(p+1)−1 .

Proof. Let (S, T, σ) be our solution using βk medians and (S∗, T ∗, σ∗) be the
optimum solution using k medians. We assume for simplicity that all weights are
multiples of some δ > 0. Replace each city j with wj

δ copies each with weight δ
and penalty pjδ

wj
. S and S∗ treat all copies of j as they did j. Clearly, it is enough

to analyze this unweighted case.
For a subset A ⊆ S, we will say A captures o ∈ S∗ if A serves at least half

the cities served by both o in the optimum solution and by some facility in our
solution. We then define capture(A) to be the set of optimum facilities that A
captures. Thus,

capture(A) = {o ∈ S∗ : |NS(A) ∩ NS∗(o)| ≥ 1
2
|NS∗(o) ∩ T |}.
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A facility s ∈ S is bad if |capture(s)| 
= ∅ and is good otherwise. Note that if
A,B ⊆ S are disjoint then so are capture(A) and capture(B).

Suppose S has r − 1 bad facilities. Partition S into A1, . . . , Ar and S∗ into
B1, . . . , Br such that for all i ≤ r− 1 we have |Ai| = |Bi|, Bi = capture(Ai) and
Ai contains exactly one bad facility. We can build this partition by adding a bad
facility to each Ai then adding good facilities until |Ai| = |capture(Ai)|. Since
each o ∈ S∗ is captured by at most one facility and capture(A1) ∩ capture(S −
A1) = ∅, we never run out of good facilities.

In fact, we only care about the Ai with |Ai| ≤ p (excluding Ar). Without
loss of generality, we assume these to be sets A1, . . . , Ab. Let x =

∑b
i=1 |Ai| =∑b

i=1 |Bi| and note that x ≥ b since each Ai is non-empty. Then there are at
most k−x ≤ k− b optimum facilities total among sets Bb+1, . . . , Br−1. Since all
these sets have cardinality greater than p and there is one bad facility per Ai,
we can upper bound the number of bad facilities by b+ k−b

p+1 = k+pb
p+1 .

We let G be the good facilities in Ab+1, . . . , Ar and a = |G|. Then since we
have βk medians total, we have

a ≥ βk − k + pb
p+ 1

=
βkp+ βk − k − pb

p+ 1
(10)

For each i such that |Ai| ≤ p, we consider the swap 〈Ai, Bi〉. We will refer
to these swaps as set swaps. We also consider all possible single-facility swaps
between optimum facilities in Bi and facilities in G. We will call these swaps bad
singleton swaps. Lastly, we consider all possible single-facility swaps between the
remainder of optimum facilities and facilities in G. We will call these swaps good
singleton swaps. By local optimality, each swap (either set or singleton) 〈X,Y 〉
satisfies

cost(S −X + Y )− cost(S) ≥ 0. (11)

For each facility o ∈ S∗, partition NS∗(o) into parts pX = NS∗(o) ∩ NS(X) for
each considered swap 〈X,Y 〉 above and pdeny = NS∗(o)−T . We let π : NS∗(o)→
NS∗(o) be a bijection such that pdeny = π(pdeny) and for each part p 
= pdeny

having |p| < 1
2 |NS∗(o) ∩ T | we have p ∩ π(p) = ∅. It is easy to check that such a

bijection exists.
Now let 〈X,Y 〉 be a set or singleton swap considered above. When we make

this swap, we can make sure to assign NS∗(Y ) to Y , but we also need to reassign
any other cities served by X . If S∗ denies any of these cities, we will also deny
them service. Otherwise, we can reassign j to the facility serving π(j). Thus, we
can bound our change in cost above by:

0 ≤ cost(S −X + Y )− cost(S) ≤∑
j∈NS∗ (Y )∩T

[
cj,σ∗(j) − cj,σ(j)

]
+∑

j∈NS∗ (Y )−T

[
cj,σ∗(j) − pj

]
+∑

j∈(NS(X)−NS∗ (Y ))∩T ∗

[
cj,σ∗(j) + cσ∗(j),π(j) + cπ(j),σ(π(j)) − cj,σ(j)

]
+∑

j∈(NS(X)−NS∗ (Y ))−T ∗

[
pj − cj,σ(j)

]
.

(12)

Consider the inequalities corresponding to Equation 12 for each swap considered.
We mutiply the inequalities for set, bad singleton and good singleton swaps by
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γ = p+1
β(p+1)−1 , 1−γ

a and 1
a (respectively) then sum the resulting inequalities.

Notice that each o ∈ Bi is involved in swaps of total weight one. Thus the first
two terms of Equation 12 sum to serv(S∗)− costT ∗(S).

Each bad facility s is involved with a set swap of weight γ or is never swapped.
Each good facility s is involved in x bad singleton swaps and k−x good singleton
swaps for a total weight of

x

(
1− γ
a

)
+
k − x
a

=
1
a

(
k − x p+ 1

β(p+ 1)− 1

)
≤ 1
a

(
k − b p+ 1

β(p+ 1)− 1

)
≤ γ

Thus, any j ∈ T ∩ T ∗ is considered in a weighted total of at most γ swaps.
Since

[
cj,σ∗(j) + cσ∗(j),π(j) + cπ(j),σ(π(j)) − cj,σ(j)

]
≥ 0 by triangle inequality and[

pj − cj,σ(j)
]
≥ 0 we can assume that each j appears exactly γ times (this only

increases the right-hand side of Equation 12). Then the third and fourth terms
of Equation 12 sum to at most γ (2servT (S∗) + denyT (S∗)− servT−T ∗(S)).

Thus summing Equation 12 over all swaps and rearranging gives

serv(S∗) + 2γservT (S∗) + γdenyT (S∗) ≥ costT ∗(S) + γservT−T ∗(S). (13)

Since denyT−T ∗(S) = 0 as S does not deny service to any member of T , the right-
hand side exceeds cost(S). Since cost(S∗) = serv(S∗) + deny(S∗) the left-hand
side is no greater than (1 + 2γ)cost(S∗). Thus, we have

cost(S) ≤
(

1 + 2
p+ 1

β(p+ 1)− 1

)
cost(S∗). ��

9 Experiments and Future Work

We have run some experiments comparing the result of our local search-based ap-
proximation for 1-ASPDM against the heuristics described in [6] and obtained a
4-5% improvement in both latency and power. We are conducting further experi-
ments to determine whether local search is producing optimum results in practice,
and whether a more complex model might lead to even more improvement.

From a theoretical standpoint, we have given constant factor approximations
for all versions of ASPDM except the most general one. Whether the general
ASPDM problem has a (single criterion) constant approximation remains an
open problem. The problem is related to a series of works in the theory of
network design literature (for example Rent-or-Buy problems) in much the same
way that k-median relates to facility location (instead of summing two types of
cost, we have a hard constraint on one type and seek to minimize the other).
If we permit restrictions on the set of available shortcuts, then approximation
hardness results follow from the work of Andrews [1] but we are not aware of
any such results for the case where any pair of nodes can be connected via a
shortcut edge.

Acknowledgements. We would like to thank Professor Jason Cong and Chun-
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discussions about RF-interconnects and NoC architectures.
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Abstract. We consider the (undirected) Node Connectivity Augmenta-
tion (NCA) problem: given a graph J = (V, EJ ) and connectivity require-
ments {r(u, v) : u, v ∈ V }, find a minimum size set I of new edges (any
edge is allowed) so that J+I contains r(u, v) internally disjoint uv-paths,
for all u, v ∈ V . In the Rooted NCA there is s ∈ V so that r(u, v) > 0
implies u = s or v = s. For large values of k = maxu,v∈V r(u, v), NCA is
at least as hard to approximate as Label-Cover and thus it is unlikely to
admit a polylogarithmic approximation. Rooted NCA is at least as hard
to approximate as Hitting-Set. The previously best approximation ratios
for the problem were O(k lnn) for NCA and O(ln n) for Rooted NCA.
In [Approximating connectivity augmentation problems, SODA 2005]
the author posed the following open question: Does there exist a func-
tion ρ(k) so that NCA admits a ρ(k)-approximation algorithm? In this
paper we answer this question, by giving an approximation algorithm
with ratios O(k ln2 k) for NCA and O(ln2 k) for Rooted NCA. This is the
first approximation algorithm with ratio independent of n, and thus is
a constant for any fixed k. Our algorithm is based on the following new
structural result which is of independent interest. If D is a set of node
pairs in a graph J , then the maximum degree in the hypergraph formed
by the inclusion minimal tight sets separating at least one pair in D is
O(�2), where � is the maximum connectivity of a pair in D.

1 Introduction

1.1 Problem Definition

Let κG(u, v) denote the maximum number of internally-disjoint uv-paths in a
graph G. We consider the following fundamental problem in network design:

Node-Connectivity Augmentation (NCA):
Instance: A graph J = (V,EJ ), connectivity requirements {r(u, v) : u, v ∈ V }.
Objective: Find a minimum size set I of new edges so that G = J + I satisfies

κG(u, v) ≥ r(u, v) for all u, v ∈ V . (1)

We assume that if uv ∈ J then uv /∈ I. In general, all graphs are assumed to be
undirected and simple, unless stated otherwise. For an NCA instance at hand,
let opt denote the optimal solution value, let k = maxu,v∈V r(u, v) denote the

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 286–297, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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maximum connectivity requirement, and let n = |V |. Note that if NCA has a
feasible solution G = J + I (G is a simple graph), then n ≥ k + 1 must hold.

If all the connectivity requirements are “rooted”, namely from a specific node
s, then we have the following important particular case of NCA:

Rooted NCA:
Instance: A graph J = (V,EJ ), a root s ∈ V , and requirements {r(v) : v ∈ V }.
Objective: Find a minimum size set I of new edges so that G = J + I satisfies

κG(s, v) ≥ r(v) for all v ∈ V .

NCA is an extensively studied particular case of the following problem, that
recently received a renewed attention:

Survivable Network Design (SND):
Instance: A complete graph on V with edge-costs, and connectivity requirements

{r(u, v) : u, v ∈ V }.
Objective: Find a minimum cost subgraph G on V that satisfies (1).

NCA is equivalent to SND with 0, 1-costs, when EJ is the set of edges of cost
0, and any other edge is allowed and has cost 1. The case of 1,∞-costs of SND
gives the min-size subgraph problems, when we seek a solution using the edges
of cost 1 only.

1.2 Our Results

NCA admits an O(k lnn)-approximation [28], and is unlikely to admit a poly-
logarithmic approximation even for {0, k}-requirements [32]. For rooted require-
ments, an O(lnn)-approximation is known [28], and this is tight [33]. Motivated
by results from [21,22,18,19,33,30,32,5,4,26], the author posed in [32] the follow-
ing question: Does NCA admit a ρ(k)-approximation algorithm? Here ρ(k) is a
functions that depends on k only. We resolve this question, thus obtaining a
constant ratio for any constant k; furthermore, when ln2 k = o(lnn) our ratios
are better than the ones in [28].

Theorem 1. NCA admits the following approximation ratios:

– O(k ln2 k) for arbitrary requirements (improving O(k lnn));
– O(ln2 k) for rooted requirements (improving O(lnn)).

Here k = maxu,v∈V r(u, v) is the maximum requirement.

As an intermediate problem, we consider NCA instances with r(u, v) ≤ κJ(u, v)+
1 for all u, v ∈ V . That is, given a set D of node pairs, we seek to increase the
connectivity by 1 between pairs in D, meaning r(u, v) = κJ(u, v) + 1 for all
{u, v} ∈ D and r(u, v) = 0 otherwise. Formally:

Simple NCA:
Instance: A graph J = (V,EJ ) and a set D of unordered node pairs from V .
Objective: Find a minimum size edge-set I so that G = J + I satisfies

κG(u, v) ≥ κJ(u, v) + 1 for all {u, v} ∈ D . (2)
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Given an edge-set or a graph J and disjoint node-sets X,Y let δJ(X,Y ) denote
the set of edges in J that have one endnode in X and the other in Y ; let
δJ(X) = δJ(X,V − X). For S ⊆ V let ΓJ (S) = Γ (S) = {v ∈ V − S : uv ∈
EJ for some u ∈ S} denote the set of neighbors of S in V .

Definition 1. Given an instance of Simple NCA, we say that S ⊆ V is uv-tight
if u ∈ S, v /∈ S, |ΓJ(S)| = κJ(u, v), and either: v ∈ V − (S ∪Γ (S)), or uv ∈ EJ

and δJ(S, v) = {uv}. S is tight if it is uv-tight for some {u, v} ∈ D. Let CJ(D)
denote the set of inclusion minimal tight sets in J w.r.t. D, and in the case of
rooted requirements let Cs

J (D) = {C ∈ CJ(D) : s /∈ C}.

The proof of Theorem 1 is based on the following theorem, which is of indepen-
dent interest:

Theorem 2. Suppose that max{κJ(u, v) : {u, v} ∈ D} ≤ � for an instance
of Simple NCA. Then the maximum degree in the hypergraph (V, CJ (D)) is at
most (4�+ 1)2. For rooted requirements, the maximum degree in the hypergraph
(V, Cs

J(D)) is at most 2�+ 1.

We believe that the result in the theorem reveals a fundamental property which
will have further applications, and turn to be useful to design approximation
algorithms for various SND problems. Specifically, the approach in this paper was
later used by the author in [35] to obtain anO(k2)-approximation for Rooted SND
with arbitrary costs, which is currently the best known ratio for the problem.

Theorems 1 and 2 are proved in Sections 2 and 3, respectively. Section 4
concludes with some open problems.

1.3 Previous and Related Work

Variants of SND, and especially of NCA, were vastly studied. See surveys in
[27] and [14]. While the edge-connectivity variant of SND – the so called Steiner
Network problem – admits a 2-approximation algorithm by the seminal paper of
Jain [20], no such algorithm is known for SND. For directed graphs, Dodis and
Khanna [9] showed that {0, 1}-SND – the so called Directed Steiner Forest problem
– is at least as hard to approximate as Label-Cover. By extending the construction
of [9], Kortsarz, Krauthgamer, and Lee [24] showed a similar hardness result for
Undirected {0, k}-SND; the same hardness is valid even for {0, 1}-costs, namely,
for NCA, see [33]. However, the edge-connectivity variant of NCA – the so called
Edge-Connectivity Augmentation problem admits a polynomial time algorithm
due to Frank [13].

In general, for small requirement undirected variants of SND are substan-
tially easier to approximate than the directed ones. For example, Undirected
Steiner Tree/Forest admits a constant ratio approximation algorithm, while the
directed variants are not known to admit even a polylogarithmic approximation
ratio. The currently best known approximation lower bound for Directed Steiner
Tree is Ω(ln2−ε n) [17], while a long standing best known ratio is O(|n|ε/ε3)
in O(|n|4/εn2/ε) time [2]; this gives an nε/ε3-approximation scheme. In what
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follows, we survey results for general SND/NCA, Rooted SND/NCA, and the k-
Connected Subgraph (k-CS) problem, for both general and 0, 1-costs; the latter
is a famous particular case of SND when r(u, v) = k for all u, v ∈ V . See also
surveys in [23] and [27]. We consider the cases of general costs (SND) and of 0, 1-
costs (NCA) separately. The approximability of various SND problems (prior to
our work) is summarized in Table 1.

Table 1. Approximation ratios and hardness results for SND problems

Costs Req. Approximability
Undirected Directed

general general O(min{k3 ln n, n2} [8], kΩ(1) [1] O(n2), Ω(2log1−ε n) [9]

general rooted O(min{k2, n}) [35], Ω(log2 n) [29] O(n), Ω(log2 n) [17]

general k-CS O
(
log k · log n

n−k

)
[34] O

(
log k · log n

n−k

)
[34]

metric general O(log k) [6] O(n2), Ω(2log1−ε n) [9]

metric rooted O(log k) [6] O(n), Ω(log2 n) [17]

metric k-CS 2 + k−1
n

[25] 2 + k
n

[25]

0, 1 general O(k ln n) [28], Ω(2log1−ε n) [32] O(k lnn) [28], Ω(2log1−ε n) [32]

0, 1 rooted O(log n) [28], Ω(log n) [33] O(log n) [28], Ω(log n) [33]

0, 1 k-CS min{opt + k2/2, 2opt}) [18] in P [15]

SND–arbitrary costs: Frank and Tardos [16] gave a polynomial time algorithm
for the rooted variant with uniform requirements r(s, v) = k for all v ∈ V − s.
Ravi and Williamson [36] gave a 3-approximation algorithm for {0, 1, 2}-SND,
and the ratio was improved to 2 by Fleisher et al. [12]. As was mentioned, SND
is unlikely to admit a polylogarithmic approximation [24]; a recent improved
hardness result of Chakraborty, Chuzhoy, and Khanna [1] shows that SND with
requirements in {0, k} is kΩ(1)-hard to approximate. Recently, it was shown by
Lando and the author [29] that directed SND problems can be reduced to their
corresponding undirected variants with large connectivity requirements; one of
the consequences of the result of [29] is that the Rooted SND with requirements
in {0, k} is at least as hard to approximate as the notorious Directed Steiner Tree
problem, for k ≥ n/2. The reduction of [29] does not preserves metric costs, and
indeed, Cheriyan and Vetta [6] showed that (undirected) SND with metric costs
admits an O(log n)-approximation algorithm. However, no sublinear approxima-
tion algorithm is known for SND with general requirements and costs. Even for
the much easier Directed Steiner Forest problem, the best ratio known in terms
of n is O

(
n4/5+ε

)
[11]. Chakraborty, Chuzhoy, and Khanna [1] initiated recently

the study of approximation algorithms for SND problems when the parameter
k is not too large; they obtained a randomized O(kO(k2) ln4 n)-approximation
algorithm for Rooted SND. The ratio was improved by Chekuri and Korula [3]
to O(kO(k) lnn). Slightly later, independently, Chuzhoy and Khanna [7], and the
author [34], improved the ratio to O(k2 logn). Very recently, in another paper
[8], Chuzhoy and Khanna gave an O(k3 logn)-approximation algorithm for SND
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based on the iterative rounding method. Subsequently, using techniques from
this paper, the author developed an O(k2)-approximation algorithm for Rooted
SND.

We note that the most famous variant of SND – the k-Connected Subgraph
problem, was vastly studied, see [36,5,25,26,10,34] for only a small sample of
papers on the topic. The currently best known ratio for directed/undirected
k-Connected Subgraph is O

(
log k · log n

n−k

)
due to the author [34], see also an

O(log2 k)-approximation algorithm due to Fackharoenphol and Laekhanukit [10].

NCA–0, 1-costs: While most of the “positive” literature on SND problems with
general costs is from the recent 2 years, 0, 1-costs NCA problems were extensively
studied already in the 90’s. For example, the complexity status of k-Connected
Subgraph with 0, 1-costs is among the oldest open problems in network design,
see [21,22,18,19,33,30] (however, the directed case is solvable in polynomial time
[15]). In his seminal papers [21,22], Jordán gave an opt + k/2 approximation
for the problem of increasing the connectivity by 1; this approximation resists
improvement, and so far it was not established that the problem is in P, nor
that it is NP-hard. A simpler and more efficient version of Jordán’s algorithm
can be found in [30], and a similar result was obtained for the rooted case by the
author in [33]. Jordán’s algorithm [21,22] was generalized by Jackson and Jordán
[18] who gave an algorithm that computes a solution of size roughly opt + k2/2
for the general k-Connected Subgraph with 0, 1-costs. Another very interesting
result of Jackson and Jordán [19] shows that the problem can be solved exactly
in time 2f(k)poly(n).

For general requirements, NCA admits an O(k lnn)-approximation [28], and is
unlikely to admit a polylogarithmic approximation [32]. For rooted requirements
an O(lnn)-approximation is known, and for k = Ω(n) this is tight [33].

2 The Algorithm (Proof of Theorem 1)

Here we prove Theorem 1, which is restated for the convenience of the reader.

Theorem 1. NCA admits the following approximation ratios:

– O(k ln2 k) for arbitrary requirements (improving O(k lnn));
– O(ln2 k) for rooted requirements (improving O(lnn)).

Here k = maxu,v∈V r(u, v) is the maximum requirement.

Theorem 1 is proved in several steps, and relies on Theorem 2, which is proved
in the next section. We start with the following known fact that is proved using
standard flow-cut techniques.

Proposition 1. The family CJ(D) can be computed in polynomial time and
|CJ(D)| ≤ |D| ≤

(
n
2

)
.
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Proof. It is well known that given {u, v} ∈ D, one max-flow computation suffices
to find the unique minimal uv-tight set Cuv containing u, and the unique minimal
vu-tight set Cvu containing v. The family CJ(D) consists from the inclusion
minimal members of the family {Cuv : {u, v} ∈ D}. The statement follows.

We now describe the lower bound on the solution size of Simple NCA that we
use.

Definition 2. A node set T ⊆ V is a C-transversal of a set family C if T
intersects every C ∈ C. Let τ(C) be the minimum size of a C-transversal, and let
τ∗(C) be the minimum value of a fractional C-transversal, namely:

τ∗(C) = min{
∑

v∈V

x(v) :
∑

v∈C

x(v) ≥ 1 ∀C ∈ C, x(v) ≥ 0} .

Note that |I| ≥ τ(CJ (D))/2 ≥ τ∗(CJ(D))/2 for any feasible solution I for Simple
NCA. Indeed, by Menger’s Theorem, I is a feasible solution to Simple NCA if,
and only if, for any uv-tight set S with {u, v} ∈ D there is an edge in I from
S to V − (S + Γ (S)) if uv /∈ J , or from S to V − (S + Γ (S) − v) if uv ∈ J . In
particular, δI(C) ≥ 1 must hold for any C ∈ CJ (D). Thus the endnodes of the
edges in I form a CJ(D)-transversal, so |I| ≥ τJ (D)/2. Note also that in the case
of rooted requirements, τ∗(CJ(D)) ≥ τ∗(Cs

J(D)).
Given a hypergraph (V, C), the greedy algorithm of Lovász [31] computes in

polynomial time a C-transversal T of size ≤ H(Δ(C))τ∗(C), where Δ(C) is the
maximum degree of the hypergraph and H(k) is the kth Harmonic number.
Combining with Theorem 2 we deduce the following statement:

Corollary 1. For Simple NCA there exists a polynomial time algorithm that
computes a CJ(D)-transversal T so that |T | ≤ τ∗(CJ(D)) ·H

(
(4�+ 1)2

)
, where

� = max{u,v}∈D κJ(u, v); for Rooted NCA, the algorithm computes a Cs
J(D)-

transversal T so that |T | ≤ τ∗(Cs
J (D)) ·H(2�+ 1).

Now we show how to obtain an augmenting edge set from a given transversal.

Proposition 2. There exist a polynomial time algorithm that given an instance
of Simple NCA and a CJ(D)-transversal T , computes a feasible solution I so that
|I| ≤ (�+2)|T |. In the case of rooted requirements, given a Cs

J(D)-transversal T ,
the algorithm computes a feasible solution I so that |I| ≤ 2|T |.

Proof. Form an edge set I by choosing an arbitrary set U of � + 2 nodes and
connecting every node in T to every node in U , unless there is already an edge
between them. Then |I| ≤ (� + 2) · |T |. We claim that I is a feasible solution.
Suppose to the contrary that κJ(u, v) = κJ+I(u, v) = �′ ≤ � for some {u, v} ∈ D.
By Menger’s Theorem, there exists a partition X,C, Y of V so that X is uv-
tight, Y is vu-tight, δI(X,Y ) = ∅ and either: |C| = �′ and δJ(X,Y ) = ∅, or
|C| = �′ − 1 and δJ (X,Y ) = {uv}. There is z ∈ U − C so that z /∈ {u, v} in the
case |C| = �′−1. As T is a CJ(D)-transversal there are x ∈ X∩T and y ∈ Y ∩T .
At least one of the edges zx, zy is in δI(X,Y ), which gives a contradiction.
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Now consider the case of rooted requirements, when T is a Cs
J(D)-transversal.

Let T0 = {t ∈ T : ts /∈ EJ} and I0 = {ts : t ∈ T0}, so |I0| = |T0|. Let J ′ = J+I0,
and let D′ = {{u, s} ∈ D : κJ′(u, s) = κJ(u, s)} consist from those pairs in D
that are not “satisfied” by addition of I0 to J . Consider an arbitrary us-tight
set S in J ′ with {u, s} ∈ D′. It is not hard to verify that T ′ = T − T0 is a
Cs

J′(D′)-transversal, hence there is t ∈ S ∩ T ′. As ts ∈ J ′, we must have u = t,
by the definition of a tight set. Consequently, D′ = {{t, s} : t ∈ T ′}. Hence to
obtain a feasible solution, it would be sufficient to add to I0 an edge set I ′ that
increases the connectivity (in J or in J ′) from every t ∈ T ′ to s.

We show how to find a set I(t) of at most 2 new edges whose addition increases
the ts-connectivity by 1. Let Π be a set of κJ (t, s) pairwise internally disjoint
ts-paths (one of these paths is the edge ts). If there is a node a that does not
belong to any path in Π , then I(t) = {ta, as} − EJ . If there is a path of length
at least 3 in Π , say t− a− b− · · · − s, then I(t) = {tb, as} −EJ . Otherwise, all
the paths in Π distinct from the edge ts have length 2 and every node belongs
to a path in Π . But then |V | = κJ(t, s) + 1 ≤ k, and thus the problem has no
feasible solution I so that J + I is a simple graph. Consequently, I(t) as above
exists and can be found in polynomial time.

Let I ′ =
⋃

t∈T2
I(t). Then I = I0+I ′ is a feasible solution and |I| ≤ |I0|+|I ′| =

|T0|+ 2(|T | − |T0|) ≤ 2|T |. The statement follows.

Remark: If parallel edges are allowed, then in Rooted NCA by connecting every
node in T to s, we obtain a feasible solution of size ≤ |T |. However, allowing
parallel edges requires changing the definition of tight sets, and we do not know
if then the other parts of our proof remain valid.

From Corollary 1 and Proposition 2 we obtain the following result:

Theorem 3. Simple NCA admits a polynomial time algorithm that computes a
solution I so that |I| ≤ (�+2)H

(
(4�+ 1)2

)
·τ∗(CJ (D)) for general requirements,

and |I| ≤ 2H(2� + 1) · τ∗(Cs
J(D)) in the case of rooted requirements, where

� = max{u,v}∈D κJ(u, v), and H(k) denotes the kth harmonic number.

The following general statement relates approximability of NCA to approxi-
mability of Simple NCA.

Proposition 3. Suppose that Simple NCA admits a polynomial time algorithm
that computes a solution of size ≤ α(�) ·τ∗(CJ (D)), where α(�) is increasing in �.
Then NCA admits a polynomial time algorithm that computes a solution of size
≤ 2opt ·

∑k−1
�=0

α(�)
k−� ≤ 2H(k) · α(k) · opt, where opt denotes the optimal solution

size for NCA. The same is valid for Rooted NCA.

Proof. Apply the algorithm for Simple NCA as in the proposition sequentially: at
iteration � = 0, . . . , k − 1 add to J an augmenting edge set I� that increases the
connectivity between pairs in D� = {{u, v} : u, v ∈ V, κJ (u, v) = r(u, v)− k + �}
by 1. Note that κJ(u, v) ≤ � for {u, v} ∈ D�, thus the algorithm assumed in
the proposition can be used to produce a solution I� to Simple NCA so that
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|I�| ≤ α(�) · τ∗J (D�). After iteration �, we have κJ(u, v) ≥ r(u, v) − k + � + 1
for all u, v ∈ V . Consequently, after k − 1 iterations, κJ(u, v) ≥ r(u, v) holds
for all u, v ∈ V . Hence the computed solution for NCA is feasible. We claim
that |I�| ≤ 2opt · α(�)

k−� , � = 0, . . . , k − 1. For that, it is sufficient to show that
τ∗J (D�) ≤ 2opt/(k− �). For any C ∈ CJ(D�), any feasible solution to NCA has at
least k − � edges with an endnode in C, by Menger’s Theorem. Thus

opt ≥ 1
2
·min{

∑

v∈V

x(v) :
∑

v∈C

x(v) ≥ k − � ∀C ∈ CJ(D�), x(v) ≥ 0}

=
1
2
(k − �) · τ∗(CJ(D�)) .

Theorem 1 now follows from Theorem 3 and Proposition 3.

3 Maximum Degree of Hypergraph of Minimal Tight
Sets (Proof of Theorem 2)

Here we prove Theorem 2, which is restated for the convenience of the reader.

Theorem 2. Suppose that max{κJ(u, v) : {u, v} ∈ D} ≤ � for an instance
of Simple NCA. Then the maximum degree in the hypergraph (V, CJ (D)) is at
most (4�+ 1)2. For rooted requirements, the maximum degree in the hypergraph
(V, Cs

J(D)) is at most 2�+ 1.

Let S∗ = V − (S ∪ ΓJ (S)). To avoid considering “mixed” cuts that contain
both nodes and edges, we assume that uv /∈ EJ for all {u, v} ∈ D. One way
to achieve this is to subdivide every edge uv with {u, v} ∈ D by a new node.
After this simple operation, we have that S is uv-tight if u ∈ S, v ∈ S∗, and
|ΓJ(S)| = κJ(u, v). Also note that by the definition of tight sets and Menger’s
Theorem max{|ΓJ(C)| : C ∈ CJ(D)} ≤ max{κJ(u, v) : {u, v} ∈ D} ≤ �.

The following “sub-modular” and “posi-modular” properties of the function
Γ (·) = ΓJ(·) is well known, see for example [21] and [32].

Proposition 4. For any X,Y ⊆ V the following holds:

|Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y )|+ |Γ (X ∪ Y )| (3)
|Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y ∗)|+ |Γ (Y ∩X∗)| (4)

Lemma 1. Let X be xx′-tight and let Y be yy′-tight. If Γ (X)∩ {y, y′} = ∅ and
Γ (Y )∩{x, x′} = ∅, then at least one of the sets X∩Y,X∩Y ∗, Y ∩X∗ is xx′-tight
or is yy′-tight.

Proof. W.l.o.g. assume that κJ(x, x′) ≥ κJ (y, y′). We now consider several cases,
see Figure 1.

If x ∈ X ∩ Y and x′ ∈ X∗ ∩ Y ∗ then (see Figure 1(a)):

2κJ(x, x′) ≥ |Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y )|+ |Γ (X ∪ Y )|
≥ κJ (x, x′) + κJ(x, x′) = 2κJ(x, x′) .



294 Z. Nutov

y’

Γ(  )Γ(  )Y Y

X

y

X*

Y

x

’y’

X

Y*

X*

Y

x

y
x

X

’x

Γ(  )X

Y

X*

Y*

X

Y

X*

Y*

X

YYΓ(  ) Γ(  )

Γ(  )X

x

’x

x

’x

Γ(  )XΓ(  )

Y*

(d)(c)

(a) (b)

Fig. 1. Illustration to the proof of Lemma 1. Here the sets X, Γ (X), X∗ are the “rows”
and Y, Γ (Y ), Y ∗ are the “columns” of a 3 × 3 “matrix”.

Hence equality holds everywhere, so X ∩ Y (and also X ∪ Y ) is xx′-tight.
Similarly, if x ∈ X ∩ Y ∗ and x′ ∈ X∗ ∩ Y then (see Figure 1(b)):

2κJ(x, x′) ≥ |Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y ∗)|+ |Γ (X∗ ∩ Y )|
≥ κJ(x, x′) + κJ(x, x′) = 2κJ(x, x′) .

Hence equality holds everywhere, so both X ∩ Y ∗, X∗ ∩ Y are xx′-tight.
The remaining cases are x, x′ ∈ Y or x, x′ ∈ Y ∗. We consider the case x, x′ ∈

Y , and the proof of the case x, x′ ∈ Y ∗ is similar. If x, x′ ∈ Y then x ∈ X ∩ Y
and x′ ∈ X∗ ∩ Y . We have two cases: y ∈ Y ∩X or y ∈ Y ∩X∗.

If y ∈ Y ∩X and y′ ∈ X∗ ∩ Y ∗ then (see Figure 1(c)):

κJ(x, x′) + κJ(y, y′) = |Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y )|+ |Γ (X ∪ Y )|
≥ κJ(x, x′) + κJ(y, y′) .

Hence equality holds everywhere, so X ∩Y is xx′-tight (and X ∪Y is yy′-tight).
If y ∈ Y ∩X and y′ ∈ X ∩ Y ∗ then (see Figure 1(d)):

κJ(x, x′) + κJ(y, y′) = |Γ (X)|+ |Γ (Y )| ≥ |Γ (X ∩ Y ∗)|+ |Γ (X∗ ∩ Y )|
≥ κJ (y, y′) + κJ(x, x′) .

Hence equality holds everywhere, so X ∩Y ∗ is yy′-tight and X∗∩Y is xx′-tight.
This concludes the proof of the lemma.
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Corollary 2. Let C1, C2 ∈ CJ(D) so that C1 is u1v1-tight, C2 is u2v2-tight, and
C1 
= C2. Then (u1, v1) 
= (u2, v2). If in addition C1 ∩ C2 
= ∅ then Γ (C1) ∩
{u2, v2} 
= ∅ or Γ (C2) ∩ {u1, v1} 
= ∅.

Proof. The first statement is obvious, as for any {u, v} ∈ D the minimal uv-tight
set is unique. For the second statement, if Γ (C1) ∩ {u2, v2} = ∅ and Γ (C2) ∩
{u1, v1} = ∅, then by Lemma 1 at least one of the sets C1 ∩C2, C1 ∩C∗

2 , C2 ∩C∗
1

is u1v1-tight or is u2v2-tight. Since C1∩C2 
= ∅ then this set is strictly contained
in C1 (if it is u1v1-tight), or is strictly contained in C2 (if it is u1v1-tight). This
contradicts the minimality of one of C1, C2.

For z ∈ V let C(z) = {C ∈ CJ (D) : z ∈ C} be the set of members in CJ(D)
containing z. Let q = |C(z)|. Construct an auxiliary directed labeled graph J (z)
with labels on the arcs as follows. The node set of J (z) is C(z). Add an arc C′C
with label (u′, v′) if C′ is u′v′-tight and Γ (C) ∩ {u′, v′} 
= ∅; from every set of
parallel arcs keep only one. Note that J (z) is a tournament, by Corollary 2.

Lemma 2. For any u ∈ V , there are at most 2�+ 1 arcs that have label (u, v′)
for some v′ ∈ V , and there are at most 2� + 1 arcs that have label (v′, u) for
some v′ ∈ V .

Proof. Let u ∈ V . We prove there are at most 2� + 1 arcs that have labels
(u, v′) for some v′ ∈ V ; the proof for the other case is similar. Consider all the
edges with labels of the form (u, v′), say (u, v1), . . . (u, vt), and the corresponding
minimal tight sets C1, . . . , Ct, where Ci is uvi-tight. We claim that t ≤ 2�+ 1.
For that, consider the subgraph J ′ of J (z) induced by C1, . . . , Ct. We have that
u belongs to the intersection of the sets Ci for i = 1, . . . , t. Thus for every i 
= j
we have vi ∈ Γ (Cj) or vj ∈ Γ (Ci), by Corollary 2. As J ′ is a tournament, there
is a node C in J ′ with indegree at least (t − 1)/2. Every arc CiC entering C
contributes the node vi to Γ (C); thus (t− 1)/2 ≤ �, since the nodes v1, . . . vt are
distinct. This implies t ≤ 2�+ 1, as claimed.

Corollary 3. For any arc with label (u, v) there are at most 4(2�+ 1) arcs with
labels (u′, v′) so that {u′, v′} ∩ {u, v} 
= ∅.

Proof. If {u′, v′}∩{u, v} 
= ∅, then there are 4 cases: u′ = u, or v′ = v, or u′ = v,
or v′ = u. Namely, the label (u′, v′) belongs to one of the following 4 types:
(u, v′), (u′, v), (v, v′), (u′, u) By Lemma 2, the number of arcs with labels of each
one of these types is at most 2�+ 1, which implies the statement.

We now finish the proof of Theorem 2. As J (z) is a tournament, it has a node
C of indegree ≥ (q − 1)/2. Now consider the labels of the arcs entering C in
J (z). By Corollary 3, there are at least (q − 1)/(16� + 8) arcs entering C, so
that no two arcs have intersecting labels. Each one of these arcs contributes
a node to Γ (C). Consequently, we must have (q − 1)/(16� + 8) ≤ �, which
implies q ≤ 8�(2�+ 1) + 1 = (4�+ 1)2. In the case of rooted requirements, the
total number of minimal tight sets containing z but not s is at most 2�+ 1, by
Lemma 2.

The proof of Theorem 2 is complete.
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4 Open Problems

– Does SND with arbitrary costs admit a ρ(k)-approximation algorithm? The
answer is positive for rooted requirements, see [35]. We conjecture the answer
is positive for general requirements, motivated also by the results of this
paper. As was mentioned, the currently best ratios for SND problems are
O(k3 lnn) for SND [8], and O(k2) for Rooted SND [35]. Note that the ratio
of [8] for SND depends on n, while in this paper we showed for 0, 1-costs the
ratio O(k ln2 k) that does not depend on n.

– What versions of SND can be solved exactly and/or well approximated in
t(k)poly(n) time? One example of such a problem is k-Connected Subgraph
with 0, 1-costs [19].

– Does directed/undirected Simple Rooted SND with requirements in {0, k}
admit an approximation scheme similar to the one given in [2] for the Directed
Steiner Tree problem?

Acknowledgment. I thank an anonymous referee for useful comments.
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Abstract. We give a deterministic combinatorial 7/9-approximation
algorithm for the symmetric maximum traveling salesman problem.

1 Introduction

The traveling salesman problem is one of the most famous and heavily researched
problems in computer science. The version we deal with in this paper is the Sym-
metric Maximum Traveling Salesman Problem, which is defined as follows. For
a given complete undirected graph G with nonnegative weights on its edges, we
wish to find a tour of the graph of maximum weight. The tour of the graph
is a simple cycle that contains each vertex from G. In 1979 Fisher, Nemhauser
and Wolsey [8] showed that the greedy, the best neighbour and the 2-interchange
algorithms have approximation ratio 1/2. In [8] the 2-matching algorithm is
also given, which has a guarantee of 2

3 . In 1994 Kosaraju, Park and Stein [12]
presented an improved algorithm having a claimed ratio 5

7 , but the proof con-
tained a flaw and in [2] it was shown to have ratio 19

27 . In the meantime in
1984 Serdyukov [18] presented (in Russian) a simple (to understand) and el-
egant 3

4 -approximation algorithm. The algorithm is deterministic and runs in
O(n3). Afterwards, Hassin, Rubinstein ([9]) gave a randomized algorithm hav-
ing expected approximation ratio at least 25(1−ε)

33−32ε and running in O(n2(n+21/ε)),
where ε is an arbitrarly small constant. The first deterministic approximation
algorithm with the ratio better than 3

4 was given in 2005 by Chen, Okamoto,
Wang ([4]), which is a 61

81 -approximation and a nontrivial derandomization of
the algorithm from [9]. It runs in O(n3).

Related Work. For the asymmetric version of Max TSP, the best approxi-
mation is by Kaplan, Lewenstein, Shafrir, Sviridenko ([11]) and has ratio 2

3 . If
additionally in graph G triangle inequality holds, we get two (symmetric and
asymmetric) metric versions of the problem. The best approximation bounds for
them are 7

8 ([10]) and 10
13 ([11]), both of which have been improved by Chen and
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Nagoya in [5]. The latest improvements are by Kowalik and Mucha ([14] and
[15]) and equal, respectively for an asymmetric version 35

44 and for the symmet-
ric version 7

8 . All four versions of Max TSP are MAX SNP-hard ([6],[7],[16]). A
good survey of the maximum TSP is [1].

Our Results. We give an O(n3) deterministic combinatorial algorithm for the
Symmetric Maximum Traveling Salesman problem, with the approximation guar-
antee equal to 7

9 . To achieve this, we compute the graph described in the following
theorem, which is proved in Section 2.

Theorem 1. Given a complete graph G with nonnegative weights on the edges,
we can compute a multisubgraph H = (V,EH) of G = (V,E) such that H is
loopless, 4-regular, each e ∈ EH has the same weight as in G, there are at most
two edges between a pair of vertices, each connected component has at least 5
vertices and its weight is at least 35

18opt. (opt denotes the weight of an optimal
tour.)

The combinatorial technique used in this theorem is new and can be used for
any optimization problem for which a cycle cover of minimal/maximal weight is
a lower/upper bound on the optimal value of the solution. In the proof we exploit
the fact that the tour of the graph is a cycle cover of G or in other words a simple
perfect 2-matching. Thus a maximum weight cycle coverC ofG is an upper bound
on opt. The tour of the graph in turn is a somewhat special cycle cover, it has some
properties we can make use of and the the notion from the matching theory that
turns out to be particularly useful is that of an alternating cycle.

Next in the proof of Theorem 2 we show how to extract from H a tour of
weight at least 2

5 ·
35
18opt.

Theorem 2. If we have a loopless 4-regular graph H = (V,EH) with nonnega-
tive weights on the edges that can contain at most two edges between a pair of
vertices and such that its every connected component has at least 5 vertices, then
we can find such a subset E′ of its edges that w(E′) ≤ 1/5w(H) and such that
we can 2-path-color the graph H ′ = (V,EH \E′).

To 2-path-color the graph means to color its edges into two colors so that no
monochromatic cycle arises. The outline of the proof of this theorem is given in
Section 3. The whole algorithm runs in time O(n3), where n denotes the number
of vertices in G. The estimation of the approximation ratio is tight. The obstacle
to 4/5-approximation is that we are not able to construct an exact gadget for a
square. Gadgets for squares are described in Section 2.

For comparison, let us note, that in the case of the Asymmetric Max TSP,
which is considered in [11], the authors compute a 2-regular loopless graph G1
(which is a multisubgraph of G), whose all connected components contain at
least 3 vertices and such that its weight is at least 2opt. Next a tour of weight
at least 1

32opt is extracted from G1. However obtaining graph G1 in [11] is not
combinatorial. It involves using a linear program that is a relaxation of the
problem of finding a maximum cycle cover which does not contain 2-cycles.
Next scaling up the fractional solution by an appropriate integer D (which is a
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polynomial in n) to an integral one, which defines a d-regular multigraph, from
which a desired graph G1 is obtained. The running time needed to compute G1
is O(n2D).

2 Upper Bound

Let G = (V,E) be a complete graph with nonnegative weights on the edges, in
which we wish to find a traveling salesman tour (a cycle containing all vertices
from V ) of maximum weight. Let Tmax denote any such tour and tmax its weight.

The weight of the edge e = (u, v) between vertices u and v is denoted by w(e)
or w(u, v). By w(E′) we denote the weight of the (multi)set of edges E′ ⊆ E,
which is defined as

∑
e∈E′ w(e). The weight of the graph G is denoted as w(G) =

w(E).
One of the natural upper bounds for tmax is the weight of a maximum weight

cycle cover C of G (C is a cycle cover of G if each vertex of V belongs to exactly
one cycle from C). If C contained only cycles of length 5 or more, then by
deleting the lightest edge from each cycle and patching them arbitrarily into a
tour we would get a solution of weight at least 4

5 tmax. C however can of course
contain triangles and quadrilaterals. From now on, let C denote a cycle cover of
maximum weight and assume that it contains more than one cycle. Further on,
we will define the notions of a good cycle cover and alternating weight. They
will be strictly connected with C.

We can notice that Tmax does not contain an edge (one or more) from each
cycle from C. Since, we aim at a 7

9 -approximation, we will restrict ourselves to
bad cycles from C, which are defined as follows. Cycle c of C is said to be bad
if each edge of c has weight greater than 2

9w(c). Let us notice that if a cycle c
is bad, then it is a triangle or a quadrilateral. For convenience, let us further on
call all quadrilaterals squares. We will call a cycle cover C′ good if for each
bad cycle c of C, C′ does not contain at least one edge from c and if it does
not contain a cycle whose vertices all belong to some bad cycle c of C (which
means, informally speaking, that C′ does not contain cycles that are “subcycles”
of the bad cycles from C). Since Tmax is just one cycle, it is of course good and
the weight of a good cycle cover of maximum weight is another upper bound on
tmax. See Figure 1 for an example of a good cycle cover.

2.1 Approximating a Good Cycle Cover

We will construct graph G′ and define a special b-matching B for it, so that B
of maximum weight will in a way approximate a good cycle cover of maximum
weight in G. (A b-matching is such a generalization of a matching in which every
vertex v is required to be matched with b(v) edges.)

Let C′ denote a good cycle cover of maximum weight. C and C′ are cycle
covers or, in other words, simple 2-matchings (2-matchings and their generaliza-
tions are desribed, among others, in [17]). Let us look closer at C ⊕ C′ (i.e. the
symmetric difference between sets of edges C and C′) and get advantage from
the matching theory in order to notice useful properties of a good cycle cover.
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First, recall a few notions from matching theory. A path P is alternating
with respect to a cycle cover C1 if its edges are alternatingly from C1 and from
E \ C1. If an alternating path ends and begins with the same vertex, then it is
called an alternating cycle. For any two cycle covers C1 and C2, C1 ⊕C2 can
be expressed as a set of alternating cycles (with respect to C1 or C2).

Since C′ = C ⊕ (C ⊕ C′),

w(C′) = w(C)− w(C ∩ (C ⊕ C′)) + w(C′ ∩ (C ⊕ C′)).

For convenience, we will also use the notion of alternating weight w′ and
define it for a subset S as w′(S) = w(S \C)−w(C∩S). Using it we can rephrase
the above statement as

w(C′) = w(C) + w′(C ⊕ C′). 2.1

For example in Figure 1 (C ⊕ C1) is an alternating cycle (BE,EG,GB,BC,
AC,AB), whose alternating weight amounts to −3. (C ⊕ C′) is an alternating
cycle (BE,EG,GC,CB) whose alternating weight amounts to −5.

If we have an alternating cycle A with respect to C1, then by applying A to
C1 we will mean the operation, whose result is C1 ⊕A.

In view of 2.1 we can look at the task of finding a good cycle cover as at the
task of finding a collection A′ of alternating cycles with respect to C, such that
each bad cycle from C is “touched” (i.e.some edge from a bad cycle c belongs
to some alternating cycle from A′) by some alternating cycle from A′ and the
weight of C diminishes in the least possible way as a result of applying A′ to C.

In the following fact we describe good cycle covers from the point of view of
alternating cycles (with respect to C).

Fact 1. If C′ is a good cycle cover, then if we decompose C⊕C′ into alternating
cycles, then for each bad cycle c from C, there exists an alternating cycle Kc

containing a subpath (v0, v1, v2, . . . , vk, vk+1) (k ∈ {2, 4}, i.e. a subpath has length
3 or 5) such that vertices v1, v2, . . . , vk are on c, vertices v0 and vk+1 are not on
c and v1 
= vk.

A B

CD

E F

G

Fig. 1. The weight of the edges drawn with a solid line is 7, with a dashed line 6 and
the weight of edge CG is 3. The remaining (not drawn) edges have weight 0. The cycle
cover C of maximum weight consists of cycles ABCD and EFG. The cycle cover C1

consisting of cycles ACD and BEFG is not a good cycle cover as ACD is a subcycle
of ABCD. A good cycle cover C′ consists of cycle ABEFGCD.
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This fact follows from the definition of a good cycle cover that states that a
good cycle cover does not contain cycles that are ”subcycles” of cycles from C.

Notice that in Figure 1 C1 is not a good cycle cover and the alternating cycle
C ⊕ C1 contains a subpath BC,CA,AB for a square ABCD and it is not such
as we desire as it ”enters” and ”leaves” ABCD with the same vertex B.

We define a graph G′ and function b for a b-matching in it as follows.

Definition 1. The construction of G′ = (V ′, E′):

– graph G is a subgraph of G′,
– V ′ consists of V and also a set Si of additional vertices for each bad cycle
ci from C: Si contains a copy v′ for each vertex v from ci and also a set of
special vertices Ti. The subgraph of G′ induced by Si is called a gadget Ui

corresponding to ci. If ci = (v1, v2, v3) is a triangle, then Ti consists of one
vertex aci . The weight of the edge between v′1 and aci is equal to −w(v2v3)
and analogously for vertices v′2, v′3. We set b(aci) = 1. The description of the
gadget for a square is given in Figure 2.

– if v1 is a vertex on some bad cycle c of C, then G′ contains edges (v′1, v2),
(v′1, v

′
2) iff v2 is not a vertex of the bad cycle c containing v1. The weight of

these edges is the same and equals w(v1, v2).

A b-matching for G′ is such that for v ∈ V , we put b(v) = 2 and for v′ which is
a copy of some vertex v, we put b(v′) = 1.

We define the notion of a fragment, that is to denote a possible fragment of an
alternating cycle from C⊕C′ contained in a bad cycle. Let v1 
= v2 belong to bad
cycle ci from C. Then the fragment connected with v1, v2 is any alternating path
(v1, v3, v4, ..., vk, v2) whose all vertices belong to ci and such that it begins and

v v v v

a a

1 2 3 4

1 2
−l1/2+l2/2 −l1/2−l2/2

−l3/2+l4/2

−l3/2−l4/2

−p2+l1/2+l2/2

−p2+l3/2+l4/2

−p1+l1/2−l2/2

−p1+l3/2−l4/2

’ ’ ’ ’

v v

vv

l1

l2

l3

l4

l5

l6

p1=l1+l3−l5

p2=l2+l4−l6

1 2

34

Fig. 2. For a bad cycle ci = (v1, v2, v2, v4), Ti contains two additional verices a1,ci , a2,ci .
We set b(a1,ci) = b(a2,ci) = 1. The fragment connected with v1 and v2 is the
edge (v1, v2). There are two fragments connected with v1 and v3: (v1, v2, v4, v3) and
(v1, v4, v2, v3).
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ends with an edge in C. Thus, if ci is a triangle and v1, v2 are its two different
vertices, then the fragment corresponding to them is the edge (v1, v2).

A b-matching of G′ is defined in such a way that for each good cycle cover
C1 of G, we are able to find a b-matching B of G′ that corresponds to it in the
sense that alternating cycles C′ ⊕C are virtually the same as alternating cycles
B ⊕ C. (These are not quite alternating cycles.) Informally speaking, parts of
alternating cycles from C ⊕ C′ contained in bad cycles correspond in G′ to the
edges contained in the gadgets and the remaining parts of the alternating cycles
are in a way impressed in the graph G.

A b-matching of G′ is such that for each bad cycle ci there are exactly two
vertices, say v1, v2, such that v′1, v′2 will be matched with the edges not contained
in the gadget Ui (these edges will be of the form (v′1, v3), (v

′
2, v4)) and the weight

of the edges contained in Ui corresponds to the alternating weight of the fragment
connected with v1 and v2.

We will say that a b-matching B of G′ lies by an error ε ≥ 0 on a bad
cycle ci if for vertices v′1, v′2 (such that v1, v2 belong to ci) matched with edges
not contained in a gadget Ui, the weight wi of the edges of B contained in Ui

satisfies the following inequality: w′(fi) ≥ wi ≥ w′(fi)−εw(ci), where fi denotes
some fragment connected with v1, v2 and w′(fi) its alternating weight.

We prove

Lemma 1. Every b-matching B of G′ lies on a bad triangle by an error 0 and
on a bad square by an error at most 1

18 .

Proof. We give the proof for a bad square ci. Suppose that l1 + l3 ≤ l2 + l4.
Since we have a cycle cover of maximum weight p1 + p2 ≥ l1 + l3, which implies
that l2 + l4 ≥ l5 + l6. If within a gadget vertices that are matched with a1,ci

and a2,ci are v′3, v
′
4, then the weight of the edges within a gadget is equal to −l1,

which is equal to exactly the alternating weight of the fragment connected with
v′1, v

′
2. The proof is analogous for the fragment connected with vertices v′3, v

′
4. If

within a gadget vertices v′1, v
′
3 are matched with a1,ci , a2,ci, then the weight of

the edges within the gadget is equal to −p1, which is equal to the alternating
weight of the fragment connected with v2, v4. If within the gadget vertices v′1, v

′
4

are matched with a1,ci , a2,ci , then the weight of the edges within the gadget is
either −l1/2− l2/2− l3/2 + l4/2 or −p1 −w(a1,civ

′
3)− p2 −w(a2,civ

′
2. We check

that since l2 + l4 ≥ l5 + l6, then the weight of the edges within the gadget will
always be equal to −l1/2 − l2/2 − l3/2 + l4/2. However the alternating weight
of the fragment connected with v2, v3 is −l2, so the difference in the weights is
−(l2 + l4)/2 + (l1 + l3)/2. The weight of each edge in a bad square is < 2

9w(ci),
where w(ci) is the weight of the square, therefore the maximal difference between
the weight of the pairs of edges is 1/9w(ci), which means that the matching lies
on a square by an error at most 1

18 . ��

Clearly B in G′ is not a good cycle cover of G (it is not even a cycle cover
of G). Let us however point the analogies between B and a good cycle cover
of G. Let us define for B a quasi-alternating multiset SB . SB will contain:
(1) for each edge e = (v1, v2) |(Ze ∩ B) \ C| number of copies of e, where
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Ze = {(v1, v2), (v′1, v′2), (v1, v′2), (v′1, v2)}, (2) the set of edges C \B, (3) for each
gadget Ui it contains a fragment connected with v1, v2 iff v′1, v

′
2 are matched in

B with vertices from the original graph G. For example in Figure 3 SB = C⊕C′.
Another example is given in Figure 4.

The alternating weight of a multiset is defined in an analogous way so that
the weight of the edge not in C is counted the number of times it occurs in the

A

B
C

D

EF

G

HI

A’ B’ C’ D’ E’ F’ G’ H’

A1 A2 A3

I’

−− −− −−

Fig. 3. The weight of the edges drawn with a solid line is 5, with a dashed line 3
and a minus near the edge shows that the edge has negative weight (−5 or −3). The
weight of the remaining edges of G is 0. Cycle cover C of maximum weight consists
of cycles ABC,DEF, GHI , a good cycle cover C′ consists of cycle ACBFEIHGD
and a b matching B of maximum weight in G′ consists of cycles ABC, GHI and path
G′DFEI ′ and edges A1C′, A2E′, A3H ′, A′D′, B′F ′. C ⊕ C′ consists of two alternat-
ing cycles (AD, DF, FB,BA) and (DG, GI, IE, ED). Their alternating weight equals
to correspondingly −4 and −2. C ⊕ B consists of edges A1C′, A′D′, B′F ′, A2E′ and
A3H ′, G′D, DE, EI ′. Let us notice that the alternating weights of these sets of edges
are also −4 and −2 and that the weight of C′ and B are the same.

A

B
C

D

EF

G

HI

A’ B’ C’ D’ E’ F’ G’ H’

A1 A2 A3

I’

−− −− −−

Fig. 4. The weight of the edges are represented in the same way as in Figure 3. A cy-
cle cover C of maximum weight consists of cycles ABC,DEF, GHI . A b-matching
B of maximum weight consists of cycles ABC, GHI , path G′DEFH ′ and edges
A3I ′, A2E′, A1C′, A′D′, B′F ′. SB = {DA, AB,BF, FD, FD, DG, GH,HF}(there is a
mistake in the figure).
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multiset and the weight of the edge in C is subtracted the number of times it
occurs in the multiset. We have

Fact 2
w(B) = w(C) + w′(B ⊕ C).

Next, we are going to bind good cycle covers with b-matchings in G′.

Lemma 2. If C1 is a good cycle cover, then there exists such a b-matching B
in G′ that w′(SB) ≥ w′(C1 ⊕ C).

Proof. By Fact 1 for each cycle c of length 3 or 4 there exists an alternating
cycle Kc in C⊕C1 such that there are two different vertices v1, v2 on c such that
the part of an alternating cycle Kc between vertices v1, v2 is a fragment (i.e. this
part is on vertices solely from c).

For some cycles there are more such alternating cycles or there is more than
one place of this kind on such an alternating cycle. Nevertheless for each cycle
c we choose one such Kc and one subpath Pc on it. Next we build a b-matching
B. Originally let all the edges from C belong to B. Each subpath Pc is encoded
by the corresponding gadget and for the remaining edges of Kc we do as follows.
If e ∈ E \ C, then we add e to B (or more precisely sometimes a corresponding
edge between the copies of vertices) and if e ∈ C, then we remove it from B.
For example in Figure 3 for cycles ABC and DEF we chose an alternating cycle
(AD,DF, FB,BA) and for cycle GHI the other alternating cycle. We could
also choose for cycle ABC the same alternating cycle (AD,DF, FB,BA), but
for DEF and GHI the other one. Then b-matching B would consist of cycles
ABC,GHI, path A′FEDC′ and edges A1C′, A2E′, A3H ′, D′G′, F ′I ′. ��

By Lemma 1 we have that w′(B⊕C) ≥ w′(SB)− 1
18w(C) and therefore we get

Corollary 1. w(B) ≥ w(C′) − 1
18w(C). Recall that C′ denotes a good cycle

cover of maximum weight.

From B ∪ C we obtain a 4-regular graph H . We do it in the following way. At
the beginning H consists of two copies of the cycle cover C (at this moment
H is 4-regular). Next we compute SB and apply it to H , that is we put H :=
H ⊕ (B ⊕ SB).

For example in Figure 4 we would get H = {AC,AC,CB,CB,AB,AD,BF,
FE, FE,ED,ED,DG,FH,GI,GI, IH, IH,GH} and in Figure 3 H = {AC,
AC,CB,CB,AB,AD,BF,DF,DE,FE, FE,EI,DG,GI, IH, IH,HG,HG}.

3 Extracting a Heavy Tour

To 2-path-color graph G will mean to color its edges into two colors (each edge
is colored into one color) so that the edges of the same color form a collection of
vertex-disjoint paths.

To 2-cycle-color the graph will mean to color its edges into two colors so that
the edges of each color form a collection of vertex-disjoint cycles. Since the graph
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can contain double edges, some of these cycles can be of length 2. To well 2-
cycle-color the graph will mean to 2-cycle-color it so that each monochromatic
cycle has length at least 5.

Since H is 4-regular, we can 2-cycle-color it. If we could well 2-cycle-color
it, then we would put the edge of minimal weight from each monochroamtic in
E′, then E′ would have weight at most 1/5w(H) and graph H ′ = (V,EH \ E′)
would be 2-path-colored. As one can easily check, however, there exist graphs
that cannot be well 2-cycle-colored.

We can however restrict ourselves to considering graphs that (almost) do not
contain triangles as we prove Lemma 3, which is the corollary of two lemmas
from Section 4.

Lemma 3. In Theorem 2 we can restrict ourselves to graphs H such that if a
triangle T is a subgraph of H, then either (1) T contains two double edges or
(2) T consists of single edges and each vertex of T is adjacent to a double edge.

(If we can eliminate a triangle from a connected component having 5 vertices
using lemmas from Section 4, then we do not do that but deal with such a
component separately.) It would be nice to be able to restrict ourselves also to
graphs that do not contain cycles of length 2 or 4. However, we have not been
able to find an analogous way to that from lemmas in Section 4. Instead we
will well 2-almost-cycle-color the graph, which we define as follows. To 2-almost-
cycle-color the graph means to color the subset of its edges into two colors,
so that the edges of each color form a collection of vertex-disjoint paths and
cycles and the set of uncolored (called blank) edges is vertex-disjoint. (The set
of blank edges can be empty.) To well 2-almost-cycle-color the graph means to
2-almost-cycle-color it so that each monochromatic cycle has length at least 5.

In Section 5, we give the algorithm for well 2-almost-cycle-coloring the graph.
The key part of the algorithm is played by disabling cycles of length correspond-
ingly 2, 3 and 4, which consists in such a colouring of a certain subset of the
edges that whatever happens to the rest of the edges no monochromatic cycle
of lengh 2, 3 or 4 will arise.

Once graph H gets well 2-almost-cycle-colored, we would like to find such a
subset E′ that w(E′) ≤ 1/5w(H) and such that after the removal of E′ from H ,
H ′ = (V,E \E′) is 2-path-colored that is the edges that got colored in 2-almost-
cycle-coloring keep their color and blank edges are colored into an appropriate
color.

In Section 6 we will describe five phases of dealing with a well 2-almost-cycle-
colored graphH : two red ones, two blue ones and one blank one. With the phases
we will attach five disjoint subsets of edges R1, R2, B1, B2, Blank such that in
the i-th (i = 1, 2) red phase we will obtain a graph PRi = (Vt, Et \ Ri), which
after coloring the remaining blank edges red, will be 2-path-colored, analogously
for the blue phases. In the blank subphase we will obtain a graph PBl = (Vt, Et \
Blank), which after coloring the remaining blank edges into an appropriate color
will also be 2-path-colored. Thus each blank edge acts twice (i.e. in two phases)
as a red edge, twice as a blue edge and once it is removed.
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4 Eliminating Triangles

Definition 2. Suppose we have a graph J = (VJ , EJ) as in Theorem 2 (i.e.
loopless, 4-regular, having at most 2 edges between a pair of vertices and such
that each of its connected components has at least 5 vertices) and its subgraph
S. We say that we can eliminate S from J iff there exists graph K = (VK , EK)
that does not contain S, has at least one vertex less than J and such that the
solution from Theorem 2 for K can be transformed into a solution for J , which
means that if we have a set E′

K ⊆ EK such that w(E′
K) ≤ 1/5w(K) a 2-path-

coloring of graph K ′ = (VK , EK \ E′
K), then we can find a set E′

J such that
w(E′

J ) ≤ 1/5w(J) and such that graph J ′ = (VJ , EJ \E′
J) can be 2-path-colored.

First, we will eliminate triangles that contain exactly one double edge.

Lemma 4. If a triangle T has exactly one double edge, then we can eliminate
T .

The proof is omitted due to space limits.
Next, we will eliminate triangles that do not contain any double edges.

Lemma 5. If graph J does not contain triangles having exactly one double edge,
but contains a triangle T , whose all edges are single and such that at least one
vertex of T is not adjacent to a double edge, then we can eliminate T from J .

A

BC
D

E

A

BC
D

E

a

b c

u

v

b+c

a+u

v

Proof. Suppose that a triangle T is on vertices A,B,C and let a, b, c denote the
weights of the appropriate edges. First assume that C is not adjacent to a double
edge and c ≥ min{a, b}. Thus C is also connected by two edges with two other
vertices D,E and u, v are the weights of these edges. Without loss of generality,
suppose that u ≤ v. We build K as follows. At the beginning, it is the same as
J . Next, in K we remove C and all four edges adjacent to it. Now A,B,D,E are
of degree 3. We connect D and E with an additional edge of weight u. (Since
J does not contain triangles with exactly one double edge, in K D and E will
be connected with at most two edges.) We connect A and B with an additional
edge of weight a+ v and we change the weight of the edge that had weight c to
c+ b. Note that w(K) = w(J).

Assume we have found the set of edges E′
K and have 2-path-coloredK ′. Except

for edges b + c, a+ v, u, E′
J will contain the same edges as E′

K and the 2-path-
coloring of J ′ will differ from that of K ′ only on these edges.
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If from K none of the edges c+ b, a+ v, u was removed then, in K ′ vertices A
and B are connected with a double edge and suppose that the edge DE is blue,
then in J ′ we color CD and CE into blue and AC,CB into red. If the edge u
was removed and edges b + c, a + v not, then E is in K ′ adjacent to at most
three edges and suppose that two of them are blue. Then, we color EC into red
and AC,CB into blue and AB is left as a red edge. If the edges a+ v, b+ c were
removed and the edge u not and is blue, then in J ′ we color CD,CE into blue.
If a+ v ≤ b+ c and the edge a+ v was removed but the edges u, b+ c not, then

– if b + c is red and u blue, then if A has only one red edge incident on it
(b+ c), color AC into red, DC into blue, else if A has two red edges incident
on it but is not connected with D via a blue path that does not contain
u, then color AC,CD into blue (notice that we do not create a blue cycle),
else if A is connected with D via a blue path that does not contain u, color
AC,EC into blue (notice that E is not connected with A via a blue path
not containing u).

– if b + c, u are blue, then if A has at most one red edge incident on it, color
AC into red and DC into blue, else if A has two red edges incident on it,
color AC into blue and either EC or DC into blue so as not to create a
cycle (since at most one of the vertices D,E is connected via a blue path
not containing u with B, it is always possible).

If a+ v > b+ c and the edge b+ c was removed but the edges a+ v, u not, then
if u is blue, color CD,CE into blue. Since c ≥ a, it is all right.

If c < min{a, b} and both A and B are adjacent to double edges, then every-
thing goes as above. The only trouble could arise if a+ v > b+ c and the edge
b+c was removed but the edges a+v, u not and a+v, u are blue. Now we cannot
only color CD,CE into blue and not take any of the edges AC,BC. However,
since B is adjacent to a double edge, it has at most one red edge incident on it,
so we can additionally color BC into red.

Let us notice that w(E′
J ) ≤ w(E′

K). ��

5 Disabling Cycles of Length < 5

By Lemma 4 we can assume that, if graph H contains a triangle T , then either
it has two double eges or it consists only of single edges and each vertex of it
is adjacent to a double edge. We will give the algorithm for well 2-almost-cycle-
coloring H . We will use colors: blue and red. In the algorithm once the edge gets
colored, it will not change its color and we will preserve the following invariant.

Invariant 1. If at some step of the algorithm exactly two of the edges incident
on vertex v are colored, then they have different colors.

We remind that disabling cycles of length less than 5 consists in such a coloring of
the subset of the edges of H , that however the rest of blank edges are coloured,
the graph will not contain a monochromatic cycle of length less than 5. We
begin from cycles of length 2. Disabling such cycles is very easy, we consider
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each double edge and colour it into two different colours: red and blue. As the
graph does not contain connected components having less than 5 vertices, no
monochromatic cycle of length less than 5 will arise. Next we disable caps. A
cap is a triangle that has exactly two double edges or a square that has exactly
three double edges. Let (v1, v2) denote the only non-double edge of a given cap
C. Then the non-double edges incident at v1 and v2 different from (v1, v2) are
called the ribbons of cap C. A ribbon may belong to two different caps.

We can eliminate some caps from the graph in a way similar to that in which
we eliminated most kinds of triangles in the previous section.

Lemma 6. If a cap C with two ribbons r1, r2 is such that r1, r2 do not share a
vertex and are not connected by a double edge, then we can eliminate C.

We eliminate C by removing cap C together with ribbons from the graph and
connecting the other end vertices of ribbons with an edge.

If a cap C with two ribbons r1, r2 is such that r1, r2 share a vertex or are
connected by a double edge, then we disable it by coloring r1, r2 into different
colors.

We will say that a square or triangle is active if some of its edges (possibly
all) are blank and there exists such a well 2-almost-cycle-coloring of all blank
edges in the graph that this square or triangle is monochromatic.

We say that edge e is active if it is colored and included in some active square.
In disabling squares we will maintain the following property of active edges.

Invariant 2. If edge e = (v1, v2), say red, is active, then v1 has either two or
four coloured edges incident to it and the same for v2 and either e is double or
neither v1 nor v2 has an active blue edge incident at it.

Consider the following algorithm.
while there are active squares do.
if there is an active square s with two active edges, then color the two blank

edges of s into different colors.
else if there is an active square s = (v1, v2, v3, v4) with one active edge e =

(v1, v2) (double or say, to fix the attention red), then check if there is another
active square s′ = (v1, v2, v′3, v

′
4) that contains e but no other edge of s. Notice

that since H does not contain triangles, s′ cannot contain v3 or v4. Color (v2, v3)
and (v1, v4) into red and (v3, v4) into blue. If s′ exists and (v1, v2) is double color
(v2, v′3) and (v1, v′4) into blue and (v′3, v′4) into red (otherwise do nothing, as it
is not needed).

else if there is an active square s with all blank edges, then color the edges
of s alernately into blue and red. Next if the red edge e2 belongs to an active
square s1, color the edges of s1 adjacent to e2 into red and the remaining one
into blue. Next if the blue edge of s: e1 or e3 belongs to an active square, color it
analogously: two edges into blue and one into red. Notice that if e1 or e3 belongs
to an active square then it is not adjacent on the blue edge of s1, because the
graph does not contain triangles. Next, do the same with the remaining colored
edges of s, if they belong to an active square.
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6 Partition

In this phase we will give the algorithm that finds five disjoint subsets of edges
R1, R2, B1, B2, Blank corresponding to the five subphases: two red ones, two
blue ones and one blank one such that after removing the edges from each one
of these and coloring the blank edges, depending on the subphase: red (in the
red subphases) or blue (in the blue subphases), the graph will contain only blue
or red paths, that is will be 2-path-colored.

After disabling cycles of length less than 5, we arbitrarily color the rest of
the edges, as a result in the graph no two adjacent blank edges will be left.
Thus if we have a blank edge e between vertices v1 and v2, then the remaining
three edges of v1 are coloured: two into blue and one into red and the remaining
three edges of v2 are coloured: two into red and one into blue or vice versa. We
will say that the blue edges of v1 and the red edges of v2 are the blue or red
heads of the edge e. We will also say that a red edge of v1 is the red tail of
e and a blue edge of v2 is a blue tail of e. Let us notice that if we would like
to colour a given blank edge blue or red, then we have to remove one blue or
correspondingly red head. From the point of view of a given blank edge e the
situation presents itself as follows. In the red subphases it is coloured red and
one of its heads is removed in one red subphase and the other head is removed
in the second subphase, thus one of its heads must belong to R1 and the other
one to R2 and analogously in the blue subphases. In the blank subphase e is
simply removed. Therefore we can see that a blank edge and its four heads fall
into five different sets R1, R2, B1, B2, Blank. We will call all the blank edges and
their heads charged (edges). In the red and blue subphases we must be careful
not to create cycles that consist solely of charged edges. We are not allowed to
create such cycles, because we cannot afford to remove any edge from this cycle,
as all of them must belong to the sets attached to other subphases (for example,
R2, Blank if we are now in the first red subphase).

Lemma 7. If the (blue or red) cycle c consists only of charged edges, then for
every blank edge belonging to c we have that its head (the one that belongs to c)
is a tail of another blank edge belonging to c.

Proof. Suppose that c contains k (originally) blank edges. First let us notice
that k > 1. Since c consists only of charged edges, all the edges between two
consecutive blank edges on c must be charged. There are exactly k disjoint
nonempty subsets of edges connecting the k blank edges on the cycle. Let us
fix one direction of movement along c, say clockwise. Then each blank edge is
either followed or preceded by its head. Let us observe, that if c consists only of
charged edges we must have that either each blank edge is followed by its head
or each blank edge is preceded by its head, because otherwise one set of edges
connecting certain two blank edges would not contain a charged edge. Since all
the edges must be charged, the sets connecting the blank edges must contain
one edge each. ��

Due to space limits the description of the algorithm is omitted.
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Abstract. We prove a new structural property regarding the “skyline”
of uniform radius disks and use this to derive a number of new sequential
and distributed approximation algorithms for well-known optimization
problems on unit disk graphs (UDGs). Specifically, the paper presents
new approximation algorithms for two problems: domatic partition and
weighted minimum dominating set (WMDS) on UDGs, both of which
are of significant interest to the distributed computing community be-
cause of applications to energy conservation in wireless networks. Using
the aforementioned skyline property, we derive the first constant-factor
approximation algorithm for the domatic partition problem on UDGs.
Prior to our work, the best approximation factor for this problem was
O(log n), obtained by simply using the approximation algorithm for gen-
eral graphs. From the domatic partition algorithm, we derive a new and
simpler constant-factor approximation for WMDS on UDGs. Because
of “locality” properties that our algorithms possess, both algorithms
have relatively simple constant-round distributed implementations in the
LOCAL model, where there is no bound on the message size. In addi-
tion, we obtain O(log2 n)-round distributed implementations of these
algorithms in the CONGEST model, where message sizes are bounded
above by O(log n) bits per message.

1 Introduction

We prove a new structural property regarding the “skyline” of uniform radius
disks and use this to derive a number of new sequential and distributed approx-
imation algorithms for well-known optimization problems on unit disk graphs
(UDGs). Using the aforementioned skyline property, we derive the first constant-
factor approximation algorithm for the domatic partition problem on UDGs. A
number of researchers [4,5,6,11,15] have used this or related problems as an ab-
straction for the problem of deriving efficient sleep schedules in wireless networks.
Prior to our work, the best approximation factor for this problem was O(log n),
obtained by simply using the approximation algorithm for domatic partition
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on general graphs [8]. We also derive here a distributed version of the domatic
partition algorithm that can be implemented in O(log2 n) rounds of communi-
cation in the CONGEST model; in this model all message sizes are bounded
by O(log n) bits. Subsequently, we use the domatic partition algorithm to ob-
tain a new and simple constant-factor approximation algorithm for the weighted
minimum dominating set (WMDS) problem on UDGs. Our result also shows
that the standard LP-relaxation for WMDS has constant integrality gap. Unlike
the minimum dominating set (MDS) problem on UDGs, WMDS on UDGs has
proved quite hard and only recently Ambuhl et al. [2] and subsequently Huang
et al. [9] have presented the first constant-factor approximation algorithms for
the the WMDS problem on UDGs. These WMDS algorithms [9,2] have an easy
constant-round distributed implementation in the LOCAL model of distributed
computation [13], in which there is no bound on message sizes. However these
algorithms seem to require a huge amount of information exchange and it is not
clear if they can be implemented in a sublinear number of rounds, in a model
such as the CONGEST model in which message sizes are bounded. Our new al-
gorithm for WMDS attains a constant-factor approximation in O(log2 n) rounds
in the CONGEST model. In [13], a reduction from the facility location problem
on UDGs to WMDS on UDGs is presented. Our new WMDS algorithm, along
with this reduction implies an O(log2 n)-round, constant-factor approximation
algorithm in the CONGEST model for facility location on UDGs.

Domatic Partition. A standard approach for reducing energy consumption in
wireless networks is to keep only a small fraction of nodes active (for sensing,
communicating, etc.) at any time and put the rest of the nodes to sleep, thereby
conserving energy. The problem of maximizing the number of nodes that are
asleep at any given time while maintaining sufficient activity in the network
is usually modeled as the problem of finding a small dominating set in the
network. Once a small dominating set is found, the nodes in the dominating set
collectively act as “coordinators” for the network and the rest of the nodes go
to sleep. To maximize the lifetime of the network it is critical that the role of
coordinators be rotated among the nodes in the network, so that every node
gets a chance to sleep. Moscibroda and Wattenhofer [11] have abstracted the
problem of rotating the responsibility of being a coordinator as the domatic
partition problem. Given a graph G = (V,E), a dominating set D ⊆ V of G is
a vertex-subset such that each vertex is either in D or has a neighbor in D. A
domatic partition is a partition D = {D1, D2, . . . , Dt} of V such that each block
Di of D is a dominating set of G. The domatic partition problem seeks a domatic
partition D of largest cardinality. To understand the motivation, suppose that
D = {D1, D2, . . . , Dt} is a domatic partition of G. Then a simple schedule for
the nodes would be for the nodes in D1 to be active for some fixed period of time
T , during which the rest of the nodes are asleep, followed by a period of time T
in which nodes in D2 are active, while the rest of the nodes are asleep, and so on.
Such a schedule would imply that in the long run, each node is active for roughly
1/t of the time. Therefore maximizing t leads to minimizing this fraction, thereby
maximizing the fraction of time nodes are asleep. Thus far, to solve this problem,
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researchers in the wireless networks community have either used heuristics [6],
the O(log n)-approximation that works for general graphs [11], or have settled
for a fractional solution obtained by solving the LP-relaxation of the problem
[4]. This paper shows how to obtain a constant-factor approximation to domatic
partition on UDGs. A UDG is specified by giving the coordinates of its vertices,
which are points in the plane; there is an edge between every pair of points whose
Eucildean distance is at most one. We also show how to implement a distributed
version of this algorithm in polylogarithmic rounds of communication and with
small messages, i.e., in the CONGEST model.

Our algorithm in fact shows that in a UDG, we can obtain a domatic parti-
tion with cardinality proportional to the minimum degree. This combinatorial
geometric result can be viewed as solving a special case of the problem of de-
composing multiple coverings [12,1] with unit disks. The general problem is as
follows. We have a set D of unit disks in the plane, and a set P of points so
that each point in P is contained in at least k disks from D. Can we partition
D into Ω(k) sets each of which covers P? Our result on domatic partitions gives
an affirmative answer for the special case when P equals the set of centers of D.
The general problem however remains open and has eluded a solution for several
years now. Even for showing that for a sufficiently large k we can partition D
into two covers of P , there is only an old, unpublished manuscript. We refer the
reader to Pach and Toth [12].

Weighted Minimum Dominating Set. The input to the weighted minimum dom-
inating set (WMDS) problem consists of a vertex-weighted graph G = (V,E),
with each vertex v assigned a non-negative weight w(v). The problem seeks
a dominating set D of G of minimum total weight. On UDGs, the minimum
dominating set problem (i.e., the unit-weight version of WMDS) is easy to ap-
proximate since any maximal independent set is a constant-factor approximation
of the MDS. However, the WMDS problem on UDGs seems fundamentally more
difficult relative to the MDS problem since an optimal solution to WMDS can be
arbitrarily dense (see Figure 1). The WMDS problem on UDGs did not have a
constant-factor approximation until recently. Ambuhl et al. [2] presented the first
constant-factor approximation, which was improved by Huang et al. [9]. Both of
these WMDS algorithms are inherently “local” in the sense that a constant-
factor approximation to the problem can be obtained by separately solving
subproblems induced by diameter-1 square cells and then simply “unioning”
the solutions. Obtaining a constant-factor approximation for the subproblems is
enough to guarantee a constant-factor approximation for the original problem.
If messages sizes are allowed to be unbounded, then the above locality property
immediately implies that the above WMDS algorithms can be implemented in
the LOCAL model in a constant number of rounds. However, these algorithms
are not “lightweight” and make use of techniques such as dynamic program-
ming, and making polynomially many solution guesses, etc. It is not clear that
these techniques can be efficiently implemented in a distributed model (such as
the CONGEST model) that places a restriction on the size of messages. Our
paper presents a radically different constant-factor approximation algorithm for
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Fig. 1. Arrange nodes in the plane so that the induced UDG contains a clique, formed
by the top nodes, a clique formed by the bottom nodes, and a perfect matching between
the top and bottom nodes. Assuming that there are n nodes at the top (and therefore
n nodes at the bottom) and picking the node weights w and W so that w < W/n, we
see that the minimum weight dominating set of this UDG consists of all the bottom
nodes, whereas a solution to MDS consists of one top node and one bottom node.

WMDS on UDGs, that is much simpler than the algorithms of Ambuhl et al.
[2] and Huang et al. [9]. Our algorithm easily follows from the domatic partition
algorithm and its simplicity makes it possible to implement it in a distributed
setting in the CONGEST model in O(log2 n) rounds.

The LOCAL and CONGEST models. As defined by Peleg [14], the LOCAL
model is a message-passing model in which nodes run synchronously and each
node is allowed to send a message of unbounded size in each round. The focus
of this model is on the inherent “locality” of the problem. As mentioned earlier,
both problems considered in this paper have a “locality” property that makes
it easy to design constant-round, constant-factor distributed algorithms in the
LOCAL model, provided that the corresponding subproblems admit constant-
factor approximation algorithms. In this paper, we present distributed algo-
rithms that run efficiently in the CONGEST model; this model differs from the
LOCAL model only in that each node is only allowed to send a message of size
O(log n) bits in each round. The CONGEST model is significantly more strin-
gent than the LOCAL model, and “congestion” is an additional constraint that
has to be dealt with. From a distributed computing point of view, this paper’s
major contribution is to show that the problems are not just local, but can be
solved efficiently with limited amount of information exchange.

Since our problems and algorithms are motivated by the wireless networks
setting, we assume that in each round each node v sends a single message via
local broadcast that all neighbors of v can “hear” (i.e., receive) in that round. We
also assume that each node has a unique ID and knows its coordinates in some
globally consistent coordinate system. Furthermore, we assume that each “piece”
of information that a node initially possesses can fit in logn bits. For example,
each node v running our WMDS algorithm uses logn bits for IDv, logn bits for
each of its coordinates xv and yv, and logn bits for its weight wv. This assumption



316 S. Pandit, S.V. Pemmaraju, and K. Varadarajan

basically means that each node can tell all its neighbors all about itself in one
round, using a single O(log n)-bit message. These simplifying assumptions serve
to clarify and highlight the basic challenge of designing efficient algorithms in
the CONGEST model.

2 Properties of Uniform Disk Skylines

For a point p in the plane, let D(p) denote the disk of unit radius centered at p.
It will be convenient to to say that p (or D(p)) covers any point q ∈ D(p). For
a set Q of points, let D(Q) = {D(p) | p ∈ Q}. A point a is covered by D(Q) if a
is covered by some disk in D(Q). For a point q and a finite set Q of points, let
CQ(q) = Q ∩D(q); this is the set of all points in Q covered by q.

Suppose that A is a set of points strictly below that x-axis and B a set of
points strictly above the x-axis, such that each point in B covers at least one
point in A. A point p = (p.x, p.y) with p.y ≥ 0 is said to belong to the skyline
of D(A) if p is covered by D(A) and any p′ = (p′.x, p′.y) with p′.x = p.x and
p′.y > p.y is not covered by D(A). We say that a point a ∈ A contributes to the
skyline of D(A) if D(a) contains some point in the skyline of D(A). Let A′ ⊆ A
denote the set of points that contribute to the skyline of D(A). See Figure 2 for
an illustration of these definitions. It is easy to check that A′ does not contain
two points with the same x-coordinate. Thus, we think of A′ as being ordered
according to increasing x-coordinate. The set A′ has two nice properties that are
encapsulated in the lemmas below. The first of these is similar to observations
used by Călinescu et al. [7]. These two lemmas will play a crucial role here.

Lemma 1. For any b ∈ B, the set CA′(b) is a non-empty contiguous subset of
the ordered set A′.

Lemma 2. Suppose that B has the property that for any two distinct elements
b1 and b2 of B, CA(b1) is not a subset of CA(b2). If CA′(b1) ∩ CA′(b2) is non-
empty for distinct elements b1 and b2 of B, then CA′(b2) contains either the
leftmost element or the rightmost element of CA′(b1).

We now prove Lemmas 1 and 2. Let a and a′ be any two points on or below
that x-axis such that D(a) contains a point above the x-axis not in D(a′) and
vice versa. We assume a is to the left of a′. If the boundaries of D(a) and D(a′)
intersect above the x-axis, let �a,a′ be the vertical line through this intersection
point. Otherwise, let �a,a′ be any vertical line so that points above the x-axis
within D(a) lie to the left of the line and the points above the x-axis within
D(a′) lie to the right of the line. See Figure 2 for an illustration. It is easy to
observe that D(a′) does not contain any point on the skyline of D({a, a′}) to
the left of �a,a′ and D(a) does not contain any point on the skyline of D({a, a′})
to the right of �a,a′ .

Lemma 3. Let a1, a2, a3 be three points below the x-axis such that a1.x ≤ a2.x ≤
a3.x. Suppose there is a point b above the x-axis that is contained in D(a1)
and D(a3) but not in D(a2). Then a2 does not contribute to the skyline of
D({a1, a2, a3}).
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Fig. 2. Let A = {a, b, c, d}. The skyline of D(A) is shown by darkened arcs above the
x-axis. Point b does not contribute to the skyline and therefore A′ = {a, c, d}. Disks
D(a) and D(c) intersect above the x-axis and the line �a,b passes through this point
of intersection. Disks D(b) and D(d) intersect below the x-axis and �b,d is any vertical
line that intersects the x-axis between points p and q.

Proof. If a1.x = a2.x, then it must be that a1 is above a2, and in this case a2 does
not contribute to the skyline of D({a1, a2}) and hence it does not contribute to
the skyline of of D({a1, a2, a3}). The case where a2.x = a3.x is handled similarly.
So let us now look at the case where a1.x < a2.x < a3.x. Let us consider the
non-trivial situation where D(a2) contains some point above the x-axis not in
D(a1) (resp. D(a3)).

Since b is in D(a1) but not in D(a2), it is easy to see that b lies strictly to
the left of �a1,a2 . It follows that a2 does not contain any point on the skyline of
D({a1, a2}) that is on or to the left of the vertical line through b. Similarly, we
argue that a2 does not contain any point on the skyline of D({a2, a3}) that is
on or to the right of the vertical line through b. The lemma follows. ��

Proof of Lemma 1. It is clear that CA′(b) is non-empty. For consider the point
p that is on the skyline of D(A) and has the same x-coordinate as b. Let a ∈ A′

be such that D(a) contains p. It is easy to see that D(a) contains b as well.
To show that CA′(b) is a contiguous subsequence of A′, suppose for a contra-

diction that a1, a2, a3 ∈ A′ are such that a1.x < a2.x < a3.x and a1, a3 ∈ CA′(b)
but a2 
∈ CA′(b). By Lemma 3, we conclude that a2 does not contribute to the
skyline of D({a1, a2, a3}). Thus a2 does not contribute to the skyline of D(A),
a contradiction. ��

Proof of Lemma 2. The lemma follows easily when CA′(b2) is not contained
in CA′(b1) because CA′(b2) and CA′(b1) are contiguous subsequences of A′.

Suppose CA′(b2) ⊆ CA′(b1). By assumption, CA(b2) has a point p ∈ A
that is not in CA(b1). Let al and ar be the leftmost and rightmost points of
CA′(b1). Consider the nontrivial case where al and ar are distinct. Suppose for a
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contradiction that neither al or ar is in CA′(b2). Let am ∈ CA′(b2) ∩ CA′(b1).
There are two cases.
al.x ≤ p.x ≤ ar.x: Since b1 is contained in D(al) and D(ar) but not in D(p),

Lemma 3 implies that p does not contribute to the skyline of D({al, p, ar}). But
this means that b2, being contained in D(p), must be contained in either D(al)
or D(ar), a contradiction.
p.x > ar.x or p.x < al.x: We just consider the subcase where p.x > ar.x; the

other is symmetric. Now b2 is contained in D(am) and D(p) but not in D(ar).
We have am.x < ar.x < p.x. Lemma 3 implies that ar does not contribute to
the skyline of D({am, ar, p}). But this means that ar does not contribute to the
skyline of D(A), a contradiction. ��

3 The Domatic Partition Algorithm

Here we address the domatic partition problem for a unit disk graph G in-
duced by a set P = {p1, . . . , pn} of points in the plane. In such a graph,
there is a vertex corresponding to each point pi, and an edge corresponding to
each pair (pi, pj) if and only if the Euclidean distance between pi and pj is at
most 1.

It is convenient to treat the domatic partition as a special case of the disk
cover packing problem, which we define below. An instance of the disk cover
packing problem is an ordered pair (A,B) where A and B are finite subsets of
the plane. We wish to find subsets A1, . . . , Aτ of A such that (1) Ai∩Aj = ∅ for
i 
= j, and (3) each D(Ai) covers B, that is, each b ∈ B is contained in some disk
in D(Ai). The size τ of the disk cover packing {A1, . . . , Aτ} is the quantity we
wish to maximize. Clearly, the domatic partition problem for a unit disk graph
induced by a set P of points in the plane is equivalent to the disk cover packing
problem for the instance (P, P ).

Define the load L(A,B) of an instance (A,B) of the disk cover problem to
be minb∈B |CA(b)|. Evidently, L(A,B) is an upper bound on the size of any
disk cover packing for (A,B). For the domatic partition problem, on a unit disk
graph G induced by a set P of points, the load L(P, P ) is just (one plus) the
minimum degree of a vertex in G. Our constant-factor approximation is obtained
by showing how to construct a domatic partition of size at least L(P, P )/C for
some constant C.

3.1 The First Reduction

We now reduce an instance (P, P ) of the disk cover packing problem to instances
(Aσ, Bσ) where (1) Aσ is a set of points lying inside a square σ of diameter 1,
(2) Bσ is a set of points lying outside σ, and (3) L(Aσ, Bσ) ≥ L(P, P )/25.

In this subsection, let L denote L(P, P ). Consider a square grid of side length
1/
√

2, which subdivides the plane into square grid cells of diameter 1. By ensur-
ing that the grid lines do not contain any point in P , each point in P will belong
to a unique grid cell. Let us call a grid cell σ heavy if it contains at least L/25
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points of P ; we call σ light otherwise. Let Aσ denote the set of points in P that
lie in grid cell σ. Let S denote the set of heavy grid cells. For each point p ∈ P
that lies in a light grid cell, there is a heavy cell σ such that CAσ(p) ≥ L/25;
pick one such cell σ and assign p to σ.1

For each σ ∈ S, we obtain an instance of the disk cover problem (Aσ, Aσ∪Bσ)
where Bσ is the set of points assigned to σ. Notice that |Bσ| ≤ L , |Aσ| ≥ L/25,
and L(Aσ, Aσ∪Bσ) ≥ L/25. Observe that if we have a disk cover packing of size
t for each instance (Aσ, Aσ∪Bσ), then we can combine them in a straightforward
way to obtain a disk cover packing of size t for instance (P, P ).

Consider an instance (Aσ, Aσ∪Bσ). If Bσ = ∅, the set {{a} | a ∈ Aσ} is a disk
cover packing of size |Aσ| = L(Aσ, Aσ ∪Bσ), since σ has diameter 1. If Bσ 
= ∅,
it is easy to see that any disk cover packing for instance (Aσ, Bσ) is also a disk
cover packing for instance (Aσ , Aσ ∪Bσ), and L(Aσ, Bσ) = L(Aσ, Aσ ∪Bσ).

3.2 The Second Reduction

We now consider an instance of (A,B) of the disk cover packing problem where
A is a set of points inside a square σ and B is a set of points outside the square
σ. In this subsection let L denote L(A,B); we’ll assume that |B| ≤ 25L. We
reduce this instance to four instances that are further specialized.

We first partition B into four sets Be, Bn, Bw, Bs. A point b ∈ B belongs to
Be (resp. Bn, Bw, Bs) if e is east (resp. north, west, south) of square σ; we break
ties arbitrarily. We partition A into four sets Ae, An, Aw, As by independently
throwing each a ∈ A into one of the four sets uniformly at random.

Using the Chernoff bound and the union bound (observing that |B| ≤ 25L),
we can conclude that with high probability (probability smaller than 1 by a
quantity exponentially small in L), we have

L(Ae, Be), L(An, Bn), L(Aw, Bw), L(As, Bs) ≥ L/8.

Furthermore, if we have disk cover packings of size at least t for each of the four
instances (Ae, Be), (An, Bn), (Aw, Bw), (As, Bs), then we can readily combine
them to obtain a disk cover packing of size t for (A,B). Notice that for each
instance (Aα, Bα), we have a line separating Aα and Bα.

3.3 The Separated Case

Consider an instance (A,B) of the disk cover packing problem where A is a set of
points strictly below that x-axis and B a set of points strictly above the x-axis.
In this section, we show that we can efficiently find a disk cover packing for this
instance whose size is at least L/4, where now L denotes L(A,B).

The DomPart Algorithm. Let E initially denote the set A. Let j = 0. We
repeat the following steps as long as D(E) covers B.

1 We have not tried to optimize the constants being used. Here we use 25 as an upper
bound on the maximum number of 1√

2
× 1√

2
grid cells that a unit disk can intersect.
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1. j ← j + 1.
2. We repeatedly perform the following step on B till it is no longer applicable:

if there exist distinct elements b1 and b2 in B so that CE(b1) ⊆ CE(b2), we
discard b2 from B. Let B′ denote the resulting B.

3. Let A′ ⊆ E be the points that contribute to the skyline of D(E).
4. Compute a maximal (not necessarily maximum) subset B′′ ⊆ B′ so that for

any two distinct b1, b2 ∈ B′′, CA′(b1) ∩ CA′(b2) = ∅.
5. Construct Aj by adding to it the leftmost and rightmost points of CA′(b),

for each b ∈ B′′.
6. E ← E \Aj .

Suppose that the algorithm terminates with j = k. It is clear that A1, . . . , Ak

are pairwise disjoint subsets of A. The first lemma below shows that each D(Aj)
covers B, and the second lemma shows that k ≥ L/4.

Lemma 4. For each 1 ≤ j ≤ k, D(Aj) covers B.

Proof. The set D(E) at the beginning of the j’th iteration covers B. By Lemma
1, the set D(A′) also covers B. Now for any b ∈ B′′ we add the two endpoints
of CA′(b) to Aj , so D(Aj) covers b. Consider a b′ ∈ B′ \B′′. By the maximality
of B′′, there is a b ∈ B′′ so that CA′(b) ∩ CA′(b′) 
= ∅. Since CA′(b) and CA′(b′)
are contiguous subsequences of A′, CA′(b′) must contain an endpoint of CA′(b)
if CA′(b′) is not a subset of CA′(b). On the other hand, if CA′(b′) ⊆ CA′(b), then
Lemma 2 implies that CA′(b′) contains an endpoint of CA′(b). We conclude that
D(Aj) covers b′.

Finally, consider a b′ ∈ B \ B′. There is a b ∈ B′ such that CE(b) ⊆ CE(b′).
Since Aj contains a point from CE(b) it also contains a point from CE(b′). ��

Lemma 5. At the end of the j-th iteration, |CE(b)| ≥ L− 4j for each b ∈ B.

Proof. Assume that the statement is true at the end of the (j − 1)-th iteration.
We let Ef (resp. Es) denote the E at the end (resp. start) of the j-th iteration.
Assume that |CEs(b)| ≥ L−4(j−1) for each b ∈ B; we will argue that |CEf (b)| ≥
L− 4j.

For any b ∈ B′′, it is clear |Aj ∩ CEs(b)| = 2, so |CEf (b)| = |CEs(b)| − 2 >
L− 4j.

For any b ∈ B′\B′′, it is not hard to derive from Lemma 2 that |Aj∩CEs(b)| ≤
4. So |CEf (b)| ≥ |CEs(b)| − 4 ≥ L− 4j.

For any b ∈ B \ B′, there is a b′ ∈ B′ such that CEs(b′) ⊆ CEs(b). Thus
|CEf (b)| ≥ |CEf (b′)| ≥ L− 4j. ��

Corollary 1. The number of covers k returned by the algorithm is at least L/4.

Putting Sections 3.1, 3.2, and 3.3 together, we obtain:

Theorem 1. Any unit disk graph admits a domatic partition whose cardinality
is at least a constant fraction of the minimum degree, and hence at least a con-
stant fraction of the optimal domatic partition. Such a domatic partition can be
computed by a polynomial time sequential algorithm.
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3.4 Distributed Algorithm for Domatic Partition

Given that nodes are aware of their Euclidean coordinates, it is not too difficult
to check that the reduction in Section 3.1 that decomposes the domatic parti-
tion problem into local subproblems can be implemented in a constant number of
rounds in CONGEST model. The reduction in 3.2 can be implemented inO(log n)
rounds in the CONGEST model to give the desired partition with high proba-
bility. In this section, we focus on obtaining a polylogarithmic round distributed
implementation, DistDomPart, of the DomPart algorithm in Section 3.3, thus
obtaining a polylogarithmic round distributed algorithm for domatic partition in
the CONGEST model. We first show that each iteration of the DomPart algo-
rithm can be executed in a constant number of communication rounds, yielding
an O(L(A,B))-round algorithm. As in the DomPart algorithm, let E denote A,
initially. Let j be a variable local to each node, initially having the value 1.

1. Each node a ∈ E broadcasts (IDa, (xa, ya)). Since E is a clique, each node
a ∈ E now knows the IDs and coordinates of all other nodes in E.

2. Each node b ∈ B broadcasts (IDb, (xb, yb)).
3. Each node a ∈ E determines, if it contributes to the skyline of D(E); nodes

that do make a contribution mark themselves as belonging to A′.
4. Each node a ∈ A′ computes CA′(b) for all b ∈ N(a)∩B. Viewing each CA′(b)

as an interval over the ordered set A′, each node a ∈ A′ picks an inclusion-
wise minimal interval Ia from {CA′(b) | b ∈ N(a) ∩ B} and broadcasts
(�(Ia), r(Ia)) (the IDs of the left and right endpoints of Ia).

5. Each node a ∈ A′ computes a maximal subset of disjoint intervals from
{Ia | a ∈ A′}; if a is an endpoint of one of these chosen intervals, a marks
itself as belonging to Aj and deletes itself from E. The remaining nodes in
E increment the value of j.

It is worth noting that the property of each set CA′(b) being a contiguous subse-
quence ofA′ (Lemma 1) is quite critical in the above algorithm; it allows different
nodes a ∈ A′ to exchange information about these sets using O(log n) size mes-
sages. The steps above correspond to one iteration of the DomPart algorithm
and can be repeated L(A,B)/4 times. Thus we have the following lemma.

Lemma 6. There is a distributed algorithm, running in O(L(A,B))-rounds in
the CONGEST model, that computes a disk cover packing of size L(A,B)/4 for
an instance (A,B) where A and B are separated by a line.

Let n = |A ∪ B|. We now describe a distributed algorithm that computes an
Ω(L(A,B))-size domatic partition, while running in O(log2 n) rounds in the
CONGEST model. The key observation is that if A were partitioned into sets A1

and A2, we could run the above algorithm “in parallel” on the two sets. This mo-
tivates the idea of first partitioning A “equitably” and then run the DistDom-

Part algorithm “in parallel” on each block of the partition. If L(A,B) ≤ c·log2 n
for some constant c, we can run the above algorithm as is. Otherwise, let T equal
�L(A,B)/ logn� and color each node a ∈ A with a color x ∈ {1, 2, . . . , T} chosen
uniformly at random. This partitions the set A into color classes A1, A2, . . . , AT

and the following lemma follows from an application of Chernoff bounds.
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Lemma 7. With probability at least 1− 1
n , L(Ai, B) ≥ α logn, for all i, and for

some positive constant α.

It is easy to check that the DistDomPart can be run independently and in
parallel for each of the Ai’s. Running α logn/4 iterations of this algorithm yields,
with probability at least 1− 1

n , a disk cover packing of size at least

T · α logn
4

≥ α
4
· L(A,B).

We therefore obtain:

Theorem 2. There is a distributed algorithm that runs in O(log2 n) rounds in
the CONGEST model to produce a domatic partition that is a constant-factor
approximation of the largest possible domatic partition in a given unit disk graph.

The non-uniform case. Moscibroda and Wattenhofer [11] view the domatic par-
tition problem as an instance of the problem of maximizing the lifetime of a
wireless ad hoc network whose nodes are uniform. In the non-uniform version of
the problem, each node i comes with an associated value b(i) ∈ Z+ that repre-
sents an upper bound on the number of dominating sets that i can belong to.
The value b(i) models the initial battery supply at node i and in the domatic
partition problem we simply assumed that b(i) = 1 for all i. Using the algorithm
described in the previous section, one can also obtain a constant-factor approx-
imation for the problem of finding a maximum number of dominating sets such
that each node i appears in at most b(i) dominating sets.

4 Weighted Minimum Dominating Set

In this section we first present a new, sequential, constant-factor approxima-
tion algorithm for WMDS that uses the domatic partition algorithm presented
in Section 3. Our analysis also shows that the integrality gap of the standard
WMDS LP-relaxation is bounded above by a constant for UDGs. Subsequently,
we show how this algorithm can be implemented in the distributed CONGEST
model in O(log2 n) rounds.

Let G = (V,E) be a given UDG. Recall our assumption that we are given
a geometric representation of G; so we assume that V is a set of points in the
plane. For each j ∈ V , let D(j) denote the unit disk centered at j. The WMDS
LP-relaxation we use is

min
∑

i wi · xi (1)
∑

i∈D(j)

xi ≥ 1 for all j ∈ V

xi ≥ 0 for all i ∈ V

Let {x∗j | j ∈ V } be an optimal solution to the above LP. For any j such that
x∗j < 1/2n, round x∗j down to 0 and for any j such that x∗j ≥ 1/2n, round x∗j up
to the nearest k/2n for positive integer k. Let this new “discretized” solution be
denoted {xj | j ∈ V }. Two properties of this solution are worth noting.
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Lemma 8. (i)
∑

i∈D(j) xi ≥ 1/2 and (ii)
∑

i∈V wi · xi ≤ 2 ·OPT , where OPT
is the weight of an optimal dominating set.

Proof. (i) follows from the fact that the maximum decrease in
∑

i∈D(j) x
∗
i due

to rounding down of x∗i -values to 0 is less than n · 1
2n = 1

2 . (ii) follows from the
fact that xi ≤ 2 · x∗i , for all i ∈ V . Therefore,

∑

i∈V

wi ·xi ≤ 2 ·
∑

i∈V

wi ·x∗i ≤ 2 ·OPT. ��

Now construct a new set P of points, by making, for each j ∈ V , 2n · xj copies
of vertex j. Suppose that each point inherits the weight of the vertex that it
is a copy of. By Lemma 8, the total weight of all the points in P , w(P ) =
2n ·

∑
j∈V wj ·xj ≤ 4n ·OPT . The following lemma shows a lower bound on the

load of the instance (P, V ) of the disk cover packing problem.

Lemma 9. L(P, V ) ≥ n.

Proof. For all j ∈ V , the number of points i ∈ D(j) is 2n·
∑

i∈D(j) xi. By Lemma
8,

∑
i∈D(j) xi ≥ 1/2. The lemma follows. ��

We now subdivide the plane with a square grid of diameter 1, and call a grid cell
σ heavy if the set P σ ⊆ P of points contained in σ has at least n/25 elements.
Assign each point j ∈ V to a heavy cell σ so that |P σ ∩ D(j)| ≥ n/25. Let
V σ ⊆ V be the points assigned to σ. Partition V σ further into four sets V σ

e , V σ
w ,

V σ
n , and V σ

s that lie to the east, west, north, and south of σ respectively, plus
an additional set consisting of the points in σ. Notice that L(P σ, V σ

α ) ≥ n/25
for each α ∈ {e, w, n, s}.

Hence, by executing the DomPart algorithm described in Section 3.3, we get
a disk cover packing (A1, A2, . . . , At) for the instance (P σ, V σ

α ) with t ≥ n/C,
for some constant C. Since

∑t
i=1 w(Ai) = w(P σ), there exists an Ai such that

w(Ai) ≤
w(P σ)
t
≤ C · w(P σ)

n
.

This Ai covers not only V σ
α but also the points in V σ that lie in σ. The union of

such covers over all instances (P σ, V σ
α ), where σ ranges over the heavy cells and α

over {e, w, n, s}, is a cover (or dominating set) for V . Its weight is bounded by

∑

σ

4C · w(P σ)
n

≤ 4C · w(P )
n

≤ 16Cn ·OPT
n

≤ 16C ·OPT.

The algorithm implied by this analysis is the following.

The WMDS Algorithm

1. Solve the WMDS LP relaxation (1) to obtain a solution {x∗i | i ∈ V }.
2. For each i ∈ V , set xi = 0 if x∗i < 1/2n; otherwise, set xi to min{ k

2n | k ∈
Z+, k

2n ≥ x∗i }.
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3. Create a set of points P by making 2n · xi copies of each i ∈ V .
4. Partition into disk cover packing instances (P σ, V σ

α ) as above.
5. Computing a disk cover packing of (P σ, V σ

α ) using the DomPart algorithm
of Section 3.3.

6. Output a disk cover in the packing that has smallest weight, and return the
union over all instances (P σ, V σ

α ).

A distributed implementation of this algorithm in O(log2 n) rounds of commu-
nication in the CONGEST model can be obtained as follows. A constant-factor
approximation to the WMDS LP relaxation can be obtained in O(log2 n) rounds
in the CONGEST model using the algorithms in [3,10]. The next three steps
can be done locally at each node. The disk cover packing of (P σ, V σ

α ) can be
computed in O(log2 n) rounds in the CONGEST model using the DistDom-

Part algorithm in Section 3.4. Picking a cover of minimum weight from such a
packing is a “local” task and takes a constant number of communication rounds
in the CONGEST model.

Theorem 3. There is a distributed algorithm that runs in O(log2 n) rounds
in the CONGEST model and produces a constant-factor approximation to the
minimum-weight dominating set in a unit disk graph.
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Abstract. We give the first constant factor approximation algorithm for
the asymmetric Virtual Private Network (Vpn) problem with arbitrary
concave costs. We even show the stronger result, that there is always a
tree solution of cost at most 2·OPT and that a tree solution of (expected)
cost at most 49.84 · OPT can be determined in polynomial time.

For the case of linear cost we obtain a (2 + ε R
S )-approximation algo-

rithm for any fixed ε > 0, where S and R (R ≥ S) denote the outgoing
and ingoing demand, respectively.

Furthermore, we answer an outstanding open question about the
complexity status of the so called balanced Vpn problem by proving its
NP-hardness.

1 Introduction

The asymmetric Virtual Private Network (Vpn) problem is defined on a com-
munication network represented as an undirected connected graph G = (V,E)
with cost vector c : E → Q+, where ce indicates the cost of installing one unit
of capacity on edge e. Within this network, there is a set of terminal nodes that
want to communicate with each other, but the amount of traffic between pairs
of terminals is not known exactly. Instead, each vertex v has two thresholds
b+v , b

−
v ∈ N0, representing the cumulative amount of traffic that v can send and

receive, respectively. The bounds implicitly describe a set of valid traffic matrices
which the network has to support. In particular, a traffic matrix specifies for each
ordered pairs of vertices (u, v), a non-negative amount of traffic that u wishes to
send to v. Such a set of traffic demands corresponds to a valid traffic matrix if
and only if the total amount of traffic entering and leaving each terminal v does
not exceed its bounds b−v and b+v , respectively.

A solution to an instance of the asymmetric Vpn problem is given by a collec-
tion of paths P containing exactly one path for each ordered pair of terminals,
and a capacity reservation x : E → Q+. Such a solution (P , x) is feasible if
every valid traffic matrix can be routed via the paths in P without exceeding
the capacity reservation x. The aim is to find a feasible solution that minimizes
the total cost of the installation.
� Supported by Swiss National Science Foundation within the project “Robust Net-

work Design”.
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A feasible solution is called a tree solution if the union of the selected paths
induces a tree.

The Vpn problem was introduced by Fingerhut et al. [1] and Gupta et al. [2],
and it soon attracted a lot of attention in the network design community. In fact,
the model is relevant for many practical applications where flexible communi-
cation scenarios are needed, e.g. to face phenomena like input data uncertainty,
demands that are hard to forecast as well as traffic fluctuations, which are typical
for instance in IP networks.

Such a high interest in the problem motivated several authors (see e.g.
[3–10]) in the investigation of the model and its important variations. A re-
cent survey on network design problems provided by Chekuri [11] reports a lot
of interesting open questions concerning Vpn models, some of them discussed
below.

1.1 Related Work

The asymmetric Vpn problem is APX-hard, even if we restrict to tree solutions
[1, 2]. The current best approximation algorithm gives a ratio of 3.55 [4]. Still,
the best known upper bound on the ratio between an optimal solution and an
optimal tree solution is 4.74 [9].

A quite natural variant of this problem is the so-called balanced Vpn problem,
that is, when the following condition holds:

∑
v b

+
v =

∑
v b

−
v . Italiano et al. [5]

show that, differently from the asymmetric version, an optimal tree solution in
this case can be found in polynomial time, and Eisenbrand et al. [4] obtain that
an optimal tree solution is in fact a 2-approximate solution for the general case.
Unfortunately, it has been recently shown that the cheapest solution does not
always have a tree structure [12]. Nevertheless, the complexity of the balanced
Vpn problem is still an open question [5, 11].

Finally, an important variant of this problem is the symmetric Vpn problem,
where each vertex has one single integer bound bv representing the total amount
of traffic that v can exchange with the other nodes: in this case, a solution specifies
an u − v path for each unordered pair of nodes and a capacity reservation vector
in such a way that every valid traffic matrix can be routed via the selected paths,
where a valid traffic matrix now specifies an amount of flow that each unordered
pair of nodes wishes to exchange, without exceeding the given threshold for each
node. Both papers [1] and [2] show that an optimal tree solution can be computed
in polynomial time. It has been conjectured in Erlebach et al. [3] and in Italiano et
al. [5] that there always exists an optimal solution to the symmetric Vpn problem
that is a tree solution: this has become known as the VPN tree routing conjecture.
The conjecture has first been proved for ring networks [6, 7], and was finally settled
for general graphs by Goyal et al. [8].

Recently, Fiorini et al. [10] started the investigation of the symmetric Vpn

problem with concave costs. More precisely, the concave symmetric Vpn prob-
lem is defined as the symmetric Vpn problem, but the contribution of each edge
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to the total cost is proportional to some concave non-decreasing function of the
capacity reservation. The motivation for studying this problem is due to the
fact that buying capacity can often reflect an economy of scale principle: the
more capacity is installed, the less is the per-unit reservation cost. They give
a constant factor approximation algorithm for the problem, and show that also
in this case there always exists an optimal solution that has a tree structure.
An alternative subsequent proof of the latter result is also given by Goyal et al.
[13]. The investigation of the concave asymmetric Vpn problem has not been
addressed so far.

The importance of tree solutions becomes more evident in the context of
symmetric Vpn and balanced Vpn, where any tree solution has in fact a central
hub node, as shown by [2] for the symmetric case and by [5] for the balanced
case. More precisely, any tree solution in these cases has enough capacity such
that all the terminal nodes could simultaneously route their traffic to some hub
node r in network. Combining this with some simple observations, it follows
that computing the cheapest tree solution reduces to computing the cheapest
way to simultaneously send a given amount flow from the terminal nodes to
some selected hub node r. In case of linear edge costs [2, 5], the latter min-cost
flow problem becomes simply a shortest path tree problem. In case that the edge
costs are proportional to a non-decreasing concave cost function [10], the latter
min-cost flow problem is known as Single Sink Buy-At-Bulk (Ssbb) problem (a
formal definition is given in the next section). Differently, the above property
does not hold for tree solutions of asymmetric Vpn instances.

We point out that in the literature there is another possible definition of
Ssbb that does not compute costs according to a concave cost function, but
instead deals with an input set of possible cable types that may be installed on
the edges, each with different capacity and cost. For this latter version of the
problem, the first constant approximation (roughly 2000) is due to Guha et al.
[14], subsequently reduced to 216 by Talwar [15] and to 76.8 by Gupta et al.
[16], with an algorithm based on random sampling. Refining their approach, the
approximation was later reduced to 65.49 by Jothi and Raghavachari [17], and
eventually to 24.92 by Grandoni and Italiano [18]. In this paper, according to
the first definition, we however refer to Ssbb as the problem of routing a given
amount of flow from some terminal nodes to a hub node minimizing a concave
cost function on the capacity installed on the edges. It is shown in [10] that the
(expected) 24.92-approximation algorithm of Grandoni and Italiano [18] can be
used to obtain a tree solution with the same approximation factor for our version
of Ssbb.

1.2 Our Contribution

We give the first constant factor approximation algorithm for the asymmetric
Vpn problem with arbitrary concave costs, showing that a tree solution of ex-
pected cost at most 49.84 ·OPT can be computed in polynomial time. Moreover,
in case of linear cost, we show that for any fixed ε > 0 a (2 + εRS )-approximate
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solution can be obtained in polynomial time, with R :=
∑

v b
−
v , S :=

∑
v b

+
v ,

and without loss of generality R ≥ S.
The key-point of our approximation results is showing that there always exists

a cheap solution with a capacitated central hub node, which in particular has a
cost of at most twice the optimum. More precisely, there exists a 2-approximate
solution with enough capacity such that any subset of terminals could simulta-
neously send their flow to a hub node r up to a cumulative amount of S. Then,
we show how to approximate such a centralized solution by using known results
on Ssbb. Based on this, we can then state that there exists a Vpn tree solution,
with cost at most 2 ·OPT . This substantially improves the previous known up-
per bound of 4.74 on the ratio between an optimal solution and an optimal tree
solution, which only applies in case of linear costs. We remark that our result
holds considering any non-decreasing concave cost function.

The technique used to prove our results is substantially different from the
previous approaches known in literature. In fact, approximation algorithms de-
veloped in the past mostly relate on computing bounds on the global cost of an
optimal solution, e.g. showing that an approximate solution constructed out of
several matchings or Steiner trees, has a total cost that is not that far from the
optimum [4, 9, 16].

In contrast, we focus locally on the capacity installed on an edge, and we
show that, given any feasible solution, we can obtain a new solution with a
capacitated central hub node, such that, on average the capacity on an edge
is at most doubled. This result is independent on the cost function. Still, we
reinterpret the known fact that, given a set of paths, the minimal amount of
capacity to install on an edge can be computed by solving a bipartite matching
problem on some auxiliary graph. Using duality, we look instead at minimal
vertex covers on such graphs, and this reinterpretation allows us to develop a
very simple analysis for our statement.

Eventually, we answer the open question regarding the complexity status of
the balanced Vpn problem with linear costs. We prove that it is NP-hard even
with unit thresholds on each node.

2 Description of the Problem

In this section we describe in detail the problem addressed in this paper, and
other related problems that we will use to state our results.

(Concave/Linear) Virtual Private Network. An instance I of the concave
Virtual Private Network (cVpn) problem consists of an undirected connected
graph G = (V,E) with edge costs c : E → Q+, two non-negative integer vectors
b+ ∈ ZV , b− ∈ ZV , as well as a concave non-decreasing function f : Q+ → Q+.

A vertex v such that b+v + b−v > 0 is referred to as a terminal : by duplicat-
ing nodes, we can assume without loss of generality that each terminal is either
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a sender s, with b+s > 0, b−s = 0, or a receiver r, with b+r = 0, b−r > 0. Let S and
R be set of senders and receivers, respectively.

The vectors b+ and b− specify a set of valid traffic matrices that can be
interpreted as follows. Let KS,R be the complete bipartite graph with nodes
partitioned into senders and receivers: each valid traffic matrix corresponds to a
fractional b-matching on KS,R and vice versa.

A solution to an instance of the problem is a pair (P , x), where P is a collection
of paths P := {Psr | ∀r ∈ R, s ∈ S}, and x ∈ QE

+ specifies the capacity to install
on each edge of the network. A solution is feasible if the installed capacities
suffice to route each valid traffic matrix via the selected paths P . A feasible
solution is optimal if it minimizes the emerging cost

∑
e∈E ce · f(xe).

If f(xe) = xe, that means we have linear costs on the edges, we term this
problem just Virtual Private Network (Vpn) problem. We call an instance of
the problem balanced whenever S :=

∑
s∈S b

+
s equals R :=

∑
r∈R b

−
r .

Given a collection of paths P , the minimum amount of capacity xe that has
to be install on e ∈ E to turn (P , x) into a feasible solution can be computed in
polynomial time as follows (see [2, 4, 5] for details):

xe = maximal cardinality of a b-matching in Ge = (S ∪R,Ee),
with (s, r) ∈ Ee ⇔ e ∈ Psr

Notice that, since the graph Ge is bipartite, an optimum capacity reservation
vector x will always be integer.

Single Sink Buy-At-Bulk. An instance of the Single Sink Buy-At-Bulk (Ssbb)

problem consists of an undirected connected graph G = (V,E) with edge costs
c : E → Q+, a demand function d : V → N, a root r ∈ V and a concave non-
decreasing function f : Q+ → Q+.

The aim is to find capacities xe ∈ Q+ for the edges, sufficient to simultaneously
route a demand of d(v) from each node v to the root, such that the emerging
cost

∑
e∈E ce · f(xe) is minimized.

Sometimes it is assumed that d(v) ∈ {0, 1}, and in this case the vertices
D = {v ∈ V | d(v) = 1} are called clients.

Single Sink Rent-or-Buy. An instance of the Single Sink Rent-or-Buy (Srob)

problem consists of an undirected connected graph G = (V,E) with edge costs
c : E → Q+, a demand function d : V → N, a root r ∈ V and a parameter
M ≥ 1.

The aim is to find capacities xe ∈ Q+ for the edges, sufficient to simultaneously
route a demand of d(v) from each node v to the root, such that the emerging
cost

∑
e∈E ce ·min{xe,M} is minimized. Note that this problem is a special case

of Single Sink Buy-At-Bulk.

Steiner Tree. An instance of the Steiner tree problem consists of an undirected
connected graph G = (V,E) with edge costs c : E → Q+ and a set of terminals
K ⊆ V .

The aim is to find the cheapest tree T ⊆ E spanning the terminals.
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3 Approximation Results

We now state the first constant factor approximation algorithm for cVpn, start-
ing with some simplifying assumptions that we can make on a cVpn instance
without loss of generality.

First, by duplicating nodes, we may assume b+, b− to be 0/1 vectors, that
means, b+s = 1, b−s = 0 for a sender s, and b+r = 0, b−r = 1 for a receiver r. The
latter assumption is correct if we can guarantee that the paths in a solution
between copies of a terminal v and copies of a terminal u are all the same. Our
algorithm developed below can be easily adapted in such a way that it satisfies
the latter consistence property, and that it runs in polynomial time even if the
thresholds are not polynomially bounded. Note that, under these assumptions,
S = |S| and R = |R|. Then by symmetry, suppose that |R| ≥ |S|.

We propose the following algorithm.

Algorithm 1. cVpn algorithm

1. Choose a sender s∗ ∈ S uniformly at random as the hub
2. Compute a ρSsbb-approximate Ssbb tree solution (xe)e∈E for graph G with clients

S ∪ R, root s∗ and cost function ce · f(min{xe, |S|})
3. Return ((Psr)s∈S,r∈R, x′) with path Psr being the unique path in the tree defined

by the support of xe, and x′
e = min{xe, |S|}

Note that f(min{xe, |S|}) indeed is concave and non-decreasing in xe. Let
OPT := OPTVpn(I) be the optimum cost for the cVpn instance I.

Let us first argue, that the capacity reservation x′e in fact suffices. Consider
an edge e, which is used by k paths in the Ssbb solution. Then the capacity
reservation is x′e ≥ min{k, |S|}. It is easy to see that this is sufficient for the
constructed cVpn solution. Clearly the cost of this solution is equal to the cost
of the Ssbb-solution.

We will now show that indeed, there is a Ssbb-solution of cost at most 2·OPT
for the instance defined in Step (2) of the algorithm. As it was pointed out in
[10], any solution for Ssbb can then be turned into a tree solution of at most
the same cost1.

To prove this, we first define I ′ as a modified cVpn instance, which differs
from I in such a way that there is a single sender with non-unit threshold, and
in particular:

b+v (I ′) =

{
|S| if v = s∗

0 otherwise
and b−v (I ′) =

{
1 if v ∈ S ∪R
0 otherwise

Intuitively we reroute all flow through the hub s∗. We will now prove that this
new cVpn instance coincides with the Ssbb problem, i.e. their optimum values
are identical.
1 This is not true anymore, if the function f is not concave, but defined by a set of

cables. In that case one might loose a factor of 2 in the approximation.
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Let OPTSsbb be the cost of an optimum Ssbb solution for the instance defined
in Step (2) of the algorithm.

Lemma 1. OPTVpn(I ′) = OPTSsbb.

Proof. Let Ps∗v be the paths in a cVpn solution for I ′. Consider an edge e ∈ E
and let v1, . . . , vk ∈ S ∪ R be the nodes, such that e ∈ Ps∗vi . If k ≤ |S| we can
define a traffic matrix in which s∗ sends 1 unit of flow to all vi. If k > |S|, we
may send 1 unit of flow from s∗ to each node in v1, . . . , v|S|. Anyway the needed
capacity of e is xe = min{k, |S|}, which costs ce · f(min{k, |S|}). This is the
same amount, which an Ssbb solution pays for capacity k on e ∈ E. Thus both
problems are equal. ��

The critical point is to show that:

Lemma 2. E[OPTVpn(I ′)] ≤ 2 ·OPTVpn(I).

Proof. Let P = {Psr | s ∈ S, r ∈ R} be the set of paths in the optimum cVpn

solution for I and xe be the induced capacities. We need to construct a cVpn

solution of I ′, consisting of s∗-v paths P ′
s∗v for v ∈ S ∪R.

The solution is surprisingly simple: Choose a receiver r∗ ∈ R uniformly at
random as a second hub. Take P ′

s∗r := Ps∗r as s∗-r path. Furthermore concate-
nate P ′

s∗s := Ps∗r∗ + Pr∗s to obtain a s∗-s path. To be more precise we can
shortcut the latter paths, such that they do not contain any edge twice.

We define a sufficient capacity reservation x′e as follows: Install |S| units of
capacity on the path Ps∗r∗ . Then for each sender s ∈ S (receiver r ∈ R) install in
a cumulative manner one unit of capacity on Psr∗ (on Ps∗r, respectively). Note
that x′e is a random variable, depending on the choice of s∗ and r∗. We show
that E[x′e] ≤ 2xe. Once we have done this, the claim easily follows from Jensen’s
inequality and concavity of f :

E[OPTVpn(I ′)] ≤ E[
∑

e∈E

cef(x′e)] ≤
∑

e∈E

cef(E[x′e])] ≤ 2 ·OPTVpn(I)

Now consider an edge e ∈ E. Since we want to bound the quantity E[x′e] in
terms of the original capacity xe, let us inspect, how this capacity is determined.
Define the bipartite graph Ge = (S∪R,Ee) containing an edge (s, r) ∈ Ee if and
only if e ∈ Psr. Then xe must be the cardinality of a maximal matching in Ge.
Kőnig’s theorem (see e.g. [19, 20]) says that there is a vertex cover C ⊆ S ∪ R
with xe = |C| (see Figure 1 for a visualization).

We now distinguish two cases and account their expected contribution to
E[x′e].

1. Case: s∗ ∈ S ∩C or r∗ ∈ R ∩C. We account the worst case of |S| units of
capacity. The expected contribution is then

Pr[(s∗ ∈ S ∩ C) ∨ (r∗ ∈ R ∩ C)] · |S| ≤ |S ∩ C||S| · |S|+ |R ∩ C||R| · |S| ≤ |C|

using |R| ≥ |S|.
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Fig. 1. Example of a cVpn instance in (a), where terminals are depicted as rectangles,
senders are drawn solid. Only paths, crossing edge e are shown. In (b) the graph Ge

with vertex cover C is visualized, implying that xe = 2.

2. Case: s∗ ∈ S\C, r∗ ∈ R\C. We bound the probability of this case by 1. We
know that edge (s∗, r∗) cannot exist in Ge since all edges need to be incident
to C. Consequently e does not lie on the path Ps∗r∗ . Thus we just have to
install 1 unit of capacity for each sender s, such that (s, r∗) ∈ Ee. But only
sender in S ∩ C may be adjacent to r∗ in Ge, thus this number is at most
|S∩C|. A similar argument holds for the receivers. The expected contribution
of this case is consequently upperbounded by |S ∩ C|+ |R ∩ C| = |C|.

Combining the expected capacities for both cases we derive that E[x′e] ≤ 2|C| =
2xe, which implies the claim. ��

As a consequence, our algorithm yields a 2ρSsbb-approximation. Using the ex-
pected 24.92-approximation of [18], we conclude

Theorem 1. There is an expected 49.84-approximation algorithm for cVpn

which even yields a tree solution.

Using the derandomized Ssbb algorithm of van Zuylen [21] with an approxima-
tion factor of 27.72 and the fact that all choices for s∗ ∈ S can be easily tried
out, one obtains

Corollary 1. There is a deterministic factor 55.44-approximation algorithm for
cVpn, which even yields a tree solution.

Corollary 2. Given any cVpn solution of cost α, one can find deterministically
and in polynomial time a tree solution of cost at most 2α.
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Until now the best upper bound on the ratio of optimum solution by optimum
tree solution was 3 +

√
3 ≈ 4.74 due to [9] which only worked in case of linear

cost.

3.1 Linear Costs

Next suppose that f(xe) = xe, meaning that we have linear costs on the edges.
The 3.55-approximation algorithm of [4] still yields the best known ratio for
Vpn.

Observe that the cost function ce · f(min{xe, |S|}) = ce · min{xe, |S|} for
the Ssbb instance constructed in the algorithm, matches the definition for the
Single Sink Rent-or-Buy problem (Srob) with parameter M = |S|, root s∗ and
clients S ∪R, thus any ρSrob-approximate Srob algorithm can be turned into a
2ρSrob-algorithm for Vpn.

In general ρSrob ≤ 2.92 is the best known bound due to [22], but in a special
case we can do better. In [22] it was proved, that for any constant δ > 0, there
is a 1 + δ |D|

M -approximation algorithm for Srob. Since D = S ∪ R is the set of
clients and M = |S|, this directly yields

Corollary 3. For any fixed ε > 0, there is a polynomial time (2 + εRS )-appro-
ximation algorithm for Vpn.

Recall that this result also holds in case of non-unit demands.

4 Hardness of Balanced Vpn

We here consider the balanced Vpn problem with linear costs. Recall that, while
the asymmetric Vpn is NP-hard even restricted to tree solutions, an optimal tree
solution for this case can be computed in polynomial time as in the symmetric
version [5]. So far, the complexity of the balance Vpn was an open question
[5, 11]: we now show that the problem is NP-hard even with unit thresholds on
the nodes, by reduction from the Steiner Tree problem.

Given an instance I for Steiner Tree consisting of a graph G = (V,E) with
cost function c : E → Q+, and set of k + 1 terminals {v1, . . . , vk, vk+1}, we
construct an instance I ′ of the balanced Vpn problem on a graph G′ = (V ′, E′)
as follows.

First, introduce two large numbers: C :=
∑

e∈E ce + 1, and M ' (k + 1)C.
To construct G′ from G, add a vertex a4 and make it adjacent to the vertices
v1, v2, . . . , vk by edges of cost C. Then, add a path vk+1, a1, a2, a3, a4, where the
first two edges of the path have cost M , while the last two edges have cost kM .
Finally, add k vertices w1, w2, . . . , wk, each of them adjacent to a2 with a zero
cost edge, and add 2k− 1 vertices u1, u2, . . . , u2k−1, each of them adjacent to a3
with a zero cost edge. Figure 2 shows the resulting graph G′.

Define the set of senders as S := {a1} ∪ {u1, u2, . . . , u2k−1} and the set of
receivers as R := {v1, v2, . . . , vk}∪{w1, w2, . . . , wk}. Note that indeed |S| = |R|.
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Fig. 2. Vpn instance I′. Edges are labeled with their cost. Terminals are depicted as
rectangles, senders are drawn in gray.

Lemma 3. There exists a solution to the Steiner tree instance I of cost at most
C∗ if and only if there exists a solution to the balanced Vpn instance I ′ with
cost at most Z = 2k2M + 2M + kC + C∗.

Proof. (⇒) The only if part is trivial. Suppose there exists a solution T to the
Steiner tree instance I of cost C∗. We construct a solution to I ′ by defining the
following paths:

– Pa1wi = {a1, a2} ∪ {a2, wi}, for i = 1, . . . , k;
– Pa1vi = {a1, vk+1} ∪ {the edges of the unique (vk+1 − vi)-path induced by
T }, for i = 1, . . . , k;

– Pujwi = {uj, a3} ∪ {a3, a2} ∪ {a2, wi}, for i = 1, . . . , k, j = 1, . . . , 2k − 1;
– Pujvi = {uj, a3} ∪ {a3, a4} ∪ {a4, vi}, for i = 1, . . . , k, j = 1, . . . , 2k − 1.

Finally, install the following amount of capacity on the edges of the graph: xe = k
for e = {a2, a3} and e = {a3, a4}, xe = 0 for e ∈ E \ T and xe = 1 otherwise. It
is easy to see that the resulting set of paths and the capacity vector x define a
solution to I ′ of cost at most Z.

(⇐) For the reverse direction, suppose we have a Vpn solution (P , x) to I ′
with cost at most Z. Recall that we may assume x to be an integer vector. We
now have to argue that in fact this solution must be of the same structure as
suggested in the (⇒) part.

First, we show that the paths in P from a1 to vi (i = 1, . . . , k) contain the
edge {a1, vk+1}, while the paths from a1 to wi (i = 1, . . . , k) contain the edge
{a1, a2}. Similarly, we show that the paths from uj to vi (i = 1, . . . , k and
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j = 1, . . . , 2k − 1) contain the edge {a3, a4}, while the paths from uj to wi

(i = 1, . . . , k and j = 1, . . . , 2k − 1) contain the edge {a2, a3}. Then, under the
above assumptions, we show that the support of the solution contains a set of
edges T ⊆ E that span the vertices {v1, . . . , vk+1} and whose total cost does not
exceed C∗. The result then follows.

Claim 1. For i = 1, . . . , k, we have {a1, vk+1} ∈ Pa1vi and {a1, a2} ∈ Pa1wi .

Proof. Suppose there is a path from a1 to some node vi that does not contain
the edge {a1, vk+1}. Necessarily, it must contain the edges {a1, a2}, {a2, a3} and
{a3, a4}. This means, that the capacity to be installed on the latter edges fulfills
xa1a2 ≥ 1 and xa2a3 + xa3a4 ≥ (2k − 1) + 2, where the last inequality easily
follows considering the valid traffic matrix, in which a1 sends 1 unit of flow to vi
and the remaining senders send 2k − 1 units of flow to the remaining receivers.
Therefore, the cost of the emerging solution is at least 2k2M + kM +M > Z
for every k ≥ 2, yielding a contradiction. We can prove in a similar manner that
{a1, a2} ∈ Pa1wi for all i = 1, . . . , k. ��

Claim 2. For i = 1, . . . , k and j = 1, . . . , 2k − 1, we have {a3, a4} ∈ Pujvi and
{a2, a3} ∈ Pujwi .

Proof. First, we focus on the capacity installed on the edges e = {a2, a3} and
e′ = {a3, a4}. Clearly, xe +xe′ ≥ 2k−1. We now prove that in fact the inequality
is strict.

Suppose it holds with equality. We inspect the bipartite graphs Ge and Ge′

(this time without a1, since we already proved that it uses neither e nor e′) and
let Ce, Ce′ be the minimum vertex covers on Ge, Ge′ , respectively. By hypothesis,
|Ce| + |Ce′ | = 2k − 1. That means that there is at least one node r ∈ R that
does not belong to any of the two covers. Now notice that Ge and Ge′ are
complementary bipartite graphs, since the union of their edges gives the complete
bipartite graphK2k−1,2k. It follows than that Ce∪Ce′ = S\{a1}: otherwise, there
would be a node s ∈ S \ ({a1} ∪ Ce ∪ Ce′) with an incident edge (s, r), that is
neither covered by Ce nor by Ce′ , a contradiction.

As a conclusion all senders in Ce route to the 2k receivers on paths containing
the edge e, while all senders in Ce′ route to the 2k receivers on paths containing
the edge e′. Then it is easy to see, that the installed capacities satisfy xvk+1a1 ≥ k
and xa1a2 ≥ k. Therefore, the cost of the emerging solution is at least 2k2M −
kM + 2kM > Z, for k ≥ 3, a contradiction.

It follows that xe + xe′ ≥ 2k. Suppose now, there is a path from some uj

to some vi that does not contain the edge e = {a3, a4}. Necessarily, it must
contain the edges {a1, a2} and {vk+1, a1}. Using the previous claim, it is easy
to see that the installed capacities satisfy xvk+1a1 ≥ 2 and similarly xa1a2 ≥ 2.
Therefore, the cost of the emerging solution is at least 2k2M + 4M > Z, again
a contradiction.

We can prove in a similar manner that there is no path from some uj to some
wi that does not contain the edge e′ = {a2, a3}. ��
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Putting all together, it follows that xvk+1a1 ≥ 1, xa1a2 ≥ 1, xa2a3 ≥ k, xa3a4 ≥ k,
and the cost of the capacity installed on the latter edges is at least 2k2M+2kM .

Now, consider the edges {a4, vi}, i = 1, . . . , k: clearly,
∑

i=1,...,k xa4vi ≥ k,
since we can define a traffic matrix where k senders in S \ {a1} simultaneously
send k units of flow to v1, . . . , vk. It follows that

∑
i=1,...,k ca4vixa4vi ≥ k · C.

Finally, let T be the subset of edges ofE that are in the support of the solution.
Suppose that T does not span the nodes v1, . . . , vk+1. Then there exists at least
one node vi such that the path from a1 to vi contains at least 2 edges with
cost C. But in this case, we would have

∑
i=1,...,k xa4vi ≥ k + 1 and the cost of

the solution exceeds Z. We conclude that indeed T contains a Steiner tree and
c(T ) ≤ Z − (2k2M + 2M + kC) = C∗. ��

From the discussions above, it follows:

Theorem 2. The balanced Vpn problem is NP-hard.

Note that the above reduction is not approximation preserving, i.e. in contrast to
NP-hardness, the APX-hardness of Steiner tree [23] is not conveyed to balanced
Vpn. In other words, our reduction does not exclude the possible existence of a
PTAS for balanced Vpn.
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Abstract. The Nearest Codeword Problem (NCP) is a basic algorithmic
question in the theory of error-correcting codes. Given a point v ∈ Fn

2

and a linear space L ⊆ Fn
2 of dimension k NCP asks to find a point

l ∈ L that minimizes the (Hamming) distance from v. It is well-known
that the nearest codeword problem is NP-hard. Therefore approximation
algorithms are of interest. The best efficient approximation algorithms
for the NCP to date are due to Berman and Karpinski. They are a
deterministic algorithm that achieves an approximation ratio of O(k/c)
for an arbitrary constant c, and a randomized algorithm that achieves
an approximation ratio of O(k/ log n).

In this paper we present new deterministic algorithms for approximat-
ing the NCP that improve substantially upon the earlier work. Specifically,
we obtain:

– A polynomial time O(n/ log n)-approximation algorithm;
– An nO(s) time O(k log(s) n/ log n)-approximation algorithm, where

log(s) n stands for s iterations of log, e.g., log(2) n = log log n;
– An nO(log∗ n) time O(k/ log n)-approximation algorithm.

We also initiate a study of the following Remote Point Problem (RPP).
Given a linear space L ⊆ Fn

2 of dimension k RPP asks to find a point
v ∈ Fn

2 that is far from L. We say that an algorithm achieves a remoteness
of r for the RPP if it always outputs a point v that is at least r-far from
L. In this paper we present a deterministic polynomial time algorithm
that achieves a remoteness of Ω(n log k/k) for all k ≤ n/2. We motivate
the remote point problem by relating it to both the nearest codeword
problem and the matrix rigidity approach to circuit lower bounds in
computational complexity theory.

1 Introduction

The Nearest Codeword Problem (NCP) is a basic algorithmic question in the
theory of error-correcting codes. Given a point v ∈ Fn

2 and a linear space L ⊆ Fn
2
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of dimension k NCP asks to find a point l ∈ L that minimizes the (Hamming)
distance from v. The nearest codeword problem is equivalent to the problem of
finding a vector x ∈ Fk

2 that minimizes the number of unsatisfied linear equations
in the system xG = v, given a matrix G ∈ Fk×n

2 and a vector v ∈ Fn
2 . It is well-

known that the NCP is NP-hard. Therefore approximation algorithms are of
interest.

The best efficient approximation algorithms for the NCP to date are due to
Berman and Karpinski [3]. They are a deterministic algorithm that achieves an
approximation ratio of O(k/c) for an arbitrary constant c, and a randomized
algorithm that achieves an approximation ratio of O(k/ logn).1 There has been
a substantial amount of work on hardness of approximation for the NCP [1, 2, 4].
The best result to date is due to Arora et al. [2]. It shows that one can-
not approximate the NCP to within 2log0.5−ε n, for any ε > 0 unless NP is
in DTIME

(
npoly(log n))

)
. Alekhnovich [1] has made a conjecture that implies

inapproximability of the NCP to within n1−ε, for every ε > 0.
In this paper we develop new deterministic algorithms for approximating the

NCP. Specifically, we obtain:

1. A polynomial time O(n/ logn)-approximation algorithm;
2. An nO(s) time O(k log(s) n/ logn)-approximation algorithm, where log(s) n

stands for s iterations of log, e.g., log(2) n = log logn;
3. An nO(log∗ n) time O(k/ logn)-approximation algorithm.

Our first algorithm matches the performance of the randomized algorithm of [3]
for k = Ω(n). This is the regime that is of primary importance for the coding
theory applications. Our second algorithm improves substantially upon the de-
terministic algorithm of [3], and nearly matches the randomized algorithm of [3]
in terms of the approximation ratio. Finally, our third algorithm has the same
approximation ratio as the randomized algorithm of [3] and a slightly super-
polynomial running time. All our algorithms (as well as other known algorithms
for the NCP in the literature) can be easily generalized to fields other than F2.

Remote Point Problem. In this work we also initiate a study of the following
Remote Point Problem (RPP). Given a linear space L ⊆ Fn

2 of dimension k RPP
asks to find a point v ∈ Fn

2 that is far from L.We say that an algorithm achieves
a remoteness of r for the RPP if it always outputs a point v that is at least r-far
from L. We present a deterministic polynomial time algorithm that achieves a
remoteness of Ω(n log k/k) for all k ≤ n/2. Our algorithm for the remote point
problem is closely related to our first approximation algorithm for the nearest
codeword problem.

We motivate the remote point problem by relating it to the matrix rigidity
approach to circuit lower bounds in computational complexity theory. The notion
of matrix rigidity was introduced by Leslie Valiant in 1977 [10]. In what follows
1 In fact, Berman and Karpinski [3] only claim that their randomized algorithm

achieves a O(k/ log k) approximation. However it is immediate from their analysis
that they also get a O(k/ log n) approximation.
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we say that a set A ⊆ Fn
2 is r-far from a linear space L ⊆ Fn

2 if A contains a point
that is r-far from L. (Observe, that this is quite different from the usual notion
of distance between sets.) Valiant called a set A ⊆ Fn

2 rigid if for some fixed
ε > 0, A is nε-far from every linear space L ⊆ Fn

2 , dimL = n/2. Valiant showed
that if a set A ⊆ Fn

2 is rigid and |A| = O(n); then the linear transformation from
n bits to |A| bits induced by a matrix whose rows are all elements of A can not
be computed by a circuit of XOR gates that simultaneously has size O(n) and
depth O(log n).2

Valiant’s work naturally led to the challenge of constructing a small explicit
rigid set A, (since such a set yields an explicit linear map, for that we have
a circuit lower bound). This challenge has triggered a long line of work. For
references see [5, 7–9]. Unfortunately, after more than three decades of efforts, we
are still nowhere close to constructing an explicit rigid set with the parameters
needed to get implications in complexity theory. The smallest known explicit
sets A ⊆ Fn

2 (presented in the appendix) that are d-far from every linear space
L ⊆ Fn

2 , dimL = n/2 have size 2O(d)n/d.
In particular there are no known constructions of sets A ⊆ Fn

2 of size O(n) that
are ω(1)-far from linear spaces dimension n/2.Moreover if we restrict ourselves to
sets A of size n; then we do not know how to construct an explicit set that is just
3-far from every linear space of dimension n/2, despite the fact that a random
set A of cardinality n is Ω(n)-far from every such space with an overwhelming
probability.

In this paper we propose the remote point problem as an intermediate challenge
that is less daunting than the challenge of designing a small rigid set, and yet could
help us develop some insight into the structure of rigid sets. Recall that a rigid
set is a set that is simultaneously nε-far from every linear space L, dimL = n/2.
Given the state of art with constructions of explicit rigid sets we find it natural
to consider an easier algorithmic Remote Set Problem (RSP) where we are given
a single linear space L, and our goal is to design an O(n)-sized set AL ⊆ Fn

2 that
is nε-far from L. Clearly, if we knew how to construct explicit rigid sets, we could
solve the RSP without even looking at the input. The remote point problem is a
natural special case of the remote set problem. Here we are given a linear space
L ⊆ Fn

2 and need to find a single point that is far from L.
In this paper we present an algorithm that for every linear space L ⊆ Fn

2 ,
dimL = n/2 generates a point that is Ω(log n)-far from L. (For spaces L
of dimension k < n/2, our algorithm generates a point of distance at least
Ω(n log k/k) from L.) We are not aware of efficient algorithms to generate points
(or O(n)-sized collections of points) further away from a given arbitrary linear
space of dimension n/2.

2 The original paper of Valiant [10] and the follow-up papers use a somewhat different
language. Specifically, they talk about matrices A whose rank remains no less than
n/2 even after every row is modified in less than nε coordinates; rather than about
sets A that for every linear space L ⊆ Fn

2 , dim L = n/2 contain a point a ∈ A that
is nε-far from L. However, it is not hard to verify that the two concepts above are
equivalent.
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The remote point problem can be viewed as a search variant of the covering
radius problem: finding a point in space that is as far away as possible from
a given code. The complexity of the covering radius problem has been studied
in [6].

Organization. We present our first approximation algorithm for the NCP in
section 2. We present our second and third algorithms in section 3. We present
our algorithm for the remote point problem in section 4. We present a family of
explicit subsets of Fn

2 that are d-far from all linear spaces L ⊆ Fn
2 , dimL = n/2

in the appendix.

2 An O(n/ log n)-Approximation Algorithm

We start with the formal statements of the NCP and of our main result.
Nearest Codeword Problem

– INSTANCE: A linear code L = {xG | x ∈ Fk
2} given by a generator matrix

G ∈ Fk×n
2 and a vector v ∈ Fn

2 .
– SOLUTION: A codeword l ∈ L.
– OBJECTIVE FUNCTION (to be minimized): The Hamming distance d(l, v).

Theorem 1. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time �n/c logn�-approximation algorithm for the NCP.

In order to proceed with the proof we need the following notation:

– For a positive integer d, let Bd = {x ∈ Fn
2 | d(0n, x) ≤ d} denote a Hamming

ball of radius d.
– For a collection of vectors M ⊆ Fn

2 , let Span(M) denote the smallest linear
subspace of Fn

2 containing M.
– For sets A,B ⊆ Fn

2 , we define A+B = {a+ b | a ∈ A, b ∈ B}.

The next lemma is the core of our algorithm. It shows that a d-neighborhood
of a linear space L can be covered by a (small) number of linear spaces MS of
larger dimension, in such a way that no linear space MS contains points that
are too far from L.

Lemma 1. Let L be a linear space, and d ≤ t be positive integers. Let B1 \

{0n} =
t⋃

i=1
Bi

1 be an arbitrary partition of the set of n unit vectors into t disjoint

classes each of size �n/t� or �n/t�. For every S ⊆ [t] such that |S| = d let
MS = Span

(
L ∪

(⋃
i∈S B

i
1
))
. Then

L+Bd ⊆
⋃

S

MS ⊆ L+Bdn/t�, (1)

where S runs over all subsets of [t] of cardinality d.
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Proof. We first show the left containment. Let v be an arbitrary vector in L+Bd.
We have v = l+ ej1 + . . .+ ejd′ , where d′ ≤ d, all ejr are unit vectors and l ∈ L.
For every r ∈ [d′] let ir ∈ [t] be such that jr ∈ Bir

1 . Consider a set S ⊆ [t] such
that |S| = d and i1, . . . , id′ ∈ S. It is easy to see that v ∈MS .

We proceed to the right containment. Let S = {i1, . . . , id} be an arbitrary
subset of [t] of cardinality d. Recall that the cardinality of every set Bir

1 , r ∈ [d]
is at most �n/t�. Therefore every element v ∈ MS can be expressed as a sum
v = l + y, where l ∈ L and y is a sum of at most d�n/t� unit vectors. Thus
v ∈ L+Bdn/t�.

We are now ready to proceed with the proof of the theorem.

Proof (of theorem 1). Observe that if the point v is more than c logn-far from
L; then any vector in L (for instance, the origin) is an �n/c logn�-approximation
for v. Let us assume that d(v, L) ≤ c logn and set t = �c logn�. Our algorithm
iterates over values d ∈ [0, �c logn�]. For each d we generate all linear spaces
MS , S ⊆ [t], |S| = d as defined in lemma 1. We check whether v is contained in
one of those spaces. Lemma 1 implies that after at most d(v, L) iterations we get
v ∈MS, for some S = {i1, . . . , id}. We expand v as a sum v = l+ y where l ∈ L
and y is a sum of at most d�n/c logn� unit vectors from

⋃d
r=1B

ir
1 . Obviously,

d(v, l) ≤ d(v, L)�n/c logn�. We report l as our �n/c logn�-approximation for v.
The pseudo-code is below.

Set t = �c logn�;
For every d ∈ [0, c logn]

For every S = {i1, . . . , id} ⊆ [t] such that |S| = d
If v ∈MS Then

Begin
Represent v as v = l + y,

where l ∈ L and y is a sum of unit vectors from
⋃d

r=1B
ir
1 ;

Output l;
Terminate;

End
Output 0n;
It is easy to see that the algorithm above runs in time nO(c). The first loop

makes O(c logn) iterations. The second loop makes at most 2c log n� = nO(c)

iterations. Finally, the internal computation runs in nO(1) time.

3 A Recursive O(k log(s) n/ log n)-Approximation
Algorithm

The goal of this section is to prove the following

Theorem 2. Let s ≥ 1 be an integer and c ≥ 1 be an arbitrary constant. There
exists a deterministic nO(cs) time �k log(s) n/c logn�-approximation algorithm
for the NCP, where the constant inside the O-notation is absolute and log(s) n
denotes s iterations of the log function.



344 N. Alon, R. Panigrahy, and S. Yekhanin

Proof. Our proof goes by induction on s and combines ideas from our O(n/
logn)-approximation algorithm of section 2 with ideas from the deterministic
approximation algorithm of Berman and Karpinski [3]. We start with some
notation.

– Let x∗G = l∗ ∈ L denote some fixed optimal approximation of v by a vector
in L.

– Let E = {i ∈ [n] | l∗i 
= vi} be the set of coordinates where l∗ differs from v.
– In what follows we slightly abuse the notation and use the letter G to denote

the multi-set of columns of the generator matrix of L (as well as the generator
matrix itself).

– We call a partition of the multi-set G =
h⋃

i

Gi into disjoint sets regular if for

every i ∈ [h], the vectors in Gi are linearly independent and:

Span(Gi) = Span

⎛

⎝
h⋃

j≥i

Gj

⎞

⎠ . (2)

Again, in what follows we slightly abuse the notation and use symbolsGi, i ∈
[h] to denote the sets of columns of the generator matrix, the corresponding
subsets of [n], and the sub-matrices of the generator matrix of L.

– We denote the restriction of a vector u ∈ Fn
2 to coordinates in a set S ⊆ [n],

by u |S ∈ F
|S|
2 .

The following claim (due to Berman and Karpinski [3]) constitutes the base case
of the induction. We include the proof for the sake of completeness.

Base Case of the Induction: Let c ≥ 1 be an arbitrary constant. There exists
a deterministic nO(c) time �k/c�-approximation algorithm for the NCP.

Proof of the Base Case: We start with an informal description of the algorithm.
Our goal is to “approximately” recover x∗ from v (which is a “noisy” version of l∗).
Recall that l∗ and v differ in coordinates that belong to E.We assume that |E| <
n/�k/c� since otherwise any vector in the space L is a valid �k/c�-approximation
for v. The algorithm has two phases. During the first phase we compute a regular
partition of the multi-set G. Note that such a partition necessarily has at least
h ≥ n/k classes. Therefore there is a class Gi, i ∈ [h] such that

|Gi ∩ E| ≤ (n/�k/c�)/(n/k) ≤ c.

During the second phase we iterate over all classes Gi, i ∈ [h] of the regular
partition, trying to ”fix” the differences between v |Gi

and l∗ |Gi
and thus ”ap-

proximately” recover x∗. More specifically, for every i ∈ [h] we solve the system
xGi = u for x, for every u that differs from v |Gi

in up to c coordinates. (In cases
when the system xGi = u happens to be under-determined we take an arbitrary
single solution.) This way every class in the regular partition gives us a number
of candidate vectors x. In the end we select a single vector that yields the best
approximation for v.
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To see that the algorithm indeed produces a valid �k/c�-approximation for v,
consider the smallest index i such that |Gi ∩E| ≤ c. Note that one of the linear
systems that we are going to solve while processing the i-th class of the regular
partition is xGi = l∗ |Gi

. Let x be an arbitrary solution of the above system.
Clearly,

d(xG, v) =
i−1∑

j=1

d
(
xGj , v |Gj

)
+

h∑

j=i

d
(
xGj , v |Gj

)
. (3)

However for every j ≤ i− 1 we have

d
(
xGj , v |Gj

)
≤ k ≤ c�k/c� ≤ d

(
l∗ |Gj

, v |Gj

)
�k/c�, (4)

by our choice of i. Also, xGi = l∗ |Gi
and formula (2) yield

xGj = l∗ |Gj
, (5)

for all j ≥ i. Combining formulae (4), (5) and (3) we get d(xG, v) ≤ d(l∗, v)�k/c�
and thus xG is a �k/c�-approximation for v. The pseudo-code of the algorithm
is below:

Obtain a regular partition G =
⋃

i∈hGi;
Set xbest = 0k;
For every i ∈ [h]

For every vector y in F
|Gi|
2 of Hamming weight at most c

Begin
Find an x ∈ Fk

2 such that xGi = v |Gi
+ y;

If d(xG, v) < d(xbestG, v) Then Set xbest = x;
End

Output xbestG;

It is easy to see that the algorithm above runs in time nO(c). The first loop
makes O(n) iterations. The second loop makes at most nc iterations. Finally,
obtaining a regular partition and the internal computation both run in nO(1)

time.
We now proceed to the induction step.

Induction Step: Let s ≥ 1 be an integer and c ≥ 1 be an arbitrary con-
stant. Suppose there exists a deterministic nO(cs−c) time �k log(s−1) n/c logn�-
approximation algorithm for the NCP; then there exists deterministic nO(cs)

time �k log(s) n/c logn�-approximation algorithm for the NCP.

Proof of the Induction Step: The high level idea behind our algorithm is to
reduce the nearest codeword problem on an instance (G, v) to nO(c) (smaller)
instances of the problem and to solve those instances using the algorithm from
the induction hypothesis.

We start in a manner similar to the proof of the base case. Our goal is to
“approximately” recover the vector x∗ from v (which is a “noisy” version of l∗).
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Recall that l∗ and v differ in coordinates that belong to E. We assume that
|E| < n/�k log(s) n/c logn� since otherwise any vector in the space L is a valid
�k log(s) /c logn�-approximation for v. Our algorithm has two phases. During the
first phase we compute a regular partition of the multi-set G. Note that such
a partition necessarily has at least h ≥ n/k classes. Therefore there is a class
Gi, i ∈ [h] such that

|Gi ∩E| ≤ (n/�k log(s) n/c logn�)/(n/k) ≤ c logn/ log(s) n.

During the second phase we iterate over all classes Gi, i ∈ [h] of the regular
partition, trying to locate a large subset W ⊆ Gi such that l∗ |W = v |W . We
use such a subset to restrict our optimization problem to x ∈ Fk

2 that satisfy
xG |W = v |W and thus obtain a smaller instance of the NCP. More formally,
during the second phase we:

1. Set

b =
⌊
c logn

log(s) n

⌋
, t =

⌈
2c logn log(s−1) n

log(s) n

⌉

. (6)

2. Set xbest = 0k.
3. For every i ∈ [h] :
4. Set G′ =

⋃
j≥iGj .

(a) If k ≥ t then

i. Split the class Gi into a disjoint union of t sets Gi =
t⋃

r=1
Gr

i , each of

size �|Gi|/t� or �|Gi|/t�.
ii. For every S ⊆ [t] such that |S| = b, set W =

⋃
r∈[t]\S G

r
i :

iii. Consider an affine optimization problem of finding an x ∈ Fk
2 that

minimizes d (xG′, v |G′) , subject to xG |W = v |W . Properties of the
regular partition imply that here we are minimizing over an affine
space L′ of dimension |Gi| − |W |, in F

|G′|
2 .

iv. Turn the problem above into a form of an NCP (in Fn
2 , padding

both the target vector v and the matrix G′ with zeros) and solve
it approximately for x using the algorithm from the induction hy-
pothesis. (Note that every affine optimization problem of minimizing
d(xJ + z, v) over x for J ∈ Fk×n

2 and z, v ∈ Fn
2 , can be easily turned

into a form of an NCP, i.e., the problem of minimizing d(xJ, v + z)
over x ∈ Fk

2 .
v. If d(xG, v) < d(xbestG, v) then set xbest = x.

(b) Else
i. For every vector y in F

|Gi|
2 such that the Hamming weight of y is at

most b :
ii. Find an x ∈ Fk

2 such that xGi = v |Gi
+ y;

iii. If d(xG, v) < d(xbestG, v) then set xbest = x.

5. Output xbestG.
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We now argue that the algorithm above obtains a valid �k log(s) n/c logn�-
approximation for the NCP. We first consider (the easier) case when k < t.
Our analysis is similar to the analysis of the base case of the induction. Let
i ∈ [h] be the smallest index such that |Gi ∩ E| ≤ �c logn/ log(s) n� = b. Note
that one of the linear systems that we are going to solve while processing the
i-th class of the regular partition is xGi = l∗ |Gi

. Let x be an arbitrary solution
of the above system. We need to bound d(xG, v) from above. Clearly,

d(xG, v) =
i−1∑

j=1

d
(
xGj , v |Gj

)
+ d (xG′, v |G′) . (7)

However for every j ≤ i− 1 we have

d
(
xGj , v |Gj

)
≤ k ≤ c log n

log(s) n

⌈
k /

(
c log n
log(s) n

)⌉
≤

d
(
l∗ |Gj

, v |Gj

)⌈
k log(s) n

c log n

⌉
,

(8)

by our choice of i. Also, xGi = l∗ |Gi
and formula (2) yield

xG′ = l∗ |G′ , (9)

Combining formulae (8), (9) and (7) we get d(xG, v) ≤ d(l∗, v)�k log(s) n/c logn�.
We now proceed to the k ≥ t case. Again, let i ∈ [h] be the smallest index

such that |Gi ∩ E| ≤ b. Note that one of the sets W ⊆ Gi considered when
processing the class Gi will necessarily have an empty intersection with the set
E. Let x ∈ Fk

2 be an approximate solution of the corresponding problem of mini-
mizing d (xG′, v |G′) , subject to xG |W = v |W , produced by an algorithm from
the induction hypothesis. We need to bound d(xG, v) from above. Formulae (7)
and (8) reduce our task to bounding d (xG′, v |G′) . Observe that when minimiz-
ing d (xG′, v |G′) , subject to xG |W = v |W , we are minimizing over an affine
space of dimension k′, where

k′ ≤ �k/t�b ≤
⌈

k log(s) n

2c logn log(s−1) n

⌉
c logn

log(s) n
.

Note that k ≥ t implies
⌈

k log(s) n

2c logn log(s−1) n

⌉

≤ k log(s) n

c logn log(s−1) n
.

Therefore k′ ≤ k/ log(s−1) n and the approximation algorithm from the induction
hypothesis yields a �k/c logn�-approximate solution, i.e.,

d (xG′, v |G′) ≤ d (l∗ |G′ , v |G′) �k/c logn�. (10)

Combining formulae (8), (10) and (7) we get d(xG, v)≤d(l∗, v)�k log(s) n/c logn�.
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To estimate the running time note that the external loop of our algorithm
makes O(n) iterations and the internal loop makes at most

(
t
b

)
iterations where

each iteration involves a recursive nO(cs−c) time call if k ≥ t. It is easy to see
that

(
t

b

)
≤ (et/b)b ≤

(
4ec logn log(s−1) n

log(s) n

c log(s) n

logn

)c log n/ log(s) n

= nO(c),

where the second inequality follows from b ≤ t/2 and t ≤ 4c logn log(s−1) n/

log(s) n. Combining the estimates above we conclude that the total running time
of our algorithm is nO(cs).

Choosing s = �log∗ n� in theorem 2 we obtain.

Theorem 3. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c log∗ n) time �k/c logn�-approximation algorithm for the NCP.

4 The Remote Point Problem

We start with a formal statement of the remote point problem.
Remote point problem

– INSTANCE: A linear code L = {xG | x ∈ Fk
2} given by a generator matrix

G ∈ Fk×n
2 .

– SOLUTION: A point v ∈ Fn
2 .

– OBJECTIVEFUNCTION (to be maximized): The Hamming distance d(L, v)
from the code L to a point v.

We start with an algorithm that generates c logn-remote points for linear spaces
of dimension k ≤ n/2.

Theorem 4. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time algorithm that for a given linear space L ⊆ Fn

2 , dimL ≤ n/2 generates
a point v such that d(L, v) ≥ c logn, provided n is large enough.

Proof. At the first phase of our algorithm we set d = �c logn�, t = �4c logn� and
use lemma 1 to obtain a family of

(
t
d

)
= nO(c) linear spaces MS , S ⊆ [t], |S| = d

such that
L+Bc log n� ⊆

⋃

S

MS .

It is readily seen from the construction of lemma 1 that the dimension of every
space MS is at most n/2 + n/3 = 5n/6, provided n is large enough.

At the second phase of our algorithm we generate a point v that is not con-
tained in the union

⋃
S MS , (and therefore is �c logn�-remote from L.) We con-

sider a potential function Φ that for every set W ⊆ Fn
2 returns

Φ(W ) =
∑

S

|W ∩MS |,
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where the sum is over all S ⊆ [t], |S| = d. We assume that n is large enough, so
that

Φ(Fn
2 ) =

∑

S

|MS | =
(
t

d

)
|MS| < 2n.

We initially set W = Fn
2 and iteratively reduce the size of W by a factor of two

(cutting W with coordinate hyperplanes). At every iteration the value of Φ(W )
gets reduced by a factor of two or more. Therefore after n iterations we arrive
at a set W that contains a single point v such that Φ({v}) = 0. That point is
�c logn�-remote from L. For a setW ⊆ Fn

2 , i ∈ [n], and b ∈ F2 let W |xi=b denote
the set {x ∈ W | xi = b}. The pseudo-code of our algorithm is below:

Set t = �4c logn� and d = �c logn�;
Obtain

(
t
d

)
linear spaces MS as defined in lemma 1.

Set W = Fn
2 ;

For every i in [n]
If Φ(W |xi=0) ≤ Φ(W |xi=1) Set W = W |xi=0; Else Set W =W |xi=1;

Output the single element of W ;

Note that every evaluation of the potential function Φ in our algorithm takes
nO(c) time, since all we need to do is compute the dimensions of

(
t
d

)
= nO(c)

affine spacesW∩MS . The algorithm involves 2n such computations and therefore
runs in nO(c) time.

Remark 1. It is easy to see that the algorithm of theorem 4 can be extended to
generate points that are c logn-far from a given linear space of dimension up to
(1− ε)n for any constant ε > 0.

We now present our algorithm for the remote point problem in its full generality.

Theorem 5. Let c ≥ 1 be an arbitrary constant. There exists a deterministic
nO(c) time algorithm that for a given linear space L ⊆ Fn

2 , dimL = k ≤ n/2
generates a point v such that d(L, v) ≥ �n/2k��2c logk�, provided n is large
enough.

Proof. We partition the multi-set of columns of the matrix G in h = �n/2k�
multi-sets Gi, i ∈ [h] in such a way that every multi-set Gi, (with possibly a
single exception) has size exactly 2k. Next for all multi-sets Gi of size 2k we
use the algorithm of theorem 4 to obtain a point vi that is 2c log k-remote from
the space {xGi | x ∈ Fk

2} ⊆ F2k
2 . Finally, we concatenate all vectors vi together

(possibly padding the result with less than 2k zeros) to obtain a vector v ∈ that
is �n/2k��2c logk�-remote from L.

5 Conclusion

In this paper we have given three new deterministic approximation algorithms
for the nearest codeword problem. Our algorithms improve substantially upon
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the (previously best known) deterministic algorithm of [3]. Moreover, our al-
gorithms approach (though do not match) the performance of the randomized
algorithm of [3]. Obtaining a complete derandomization remains a challenging
open problem.

We have also initiated a study of the remote point problem that asks to find
a point far from a given linear space L ⊆ Fn

2 . We presented an algorithm that
achieves a remoteness of Ω(n log k/k) for linear spaces of dimension k ≤ n/2.We
consider further research on the remote point problem (and the related remote
set problem) to be a promising approach to constructing explicit rigid matrices
in the sense of Valiant [10].
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Appendix: Explicit Rigid Sets

The definition of a rigid set involves three parameters. Specifically, to get im-
plications in complexity theory we want to obtain explicit subsets of Fn

2 of size
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O(n) that for any linear space L ⊆ Fn
2 of dimension n/2 contain a point at

distance at least nε from L.
Given that we are currently very far from constructing explicit sets with the

desired values of all three parameters it is natural to approach the problem by
studying the trade-offs. Historically, the research on matrix rigidity [5, 7–9] has
focused on the trade-off between the values of dimension and distance that can
be obtained by explicit sets of size n.

In the next theorem we initiate a study of a trade-off between the values of
size and distance, when the dimension is set to n/2.

Theorem 6. For every 0 ≤ d ≤ O(n) there exists an explicit set A ⊆ Fn
2 of size

2O(d)n/d such that for any linear space L ⊆ Fn
2 , dimL = n/2 one of the points

of A is more than d-far from L.

Proof. Observe that there exists a constant c > 0 such that for any linear space
L of dimension n/2 there is a point in Fn

2 that is more than cn-far from L.
To obtain the set A, split the coordinates into n/d�1/c� sets of size d�1/c�

each, and in each set take all binary vectors with support on this set. A consists
of all these vectors. Note that every vector in Fn

2 is the sum of at most cn/d
vectors of our set A, whose size is 2O(d)n/d.

Now suppose that L is a linear space of dimension n/2 and every vector in
A is at most d-far from L. Then any vector of A is a sum of a vector of L and
at most d unit vectors. Hence any vector in Fn

2 is a sum of a vector of L and at
most d(cn/d) unit vectors, contradicting the fact that there exists a vector that
are more than cn-far from L.
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max
fa,fb

Exy [V (x, y, fa(x), fb(y))]

where the expectation is taken with respect to the distribution PXY .
Roughly speaking, the n-fold parallel repetition of a game G is a game in which

the provers try to win simultaneously n copies of G and it is denoted by G⊗n.
More precisely, the verifier sends n questions to each prover, (x1, x2 . . . , xn) to
prover 1 and (y1, y2 . . . , yn) to prover 2 where for all i, (xi, yi) is distributed ac-
cording to PXY and is independent of the other questions. The provers generate
n answers, (a1, a2 . . . , an) by prover 1 and (b1, b2 . . . , bn) by prover 2. The verifier
evaluates the acceptance predicate on each coordinate and accepts if and only if
all the predicates accept, namely if and only if V ⊗n = ∧n

i=1V (xi, yi, ai, bi) = 1.
Note that the verifier treats each of the n games independently, but the provers
may not; the answer of each question addressed to a prover may depend on all
the questions addressed to that prover. There are examples of games where the
value of the game repeated n times in parallel is strictly larger than the value of
the original game to the power of n [For89], [FV02], [Raz08].

The Parallel Repetition Theorem. A series of papers deal with the nature of
the value decrease of games repeated n times in parallel. The parallel repetition
theorem of Raz [Raz98] states that for every game G with value at most 1 − ε
where ε < 1/2, the value of G⊗n is at most (1− ε32)Ω(n/ log s) where s is the size
of the answers support s = |A×B|. In a recent elegant result, Holenstein [Hol07]
improved the bound to (1− ε3)Ω(n/ log s) while simplifying the proof of [Raz98].
Subsequently, for the important special type of games known as projection games,
Rao [Rao08] proved a bound of (1−ε2)Ω(n) (for a special type of projection games
known as XOR games such a bound was previously proven by Feige, Kindler and
O’Donnell [FKO07]). Note that Rao’s [Rao08] bound does not depend on the
size of the answers set, s. In the general case, Feige and Verbitsky [FV02] showed
that the dependency on s is tight (up to loglog factors).

Many researchers studied the problem of whether there exists a strong paral-
lel repetition theorem in the general case or at least in some important special
cases. Namely, is it the case that for a given game G of value 1 − ε, say, for
ε < 1/2, the value of G⊗n is at most (1 − ε)Ω(n/ log s)? This question was mo-
tivated by connections to hardness of approximation as well as connections to
problems in geometry [FKO07], [SS07]. A recent result of Raz [Raz08] showed a
counterexample for the general case, as well as for the case of projection games,
unique games and XOR games. Raz [Raz08] showed that there is an example of
a XOR game (thus also projection game and unique game) of value 1 − ε such
that for large enough n, the value of the game is at least (1− ε2)O(n). For some
extensions, generalization and applications see Barak, Hardt, Haviv, Rao, Regev
and Steurer [BHH+08], Kindler, O’Donnell, Rao and Wigderson [KORW08] and
Alon and Klartag [AK08].

Other related results: For the special case of unique games played on expander
graphs Arora, Khot, Kolla, Steurer, Tulsiani and Vishnoi [AKK+08] proved an
“almost” strong parallel repetition theorem (strong up to a polylogarithmic
factor). For the special case of games where the roles of the two players are
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symmetric and the game is played on an expander graph that contains a self
loop on every vertex, Safra and Schwartz [SS07] showed that O(1/ε) repetitions
are sufficient to reduce the value of the game from 1− ε to some constant.

In this paper we prove a strong parallel repetition theorem for free projection
games and we improve the known bound for every free game. More precisely:

1. For every Free game of value ≤ (1− ε) for ε < 1/2, the value of G⊗n is at
most (1 − ε2)Ω(n/ log s)

2. For every Free Projection game of value ≤ (1− ε) for ε < 1/2, the value
of G⊗n is at most (1− ε)Ω(n)

Techniques. The main technical contribution of this paper is the ability to work
throughout the whole proof with relative entropy without the need to switch to
�1 norm. In previous results [Raz98], [Hol07], [Rao08] a bound on the distance
between a distribution “generated by the provers’ strategies” and the original
distribution was derived using the relative entropy between the two distributions.
This bound was then used to obtain a bound on the �1 distance between those
distributions. This was done using the fact that ‖P−Q‖1 ≤ O(

√
D(P‖Q)) where

D(P‖Q) is the relative entropy between P and Q. Since the bound is quadratic,
there is a loss when using the �1 norm instead of using directly the relative
entropy. We show that for the special case of free games one can redo the whole
proof using relative entropy, without switching to �1 norm. We bound the value
of a game by using our Corollary 1 (that might be useful for other applications).
We note that since we are only considering free games, the proof is simpler than
the one for general games and we do not use much of the machinery used in
previous results, e.g., [Raz98], [Hol07], [Rao08].

2 Preliminaries

2.1 Notations

General Notations. We denote an n-dimensional vector by a superscript n,
e.g., φn = (φ1, . . . , φn) where φi is the ith coordinate. The function log(x) is
the logarithm base 2 of x. We use the common notation [n] to denote the set
{1, . . . , n}.

Random Variables and Sets. By slightly abusing notations, we will use cap-
ital letters to denote both sets and random variables distributed over these sets,
and we will use lower case letters to denote values. For example, X,Y will de-
note sets as well as random variables distributed over these sets, and x, y will
denote values in these sets that the random variables can take. Nevertheless, it
will always be clear from the context whether we are referring to sets or random
variables. For a random variable Z it will be convenient in some lemmas, such
as Lemma 4, to think of Pr(Z) as a random variable.
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Random Variables and their Distributions. For a random variable X , we
denote by PX the distribution of X . For an event U we use the notation PX|U
to denote the distribution of X |U , that is, the distribution of X conditioned
on the event U . If Z is an additional random variable that is fixed (e.g., inside
an expression where an expectation over Z is taken), we denote by PX|Z the
distribution of X conditioned on Z. In the same way, for two (or more) random
variables X,Y , we denote their joint distribution by PXY , and we use the same
notations as above to denote conditional distributions. For example, for an event
U , we write PXY |U to denote the distribution of X,Y conditioned on the event
U , i.e., PXY |U (x, y) = Pr(X = x, Y = y|U). For two (or more) random variables
X,Y with distribution PXY , we use the notation PX to denote the marginal
distribution of X .

The Game G. We denote a game by G and define X to be the set of ques-
tions to prover 1, Y to be the set of questions to prover 2 and PXY to be the
joint distribution according to which the verifier chooses a pair of questions
to the provers. We denote by A the set of answers of prover 1 and by B the
set of answers of prover 2. We denote the acceptance predicate by V . A game
G with acceptance predicate V and questions distribution PXY is denoted by
G(PXY , V ). As mentioned above, we also denote by X,Y,A,B random variables
distributed over X,Y,A,B respectively. X,Y will be the questions addressed to
the two provers, distributed over the question sets X and Y respectively. Fixing
a strategy fa, fb for the game G, we can also think of the answers A and B as
random variables distributed over the answer sets A and B respectively.

The Game G Repeated n Times. For the game G repeated n times in
parallel, G⊗n = G(PXnY n , V ⊗n), the random variable Xi denotes the question
to prover 1 in coordinate i, and similarly, the random variable Yi denotes the
question to prover 2 in coordinate i. We denote by Xn the tuple (X1, . . . , Xn)
and by Y n the tuple (Y1, . . . , Yn). Fixing a strategy fa, fb for G⊗n, the random
variable Ai denotes the answer of prover 1 in coordinate i, and similarly, the
random variable Bi denotes the answer of prover 2 in coordinate i. We denote by
An the tuple (A1, . . . , An) and by Bn the tuple (B1, . . . , Bn). It will be convenient
in some lemmas to denote Xk = (Xn−k+1, . . . , Xn), i.e., the last k coordinates
of Xn and in the same way, Y k = (Yn−k+1, . . . , Yn), Ak = (An−k+1, . . . , An)
and Bk = (Bn−k+1, . . . , Bn). We also denote Xn−k = (X1, . . . , Xn−k), i.e., the
first n − k coordinates of Xn, and similarly, Y n−k = (Y1, . . . , Yn−k). For fixed
i ∈ [n−k], we denote Xm = (X1, . . . , Xi−1, Xi+1, . . . , Xn−k), i.e., Xn−k without
Xi, and similarly, Y m = (Y1, . . . , Yi−1, Yi+1, . . . , Yn−k).

The Event Wi. For the game G⊗n = G(PXnY n , V ⊗n) and a strategy

fa : Xn → An, fb : Y n → Bn

we can consider the joint distribution:

PXn,Y n,An,Bn(xn, yn, an, bn) =

{
PXn,Y n(xn, yn) if an = fa(xn), bn = fb(yn)

0 otherwise
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We define the event Wi to be the event of winning the game in coordinate i, i.e.,
the event that the verifier accepts on coordinate i. Since the random variables
An and Bn are functions of Xn and Y n respectively, we can think of Wi as an
event in the random variables Xn, Y n.

2.2 Special Types of Games

Definition 1 (Free Games). A game is Free if the distribution of the questions
is a product distribution, i.e., PXY = PX × PY

Definition 2 (Projection Games). A Projection game is a game where for
each pair of questions x, y there is a function fxy : B → A such that V (x, y, a, b)
is satisfied if and only if fxy(b) = a.

2.3 Entropy and Relative Entropy

Definition 3 (Entropy). For a probability distribution φ over a sample space
Ω we define the entropy of φ to be

H(φ) = −
∑

x∈Ω

φ(x) log φ(x) = −Ex∼φ logφ(x) = Ex∼φ log
(

1
φ(x)

)

By applying Jensen’s inequality on the concave function log(·) one can derive
the following fact:

Fact 1. For every distribution φ over Ω, H(φ) ≤ log(|supp(φ)|) where

supp(φ) = {x ∈ Ω|φ(x) > 0}

Definition 4 (Relative Entropy). We define Relative Entropy, also called the
Kullback-Leibler Divergence or simply divergence. Let P and Q be two probability
distributions defined on the same sample space Ω. The relative entropy of P with
respect to Q is:

D(P‖Q) =
∑

x∈Ω

P(x) log
P(x)
Q(x)

where 0 log 0
0 is defined to be 0 and p log p

0 where p 
= 0 is defined to be ∞.

Vaguely speaking, we could think of the relative entropy as a way to measure
the information we gained by learning that a random variable is distributed
according to P when apriority we thought that it was distributed according to
Q. This indicates how far Q is from P; if we don’t gain much information then
the two distributions are very close in some sense. Note that the relative entropy
is not symmetric (and therefore is not a metric).

Fact 2. Let Φn = Φ1×Φ2×· · ·×Φn and let μn be any distribution over the same
sample space (not necessarily a product distribution) then

∑n
i=1 D(μi‖Φi) ≤

D(μn‖Φn) thus Ei∈[n]D(μi‖Φi) =
1
n

∑

i∈[n]

D(μi‖Φi) ≤
D(μn‖Φn)

n
.
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3 Our Results

We prove the following theorems:

Theorem 3 (Parallel Repetition For Free Games). For every game G
with value 1 − ε where ε < 1/2 and PXY = PX × PY (the questions are dis-
tributed according to some product distribution), the value of G⊗n is at most
(1− ε2/9)n/(18 log s+3)

Theorem 4 (Strong Parallel Repetition For Free Projection Games).
For every projection game G with value 1−ε where ε < 1/2 and PXY = PX×PY

(the questions are distributed according to some product distribution), the value
of G⊗n is at most (1− ε/9)(n/33)−1

3.1 Technical Lemma

Lemma 1. For every 0 ≤ p, q ≤ 1 define binary distributions P = (p, 1−p) and
Q = (q, 1− q), over {0, 1}, if D(P‖Q) ≤ δ and p < δ then

q ≤ 4δ

Proof. If δ ≥ 1
4 then the statement is obviously true. For the case that δ <

1
4 , assume by way of contradiction that q > 4δ. Since for q > p, D(P‖Q) is
decreasing in p and increasing in q,

D(P‖Q) = p log
p

q
+ (1− p) log

1− p
1− q

> δ log(
δ

4δ
) + (1 − δ) log

1− δ
1− 4δ

= −2δ + (1 − δ) log
(

1 +
3δ

1− 4δ

)
(1)

If δ ≥ 1/7 then log
(
1 + 3δ

1−4δ

)
≥ 1. Thus,

(1) ≥ −2δ + (1− δ) > δ

where the last inequality follows since δ < 1/4.
If δ < 1/7 then 3δ

1−4δ < 1. Using the inequality log2(1 + x) ≥ x for every
0 ≤ x ≤ 1 we obtain,

(1) ≥ −2δ + (1− δ) 3δ
1− 4δ

≥ −2δ + 3δ = δ

where the last inequality follows since 1−δ
1−4δ > 1. Since we obtained a contradic-

tion in both cases, the lemma holds.

Corollary 1. For every probability distributions P,Q over the same sample
space Ω and for every T ⊆ Ω, if D(P‖Q) ≤ δ and P(T ) ≤ δ then Q(T ) ≤ 4δ

Proof. Denote p = P(T ) and q = Q(T ) and let P′ = (p, 1 − p), Q′ = (q, 1 − q).
By the data processing inequality for mutual information D(P‖Q) ≥ D(P′‖Q′)
and the corollary follows.



358 B. Barak et al.

3.2 Main Lemmas

We now state the main lemmas for general product distribution games.
Recall that for a coordinate i,Wi is the event of the provers winning the game

played in this coordinate.

Lemma 2 (Main Lemma For General Free Games). Let G be a free game
with value 1 − ε. For any set T of k coordinates, (T ⊆ [n] and |T | = k), let
W be the event of the provers winning the games in those k coordinates. If
Pr(W ) ≥ 2−ε(n−k)/9+k log s where s is the size of the answers set, then there is
i /∈ T for which

Pr(Wi|W ) ≤ 1− ε
9

Lemma 3 (Main Lemma For Free Projection Games). Let G be a free
projection game with value 1 − ε. For any set T of k coordinates, (T ⊆ [n]
and |T | = k), let W be the event of the provers winning the games in those k
coordinates. If Pr(W ) ≥ 2−ε(n−k)/144 and n − k ≥ (48/ε) log(8/ε) then there is
i /∈ T for which

Pr(Wi|W ) ≤ 1− ε
9

In the lemmas below we assume without loss of generality that the set T of k
coordinates is the set of the last k coordinates. Recall that PXnY n = PXY ×· · ·×
PXY n-times. Recall that Xk = (Xn−k+1, . . . , Xn), i.e., the last k coordinates of
Xn and in the same way, Y k = (Yn−k+1, . . . , Yn), Ak = (An−k+1, . . . , An) and
Bk = (Bn−k+1, . . . , Bn). Recall that Xn−k = (X1, . . . , Xn−k), i.e., the first n−k
coordinates of Xn, and similarly, Y n−k = (Y1, . . . , Yn−k).

Lemma 4. For any event1 U , the following holds:

EXk,Y k,Ak|UD
(
PXn−k,Y n−k|Xk,Y k,Ak,U‖PXn−k,Y n−k

)

≤ log
(

1
Pr(U)

)
+ EXk,Y k|UH(PAk|Xk,Y k,U )

The proof is given in the full version of the paper.
We define W to be the event that the provers win all the games in the last k

coordinates and define E to be
{
(ak, xk, yk) ∈ Ak ×Xk × Y k

∣
∣
∣Pr(Ak = ak|Xk = xk, Y k = yk) ≥ 2−ε(n−k)/16)

}
.

The event W ′ is defined as W ∧ [(Ak, Xk, Y k) ∈ E].

Proposition 1. For W and W ′, the events defined above, the following holds:

1. For general games and the event W

EXk,Y k|W H
(
PAk|Xk,Y k,W

)
≤ k log s [Raz98],[Hol07]

1 We will use the lemma for events that depend only on Xk, Y k, Ak, Bk, e.g., we will
use it for the event W , see definition in Lemma 2.
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2. For projection games and the event W ′

EXk,Y k|W ′H
(
PAk|Xk,Y k,W ′

)
≤ ε(n− k)/16 [Rao08]

Proof (For general games). We use the trivial bound on the size of the support,
namely, for every xk, yk we can bound

|supp(PAk|Xk=xk,Y k=yk,W )| ≤ |supp(PAk)| ≤ sk

where s is the size of the answers set. Using Fact 1 we obtain:

EXk,Y k|W H
(
PAk|Xk,Y k,W

)
≤ EXk,Y k|W log(|supp(PAk|Xk,Y k,W )|) ≤ log sk

Proof (For projection games). Using Fact 1 we can trivially bound:

EXk,Y k|W ′H
(
PAk|Xk,Y k,W ′

)
≤ EXk,Y k|W ′ log(|supp(PAk|Xk,Y k,W ′)|) (2)

Since for every xk, yk and ak ∈ supp(PAk|Xk=xk,Y k=yk,W ′),

Pr(Ak = ak|Xk = xk, Y k = yk) ≥ 2−ε(n−k)/16,

there are at most 2ε(n−k)/16 such ak. Hence,

(2) ≤ EXk,Y k|W ′ log
(
2ε(n−k)/16

)
= ε(n− k)/16

Corollary 2. For the events W , W ′ the following holds:

1. For general games and the event W

Ei∈[n−k]EXk,Y k,Ak|W D
(
PXi,Yi|Xk,Y k,Ak,W ‖PXi,Yi

)

≤ 1
n− k (k log s− log(Pr(W )))

2. For projection games and the event W ′

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)

≤ 1
n− k

(
ε(n− k)/16− log

(
Pr(W )− 2−ε(n−k)/16

) )

(for z < 0 we define log(z) = −∞.)

Proof. For the general case, fixing U = W in Lemma 4 and using the bound on
EXk,Y k|W H

(
PAk|Xk,Y k,W

)
from Proposition 1 we obtain:

EXk,Y k,Ak|W D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ‖PXn−k,Y n−k

)
≤ k log s− log(Pr(W ))

To complete the proof apply Fact 2.
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For the projection game case, fix U = W ′ in Lemma 4 and use the bound on
EXk,Y k|W ′H

(
PAk|Xk,Y k,W ′

)
from Proposition 1 to obtain:

EXk,Y k,Ak|W ′D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ′‖PXn−k,Y n−k

)

≤ ε(n− k)/16− log(Pr(W ′))

We bound Pr(W ′) in the following way:

Pr(W ′) = Pr(W ∧ [(Ak, Xk, Y k) ∈ E]) = Pr(W )− Pr(W ∧ [(Ak, Xk, Y k) /∈ E])

We now bound the term Pr(W ∧ [(Ak, Xk, Y k) /∈ E]). For every game G and
strategy fa, fb, the probability of winning the game played with strategy fa, fb

is
EX,Y

∑

b∈B

Pr(B = b|Y )
∑

a∈A

Pr(A = a|X)V (X,Y, a, b).

Recall that for every projection game G and every x ∈ X, y ∈ Y, b ∈ B there
is only one a ∈ A for which V (x, y, a, b) = 1, this a is fxy(b) (recall that fxy is
the projection function, see Definition 2). Thus for every projection game G and
strategy fa, fb, the probability of winning the game played according to fa, fb

is:
EXY

∑

(b,fXY (b))∈B×A

Pr(B = b|Y ) Pr(A = a|X).

For xk, yk we define fxk,yk : Bk → Ak by [fxk,yk(bk)]i = fxi,yi(bi). We want to
bound the probability of winning in the last k coordinates and that

(Ak, Xk, Y k) /∈ E.

Thus, for every xk, yk we want to sum Pr(Bk = bk|Y k = yk) Pr(Ak = ak|Xk =
xk), only over (bk, fxk,yk(bk)) ∈ Bk×Ak for which (fxk,yk(bk), xk, yk) /∈ E. Thus

Pr(W ∧ [(Ak, Xk, Y k) /∈ E])

= EXk,Y k

∑

(bk,f
Xk,Y k (bk)) s.t. (f

Xk,Y k (bk),Xk,Y k)/∈E

Pr(Bk = bk|Y k)·

Pr(Ak = fXk,Y k(bk)|Xk, Y k) < 2−ε(n−k)/16 (3)

where the last inequality follows since if (ak, xk, yk) /∈ E then

Pr(Ak = ak|Xk = xk) = Pr(Ak = ak|Xk = xk, Y k = yk) < 2−ε(n−k)/16.

Thus Pr(W ′) > Pr(W )− 2−ε(n−k)/16. We now conclude that

EXk,Y k,Ak|W ′D
(
PXn−k,Y n−k|Xk,Y k,Ak,W ′‖PXn−k,Y n−k

)

≤ ε(n− k)/16− log
(
Pr(W )− 2−ε(n−k)/16

)

The corollary follows by using Fact 2.
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Observation 5. For any product distribution Pα,β = Pα ×Pβ and any event τ
that is determined only by α (or only by β) Pα,β|τ is a product distribution

Pα,β|τ = Pα|τ × Pβ|τ = Pα|τ × Pβ

(or Pα,β|τ = Pα × Pβ|τ)

Proposition 2. For a free game G, an event U that is determined by Xk, Y k,
Ak, Bk and for every xk, yk, ak the following holds:

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U = PXn−k|Xk=xk,Y k=yk,Ak=ak,U×
PY n−k|Xk=xk,Y k=yk,Ak=ak,U

That is PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U is a product distribution.

The proof is given in the full version of the paper.

Corollary 3. For a free game G, any event U that is determined by Xk, Y k,
Ak, Bk and for every xk, yk, ak, x, y and every i ∈ [n− k] the following holds:

PXn−kY n−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x,Yi=y

= PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x × PY n−k|Xk=xk,Y k=yk,Ak=ak,U,Yi=y

The proof is given in the full version of the paper.
Recall that for fixed i ∈ [n− k], we denote

Xm = (X1, . . . , Xi−1, Xi+1, . . . , Xn−k),

i.e., Xn−k without Xi, and similarly, Y m = (Y1, . . . , Yi−1, Yi+1, . . . , Yn−k).

Proof (Of Lemma 2 and Lemma 3). For both U = W and U =W ′ and for every
xk, yk, ak and i ∈ [n− k], we will use a strategy for the game G(PXn,Y n , V ⊗n)
to obtain a strategy for the game G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ). Fix any
strategy, fa, fb, for the game G(PXnY n , V ⊗n), and apply the following to obtain
a strategy for G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ):

Algorithm 6. Protocol for G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V ) for fixed xk, yk,
ak, i

1. When the game starts, prover 1 receives a question x and prover 2 receives
a question y according to PXiYi|Xk=xk,Y k=yk,Ak=ak,U . Define Xi = x, Yi = y
(the provers will play this game in coordinate i).

2. Prover 1 randomly chooses
xm = (x1, . . . , xi−1, xi+1, . . . , xn−k) according to

PXn−k|Xk=xk,Y k=yk,Ak=ak,U,Xi=x

and Prover 2 randomly chooses ym = (y1, . . . , yi−1, yi+1, . . . , yn−k) according
to

PY n−k|Xk=xk,Y k=yk,Ak=ak,U,Yi=y

3. Prover 1 answers [fa(xn)]i and prove 2 answers [fb(yn)]i.
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Remark 1. Notice that in step 2, since both events U = W and U = W ′ are
determined by Xk, Y k, Ak, Bk, the joint distribution of xm, ym is

PXm,Y m|Xk=xk,Y k=yk,Ak=ak,Xi=x,Yi=y,U

which follows from Corollary 3.

Remark 2. Notice that since Remark 1 holds, the probability of winning the
game

G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V )

is exactly
Pr(Wi|Xk = xk, Y k = yk, Ak = ak, U).

Remark 3. Notice that this is a randomized algorithm. However, it is well known
that since any randomized algorithm is a convex combination of deterministic
algorithms, there is a deterministic algorithm that achieves the same value as
the randomized algorithm. Namely, there is a deterministic protocol for which
the probability of winning the game

G(PXiYi|Xk=xk,Y k=yk,Ak=ak,U , V )

is exactly
Pr(Wi|Xk = xk, Y k = yk, Ak = ak, U).

Using this remark we will think of this algorithm as a deterministic algorithm.

Proof for General Games. In this version, due to space limitation, we omit
this proof and only show the proof for Projection games.

Proof for Projection Games. From Corollary 2 we obtain:

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)
(4)

≤ 1
n− k

(
ε(n− k)/16− log

(
Pr(W )− 2−ε(n−k)/16

) )

(5)

By the assumption in the lemma, Pr(W ) ≥ 2−ε(n−k)/144 thus,

Ei∈[n−k]EXk,Y k,Ak|W ′D
(
PXi,Yi|Xk,Y k,Ak,W ′‖PXi,Yi

)

≤ ε/16− 1
n− k log

(
2−ε(n−k)/144 − 2−ε(n−k)/16

)

= ε/16− 1
n− k log

(
2−ε(n−k)/16

(
2ε(n−k)/18 − 1

))

= ε/16 + ε/16− 1
n− k log

(
2ε(n−k)/18 − 1

)

≤ ε/8 (6)
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where the last inequality is due to the bound on n − k. Assume by way of
contradiction that for all i ∈ [n− k], Pr(Wi|W ′) > 1− ε/8. Notice that since

Pr(Wi|W ′) = EXk,Y k,Ak|W ′ Pr(Wi|Xk, Y k, Ak,W ′),

an equivalent assumption is that for all i ∈ [n− k],

EXk,Y k,Ak|W ′ Pr(¬Wi|Xk, Y k, Ak,W ′) < ε/8.

By a simple averaging argument, there are xk, yk, ak and i ∈ [n − k] for which
both equations hold:

D
(
PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W ′‖PXi,Yi

)
≤ ε/4 (7)

Pr(¬Wi|Xk = xk, Y k = yk, Ak = ak,W ′) < ε/4 (8)

For the strategy fa, fb, and for xk, yk, ak, i for which both Equation (7) and
Equation (8) hold consider the protocol suggested in Algorithm 6. Recall that
by Remark 3 there is a deterministic protocol for which the provers win on
coordinate i with probability

Pr(Wi|Xk = xk, Y k = yk, Ak = ak,W ′).

Denote this deterministic protocol by ha, hb. For ha, hb, denote by R the set of
all questions on which the provers err when playing according to this protocol.
By our assumption

PXi,Yi|Xk=xk,Y k=yk,Ak=ak,W ′(R) < ε/4. (9)

Combining Equation (9) with Equation (7), we can apply Corollary 1 to obtain
PXi,Yi(R) < ε. The provers can play ha, hb as a strategy for G(PXi,Yi , V ) and err
only on questions in R. Since PXi,Yi(R) < ε, the value of G(PXi,Yi , V ) > 1 − ε.
Since PXi,Yi = PXY the value of G(PXY , V ) > 1− ε which is a contradiction.

We showed that there is i ∈ [n− k] for which

Pr(Wi|W ′) ≤ 1− ε/8

but we need to show that there is i ∈ [n − k] for which Pr(Wi|W ) ≤ 1 − ε/9.
This is done in the following way: Since W ′ ⊆W

Pr(Wi|W ) = Pr(Wi|W ′) Pr(W ′|W ) + Pr(Wi|¬W ′) Pr(¬W ′|W )
≤ Pr(Wi|W ′) + Pr(¬W ′|W ).

Thus for all i ∈ [n− k],

Pr(Wi|W ) ≤ Pr(Wi|W ′) + Pr((Ak, Xk, Y k) /∈ E|W ).
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Since Pr((Ak, Xk, Y k) /∈ E|W ) = Pr(W ∧ [(Ak, Xk, Y k) /∈ E])/Pr(W ) we can
use the bound in Equation (3), Pr(W ∧ [(Ak, Xk, Y k) /∈ E]) < 2−ε(n−k)/16 and
obtain that

Pr(Wi|W ) ≤ Pr(Wi|W ′) + 2−ε(n−k)/16/Pr(W ).

Therefore:

Pr(Wi|W ) ≤ 1− ε/8 + 2−ε(n−k)/16/2−ε(n−k)/144

≤ 1− ε/8 + 2−ε(n−k)/18

≤ 1− ε/9

where the last inequality follows from the bound on n− k.

Proof (Of Theorem 3). In this version, due to space limitation, we omit this
proof and only show the proof for Projection games.

Proof (Of Theorem 4). We first prove the case of n ≥ (50/ε) log(8/ε). We show
by induction, for every k ≤ (n/33) − 1 there is a set T ⊆ [n] of k coordinates
(|T | = k) for which Pr(W ) ≤ (1 − ε/9)k where the event W is winning on
all the coordinates in T . For k = 0 the statement trivially holds. Assume by
induction that there is a set T of size k for which Pr(W ) ≤ (1 − ε/9)k. If
Pr(W ) ≤ (1− ε/9)k+1 then we are done, else

Pr(W ) ≥ (1− ε/9)k+1 ≥ 2−ε(k+1)/4.5.

In order to use Lemma 3 we need to make sure that

Pr(W ) ≥ 2−ε(n−k)/144

and that
n− k ≥ (48/ε) log(8/ε)

Since k ≤ (n/33)− 1,

if Pr(W ) ≥ 2−ε(k+1)/4.5 then Pr(W ) ≥ 2−ε(n−k)/144

Since k ≤ (n/33)− 1 then n− k ≥ 32n/33 + 1. Since n ≥ 50/ε log(8/ε) then

32n/33 + 1 ≥ (48/ε) log(8/ε) + 1.

Therefore,
n− k ≥ (48/ε) log(8/ε)

Now we can apply Lemma 3 to obtain that there is i /∈ T for which Pr(Wi|W ) ≤
1− ε/9. Therefore,

Pr(Wi ∧W ) = Pr(W ) · Pr(Wi|W ) ≤ (1− ε/9)k(1− ε/9) = (1− ε/9)k+1

For k = (n/33)− 1 there is a set T ⊆ [n], |T | = k for which:

Pr(W1 ∧ . . . ∧Wn) ≤ Pr(
∧

i∈T

Wi) ≤ (1 − ε/9)(n/33)−1
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For the case of n < (50/ε) log(8/ε), as suggested in [Rao08], it can be shown
that if the theorem was false for small n it would not hold for big n. If there
was a strategy with success probability greater than (1 − ε/9)(n/33)−1 then for
the same game played on m · n coordinates the success probability was at least
(1− ε/9)m((n/33)−1) and for large enough m, this yield a contradiction.
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Abstract. We study the problem of how well a typical multivariate
polynomial can be approximated by lower degree polynomials over F2.
We prove that, with very high probability, a random degree d + 1 poly-
nomial has only an exponentially small correlation with all polynomials
of degree d, for all degrees d up to Θ (n). That is, a random degree d +1
polynomial does not admit a good approximation of lower degree. In
order to prove this, we prove far tail estimates on the distribution of
the bias of a random low degree polynomial. Recently, several results
regarding the weight distribution of Reed–Muller codes were obtained.
Our results can be interpreted as a new large deviation bound on the
weight distribution of Reed–Muller codes.

1 Introduction

Two functions f, g : Fn
2 → F2 are said to be ε-correlated if

Pr [f(x) = g(x)] ≥ 1 + ε

2
.

A function f : Fn
2 → F2 is said to be ε-correlated with a set of functions F ⊆

Fn
2 → F2 if it is ε-correlated with at least one function g ∈ F .
We are interested in functions that have a low correlation with the set of

degree d polynomials; namely, functions that cannot be approximated by any
polynomial of total degree at most d. How complex must such a function be?
We use the most natural measure for complexity in these settings, which is the
degree of the function when considered as a polynomial.

A simple probabilistic argument shows that for any constant δ < 1 and for
d < δn, a random function has an exponentially small correlation with degree d
polynomials. However, a random function is complex as, with high probability, its
degree is at least n− 2. In this work, we study how well a random degree d + 1
polynomial can be approximated by any lower degree polynomial, and show
that with very high probability a random polynomial of degree d + 1 cannot be
approximated by polynomials of lower degree in a strong sense. Thus, if we want
� Research supported by ISF grant 1300/05.
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to find functions that are uncorrelated with degree d polynomials, considering
degree d + 1 polynomials is enough.

It is worth noting that naïve volume estimates are not sufficient to get a
substantial bound on the correlation.

The study of the correlation of functions with the set of low degree polynomials
is interesting from both coding theory and complexity theory points of view.

Complexity Theory. Approximation of functions by low degree polynomials is
one of the major tools used in proving lower bounds for constant depth cir-
cuits. For example, Razborov and Smolensky [18,19] provided an explicit function
Mod3 that cannot be computed by a constant depth circuit with a subexponen-
tial number of And, Or and Xor gates. The proof combines two arguments:

1. Any constant depth circuit of subexponential size has a very high correlation
(that is, 1− o (1)) with some polynomial of degree poly log n;

2. Such a low degree polynomial has a correlation of at most 2/3 with Mod3.
(In fact, this is true for any polynomial of degree at most ε

√
n for some

constant ε.)

The best known constructions of explicit functions that cannot be approximated
by low degree polynomials (see, e. g., [3,4,18,19,21]) divide into two ranges:

– For large degrees (d < nO(1)), there exists a symmetric function with a
correlation of at most O (1/

√
n) with degree O (

√
n) polynomials;

– For small degrees (d < log n) there are explicit functions having a correlation
of at most exp(−n/cd) with degree d polynomials for some constants c (best
known is c = 2.)

Certain applications, e. g., pseudorandom generator constructions via the Nisan–
Wigderson construction [17], require a function having an exponentially small
correlation with low degree polynomials. This is only known for degrees up
to log n, while for larger degrees the best known bound is polynomial in n.
Finding explicit functions with a better correlation is an ongoing quest with
limited success. For more details, see a survey by Viola [20].

Coding Theory. The Reed–Muller code RM (n, d) is the linear code of all poly-
nomials (over F2) in n variables of total degree at most d. This family of codes
is one of the most studied objects in coding theory (see, e.g., [16]). Nevertheless,
determining the weight distribution of these codes (for d ≥ 3) is a long standing
open problem. Interpreted in this language, our main lemma gives a new tail
estimate on the weight distribution of Reed–Muller codes.

1.1 Our Results

We show that, with very high probability, a random degree d polynomial has an
exponentially small correlation with polynomials of lower degree. We prove this
for degrees ranging from a constant up to δmaxn, where 0 < δmax < 1 is some
constant. All results hold for large enough n.

We now state our main theorem.
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Theorem 1. There exist a constant 0 < δmax < 1 and constants c, c′ > 0 such
that the following holds. Let f be a random n-variate polynomial of degree d + 1
for d ≤ δmaxn. The probability that f has a correlation of 2−cn/d with polynomials
of degree at most d is at most 2−c′( n

≤d+1), where
(

n
≤d

)
=

∑d
i=0

(
n
i

)
.

The main theorem is an easy corollary of the following lemma, which is the main
technical contribution of the paper.

We define the bias of a function f : Fn
2 → F2 to be

bias (f) = Ex

[
(−1)f(x)

]
= Pr [f (x) = 0]− Pr [f (x) = 1] .

Lemma 2. Fix ε > 0 and let f be a random degree d polynomial for d ≤
(1− ε)n. Then,

Pr
[
|bias (f)| > 2−c1n/d

]
≤ 2−c2( n

≤d) ,

where 0 < c1, c2 < 1 are constants depending only on ε.

Note that Lemma 2 holds for degrees up to (1− ε)n, while we were only able to
prove Theorem 1 for degrees up to δmaxn.

The following proposition shows that the estimate in Lemma 2 is somewhat
tight for degrees up to n/2.

Proposition 3. Fix ε > 0 and let f be a random degree d polynomial for d ≤
(1/2− ε)n. Then,

Pr
[
|bias (f)| > 2−c′

1n/d
]
≥ 2−c′

2( n
≤d) ,

where 0 < c′1, c
′
2 < 1 are constants depending only on ε.

As a part of the proof of Lemma 2, we give the following tight lower bound
on the dimension of truncated Reed–Muller codes, which is of independent
interest.

Lemma 4. Let x1, . . . , xR be R = 2r distinct points in Fn
2 . Consider the linear

space of degree d polynomials restricted to these points; that is, the space

{(p (x1) , . . . , p (xR)) : p ∈ RM (n, d)} .

The linear dimension of this space is at least
(

r
≤d

)
.

We have recently learned that this lemma appeared earlier in [15, Theorem 1.5].
Our proof, on the other hand, is independent and has an algorithmic flavor.

1.2 Related Work

Reed–Muller codes’ weight distribution is completely known for d = 2 (see,
for example, [5]) and some partial results are known also for d = 3. In the
general case, there are estimates (see, e.g., [13,14]) on the number of codewords
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with weight between w and 2.5w, where w = 2−d is the minimal weight of the
code. Kaufman and Lovett [12] proved bounds for larger weights, and following
Gopalan et al. [10], they used it to prove new bounds for the list-decoding of
Reed–Muller codes.

The case of multilinear polynomials was considered by Alon et al. [2], who
proved a tail estimate similar to Lemma 2 and used it to prove bounds on the
size of distributions that fool low degree polynomials. Namely, they prove that
for any distribution D that fools degree d polynomials with error ε,

|support(D)| ≥ Ω

(
(n/2d)d

ε2 log (1/ε)

)

.

Substituting our Lemma 2 for [2, Lemma 1] yields

|support(D)| ≥ Ω

( (
n
d

)

ε2 log (1/ε)

)

,

improving the lower bound for the case of polynomials over Fn
2 by a factor of

roughly (2e)d.
The Gowers Norm is a measure related to the approximability of functions

by low degree polynomials. It was introduced by Gowers [7] in his seminal work
on a new proof for Szemerédi’s Theorem. Using the Gowers Norm machinery,
it is easy to prove that a random polynomial of degree d < log n has a small
correlation with lower degree polynomials. However, this approach fails for de-
grees exceeding log n. In constrast, note that our result holds for degrees up to
δmaxn.

Green and Tao [8] study the structure of biased multivariate polynomials.
They prove that if their degree is at most the size of the field, then they must
have structure — they can be expressed as a function of a constant number
of lower degree polynomials. Kaufman and Lovett [11] strengthen this struc-
ture theorem for polynomials of every constant degree, removing the field size
restriction.

The rest of the paper is organized as follows. Our main result, Theorem 1, is
proved in Section 2. The proof of the lower bound on the bias (Proposition 3) is
omitted due to space constraints.

2 Proof of the Main Theorem

First we show that Theorem 1 follows directly from Lemma 2 by a simple count-
ing argument.

Let f be a random degree d + 1 polynomial for d ≤ δmaxn, where δmax will
be determined later. For every polynomial g of degree at most d, f − g is also
a random degree d + 1 polynomial. By the union bound for all possible choices
of g,
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Prf

[
∃g ∈ RM(n, d) : |bias (f − g)| ≥ 2−c1n/d

]
≤ 2( n

≤d)−c2( n
≤d+1)

Choosing δmax to be a small enough constant, we get that there is a constant c′ >
0 such that c2

(
n

≤d+1

)
−

(
n
≤d

)
≥ c′

(
n

≤d+1

)
for all d ≤ δmaxn (see, for example, [9,

Exercise 1.14]).
We now move on to prove Lemma 2. The rest of this section is organized as

follows. Lemma 2 is proved in Subsection 2.1, where the technical claims are
postponed to Subsection 2.2. Lemma 4 is proved in Subsection 2.3.

2.1 Proof of Lemma 2

We need to prove that a random degree d polynomial has a very small bias with
very high probability. Denote by RM (n, d)⊥ the dual code of RM (n, d). We
start by correlating the moments of the bias of a random degree d polynomial
to short words in RM (n, d)⊥.

Proposition 5. Fix t ∈ N and let p ∈ RM (n, d) and x1, . . . , xt ∈ Fn
2 be chosen

independently and equiprobably. Then,

E
[
bias(p)t

]
= Pr

[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
,

where ex for x ∈ Fn
2 is the unit vector in F2n

2 , having 1 in position x and 0
elsewhere.

In favor of not interrupting the proof, we postpone the proof of Proposition 5
and other technical propositions to Subsection 2.2.

We proceed by introducing the following definitions. Fix d. For x ∈ Fn
2 let

evald(x) denote its d-evaluation; that is, a (row) vector in F
( n

≤d)
2 whose coor-

dinates are the evaluation of all monomials of degree up to d at the point x.
Formally,

evald(x) =

(
∏

i∈I

x(i)

)

I⊂[n],|I|≤d

.

For points x1, . . . , xt ∈ Fn
2 let Md(x1, . . . , xt) denote their d-evaluation matrix ;

this is a t×
(

n
≤d

)
matrix whose ith row is the d-evaluation of xi. We denote the

rank of Md(x1, . . . , xt) by rankd(x1, . . . , xt). As this value is independent of the
order of x1, . . . , xt, we may refer without ambiguity to the d-rank of a set S ⊆ Fn

2
by rankd(S).

According to Proposition 5, in order to bound the moments of the bias of
a random polynomial we need to study the probability that a random word of
length about1 t is in RM (n, d)⊥.

Let A = Md(x1, . . . , xt). Note that ex1 + · · ·+ ext ∈ RM(n, d)⊥ if and only
if

p (x1) + · · ·+ p (xt) = 0 (1)

1 We say “about t” as x1, . . . , xt might not be distinct.
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for any degree d polynomial p. Therefore, ex1 + · · · + ext ∈ RM(n, d)⊥ if and
only if the sum of the rows of A is zero. It is sufficient to satisfy (1) only on
the monomial basis of the degree d polynomials; that is, verify that each column
in A sums to zero.

We turn to bound the probability that the rows of A sum to the zero vector
for random x1, . . . , xt ∈ Fn

2 . For this we divide the n variables into two sets:
V ′ of size n′ = �n(1− 1/d)� and V ′′ of size n′′ = n − n′. Let α = n′′/n ≈ 1/d.
Instead of requiring that every column of A sums to zero, we require this only for
columns corresponding to monomials that contain exactly one variable from V ′′

(and thus up to d− 1 variables from V ′).
For i = 1, . . . , t denote by x′

i (∈ Fn′

2 ) the restriction of xi ∈ Fn
2 to the variables

in V ′. The following proposition bounds the probability that sum of A’s rows is
zero in terms of the (d− 1)-rank of x′

1, . . . , x
′
t.

Proposition 6

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ E{x′

i}

[
2−rankd−1(x′

1,...,x′
t)αn

]
.

To finish the proof, we provide a (general) lower bound on d-ranks of random
vectors.

Proposition 7. For all fixed β < 1 and δ < 1, there exist constants c > 0 and
η > 1 such that if x1, . . . , xt ∈ Fn

2 are chosen uniformly and independently, where
t ≥ η

(
n
≤d

)
and d ≤ δn, then

Pr
[
rankd(x1, . . . , xt) < β

(
n

≤ d

)]
≤ 2−c( n

≤d+1) .

We now put it all together, in order to complete the proof of Lemma 2. According
to Proposition 6, we have

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ E{x′

i}

[
2−rankd−1(x′

1,...,x′
t)αn

]
.

Applying Proposition 7 for d − 1 and n′ (instead of d and n in the proposition
statement), and assuming t ≥ η

(
n′

≤d−1

)
, we get that

Pr
[
rankd−1(x′

1, . . . , x
′
t) < β

(
n′

≤ d− 1

)]
< 2−c(n′

≤d) .

Therefore,

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ 2−β( n′

≤d−1)αn + 2−c(n′
≤d) .

Recalling that n′ = �n(1− 1/d)� and α = 1−n′/n = 1/d + O(1/n), we get that
for any constant β (and c = c(β)) there is a constant c′ such that

Pr{xi}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
≤ 2−c′( n

≤d) .
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This is because
(

n′

≤d−1

)
= Θ

((
n
≤d

)
d/n

)
and

(
n′

≤d

)
= Θ

((
n
≤d

))
.

We thus proved that there is a constant c′ such that

Ef∈RM(n,d)
[
bias(f)t

]
≤ 2−c′( n

≤d) ,

for t = η
(

n′

≤d−1

)
= Θ

((
n

≤d−1

))
. Hence, tn/d ≤ c′′

(
n
≤d

)
for some constant c′′.

For small enough c1 > 0 such that c2 = c′ − c′′c1 > 0, by Markov inequality,

Pr
[
|bias(f)| ≥ 2−c1n/d

]
≤ 2tc1n/d−c′( n

≤d) ≤ 2(c′′c1−c′)( n
≤d) ≤ 2−c2( n

≤d) .

2.2 Proofs of Technical Propositions

Proof (of Proposition 5). Write p as

p(x) =
∑

I⊂[n],|I|≤d

αI

∏

i∈I

x(i) ,

where x(i) denotes the ith coordinate of x ∈ Fn
2 . As p was chosen uniformly,

all αI are uniform and independent over F2. Therefore,

Ep

[
(bias(p))t

]
= Ep

⎡

⎣
t∏

j=1

bias(p)

⎤

⎦

= E{αI}

⎡

⎣
t∏

j=1

Exj

[
(−1)

∑
I αI

∏
i∈I xj(i)

]
⎤

⎦

= E{xj}

[
∏

I

EαI

[
(−1)αI(

∑ t
j=1

∏
i∈I xj(i))

]
]

= E{xj}

[
∏

I

1{∑ t
j=1

∏
i∈I xj(i)=0}

]

= Pr{xj}

⎡

⎣∀I
t∑

j=1

∏

i∈I

xj(i) = 0

⎤

⎦

= Pr{xj}
[
ex1 + · · ·+ ext ∈ RM(n, d)⊥

]
. ��

Proof (of Proposition 6). Let A′ = Md−1(x′
1, . . . , x

′
t) be the t ×

(
n′

≤d−1

)
sub-

matrix of A corresponding to monomials of degree at most d − 1 in variables
from V ′. Let E be the event in which every column of A corresponding to a
monomial that contains exactly one variable from V ′′ sums to zero. It is easy to
see that this event is equivalent to the event that every column of A′ is orthogonal
to the set of vectors {(x1(i), . . . , xt(i)) : i ∈ V ′′}.

Fix the variables in V ′; this determines A′. As the variables in V ′′ are inde-
pendent of those in V ′, the probability of E (given A′) is
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(
2−rank(A′)

)
|V ′′| = 2−rank(A′)αn = 2−rankd−1(x′

1,...,x′
t)αn .

This holds for every assignment for variables of V ′, hence the result follows. ��
Proof (of Proposition 7). Let B = Md(x1, . . . , xt) be the t ×

(
n
≤d

)
d-evaluation

matrix of the random x1, . . . , xt ∈ Fn
2 . We need to bound the probability that

rank(B) < β
(

n
≤d

)
.

Fix some b ≤ β
(

n
≤d

)
, and let us consider the event that the first b rows of B

span the entire row span of B. Denote by V the linear space spanned by the
first b rows of B. Since all rows of B are d-evaluations of some points in Fn

2 ,
we need to study the maximum number of d-evaluations contained in a linear
subspace of dimension b.

Assume there are at least 2r distinct d-evaluations in V . By Lemma 4, dim(V ) ≥(
r
≤d

)
. Assume further that rank(B) < β

(
n
≤d

)
; we get that

β

(
n

≤ d

)
> rank(B) ≥ dim(V ) ≥

(
r

≤ d

)
.

By Proposition 8, r ≤ n(1 − γ/d), where γ is a constant depending only on β.
In other words, out of the 2n d-evaluations of all points in Fn

2 , at most 2n(1−γ/d)

fall in V and hence the probability that a random d-evaluation is in V is at most
2−γn/d.

Assume the number of rows t is at least η
(

n
≤d

)
for some η > 1. The probability

that all the remaining rows of B are in V is at most
(
2−γn/d

)t−b

≤ 2−(η−β)( n
≤d)γn/d ≤ 2−γρ(η−β)( n

≤d+1) ,

where the last inequality follows from the fact that there exists a constant ρ > 0
such that (n/d)

(
n
≤d

)
≥ ρ

(
n

≤d+1

)
for all n and d.

Choosing η large enough (as a function of β), we get that when we union
bound over all possible ways to choose at most β

(
n
≤d

)
rows out of t ≥ η

(
n
≤d

)
, the

probability that any of them spans the rows of B is at most 2−c( n
≤d+1), where c

depends only on β. ��
Proposition 8. For any β, δ < 1, there is a constant γ = γ(β, δ) such that if
1 ≤ d ≤ δn and r ≥ d satisfy β

(
n
≤d

)
≥

(
r
≤d

)
then r ≤ n(1− γ/d).

Proof. We bound

1
β
≤

(
n
≤d

)

(
r
≤d

) ≤ max
0≤i≤d

(
n
i

)
(
r
i

) =

(
n
d

)
(

r
d

) ≤
(

n− d

r − d

)d

=
(

1 +
n− r

r − d

)d

.

Assuming for the sake of contradiction that r > n(1−γ/d) and taking logarithms,
we get

ln
1
β
≤ d ln

(
1 +

n− r

r − d

)
≤ d(n− r)

r − d
<

γn

r − d
<

γ

r/n− δ
<

γ

1− δ + γ/d
.

This can be made false by picking, e.g., γ = (1− δ) ln(1/β). ��
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2.3 Proof of Lemma 4

Restating the lemma in terms of d-evaluations, we need to show that for every
subset S ⊆ Fn

2 of size R = 2r, rankd(S) ≥
(

r
≤d

)
. Let S = {x1, . . . , x2r} be the

set of points. We simplify S by applying a sequence of transformations that do
not increase its d-rank until we arrive to the linear space Fr

2 × {0}n−r.
We now define our basic non-linear transformation Π , mapping the set S to

a set Π(S) of equal size and not greater d-rank. Informally, Π tries to set the
first bit of each element in S to zero, unless this results in an element already
in S (and in this case Π keeps the element unchanged). The operator Π was
used in other contexts of extremal combinatorics, and is usually referred to as
the compressing or shifting operator (see, e.g., [1,6].)

For y = (y1, . . . , yn−1) ∈ Fn−1
2 , denote by 0y and 1y the elements (0, y1, . . . ,

yn−1) and (1, y1, . . . , yn−1) in Fn
2 , respectively. Extend this notation to sets by

writing 0T = {0y : y ∈ T }, 1T = {1y : y ∈ T } for a set T ⊆ Fn−1
2 .

We define the following three sets in Fn−1
2 .

T∗ = {y ∈ Fn−1
2 : 0y ∈ S and 1y ∈ S} ,

T0 = {y ∈ Fn−1
2 : 0y ∈ S and 1y /∈ S} ,

T1 = {y ∈ Fn−1
2 : 0y /∈ S and 1y ∈ S} .

Writing S as
S = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 1T1 ,

we define Π(S) to be

Π(S) = 0T∗ ∪ 1T∗ ∪ 0T0 ∪ 0T1 ;

namely, we set to zero the first bit of all the elements in 1T1. It is easy to see
that |Π(S)| = |S| as Π(S) introduces no collisions.

Proposition 9. rankd(Π(S)) ≤ rankd(S).

Proof. It will be easier to prove this using an alternative definition for rankd(S).
Let (x1, . . . , x2r ) be some ordering of S. For a degree d polynomial p ∈

RM(n, d), let vp ∈ F2r

2 be the evaluation of p on the points of S

vp = (p(x1), p(x2), . . . , p(x2r )) .

Consider the linear space of vectors vp for all p ∈ RM(n, d). The dimension of
this space is exactly rankd(S), as the monomials used in the definition of d-rank
form a basis for the space of polynomials.

But now, instead of the dimension, consider the co-dimension. We call a point
xi, 1 ≤ i ≤ 2r, dependent if there are coefficients α1, . . . , αi−1 ∈ F2 such that for
all degree d polynomials

p(xi) =
i−1∑

j=1

αjp(xj) .
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We thus expressed rankd(S) as the number of independent points in S, which
is the same as the difference between |S| = 2r and the number of dependent
points in S. To prove that rankd(Π(S)) ≤ rankd(S), it suffices to show that Π
maps dependent points in S to dependent images in Π(S). Let us consider an
ordering of S in which the elements of 1T1 come last. Since all other points in S
are mapped to themselves by Π , it is clear that dependent points in S appearing
before 1T1 are also dependent in Π(S). It remains to prove the proposition for
points in 1T1.

Let t1 = |T1| and let y1, . . . , yt1 be some ordering of T1. Assume 1yi ∈ S is
dependent and we will show that 0yi ∈ Π(S) is also dependent. By definition,
there exist coefficients αy, βy, γy, δy such that, for any degree d polynomial,

p(1yi) =
∑

y∈T∗

αyp(0y) +
∑

y∈T∗

βyp(1y) +
∑

y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyj p(1yj) .

Each polynomial p ∈ RM(n, d) can be uniquely decomposed as

p(x1, . . . , xn) = x1p
′(x2, . . . , xn) + p′′(x2, . . . , xn) ,

where p′ ∈ RM(n − 1, d − 1) and p′′ ∈ RM(n − 1, d). Moreover, for every
y ∈ Fn−1

2 , we have that p(0y) = p′′(y) and p(1y) = p′(y) + p′′(y). Since p′ and
p′′ are independent, we can decompose the dependency of p(1yi) into its p′ and
p′′ components as follows.

p′(yi) =
∑

y∈T∗

βyp′′(y) +
∑

yj∈T1:j<i

δyjp
′(yj) , (2)

p′′(yi) =
∑

y∈T∗

(αy + βy)p′′(y) +
∑

y∈T0

γyp′′(y) +
∑

yj∈T1:j<i

δyjp
′′(yj) . (3)

We now move to consider Π(S). Every 1yi for yi ∈ T1 is mapped to 0yi, so we
should only consider the p′′ component for T1’s elements. Also, by the definition
of T∗ and T0, for each y ∈ T∗∪T0, 0y ∈ S∩Π(S). By (3), for any p ∈ RM(n, d),

p(0yi) =
∑

y∈T∗

(αy + βy)p(0y) +
∑

y∈T0

γyp(0y) +
∑

yj∈T1:j<i

δyjp(0yj) ,

that is, 0yi is also dependent in Π(S).
Therefore, we have established that rankd(Π(S)) ≤ rankd(S). ��

We now combine our basic Π with invertible linear transformations to define a
wider class of simplifying transformations. For any u, v ∈ Fn

2 whose inner product
is 〈u, v〉 = 1, we define the mapping Πu,v as follows. Informally, Πu,v tries to
add v to elements x of S for which 〈u, x〉 = 1, unless this results in an element
already in S. In other words, if both x and x + v are in S, then Πu,v(S) maps
them both to themselves. Otherwise, if just one of them is in S, it maps it to x
if 〈u, x〉 = 0, and to x + v if 〈u, x + v〉 = 0. This is well defined as 〈u, v〉 = 1.
Note that Πe1,e1 ≡ Π .
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Formally, let A be an n×n invertible matrix such that eT
1 A = u and A−1e1 =

v. We can construct such invertible A since 〈u, v〉 = 1 by setting the first row
of A to be u and the remaining rows of A to be a basis for the (n−1)-dimensional
space normal to v. Define Πu,v = A−1ΠA.

Observe that invertible affine transformations do not change the d-rank of a
set, as they act as permutations on the set of degree d polynomials. Combin-
ing this with Proposition 9, we get that Πu,v maintains the size of S without
increasing the d-rank.

We now use a sequence of Πu,v applications to transform the set S into the
linear space V = Fr

2 × {0}n−r spanned by the first r unit vectors e1, . . . , er. We
say that x ∈ S is good if x ∈ V , and is bad otherwise. If all the elements of S are
good then S = V since all the elements of S are distinct. Otherwise, let x ∈ S
be some bad element and let x′ ∈ V \ S. Since x /∈ V , there must be some index
r < i ≤ n such that xi = 1; set u = ei and v = x + x′.

We show that applying Πu,v maps x to x′ and does not affect any good
elements, thus increasing the number of good elements. First see that 〈u, v〉 =
vi = xi + x′

i = 1 + 0 = 1 since x′ ∈ V so Πu,v is well defined. See also that as
〈u, x〉 = xi = 1 and x + v /∈ S, Πu,v will add v to x, transforming it to x′ ∈ V .
Also, any good element y is unchanged by Πu,v since 〈u, y〉 = yi = 0. In total,
the number of good elements increased by at least one.

We repeat this until all elements are good, that is, until S is transformed to V ,
establishing that rankd(S) ≥ rankd(V ). To finish the proof, observe that the
restriction of polynomials in RM(n, d) to points in a linear space of dimension r
is exactly RM(r, d). Since |RM(r, d)| =

(
r
≤d

)
(see [16]), we get that for any

set S of size 2r,

rankd(S) ≥
(

r

≤ d

)
,

as required.
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Abstract. We continue the study of the local testability of error cor-
recting codes constructed by taking the two-wise tensor product of a
“base-code” with itself. We show that if the base-code is any locally
testable code (LTC) or any expander code, then the code obtained by
taking the repeated two-wise tensor product of the base-code with itself
is locally testable. This extends the results of Dinur et al. in [11] in two
ways. First, we answer a question posed in that paper by expanding the
class of allowed base-codes to include all locally testable code, and not
just so-called uniform LTCs whose associated tester queries all codeword
entries with equal probability. Second, we show that repeating the two-
wise tensor operation a constant number of times still results in a locally
testable code, improving upon previous results which only worked when
the tensor product was applied once.

To obtain our results we define a new tester for the tensor product
of LTCs. Our tester uses the distribution of the tester associated with
the base-code to sample rows and columns of the product code. This
construction differs from previously studied testers for tensor product
codes which sampled rows and columns uniformly.

1 Introduction

Locally testable codes (LTCs) are error correcting codes for which distinguishing,
when given oracle access to a purported word w, between the case that w is a
codeword and the case that it is very far from all codewords, can be accomplished
by a randomized algorithm, called a tester, which reads a sublinear amount of
information from w. Such codes are of interest in computer science due to their
numerous connections to probabilistically checkable proofs (PCPs) and property
testing. (See the surveys [12, 17] for more information.) By now several different
constructions of LTCs are known including codes based on low-degree polynomi-
als over finite fields [1, 7], constructions based on PCPs of proximity/assignment
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testers [2, 10], sparse random linear codes [14] and affine invariant codes [15].
Our work studies a different family of LTC constructions, namely, tensor codes.
Given two linear error correcting codes C ⊆ Fn, R ⊆ Fm over a finite field F,
we define their tensor product to be the subspace R ⊗ C ⊆ Fn×m consisting of
n×m matrices M with entries in F having the property that every row of M is
a codeword of R and every column is a codeword of C. If C = R we use C2 to
denote C ⊗ C and for i > 2 define Ci = C ⊗ Ci−1.

Ben-Sasson and Sudan suggested in [4] to use tensor product codes as a means
to construct LTCs combinatorially. They showed that taking the three-wise ten-
sor C3 of any code C ⊆ Fn with sufficiently large distance results in a robust
locally testable code. By robust we informally mean that the tester associated
with C3 has the property that given any word w that is far from C3, the local
view selected by the tester will be far, on average, from being consistent with a
local view of a codeword of C3. More formally, denoting by w|I the projection of
w onto the set of queries I ⊂ {1, . . . , n}3 picked by the tester, and denoting by
C3|I = {c|I | c ∈ C3} the set of views that are consistent with C3, the robust-
ness of C3 means that, on average, w|I will be far in Hamming distance from all
elements of C3|I . This robustness allowed them to apply composition and prove
that the repeated three-wise tensor product of C, namely, the code C3t

, is locally
testable. They also raised the question of whether the repeated two-wise tensor
product of C also leads to robust LTCs.

There is a surprising difference between two- and three-wise tensor prod-
ucts. For two-wise products, large distance is not sufficient to guarantee robust-
ness (whereas for three-wise products it is). This phenomena was discovered by
Valiant who constructed in [18] a pair of codes R,C with large distance whose
tensor product is not robust. (See [8, 13] for generalizations of this result.) Nev-
ertheless, in another surprising turn of events, Dinur et al. [11] showed that
if C is any so-called smooth code, on top of having sufficiently large distance,
then C2 is robust. The family of smooth codes includes low density parity check
(LDPC) codes based on expander graphs with very good expansion properties,
even though these codes are not necessarily locally testable [3], and uniform LTCs
which are LTCs whose associated tester is equally likely to query any codeword
symbol. (These results were generalized in our earlier work [6] to weakly smooth
codes which include also unique-neighbor expander codes and locally correctable
codes.)

One issue that has remained open in all previous works on two-wise tensor
product codes is under what conditions can one compose such codes and apply
repeated two-wise products. To see the problem consider C2 where C is an ex-
pander code, which is smooth (as well as weakly smooth). The work of Dinur et
al. showed that C2 is robust, however, there is no reason to believe C2 is smooth
or weakly smooth. So one cannot argue that C4 is a robust LTC and we can-
not apply composition.1 In terms of LTC constructions, this means that, using

1 Close inspection of [6, 11] reveals that repeated products can result in robust LTCs
if the base code is a strong uniform LTC, but it was not clear how to obtain similar
results for expander codes or for nonuniform LTCs.
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previous techniques, the smallest query complexity we could get in a two-wise
tensor based construction would be at least Ω(

√
n), where n is a blocklength of

the constructed code. This contrasts once again with the case of three-wise ten-
sors which can be composed again and again provided the base code C has (very)
large distance, thus resulting in LTCs with polynomial rate and polylogarithmic
query complexity.

Our main result uses a new family of testers for repeated two-wise tensor
product codes that allows us to construct LTCs with query complexity nε for
any ε > 0 based on repeated two-wise tensors, where n is a blocklength of
the constructed code. This result holds even for LTCs that are nonuniform,
i.e., whose associated tester may sample some codeword bits more often than
others (some LTCs, most notably those of [2, 5, 9], are indeed nonuniform). This
result also answers a question raised in [11, Section 2.2], namely, the question of
constructing robust testers for two-wise tensors of a nonuniform LTC with some
other code.

Our proof follows by defining a new tester for two-wise tensor codes which
differs from previous constructions and the key difference is that our tester also
uses the distribution associated with the base code C to sample rows and columns
of C2. (Previous testers used only the uniform distribution to sample rows and
columns of C2.)

We end by pointing out that our result does not require the base code to
have very large distance, hence it holds even over fields of small cardinality. This
contrasts with previous works on iterative combinatorial constructions of LTCs
due to Ben-Sasson and Sudan [4] and Meir [16] which required very large base-
code distance implying large field size. Moreover, in [4] the required base-code
distance (and thus a field cardinality) depends on the number of repeated tensor
products that should be applied. In our work, the repeated tensor product can
be applied any constant number of times even over binary field and the initial
requirements about the base-codes are independent on the number of times that
repeated tensor products should be applied.

Organization of the rest of the paper. After presenting the necessary definitions
in the next section we state our main results in Section 3. In Section 4 we describe
the notion of a semi LTC which is crucial for our proofs. This is followed by the
definition of our suggested tester for two-wise tensor codes in Section 5 and we
conclude in Section 6 by our main technical lemma.

2 Preliminary Definitions

The definitions appearing here are pretty much standard in the literature on
tensor-based LTCs.

Throughout this paper F is a finite field, [n] denotes the set {1, . . . , n} and
Fn denotes F[n]. All codes discussed in this paper will be a linear. Let C ⊆ Fn

be a linear code over F.
For w ∈ Fn let supp(w) = {i|wi 
= 0}, |w| = |supp(w)| and wt(w) = |w|

n . We
define the distance between two words x, y ∈ Fn to be Δ (x, y) = |{i | xi 
=
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yi}| and the relative distance to be δ(x, y) = Δ(x,y)
n . The relative distance

of a code is denoted δ(C) and defined to be the minimal value of δ(x, y) for
two distinct codewords x, y ∈ C. The distance of C is defined similarly as
Δ (C) = minx �=y∈C{Δ (x, y)}. For x ∈ Fn and C ⊆ Fn, let δ(x,C) = δC(x) =
miny∈C{δ(x, y)} denote the relative distance of x from the code C. If δ(x,C) ≥ ε
we say that x is ε-far fromC and otherwise x is ε-close to C. We let dim(C) denote
the dimension of C. The vector inner product between u1 and u2 is denoted by
〈u1, u2〉. We let C⊥ = {u ∈ Fn | ∀c ∈ C : 〈u, c〉 = 0} be the dual code of C and
C⊥

t = {u ∈ C⊥ | |u| = t}. In a similar way we define C⊥
<t = {u ∈ C⊥ | |u| < t}

and C⊥
≤t = {u ∈ C⊥ | |u| ≤ t}.

For w ∈ Fn and S = {j1, j2, ..., jm | jk ∈ [n]} we let w|S = (wj1 , wj2 , ..., wjm)
be the projection of w onto the subset S. Similarly, we let C|S = {c|S | c ∈ C}
denote the projection of the code C onto S.

2.1 Linear Testers as Distributions

A standard q-tester for a [n, k, d]F code is a randomized algorithm with oracle ac-
cess to a string w of length n over F. The randomized algorithm makes q queries
to the oracle and outputs accept or reject. For linear codes we can assume with-
out loss of generality that testers are non-adaptive and have perfect completeness
(see [3, Theorem 2]). We define a generalized tester which does not make queries,
rather it returns a “view” which can be considered as a code by itself. Therefore
we put forward a more general definition of tester (Definition 2).

Note that given a code C ⊆ Fn, the subset I ⊆ [n] uniquely defines C|I . The
linearity of C implies that C|I is a linear subspace of FI .

Definition 1 ((Test of C)). A q-test is a set of coordinates I ⊆ [n] s.t. |I| ≤ q.

Definition 2 ((Tester of C)). A q-tester T is a distribution D over q-tests,
i.e., over subsets I ⊆ [n] s.t. |I| ≤ q.

Although the tester does not output accept , reject, the way a standard tester
does, it can be converted to output accept , reject as follows. Whenever the task
is to test whether w is in C and a test I is selected by the tester, the tester can
output accept if w|I ∈ C|I and otherwise output reject.

Definition 3 ((LTCs)). A code C ⊆ Fn is a (q, ε, δ) LTC if it has a q-tester
D such that ∀w ∈ Fn, if δ(w,C) ≥ δ we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε.

Definition 4 ((Strong LTCs)). A code C ⊆ Fn is a (q, ε) strong LTC if it
has a q-tester D such that ∀w ∈ Fn, we have Pr

I∼D
[w|I /∈ C|I ] ≥ ε · δ(w,C).

2.2 Odd Expanders

Next we give standard definitions of codes based on expander graphs.
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Definition 5 ((Neighbors)). Let G = (V,E) be a graph. For S ⊆ V , let

– N(S) be the set of neighbors of S.
– N1(S) be the set of unique neighbors of S, i.e. vertices with exactly one

neighbor in S.
– Nodd(S) be the set of neighbors of S with an odd number of neighbors in S.

Notice that N1(S) ⊆ Nodd(S).

Definition 6 ((Expansion)). Let c, d ∈ N and let γ, δ ∈ (0, 1).
Define a (c, d)-bounded (γ, δ)-expander to be a bipartite graph (L,R,E) with

vertex sets L,R such that all vertices in L have degree ≤ c, and all vertices in
R have degree ≤ d;

– G is called a (c, d, γ, δ)-expander if ∀S ⊆ L s.t. |S| ≤ δn we have |N(S)| >
γ · c|S|

– G is called an (c, d, γ, δ)-odd expander if ∀S ⊆ L s.t. |S| ≤ δn we have
|Nodd(S)| > γ · c|S|

We say that a code C is an (c, d, γ, δ)-odd expander code if it has a parity check
graph (see [11, Section 2.3]) that is an odd (c, d)-bounded (γ, δ)-expander.

We notice that the definition of an odd expander generalizes the definition
of a unique neighbor expander, which was already shown in [6] to result in a
robustly testable tensor code (see Definition 9).

2.3 Tensor Product Codes

For x ∈ FI and y ∈ FJ we let x ⊗ y denote the tensor product of x and y (i.e.
the matrix M(i,j) = xi · yj where (i, j) ∈ I × J). Let R ⊆ FI and C ⊆ FJ be
linear codes. We define the tensor product code R ⊗ C to be the linear space
spanned by words r ⊗ c ∈ FI×J for r ∈ R and c ∈ C. Some immediate facts:

– The code R⊗ C consists of all I × J matrices over F whose rows belong to
R and whose columns belong to C.

– dim(R ⊗ C) = dim(R) · dim(C)
– δ(R⊗ C) = δ(R) · δ(C)

We let C20
= C and C2t

= C2t−1 ⊗ C2t−1
for t > 0.

2.4 Robust Locally Testable Codes

Throughout this paper let C ⊆ Fn and R ⊆ Fm be linear codes over F.

Definition 7 ((Test View)). Let w ∈ Fn (think of the task of testing whether
w ∈ C). Let I be a test of C and let w|I denote the projection of w to I. We call
w|I the view of the test. If w|I ∈ C|I we say that this view is consistent with C,
or when C is clear from the context we simply sat w|I is consistent.

When considering a tensor code R⊗C ⊆ Fm ⊗ Fn, the coordinate set of a test
is some I ⊆ [n]× [m].
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Definition 8 ((Local distance)). Let C be a code and w|I be view on coordi-
nate set I obtained from word w. The local distance of w from C with respect to
I (also denoted the I-distance of w from C) is min

c∈C
{Δ (w|I , c|I)} and similarly

the relative local distance of w from C with respect to I (relative I-distance of
w from C) is min

c∈C
{δ(w|I , c|I)}. When I is clear from context we omit reference

to it.

Informally, robustness implies that if a word is far from the code then, on average,
a test’s view is far from any consistent view that can be accepted on the same
coordinate set I. We are ready now to provide a general definition of robustness.

Definition 9 ((Robustness)). Given a tester (i.e. a distribution) D for the
code C ⊆ Fn, we let

ρD(w) = E
I∼D

[δ(w|I , C|I)]

be the expected relative local distance of input w. The robustness of the tester is
defined as

ρD = min
w∈F n\C

ρD(w)
δC(w)

.

Let {Cn}n be a family of codes where Cn is of blocklength n and Dn is a tester for
Cn. A family of codes {Cn}n is robustly testable with respect to testers {Dn}n
if there exists a constant α > 0 such that for all n we have ρDn ≥ α.
Notice that the robustness of a tester is well defined since if w ∈ Fn \C we have
δC(w) 
= 0 and thus the denominator of the fraction ρD(w)

δC(w) is nonzero.

3 Main Results

Our first main result says that codes obtained by the tensor product of a LTC
code and some other code is robust with respect to our tester.

Theorem 10 ((Robust Tensor of LTCs)). Let R ⊆ Fm be a code s.t. δ(R) =
δR. Let C ⊆ Fn be a (q, ε, ρ) LTC s.t. δ(C) = δC and ρ ≤ δC

4 . Let T be our
suggested tester for the code R⊗ C. Then,

ρT ≥ min
{
ρδCδR

12
,
ε · δR
32q2

}
.

Next theorem shows that the tensor product of an odd expander code and some
other code is robust with respect to our tester. Note that even random expander
will be odd-expander with high probability although it is not locally testable
(see [3]).

Theorem 11 ((Robust Tensor of Expanders)). Let R ⊆ Fm be a code s.t.
δ(R) = δR. Let C ⊆ Fn be a (c, d, γ, δ)-odd expander code. Let T be our suggested
tester for the code R⊗ C. Then,

ρT ≥ γδδR
128d2

.
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The proofs of Theorem 10 and Theorem 11 are omitted due to space limitations.
Informally, LTCs and odd expander codes are semi LTCs (see Definition 14) and
thus by Lemma 18 result in robust tensor products.

3.1 Main Corollaries

We show that taking the repeated two-wise tensor product of either a strong
LTC, or an expander code, results in a robust LTC. Recall that C20

= C and
C2t

= C2t−1 ⊗ C2t−1
for t > 0.

Corollary 12. Let t > 0 be an integer. Let C ⊆ Fn be a (q, ε) strong LTC s.t.
δ(C) = δC . Then C2t

is a (q, ε′) strong LTC, where

ε′ =
(

ε

48q2

)2t (
δC
4

)4·2t

Corollary 13. Let t > 0 be an integer. Let C ⊆ Fn be a (c, d, γ, δ)-odd expander
code s.t. δ(C) = δC . Then C2t

is (n, ε′) strong LTC, where

ε′ =
γt · (δδC)2

t+1

(96d2)t · 8t2
.

4 Semi LTCs

We define semi LTCs and strong semi LTCs. It can be verified that LTCs, strong
LTCs and odd-expanders are semi LTCs (strong semi LTCs). Note that nonuni-
form LTCs and odd-neighbor expanders were not known to be smooth (see [11])
or weakly smooth (see [6]) and thus did not facilitate a composition via robust
two-vise tensor product.

Definition 14 ((Semi LTCs)). Let 0 < ρ < 1. We say that code C with
δ(C) = δC is (q, ε, ρ)-semi LTC (sLTC) if there exists q-tester D s.t. ∀w ∈ Fn

if ρδC/3 ≤ wt(w) ≤ ρδC then Pr
I∼D

[w|I /∈ C|I ] ≥ ε.

Definition 15 ((Strong semi LTCs)). Let 0 < ρ < 1. We say that code C
with δ(C) = δC is (q, ε, ρ)-strong sLTC if there exists q-tester D s.t. ∀w ∈ Fn if
wt(w) ≤ ρδC then Pr

I∼D
[w|I /∈ C|I ] ≥ ε ·wt(w).

In Proposition 16 (the proof is omitted) we show that strong sLTC property
is preserved after tensor operation. Recall that in the previous works [6, 11]
it was not known whether smooth (or weakly smooth) property is preserved
after tensor operation, and thus previous works did not achieve composition via
two-wise tensor codes.

Proposition 16. Let t > 0 be an integer. Let C be a [n, k, d] code, (q, ε, ρ) strong

sLTC. Then C2t

is a [n2t

, k2t

, d2
t

] code, (q, (3
8 )tε, ρ2t

4t ) strong sLTC.



Composition of Semi-LTCs by Two-Wise Tensor Products 385

5 A New Tester for Two-Wise Tensor Product Codes

We present here our new tester which is used to prove the main theorems stated
in the previous subsection. Our starting point is the uniform row/column tester
used in all previous works on two-wise tensor codes [6, 8, 11, 13, 18].

We describe this tester for R⊗ C ⊆ Fm ⊗Fn. For i ∈ [n] and j ∈ [m] let the
i-row = {i} × [m] and j-column = [n]× {j}.

Uniform Row/Column Tester
– With probability 1

2 pick i ∈U [n] and choose i-row.
– With probability 1

2 pick j ∈U [m] and choose j-column.

The distribution over the tests of this tester is uniform over rows and columns
and does not depend on the structure of the base-codes R,C.

Our suggested tester is a combination of the Uniform Row/Column Tester and
the DC-distribution Tester which depends on the structure of the base code. Our
tester for a code R ⊗ C picks views that will be M |S where S is either a row
({i} × [m]) or a column ([n]× {i}) or a rectangle supp(u)× {i} for small weight
u ∈ C⊥.

To define our suggested tester we assume that the code C has some distribu-
tion DC over C⊥

≤q. The main place where we use our suggested tester is Main
Lemma 18 where we assume that the code C is (q, ε, ρ)-sLTC (see Definition 14)
and thus has a “corresponding” distribution DC over C⊥

≤q.

Our Suggested Tester
– with probability 1

2 invoke Uniform Row/Column Tester described above
– with probability 1

2 invoke DC-distribution Testerdefined next

DC-distribution Tester

– pick u ∈DC C
⊥
≤q

• with probability 1
2 pick i ∈U supp(u) and choose i-row

• with probability 1
2 pick j ∈U [m] and choose supp(u)× {j}

Finally we define Rectangle Tester which will be used only in the proof of
Main Lemma 18. We start with the definition of rectangle.

Definition 17 ((Rectangle)). Let Srows ⊂ [n], Tcols ⊂ [m]. We call Srows ×
Tcols a rectangle coordinate set or simply a rectangle. For M ∈ Fm⊗Fn we call
M |(Srows×Tcols) a rectangle view.

The rectangles we will use are of the form supp(u)× [n] for u ∈ C⊥.
Now, we define Rectangle Tester which picks rectangles as views.
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Rectangle Tester

– pick u ∈DC C
⊥
≤q

– choose Rect = supp(u)× [m].

Notice that DC-distribution Testeris actually an invocation of Uniform
Row/Column Tester on the view chosen by Rectangle Tester, so the view of our
suggested tester will be either row, column or support of dual word of weight at
most q.

For every word M ∈ Fn × Fm we let

ρrect(M) = E
u∈DC

C⊥
≤q

[
δ
(
M |supp(u)×[m], (R⊗ C)|supp(u)×[m]

)]

be the expected relative local distance of input M obtained by the Rectangle
Tester.

Similarly, let ρrow/col(M) be the expected relative local distance of input M
obtained by the Uniform Row/Column Tester. Let δR(M) be a relative distance
of a typical row of M from R and δC(M) be a relative distance of a typical
column of M from C. Then we have ρrow/col(M) = δR(M)+δC(M)

2 since with
probability 1

2 the Uniform Row/Column Tester picks a random row and with
probability 1

2 the Uniform Row/Column Tester picks a random column.
Similarly, we let ρDC

(M) be the expected relative local distance of input M
obtained by the DC-distribution Tester.

We let ρ(M) the expected relative local distance of input M obtained by our
suggested tester. Then we have

ρ(M) =
ρrow/col(M) + ρDC

(M)

2
(1)

sinceour suggestedtester invokes theUniformRow/Columntesterwithprobability
1
2 and with probability 1

2 our suggested tester invokes the DC-distribution Tester.
From Equation 1 we have

ρ(M) ≥ 1
2
ρDC

(M), and (2)

ρ(M) ≥ 1
2
ρrow/col(M) (3)

6 Semi LTCs Results in Robust Tensor

The following is the main technical lemma used to show that the tensor product
of a sLTC with another code is robust with respect to our tester.
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Lemma 18 ((Main Lemma)). Let R ⊆ Fm be a code s.t. δ(R) = δR and
C ⊆ Fn be a (q, ε, ρ ≤ 3

4 ) sLTC s.t. δ(C) = δC . Let T be our new tester defined
in Section 5 for the code R ⊗ C. Then

ρT ≥ min
{
ρδCδR

36
,
ε · δR
32q2

}
.

Notice that the distribution of the tester is over rows, columns and dual words
of weight at most q.

Proof. We have 1
36ρδCδR <

1
16 because ρ, δC , δR ≤ 1, so it is sufficient to show

that for all M ∈ (Fm ⊗ Fn) \ (R⊗ C) we have

ρ(M)
δR⊗C(M)

≥ min
{
ρδCδR

36
,
ε · δR
32q2

,
1
16

}

Fix M ∈ (Fm ⊗ Fn) \ (R ⊗ C) and denote δR⊗C(M) by δ(M). If ρ(M)
δ(M) ≥

1
16 or

ρ(M) ≥ ρδCδR

36 we are done since δ(M) ≤ 1 and hence ρ(M)
δ(M) ≥ min

{
ρδCδR

36 , 1
16

}
.

Thus in what follows we assume that

ρ(M) <
ρδCδR

36
, and (4)

δ(M) > 16ρ(M) (5)

We prove that ρ(M) ≥ ε·δR

32q2 . Let δrow(M) = δR⊗Fn(M) denote the distance
of M from the space of matrices whose rows are codewords of R, and define
δcol(M) = δFm⊗C(M) similarly. For row i ∈ [n], let r(i) ∈ R denote the codeword
of R closest to the i-th row of M . For column j ∈ [m], let c(j) ∈ C denote the
codeword of C closest to the j-th column ofM . LetMR denote the n×m matrix
whose i-th row is r(i), and let MC denote the matrix whose j-th column is c(j).
Let E =MR −MC .

In what follows the matrices MR,MC and (especially) E will be the central
objects of attention. We refer to E as the error matrix. We use the error matrix
E for the analysis of robustness, note that the tester does not obtain a view
of E but only of M and of course it is possible that some constraints that are
unsatisfied on M are satisfied on E and vice versa.

Note that δ(M,MR) = δrow(M) and δ(M,MC) = δcol(M) thus ρrow/col(M) =
δrow(M)+δcol(M)

2 because the Uniform Row/Column Tester picks with probabil-
ity 1

2 a random row and with probability 1
2 a random column. Let wt(E) be the

relative weight of E, so

wt(E) = δ(MR,MC) ≤ δ(M,MR) + δ(M,MC) = 2ρrow/col(M) ≤ 4ρ(M) (6)

By Equations 4 and 6 it follows that

wt(E) < 4 · 1
36
ρδCδR =

1
9
ρδCδR (7)
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We want to prove that ρ(M) ≥ ε·δR

32q2 . It is sufficient to show that ρDC
(M) ≥ ε·δR

16q2

and then from Equation 2 we conclude ρ(M) ≥ ε·δR

32q2 .
To show that ρDC

(M) ≥ ε·δR

16q2 we prove Proposition 19 in Section 6.1, Propo-
sition 20 in Section 6.2 and Proposition 21 in Section 6.3. The Main Lemma
follows from Proposition 21 by the previous discussions.

Proposition 19. Let u ∈ C⊥
≤q and S = supp(u)× [m] be a rectangle coordinate

set. If uT · E 
= 0 then Δ (M |S, (R ⊗ C)|S) ≥ δRm
2 .

Proposition 20. Pr
u∈DC

C⊥
≤q

[
uT · E 
= 0

]
≥ ε

2
.

Proposition 19 and Proposition 20 will be used to conclude.

Proposition 21. ρDC
(M) ≥ ε·δR

16q2 .

6.1 Proof of Proposition 19

Proposition 19 is the central observation in the Main Lemma. Recall that we use
the error matrix E for the analysis of robustness and that the tester does not
obtain a view of E but only of M .

We start from a simple claim (the proof is omitted) that will be crucial in the
proof of Proposition 19. Recall that R ⊆ Fm is a linear code s.t. δ(R) = δR.

Claim 22. Let w ∈ Fm. If c1 ∈ R is the closest codeword of R to w then
∀c2 ∈ R \ {c1} we have Δ (w, c2) ≥ δRm

2 .

We notice that u|supp(u) · (E|S) 
= 0 if and only if u · (E) 
= 0. Let M̂ |S be the
consistent view that is closest to M |S . There are two cases: either M̂ |S 
= MR|S
or M̂ |S = MR|S .

Case 1: M̂ |S 
= MR|S so, at least one row i of M̂ |S is not equal to row i of
MR|S , but row i of M̂ |S is a codeword of R because M̂ |S is a consistent view
and the row i of MR|S is a codeword of R by definition of MR. Row i of MR

is the closest codeword of R to row i of M , thus according to Claim 22 row
i of M is at least δRm

2 far from row i of M̂ |S . So, Δ
(
M̂ |S ,M |S

)
≥ δRm

2 .

Case 2: M̂ |S = MR|S and thus MR|S is the consistent view. We argue that it
is impossible and show that MR|S will not satisfy constraint u (or formally
u|supp(u)).

This is true since 0 
= uT · E = uT · (MR −MC) = uT ·MR − uT ·MC ,
every column of MC satisfies u and so uT ·MC = 0 and thus 0 
= uT · E =
uT ·MR = uT |supp(u) ·MR|S = uT |supp(u) · M̂ |S . Contradiction.
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6.2 Proof of Proposition 20

We start from auxiliary Proposition 23 (the proof is omitted) that will be used
later in the proof of Proposition 20.

Proposition 23. There exists a rectangle Rect = A×B s.t. A ⊆ [n], δCn/2 ≤
|A| and B ⊆ [m], 2

3δRm ≤ |B|, and all rows and columns of E|Rect are non-zero
and every column c of E indexed by a member of B has wt(c) < 1

3ρδC .

Recall that C is a (q, ε, ρ) sLTC and thus it has a distribution DC over C⊥
≤q such

that

Claim 24. For all w ∈ Fn if (ρ/3)δ(C) ≤ wt(w) ≤ ρδ(C) then

Pr
u∈DC

C⊥
≤q

[〈u,w〉 
= 0] ≥ ε

2

Proof (of Proposition 20). We say that the column Ej of E is a light column if
0 < wt(Ej) ≤ 1

3ρδC . Recall that Rectangle Tester obtains views M |supp(u)×[n]

for u ∈ C⊥
≤q. By Proposition 23 there exists non-zero rectangle A × B of E,

namely E|A×B, s.t. for every column of E Ei indexed by a member of B it holds
that Ei is a light column. We argue that

Pr
u∈DC

C⊥
≤q

[u · E 
= 0] ≥ ε.

It is sufficient to show that there exists a linear combination of columns of E,
call it Eres, such that

Pr
u∈DC

C⊥
≤q

[〈u,Eres〉 
= 0] ≥ ε

because if 〈u,Eres〉 
= 0 then uT ·E 
= 0 since for at least one column of E (Ej)
we have 〈u,Ej〉 
= 0.

Let LightCols = {E1, ..., Ek} be a set of all columns of E indexed by B, note
they all are light columns.

It holds that |
⋃

Ej∈LightCols(supp(Ej))| ≥ δCn/2 because by Proposition 23
every row of E|A×B is non-zero and |A| ≥ δCn/2. Throw them(Ej) one by
one from LightCols reducing their total support (

⋃
Ej∈LightCols(supp(Ej))), fi-

nally obtain set (LightCols′) of total support between (2
3 )ρδCn and ρδCn, i.e.

2
3ρδCn ≤ |

⋃
Ej∈LightCols(supp(Ej))| ≤ ρδCn. There exists a linear combination

(over F) of {Ej ∈ LightCols′}, call it Eres, s.t. wt(Eres) ≥ (1
3 )ρδC . Moreover,

wt(Eres) ≤ ρδC because |
⋃

Ej∈LightCols(supp(Ej))| ≤ ρδC .
By Claim 24 it holds that

Pr
u∈DC

[〈u,Eres〉 
= 0] ≥ ε
2
.

As we said if 〈u,Eres〉 
= 0 then uT · E 
= 0 and so

Pr
u∈DC

[
uT ·E 
= 0

]
≥ ε

2
.
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6.3 Proof of Proposition 21

We proceed as follows. We first show in Proposition 25 that ρrect(M) ≥ ε·δR

4q .
We then show in Proposition 26 (the proof is omitted) that if ρrect(M) ≥ α then
ρDC

(M) ≥ α
4q . Finally we conclude that ρDC

(M) ≥ ε·δR

16q2 .

Proposition 25. ρrect(M) ≥ εδR

4q .

Proof. By Proposition 20 we have Pr
u∈DC

C⊥
≤q

[
uT · E 
= 0

]
≥ ε

2
. By Proposition

19 whenever uT · E 
= 0 it holds that Δ
(
M |supp(u)×[m], (R⊗ C)|supp(u)×[m]

)
≥

δRm/2. Thus, the expected distance of the view chosen by Rectangle Tester from
a consistent view is at least ε

2 ·
δRm

2 , i.e.

E
u∈DC

C⊥
≤q

[
Δ

(
M |supp(u)×[m], (R ⊗ C)|supp(u)×[m]

)]
≥ ε

2
· δRm

2
.

For any u ∈ C⊥
≤q we have |supp(u)× [m]| ≤ qm. So,

ρrect(M) = E
u∈DC

C⊥
≤q

[
δ
(
M |supp(u)×[m], (R⊗ C)|supp(u)×[m]

)]
≥

ε
2 ·

δRm
2

qm
=
εδR
4q
.

Proposition 26. If ρrect(M) ≥ α then ρDC
(M) ≥ α

4q .

Proposition 25 and Proposition 26 imply ρDC
(M) ≥ ε · δRn

16q2 .
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Abstract. Goldreich (ECCC 2000) suggested a simple construction of
a candidate one-way function f : {0, 1}n → {0, 1}m where each bit of
output is a fixed predicate P of a constant number d of (random) input
bits. We investigate the security of this construction in the regime m =
Dn, where D(d) is a sufficiently large constant. We prove that for any
predicate P that correlates with either one or two of its variables, f can
be inverted with high probability.

We also prove an amplification claim regarding Goldreich’s construc-
tion. Suppose we are given an assignment x′ ∈ {0, 1}n that has correla-
tion ε > 0 with the hidden assignment x ∈ {0, 1}n. Then, given access
to x′, it is possible to invert f on x with high probability, provided
D = D(d, ε) is sufficiently large.

1 Introduction

In a short note in 2000, Oded Goldreich [Gol00] proposed a very simple con-
struction of a conjectured one-way function:

1. Choose a bipartite graph G with n vertices on the left, m vertices on the
right, and regular right-degree d.

2. Choose a predicate P : {0, 1}d → {0, 1}.
3. Let f = fG,P be the function from {0, 1}n to {0, 1}m defined by

f(x)i = the ith bit of f(x) = P (xΓ (i,1), . . . , xΓ (i,d))

where Γ(i,j) is the jth neighbor of right vertex i of G.

Goldreich conjectured that when m = n and d is constant, for “most” graphs G
and predicates P , the resulting function is one-way.1

In this work we investigate Goldreich’s construction in the setting where the
graph G is random, d is constant, and m = Dn for a sufficiently large constant

1 More precisely, with constant probability over the choice of G and P (say 2/3), the
corresponding family of functions as n → ∞ is one-way. Goldreich also suggests
specific choices of P and G.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 392–405, 2009.
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D = D(d). We show that for this setting of parameters, Goldreich’s construc-
tion is not secure for most predicates P . In fact, our conclusion holds for every
predicate P that exhibits a correlation with either one of its variables or a pair
of its variables.

We also show that if we are given a “hint” x′ – any assignment that has
nontrivial correlation with the actual input x to the one-way function – it is
possible to invert f on x, as long as D is a sufficiently large constant. However,
D depends not only on d but also on the correlation between x and x′.

While our theorem does not rule out the security of Goldreich’s construction
when m = n, it indicates some possible difficulties in using this construction, as
it reveals its sensitivity on the output length. It indicates that when the ratio
m/n is a sufficiently large constant, the construction can be broken for a large
class of predicates. It is also easy to see that when m/n is smaller than 1/(d−1)
the function can also be inverted for every predicate P , as with high probability
the “constraint hypergraph” splits into components of size O(log n) [SS85].

On the other hand, for certain choices of the predicate P to which our theorem
does not apply, it has been conjectured that the function f is not only one-way
but also a pseudorandom generator [MST03].2

1.1 Goldreich’s Function and Cryptography in NC0

Goldreich’s proposal for a one-way function has several features that were ab-
sent from all known earlier proposals: (1) It is extremely simple to implement,
and (2) it is very fast to compute, especially in parallel. On the other hand,
the conjectured security of Goldreich’s function is not known to relate to any
standard assumptions in cryptography, such as hardness of factoring or hardness
of finding short vectors in lattices.

This paradigm of “NC0 cryptographic constructions” where every bit of the
output depends only on a constant number of input bits has since been extended
to other cryptographic primitives, in particular pseudorandom generators. Re-
markably, Applebaum, Ishai, and Kushilevitz [AIK04] showed that a pseudoran-
dom generator (and in particular a one-way function) in NC0 can be obtained
assuming the hardness of the discrete logarithm problem; however, the stretch of
this pseudorandom generator is only constant. In a different work [AIK06], the
same authors gave a different construction of a pseudorandom generator with
small linear stretch using the less standard assumption that certain random
linear codes are hard to decode.

These constructions give evidence that cryptography in NC0 may be possible.
However, the constructions are rather complicated and the parameters they yield
are of little practical value. For example, it is not known whether it is possible
to have a pseudorandom generator that stretches n bits of input into, say, 10n
bits of output under comparable assumptions.

For this reason, we believe it is interesting to investigate the power and limi-
tations of simple constructions such as the one of Goldreich, which may be more

2 Actually [MST03] considers a slightly different function; see below.
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useful in practice. A step in this direction was made by Mossel, Shpilka, and
Trevisan [MST03]. They conjectured that the function f : {0, 1}n × {0, 1}n →
{0, 1}m where

f(x, y)i = xΓ (i,1) + xΓ (i,2) + xΓ (i,3) + yΔ(i,1) · yΔ(i,2)

is a pseudorandom generator with high probability, where Γ and Δ are incidence
lists of random (n,m) bipartite graphs of right-degree 3 and 2 respectively. As
partial evidence towards their conjecture, Mossel et al. proved that f is pseudo-
random against linear functions for, say, m = n1.1. It is not difficult to see by
the Linial-Nisan conjecture [LN90], which was recently proved [Bra09], f is also
pseudorandom against constant-depth circuits.

Very recently, Cook, Etesami, Miller, and Trevisan [CEMT09] showed that a
restricted class of algorithms called “myopic algorithms” take exponential time
to invert Goldreich’s construction. The kinds of algorithms used in this work are
not myopic.

1.2 Our Results

We state our main results. They refer to the standard notion of “correlation”
among strings and functions which is formally defined in Section 2.

Theorem 1. Let K be a sufficiently large constant and D > 2Kd. Suppose P :
{0, 1}d → {0, 1} is a predicate that has nonzero correlation with one of its inputs
or a pair of its inputs. Consider the function fG,P : {0, 1}n → {0, 1}m, where
m = Dn. Then, with high probability over G, fG,P is invertible on a 1−2−2−Ω(d)n-
fraction of inputs as a one-way function.

Theorem 2. Let K be a sufficiently large constant and D > (1/ε)Kd. Let P :
{0, 1}d → {0, 1} be any non-constant predicate. Then there is an algorithm A
such that with high probability over G, with the following holds. Consider the
function fG,P : {0, 1}n → {0, 1}m, where m = Dn. For a 1−2−ε22−Ω(d)n fraction
of assignments x and any assignment x′ that has correlation ε (in absolute value)
with x, on input G,P, f(x) and x′, A outputs an inverse for fG,P (x). The running
time of A is polynomial in n and 1/εd.

1.3 Our Approach

The problem of inverting Goldreich’s function is somewhat analogous to the
problem of reconstructing assignments to random 3SAT formulas in the planted
3SAT model. We exploit this analogy and show that several of the tools devel-
oped for planted 3SAT can be applied to our setting as well.

The proofs of Theorems 1 and 2 consist of two stages. In the first stage, we
almost invert f in the sense that we find an assignment z that matches the
hidden assignment x on a 99% fraction of positions. In the second stage we turn
z into a true inverse for f(x). The second stage is common to the proofs of both
theorems.
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To give some intuition about the first stage in Theorem 1, suppose for instance
that P is the majority predicate. Then we try to guess a the value of the bit xi

by looking at all constraints where xi appears and taking the majority of these
values. Since xi has positive correlation with the majority predicate, we expect
this process to result in a good guess for most xi that appear in a sufficiently large
number of clauses. In fact, if f has about n logn bits of output, this reconstructs
the assignment completely; if m = Dn for a sufficiently large constant D, a large
constant fraction of the bits of x is recovered. The same idea applies to any
predicate with correlates to one of its variables.

For predicates correlating with a pair of their variables, we will argue that the
output of f contains certain noisy information about the correlation between
the pairs. In particular, it gives information as to whether the pair of variables
have the same or different values. More precisely, it is possible to construct a
graph G whose vertices correspond to variables of i and an edge between i and
j appears independently, but with probability depending on the event xi = xj .
The clusters in this graph correspond to variables taking the same value. Using
known methods for clustering random graphs [Coj06] we can recover most of the
values of x.

The first stage in the proof of Theorem 2 is based on the observation that if
we start with some assignment x′ that correlates with the input x to f , then the
output bits of f(x) give information about the values of various variables xi, for
an arbitrary predicate P . We prove this in Section 4.

For the second stage, we extend an algorithm of Flaxman [Fla03] (similar ones
have also been given in [Vil07, KV06]) for reconstructing planted assignments of
random 3CNF formulas. The planted 3SAT model can be viewed as a variant of
our model where the predicate P corresponds to one of the eight predicates z1∨
z2∨z3, . . . , z1∨z2∨z3. This algorithm starts from an almost correct assignment,
then unsets a small number of the variables in this assignment according to
some condition (“small support size”), so that with high probability all (but a
constant number of) the remaining set variables are correct. Then the value of
the unset variables can be inferred in polynomial time. We show that the notion
of “small support size” can be generalized to arbitrary non-constant predicates,
and this type of algorithm can be used to invert f . While we directly follow
previous approaches, our proofs include a few technical simplifications.

2 Preliminaries

Some definitions. Let X,Y be random variables over {0, 1}. The correlation
between X and Y is the value E[(−1)X+Y ]. The correlation between a predi-
cate P : {0, 1}d → {0, 1} and a subset (xi)i∈S of its inputs is the correlation
between the random variables P (X1, . . . , Xd) and

∑
i∈S Xi, where the sum is

taken modulo 2, and X1, . . . , Xn are uniformly distributed. We say P correlates
with (xi)i∈S if the above correlation is nonzero. The correlation between a pair
of assignments x, y ∈ {0, 1}n is the correlation between the ith bit of x and y,
where i ∈ [n] is random.



396 A. Bogdanov and Y. Qiao

We say a Bernoulli random variable X ∼ {0, 1} is ε-biased towards 0 (resp. 1)
if the probability of X = 0 is at most 1/2− ε (resp. 1/2 + ε).

We say an assignment x ∈ {0, 1}n is ε-balanced if its correlation with the all
zero assignment is at most ε in absolute value.

By analogy with the random 3SAT problem, we will refer to the input x ∈
{0, 1}n on which we are interested the function fG,P (x) as the planted assign-
ment. We will call an assignment x′ ∈ {0, 1}n d-correct if it is at hamming
distance at most d from the planted assignment.

On the random graph model. In Goldreich’s definition [Gol00], The bipartite
graph G in the function fG,P is chosen from the following random graph model
G = {Gn,m}: (1) Each graph G in Gn has n left vertices and m = m(n) right
vertices; (2) each right vertex v of G has d neighbors on the left, labeled by
Γ1(v), . . . , Γd(v); (3) The neighbors of each right vertex are uniformly distributed
(repetitions allowed) and independent of the neighbors of all other vertices.

The literature on planted 3SAT usually considers a different model where
each of the clauses is included in the formula independently with probability
p = p(n). Our results can be extended in the corresponding model for G, but
such a model is less natural for one-way functions.

3 Obtaining an Almost Correct Assignment

In this section, we show that for predicates correlating with one or a pair of
inputs, we can get an assignment that agrees with the planted one on almost all
variables.

3.1 For Predicates Correlating with One Input

When the predicate P (z1, . . . , zk) correlates with one of its inputs, say z1, then
every output bit of fG,P (x) gives an indication about what the corresponding
input bit should be. If we think of this indication as a vote, and take a majority
of all the votes, we set most of the input bits correctly. The following proposition
formalizes this idea.

Algorithm Majority Voting
Inputs: A predicate P (z1, . . . , zd) that correlates with zk; the graph G; the value
fG,P (x)
Algorithm.

1. For every input variable i, calculate the majority among the values fG,P (x)j

where i occurs as the kth variable.
2. Set x′i to equal this value if the correlation between P and zk is positive, and

the complement of this value otherwise.
3. Output the assignment x′.
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Proposition 1. Suppose D > 4d and P is a predicate that correlates with its
kth variable. For a 1 − 2−Ω(n/d24d) fraction of x ∈ {0, 1}n and with probability
1 − 2−Ω(4dn) over the choice of G, the assignment x′ produced by algorithm
Majority Voting agrees with x on a (1− 2−Ω(D/4d))n fraction of variables.

Proof. Without loss of generality assume k = 1, and assume the correlation
between P and z1 is positive. Since this correlation is a multiple of 2−d, it must
then be at least 2−d.

Now fix any input x that is 1/2d2d-balanced. We think of the constraint graph
G as being chosen in the following manner: First, for each constraint in G the
first variable i1 is chosen uniformly at random. Then, for every i, among the
constraints where i is the first variable, the other variables i2, . . . , id are chosen
at random. Let Ni denote the number of constraints with i as the first variable.

Now consider the random experiment where one samples xi2 , . . . , xid
at ran-

dom and outputs the value b = P (xi, xi2 , . . . , xid
). If xi2 , . . . , xid

were uniformly
distributed in {0, 1}, then b is a Bernoulli random variable whose output is at
least 2−d-biased towards xi. However, xi2 , . . . , xid

might not be uniformly dis-
tributed but only 1/2d2d-balanced. Since the statistical difference between the
distributions (xi2 , . . . , xid

) when the samples are uniform and when they are
uniformly balanced is at most (d−1)/2d2d ≤ 2−(d+1), it follows that b is at least
2−(d+1)-biased towards xi.

Fix some i such that Ni ≥ D/2. By Chernoff bounds, over the random choice
of G, the value x′i agrees with xi with probability at least 1 − 2−Ω(4−dD). By
another Chernoff bound, the number of is among those Ni such that Ni ≥ D/2
where xi and x′i disagree is at most 2−Ω(4−dD)n with probability 2−Ω(4−dDn).
Applying Lemma 4 with ε = 4d/D we obtain the theorem. ��

3.2 For Predicates Correlating with a Pair of Inputs

We illustrate the inversion of fG,P (x) for a predicate that correlates with a pair of
its inputs by looking at the “all equal” predicate. Specifically, let AE(z1, z2, z3)
be the predicate “z1 = z2 = z3”. Then AE does not correlate with any of its
variables, but it correlates with the pair (z1, z2).

In this example, every constraint (xi1 , xi2 , xi3 ) where AE evaluates to 1 tells
us that xi1 = xi2 . Now construct a graph H whose vertices are variables of x and
such a constraint gives rise to an edge (i1, i2). Then the connected components
in this graph indicate collections of variables xi that must have the same value.
When x is roughly balanced, because G is random, the induced subgraphs on
the sets {i : xi = 0} and {i : xi = 1} are random graphs with constant average
degree. Therefore with high probability, each of these subgraphs will have a giant
connected component, giving two large sets of variables of x that must have the
same value. By guessing the value of the variables within each set we obtain an
assignment x′ that agrees with x almost everywhere.

Now consider the majority predicateMAJ(z1, z2, z3). This predicate also cor-
relates with its first pair of variables. Fix an almost balanced assignment x. Now
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suppose we see a constraint such that MAJ(xi1 , xi2 , xi3) = 1. While we cannot
say with certainty that xi1 = xi2 , this constraint gives an indication that xi1

and xi2 are more likely to be different than equal. So we can hope to recover a
large portion of the assignment x by looking for a large cut in the graph H .

For a general predicate that correlates with a pair of its variables, we can
reconstruct a large portion of the assignment x by using a spectral partitioning
algorithm on H . This idea was used by Flaxman [Fla03] in a related context.
Coja-Oghlan [Coj06] proved a general “partitioning theorem” which, in partic-
ular, gives the following algorithm.

Theorem 3 (Theorem 1 of [Coj06], special case). There is a polynomial-
time algorithm Partition with the following property. Let C0 be a sufficiently
large constant. Let (S0, S1) be a partition of [n] such that |S0|, |S1| ≥ n/3. Fix
probabilities p00, p11, p01 ∈ [C0/n,D/n]. Suppose the graph H ′ is a random graph
where each edge (i, j), where i ∈ Sa, j ∈ Sb (a ≤ b) is included independently at
random with probability pab. Assume that

n(|p00 − p01|+ |p11 − p01|) ≥ C0 max(
√
np00 log(np00),

√
np11 log(np11)) , (1)

then with high probability Partition(H ′) outputs a partition (S′
0, S

′
1) of [n] such

that (S0, S1) and (S′
0, S

′
1) differ on at most (1−O(D−10))n vertices of H ′.

Condition (1) is a non-degeneracy condition which requires there to be a notice-
able difference in edge densities. Otherwise, the information about the original
partition is lost.

Algorithm Pairwise
Inputs: A predicate P (z1, . . . , zd) that correlates with (zk, zr); the graph G; the
value fG,P (x)
Algorithm

1. Choose b such that Prz[zk 
= zr | P (z) = b] 
= Prz[zk = zr | P (z) = b].
2. Construct the graph H on vertex set [n] with edges (ik, ir) iff there is a

constraint in G such that P (xi1 , . . . , xid
) = b. Let mH denote the number of

edges of H .
3. Sample M from the binomial distribution with

(
n
2

)
samples, each with prob-

abilitymH/2. LetH ′ be the subgraph consisting of the firstM distinct edges
of G. (If there are not enough such edges, fail.)

4. Run Partition(H ′). Call the partition output by the algorithm (S′
0, S

′
1).

5. Output the pair of assignments x′, x′, where x′i = a iff i ∈ S′
a, and x′ is the

complementary assignment.

For step 1, it follows that such a choice of b is always possible by the assumption
that P correlates with (zk, zr). Step 3 is a technical trick that allows us to pass
from our random graph model, where the number of edges is fixed, to the model
where each edge is sampled independently at random with probabilitymH/2. We
believe this step is not necessary, but since the algorithm Partition is analyzed
in the latter model we include it for accuracy.
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Proposition 2. Fix a sufficiently large constantC. SupposeD > Cd16d and P is
a predicate that correlates with (zk, zr). For a 1− 2−Ω(d4d) fraction of x ∈ {0, 1}n
and with high probability over the choice of G, one of the two assignments produces
by algorithm Pairwise agrees with x on a (1−Ω(D−10))n fraction of variables.

Proof. Without loss of generality assume b = 1, k = 1 and r = 2. Let p �= =
Prz[z1 
= z2 | P (z) = 1], p= = Prz [z1 = z2 | P (z) = 1]. The fact that P is
correlated with (zk, zr) implies that |p= − p �=| ≥ 4−d.

Let us first fix a balanced input x. Let S0 and S1 denote the 0 and 1 vari-
ables of x. Let mH be the number of 1-outputs of fG,P (x). Conditioned on
P (xi1 , . . . , xid

) = 1, we can think of i1, . . . , id as chosen by the following process.
First, we determine where in the partition (S0, S1) the indices i1 and i2 belong.
Then we randomly sample i1 and i2 from the corresponding set in the partition.
Then we choose i3, . . . , id. This process induces the following random graph H :
For each of mH edges, first randomly choose where in the partition the edge
belongs. We put the edge in (S0, S0) and (S1, S1) with probability p=/2 and in
(S0, S1) with probability p �=. Then randomly choose an edge on that side of the
partition.

Disregarding the possibility that step 3 fails, the graph H ′ is then a random
graph with edge densities p00, p11 = p=mH/n(n−1), and p01 = p �=mH/n(n−1).
By Chernoff bounds, mH > m/2d with high probability. Then for D > C1d16d

condition (1) will be satisfied and with high probability over the choice of G, the
algorithm will return the correct partition.

To complete the proof we need to analyze the effect that the imbalance of
x and the step 3 failure have on this ideal scenario. We now assume that x is
1/2d4d-balanced. It can be checked (similarly to the proof of Proposition 1) that
this affects the probabilities p00, p01, p11 by at most 2−(2d+1)mH/n(n + 1), so
condition (1) will still be satisfied. By Chernoff bounds, step 3 succeeds with
high probability. ��

4 Amplifying Assignments

In this section we give the proof of Theorem 2. As discussed, the proof goes in
two stages. First, we find an assignmnent w that agrees with x on most inputs.
Then we use Theorem 4 to invert f . We focus on the first stage.

The idea of the algorithm is to use the assignment x′ in order to get empirical
evidence about the values of each variable xi in the hidden assignment. First,
since the predicate P (z) is nontrivial, it must depend on at least one of its
variables, say z1. To obtain evidence about the value of xi, let’s consider all
constraints in which xi appears as the first variable. Since G is random, we
expect the number of such constraints to be fairly large. Moreover, the other
variables appearing in the constraints are also random.

Now let us fix a pair of assignments x and x′ with correlation ε, a variable i,
and a value b ∈ {0, 1}, and look at the probability distribution Db generated by
the following process:3

3 It is easy to see that Db does not depend on i.
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1. Choose a random G.
2. Choose a random constraint j of fG,P where i appears as the first variable.

Call the other variables i2, . . . , id.
3. Output (x′i2 , . . . , x

′
id
, f(b, xi2 , . . . , xid

)j).

Our main observation (see Lemma 1 below) is that the distributions D0 and D1
are statistically far apart. Therefore we can determine the value b = f(x) with
good confidence by observing enough samples from one of these two distributions.
But observing the values f(x)j in those constraints j where i appears as the
first variable amounts exactly to sampling from this process. This suggests the
following algorithm for computing w:

Algorithm Amplify. On input P , G, f(x), ε, an assignment x′ that ε-correlates
with x,

1. Compute the distributions D0 and D1 (see below).
2. For every i, compute the empirical distribution D̂i defined as follows:

(a) Choose a random constraint (i, i2, . . . , id) of f where i is the first variable.
(b) Output (x′i2 , . . . , x

′
id
, f(b, xi2 , . . . , xid

)j).
3. Set wi = b if D̂i is closer to Db than to D1−b in statistical distance.

Proposition 3. Let G be random right regular bipartite graph with n left vertices
and 2εDd

n right vertices, where D is a sufficiently large constant. With high
probability over the choice of G, for a 1−2−Ω(ε2n) fraction of assignments x and
every assignment x′ that has correlation ε with x, algorithm Amplify outputs
assignments w1, . . . , wn so that at least one of them agrees with x in a 1 − ε
fraction of places.

As discussed above, the proof of this theorem consists of two steps. First, we
show that the distributions D0 and D1 are statistically far apart. Then, we show
that with high probability over G, for most i the distribution D̂i is statistically
close to Dxi .

Lemma 1. Let x and x′ be two assignments such that x is ε/2-balanced and x′

has correlation ε with x. Then the statistical distance between D0 and D1 is at
least ε−O(d).

We observe that the distance can be as small as ε−Ω(d), for example if P is
the XOR predicate on d variables, x is any balanced assignment, and x′ is an
assignment that equals 1 on a 1− ε fraction of inputs and 0 on the other inputs.

Proof. We begin by giving alternate descriptions of the distributions Db. To do
this, we define a distribution F over {0, 1}2 as follows: First, choose i ∈ [n] at
random, then output the pair (xi, x

′
i). Let (a, a′) denote a pair sampled from F .

It is not difficult to see that

min(Pr[a′ = 0],Pr[a′ = 1]) ≥ ε/2 (2)

for if this were not the case, it would violate the assumptions on x and x′.
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The distribution Db can now be described as follows:

1. Uniformly and independently sample pairs (ai, a
′
i) ∼ F for i = 2, . . . , n.

2. Output (a′2, . . . , a′d, P (b, a2, . . . , ad)).

Intuitively, this corresponds to the process of first sampling input bits from x′,
then evaluating P at a “noisy” version of x′. If there was no noise, it is easy to
see that D0 and D1 must be far apart, as they have to differ for at least one
setting of a′2, . . . , a′d, and by (2) this happens with probability at least (ε/2)d−1.

To argue the general case, note that the statistical distance between D0 and
D1 is bounded below by the quantity

sd(D0, D1)

=
∑

(a′
2,...,a′

d)∈{0,1}d−1

2 · Fd−1(a′2, . . . , a
′
d)

·
∣
∣EFd−1 [P (0, a2, . . . , ad)− P (1, a2, . . . , ad) | a′2, . . . , a′d]

∣
∣

≥2 · (ε/2)d−1

·max(a′
2,...,a′

d)
∣∣EFd−1 [P (0, a2, . . . , ad)− P (1, a2, . . . , ad) | a′2, . . . , a′d]

∣∣

≥2 · (ε/2)d−1

· E(a′
2,...,a′

d)
[
EFd−1 [P (0, a2, . . . , ad)− P (1, a2, . . . , ad) | a′2, . . . , a′d]2

]1/2

where Fd−1(a′2, . . . , a
′
d) denotes the probability of sampling a′2, . . . , a

′
d in d −

1 independent copies of F , the expectation EFd−1 is taken over independent
choices of a2, . . . , ad where each ai is sampled from the distributionF conditioned
on a′i, and the expectation E(a′

2,...,a′
d) refers to a uniformly random choice of

(a′2, . . . , a
′
d) ∼ {0, 1}d−1.

To lower bound the last quantity, we consider the linear operator Td−1 on the
space R{0,1}d−1

defined by

(Td−1g)(a′2, . . . , a
′
d) = EFd−1[g(a2, . . . , ad) | a′2, . . . , a′d].

Let T−1
d−1 denote its inverse (whose existence will be argued) and ‖·‖2 denote the

�2 operator norm. Recall that for any linear operator T ,

‖T ‖2 = maxg ‖Tg‖2 / ‖g‖2 = max|σ|

where the maximum ranges over the singular values σ of T . Applying this defi-
nition to the operator T−1

d−1, we have that

∥∥T−1
d−1

∥∥
2
·E(a′

2,...,a′
d)

[
EFd−1 [P (0, a2, . . . , ad)−P (1, a2, . . . , ad) | a′2, . . . , a′d]2

]1/2

≥ E(a2,...,ad)
[
(P (0, a2, . . . , ad)− P (1, a2, . . . , ad))2

]1/2 ≥ 2−d+1

We are left with the task of upper bounding the quantity
∥∥T−1

d−1

∥∥
2
. It is bounded

by the largest (in absolute value) singular value of the operator T−1
d−1, which is
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the inverse of the smallest singular value of Td−1 = T
⊗(d−1)
1 . Putting everything

together, we obtain that

sd(D0, D1) ≥ 2 · (ε/4)d−1 · |σ|d−1

where σ is the smaller singular value of the operator T1. A calculation of the
singular values of T1 (which we omit) shows that |σ| = Ω(ε), so sd(D0, D1) =
ε−O(d). ��

We now prove that the distributions D̂i are mostly close to the distributions
Dxi . We will need the following crude bound on the number of samples needed
in order to approximate a distribution with bounded support by its empirical
average. It easily follows from Chernoff bounds.

Lemma 2. Suppose D is a distribution on a set of size S and D̂ is the empirical
average of N independent samples of D, where N ≥ 3S2/γ2 log(S/δ). Then

Pr[sd(D, D̂) < γ] > 1− δ.

Lemma 3. Fix any constants γ, ε > 0. Suppose G is a random graph with n left
vertices and Dn right vertices, where D ≥ 24d2d log(3/ε)/γ2. With probability
1 − 2−Ω(ε2n) over the choice of G, for a 1 − 2Ω(ε2n) fraction of assignments x,
for at least a 1 − ε fraction of i, for every assignment x′ that has correlation ε
with x, we have that sd(D̂i, Dxi) < γ.

Proof. Fix an ε/2-balanced assignment x. We will show that

PrG

[
|{i : sd(D̂i, Dxi) ≥ γ}| > εn

]
= 2−Ω(ε2n).

Since at most 2−O(ε2n) assignments x are not balanced, it follows that

Prx,G

[
|{i : sd(D̂i, Dxi) ≥ γ}| > εn

]
< 2−Ω(ε2n)

from where the lemma follows by Markov’s inequality.
We think of the constraint graph G as being chosen in the following manner:

First, for each constraint in G the first variable i1 is chosen uniformly at ran-
dom. Then, for every i, among the constraints where i is the first variable, the
other variables i2, . . . , id are chosen at random. Let Ni denote the number of
constraints with i as the first variable. Observe that conditioned on the choices
of Ni, the events

sd(D̂i, Dxi) ≥ γ

are independent of one another. Let Ei be an indicator variable for this event.
Moreover, the distribution D̂i is an empirical average of Ni samples from Dxi ,
so by Lemma 2 we have that as long as Ni ≥ D/2, PrG[Ei = 1 | Ni] ≤ ε/3.
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Let I denote the set of those i such that Ni < D/2. Then

PrG[
∑

i∈[n]

Ei ≥ εn] ≤ PrG[
∑

i∈[n]

Ei ≥ εn | |I| < εn/3] + PrG[|I| ≥ εn/3]

≤ PrG[
∑

i�∈I

Ei ≥ 2εn/3 | |I| < εn/3] + PrG[|I| ≥ εn/3]

≤ 2−Ω(ε2n) + PrG[|I| ≥ εn/3] (by the Chernoff bound)

≤ 2−Ω(ε2n) (by Lemma 4) ��

To finish the proof of proposition 3, we argue that algorithm Amplify outputs
the correct answer with high probability. First, observe that the algorithm needs
to know the correlation between x and x′; we try all possible n values for this
correlation. (In fact, it is sufficient to try O(1/ε) approximate values.) Then
proposition 3 follows by combining Lemma 1 and Lemma 3 with γ = ε−Dd for
a sufficiently large constant D.

5 From Almost Correct to Correct

In this section, we show that if we start with an almost correct assignment,
fG,P (x) can be inverted for any nontrivial predicate P , provided that the con-
straint to variable ratio m/n = D is a sufficiently large constant (depending
on d). Our proofs are an adaptation of known algorithms for planted random
3SAT [Fla03, KV06].

Proposition 4. Let K be a sufficiently large constant and P be an arbitrary
nonconstant predicate. Suppose D > Kd64d. There exists a polynomial-time al-
gorithm such that for a 1 − 2−Ω(d24d) fraction of x ∈ {0, 1}n and with high
probability over the choice of G, on input G, P , fG,P (x), and x′ ∈ {0, 1}n that
has correlation 1− 1/Kd2dD with x, outputs an inverse for fG,P (x).

Together with propositions 1 and 2, we have proved theorem 1. With proposi-
tion 3, we have proved theorem 2.

The algorithm has three stages. In the first stage, the objective is to come up
with an assignment that matches most “core” variables of x. Roughly speaking,
the core of G with respect to the assignment x is the set of those variables
that occur regularly in G, in the sense that their presence in various types of
constraints of G occurs within a small error of the expectation. The core will
comprise most of the variables of x. In the second stage, some of the variables
are unassigned. At the end of this stage, all assigned variables are assigned as in
x, and all core variables are assigned. In the third stage, an assignment for the
remaining variables is found by brute force. (The final assignment may not be
x, as there are likely to be many possible inverses for fG,P (x).)

Due to space constraints we defer the proof of proposition 4 to the full version
of the paper.
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Appendix: A Sampling Lemma

Lemma 4. Fix ε < 1/2 and suppose D > 2 log(1/ε). Let N1, . . . , Nn be random
variables taking values in the set {0, . . . , Dn} sampled uniformly conditioned on
N1 + · · · + Nn = Dn. Then with probability 2−Ω(εDn), fewer than εn of the
variables take value less than D/2.

Proof. Let I denote the set of those i such that Ni < D/2. By a union bound, the
probability of |I| ≥ εn is at most

(
n
εn

)
times the probability that N1, . . . , Nεn <

D/2. We argue that for every i,

Pr[Ni < D/2 | N1, . . . , Ni−1 < D/2] = 2−Ω(D)

from where the claim follows. To show this, observe that conditioned on N =
N1+· · ·+Ni−1, Ni is a sum of (Dn−N) independent Bernoulli random variables
with probability 1/(n − i) each. If N1, . . . , Ni−1 < D/2, then the conditional
expectation of Ni is at least D. By Chernoff bounds, the conditional probability
that Ni < D/2 is then at most 2−Ω(D). ��
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Abstract. The r-parity tensor of a graph is a generalization of the adja-
cency matrix, where the tensor’s entries denote the parity of the number
of edges in subgraphs induced by r distinct vertices. For r = 2, it is the
adjacency matrix with 1’s for edges and −1’s for nonedges. It is well-
known that the 2-norm of the adjacency matrix of a random graph is
O(

√
n). Here we show that the 2-norm of the r-parity tensor is at most

f(r)
√

n logO(r) n, answering a question of Frieze and Kannan [1] who
proved this for r = 3. As a consequence, we get a tight connection be-
tween the planted clique problem and the problem of finding a vector
that approximates the 2-norm of the r-parity tensor of a random graph.
Our proof method is based on an inductive application of concentration
of measure.

1 Introduction

It is well-known that a random graph G(n, 1/2) almost surely has a clique of
size (2 + o(1)) log2 n and a simple greedy algorithm finds a clique of size (1 +
o(1)) log2 n. Finding a clique of size even (1+ε) log2 n for some ε > 0 in a random
graph is a long-standing open problem posed by Karp in 1976 [2] in his classic
paper on probabilistic analysis of algorithms.

In the early nineties, a very interesting variant of this question was formulated
by Jerrum [3] and by Kucera [4]. Suppose that a clique of size p is planted in a
random graph, i.e., a random graph is chosen and all the edges within a subset
of p vertices are added to it. Then for what value of p can the planted clique be
found efficiently? It is not hard to see that p > c

√
n logn suffices since then the

vertices of the clique will have larger degrees than the rest of the graph, with
high probability [4]. This was improved by Alon et al [5] to p = Ω(

√
n) using

a spectral approach. This was refined by McSherry [6] and considered by Feige
and Krauthgamer in the more general semi-random model [7]. For p ≥ 10

√
n,

the following simple algorithm works: form a matrix with 1’s for edges and −1’s
for nonedges; find the largest eigenvector of this matrix and read off the top p
entries in magnitude; return the set of vertices that have degree at least 3p/4
within this subset.

� Supported in part by NSF award CCF-0721503 and a Raytheon fellowship.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 406–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The reason this works is the following: the top eigenvector of a symmetric
matrix A can be written as

max
x:‖x‖=1

xTAx = max
x:‖x‖=1

∑

ij

Aijxixj

maximizing a quadratic polynomial over the unit sphere. The maximum value
is the spectral norm or 2-norm of the matrix. For a random matrix with 1,−1
entries, the spectral norm (largest eigenvalue) is O(

√
n). In fact, as shown by

Füredi and Komlós [8],[9], a random matrix with i.i.d. entries of variance at most
1 has the same bound on the spectral norm. On the other hand, after planting
a clique of size

√
n times a sufficient constant factor, the indicator vector of the

clique (normalized) achieves a higher norm. Thus the top eigenvector points in
the direction of the clique (or very close to it).

Given the numerous applications of eigenvectors (principal components), a
well-motivated and natural generalization of this optimization problem to an
r-dimensional tensor is the following: given a symmetric tensor A with entries
Ak1k2...kr , find

‖A‖2 = max
x:‖x‖=1

A(x, . . . , x),

where
A(x(1), . . . , x(r)) =

∑

i1i2...ir

Ai1i2...irx
(1)
i1
x

(2)
i2
. . . x

(r)
ir
.

The maximum value is the spectral norm or 2-norm of the tensor. The complexity
of this problem is open for any r > 2, assuming the entries with repeated indices
are zeros.

A beautiful application of this problem was given recently by Frieze and Kan-
nan [1]. They defined the following tensor associated with an undirected graph
G = (V,E):

Aijk = EijEjkEki

where Eij is 1 is ij ∈ E and −1 otherwise, i.e., Aijk is the parity of the number
of edges between i, j, k present in G. They proved that for the random graph
Gn,1/2, the 2-norm of the random tensor A is Õ(

√
n), i.e.,

sup
x:‖x‖=1

∑

i,j,k

Aijkxixjxk ≤ C
√
n logc n

where c, C are absolute constants. This implied that if such a maximizing vector
x could be found (or approximated), then we could find planted cliques of size
as small as n1/3 times polylogarithmic factors in polynomial time, improving
substantially on the long-standing threshold of Ω(

√
n).

Frieze and Kannan ask the natural question of whether this connection can
be further strengthened by going to r-dimensional tensors for r > 3. The tensor
itself has a nice generalization. For a given graph G = (V,E) the r-parity tensor
is defined as follows. Entries with repeated indices are set to zero; any other
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entry is the parity of the number of edges in the subgraph induced by the subset
of vertices corresponding to the entry, i.e.,

Ak1,...,kr =
∏

1≤i<j≤r

Ekikj .

Frieze and Kannan’s proof for r = 3 is combinatorial (as is the proof by Füredi
and Komlós for r = 2), based on counting the number of subgraphs of a certain
type. It is not clear how to extend this proof.

Here we prove a nearly optimal bound on the spectral norm of this ran-
dom tensor for any r. This substantially strengthens the connection between
the planted clique problem and the tensor norm problem. Our proof is based
on a concentration of measure approach. In fact, we first reprove the result
for r = 3 using this approach and then generalize it to tensors of arbitrary
dimension. We show that the norm of the subgraph parity tensor of a ran-
dom graph is at most f(r)Õ(

√
n) whp. More precisely, our main theorem is the

following.

Theorem 1. There is a constant C1 such that with probability at least 1− n−1

the norm of the r-dimensional subgraph parity tensor A : [n]r → {−1, 1} for the
random graph Gn,1/2 is bounded by

‖A‖2 ≤ Cr
1r

(5r−1)/2√n log(3r−1)/2 n.

The main challenge to the proof is the fact that the entries of the tensor A are
not independent. Bounding the norm of the tensor where every entry is inde-
pendently 1 or −1 with probability 1/2 is substantially easier via a combination
of an ε-net and a Hoeffding bound. In more detail, we approximate the unit ball
with a finite (exponential) set of vectors. For each vector x in the discretiza-
tion, the Hoeffding inequality gives an exponential tail bound on A(x, . . . , x). A
union bound over all points in the discretization then completes the proof. For
the parity tensor, however, the Hoeffding bound does not apply as the entries
are not independent. Moreover, all the

(
n
r

)
entries of the tensor are fixed by just

the
(

n
2

)
edges of the graph. In spite of this heavy interdependence, it turns out

that A(x, . . . , x) does concentrate. Our proof is inductive and bounds the norms
of vectors encountered in a certain decomposition of the tensor polynomial. It is
not clear whether the bound of Theorem 1 is optimal, though a lower bound of
‖A‖2 = Ω(max{

√
n, (2 logn)r/2}) is trivial.

Using Theorem1, we can show that if the normproblem canbe solved for tensors
of dimension r, one can find planted cliques of size as low as Cn1/rpoly(r, log n).
While the norm of the parity tensor for a random graph remains bounded, when a
clique of size p is planted, the normbecomes at least pr/2 (using the indicator vector
of the clique). Therefore, p only needs to be a little larger than n1/r in order for the
the clique to become the dominant term in the maximization ofA(x, . . . , x). More
precisely, we have the following theorem.
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Theorem 2. Let G be random graph Gn,1/2 with a planted clique of size p, and
let A be the r-parity tensor for G. For α ≤ 1, let T (n, r) be the time to compute
a vector x such that A(x, . . . , x) ≥ αr‖A‖2 whp. Then, for p such that

n ≥ p > C0α
−2r5n1/r log3 n,

the planted clique can be recovered with high probability in time T (n, r)+poly(n),
where C0 is a fixed constant.

On one hand, this highlights the benefits of finding an efficient (approximation)
algorithm for the tensor problem. On the other, given the lack of progress on
the clique problem, this is perhaps evidence of the hardness of the tensor max-
imization problem even for a natural class of random tensors. For example, if
finding a clique of size Õ(n1/2−ε) is hard, then by setting α = n1/2r+ε/2−1/4

we see that even a certain polynomial approximation to the norm of the parity
tensor is hard to achieve.

Corollary 1. Let G be random graph Gn,1/2 with a planted clique of size p, and
let A be the r-parity tensor for G. Let ε > 0 be a small constant and let T (n, r)
be the time to compute a vector x such that A(x, . . . , x) ≥ n1/2+rε/2−r/4‖A‖2.
Then, for

p ≥ C0r
5n

1
2−ε log3 n,

the planted clique can be recovered with high probability in time T (n, r)+poly(n),
where C0 is a fixed constant.

1.1 Overview of Analysis

The majority of the paper is concerned with proving Theorem 1. In Section 2.1,
we first reduce the problem of bounding A(·) over the unit ball to bounding it
over a discrete set of vectors that have the same value in every non-zero coordi-
nate. In Section 2.2, we further reduce the problem to bounding the norm of an
off-diagonal block of A, using a method of Frieze and Kannan. This enables us
to assume that if (k1, . . . , kr) is a valid index, then the random variables Eki,kj

used to compute Ai1,...,ir are independent. In Section 2.3, we give a large devia-
tion inequality (Lemma 3) that allows us to bound norms of vectors encountered
in a certain decomposition of the tensor polynomial. This inequality gives us a
considerably sharper bound than the Hoeffding or McDiarmid inequalities in our
context. We then apply this lemma to bound ‖A‖2 for r = 3 as a warm-up and
then give the proof for general r in Section 3.

In Section 4 we prove Theorem 2. The key idea is that any vector x that
comes close to maximizing A(·) must have an indicator decomposition where the
support of one of the vectors has a large intersection with the clique (Lemma 7).
This intersection is large enough that the clique can be recovered.

For some lemmas, only a summary of the proof is given. The details of these
proofs are available in full version of the paper.1

1 arXiv:0905.2381 [cs.DS].
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2 Preliminaries

2.1 Discretization

The analysis of A(x, . . . , x) is greatly simplified when x is proportional to some
indicator vector. Fortunately, analyzing these vectors is sufficient, as any vector
can be approximated as a linear combination of relatively few indicator vectors.

For any vector x, we define x(+) to be vector such that x(+)
i = xi if xi > 0 and

x
(+)
i = 0 otherwise. Similarly, let x(−)

i = xi if xi < 0 and x(−)
i = 0 otherwise.

For a set S ⊆ [n], let χS be the indicator vector for S, where the ith entry is 1
if i ∈ S and 0 otherwise.

Definition 1 (Indicator Decomposition). For a unit vector x, define the
sets S1, . . . and T1, . . . through the recurrences

Sj =

{

i ∈ [n] : (x(+) −
j−1∑

k=1

2−kχSk)i > 2−j

}

.

and

Tj =

{

i ∈ [n] : (x(−) −
j−1∑

k=1

2−kχSk)i < −2−j

}

.

Let y0(x) = 0. For j ≥ 1, let y(j)(x) = 2−jχSj and let y(−j)(x) = −2−jχTj . We
call the set {y(j)(x)}∞−∞ the indicator decomposition of x.

Clearly, ‖y(i)(x)‖ ≤ max{‖x(+)‖, ‖x(−)‖} ≤ 1, and
∥∥
∥
∥
∥
∥
x−

N∑

j=−N

y(j)(x)

∥∥
∥
∥
∥
∥
≤
√
n2−N . (1)

We use this decomposition to prove the following theorem.

Lemma 1. Let

U = {k|S|−1/2χS : S ⊆ [n], k ∈ {−1, 1}}.

For any tensor A over [n]r where ‖A‖∞ ≤ 1

max
x(1),...,x(r)∈B(0,1)

A(x(1), . . . x(r)) ≤ (2�r logn�)r max
x(1),...,x(r)∈U

A(x(1), . . . , x(r))

Proof. Consider a fixed set of vectors x(1), . . . , x(r) and let N = �r log2 n�. For
each i, let

ˆx(i) =
N∑

j=−N

y(j)(x(i)).
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We first show that replacing x(i) with ˆx(i) gives a good approximation to A(x(1),
. . . , x(r)). Letting ε be the maximum difference between an x(i) and its
approximation, we have from (1) that

max
i∈[r]
‖x(i) − ˆx(i)‖ = ε ≤ n

r/2

2r

Because of the multilinear form of A(·) we have

|A(x(1), . . . , x(r))−A( ˆx(1), . . . , ˆx(r))| ≤
r∑

i=1

εiri‖A‖ ≤ εr

1− εr‖A‖ ≤ 1.

Next, we bound A( ˆx(1), . . . , ˆx(r)). For convenience, let Y (i) = ∪N
j=−Ny

(j)(x(i)).
Then using the multlinear form of A(·) and bounding the sum by its maximum
term, we have

A(x̂(1), . . . , x̂(r)) ≤ (2N)r max
v(1)∈Y (1),...,v(r)∈Y (r)

A(v(1), . . . , v(r))

≤ (2N)r max
v(1),...,v(r)∈U

A(v(1), . . . , v(r)).

2.2 Sufficiency of Off-Diagonal Blocks

Analysis of A(x(1), . . . , x(r)) is complicated by the fact that all terms with re-
peated indices are zero. Off-diagonal blocks of A are easier to analyze because
no such terms exist. Thankfully, as Frieze and Kannan [1] have shown, analyzing
these off-diagonal blocks suffices. Here we generalize their proof to r > 3.

For a collection {V1, V2, . . . , Vr} of subsets of [n], we define

A|V1×...×Vr (x(1), . . . , x(r)) =
∑

k1∈V1,...,kr∈Vr

Ak1...krx
(1)
i1
x

(2)
i2
. . . x

(r)
ir

Lemma 2. Let P be the class of partitions of [n] into r equally sized sets
V1, . . . , Vr (assume wlog that r divides n). Let V = V1 × . . . × Vr. Let A be
a random tensor over [n]r where each entry is in [−1, 1] and let R ⊆ B(0, 1). If
for every fixed (V1, . . . Vr) ∈ P , it holds that

Pr[ max
x(1),...,x(r)∈R

A|V (x(1), . . . , x(r)) ≥ f(n)] ≤ δ,

then

Pr[ max
x(1),...,x(r)∈R

A(x(1), . . . , x(r)) ≥ 2rrf(n)] ≤ δn
r/2

f(n)
.

2.3 A Concentration Bound

The following concentration bound is a key tool in our proof of Theorem 1. We
apply it for t = Õ(N).
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Lemma 3. Let {u(i)}Ni=1 and {v(i)}Ni=1 be collections of vectors of dimension N ′

where each entry of u(i) is 1 or −1 with probability 1/2 and ‖v(i)‖2 ≤ 1. Then
for any t ≥ 1,

Pr[
N∑

i=1

(u(i) · v(i))2 ≥ t] ≤ e−t/18(4
√
eπ)N .

We note that this lemma is stronger than what a naive application of standard
theorems would yield for t = Õ(N). For instance one might treat each (u(i) ·
v(i))2 as an independent random variable and apply a Hoeffding bound. The
quantity (u(i) · v(i))2 can vary by as much as N ′, however, so the bound would
be roughly exp(−ct2/NN ′2) for some constant c. Similarly, treating each u(i)

j

as an independent random variable and applying McDiarmid’s inequality, we
find that every u(i)

j can affect the sum by as much as 1 (simultaneously). For

instance suppose that every v(i)j = 1/
√
N ′ and every u(i)

j = 1. Then flipping u(i)
j

would have an effect of |N ′ − ((N ′ − 2)/
√
N ′)2| ≈ 4, so the bound would be

roughly exp(−ct2/NN ′) for some constant c. The proof, which uses an epsilon-
net argument, can be found in the full version of the paper.

3 A Bound on the Norm of the Parity Tensor

In this section, we prove Theorem 1. As a warm-up we consider the case where
r = 3.

3.1 Warm-Up: Third Order Tensors

For r = 3 the tensor A is defined as follows:

Ak1k2k3 = Ek1k2Ek2k3Ek1k3 .

Theorem 3. There is a constant C1 such that with probability 1− n−1

‖A‖ ≤ C1
√
n log4 n.

Proof. Let V1, V2, V3 be a partition of the n vertices and let V = V1 × V2 × V3.
The bulk of the proof consists of the following lemma.

Lemma 4. There is some constant C3 such that

max
x(1),x(2),x(3)∈U

A|V (x(1), x(2), x(3)) ≤ C3
√
n logn

with probability 1− n−7.

If this bound holds, then Lemma 1 then implies that there is some C2 such that

max
x(1),x(2),x(3)∈B(0,1)

A|V (x(1), x(2), x(3)) ≤ C2
√
n log4 n.
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And finally, Lemma 2 implies that for some constant C1

max
x(1),x(2),x(3)∈B(0,1)

A(x(1), x(2), x(3)) ≤ C1
√
n log4 n

with probability 1− n−1.

Proof (Proof of Lemma 4). Define

Uk = {x ∈ U : |supp(x)| = k} (2)

and consider a fixed n ≥ n1 ≥ n2 ≥ n3 ≥ 1. We will show that

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3)) ≤ C3
√
n logn

with probability n−10 for some constant C3. Taking a union bound over the n3

choices of n1, n2, n3 then proves the lemma.
We bound the cubic form as

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3))

= max
(x(1),x(2),x(3))∈Un1×Un2×Un3

∑

k1∈V1,k2∈V2,k3∈V3

Ak1k2k3x
(1)
k1
x

(2)
k2
x

(3)
k3

≤ max
(x(2),x(3))∈Un2×Un3

√√
√√
√

∑

k1∈V1

⎛

⎝
∑

k2∈V2,k3∈V3

Ak1k2k3x
(2)
k2
x

(3)
k3

⎞

⎠

2

= max
(x(2),x(3))∈Un2×Un3

√√
√
√ ∑

k1∈V1

(
∑

k2∈V2

Ek1k2x
(2)
k2

∑

k3∈V3

Ek2k3x
(3)
k3
Ek1k3

)2

.

Note that each of the inner sums (over k2 and k3) are the dot product of a random
−1, 1 vector (the Ek1k2 and Ek2k3 terms) and another vector. Our strategy will
be to bound the norm of this other vector and apply Lemma 3.

To this end, we define the −1, 1 vectors u(k2)
k3

= Ek2k3 and u(k1)
k2

= Ek1k2 , and
the general vectors

v(k1k2)(x(3))k3 = x(3)
k3
Ek1k3

and
v(k1)(x(2), x(3))k2 = x(2)

k2
(u(k2) · v(k1k2)(x(3))).

Thus, for each k1,
∑

k2∈V2

Ek1k2x
(2)
k2

∑

k3∈V3

Ek2k3x
(3)
k3
Ek1k3

=
∑

k2∈V2

Ek1k2x
(2)
k2

(u(k2) · v(k1k2)(x(3)))

= u(k1) · v(k1)(x(2), x(3)). (3)
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Clearly, the u’s play the role of the random vectors and we will bound the norms
of the v’s in the application of Lemma 3.

To apply Lemma 3 with k1 being the index i and uk1
k2

= Ek1k2 as above, we
need a bound for every k1 ∈ V1 on the norm of v(k1)(x(2), x(3)). We argue

∑

k2

(

x
(2)
k2

∑

k3∈V3

Ek2k3x
(3)
k3
Ek1k3

)2

≤ max
k1∈V1

max
x(2)∈Un2

max
x(3)∈Un3

1
n2

∑

k2∈supp(x(x2)

(
∑

k3

Ek2k3x
(3)
k3
Ek1k3

)2

≡ F 2
1

Here we used the fact that ‖x(2)‖∞ ≤ n−1/2
2 . Note that by the definition above

F1 is a function of the random variables {Eij} only.
To bound F1, we observe that we can apply Lemma 3 to the expression being

maximized above, i.e.,

∑

k2

(
∑

k3

Ek2k3

(
x

(3)
k3
Ek1k3

)
)2

over the index k2, with uk2
k3

= Ek2k3 . Now we need a bound, for every k2 and k1
on the norm of the vector v(k1k2)(x(3)). We argue

∑

k3

(
x

(3)
k3
Ek1k3

)2
≤ ||x(3)||2∞

∑

k3

E2
k1k3
≤ 1.

Applying Lemma 3 for a fixed k1, x(2) and x(3) implies

1
n2

∑

k2∈supp(x(2))

(
∑

k3

Ek2k3x
(3)
k3
Ek1k3

)2

> C3 log n

with probability at most

exp(−C3n2 logn
18

)(4
√
eπ)n2 .

Taking a union bound over the |V1| ≤ n choices of k1, and the at most nn2nn3

choices for x(2) and x(3), we show that

Pr[F 2
1 > C3 logn] ≤ exp(−C3n2 logn

18
)(4
√
eπ)n2nnn2nn3 .

This probability is at most n−10/2 for a large enough constant C3.
Thus, for a fixed x(2) and x(3), we can apply Lemma 3 to (3) with F 2

1 =
C3 logn to get:

∑

k1∈V1

(
∑

k2∈V2

Ek1k2

(

x
(2)
k2

∑

k3∈V3

Ek2k3x
(3)
k3
Ek1k3

))2

> F 2
1C3n logn
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with probability at most exp(−C3n logn/18)(4
√
eπ)n. Taking a union bound

over the at most nn2nn3 choices for x(2) and x(3), the bound holds with
probability

exp(−C3n logn/18)(4
√
eπ)nnn2nn3 ≤ n−10/2

for large enough constant C3.
Thus, we can bound the squared norm:

max
(x(1),x(2),x(3))∈Un1×Un2×Un3

A|V (x(1), x(2), x(3))2

≤
∑

k1∈V1

(
∑

k2∈V2

Ek1k2

(

x
(2)
k2

∑

k3∈V3

Ek2k3x
(3)
k3
Ek1k3

))2

≤ C2
3n1 log2 n

with probability 1− n−10.

3.2 Higher Order Tensors

Let the random tensor A be defined as follows.

Ak1,...,kr =
∏

1≤i<j≤r

Ekikj

where E is an n × n matrix where each off-diagonal entry is −1 or 1 with
probability 1/2 and every diagonal entry is 1.

For most of this section, we will consider only a single off-diagonal cube of A.
That is, we index over V1 × . . .× Vr where Vi are an equal partition of [n]. We
denote this block by A|V . When ki is used as an index, it is implied that ki ∈ Vi.

The bulk of the proof consists of the following lemma.

Lemma 5. There is some constant C3 such that

max
x(1),...x(r)∈U

A|V (x(1), . . . , x(r))2 ≤ n(C3r logn)r−1

with probability 1− n−9r.

The key idea is that the concentration inequality of Lemma 3 can be applied
repeatedly to collections of u’s and v’s in a way analogous to (3). Each sum over
kr, . . . , k2 contributes a C3r logn factor and the final sum over k1 contributes
the factor of n.

If the bound holds, then Lemma 1 implies that there is some C2 such that

max
x(1),x(2),x(3)∈B(0,1)

A|V (x(1), x(2), x(3))2 ≤ Cr
2r

2r+r−1n log2r+(r−1) n.

And finally, Lemma 2 implies that

max
x(1),x(2),x(3)∈B(0,1)

A(x(1), x(2), x(3)) ≤ Cr
1r

2r+2r+(r−1)n log2r+r−1 n

= Cr
1r

5r−1n log3r−1 n.

with probability 1 − n−1 for some constant C1. For the complete proof, please
see the full version of the paper.
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4 Finding Planted Cliques

We now turn to Theorem 2 and to the problem of finding a planted clique in a
random graph. A random graph with a planted clique is constructed by taking
a random graph and then adding every edge between vertices in some subset P
to form the planted clique. We denote this graph as Gn,1/2 ∪Kp. Letting A be
the rth order subgraph parity tensor, we show that a vector x ∈ B(0, 1) that
approximates the maximum of A(·) over the unit ball can be used to reveal the
clique, using a modification of the algorithm proposed by Frieze and Kannan [1].

This implies an interesting connection between the tensor problem and the
planted clique problem. For symmetric second order tensors (i.e. matrices), max-
imizing A(·) is equivalent to finding the top eigenvector and can be done in poly-
nomial time. For higher order tensors, however, the complexity of maximizing
this function is open if elements with repeated indices are zero. For random ten-
sors, the hardness is also open. Given the reduction presented in this section, a
hardness result for the planted clique problem would imply a similar hardness
result for the tensor problem.

Given an x that approximates the maximum of A(·) over the unit ball, the
algorithm for finding the planted clique is given in Alg. 1. The key ideas of
using the top eigenvector of subgraph and of randomly choosing a set of vertices
to “seed” the clique (steps 2a-2d) come from Frieze-Kannan [1]. The major
difference in the algorithms is the use of the indicator decomposition. Frieze and
Kannan sort the indices so that x1 ≥ . . . xn and select one set S of the form
S = [j] where ‖A|S×S‖ exceeds some threshold. They run steps (2a-2d) only on
this set. By contrast Alg. 1 runs these steps on every S = supp(y(j)(x)) where
j = −�r logn�, . . . �r log n�.

The algorithm succeeds with high probability when a subset S is found such
that |S ∩ P | ≥ C

√
|S| logn, where C is an appropriate constant.

Lemma 6 (Frieze-Kannan). There is a constant C5 such that if S ⊆ [n]
satisfies |S ∩ P | ≥ C5

√
|S| logn, then with high probability steps 2a)-2d) of Alg.

1 find a set P ′ equal to P .

To find such an subset S from a vector x, Frieze and Kannan require that∑
i∈P xi ≥ C logn. Using the indicator decomposition, as in the Alg. 1, however,

reduces this to
∑

i∈P xi ≥ C
√

logn. Even more importantly, using the indicator
decomposition means that only one element of the decomposition needs to point
in the direction of the clique. The vector x could point in a very different direc-
tion and the algorithm would still succeed. We exploit this fact in our proof of
Theorem 2. The relevant claim is the following.

Lemma 7. Let B′ be a set of vectors x ∈ B(0, 1) such that

|supp(y(j)(x)) ∩ P | < C5

√
|supp(y(j)(x))| log n

for every j ∈ {−�r logn�, . . . , �r logn�}. Then, there is a constant C′
1 such that

with high probability

sup
x∈B′

A(x, . . . , x) ≤ C′
1
r
r5r/2√n log3r/2 n.
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Algorithm 1. An Algorithm for Recovering the Clique

Input:
1) Graph G.
2) Integer p = |P |.
3) Unit vector x.

Output: A clique of size p or FAILURE.

1. Calculate y−�r log n�(x), . . . , y�r log n�(x) as defined in the indicator decomposition.
2. For each such y(j)(x), let S = supp(y(j)(x)) and try the following:

(a) Find v, the top eigenvector of the 1, −1 adjacency matrix A|S×S.
(b) Order the vertices (coordinates) such that v1 ≥ . . . ≥ v|S|. (Assuming dot-prod

is
√

1/2 below)
(c) For � = 1 to |S|, repeat up to n30 log n times:

i. Select 10 log n vertices Q1 at random from [�].
ii. Find Q2, the set of common neighbors of Q1 in G.
iii. If the set of vertices with degree at least 7p/8, say P ′ has cardinality p

and forms a clique in G, then return P ′.
(d) Return FAILURE.

Proof. By the same argument used in the discretization, we have that for any
x ∈ B′

A(x, . . . , x) ≤ (2�r logn�)r max
x(1)∈Y (1)(x),...x(r)∈Y (r)(x)

A(x(1), . . . , x(r))

≤ (2�r logn�)r max
x(1),...x(r)∈U ′

A(x(1), . . . , x(r)), (4)

where
U ′ = {|S|−1/2χS : S ⊆ [n], |S ∩ P | < C5

√
|S| logn}.

Consider an off-diagonal block V1 × . . .× Vr. For each i ∈ 1 . . . r, let Pi = Vi ∩P
and let Ri = Vi \ P . Then, breaking the polynomial A|V (·) up as a sum of 2r

terms, each corresponding to a choice of S1 ∈ {P1, R1}, . . . , Sr ∈ {Pr, Rr} gives

max
x(1),...,x(r)∈U ′

A|V (x(1), . . . , x(r))

≤ 2r max
x(1),...,x(r)∈U ′

∑

S1∈{P1,R1},...,Sr∈{Pr,Rr}
A|S1×...×Sr(x

(1), . . . , x(r)). (5)

By symmetry, without loss of generality we may consider the case where Si = Ri

for i = 1 . . . r − � and Si = Pi for i = r − � + 1 . . . r for some �. Let Ṽ =
R1 × . . .×Rr−� × Pr−�+1 × . . .× Pr. Then,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r))

=
∑

k1∈R1

. . .
∑

kr−	∈Rr−	

∏

i=1...r−�

x
(i)
ki

∏

i,j:i,j≤r−�

EkikjB
(k1,...,kr−	),
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where

B(k1,...,kr−	)(x(r−�+1), . . . , xr)

=
∑

kr−	+1∈Pr−	+1

. . .
∑

kr∈Pr

∏

i=r−�+1...r

x
(i)
ki

∏

i,j:i,r−�+1<j

Ekikj .

By the assumption that every x(i) ∈ U ′, this value is at most (C5 logn)�/2. Thus,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r))

≤
∑

k1∈R1

. . .
∑

kr−	∈Rr−	

∏

i=1...r−�

x
(i)
ki

∏

i,j:i,j≤r−�

Ekikj (C5 log n)�/2.

Note that every edge Ekikj above is random, so the polynomial may be bounded
according to Lemma 5. Altogether,

max
x(1),...,x(r)∈U ′

A|Ṽ (x(1), . . . , x(r)) ≤ (max{C5, C3} logn)r/2.

Combining (4), (5), and applying Lemma 2 completes the proof with C′
1 chosen

large enough.

Proof (Proof of Theorem 2). The clique is found by finding a vector x such that
A(x, . . . , x) ≥ αr|P |r/2 and then running Alg. 1 on this vector. Algorithm 1
clearly runs in polynomial time, so the theorem holds if the algorithm succeeds
with high probability.

By Lemma 6 the algorithm does succeed with high probability when x /∈
B′, i.e. when some S ∈ {supp(y−�r logn�(x), . . . , supp(y−�r logn�(x)} satisfies
|S ∩ P | ≥ C5

√
|S| logn.

We claim x /∈ B′ with high probability. Otherwise, for some x ∈ B′,

A(x, . . . , x) ≥ αrpr/2 > Cr
0r

5r/2√n log3r/2 n.

This is a low probability event by Lemma 7 if C0 ≥ C′
1.
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8. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combina-
torica 1(3), 233–241 (1981)

9. Vu, V.H.: Spectral norm of random matrices. In: Proc. of STOC, pp. 423–430 (2005)



Sampling s-Concave Functions: The Limit of

Convexity Based Isoperimetry

Karthekeyan Chandrasekaran1, Amit Deshpande2, and Santosh Vempala1

1 School of Computer Science, Georgia Institute of Technology
karthe@cc.gatech.edu, vempala@cc.gatech.edu

2 Microsoft Research India
amitdesh@microsoft.edu

Abstract. Efficient sampling, integration and optimization algorithms
for logconcave functions [BV04, KV06, LV06a] rely on the good isoperime-
try of these functions. We extend this to show that −1/(n − 1)-concave
functions have good isoperimetry, and moreover, using a characterization
of functions based on their values along every line, we prove that this
is the largest class of functions with good isoperimetry in the spectrum
from concave to quasi-concave. We give an efficient sampling algorithm
based on a random walk for −1/(n − 1)-concave probability densities
satisfying a smoothness criterion, which includes heavy-tailed densities
such as the Cauchy density. In addition, the mixing time of this random
walk for Cauchy density matches the corresponding best known bounds
for logconcave densities.

1 Introduction

Given a function f : Rn → R+, accessible by querying the function value at any
point x ∈ Rn, and an error parameter ε > 0, three fundamental problems are: (i)
Integration: estimate

∫
f to within 1± ε, (ii) Maximization: find x that approx-

imately maximizes f , i.e., f(x) ≥ (1 − ε)max f , and (iii) Sampling: generate x
from density π with dtv(π, πf ) ≤ ε where dtv is the total variation distance and
πf is the density proportional to f . The complexity of an algorithm is measured
by the number of queries for the function values.

The most general class of functions for which these problems are known to
have compexity polynomial in the dimension, is the class of logconcave functions.
A function f : Rn → R+ is logconcave if its logarithm is concave on its support,
i.e., for any two points x, y ∈ Rn and any λ ∈ (0, 1),

f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ. (1)

Logconcave functions generalize indicator functions of convex bodies (and hence
the problems subsume convex optimization and volume computation) as well as
Gaussians. Following the polynomial time algorithm of Dyer, Frieze and Kan-
nan [DFK91] for estimating the volume of a convex body, a long line of work

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 420–433, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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[AK91, Lov90, DF91, LS92, LS93, KLS97, LV07, LV06c, LV06b] culminated
in the results that both sampling and integration have polynomial complex-
ity for any logconcave density. Integration is done by a reduction to sampling
and sampling also provides an alternative to the Ellipsoid method for optimiza-
tion [BV04, KV06, LV06a]. Sampling itself is achieved by a random walk whose
stationary distribution has density proportional to the given function. The key
question is thus the rate of convergence of the walk, which depends (among other
things) on the isoperimetry of the target function.

Informally, a function has good isoperimetry if one cannot remove a set of
small measure from its domain and partition it into two disjoint sets of large
measure. Logconcave functions satisfy the following isoperimetric inequality:

Theorem 1. [DF91, LS93] Let f : Rn → R+ be a logconcave function with a
convex support K of diameter D,

∫
Rn f <∞, and S1, S2, S3 be any partition of K

into three measurable sets. Then, for a distribution πf with density proportional
to f ,

πf (S3) ≥
2d(S1, S2)

D
min{πf (S1), πf (S2)},

where d(S1, S2) refers to the minimum distance between any two points in S1
and S2.

Although the class of logconcave functions is fairly large, it does not capture
all the functions with good isoperimetry. The definition of logconcavity says
that, for every line segment in the domain, the value at its midpoint is at least
the geometric mean of the values at its endpoints. This is a generalization of
concavity where, for every line segment in the domain, the value at its midpoint
is at least the arithmetic mean of the values at its endpoints. This motivates
the following question: What condition should a function satisfy along every line
segment to have good isoperimetry?

In this paper, using a characterization of functions based on generalized
means, we present a class of functions with good isoperimetry that is the largest
under this particular characterization. We also give an efficient algorithm to
sample from these functions; a well-known example among these is the Cauchy
density (which is not logconcave and is heavy-tailed).

To motivate and state our results, we begin with a discussion of one-dimensional
conditions.

1.1 From Concave to Quasi-concave

Definition 1. (s-concavity of probability density) A function f : Rn → R+ is
said to be s-concave, for −∞ ≤ s ≤ 1, if

f (λx + (1− λ)y) ≥ (λf(x)s + (1− λ)f(y)s)1/s
,

for all λ ∈ [0, 1], ∀x, y ∈ Rn.
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The following are some special cases: A function f : Rn → R+ is said to be

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

concave if, f (λx+ (1− λ)y) ≥ λf(x) + (1 − λ)f(y)

logconcave if, f (λx+ (1− λ)y) ≥ f(x)λf(y)1−λ

harmonic-concave if, f (λx+ (1− λ)y) ≥
(
λ

f(x)
+

(1− λ)
f(y)

)−1

quasi-concave if, f (λx+ (1− λ)y) ≥ min{f(x), f(y)}

for all λ ∈ [0, 1], ∀x, y ∈ Rn.
These conditions are progressively weaker, restricting the function value at a

convex combination of x and y to be at least the arithmetic average, geometric
average, harmonic average and minimum, respectively. Note that s1-concave
functions are also s2-concave if s1 > s2. It is thus easy to verify that:

concave � s-concave (s > 0) � logconcave � s-concave (s < 0) � quasi-concave.

Relaxing beyond quasi-concave would violate unimodality, i.e., there could be
two distinct local maxima, which appears problematic for all of the fundamen-
tal problems. Also, it is well-known that quasi-concave functions have poor
isoperimetry.

There is a different characterization of probability measures based on a gen-
eralization of the Brunn-Minkowski inequality. The Brunn-Minkowski inequality
states that the Euclidean volume (or Lebesgue measure) μ satisfies

μ (λA+ (1− λ)B)1/n ≥ λμ(A)1/n + (1− λ)μ(B)1/n,

for λ ∈ [0, 1] and compact subsets A,B ⊆ Rn, where λA + (1 − λ)B = {λa +
(1− λ)b : a ∈ A, b ∈ B} is the Minkowski sum.

Definition 2. (κ-concavity of probability measure) A probability measure μ over
Rn is κ-concave if

μ(λA + (1− λ)B)κ ≥ λμ(A)κ + (1− λ)μ(B)κ,

∀A,B ⊆ Rn, ∀λ ∈ [0, 1].

Note that the Euclidean volume (or Lebesgue measure) is quasi-concave according
to Definition 1 but 1/n-concave according to Definition 2. Borell [Bor74, Bor75]
showed an equivalence between these two definitions as follows.

Lemma 1. An absolutely continuous probability measure μ on a convex set K ⊆
Rn is κ-concave, for −∞ < κ ≤ 1/n, if and only if there is a density function
p : Rn → R+, which is s-concave for s =

κ

1− κn .
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Thus, if the density function is s-concave for s ∈ [−1/n, 0], then the corre-
sponding probability measure is κ-concave for κ = s

1+ns . Bobkov [Bob07] proves
the following isoperimetric inequality for κ-concave probability measures for
−∞ < κ ≤ 1.

Theorem 2. Given a κ-concave probability measure μ, for any measurable sub-
set A ⊆ Rn,

μ(δA) ≥ c(κ)
m

min{μ(A), 1− μ(A)}1−κ

where m is the μ-median of the Euclidean norm x )→ ‖x‖, for some constant
c(κ) depending on κ.

Therefore, by Lemma 1, we get an isoperimetric inequality for any s-concave
function f : Rn → R+, for s ∈ [−1/n, 0], as

πf (δA) ≥ c(s)
m

min{πf (A), 1 − πf (A)}1− s
1+ns ,

for any measurable set A ⊆ Rn.
In comparison, we prove a stronger isoperimetric inequality for the class of

−1/(n−1)-concave functions (which subsumes −1/n-concave functions) and we
remove the dependence on s in the inequality completely.

1.2 The Cauchy Density

The generalized Cauchy probability density f : Rn → R+ parameterized by a
positive definite matrix A ∈ Rn×n and a vector m ∈ Rn, is given by

f(x) ∝ det(A)−1

(
1 + ‖A(x−m)‖2

)(n+1)/2 .

For simplicity, we assume m = 0̄ using a translation. It is easy to sample this
distribution in full space (by an affine transformation it becomes spherically
symmetric and therefore a one-dimensional problem) [Joh87]. We consider the
problem of sampling according to the Cauchy density restricted to a convex set.
This is reminiscent of the work of Kannan and Li who considered the problem
of sampling a Gaussian distribution restricted to a convex set [KL96].

1.3 Our Results

Our first result establishes good isoperimetry for −1/(n− 1)-concave functions
in Rn.

Theorem 3. Let f : Rn → R+ be a −1/(n− 1)-concave function with a convex
support K ⊆ Rn of diameter D, and let Rn = S1 ∪ S2 ∪ S3 be a measurable
partition of Rn into three non-empty subsets. Then

πf (S3) ≥
d(S1, S2)
D

min {πf (S1), πf (S2)} .
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It is worth noting that the isoperimetric coefficient above is only smaller by a
factor of 2 when compared to that of logconcave functions (Theorem 1).

Next, we prove that beyond the class of −1/(n− 1)-concave functions, there
exist functions with exponentially small isoperimetric coefficient.

Theorem 4. For any ε > 0, there exists a −1/(n− 1− ε)-concave function f :
Rn → R+ with a convex support K of finite diameter and a partition Rn = S∪T
such that

πf (∂S)
min {πf (S), πf (T )} ≤ Cn(1 + ε)−εn

for some constant C > 0.

Theorems 3 and 4 can be summarized by the following figure.

Fig. 1. Limit of isoperimetry for s-concave functions

We prove that the ball walk with a Metropolis filter can be used to sam-
ple efficiently according to −1/(n − 1)-concave densities which satisfy a cer-
tain Lipschitz condition. In each step, the ball walk picks a new point y, uni-
formly at random from a small ball around the current point x, and moves to y
with probability min{1, f(y)/f(x)}. A distribution σ0 is said to be an H-warm
start (H > 0) for the distribution πf if for all S ⊆ Rn, σ0(S) ≤ Hπf (S). Let
σm denote the distribution after m steps of the ball walk with a Metropolis
filter.

Definition 3. We call a function f : Rn → R+ to be (α, δ)-smooth if

max
{
f(x)
f(y)

,
f(y)
f(x)

}
≤ α,

for all x, y in the support of f with ‖x− y‖ ≤ δ.

Theorem 5. Let f : Rn → R+ be proportional to an s-concave (α, δ)-smooth
function, restricted to a convex body K ⊆ Rn of diameter D, where s ≥ −1/(n−
1). Let K contain a ball of radius δ and σ0 be an H-warm start. Then, after

m ≥
(
CnD2

δ2
log

2H
ε

)
·max

{
nH2

ε2
,
(α−s − 1)2

s2

}
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steps of the ball walk with radius r ≤ min
{

εδ
16H

√
n
, |2sδ|

α−s−1

}
, we have that

dtv(σm, πf ) ≤ ε,
for some absolute constant C, where dtv(·, ·) is the total variation distance.

Applying the above theorem directly to sample according to the Cauchy density,
we get a mixing time of O

((
n3H2

ε2 log 2H
ε

)
·max

{
H2

ε2 , n
})

using parameters

δ = 1, α = e
n+1
2 and, D = 8

√
2nH
ε (one can prove that the probability measure

outside the ball of radius D around the origin is at most ε/2H for the chosen
value of D). Using a more careful analysis (comparison of 1-step distributions),
this bound can be improved to match the current best bounds for sampling
logconcave functions.

Theorem 6. Consider the Cauchy probability density f defined in Section 1.2,
restricted to a convex set K ⊆ Rn containing a ball of radius ‖A−1‖2 and let σ0
be an H-warm starting distribution. Then after

m ≥ O
(
n3H4

ε4
log

2H
ε

)

steps with ball-walk radius r = ε/8
√
n, we have

dtv(σm, πf ) ≤ ε,

where dtv(., .) is the total variation distance.

The proof of this theorem departs from its earlier counterparts in a significant
way. In addition to isoperimetry, and the closeness of one-step distributions of
nearby points, we have to prove that most of the measure is contained in a ball of
not-too-large radius. For logconcave densities, this large-ball probability decays
exponentially with the radius. For the Cauchy density it only decays linearly
(Proposition 3).

All missing proofs are available in the full version of the paper1.

2 Preliminaries

Let rBx denote a ball of radius r around point x. One step of the ball walk at a
point x defines a probability distribution Px over Rn as follows.

Px(S) =
∫

S∩rBx

min
{

1,
f(y)
f(x)

}
dy.

For every measurable set S ⊆ Rn the ergodic flow from S is defined as

Φ(S) =
∫

S

Px(Rn \ S)f(x)dx,

1 http://arxiv.org/abs/0906.2448
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and the measure of S according to πf is defined as πf (S) =
∫

S
f(x)dx/

∫
Rn f(x)dx.

The s-conductance φs of the Markov chain defined by ball walk is

φs = inf
s≤πf (S)≤1/2

Φ(S)
πf (S)− s .

To compare two distributions Q1, Q2 we use the total variation distance between
Q1 and Q2, defined by dtv(Q1, Q2) = supA |Q1(A) − Q2(A)|. When we refer to
the distance between two sets, we mean the minimum distance between any two
points in the two sets. That is, for any two subsets S1, S2 ⊆ Rn, d(S1, S2) :=
min{|u− v| : u ∈ S1, v ∈ S2}. Next we quote a lemma from [LS93] which relates
the s-conductance to the mixing time.

Lemma 2. Let 0 < s ≤ 1/2 and Hs = supπf (S)≤s |σ0(S)− πf (S)|. Then for
every measurable S ⊆ Rn and every m ≥ 0,

|σm(S)− πf (S)| ≤ Hs +
Hs

s

(
1− φ

2
s

2

)m

.

Finally, the following localization lemma [LS93, KLS95] is a useful tool in the
proofs of isoperimetric inequalities.

Lemma 3. Let g : Rn → R and h : Rn → R be two lower semi-continuous
integrable functions such that

∫

Rn

g(x)dx > 0 and
∫

Rn

h(x)dx > 0.

Then there exist two points a, b ∈ Rn and a linear function l : [0, 1]→ R+ such
that

∫ 1

0
g((1− t)a+ tb)l(t)n−1dt > 0 and

∫ 1

0
h((1 − t)a+ tb)l(t)n−1dt > 0.

3 Isoperimetry

Here we prove an isoperimetric inequality for functions satisfying a certain uni-
modality criterion. We further show that −1/(n − 1)-concave functions satisfy
this unimodality criterion and hence have good isoperimetry.

We begin with a simple lemma that will be used in the proof of the isoperi-
metric inequality.

Lemma 4. Let p : [0, 1]→ R+ be a unimodal function, and let 0 ≤ α < β ≤ 1.
Then ∫ β

α

p(t)dt ≥ |α− β|min
{∫ α

0
p(t)dt,

∫ 1

β

p(t)dt
}
.

Now we are ready to prove an isoperimetric inequality for functions satisfying a
certain unimodality criterion.
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Theorem 7. Let f : Rn → R+ be a function whose support has diameter D,
and f satisfies the following unimodality criterion: For any affine line L ⊆ Rn

and any linear function l : K ∩ L → R+, h(x) = f(x)l(x)n−1 is unimodal. Let
Rn = S1 ∪ S2 ∪ S3 be a partition of Rn into three non-empty subsets. Then

πf (S3) ≥
d(S1, S2)
D

min {πf (S1), πf (S2)} .

Proof. Suppose not. Define g : Rn → R and h : Rn → R as follows.

g(x) =

⎧
⎪⎪⎨

⎪⎪⎩

d(S1, S2)
D

f(x) if x ∈ S1

0 if x ∈ S2

−f(x) if x ∈ S3

and h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if x ∈ S1
d(S1, S2)
D

f(x) if x ∈ S2

−f(x) if x ∈ S3.

Thus ∫

Rn

g(x)dx > 0 and
∫

Rn

h(x)dx > 0,

Lemma 3 implies that there exist two points a, b ∈ Rn and a linear function
l : [0, 1]→ R+ such that
∫ 1

0
g((1− t)a+ tb)l(t)n−1dt > 0 and

∫ 1

0
h((1− t)a+ tb)l(t)n−1dt > 0. (2)

Moreover, w.l.o.g. we can assume that the points a and b are within the support
of f , and hence ‖a− b‖ ≤ D. We may also assume that a ∈ S1 and b ∈ S2.
Consider a partition of the interval [0, 1] = Z1 ∪ Z2 ∪ Z3, where

Zi = {z ∈ [0, 1] : (1− z)a+ zb ∈ Si} .

For z1 ∈ Z1 and z2 ∈ Z2, we have

d(S1, S2) ≤ d ((1 − z1) a + z1b, (1 − z2) a + z2b) ≤ |z1 − z2| · ‖a − b‖ ≤ |z1 − z2| D,

and therefore d(S1, S2) ≤ d(Z1, Z2)D. Now we can rewrite Equation (2) as
∫

Z3

f((1− t)a+ tb)l(t)n−1dt <
d(S1, S2)
D

∫

Z1

f((1− t)a+ tb)l(t)n−1dt

≤ d(Z1, Z2)
∫

Z1

f((1− t)a+ tb)l(t)n−1dt

and similarly
∫

Z3

f((1− t)a+ tb)l(t)n−1dt ≤ d(Z1, Z2)
∫

Z2

f((1− t)a+ tb)l(t)n−1dt

Define p : [0, 1] → R+ as p(t) = f((1 − t)a + tb)l(t)n−1. From the unimodality
assumption in our theorem, we know that p is unimodal. Rewriting the above
equations, we have

∫

Z3

p(t)dt < d(Z1, Z2)
∫

Z1

p(t)dt and
∫

Z3

p(t)dt < d(Z1, Z2)
∫

Z2

p(t)dt. (3)
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Now suppose Z3 is a union of disjoint intervals, i.e., Z3 =
⋃

i(αi, βi), 0 ≤ α1 <
β1 < α2 < β2 < · · · ≤ 1. By Lemma 4 we have

∫ βi

αi

p(t)dt ≥ |αi − βi| ·min
{∫ αi

0
p(t)dt,

∫ 1

βi

p(t)dt
}
.

Therefore, adding these up we get

∫

Z3

p(t)dt =
∑

i

∫ βi

αi

p(t)dt

≥ |αi − βi| ·
∑

i

min
{∫ αi

0
p(t)dt,

∫ 1

βi

p(t)dt
}

≥ d(Z1, Z2) ·min
{∫

Z1

p(t)dt,
∫

Z2

p(t)dt
}
.

The last inequality follows from the fact that either every interval in Z1 or every
interval in Z2 is accounted for in the summation. Indeed, suppose some interval
in Z2 is not accounted for in the summation. Then, that interval has to be
either the first or the last interval in [0, 1] in which case all intervals in Z1 are
accounted for. But this is a contradiction to Inequality (3). This completes the
proof of Theorem 7.

3.1 Isoperimetry of −1/(n − 1)-Concave Functions

We show that −1/(n − 1)-concave functions satisfy the unimodality criterion
used in the proof of Theorem 7. Therefore, as a corollary, we get an isoperimetric
inequality for −1/(n− 1)-concave functions.

Proposition 1. Let f : Rn → R+ be a smooth −1/(n−1)-concave function and
l : [0, 1]→ R+ be a linear function. Now let a, b ∈ Rn and define h : [0, 1]→ R+
as h(t) = f((1− t)a+ tb)l(t)n−1. Then h is a unimodal function.

We get Theorem 3 as a corollary of Theorem 7 and Proposition 1.

3.2 Lower Bound for Isoperimetry

In this section, we show that −1/(n − 1)-concave functions are the limit of
isoperimetry by showing a−1/(n−1−ε)-concave function with poor isoperimetry
for 0 < ε ≤ 1.

Proof (Proof of Theorem 4). The proof is based on the following construction.
Consider K ⊆ Rn defined as follows.

K =
{
x : 0 ≤ x1 <

1
1 + δ

and x2
2 + x2

3 + . . .+ x2
n ≤ (1 − x1)2

}
,
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where δ > 0. K is a parallel section of a cone symmetric around the X1-axis and
is therefore convex. Now we define a function f : Rn → R+ whose support is K.

f(x) =

⎧
⎨

⎩

C

(1− (1 + δ)x1)
n−1−ε if x ∈ K,

0 if x /∈ K,

where C is the appropriate constant so as to make πf (K) = 1. By definition, f
is a −1/(n− 1− ε)-concave function.

Define a partition Rn = S ∪ T as S = {x ∈ K : 0 ≤ x1 ≤ t} and T = Rn \S.
It can be shown that the theorem holds for a suitable choice of t.

4 Sampling s-Concave Functions

Throughout this section, let f : Rn → R+ be an s-concave (α, δ)-smooth function
given by an oracle such that s ≥ −1/(n − 1). Let K be the convex body over
which we want to sample points according to f . We also assume that K contains
a ball of radius δ and is contained in a ball of radius D. We state a technical
lemma related to the smoothness and the concavity of the function.

Lemma 5. Suppose f : Rn → R is a s-concave (α, δ)-smooth function. For any
constant c such that 1 < c < α, if ‖x− z‖ ≤ |csδ|

α−s−1 , then f(x)
f(z) ≤ c.

The above lemma states that every s-concave (α, δ)-smooth function, is also
(c, |csδ|

(α−s−1) )-smooth for any constant c such that 1 < c < α. In particular, if
α > 2, this suggests that we may use the smoothness parameters to be (α′ =
2, δ′ = |2sδ|

α−s−1 ) and if α ≤ 2, then we may use (α′ = 2, δ′ = δ) as the parameters.

Thus, the function can be assumed to be (2,min{δ, |2sδ|
α−s−1})-smooth.

In order to sample, we need to show that K contains points of good local
conductance. For this, define

Kr =
{
x ∈ K :

vol (rBx ∩K)
vol (rBx)

≥ 3
4

}
.

The idea is that, for appropriately chosen r, the log-lipschitz-like constraint will
enforce that the points in Kr have good local conductance. Further, we have
that the measure in Kr is close to the measure of f in K based on the radius r.

Lemma 6. For any r > 0, the set Kr is convex and

πf (Kr) ≥ 1− 4r
√
n

δ
.

4.1 Coupling

In order to prove conductance, we need to prove that when two points are ge-
ometrically close, then their one-step distributions overlap. We will need the
following technical lemma about spherical caps to prove this.
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Lemma 7. Let H be a halfspace in Rn and Bx be a ball whose center is at a
distance at most tr/

√
n from H. Then

e−
t2
4 >

2 vol (H ∩ rB)
vol (rB)

> 1− t

Lemma 8. For r ≤ min{δ, |2sδ|
α−s−1}, if u, v ∈ Kr, ‖u− v‖ < r/16

√
n, then

dtv(Pu, Pv) ≤ 1− 7
16

Proof. We may assume that f(v) ≥ f(u). Then,

dtv(Pu, Pv) ≤ 1− 1
vol (rB)

∫

rBv∩rBu∩K

min
{

1,
f(y)
f(v)

}
dy

Let us lower bound the second term in the right hand side.

∫

rBv∩rBu∩K

min

{
1,

f(y)

f(v)

}
dy ≥

∫

rBv∩rBu∩K

min

{
1,

f(y)

f(v)

}
dy

≥
(

1

2

)
vol (rBv ∩ rBu ∩ K) (By Lemma 5)

≥
(

1

2

)
(vol (rBv) − vol (rBv \ rBu) − vol (rBv \ K))

≥
(

1

2

) (
vol (rBv) − 1

16
vol (rB) − 1

16
vol (rB)

)

≥
(

7

16

)
vol (rB)

where the bound on vol (rBv \ rBu) is derived from Lemma 7 and vol (rBv \K)
is bounded using the fact that v ∈ Kr. Hence,

dtv(Pu, Pv) ≤ 1− 7
16

4.2 Conductance and Mixing Time

Consider the ball walk with metropolis filter using the s-concave (α, δ)-smooth
density function oracle with ball steps of radius r.

Lemma 9. Let S ⊆ Rn be such that πf (S) ≥ ε1 and πf (Rn \S) ≥ ε1. Then, for

ball walk radius r ≤ min
{

ε1δ
8
√

n
, |2sδ|

α−s−1

}
, we have that

Φ(S) ≥ r

29
√
nD

min{πf (S)− ε1, πf (Rn \ S)− ε1}

Using the above lemma, we prove Theorem 5.
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Proof (Proof of Theorem 5). On setting ε1 = ε/2H in Lemma 9, we have that
for ball-walk radius r = min{ εδ

16H
√

n
, |2sδ|

(α−s−1)},

φε1 ≥
r

29√nD.

By definition Hs ≤ H · s and hence by Lemma 2,

|σm(S)− πf (S)| ≤ H · s+H · exp
{
− mr2

219nD2

}

which gives us that beyond

m ≥ 219nD2

r2
log

2H
ε

steps, |σm(S)− πf (S)| ≤ ε. Substituting for r, we get the theorem.

4.3 Sampling the Cauchy Density

In this section, we prove certain properties of the Cauchy density along with
the crucial coupling lemma leading to Theorem 6. Without loss of generality, we
may assume that the distribution given by the oracle is,

f(x) ∝
{

1/(1 + ||x||2)n+1
2 if x ∈ K,

0 otherwise.
(4)

This is because, either we are explicitly given the matrix A of a general Cauchy
density, or we can compute it using the function f at a small number of points and
apply a linear transformation. Further, note that by the hypothesis of Theorem 6,
we may assume that K contains a unit ball.

Proposition 2. The Cauchy density function is −1/(n− 1)-concave.

Proposition 3 says that we can find a ball of radius O(
√
n/ε1) outside which the

Cauchy density has at most ε1 probability mass.

Proposition 3

Pr

(

‖x‖ ≥ 2
√

2n
ε1

)

≤ ε1.

Proposition 4 shows the smoothness property of the Cauchy density. This is the
crucial ingredient used in the stronger coupling lemma. Define Kr as before.
Then,

Proposition 4. For x ∈ Kr, let

Cx = {y ∈ rBx : |x · (x− y)| ≤ 4r||x||√
n
}

and y ∈ Cx. Then,
f(x)
f(y)

≥ 1− 4r
√
n

Finally, we have the following coupling lemma.
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Lemma 10. For r ≤ 1/
√
n, if u, v ∈ Kr, ‖u− v‖ < r/16

√
n, then

dtv(Pu, Pv) <
1
2
.

The proof of conductance and mixing bound follow the proof of mixing bound
for s-concave functions closely. Comparing the above coupling lemma with that
of s-concave functions (Lemma 8), we observe that the improvement is obtained
due to the constraint on the radius of the ball walk in the coupling lemma. In
the case of Cauchy, a slightly relaxed radius suffices for points close to each other
to have a considerable overlap in their one-step distribution.

4.4 Discussion

There are two aspects of our algorithm and analysis that merit improvement. The
first is the dependence on the diameter, which could perhaps be made logarithmic
by applying an appropriate affine transformation as in the case of logconcave
densities. The second is eliminating the dependence on the smoothness parameter
entirely, by allowing for sharp changes locally and considering a smoother version
of the original function. Both these aspects seem to be tied closely to proving a
tail bound on a 1-dimensional marginal of an s-concave function.
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Abstract. We explore the average-case “Vickrey” cost of structures in
three random settings: the Vickrey cost of a shortest path in a com-
plete graph or digraph with random edge weights; the Vickrey cost of a
minimum spanning tree (MST) in a complete graph with random edge
weights; and the Vickrey cost of a perfect matching in a complete bi-
partite graph with random edge weights. In each case, in the large-size
limit, the Vickrey cost is precisely 2 times the (non-Vickrey) minimum
cost, but this is the result of case-specific calculations, with no general
reason found for it to be true.

Separately, we consider the problem of sparsifying a complete graph
with random edge weights so that all-pairs shortest paths are preserved
approximately. The problem of sparsifying a given graph so that for every
pair of vertices, the length of the shortest path in the sparsified graph is
within some multiplicative factor and/or additive constant of the original
distance has received substantial study in theoretical computer science.
For the complete digraph �Kn with random edge weights, we show that
whp Θ(n ln n) edges are necessary and sufficient for a spanning subgraph
to give good all-pairs shortest paths approximations.

Keywords: Average-case analysis, VCG auction, random graph, short-
est path, minimum spanning tree, MST, Random Assignment Problem.

1 Introduction

“Algorithmic mechanism design”, recognized by a Nobel Prize for Vickrey
[Vic61], is even more important with today’s “ad auctions” and other electronic
commerce. The canonical “Vickrey-Clarke-Groves” (VCG) auction mechanism
[Vic61, Cla71, Gro73] has benefits of “truthfulness” and “social welfare maxi-
mization”, but may result in arbitrarily large overpayments. We are interested
in whether VCG overpayments are reasonably small in an average-case setting.
In this introduction we first recapitulate the VCG auction mechanism and
introduce a small amount of notation, then state our average-case results.
� Research supported in part by NSF Grant DMS6721878.
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1.1 The VCG Auction Mechanism

Suppose that in a graph, each edge is provided by an independent, selfish agent
who incurs a cost for supplying it (or for allowing us to drive over it, transmit
data over it, or whatever). This “private” cost, the price point at which the
agent is neutral between selling the edge or not, is known only to herself. We
wish to buy some structure, for example a path between two particular points,
or a spanning tree, as cheaply as possible. An obvious “mechanism” to do this
is to ask each agent the cost of her edge, find the cheapest structure, and pay
each agent accordingly. The problem with this and many other mechanisms is
that agents have an incentive to lie: by inflating her claimed cost, an agent will
get more money (up to the point where she prices herself out of competition).

The Vickrey-Clarke-Groves (VCG) auction is a cleverly designed “truthful”
mechanism: assuming that the agents act without collusion, in a VCG auction it
is in each agent’s best interest to name her true cost (if her edge is used, she will
get paid at least this, but typically more). Under the same assumption, a VCG
auction also maximizes “social welfare”: the structure selected is the one that
is genuinely cheapest (and so the least possible resource is consumed in road
maintenance, data-server support, or whatever).

In a VCG auction, an “auctioneer” first finds a cheapest structure S∗, ac-
cording to the edge costs c(e) declared by the agents. (This might be a cheapest
path, for example; VCG was first explicitly applied to the shortest-path problem
in [NR99, NR01].) For each edge e ∈ S∗ in this structure, the auctioneer pays
the corresponding agent not the stated cost c(e) of the edge, but a measure of
the benefit it provided, namely the difference between what a cheapest structure
would have cost if the edge were not present or had infinite cost, call it c(S∞

e ),
and what the cheapest structure would have cost if the edge were free, call it
c(S0

e ). It is clear that neither of these terms depends on c(e). An agent whose
edge is not used, e /∈ S∗, is paid nothing.

We can now confirm three important properties of the auction. Define an
“incentive cost” for edge e as

c+(e) = c(S∞
e )− c(S∗). (1)

Then for any edge, used or not, c+(e) ≥ 0, and assuming for convenience of
discussion that there is a unique cheapest structure S∗, e is used iff c(S∗) <
c(S∞

e ), i.e., iff c+(e) > 0. If edge e is used, the payment for it is

c(S∞
e )− c(S0

e ) = [c(S∞
e )− c(S∗)] + [c(S∗)− c(S0

e )] = c+(e) + c(e),

so an edge is used iff the payment would exceed the agent’s stated cost.
Second, this shows that the auction is truthful. Since by manipulating her

price c(e) an agent cannot influence what she would be paid, but only whether
or not she will, her best strategy is to get paid iff the payment exceeds her true
cost, which she can achieve by setting c(e) to be the true cost. Setting c(e) lower
may result in her being paid less than cost; setting it higher may cause her to
lose out on a profitable sale.
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Finally, assuming that every agent does state her true cost, the structure
selected is one that is genuinely cheapest, and social welfare is maximized.

We will later take advantage of an observation based on the fact that the
incentive cost (1) is 0 for edges not used, namely that

VCG =
∑

e∈S∗

[c(e) + (c(S∞
e )− c(S∗))]

= c(S∗) +
∑

e∈E

(c(S∞
e )− c(S∗)) (2)

=
∑

e∈E

c(S∞
e )− (|E| − 1)c(S∗). (3)

1.2 Average-Case Analysis

Naturally, a VCG auction pays more than the cost of the cheapest structure,
and unfortunately the overpayment can be arbitrarily large. In [AT02, AT07] it
is shown that any truthful mechanism has bad worst-case s–t path overpayment.

A worst-case analysis of VCG costs may be overly pessimistic. One alternative
is to take real-world measurements, and a small step in this direction is included
in [FPSS02]. Another alternative, and the one we adopt here, is to compare the
VCG cost with the minimum cost in an average-case setting. This was done for
shortest paths in certain graphs in [MPS03, CR04, KN05, FGS06]. Bad VCG
costs can occur even in the average case. For example, a shortest path between
two random vertices on an n-cycle has expected length n/4 and the alternative
path expected length 3n/4, making each incentive cost Ω(n), for a Vickrey cost
of Ω(n2) where the minimum cost is O(n). The precise calculation is an easy
exercise, and the result holds equally if the edge weights are random. However,
we find that the expected VCG cost is only twice the minimum in three settings,
in each of which the expected minimum cost is a classical result in the analysis
of random structures.

We use either i.i.d. uniform [0, 1] or exponential(1) edge weights, whichever is
more convenient. It is a standard observation that since only low-cost edges are
used, all that matters asympotically for i.i.d. weights is the distribution’s density
near 0; all distributions with constant density near 0 are equivalent. (The exact
doubling we observe for MST, and the exact formulas for Random Assignment,
depend on using the uniform and exponential distributions respectively.)

Shortest Paths. We first consider shortest paths in the complete graph
Kn, or complete digraph �Kn, with i.i.d. exponential(1) edge weights, where
exponential(1) denotes the exponential distribution with mean 1. (We use the
terms edge weight, cost, or length interchangeably, and a shortest path is a
cheapest path.) Janson [Jan99] has shown that whp the distance between two
vertices, say 1 and n, in this model is (1 + o(1)) logn/n. We prove that the
asymptotic expected Vickrey cost is twice as large.
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Theorem 1. Suppose that the edges of the complete graph Kn (respectively, di-
graph �Kn) have i.i.d. exponential mean-1 edge weights. Let E(SP) be the expected
cost of a shortest path from 1 to n. Then

E(VCG) ∼ 2E(SP).

In a small digression, we consider the problem of sparsifying the random edge-
weighted digraph so that whp shortest path distances are (approximately) pre-
served. Janson [Jan99] also showed that the weighted diameter in this model is
(3 + o(1)) logn/n. It follows that whp the subgraph consisting of the 4n logn
cheapest edges contains the shortest path between each pair of vertices. If we only
keep Dn edges (so D is the average in+out degree), with D = D(n) = O(log n),
how good an approximation can we find in the all-pairs shortest path problem?

Theorem 2. In a complete digraph �Kn with i.i.d. exponential(1) edge weights,
whp, for every edge subset of size at most Dn defining a sub-digraph H, some
pair of vertices s, t has dH(s, t)/d �Kn

(s, t) ≥ log n
4D , where dH(s, t) and d �Kn

(s, t)
denote shortest distance in H and �Kn respectively.

Minimum Spanning Tree. We next consider a minimum spanning tree of Kn

with uniform [0, 1] edge weights. It was shown by Frieze [Fri85] that the expected
cost E(MST) of a minimum spanning tree on Kn satisfies limn→∞ E(MST) =
ζ(3) =

∑∞
i=1 i

−3. Even though there is no nice expression for the exact expec-
tation for finite n, we prove that the expected VCG cost is exactly (not just
asymptotically) twice as large.

Theorem 3. Suppose that the edges of the complete graph Kn have i.i.d. uni-
form [0, 1] edge weights. Let E(MST) be the expected cost of a minimum spanning
tree. Then

E(VCG) = 2E(MST).

Assignment. Finally, we consider the VCG cost of a perfect matching in a
complete bipartite graph with random edge weights, known as the “random
assignment problem”. When the edge weights are i.i.d. exponential(1) random
variables, Mézard and Parisi [MP85, MP86, MP87] gave a sophisticated math-
ematical physics argument, using the “replica method” (related to the “cavity
method”), that the minimum cost AP satisfies limn→∞ E(AP) = ζ(2) = π2/6.
Aldous [Ald92, Ald01] made this mathematically rigorous through reasoning
about a “Poisson weighted infinite tree”. For finite values of n, Parisi [Par98]
conjectured the expected cost to be

∑n
i=1 i

−2, Coppersmith and Sorkin [CS99]
extended the conjecture to cheapest cardinality-k assignments in Km,n, and
these results were proved simultaneously, by different methods, by Linusson and
Wästlund [LW04] and Nair, Prabhakar and Sharma [NPS05]. A beautiful short
proof was later found by Wästlund [Wäs].

As in the previous cases, we find that the expected VCG cost is twice the
minimum cost asymptotically (but not for finite n as it is for MST).
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Theorem 4. Suppose that the edges of the complete bipartite graph Kn,n have
i.i.d. exponential mean-1 edge weights. Let E(AP) be the expected cost of a min-
imum weight perfect matching. Then

E(VCG) = E(AP) + n

⎛

⎝ 1
n−1 +

n−1∑

l=1

1
l

n−l
n −

n−1∑

l=2

1
l(l−1)

l−1∑

i=0

n−i
n

l∏

j=i+1

(n−j)j
(n−j+1)j−1

⎞

⎠

∼ 2E(AP).

In the remainder of the paper we prove Theorems 1—4. We conjecture that
similar results hold for spanning arborescence in �Kn, perfect matching in Kn,
symmetric and asymmetric TSP, etc., the key question being why.

2 Shortest Paths

The cost model for this section will be that each edge e of the complete graph
Kn or digraph �Kn is given an independent cost Xe where Xe is exponential with
mean 1, i.e., Xe ∼ exponential(1) are i.i.d. random variables. We will compute
the expected Vickrey cost of a shortest path between two random vertices A
and B, or equivalently between vertex 1 and a random vertex B. We start
by computing the expected cost E(SP) of this path. We follow the analysis
of Dijkstra’s algorithm due to Janson [Jan99]. Janson actually considered the
symmetric (undirected) case, but there is no essential difference in the analysis
of the two. We begin with the directed (asymmetric) case.

Asymmetric (Directed) Model. In the complete digraph �Kn, if Dk is the
distance to the kth closest vertex from vertex 1 then D1 = 0 and for k > 1 we
have

E(Dk+1) = E(Dk) + 1
k(n−k) . (4)

Explanation. Growing the shortest path tree T iteratively by Dijkstra’s algo-
rithm, let Tk be the set of vertices after k rounds (including the first, trivial round),
so |Tk| = k. Writing d(v) for the distance to vertex v, andDk for the distance to the
last vertex added, we claim that for all v ∈ Tk andw /∈ Tk, the edge lengthC(v, w)
is exponential mean-1 conditioned on being at leastDk−d(v); by the memoryless
property of the exponential, this means that dv + c(v, w) = Dk +Xv,w. Further-
more, the set of these exponential variables is independent. Both assertions are
easily checked inductively. It follows from (4) that

E(Dk+1) =
k∑

i=1

1
i(n−i) . (5)

Vertex B is added to T at a random stage of this process, so the shortest path to
B has expectation

E(SP) = 1
n−1

n−1∑

k=1

k∑

i=1

1
i(n−i) = Hn−1

n−1 ∼
ln n
n , (6)

where Hn is the nth harmonic number.
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From (2), the expected VCG cost satisfies

E(VCG−c(S∗)) =
∑

e∈E

(c(S∞
e )− c(S∗)) = n(n− 1)E(c(S∞

e )− c(S∗)), (7)

the final expectation taken over random edges e as well as random values of the
other parameters (in this case, random edge weights and a random terminal B).
We now compute this quantity.

Let D(r,s)
k denote the distance to the kth closest vertex vk from vertex 1 when

e = (r, s) is excluded. In place of (5), with expectation taken over random edge
weights but a fixed missing edge (r, s), we have

E(D(r,s)
k+1 ) =

k∑

i=1

1
i(n−i)−θ(r,s,i) ,

where θ(r, s, i) is the indicator for r ∈ Ti, s /∈ Ti (in this event we are finding
the cheapest of i(n− i)− 1 edges rather than i(n− i)). Subtracting (5),

E(D(r,s)
k+1 −Dk+1) =

k∑

i=1

(
1

i(n−i)−θ(r,s,i) −
1

i(n−i

)

=
k∑

i=1

θ(r,s,i)
i(n−i)(i(n−i)−1) . (8)

To compute (7), we must now compute the expectation of (8) over a random
terminal and a random edge (r, s). Since we may compute the Dijkstra shortest-
path tree first and then randomly choose which point B is the terminal, the step
k at which B is discovered is uniformly random from 1 to n−1. However, this is
not true of the appearance times of r and s: for example, if r is the first vertex
then s cannot be the second.

For a random edge (r, s), compare the evolution of the Dijkstra process with
(r, s) missing (the VCG process) with that on the complete graph (the original
process). Let i(r) and i(s) denote the (random) steps at which vertices r and s
are discovered (e.g., i(r) = 1 if r is vertex 1). For a given set of edge weights, the
two processes evolve identically until vertex r is discovered. At that point, s (like
any other vertex but r) remains undiscovered with probability (n − r)/(n − 1).
Then, conditional on s still not being discovered at the start of step j ≥ i(r), the
probability of it being discovered in that step is (j− 1)/(j(n− j)− 1): there are
j−1 edges from Tj into s, but j edges from Tj into each of the other undiscovered
vertices. Thus, s remains undiscovered with probability j(n−j−1)/(j(n−j)−1).
It follows that, conditioned on i(r) = ρ, for a given i ≥ ρ the probability that s
has not been discovered by the start of round i is

E(θ(r, s, i) | i(r) = ρ) = n−ρ
n−1

i−1∏

j=ρ

j(n−j−1)
j(n−j)−1 = n−i

n−1

i−1∏

j=ρ

(
1 + 1

j(n−j)−1

)
. (9)
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The final product satisfies

1 ≤
i−1∏

j=ρ

(
1 + 1

j(n−j)−1

)
≤

n−1∏

j=1

exp
(

1
j(n−j)−1

)
≤ exp

⎛

⎝
n−1∑

j=1

2
n (1

j + 1
n−j )

⎞

⎠

= exp
(

4Hn−1
n

)
= exp(o(1)) = 1 + o(1).

Thus,

E(θ(r, s, i) | i(r) = ρ) ∼ n−i
n−1 ,

asymptotically the same that would be obtained were s uniformly distributed.
As previously noted, r’s discovery time i(r) is uniformly random over {1, . . . , n},
so we compute (7) via

E(c(S∞
e )− c(S∗)) = 1

n−1

n−1∑

k=1

1
n

n∑

ρ=1

k∑

i=ρ

E(θ(r,s,i)|i(r)=ρ)
i(n−i)(i(n−i)−1) (10)

∼ 1
n3

n−1∑

i=1

1
i = Hn−1

n3 ∼ ln n
n3 .

Returning to (7),

E(VCG−c(S∗)) = n(n− 1)E(c(S∞
e )− c(S∗)) ∼ lnn

n
. (11)

Since (6) established that E(c(S∗)) ∼ ln n
n , this proves the asymmetric case of

Theorem 1.

Symmetric (Undirected) Model. Our analysis extends easily to the case
where we have a complete graph Kn, as opposed to a complete digraph, still
using i.i.d. exponential(1) edge weights.

3 All-Pairs Shortest Paths

We give an outline proof of Theorem 2, which is somewhat peripheral to the
main theme of the paper. Let an edge e = (s, t) be bad if (i) it is “short”,
with cost c(e) ≤ 2D/n, and (ii) d �Kn\e(s, t) ≤

log n
2n . For a random edge e,

P(e is bad) = P(i)P(ii) because these events are independent, depending re-
spectively on the length of e and the lengths of the other edges. The theo-
rem’s conclusion is null unless D = O(log n), thus D = o(n), in which case
P(i) = 1 − exp(−2D/n) ∼ 2D

n . For (ii) we use that dH(s, t) ≥ d �Kn
(s, t); we

have seen in (6) that E(d �Kn
(s, t)) ∼ log n

n and Janson [Jan99] has shown that
Var(d �Kn

(s, t)) = O(n−2). (These results are shown for undirected graphs but
follow similarly for directed graphs.) By Cheychev’s inequality, then, P(ii) =
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O(1/ log2 n). Multiplying P(i) and P(ii), the number of bad edges Z satisfies
E(Z) = O(Dn/ log2 n), and by Markov’s inequality, Z ≤ Dn/ logn whp. From
P(i) ∼ 2D/n it is immediate that the (binomially distributed) number of such
short edges is at least 3

2Dn whp. Assuming that all the above high-probability
events hold, for any way of selecting Dn edges, there will be at least Dn/2
short edges not selected, and since Z ≤ Dn/ logn, at least Dn/3 of these are
not bad. These edges are short yet are not bad, thus must violate (ii), so that
d �Kn

(s, t) ≤ c(e) ≤ 2D
n while dH(s, t) ≥ d �Kn\e(s, t) >

log n
2n . This completes the

proof of Theorem 2, since for these edges dH(s, t)/d �Kn
(s, t) ≥

1
2 log n/n

2D/n = log n
4D .

In fact it shows more: for a large number of edges (Θ(n) of them), not only
is the approximation ratio poor, but the additive gap is large as well: of order
Ω(log n/n), the same order as a typical distance.

4 Minimum Spanning Tree

The cost model for this section will be that each edge of the complete graph Kn

is given an independent cost Xe where Xe is uniform [0, 1] for all e ∈ E(Kn). We
use the integral formula of Avram and Bertsimas [AB92]: For a connected graph
G = (V,E) with uniform [0, 1] edge weights Xe, e ∈ E, let MSTG = MST(G,X)
denote the length of the minimum spanning tree with these edge weights. Then

E(MSTG) =
∫ 1

p=0
E(κ(Gp))dp− 1 (12)

where Gp is the random subgraph of G obtained by including each edge inde-
pendently with probability p and κ(Gp) is the number of components.

For 1 ≤ s ≤ n let Cs,m denote the number of connected graphs of order s and
size m. Using

κ(G) =
n∑

s=1

(
n

s

)
1(the s vertices induce a connected subgraph of G)

=
n∑

s=1

(
n

s

) (s
2)∑

m=s−1

Cs,m∑

i=1

1(the ith s,m graph is a component of G) , (13)

E(MSTKn) =
n∑

s=1

(s
2)∑

m=s−1

(
n

s

)
Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)dp− 1

=
n∑

s=1

(s
2)∑

m=s−1

C′
s,m − 1 (14)

where, by
∫ 1

p=0 p
m(1− p)kdp = m!k!

(m+k+1)! ,

C′
s,m =

(
n

s

)
Cs,m

m!
((

s
2

)
−m+ s(n− s)

)
!

((
s
2

)
+ s(n− s) + 1

)
!
. (15)
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Going back to (12) and reasoning similarly as for (13),

∑

e∈Kn

E(MSTKn\e) =
∑

e∈Kn

[ n∑

s=1

(s
2)−1(s=n)∑

m=s−1

∫ 1

0
E

(
#(s-vertex m-edge

components of (Kn \ e)p)
)
dp− 1

]

=
n∑

s=1

(s
2)−1(s=n)∑

m=s−1

(A0
s,m +A2

s,m +A1
s,m)−

(
n
2

)
(16)

where A0
s,m is the integral over p of the sum over e of the expected number

of s-vertex m-edge components of a random probability-p subgraph of Kn \ e
containing neither endpoint of e, A2

s,m is the like sum for components containing
both endpoints, and A1

s,m that for exactly one endpoint. For an edge e of Ks,
let Ĉs,m denote the number of m-edge spanning connected subgraphs of Ks

containing e. We have (
s

2

)
Ĉs,m = mCs,m (17)

since both sides of this equation count the number of pairs (f,H) where H is
an m-edge spanning subgraph of [s] and f is an edge of H . (Throughout, we
take

(
n
k

)
= 0 if n < k. Above, if s = 1 the left side is 0, and so is the right,

since s = 1 implies m = 0.) To calculate A0
s,m we select s vertices, whereupon

edge e must have both endpoints outside these s, while on these s vertices any
subgraph Cs,m is acceptable, and we integrate the probability that the chosen
subgraph is induced and isolated in G = Kn \ e:

A0
s,m =

(
n

s

)(
n− s

2

)
Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)dp =

(
n− s

2

)
C′

s,m,

where the last line uses (15). The formula correctly evaluates to 0 for s > n− 2,
and thus can safely be applied for all pairs s,m in the sum (16).

In calculating A2
s,m, both endpoints of e are within the s vertices selected, but

the graph under consideration is G = Kn \ e and a subgraph of G cannot use
e, so by (15) the number of valid subgraphs is Cs,m − Ĉs,m, and the probability
that a subgraph is induced is adjusted to reflect that the size of G is

(
s
2

)
− 1:

A2
s,m =

(
n

s

)(
s

2

)
(Cs,m − Ĉs,m)

∫ 1

p=0
pm(1 − p)(

s
2)−1−m+s(n−s)dp

=
((
s

2

)
−m

) (
s
2

)
+ s(n− s) + 1

(
s
2

)
−m+ s(n− s)

C′
s,m.

The formula properly evaluates to 0 for s = 1 (where m = 0) and for m =
(

s
2

)
.

It cannot be applied when s = n, m =
(
n
2

)
, where it is 0/0, but anyway this pair

is excluded from the sum (16).
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Calculating A1
s,m is similar but now the missing edge is among the s(n − s)

cross edges, any of the Cs,m subgraphs on the s vertices is acceptable, and the
probability that a subgraph is isolated is adjusted to reflect that the number of
cross edges is s(n− s)− 1:

A1
s,m =

(
n

s

)
s(n− s)Cs,m

∫ 1

p=0
pm(1− p)(

s
2)−m+s(n−s)−1dp

= s(n− s)
(

s
2

)
+ s(n− s) + 1

(
s
2

)
−m+ s(n− s)

C′
s,m.

This formula properly evaluates to 0 for s = n, except that like the formula for
A2 it is invalid for the pair s = n, m =

(
n
2

)
excluded from (16).

Now observe that

A2
s,m +A1

s,m =
((
s

2

)
−m+ s(n− s)

) (
s
2

)
+ s(n− s) + 1

(
s
2

)
−m+ s(n− s)

C′
s,m

=
((
s

2

)
+ s(n− s) + 1

)
C′

s,m.

The terms being canceled are 0 only in the case m =
(

s
2

)
and s = n excluded

from (16). Thus

A0
s,m +A1

s,m +A2
s,m =

((
n−s

2

)
+

(
s
2

)
+ s(n− s) + 1

)
C′

s,m =
((

n
2

)
+ 1

)
C′

s,m.

Substituting this into (16), and writing N =
(
n
2

)
and E = E(MSTKn), we have

∑

e∈Kn

E(MSTKn\e) =
n∑

s=1

(s
2)−1(s=n)∑

m=s−1

(N + 1)C′
s,m −N.

For s = n we extend the sum to include
(
n
2

)
= N , subtracting out (N + 1)C′

n,N

to correct:

= (N + 1)

⎛

⎜
⎝

n∑

s=1

(s
2)∑

m=s−1

C′
s,m − C′

n,N

⎞

⎟
⎠−N.

From (14) the double sum is E+1, while Cn,N = 1 and thus C′
n,N = 1/(N +1),

so this is

= (N + 1)
(
E + 1− 1

N + 1

)
−N = (N + 1)E.

Going back to (3) we see that

E(VCG) = (N + 1)E − (N − 1)E = 2E

and this completes the proof of Theorem 3.
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5 Assignment Problem

Let the weight of edge (i, j) be denoted xi,j . Let X be the n × n matrix with
entries xi,j . Let Yj , j = 1, . . . , n, be the (n − 1) × (n − 1) matrices obtained
from X by deleting row n and column j. Let Tk, k = 0, 1, . . . , n − 1, denote
the minimum assignment costs of Yj , j = 1, . . . , n, sorted into increasing
order. Nair, Prabhakar and Sharma [NPS05] proved that, for a matrix of i.i.d.
exponential(1) variables, the increments Tk − Tk−1 are independent, and

Tk − Tk−1 ∼ exp(k(n− k)). (18)

A minimum assignment of a (random) n × n matrix is given by a value in
the “missing” n’th row and the minimum assignment in the complementary
submatrix. If xn,π(n) belongs to the minimum assignment, its Vickrey bonus is
the cost difference between this assignment and the smallest assignment using a
different element in row n. We are thus interested in gap between the smallest
and second-smallest values of

xn,σ(j) + Tj (19)

where xn,j ∼ exponential(1) are independent random variables and σ(j) is a
random permutation. This is the incentive cost of the nth row; the total Vickrey
incentive cost is the sum of similar values for all rows, and thus the total expected
Vickrey incentive cost is n times the expectation of the difference of the minimum
and second-minimum values of (19).

We explicitly compute the expected Vickrey incentive cost. Going back to
(18) and (19) we now fix the values of Ti = ti for i = 0, . . . , n − 1 and define
tn = ∞. Let Yj = xn,σ(j) + tj and Y(1) < Y(2) be the two smallest values of the
Yj . We want to evaluate the following integral

∫ ∞

0
xP(Y(2) = x)dx. (20)

Assume Y(1) = Yi and Y(2) = Yj = x. Then we must have Yi < x, Yj = x and
Yk > x for k ∈ {0, . . . , n− 1} \ {i, j}. Since x > Yi ≥ ti and x = Yj ≥ tj we must
have x ≥ tmax{i,j}. We break up the integral (20) into integrals over [tl, tl+1]
where max {i, j} ≤ l ≤ n − 1. The integral (20) is then obtained by summing
over all possible pairs i, j where i 
= j giving

∑

i�=j

n∑

l=max{i,j}

∫ tl+1

tl

xP(Yi < x, Yj = x, Yk ≥ x, k ∈ {0, . . . , n− 1} \ {i, j})dx

=
∑

i�=j

n∑

l=max{i,j}

∫ tl+1

tl

x(1 − e−(x−ti))e−(x−tj)
∏

k∈{0,...,n−1}\{i,j}
P(Yk ≥ x)dx

=
∑

i�=j

n∑

l=max{i,j}

∫ tl+1

tl

x(1 − e−(x−ti))e−(x−tj)
∏

k∈0,...,l\{i,j}
e−(x−tk)dx
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=
∑

i�=j

n∑

l=max{i,j}

∫ tl+1

tl

x
(
e−(lx−t0−...−ti−1−ti+1−...tl − e−((l+1)x−t0−...tl)

)
dx.

(21)

Setting sl = t0 + . . .+ tl, the innermost integral in (21) can be evaluated as

∫ tl+1

tl

x
(
e−(lx−sl+ti) − e−((l+1)x−sl)

)
dx =

[
−x

l
e−(lx−sl+ti) − 1

l2
e−(lx−sl+ti) +

x

l + 1
e−((l+1)x−sl) +

1

(l + 1)2
e−((l+1)x−sl

]tl+1

tl

.

Note that our double summation in (21) can be split into four parts of the form

∑

i�=j

n∑

l=max{i,j}
blai =

n−1∑

l=1

bl

⎛

⎝
∑

i�=j,i,j≤l

ai

⎞

⎠ =
n−1∑

l=1

bl

(
l∑

i=0

lai

)

=
n−1∑

l=1

lbl

(
l∑

i=0

ai

)

where ai = e−ti for the first two terms of (21) and ai = 1 for the last two. We
now evaluate each part of (21) separately, call them I1, . . . , I4.

I1 =
∑

i�=j

n∑

l=max{i,j}

[
−x
l
e−(lx−sl+ti)

]tl+1

tl

= t1 +
n−1∑

l=1

tle
−(ltl−sl−1)

where by abuse of notation we have used the fact that tne−((n−1)tn−sn−1) = 0.
We have also used the identity, under the assumption un = 0,

n−1∑

l=1

(ul − ul+1)
l∑

i=0

vi = u1v0 +
n−1∑

l=1

ulvl.

In this version we must omit the calculations of the remaining terms, but

I2 = 1 +
n−1∑

l=1

1
l
e−(ltl−sl−1), I3 = −

n−1∑

l=1

tle
−(ltl−sl−1), I4 = −

n−1∑

l=1

1
l(l+1)e

−(ltl−sl−1).

Notice that

I1 + I3 = t1, I2 + I4 = 1 +
n−1∑

l=1

1
l+1e−(ltl−sl−1) −

n−1∑

l=2

1
l(l−1) e

−(ltl−sl)

(
l−1∑

i=0

etl−ti

)

.

The minimum Yj has expectation t0 +1−
∑n−1

l=1
1

l(l+1)e
−(ltl−sl−1) [NPS05], so

the expected difference Dn = I1 + I3 + I2 + I4 −minYj is given by

Dn = (t1 − t0) +
n−1∑

l=1

1
l e

−(ltl−sl−1) −
n−1∑

l=2

1
l(l−1)e

−(ltl−sl)

(
l−1∑

i=0

etl−ti

)

. (22)
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Taking the expectation over the Ti’s we get from [NPS05] and (18) that

E[e−(lTl−Sl−1)] =
l∏

j=1

E[e−j(Tj−Tj−1)] =
l∏

j=1

n−j
n−j+1 = n−l

n .

Similarly we get for i = 0, . . . , l − 1

E[e(Tl−Ti)e−(lTl−Sl−1)] = E[e((Tl−Tl−1)+...+(Ti+1−Ti))−
∑ l

j=1 j(Tj−Tj−1)]

= n−i
n

l∏

j=i+1

(n−j)j
(n−j+1)j−1 .

Plugging this into (22) we get

Dn = 1
n−1 +

n−1∑

l=1

1
l

n−l
n −

n−1∑

l=2

1
l(l−1)

l−1∑

i=0

n−i
n

l∏

j=i+1

(n−j)j
(n−j+1)j−1 .

One can show that Dn ∼ π2

6n , completing the proof of Theorem 4.
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[AT02] Archer, A., Tardos, É.: Frugal path mechanisms. In: Proceedings of the
Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, California, January 06-08, 2002, pp. 991–999 (2002)
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A Hypergraph Dictatorship Test with Perfect
Completeness
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Abstract. A hypergraph dictatorship test is first introduced by Samorodnitsky
and Trevisan and serves as a key component in their unique games based PCP
construction. Such a test has oracle access to a collection of functions and de-
termines whether all the functions are the same dictatorship, or all their low de-
gree influences are o(1). Their test makes q ≥ 3 queries, has amortized query

complexity 1 + O
(

log q
q

)
, but has an inherent loss of perfect completeness. In

this paper we give an (adaptive) hypergraph dictatorship test that achieves both

perfect completeness and amortized query complexity 1 + O
(

log q
q

)
.

Keywords: Property testing, Gowers norm, Fourier analysis, PCP.

1 Introduction

Linearity and dictatorship testing have been studied in the past decade both for their
combinatorial interest and connection to complexity theory. These tests distinguish
functions which are linear/dictator from those which are far from being a linear/dictator
function. The tests do so by making queries to a function at certain points and receiv-
ing the function’s values at these points. The parameters of interest are the number of
queries a test makes and the completeness and soundness of a test.

In this paper we shall work with boolean functions of the form f : {0, 1}n → {-1, 1}.
We say a function f is linear if f = (−1)

∑
i∈S xi for some subset S ⊆ [n]. A dictator

function is simply a linear function where |S| = 1, i.e., f(x) = (−1)xi for some
i. A dictator function is often called a long code, and it is first used in [1] for the
constructions of probabilistic checkable proofs (PCPs), see e.g., [2,3]. Since then, it
has become standard to design a PCP system as the composition of two verifiers, an
outer verifier and an inner verifier. In such case, a PCP system expects the proof to be
written in such a way so that the outer verifier, typically based on the verifier obtained
from Raz’s Parallel Repetition Theorem [4], selects some tables of the proof according
to some distribution and then passes the control to the inner verifier. The inner verifier,
with oracle access to these tables, makes queries into these tables and ensures that the
tables are the encoding of some error-correcting codes and satisfy some joint constraint.

� Research supported in part by an NSF graduate fellowship, NSF Award CCR-0514915, the Na-
tional Natural Science Foundation of China Grant 60553001, and the National Basic Research
Program of China Grant 2007CB807900,2007CB807901.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 448–461, 2009.
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The long code encoding is usually employed in these proof constructions, and the inner
verifier simply tests whether a collection of tables (functions) are long codes satisfying
some constraints. Following this paradigm, constructing a PCP with certain parameters
reduces to the problem of designing a long code test with similar parameters.

One question of interest is the tradeoff between the soundness and query complex-
ity of a tester. If a tester queries the functions at every single value, then trivially the
verifier can determine all the functions. One would like to construct a dictatorship test
that has the lowest possible soundness while making as few queries as possible. One
way to measure this tradeoff between the soundness s and the number of queries q is
amortized query complexity, defined as q

log s−1. This investigation, initiated in [5], has
since spurred a long sequence of works [6,7,8,9]. All the testers from these works run
many iterations of a single dictatorship test by reusing queries from previous iterations.
The techniques used are Fourier analytic, and the best amortized query complexity from

this sequence of works has the form 1 +O
(

1√
q

)
.

The next breakthrough occurs when Samorodnitsky [10] introduces the notion of a
relaxed linearity test along with new ideas from additive combinatorics. In property
testing, the goal is to distinguish objects that are very structured from those that are
pseudorandom. In the case of linearity/dictatorship testing, the structured objects are
the linear/dictator functions, and functions that are far from being linear/dictator are in-
terpreted as pseudorandom. The recent paradigm in additive combinatorics is to find the
right framework of structure and pseudorandomness and analyze combinatorial objects
by dividing them into structured and pseudorandom components, see e.g. [11] for a sur-
vey. One success is the notion of Gowers norm [12], which has been fruitful in attacking
many problems in additive combinatorics and computer science. In [10], the notion of
pseudorandomness for linearity testing is relaxed; instead of designating the functions
that are far from being linear as pseudorandom, the functions having small low degree
Gowers norm are considered to be pseudorandom. By doing so, an optimal tradeoff be-
tween soundness and query complexity is obtained for the problem of relaxed linearity
testing. (Here the tradeoff is stronger than the tradeoff for the traditional problem of
linearity testing.)

In a similar fashion, in the PCP literature since [13], the pseudorandom objects in
dictatorship tests are not functions that are far from being a dictator. The pseudorandom
functions are typically defined to be either functions that are far from all “juntas” or
functions whose “low-degree influences” are o(1). Both considerations of a dictator-
ship test are sufficient to compose the test in a PCP construction. In [14], building on
the analysis of the relaxed linearity test in [10], Samorodnitsky and Trevisan construct a
dictatorship test (taking the view that functions with arbitrary small “low-degree influ-

ences are pseudorandom) with amortized query complexity 1+O
(

log q
q

)
. Furthermore,

the test is used as the inner verifier in a conditional PCP construction (based on unique
games [15]) with the same parameters. However, their dictatorship test suffers from an
inherent loss of perfect completeness. Ideally one would like testers with one-sided er-
rors. One, for aesthetic reasons, testers should always accept valid inputs. Two, for some
hardness of approximation applications, in particular coloring problems (see e.g. [16]
or [17]), it is important to construct PCP systems with one-sided errors.

In this paper, we prove the following theorem:
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Theorem 1 (main theorem). For every q ≥ 3, there exists an (adaptive) dictatorship

test that makes q queries, has completeness 1, and soundness O(q3)
2q ; in particular it has

amortized query complexity 1 +O
(

log q
q

)
.

Our tester is a variant of the one given in [14]. Our tester is adaptive in the sense that it
makes its queries in two stages. It first makes roughly log q nonadaptive queries into the
function. Based on the values of these queries, the tester then selects the rest of the query
points nonadaptively. Our analysis is based on techniques developed in [8,14,16,18].

1.1 Future Direction

Unfortunately, the adaptivity of our test is a drawback. The correspondence between
PCP constructions and hardness of approximation needs the test to be fully nonadap-
tive. However, a more pressing issue is that our hypergraph dictatorship test does not
immediately imply a new PCP characterization of NP. The reason is that a dictatorship
test without “consistency checks” is most easily composed with the unique label cover
defined in [15] as the outer verifier in a PCP reduction. As the conjectured NP-hardness
of the unique label cover cannot have perfect completeness, the obvious approach in com-
bining our test with the unique games-based outer verifier does not imply a new PCP
result. However, there are variants of the unique label cover (e.g., Khot’s d to 1 Con-
jecture) [15] that do have conjectured perfect completeness, and these variants are used
to derive hardness of coloring problems in [17]. We hope that our result combined with
similar techniques used in [17] may obtain a new conditional PCP construction and will
motivate more progress on constraint satisfaction problems with bounded projection.

1.2 Related Works

The problem of linearity testing was first introduced in [19]. The framework of property
testing was formally set up in [20]. The PCP Theorems were first proved in [2,3]; dic-
tatorship tests first appeared in the PCP context in [1], and many dictatorship tests and
variants appeared throughout the PCP literature. Dictatorship test was also considered
as a standalone property testing in [21]. As mentioned, designing testers and PCPs fo-
cusing on amortized query complexity was first investigated in [5], and a long sequence
of works [6,7,8,9] followed. The first tester/PCP system focusing on this tradeoff while
obtaining perfect completeness was achieved in [16].

The orthogonal question of designing testers or PCPs with as few queries as possible
was also considered. In a highly influential paper [13], Håstad constructed a PCP sys-
tem making only three queries. Many variants also followed. In particular PCP systems
with perfect completeness making three queries were also achieved in [18,22]. Similar
to our approach, O’Donnell and Wu [23] designed an optimal three bit dictatorship test
with perfect completeness, and later the same authors constructed a conditional PCP
system [24].

2 Preliminaries

We fix some notation and provide the necessary background in this section. We let [n]
denote the set {1, 2, . . . , n}. For a vector v ∈ {0, 1}n, we write |v| =

∑
i∈[n] vi. We let
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∧ denote the boolean AND, where a∧ b = 1 iff a = b = 1. For vectors v, w ∈ {0, 1}n,
we write v ∧w to denote the vector obtained by applying AND to v and w component-
wise. We abuse notation and sometimes interpret a vector v ∈ {0, 1}n as a subset v ⊆
[n] where i ∈ v iff vi = 1. For a boolean function f : {0, 1}n → {0, 1}, we make the
convenient notational change from {0, 1} to {-1, 1} and write f : {0, 1}n → {-1, 1}.

2.1 Fourier Analysis

Definition 1 (Fourier transform). For a real-valued function f : {0, 1}n → R, we
define its Fourier transform f̂ : {0, 1}n → R to be f̂(α) = Ex∈{0,1}n f(x)χα(x),
where χα(x) = (−1)

∑
i∈[n] αixi . We say f̂(α) is the Fourier coefficient of f at α, and

the characters of {0, 1}n are the functions {χα}α∈{0,1}n .

It is easy to see that for α, β ∈ {0, 1}n, Eχα · χβ is 1 if α = β and 0 otherwise. Since
there are 2n characters, they form an orthonormal basis for functions on {0, 1}n, and
we have the Fourier inversion formula f(x) =

∑
α∈{0,1}n f̂(α)χα(x) and Parseval’s

Identity
∑

α∈{0,1}n f̂(α)2 = Ex[f(x)2].

2.2 Influence of Variables

For a boolean function f : {0, 1}n → {-1, 1}, the influence of the i-variable, Ii(f),
is defined to be Prx∈{0,1}n [f(x) 
= f(x + ei)], where ei is a vector in {0, 1}n with
1 on the i-th coordinate 0 everywhere else. This corresponds to our intuitive notion of
influence: how likely the outcome of f changes when the i-th variable on a random
input is flipped. For the rest of this paper, it will be convenient to work with the Fourier
analytic definition of Ii(f) instead, and we leave it to the readers to verify that the two
definitions are equivalent when f is a boolean function.

Definition 2. Let f : {0, 1}n → R. We define the influence of the i-th variable of f to
be

Ii(f) =
∑

α∈{0,1}n: αi=1

f̂(α)2.

We shall need the following technical lemma, which is Lemma 4 from [14], and it gives
an upper bound on the influence of a product of functions.

Lemma 1 (from [14]). Let f1, . . . , fk : {0, 1}n → [−1, 1] be a collection of k bounded
real-valued functions, and define f(x) =

∏k
i=1 fi(x) to be the product of these k func-

tions. Then for each i ∈ [n],

Ii(f) ≤ k ·
k∑

j=1

Ii(fj).

When {fi} are boolean functions, it is easy to see that Ii(f) ≤
∑k

j=1 Ii(fj) by the
union bound.

We now define the notion of low-degree influence.
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Definition 3. Let w be an integer between 0 and n.We define the w-th degree influence
of the i-th variable of a function f : {0, 1}n → R to be

I≤w
i (f) =

∑

α∈{0,1}n: αi=1, |α|≤w

f̂(α)2.

2.3 Gowers Norm

In [12], Gowers uses analytic techniques to give a new proof of Szemerédi’s Theo-
rem [25] and in particular, initiates the study of a new norm of a function as a measure
of pseudorandomness. Subsequently this norm is termed the Gowers uniformity norm
and has been intensively studied and applied in additive combinatorics, see e.g. [11] for
a survey. The use of the Gowers norm in computer science is initiated in [10,14].

Definition 4. Let f : {0, 1}n → R. We define the d-th dimension Gowers uniformity
norm of f to be

||f ||Ud
=

⎛

⎝ E
x, x1,...,xd

⎡

⎣
∏

S⊆[d]

f

(

x+
∑

i∈S

xi

)⎤

⎦

⎞

⎠

1/2d

.

For a collection of 2d functions fS : {0, 1}n → R, S ⊂ [d], we define the d-th
dimension Gowers inner product of {fS}S⊆d to be

〈
{fS}S⊆[d]

〉
Ud

= E
x, x1,...,xd

⎡

⎣
∏

S⊆[d]

fS

(

x+
∑

i∈S

xi

)⎤

⎦ .

When f is a boolean function, one can interpret the Gowers norm as simply the expected
number of “affine parallelepipeds” of dimension d.

For the analysis of hypergraph-based dictatorship test, we shall encounter the fol-
lowing expression.

Definition 5. Let {fS}S⊆[d] be a collection of functions where fS : {0, 1}n → R. We
define the d-th dimension Gowers linear inner product of {fS} to be

〈
{fS}S⊆[d]

〉
LUd

= E
x1,...,xd

⎡

⎣
∏

S⊆[d]

fS

(
∑

i∈S

xi

)⎤

⎦ .

This definition is a variant of the Gowers inner product and is in fact upper bounded by
the square root of the Gowers inner product as shown in [14]. Furthermore they showed
that if a collection of functions has large Gowers inner product, then two functions must
share an influential variable. Thus, one can infer the weaker statement that large linear
Gowers inner product implies two functions have an influential variable.

Lemma 2 (from [14] ). Let {fS}S⊆[d] be a collection of bounded functions of the form
fS : {0, 1}n → [−1, 1]. Suppose

〈
{fS}S⊆[d]

〉
LUd

≥ ε and E f[d] = 0. Then there
exists some variable i, some subsets S 
= T ⊆ [d] such that the influences of the i-th
variable in both fS and fT are at least ε4

2O(d) .
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3 Dictatorship Test

Definition 6 (dictatorship). For i ∈ [n], the i-th dictator is the function f(x) =
(−1)xi .

In the PCP literature, the i–th dictator is also known as the long code encoding of
i, 〈(−1)xi〉x∈{0,1}n , which is simply the evaluation of the i-th dictator function at all
points.

Now let us define a t-function dictatorship test. Suppose we are given oracle access
to a collection of boolean functions f1, . . . , ft. We want to make as few queries as
possible into these functions to decide if all the functions are the same dictatorship, or
no two functions have some common structure. More precisely, we have the following
definition:

Definition 7. We say that a test T = T f1,...,ft is a t–function dictatorship test with
completeness c and soundness s if T is given oracle access to a family of t functions
f1, . . . , ft : {0, 1}n → {-1, 1}, such that

– if there exists some variable i ∈ [n] such that for all a ∈ [t], fa(x) = (−1)xi , then
T accepts with probability at least c, and

– for every ε > 0, there exist a positive constant τ > 0 and a fixed positive inte-
ger w such that if T accepts with probability at least s + ε, then there exist two
functions fa, fb where a, b ∈ [t], a 
= b and some variable i ∈ [n] such that
I≤w
i (fa), I≤w

i (fb) ≥ τ .

A q-function dictatorship test making q queries, with soundness q+1
2q was proved

in [14], but the test suffers from imperfect completeness. We obtain a (q −O(log q))–
dictatorship test that makes q queries, has completeness 1, soundness O(q3)

2q , and in

particular has amortized query complexity 1 + O
(

log q
q

)
, the same as the test in [14].

By a simple change of variable, we can more precisely state the following:

Theorem 2 (main theorem restated). For infinitely many t, there exists an adaptive
t-function dictatorship test that makes t+ log(t+ 1) queries, has completeness 1, and

soundness (t+1)2

2t .

Our test is adaptive and selects queries in two passes. During the first pass, it picks
an arbitrary subset of log(t + 1) functions out of the t functions. For each function
selected, our test picks a random entry y and queries the function at entry y. Then
based on the values of these log(t+1) queries, during the second pass, the test selects t
positions nonadaptively, one from each function, then queries all t positions at once. The
adaptivity is necessary in our analysis, and it is unclear if one can prove an analogous
result with only one pass.

3.1 Folding

As introduced by Bellare, Goldreich, and Sudan [1], we shall assume that the functions
are “folded” as only half of the entries of a function are accessed. We require our dic-
tatorship test to make queries in a special manner. Suppose the test wants to query f at
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the point x ∈ {0, 1}n. If x1 = 1, then the test queries f(x) as usual. If x1 = 0, then
the test queries f at the point 1 + x = (1, 1 + x2, . . . , 1 + xn) and negates the value it
receives. It is instructive to note that folding ensures f(1 + x) = −f(x) and E f = 0.

3.2 Basic Test

For ease of exposition, we first consider the following simplistic scenario. Suppose we
have oracle access to just one boolean function. Furthermore we ignore the tradeoff
between soundness and query complexity. We simply want a dictatorship test that has
completeness 1 and soundness 1

2 . There are many such tests in the literature; however,
we need a suitable one which our hypergraph dictatorship test can base on. Our basic
test below is a close variant of the one proposed by Guruswami, Lewin, Sudan, and
Trevisan [18].

BASIC TEST T : with oracle access to f ,

1. Pick xi, xj , y, z uniformly at random from {0, 1}n.
2. Query f(y).
3. Let v = 1−f(y)

2 . Accept iff

f(xi)f(xj) = f(xi + xj + (v1 + y) ∧ z).

Lemma 3. The test T is a dictatorship test with completeness 1.

Proof. Suppose f is the �-th dictator, i.e., f(x) = (−1)x	 . First note that

v + y� =
1− (−1)y	

2
+ y�,

which evaluates to 0. Thus by linearity of f

f(xi + xj + (v1 + y) ∧ z) = f(xi)f(xj)f((v1 + y) ∧ z)
= f(xi)f(xj)(−1)(v+y	)∧z	

= f(xi)f(xj)

and the test always accepts. ��

To analyze the soundness of the test T , we first need to derive a Fourier analytic expres-
sion for the acceptance probability of T . Its proof is standard and omitted due to space
limitation. Readers may find a proof in the full version of this paper [26].

Proposition 1. Let p be the acceptance probability of T . Then

p =
1
2

+
1
2

∑

α∈{0,1}n

f̂(α)3 2−|α|

⎛

⎝1 +
∑

β⊆α

f̂(β)

⎞

⎠ .
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For sanity check, let us interpret the expression for p. Suppose f = χα for some α 
=
0 ∈ {0, 1}n, i.e., f̂(α) = 1 and all other Fourier coefficients of f are 0. Then clearly
p = 1

2 +2−|α|, which equals 1 whenever f is a dictator function as we have just shown.
If |α| is large, then T accepts with probability close to 1

2 .We now analyze the soundness
of the test.

Lemma 4. The test T is a dictatorship test with soundness 1
2 .

Proof. Suppose the test T passes with probability at least 1
2 + ε, for some ε > 0. By

applying Proposition 1, Cauchy-Scharz Inequality, and Parseval’s Identity, respectively,
we obtain

ε ≤ 1
2

∑

α∈{0,1}n

f̂(α)3 2−|α|

⎛

⎝1 +
∑

β⊆α

f̂(β)

⎞

⎠

≤ 1
2

∑

α∈{0,1}n

f̂(α)3 2−|α|

⎛

⎜
⎝1 +

⎛

⎝
∑

β⊆α

f̂(β)2

⎞

⎠

1
2

· 2
|α|
2

⎞

⎟
⎠

≤
∑

α∈{0,1}n

f̂(α)3 2−
|α|
2 .

Pick the least positive integer w such that 2−
w
2 ≤ ε

2 . Then by Parseval’s again,

ε

2
≤

∑

α∈{0,1}n:|α|≤w

f̂(α)3

≤ max
α∈{0,1}n:|α|≤w

∣∣
∣f̂(α)

∣∣
∣ .

So there exists some β ∈ {0, 1}n, |β| ≤ w such that ε
2 ≤

∣
∣
∣f̂(β)

∣
∣
∣ .With f being folded,

β 
= 0. Thus, there exists an i ∈ [n] such that βi = 1 and

ε2

4
≤ f̂(β)2 ≤

∑

α∈{0,1}n:αi=1,|α|≤w

f̂(α)2.

��

3.3 Hypergraph Dictatorship Test

We prove the main theorem in this section. The basis of our hypergraph dictatorship
test will be very similar to the test in the previous section. We remark that we did not
choose to present the exact same basic test for hopefully a clearer exposition.

We now address the tradeoff between query complexity and soundness. If we sim-
ply repeat the basic test a number of iterations independently, the error is reduced, but
the query complexity increases. In other words, the amortized query complexity does
not change if we simply run the basic test for many independent iterations. Follow-
ing Trevisan [5], all the dictatorship tests that save query complexity do so by reusing
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queries made in previous iterations of the basic test. To illustrate this idea, suppose test
T queries f at the points x1 + h1, x2 + h2, x1 + x2 + h1,2 to make a decision. For the
second iteration, we let T query f at the points x3 + h3 and x1 + x3 + h1,3 and reuse
the value f(x1 + h1) queried during the first run of T . T then uses the three values to
make a second decision. In total T makes five queries to run two iterations.

We may think of the first run of T as parametrized by the points x1 and x2 and the
second run of T by x1 and x3. In general, we may have k points x1, . . . , xk and a graph
on [k] vertices, such that each edge e of the graph corresponds to an iteration of T
parametrized by the points {xi}i∈e. We shall use a complete hypergraph on k vertices
to save on query complexity, and we will argue that the soundness of the algorithm
decreases exponentially with respect to the number of iterations.

Formally, consider a hypergraphH = ([k], E). Let {fa}a∈[k]∪E be a collection of
boolean functions of the form fa : {0, 1}n → {-1, 1}. We assume all the functions are
folded, and so in particular, E fa = 0. Consider the following test:

HYPERGRAPH H -TEST: with oracle access to {fa}a∈[k]∪E ,

1. Pick x1, . . . , xk, y1, . . . , yk, and {za}a∈[k]∪E independently and uniformly at
random from {0, 1}n.

2. For each i ∈ [k], query fi(yi).
3. Let vi = 1−fi(yi)

2 .
Accept iff for every e ∈ E,

∏

i∈e

[fi(xi + (vi1 + yi) ∧ zi)] = fe

(
∑

i∈e

xi + (Σi∈e(vi1 + yi)) ∧ ze

)

.

We make a few remarks regarding the design of H-Test. The hypergraph test by
Samorodnitsky and Trevisan [14] accepts iff for every e ∈ E,

∏
i∈e fi(xi + ηi) equals

fe(
∑

i∈e xi+ηe),where the bits in each vector ηa are chosen independently to be 1 with
some small constant, say 0.01. The noise vectors ηa rule out the possibility that linear
functions with large support can be accepted. To obtain a test with perfect completeness,
we use ideas from [18,21,16] to simulate the effect of the noise perturbation.

Note that for y, z chosen uniformly at random from {0, 1}n, the vector y ∧ z is a 1
4–

noisy vector. As observed by Parnas, Ron, and Samorodnitsky [21], the test f(y ∧ z) =
f(y) ∧ f(z) distinguishes between dictators and linear functions with large support.
One can also combine linearity and dictatorship testing into a single test of the form
f(x1 +x2 +y∧z)(f(y)∧f(z)) = f(x1)f(x2) as Håstad and Khot demonstrated [16].
However, iterating this test is too costly for us. In fact, Håstad and Khot also consider
an adaptive variant that reads k2 + 2k bits to obtain a soundness of 2−k2

, the same
parameters as in [7], while achieving perfect completeness as well. Without adaptivity,
the test in [16] reads k2 +4k bits. While both the nonadaptive and adaptive tests in [16]
have the same amortized query complexity, extending the nonadaptive test by Hstad and
Khot to the hypergraph setting does not work for us. So to achieve the same amortized
query complexity as the hypergraph test in [14], we also exploit adaptivity in our test.
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Theorem 3 (main theorem restated). For infinitely many t, there exists an adaptive
t-function dictatorship test with t+ log(t+ 1) queries, completeness 1, and soundness
(t+1)2

2t .

Proof. Take a complete hypergraph on k vertices, where k = log(t+1). The statement
follows by applying Lemmas 5 and 6. ��

Lemma 5. The H-Test is a (k + |E|)-function dictatorship test that makes |E| + 2k
queries and has completeness 1.

Due to space limitation we omit the easy proof of Lemma 5. Readers can find the proof
in the full version of this paper [26].

Lemma 6. The H-Test has soundness 2k−|E|.

Before proving Lemma 6 we first prove a proposition relating the Fourier transform of
a function perturbed by noise to the function’s Fourier transform itself.

Proposition 2. Let f : {0, 1}n → {-1, 1} . Define g : {0, 1}2n → [−1, 1] to be

g(x; y) = E
z∈{0,1}n

f(c′ + x+ (c+ y) ∧ z),

where c, c′ are some fixed vectors in {0, 1}n . Then

ĝ(α;β)2 = f̂(α)2 1{β⊆α}4−|α|.

Proof. This is a straightforward Fourier analytic calculation. By definition,

ĝ(α;β)2 =
(

E
x,y,z∈{0,1}n

f(c′ + x+ (c+ y) ∧ z)χα(x)χβ(y)
)2

.

By averaging over x it is easy to see that

ĝ(α;β)2 = f̂(α)2
(

E
y,z∈{0,1}n

χα((c+ y) ∧ z)χβ(y)
)2

.

Since the bits of y are chosen independently and uniformly at random, if β\α is
nonempty, the above expression is zero. So we can write

ĝ(α;β)2 = f̂(α)2 1{β⊆α}

⎛

⎝
∏

i∈α\β

E
yi,zi

(−1)(ci+yi)∧zi ·
∏

i∈β

E
yi,zi

(−1)(ci+yi)∧zi+yi

⎞

⎠

2

.

It is easy to see that the term Eyi,zi(−1)(ci+yi)∧zi evaluates to 1
2 and the term

Eyi,zi(−1)(ci+yi)∧zi+yi evaluates to (−1)ci 1
2 . Thus

ĝ(α;β)2 = f̂(α)2 1{β⊆α} 4−|α|

as claimed. ��
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Now we prove Lemma 6.

Proof. Let p be the acceptance probability ofH-test. Suppose that 2k−|E| + ε ≤ p. We
want to show that there are two functions fa and fb such that for some i ∈ [n], some
fixed positive integerw, some constant ε′ > 0, it is the case that I≤w

i (fa), I≤w
i (fb) ≥ ε′.

As usual we first arithmetize p. We write

p=
∑

v∈{0,1}k

E
{xi},{yi},{za}

∏

i∈[k]

1 + (−1)vifi(yi)
2

∏

e∈E

1 + Acc({xi, yi, vi, zi}i∈e, ze)
2

,

where

Acc({xi, yi, vi, zi}i∈e, ze) =
∏

i∈e

[fi(xi + (vi1 + yi) ∧ zi)]

· fe

(
∑

i∈e

xi + (Σi∈e(vi1 + yi)) ∧ ze

)

.

For each i ∈ [k], fi is folded, so (−1)vifi(yi) = fi(vi1 + yi). Since the vectors
{yi}i∈[k] are uniformly and independently chosen from {0, 1}n, for a fixed v ∈ {0, 1}k,
the vectors {vi1 + yi}i∈[k] are also uniformly and independently chosen from {0, 1}n .
So we can simplify the expression for p and write

p = E
{xi},{yi},{za}

⎡

⎣
∏

i∈[k]

(1 + fi(yi))
∏

e∈E

1 + (Acc{xi, yi,0, zi}i∈e, ze)
2

⎤

⎦ .

Instead of writing Acc({xi, yi,0, zi}i∈e, ze), for convenience we shall write Acc(e) to
be a notational shorthand. Observe that since 1 + fi(yi) is either 0 or 2, we may write

p ≤ 2k E
{xi},{yi},{za}

[
∏

e∈E

1 + Acc(e)
2

]

.

Note that the product of sums
∏

e∈E
1+Acc(e)

2 expands into a sum of products of the
form

2−|E|

⎛

⎝1 +
∑

∅�=E′⊆E

∏

e∈E′

Acc(e)

⎞

⎠ ,

so we have

ε

2k
≤ E

{xi},{yi},{za}

⎡

⎣ 2−|E|
∑

∅�=E′⊆E

∏

e∈E′

Acc(e)

⎤

⎦ .

By averaging, there must exist some nonempty subset E′ ⊆ E such that

ε

2k
≤ E

{xi},{yi},{za}

[
∏

e∈E′

Acc(e)

]

.
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Let Odd consists of the vertices in [k] with odd degree in E′. Expanding out the
definition of Acc(e), we can conclude

ε

2k
≤ E

{xi},{yi},{za}

[
∏

i∈Odd

fi(xi + yi ∧ zi) ·
∏

e∈E′

fe

(
∑

i∈e

xi +

(
∑

i∈e

yi

)

∧ ze

)]

.

We now define a family of functions that represent the “noisy versions” of fa. For
a ∈ [k] ∪E, define g′a : {0, 1}2n → [−1, 1] to be

g′a(x; y) = E
z∈{0,1}n

fa(x+ y ∧ z).

Thus we have

ε

2k
≤ E

{xi},{yi}

[
∏

i∈Odd

g′i(xi; yi) ·
∏

e∈E′

g′e

(
∑

i∈e

xi;
∑

i∈e

yi

)]

.

Following the approach in [8,14], we are going to reduce the analysis of the iterated test
to one hyperedge. Let d be the maximum size of an edge in E′, and without loss of gen-
erality, let (1, 2, . . . , d) be a maximal edge in E′. Now, fix the values of xd+1, . . . , xk

and yd+1, . . . , yk so that the following inequality holds:

ε

2k
≤ E

x1,y1,...,xd,yd

[
∏

i∈Odd

g′i(xi; yi) ·
∏

e∈E′

g′e

(
∑

i∈e

xi;
∑

i∈e

yi

)]

. (1)

We group the edges in E′ based on their intersection with (1, . . . , d). We rewrite
Inequality 1 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

⎡

⎣
∏

S⊆[d]

∏

a∈Odd∪E′:a∩[d]=S

ga

(
∑

i∈S

xi;
∑

i∈S

yi

)⎤

⎦ ,

(2)
where for each a ∈ [k]∪E, ga(x; y) = g′a(c′a + x; ca + y), with c′a =

∑
i∈a\[d] xi and

ca =
∑

i∈a\[d] yi fixed vectors in {0, 1}n .
By grouping the edges based on their intersection with [d], we can rewrite Inequality

2 as

ε

2k
≤ E

(x1,y1),...,(xd,yd)∈{0,1}2n

⎡

⎣
∏

S⊆[d]

GS

(
∑

i∈S

(xi; yi)

)⎤

⎦

=
〈
{GS}S⊆[d]

〉
LUd

,

where GS is simply the product of all the functions ga such that a ∈ Odd∪E′ and
a ∩ [d] = S.

Since (1, . . . , d) is maximal, all the other edges in E′ do not contain (1, . . . , d) as a
subset. ThusG[d] = g[d] and EG[d] = 0. By Lemma 2, the linear Gowers inner product
of a family of functions {GS} being positive implies that two functions from the family
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must share a variable with positive influence. More precisely, there exist S 
= T ⊆ [d],
i ∈ [2n], τ > 0, such that Ii(GS), Ii(GT ) ≥ τ, where τ = ε4

2O(d) .
Note that G∅ is the product of all the functions g′a that are indexed by vertices or

edges outside of [d]. So G∅ is a constant function, and all of its variables clearly have
influence 0. Thus neither S nor T is empty. SinceGS andGT are products of at most 2k

functions, by Lemma 1 there must exist some a 
= b ∈ [d]∪E′ such that Ii(ga), Ii(gb) ≥
τ

22k . Recall that we have defined ga(x; y) to be Ez fa(c′a + x+ (ca + y) ∧ z). Thus we
can apply Proposition 2 to obtain

Ii(ga) =
∑

(α,β)∈{0,1}2n;i∈(α,β)

ĝa(α;β)2

=
∑

α∈{0,1}n;i∈α

∑

β⊆α

f̂a(α)2 4−|α|

=
∑

α∈{0,1}n;i∈α

f̂a(α)2 2−|α|.

Let w be the least positive integer such that 2−w ≤ τ
22k+1 . Then it is easy to see

that I≤w
i (fa) ≥ τ

22k+1 . Similarly, I≤w
i (fb) ≥ τ

22k+1 as well. Hence this completes the
proof. ��
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Abstract. Zimand [24] presented simple constructions of locally com-
putable strong extractors whose analysis relies on the direct product
theorem for one-way functions and on the Blum-Micali-Yao generator.
For N-bit sources of entropy γN , his extractor has seed O(log2 N) and
extracts Nγ/3 random bits.

We show that his construction can be analyzed based solely on the
direct product theorem for general functions. Using the direct product
theorem of Impagliazzo et al. [6], we show that Zimand’s construction
can extract Ω̃γ(N1/3) random bits. (As in Zimand’s construction, the
seed length is O(log2 N) bits.)

We also show that a simplified construction can be analyzed based
solely on the XOR lemma. Using Levin’s proof of the XOR lemma [8],
we provide an alternative simpler construction of a locally computable
extractor with seed length O(log2 N) and output length Ω̃γ(N1/3).

Finally, we show that the derandomized direct product theorem of Im-
pagliazzo and Wigderson [7] can be used to derive a locally computable
extractor construction with O(log N) seed length and Ω̃(N1/5) output
length. Zimand describes a construction with O(log N) seed length and

O(2
√

log N) output length.

Keywords:Extractors,Direct product theorems,Hardness amplification.

1 Introduction

Randomness extractors, defined by Nisan and Zuckerman [25,13] are a funda-
mental primitive with several applications in pseudorandomness and derandom-
ization. A function Ext : {0, 1}N × {0, 1}t→ {0, 1}m is a (K, ε)-extractor if, for
every random variable X of min-entropy at least K, the distribution Ext(X,Ut)
has statistical distance at most ε from the uniform distribution over {0, 1}m.1

� Supported by the “Berkeley Fellowship for Graduate Study”.
�� This material is based upon work supported by the National Science Foundation

under grant No. CCF-0729137 and by the US-Israel BSF grant 2006060.
1 We use Un to denote the uniform distribution over {0, 1}n, and recall that a distribu-

tion X is said to have min-entropy at least K if for every a we have P[X = a] ≤ 2−K .
Two random variables Y, Z ranging over the same universe {0, 1}m have distance at
most ε in statistical distance if for every statistical test T : {0, 1}m → {0, 1} we have

|P[T (Y ) = 1] − P[T (Z) = 1]| ≤ ε

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 462–475, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Besides their original applications to extract randomness from weak random
sources and as primitives inside pseudorandom generators for space bounded
computation, extractors have found several other applications. As surveyed in
[12,16] extractors are related to hashing and error-correcting codes, and have
applications to pseudorandomness and hardness of approximation.

Extractors have also found several applications in cryptography, for example
in unconditionally secure cryptographic constructions in the bounded-storage
model [10,1,9]. For such applications, it is particularly desirable to have locally
computable extractors, in which a bit of the output can be computed by only
looking at the seed and at poly logn bits of the input. (The weaker notion of
online extractors [2], however, is sufficient.)

The starting point of our paper is Zimand’s [24] simple construction of a
locally computable extractor based on the Blum-Micali-Yao pseudorandom gen-
erator, and his analysis via the reconstruction approach of [20]. The extractor is
neither optimal in terms of the output length nor the seed length. For e.g., both
Lu [9] and Vadhan [21] achieve an optimal seed length of Θ(log n) for inverse
polynomial error while extracting almost all the entropy of the source. In fact,
[21] does better than [9] by extracting all but an arbitrarily small constant factor
of the min-entropy while the latter has to lose an arbitrarily small polynomial
factor. However, both these constructions are complicated in the sense that while
Vadhan uses tools like samplers and extractors [15,26] from pseudorandomness
machinery, Lu uses the extractor from [20] along with error-correcting codes
based on expander graphs. In contrast, the extractor construction in Zimand
[24] is extremely simple, only the analysis is non-trivial.

The idea of the reconstruction approach to the analysis of extractors is the
following. Suppose we want to prove that Ext : {0, 1}N × {0, 1}t → {0, 1}m
is a (K, ε) extractor. Then, towards a contradiction, we suppose there is a test
T : {0, 1}m → {0, 1} and a random variable X of min entropy at least K such
that

|P[T (Ext(X,Ut)) = 1]− P[T (Um) = 1]| > ε
In particular, there is a probability at least ε/2 when sampling fromX of selecting
a bad x such that

|P[T (Ext(x, Ut)) = 1]− P[T (Um) = 1]| > ε

2
At this point, one uses properties of the construction to show that if x is bad as
above, x can be reconstructed given T and a r-bit string of “advice.” This means
that there can be at most 2r bad strings x, and if X has min-entropy K then
the probability of sampling a bad x is at most 2r/2K , which is a contradiction
if 2K > 2r+1/ε.

In Zimand’s extractor construction, one thinks of a sample from X as speci-
fying a cyclic permutation p : {0, 1}n → {0, 1}n (where n is roughly logN), then
let p be a permutation obtained from p via a hardness amplification procedure,
so that the ability to invert p on a small α fraction of inputs implies the ability
of invert p on a large 1− δ fraction of inputs. Then the output of the extractor,
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for seed z, is BMY (p, z), the Blum-Micali-Yao generator applied to permuta-
tion p with seed z. If a test T distinguishes the output of the extractor from the
uniform distribution, then there is an algorithm that, using T , can invert p on
a noticeable fraction of inputs, and hence p on nearly all inputs. The proof is
completed by presenting a counting argument showing an upper bound on the
number of permutations that can be easily inverted on nearly all inputs.

Zimand’s extractor uses a seed of length O(log2N) and, for a source of entropy
γN , the output length is Nγ/3 bits.

We show that, by using only direct product theorems and XOR lemmas,
we can improve the output length to roughly N1/3. This is true both for Zi-
mand’s original construction2, as well as for a streamlined version we describe
below. The streamlined version is essentially the same construction as the lo-
cally computable extractor of Dziembowski and Maurer [4]. Our analysis via
Levin’s XOR lemma is rather different from the one in [4] which is based on
information-theoretic arguments. It should be noted that using information the-
oretic arguments, Dziembowski and Maurer manage to get an output length of
N1−o(1). However, at a conceptual level, we show that the same style of analysis
can be used both for the extractor in [4] and [24]3.

Using the derandomized direct product theorem of Impagliazzo and Wigderson
[7], we give a construction in which the seed length reduces to O(logN), but the
output length reduces to N1/5.

Our Constructions

Consider the following approach. View the sample from the weak random source
as a boolean function f : [N ] → {0, 1}, and suppose that the extractor simply
outputs the sequence

f(x), f(x+ 1), . . . , f(x+m− 1)

where x ∈ [N ] is determined by the seed, and sums are computed modN . Then,
by standard arguments, if T is a test that distinguishes the output of the extrac-
tor from the uniform distribution with distinguishing probability ε, then there
is a predictor P , derived from T , and i ≤ m such that

P[P (x, f(x− 1), . . . , f(x− i)) = f(x)] ≥ 1
2

+
ε

m
(1)

Note that if the right-hand side of (1) were 1 − δ for some small δ, instead of
1/2 + ε/m, then we could easily deduce that f can be described using about
m + δN +H(δ) ·N bits (where H() is the entropy function), and so we would
be done.
2 We actually do not show an improved analysis for this specific construction by Zi-

mand but rather for the second construction in the same paper which achieves ex-
actly the same parameters. Our improved analysis works equally well for both the
constructions but is slightly notationally cumbersome for the first one.

3 The fact that [4] gets a better output length suggests that neither the original anal-
ysis of [24] nor our improved analysis is tight.
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To complete the argument, given the function f : [N ]→ {0, 1} that we sample
from the random source, we define the function f : [N ]k → {0, 1} as

f(x1, . . . , xk) :=
k⊕

i=1

f(xi)

where k ≈ logN , and our extractor outputs

f(x), f(x+ 1), . . . , f(x + m− 1)

where x = (x1, . . . , xk) ∈ [N ]k is selected by the seed of the extractor, j is the
vector (j, . . . , j), and sums are coordinate-wise, and modN .

If T is a test that has distinguishing probability ε for our extractor, then there
is a predictor P based on T such that

P[P (x, f(x− 1), . . . , f(x− i)) = f(x)] ≥ 1
2

+
ε

m
(2)

from which we can use the proof of the XOR lemma to argue that, using P and
some advice, we can construct a predictor P ′ such that

P[P ′(x, f(x − 1), . . . , f(x− i)) = f(x)] ≥ 1− δ (3)

and now we are done. Notice that we cannot use standard XOR lemmas as a
black box in order to go from (2) to (3), because the standard theory deals with
a predictor that is only given x, rather than x, f(x−1), . . . , f(x− i). The proofs,
however, can easily be modified at the cost of extra non-uniformity. To adapt,
for example, Levin’s proof of the XOR Lemma, we see that, in order to predict
f(x), it is enough to evaluate P at O(m2/ε2) points x, each of them containing
x in a certain coordinate and fixed values everywhere else. For each such point,
F (x − 1), . . . , F (x − i) can be specified using i · (k − 1) ≤ mk bits of advice.
Overall, we need m3k/ε2 bits of advice, which is why we can only afford the
output length m to be the cubed root of the entropy. The seed length is k logN ,
which is O(log2N).

This type of analysis is robust to various changes to the construction. For
example, we can view a sample from the weak random source as a function
f : {0, 1}n → {0, 1}n, define

f(x1, . . . , xk) := f(x1), . . . , f(xk)

View the seed as specifying an input x for f() and a boolean vector r of the
same length, and define the output of the extractor as

〈f(x), r〉, 〈f (x+ 1), r〉, · · · , 〈f(x+ m− 1), r〉 (4)

Then using appropriate versions of Goldreich-Levin and of the direct prod-
uct lemma of Impagliazzo et al. [6], we can show that the construction is an
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extractor provided that m is about N1/3 4. Construction (4) is precisely the
second construction by Zimand [24].

By applying the derandomized direct product theorem of Impagliazzo and
Wigderson [7], we are able to reduce the seed length to O(logN), but our re-
construction step requires more non-uniformity, and so the output length of the
resulting construction is only about N1/5.

Organization of the Paper. In section 2, we present some notations which
shall be used throughout the paper and an overview of the techniques recurrent
in the proofs of all the three constructions. Section 3 presents the first of our
constructions. Its proof of correctness is self contained. Improved analysis of
the construction by Zimand [24] as well as the description and proof of the
derandomized extractor are deferred to the full version of the paper.

2 Preliminaries and Overview of Proofs

Notations and Definitions

The following notations are used throughout the paper. A tuple (y1, y2, . . . , yk)
is denoted by ⊗k

i=1yi. The concatenation of two strings x and y is denoted by
x ◦ y. If x and y are tuples, then x ◦ y represents the bigger tuple formed by
concatenating x and y. The uniform distribution on {0, 1}n is denoted by Un.
For z1, . . . , zk ∈ {0, 1},⊕k

i=1zi denotes the XOR of z1, . . . , zk. Statistical distance
between two distributions D1 and D2 is denoted by ||D1 −D2||.

Next, we define extractors as well as a stronger variant called strong
extractors.

Definition 1. [15,25] Ext : {0, 1}N × {0, 1}t → {0, 1}m is said to be a (K, ε)
extractor if for every random variable X with min-entropy at least K, the sta-
tistical distance between output of the extractor and the uniform distribution is
at most ε i.e. ||Ext(X,Ut)−Um|| ≤ ε. Ext is said to be a strong extractor if the
seed can be included with the output and the distribution still remains close to
uniform i.e. ||Ut ◦ Ext(X,Ut) − Ut+m|| ≤ ε. Here both the Ut refer to the same
sampling of the uniform distribution.

In the above definition, t is referred to as seed length, m as the output length
and ε as the error of the extractor.

General Paradigm of Construction. All the three extractors can be de-
scribed in the following general model. Let Ext : {0, 1}N ×{0, 1}t→ {0, 1}m be
the extractor (terminology is the same as Definition 1) with X representing the
weak random source and y the seed. X is treated as truth table of a function
X : {0, 1}n → {0, 1}l (l = 1 in the first and the third constructions and l = n in
4 Even using the ‘concatenation lemma’ of Goldreich et al. [5] which is a much more

non-uniform version of the direct product theorem, we get m = N
1
10 for which is

better than Zimand’s analysis for entropy rates < 0.3.
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the second construction). This implies that n is logarithmic in the input length
N and more precisely N = l2n. Further, we associate a cyclic group of size 2n

with {0, 1}n (This can be any ordering of the elements in {0, 1}n except that
the addition in the group should be efficiently computable). To make it easier
to remind us that X is treated as truth table of a function, the corresponding
function shall henceforth be called f . The seed y is divided into two chunks i.e.
y = x ◦ z. x is called the input chunk and z is called the encoding chunk. Also,
let k be a parameter of the construction such that |x| = g(n, k) and |z| = h(n, k)
and hence t = g(n, k) + h(n, k). Ext is specified by two functions namely
Exp : {0, 1}g(n,k) → ({0, 1}n)k and Com : ({0, 1}l)k × {0, 1}h(n,k) → {0, 1}.
Ext computes the output as follows

– On input (X, y) ≡ (f, x◦z), Ext first computes Exp(x) = (x1, x2, x3, . . . , xk)
which gives k candidate inputs for the function f .

– Subsequently, the ith bit of the output is computed by combining the evalu-
ation of f at shifts of (x1, . . . , xk) using Com. More precisely, the ith bit is
given by Com(⊗k

j=1f(xj + i− 1), z).

Our constructions differ from each other in the definition of the functions Exp
and Com. It can be easily seen that as long as Exp and Com are efficiently
computable i.e. both of them are computable in poly(n, k) time and k = O(n),
the extractors shall be locally computable. This is true for all our constructions.

Proofs in the Reconstruction Paradigm. We now show the steps (following
the reconstruction paradigm) which are used in the proof of correctness of all
the constructions. We first note that proving Ext : {0, 1}N × {0, 1}t → {0, 1}m
is a (γN, 2ε) strong extractor is equivalent to proving that for every boolean
function T : {0, 1}m+t → {0, 1} and random variable X of min-entropy at least
γN ∣

∣Prf∈X,y∈Ut [T (y,Ext(f, y)) = 1]− Pru∈Ut+m [T (u) = 1]
∣
∣ ≤ 2ε (5)

We had earlier noted the following fact which we formally state below.

Observation 1. In order to prove equation (5), it suffices to prove that for any
T : {0, 1}m+t→ {0, 1}, there are at most ε2γN functions f such that

∣
∣Pry∈Ut [T (y,Ext(f, y)) = 1]− Pru∈Ut+m [T (u) = 1]

∣
∣ > ε (6)

In order to bound the number of functions which satisfy (6), we use the recon-
struction approach in [20]5 (and more generally used in the context of pseu-
dorandom generators in [3,14]). In particular, we show that given any f which
satisfies (6), we can get a circuit Cf (not necessarily small) which predicts value
of f by querying f at some related points. More precisely, we show that for some

5 This particular instance of reconstruction paradigm was used in context of extractors
by Zimand [24] and earlier in context of pseudorandom generators by Blum, Micali
and Yao [3,23].
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m > i ≥ 0, using c bits of advice, we can construct Cf which satisfies (7) for
some s ≤ 1

2 .
Prx∈Un [Cf (x,⊗i

j=1f(x− j)) = f(x)] ≥ 1− s (7)

The next lemma shows how such a circuit Cf can be used to bound the number
of functions f satisfying (6).

Lemma 1. If for every f satisfying (6), using c bits of advice, we can get a
circuit Cf satisfying (7) for some s ≤ 1

2 , then there are at most 2c+2n(sl+H(s))+ml

functions satisfying (6).

Proof. Let the set BAD consist of points x ∈ {0, 1}n such that Cf (x,⊗i
j=1f(x−

j)) 
= f(x). Since the size of the set BAD is at most s2n, to fully specify the
set, we require at most log2 S bits where S =

∑s2n

i=0

(2n

i

)
. Further, to specify the

value of f on the set BAD, we require at most sl2n bits. We now note that if
we are given the value of f on any consecutive i points (say [0, . . . , i−1]), which
requires at most il bits, then using the circuit Cf , the set BAD and the value of
f on points in BAD, one can fully specify f . We also use the following standard
fact. (Log is taken base 2 unless mentioned otherwise)

Fact 2. For s ≤ 1
2 ,

∑s2n

i=0

(2n

i

)
≤ 2H(s)2n

whereH(s) = −s log s−(1−s) log(1−s).

Hence, we see that if we are given that f satisfies (6), then using T and c+2n(s+
H(s)) + il bits of advice, we can exactly specify f . Hence for any particular
T , (using i < m) we get that there are at most 2c+2n(sl+H(s))+ml functions
satisfying (6).

In light of lemma 1, given f satisfying (6), we should use T to construct a
circuit Cf satisfying (7) with as minimum advice and as small s as possible. We
first use the standard hybrid argument and Yao’s distinguisher versus predictor
argument to get a circuit which is a ‘next-element’ predictor. In particular,
we create a circuit which predicts a particular position in the output of the
extractor with some advantage over a random guess when given as input the
value of the random seed as well as all the bits in the output preceeding the bit
to be predicted. The argument is by now standard and can be found in several
places including [20,19,17]. We do not redo the argument here but simply state
the final result.

Lemma 2. Let f be any function satisfying (6) and Ext(f, y)i be the ith bit of
the output. Then using m+ logm+3 bits of advice, we can get a circuit T2 such
that for some 0 ≤ i < m, f satisfies (8).

Pry∈Ut [T2(y,⊗m−i−1
j=1 Ext(f, y)j) = Ext(f, y)m−i] >

1
2

+
ε

m
(8)

The proof of correctness of all our constructions start from the above equation
and use more advice to finally get a circuit Cf satisfying (7). We now describe
one of our constructions and its proof of correctness (Refer to the full version
for the other two constructions).



Extractors Using Hardness Amplification 469

3 Extractor from XOR Lemma

Description of the Construction. Ext : {0, 1}2n × {0, 1}kn → {0, 1}m is
defined as follows. On input (f, y), the seed y is partitioned into k chunks of
length n - call it (x1, x2, x3, . . . , xk). The source f is treated as truth table of a
function from {0, 1}n to {0, 1}. Then the ith bit of the output is given by the
bitwise XOR of f(x1 + i−1), . . . , f(xk + i−1) i.e. Ext(f, y)i = ⊕k

i=1f(xj + i−1).
In terminology of the last section, N = 2n, g(k, n) = kn and h(k, n) = 0. Note
that there is no encoding chunk in the seed and the entire seed is the input
chunk. Further, the function Exp simply partitions a string of length kn into k
chunks of length n while the function Com computes a bitwise XOR of its first
input (the second input is the empty string).

Difference from Construction in [4]. As we have mentioned before, the
construction in [4] is very similar though we have some minor simplifications.
The extractor in [4] Ext′ : ({0, 1}N+m−1)k × {0, 1}k log N → {0, 1}m can be
described as follows. The weak source is treated as truth table of k functions
f1, . . . , fk such that for each j ∈ [k], fj : [N+m−1]→ {0, 1}. The seed is divided
into k chunks l1, . . . , lk such that each lj can be treated as an element in [N ]. The
ith bit of the output is computed as ⊕k

j=1fj(lj + i− 1). Thus, we avoid a minor
complication of not having to divide the source into chunks. Our proof can be
modified to work in this case as well at the cost of making it more cumbersome
while conceptually remaining the same. However, the main difference is that we
come up with an entirely different proof from the one in [4].

Main Theorem and Proof of Correctness

Theorem 3. The function Ext : {0, 1}2n × {0, 1}kn → {0, 1}m is a (γ2n, 2ε)

strong extractor for a (constant) γ > 0, ε ≥ 2−
n
7 , m = ε

2
3 2

n
3

n2 and seed length

kn = O
(

n log m
ε

γ2

)
.

Before proving Theorem 3, we see an immediate corollary of the above theorem
with parameters of interest.

Corollary 1. The function Ext as defined above is a (γ2n, 2ε) strong extractor

for a (constant) γ > 0, 2ε = 2−n
1
4 , m = 2

n
3 −

√
n and seed length kn = O

(
n2

γ2

)
.

In order to prove Theorem 3, we first state the following main technical lemma
of this section and then see how Theorem 3 follows from it. Subsequently, we
prove the lemma.

Lemma 3. Let T : {0, 1}m+kn → {0, 1} and f : {0, 1}n → {0, 1} such that (6)
holds. Also, let 1 > δ > 0 be such that δk ≤ ε

m and m ≥ nk. Then with at most
6nk2m3

ε2 bits of advice, we can get a circuit Cf such that

Prx1∈Un [Cf (x1,⊗i
j=1f(x1 − j)) = f(x1)] ≥

1 + δ
2
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Before we formally prove Theorem 3 using Lemma 3, it is useful to mention that
an application of δ is meaningful when it is close to 1 rather than 0. As can be
seen from Lemma 3, we construct a circuit Cf which has correlation δ with f
and hence we would like 1− δ to be small. This is different from the terminology
used in Section 1 where we want to construct a circuit Cf which computes f
with probability 1− δ and hence we would like δ to be close to 0.

Proof (of Theorem 3). In light of Observation 1, we note that it is sufficient to
prove that for any statistical test T : {0, 1}m+kn → {0, 1}, the number of func-
tions f satisfying (6) is at most ε2γN . Let δ be such that 1−δ

2 = min{10−3, γ2

4 }.
Also putting k = C log m

ε

γ2 = O
(

n
γ2

)
for some appropriate constant C clearly

satisfies δk ≤ ε
m . Further, m = 2Ω(n) while nk = O

(
n2

γ2

)
. So, clearly m ≥ nk

for constant γ and sufficiently large n. With this, we satisfy the conditions for
applying lemma 3 and hence with 6nk2m3

ε2 bits of advice, we can get a circuit Cf

satsifying (7) with s = 1−δ
2 . Using lemma 1, we can say that for any test T , the

total number of functions satisfying (6) is at most 2
6nk2m3

ε2
+( 1−δ

2 +H( 1−δ
2 ))2n+m.

We now use the following fact

Fact 4. For any 0 ≤ α ≤ 10−3, α+H(α) ≤
√
α

Putting everything together now, we get that the total number of functions
satisfying (6) is at most (we consider the case when γ > 0 is a constant and n is
large enough integer).

2
6nk2m3

ε2
+( 1−δ

2 +H( 1−δ
2 ))2n+m ≤ 2O( 2n

n3γ4 )2
γ
2 2n

22
n
3 ≤ 2−

n
7 2γ2n

≤ ε2γ2n

Proof ( of Lemma 3). Using lemma 2, we get that for any f such that (6)
holds, using m+ logm+ 3 bits of advice, we can get a circuit T2 such that

Pr[T2(x,⊕k
j=1f(xj), . . . ,⊕k

j=1f(xj +m−i−2)) = ⊕k
j=1f(xj+m−i−1)] >

1
2
+
ε

m

In the above, x1, x2, . . . , xk are independent random variables drawn from Un

and x is the concatenation of x1, . . . , xk. Unless otherwise stated, in this section,
any variable picked randomly is picked from the uniform distribution (The do-
main shall be evident from the context). We now introduce some changes in the
notation so as to make it more convenient. First of all, we note that m − i − 1
can be replaced by i as i runs from 0 to m− 1. Further, we can assume that the
first k arguments in the input are changed from xj to xj + i for all 1 ≤ j ≤ k
and hence we get a circuit C such that

Pr[C(x,⊕k
j=1f(xj − i), . . . ,⊕k

j=1f(xj − 1)) = ⊕k
j=1f(xj)] >

1
2

+
ε

m

In this proof, we closely follow the proof of XOR lemma due to Levin [8] as
presented in [5]. As is done there, for convenience, we change the range of f
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from {0, 1} to {−1, 1} i.e. f(x) now changes to (−1)f(x). With this notational
change, parity changes to product and prediction changes to correlation i.e.

E[
k∏

j=1

f(xj)C(x,
k∏

j=1

f(xj − i), . . . ,
k∏

j=1

f(xj − 1))] >
2ε
m

In order to simplify the notation further, we make one more change. For any
tuple (x1, x2, . . . , xt) = x,

∏t
j=1 f(xj − s) is denoted by f(x − s). Using the

notation introduced earlier for denoting tuples, we get

Ex[f(x)C(x,⊗i
j=1f(x − j))] >

2ε
m

Let δ and η be such that δk ≤ ε
m and η = ε

km . Then the above equation can be
rewritten as

Ex[f(x)C(x,⊗i
j=1f(x− j))] > δk + kη (9)

Further, we can write x as x1 ◦ y1 where x1 ∈ {0, 1}n and y1 ∈ ({0, 1}n)k−1 and
then the above can be rewritten as

Ex1∈Un [f(x1)Γ (x1,⊗i
j=1f(x1 − j))] > δk + kη (10)

where Γ (x1,⊗i
j=1f(x1−j)) = Ey1∈U(k−1)nf(y1)C(x1◦y1,⊗i

j=1f(x1−j)f(y1−j)).
At this stage, there are the following two possibilities.

1. ∀x1,
∣
∣Γ (x1,⊗i

j=1f(x1 − j))
∣
∣ ≤ δk−1 + (k − 1)η.

2. ∃x1 such that
∣∣Γ (x1,⊗i

j=1f(x1 − j))
∣∣ > δk−1 + (k − 1)η .

The following lemma shows how to construct the circuit in (7) in the first case.
The second case follows by an inductive argument.

Lemma 4. If for all x1,
∣
∣Γ (x1,⊗i

j=1f(x1 − j))
∣
∣ ≤ δk−1 + (k − 1)η, then with

4nm
η2 + log

(
4n
η2

)
+ 1 bits of advice, we can get a circuit Cf : {0, 1}n × {0, 1}i →

{−1, 1} such that

Ex1 [f(x1)Cf (x1,⊗i
j=1f(x1 − j))] > δ (11)

Proof. Let Γ1(x1,⊗i
j=1f(x1−j)) = Γ (x1,⊗i

j=1f(x1−j))
δk−1+(k−1)η ∈ [−1, 1]. We note that (10)

says that Γ1(x1,⊗i
j=1f(x1 − j)) has high correlation with f(x1) and hence if we

could compute Γ1, then we could compute f(x1) with high probability . Since
computing Γ1 looks unlikely (without using 2n bits of advice), we will approxi-
mate Γ1 and still manage to compute f with high probability. In particular, we
define a circuit C1 such that for every x1, C1 approximates Γ (x1,⊗i

j=1f(x1−j))
within an additive error of η when given input x1 and ⊗i

j=1f(x1− j). To do this,
C1 picks up q = 2n

η2 elements independently at random from ({0, 1}n)(k−1). Call
these elements w1, . . . , wq. C1 then takes ⊗i

j=0f(wl − j) for l ∈ [q] as advice.
Subsequently, it computes the function Γ2 which is defined as follows. (Note
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that Γ2 depends upon wi’s and the corresponding advice though wi’s are not
explicitly included in the argument)

Γ2(x1,⊗i
j=1f(x1 − j)) = El∈[q]f(wl)C(x1 ◦ wl,⊗i

j=1f(x1 − j)f(wl − j))

By Chernoff bound, we can say the following is true for all x1. (The probability
is over the random choices of wl for l ∈ [q])

Pr[
∣∣Γ2(x1,⊗i

j=1f(x1 − j))− Γ (x1,⊗i
j=1f(x1 − j))

∣∣ > η] < 2−n

We would like our estimate of Γ (x1,⊗i
j=1f(x1 − j)) to have absolute value

bounded by δk−1 + (k − 1)η. Hence, we define Γ3 as follows.

1. If
∣
∣Γ2(x1,⊗i

j=1f(x1 − j))
∣
∣ ≤ δk−1 + (k − 1)η then Γ3 is the same as Γ2 i.e.

Γ3(x1,⊗i
j=1f(x1 − j)) = Γ2(x1,⊗i

j=1f(x1 − j))
2. If not, then Γ3 has absolute value δk−1 + (k − 1)η with sign same as Γ2 i.e.

Γ3(x1,⊗i
j=1f(x1 − j)) = |(Γ2(x1,⊗i

j=1f(x1−j)))|
(Γ2(x1,⊗i

j=1f(x1−j))) (δk−1 + (k − 1)η)

The final output of C1(x1,⊗i
j=1f(x1 − j)) is Γ3(x1,⊗i

j=1f(x1 − j)). Since Γ3 is
definitely at least as good a approximation of Γ as Γ2 is, we can say the following
(the probability is again over the random choices of wl for l ∈ [q] and as before
wl is not explicitly included in the argument).

Pr[
∣
∣Γ3(x1,⊗i

j=1f(x1 − j))− Γ (x1,⊗i
j=1f(x1 − j))

∣
∣ > η] < 2−n

By a simple union bound, we can see that there exists a q-tuple ⊗q
l=1wl is such

that for all x1,
∣∣Γ3(x1,⊗i

j=1f(x1 − j))− Γ (x1,⊗i
j=1f(x1 − j))

∣∣ ≤ η. Hence with
qn(k − 1) ≤ 2n2k

η2 bits of advice, we can get such a tuple ⊗q
l=1wl. Further, the

advice required for getting ⊗i
j=0f(wl − j) for each l ∈ [q] is (i+ 1)q ≤ 2nm

η2 bits.
So, we hardwire these ‘good’ values of wl and ⊗i

j=0f(wl− j) into C1 (i.e. instead
of taking random choices, it now works with these hardwired values) and we can
say that

Ex1 [f(x1)C1(x1,⊗i
j=1f(x1 − j))] ≥ Ex1 [f(x1)Γ (x1,⊗i

j=1f(x1 − j))]− η (12)

The above claim uses that the range of f is [−1, 1]. This can now be combined
with (10) to give the following

Ex1 [f(x1)C1(x1,⊗i
j=1f(x1 − j))] > δk + (k − 1)η (13)

We now define C2(x1,⊗i
j=1f(x1− j)) =

C1(x1,⊗i
j=1f(x1−j))

δk−1+(k−1)η . Note that the output
of C2 is in [−1, 1] and hence by (13), we can say (using δ ≤ 1)

Ex1 [f(x1)C2(x1,⊗i
j=1f(x1 − j))] >

δk + (k − 1)η
δk−1 + (k − 1)η

≥ δ (14)
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C2 is almost the circuit Cf we require except its output is in [−1, 1] rather
than {−1, 1}. To rectify this, we define a randomized circuit C3 which com-
putes r = C2(x1,⊗i

j=1f(x1 − j)) and then outputs 1 with probability 1+r
2 and

−1 with probability 1−r
2 otherwise. Clearly this randomized circuit C3 has the

same correlation with f(x1) as C2 does. To fix the randomness of the circuit
C3 and to get Cf , we observe that the output of C2 can only be in multiples
of η2

2n(δk−1+(k−1)η) . Since the output is in the interval [−1, 1], it suffices to pick

a random string �log 4n(δk−1+(k−1)η)
η2 � bits long (rather than a random number

in [−1, 1]). Hence by fixing this randomness using �log 4n
η2 � ≤ log 4n

η2 + 1 bits of
advice, we get a circuit Cf which satisfies (11)6. Clearly, the total amount of

advice required is at most 2n(m+nk)
η2 + log

(
4n
η2

)
+ 1 bits. Using m ≥ nk, we get

the bound on the advice stated in the lemma.

Hence, in the first case, we get a circuit Cf such that its expected correlation
with f is greater than δ. Changing the {−1, 1} notation to {0, 1} notation, we
get that

Prx1∈Un [Cf (x1,⊗i
j=1f(x1 − j)) = f(x1)] >

1 + δ
2

Therefore, we have a circuit Cf satisfying the claim in the lemma. Now, we handle
the second case. Let x1 be such that

∣
∣Γ (x1,⊗i

j=1f(x1 − j))
∣
∣ > δk−1 + (k − 1)η.

We take x1, ⊗i
j=1f(x1 − j) and the sign of Γ (x1,⊗i

j=1f(x1 − j)) (call it α) as
advice (and this is at most n+m bits) and define the circuit C0 as follows.

C0(y1,⊗i
j=1f(y1 − j)) = (−1)αC(x1 ◦ y1,⊗i

j=1f(x1 − j)f(y1 − j))

By definition and the previous assumptions, we get the following

Ey1∈U(k−1)nf(y1)C
0(y1,⊗i

j=1f(y1 − j)) > δk−1 + (k − 1)η

Note that the above equation is same as (10) except circuit C has been replaced
by C0 and the input has changed from a k-tuple in {0, 1}n to a k − 1-tuple.
Hence, this can be handled in an inductive way and the induction can go for at
most k−1 steps. Further, each descent step in the induction can require at most
n+m bits of advice. In the step where we apply Lemma 4, we require at most
4nm
η2 + log

(
4n
η2

)
+ 1 bits of advice7. So, from T2, with at most (k − 1)(m+ n) +

4nk2m3

ε2 +log
(

4nk2m2

ε2

)
+1 bits of advice, we can get a circuit Cf : {0, 1}n×{0, 1}i

such that
Prx1∈Un [Cf (x1,⊗i

j=1f(x1 − j)) = f(x1)] ≥
1 + δ

2
6 We remove the factor log(δk−1 +(k − 1)η) in calculating the advice because (δk−1 +

(k − 1)η) is at most 1 and hence what we are calculating is an upper bound on the
advice.

7 Note that η does not change for every step and is the same η = ε
km

that it was set
to in the beginning. The only extra condition we need for applying Lemma 4 is that
m ≥ kn which shall definitely continue to hold as k decreases.
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Finally accounting for the advice to use Lemma 2, we get that the total amount
of advice required to get Cf from the circuit T in the hypothesis is (k− 1)(m+

n) + 4nk2m3

ε2 + log
(

4nk2m2

ε2

)
+ 2 +m+ logm+ 3 ≤ 6nk2m3

ε2 .

4 Conclusion

All the three extractor constructions described in this paper apply to sources of
constant entropy rate, which could be pushed to entropy about N/poly(logN).
A result of Viola [22] implies that it is impossible to extract from sources of
entropyN .99 if the extractor is such that each bit of the output can be computed
by looking only at No(1) bits of the input and seed length is No(1). Since our
construction is such that every bit of the output can be computed by looking at
only poly logN bits of the input, significant improvements in the entropy rate
can only come from rather different constructions.

It remains an interesting open question to improve the output length, and
match the performance of other constructions which do not use complexity-
theoretic tools in the analysis. Perhaps it is possible to use advice in a much
more efficient way than we do.
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Abstract. A random walk on a graph is a process that explores the graph in
a random way: at each step the walk is at a vertex of the graph, and at each
step it moves to a uniformly selected neighbor of this vertex. Random walks are
extremely useful in computer science and in other fields. A very natural prob-
lem that was recently raised by Alon, Avin, Koucky, Kozma, Lotker, and Tuttle
(though it was implicit in several previous papers) is to analyze the behavior of k
independent walks in comparison with the behavior of a single walk. In particular,
Alon et al. showed that in various settings (e.g., for expander graphs), k random
walks cover the graph (i.e., visit all its nodes), Ω(k)-times faster (in expectation)
than a single walk. In other words, in such cases k random walks efficiently “par-
allelize” a single random walk. Alon et al. also demonstrated that, depending on
the specific setting, this “speedup” can vary from logarithmic to exponential in k.

In this paper we initiate a more systematic study of multiple random walks.
We give lower and upper bounds both on the cover time and on the hitting time
(the time it takes to hit one specific node) of multiple random walks. Our study
revolves over three alternatives for the starting vertices of the random walks: the
worst starting vertices (those who maximize the hitting/cover time), the best start-
ing vertices, and starting vertices selected from the stationary distribution. Among
our results, we show that the speedup when starting the walks at the worst ver-
tices cannot be too large - the hitting time cannot improve by more than an O(k)
factor and the cover time cannot improve by more than min{k log n, k2} (where
n is the number of vertices). These results should be contrasted with the fact that
there was no previously known upper-bound on the speedup and that the speedup
can even be exponential in k for random starting vertices. Some of these results
were independently obtained by Elsässer and Sauerwald (ICALP 2009). We fur-
ther show that for k that is not too large (as a function of various parameters of
the graph), the speedup in cover time is O(k) even for walks that start from the
best vertices (those that minimize the cover time). As a rather surprising corollary
of our theorems, we obtain a new bound which relates the cover time C and the
mixing time mix of a graph. Specifically, we show that C = O(m

√
mix log2 n)

(where m is the number of edges).
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1 Introduction

A random walk on a graph is a process of exploring the graph in a random way. A
simple random walk starts at some node of a graph and at each step moves to a ran-
dom neighbor. Random walks are fundamental in computer science. They are the ba-
sis of MCMC (Markov-Chain Monte-Carlo) algorithms, and have additional important
applications such as randomness-efficient sampling (via random walks on expanders)
[AKS87], and space-efficient graph connectivity algorithms [AKL+79]. Random walks
became a common notion in many fields, such as computational physics, computational
biology, economics, electrical engineering, social networks, and machine learning.

Assume that we have some network (e.g. a communication or a social network),
and some node u sends a message. Assume that at each step this message is sent to
a random neighbor of the last recipient. The message will travel through the network
as a random walk on a graph. The expected time until the message will arrive to some
other node v is called the hitting time h(u, v). The expected time until the message will
visit all the nodes is called the cover time Cu. The hitting time and the cover time of a
random walk are thoroughly studied parameters (see surveys [AF99, LWP, Lov96]).

In this paper we consider the following natural question: What happens if we take
multiple random walks instead of a single walk? Assume that instead of one copy, k
copies of the same message were sent. How long would it take for one of these copies
to reach some node v? How long would it take until each node receives at least one of
the k copies? What are the speedups in the hitting and cover times of multiple walks
compared with a single walk?

Multiple random walks were studied in a series of papers [BKRU89, Fei97, BF93]
on time-space tradeoffs for solving undirected s-t connectivity. These papers consid-
ered upper bounds for the cover time of multiple random walks, each paper giving a
different answer for different distributions of the starting vertices of the random walks.
In randomized parallel algorithms, multiple random walks are a very natural way of
exploring a graph since they can be easily distributed between different processes. For
example, multiple random walks were used in [HZ96, KNP99] for designing efficient
parallel algorithms for finding the connected components of an undirected graph.

Multiple random walks were suggested as a topic of independent interest by Alon,
Avin, Koucky, Kozma, Lotker, and Tuttle [AAK+07]. Alon et al. [AAK+07] studied
lower bounds on the relation between the cover time of a simple random walk and of
multiple random walks when the walks start from the same node. The paper proves
that if the number of random walks k is small enough (i.e., asymptotically less than

C
hmax

, where C and hmax are the maximal cover time and hitting time respectively) then
the relation between the cover time of a single random walk and of multiple random
walks is at least k − o(k). In such a case, we can argue that multiple random walks
“parallelize” a single walk efficiently (as they don’t increase the total amount of work
by much). [AAK+07] also showed that there are graphs with logarithmic speedup (e.g.,
the cycle), and there are graphs with an exponential speedup for specific starting point
(e.g., the so called barbell graph; we will shortly discuss a related example). [AAK+07]
leaves open the question of upper bounds for the speedup.

The goal of this paper is to systematically study multiple random walks. In addition
to the cover time of multiple random walks we will also discuss the hitting time, proving
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both lower and upper bounds on the speedup. We will extend the discussion to the case
where not all the walks start from the same node.

Before getting into the details of our results, let us consider an example which il-
lustrates how multiple random walks behave differently according to the choice of their
starting vertices. Consider a graph G which is composed of two cliques of size n con-
nected by a single edge (see Figure 1).

Fig. 1. Two cliques graph - how the speedup changes according to the starting vertices

While the cover time of a single random walk will not depend on the starting ver-
tex and is Θ(n2), the cover time of multiple random walks will be very different for
different starting vertices of the random walks. When the walks start from the worst
vertices (all walks start from the same clique) the cover time is Θ(n2

k ). Even for k = 2,
when the random walks start from the best vertices (one walk starts at one clique and
the other from another clique) the cover time is Θ(n log n). When the starting vertices
of k random walks are drawn independently from the stationary distribution, then the
probability that all starting vertices will fall into the same clique is 2−k. Therefore,
for k ≤ logn − log logn, the cover time in this case is Θ(2−kn2). When consider-
ing the hitting times, we get the same behavior for the worst starting vertices and for
randomly-chosen starting vertices. The case of the best starting vertices is uninteresting
when discussing the hitting time as the hitting time in such a case is zero (even for a
single walk).

As we can see from the aforementioned example, both the cover and the hitting
times heavily depend on the starting vertices. Therefore, we study these three scenarios
separately: (1) The case when the random walks start from the nodes which maximize
the cover/hitting time (worst starting vertices). (2) The case when the random walks
start from the nodes which minimize the cover time (best starting vertices). (3) The
case when the starting vertices are drawn independently according to the stationary
distribution (random starting vertices).

Our Contribution

In this paper we systematically study multiple random walks and their speedup both
in terms of the cover time and in terms of the hitting time. We give various lower and
upper bounds for different ways of choosing the starting vertices. Our main bounds on
the speedup of multiple random walks are summarized in Table 1.
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Table 1. Summary of main bounds on the speedup. Notation: n - number of vertices; k - the
number of walks; C - maximal cover time; hmax - maximal hitting time; mix - mixing time.

Worst case Average Case Best Case

Hitting time O(k) k + o(k) Not applicable
Upper bounds for any k, Theorem 4 for k log n = o(hmax

mix )
Theorem 20

Hitting time Ω(k) k Not applicable
Lower bounds for k log n = O(hmax

mix ) for any k
Theorem 8 Theorems 6

Cover time O(min{k2, k log n}) k + o(k) k + o(k)
Upper bounds Theorems 12 & 13 for k log k = o( C

mix) for k = o( C
hmax

)

Theorem 19 Theorem 15
Cover time ( k

log n
)(1 − o(1)) for k log n = o(hmax

mix )

Lower Bounds Theorem 14 =⇒ =⇒
k − o(k) for k = o( C

hmax
)

Theorem 5 in [AAK+07]

Upper bounds on the speedup. [AAK+07] left open the question of upper bounding
the speedup of multiple random walks. In this work we show that the answer depends
on how the starting vertices are selected. In Theorem 4 we show that for the worst
starting vertices, the speedup on hitting time is at most O(k). In Section 4, we use this
theorem to show that the speedup on the cover time is at most O(min(k2, k logn)).
As we can see from the example above, the speedup for the best or even for random
starting vertices may be very large (e.g., exponential in k). Still, we are able to show
in Section 4 that even in these cases, if the number of walks is small enough then the
speedup will be at most k + o(k). In Theorem 15 (see also Corollary 17 ) we show
that for k + C

hmax
the speedup for the best starting vertices is at most k + o(k). This

result is interesting for graphs with a large gap between the cover time and the hitting
time. For random starting vertices, Theorem 19 (see also Corollary 21) shows that if
k log k + C

mix , then the speedup is at most k+ o(k). The mixing time, mix, of a graph
is the number of steps a random walk has to make until its position is distributed almost
according to the stationary distribution.

Lower bounds on the speedup. In Theorem 6 we show that the speedup for the hitting
times is at least k when all the starting vertices are drawn from the stationary distribu-
tion. This theorem also allows us to prove lower bounds for the case of worst starting
vertices for graphs with small mixing time. Using this theorem we prove in Theorem 8
that when the number of walks is less than Õ(hmax

mix ) the speedup for the hitting times
is at least Ω(k). We get similar results for the cover time (Theorem 14). Namely, we
show that the speedup for the cover time is at least ( k

log n )(1 + o(1)), when k is less

than õ(hmax
mix ). This result improves the lower bound of Ω( k

log n·mix) from [AAK+07].

A new relation between the cover time and the mixing time. Finally, our study of multi-
ple random walks gives a rather surprising implication on the study of a single random
walk. Our results, together with the results of [BKRU89] about multiple random walks,
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imply a new relation between the cover time and the mixing time of a graph. Specifi-
cally, we prove that C = O(m

√
mix log2 n). The best previous result we are aware of

is due to Broder and Karlin [BK88]. In [BK88] it was proven that C = O( m log n
1−λ(G) ),

where λ(G) is the second eigenvalue of the normalized adjacency matrix. A known
relation between λ(G) and mix is that Ω( 1

1−λ(G) ) ≤ mix ≤ O( log n
1−λ(G) ) (cf. [Sin92],

Proposition 1). Therefore a corollary of [BK88] is that C = O(mixm logn). Our result
improves this bound whenever mix = ω(log2 n).

Our new relation also has an application in electrical engineering. View a graph G
as an electrical network with unit resistors as edges. Let Rst be the effective resistance
between nodes s and t. Then it was shown in [CRRS89] that for any two nodes s and
t it holds that mRst ≤ C. Therefore, together with our result it implies that Rst =
O(
√

mix log2 n). The best previous upper bound on the electrical resistance in terms
of the mixing time was also obtained by Chandra et al. [CRRS89] and was Rst ≤

2
1−λ(G) = O(mix).

Related Work. Independently of our work, Elsässer and Sauerwald [ES09] recently
studied multiple random walks. Their most related results are upper bounds and lower
bounds on the speed-up of cover time for worst case starting points. In fact, [ES09]
gives an upper bound ofO(k logn) on the speed-up of any graph (similarly to our Theo-
rem 12) and a lower bound ofΩ( k

log n ) under some conditions on mixing time (similarly
to our Theorem 14). Under some mild conditions, they are also able to prove an upper
bound ofO(k). Another recent work on multiple random walks is due to [CCR09]. This
work studies multiple random walks in random graphs, and among other result show
that for random d-regular graph the speed-up is O(k).

2 Notation

We will use standart definitions of the hitting time, the cover time and the mixing time.
We briefly review the notation that will be used throughout the paper: The mixing time
of a graphG is denoted mix. Let ς(u, v) be the time it takes for a random walk that starts
at u to reach v i.e. ς(u, v) = min{t | Xu(t) = v}. Note that ς(u, v) is a random vari-
able. Let the hitting time h(u, v) = E(ς(u, v)) be the expected time for the random walk
to traverse from u to v. Let hmax = maxu,v∈V h(u, v) and hmin = minu,v∈V h(u, v)
be the maximal and minimal hitting times. Similarly let τu be the time for the simple
random walk to visit all the nodes of the graph. Let Cu = E(τu) be the cover time for
a simple walk starting at u. The cover time C = maxu(Cu) is the maximal (over the
starting vertex u) expected time it takes for a single walk to cover the graph. It will be
convenient for us to define the following parameter of a graph:H(G) = C

hmax
.

The following theorem provides fundamental bounds on the cover time in terms of
the hitting time (for more details see [LWP] Chapter 11 or [Mat88]):

Theorem 1 (cf. [Mat88]). For every graphG with n vertices

hmin · log n ≤ C ≤ hmax · logn.
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Note that there also exists a trivial bound of hmax ≤ C. It will be convenient for us
to define the following parameter of a graph: H(G) = C

hmax
. Note that 1 ≤ H(G) ≤

logn. Also note that there exist graphs where H(G) = O(1) (for example the cycle),
and there exist graphs withH(G) = Ω(log n) (for example the complete graph).

For k parallel independent random walks we have the following notation:
ς({u1, u2, . . . uk}, v) = mink

i=1 ς(ui, v) is the random variable corresponding to the
hitting time of k random walks, where some of the ui’s may be equal. Let
h({u1, u2, . . . uk}, v) = E(ς({u1, u2, . . . uk}, v)) be the hitting time of k random
walks starting at vertices ui. If all the walks start at the same vertex u we will write
it as hk(u, v). Let hk

max = maxui,v h({u1, u2, . . . uk}, v) be the maximal hitting time
of k random walks. Similarly, for the cover time we define τu1,u2,...uk

= min{t |
⋃k

i=1{Xui(1), Xui(2), . . . Xui(t)} = V } and define Cu1,u2,...uk
= Eτu1,u2,...uk

to be
the expected cover time. Let Ck = maxu1,u2,...uk

Cu1,u2,...uk
.

The proof of Theorem 1 (see [LWP] Chapter 11) easily extends to multiple walks
implying the following theorem:

Theorem 2. For every (strongly connected) graph G with n vertices, and for every k

Ck

hk
max
≤ logn.

3 Hitting Time of Multiple Random Walks

In this section we study the behavior of the hitting time of k random walks. The first
question we will consider is: what are the starting vertices of multiple random walks
which maximize the hitting time? Later, we will give a lower bound on the maximal
hitting time of multiple random walks. We will prove that hmax

hk
max

= O(k). Then we will
consider the case where the walks’ starting vertices are chosen independently according
to the stationary distribution. Note that in this setting the ratio between hitting times is
not upper bounded by O(k); in fact it may even be exponential in k. We will prove that
in this setting the ratio between the hitting time of the single walk and the hitting time
of k walks is at least k. Next we will use this theorem in order to prove that for graphs
with small mixing time the ratio hmax

hk
max

= Ω(k). Finally we consider the evaluation of
hitting times.

3.1 Worst to Start in a Single Vertex

Let us prove that the maximal hitting time is achieved when all the walks start from the
same node.

Theorem 3. For every graphG = (V,E), for every v ∈ V it holds that

max
u1,u2,...uk

h({u1, u2, . . . uk}, v) = max
u
hk(u, v).

The proof of the theorem (which employs a generalization of Hölder’s Inequality) is
deferred to the full version.
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3.2 Upper Bound on the Speedup of the Hitting Time of Multiple Random
Walks

We will now prove that the ratio between the hitting time of a single random walk and
the hitting time of k random walks is at most O(k).

Theorem 4. For any graphG it holds that hmax ≤ 4khk
max.

Loosely, the theorem is proved by deducing a bound of 1
2k on the probability that a

single walk will hit the target vertex in 2hk
max steps. The formal proof is deferred to the

full version. By a slightly more complicated argument we can replace the constant 4 in
Theorem 4 by e + o(1). However it seems plausible that the right constant is 1.

Open Problem 5. Prove or disprove that for any graphG it holds that hmax ≤ khk
max.

3.3 Lower Bounds on the Speedup of the Hitting Time of Multiple Random
Walks

In this section, we consider the case where the starting vertices of the random walks
are selected according to the stationary distribution. Theorem 4 shows that for worst-
case starting vertices the ratio between the hitting times of a single walk and multiple
walks is at mostO(k). But as we will soon show, when the starting vertices of all walks
are drawn independently from the stationary distribution then, loosely speaking, this
ratio becomes at least k. Note that in some graphs the ratio of hitting times, when the
starting vertices are selected according to the stationary distribution, may even become
exponential in k. Indeed, such an example is given in Figure 1 and is discussed in the
introduction (the discussion there is for the cover time but the analysis for the hitting
time is very similar)

The next theorem gives a lower bound on the ratio between hitting times for random
starting vertices.

Theorem 6. Let G(V,E) be a (connected) undirected graph. LetX be a random walk
onG. Let u, u1, . . . uk ∈ V be independently chosen according to the stationary distri-
bution of G. Then:

Eu(h(u, v)) ≥ k (Euih({u1, u2, . . . uk}, v)− 1) .

Remark 7. In this theorem we assume continues model of random walk.

As we will later see (in Corollary 22), when k log k = o(h(u, v)/mix) then the speedup
is at most k + o(k) in the scenario of random starting vertices. Thus when k log k =
o(h(u, v)/mix) the speedup is k up to lower order terms.

The proof of the theorem is deferred to the full version.

Lower bound on the speedup for worst starting vertices. The lower bound on the
speedup for walks starting at the stationary distribution translates into a lower bound
that also applies to walks starting at the worst vertices: First let the walks converge to
the stationary distribution and then apply the previous lower bound. The bounds that
we obtain are especially meaningful when the mixing time of the graph is sufficiently
smaller than the hitting time.
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Theorem 8. Let G(V,E) be a (connected) undirected graph. Then

hk
max ≤

hmax

k
+O(mix(logn+ log k)).

As a corollary we get:

Corollary 9. Let G(V,E) be a (connected) undirected graph such that kmix(logn +
log k) = o(hmax). Then:

hmax

hk
max
≥ k(1− o(1)).

3.4 Calculating the Hitting Time of Multiple Random Walks

We would like to address a question which is somewhat orthogonal to the main part of
this paper. Namely, we would like to discuss how the hitting time of multiple walks can
be calculated. Let us observe that multiple random walks on graph G can be presented
as a single random walk on another graphGk .

Definition 10. Let G = (V,E) be some graph. Then the graph Gk = (V ′, E′) is
defined as follows: The vertices of Gk are k-tuples of vertices of G i.e.

V ′ = V ⊕ V . . .⊕ V︸ ︷︷ ︸
k times

= V k.

For every k edges of G, (ui, vi) for i = 1, . . . , k we have an edge between u′ =
(u1, u2, . . . uk) and v′ = (v1, v2 . . . vk) in Gk.

One can view k random walks on G as a single random walk on Gk where the first co-
ordinate ofGk corresponds to the first random walk, the second coordinate corresponds
to the second random walk, and so on.

Let A ⊂ V k be the set of all nodes of Gk which contain the node v ∈ V . Assume
that we have k random walks beginning at u1, u2, . . . uk. Then the time it will take to hit
v is equal to the time for a single random walk onGk beginning at node (u1, u2, . . . uk)
to hit the set A. Thus instead of analyzing multiple random walks we can study a single
random walk onGk. There is a polynomial time algorithm for calculating hitting times
of a single random walk (cf. [Lov96]). This gives us an algorithm, which is polynomial
in nk, for calculating h({u1, u2, . . . uk}, v). A natural question is whether there exist
more efficient algorithms.

Open Problem 11. Find a more efficient algorithm for calculatingh({u1, u2, . . . uk}, v).

4 Cover Time of Multiple Random Walks

Let us turn our attention from the hitting time to the cover time. As in the case of
the hitting time, the cover time heavily depends on the starting vertices of the random
walks. The graph given by Figure 1 and discussed in the introduction gives an example
where the speedup in cover time of k random walks is linear in k for worst-case starting



484 K. Efremenko and O. Reingold

vertices, it is exponential in k for random starting vertices, and even for k = 2 it is
Ω(n/ logn) for the best starting vertices.

Theorem 1 gives a relation between hitting times and cover times. Thus, our results
on hitting times from the previous section also give us results on the cover times. In
Subsection 4.1 we will give these results and will analyze the speedup, C

Ck
, for worst

starting vertices. We show that it is bounded by min{k2, k log n} for any k. We will
also show that for k such that k lognmix = O(hmax) the speedup is Ω( k

log n ).
We will show in Subsection 4.2 that when k random walks begin from the best start-

ing vertices for k = o(H(G)) the speedup is roughly k and is therefore essentially equal
to the speedup for the worst case. In Subsection 4.3 we will show that when the starting
vertices are drawn from the stationary distribution for k such that mixk log(k) = o(C),
the speedup is at most k.

4.1 The Worst Starting Vertices

As a simple corollary of Theorem 4 we obtain the following relation:

Theorem 12. The speedup C
Ck is at most 4kH(G) ≤ 4k logn

Proof. Recall that Ck ≥ hk
max so C

Ck ≤ C
hk
max

= hmax
hk
max
H(G). From Theorem 4

it follows that hmax
hk
max
H(G) ≤ 4kH(G). And finally from Theorem 1 we have that

4kH(G) ≤ 4k logn.

From this theorem it follows that for k = Ω(H(G)) the speedup is O(k2). Theorem 15
implies that if k < 0.01H(G) then the speedup C

Ck is at most 2k. Therefore, we can
conclude a bound for every k:

Theorem 13. For every (strongly connected) graph G and every k, it holds that C
Ck =

O(k2).

From Theorem 8 we can also deduce a lower bound on the speedup for rapidly-mixing
graphs:

Theorem 14. LetG(V,E) be an undirected graph and let k be such that k(logn)mix =
o(hmax) then

C

Ck
≥ k

logn
(1− o(1)).

Proof. From Theorem 2 it follows that C
Ck
≥ hmax

hk
max log n . Since k lognmix = o(hmax),

Theorem 8 implies that hmax
hk
max

= k(1− o(1)). Thus: C
Ck
≥ k

log n (1 + o(1)).

4.2 The Best Starting Vertices

As we discussed earlier, multiple random walks can be dramatically more efficient than
a single random walk if their starting vertices are the best nodes (rather than the worst
nodes). In fact, we have seen an example where taking two walks instead of one reduces
the cover time by a factor of Ω(n/ logn). In this section we show that in graphs where
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the cover time is significantly larger than the hitting time, a few random walks cannot
give such a dramatic speedup in the cover time, even when starting at the best nodes:
If k = o(H(G)) (recall that H(G) = C

hmax
), then the speedup C

Cu1,u2,...uk
(where

u1, u2, . . . uk are best possible) is not much bigger than k. Note that in the case where
k = o(H(G)) it has been shown in [AAK+07] that the speedup C

Cu1,u2,...uk
is at least

k − o(k), even if u1, u2, . . . uk’s are worst possible. Combining the two results we get
that the speedup is roughly k regardless of where the k walks start.

We want to show that the cover time of a single random walk is not much larger
than k times the cover time of k random walks. For that we will let the single walk
simulate k random walks (starting from vertices ui) as follows: The single walk runs
until it hits u1, then it simulates the first random walk. Then it runs until it hits u2 and
simulates the second random walk and so on until hitting uk and simulating the k’th
random walk. The expected time to hit any vertex from any other vertex is bounded
by hmax. Thus intuitively the above argument should imply the following bound: C ≤
kCu1,u2,...uk

+ khmax. Unfortunately, we do not know how to formally prove such a
strong bound. The difficulty is that the above argument only shows how a single walk
can simulate k walks for t steps, where t is fixed ahead of time. However, what we
really need is for the single walk to simulate k walks until the walks cover the graph.
In other words, t is not fixed ahead of time but rather a random variable which depends
on the k walks. Nevertheless, we are still able to prove the following bound which is
weaker by at most a constant factor:

Theorem 15. For every graphG and for any k nodes u1, u2, . . . uk in G, it holds that:

C ≤ kCu1,u2,...uk
+O(khmax) +O

(√
kCu1,u2,...uk

hmax

)
.

The proof will appear in the full version.
In [AAK+07] the following theorem was proved:

Theorem 16 (Theorem 5 from [AAK+07]). LetG be a strongly connected graph and
k = o(H(G)) then C

Ck
≥ k − o(k).

In the case where k = o(H(G)) then O(khmax) + O(
√
Cu1,u2,...uk

khmax) = o(C)
and therefore C ≤ kCu1,u2,...uk

+ o(C). As a corollary we get:

Corollary 17. Let G be a strongly connected graph and k = o(H(G)) then for any
starting vertices u1, u2, . . . uk it holds that: C

Cu1,u2,...uk
= k ± o(k)

It seems plausible that the speedup is at most k for any starting vertices, also when k
is significantly larger than H(G). When k ≥ eH(G) we can give an example where
kCu1,u2,...uk

<< C. Consider a graph G which is composed of a clique of size n and
t vertices where each vertex is connected by one edge to some node of a clique. We
will assume that n >> t. The maximal hitting time for this graph is O(n2). The cover
time of this graph is O(n2 log t) and H(G) = log t. If k = t then when k multiple
random walks start from the t vertices which are not in the clique, then Cu1,u2,...uk

=
n log n

k +O(1). Therefore, a natural open problem is the following:

Open Problem 18. Prove or disprove that for some constant α > 0, for any graph G,
if k ≤ eαH(G) then C ≤ O(k)Cu1,u2,...uk

.
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4.3 Random Starting Vertices

Finally we consider the cover time of k walks that start from vertices drawn from
the stationary distribution. In this case, Theorem 6 loosely states that the ratio between
the hitting times is at least k. Now let us show an upper bound on the ratio between the
cover time of a single random walk and multiple random walks.

The intuition for the bound is quite similar to the intuition behind the proof of The-
orem 15 (nevertheless, the proofs are quite a bit different). We will simulate k random
walks by a single walk. The single random walk will first run ln(k)mix steps, getting
to a vertex that is distributed almost according to the stationary distribution. The walk
then simulates the first of the k random walks. Next, the walk takes ln(k)mix steps
again and simulates the second random walk and so on until simulating the kth random
walk. Since the start vertex of the k simulated walks are jointly distributed almost as
if they were independently sampled from the stationary distribution it seems that we
should obtain the following upper bound: C ≤ kEuiCu1,u2,...uk

+ k ln(k)mix, where
u1, u2, . . . uk are independently drawn from the stationary distribution. But as before
we can not make this intuition formal, mainly because we do not know ahead of time
how long the k random walks will take until they cover the graph. We will instead prove
the following bound which again may be weaker by at most a constant factor:

Theorem 19. Let G = (V,E) be any (strongly connected) graph. Let u1, u2, . . . uk be
drawn from the stationary distribution of G. Then:

C ≤ kEuiCu1,u2,...uk
+O(k ln(k)mix) +O

(
k
√

ECu1,u2,...uk
mix

)
.

Under some restrictions, the mixing time cannot be much larger than the maximal hit-
ting time and often will be much smaller. In such cases, Theorem 19 may be more
informative than Theorem 15 in the sense that it implies a bound of roughly k on the
speedup as long as k = Õ( C

mix ) (rather than k = O( C
hmax

) as implied by Theorem 15).
On the other hand, the starting vertices in Theorem 19 are according to the stationary
distribution rather than arbitrary starting vertices as in Theorem 15.

The proof of Theorem 19 will appear in the full version. We note that the proof
also works if we consider the hitting times (rather than the cover times), implying the
following theorem:

Theorem 20. LetG = (V,E) be any (strongly connected) graph. Let u, v be any nodes
of the graph and let u1, u2, . . . uk be drawn from the stationary distribution ofG. Then:

h(u, v) ≤ kEuih({u1, u2, . . . uk}, v) + O(k ln(k)mix) + O

(
k
√

Euih({u1, u2, . . . uk}, v)mix

)
.

As a corollary of Theorems 19 it follows that if k log kmix is negligible relative to the
cover time then the speedup of the cover time is at most k

Corollary 21. LetG = (V,E) be any (strongly connected) graph. Let u1, u2, . . . uk be
drawn from the stationary distribution of G. Then if k log(k) = o(C/mix) then

C

EuiCu1,u2,...uk

≤ k + o(k).
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Similarly, from Theorem 20 we obtain the following corollary:

Corollary 22. Let G = (V,E) be any (strongly connected) graph. Let u1, u2, . . . uk

be drawn from the stationary distribution of G and u, v any nodes. Then if k log(k) =
o(h(u, v)/mix) then

h(u, v)
Euih({u1, u2, . . . uk}, v)

≤ k + o(k).

5 A New Relation between Cover and Mixing Time

In this section we will show how we can use the results proven above in order to prove
a new upper bound on the cover time in terms of mixing time. In order to do this we
will need the following bound from [BKRU89].

Theorem 23 (cf. [BKRU89] Theorem 1). LetG be a connected undirected graph with
n vertices andm edges. Let u1, u2, . . . uk be drawn from the stationary distribution of
G. Then:

Eui(Cu1,u2,...uk
) ≤ O(

m2 log3 n

k2 ).

As a rather intriguing corollary of Theorem 23 and Theorem 19 we get the following
bound on the cover time.

Theorem 24. Let G be a connected undirected graph with n vertices and m edges.
Then:

C ≤ O(m
√

mix log2 n).

Proof. From Theorem 19 it follows that:

C(G) ≤ kEuiCu1,u2,...uk
(G) +O(k ln(k)mix) +O

(
k
√

ECu1,u2,...uk
mix

)
.

Thus from Theorem 23 we get the following bound on C(G):

C(G) ≤ O(
m2 log3 n

k
) +O(k ln(k)mix) +O(m log1.5 n

√
mix).

As long as k is at most polynomial in n it follows that log k = O(log n). Thus:

C(G) ≤ O(
m2 log3 n

k
) +O(k ln(n)mix) + o(m log2 n

√
mix).

Setting k = m log n√
mix

implies the theorem.
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6 Future Research

This paper systematically studies the behavior of multiple random walks. While we
have given various upper and lower bounds for the speedup of multiple random walks,
there is still much more that we do not know on this topic, with a few examples being
Open Problems 5, 11 and 18. In this section, we will discuss a few additional directions
for further research.

Our knowledge on the hitting time of multiple random walks is more complete than
our knowledge on their cover time. Indeed, analyzing the hitting time seems easier than
analyzing the cover time. Designing new tools for analyzing the cover time of multiple
random walks is an important challenge. For example, we have proved that the maximal
hitting time of multiple random walks is obtained when all the walks start from the same
vertex (see Theorem 4), but we don’t know if the same is also true for the cover times:

Open Problem 25. Prove or disprove that for any graphG

max
u1,u2,...uk

Ck
u1,u2,...uk

= max
u
Ck

u,u,...u.

We have proved that in the case of worst starting vertices the speedup of the hitting
time is at most 4k, and we raised the question of whether the correct constant is one
(see Open Problem 5). It seems however, that for the cover time the speedup may be
larger than k (though it is still possible that it isO(k)). Consider a walk on a “weighted”
path a− b − c with self loops such that the probability of staying in place is 1 − 1

x . In
other words, consider a Markov chainX(t) with the following transition probabilities:

Pr[X(t) = b|X(t− 1) = a] = Pr[X(t) = b|X(t− 1) = c] = 1
x

Pr[X(t) = c|X(t− 1) = b] = Pr[X(t) = a|X(t− 1) = b] = 1
2x

Calculating the cover times gives the following: The worst starting vertex of a single
random walk is b and the cover time is 5x+o(x). The worst starting vertices of 2 random
walks is when both walks start at a and the cover time in such a case is 2.25x+ o(x).
Thus, in this case the speedup for 2 walks is 2.222. It is an interesting question to
find stronger examples (where the speedup is larger than k), and of course it would be
interesting to find a matching upper bound on the speedup.

A technical issue that comes up in our analysis is that in order to understand the
behavior of multiple random walks it may be helpful to understand the behavior of
short random walks. For example, what kind of bound can be obtained on Pr[ς(u, v) ≥
hmax/2] (for an undirected and connected graph).

Finally, it will be interesting to explore additional applications of multiple random
walks, either in computer science or in other fields.
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Abstract. In this paper, we provide a polylogarithmic bound that holds
with high probability on the insertion time for cuckoo hashing under
the random-walk insertion method. Cuckoo hashing provides a useful
methodology for building practical, high-performance hash tables. The
essential idea of cuckoo hashing is to combine the power of schemes that
allow multiple hash locations for an item with the power to dynamically
change the location of an item among its possible locations. Previous
work on the case where the number of choices is larger than two has
required a breadth-first search analysis, which is both inefficient in prac-
tice and currently has only a polynomial high probability upper bound
on the insertion time. Here we significantly advance the state of the art
by proving a polylogarithmic bound on the more efficient random-walk
method, where items repeatedly kick out random blocking items until a
free location for an item is found.

Keywords: Cuckoo Hashing, Random Walk Algorithm.

1 Introduction

Cuckoo hashing [12] provides a useful methodology for building practical, high-
performance hash tables by combining the power of schemes that allow multiple
hash locations for an item (e.g., [1,2,3,13]) with the power to dynamically change
the location of an item among its possible locations. Briefly (more detail is given
in Section 2), each of n items x has d possible locations h1(x), h2(x), . . . , hd(x),
where d is typically a small constant and the hi are hash functions, typically as-
sumed to behave as independent fully random hash functions. (See [11] for some
justification of this assumption.) We assume each location can hold only one item.
When an item x is inserted into the table, it can be placed immediately if one of
its d locations is currently empty. If not, one of the items in its d locations must be
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displaced and moved to another of its d choices to make room for x. This item in
turn may need to displace another item out of one its d locations. Inserting an item
may require a sequence of moves, each maintaining the invariant that each item
remains in one of its d potential locations, until no further evictions are needed.
Further variations of cuckoo hashing, including possible implementation designs,
are considered in for example [5], [6], [7], [8], [9].

It is often helpful to place cuckoo hashing in a graph theoretic setting, with
each item corresponding to a node on one side of a bipartite graph, each bucket
corresponding to a node on the other side of a bipartite graph, and an edge
between an item x and a bucket b if b is one of the d buckets where x can be
placed. In this case, an assignment of items to buckets forms a matching and a
sequence of moves that allows a new item to be placed corresponds to a type
of augmenting path in this graph. We call this the cuckoo graph (and define it
more formally in Section 2).

The case of d = 2 choices is notably different than for other values of d. When
d = 2, after the first choice of an item to kick out has been made, there are no
further choices as one walks through the cuckoo graph to find an augmenting
path. Alternatively, in this case one can think of the cuckoo graph in an alter-
native form, where the only nodes are buckets and items correspond to edges
between the buckets, each item connecting the two buckets corresponding to it.
Because of these special features of the d = 2 case, its analysis appears much
simpler, and the theory for the case where there are d = 2 bucket choices for
each item is well understood at this point [4,10,12].

The case where d > 2 remains less well understood, although values of d
larger than 2 rate to be important for practical applications. The key question
is if when inserting a new item x all d > 2 buckets for x are already full, what
should one do? A natural approach in practice is to pick one of the d buckets
randomly, replace the item y at that bucket with x, and then try to place y in
one of its other d−1 bucket choices [6]. If all of the buckets for y are full, choose
one of the other d− 1 buckets (other than the one that now contains x, to avoid
the obvious cycle) randomly, replace the item there with y, and continue in the
same fashion. At each step (after the first), place the item if possible, and if not
randomly exchange the item with one of d − 1 choices. We refer to this as the
random-walk insertion method for cuckoo hashing.

There is a clear intuition for how this random walk on the buckets should
perform. If a fraction f of the items are adjacent to at least one empty bucket in
the corresponding graph, then we might expect that each time we place one item
and consider another, we should have approximately a probability f of choosing
an item adjacent to an empty bucket. With this intuition, assuming the load of
the hash table is some constant less than 1, the time to place an item would be
at most O(log n) with high probability1.

Unfortunately, it is not clear that this intuition should hold true; the intu-
ition assumes independence among steps when the assumption is not necessarily

1 An event En occurs with high probability if P(En) = 1 − O(1/nα) for some constant
α > 0, see also discussion on page 494.
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warranted. Bad substructures might arise where a walk could be trapped for a
large number of steps before an empty bucket is found. Indeed, analyzing the
random-walk approach has remained open, and is arguably the most significant
open question for cuckoo hashing today.

Because the random-walk approach has escaped analysis, thus far the best
analysis for the case of d > 2 is due to Fotakis et al. [6], and their algorithm
uses a breadth-first search approach. Essentially, if the d choices for the initial
item x are filled, one considers the other choices of the d items in those buckets,
and if all those buckets are filled, one considers the other choices of the items
in those buckets, and so on. They prove a constant expected time bound for an
insertion for a suitably sized table and constant number of choices, but to obtain
a high probability bound under their analysis requires potentially expanding a
logarithmic number of levels in the breadth-first search, yielding only a poly-
nomial bound on the time to find an empty bucket with high probability. It
was believed this should be avoidable by analyzing the random-walk insertion
method. Further, in practice, the breadth-first search would not be the choice
for most implementations because of its increased complexity and memory needs
over the random-walk approach.

In this paper, we demonstrate that, with high probability, for sufficiently
large d the cuckoo graph has certain structural properties that yield that on the
insertion of any item, the time required by the random-walk insertion method
is polylogarithmic in n. The required properties and the intuition behind them
are given in subsequent sections. Besides providing an analysis for the random-
walk insertion method, our result can be seen as an improvement over [6] in
that the bound holds for every possible starting point for the insertion (with
high probability). The breadth-first search of [6] gives constant expected time,
implying polylogarithmic time with probability 1−o(1). However when inserting
Ω(n) element into the hash table, the breadth-first search algorithm cannot
guarantee a sub-polynomial running time for the insertion of each element. This
renders the breadth-first search algorithm unsuitable for many applications that
rely on guarantees for individual insertions and not just expected or amortized
time complexities.

While the results of [6] provide a starting point for our work, we require further
deconstruction of the cuckoo graph to obtain our bound on the performance of
the random-walk approach.

Simulations in [6] (using the random-walk insertion scheme), indicate that
constant expected insertion time is possible. While our guarantees do not match
the running time observed in simulations, they give the first clear step forward
on this problem for some time.

2 Definitions and Results

We begin with the relevant definitions, followed by a statement of and explana-
tion of our main result.

Let h1, . . . hd be independent fully random hash functions hi : [n]→ [m] where
m = (1 + ε)n. The necessary number of choices d will depend on ε, which gives



An Analysis of Random-Walk Cuckoo Hashing 493

the amount of extra space in the table. We let the cuckoo graph G be a bipartite
graph with a vertex set L ∪ R and an edge set

⋃
x∈L{(x, h1(x)), . . . (x, hd(x)},

where L = [n] and R = [m]. We refer to the left set L of the bipartite graph as
items and the right set R as buckets.

An assignment of the items to the buckets is a left-perfect matching M of
G such that every item x ∈ L is incident to a matching edge. The vertices
F ⊆ R not incident to the matching M are called free vertices. For a vertex v
the distance to a free vertex is the shortest M -alternating path from v to a free
vertex.

We present the algorithm for insertion as Algorithm 1 below. The algorithm
augments the current matching M with an augmenting path P . An item is
assigned to a free neighbor if one exists; otherwise, a random neighbor is chosen
to displace from its bucket, and this is repeated until an augmenting path is
found. In practice, one generally sets an upper bound on the number of moves
allowed to the algorithm, and a failure occurs if there remains an unassigned item
after that number of moves. Such failure can be handled by additional means,
such as stashes [8].

Algorithm 1. Insert-node
1: procedure Insert-node(G,M ,u)
2: P ← ()
3: v ← u
4: i ← d + 1
5: loop
6: if hj(v) is not covered by M for some j ∈ {1, . . . , d} then
7: P ← P ⊕ (v, hj(v))
8: return Augment(M ,P )
9: else

10: Let j ∈R {1, . . . , d} \ {i} and w be such that (hj(v), w) ∈ M
11: P ← P ⊕ (v, hj(v)) ⊕ (hj(v), w)
12: v ← w
13: i ← j
14: end if
15: end loop
16: end procedure

We note that our analysis that follows also holds when the table experiences
deletions. This is because our result is based on the structure of the underlying
graph G, and not on the history that led to the specific current matching. The
statement of the main result is that given that G satisfies certain conditions,
which it will with high probability, the insertion time is polylogarithmic with
high probability. It is important to note that we have two distinct probability
spaces, one for the hash functions which induce the graph G, and another for the
randomness employed by the algorithm. For the probability space of hash func-
tion, we say that an event En occurs with high probability if P(En) = 1−O(n−2d).
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For the probability space of randomness used by the algorithm we use the regular
definition of with high probability.

Theorem 1. Conditioned on an event of probability 1−O(n4−2d) regarding the
structure of the cuckoo graph G, the expected time for insertion into a cuckoo
hash-table using Algorithm 1 is O

(
log1+γ0+2γ1 n

)
where γ0 = d+log d

(d−1) log(d/3) and

γ1 = d+log d
(d−1) log(d−1) , assuming d ≥ 8 and if ε ≤ 1

6 , d ≥ 4+2ε−2(1+ε) log
(

ε
1+ε

)
.

Furthermore, the insertion time is O
(
log2+γ0+2γ1 n

)
with high probability.

The algorithm will fail if the graph does not have a left-perfect matching, which
happens with probability O(n4−2d) [6]. We show that all necessary structural
properties of G hold with probability 1 − O(n−2d), so that the probability of
failure is dominated by the probability that G has no left-perfect matching.

At a high level, our argument breaks down into a series of steps. First, we
show that the cuckoo graph expands suitably so that most vertices are within
O(log logn) distance from a free vertex. Calling the free vertices F and this set
of vertices near to the free vertices S, we note that if reach a vertex in S, then
the probability of reaching F from there over the next O(log logn) steps in the
random walk process is inverse polylogarithmic in n, so we have a reasonable
chance of getting to a free vertex and finishing. We next show that if the cuckoo
graph has an expansion property, then from any starting vertex, we are likely to
reach a vertex of S though the random walk in only O(log n) steps. This second
part is the key insight into this result; instead of trying to follow the intuition
to reach a free vertex in O(log n) steps, we aim for the simpler goal of reaching
a vertex S close to F and then complete the argument.

As a byproduct of our Lemma 2 (below), we get an improved bound on the
expected running time for the breadth-first variation on cuckoo hashing from
[6],

( 1
ε

)O(1) instead of
( 1

ε

)O(log d).

Theorem 2. The breadth-first search insertion procedure given in [6] runs in

O

(
max

{
d4

( 1
6ε

) 1
1− log 6

log d , d5
})

expected time, provided d ≥ 8 and if ε ≤ 1
6 if

d ≥ 4 + 2ε− 2(1 + ε) log
(

ε
1+ε

)
.

We prove the necessary lemmas below. The first lemma shows that large subsets
of R have large neighborhoods in L. Using this we can show in our second lemma
that the number of R-vertices at distance k from F shrinks geometrically with
k. This shows that the number of vertices at distance Ω(log logn) from F is
sufficiently small. The second lemma shows that at least half the vertices of L
are at a constant distance from F . The next two lemmas will be used to show
that successive levels in a breath first search expand very fast i.e. at a rate close
to d− 1. The first of these lemmas deals with the first few levels of the process
by showing that small connected subgraphs cannot have to many “extra” edges.
The second will account for subsequent levels through expansion.
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3 Expansion and Related Graph Structure

We first show that large subsets of R have corresponding large neighborhoods
in L.

Lemma 1. If 1/2 ≤ β ≤ 1− 2d3 log n
n and α = d− 1− d+log d

1−log(1−β) > 0 then with
high probability every subset Y ⊆ R of size |Y | = (β+ε)n, has a G-neighborhood
X ⊆ L of size at least n

(
1− 1−β

α

)
.

Proof. We show by a union bound that with high probability, there does not
exist a pair X,Y such that |Y | = (β + ε)n, |X | < n − (1+ε)n−|Y |

α and X is the
neighborhood of Y in G.

Let S = L \ X and T = R \ Y . Then |S| ≥ (1+ε)n−|Y |
α = n(1−β)

α and |T | =
(1 + ε)n − (β + ε)n = (1 − β)n. Each vertex in L has all of its edges in T

with probability
(

1−β
1+ε

)d

independently of other vertices. Thus for any T the

size of S is a binomially distributed random variable, Bin(n,
(

1−β
1+ε

)d

). Thus the
probability of the existence of a pair X,Y is at most

(
(1 + ε)n
(β + ε)n

)
P

(
|S| ≥ (1− β)n

α

)

=
(

(1 + ε)n
(1 − β)n

)
P

(

Bin

(

n,

(
1− β

1 + ε

)d
)

≥ (1− β)n
α

)

≤
(
e
1 + ε

1− β

)(1−β)n

⎛

⎜
⎝e

(
1−β
1+ε

)d

1−β
α

⎞

⎟
⎠

1−β
α n

=
(
αe1+α(1 + ε)α−d

(1− β)α−d+1

) 1−β
α n

(1)

where we have used the inequality P (Bin(n, p) ≥ ρpn) ≤
(

e
ρ

)ρpn

. (While there
are tighter bounds, this is sufficient for our purposes.)

Taking logarithms, dropping the 1 + ε factor, and letting D = d + log d and
L = log(1 − β) gives

log((1))
1−β

α n
≤ log

(
d− 1−D/(1− L)

d

)
+ D − D

1− L
+

DL

1− L

= log
(
d− 1−D/(1− L)

d

)
≤ log

(
d− 1
d

)

Then we can upper bound the expression in (1) by

(
d− 1
d

) 1−β
α n

≤ exp
(
−1

d

2d3 logn

d
n

)
≤ n−2d
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The following Lemma corresponds to Lemma 8 in [6]. We give an improved bound
on an important parameter k∗ which gives an improvement for the running time
of the breadth-first search algorithm.

Lemma 2. Assume d ≥ 8 and furthermore if ε ≤ 1
6 we assume d ≥ 4 + 2ε −

2(1+ε) log
(

ε
1+ε

)
. Then the number of vertices in L at distance at most k∗ from

F is at least n
2 , where k∗ = 4 +

log( 1
6ε )

log( d
6 ) if ε ≤ 1

6 and k∗ = 5 if ε ≥ 1
6 .

Proof. Omitted. �
We can now give a proof of Theorem 2:

Proof. We follow the proof of Theorem 1 in [6]. The breadth-first search insertion
procedure takes time O(|Tv|) where Tv is a BFS tree rooted at the newly inserted
vertex v, which is grown until a free vertex is found.

The expected size of Tv is bounded above by dk∗
which is at most d5 for ε ≥ 1

6
and

d4+log( 1
6ε )/ log( d

6 ) = d4
(

1
6ε

) log d
log d−log 6

= d4
(

1
6ε

) 1
1− log 6

log d

if ε ≤ 1
6 . �

Let k∗ = max{4 +
log( 1

6ε )
log( d

6 )
, 5} and let Yk be the vertices in R at distance at most

k∗ + k from F and let |Yk| = (βk + ε)n. We note that Lemma 2 guarantees that
with high probability at most n

2 vertices in R are at distance more than k∗ from
F and so with high probability βk ≥ 1/2 for k ≥ 0.

We now move to showing that for sufficiently large k of size O(log logn), a
large fraction of the vertices are within distance k of the free vertices F with
high probability.

Lemma 3. Suppose that d ≥ 8 and if ε ≤ 1
6 assume d ≥ 4 + 2ε − 2(1 +

ε) log
(

ε
1+ε

)
. Then with high probability 1 − βk = O

(
logγ0 n
(d−1)k

)
for k such that

1/2 ≥ 1− βk ≥ 2d3 logn/n.

The reader should not be put off by the fact that the lemma only has content
for k = Ω(log logn). It is only needed for these values of k.

Proof. We must show that

1− βk = O

(
logγ0 n

(d− 1)k

)
whenever 1− βk ≥ 2d3 logn/n. (2)

Assume that the high probability event in Lemma 1 occurs and 1−βk ≥ logn/n

and the G-neighborhood Xk of Yk in L has size at least n − (1−βk)n
αk

where
αk = d− 1− d+log d

1−log(1−βk) . Note that for βk ≥ 3
4 and d ≥ 8 this implies

αk ≥
d

3
and

(d + log d)/(d− 1)
1− log(1− βk)

≤ 0.9. (3)
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First assume that β0 ≥ 3/4, we will deal with the case of β0 ≥ 1
2 later. Note now

that Yk+1 = F ∪ M(Xk) where M(Xk) = {y : (x, y) ∈M for some x ∈ Xk}.
Thus |Yk+1| = (βk+1 + ε)n ≥ εn + n− (1−βk)n

αk
. This implies that

1− βk+1 ≤
1− βk

αk
(4)

=
1− βk

d− 1

(
1− (d + log d)/(d− 1)

1− log(1− βk)

)−1

≤ 1− βk

d− 1
exp

(
h

(
(d + log d)/(d− 1)

1− log(1− βk)

))
(5)

≤ 1− βk

d− 1
exp

(
h

(
(d + log d)/(d− 1)

1− log(1 − β0) + k log(d/3)

))
. (6)

In (5) we let h(x) = x + 3x2 and note that (1− x)−1 ≤ exp(h(x)) for x ∈ [0, .9].
For (6) we have assumed that 1 − βk ≤ 3k(1 − β0)/dk, which follows from (3)
and (4) provided βk ≥ 3/4.

For β ∈ [ 12 ,
3
4 ] note that αk is increasing in d and β. Also starting with β0 = 1

2

and using d = 8 we see numerically that 1 − β3 ≤
1
2

α0α1α2
≤ 1

4 . Thus after
at most 3 steps we can assume β ≥ 3/4. To simplify matters we will assume
β0 ≥ 3/4, since doing this will only “shift” the indices by at most 3 and distort
the equations by a O(1) factor.

Using inequality (6) repeatedly gives

1− βk+1 ≤
1− β0

(d− 1)k+1×

exp

⎛

⎜
⎝

d + log d

(d− 1) log(d/3)

k∑

j=0

1

j + 1−log(1−β0)
log(d/3)

+ O

⎛

⎜
⎝

k∑

j=0

1
(
j + 1−log(1−β0)

log(d/3)

)2

⎞

⎟
⎠

⎞

⎟
⎠

≤ 1− β0

(d− 1)k+1 exp
(

d + log d

(d− 1) log(d/3)
log

(
1− log(1 − βk)
1− log(1− β0)

)
+ O(1)

)
(7)

≤ O

(
logγ0 n

(d− 1)k+1

)
.

Note that (7) is obtained as follows:

k∑

j=0

1

j + 1−log(1−β0)
log(d/3)

= log
(
k + ζ

ζ

)
+O(1) ≤ log

(
1− log(1− βk)
1− log(1− β0)

)
+O(1) (8)

where ζ = 1−log(1−β0)
log(d/3) . Now 1 − βk ≤ 3k(1 − β0)/dk implies that k ≤ log((1 −

β0)/(1−βk))/ log(d/3). Substituting this upper bound for k into the middle term
of (8) yields the right hand side.

We now require some additional structural lemmas regarding the graph in order
to show that a breadth first search on the graph expands suitably.
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Lemma 4. Whp G does not contain a connected subgraph H on 2k+1 vertices
with 2k + 3d edges, where k + 1 vertices come from L and k vertices come from
R for k ≤ 1

6 logd n.

Proof. We put an upper bound on the probability of the existence of such a
subgraph using the union bound. Let the vertices of H be fixed, any such graph
H can be constructed by taking a bipartite spanning tree on the k + 1 and k
vertices and adding j edges. Thus the probability of such a subgraph is at most

(
n

k + 1

)(
(1 + ε)n

k

)
k(k+1)−1(k + 1)k−1 (k(k + 1))j

(
j

(1 + ε)n

)2k+j

≤
(

en

k + 1

)k+1 (
e(1 + ε)n

k

)k

kk(k + 1)k−1
(
jk(k + 1)
(1 + ε)n

)j

j2k

(
1

(1 + ε)n

)2k

≤ n (ej)2k

(
jk(k + 1)

n

)j

(9)

For j = 3d and k ≥ 1
6 logd n we have 3dk(k+1)

n ≤ n−1+ 1
d and

(3ed)2k ≤ exp
(
log(d3) log n

3 log d

)
= n and (9) is at most n2n−3d+2 = O(n−2d).

Lemma 5. Whp there do not exist S ⊆ L, T ⊆ R such that N(S) ⊆ T ,
2d2 logn ≤ s = |S| ≤ n/d, t = |T | ≤ (d − 1 − θs)s and θs = d+log d

log(n/((d−1)s)) ≥
d+log d
log(n/t) .

Proof. The expected number of pairs S, T satisfying (i),(ii) can be bounded by

n/d∑

s=2d2 log n

(
n

s

)(
(1 + ε)n

t

) (
t

(1 + ε)n

)ds

≤
n/d∑

s=2d2 log n

(ne

s

)s
(

(1 + ε)ne
t

)t (
t

(1 + ε)n

)ds

≤
n/d∑

s=2d2 log n

(ne

s

)s

e(d−1−θs)s
(

t

(1 + ε)n

)ds−(d−1−θs)s

≤
n/d∑

s=2d2 log n

(
t

s

ed−θs

(1 + ε)1+θs

(
t

n

)θs
)s

≤
n/d∑

s=2d2 log n

(

(d− 1)ed−θs

(
t

n

)θs
)s

≤
n/d∑

s=2d2 log n

(
d− 1
d

)s

= O

(
n− 2d2 log n

d

)
= O

(
n−2d

)
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4 Random Walks

Suppose now that we are in the process of adding u to the hash table. For
our analysis, we consider exploring a subgraph of G using breadth-first search,
starting with the root u ∈ L and proceeding until we reach F . We emphasize
that this is not the behavior of our algorithm; we merely need to establish some
properties of the graph structure, and the natural way to do that is by considering
a breadth-first search from u.

Let L1 = {u}. Let the R-neighbors of x be w1, w2, . . . , wd and suppose that
none of them are in F . Let R1 = {w1, w2, . . . , wd}. Let L2 = {v1, v2, . . . , vd}
where vi is matched with wi in M , for i = 1, 2, . . . , d. In general, suppose we
have constructed Lk for some k. Rk consists of the R-neighbors of Lk that are
not in R≤k−1 = R1∪· · · ∪Rk−1 and Lk+1 consists of the M -neighbors of Ri. An
edge (x, y) from Lk to R is wasted if either (i) y ∈ Rj , j < k or if there exists
x′ ∈ Lk, x

′ < x such that the edge (x′, y) ∈ G. We let

k0 =
⌊
logd−1(n)− 1

⌋

and ρk = |Rk|, λk = |Lk| for 1 ≤ k ≤ k0. Assume for the moment that

|Rk| ∩ F = ∅ for 1 ≤ k ≤ k0. (10)

Lemma 6. Assume that (10) holds. Then

ρk0 = Ω

(
n

logγ1 n

)
. (11)

Proof. We can assume that 1− βk0 ≥ 2d3 logn/n. If 1 ≤ k ≤ k1 =
⌊

logd n
6

⌋
then

Lemma 4 implies that we generate at most 3d wasted edge in the construction
of Lj , Rj , 1 ≤ j ≤ k. If we consider the full BFS path tree, where vertices can be
repeated, then each internal vertex of the tree L has d − 1 children. For every
wasted edge we cut off a subtree of the full BFS tree, what remains when all
the wasted edges have been cut is the regular BFS tree. Clearly the worst case
is when all the subtrees cut off are close to the root, thus 3d wasted edges can
at most stunt the growth of the tree for 4 levels (d− 2 edges cut at the 3 lowest
levels and 6 edges cut off at the 4-th level). This means that

ρk > (d− 1)k−5 for 1 ≤ k ≤ k1. (12)

In particular ρk1 = Ω
(
(d− 1)

logd n

6

)
= Ω

(
2d2 logn

)
so Lemma 5 applies to the

BFS tree at this stage. In general Lemma 5 implies that for j ≥ k1

ρ1 + ρ2 + · · ·+ ρj ≥ (d− 1− θs)s (13)

where
s = λ1 + λ2 + · · ·+ λj = 1 + ρ1 + ρ2 + · · ·+ ρj−1. (14)

This follows from the fact that λ1 = 1 and (10) implies λj = ρj−1 for j ≥ 2.
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Now λj ≤ (d − 1)λj−1 for j ≥ 3 and so s in (14) satisfies s ≤ 1 + d + d(d −
1) + · · ·+ d(d − 1)j−2 < (d− 1)j−1. Thus θs in (13) satisfies

θs ≤ φj =
d + log d

logn− j log(d− 1)
.

Thus, by (13) and (14) we have (after dropping a term)

ρj ≥ (d− 2− φj)(ρ1 + ρ2 + · · ·+ ρj−1). (15)

An induction then shows that for  ≥ 1,

ρk1+	 ≥ (ρ1 + · · ·+ ρk1)(d− 2− φk1+	)
	−1∏

k=1

(d− 1− φk1+k). (16)

Indeed the case  = 1 follows directly from (15). Then, by induction,

ρk1+	+1 ≥

(ρ1 + · · ·+ ρk1)(d− 2− φk1+	+1)

(

1 +
	∑

k=1

(d− 2− φk1+k)
k−1∏

i=1

(d− 1− φk1+i)

)

= (ρ1 + · · ·+ ρk1)(d− 2− φk1+	+1)
	∏

k=1

(d− 1− φk1+k). (17)

To check (17) we can use induction. Assume that

1 +
	+1∑

k=2

(d− 2− φk1+k)
k∏

i=2

(d− 1− φk1+i) =
	+1∏

k=2

(d− 1− φk1+k)

and then multiply both sides by d− 1− φk1+1.
We deduce from (12) and (16) that provided k1 +  ≤ k0 (which implies

φk1+	

d−1 ≤ 1
2 ),

ρk1+	 ≥ ((d− 1)k1−5 − 1)(d− 2− φk1+	)
	−1∏

k=1

(d− 1− φk1+k)

≥ 1
2
(d− 1)k1+	−4 exp

{

− 1
d− 1

	∑

k=1

φk1+k −
1

(d− 1)2

	∑

k=1

φ2
k1+k

}

(18)

Note next that

	∑

k=1

φk1+k =
d + log d

log(d− 1)

(
log

(
logn− k1 log(d− 1)

logn− (k1 + ) log(d− 1)

)
+ O(1)

)

≤ d + log d

log(d− 1)
(log logn + O(1))
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and
∑	

k=1 φ2
k1+k = O(1). Thus, putting  = k0 − k1 we get

ρk0 = Ω

(
(d− 1)k0

(log n)(d+log d)/((d−1) log(d−1))

)

and the lemma follows.

5 Proof of Theorem 1

Let S denote the set of vertices v ∈ R at distance at most Δ = k∗ + (γ0 +
γ1) logd−1 logn + 2K from F , where K is a large constant and k∗ is given in
Lemma 2. Then by Lemma 3

|R \ S| ≤ n

(d− 1)K logγ1(n)
.

We have used (d − 1)K to “soak up” the hidden constant in the statement of
Lemma 3 and the requirement 1− βk ≥ 2d2 logn/n in Lemma 3 does not cause
problems. If it fails then at most O(log n) vertices are at distance greater than
Δ from F .

If K is sufficiently large then Lemma 6 implies that

|R \ S| ≤ ρk0/2. (19)

Every vertex v ∈ S has a path of length l ≤ Δ to a free vertex and the proba-

bility that the random walk follows this path is
(

1
d−1

)l

≥
(

1
d−1

)Δ

, which is a
lower bound on the probability the algorithm finds a free vertex within Δ steps,
starting from v ∈ S. We now split the random walk into rounds, and each round
into two phases.

The first phase starts when the round starts and ends when the random walk
reaches a vertex of S or after k0 steps(possibly the first phase is empty). Then,
the second phase starts and ends either when the random walk reaches a free
vertex or after Δ steps, finishing this round. The length of the first phase is at
most k0 and in the second phase takes at most Δ steps.

Claim. Starting from a vertex v /∈ S the expected number of rounds until the
random walk is in S is at most O(logγ1 n). Indeed the probability that a random
walk of length k0 passes through S is at least ρk0−|R\S|

(d−1)k0 = Ω(log−γ1 n).

By Claim 5 we have a Ω(log−γ1 n) chance of reaching S at the end of the first

phase. When we start the second phase we have at least a
(

1
d−1

)Δ

probability
of reaching a free vertex, thus ending the random walk. Then the number of
rounds until we reach a free vertex is dominated by a geometric distribution

with parameter Ω

((
1

d−1

)Δ

log−γ1 n

)
and thus the expected number of rounds
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is O((d− 1)Δ logγ1 n). Since both Lemma 3 and Claim 5 apply regardless of the
starting vertex, this shows that the expected number of steps until we reach a
free vertex is at most

O
(
k0 logγ1 n(d− 1)Δ

)
= O

(
(logn) (logγ1 n)(d − 1)(γ0+γ1) logd−1 log n+O(1)

)

= O
(
log1+γ0+2γ1 n

)
.

There is still the matter of Assumption (10). This is easily dealt with. If we find
v ∈ Rk ∩ F then we are of course delighted. So, we could just add a dummy
tree extending 2(k0− k) levels from v where each vertex in the last level is in F .
The conclusion of Claim 5 will remain unchanged. This completes the proof of
Theorem 1.

6 Conclusion

We have demonstrated that for sufficiently large d with high probability the
graph structure of the resulting cuckoo graph is such that, regardless of the
staring vertex, the random-walk insertion method will reach a free vertex in
polylogarithmic time with high probability. Obvious directions for improvement
include reducing the value of d for which this type of result holds, and reducing
the exponent in the time bound.
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Abstract. Referring to the query complexity of property testing, we
prove the existence of a rich hierarchy of corresponding complexity classes.
That is, for any relevant function q, we prove the existence of proper-
ties that have testing complexity Θ(q). Such results are proven in three
standard domains often considered in property testing: generic functions,
adjacency predicates describing (dense) graphs, and incidence functions
describing bounded-degree graphs. While in two cases the proofs are
quite straightforward, the techniques employed in the case of the dense
graph model seem significantly more involved. Specifically, problems that
arise and are treated in the latter case include (1) the preservation of
distances between graph under a blow-up operation, and (2) the con-
struction of monotone graph properties that have local structure.

Keywords: Property Testing, Graph Properties, Monotone Graph Prop-
erties, Graph Blow-up, One-Sided vs Two-Sided Error, Adaptivity vs
Non-adaptivity.

1 Introduction

In the last decade, the area of property testing has attracted much attention (see
the surveys of [F, R], which are already somewhat out-of-date). Loosely speaking,
property testing typically refers to sub-linear time probabilistic algorithms for
deciding whether a given object has a predetermined property or is far from any
object having this property. Such algorithms, called testers, obtain local views of
the object by making adequate queries; that is, the object is seen as a function
and the testers get oracle access to this function (and thus may be expected to
work in time that is sub-linear in the length of the object).

Following most work in the area, we focus on the query complexity of prop-
erty testing, where the query complexity is measured as a function of the size
of the object as well as the desired proximity (parameter). Interestingly, many
natural properties can be tested in complexity that only depends on the prox-
imity parameter; examples include linearity testing [BLR], and testing various
graph properties in two natural models (e.g., [GGR, AFNS] and [GR1, BSS], re-
spectively). On the other hand, properties for which testing requires essentially
maximal query complexity were proved to exist too; see [GGR] for artificial

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 504–519, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Hierarchy Theorems for Property Testing 505

examples in two models and [BHR, BOT] for natural examples in other mod-
els. In between these two extremes, there exist natural properties for which the
query complexity of testing is logarithmic (e.g., monotonicity [EKK+, GGL+]),
a square root (e.g., bipartitness in the bounded-degree model [GR1, GR2]), and
possibly other constant powers (see [FM, PRR]).

One natural problem that arises is whether there exist properties of arbitrary
query complexity. We answer this question affirmative, proving the existence of
a rich hierarchy of query complexity classes. Such hierarchy theorems are easiest
to state and prove in the generic case (treated in Section 2): Loosely speaking,
for every sub-linear function q, there exists a property of functions over [n] that
is testable using q(n) queries but is not testable using o(q(n)) queries.

Similar hierarchy theorems are proved also for two standard models of testing
graph properties: the adjacency representation model (of [GGR]) and the inci-
dence representation model (of [GR1]). For the incidence representation model
(a.k.a the bounded-degree graph model), we show (in Section 3) that, for every
sub-linear function q, there exists a property of bounded-degree N -vertex graphs
that is testable using q(N) queries but is not testable using o(q(N)) queries. Fur-
thermore, one such property corresponds to the set of N -vertex graphs that are
3-colorable and consist of connected components of size at most q(N).

The bulk of this paper is devoted to hierarchy theorems for the adjacency rep-
resentation model (a.k.a the dense graph model), where complexity is measured
in terms of the number of vertices rather than the number of all vertex pairs.
Our main results for the adjacency matrix model are:

1. For every sub-quadratic function q, there exists a graph property Π that
is testable in q queries, but is not testable in o(q) queries. Furthermore,
for “nice” functions q, it is the case that Π is in P and the tester can be
implemented in poly(q)-time. (See Section 4.)

2. For every sub-quadratic function q, there exists a monotone graph property
Π that is testable in O(q) queries, but is not testable in o(q) queries. (See
Section 5.)

The adjacency representation model is further studied in Sections 6 and 7.

Organization of this version. Due to space limitations, several proofs have been ei-
ther omitted or trimmed. Full proofs can be found in our technical report [GKNR].

Conventions. For sake of simplicity, we state all results while referring to query
complexity as a function of the input size; that is, we consider a fixed (constant)
value of the proximity parameter, denoted ε. In such cases, we sometimes use
the term ε-testing, which refers to testing when the proximity parameter is fixed
to ε. All our lower bounds hold for any sufficiently small value of the proximity
parameter, whereas the upper bounds hide a (polynomial) dependence on (the
reciprocal of) this parameter. In general, bounds that have no dependence on
the proximity parameter refer to some (sufficiently small but) fixed value of this
parameter.
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A remotely related prior work. In contrast to the foregoing conventions, we men-
tion here a result that refers to graph properties that are testable in (query) com-
plexity that only depends on the proximity parameter. This result, due to [AS],
establishes a (very sparse) hierarchy of such properties. Specifically, [AS, Thm. 4]
asserts that for every function q there exists a function Q and a graph property
that is ε-testable in Q(ε) queries but is not ε-testable in q(ε) queries.1

2 Properties of Generic Functions

In the generic function model, the tester is given oracle access to a function over
[n], and distance between such functions is defined as the fraction of (the number
of) arguments on which these functions differ. In addition to the input oracle,
the tester is explicitly given two parameters: a size parameter, denoted n, and a
proximity parameter, denoted ε.

Definition 1. Let Π =
⋃

n∈N
Πn, where Πn contains functions defined over

the domain [n] def= {1, ..., n}. A tester for a property Π is a probabilistic oracle
machine T that satisfies the following two conditions:

1. The tester accepts each f ∈ Π with probability at least 2/3; that is, for every
n ∈ N and f ∈ Πn (and every ε > 0), it holds that Pr[T f(n, ε)=1] ≥ 2/3.

2. Given ε > 0 and oracle access to any f that is ε-far from Π, the tester
rejects with probability at least 2/3; that is, for every ε > 0 and n ∈ N, if
f : [n]→ {0, 1}∗ is ε-far from Πn, then Pr[T f(n, ε)=0] ≥ 2/3.

We say that the tester has one-sided error if it accepts each f ∈ Π with probabil-
ity 1 (i.e., for every f ∈ Π and every ε > 0, it holds that Pr[T f(n, ε)=1] = 1).

Definition 1 does not specify the query complexity of the tester, and indeed an
oracle machine that queries the entire domain of the function qualifies as a tester
(with zero error probability...). Needless to say, we are interested in testers that
have significantly lower query complexity. Recall that [GGR] asserts that in some
cases such testers do not exist; that is, there exist properties that require linear
query complexity. Building on this result, we show:

Theorem 2. For every q : N→ N that is at most linear, there exists a property
Π of Boolean functions that is testable (with one-sided error) in q+O(1) queries,
but is not testable in o(q) queries (even when allowing two-sided error).

We start with an arbitrary property Π ′ of Boolean functions for which test-
ing is known to require a linear number of queries (even when allowing two-
sided error). The existence of such properties was first proved in [GGR]. Given

1 We note that while Q depends only on q, the dependence proved in [AS, Thm. 4]
is quite weak (i.e., Q is lower bounded by a non-constant number of compositions
of q), and thus the hierarchy obtained by setting qi = Qi−1 for i = 1, 2, ... is very
sparse.
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Π ′ =
⋃

m∈N
Π ′

m, we define Π =
⋃

n∈N
Πn such that Πn consists of “duplicated

versions” of the functions in Π ′
q(n). Specifically, for every f ′ ∈ Π ′

q(n), we define
f(i) = f ′(i mod q(n)) and add f to Πn, where i mod m is (non-standardly)
defined as the smallest positive integer that is congruent to i modulo m, The
proof that Π satisfies the conditions of Theorem 2 appears in our technical
report [GKNR].

Comment. Needless to say, Boolean functions over [n] may be viewed as n-bit
long binary strings. Thus, Theorem 2 means that, for every sub-linear q, there
are properties of binary strings for which the query complexity of testing is Θ(q).
Given this perspective, it is natural to comment that such properties exist also in
P . This comment is proved by starting with the hard-to-test property asserted
in Theorem 7 of our technical report [GKNR] (or alternatively with the one
in [LNS], which is in L).

3 Graph Properties in the Bounded-Degree Model

The bounded-degree model refers to a fixed (constant) degree bound, denoted
d ≥ 2. An N -vertex graph G = ([N ], E) (of maximum degree d) is represented in
this model by a function g : [N ]×[d]→ {0, 1, ..., N} such that g(v, i) = u ∈ [N ] if
u is the ith neighbor of v and g(v, i) = 0 if v has less than i neighbors.2 Distance
between graphs is measured in terms of their aforementioned representation; that
is, as the fraction of (the number of) different array entries (over dN). Graph
properties are properties that are invariant under renaming of the vertices (i.e.,
they are actually properties of the underlying unlabeled graphs).

Recall that [BOT] proved that, in this model, testing 3-Colorability requires a
linear number of queries (even when allowing two-sided error). Building on this
result, we show:

Theorem 3. In the bounded-degree graph model, for every q : N → N that is
at most linear, there exists a graph property Π that is testable (with one-sided
error) in O(q) queries, but is not testable in o(q) queries (even when allowing
two-sided error). Furthermore, this property is the set of N -vertex graphs of
maximum degree d that are 3-colorable and consist of connected components of
size at most q(N).

We start with an arbitrary property Π ′ for which testing is known to require
a linear number of queries (even when allowing two-sided error). We further
assume that Π ′ is downward monotone (i.e., if G′ ∈ Π ′ then any subgraph of
G′ is in Π ′). Indeed, by [BOT], 3-Colorability is such a property. Given Π ′ =⋃

n∈N
Π ′

n, we define Π =
⋃

N∈N
ΠN such that each graph in ΠN consists of

connected components that are each in Π ′ and have size at most q(N); that is,
each connected component in any G ∈ ΠN is in Π ′

n for some n ≤ q(N) (i.e.,
n denotes this component’s size). The proof that Π satisfies the conditions of
Theorem 3 appears in our technical report [GKNR].
2 For simplicity, we assume here that the neighbors of v appear in arbitrary order in

the sequence g(v, 1), ..., g(v, deg(v)), where deg(v)
def
= |{i : g(v, i) �= 0}|.
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Comment. The construction used in the proof of Theorem 3 is slightly different
from the one used in the proof of Theorem 2: In the proof of Theorem 3 each
object in ΠN corresponds to a sequence of (possibly different) objects in Π ′

n,
whereas in the proof of Theorem 2 each object in ΠN corresponds to multiples
copies of a single object in Π ′

n. While Theorem 2 can be proved using a con-
struction that is analogous to one used in the proof of Theorem 3, the current
proof of Theorem 2 provides a better starting point for the proof of the following
Theorem 4.

4 Graph Properties in the Adjacency Matrix Model

In the adjacency matrix model, an N -vertex graph G = ([N ], E) is represented
by the Boolean function g : [N ] × [N ] → {0, 1} such that g(u, v) = 1 if and
only if u and v are adjacent in G (i.e., {u, v} ∈ E). Distance between graphs is
measured in terms of their aforementioned representation; that is, as the fraction
of (the number of) different matrix entries (over N2). In this model, we state
complexities in terms of the number of vertices (i.e., N) rather than in terms of
the size of the representation (i.e., N2). Again, we focus on graph properties (i.e.,
properties of labeled graphs that are invariant under renaming of the vertices).

Recall that [GGR] proved that, in this model, there exist graph properties for
which testing requires a quadratic (in the number of vertices) query complexity
(even when allowing two-sided error). It was further shown that such properties
are in NP . Slightly modifying these properties, we show that they can be placed
in P ; see Appendix A of our technical report [GKNR]. Building on this result,
we show:

Theorem 4. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a graph property Π that is testable in q queries,
but is not testable in o(q) queries.3 Furthermore, if N 
→ q(N) is computable
in poly(logN)-time, then Π is in P, and the tester is relatively efficient in the
sense that its running time is polynomial in the total length of its queries.

We stress that, unlike in the previous results, the positive part of Theorem 4
refers to a two-sided error tester. This is fair enough, since the negative side also
refers to two-sided error testers. Still, one may seek a stronger separation in which
the positive side is established via a one-sided error tester. Such a separation is
presented in Theorem 6 (except that the positive side is established via a tester
that is not relatively efficient).

Outline of the proof of Theorem 4. The basic idea of the proof is to implement the
strategy used in the proof of Theorem 2. The problem, of course, is that we need
to obtain graph properties (rather than properties of generic Boolean functions).
Thus, the trivial “blow-up” (of Theorem 2) that took place on the truth-table (or
function) level has to be replaced by a blow-up on the vertex level. Specifically,

3 Both the upper and lower bounds refer to two-sided error testers.
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starting from a graph property Π ′ that requires quadratic query complexity, we
consider the graph property Π consisting of N -vertex graphs that are obtained
by a (N/

√
q(N))-factor blow-up of

√
q(N)-vertex graphs in Π ′, where G is a

t-factor blow-up of G′ if the vertex set of G can be partitioned into (equal size)
sets that correspond to the vertices of G′ such that the edges between these
sets represent the edges of G′; that is, if {i, j} is an edge in G′, then there is a
complete bipartite between the ith set and the jth set, and otherwise there are
no edges between this pair of sets.4

Note that the notion of “graph blow-up” does not offer an easy identification
of the underlying partition; that is, given a graph G that is as a t-factor blow-up
of some graph G′, it is not necessary easy to determine a t-way partition of the
vertex set of G such that the edges between these sets represent the edges of
G′. Things may become even harder if G is merely close to a t-factor blow-up of
some graph G′. We resolve these as well as other difficulties by augmenting the
graphs of the starting property Π ′.

The proof of Theorem 4 is organized accordingly: In Section 4.1, we construct
Π based on Π ′ by first augmenting the graphs and then applying graph blow-
up. In Section 4.2 we lower-bound the query complexity of Π based on the
query complexity of Π ′, while coping with the non-trivial question of how does
the blow-up operation affect distances between graphs. In Section 4.3 we upper-
bound the query complexity of Π , while using the aforementioned augmentations
in order to obtain a tight result (rather than an upper bound that is off by a
polylogarithmic factor).

4.1 The Blow-Up Property Π

Our starting point is any graph property Π ′ =
⋃

n∈N
Π ′

n for which testing
requires quadratic query complexity. Furthermore, we assume that Π ′ is in P .
Such a graph property is presented in Theorem 7 of our technical report [GKNR]
(which builds on [GGR]).

The notion of graphs that have “vastly different vertex neighborhoods” is
central to our analysis. Specifically, for a real number α > 0, we say that a
graph G = (V,E) is α-dispersed if the neighbor sets of any two vertices differ
on at least α · |V | elements (i.e., for every u �= v ∈ V , the symmetric difference
between the sets {w : {u,w} ∈ E} and {w : {v, w} ∈ E} has size at least α · |V |).
We say that a set of graphs is dispersed if there exists a constant α > 0 such
that every graph in the set is α-dispersed.5

The augmentation. We first augment the graphs in Π ′ such that the vertices in
the resulting graphs are dispersed, while the augmentation amount to adding a
linear number of vertices. The fact that these resulting graphs are dispersed will
be useful for establishing both the lower and upper bounds. The augmentation

4 In particular, there are no edges inside any set.
5 Our notion of dispersibility has nothing to do with the notion of dispersers, which

in turn is a weakening of the notion of (randomness) extractors (see, e.g., [S]).
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is performed in two steps. First, setting n′ = 2�log2(2n+1)� ∈ [2n + 1, 4n], we
augment each graph G′ = ([n], E′) by n′ − n isolated vertices, yielding an n′-
vertex graph H ′ = ([n′], E′) in which every vertex has degree at most n − 1.
Next, we augment each resulting graph H ′ by a clique of n′ vertices and connect
the vertices of H ′ and the clique vertices by a bipartite graph that corresponds
to a Hadamard matrix; that is, the ith vertex of H ′ is connected to the jth

vertex of the clique if and only if the inner product modulo 2 of i− 1 and j − 1
(in (log2 n′)-bit long binary notation) equals 1. We denote the resulting set of
(unlabeled) graphs by Π ′′ (and sometimes refer to Π ′′ as the set of all labeled
graphs obtained from these unlabeled graphs).

We first note that Π ′′ is indeed dispersed (i.e., the resulting 2n′-vertex graphs
have vertex neighborhoods that differ on at least n ≥ n′/4 vertices). Next note
that testing Π ′′ requires a quadratic number of queries, because testing Π ′ can
be reduced to testing Π ′′ (i.e., ε-testing membership in Π ′

n reduces to ε′-testing
membership in Π ′′

2n′ , where n′ ≤ 4n and ε′ = ε/64). Finally, note that Π ′′ is also
in P , because it is easy to distinguish the original graph from the vertices added
to it, since the clique vertices have degree at least n′ − 1 whereas the vertices of
G′ have degree at most (n − 1) + (n′/2) < n′ − 1 (and isolated vertices of H ′

have neighbors only in the clique).6

Applying graph blow-up. Next, we apply an (adequate factor) graph blow-up to
the augmented set of graphs Π ′′. Actually, for simplicity of notation we assume,
without loss of generality, that Π ′ =

⋃
n∈N

Π ′
n itself is dispersed, and apply

graph blow-up to Π ′ itself (rather than to Π ′′). Given a desired complexity
bound q : N→ N, we first set n =

√
q(N), and next apply to each graph in Π ′

n

an N/n-factor blow-up, thus obtaining a set of N -vertex graphs denoted ΠN .
(Indeed, we assume for simplicity that both n =

√
q(N) and N/n are integers.)

Recall that G is a t-factor blow-up of G′ if the vertex set of G can be partitioned
into t (equal size) sets, called clouds, such that the edges between these clouds
represent the edges of G′; that is, if {i, j} is an edge in G′, then there is complete
bipartite between the ith cloud and the jth cloud, and otherwise there are no
edges between this pair of clouds. This yields a graph property Π =

⋃
N∈N

ΠN .
Let us first note that Π is in P . This fact follows from the hypothesis that

Π ′ is dispersed: Specifically, given any graph N -vertex graph G, we can cluster
its vertices according to their neighborhood, and check whether the number of
clusters equals n =

√
q(N). (Note that if G ∈ ΠN , then we obtain exactly n

(equal sized) clusters, which correspond to the n clouds that are formed in the
N/n-factor blow-up that yields G.) Next, we check that each cluster has size
N/n and that the edges between these clusters correspond to the blow-up of
some n-vertex G′. Finally, we check whether G′ is in Π ′

n (relying on the fact
that Π ′ ∈ P). Proving that the query complexity of testing Π indeed equals
Θ(q) is undertaken in the next two sections.

6 Once this is done, we can verify that the original graph is in Π (using Π ∈ P), and
that the additional edges correspond to a Hadamard matrix.
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4.2 Lower-Bounding the Query Complexity of Testing Π

In this section we prove that the query complexity of testing Π is Ω(q). The basic
idea is reducing testing Π ′ to testing Π ; that is, given a graph G′ that we need
to test for membership in Π ′

n, we test its N/n-factor blow-up for membership
in ΠN , where N is chosen such that n =

√
q(N). This approach relies on the

assumption that the N/n-factor blow-up of any n-vertex graph that is far from
Π ′

n results in a graph that is far from ΠN . (Needless to say, the N/n-factor
blow-up of any graph in Π ′

n results in a graph that is in ΠN .)
As shown by Arie Matsliah (see Appendix B of our technical report [GKNR]),

the aforementioned assumption does not hold in the strict sense of the word (i.e.,
it is not true that the blow-up of any graph that is ε-far from Π ′ results in a
graph that is ε-far from Π). However, for our purposes it suffices to prove a
relaxed version of the aforementioned assumption that only asserts that for any
ε′ > 0 there exists an ε > 0 such that the blow-up of any graph that is ε′-far
from Π ′ results in a graph that is ε-far from Π . Below we prove this assertion
for ε = Ω(ε′) and rely on the fact that Π ′ is dispersed. In Appendix B of our
technical report [GKNR], we present a more complicated proof that holds for
arbitrary Π ′ (which need not be dispersed), but with ε = Ω(ε′)2.

Claim 4.1. There exists a universal constant c > 0 such that the following holds
for every n, ε′, α and (unlabeled) n-vertex graphs G′

1, G
′
2. If G′

1 is α-dispersed
and ε′-far from G′

2, then for any t the (unlabeled) t-factor blow-up of G′
1 is

cα · ε′-far from the (unlabeled) t-factor blow-up of G′
2.

Using Claim 4.1 we infer that if G′ is ε′-far from Π ′ then its blow-up is Ω(ε′)-far
from Π . This inference relies on the fact that Π ′ is dispersed (and on Claim 4.1
when applied to G′

2 = G′ and every G′
1 ∈ Π ′).

Proof. Let G1 (resp., G2) denote the (unlabeled) t-factor blow-up of G′
1 (resp.,

G′
2), and consider a bijection π of the vertices of G1 = ([t ·n], E1) to the vertices

of G2 = ([t · n], E2) that minimizes the size of the set (of violations)

{(u, v) ∈ [t · n]2 : {u, v} ∈ E1 iff {π(u), π(v)} /∈ E2}. (1)

(Note that Eq. (1) refers to ordered pairs, whereas the distance between graphs
refers to unordered pairs.) Clearly, if π were to map to each cloud of G2 only
vertices that belong to a single cloud of G1 (equiv., for every u, v that belong to
the same cloud of G1 it holds that π(u), π(v) belong to the same cloud of G2),
then G2 would be ε′-far from G1 (since the fraction of violations under such a
mapping equals the fraction of violations in the corresponding mapping of G′

1
to G′

2). The problem, however, is that it is not clear that π behaves in such a
nice manner (and so violations under π do not directly translate to violations
in mappings of G′

1 to G′
2). Still, we show that things cannot be extremely bad.

Specifically, we call a cloud of G2 good if at least (t/2) + 1 of its vertices are
mapped to it (by π) from a single cloud of G1.

Letting 2ε denote the fraction of violations in Eq. (1) (i.e., the size of this
set divided by (tn)2), we first show that at least (1 − (6ε/α)) · n of the clouds
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of G2 are good. Assume, towards the contradiction, that G2 contains more that
(6ε/α) ·n clouds that are not good. Considering any such a (non-good) cloud, we
observe that it must contain at least t/3 disjoint pairs of vertices that originate
in different clouds of G1 (i.e., for each such pair (v, v′) it holds that π−1(v) and
π−1(v′) belong to different clouds of G1).7 Recall that the edges in G2 respect
the cloud structure of G2 (which in turn respects the edge relation of G′

2). But
vertices that originate in different clouds of G1 differ on at least α · tn edges in
G1. Thus, every pair (v, v′) (in this cloud of G2) such that π−1(v) and π−1(v′)
belong to different clouds of G1 contributes at least α · tn violations to Eq. (1).8

It follows that the set in Eq. (1) has size greater than

6εn
α
· t
3
· αtn = 2ε · (tn)2

in contradiction to our hypothesis regarding π. Having established that at least
(1 − (6ε/α)) · n of the clouds of G2 are good and recalling that a good cloud of
G2 contains a strict majority of vertices that originates from a single cloud of
G1, we consider the following bijection π′ of the vertices of G1 to the vertices
of G2: For each good cloud g of G2 that contains a strict majority of vertices
from cloud i of G1, we map all vertices of the ith cloud of G1 to cloud g of G2,
and map all other vertices of G1 arbitrarily. The number of violations under
π′ is upper-bounded by four times the number of violations occuring under π
between good clouds of G2 (i.e., at most 4 ·2ε · (tn)2) plus at most (6ε/α) · tn · tn
violations created with the remaining (6ε/α) ·n clouds. This holds, in particular,
for a bijection π′ that maps to each remaining cloud of G2 vertices originating
in a single cloud of G1. This π′, which maps complete clouds of G1 to clouds of
G2, yields a mapping of G′

1 to G′
2 that has at most (8ε+ (6ε/α)) · n2 violations.

Recalling that G′
1 is ε′-far from G′

2, we conclude that 8ε+ (6ε/α) ≥ 2ε′, and the
claim follows (with c = 1/7). �

Recall that Claim 4.1 implies that if G′ is ε′-far from Π ′, then its blow-up is
Ω(ε′)-far from Π . Using this fact, we conclude that ε′-testing of Π ′ reduces to
Ω(ε′)-testing of Π . Thus, a quadratic lower bound on the query complexity of ε′-
testing Π ′

n yields an Ω(n2) lower bound on the query complexity of Ω(ε′)-testing
ΠN , where n =

√
q(N). Thus, we obtain an Ω(q) lower bound on the query

complexity of testing Π , for some constant value of the proximity parameter.
7 This pairing is obtained by first clustering the vertices of the cloud of G2 according to

their origin in G1. By the hypothesis, each cluster has size at most t/2. Next, observe
that taking the union of some of these clusters yields a set containing between t/3
and 2t/3 vertices. Finally, we pair vertices of this set with the remaining vertices.
(A better bound of �t/2� can be obtained by using the fact that a t-vertex graph of
minimum degree t/2 contains a Hamiltonian cycle.)

8 For each such pair (v, v′), there exists at least α · tn vertices u such that exactly one
of the (unordered) pairs {π−1(u), π−1(v)} and {π−1(u), π−1(v′)} is an edge in G1.
Recalling that for every u, the pair {u, v} is an edge in G2 if and only if {u, v′} is
an edge in G2, it follows that for at least α · tn vertices u either (π−1(u), π−1(v)) or
(π−1(u), π−1(v′)) is a violation.
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4.3 An Optimal Tester for Property Π

In this section we prove that the query complexity of testing Π is at most q (and
that this can be met by a relatively efficient tester). We start by describing this
(alleged) tester.

Algorithm 4.2. On input N and proximity parameter ε, and when given oracle
access to a graph G = ([N ], E), the algorithm proceeds as follows:

1. Setting ε′
def= ε/3 and computing n←

√
q(N).

2. Finding n representative vertices; that is, vertices that reside in different al-
leged clouds, which corresponds to the n vertices of the original graph. This
is done by first selecting s

def= O(log n) random vertices, hereafter called the
signature vertices, which will be used as a basis for clustering vertices (ac-
cording to their neighbors in the set of signature vertices). Next, we select
s′

def= O(ε−2 ·n logn) random vertices, probe all edges between these new ver-
tices and the signature vertices, and cluster these s′ vertices accordingly (i.e.,
two vertices are placed in the same cluster if and only if they neighbor the
same signature vertices). If the number of clusters is different from n, then
we reject. Furthermore, if the number of vertices that reside in each cluster
is not (1± ε′) · s′/n, then we also reject. Otherwise, we select (arbitrarily) a
vertex from each cluster, and proceed to the next step.

3. Note that the signature vertices (selected in Step 2) induce a clustering of
all the vertices of G. Referring to this clustering, we check that the edges be-
tween the clusters are consistent with the edges between the representatives.
Specifically, we select uniformly O(1/ε) vertex pairs, cluster the vertices in
each pair according to the signature vertices, and check that their edge rela-
tion agrees with that of their corresponding representatives. That is, for each
pair (u, v), we first find the cluster to which each vertex belongs (by making
s adequate queries per each vertex), determine the corresponding represen-
tatives, denoted (ru, rv), and check (by two queries) whether {u, v} ∈ E iff
{ru, rv} ∈ E. (Needless to say, if one of the newly selected vertices does not
reside in any of the n existing clusters, then we reject.)

4. Finally, using
(
n
2

)
< q(N)/2 queries, we determine the subgraph of G induced

by the n representatives. We accept if and only if this induced subgraph is in
Π ′.

Note that, for constant value of ε, the query complexity is dominated by Step 4,
and is thus upper-bounded by q(N). Furthermore, in this case, the above al-
gorithm can be implemented in time poly(n · logN) = poly(q(N) · logN). We
comment that the Algorithm 4.2 is adaptive, and that a straightforward non-
adaptive implementation of it has query complexity O(n logn)2 = Õ(q(N)).

Remark 4.3. In fact, a (non-adaptive) tester of query complexity Õ(q(N)) can
be obtained by a simpler algorithm that selects a random set of s′ vertices and
accepts if and only if the induced subgraph is ε′-close to being a (s′/n-factor)
blow-up of some graph in Π ′

n. Specifically, we can cluster these s′ vertices by
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using them also in the role of the signature vertices. Furthermore, these vertices
(or part of them) can also be designated for use in Step 3. We note that the
analysis of this simpler algorithm does not rely on the hypothesis that Π ′ is
dispersed.

We now turn to analyzing the performance of Algorithm 4.2. We note that the
proof that this algorithm accepts, with very high probability, any graph in ΠN

relies on the hypothesis that Π ′ is dispersed.9

We first verify that any graph in ΠN is accepted with very high probability.
Suppose that G ∈ ΠN is a N/n-factor blow-up of G′ ∈ Π ′

n. Relying on the
fact that Π ′ is dispersed we note that, for every pair of vertices in G′ ∈ Π ′

n,
with constant probability a random vertex has a different edge relation to the
members of this pair. Therefore, with very high (constant) probability, a random
set of s = O(log n) vertices yields n different neighborhood patterns for the n
vertices of G′. It follows that, with the same high probability, the s signature
vertices selected in Step 2 induced n (equal sized) clusters on the vertices of
G, where each cluster contains the cloud of N/n vertices (of G) that replaces
a single vertex of G′. Thus, with very high (constant) probability, the sample
of s′ = O(ε−2 · n logn) additional vertices selected in Step 2 hits each of these
clusters (equiv., clouds) and furthermore has (1 ± ε′) · s′/n hits in each cluster.
We conclude that, with very high (constant) probability, Algorithm 4.2 does not
reject G in Step 2. Finally, assuming that Step 2 does not reject (and we did
obtain representatives from each cloud of G), Algorithm 4.2 never rejects G ∈ Π
in Steps 3 and 4.

We now turn to the case that G is ε-far from ΠN , where we need to show that
G is rejected with high constant probability (say, with probability 2/3). We will
actually prove that if G is accepted with sufficiently high constant probability
(say, with probability 1/3), then it is ε-close to ΠN . We call a set of s vertices
good if (when used as the set of signature vertices) it induces a clustering of the
vertices of G such that n of these clusters are each of size (1±2ε′)·N/n. Note that
good s-vertex sets must exist, because otherwise Algorithm 4.2 rejects in Step 2
with probability at least 1 − exp(Ω(ε2/n) · s′) > 2/3. Fixing any good s-vertex
set S, we call a sequence of n vertices R = (r1, ..., rn) well-representing if (1) the
subgraph of G induced by R is in Π ′

n, and (2) at most ε′ fraction of the vertex
pairs of G have edge relation that is inconsistent with the corresponding vertices
in R (i.e., at most ε′ fraction of the vertex pairs in G violate the condition by
which {u, v} ∈ E if and only if {ri, rj} ∈ E, where u resides in the ith cluster
(w.r.t S) and v resides in the jth cluster). Now, note that there must exist a good
s-vertex set S that has a well-representing n-vertex sequence R = (r1, ..., rn),
because otherwise Algorithm 4.2 rejects with probability at least 2/3 (i.e., if a
ρ fraction of the s-vertex sets are good (but have no corresponding n-sequence
that is well-representing), then Step 2 rejects with probability at least (1−ρ)·0.9
and either Step 3 or Step 4 reject with probability ρ ·min((1− (1− ε′)Ω(1/ε)), 1)).

9 In contrast, the proof that Algorithm 4.2 rejects, with very high probability, any
graph that is ε-far from ΠN does not rely on this hypothesis.
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Fixing any good s-vertex set S and any corresponding R = (r1, ..., rn) that is
well-representing,we consider the clustering inducedbyS, denoted (C1, ...., Cn, X),
whereX denotes the set of (untypical) vertices that do not belong to then first clus-
ters. Recall that, for every i ∈ [n], it holds that ri ∈ Ci and |Ci| = (1± 2ε′) ·N/n.
Furthermore, denoting by i(v) the index of the cluster to which vertex v ∈ [N ] \X
belongs, it holds that the number of pairs {u, v} (from [N ] \ X) that violate the
condition {u, v} ∈ E iff {ri(u), ri(v)} ∈ E is at most ε′ ·

(
N
2

)
. Now, observe that by

modifying at most ε′ ·
(
N
2

)
edges in G we can eliminate all the aforementioned vio-

lations, which means that we obtain n sets with edge relations that fit some graph
in Π ′

n (indeed the graph obtained as the subgraph of G induced by R, which was
not modified). Recall that these sets are each of size (1± 2ε′) ·N/n, and so we may
need to move 2ε′N vertices in order to obtain sets of size N/n. This movement may
create up to 2ε′N · (N − 1) new violations, which can be eliminated by modifying
at most 2ε′ ·

(
N
2

)
additional edges in G. Using ε = 3ε′, we conclude that G is ε-close

to ΠN .

5 Revisiting the Adj. Matrix Model: Monotonicity

In continuation to Section 4, which provides a hierarchy theorem for generic
graph properties (in the adjacency matrix model), we present in this section
a hierarchy theorem for monotone graph properties (in the same model). We
say that a graph property Π is monotone if adding edges to any graph that
resides in Π yields a graph that also resides in Π . (That is, we actually refer to
upward monotonicity, and an identical result for downward monotonicity follows
by considering the complement graphs.)10

Theorem 5. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a monotone graph property Π that is testable in
O(q) queries, but is not testable in o(q) queries.

Note that Theorem 5 refers to two-sided error testing (just like Theorem 4).
Theorems 4 and 5 are incomparable: the former provides graph properties that
are in P (and the upper bound is established via relatively efficient testers),
whereas the latter provides graph properties that are monotone.

Outline of the proof of Theorem 5. Starting with the proof of Theorem 4, one
may want to apply a monotone closure to the graph property Π (presented in
the proof of Theorem 4).11 Under suitable tuning of parameters, this allows to
retain the proof of the lower bound, but the problem is that the tester presented
for the upper bound fails. The point is that this tester relies on the structure
of graphs obtained via blow-up, whereas this structure is not maintained by

10 We stress that these notions of monotonicity are different from the notion of mono-
tonicity considered in [AS], where a graph property Π is called monotone if any
subgraph of a graph in Π is also in Π .

11 Indeed, this is the approach used in the proof of [GT, Thm. 1].
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the monotone closure. One possible solution, which assumes that all graphs in
Π have approximately the same number of edges, is to augment the monotone
closure of Π with all graphs that have significantly more edges, where the cor-
responding threshold (on the number of edges) is denoted T . Intuitively, this
way, we can afford accepting any graph that has more than T edges, and handle
graphs with fewer edges by relying on the fact that in this case the blow-up
structure is essentially maintained (because only few edges are added). Unfortu-
nately, implementing this idea is not straightforward: On one hand, we should
set the threshold high enough so that the lower bound proof still holds, whereas
on the other hand such a setting may destroy the local structure of a constant
fraction of the graph’s vertices. The solution to this problem is to use an under-
lying property Π ′ that supports “error correction” (i.e., allows recovering the
original structure even when a constant fraction of it is destroyed as above).
(The actual proof of Theorem 5 is given in our technical report [GKNR].)

6 Revisiting the Adj. Matrix Model: One-Sided Error

In continuation to Section 4, which provides a hierarchy theorem for two-sided
error testing of graph properties (in the adjacency matrix model), we present in
this section a hierarchy theorem that refers to one-sided error testing. Actually,
the lower bounds will hold also with respect to two-sided error, but the upper
bounds will be established using a tester of one-sided error.

Theorem 6. In the adjacency matrix model, for every q : N → N that is at
most quadratic, there exists a graph property Π that is testable with one-sided
error in O(q) queries, but is not testable in o(q) queries even when allowing
two-sided error. Furthermore, Π is in P.

Theorems 4 and 6 are incomparable: in the former the upper bound is estab-
lished via relatively efficient testers (of two-sided error), whereas in the latter the
upper bound is established via one-sided error testers (which are not relatively
efficient). (Unlike Theorem 5, both Theorems 4 and 6 do not provide monotone
properties.)

Outline of the proof of Theorem 6. Starting with the proof of Theorem 4, we
observe that the source of the two-sided error of the tester is in the need to
approximate set sizes. This is unavoidable when considering graph properties
that are blow-ups of some other graph properties, where blow-up is defined by
replacing vertices of the original graph by equal-size clouds. The natural solution
is to consider a generalized notion of blow-up in which each vertex is replaced
by a (non-empty) cloud of arbitrary size. That is, G is a (generalized) blow-up
of G′ = ([n], E′) if the vertex set of G can be partitioned into n non-empty sets
(of arbitrary sizes) that correspond to the n vertices of G′ such that the edges
between these sets represent the edges of G′; that is, if {i, j} is an edge in G′

(i.e., {i, j} ∈ E′), then there is a complete bipartite between the ith set and the
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jth set, and otherwise (i.e., {i, j} �∈ E′) there are no edges between this pair of
sets.

The actual proof of Theorem 6 is given in our technical report [GKNR]. Among
other things, this proof copes with the non-trivial question of how does the gen-
eralized (rather than the standard) blow-up operation affect distances between
graphs.

7 Concluding Comments

Theorems 4, 5 and 6 (and their proofs) raise several natural open problems,
listed next. We stress that all questions refer to the adjacency matrix graph
model considered in Sections 4–6.

1. Preservation of distance between graphs under blow-up: Recall that the proof
of Theorem 4 relies on the preservation of distances between graphs under
the blow-up operation. The partial results (regarding this matter) obtained
in this work suffice for the proof of Theorem 4, but the problem seems natural
and of independent interest.

Recall that Claim 4.1 asserts that in some cases the distance between two
unlabeled graphs is preserved up to a constant factor by any blow-up (i.e.,
“linear preservation”), whereas Theorem 8 of our technical report [GKNR]
asserts a quadratic preservation for any pair of graphs. Also recall that it
is not true that the distance between any two unlabeled graphs is perfectly
preserved by any blow-up (see beginning of Appendix B in our technical
report [GKNR]).

In earlier versions of this work we raised the natural question of whether
the distance between any two unlabeled graphs is preserved up to a constant
factor by any blow-up. This question has been recently resolved by Oleg
Pikhurko, who showed that the distance is indeed preserved up to a factor of
three [P, Sec. 4]. Note that Arie Matsliah’s counterexample to perfect preser-
vation (presented in Appendix B of our technical report [GKNR]) shows that
the said constant factor cannot be smaller than 6/5. Indeed, determining the
true constant factor remains an open problem.

2. Combining the features of all three hierarchy theorems: Theorems 4, 5 and 6
provide incomparable hierarchy theorems, each having an additional feature
that the others lack. Specifically, Theorem 4 refers to properties in P (and
testing, in the positive part, is relatively efficient), Theorem 5 refers to mono-
tone properties, and Theorem 6 provides one-sided testing (in the positive
part). Is it possible to have a single hierarchy theorem that enjoys all three
additional feature? Intermediate goals include the following:

(a) Hierarchy of monotone graph properties in P : Recall that Theorem 4 is
proved by using non-monotone graph properties (which are in P), while
Theorem 5 refers to monotone graph properties that are not likely to be
in P . Can one combine the good aspects of both results?
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(b) Hard-to-test monotone graph property in P : Indeed, before addressing
Problem 2a, one should ask whether a result analogous to Theorem 7
of our technical report [GKNR] holds for a monotone graph property?
Recall that [GT, Thm. 1] provides a monotone graph property in NP
that is hard-to-test.

(c) One-sided versus two-sided error testers: Recall that the positive part of
Theorem 6 refers to testing with one-sided error, but these testers are not
relatively efficient. In contrast, the positive part of Theorem 4 provides
relatively efficient testers, but these testers have two-sided error. Can
one combine the good aspects of both results?
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Abstract. In this paper we consider two basic questions regarding the
query complexity of testing graph properties in the adjacency matrix
model. The first question refers to the relation between adaptive and
non-adaptive testers, whereas the second question refers to testability
within complexity that is inversely proportional to the proximity pa-
rameter, denoted ε. The study of these questions reveals the importance
of algorithmic design (also) in this model. The highlights of our study
are:

– A gap between the complexity of adaptive and non-adaptive testers.
Specifically, there exists a (natural) graph property that can be

tested using Õ(ε−1) adaptive queries, but cannot be tested using
o(ε−3/2) non-adaptive queries.

– In contrast, there exist natural graph properties that can be tested
using Õ(ε−1) non-adaptive queries, whereas Ω(ε−1) queries are re-
quired even in the adaptive case.

We mention that the properties used in the foregoing conflicting results
have a similar flavor, although they are of course different.

1 Introduction

In the last decade, the area of property testing has attracted much attention (see
the surveys of [9,17], which are already out-of-date). Loosely speaking, property
testing typically refers to sub-linear time probabilistic algorithms for deciding
whether a given object has a predetermined property or is far from any ob-
ject having this property. Such algorithms, called testers, obtain bits of the
object by making adequate queries, which means that the object is seen as a
function and the testers get oracle access to this function (and thus may be ex-
pected to work in time that is sub-linear in the length of the description of this
object).
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Much of the aforementioned work (see, e.g., [11,2,4]) was devoted to the study
of testing graph properties in the adjacency matrix model, which is also the
setting of the current work. In this model, introduced in [11], graphs are viewed
as (symmetric) Boolean functions over a domain consisting of all possible vertex-
pairs (i.e., an N -vertex graph G = ([N ], E) is represented by the function g :
[N ]× [N ]→ {0, 1} such that {u, v} ∈ E if and only if g(u, v) = 1). Consequently,
an N -vertex graph represented by the function g : [N ] × [N ] → {0, 1} is said
to be ε-far from some predetermined graph property more than ε ·N2 entries of
g must be modified in order to yield a representation of a graph that has this
property. We refer to ε as the proximity parameter, and the complexity of testing
is stated in terms of ε and the number of vertices in the graph (i.e., N).

Interestingly, many natural graph properties can be tested within query com-
plexity that depends only on the proximity parameter; see [11], which presents
testers with query complexity poly(1/ε), and [4], which characterizes the class
of properties that are testable within query complexity that depends only on
the proximity parameter (where this dependence may be an arbitrary function
of ε). However, a common phenomenon in all the aforementioned works is that
they utilize quite naive algorithms and their focus is on the (often quite so-
phisticated) analysis of these algorithms. This phenomenon is no coincidence:
As shown in [2,15], when ignoring a quadratic blow-up in the query complex-
ity, property testing (in this model) reduces to sheer combinatorics. Specifically,
without loss of generality, the tester may just inspect a random induced subgraph
(of adequate size) of the input graph.

In this paper we demonstrate that a more refined study of property testing
(in this model) reveals the importance of algorithmic design (also in this model).
This is demonstrated both by studying the advantage of adaptive testers over
non-adaptive ones as well as by studying the class of properties that can be tested
within complexity that is inversely proportional to the proximity parameter.

1.1 Two Related Studies

We start by reviewing the two related studies conducted in the current work.

Adaptivity vs. Non-adaptivity. A tester is called non-adaptive if it determines all
its queries independently of the answers obtained for previous queries, and oth-
erwise it is called adaptive. Indeed, by [2,15], the benefit of adaptivity (or, equiv-
alently, the cost of non-adaptivity) is polynomially bounded: Specifically, any
(possibly adaptive) tester (for any graph property) of query complexity q(N, ε)
can be transformed into a non-adaptive tester of query complexity O(q(N, ε)2).
But is this quadratic gap an artifact of the known proofs (of [2,15]) or does it
reflect something inherent?

A recent work by [16] suggests that the latter case may hold: For every ε >
0, they showed that the set of N -vertex bipartite graphs of maximum degree
O(εN) is ε-testable (i.e., testable with respect to proximity parameter ε) by
Õ(ε−3/2) queries, while (by [7]) a non-adaptive tester for this set must use Ω(ε−2)
queries. Thus, there exists a case where non-adaptivity has the cost of increasing
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the query complexity; specifically, for any c < 4/3, the query complexity of
the non-adaptive tester is greater than a c-power of the query complexity of the
adaptive tester (i.e., Õ(ε−3/2)c = o(ε−2)). We stress that the result of [16] does
not refer to property testing in the “proper” sense; that is, the complexity is not
analyzed with respect to a varying value of the proximity parameter for a fixed
property. It is rather the case that, for every value of the proximity parameter,
a different property (which depends on this parameter) is considered and the
(upper- and lower-) bounds refer to this combination (of a property tailored for
a fixed value of the proximity parameter). Thus, the work of [16] leaves open the
question of whether there exists a single graph property such that adaptivity is
beneficial for any value of the proximity parameter (as long as ε > N−Ω(1)). That
is, the question is whether adaptivity is beneficial for the standard asymptotic-
complexity formulation of property testing.

Complexity inversely proportional to the proximity parameter. As shown in [11],
many natural graph properties can be tested within query complexity that is
polynomial in the reciprocal of the proximity parameter (and independent of
the size of the graph). We ask whether a linear complexity is possible at all, and
if so which properties can be tested within query complexity that is linear (or
almost linear) in the reciprocal of the proximity parameter.1

The first question is easy to answer (even when avoiding trivial properties).2

Note that the property of being a clique (equiv., an independent set) can be
tested by O(1/ε) queries, even when these queries are non-adaptive (e.g., make
O(1/ε) random queries and accept if and only if all return 1). Still, we ask
whether “more interesting”3 graph theoretical properties can also be tested
within similar complexity (either only adaptively or also non-adaptively).

1.2 Our Results

We address the foregoing questions by studying a sequence of natural graph
properties. The first property in the sequence, called clique collection and de-
noted CC, is the set of graphs such that each graph consists of a collection
of isolated cliques. Testing this property corresponds to the following natural
clustering problem: can a set of possibly related elements be partitioned into
“perfect clusters” (i.e., two elements are in the same cluster if and only if they
are related)? For this property (i.e., CC), we prove a gap between adaptive and
non-adaptive query complexity, where the adaptive query complexity is almost
linear in the reciprocal of the proximity parameter. That is:
1 Note that Ω(1/ε) queries are required for testing any of the graph properties consid-

ered in the current work; for a more general statement see our technical report [13].
2 A graph property Π is trivial for testing if for every ε > 0 there exists N0 > 0 such

that for every N ≥ N0 either all N-vertex graphs belong to Π or all of them are
ε-far from Π .

3 A more articulated reservation towards the foregoing properties may refer to the fact
that these graph properties contain a single N-vertex graph (per each N) and are
represented by monochromatic functions.
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Theorem 1. (the query complexity of clique collection):

1. There exists an adaptive tester of query complexity Õ(ε−1) for CC. Further-
more, this tester runs in time Õ(ε−1).4

2. Any non-adaptive tester for CC must have query complexity Ω(ε−4/3).
3. There exists a non-adaptive tester of query complexity O(ε−4/3) for CC. Fur-

thermore, this tester runs in time O(ε−4/3).

Note that the complexity gap (between Parts 1 and 2) of Theorem 1 matches the
gap established by [16] (for “non-proper” testing). A larger gap is established for
a property of graphs, called bi-clique collection and denoted BCC, where a graph is
in BCC if it consists of a collection of isolated bi-cliques (i.e., complete bipartite
graphs). We note that bi-cliques may be viewed as the bipartite analogues of
cliques (w.r.t. general graphs), and indeed they arise naturally in (clustering)
applications that are modeled by bipartite graphs over two types of elements.

Theorem 2. (the query complexity of bi-clique collection):

1. There exists an adaptive tester of query complexity Õ(ε−1) for BCC. Fur-
thermore, this tester runs in time Õ(ε−1).

2. Any non-adaptive tester for BCC must have query complexity Ω(ε−3/2). Fur-
thermore, this holds even if the input graph is promised to be bipartite.

The furthermore clause (in Part 2 of Theorem 2) holds also for the model studied
in [3], where the bi-partition of the graph is given.

Theorem 2 asserts that the gap between the query complexity of adaptive
and non-adaptive testers may be a power of 1.5 − o(1). Recall that the results
of [2,15] assert that the gap may not be larger than quadratic. We conjecture
that this upper-bound can be matched.

Conjecture 3. (an almost-quadratic complexity gap): For every positive inte-
ger t ≥ 5, there exists a graph property Π for which the following holds:

1. There exists an adaptive tester of query complexity Õ(ε−1) for Π.
2. Any non-adaptive tester for Π must have query complexity Ω(ε−2+(2/t)).

Furthermore, Π consists of graphs that are each a collection of “super-cycles”
of length t, where a super-cycle is a set of t independent sets arranged on a
cycle such that each pair of adjacent independent sets is connected by a complete
bipartite graph.

We were able to prove Part 2 of Conjecture 3, but failed to provide a full analysis
of an algorithm that we designed for Part 1. However, we were able to prove
a promise problem version of Conjecture 3; specifically, this promise problem
refers to inputs promised to reside in a set Π ′ ⊃ Π and the tester is required to
distinguish graphs in Π from graphs that are ε-far from Π . For further details
see our technical report [13].
4 We refer to a model in which elementary operations regarding pairs of vertices are

charged at unit cost.
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In contrast to the foregoing results that aim at identifying properties with a sub-
stantial gap between the query complexity of adaptive versus non-adaptive test-
ing, we also study cases in which no such gap exists. Since query complexity that
is linear in the reciprocal of the proximity parameter is minimal for many natural
properties (and, in fact, for any property that is “non-trivial for testing” (see Foot-
note 2)), we focus on non-adaptive testers that (approximately) meet this bound.
Among the results obtained in this direction, we highlight the following one.

Theorem 4. (the query complexity of collections of O(1) cliques): For every
positive integer c, there exists a non-adaptive tester of query complexity Õ(ε−1)
for the set of graphs such that each graph consists of a collection of up to c
cliques. Furthermore, this tester runs in time Õ(ε−1).
Discussion. The foregoing results demonstrate that a finer look at property test-
ing of graphs in the adjacency matrix model reveals the role of algorithm design in
this model. In particular, in some cases (see, e.g., Theorems 1 and 2), carefully de-
signed adaptive algorithms outperform any non-adaptive algorithm. Indeed, this
conclusion stands in contrast to [15, Thm. 2], which suggests that a less fine view
(which ignores polynomial blow-ups)5 deems algorithm design irrelevant to this
model. We also note that, in some cases (see, e.g., Theorem 4 and Part 3 of The-
orem 1), carefully designed non-adaptive algorithms outperform canonical ones.

As discussed previously, one of the goals of this work was to study the relation
between adaptive and non-adaptive testers in the adjacency matrix model. Our
results demonstrate that, in this model, the relation between the adaptive and
non-adaptive query-complexities is not fixed, but rather varies with the compu-
tational problem at hand. In some cases (e.g., Theorem 4) the complexities are
essentially equal (indeed, as in the case of sampling [8]). In other cases (e.g.,
Theorem 1), these complexities are related by a fixed power (e.g., 4/3) that is
strictly between 1 and 2. And, yet, in other cases the non-adaptive complexity
is quadratic in the adaptive complexity, which is the maximum gap possible
(by [2,15]). Furthermore, for any t ≥ 4, there exists a promise problem for which
the aforementioned complexities are related by a power of 2− (2/t).

Needless to say, the fundamental relation between adaptive and non-adaptive
algorithms was studied in a variety of models, and the current work studies it in
a specific natural model (i.e., of property testing in the adjacency matrix repre-
sentation). In particular, this relation has been studied in the context of property
testing in other domains. Specifically, in the setting of testing the satisfiability of
linear constraints, it was shown that adaptivity offers absolutely no gain [6]. A
similar result holds for testing monotonicity of sequences of positive integers [10].
In contrast, an exponential gap between the adaptive and non-adaptive complex-
ities may exist in the context of testing other properties of functions [10]. Lastly,
we mention that an even more dramatic gap exists in the setting of testing graph
properties in the bounded-degree model (of [12]); see [18].
5 Recall that [15, Thm. 2] asserts that canonical testers, which merely select a random

subset of vertices and rule according to the induced subgraph, have query-complexity
that is at most quadratic in the query-complexity of the best tester. We note that [15,
Thm. 2] also ignores the time-complexity of the testers.
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1.3 Open Problems

In addition to the resolution of Conjecture 3, our study raises many other open
problems; the most evident ones are listed next.

1. What is the non-adaptive query complexity of BCC? Note that Theorem 2
only establishes a lower-bound of Ω(ε−3/2). We conjecture that an efficient
non-adaptive algorithm of query complexity Õ(ε−3/2) can be devised.

2. For which constants c ∈ [1, 2] does there exist a property that has adaptive
query complexity of q(ε) and non-adaptive query complexity of Θ̃(q(ε)c)?
Note that Theorem 1 shows that 4/3 is such a constant, and the same holds
for the constant 1 (see, e.g., Theorem 4). We conjecture that, for any t ≥ 2,
it holds that the constant 2− (2/t) also satisfies the foregoing requirement.
It may be the case that these constants are the only ones that satisfy this
requirement.

3. Characterize the class of graph properties for which the query complexity
of non-adaptive testers is almost linear in the query complexity of adaptive
testers.

4. Characterize the class of graph properties for which the query complexity of
non-adaptive testers is almost quadratic in the query complexity of adaptive
testers.

5. Characterize the class of graph properties for which the query complexity
of adaptive (resp., non-adaptive) testers is almost linear in the reciprocal of
the proximity parameter.

Finally, we recall the well-known open problem (partially addressed in [5]) of
providing a characterization of the class of graph properties that are testable
within query complexity that is polynomial in the reciprocal of the proximity
parameter.

1.4 Organization

Due to space limitations, this version only contains the proofs of the first two
items of Theorem 1, and the proofs of all other results can be found in our
technical report [13]. Specifically, in Section 2 we present an adaptive tester of
almost-linear (i.e., Õ(ε−1)) query complexity for Clique Collection, and in Sec-
tion 3 we contrast it with a (tight) Ω(ε−4/3) lower-bound on the query complexity
of non-adaptive testers.

2 The Adaptive Query Complexity of CC

In this section we study the (adaptive) query complexity of clique collection, pre-
senting an almost optimal (adaptive) tester for this property. Loosely speaking,
the tester starts by finding a few random neighbors of a few randomly selected
start vertices, and then examines the existence of edges among the neighbors
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of each start vertex as well as among these neighbors and the non-neighbors of
each start vertex.

We highlight the fact that adaptivity is used in order to perform queries that
refer only to pairs of neighbors of the same start vertex. To demonstrate the
importance of this fact, consider the case that the N -vertex graph is partitioned
into O(1/ε) connected components each having O(εN) vertices. Suppose that
we wish to tell whether the connected component that contains the vertex v
is indeed a clique. Using adaptive queries we may first find two neighbors of
v, by selecting t

def= O(1/ε) random vertices and checking whether each such
vertex is adjacent to v, and then check whether these two neighbors are adjacent.
In contrast, intuitively, a non-adaptive procedure cannot avoid making all

(
t
2

)

possible queries.
The foregoing adaptive procedure is tailored to the case that the N -vertex

graph is partitioned into O(1/ε) (“strongly connected”) components, each having
O(εN) vertices. In such a case, it suffices to check that a constant fraction of
these components are in fact cliques (or rather close to being so) and that there
are no edges (or rather relatively few edges) from these cliques to the rest of the
graph. However, if the components (and potential cliques) are larger, then we
should check more of them. Fortunately, due to their larger size, finding neighbors
requires less queries, and the total number of queries remains invariant. These
considerations lead us to the following algorithm.

Algorithm 1. (adaptive tester for CC): On input N and ε and oracle access
to a graph G = ([N ], E), set t1 = Θ(1) and t2 = Θ(log3(1/ε)), and proceed in


def= log2(1/ε) + 2 iterations as follows: For i = 1, . . . , , select uniformly t1 · 2i

start vertices and for each selected vertex v ∈ [N ] perform the following sub-test,
denoted sub-testi(v):

1. Select at random a sample, S, of t2/(2iε) vertices.
2. Determine ΓS(v) = S ∩ Γ (v), by making the queries (v, w) for each w ∈ S.
3. If |ΓS(v)| ≤

√
t2/2iε then check that for every u,w ∈ ΓS(v) it holds that

(u,w) ∈ E. Otherwise (i.e., |ΓS(v)| >
√

t2/2iε), select a sample of t2/(2iε)
pairs in ΓS(v)× ΓS(v) and check that each selected pair is in E.

4. Select a sample of t2/(2iε) pairs in ΓS(v) × (S \ ΓS(v)) and check that each
selected pair is not in E.

The sub-test (i.e., sub-testi(v)) accepts if and only if all checks were positive (i.e.,
no edges were missed in Step 3 and no edges were detected in Step 4). The tester
itself accepts if and only if all

∑	
i=1 t1 · 2i invocations of the sub-test accepted.

The query complexity of this algorithm is
∑	

i=1 t12i ·O(t2/2iε) = O( · t1t2/ε) =
Õ(1/ε), and evidently it is efficient. Clearly, this algorithm accepts (with prob-
ability 1) any graph that is in CC. It remains to analyze its behavior on graphs
that are ε-far from CC.

Lemma 1. If G = ([N ], E) is ε-far from CC, then on input N, ε and oracle
access to G, Algorithm 1 rejects with probability at least 2/3.
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Part 1 of Theorem 1 follows.

Proof. We shall prove the contrapositive statement; that is, that if Algorithm 1
accepts with probability at least 1/3 then the graph is ε-close to CC. The proof
evolves around the following notion of i-good start vertices (for i ∈ []). We first
show that if Algorithm 1 accepts with probability at least 1/3 then the number
of “important” vertices that are not i-good is relatively small, and next show
how to use the i-good vertices in order to construct a partition of the vertices
that demonstrates that the graph is ε-close to CC. The following definition refers
to a parameter γ2, which will be set to Θ(1/t2).

Definition 1. A vertex v is i-good if the following two conditions hold.

1. The number of missing edges in the subgraph induced by Γ (v) is at most
γ2 · 2iε · |Γ (v)| ·N .

2. For every positive integer j ≤ j0
def= log2(|Γ (v)|/(γ2 · 2iεN)), the number of

vertices in Γ (v) that have at least γ2 · 2i+jε ·N edges going out of Γ (v) is at
most 2−j · |Γ (v)|.

Note that Condition 1 holds vacuously whenever |Γ (v)| < γ2 · 2iε ·N . However,
when |Γ (v)| � γ2 · 2iε ·N , Condition 1 implies that at least 99% of the vertices
in Γ (v) have at least 0.99 · |Γ (v)| neighbors in Γ (v). Condition 2 implies that,
when ignoring at most 2−j0 · |Γ (v)| < γ2 ·2iε ·N vertices (in Γ (v)), the number of
edges going out of Γ (v) is at most

∑j0
j=1 2−(j−1)|Γ (v)| · γ22i+jεN , which is less

than 4 · γ22iε · |Γ (v)| ·N , since j0 ≤ log2(1/γ22iε) ≤ log2(1/γ2ε) < 2 log2(1/ε).

Claim 2. If v has degree at least γ2 ·2iε·N and is not i-good, then the probability
that sub-testi(v) accepts is less than 5%.

The proof can be found in our technical report [13].

Claim 3. If Algorithm 1 accepts with probability at least 1/3, then for every
i ∈ [] the number of vertices of degree at least γ2 · 2iε ·N that are not i-good is
at most γ1 · 2−i ·N , where γ1

def= Θ(1/t1).

Claim 3 follows by combining Claim 2 with the fact that Algorithm 1 invokes
sub-testi on t1 ·2i random vertices (and using (1−γ1·2−i)t1·2i

+0.05 < 1/3). Next,
using the conclusion of Claim 3, we turn to construct a partition (C1, . . . , Ct)
of [N ] such that the following holds: the total number of missing edges (in G)
within the Ci’s is at most ε ·N2/2 and the total number of (superfluous) edges
between the Ci’s is at most ε ·N2/2. The partition is constructed in iterations.
We start with a motivating discussion.

Note that any i-good vertex, v, yields a set of vertices (i.e., Γ (v)) that is
“close” to being a clique, where “closeness” has a stricter meaning when i is
smaller. Specifically, by Condition 1, the number of missing edges between pairs
of vertices in this set is at most γ2 ·2iε · |Γ (v)| ·N . But we should also care about
how this set “interacts” with the rest of the graph, which is where Condition 2
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comes into play. Letting Cv contain only the vertices in Γ (v) that have less than
|Γ (v)| neighbors outside of Γ (v), we upper-bound the number of edges going
out of Cv as follows: We first note that these edges are either edges between Cv

and Γ (v) \Cv or edges between Cv and [N ] \ Γ (v). The number of edges of the
first type is upper-bounded by |Cv| · |Γ (v) \ Cv|, which (by using Condition 2
and j0 = log2(|Γ (v)|/(γ2 · 2iεN))) is upper-bounded by |Cv| · 2−j0 |Γ (v)| = |Cv| ·
γ22iεN ≤ γ22iε · |Γ (v)| · N . The number of edges of the second type is upper-
bounded by

j0∑

j=1

2−(j−1)|Γ (v)| · γ2 · 2i+jε ·N = 2j0 · γ22iε · |Γ (v)| ·N, (1)

by assigning each vertex u ∈ Cv the smallest j ∈ [j0] such that |Γ (u) \ Γ (v)| <
γ2 · 2i+jε ·N , and using γ22i+j0ε ·N = |Γ (v)|. Thus, the total number of these
edges is upper-bounded by (2j0 + 1) · γ22iε · |Γ (v)| ·N , which is upper-bounded
by 3 ·γ22iε · |Γ (v)| ·N (since j0 ≤ log2(1/(γ2 ·2iε)) ≤ log2(1/γ2ε) = (1+o(1)) ·).

The foregoing paragraph identifies a single (good) clique, while we wish to
identify all cliques. Starting with i = 1, the basic idea is to identify new cliques
by using i-good vertices that are not covered by previously identified cliques.
If we are lucky and the entire graph is covered this way then we halt. But it
may indeed be the case that some vertices are left uncovered and that they are
not i-good. At this point we invoke Claim 3 and conclude that these vertices
either have low degree (i.e., have degree at most γ2 · 2iε ·N) or are relatively few
in number (i.e., their number is at most γ1 · 2−i ·N). Ignoring (for a moment)
the vertices of low degree, we deal with the remaining vertices by invoking the
same reasoning with respect to an incremented value of i (i.e., i ← i + 1). The
key observation is that the number of violations, caused by cliques identified
in each iteration i, is upper-bounded by the product of the number of vertices
covered in that iteration (which is linearly related to 2−i) and the “density” of
violations caused by each identified clique (which is linearly related to 2iε). Thus,
intuitively, each iteration contributes O(γ2ε ·N2) violations, and after the last
iteration (i.e., i = ) we are left with at most γ1 · 2−i ·N < γ1εN vertices, which
we can afford to identify as a single clique (or alternatively as isolated vertices).

Two problems, which were ignored by the foregoing description, arise from
the fact that vertices that are identified as belonging to the clique Cv (of some
i-good vertex v) may belong either to previously identified cliques or to the set
of vertices cast aside as having low degree. Our solution is to use only i-good
vertices for which the majority of neighbors do not belong to these two categories
(i.e., vertices v such that most of Γ (v) belongs neither to previously identified
cliques nor have low degree). This leads to the following description.

The partition reconstruction procedure. The iterative procedure is initiated with
C = L0 = ∅, R0 = [N ] and i = 1, where C denotes the set of vertices “covered”
(by cliques) so far, Ri−1 denotes the set of “remaining” vertices after iteration
i− 1 and Li−1 denotes the set of vertices cast aside (as having “low degree”) in
iteration i − 1. The procedure refers to a parameter β = Θ(1/) � γ2, which
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determines the “low degree” threshold (for each iteration). The ith iteration
proceeds as follows, where i = 1, . . . ,  and Fi is initialized to ∅.

1. Pick an arbitrary vertex v ∈ Ri−1 \ C that satisfies the following three
conditions
(a) v is i-good.
(b) v has sufficiently high degree; that is, |Γ (v)| ≥ β · 2iε ·N .
(c) v has relatively few neighbors in C; that is, |Γ (v) ∩ C| ≤ |Γ (v)|/4.
If no such vertex exists, define Li = {v ∈ Ri−1 \ C : |Γ (v)| < β · 2iε · N}
and Ri = Ri−1 \ (Li ∪ C). If i <  then proceed to the next iteration, and
otherwise terminate.

2. For vertex v as selected in Step 1, let Cv = {u ∈ Γ (v) : |Γ (u) \ Γ (v)| <
|Γ (v)|}. Form a new clique with the vertex set C′

v ← Cv \ C, and update
Fi ← Fi ∪ {v} and C ← C ∪ C′

v.

Note that by Condition 1c, for every v ∈ Fi, it holds that |C′
v| ≥ |Cv|−(|Γ (v)|/4),

whereas by i-goodness6 (and j0 = log2(|Γ (v)|/(γ2 · 2iεN)) ≥ log2(β/γ2) = ω(1))
we have |Cv| > (1 − o(1)) · |Γ (v)|. Thus, quality guarantees that are quantified
in terms of |Γ (v)| translate well to similar guarantees in terms of |C′

v|. This fact,
combined with the fact that Cv cannot contain many low degree vertices (i.e.,
vertices cast aside (in prior iterations) as having low degree), plays an important
role in the following analysis.

Claim 4. Referring to the partition reconstruction procedure, for every i ∈ [],
the following holds.

1. The number of missing edges inside the cliques formed in iteration i is at
most 8γ2ε ·N2; that is,

∣
∣
∣∣
∣

⋃

v∈Fi

{(u,w) ∈ C′
v × C′

v : (u,w) �∈ E}
∣
∣
∣∣
∣
≤ 8γ2ε ·N2.

2. The number of (“superfluous”) edges between cliques formed in iteration i
and either Ri or other cliques formed in the same iteration is 24 · γ2ε ·N2;
actually,

∣
∣∣
∣
∣

⋃

v∈Fi

{(u,w) ∈ C′
v × (Ri−1 \ C′

v) : (u,w) ∈ E}
∣
∣∣
∣
∣
≤ 24 · γ2ε ·N2.

3. |Ri| ≤ 2−i ·N and |Li| ≤ 2−(i−1) ·N .

Thus, the total number of violations caused by the cliques that are formed by
the foregoing procedure is upper-bounded by (24 + o(1))2 · γ2ε ·N2 = o(εN2).
(We mention that the setting γ2 = o(2) is used for establishing Item 3.)

6 Every v ∈ Fi is i-good and thus satisfies |Cv| > (1 − 2−j0) · |Γ (v)|.
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Proof: We prove all items simultaneously, by induction from i = 0 to i = .
Needless to say, all items hold vacuously for i = 0, and thus we focus on the
induction step.

Starting with Item 1, we note that every v ∈ Fi is i-good and thus the
number of edges missing in C′

v×C′
v ⊆ Γ (v)×Γ (v) is at most γ22iε · |Γ (v)| ·N <

2γ22iε · |C′
v| ·N , where the inequality follows from |C′

v| > |Γ (v)|/2 (which follows
by combining |C′

v| ≥ |Cv| − (Γ (v)|/4) and |Cv| ≥ (1 − 2−j0) · |Γ (v)|, where
j0 = log2(|Γ (v)|/(γ2 · 2iεN)) > 2). Recall that the i-goodness of v (combined
with |Γ (v)| ≥ β ·2iε·N) implies that Γ (v) contains at least 0.99·|Γ (v)| vertices of
degree exceeding 0.99 · |Γ (v)|. This implies that |Γ (v) ∩ (

⋃
j∈[i−1] Lj)| < |Cv|/4,

because |Γ (v)| ≥ β2iε ·N whereas every vertex in
⋃

j∈[i−1] Lj has degree at most
β2i−1ε ·N . Observing that C′

v = (C′
v ∩Ri−1)∪ (C′

v ∩
⋃

j∈[i−1] Lj), it follows that
|
⋃

v∈Fi
C′

v ∩Ri−1| > |
⋃

v∈Fi
C′

v|/2, and thus
∑

v∈Fi
|C′

v| ≤ 2|Ri−1|. Combining
all these bounds, we obtain
∣∣
∣
∣
∣

⋃

v∈Fi

{(u,w) ∈ C′
v × C′

v : (u,w) �∈ E}
∣∣
∣
∣
∣
=

∑

v∈Fi

|{(u,w) ∈ C′
v × C′

v : (u,w) �∈ E}|

≤ 2γ22iε ·
∑

v∈Fi

|C′
v| ·N

≤ 2γ22iε · 2|Ri−1| ·N.

Using the induction hypothesis regarding Ri−1 (i.e., |Ri−1| < 2−(i−1) ·N), Item 1
follows.

Item 2 is proved in a similar fashion. Here we use the fact7 that i-goodness of v
(which follows from v ∈ Fi) implies that the number of edges in C′

v×(Ri−1\C′
v) ⊆

Cv × ([N ] \ Cv) is at most 3 · γ22iε · |Γ (v)| · N , which is upper-bounded by
6 · γ22iε · |C′

v| ·N . Using again
∑

v∈Fi
|C′

v| < 2|Ri−1| and |Ri−1| < 2−(i−1) ·N ,
we establish Item 2.

Turning to Item 3, we first note that Li ⊆ Ri−1 and thus |Li| ≤ |Ri−1| ≤
2−(i−1) · N . As for Ri, it may contain only vertices that are neither in Li nor
in

⋃
v∈Fi

C′
v. It follows that for every v ∈ Ri either v is not i-good (although

it has degree at least β · 2iε · N) or it has at least |Γ (v)|/4 neighbors in pre-
viously identified cliques (which implies |Γ (v) ∩ (

⋃
w∈

⋃
j∈[i] Fj

C′
w)| ≥ |Γ (v)|/4).

By Claim 3, the number of vertices of the first type is at most γ12−i · N . As
for vertices of the second type, each such vertex v (in Ri) requires at least
|Γ (v)|/4 ≥ β ·2iε ·N/4 edges from C′ def=

⋃
w∈

⋃
j∈[i] Fj

C′
w to it (because C′ is the

set of vertices covered by previously identified cliques at the time iteration i is

7 This fact was established in the motivating discussion that precedes the description
of the procedure (see Eq. (1) and its vicinity). Specifically, recall that the number of
edges in Cv × ([N ] \ Cv) is upper-bounded by the sum of |Cv × (Γ (v) \ Cv)| and the
number of edges in Cv × ([N ] \ Γ (v)). Using Condition 2 of i-goodness, we upper-
bound both |Γ (v) \ Cv| and the number of edges of the second type, and the fact
follows.
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completed). By Item 2, the total number of edges going out from C′ to Ri is at
most i · 24 · γ2ε ·N2 ≤ 242 · γ2ε ·N2. On the other hand, as noted above, each
vertex of the second type has at least β · 2iε ·N/4 edges incident to vertices in
C′. Hence, the number of vertices of the second type is upper-bounded by

242 · γ2ε ·N2

β · 2iε ·N =
242 · γ2

β
· 2−iN, (2)

Thus, |Ri| ≤ (γ1 + 242γ2β
−1) · 2−i ·N . By the foregoing setting of γ1, γ2 and β

(e.g., γ1 = 1/2 and γ2 = β/(482)), it follows that |Ri| ≤ 2−i ·N .

Completing the reconstruction and its analysis. The foregoing construction leaves
“unassigned” the vertices in R	 as well as some of the vertices in L1, . . . , L	.
(Note that some vertices in

⋃	−1
i=1 Li may be placed in cliques constructed in

later iterations, but there is no guarantee that this actually happens.) We now
assign each of these remaining vertices to a singleton clique (i.e., an isolated
vertex). The number of violation caused by this assignment equals the number
of edges with both endpoints in R′ def= R	 ∪

⋃	
i=1 Li, because edges with a single

endpoint in R′ were already accounted for in Item 2 of Claim 4. Nevertheless,
we upper-bound the number of violations by the total number of edges adjacent
at R′, which in turn is upper-bounded by

∑

v∈R	∪
⋃

i∈[	] Li

|Γ (v)| ≤ |R	| ·N +
	∑

i=1

∑

v∈Li

|Γ (v)|

≤ εN

4
·N +

	∑

i=1

2−(i−1)N · β2iεN

=
ε

4
·N2 + 2 · β · εN2.

By the foregoing setting of β (i.e., β ≤ 1/8), it follows that the number of these
edges is smaller than εN2/2. Combining this with the bounds on the number of
violating edges (or non-edges) as provided by Claim 4, the lemma follows.

3 The Non-adaptive Query Complexity of CC

In this section we establish Part 2 of Theorem 1. Specifically, for every value
of ε > 0, we consider two different sets of graphs, one consisting of graphs in
CC and the other consisting of graphs that are ε-far from CC, and show that a
non-adaptive algorithm of query complexity o(ε−4/3) cannot distinguish between
graphs selected at random in these sets.

The first set, denoted CCε, contains all N -vertex graphs such that each graph
consists of (3ε)−1 cliques, and each clique has size 3ε ·N . It will be instructive to
partition these (3ε)−1 cliques into (6ε)−1 pairs (each consisting of two cliques).
The second set, denoted BCCε, contains all N -vertex graphs such that each graph
consists of (6ε)−1 bi-cliques, and each bi-clique has 3ε ·N vertices on each side.
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Indeed, CCε ⊆ CC, whereas each graph in BCCε is ε-far from CC (because each of
the bi-cliques must be turned into a collection of cliques).

In order to motivate the claim that a non-adaptive algorithm of query com-
plexity o(ε−4/3) cannot distinguish between graphs selected at random in these
sets, consider the (seemingly best such) algorithm that selects o(ε−2/3) vertices
and inspects the induced subgraph. Consider the partition of a graph in CCε into
(6ε)−1 pairs of cliques, and correspondingly the partition of a graph in BCCε into
(6ε)−1 bi-cliques. Then, the probability that a sample of o(ε−2/3) vertices con-
tains at least three vertices that reside in the same part (of 6ε · N vertices) is
o(ε−2/3)3 · (6ε)2 = o(1). On the other hand, if this event does not occur, then
the answers obtained from both graphs are indistinguishable (because in each
case a random pair of vertices residing in the same part is connected by an edge
with probability 1/2). As is outlined next, this intuition extends to an arbitrary
non-adaptive algorithm.

Specifically, by an averaging argument, it suffices to consider deterministic
algorithms, which are fully specified by the sequence of queries that they make
and their decision on each corresponding sequence of answers. Recall that these
(fixed) queries are elements of [N ]× [N ]. We shall show that, for every sequence
of o(ε−4/3) queries, the answers provided by a randomly selected element of CCε

are statistically close to the answers provided by a randomly selected element of
BCCε. We shall use the following notation: For an N -vertex graph G and a query
(u, v), we denote the corresponding answer by ansG(u, v); that is, ansG(u, v) = 1
if {u, v} is an edge in G and ansG(u, v) = 0 otherwise.

Lemma 5. Let G1 and G2 be random N -vertex graphs uniformly distributed in
CCε and BCCε, respectively. Then, for every sequence (v1, v2), . . . , (v2q−1, v2q) ∈
[N ] × [N ], where the vi’s are not necessarily distinct, it holds that
the statistical difference between ansG1(v1, v2), . . . , ansG1(v2q−1, v2q) and
ansG2(v1, v2), . . . , ansG2(v2q−1, v2q) is O(q3/2ε2).

The proof of Lemma 5 appears in our technical report [13], and Part 2 of
Theorem 1 follows.

Tightness of the lower bound: We mention that the above lower bound is tight
(indeed, as asserted in Part 3 of Theorem 1). This fact is proved, in our technical
report [13], by presenting a non-adaptive algorithm that is not canonical. Recall
that a canonical algorithm operates by selecting a random set of vertices and
inspecting the induced subgraph. We mention that our algorithm improves over
the Õ(ε−2) bound of [5, Thm. 2] (which is obtained by a canonical algorithm).
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Abstract. Motivated by questions in property testing, we search for
linear error-correcting codes that have the “single local orbit” property:
they are specified by a single local constraint and its translations under
the symmetry group of the code. We show that the dual of every “sparse”
binary code whose coordinates are indexed by elements of F2n for prime
n, and whose symmetry group includes the group of non-singular affine
transformations of F2n , has the single local orbit property. (A code is
sparse if it contains polynomially many codewords in its block length.)
In particular this class includes the dual-BCH codes for whose duals
(BCH codes) simple bases were not known. Our result gives the first
short (O(n)-bit, as opposed to exp(n)-bit) description of a low-weight
basis for BCH codes. If 2n − 1 is a Mersenne prime, then we get that
every sparse cyclic code also has the single local orbit.

Keywords: Locally testable codes, affine/cyclic invariance, single orbit.

1 Introduction

Motivated by questions about the local testability of some well-known error-
correcting codes, in this paper we examine their “invariance” properties. Invari-
ances of codes are a well-studied concept (see, for instance, [16, Chapters 7, 8.5,
and 13.9]) and yet we reveal some new properties of BCH codes. In the process
we also find broad classes of sparse codes that are locally testable. We describe
our problems and results in detail below.

A code C ⊆ FN
2 is said to be locally testable if membership of a word w ∈ FN

2
in the code C can be checked probabilitistically by a few probes into w. The
famed “linearity test” of Blum, Luby and Rubinfeld [2] may be considered the
first result to show that some code is locally testable. Locally testable codes
were formally defined by Rubinfeld and Sudan [17]. The first substantial study
of locally testable codes was conducted by Goldreich and Sudan [9], where the
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principal focus was the construction of locally testable codes of high rate. Local
testing of codes is effectively equivalent to property testing [17,8] with the dif-
ference being that the emphasis here is when C is an error-correcting code, i.e.,
elements of C are pairwise far from each other.

A wide variety of “classical” codes are by now known to be locally testable, in-
cluding Hadamard codes [2], Reed-Muller codes of various parameters [17,1,13,10],
dual-BCH codes [11,14], turning attention to the question: What broad character-
istics of codes are necessary, or sufficient, for codes to be locally testable. One char-
acteristic explored in the recent work of Kaufman and Sudan [15] is the “invariance
group” of the code, which we describe next.

Let [N ] denote the set of integers {1, . . . , N}. A code C ⊆ FN
2 is said to be

invariant under a permutation π : [N ] → [N ] if for every a = 〈a1, . . . , aN 〉 ∈ C,
it is the case that a◦π = 〈aπ(1), . . . , aπ(N)〉 is also in C. The set of permutations
under which any code C is invariant forms a group under composition and we
refer to it as the invariant group. [15] suggested that the invariant group of a code
may play an important role in its testability. They supported their suggestion
by showing that if the invariant group is an “affine group”, then a “linear” code
whose “dual” has the “single local orbit” property is locally testable. We explain
these terms (in a restricted setting) below.

Let N = 2n and let C ⊆ FN
2 be a code. In this case we can associate the

coordinate set [N ] of the code C with the field F2n . Now consider the permu-
tations π : F2n → F2n of the form π(x) = αx + β where α ∈ F2n − {0} and
β ∈ F2n . This set is closed under composition and we refer to this as the affine
group. If C is invariant under every π in the affine group, then we say that C
is affine-invariant. We say that C is linear if it is a vector subspace of FN

2 . The
dual of C, denoted C⊥, is the null space of C as a vector space.

We now define the final term above, namely, the “single local orbit property”.
Let G be a group of permutations mapping [N ] to [N ]. For b ∈ FN

2 , let its weight,
denoted wt(b), be the number of non-zero elements of b. A code C is said to have
the k-single orbit property under G if there exists an element b ∈ FN

2 of weight
at most k such that C = Span({b ◦ π|π ∈ G}), where Span(S) = {

∑
i cibi|ci ∈

F2, bi ∈ S}. Two groups are of special interest to us in this work. The first is the
affine group on F2n . A second group of interest to us is the “cyclic group” on
F∗

2n = F2n − {0} given by the permutations πa(x) = ax for a ∈ F∗
2n . (Note that

if ω is a multiplicative generator of F∗
2n and the coordinates of C are ordered

〈ω, ω2, . . . , ω2n−1 = 1〉 then each πa is simply a cyclic permutation.)
The invariance groups of codes are well-studied objects. In particular codes

that are invariant under cyclic permutations, known as cyclic codes, are widely
studied and include many common algebraic codes (under appropriate ordering
of the coordinates and with some slight modifications, see [18] or [16].) The fact
that many codes are also affine-invariant is also explicitly noted and used in the
literature [16].

Conditions under which codes have the single-orbit property under any given
group, seem to be less well-studied. This is somewhat surprising given that the
single-orbit property implies very succinct (nearly explicit) descriptions (of size
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k logN as opposed to ω(N))1 of bases for codes (that have the k-single orbit
property under some standard group.) Even for such commonly studied codes
such as the BCH codes such explicit descriptions of bases were not known prior
to this work. In retrospect, the single orbit property was being exploited in
previous results in algebraic property testing [2,17,1,13,10] though this fact was
not explicit until the work of [15].

In this work we explore the single orbit property under the affine group for
codes on the coordinate set F2n , as also the single orbit property under the
cyclic group for codes over F∗

2n . We show that the dual of every “sparse” affine-
invariant code (i.e., codes with at most polynomially many codewords in N) has
the k-single orbit property under the affine group for some constant k, provided
N = 2n for prime n (see Theorem 1.) When N − 1 is also prime, it turns out
that the duals of sparse codes have the k-single orbit property under the cyclic
group for some constant k yielding an even stronger condition on the basis (see
Theorem 2.) Both theorems shed new light on well-studied codes including BCH
codes. The actual families considered here are broader, but the BCH codes are
typical in these collections. Lemma 1 explicitly characterizes the entire family of
codes investigated in this paper.

In particular the first theorem has immediate implications for testing and
shows that every sparse affine invariant code is locally testable. This merits
comparison with the results of [14] who show that sparse high-distance codes
are locally testable. While syntactically the results seem orthogonal (ours require
affine-invariance whereas theirs required high-distance) it turns out (as we show
in this paper) that all the codes we consider do have high-distance. Yet for the
codes we consider our results are more constructive in that they not only prove
the “existence” of a local test, but give a much more “explicit” description of
the tester: Our tester is described by a single low-weight word in the dual and
tests that a random affine permutation of this word is orthogonal to the word
being tested.2

Given a code of interest to us, we first study the algebraic structure of the given
code by representing codewords as polynomials and studying the degree patterns
among the support of these polynomials. We interpret the single orbit property
in this language; and this focusses our attention on a collection of closely related
codes. We then turn to recent results from additive number theory [4,3,6,5,7] and
apply them to the dual of the given code, as well as the other related codes that
arise from our algebraic study, to lower bound their distance. In turn, using the
MacWilliams identities (as in prior work [14]) this translates to some information

1 One way to represent a sparse code C whose dual C⊥ has a basis among the weight
k codewords is to give Ω(N) codewords that generate C⊥. This requires space
Ω(kN log N) bits. Alternately, if C is sparse and has N t codewords, one can give
t log N codewords that generate it; this requires tN log N = Ω(N log N) bits.

2 In contrast the tester of [14] was less “explicit”. It merely proved the existence of
many low weight codewords in the dual of the code being tested and proved that the
test which picked one of these low-weight codewords uniformly at random and tested
orthogonality of the given word to this dual codeword was a sound test.
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on the weight-distribution of the given code and the related ones. Some simple
counting then yields that the given code must have the single-orbit property.

We believe that our techniques are of interest, beyond just the theorems they
yield. In particular we feel that techniques to assert the single-orbit property are
quite limited in the literature. Indeed in all previous results [2,17,1,13,10] this
property was “evident” for the code: The local constraint whose orbit generated
a basis for all constraints was explicitly known, and the algebra needed to prove
this fact was simple. Our results are the first to consider the setting where the
basis is not explicitly known (even after our work) and manages to bring in non-
algebraic tools to handle such cases. We believe that the approach is potentially
interesting in broader settings.

2 Definitions and Main Results

We recall some basic notation. [N ] denotes the set {1, . . . , N}. Fq denotes the
finite field with q elements and F∗

q will denote the non-zero elements of this
field. We will consider codes contained in the vector space FN

2 . For a word a =
〈a1, . . . , aN 〉 ∈ FN

2 its support is the set Supp(a) = {i|ai �= 0} and its weight
is the quantity wt(a) = |Supp(a)|. For a = 〈ai〉i, and b = 〈bi〉i ∈ FN

2 define
the relative distance between a, b as δ(a, b) = 1

N |{i | ai �= bi}|. Note δ(a, b) =
wt(a−b)

N . A binary code C is a subset of FN
2 . The (relative) distance of C is

δ(C) = mina,b∈C;a�=b{δ(a, b)}. For a set of vectors S = {v1, . . . , vk} ⊆ FN
2 , let

Span(S) = {
∑k

i=1 αivi|α1, . . . , αk ∈ F2} denote the linear span of S. C is a linear
code if its codewords form a vector space in {0, 1}N over F2, i.e., if Span(C) = C.
For a, b ∈ FN

2 , let a · b =
∑

i aibi denote the inner product of a and b. The dual
of C is the code C⊥ = {b ∈ FN

2 | b · a = 0, ∀a ∈ C}. We will alternate between
viewing a ∈ FN

2 as a vector a = 〈a1, . . . , aN 〉 and as a function a : D → F2
where D will be some appropriate domain of size N . Two particular domains of
interest to us will be F2n and F∗

2n .

2.1 Invariance and the Single Local Orbit Property

Let a ∈ FN
2 be viewed as a function a : D → F2 for some domain D of size

N . Let π : D → D be a permutation of D. The π-rotation of a is the function
a ◦ π : D → F2 given by a ◦ π(i) = a(π(i)) for every i ∈ D.

Let D be a set of size N and let FN
2 denote the set of functions from D → F2.

A code C ⊆ FN
2 is said to be invariant under a permutation π : D → D if for

every a ∈ C, it is the case that a ◦ π ∈ C. The set of permutations under which
a code C is invariant forms a group under composition and we refer to it as the
invariant group of a code.

We will be interested in studying codes that are invariant under some well-
studied groups (i.e., whose invariant groups contain some well-studied groups.)
Two groups of interest to us are the affine group over F2n and the cyclic group
over F∗

2n . In what follows we let N = 2n and view FN
2 as the set of functions

from F2n to F2 and FN−1
2 as the set of functions from F∗

2n to F2.
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Definition 1 (Affine invariance). A function π : F2n → F2n is an affine
permutation if there exist α ∈ F∗

2n and β ∈ F2n such that π(x) = αx + β. The
affine group over F2n consists of all the affine permutations over F2n . A code
C ⊆ FN

2 is said to be affine invariant if the invariant group of C contains the
affine group.

Definition 2 (Cyclic invariance). A function π : F∗
2n → F∗

2n is a cyclic per-
mutation if it is of the form π(x) = αx for α ∈ F∗

2n . 3 The cyclic group over
F∗

2n consists of all the cyclic permutations over F∗
2n. A code C ⊆ FN−1

2 is said
to be cyclic invariant (or simply cyclic) if the invariant group of C contains the
cyclic group.

Many well-known families of codes (with minor variations) are known to be affine-
invariant and/or cyclic. In particular BCH codes are cyclic and Reed-Muller codes
are affine-invariant.Furthermore under a simple “extension” operationBCHcodes
become affine-invariant, and vice versa under a simple puncturing operation,
Reed-Muller codes become cyclic. We elaborate on these later.

In this paper our aim is to show that certain families of affine-invariant and
cyclic codes have a simple description, that we call a “single-orbit description”.
We define this term next.

Definition 3 (k-single orbit code). Let FN
2 be the collection of functions from

D to F2 for some domain D. Let G be a group of permutations from D to D. A
linear code C ⊆ FN

2 is said to have the k-single orbit property under the group G
if there exists a ∈ C with wt(a) ≤ k such that C = Span({a ◦ π|π ∈ G}).

In particular the k-single orbit property under the affine group has implications
to testing that we discuss in Section 2.3.

2.2 Main Results

Our main results show that, under certain conditions, duals of “sparse” codes
have the single orbit property for small k. By “sparse” we mean that the code
has only polynomially many codewords in the length of the codewords.

Our first result considers affine-invariant codes.

Theorem 1 (Single orbit property in affine-invariant codes). For every
t > 0 there exists a k = k(t) such that for every prime n the following holds:
Let N = 2n and C ⊆ FN

2 be a linear affine-invariant code containing at most N t

codewords. Then C⊥ has the k-single orbit property under the affine group.

Next we present our main theorem for cyclic codes.

Theorem 2 (Single orbit property in cyclic codes). For every t there
exists a k such that the following holds: Let n be such that 2n − 1 is prime. Let
C ⊆ FN−1

2 be a linear, cyclic invariant, code with at most N t codewords. Then
C⊥ has the k-single orbit property under the cyclic group.
3 Note that this is a permutation of F∗

2n if the elements of F∗
2n are enumerated as

〈ω, ω2, . . . , ωN−1〉 where ω is a multiplicative generator of F∗
2n .
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We remark that it is not known if there are infinitely many n such that 2n − 1
is prime. Of course if there are only finitely many such primes then our theorem
becomes “trivial”. Nevertheless, as things stand, the question of whether the
number of such primes is infinite or not is unresolved (and indeed there are con-
jectures suggesting there are infinitely many such primes), and so unconditional
result should remain interesting.

2.3 Implications to Property Testing

It follows from the work of [15] that codes with a single local orbit under the
affine symmetry group are locally testable. We recall some basic definitions below
and summarize the implication of our main theorem to testability.

Definition 4 (Locally testable code [9]). A code C ⊆ FN
2 is (k, α)-locally

testable if there exists a probabilistic algorithm T called the tester that, given
oracle access to a vector v ∈ FN

2 makes at most k queries to the oracle for v and
accepts v ∈ C with probability 1, while rejecting v �∈ C with probability at least
α · δ(v, C). C is said to be locally testable if there exist k < ∞ and α > 0 such
that C is (k, α)-locally testable.

We note that the above definition corresponds to the strong definition of local
testability ([9, Definition 2.2].) We now state the result of [15] on the testability
of affine-invariant codes with the single local orbit property.

Theorem 3 ([15]). If C ⊆ FN
2 is linear and has the k-single orbit property

under the affine group, then C is (k,Ω(1/k2))-locally testable.

We note that in [15] the single-orbit property under the affine group is described
as the “strong formal characterization.”

Our main theorem, Theorem 1, when combined with the above theorem, im-
mediately yields the following implication for sparse affine invariant codes.

Corollary 1. For every constant t there exists a constant k such that if n is
prime, N = 2n and C ⊆ FN

2 is a linear, affine-invariant code with at most N t

codewords, then C is (k,Ω(1/k2))-locally testable.

2.4 Implications to BCH Codes

In addition to the implications for the testability of sparse affine-invariant codes,
our results also give new structural insight into the classical BCH codes. Even
though these codes have been around a long time, and used often in the CS liter-
ature, some very basic questions about them are little understood. We describe
the codes, the unanswered questions about them, and the implications of our
work in this context below.

We start by defining the BCH codes and the extended-BCH codes. The former
are classical cyclic codes, and the latter are affine-invariant. Let Trace : F2n → F2
be the function Trace(x) = x + x2 + . . . + x2n−1

. We define the BCH codes by
defining their dual.
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Definition 5. For every pair of integers n and t, the (binary) dual-BCH code
with parameters n and t, denoted BCH(n, t)⊥ ⊆ FN−1

2n consists of the evaluations
of traces of polynomials of degree 2t over F∗

2n . I.e.,

BCH(n, t)⊥ = {〈Trace(f(α))〉α∈F∗
2n
|f ∈ F2n [x], deg(f) ≤ 2t}

The BCH code BCH(n, t) is simply the dual of BCH(n, t)⊥. The extended dual-
BCH code eBCH(n, t)⊥ ⊆ FN

2 is simply the evaluation of the same functions
over all of F2n, and eBCH(n, t) is its dual.

(We note that the more common definition of BCH codes is as the subfield
subcodes of Reed Solomon codes, with BCH(n, t) being the subfield subcodes of
RS codes of degree N − 2t− 1. But it is a folklore fact that the two definitions
are equivalent.)

Even though the BCH codes are very classical codes, much is unknown about
them. For instance, while it is easy to see (by a counting argument) that the
BCH code BCH(n, t) must have codewords of weight 2t + 1, such words are not
known “explicitly,” leading to the first question: “What is an explicit low-weight
codeword of BCH(n, t)?” Till recently it was not known that the set of codes
of low weight even generate the BCH code, and this was answered affirmatively
only recently by Kaufman and Litsyn [12] who showed that words of weight
2t+ 1 and 2t+ 2 certainly include a basis for the BCH code. This proof remains
“non-explicit” and the most “succinct” description of this basis is via O(Nt)
field elements of F2n . This leads to the second, harder question: “What is an
explicit basis of BCH(n, t)?”

Our result manages to make progress on the second question without making
progress on the first, by showing that the affine orbit (or in some cases the cyclic
orbit) of a single low-weight codeword gives a basis for the BCH code. While
this single codeword is still not explicit, the rest of the basis is explicit given the
codeword! We state these implications formally below.

Corollary 2. For every t there exists a k such that for all prime n, eBCH(n, t)
has the k-single orbit property under the affine group.

The above follows from Theorem 1 using the observation that eBCH(n, t)⊥ is
sparse (has NO(t) codewords) and affine invariant.

Corollary 3. For every t there exists a k such that for all n such that 2n − 1
is prime, BCH(n, t) has the k-single orbit property under the cyclic group.

The above follows from Theorem 2 using the observation that BCH(n, t)⊥ is
sparse (has NO(t) codewords) and cyclic invariant.

We remark that questions of this nature are relevant not only to coding theory,
but also to computing. For instance a recurring question in CS is to find explicit
balls of small radius in tightly packed codes that contain many codewords. In
such problems, the goal is to find an explicit vector (not in the code) along with
explicit description of a large set of nearby codewords. Our study, in contrast,
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attempts to find an explicit description of a large set of codewords near the zero
vector (a codeword.)

Finally, we point out that the need for various parameters (n and 2n − 1)
being prime is a consequence of the application of some recent results in additive
number theory that we use to show that certain codes have very high distance.
We do not believe such assumptions ought to be necessary; however we do not
see any immediate path to resolving the “stronger” number-theoretic questions
that would arise by allowing n to be non-prime.

3 Overview of Techniques

Our main theorems are proved essentially by implementing the following plan:

1. We first show that every codeword in the codes we consider are expressible
as the Traces of sparse polynomials. In the affine-invariant case we also show
that these polynomials have somewhat low-degree, i.e., at most N1−ε. This
part follows standard literature in coding theory (and similar steps were
employed already in [15].)

2. We then apply the recent results in additive number theory to conclude that
these codes have very high distance. This already suffices to show that the
affine-invariant codes are testable by [14]. However the tests given there are
“non-explicit” and we need to work further to get an “explicit” test for these
codes, or to show the single-orbit condition.

3. The final, and the novel part of this work, is to show by a counting argument,
that there exists one (in fact many) low-weight codewords in the dual of the
codes we consider such that their orbit spans the dual.

We elaborate on these steps in detail below, laying out precise statements we
will prove.

We start with some notation. Recall N = 2n and n is prime. Also, we view
elements c ∈ FN

2 as functions c : FN → F2. Let {FN → F2} denote the set of all
such functions. Similarly we view elements c ∈ FN−1

2 as functions F∗
N → F2 and

let {F∗
N → F2} denote the set of all such functions.

For d ∈ {1, . . . , N−2}, let orb(d) = {d, 2d(mod N−1), 4d(mod N−1), . . . , 2n−1

d(mod N − 1)} By the primality of n, we have that |orb(d)| = n for every d. Let
min-orb(d) denote the smallest integer in orb(d), and let D = {min-orb(d) | d ∈
{1, . . . , N − 2}} ∪ {N − 1}. Note that |D| = 1 + (N − 2)/n.

For D ⊆ D let

PN,D = {α0 +
∑

d∈D

αdx
d | αd ∈ FN , α0, αN−1 ∈ {0, 1}},

and PN−1,D = {
∑

d∈D

αdx
d | αd ∈ FN , αN−1 ∈ {0, 1}}.

The first step in our analysis of codes invariant over the affine group (resp. cyclic
group) is that such codes can be associated uniquely with a set D ⊆ D so that
every codeword in our code is the evaluation of the trace of a polynomial from
the associated family PN,D over FN (resp. PN−1,D over F∗

N .)
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Lemma 1. For every cyclic-invariant code C ⊆ {F∗
N → F2} there exists a set

D ⊆ D such that c ∈ C if and only if there exists a polynomial p ∈ PN−1,D such
that c(x) = Trace(p(x)) for every x ∈ F∗

N . Furthermore |D| ≤ t iff |C| ≤ N t.
Similarly, for every affine-invariant code C ⊆ {FN → F2} of cardinality N t,

there exists a set D ⊆ D such that c ∈ C if and only if there exists a polynomial
p ∈ PN,D such that c(x) = Trace(p(x)) for every x ∈ FN . Furthermore, |C| ≤
2N t iff |D| ≤ t and D ⊆ {1, . . . , N1−1/t}.

Thus in both cases codes are represented by collections of t-sparse polynomials.
And in the affine-invariant case, these are also somewhat low-degree polynomials.
In what follows we use CN(D) to denote the code {Trace(p(x))|p ∈ PN,D} and
CN−1(D) to denote the code {Trace(p(x))|p ∈ PN−1,D}.

We next use a (small variant of a) theorem due to Bourgain [3] to conclude
that the codes CN(D) and CN−1(D) have very high distance (under the given
conditions on D.)

Theorem 4 ([3]). For every ε > 0 and r < ∞, there is a δ > 0 such that for
every prime n the following holds: Let N = 2n and F = FN and let f(x) =∑r

i=1 aix
ki ∈ F[x] with ai ∈ F, satisfy (1) 1 ≤ ki ≤ N − 1, (2) gcd(ki, N − 1) <

N1−ε for every 1 ≤ i ≤ r, and (3) gcd(ki − kj , N − 1) < N1−ε for every
1 ≤ i �= j ≤ r. Then ∣

∣
∣
∣
∣

∑

x∈F

(−1)Trace(f(x))

∣
∣
∣
∣
∣
< N1−δ.

We note that strictly speaking, [3, Theorem 7], only considers the case where N
is prime, and considers the sum of any character from F to the complexes (not
just (−1)Trace(·).) We note that the proof extends to cases where N = 2n where
n is prime as well. We comment on the places where the proof in [3] (and related
papers) have to be changed to get the result in our case, in Appendix A.

In our language the above theorem implies that codes represented by sparse
polynomials of somewhat low-degree have large distance. Furthermore if the
polynomials are sparse, and N − 1 is prime, then also the codes have large
distance. We thus get the following implication.

Lemma 2. For every t there exists a δ such that the following holds for every
N = 2n for prime n. Let D = D(N) and let D ⊆ D be of size at most t. Then
the code C = CN (D) satisfies 1

2 −N−δ ≤ δ(C) ≤ 1
2 + N−δ.

Similarly for every t there exists a δ such that the following holds for for every
N = 2n such that N − 1 is prime. Let D = D(N) and let D ⊆ D be of size at
most t. Then the C = CN−1(D) satisfies 1

2 −N−δ ≤ δ(C) ≤ 1
2 + N−δ.

We remark that such use of results from number theory in coding theory is also
common. For example, the distance of the sparse dual-BCH codes is inferred by
using the “Weil bound” on exponential sums in a similar manner.

We now move to the crucial part of the paper where we attempt to use count-
ing style arguments to claim that the codes we are considering have the single
orbit property for small k. Here our plan is as follows.



Succinct Representation of Codes with Applications to Testing 543

We first use a result from [14] to show that for any specific code C we consider
and for every sufficiently large k, its dual has roughly

(
N
k

)
/|C| codewords of

weight k (this bound is tight to within 1± Θ(1/N c) factor, for large enough k,
where k is independent of N and depends only on t, c and the δ of Lemma 2.)
Specifically they show:

Theorem 5 ([14] Lemma 3.5). For every c, t < ∞ and δ > 0 there exists
a k0 such that for every k ≥ k0 and for every code C ⊆ FN

2 with at most N t

codewords satisfying 1
2 − N−δ ≤ δ(C) ≤ 1

2 + N−δ it is the case the C⊥ has(
N
k

)
/|C| · (1±Θ(N−c) codewords of weight k.

Thus for any code C = C(D) under consideration, this allows us to conclude that
C⊥ has many codewords of weight k (for sufficiently large, but constant k.) What
remains to be shown is that the orbit of one of these, under the appropriate group
(affine or cyclic) contains a basis for the whole code C⊥. To do so, we consider
any codeword x of weight k in the dual whose orbit under the group does not
contain a basis for C⊥ (i.e., Span({x ◦π|π}) �= C⊥.) We show that for every such
word x there is a set D′ ⊆ D of size |D′| = |D| + 1 such that x ∈ C(D′)⊥.
The size of C(D′) is roughly a factor of N larger than the size of C and thus
C(D′)⊥ is smaller than C⊥ by a factor of roughly N . We argue further that this
code C(D′) also satisfies the same invariant structure as C and so one can apply
Lemma 2 and Theorem 5 to it and thereby conclude that the number of weight
k codewords in C(D′)⊥ are also smaller than the number weight k codewords
in C⊥ by a factor of approximately N . Finally we notice that the number of
sets D′ is o(N) and so the set ∪D′C(D′)⊥ can not include all possible weight k
codewords in C⊥, yielding the k-single orbit property for C. This leads to the
proofs of Theorem 1 and 2 - see Section 5.

4 Representing Sparse Invariant Codes by Sparse
Polynomials

In this section we study representations of affine-invariant and cyclic-invariant
codes by polynomials. That leads to the proof of Lemma 1, which we defer to
the full version, along with the other missing proofs of this section. (We will be
using the definitions of the sets D, PN,D, and PN−1,D as defined in Section 3
heavily throughout this section.)

We start by recalling some standard properties of the Trace function. Recall
that Trace(x) = x + x2 + x4 + · · · + x2n−1

. The Trace function is linear, i.e.
Trace(α+β) = Trace(α)+Trace(β) ∀α, β ∈ FN . Recall that every function from
FN to FN and hence every function from FN to F2 is the evaluation of polyno-
mial from FN [x]. More useful to us is the fact that every function from FN to F2
can also be expressed as the trace of a polynomial from FN [x], however this rep-
resentation is not unique. E.g., Trace(xd) = Trace(x2d) = Trace(x2i·d). However
if we restrict to the setting of polynomials from PN,D then this representation
is unique, as shown below.
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Lemma 3. For every word w : FN → F2 (respectively w : F∗
N → F2) there

is a unique polynomial p ∈ PN,D (respectively p ∈ PN−1,D) such that w(x) =
Trace(p(x)).

Lemma 4. Suppose C ⊆ {FN → F2} is an affine invariant code containing the
word w = Trace(p(x)) for some p ∈ PN,D. Then, for every monomial xe in the
support of p, the function Trace(xe) is in C. Furthermore, if e �∈ {0, N − 1} then
for every β ∈ FN , Trace(βxe) ∈ C.

Similarly if C ⊆ {F∗
N → F2} is cyclic invariant code containing the word

w = Trace(p(x)) for p ∈ PN−1,D. Then, for every monomial xe in the support
of p, the function Trace(xe) is in C. If e �= N − 1 then for every β ∈ FN ,
Trace(βxe) ∈ C.

We now use Lemma 4 to characterize cyclic invariant families, while also working
towards the characterization of affine invariant families.

Lemma 5. For every affine invariant code C ⊆ {FN → F2} there exists a
(unique) set D ⊆ D such that C = {Trace(p)|p ∈ PN,D}.

For every cyclic invariant family C ⊆ {F∗
N → F2} there exists a (unique) set

D ⊆ D such that C = {Trace(p)|p ∈ PN−1,D}.

Lemma 5 essentially suffices to yield Lemma 1 for the cyclic case (though we
still need to verify that |D| is small as claimed.) For the affine case we need to
work a little harder to bound the size of the integers in D. To do so we note that
affine-invariant properties have further constraints on the set D.

For non-negative integers d and e we say e is in the shadow of d (denoted e ≺ d)
if in the binary representations d =

∑
i di2i and e =

∑
i ei2i with di, ei ∈ {0, 1},

it is the case that ei ≤ di for every i. We note that affine-invariant codes are
characterized by codes with a “shadow-closure” property described below.

Lemma 6. If C is an affine-invariant code, Trace(xd) ∈ C and e ≺ d then
Trace(xe) ∈ C.

5 Proofs of Main Theorems

5.1 Analysis of the Cyclic Case

Proof (of Theorem 2). Let δ = δ(t) and δ′ = δ′(t + 1) be as given by Lemma 2
for the cyclic invariant case (so codes of length N − 1 have distance roughly
1/2−N−δ.) Let c = 2 and let k0 = k0(c, t, δ) and k′

0 = k0(c, t+1, δ′) be as given
by Theorem 5. We prove the theorem for k = max{k0, k

′
0}.

Fix N so that N−1 is prime and let C ⊆ {F∗
N → F2} be a cyclic code of cardi-

nality at most N t. Let D ⊆ D be as given by Lemma 1, so that C = {Trace(p)|p ∈
PN−1,D}. For d ∈ D −D, let C(d) = {Trace(p)|p ∈ PN−1,D∪{d}}. Our analysis
below will show that (1) Every codeword in w ∈ C⊥−∪d∈D−D(C(d)⊥) generates
the code C⊥ by its cyclic shifts, i.e., C⊥ = Span{w(αx)|α ∈ F∗

N}, and (2) There
is a codeword of weight k in C⊥−∪d∈D−D(C(d)⊥). Putting the two together we
get the proof of the theorem.
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We start with the first part. Consider any codeword w ∈ C⊥. We claim that
if Span{w(αx)} �= C⊥, then there must exist an element d ∈ D −D such that
w ∈ C(d)⊥. To see this, first note that Span{w(αx)} is a code invariant under the
cyclic group, and is contained in C⊥. Thus if Span{w(αx)} �= C⊥ then it must be
strictly contained in C⊥ and so (Span{w(αx)})⊥ must be a strict superset of C.
Using Lemma 1 there must exist a set D′ such that (Span{w(αx)})⊥ = PN−1,D′ .
Furthermore D′ must be a strict superset of D and so there must exist an element
d ∈ D′ −D. We claim that w ∈ C(d)⊥. This is so since C(d) ⊆ (Span{w(αx)})⊥
and so w ∈ (Span{w(αx)}) ⊆ C(d)⊥. This concludes the proof of the first claim.

It remains to show that there is a codeword of weight k in C⊥−∪d∈D−D(C(d)⊥).
For this we employ simple counting arguments. We first note that, using Lemma 2,
that C is a code satisfying 1

2 − N−δ ≤ δ(C) ≤ 1
2 + N−δ. Hence we can apply

Theorem 5 to conclude that C⊥ has at least
(
N
k

)
/(|C|) · (1−O(1/N2)) codewords

of weight k. On the other hand, for every fixed d ∈ D−D, we have (by Lemma 2
again) 1

2 − N−δ′ ≤ δ(C(d)) ≤ 1
2 + N−δ′

. Again applying Theorem 5 we have
C(d)⊥ has at most

(
N
k

)
/(|C(d)|)(1 + O(1/N2)) codewords of weight k. In case

d = N − 1, then |C(d)| = 2 · |C|. In case d �= N − 1 then |C(d)| = N · |C|. Thus
we can bound the total number of codewords of weight k in ∪d∈D−DC(d)⊥ from
above by

(
N
k

)

2 · |C| (1+O(
1
N2 ))+|D|·

(
N
k

)

N · |C|(1+O(
1
N2 )) ≤ 1

2|C| ·
(
N

k

)
(1+

1
log2 N

+O(
1
N2 )),

where above we use the fact that |D| ≤ N/ log2 N . For sufficiently large N (i.e.,
when 1/ log2 N + O(1/N2) ≤ 1/2) we have that this quantity is strictly smaller
than

(
N
k

)
/(|C|) · (1 − O(1/N2)), which was our lower bound on the number of

codewords of weight k in C⊥. We conclude that there is a codeword of weight k
in C⊥ − ∪d∈D−D(C(d)⊥) as claimed. This concludes the proof of the theorem.

5.2 Analysis of the Affine-Invariant Case

Proof (of Theorem 1). The proof is similar to the proof of Theorem 2 with the
main difference being that we need to argue that the polynomials associated
with functions in C and C(d) are of somewhat low-degree (to be able to conclude
that they have high-distance.) Details below.

Given t, let δ be from Lemma 2 and let k be large enough for application of
Theorem 5. Fix N = 2n for prime n and and let C be an affine-invariant code
of cardinality N t. Let D ⊆ D be a set of cardinality at most t and consisting
of integers smaller that N1−1/t such that C = {Trace(p)|p ∈ PN,D} (as given
by Lemma 1.) For d ∈ D − D, let C(d) = {Trace(p)|p ∈ PN,D∪{d}}. Let D′ =
(D−D)∩{1, . . . , �N1−1/t�}. Similar to the proof of Theorem 2 we argue that if
there is a weight k codeword w in C⊥ that is not in some C(d)⊥, but now only for
every d ∈ D′, then {Span(w(αx+β)|α ∈ F∗

N , β ∈ FN} = C⊥. The same counting
argument as in the proof of Theorem 2 suffices to show that such a word does
exist.
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Consider w ∈ C⊥ and the code {Span(w(αx + β)|α ∈ F∗
N , β ∈ FN}, which

is affine invariant and so is given by PN,E for some shadow-closed set E. If
{Span(w(αx + β)}⊥ �= C then E strictly contains D and so there must exist
some element d′ ∈ E −D. Now consider smallest binary weight element d ≺ d′

such that d ∈ E − D. We claim that the binary weight of d must be at most
t+1 (since elements of D have binary weight at most t.) We then conclude that
w ∈ {Span(w(αx + β)} ⊆ C(d)⊥ yielding the claim.

The counting argument to show there is a codeword of weight k in C⊥ −
(∪d∈D′C(d)⊥ is now same as in the proof of Theorem 2 except that we use the
affine-invariant part of Lemma 2. This completes the proof of Theorem 1.
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A On Using Results from Additive Number Theory

As pointed out earlier Theorem 7 of [3] only considers the analog of Theorem 4
where the field F is of prime cardinality N , and shows that for any additive char-
acter χ, |

∑
x∈F

χ(f(x))| ≤ N1−δ. Here we mention the modifications necessary
to extend the proof to the case where FN is of cardinality 2n with n being prime.

In [3] the proof reduces to the two cases r = 1 and r = 2. The case r = 1 in
the prime case was obtained in [7]. In our case, where N = 2n, the r = 1 case
was shown in [6]. For r = 2 the proof in the prime case applied the sum-product
theorem from [5] and uses Proposition 1 of [4]. We note that Proposition 1 of
[4] works also when the field is not of prime cardinality. As argued in [5], the
sum-product statement might weaken for more general fields only when the field
FN contains somewhat large subfields. However, when n is prime F2n contains
only the constant size base field F2. We conclude that when F = F2n (n prime) it
remains true that if a set A ⊂ FN has size 1 < |A| < N1−ε for some given ε then
|A + A|+ |A · A| > C|A|1+δ , for some δ = δ(ε). The key ingredient of the proof
in [4] is an additional sum-product theorem in the additive/multiplicative group
FN×FN with N prime, where addition and multiplication are defined coordinate-
wise. The equivalent formulation for our case F2n ×F2n follows exactly as in [4],
and so does the rest of the proof.
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Abstract. Quantum expanders are a quantum analogue of expanders,
and k-tensor product expanders are a generalisation to graphs that ran-
domise k correlated walkers. Here we give an efficient construction of
constant-degree, constant-gap quantum k-tensor product expanders. The
key ingredients are an efficient classical tensor product expander and
the quantum Fourier transform. Our construction works whenever k =
O(n/ log n), where n is the number of qubits. An immediate corollary of
this result is an efficient construction of an approximate unitary k-design,
which is a quantum analogue of an approximate k-wise independent func-
tion, on n qubits for any k = O(n/ log n). Previously, no efficient con-
structions were known for k > 2, while state designs, of which unitary
designs are a generalisation, were constructed efficiently in [1].

1 Introduction

Randomness is an important resource in both classical and quantum computing.
However, obtaining random bits is often expensive, and so it is often desirable to
minimise their use. For example, in classical computing, expanders and k-wise
independent functions have been developed for this purpose and have found wide
application. In this paper, we explore quantum analogues of these two tools.

In quantum computing, operations are unitary gates and randomness is often
used in the form of random unitary operations. Random unitaries have algorith-
mic uses (e.g. [2]) and cryptographic applications (e.g. [3,4]). For information-
theoretic applications, it is often convenient to use unitary matrices drawn from
the uniform distribution on the unitary group (also known as the Haar measure,
and described below in more detail). However, an n-qubit unitary is defined
by 4n real parameters, and so cannot even be approximated efficiently using
a subexponential amount of time or randomness. Instead, we will seek to con-
struct efficient pseudo-random ensembles of unitaries which resemble the Haar
measure for certain applications. For example, a k-design (often referred to as
a t-design, or a (k, k)-design) is a distribution on unitaries which matches the
first k moments of the Haar distribution. This is the quantum analogue of k-wise
independent functions. k-designs have found cryptographic uses (e.g. [5]) as well
as physical applications [6], for which designs for large k are crucial.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 548–561, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Below, we will give an efficient construction of a k-design on n qubits for any
k up to O(n/ log(n)). We will do this by first finding an efficient construction
of a quantum ‘k-copy tensor product expander’ (defined later), which can then
be iterated to produce a k-design. We will therefore need to understand some of
the theory of expanders before presenting our construction.

Classical expander graphs have the property that a marker executing a ran-
dom walk on the graph will have a distribution close to the stationary distribu-
tion after a small number of steps. We consider a generalisation of this, known
as a k-tensor product expander (TPE) and due to [7], to graphs that randomise
k different markers carrying out correlated random walks on the same graph.
This is a stronger requirement than for a normal (k = 1) expander because the
correlations between walkers (unless they start at the same position) must be
broken. We then generalise quantum expanders in the same way, so that the
unitaries act on k copies of the system. We give an efficient construction of a
quantum k-TPE which uses an efficient classical k-TPE as its main ingredient.
We then give as a key application the first efficient construction of a unitary
k-design for any k.

While randomised constructions yield k-designs (by a modification of Theo-
rem 5 of [5]) and k-TPEs (when the dimension is polynomially larger than k
[7]) with near-optimal parameters, these approaches are not efficient. State k-
designs, meaning ensembles of quantum states matching the first k moments of
the uniform distribution on pure states, have been efficiently constructed in [1],
but their approach does not appear to generalise to (unitary) k-designs. Previous
efficient constructions of k-designs were known only for k = 1, 2, and no efficient
constant-degree, constant-gap quantum k-TPEs were previously known, except
for the k = 1 case corresponding to quantum expanders [8,3,9,10].

In Section 1.1, we will define quantum expanders and other key terms. Then in
Section 1.2 we will describe our main result which will be proved in Section 2.

1.1 Quantum Expanders

If SN denotes the symmetric group on N objects and π ∈ SN , then define

B(π) :=
N∑

i=1

|π(i)〉〈i| (1)

to be the matrix that permutes the basis states |1〉, . . . , |N〉 according to π.
We will only consider D-regular expander graphs here. We can think of a

random walk on such a graph as selecting one of D permutations of the vertices
randomly at each step. We construct the permutations as follows. Label the
vertices from 1 to N . Then label each edge from 1 to D so that each edge label
appears exactly once on the incoming and outgoing edges of each vertex. This
gives a set of D permutations. Choosing one of these permutations at random (for
some fixed probability distribution) then defines a random walk on the graph.

We now define a classical k-TPE:



550 A.W. Harrow and R.A. Low

Definition 1 ([7]). Let ν be a probability distribution on SN with support on
≤ D permutations. Then ν is an (N,D, λ, k) classical k-copy tensor product
expander (TPE) if

∥
∥Eπ∼ν

[
B(π)⊗k

]
− Eπ∼SN

[
B(π)⊗k

]∥∥
∞ =

∥
∥
∥
∥∥

∑

π∈SN

(
ν(π) − 1

N !

)
B(π)⊗k

∥
∥
∥
∥∥
∞

≤ λ.

(2)
with λ < 1. Here Eπ∼ν means the expectation over π drawn according to ν and
Eπ∼SN means the expectation over π drawn uniformly from SN .

Here, as in the rest of the paper, the norms we use are Schatten p-norms. Set-
ting k = 1 recovers the usual spectral definition of an expander. Note that a
(N,D, λ, k) TPE is also a (N,D, λ, k′) TPE for any k′ ≤ k. The largest mean-
ingful value of k is k = N , corresponding to the case when ν describes a Cayley
graph expander on SN .

The degree of the map is D = | supp ν| and the gap is 1 − λ. Ideally, the
degree should be small and gap large. To be useful, these should normally be
independent of N and possibly k. We say that a TPE construction is efficient
if it can be implemented in poly logN steps. There are known constructions of
efficient classical TPEs. The construction of Hoory and Brodsky [11] provides
an expander with D = poly logN and λ = 1 − 1/ poly(k, logN) with efficient
running time. An efficient TPE construction is also known, due to Kassabov
[12], which has constant degree and gap (independent of N and k).

Similarly, we define a quantum k-TPE. First we introduce the notation

U⊗k,k = U⊗k ⊗ (U∗)⊗k.

The distribution on the unitary group that we use is the Haar measure. This
distribution is the unique unitarily invariant distribution i.e. the only measure
dU where

∫
f(U)dU =

∫
f(UV )dU for all functions f and unitaries V . Now we

define

Definition 2 ([7]). Let ν be a distribution on U(N), the group of N×N unitary
matrices, with D = | supp ν|. Then ν is an (N,D, λ, k) quantum k-copy tensor
product expander if

∥
∥EU∼ν

[
U⊗k,k

]
− EU∼U(N)

[
U⊗k,k

]∥∥
∞ ≤ λ (3)

with λ < 1. Here EU∼U(N) means the expectation over U drawn from the Haar
measure.

Again, normally we want D and λ to be constants and setting k = 1 recovers
the usual definition of a quantum expander. Note that an equivalent statement
of the above definition is that, for all ρ,

∥∥EU∼ν

[
U⊗kρ(U †)⊗k

]
− EU∼U(N)

[
U⊗kρ(U †)⊗k

]∥∥
2 ≤ λ ‖ρ‖2 (4)

A natural application of this is to make an efficient unitary k-design. A unitary
k-design is the same as a quantum k-TPE except is close in the 1-norm rather
than the ∞-norm:
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Definition 3. Let ν be a distribution on U(N) with D = | supp ν|. Say that ν
is an ε-approximate unitary k-design if

∥
∥EU∼ν [U⊗k,k]− EU∼U(N)[U⊗k,k]

∥
∥

1 ≤ ε. (5)

As for TPEs, we say that a unitary design is efficient if a poly log(N)-time
algorithm exists to sample U from ν and to implement U .

Other definitions of approximate designs are possible; for example we can use
the diamond norm [13] between the superoperators Êk

U(N) and Êk
ν where

Êk
U(N)(ρ) = EU∼U(N)[U⊗kρ(U †)⊗k] (6)

and
Êk

ν (ρ) = EU∼ν [U⊗kρ(U †)⊗k] (7)

We can then, following [14], define an ε-approximate k-design as a set of unitaries
U with

‖Êk
U(N) − Êk

ν ‖� ≤ ε. (8)

While these norms are in general incomparable, our results work efficiently for
both definitions and indeed for any norms that are related by a factor that is
polynomial in dimension.

We can make an ε-approximate unitary k-design from a quantum k-TPE with
O(k logN) overhead:

Theorem 1. If U is an (N,D, λ, k) quantum k-TPE then iterating the map m =
1

log 1/λ log N2k

ε times gives an ε-approximate unitary k-design with Dm unitaries.

Proof. Iterating the TPE m times gives
∥
∥EU∼ν [U⊗k,k]− EU∼U(N)[U⊗k,k]

∥
∥
∞ ≤ λm

This implies that
∥
∥EU∼ν [U⊗k,k]− EU∼U(N)[U⊗k,k]

∥
∥

1 ≤ N2kλm

We take m such that N2kλm = ε to give the result.

We omit the analogous claim for Eqn. 8, as it, and the proof, are essentially the
same.

Corollary 1. A construction of an efficient quantum (N,D, λ, k)-TPE yields an
efficient approximate unitary k-design, provided λ = 1− 1/ poly logN . Further,
if D and λ are constants, the number of unitaries in the design is N (O(k)).

Our approach to construct an efficient quantum k-TPE will be to take an efficient
classical 2k-TPE and mix it with a quantum Fourier transform. The degree is
thus only larger than the degree of the classical expander by one. Since the
quantum Fourier transform on CN requires poly log(N) time, it follows that if
the classical expander is efficient then the quantum expander is as well. The
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main technical difficulty is to show for suitable values of k that the gap of the
quantum TPE is not too much worse than the gap of the classical TPE.

A similar approach to ours was first used in [7] to construct a quantum
expander (i.e. a 1-TPE) by mixing a classical 2-TPE with a phase. However,
regardless of the set of phases chosen, this approach will not yield quantum
k-TPEs from classical 2k-TPEs for any k ≥ 2.

1.2 Main Result

Let ω = e2πi/N and define the N -dimensional Fourier transform to be F =
1√
N

∑N
m=1

∑N
n=1 ωmn|m〉〈n|. Define δF to be the distribution on U(N) consisting

of a point mass on F . Our main result is that mixing δF with a classical 2k-TPE
yields a quantum k-TPE for appropriately chosen k and N .

Theorem 2. Let νC be a classical (N,D, 1 − εC , 2k)-TPE, and for 0 < p < 1,
define νQ = pνC + (1− p)δF . Suppose that

εA := 1− 2(2k)4k/
√
N > 0. (9)

Then νQ is a quantum (N,D + 1, 1− εQ, k)-TPE where

εQ ≥
εA

12
min(pεC , 1− p) > 0 (10)

The bound in Eqn. 10 is optimised when p = 1/(1 + εC), in which case we have

εQ ≥
εAεC

24
. (11)

This means that any constant-degree, constant-gap classical 2k-TPE gives a
quantum k-TPE with constant degree and gap. If the the classical TPE is efficient
then the quantum TPE is as well. Using Corollary 1, we obtain approximate
unitary k-designs with polynomial-size circuits.

Unfortunately the construction does not work for all dimensions; we require
that N = Ω((2k)8k), so that εA is lower-bounded by a positive constant. How-
ever, in applications normally k is fixed. An interesting open problem is to find
a construction that works for all dimensions, in particular a k = ∞ expander.
(Most work on k = ∞ TPEs so far has focused on the N = 2 case [15].) We
suspect our construction may work for k as large as cN for a small constant c.
On the other hand, if 2k > N then the gap in our construction drops to zero.

2 Proof of Theorem 2

2.1 Proof Overview

First, we introduce some notation. Define E2k
SN

= Eπ∼SN [B(π)⊗2k] and Ek
U(N) =

EU∼U(N)[U⊗k,k]. These are both projectors onto spaces which we label VSN and
VU(N) respectively. Since VU(N) ⊂ VSN , it follows that E2k

SN
−Ek

U(N) is a projector
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onto the space V0 := VSN ∩ V ⊥
U(N). We also define E2k

νC
= Eπ∼νC [B(π)⊗2k] and

Ek
νQ

= EU∼νQ [U⊗k,k].
The idea of our proof is to consider E2k

νC
a proxy for E2k

SN
; if λC is small enough

then this is a reasonable approximation. Then we can restrict our attention
to vectors in V0, which we would like to show all shrink substantially under the
action of our expander. This in turn can be reduced to showing that F⊗k,k maps
any vector in V0 to a vector that has Ω(1) amplitude in V ⊥

SN
. This last step is the

most technically involved step of the paper, and involves careful examination of
the different vectors making up VSN .

Thus, our proof reduces to two key Lemmas. The first allows us to substitute
E2k

νC
for E2k

SN
while keeping the gap constant.

Lemma 1 ([7] Lemma 1). Let Π be a projector and let X and Y be operators
such that ‖X‖∞ ≤ 1, ‖Y ‖∞ ≤ 1, ΠX = XΠ = Π, ‖(I−Π)X(I−Π)‖∞ ≤ 1−εC

and ‖ΠYΠ‖∞ ≤ 1 − εA. Assume 0 < εC , εA < 1. Then for any 0 < p < 1,
‖pX + (1− p)Y ‖∞ < 1. Specifically,

‖pX + (1− p)Y ‖∞ ≤ 1− εA

12
min(pεC , 1− p). (12)

We will restrict to V ⊥
U(N), or equivalently, subtract the projector Ek

U(N) from
each operator. Thus we have X = E2k

νC
− Ek

U(N), Π = E2k
SN
− Ek

U(N) and Y =
F⊗k,k − Ek

U(N). According to Definition 1, we have the bound

‖(I −Π)X(I −Π)‖∞ = ‖E2k
νC
− E2k

SN
‖∞ ≤ 1− εC . (13)

It will remain only to bound λA := 1 − εA = ‖(E2k
SN
− Ek

U(N))F⊗k,k(E2k
SN
−

Ek
U(N))‖∞.

Lemma 2. For N ≥ (2k)2,

λA = ‖(E2k
SN
− Ek

U(N))F⊗k,k(E2k
SN
− Ek

U(N))‖∞ ≤ 2(2k)4k/
√
N. (14)

CombiningEqn. 13, Lemma 2 andLemma 1 nowcompletes the proof ofTheorem2.

2.2 Action of a Classical 2k-TPE

We start by analysing the action of a classical 2k-TPE. (We consider 2k-TPEs
rather than general k-TPEs since our quantum expander construction only uses
these.) The fixed points are states which are unchanged when acted on by 2k
copies of any permutation matrix. Since the same permutation is applied to all
copies, any equal indices will remain equal and any unequal indices will remain
unequal. This allows us to identify the fixed points of the classical expander: they
are the sums over all states with the same equality and difference constraints. For
example, for k = 1 (corresponding to a 2-TPE), the fixed points are

∑
n1
|n1, n1〉

and
∑

n1 �=n2
|n1, n2〉 (all off-diagonal entries equal to 1). In general, there is a

fixed point for each partition of the set {1, 2, . . . , 2k} into at most N non-empty
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parts. If N ≥ 2k, which is the only case we consider, the 2kth Bell number β2k

gives the number of such partitions (see e.g. [16]).
We now write down some more notation to further analyse this. If Π is a

partition of {1, . . . , 2k}, then we write Π � 2k. We will see that E2k
SN

projects
onto a space spanned by vectors labelled by partitions. For a partition Π , say
that (i, j) ∈ Π if and only if elements i and j are in the same block. Now we can
write down the fixed points of the classical expander. Let

IΠ = {(n1, . . . , n2k) : ni = nj iff (i, j) ∈ Π}. (15)

This is a set of tuples where indices in the same block of Π are equal and indices
in different blocks are not equal. The corresponding state is

|IΠ〉 =
1

√
|IΠ |

∑

n∈IΠ

|n〉 (16)

where n = (n1, . . . , n2k) and |Π | is the number of blocks in Π . Note that the
{IΠ}Π�2k form a partition {1, . . . , N}2k and thus the {|IΠ〉}Π�2k form an or-
thonormal basis for VSN . This is because, when applying the same permutation
to all indices, indices that are the same remain the same and indices that differ
remain different. This implies that

E2k
SN

=
∑

Π�2k

|IΠ〉〈IΠ |. (17)

To evaluate the normalisation, use |IΠ | = (N)|Π| where (N)n is the falling
factorial N(N − 1) . . . (N − n + 1). We will later find it useful to bound (N)n

with (
1− n2

2N

)
Nn ≤ (N)n ≤ Nn. (18)

We will also make use of the refinement partial order:

Definition 4. The refinement partial order ≤ on partitions Π,Π ′ ∈ Par(2k,N)
is given by

Π ≤ Π ′ iff (i, j) ∈ Π ⇒ (i, j) ∈ Π ′. (19)

For example, {{1, 2}, {3}, {4}} ≤ {{1, 2, 4}, {3}}. Note that Π ≤ Π ′ implies that
|Π | ≥ |Π ′|.

Turning Inequality Constraints into Equality Constraints. In the analy-
sis, it will be easier to consider just equality constraints rather than both inequal-
ity and equality constraints as in IΠ . Therefore we make analogous definitions:

EΠ = {(n1, . . . , n2k) : ni = nj∀(i, j) ∈ Π} (20)

and
|EΠ〉 =

1
√
|EΠ |

∑

n∈EΠ

|n〉. (21)
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Then |EΠ | = N |Π|. For EΠ , indices in the same block are equal, as with IΠ , but
indices in different blocks need not be different.

We will need relationships between IΠ and EΠ . First, observe that EΠ can
be written as the union of some IΠ sets:

EΠ =
⋃

Π′≥Π

IΠ′ . (22)

To see this, note that for n ∈ EΠ , we have ni = nj∀(i, j) ∈ Π , but we may also
have an arbitrary number of additional equalities between ni’s in different blocks.
The (unique) partition Π ′ corresponding to these equalities has the property that
Π is a refinement of Π ′; that is, Π ′ ≥ Π . Thus for any n ∈ EΠ there exists a
unique Π ′ ≥ Π such that n ∈ IΠ′ . Conversely, whenever Π ′ ≥ Π , we also have
IΠ′ ⊆ EΠ′ ⊆ EΠ because each inclusion is achieved only be relaxing constraints.

Using Eqn. 22, we can obtain a useful identity involving sums over partitions:

N |Π| = |EΠ | =
∑

Π′≥Π

|IΠ′ | =
∑

Π′≥Π

N(|Π′|). (23)

Additionally, since both sides in Eqn. 23 are degree |Π | polynomials and are
equal on ≥ |Π | + 1 points (we can choose any N in Eqn. 23 with N ≥ 2k), it
implies that x|Π| =

∑
Π′≥Π x(Π′) as an identity on formal polynomials in x.

The analogue of Eqn. 22 for the states |EΠ〉 and |IΠ〉 is similar but has to
account for normalisation factors. Thus we have

√
|EΠ ||EΠ〉 =

∑

Π′≥Π

√
|IΠ′ ||IΠ′ 〉. (24)

We would also like to invert this relation, and write |IΠ〉 as a sum over various
|EΠ′ 〉. Doing so will require introducing some more notation. Define ζ(Π,Π ′)
to be 1 if Π ≤ Π ′ and 0 if Π �≤ Π ′. This can be thought of as a matrix that,
with respect to the refinement ordering, has ones on the diagonal and is upper-
triangular. Thus it is also invertible. Define μ(Π,Π ′) to be the matrix inverse of
ζ, meaning that for all Π1, Π2, we have

∑

Π′�2k

ζ(Π1, Π
′)μ(Π ′, Π2) =

∑

Π′�2k

μ(Π1, Π
′)ζ(Π ′, Π2) = δΠ1,Π2 ,

where δΠ1,Π2 = 1 if Π1 = Π2 and = 0 otherwise. Thus, if we rewrite Eqn. 24 as
√
|EΠ ||EΠ〉 =

∑

Π′�2k

ζ(Π,Π ′)
√
|IΠ′ ||IΠ′ 〉, (25)

then we can use μ to express |IΠ〉 in terms of the |EΠ〉 as
√
|IΠ ||IΠ〉 =

∑

Π′�2k

μ(Π,Π ′)
√
|EΠ′ ||EΠ′ 〉. (26)

This approach is a generalisation of inclusion-exclusion known as Möbius inver-
sion, and the function μ is called the Möbius function (see Chapter 3 of [16]
for more background). For the case of the refinement partial order, the Möbius
function is known:
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Lemma 3 ([17], Section 7).

μ(Π,Π ′) = (−1)|Π|−|Π′|
|Π′|∏

i=1

(bi − 1)!

where bi is the number of blocks of Π in the ith block of Π ′.

We can use this to evaluate sums involving the Möbius function for the
refinement order.

Lemma 4. ∑

Π′≥Π

|μ(Π,Π ′)|x|Π′| = x(|Π|) (27)

where x is arbitrary and x(n) is the rising factorial x(x + 1) · · · (x + n− 1).

Proof. Start with |μ(Π,Π ′)| = (−1)|Π|−|Π′|μ(Π,Π ′) to obtain
∑

Π′≥Π

|μ(Π,Π ′)|x|Π′| = (−1)|Π|
∑

Π′≥Π

μ(Π,Π ′)(−x)|Π
′|

= (−1)|Π|
∑

Π′≥Π

μ(Π,Π ′)
∑

Π′′≥Π′

ζ(Π ′, Π ′′)(−x)(|Π′′|)

using Eqn. 23. Then use Möbius inversion and (−x)(n) = (−1)nx(n) to prove the
result.

We will mostly be interested in the special case x = 1:

Corollary 2. ∑

Π′≥Π

|μ(Π,Π ′)| = |Π |! (28)

Using |μ(Π,Π ′)| ≥ 1 and the fact that Π ≥ {{1}, . . . , {n}} for all Π � n, we
obtain a bound on the total number of partitions.

Corollary 3. The Bell numbers βn satisfy βn ≤ n!.

2.3 Fixed Points of a Quantum Expander

We now turn to VU(N), the space fixed by the quantum expander. By Schur-Weyl
duality (see e.g. [18]), the only operators on (CN )⊗k to commute with all U⊗k

are linear combinations of subsystem permutations

S(π) =
N∑

n1=1

· · ·
N∑

nk=1

|nπ−1(1), . . . nπ−1(k)〉〈n1, . . . , nk| (29)

for π ∈ Sk. The equivalent statement for VU(N) is that the only states invariant
under all U⊗k,k are of the form

1√
Nk

∑

n1,...,nk∈[N ]

|n1, . . . , nk, nπ(1), . . . , nπ(k)〉, (30)
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for some permutation π ∈ Sk. Since Ek
U(N) = E[U⊗k,k] projects onto the set of

states that is invariant under all U⊗k,k, it follows that VU(N) is equal to the span
of the states in Eqn. 30.

Now we relate these states to our previous notation.

Definition 5. For π ∈ Sk, define the partition corresponding to π by

P (π) = {{1, k + π(1)}, {2, k + π(2)}, . . . , {k, k + π(k)}} .

Then the state in Eqn. 30 is simply |EP (π)〉, and so

VU(N) = span{|EP (π)〉 : π ∈ Sk}. (31)

Note that the classical expander has many more fixed points than just the desired
|EP (π)〉. The main task in constructing a quantum expander from a classical one
is to modify the classical expander to decay the fixed points that should not be
fixed by the quantum expander.

2.4 Fourier Transform in the Matrix Element Basis

Since we make use of the Fourier transform, we will need to know how it acts
on a matrix element. We find

F⊗k,k|m〉 =
1

Nk

∑

n

ωm.n|n〉

where
m.n = m1n1 + . . . + mknk −mk+1nk+1 − . . .−m2kn2k (32)

We will also find it convenient to estimate the matrix elements 〈EΠ1 |F⊗k,k|EΠ2〉.
The properties we require are proven in the following lemmas.

Lemma 5. Choose any Π1, Π2 � 2k. Let m ∈ Π1 and n ∈ Π2. Call the free
indices of m m̃i for 1 ≤ i ≤ |Π1|. Then let m.n =

∑|Π1|
i=1

∑2k
j=1 m̃iAi,jnj where

Ai,j is a |Π1| × 2k matrix with entries in {0, 1,−1} which depends on Π1 (but
not Π2). Then

〈EΠ1 |F⊗k,k|EΠ2〉 = N−k+ |Π1|−|Π2|
2

∑

n∈EΠ2

I

⎛

⎝
∑

j

Ai,jnj ≡ 0 mod N ∀ i

⎞

⎠ (33)

where I is the indicator function.

Proof. Simply perform the m sum in

〈EΠ1 |F⊗k,k|EΠ2〉 = N
−

(
k+ |Π1|+|Π2|

2

) ∑

m∈EΠ1

∑

n∈EΠ2

ωm.n (34)
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Lemma 6. 〈EΠ1 |F⊗k,k|EΠ2〉 is real and positive.

Proof. Since all entries in the sum in Eqn. 33 are nonnegative and at least one
(n = 0) is strictly positive, Lemma 5 implies the result.

Lemma 7. If Π ′
1 ≤ Π1 and Π ′

2 ≤ Π2 then
√
|EΠ1 | · |EΠ2 |〈EΠ1 |F⊗k,k|EΠ2〉 ≤

√
|EΠ′

1
| · |EΠ′

2
|〈EΠ′

1
|F⊗k,k|EΠ′

2
〉 (35)

Proof. We prove first the special case when Π ′
1 = Π1, but Π ′

2 ≤ Π2 is arbitrary.
Recall that Π ′

2 ≤ Π2 implies that EΠ2 ⊆ EΠ′
2
. Now the LHS of Eqn. 35 equals

N−k
∑

m∈EΠ1 ,n∈EΠ2

exp
(

2πi
N

m.n
)

= N |Π1|−k
∑

n∈EΠ2

I

⎛

⎝
∑

j

Ai,jnj ≡ 0 mod N ∀ i

⎞

⎠

= N |Π1|−k
∑

n∈EΠ′
2

I (n ∈ EΠ2) I

⎛

⎝
∑

j

Ai,jnj ≡ 0 mod N ∀ i

⎞

⎠

≤ N |Π1|−k
∑

n∈EΠ′
2

I

⎛

⎝
∑

j

Ai,jnj ≡ 0 mod N ∀ i

⎞

⎠

=
√
|EΠ1 | |EΠ′

2
|〈EΠ1 |F⊗k,k|EΠ′

2
〉,

as desired. To prove Eqn. 35 we repeat this argument, interchanging the roles of
Π1 and Π2 and use the fact that 〈EΠ1 |F⊗k,k|EΠ2〉 is symmetric in Π1 and Π2.

Lemma 8.

〈EΠ1 |F⊗k,k|EΠ2〉 ≤ N− 1
2 |2k−(|Π1|+|Π2|)| (36)

Proof. Here, there are two cases to consider. The simpler case is when |Π1| +
|Π2| ≤ 2k. Here we simply apply the inequality

∑

m∈EΠ1 ,n∈EΠ2

exp
(

2πi
N

m.n
)
≤ |EΠ1 | |EΠ2 | = N |Π1|+|Π2|

to Eqn. 34, and conclude that 〈EΠ1 |F⊗k,k|EΠ2〉 ≤ N
|Π1|+|Π2|

2 −k.
Next, we would like to prove that

〈EΠ1 |F⊗k,k|EΠ2 〉 ≤ Nk− |Π1|+|Π2|
2 . (37)

Here we use Lemma 7 with Π ′
1 = Π1 and Π ′

2 = {{1}, {2}, . . . , {2k}}, the maxi-
mally refined partition. Note that |EΠ′

2
| = N2k and F⊗k,k|EΠ′

2
〉 = |0〉. Thus

〈EΠ1 |F⊗k,k|EΠ2〉 ≤ Nk− |Π2|
2 〈EΠ1 |F⊗k,k|EΠ′

2
〉 = Nk− |Π2|

2 〈EΠ1 |0〉 = Nk− |Π1|+|Π2|
2 ,

establishing Eqn. 37.
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Lemma 9.
If Π1 = Π2 = P (π) then 〈EΠ1 |F⊗k,k|EΠ2〉 = 1. If, for any Π1, Π2 with |Π1|+
|Π2| = 2k, either condition isn’t met (i.e. either Π1 �= Π2 or there does not exist
π ∈ Sk such that P (π) = Π1 = Π2) then

〈EΠ1 |F⊗k,k|EΠ2 〉 ≤
2k
N

(38)

for N > k.

Proof. In Lemma 10, we introduce the Π1×Π2 matrix Ã with the property that

m.n =
|Π1|∑

i=1

|Π2|∑

j=1

m̃iÃi,j ñj (39)

for all m ∈ Π1 and n ∈ Π2 where m̃j and ñj are the free indices of m and
n. This is similar to the matrix A introduced in Lemma 5 except only the free
indices of n are considered.

For Π1 = Π2 = P (π), Lemma 10 implies that Ã = 0, or equivalently m.n = 0
for all m,n ∈ P (π). Using |Π1|+ |Π2| = 2k, 〈EΠ1 |F⊗k,k|EΠ2〉 = 1.

Otherwise we have (Π1, Π2) �∈ {(P (π), P (π)) : π ∈ Sk} with |Π1|+ |Π2| = 2k.
For all these, Lemma 10 implies that Ã is nonzero (for N > k, no entries in Ã can
be > N or < −N so Ã ≡ 0 mod N is equivalent to Ã = 0). Fix an i for which the
ith row of Ã is nonzero. We wish to count the number of (ñ1, . . . , ñ|Π2|) such that
∑

j Ãi,j ñj ≡ 0 mod N . Assume that each Ãi,j divides N and is nonnegative; if
not, we can replace Ãi,j with GCD(|Ãi,j |, N) by a suitable change of variable
for ñj .

Now choose an arbitrary j such that Ãi,j �= 0. For any values of ñ1, . . . , ñj−1,

ñj+1, . . . , ñ|Π2|, there are |Ãi,j | ≤ 2k choices of ñj such that
∑

j Ãi,j ñj ≡ 0 mod
N . Thus, there are ≤ 2kN |Π2|−1 choices of ñ such that

∑
j Ãi,j ñj ≡ 0 mod N .

Substituting this into Eqn. 33 (which we can trivially modify to apply for Ã
rather than just A), we find that

〈EΠ1 |F⊗k,k|EΠ2 〉 ≤
2k
N

N−k+ |Π1|+|Π2|
2 =

2k
N

,

thus establishing Eqn. 38.

Lemma 10. Let Ã be the matrix such that m.n =
∑|Π1|

i=1
∑|Π2|

j=1 m̃iÃi,j ñj for all
m ∈ Π1 and n ∈ Π2 where m̃j and ñj are the free indices of m and n. Then
Ã = 0 if and only if Π1 = Π2 ≥ P (π) for some π ∈ Sk.

The proof of this Lemma, as well as of Lemma 2, are omitted from this extended
abstract, and can be found in [19].

Instead, we outline the arguments behind these proofs. To prove Lemma 10,
we first show that if Π1 = Π2 ≥ P (π) for some π, then a direct calculation yields
Ã = 0. The converse is more involved, and requires looking at the intersections
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of each block from Π1 with each block from Π2, and proving that there exists
a permutation π ∈ Sk such that each {i, k + π(i)} is contained in a single such
intersection.

For Lemma 2, we would like to show that, for any unit vector |ψ〉 ∈ V0,
|〈ψ|F⊗k,k|ψ〉|2 ≤ 2(2k)4k/

√
N . Our strategy will be to calculate the matrix

elements of F⊗k,k in the |IΠ〉 and |Eπ〉 bases. While the |IΠ〉 states are or-
thonormal, we will see that the 〈EΠ1 |F⊗k,k|EΠ2〉 matrix elements are easier to
calculate. We then use Möbius functions to express |IΠ〉 in terms of |EΠ〉. The
calculations are broken into a number of cases, with a leading-order contribution
of k!, and then several other cases each contributing kO(k)/

√
N . As the k! terms

correspond to the fixed subspace VU(N), we are left with the k! + 1st largest
eigenvalue being ≤ kO(k)/

√
N .

3 Conclusions

We have shown how efficient quantum tensor product expanders can be con-
structed from efficient classical tensor product expanders. This immediately
yields an efficient construction of unitary k-designs for any k. Unfortunately
our results do not work for all dimensions; we require the dimension N to be
Ω((2k)8k). While tighter analysis of our construction could likely improve this,
our construction does not work for N < 2k. Constructions of expanders for all
dimensions remains an open problem.
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Abstract. The AND problem on t bits is a promise decision problem where
either at most one bit of the input is set to 1 (NO instance) or all t bits are set to 1
(YES instance). In this note, I will give a new proof of anΩ(1/t ) lower bound on
the information complexity of AND in the number-in-hand model of commu-
nication. This was recently established by Gronemeier, STACS 2009. The proof
exploits the information geometry of communication protocols via Hellinger
distance in a novel manner and avoids the analytic approach inherent in previ-
ous work. As previously known, this bound implies an Ω(n/t ) lower bound on
the communication complexity of multiparty disjointness and consequently a
Ω(n 1−2/k ) space lower bound on estimating the k -th frequency moment Fk .

1 Introduction

Welcome to the magical world of Hellinger distance!1 In this note, I will describe
a short proof of an Ω(1/t ) lower bound for the information complexity of the AND

function in the number-in-hand model of communication. I should mention at the
forefront that the result is not new (perhaps for the constants involved) as was shown
by Gronemeier [Gro09] recently. My focus, however, is show the power and beauty of
Hellinger distance when applied to communication protocols, and in particular, the
light that it sheds on the information geometry inherent in the structure of commu-
nication protocols. To describe this problem and its motivation, I must first take you
on a detor into the world of communication complexity and data streams.

1.1 Data Stream Space Complexity of Frequency Moments

Space. . . the Final Frontier.

Star Trek

A major influence on the foundations of massive data sets as well as a pioneer of
novel techniques has been the frequency moments problem and its variants

1 This is a metric between probability distributions μ and σ whose square is given by
1
2

∑
x

��
μ(x )−�σ(x )�2. A different viewpoint of this definition is given in Section 3.

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 562–573, 2009.
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[FM85, AMS99, Ind06, BJK+02, CCFC04, IW05]. In the k -th frequency moment prob-
lem Fk , the goal is to estimate the sum of the k -th power of the frequencies of items
in a stream, presented as a sequence of non-negative updates. This paper deals with
the case k ≥ 2. The best space upper bound for this problem is O(n 1−2/k ) up to
polylogarithmic factors [AMS99, IW05] (a better dependence on the polylogarithmic
term is in [BGKS06, MW]). But what about space lower bounds? It is here that
communication complexity enters the picture.

Communication complexity [Yao79], one of the crown jewels of complexity the-
ory, measures the necessary amount of communication in a distributed setting. It is
often the case that computation problems are too complex or the models are to fine-
grained to be amenable to analysis. Communication models judiciously abstract
away details of the original problem and perhaps even weaken some of the restric-
tions of the original model. Their power resides in their simplicity, in which one can
hope to gain traction for solving difficult problems. The complexity theorist’s life,
being hard as it is, sees some glimmer of hope in such things!

In this note, I will consider the number-in-hand multiparty communication
model. Loosely speaking (see Section 2 for formal details), the input is partitioned
amongst several players, and their goal is to compute some function of the input by
exchanging messages via a shared blackboard. The communication cost of a pro-
tocol is the maximum length of this shared communication over all inputs. In a ran-
domized protocol the players also have private access to random coins. The protocol
solves the communication problem if the answer equals the value of the function to
some desired confidence.

In order to show tight bounds for space, Alon, Matias and Szegedy [AMS99] in-
troduced a generalization of set-disjointness in the t -party communication model.
Each of the t players is given a subset of [n ]with the following promise: either the sets
are pairwise disjoint (NO instance) or they have a unique common element but are
otherwise disjoint (YES instance). They proved a communication complexity lower
bound of Ω(n/t 4), which implies a space lower bound of Ω(n 1−5/k ) for estimating
the frequency moment Fk , and thus is non-trivial only when k > 5. They left open
the problem of getting aΩ(n/t ) communication complexity lower bound on t -party
set-disjointness in order to close this gap.

1.2 Information Complexity . . .

Bar-Yossef, Jayram, Ravi Kumar and Sivakumar [BJKS04] tackled this problem in an
information complexity paradigm, hoping to prove the result via a direct sum argu-
ment. Information theoretic arguments have been used in previous work [Abl96, SS02,
BCKO93], but information complexity was given first-class status as a resource mea-
sure first by Chakrabarti, Shi, Wirth, and Yao [CSWY01] for two-party simultaneous
protocols in the context of proving direct sum theorems. Briefly speaking, informa-
tion complexity of a communication problem f characterizes how much information
about the inputs the players must reveal in a correct protocol for f . Bar-Yossef et al.
considered a powerful generalization of this measure to general communication pro-
tocols. In particular, they introduced conditional information complexity as a means
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to handle non-product distributions that are essential for proving tight lower bounds
for multiparty set-disjointness.

By proving a direct-sum theorem, they reduced the problem to giving an Ω(1/t )
information complexity bound on the multiparty AND problem: the t players each
have a single bit with the promise that either at most one bit is set to 1 (NO instance)
or all t bits are set to 1 (YES instance). Proving sub-constant lower bounds for in-
formation theoretic measures is somewhat unusual in that domain. By translating
this problem to the domain of statistical divergences, especially using Hellinger dis-
tances, they obtained a non-optimal Ω(1/t 2) lower bound for general protocols. On
the other hand, by using analytic techniques involving Rényi divergences, they ob-
tained a near-Ω(1/t ) optimal lower bound for the restricted one-way protocols. This
created a gap between the two models even though it yielded near-optimalΩ(n 1−2/k )
space bounds for one-pass Fk estimation for all k > 2.

The situation was somewhat remedied by Chakrabarti, Khot and Sun [CKS03]
who proved an Ω(1/t log t ) information complexity lower bound for AND. Recently,
Gronemeier [Gro09] closed the gap to Ω(1/t ). A common thread to both these
papers is that they expand the information theory expressions directly in terms of an-
alytic expressions (via Kullback-Liebler distance) since Rényi divergences seem to of-
fer no advantage while dealing with general protocols. By using analytic techniques
on the logarithm and associated functions, they manage to avoid the loss incurred by
Bar-Yossef et al. in taking the Hellinger distance route.

1.3 .. . to Hellinger Distance

A thing of beauty is a joy for ever:
Its loveliness increases; it will never
Pass into nothingness; but still will
keep

J. Keats

This brings me to the main thrust of this paper—proving an optimalΩ(1/t ) informa-
tion complexity lower bound for AND using Hellinger distance. An immediate con-
cern is whether Hellinger distance is too weak to yield such an optimal bound, as
perhaps has been the impression created in previous work either explicitly or implic-
itly. It is true that Hellinger distance can be arbitrarily smaller than Kullback-Liebler
distance. On the other hand, expressing the information complexity of AND as a dis-
tance measure results in the Jensen-Shannon distance. Although this measure can be
expressed using Kullback-Leibler distances, the form is quite restricted. Indeed, both
Hellinger and Jensen-Shannon distances are within small constants of each other,
so the apriori loss in transitioning to Hellinger distance is not significant. The real
weakness in the Bar-Yossef et al. approach to using Hellinger distance amounted to
the following: the expressions to be bounded involved the square of Hellinger dis-
tance and therefore, since Hellinger distance is a metric, but not its square, only a
weak form of triangle inequality could be used. Unfortunately, that loss was signifi-
cant and only yielded a sub-optimal Ω(1/t 2) bound.
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I will demonstrate in this paper that Hellinger distance exposes the rich geomet-
ric structure of communication protocols. Since Hellinger distance is just a scaled
Euclidean distance, its square is not a metric. Nevertheless, it has been studied exten-
sively in the theory of metric spaces [DL97] under the area of negative-type distances.
I will show that a simple geometric negative-type inequality suffices to overcome
the lossy triangle inequality of the previous approach, thereby yielding an optimal
bound for AND.

The inductive argument used in the paper is perhaps more intuitive because it
explicitly shows where the protocol must create distances in order for it to be a valid
communication protocol. Growing enough of these distances results in a (squared)
Hellinger distance between a YES and NO instance of AND. For a correct protocol this
must be constant, yielding the desired lower bound. As further evidence to the power
of this geometric structure, Jayram and Woodruff [JW09] have shown that estimating
the product norm �2 ◦ �0 requires communication Ω(

�
n ), and Andoni, Jayram, and

Patrascu [AJP09] have shown improved lower bounds for the communication com-
plexity of edit distance.

A central message promoted in this paper is that transcript distributions have a
natural place in the Euclidean space; taking square-roots of probabilities puts them
in the unit sphere of �2. Since pure states in a quantum system are naturally de-
scribed this way, it would be interesting to explore the applicability of the techniques
in the paper to quantum communication.

Section 2 contains the preliminaries including a review of information complexity
notions. In Section 3, I will describe the key properties of Hellinger distance includ-
ing the new ingredient needed in the proof, namely a negative-type inequality. These
ingredients are combined in Section 4 in order to prove the main result.

2 Preliminaries

Suppose there are t ≥ 2 players jointly holding an input x = (x1,x2, . . . ,xt ) ∈ � t ,
where player i has xi , for i ∈ [t ]. Their goal is to solve some communication problem
f (x1,x2, . . . ,xt ), defined on a subset of � t , by sending messages to each other. In
this paper, the standard blackboard model will be used where the messages are all
written on a shared medium. A protocol � on� t specifies the rules for the players
to write their messages on the blackboard when the inputs come from (all of) � t .
The resulting sequence of messages is called the transcript. The maximum length
of the transcript (in bits) over all inputs is the communication cost of the protocol
� . For technical reasons, it will be convenient not to require that the transcript also
contain the answer. Instead, there is some referee who outputs an answer by looking
only at the transcript and not the inputs. The protocol is allowed to be randomized in
which each player, as well as the referee, has private access to an unlimited supply of
random coins. The protocol solves the communication problem if the answer equals
f (x1,x2, . . . ,xt )with probability at least 1−δ. Throughout this paper, δwill be a small
constant and such protocols will be called as correct protocols. Note that the protocol
itself is legally defined for all inputs in � t although no restriction is placed on the
answer of the protocol outside the domain of f .
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A family of sets S1,S2, . . . ,St ⊆ [n ] is called a sunflower with kernel T if for every
i 
= j , Si ∩S j = T . (These are also known as delta-systems.) In other words, if an el-
ement belongs to any distinct pair of sets then it belongs to all of them, so in fact,
the kernel equals

⋂
i Si . The multi-party set-disjointness communication problem,

DISJt ,n , with t players on a universe of size n is a (promise) decision problem where
the input S1,S2, . . . ,St ⊆ [n ] to the players is a sunflower whose kernel is either empty
(NO instance) or a singleton (YES instance). A randomized private-coin communi-
cation protocol � that solves DISJt ,n should accept YES instances and reject NO in-
stances with error probability at most δ.

To describe DISJt ,n as a valid Boolean formula over promise instances, encode the
input of the players as bits as follows. Let x = (xi j ) denote a t ×n array of bits. The
i -th row of x is the characteristic vector of the set Si . Then,

DISJt ,n (x ) =
n∨

j=1

t∧

i=1

xi j .

Define

ANDt (u 1, u 2, . . . , u t )�
t∧

i=1

u i ,

with the promise that either at most one input bit is set to 1 (NO instance) or all input
bits are set to 1 (YES instance). Letting x j ∈ {0, 1}t denote the j -th column of x ,

DISJt ,n (x 1,x 2, . . . ,x n )�DISJt ,n (x ) =
n∨

j=1

ANDt (x j ).

This way of splitting the input highlights the fact that the set-disjointness problem is
an OR of n instances of the ANDt problem on t bits. It therefore suggests a direct-sum
argument for proving communication lower bounds for DISJt ,n .

I will now briefly review the information complexity paradigm for proving com-
munication lower bounds via direct sum arguments, as developed in [BJKS04], for
multi-party number-in-hand communication protocols. Information complexity of
a communication problem f characterizes how much information about the inputs
the players must reveal in a correct protocol for f . The underlying distribution on the
inputs to the players can be independent across the players but in many cases the
tight bounds are obtained by requiring dependent input distributions. This causes
some complications which are overcome by introducing conditional independence
on the inputs via auxiliary random variables. This is formalized below.

Notation. Random variables will be denoted by upper case Roman or Greek letters,
and the values they take by corresponding lower case letters. Probability distributions
will be denoted by lower case Greek letters. A random variable X with distribution μ is
denoted by X ∼μ. Ifμ is the uniform distribution over a set , then this is also denoted
as X ∈R  .

Definition 1. A distribution μ over� t is partitioned by η if there exists a joint prob-
ability space (X1, X2, . . . , Xt , F ) such that (X1, X2, . . . , Xt ) ∼ μ, F ∼ η, and X1, X2, . . . , Xt

are jointly independent conditioned on F i.e. P(X1, X2, . . . , Xt | F ) =∏i P(Xi | F ) �
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Definition 2 (Information Complexity). Let � be a t -party randomized private-
coin protocol on the input domain � t and let its random coins be denoted by the
random variable R . Suppose μ is a distribution over � t partitioned by η in some
joint probability space where X = (X1, X2, . . . , Xt ) ∼ μ and F ∼ η. Extend this to a
joint probability space over (X , F, R) such that (X , F ) is independent of R . Now, let
Π = Π(X , R) be the random variable denoting the transcript of the protocol, where
the randomness is both over the input distribution and the random coins of the
protocol � . The (conditional) information cost of � under (μ,η) is defined to be
I (X : Π | F ), i.e., the (Shannon) conditional mutual information between X and Π
conditioned on F .

The information complexity of a communication problem f , denoted by ICμ( f |
η), is defined to be the minimum information cost of a correct protocol for f under
(μ,η). �

Since I (X :Π |D)≤H (Π)≤ |Π|, it suffices to prove lower bounds on the information
cost of a correct protocol.

For the problem DISJt ,n =
∨

ANDt , I will first define a distribution (ν ,ζ) for ANDt .
Let (U1,U2, . . . ,Ut )∼ ν and G ∼ ζ be such that

1. G ∈R [t ]. G picks a player whose bit will vary while the rest are fixed to 0.
2. Conditioned on the event G = i , let (U1,U2, . . . ,Ut ) ∈R {0, ei }. Here, ei is the stan-

dard basis vector with a 1 in the i -th position and 0 elsewhere.

The distribution for DISJt ,n is defined by letting μ= νn and η= ζn . In other words,
if X = (X 1, X 2, . . . , X n ) is the input and F = (F 1, F 2, . . . , F n ) is the auxiliary random
variable, then independently for each j ∈ [n ], F j ∼ ζ and X j ∼ ν .

Proposition 3 (Direct Sum for Information Complexity [BJKS04])

CC(DISJt ,n )≥ ICμ(DISJt ,n |η)≥n · ICν (ANDt | ζ). �

Consequently, I will show an Ω(1/t ) lower bound on the information complexity
of AND.

3 Hellinger Distance

Notation. Let ‖�‖ denote the standard �2 norm and ‖�‖1 denote the standard �1 norm.

Let u be an input to a protocol� . Let π(u ) denote the probability distribution over
the transcripts induced by � on input u , where the randomness is over the private
coins of � . Let π(u )τ denote the probability that the transcript equals τ. Viewing
π(u ) as an element of �1, note that ‖π(u )‖1 =∑τ π(u )τ = 1.

The following switch in viewpoint is the perhaps most important notion in this
paper. Consider the element ψ(u ) ∈ �2 obtained via the square-root map π(u ) �→
ψ(u ) =
�
π(u ). This means ψ(u )τ =

�
π(u )τ for all τ. The central tenet is that ψ(u )

is an object that deserves real attention on its own right from the standpoint of infor-
mation complexity. Now, ‖ψ(u )‖= ‖π(u )‖1 = 1, and soψ(u ) ∈ �+, where �+ denotes
the unit sphere in �2 restricted to the non-negative orthant. In analogy with quantum
physics, callψ(u ) the transcript wave function of u in� .
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Definition 4 (Hellinger Distance). The Hellinger distance between ψ1,ψ2 ∈ �+ is a
scaled Euclidean distance defined as h(ψ1,ψ2)� 1�

2
‖ψ1−ψ2‖. �

Since ‖ψ1−ψ2‖2 ≤ ‖ψ1‖2 + ‖ψ2‖2 = 2, the scaling ensures that Hellinger distance is
always between 0 and 1. To emphasize the geometric nature of Hellinger distance, I
will almost exclusively use the norm notation to refer to Hellinger distance.

The following properties of Hellinger distance are well-known (see [BJKS04]):

Proposition 5 (Hellinger distance and communication protocols). Let� be a ran-
domized t -party private-coin protocol on the input domain � t . Let g be a decision
problem defined on a subset of � t . Let u , v ∈ � t be two distinct inputs whose tran-
script wave functions in� are denoted byψ(u ) andψ(v ), respectively.

1. Mutual information to Hellinger distance: Suppose U ∈R {u , v }. IfΠ denotes the
transcript random variable, then

I (U :Π)≥ 1
2
‖ψ(u )−ψ(v )‖2.

2. Soundness: If� is a correct protocol for g , and g (u ) 
= g (v ), then

1
2
‖ψ(u )−ψ(v )‖2 ≥ 1−2

�
δ.

3. Cut-and-paste: Let u ′ and v ′ denote the inputs obtained by performing some cut-
and-paste on u and v . In other words for each 1 ≤ i ≤ t , either (a) u ′i = u i and
v ′i = vi or (b) u ′i = vi and v ′i =u i . Then

‖ψ(u )−ψ(v )‖= ‖ψ(u ′)−ψ(v ′)‖.
Consequently, suppose the inputs to� are such that each player holds a single bit,
i.e., � = {0, 1}. Identify the input u ∈ � t with the subset A = {i | u i = 1} ⊆ [t ].
Similarly, identify v with B ⊆ [t ]. Then

‖ψ(A)−ψ(B )‖= ‖ψ(A ∪ B )−ψ(A ∩ B )‖. �

Property 1 in the above proposition is just a restatement of the fact that the Jensen-
Shannon distance betweenψ(u ) andψ(v ) is bounded from below by their Hellinger
distance. Property 2 follows by relating Hellinger to variational distance and then in-
voking the correctness of the protocol. Property 3 generalizes the rectangle property
of deterministic communication protocols to randomized protocols. The corollary
to this property, where each player holds a single bit, follows by letting u ′i = u i ∨ vi

and v ′i =u i ∧ vi for all i .
The next inequality is the new key ingredient that enables the tight lower bound

for ANDt via Hellinger distance:

Proposition 6. For any v0, v1, v2, . . . , vs ∈ �2,

s∑

i=1

‖v0− vi ‖2 ≥ 1

s

∑

1≤i<j≤s

‖vi − vj ‖2
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Proof. This is a special case of a general class of negative-type inequalities [DL97]
satisfied by the square of the �2-distance: for any set of real numbers b0,b1, . . . ,bs

such that
∑s

i=0 bi = 0, it holds that

∑

0≤i≤s
0≤j≤s

bi b j ‖vi − vj ‖2 ≤ 0.

The above inequality is simple to derive and I will show this below for the sake of
completeness. Setting b0 = s and b1 = b2 = · · ·= bs = −1 yields the statement of the
proposition.

Observe that:
∑

0≤i≤s
0≤j≤s

bi b j ‖vi − vj ‖2 =
∑

0≤i≤s
0≤j≤s

bi b j

�‖vi ‖2 + ‖vj ‖2 − 2〈vi , vj 〉


=
� ∑

0≤i≤s

bi ‖vi ‖2
∑

0≤j≤s

b j


+
� ∑

0≤j≤s

b j ‖vj ‖2
∑

0≤i≤s

bi



− 2
� ∑

0≤i≤s

bi vi

 ·� ∑
0≤j≤s

b j vj



= 0 + 0 − 2
�
�
�
∑

0≤i≤s

bi vi

�
�
�

2

≤ 0,

proving the inequality.

4 Information Complexity of ANDt

Beauty is the first test: there is no
permanent place in the world for
ugly mathematics.

G.H. Hardy

The following is the main technical result of this note.

Theorem 7. Let � be a t -party protocol on the input domain {0, 1}t . Identify every
subset of [t ]with its characteristic vector in {0, 1}t . Letψ(A)denote the transcript wave
function of input A ⊆ [t ] in� . Suppose A1, A2, . . . , As are a pairwise disjoint collection
of s = 2k subsets of [t ], where k ≥ 0. Set A �

⋃
i Ai . Then,

s∑

i=1

‖ψ(�)−ψ(Ai )‖2 ≥ ‖ψ(�)−ψ(A)‖2 ·
k∏

�=1

�
1− 1

2�
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Proof. By induction on k . The base case k = 0 (i.e., s = 1) follows trivially with equal-
ity. For the induction step, let k ≥ 1 so that s = 2k is even. Now,

s∑

i=1

‖ψ(�)−ψ(Ai )‖2

≥ 1

s

∑

1≤i<j≤s

‖ψ(Ai )−ψ(A j )‖2 (Proposition 6)

=
1

s

∑

1≤i<j≤s

‖ψ(�)−ψ(Ai ∪A j )‖2 (Proposition 5, cut-and-paste) (1)

Associate {(i , j ) | 1 ≤ i < j ≤ s } with the edges of the complete graph Ks . Since s is
even, Ks can be decomposed into an edge-disjoint union of s −1 perfect matchings,
�1,�2, . . . ,�s−1, each having s/2 edges. Using this, rewrite the expression within
the sum in (1) as follows:

∑

1≤i<j≤s

‖ψ(�)−ψ(Ai ∪A j )‖2 =
s−1∑

p=1

∑

{i ,j }∈�p

‖ψ(�)−ψ(Ai ∪A j )‖2 (2)

Fix a p within the sum. The sets Ai ∪ A j , for {i , j } ∈ �p , are a pairwise disjoint
collection of s/2= 2k−1 sets. By the induction hypothesis,

∑

{i ,j }∈�p

‖ψ(�)−ψ(Ai ∪A j )‖2 ≥ ‖ψ(�)−ψ(A)‖2 ·
k−1∏

�=1

�
1− 1

2�



Substitute this bound in (2) for every p , and then combine it with (1) to get:

s∑

i=1

‖ψ(�)−ψ(Ai )‖2 ≥ 1

s
(s −1) · ‖ψ(�)−ψ(A)‖2 ·

k−1∏

�=1

�
1− 1

2�



=
�

1− 1

2k

 · ‖ψ(�)−ψ(A)‖2 ·
k−1∏

�=1

�
1− 1

2�



= ‖ψ(�)−ψ(A)‖2 ·
k∏

�=1

�
1− 1

2�


,

proving the theorem.

Corollary 8. The information complexity of ANDt is Ω(1/t ).

Proof. Let U ∼ ν and G ∼ ζ. Let� be a correct protocol for ANDt whose information
cost under (ν ,ζ) equals C . IfΠ denotes the transcript, then

C = I (U :Π |G ) = 1

t

t∑

i=1

I (U :Π |G = i )
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Conditioned on G = i , U ∈R {0, ei }. Applying the Mutual-information-to-Hellinger-
distance property in Proposition 5,

C ≥ 1

t

t∑

i=1

1
2
‖ψ(0)−ψ(ei )‖2 = 1

t

t∑

i=1

1
2
‖ψ(�)−ψ({i })‖2

Suppose for the moment that t = 2k is a power of 2 with k ≥ 1. Applying Theorem 7
with s = t and Ai = {i }, for 1≤ i ≤ t , to the RHS above,

C ≥ 1

t
· � 1

2
‖ψ(�)−ψ([t ])‖2� ·

k∏

�=1

�
1− 1

2�


(3)

Since ANDt (�) 
= ANDt ([t ]), the soundness property in Proposition 5 applied to �
implies the following:

1
2
‖ψ(�)−ψ([t ])‖2 ≥ 1−2

�
δ (4)

For the product term in (3),

k∏

�=1

�
1− 1

2�

≥
∞∏

�=1

�
1− 1

2�


= 0.288788. . . 2 (5)

Substituting the bounds in (4) and (5) into (3) shows that the information cost of�
is Ω(1/t ).

For arbitrary values of t , a minor modification yields the same asymptotic bound.
Let t ′ be be the largest power of 2 which is at most t . Partition [t ] in some arbitrary
manner into a collection of t ′ sets A1, A2, . . . , At ′ of sizes 1 and 2 that are pairwise
disjoint. For each set {i , j } of size 2, apply Theorem 7 with k = 1 to bound

‖ψ(�)−ψ({i })‖2+ ‖ψ(�)−ψ({j })‖2 ≥ 1

2
‖ψ(�)−ψ({i , j })‖2.

Thus,
t∑

i=1

‖ψ(�)−ψ({i })‖2 ≥ 1

2
·

t ′∑

k=1

‖ψ(�)−ψ(Ak )‖2.

Then proceed with the same argument.

Remark. The proof shows that the constant in Ω(1/t ) is c (1− 2
�
δ) where c equals

0.288788. . . , the digital search tree constant, if t is a power of 2, and half that value
otherwise.

2 This constant is known as the digital search tree constant (see Sloane’s A048651 [Slo]). It also
has connections to random binary matrices. Euler studied this in the context of generating
functions for integer partitions, and gave methods to compute the infinite product that
converge fairly rapidly. Thanks to Laurens Gunnarsen for discussions on this topic.
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Abstract. The area of derandomization attempts to provide efficient
deterministic simulations of randomized algorithms in various algorith-
mic settings. Goldreich and Wigderson introduced a notion of “typically-
correct” deterministic simulations, which are allowed to err on few inputs.
In this paper we further the study of typically-correct derandomization
in two ways.

First, we develop a generic approach for constructing typically-correct
derandomizations based on seed-extending pseudorandom generators,
which are pseudorandom generators that reveal their seed. We use our
approach to obtain both conditional and unconditional typically-correct
derandomization results in various algorithmic settings. We show that
our technique strictly generalizes an earlier approach by Shaltiel based
on randomness extractors, and simplifies the proofs of some known re-
sults. We also demonstrate that our approach is applicable in algorith-
mic settings where earlier work did not apply. For example, we present a
typically-correct polynomial-time simulation for every language in BPP
based on a hardness assumption that is weaker than the ones used in
earlier work.

Second, we investigate whether typically-correct derandomization of
BPP implies circuit lower bounds. Extending the work of Kabanets and
Impagliazzo for the zero-error case, we establish a positive answer for
error rates in the range considered by Goldreich and Wigderson. In do-
ing so, we provide a simpler proof of the zero-error result. Our proof
scales better than the original one and does not rely on the result by Im-
pagliazzo, Kabanets, and Wigderson that NEXP having polynomial-size
circuits implies that NEXP coincides with EXP.

1 Introduction

Randomized Algorithms and Derandomization. One of the central topics in the
theory of computing deals with the power of randomness – can randomized proce-
dures be efficiently simulated by deterministic ones? In some settings exponential
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gaps have been established between randomized and deterministic complexity;
in some settings efficient derandomizations1 are known; in others the question
remains wide open. The most famous open setting is that of time-bounded com-
putations, i.e., whether BPP=P, or more modestly, whether BPP lies in de-
terministic subexponential time. A long line of research gives “hardness versus
randomness tradeoffs” for this problem (see [12] for an introduction). These are
conditional results that give derandomizations assuming a hardness assumption
(typically circuit lower bounds of some kind), where the efficiency of the deran-
domization depends on the strength of the hardness assumption. The latter is
used to construct an efficient pseudorandom generator, which is a determinis-
tic procedure G that stretches a short “seed” s into a longer “pseudorandom
string” G(s) with the property that the uniform distribution on pseudorandom
strings is computationally indistinguishable from the uniform distribution on all
strings. G allows us to derandomize a randomized procedure A(x, r) that takes
an input x and a string r of “coin tosses” as follows: We run the pseudorandom
generator on all seeds to produce all pseudorandom strings of length |r|; for each
such pseudorandom string we run A using that pseudorandom string as “coin
tosses”, and output the majority vote of the answers of A. Note that this deran-
domization procedure takes time that is exponential in the seed length of the
pseudorandom generator. For example, efficient pseudorandom generators with
logarithmic seed length imply that BPP=P, whereas subpolynomial seed length
only yields simulations of BPP in deterministic subexponential time.

Typically-Correct Derandomization. Weaker notions of derandomization have
been studied, in which the deterministic simulation is allowed to err on some
inputs. Impagliazzo and Wigderson were the first to consider derandomizations
that succeed with high probability on any efficiently samplable distribution;
related notions have subsequently been investigated in [4, 8, 17, 20]. Goldre-
ich and Wigderson [3] introduced a weaker notion in which the deterministic
simulation only needs to behave correctly on most inputs of any given length.
We refer to such simulations as “typically-correct derandomizations”. The hope
is to construct typically-correct derandomizations that are more efficient than
the best-known everywhere-correct derandomizations, or to construct them un-
der weaker assumptions than the hypotheses needed for everywhere-correct
derandomization.

Previous Work on Typically-Correct Derandomization. Goldreich and Wigder-
son [3] had the key idea to obtain typically-correct derandomizations by “extract-
ing randomness from the input”: extract r = E(x) in a deterministic way such
that B(x) = A(x,E(x)) behaves correctly on most inputs. If this approach works
(as such) and E is efficient, the resulting typically-correct derandomization B
has essentially the same complexity as the original randomized procedure A. In

1 In this paper the term “derandomization” always refers to “full derandomization”,
i.e., obtaining equivalent deterministic procedures that do not involve randomness
at all.
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principle, the approach is limited to algorithms A that use no more than |x| ran-
dom bits; by combining it with pseudorandom generators one can try to handle
algorithms that use a larger number of random bits. Goldreich and Wigderson
managed to get the approach to work unconditionally for logspace algorithms for
undirected connectivity, a problem which has been fully derandomized by now
[15]. Under a hardness assumption that is not known to imply BPP=P, namely
that there are functions that are mildly hard on average for small circuits with
access to an oracle for satisfiability, they showed that BPP has polynomial-time
typically-correct derandomizations that err on very few inputs, namely at most
a subexponential number. Their construction uses Trevisan’s extractor [19].

Zimand [24] showed unconditional typically-correct derandomizations with
polynomial overhead for sublinear-time algorithms, which can be viewed as ran-
domized decision trees that use a sublinear number of random bits. Zimand’s
approach relies on a notion of randomness extractors called “exposure-resilient
extractors” introduced in [23].

Shaltiel [16] described a generic approach to obtain typically-correct derandom-
ization results. Loosely speaking he showed how to construct a typically-correct
derandomization for any randomized procedure that uses a sublinear amount of
randomness when given an extractor with exponentially small error that extracts
randomness from distributions that are “recognizable by the procedure.” We elab-
orate on Shaltiel’s approach in Section 4. Using this approach and “off the shelf”
randomness extractors, Shaltiel managed to reproduce Zimand’s result for deci-
sion trees as well as realize unconditional typically-correct derandomizations for
2-party communication protocols and streaming algorithms.

Shaltiel also combined his approach with pseudorandom generator construc-
tions to handle procedures that require a polynomial number of random bits.
He obtained typically-correct derandomizations with a polynomially small error
rate for randomized algorithms computable by polynomial-sized constant-depth
circuits, based on the known hardness of parity for such circuits. He also derived
a conditional typically-correct derandomization result for BPP under a hardness
hypothesis that is incomparable to the Goldreich-Wigderson hypothesis (and is
also not known to imply BPP=P), namely that there are functions that are very
hard on average for small circuits without access to an oracle for satisfiability.
The resulting error rate is exponentially small. For both results Shaltiel applies
the pseudorandom generators that follow from the hardness versus randomness
tradeoffs twice: once to reduce the need for random bits to sublinear, and once
to construct the required randomness extractor with exponentially small error.
Whereas the first pseudorandom generator application can do with functions
that are mildly hard on average, the second one requires functions that are very
hard on average.

Our Approach. In this paper we develop an alternative generic approach for
constructing typically-correct derandomizations. The approach builds on “seed-
extending pseudorandom generators” rather than “extractors”. A seed-extending
pseudorandom generator is a generator G which outputs the seed as part of
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the pseudorandom string, i.e., G(s) = (s, E(s)) for some function E.2 The
well-known Nisan-Wigderson pseudorandom generator construction [14] can eas-
ily be made seed-extending. We show that whenever a seed-extending pseu-
dorandom generator passes certain statistical tests defined by the randomized
procedure A(x, r), the deterministic procedure B(x) = A(x,E(x)) forms a
typically-correct derandomization of A, where the error rate depends on the
error probability of the original randomized algorithm and on the error of the
pseudorandom generator.

Note that this approach differs from the typical use of pseudorandom gener-
ators in derandomization, where the pseudorandom generator G is run on every
seed. As the latter induces a time overhead that is exponential in the seed length,
one aims for pseudorandom generators that are computable in time exponential
in the seed length. A polynomial-time simulation is achieved only in the case
of logarithmic seed lengths. In contrast, we run G only once, namely with the
input x of the randomized algorithm as the seed. We use the pseudorandom
generator to select one “coin toss sequence” r = E(x) on which we run the
randomized algorithm. As opposed to the traditional derandomization setting,
our approach benefits from pseudorandom generators that are computable in
time less than exponential in the seed length. With a pseudorandom genera-
tor computable in time polynomial in the output length, we obtain nontrivial
polynomial-time typically-correct derandomizations even when the seed length
is just subpolynomial.

Our approach has the advantage of being more direct than the one of [16], in
the sense that it derandomizes the algorithm A in “one shot”. More importantly,
it obviates the second use of pseudorandom generators in Shaltiel’s approach and
allows us to start from the weaker assumption that there are functions which
are mildly hard on average for small circuits without access to an oracle for
satisfiability.

While our assumption is weaker than both the one in [3] and the one in [16], the
error rate of our typically-correct derandomizations is only polynomially small.
We can decrease the error rate by strengthening the hardness assumption. Under
the same hardness assumption as [16] our approach matches the exponentially
small error rate in that paper.

We can similarly relax the hardness assumption in a host of other settings.
In some cases this allows us to establish new unconditional typically-correct
derandomizations, namely for models where functions that are very hard on
average are not known but functions which are only mildly hard on average are
known unconditionally.

We also determine the precise relationship between our approach and Shaltiel’s.
We show that in the range of exponentially small error rates, “extractors for recog-
nizable distributions” are equivalent to seed-extending pseudorandom generators

2 Borrowing from the similar notion of “strong extractors” in the extractor literature,
such pseudorandom functions have been termed “strong” in earlier papers. In coding-
theoretic terms, they could also be called “systematic”. However, we find the term
“seed-extending” more informative.
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that pass the statistical tests we need. This means that all the aforementioned re-
sults of [16] can also be obtained using our new approach. Since we can also handle
situations where [16] does not apply, our approach is more generic.

Typically-Correct Derandomization and Circuit Lower Bounds. Kabanets and
Impagliazzo [9] showed that subexponential-time derandomizations of BPP im-
ply circuit lower bounds that seem beyond the scope of current techniques. We
ask whether subexponential-time typically-correct derandomizations imply such
lower bounds. A main contribution of our paper is an affirmative answer in the
case of the error rates considered by Goldreich and Wigderson. The case of higher
error rates remains open.

Our result is a strengthening of [9] from the everywhere-correct setting to
the typically-correct setting. In developing it, we also obtain a simpler proof for
the everywhere-correct setting. Our proof scales better than the one in [9], yields
the same lower bound for a smaller class, and does not rely on the result from [6]
that NEXP having polynomial-size circuits implies that NEXP coincides with
EXP.

Organization. We start Section 2 with the formal definitions of the notions
used throughout the rest of the paper, and the key lemma that shows how seed-
extending pseudorandom generators yield typically-correct derandomizations. In
Section 3 we state and discuss both the conditional and unconditional results we
obtain by applying our approach using the Nisan-Wigderson pseudorandom gen-
erator construction. In Section 4 we give a detailed comparison of our approach
with Shaltiel’s extractor-based approach. In Section 5 we describe our results on
circuit lower bounds that follow from typically-correct and everywhere-correct
derandomization of BPP. Due to space limitations all formal proofs are deferred
to the full version of this paper.

2 Typically-Correct Derandomization and the PRG
Approach

Notation and Concepts. We use the following terminology throughout the pa-
per. We view a randomized algorithm as defined by a deterministic algorithm
A(x, r) where x denotes the input and r the string of “coin tosses”. We typically
restrict our attention to one input length n, in which case A becomes a function
A : {0, 1}n × {0, 1}m → {0, 1} where m represents the number of random bits
that A uses on inputs of length n. We say that A : {0, 1}n × {0, 1}m → {0, 1}
computes a function L : {0, 1}n → {0, 1} with error ρ if for every x ∈ {0, 1}n,
PrR←Um [A(x,R) �= L(x]] ≤ ρ, where Um denotes the uniform distribution over
{0, 1}m. We say that the randomized algorithm A computes a language L with
error ρ(·), if for every input length n, the function A computes the function L
with error ρ(n).

Given a randomized algorithm A for L, our goal is to construct a deterministic
algorithm B of complexity comparable to A that is typically correct for L. By
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the latter we mean that B and L agree on most inputs of any given length, or
equivalently, that the relative Hamming distance between B and L at any given
length is small.

Definition 1 (typically-correct behavior). Let L : {0, 1}n → {0, 1} be a
function. We say that a function B : {0, 1}n → {0, 1} is within distance δ of
L if PrX←Un [B(X) �= L(X)] ≤ δ. We say that an algorithm B computes a
language L to within δ(·) if for every input length n, the function B is within
distance δ(n) of the function L.

In general, a function G : {0, 1}n → {0, 1}	 is ε-pseudorandom for a test T :
{0, 1}	 → {0, 1} if |PrS←Un [T (G(S)) = 1] − PrR←U	

[T (R) = 1]| ≤ ε. In this
paper we are dealing with tests T (x, r) that receive two inputs, namely x of
length n and r of length m, and with corresponding pseudorandom functions G
of the form G(x) = (x,E(x)), where x is of length n and E(x) of length m. We
call such functions “seed-extending”.

Definition 2 (seed-extending function). A function G : {0, 1}n

→ {0, 1}n+m is seed-extending if it is of the form G(x) = (x,E(x)) for some
function E : {0, 1}n → {0, 1}m. We refer to the function E as the extending part
of G.

Note that a seed-extending function G with extending part E is ε-pseudorandom
for a test T : {0, 1}n × {0, 1}m → {0, 1} if

| Pr
X←Un,R←Um

[T (X,R) = 1]− Pr
X←Un

[T (X,E(X)) = 1]| ≤ ε.

A seed-extending ε(·)-pseudorandom generator for a family of tests T is a deter-
ministic algorithm G such that for every input length n, G is a seed-extending
ε(n)-pseudorandom function for the tests in T corresponding to input length n.

The Seed-Extending Pseudorandom Generator Approach. Our key observation
is that good seed-extending pseudorandom generators G for certain simple tests
based on the algorithm A yield good typically-correct derandomizations of the
form B(x) = A(x,E(x)). The following lemma states the quantitative
relationship.

Lemma 1. Let A : {0, 1}n × {0, 1}m → {0, 1} and L : {0, 1}n → {0, 1} be
functions such that

Pr
X←Un,R←Um

[A(X,R) �= L(X)] ≤ ρ. (1)

Let G : {0, 1}n → {0, 1}n+m be a seed-extending function with extending part E,
and let B(x) = A(x,E(x)).

1. If G is ε-pseudorandom for tests of the form T (x, r) = A(x, r) ⊕ L(x), then
B is within distance ρ + ε of L

2. If G is ε-pseudorandom for tests of the form Tr′(x, r) = A(x, r) ⊕ A(x, r′)
where r′ ∈ {0, 1}m is an arbitrary string, then B is within distance 3ρ + ε
of L.
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Note that if A computes L with error ρ then condition (1) of the lemma is met.
The two parts of the lemma differ in the complexity of the tests and in the
error bound. The complexity of the tests plays a critical role for the existence
of pseudorandom generators. In the first item the tests use the language L as
an oracle, which may result in too high a complexity. In the second item we
reduce the complexity of the tests at the cost of introducing non-uniformity and
increasing the error bound. The increase in the error bound is often not an issue
as we can easily reduce ρ by slightly amplifying the original algorithm A before
applying the lemma.

The Nisan-Wigderson Construction. Some of the constructions of pseudoran-
dom generators in the literature are seed-extending or can be easily modified to
become seed-extending. One such example is the Nisan-Wigderson construction
[14], which builds a pseudorandom generator for a given class of randomized
algorithms out of a language that is hard on average for a related class of algo-
rithms. We use the following terminology for the latter.

Definition 3 (hardness on average). A language L is δ(·)-hard for a class
of algorithms A if no A ∈ A is within distance δ(n) of L for almost all input
lengths n.

We use the Nisan-Wigderson construction for all our results in the next section.
Some of the results are conditioned on reasonablebut unprovenhypotheses regard-
ing the existence of languages that are hard on average. Others are unconditional
because languages of the required hardness have been proven to exist.

3 Applications

3.1 Conditional Results

The first setting we consider is that of BPP. We use a modest hardness assump-
tion to show that any language in BPP has a polynomial-time deterministic
algorithm that errs on a polynomially small fraction of the inputs.

Theorem 1. Let L be a language in BPP that is computed by a randomized
bounded-error polynomial-time algorithm A. For any positive constant c, there
is a positive constant d depending on c and the running time of A such that the
following holds. If there is a language H in P that is 1

nc -hard for circuits of size
nd, then there is a deterministic polynomial-time algorithm B that computes L
to within 1

nc .

Comparison to Previous Work. We now compare Theorem 1 to previous con-
ditional derandomization results for BPP. We first consider everywhere-correct
results. Plugging our assumption into the hardness versus randomness tradeoffs
of [14] gives the incomparable result that BPP is in deterministic subexponential
time, i.e., in time 2nε

for every positive constant ε. We remark that to obtain
this result one can relax the assumption and allow the language H to be in
deterministic linear-exponential time, i.e., E=DTIME(2O(n)).
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We next compare Theorem 1 to previous conditional results on typically-
correct derandomization of BPP [3, 16]. The assumption that we use is weaker
than the assumptions that are used by previous work. More specifically, [3] needs
H to be 1

nc -hard for circuits of size nd with a SAT oracle, and [16] requires that
H be (1

2 −
1

2nΩ(1) )-hard for circuits of size nd.
Thus, the two aforementioned results do not yield any typically-correct deran-

domization when starting from the modest assumption that we use. Under their
respective stronger assumptions, the other approaches do yield typically-correct
algorithms that are closer to L. We remark that we can match the distance in
[16] if we are allowed to assume the same hardness hypothesis.

Extensions to Other Algorithmic Settings. [11] observed that the proof of the
Nisan-Wigderson generator [14] relativizes and used this fact to give hardness ver-
sus randomness tradeoff results in a number of different algorithmic settings. This
approach also works within our typically-correct derandomization framework.

Some consequences are listed in the table below for the classes AM, BP.⊕P and
BP.L, where the latter refers to randomized algorithms that run in logarithmic
space and are allowed two-way access to their random coins [13]. We could also
state similar results for the other settings considered by [11]. For each of these
complexity classes we need to assume a different hardness assumption, where
the difference lies in the type of circuits and in the uniform class to consider.
We remark that for BP.⊕P we only need a worst-case hardness assumption as
in this setting worst-case hardness is known to imply average-case hardness [2].

Setting Hardness Assumption Conclusion
AM=BP.NP NP ∩ coNP 1

nc -hard for SIZESAT(nd) AM within 1
nc of NP

BP.⊕P ⊕P � SIZE⊕SAT(nd) BP.⊕P within 1
nc of ⊕P

BP.L L 1
nc -hard for BP-SIZE(nd) BP.L within 1

nc of L

In the table, SIZE(s) refers to Boolean circuits of size s, SIZEO(·) refers to
Boolean circuits that have access to oracle gates for the language O, and BP-
SIZE(s) refers to branching programs of size s. A class of languages is δ(·)-hard
for A if it contains a language that is δ(·)-hard for A.

3.2 Unconditional Results

Constant Depth Circuits. Our techniques imply typically-correct derandomiza-
tion results for randomized constant-depth polynomial-size circuits. This result
uses the fact that the parity function is (1

2−
1

2nΩ(1) )-hard on average for constant-
depth circuits [5] and gives an alternative and simpler proof of a result of [16]
in this setting.

Constant Depth Circuits with Few Symmetric Gates. In contrast to the approach
of [16], our techniques also yield results in settings where the best-known lower
bounds only yield moderate hardness on average. One such model is that of
constant-depth circuits that are allowed a small number of arbitrary symmetric
gates, i.e., gates that compute functions which only depend on the Hamming
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weight of the input, such as parity and majority. In this setting Viola [21]
constructed a function that is (1

2 −
1

nΩ(log n) )-hard on average. Via the Nisan-
Wigderson construction, this in turn translates into a pseudorandom generator
with stretch that is quasi-polynomial and error that is polynomially small in the
output length, resulting in an error rate that is only quasipolynomially small.
Thus, the approach of [16] does not apply, but ours can exploit these weak
pseudorandom generators and gives the following result for both log-space and
polynomial-time uniformity.

Theorem 2. Let L be a language and A a uniform randomized bounded-error
circuit of constant depth and polynomial size that uses o(log2 n) symmetric gates
such that A computes L with error at most ρ. Then there is a uniform determin-
istic circuit B of constant depth and polynomial size that uses exactly the same
symmetric gates as A in addition to a polynomial number of parity gates such
that B computes L to within 3ρ + 1

nΩ(log n) .

Multi-Party Communication Complexity. [16] proves a typically-correct deran-
domization result for two-party communication protocols. The proof of [16] is
tailored to the two-party case and does not extend to the general case of k-
party communication in which the players have the inputs on their foreheads
[1]. Using our approach we can handle k > 2 and show that every uniform ran-
domized k-party communication protocol has a uniform deterministic k-party
communication protocol of comparable communication complexity that is typ-
ically correct. The following statement holds for both log-space and poly-time
uniformity, where we call a communication protocol uniform if whenever a player
sends a message, that message can be efficiently computed as a function of the
player’s view.

Theorem 3. Let L be a language and A a uniform randomized communication
protocol that computes L with error at most ρ and uses k players, q bits of
communication, and m bits of public randomness, with k, q, m, and log(1/ε)
functions computable within the uniformity bounds. Then there is a uniform
deterministic communication protocol B that computes L to within 3ρ + ε and
uses k players and O(2k ·m · (q + log(m/ε))) bits of communication.

For k = 2, Theorem 3 yields a weaker result than that of [16] – which gives
a deterministic protocol with communication complexity O(q + m) rather than
O(q ·m) – although we can also obtain the stronger result using our approach,
as explained in the next section.

4 Comparison with the Extractor-Based Approach

We have seen several settings in which seed-extending pseudorandom generators
allow us to prove typically-correct derandomization results that do not follow from
the extractor-based approach of [16]. We now show that the approach of [16] is es-
sentially equivalent to having seed-extending pseudorandomgeneratorswith expo-
nentially small error. This reaffirms our claim that our approach is more general
since we additionally obtain meaningful results using pseudorandom generators
with larger error.
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Overview of the Extractor-Based Approach. [16] uses a notion of “extractors for
recognizable distributions” explained below. For every function f : {0, 1}n →
{0, 1} one can associate the distribution Uf that is recognized by f , which is the
uniform distribution over f−1(1) = {x : f(x) = 1}. A function E : {0, 1}n →
{0, 1}m is a (k, ε)-extractor for distributions recognizable by some collection of
functions f : {0, 1}n → {0, 1}, if for every such function f with |f−1(1)| ≥
2k, the distribution E(Uf ) has statistical distance at most ε from the uniform
distribution on m bit strings.

[16] shows the following general approach towards typically-correct deran-
domization. Let A : {0, 1}n × {0, 1}m → {0, 1} be a randomized algorithm that
computes some function L with error ρ. Let Δ = 100m and let E be an
(n − Δ, 2−Δ)-extractor for distributions recognizable by functions of the form
fr1,r2(x) = A(x, r1)⊕A(x, r2) where r1, r2 ∈ {0, 1}m are arbitrary strings. Then
setting B(x) = A(x,E(x)) gives an algorithm that is within 3ρ + 2−10m of L.

Comparison. The above approach requires extractors with error that is exponen-
tially small in m, and breaks down completely when the error is larger. We now
observe that an extractor with exponentially small error yields a seed-extending
pseudorandom generator with exponentially small error. It follows that the ex-
tractors used in [16] can be viewed as seed-extending pseudorandom generators
with exponentially small error.

Theorem 4. Let T : {0, 1}n × {0, 1}m → {0, 1} be a function. Let Δ = m +
log(1/ε) + 1 and let E : {0, 1}n → {0, 1}m be an (n − Δ, 2−Δ)-extractor for
distributions recognizable by functions of the form fr(x) = T (x, r) where r ∈
{0, 1}m is an arbitrary string. Then, G(x) = (x,E(x)) is ε-pseudorandom for T .

We remark that in some algorithmic settings, namely decision trees and 2-party
communication protocols, the approach of [16] yields typically-correct deran-
domizations that are more efficient than the ones that follow from applying our
methodology directly based on known hardness results. Nevertheless, by The-
orem 4 the extractors used in [16] give rise to seed-extending pseudorandom
generators that yield typically-correct derandomizations matching the efficiency
of the extractor-based approach.

We also observe that seed-extending pseudorandom generators with error that
is exponentially small in m yield extractors for recognizable distributions. Thus,
the approach of [16] is essentially equivalent to the special case of seed-extending
pseudorandom generators with error that is exponentially small.

Theorem 5. Let f : {0, 1}n → {0, 1} be a function and let E : {0, 1}n →
{0, 1}m be a function such that G(x) = (x,E(x)) is seed-extending ε-
pseudorandom for test T (x, r) of the form Tz(x, r) = f(x) ∧ (r = z) where
z ∈ {0, 1}m is an arbitrary string. Assume that ε < 2−3m and let Δ =
(log(1/ε)−m)/2 > m. Then E is an (n−Δ, 2−Δ)-extractor for the distribution
recognizable by f .

Note that seed-extending pseudorandom generators with error ε < 2−m must
have m < n (as there are only 2n seeds). This is why the approach of [16] cannot
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directly handle randomized algorithms with a superlinear number of random
bits. In contrast, in Theorems 1 and 2 we are able to directly handle algorithms
with a superlinear number of random bits using pseudorandom generators with
larger error.

5 Circuit Lower Bounds

From Everywhere-Correct Derandomization. It is well-known that the exis-
tence of pseudorandom generators for polynomial-size circuits (which yields
everywhere-correct derandomization of BPP) implies that EXP does not have
polynomial-size circuits; this is the easy direction of the hardness versus ran-
domness tradeoffs. Impagliazzo et al. [6] showed that everywhere-correct deran-
domization of promise-BPP into NSUBEXP implies that NEXP does not have
polynomial-size circuits. Building on [6], Kabanets and Impagliazzo [9] showed
that everywhere-correct derandomization of BPP into NSUBEXP implies that
NEXP does not have Boolean circuits of polynomial size or that the permanent
over Z does not have arithmetic circuits of polynomial size. As a byproduct of
our investigations, we obtain a simpler proof of the latter result.

We use the following terminology for the statements of our lower bound re-
sults. We consider arithmetic circuits with internal nodes representing addition,
subtraction, and multiplication, and leaves representing variables and the con-
stants 0 and 1. ACZ denotes the language of all arithmetic circuits that compute
the zero polynomial over Z. Perm denotes the permanent of matrices over Z, and
0-1-Perm its restriction to matrices with all entries in {0, 1}. We measure the
size of circuits by the string length of their description, and assume that the de-
scription mechanism is such that the description of a circuit of size s can easily
be padded into the description of an equivalent circuit of size s′ for any s′ > s.

Our approach yields the following general statement regarding everywhere-
correct derandomization of the specific BPP-language ACZ.

Theorem 6. Let a(n), s(n), and t(n) be functions such that a(n) and s(n) are
constructible, a(n) and t(n) are monotone, and s(n) ≥ n. The following holds
as long as for every constant c and sufficiently large n,

t ((s(n))c · a((s(n)c))) ≤ 2n.

If ACZ ∈ NTIME(t(n)) then (i) NTIME(2n) ∩ coNTIME(2n) does not have
Boolean circuits of size s(n), or (ii) Perm does not have arithmetic circuits of
size a(n).

We point out that part (i) states a lower bound for NEXP ∩ coNEXP rather than
just for NEXP, and Theorem 6 does so for the entire range of the parameters; the
proof in [9] only gives such a lower bound in the case where all the parameters are
polynomially bounded. More importantly, due to its dependence on the result
from [6] that NEXP having polynomial-size circuits implies that NEXP coincides
with EXP, the proof in [9] only works when s(n) is polynomially bounded;
our proof gives nontrivial results for s(n) ranging between linear and linear-
exponential.
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From Typically-Correct Derandomization. We initiate the study of whether
typically-correct derandomization of BPP implies circuit lower bounds. We
show that it does in the case of typically-correct derandomizations that run
in NSUBEXP and are of the quality considered by Goldreich and Wigderson [3].

Theorem 7. If for every positive constant ε there exists a nondeterministic
Turing machine which runs in time 2nε

and correctly decides ACZ on all but at
most 2nε

of the inputs of length n for almost every n, then (i) NEXP does not
have Boolean circuits of polynomial size, or (ii) Perm does not have arithmetic
circuits of polynomial size.

Note that Theorem 7 strengthens the main result of [9], which establishes the the-
orem in the special case where the nondeterministic machines decide ACZ cor-
rectly on all inputs. We start with a proof sketch of this weaker result using our
new approach, and then show how to adapt it to the setting of typically-correct
derandomization with error rates of the order considered in [3].

The proof consists of two parts. We first show that P0-1-Perm[1] does not have
circuits of fixed polynomial size, where P0-1-Perm[1] denotes the class of languages
that can be decided in polynomial-time with one query to an oracle for 0-1-Perm.
This follows because PH does not have circuits of fixed polynomial size [10], PH
is contained in P#P[1] [18], and 0-1-Perm is complete for #P under reductions
that make a single query [22].

In the second step we assume that

(α) ACZ has derandomizations Nε of the form described in the statement of
Theorem 7 but without any errors, and

(β) Perm has polynomial-size arithmetic circuits,

and show that these hypotheses imply that P0-1-Perm[1] is contained in
NSUBEXP. The crux is the following single-valued nondeterministic algorithm
to compute the permanent of a given 0-1-matrix M over Z.

1. Guess a polynomial-sized candidate arithmetic circuit C for Perm on matri-
ces of the same dimension as M .

2. Verify the correctness of C. Halt and reject if the test fails.
3. Use the circuit C to determine the permanent of M in deterministic poly-

nomial time.

The circuit in step 1 exists by virtue of hypothesis (β). By the downward self-
reducibility of Perm, the test in step 2 just has to check an arithmetic circuit
identity based on C, which can be verified in nondeterministic subexponential
time by virtue of (α).

All together, the hypotheses (α) and (β) imply that NSUBEXP does not have
circuits of fixed polynomial size, and therefore neither does NE. Since NE has a
complete language under linear-time reductions, the latter implies that NEXP
does not have polynomial-size circuits.

Now suppose that our nondeterministic algorithms Nε for ACZ can err on a
small number of inputs of any given length . The test in step 2 above may no
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longer be sound nor complete. We can make the test sound if we are given the
number fp(, ε) of false positives of length , i.e., the number of inputs of length
 that are accepted by Nε but do not belong to ACZ. This is because we can
guess the list of those fp(, ε) inputs of length , verify that they are accepted
by Nε but do not compute the zero polynomial, and then check that the given
input of length  does not appear on the list. We can make the test complete by
increasing  a bit and exploiting the paddability of ACZ. Since the number of
errors of Nε is relatively small, for any correct circuit C there has to be a pad that
Nε accepts. Our test can guess such a pad and check it. If Nε makes no more than
2	ε

errors at length , we obtain simulations of P0-1-Perm[1] in NSUBEXP with
subpolynomial advice. We conclude that the latter class does not have circuits
of fixed polynomial size, which implies that NSUBEXP doesn’t, from which we
conclude as before that NEXP does not have circuits of polynomial size. This
ends our proof sketch of Theorem 7.

Extensions. We observe a few variations of Theorems 6 and 7. First, the the-
orems also hold when we simultaneously replace ACZ by AFZ (the restriction
of ACZ to arithmetic formulas), and “arithmetic circuits” by “arithmetic for-
mulas”. Second, we can play with the underlying i.o. and a.e. quantifiers. For
example, in the case of Theorem 7 it suffices for the nondeterministic machines
Nε to correctly decide ACZ on all but at most 2nε

of the inputs of length n for
infinitely many n. Related to the latter variation, we point out that by [7] EXP
differs from BPP iff all of BPP has deterministic typically-correct derandomiza-
tions that run in subexponential time and err on no more than a polynomial
fraction of the inputs of length n for infinitely many n. Thus, extending this
i.o.-version of Theorem 7 to the setting with polynomial error rates would show
that EXP �=BPP implies circuit lower bounds.
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Abstract. In 1990, E. Baum gave an elegant polynomial-time algorithm
for learning the intersection of two origin-centered halfspaces with respect
to any symmetric distribution (i.e., any D such that D(E) = D(−E)) [3].
Here we prove that his algorithm also succeeds with respect to any mean
zero distribution D with a log-concave density (a broad class of distribu-
tions that need not be symmetric). As far as we are aware, prior to this
work, it was not known how to efficiently learn any class of intersections
of halfspaces with respect to log-concave distributions.

The key to our proof is a “Brunn-Minkowski” inequality for log-
concave densities that may be of independent interest.

1 Introduction

A function f : Rn → R is called a linear threshold function or halfspace if
f(x) = sgn(w · x) for some vector w ∈ Rn. Algorithms for learning halfspaces
from labeled examples are some of the most important tools in machine learning.

While there exist several efficient algorithms for learning halfspaces in a va-
riety of settings, the natural generalization of the problem — learning the in-
tersection of two or more halfspaces (e.g., the concept class of functions of the
form h = f ∧ g where f and g are halfspaces) — has remained one of the great
challenges in computational learning theory.

In fact, there are no nontrivial algorithms known for the problem of PAC
learning the intersection of just two halfspaces with respect to an arbitrary dis-
tribution. As such, several researchers have made progress on restricted versions
of the problem. Baum provided a simple and elegant algorithm for learning
the intersection of two origin-centered halfspaces with respect to any symmetric
distribution on Rn [3]. Blum and Kannan [4] and Vempala [16] designed
polynomial-time algorithms for learning the intersection of any constant number
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of halfspaces with respect to the uniform distribution on the unit sphere in Rn.
Arriaga and Vempala [2] and Klivans and Servedio [13] designed algorithms for
learning a constant number of halfspaces given an assumption that the support
of the positive and negative regions in feature space are separated by a margin.
The best bounds grow with the margin γ like (1/γ)O(log(1/γ)).

1.1 Log-Concave Densities

In this paper, we significantly expand the classes of distributions for which we can
learn intersections of two halfspaces: we prove that Baum’s algorithm succeeds
with respect to any mean zero, log-concave probability distribution. We hope
that this is a first step towards finding efficient algorithms that can handle
intersections of many more halfspaces with respect to a broad class of probability
distributions.

A distribution D is log-concave if it has a density f such that log f(·) is a
concave function. Log-concave distributions are a powerful class that capture a
range of interesting scenarios: it is known, for example, that the uniform distri-
bution over any convex set is log-concave (if the convex set is centered at the
origin, then the corresponding density has mean zero). Hence, Vempala’s result
mentioned above works for a very special case of log-concave distributions (it
is not clear whether his algorithm works for a more general class of distribu-
tions). Additionally, interest in log-concave densities among machine learning
researchers has been growing of late [1, 7, 9, 10, 14].

There has also been some recent work on learning intersections of halfspaces
with respect to the Gaussian distribution on Rn, another special case of a log-
concave density. Klivans et al. have shown how to learn (even in the agnostic
setting) the intersection of a constant number of halfspaces to any constant error
parameter in polynomial-time with respect to any Gaussian distribution on Rn

[12]. Again, it is unclear how to extend their result to log-concave distributions.

1.2 Our Approach: Re-analyzing Baum’s Algorithm

In this paper, we prove that Baum’s algorithm from 1990 succeeds when the un-
derlying probability distribution is not necessarily symmetric, but is log-concave.

Baum’s algorithm works roughly as follows. Suppose the unknown target con-
cept C is the intersection of the halfspace Hu defined by u · x ≥ 0 and the half-
space Hv defined by v · x ≥ 0. Note that if x ∈ C then (u · x)(v · x) ≥ 0, so that

∑

ij

uivjxixj ≥ 0. (1)

If we replace the original features x1, . . . , xn with all products xixj of pairs of
features, this becomes a linear inequality. The trouble is that (u ·x)(v ·x) is also
positive if x ∈ −C, i.e., both u · x ≤ 0 and v · x ≤ 0. The idea behind Baum’s
algorithm is to eliminate all the negative examples in −C by identifying a region
N in the complement of C (the “negative” region) that, with high probability,
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Fig. 1. Baum’s algorithm for learning intersections of two halfspaces. (a) The input
data, which is labeled using an intersection of two halfspaces. (b) The first step is to
find a halfspace containing all the positive examples, and thus, with high probability,
almost none of the reflection of the target concept through the origin. (c) The next
step is to find a quadratic threshold function consistent with the remaining examples.
(d) Finally, Baum’s algorithm outputs the intersection of the halfspace found in step
b and the classifier found in step c.

includes almost all of −C. Then, Baum finds a halfspace in an expanded feature
space that is consistent with rest of the examples. (See Figure 1).

To compute N , Baum finds a halfspace H ′ containing a large set of positive
examples in C, and then sets N = −H ′. Here is where he uses the assumption
that the distribution is symmetric: he reasons that if H ′ contains a lot of positive
examples, then H ′ contains most of the measure of C, and, since the distribution
is symmetric, −H ′ contains most of the measure of −C. Then, if he draws more
examples and excludes those in −H ′, he is unlikely to obtain any examples in
−C, and for each example x that remains, (1) will hold only if and only if x ∈ C.
The output hypothesis classifies an example falling in N negatively, and uses the
halfspace in the expanded feature space to classify the remaining examples.

We extend Baum’s analysis by showing that, if the distribution is centered and
log-concave, then the probability of the region in −C that fails to be excluded by
−H ′ is not much larger than the probability of that part of C that is not covered
by H ′. Thus, if H ′ is trained with somewhat more examples, the algorithm can
still ensure that −H ′ fails to cover a small part of −C.

Thus, we arrive at the following natural problem from convex geometry: given
a cone K whose apex is at the origin in Rn, how does Pr(K) relate to Pr(−K)
for distributions whose density is log-concave? Were the distribution uniform
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over a convex set centered at the origin, we could use the Brunn-Minkowski
theory to argue that Pr(K) is always within a factor of n times Pr(−K) (see the
discussion after the proof of Lemma 6). Instead, we are working with a mean
zero log-concave distribution, and we do not know of an analog of the Brunn-
Minkowski inequality for log-concave densities. Instead, we make use of the fact
that the cones we are interested in are very simple and can be described by the
intersection of just three halfspaces, and show that Pr(K) is within a constant
factor of Pr(−K). Proving this makes use of tools for analyzing log-concave
densities provided by Lovász and Vempala [14].

2 Preliminaries

2.1 VC Theory and Sample Complexity

We shall assume the reader is familiar with basic notions in computational learn-
ing theory such as Valiant’s PAC model of learning and VC-dimension (see
Kearns & Vazirani for an in-depth treatment [11]).

Theorem 1 ([6, 15]). Let C be a class of concepts from the set X to {−1, 1}
whose VC dimension is d. Let c ∈ C, and suppose

M(ε, δ, d) = O

(
d

ε
log

1
ε

+
1
ε

log
1
δ

)

examples x1, . . . , xM are drawn according to any probability distribution D over
X. Then, with probability at least 1− δ, any hypothesis h ∈ C that is consistent
with c on x1, . . . , xM has error at most ε w.r.t. D.

Lemma 1. The class of origin-centered halfspaces over Rn has VC dimension n.

Lemma 2. Let C be a class of concepts from the set X to {−1, 1}. Let X ′ be a
subset of X, and let C′ be the class of concepts in C restricted to X ′; in other
words, let

C′ :=
{
c|X′

∣
∣ c ∈ C

}
.

Then, the VC dimension of C′ is at most the VC dimension of C.

2.2 Log-Concave Densities

Definition 1 (isotropic, log-concave). A probability density function f over
Rn is log-concave if log f(·) is concave. It is isotropic if the covariance matrix of
the associated probability distribution is the identity.

We will use a number of facts that were either stated by Lovász and Vempala,
or are easy consequences of their analysis.

Lemma 3 ([14]). Any halfspace containing the origin has probability at least
1/e under a log-concave distribution with mean zero.
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Lemma 4 ([14]). Suppose f is an isotropic, log-concave probability density
function over Rn. Then,

(a) f(0) ≥ 2−7n.
(b) f(0) ≤ n(20n)n/2.
(c) f(x) ≥ 2−7n2−9n‖x‖ whenever 0 ≤ ‖x‖ ≤ 1/9.
(d) f(x) ≤ 28nnn/2 for every x ∈ Rn.
(e) For every line  through the origin,

∫
	
f ≤ (n− 1)

(
20(n− 1)

)(n−1)/2.

Proof. Parts a-d are immediate consequences of Theorem 5.14 of [14].
The proof of Part e is like the proof of an analogous lower bound in [14].

Change the basis of Rn so that  is the xn-axis, and let h be the marginal over
the first n− 1 variables. Then, by definition,

h(x1, . . . , xn−1) =
∫

	

f(x1, . . . , xn−1, t) dt,

so that h(0) =
∫

	
f . Applying the inequality of Part b gives Part e. �

3 Baum’s Algorithm

Let Hu and Hv be the two origin-centered halfspaces whose intersection we are
trying to learn. Baum’s algorithm for learning Hu ∩Hv is as follows:

1. First, define

m1 := M(ε/2, δ/4, n2),

m2 := M
(
max{δ/(4eκm1), ε/2}, δ/4, n

)
, and

m3 := max{2m2/ε, (2/ε2) log(4/δ)},

where κ is the constant that appears in Lemmas 6 and 7 below.
2. Draw m3 examples. Let r denote the number of positive examples observed.

If r < m2, then output the hypothesis that labels every point as negative.
Otherwise, continue to the next step.

3. Use linear programming to find an origin-centered halfspace H ′ that contains
all r positive examples.

4. Draw examples until we find a set S of m1 examples in H ′. (Discard examples
in −H ′.) Then, use linear programming to find a weight vector w ∈ Rn×n

such that the hypothesis hxor : Rn → {−1, 1} given by

hxor(x) := sgn

(
n∑

i=1

n∑

j=1

wi,jxixj

)

is consistent with all examples in S.
5. Output the hypothesis h : Rn → {−1, 1} given by

h(x) :=

{
hxor(x) if x ∈ H ′,

−1 otherwise.
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Outline of proof. In Theorem 2, we prove that Baum’s algorithm learns Hu∩Hv

in the PAC model, when the distribution on Rn is log-concave and has mean zero.
Here we give an informal explanation of the proof. In step 3, the algorithm finds
a halfspace H ′ that contains all but a small fraction of the positive examples. In
other words, Pr

(
Hu∩Hv∩(−H ′)

)
is small. This implies that points in−H ′ have a

small chance of being positive, so we can just classify them as negative. To classify
points in H ′, the algorithm learns a hypothesis hxor in step 4. We must show
that hxor is a good hypothesis for points in H ′. Under a log-concave distribution
with mean zero, for any intersection of three halfspaces, its probability mass is
at most a constant times the probability of its reflection about the origin; this
is proved in Lemma 7. In particular,

Pr
(
(−Hu) ∩ (−Hv) ∩H ′) ≤ κPr

(
Hu ∩Hv ∩ (−H ′)

)
(2)

for some constant κ > 0. Therefore, since Pr
(
Hu ∩Hv ∩ (−H ′)

)
is small, we can

conclude that Pr
(
(−Hu) ∩ (−Hv) ∩ H ′) is also small. This implies that, with

high probability, points in H ′ will not lie in (−Hu)∩ (−Hv); thus, they must lie
in Hu ∩Hv, Hu ∩ (−Hv), or (−Hu)∩Hv. Such points are classified according to
the symmetric difference Hu"Hv restricted to H ′. (Strictly speaking, the points
are classified according to the negation of the concept Hu"Hv restricted to H ′;
that is, we need to invert the labels so that positive examples are classified as
negative and negative examples are classified as positive.) By Lemmas 1 and 2,
together with the fact that hxor can be interpreted as a halfspace over Rn2

, the
class of such concepts has VC dimension at most n2. Hence, we can use the VC
Theorem to conclude that the hypothesis hxor has low error on points in H ′.

Now, we describe the strategy for proving (2). In Lemma 7, we prove that
Pr(−R) ≤ κPr(R), where R is the intersection of any three origin-centered
halfspaces. This inequality holds when the probability distribution is log-concave
and has mean zero. First, we prove in Lemma 6 that the inequality holds for the
special case when the log-concave distribution not only has mean zero, but is
also isotropic. Then, we use Lemma 6 to prove Lemma 7. We consider Lemma 7
to be a Brunn-Minkowski-type inequality for log-concave distributions (see the
discussion after the proof of Lemma 6).

To prove Lemma 6, we will exploit the fact that, if R is defined by an intersec-
tion of three halfspaces, the probability of R is the same as the probability of R
with respect to the marginal distribution over examples projected onto the sub-
space of Rn spanned by the normal vectors of the halfspaces bounding R — this
is true, roughly speaking, because the dot products with those normal vectors
are all that is needed to determine membership in R, and those dot products are
not affected if we project onto the subspace spanned by those normal vectors.
The same holds, of course, for −R.

Once we have projected onto a 3-dimensional subspace, we perform the anal-
ysis by proving upper and lower bounds on the probabilities of R and −R, and
showing that they are within a constant factor of one another. We analyze the
probability of R (respectively −R) by decomposing it into layers that are varying
distances r from the origin. To analyze each layer, we will use upper and lower
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bounds on the density of points at a distance r. Since the sizes (even the shapes)
of the regions at distance r are the same for R and −R, if the densities are close,
then the probabilities must be close.

Lemma 5 provides the upper bound on the density in terms of the distance
(the lower bound in Lemma 4c suffices for our purposes). We only need the
bound in the case n = 3, but we go ahead and prove a bound for all n. Kalai,
Klivans, Mansour, and Servedio prove a one-dimensional version in Lemma 6 of
[9]. We adapt their proof to the n-dimensional case.

Lemma 5. Let f : Rn → R+ be an isotropic, log-concave probability density
function. Then, f(x) ≤ β1e

−β2‖x‖ for all x ∈ Rn, where β1 := 28nnn/2e and
β2 := 2−7n

2(n−1)(20(n−1))(n−1)/2 .

Proof. We first observe that if ‖x‖ ≤ 1/β2, then β1e
−β2‖x‖ ≥ β1e

−1 = 28nnn/2.
By Lemma 4d, f(x) ≤ β1e

−β2‖x‖ if ‖x‖ ≤ 1/β2. Now, assume there exists a
point v ∈ Rn such that ‖v‖ > 1/β2 and f(v) > β1e

−β2‖v‖. We shall show
that this assumption leads to a contradiction. Let [0, v] denote the line segment
between the origin 0 and v. Every point x ∈ [0, v] can be written as a convex
combination of 0 and v as follows: x =

(
1−‖x‖/‖v‖

)
0+

(
‖x‖/‖v‖

)
v. Therefore,

the log-concavity of f implies that

f(x) ≥ f(0)1−‖x‖/‖v‖f(v)‖x‖/‖v‖.

We assumed that f(v) > β1e
−β2‖v‖. So Lemma 4a implies

f(x) >
(
2−7n

)1−‖x‖/‖v‖
β
‖x‖/‖v‖
1 e−β2‖x‖.

Because 2−7n ≤ 1 and 1− ‖x‖/‖v‖ ≤ 1, we know that
(
2−7n

)1−‖x‖/‖v‖ ≥ 2−7n.
Because β1 ≥ 1, we know that β

‖x‖/‖v‖
1 ≥ 1. We can therefore conclude that

f(x) > 2−7ne−β2‖x‖. Integrating over the line  through 0 and v, we get
∫

	

f ≥
∫

[0,v]
f >

∫ ‖v‖

0
2−7ne−β2r dr =

2−7n

β2

(
1− e−β2‖v‖

)
.

We assumed that ‖v‖ > 1/β2, so 1− e−β2‖v‖ > 1− e−1. Thus,
∫

	

f >
2−7n

β2

(
1− e−1) = 2

(
1− e−1)(n− 1)

(
20(n− 1)

)(n−1)/2
.

Since 2
(
1 − e−1

)
> 1, we conclude that

∫
	
f > (n − 1)

(
20(n − 1)

)(n−1)/2, but
this contradicts Lemma 4e. �

Now we are ready for Lemma 6, which handles the isotropic case.

Lemma 6. Let R be the intersection of three origin-centered halfspaces in Rn.
Assume that the points in Rn are distributed according to an isotropic, log-
concave probability distribution. Then, Pr(−R) ≤ κPr(R) for some constant
κ > 0.
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Proof. Let u1, u2, and u3 be normals to the hyperplanes that bound the region
R. Then,

R = {x ∈ Rn | u1 · x ≥ 0 and u2 · x ≥ 0 and u3 · x ≥ 0}.

Let U be the linear span of u1, u2, and u3. Choose an orthonormal basis
(e1, e2, e3) for U and extend it to an orthonormal basis (e1, e2, e3, . . . , en) for
all of Rn. Write the components of the vectors x, u1, u2, and u3 in terms of this
basis:

x = (x1, x2, x3, x4, . . . , xn),
u1 = (u1,1, u1,2, u1,3, 0, . . . , 0),
u2 = (u2,1, u2,2, u2,3, 0, . . . , 0),
u3 = (u3,1, u3,2, u3,3, 0, . . . , 0).

Let projU (x) denote the projection ofx ontoU ; that is, let projU (x) := (x1, x2, x3).
Likewise, let projU (R) denote the projection of R onto U ; that is, let projU (R) :=
{projU (x) | x ∈ R}. Observe that

x ∈ R ⇔ uj,1x1 + uj,2x2 + uj,3x3 ≥ 0 for all j ∈ {1, 2, 3}
⇔ projU (x) ∈ projU (R). (3)

Let f denote the probability density function of the isotropic, log-concave prob-
ability distribution on Rn. Let g be the marginal probability density function
with respect to (x1, x2, x3); that is, define

g(x1, x2, x3) :=
∫
· · ·

∫

Rn−3

f(x1, x2, x3, x4, . . . , xn) dx4 · · ·dxn.

Then, it follows from (3) that

Pr(R) =
∫
· · ·

∫

R

f(x1, x2, x3, x4, . . . , xn) dx1 · · · dxn

=
∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.

Note that g is isotropic and log-concave, because the marginals of an isotropic,
log-concave probability density function are isotropic and log-concave (see [14,
Theorem 5.1, Lemma 5.2]). Thus, we can use Lemma 4c and Lemma 5 to bound g.
The bounds don’t depend on the dimension n, because g is a probability density
function over R3. For brevity of notation, let y := (x1, x2, x3). By Lemma 4c,
there exist constants κ1 and κ2 such that

g(y) ≥ κ1e
−κ2‖y‖ for ‖y‖ ≤ 1/9. (4)
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And by Lemma 5, there exist constants κ3 and κ4 such that

g(y) ≤ κ3e
−κ4‖y‖ for all y ∈ R3. (5)

Let R′ := projU (R)∩B(0, 1/9), where B(0, 1/9) denotes the origin-centered ball
of radius 1/9 in R3. Use (4) and (5) to derive the following lower and upper
bounds:

∫∫∫

R′

κ1e
−κ2‖y‖ dy1 dy2 dy3 ≤

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3

≤
∫∫∫

projU (R)

κ3e
−κ4‖y‖ dy1 dy2 dy3. (6)

Recall that
Pr(R) =

∫∫∫

projU (R)

g(x1, x2, x3) dx1 dx2 dx3.

Now, we transform the integrals in the lower and upper bounds in (6) to spher-
ical coordinates. The transformation to spherical coordinates is given by r :=√

y2
1 + y2

2 + y2
3 , ϕ := arctan

(
y2
y1

)
, ϑ := arccos

(
y3√

y2
1+y2

2+y2
3

)
. The determinant of

the Jacobian of the above transformation is known to be r2 sinϑ [5]. Thus (see
[5]), inequality (6) becomes

∫∫∫

R′

κ1r
2e−κ2r sinϑdr dϕ dϑ ≤ Pr(R) ≤

∫∫∫

projU (R)

κ3r
2e−κ4r sinϑdr dϕdϑ.

Let A denote the surface area of the intersection of projU (R) with the unit sphere
S2; that is, let

A :=
∫∫

projU (R)∩S2
sinϑdϕdϑ.

Then, it follows that

A

∫ 1/9

0
κ1r

2e−κ2r dr ≤ Pr(R) ≤ A

∫ ∞

0
κ3r

2e−κ4rdr.

If we let

κ5 :=
∫ 1/9

0
κ1r

2e−κ2r dr and κ6 :=
∫ ∞

0
κ3r

2e−κ4r dr,

then κ5A ≤ Pr(R) ≤ κ6A. By symmetry, κ5A ≤ Pr(−R) ≤ κ6A. Therefore, it
follows that Pr(−R) ≤ (κ6/κ5) Pr(R). �
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If the distribution were uniform over a convex set K whose centroid is at the ori-
gin, then the proof of Lemma 6 could be modified to show that the probabilities
of R and −R are within a factor of n without requiring that R is the intersection
of three halfspaces; we would only need that R is a cone (closed under positive
rescaling). This could be done by observing that the probability of R is propor-
tional to the average distance of a ray contained in R to the boundary of K.
Then we could apply the Brunn-Minkowski inequality (see [8, Lemma 29]) which
states that for any direction x, the distance from the origin to the boundary of
K in the direction of x is within a factor n of the distance to the boundary of
K in the direction −x.

In Lemma 6, we assumed that the distribution is isotropic. The next lemma
shows that this assumption can be removed (provided that the mean of the
distribution is still zero). A key insight is that, under a linear transformation,
the image of the intersection of three halfspaces is another intersection of three
halfspaces. To prove the lemma, we use a particular linear transformation that
brings the distribution into isotropic position. Then, we apply Lemma 6 to the
transformed distribution and the image of the three-halfspace intersection.

Lemma 7. Let R be the intersection of three origin-centered halfspaces in Rn.
Assume that the points in Rn are distributed according to a log-concave probabil-
ity distribution with mean zero. Then, Pr(−R) ≤ κPr(R), where κ is the same
constant that appears in Lemma 6.

Proof. Let X be a random variable in Rn with a mean-zero, log-concave prob-
ability distribution. Let V denote the convariance matrix of X . Let W be a
matrix square root of the inverse of V ; that is, W 2 = V −1. Then, the random
variable Y := WX is log-concave and isotropic. (Technically, if the rank of the
convariance matrix V is less than n, then V would not be invertible. But, in that
case, the probability distribution degenerates into a probability distribution over
a lower-dimensional subspace. We just repeat the analysis on this subspace.) Let
W (R) and W (−R) respectively denote the images of R and −R under W . No-
tice that W (−R) = −W (R). Also, notice that X ∈ R ⇔ Y ∈ W (R) and that
X ∈ −R ⇔ Y ∈ W (−R) = −W (R). Let u1, u2, and u3 be normals to the
hyperplanes that bound R. Then,

W (R) =
{
Wx

∣
∣ x ∈ Rn and uT

j x ≥ 0 for all j ∈ {1, 2, 3}
}

=
{
y ∈ Rn

∣
∣ uT

j W−1y ≥ 0 for all j ∈ {1, 2, 3}
}

=
{
y ∈ Rn

∣∣ (
(W−1)Tuj

)T
y ≥ 0 for all j ∈ {1, 2, 3}

}
.

Therefore, W (R) is the intersection of three origin-centered halfspaces, so we
can apply Lemma 6 to obtain

Pr(X ∈ −R) = Pr
(
Y ∈ −W (R)

)
≤ κPr

(
Y ∈ W (R)

)
= κPr(X ∈ R). �

Finally, we analyze Baum’s algorithm using the probability bound given in
Lemma 7.
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Theorem 2. In the PAC model, Baum’s algorithm learns the intersection of two
origin-centered halfspaces with respect to any mean zero, log-concave probability
distribution in polynomial time.

Proof. If the probability p of observing a positive example is less than ε, then
the hypothesis that labels every example as negative has error less than ε; so
the algorithm behaves correctly if it draws fewer than m2 positive examples in
this case. If p ≥ ε, then by the Hoeffding bound,

Pr(r < m2) ≤ Pr
(

r

m3
<

ε

2

)
≤ Pr

(
r

m3
< p− ε

2

)
≤ e−m3ε2/2 ≤ δ/4.

Thus, if p ≥ ε, then the probability of failing to draw at least m2 positive
examples is at most δ/4. For the rest of this proof, we shall assume that the
algorithm succeeds in drawing at least m2 positive examples.

Observe that the hypothesis output by the algorithm has error

err(h) = Pr(−H ′) Pr(Hu ∩Hv | −H ′)
+ Pr(H ′) Pr

(
hxor(x) �= c(x)

∣
∣ x ∈ H ′), (7)

where c : Rn → {−1, 1} denotes the concept corresponding to Hu ∩ Hv. First,
we give a bound for

Pr(−H ′) Pr(Hu ∩Hv | −H ′) = Pr
(
Hu ∩Hv ∩ (−H ′)

)

= Pr(Hu ∩Hv) Pr(−H ′ | Hu ∩Hv).

Notice that Pr(−H ′ | Hu ∩Hv) is the error of the hypothesis corresponding to H ′

over the distribution conditioned on Hu∩Hv. But the VC Theorem works for any
distribution, so, since H ′ contains every one of M

(
max{δ/(4eκm1), ε/2}, δ/4, n

)

random positive examples, it follows from Lemma 1 that, with probability at
least 1− δ/4,

Pr(−H ′ | Hu ∩Hv) ≤ max
{

δ

4eκm1
,
ε

2

}
.

Since Pr(Hu ∩Hv) ≤ 1, it follows that

Pr
(
Hu ∩Hv ∩ (−H ′)

)
≤ max

{
δ

4eκm1
,
ε

2

}
.

Therefore, the left term in (7) is at most ε/2. All that remains is to bound the
right term.

From Lemma 7, it follows that

Pr
(
(−Hu) ∩ (−Hv) ∩H ′) ≤ κPr

(
Hu ∩Hv ∩ (−H ′)

)
≤ δ

4em1
.

By Lemma 3, Pr(H ′) ≥ 1/e. Therefore,

Pr
(
(−Hu) ∩ (−Hv)

∣
∣ H ′) =

Pr
(
(−Hu) ∩ (−Hv) ∩H ′)

Pr(H ′)
≤ δ

4m1
.
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Thus, each of the m1 points in S has probability at most δ/4m1 of being in
(−Hu) ∩ (−Hv), so with probability at least 1− δ/4, none of the m1 points are
in (−Hu) ∩ (−Hv). Thus, each point in x ∈ S lies in Hu ∩Hv, Hu ∩ (−Hv), or
(−Hu) ∩ (Hv); if x ∈ Hu ∩Hv, then x is labeled as positive; if x ∈ Hu ∩ (−Hv)
or x ∈ (−Hu) ∩Hv, then x is labeled as negative. In other words, the points in
S are classified according to the negation of Hu"Hv restricted to the halfspace
H ′. Thus, the linear program executed in Step 4 successfully finds a classifier
hxor consistent with the examples in S. By Lemma 1 and Lemma 2, the class
of symmetric differences of origin-centered halfspaces restricted to H ′ has VC
dimension at most n2. Therefore, the VC Theorem implies that, with probability
at least 1− δ/4,

Pr
(
hxor(x) �= c(x)

∣∣ x ∈ H ′) ≤ ε

2
.

Since Pr(H ′) ≤ 1, the right term in (7) is at most ε/2. Adding up the probabilities
of the four ways in which the algorithm can fail, we conclude that the probability
that err(h) > ε is at most 4(δ/4) = δ. �
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Abstract. We study tolerant linearity testing under general distribu-
tions. Given groups G and H , a distribution μ on G, and oracle access to
a function f : G → H , we consider the task of approximating the small-
est μ-distance of f to a homomorphism h : G → H , where the μ-distance
between f and h is the probability that f(x) �= h(x) when x is drawn
according to the distribution μ. This question is intimately connected to
local testability of linear codes.

In this work, we give a general sufficient condition on the distribution
μ for linearity to be tolerantly testable with a constant number of queries.
Using this condition we show that linearity is tolerantly testable for
several natural classes of distributions including low bias, symmetric and
product distributions. This gives a new and simple proof of a result of
Kaufman and Sudan which shows that sparse, unbiased linear codes over
Zn

2 are locally testable.

1 Introduction

Let C be a class of functions from a finite set D to a finite set R. In the task of
tolerant testing for C, we are given oracle access to a function f : D → R, and
we wish to determine using few queries to f , whether f is well approximable by
functions in C; equivalently, to distinguish between the case when f is close to
some element of C, and the case when f is far from all elements of C. Tolerant
property testing was introduced by Parnas, Ron and Rubinfeld in [PRR06] as
a refinement of the problem of property testing [RS96], [GGR98] (where one
wants to distinguish the case of f in C from the case when f is far from C), and
is now widely studied. The usual notion of closeness considered in the literature
is via the distance measure Δ(f, g) = Prx∈D[f(x) �= g(x)], where x ∈ D is picked
according to the uniform distribution over D.

We propose to study tolerant property testing under general distributions.
Given a probability measure μ on D, the μ-distance of f from g, where f, g :
D → R, is defined by

Δμ(f, g) = Pr
x∈μ

[f(x) �= g(x)].

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 601–614, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



602 S. Kopparty and S. Saraf

Then the measure of how well f can be approximated by elements of C is via
the μ-distance

Δμ(f, C) = min
g∈C

Δμ(f, g).

The new goal in this context then becomes to approximate Δμ(f, C) using only
a few oracle calls to f . In this paper, we study a concrete instance of the above
framework. We consider the original problem considered in the area of property
testing, namely the classical problem of linearity testing.

The problem of linearity testing was introduced by Blum, Luby and Rubinfeld
in [BLR93]. In this problem, we are given oracle access to a function f : G→ H ,
where G and H are abelian groups, and want to distinguish between the case
that f is a homomorphism from G to H and the case that f is far from the class
C = Hom(G,H), of all homomorphisms from G to H . [BLR93] gave a simple 3-
query test T that achieves this. In fact, this test also achieves the task of tolerant
linearity testing; i.e., for any function f : G→ H , letting δ = Pr[T f rejects], we
have

C1 · δ ≤ ΔUG(f,Hom(G,H)) ≤ C2 · δ,

where C1 and C2 are absolute constants, and UG is the uniform distribution on
G. Hence the test of [BLR93], in addition to testing linearity, actually estimates
how well f can be approximated by functions in C = Hom(G,H).

Here we initiate the study of tolerant linearity testing over general probability
distributions. Let μ be a probability distribution on an abelian group G. In the
problem of tolerant linearity testing under μ, we wish to estimate the how well
f may be approximated under μ by homomorphisms from G to H . For a given
family (Gn, Hn, μn)n, we say linearity is tolerantly testable under μ = μn with
q queries, if there exists a q-query tester Tn and constants C1, C2 such that for
any f : Gn → Hn, letting δ = Pr[T f

n rejects], we have

1. Perfect completeness: δ = 0 if and only if Δμ(f,Hom(Gn, Hn)) = 0.
2. Distance approximation: δ approximates Δμ(f,Hom(Gn, Hn)):

C1 · δ ≤ Δμ(f,Hom(Gn, Hn)) + on(1) ≤ C2 · δ. (1)

We argue that this is indeed a natural definition under which to study linearity
testing under general distributions. For one, this definition ensures that any
“useful” queries made by the tester essentially have to be distributed according
to μ. Without the “tolerant” aspect of the definition, a tester could potentially
get access to “advice” by querying f at locations where μ has no support. For
example, consider a scenario where f is given by a black box that runs in expected
polynomial time under the distribution μ. In this setting, it is meaningful to
ask how well f is approximated by linear functions under μ, although it is not
as reasonable to expect access to evaluations of f at points not distributed
according to μ. More importantly, the tolerant aspect of this definition give it a
strong connection to locally testable codes (which we discuss shortly).

The problem of linearity testing (without the tolerant aspect) was studied
in the setting of general distributions by [HK07]. They gave a simple 3-query
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test that, given oracle access to the function f : G→ H , distinguishes between
f ∈ Hom(G,H) and f that are far from Hom(G,H). In fact this tester does not
even require an explicit description of μ, it simply requires access to samples
from μ!1 However, unlike the BLR test, the [HK07] test is intolerant: the queries
it makes are not according to the distribution μ.

The main question is to determine for which μ is linearity tolerantly testable
under μ. This seems to be a basic question worthy of further study. Furthermore,
the notion of linearity being tolerantly testable under general distributions is
intimately connected with the concept of locally testable linear codes [GS02],
and we now elaborate on this connection.

Connection to locally testable codes: Let C ⊆ ZN
2 be a linear code (we restrict to

binary codes in this discussion). C is called locally testable if there is a constant
query tester, that given oracle access to any r : [N ]→ Z2, distinguishes between
the case that r ∈ C and r being far from C (in Hamming distance).

Now let C be any linear code, and let s1, . . . , sN ∈ Zn
2 be the columns of

a generator matrix for C. Let μ be the uniform distribution over {s1, . . . , sN}.
Then, if linearity is tolerantly testable under μ, then C is locally testable. Indeed,
given any r : [N ]→ Z2, we may define the function f : Zn

2 → Z2 by f(x) = r(j)
if x = sj , and f(x) = 0 otherwise. By the tolerant testability of linearity under
μ, any useful query made by a tolerant linearity tester for μ must be to one of
the sj . The distance of f from linear under μ then translates directly into the
Hamming distance of r from C, and the very same tester that tolerantly tests
linearity under μ shows that C is locally testable.

A more general goal behind the study of linearity testing under general distri-
butions is to develop a better understanding what makes a code locally testable.
We also believe that the theory of property testing under nonuniform distribu-
tions for other classes of functions C will be a fruitful and enlightening pursuit.

1.1 Main Notions and Results

Our main contribution is to highlight a simple criterion, which we call uniform-
correlatability, that lets us design and analyze tolerant linearity tests under a
given distribution. Roughly speaking, a distribution μ over an abelian group
G is uniformly-correlatable if one can “design” a distribution of small random
matrices with entries from G with each entry of the matrix distributed according
to μ, while all the row-sums and column-sums are nearly uniformly distributed.
In this case, we show that linearity is tolerantly testable under μ with few queries
(see Theorem 1). We complement this by demonstrating that many natural
distributions satisfy this criterion (see Theorems 2, 3, 4).

Definition 1 (Uniformly-correlatable distribution). Let μ be a probability
distribution on an abelian group G. We say that μ is (ε, k)-uniformly-correlatable
if there is a random variable X = (Xij)i,j∈[k] taking values in Gk×k such that:

1 Tolerant linearity testing, however, necessarily requires more information about μ.
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1. For each i, j ∈ [k], Xi,j is distributed according to μ.
2. For i ∈ [k], let Yi be the random variable

∑
j∈[k] Xij . For j ∈ [k], Zj be the

random variable
∑

i∈[k] Xij . Then the distribution of ((Yi)i∈[k], (Zj)j∈k) is
ε-close to the uniform distribution over the set {((yi)i∈[k], (zj)j∈[k]) ∈ G2k |∑

i∈[k] yi =
∑

j∈[k] zj}.

Our main result, given below, is that uniformly correlatable distributions are
tolerantly testable.

Theorem 1 (Uniformly correlatable distributions are tolerantly
testable). Let μ be a distribution over G that is (ε, k)-uniformly-correlatable.
Then there is a 4k query tester T such that for any f : G → H, letting
δ = Pr[T f rejects], we have:

1. Perfect completeness: δ = 0 if and only if Δμ(f,Hom(G,H)) = 0
2. Distance approximation:

δ − 4ε
4k

≤ Δμ(f,Hom(G,H)) ≤ 6k
1− 12εk

· δ.

Thus, for any μ which is (ε, k)-uniformly-correlatable for constant k and ε =
o(1), we conclude that linearity is tolerantly testable under μ (in the sense of
Equation (1)). We supplement the above theorem with following results, showing
that some general classes of μ are all (ε, k)-uniformly-correlatable for suitable
ε, k, and thus showing that linearity is tolerantly testable under all such μ.

Theorem 2 (Low-bias distributions are uniformly correlatable). Let μ
be a probability distribution on G such that for all nontrivial characters χ : G→
C×,

| E
x∈μ

[χ(x)]| < |G|−γ .

Then for k = Ω(1/γ), μ is (|G|−Ω(kγ), k)-uniformly-correlatable.

Using the above theorem, we conclude that linearity is tolerantly testable under
any low-bias distribution.

Corollary 1 (Low-bias distributions are tolerantly testable). Let G be
an abelian group, and let μ and γ be as in Theorem 2. Then there are constants
C1 = C1(γ), C2 = C2(γ), and a O(1/γ)-query test T such that for any abelian
group H and any function f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ Δμ(f,Hom(G,H)) + o(1/|G|) ≤ C2δ.

For the special case of G = Zn
2 , H = Z2, and μ being the uniform distribution

over some set, via the connection described in Section 1, this gives a new proof of
a result of Kaufman and Sudan [KS07], who proved that sparse, low-bias linear
codes are locally testable (in particular, that sparse random linear codes are
locally testable). Their proof used the machinery of Krawtchouk polynomials
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and nontrivial information about the distribution of their roots. The corollary
above gives a new and simple proof of this fact2, and generalizes it to arbitrary
G and H .

In the next theorem, we show that product distributions over Zn
2 are uniformly

correlatable, whenever the individual distributions are not too biased. We then
use our main theorem to conclude that linearity is tolerantly testable under such
distributions. The proof is by reducing to the n = 1 case, and is omitted in this
version of the paper.

Theorem 3 (Product Distributions are uniformly correlatable). Let
G = Zn

2 and let p1, . . . , pn ∈ [γ, (1 − γ)]. For each i ∈ [n], let μi be the dis-
tribution over Z2 with μi(1) = pi, Let μ be the product distribution

∏n
i=1 μi on

G. Then μ is (0, O(1/γ))-uniformly-correlatable.

Corollary 2 (Product Distributions are tolerantly testable). Let μ and
γ be as in Theorem 3. Then there are constants C1 = C1(γ), C2 = C2(γ),
and a O(1/γ)-query test T such that for any abelian group H and any function
f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ Δμ(f,Hom(G,H)) ≤ C2δ.

In the next theorem, we consider distributions on Zn
2 that are symmetric under

permutations of the coordinates. For technical reasons, we only show correlata-
bility for distributions supported on words of even Hamming weight, but this
suffices to show testability for general symmetric distributions μ. The proof is
by a volume growing argument, and is omitted in this version of the paper.

Theorem 4 (Symmetric distributions are uniformly correlatable). Let
G′ = Zn

2 and let G be the subgroup of G′ consisting of even weight words. Let μ
be a distribution on G, symmetric under permutations of the coordinates of G′,
and supported on words whose weights lie in the interval [γn, (1− γ)n]. Then μ
(viewed as a distribution on G) is (0, O(1/γ))-uniformly-correlatable.

Corollary 3 (Symmetric distributions are tolerantly testable). Let μ
be a symmetric distribution on G = Zn

2 such that supported on words whose
weights lie in the interval [γn, (1 − γ)n]. Then there are constants C1 = C1(γ),
C2 = C2(γ), and a O(1/γ)-query test T such that for any abelian group H and
any function f : G→ H, letting δ = Pr[T f rejects], we have

C1δ ≤ Δμ(f,Hom(G,H)) ≤ C2δ.

1.2 Other Related Work

Kiwi [Kiw03] considered puncturings of the Hadamard code and gave a sufficient
condition for certain codes to be locally testable. There has been a large body
2 The o(1/|G|) term in this corollary, combined with the perfect completeness of the

test, in fact shows that the corresponding code is “strongly” locally testable.
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of work constructing short locally testable codes [GS02], [GR05], [BSSVW03],
[BSGH+04], [BSS05], [Din06], [Mei08]. In our framework, these correspond to
distributions μ over Zn

2 supported on sets of size poly(n) under which linearity
is tolerantly testable. It would be interesting to obtain a better understanding of
which μ with such small support/min-entropy are such that linearity is tolerantly
testable under μ.

Property testing under nonuniform distributions has arisen naturally and
studied in several other contexts (in addition to [HK07]). The problem of dic-
tatorship testing under the p-biased distribution arose in the work of Dinur
and Safra [DS02] on the inapproximability of VERTEX-COVER. Subsequently,
the problem of junta-testing [KS03] was also considered under the p-biased
distribution.

In [AKK+03], Alon et. al. gave a constant query test for low degree polyno-
mials over F2 (this was later extended to larger fields by [KR04], [JPRZ04],
[KS08]). A suitable application of this test shows that for any p of the form a

2b

for constant b, there is a constant query test for low degree polynomials un-
der the p-biased distribution. This lends optimism to the goal of understanding
the more general question of testing low degree polynomials under general
distributions.

Paper organization: In Section 2, we give an overview of our proofs. In Section 3,
we prove that uniformly-correlatable distributions are tolerantly testable (The-
orem 1). The proof of Theorem 2 appears in Section 4. Finally in Section 5, we
discuss some problems and directions for further study.

2 Overview of Proofs

We first give some intuition for the uniform correlatability criterion. For T to be
a tester for linearity under μ, it needs to satisfy the following minimum require-
ments: (1) each query made by the tester needs to be distributed essentially
according to μ (so that the probability of rejection is upper bounded by the
distance), and (2) the queries need to satisfy some linear relations (so that the
tester has something to test). This already indicates that a tester will need to
“design” a query distribution very carefully, so that both the above require-
ments are satisfied. This is where the uniformly-correlatable criterion comes in:
given the uniformly-correlated distribution on matrices, it allows us to design
other correlations quite flexibly, and in particular to produce queries distributed
according to μ that satisfy linear relations.

The proof ofTheorem 1follows the rough outline of the original “self-correction”
proof of the BLR linearity test (for linearity testing under the uniform
distribution)3. It proceeds in 3 steps: we first define a “self-corrected” version of
the function being tested and show that the function being tested is μ-close to that
function. We then show that the self-corrected version is in fact self-corrected with
3 Note that the uniform distribution is (0, 1)-uniformly-correlatable, and for this case,

the test given by Theorem 1 essentially reduces to the BLR linearity test.
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overwhelming probability. Finally we use the above two facts to show that the self-
corrected function is in fact a homomorphism. We use the correlated matrix (given
by uniform correlatability) to construct two tests: each of these tests helps with a
particular step of the proof. In contrast, the BLR [BLR93] linearity test makes only
one kind of test which miraculously suffices for all steps of the analysis.

We show Theorem 2 on uniform-correlatability of low-bias distributions by
Fourier analysis, using a version of the Vazirani-XOR lemma. For Theorem 3,
we use the closure property of uniform-correlatability under products, and it
thus suffices to show that the p-biased distribution on Z2 is uniformly corre-
latable. We then exhibit such a correlation by a direct construction. Finally, to
show Theorem 4, we use the closure property of uniform-correlatability under
convex combinations. This reduces the question to showing that for any even
w ∈ [γn, (1−γ)n], the uniform distribution on vectors in Zn

2 of Hamming weight
exactly w is uniformly correlatable (to get a uniform distribution on all words
of even weight). This is a technically involved step, and is achieved by carefully
analyzing the set of possible row-sums and column-sums of matrices with all
entries being words of weight w. The correlatability of symmetric distributions
supported on even weight words, along with an additional trick, then allows us
to deduce that linearity is tolerantly testable under any symmetric distribution
over words with weights in [γn, (1− γ)n].

3 Uniformly Correlatable Distributions are Testable

Let μ be (ε, k)-uniformly-correlatable. Fix a distribution μmat over Gk×k wit-
nessing this property. Without loss of generality, we may assume that all the
rows and columns of μmat are identically distributed, and let μrow be this distri-
bution (indeed, we may take a random sample from μmat, randomly permute the
rows and columns, and then transpose it with probability 1

2 : the distribution of
the resulting matrix witnesses the correlatability property, and also has identical
row and column distributions). We now define a few distributions related to it:

1. Distribution μmat
(r,s): For r, s ∈ Gk with

∑
i∈[k] ri =

∑
j∈[k] sj , μmat

(r,s) is the
distribution of samples X from μmat conditioned on

∑
j∈[k] Xij = ri and∑

i∈[k] Xij = sj .
2. Distribution μrow

r : For r ∈ G, μrow
r is the distribution of samples x from

μrow conditioned on
∑

i∈[k] xi = r.
3. Distribution μ∗

r: This is the distribution of the random variables (y, z) ∈
Gk ×Gk produced by the following random process. Let UG be the uniform
distribution on G. First sample r′ from UG. Then independently sample y
from μrow

r+r′ and z from μrow
r′ . In particular,

∑
i yi −

∑
j zj = r.

We may now describe the linearity test under μ.

Test T: With probability 1/2, perform Test T1, and with probability 1/2 per-
form Test T2.
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– Test T1: Sample r from μ. Sample (y, z) ∈ G2k from μ∗
r . If

∑
i∈[k] f(yi) −∑

i∈[k] f(zi) = f(r), then accept, else reject.
– Test T2: Sample r from UG. Independently sample (y, y′) and (z, z′) from

μ∗
r . If

∑
i∈[k] f(yi)−

∑
i∈[k] f(y′i) =

∑
i∈[k] f(zi)−

∑
i∈[k] f(z′i), then accept,

else reject.

It is clear that this test has perfect completeness.
The following fact basic fact about distributions will be useful while analyzing

the test.

Fact 5. Let R,S be random variables, and let h be function such that the dis-
tribution of h(R) is ε-close to the distribution of S. Consider the distribution of
R′ sampled as follows: first pick S, and then let R′ be a sample of R conditioned
on h(R) = S. Then the distribution of R′ is ε-close to the distribution of R.

We now prove that the Test T is indeed a tester for linearity under μ, hence
completing the proof of Theorem 1.

Theorem 6. Let f : G→ H and let δ
def= Pr[T f rejects]. Then,

δ − 4ε
4k

≤ Δμ(f,Hom(G,H)) ≤ 12k
1− 24εk

· δ.

Proof. Let f : G→ H and let δ = Pr[T f rejects]. Notice that by Fact 5, each k-
tuple of queries made by the test T is ε-close to the distribution μrow. Therefore,
the probability that no query is made to an element of G where f disagrees with
its nearest homomorphism in Hom(G,H) is at most 4k ·Δμ(f,Hom(G,H))+4ε.
Thus δ ≤ 4k ·Δμ(f,Hom(G,H)) + 4ε, which is the first inequality.

We now show the second inequality. If δ ≥ 1
12k − 2ε, then the claim is trivial

(since Δμ(·, ·) ≤ 1). Suppose δ ≤ 1
12k − 2ε. Let δ1 be the probability that Test

T1 rejects. Let δ2 be the probability that Test T2 rejects. Then δ = 1
2 (δ1 + δ2).

For x ∈ G, define the “self-corrected” value g(x) to be the most probable
value of

∑
i∈[k] f(yi)−

∑
i∈[k] f(zi), where (y, z) ∈ μ∗

x.

Lemma 1 (g is close to f). Δμ(f, g) < 2δ1.

Proof. Let B = {x ∈ G : g(x) �= f(x)}.
For any x ∈ G, define

px = Pr
(y,z)∈μ∗

x

⎡

⎣
∑

i∈[k]

f(yi)−
∑

j∈[k]

f(zj) �= f(x)

⎤

⎦ .

Notice that for any x ∈ B, px ≥ 1/2. By definition, δ1 = Ex∈μ[px]. Applying
Markov’s inequality, we conclude that

Pr
x∈μ

[x ∈ B] ≤ Pr
x∈μ

[px ≥ 1/2] ≤ 2δ1.

We now show that g is in fact a homomorphism.
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Lemma 2 (Majority votes of g are overwhelming majorities). For all
x ∈ G,

Pr
(y,z)∈μ∗

x

[
∑

i∈[k]

f(yi)−
∑

j∈[k]

f(zj) �= g(x)] ≤ 2δ2.

Proof. Let x ∈ G. Take two independent samples (y1, z1) and (y2, z2) from μ∗
x.

We will show that

Pr

⎡

⎣
∑

i∈[k]

f(y1
i )−

∑

j∈[k]

f(z1
j ) �=

∑

i∈[k]

f(y2
i )−

∑

j∈[k]

f(z2
j )

⎤

⎦ ≤ 2δ2. (2)

The lemma follows immediately from this.
We now prove Equation 2. By definition, (y1, z1) was generated by picking

r1 ∈ UG, and then picking y1 ∈ μrow
r1+x and z1 ∈ μrow

r1 . Similarly (y2, z2) was
generated by picking r2 ∈ UG, and then picking y2 ∈ μrow

r2+x and z2 ∈ μrow
r2 .

Observe that both (y1, y2) and (z1, z2) come from the distribution μ∗
r1−r2 (albeit

not independently). Let (w1, w2) be another sample from μ∗
r1−r2 (independent

of (y1, y2) and (z1, z2)).
We now rewrite and then bound the left hand side of Equation (2) by:

Pr

⎡

⎣
∑

i∈[k]

f(y1
i )−

∑

j∈[k]

f(z1
j ) �=

∑

i∈[k]

f(y2
i )−

∑

j∈[k]

f(z2
j )

⎤

⎦

= Pr

⎡

⎣
∑

i∈[k]

f(y1
i )−

∑

i∈[k]

f(y2
i ) �=

∑

j∈[k]

f(z1
j )−

∑

j∈[k]

f(z2
j )

⎤

⎦

≤Pr

⎡

⎣
∑

i∈[k]

f(y1
i )−

∑

i∈[k]

f(y2
i ) �=

∑

j∈[k]

f(w1
j )−

∑

j∈[k]

f(w2
j )

⎤

⎦

+ Pr

⎡

⎣
∑

i∈[k]

f(z1
i )−

∑

i∈[k]

f(z2
i ) �=

∑

j∈[k]

f(w1
j )−

∑

j∈[k]

f(w2
j )

⎤

⎦

Finally, note that r1− r2 is uniformly distributed over G. Since (y1, y2), (w1, w2)
are independent samples from μ∗

r1−r2
(and similarly for (z1, z2), (w1, w2)), this

implies that both the terms in the last expression above equal the rejection
probability of Test T2 (= δ2). This completes the proof of the lemma.

Lemma 3 (g is linear). g ∈ Hom(G,H).

Proof. Pick any x, x′ ∈ Gk, and let t =
∑k

i=1 xi −
∑k

i=1 x′
i. We will show that

∑k
i=1 g(xi)−

∑k
i=1 g(x′

i) = g(t).
We now describe a random process. Pick (α, β) ∈ μ∗

t . Pick r ∈ UG. Pick
r1, s1, r2, s2 uniformly from Gk conditioned on

∑
i∈[k] r

1
i =

∑
i∈[k] s

1
i = r,

∑
i∈[k] r

2
i = r −

∑
i∈[k] αi, and

∑
i∈[k] s

2
i = r −

∑
i∈[k] xi.
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Now pick random matrices A ∈ μmat
(r1,s1), A′ ∈ μmat

(r2,s1−α), B ∈ μmat
(r1−x,s2), and

B′ ∈ μmat
(r2−x,s2−β).

A11 A12 · · · A1k A′
11 A′

12 · · · A′
1k α1

A21 A22 · · · A2k A′
21 A′

22 · · · A′
2k α2

...
...

. . .
...

...
...

. . .
...

...
Ak1 Ak2 · · · Akk A′

k1 A′
k2 · · · A′

kk αk

B11 B12 · · · B1k B′
11 B′

12 · · · B′
1k β1

B21 B22 · · · B2k B′
21 B′

22 · · · B′
2k β2

...
...

. . .
...

...
...

. . .
...

...
Bk1 Bk2 · · · Bkk B′

k1 B′
k2 · · · B′

kk βk

x1 x2 · · · xk x′
1 x′

2 · · · x′
k t

Arrange these random variables in a matrix, as shown in the figure.
First notice that by Fact 5, the distribution of each αi is ε-close to the distribu-

tion μ. Similarly, the distribution of each βi is ε-close to the distribution μ.
Let us study the row distribution. Again by Fact 5, for each i ∈ [k], the distri-

bution of (Ai•, A
′
i•) is 4ε-close to μ∗

αi
. Similarly, for each i ∈ [k], the distribution

of (Bi•, B
′
i•) is 4ε-close to μ∗

βi
.

Now consider the distribution of the columns. For each j ∈ [k], the distribution
of (A•j , B•j) is 4ε-close to μ∗

xj
. Similarly, for each j ∈ [k], the distribution of

(A′
•j , B

′
•j) is 4ε-close to μ∗

x′
j
.

Summarizing, each row distribution (Ai•, A
′
i•, αi) and (Bi•, B

′
i•, βi) is 5ε-close

to the distribution of the distribution of queries of Test T1. Thus by a union
bound, with probability at least 1 − 2k · (δ1 + 5ε), both the following events
occur:

– Event 1: For each i ∈ [k],
∑

j∈[k] f(Aij)−
∑

j∈[k] f(A′
ij) = f(αi),

– Event 2: For each i ∈ [k],
∑

j∈[k] f(Bij)−
∑

j∈[k] f(B′
ij) = f(βi).

Each column distribution (A•j , B•j) is 4ε-close to μ∗
xj

, and each column dis-
tribution (A′

•j , B
′
•j) is 4ε-close to μ∗

x′
j
. Thus by Lemma 2 and a union bound,

with probability at least 1− 2k · (2δ2 + 4ε), both the following events occur.

– Event 3: For each j ∈ [k],
∑

i∈[k] f(Aij)−
∑

i∈[k] f(Bij) = g(xj),
– Event 4: For each j ∈ [k],

∑
i∈[k] f(A′

ij)−
∑

i∈[k] f(B′
ij) = g(x′

j),

Finally, since (α, β) was picked from μ∗
t , Lemma 2 tells us that the following

event occurs with probability at least 1− 2δ2:

– Event 5:
∑

j∈[k] f(αj)−
∑

j∈[k] f(βj) = g(t),

Thus Events 1,2,3, 4 and 5 all occur with probability at least 1− (2k + 1) · (δ1 +
2δ2 + 5ε) > 0, since we assumed that δ = δ1+δ2

2 < 1
12k − 2ε. In this case, we see

that
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g(t) =
k∑

i=1

f(αi)−
k∑

i=1

f(βi) Event 5

=
k∑

i=1

⎛

⎝
k∑

j=1

(f(Aij)− f(A′
ij))

⎞

⎠−
k∑

i=1

⎛

⎝
k∑

j=1

(f(Bij)− f(B′
ij))

⎞

⎠ Events 1 and 2

=
k∑

j=1

(
k∑

i=1

(f(Aij)− f(Bij)))

)

−
k∑

j=1

(
k∑

i=1

(f(A′
ij)− f(B′

ij))

)

rearranging terms

=
k∑

j=1

(g(xj)− g(x′
j)) Events 3 and 4.

Hence, Pr[g(t) =
∑k

j=1(g(xj) − g(x′
j))] > 0. However, this statement is a

deterministic statement, and hence we conclude that g(t) =
∑k

j=1(g(xj)−g(x′
j))

Since this holds for every choice of x, x′, g must be a homomorphism.

Thus, Δμ(f,Hom(G,H)) ≤ Δμ(f, g) ≤ 2δ1 ≤ 4δ ≤ 6k
1−12εk · δ.

4 Low Bias Distributions are Uniformly Correlatable

In this section we prove Theorem 2.

Theorem 2. Let μ be a probability distribution on G such that for all nontrivial
characters χ : G→ C×,

| E
x∈μ

[χ(x)]| < |G|−γ .

Then for k = Ω(1/γ), μ is (|G|−Ω(kγ), k)-uniformly-correlatable.

Proof. We begin with a lemma, which gives a simple criterion for checking that
a distribution is close to uniform on a subgroup of Gt. It is an intermediate
claim in the usual proof of the Vazirani XOR lemma [Gol95] which bounds the
distance to uniform in terms of the maximum bias of the distribution. The full
Vazirani XOR lemma turns out to be too weak for our purposes.

Lemma 4. Let S = {(y1, . . . , yt, z1, . . . , zt) ∈ G2t |
∑

i∈[t] yi =
∑

i∈[t] zi}. Let
(Y1, . . . , Yt, Z1, . . . , Zt) be an S-valued random variable. Suppose

∑

α1,...,αt,β1,...,βt∈Ĝ not all equal

∣
∣
∣
∣
∣∣
E

⎡

⎣
∏

i∈[t]

χαi(Yi) ·
∏

j∈[t]

χβj (Zj)

⎤

⎦

∣
∣
∣
∣
∣∣

2

≤ λ.

Then the distribution of (Y1, . . . , Yt, Z1, . . . , Zt) is
√
λ-close to the uniform

distribution over S.

We omit the proof of this lemma.



612 S. Kopparty and S. Saraf

Wecannowprove the theorem.Let η = |G|−γ . The distributionX = (Xij)i,j∈[k]
is given by picking each Xij independently fromμ. For i ∈ [k], let Yi be the random
variable

∑
j∈[k] Xij . For j ∈ [k], Zj be the random variable

∑
i∈[k] Xij . We wish

to show that (Y1, . . . , Yk, Z1, . . . , Zk) is |G|−Ω(kγ)-close to uniformly distributed
on S.

In order to apply Lemma 4, we compute

∑

α1,...,αk

β1,...,βk

n.a.e.

∣
∣
∣
∣
∣
∣
E

⎡

⎣
∏

i∈[k]

χαi(Yi) ·
∏

j∈[k]

χβj (Zj)

⎤

⎦

∣
∣
∣
∣
∣
∣

2

=
∑

α1,...,αk

β1,...,βk

n.a.e.

⎛

⎝E

⎡

⎣
∏

i,j

χαi−βj (Xij)

⎤

⎦

⎞

⎠

2

=
∑

α,β

⎛

⎝
∏

i,j

E[χαi−βj (Xij)]

⎞

⎠

2

(since the Xij are independent)

≤
∑

α,β

(
η|{(i,j)∈[k]2:αi �=βj}|

)2

Consider the term corresponding to α1, . . . , αk and β1, . . . , βk. We classify the
terms into 3 kinds, and separately bound the total contribution of terms of each
kind.

Case A: the most frequently occurring element in α1, . . . , αk occurs at most
2k/3 times. Then |{(i, j) ∈ [k]2 : αi �= βj}| ≥ k · k/3 = k2/3. Thus the sum of
all terms in case A is at most |G|2k · η2k2/3.

Case B: the most frequently occurring element in α1, . . . , αk occurs at least
2k/3 times, and that same element occurs in β1, . . . , βk at most 2k/3 times.
Then |{(i, j) ∈ [k]2 : αi �= βj}| ≥ (k/3) · (2k/3) = 2k2/9. Thus the sum of all
terms in case B is at most |G|2k · η2k2/9.

Case C: Now suppose we are not in either of the above two cases. Suppose
the most frequently occurring element in α1, . . . , αk occurs a > 2k/3 times,
and that same element appears in β1, . . . , βk occurs b > 2k/3 times. Note that
by the not all equal assumption, at most one of a, b can be equal to k. Then
|{(i, j) ∈ [k]2 : αi �= βj}| ≥ a · (k− b) + b · (k− a). Thus the total contribution of
terms from Case C is at most (here we subtracted off the terms with a = b = k):

k∑

a=2k/3

k∑

b=2k/3

(
k

a

)(
k

b

)
|G|k−a|G|k−b|G|ηa(k−b)ηb(k−a) −

(
k

k

)(
k

k

)
|G|.

This can be bounded from above by

|G| ·

⎛

⎝
k∑

a=2k/3

k∑

b=2k/3

(
k

a

)(
k

b

)
|G|k−a|G|k−bη(k/2)(k−b)η(k/2)(k−a) − 1

⎞

⎠ ,
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which in turn may be upper bounded by

|G| ·
(
(1 + |G|η(k/2))k(1 + |G|η(k/2))k − 1

)

≤ |G| · (8k|G|ηk/2),

where the last inequalityuses the fact thatk = Ω(1/γ), andhenceηk/2 $ (|G|k)−1.
Summarizing, the sum of all the terms is at most |G|2ηΩ(k) + |G|2kηΩ(k2). For k =
Ω(1/γ), this quantity is atmost |G|−Ω(γk). Lemma4now implies the desired result.

5 Discussion, Problems and Directions

We believe that there are many fruitful and interesting questions waiting to be
explored in tolerant property testing under nonuniform distributions in general
and tolerant linearity testing under nonuniform distributions in particular.

As far as we know, every distribution of linear min-entropy with bias at most
0.9 (say) is uniformly (o(1), O(1))-uniformly correlatable, and hence tolerantly
testable. In fact, we do not even know of a single μ of linear min-entropy under
which linearity is not tolerantly testable.

Question 1. Let μ be a probability distribution on Zn
2 with min-entropy Ω(n).

Find necessary and sufficient conditions on μ for linearity to be tolerantly testable
under μ.

Via the connection between tolerant linearity testing and local testability of
codes, we even venture the following conjecture.

Conjecture 1. Every linear codeC ⊆ ZN
2 with NO(1) codewords is locally testable!
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We note that even for the case M = 3 the best previously known con-
structions were generators fooling general bounded-space computations,
and required O(log2 n) seed length.

For our first construction, we show how to employ recently constructed
generators for sequences of elements of ZM that fool small-degree poly-
nomials (modulo M). The most interesting technical component of our
second construction is a variant of the derandomized graph squaring
operation of [RV]. Our generalization handles a product of two distinct
graphs with distinct bounds on their expansion. This is then used to pro-
duce pseudorandom-walks where each step is taken on a different regular
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1 Introduction

Pseudorandomness is the theory of generating objects that “look random” despite
being constructed using little or no randomness. A primary application of pseudo-
randomness is to address the question: Are randomized algorithms more powerful
than deterministic ones? That is, how does randomization trade off with other
computational resources? Can every randomized algorithm be converted into a
deterministic one with only a polynomial slowdown (i.e., does BPP = P) or with
only a constant-factor increase in space (i.e., does RL = L)? The study of both
these questions has relied on pseudorandom bit generators that fool algorithms of
limited computational powers. In particular, generators that fool space-bounded
algorithms [AKS, BNS, Nis, INW] were highly instrumental in the study of the
RL vs. L problem (e.g. used in the best known derandomization of RL [SZ]).

While the currently available space-bounded generators are extremely pow-
erful tools, their seed length is still suboptimal. For example, if we want to
fool a logn-space algorithm then known generators require log2 n truly random
bits (the seed) in order to generate up to polynomially many pseudorandom
bits. On the other hand, for several interesting special cases we do know gen-
erators with almost optimal seed length. The special case which serves as a
motivation for our work is that of small-biased generators [NN]. These gen-
erators produce n bits X1, X2, . . . , Xn that fool all linear tests modulo 2. In
other words, for each subset T of the bits, the sum Σi∈TXi mod 2 is uni-
formly distributed up to bias ε. Explicit constructions of ε-biased generators
are known with seed-length O(log(n/ε)), which is optimal up to the hidden
constant [NN]. Even though linear tests may seem very limited, ε-biased gen-
erators have turned out to be very versatile and useful derandomization tools
[NN, MNN, HPS, Nao, AM, AR, BSVW, BV, Lov, Vio].

Given the several applications of distributions that fool linear tests modulo 2,
it is natural to consider the question of fooling modular sums for larger moduli.
It turns out that the notion of small-biased generators can be generalized to
larger fields. Such generators produce a sequence X1, X2, . . . , Xn of elements in
a field F that fool every linear test over F [Kat, AIK+, RSW, EGL+, AM].1 In
this work, instead, we consider a different generalization of ε-biased generators
where we insist on bit-generators. Namely we would like to generate a sequence
X1, X2, . . . , Xn of bits that fool every linear test modulo a given number M .
For every sequence a1, a2, . . . , an of integers in ZM = {0, 1, . . . ,M − 1} we want
the sum

∑
i aiXi mod M to have almost the same distribution (up to statistical

distance at most ε) as in the case where the Xi’s are uniform and independent
random bits. (Note that this distribution may be far from the uniform distribu-
tion over ZM , particularly when only a few ai’s are nonzero.) It turns out that
even for M = 3 and even if we limit all the ai’s to be either ones or zeros, the best

1 More generally, an ε-bias space over a finite abelian group G is a distribution D on
elements of G such that for every nontrivial character χ : G → C, |E[χ(D)]| ≤ ε. The
aforementioned results correspond to the special case G = Fn, using the fact that the
characters of Fn are in one-to-one correspondence with linear functions Fn → F.
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generators that were known prior to this work are generators that fool general
space-bounded computations [Nis, INW], and required a seed of length O(log2 n).
Therefore, obtaining better pseudorandom bit generators that fool modular sums
may be considered a necessary step towards improved space-bounded generators.
In addition, we consider this notion to be a natural generalization of that of a
small-bias generator, which is a central derandomization tool.

Our Results

We give two constructions of pseudorandom bit generators that fool modular
sums. Similarly to [MST], each construction is actually comprised of two gener-
ators: one that fools summations

∑
i aiXi in which only relatively few coefficients

ai are nonzero (the “low-weight” case) and one that fools summations
∑

i aiXi in
which many coefficients ai are nonzero (the “high weight” case). The motivation
is that fooling low-weight sums and fooling high-weight sums are tasks of a dif-
ferent nature. In the high-weight case, if Ri are truly random bits, then ΣiaiRi

mod M is almost uniformly distributed in ZM (at least when M is prime). Thus,
in analyzing our generator, we just need to argue that ΣiaiXi mod M is close
to uniform, where X1, . . . , Xn is the output of the generator.

On the other hand, in the low-weight case the distribution may be far from
uniform and therefore we may need to imitate the behavior of a random sequence
of bits more closely.

Thus, in each construction, we shall present two generators: one that is pseu-
dorandom against low-weight sums, and one that is pseudorandom against high-
weight sums. We shall then combine them by evaluating them on independently
chosen seeds and XORing the two resulting sequences.

Construction Based on Pseudorandom Generators for Polynomials

In our first construction, we handle the case of M = 3 and any other fixed prime
modulus M (in fact, our construction works also for any fixed prime power). For
these cases, our seed length is O(log(n/ε)) as in the case of ε-biased generators
(but the hidden constant depends exponentially on M).

As mentioned above, for every fixed finite field F, there are nearly-optimal
known generators that construct a small-bias distribution X1, . . . , Xn of field
elements, while our goal is to generate bits. A natural approach to construct a
bit generator would be to sample a sequence of field elements X1, . . . , Xn from
a small-bias distribution, and output a bit-sequence g(X1), . . . , g(Xn) for an
appropriate function g : F → {0, 1}. Unfortunately the pseudorandomness of
g(X1), . . . , g(Xn) against F-linear tests does not seem to follow from the small-
bias property of X1, . . . , Xn. Indeed, when |F| is odd, then g cannot be balanced,
so at best we could hope is for g(X1), . . . , g(Xn) to be indistinguishable by linear
tests from a sequence of independent biased bits. But even this is not achievable
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in general, if we only assume the pseudorandomness of X1, . . . , Xn against F-
linear tests(as per the definition of small-bias space).2

If, however, we start from a sequence of field elements X1, . . . , Xn that fools
polynomials over F, then we can indeed show that g(X1), . . . , g(Xn) is indis-
tinguishable by linear tests from independent biased bits. The reason is that g
can be chosen to be itself a polynomial (of degree d = Θ(|F|)), and thus any
F-linear test distinguisher on g(X1), . . . , g(Xn) yields a degree d distinguisher
on X1, . . . , Xn. Since we still only have indistinguishability from biased coins,
we only apply this approach when the coefficient vector has sufficiently high
weight so that both biased and unbiased random bits will yield a sum that is
almost uniformly distributed over |F|. Specifically, we need at least k non-zero
coefficients ai, where k = O(M2 log 1/ε). For fixed M , there are known construc-
tions [BV, Lov, Vio] of pseudorandom generators that fool polynomials of degree
d over F = ZM , M prime, and which only require seed length OM,d(logn/ε).

In order to fool low-weight sums, we observe that a bit generator X1, . . . , Xn

which is ε-almost k-wise independent fools, by definition, every sum
∑

i aiXi mod
M of weight at most k, and that such generators are known which require only
seed length O(log n + k + log 1/ε).

A similar construction was independently discovered by Meka and Zucker-
man [MZ].

Construction Based on the INW Generator

In our second construction, we give a pseudorandom bit generator that fools sums
modulo any given M (not necessarily prime) with seed length O(log n+log(M/ε)
log(M log(1/ε))). In both the low-weight and high-weight cases, this generator re-
lies on versions of the Impagliazzo–Nisan–Wigderson [INW] pseudorandom gen-
erator for space-bounded computation. Of course, modular sums are a special case
of space-bounded computations, and thus we could directly apply the INW gen-
erator. But this would require seed length larger than log2 n. We obtain better
bounds by more indirect use of the INW generator inside our construction.

The most interesting technical contribution underlying this construction is
a new analysis of the derandomized graph squaring operation of [RV], which
captures the effect of using the INW generator to derandomize random walks
on graphs. Here we study the analogue of derandomized squaring for taking
products of two distinct Cayley graphs over an abelian group (namely ZM ).
The advantage of the new analysis is that it handles graphs that have distinct
bounds on their expansion, and works for bounding each eigenvalue separately.
This is then used to produce pseudorandom walks where each step is taken on
a different abelian Cayley graph (rather than pseudorandom walks on a single
graph as in [RTV, RV]).

2 Let F = Z3, and g : Z3 → {0, 1} be any nonconstant function. Let a be the element
of Z3 such that a is the unique preimage of g(a). Let (X1, . . . , Xn) be uniformly
distributed over all elements of Zn

3 where the number of a’s is divisible by 3. Then∑
i g(Xi) mod 3 is constant, but it can be shown that (X1, . . . , Xn) is a 2−Ω(n)-biased

space.
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For the purpose of this informal discussion we will assume that M is prime.
(The idea for handling composite M ’s is to analyze each Fourier coefficient of
the distribution of the sum separately. We defer further details to Section 2.1.)

Low-Weight Case. Let us first consider the case where the number of non-zero
ai’s is at most M ′ · log(1/ε), for M ′ = poly(M).3 As before, we could use an
almost k-wise independent distribution, but then our seed length would depend
polynomially on M , while our goal is a polylogarithmic dependency.

First, we use a hash function to split the index set [n] = {1, 2, . . . , n} into
B = O(M ′) disjoint subsets Tj such that with high probability (say, 1 − ε/10)
over the splitting, each set Tj contains at most k = log(1/ε) indices i such that
ai �= 0. We show that the selection of the hash function that determines the
splitting can be done using O(log n + (logM/ε) · log(M log 1/ε)) random bits.

Once we have this partition, it is sufficient to independently sample in each
block from an ε/B-almost k-wise independent distribution, which requires s =
O(log n + k + log(B/ε)) = O(log n + log(M/ε)) random bits per block. Then
we argue that it is not necessary for the sampling in different blocks to be
independent, and instead they can be sampled using a pseudorandom gener-
ator for space-bounded computation [Nis, INW]. (This relies on the fact the
computation

∑
i aiXi mod M can be performed in any order over the i’s, in

particular the order suggested by
∑

j

∑
i∈Tj

ai · Xi mod M .) Using the INW
generator, we can do all the sampling using O(s + logB · (log(B/ε) + logM)) =
O(log n + logM · log(M/ε)) random bits.

High-Weight Case. We now discuss the generator that fools sums with more
than M ′ · log 1/ε non-zero coefficients ai, for M ′ = poly(M). Here, we can think
of the computation

∑
i aiXi mod M as an n-step walk over ZM that starts

at 0. Unlike standard walks, each step is taken on a different graph (over the
same set of vertices, namely ZM ). Specifically, step i is taken on the (directed)
Cayley graph where every node v has two outgoing edges. The first edge is
labeled 0 and goes into v itself (i.e., this edge is a self loop). The second edge
is labeled 1 and goes into v + ai mod M . Following the walk along the labels
X1, X2, . . . , Xn arrives at the vertex

∑
i aiXi mod M . If the Xi’s are uniform

(i.e., we are taking a random walk) then the end vertex will be almost uniformly
distributed (because the number of steps is larger than M2 · log(1/ε)). What we
are seeking is a pseudorandom walk that is generated using much fewer truly
random bits but still converges to the uniform distribution (possibly slower, e.g.
using M ′ · log(1/ε) steps).

Pseudorandom walk generators were constructed in [RTV, RV] for walks on
a single regular and connected graph. In our case, we are walking not on a
single graph but rather on a sequence of graphs, each of which is indeed regular.
It turns out that the pseudorandom generators of [RTV, RV] still work for a

3 In this preliminary version we did not try to optimize the various constants. In partic-
ular, in our analysis M ′ = O(M24). We note that it can be made as small as O(M2+α)
for any α > 0.
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sequence of graphs rather than a single graph. The more difficult aspect is that
in our walk there is no uniform bound on the expansion of the graphs. Indeed,
the graphs that correspond to ai = 0 are not connected at all (they consist solely
of self loops). In our setting, where the graphs are directed Cayley graphs for
the abelian group ZM , we show how to generate pseudorandom walks on graphs
with varying bounds on expansion.

We do this by a generalization of the derandomized graph product of [RV].
There, expanders are used to generate two steps on a degree-D graph using less
than 2 logD random bits, yet the (spectral) expansion of the resulting graph is
almost as good as the square of the original graph. We analyze the analogous
derandomization of two steps on two distinct (abelian Cayley) graphs for which
we may have distinct bounds on their expansion. Moreover, to handle composite
M , we show that the expansion can be analyzed in each eigenspace separately.
(For example, for Z6 = Z2 × Z3, a sequence of even coefficients ai will yield a
random walk that does not mix in the Z2 component, but may mix in the Z3
component, and our pseudorandom generator needs to preserve this property.)

To obtain our pseudorandom walk generator, we first randomly reorder the
index set [n] so that the nonzero coefficients are well-spread out, and then deran-
domize the walk by a recursive application of our aforementioned derandomized
product. As discussed in [RV], the resulting pseudorandom walk generator is the
same as the Impagliazzo–Nisan–Wigderson [INW] generator for space-bounded
computation, with a different setting of parameters that enables a much smaller
seed length than their analysis requires for general space-bounded algorithms.

Discussion

The natural open problem left by our work is to reduce the seed length further,
ideally to O(log(nM/ε)), which can be shown to be possible via a nonconstructive
probabilistic argument. For achieving such optimal parameters, the modular
reduction is actually insignificant — it is equivalent to construct generators
such that for every bounded coefficient vector (a1, . . . , an) ∈ Zn where each
|ai| ≤ M ,

∑
i aiXi is statistically close to

∑
i aiRi as distributions on Z, where

(X1, . . . , Xn) is the output distribution of the generator, and (R1, . . . , Rn) is
the uniform distribution on {0, 1}n. 4 As a result, such generators would also
“fool” linear threshold functions (halfspaces) whose coefficients are polynomially
bounded. Pseudorandom generators and related objects for threshold functions
(with no bound on the coefficients) have recently been studied in [RS, DGJ+],
with the latter achieving seed length O((log n) · log2(1/ε)/ε2).

2 Definitions and Tools

We denote by Un the uniform distribution over {0, 1}n. We fix an integer M ≥ 2
for the rest of the paper. We will be interested in constructing pseudorandom bit
4 Indeed, given any coefficient vector (a1, . . . , an) ∈ Zn, where each |ai| ≤ M , we can

apply the generator for modulus M ′ = M · n so that no modular reduction occurs.
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generators that fool sums modulo M . We denote by ZM the set {0, 1, . . . ,M−1}
with arithmetic modulo M . Due to space limitations, we defer many of the proofs
to the full version of the paper.

Definition 1. The statistical distance between two random variables X,Y tak-
ing values in ZM is dist(X,Y ) = 1

2

∑M−1
i=0 |Pr[X = i]−Pr[Y = i]|. The variables

X and Y are said to be ε-close if their statistical distance is at most ε.

Definition 2. A random variable X = (X1, . . . , Xn) taking values in {0, 1}n

is ε-pseudorandom against sums modulo M if for any a1, . . . , an ∈ ZM , the
distribution of a1X1 + · · ·+ anXn modulo M , is ε-close (in statistical distance)
to the distribution a1R1 + · · ·+ anRn modulo M , where R1, . . . , Rn are uniform
and independent random bits.

Definition 3. A function G : {0, 1}r → {0, 1}n is an ε-pseudorandom bit gener-
ator against sums modulo M if the distribution G(Ur) is ε-pseudorandom against
sums modulo M .

Note that ε-biased generators is a special case of the definition of pseudorandom
bit generators against sums modulo M , for M = 2.

Our goal is to build generators that fool sums modulo M , where M can be
either prime or composite. Handling prime modulus is somewhat easier, and the
approach in the following section allows handling both cases simultaneously. We
will show that it is enough to construct pseudorandom generators which fools the
bias of a sum modulo M , and under this approach, there is no major difference
between primes and composites.

2.1 Small Bias Bit Generators

First we define the bias of a linear combination with coefficients a1, . . . , an ∈ ZM ,
given some distribution of X = (X1, . . . , Xn) ∈ {0, 1}n:

Definition 4. Let X = (X1, . . . , Xn) be a distribution over {0, 1}n, and
(a1, . . . , an) ∈ Zn

M a coefficient vector. We define the bias of a1, . . . , an according
to X to be

biasX(a1, .., an) = E

[
ω

∑
aiXi

]

where ω = e2πi/M is a primitive M -th root of unity.

Notice that the bias can in general be a complex number, of absolute value at
most 1.

Definition 5. We say a distribution X = (X1, . . . , Xn) over n bits is ε-bit-
biased against sums modulo M if for every coefficient vector (a1, . . . , an) ∈ Zn

M ,

|biasX(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε

Let G : {0, 1}r → {0, 1}n be a bit generator. We shorthand biasG(a1, . . . , an) for
biasG(Ur)(a1, . . . , an).
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Definition 6. G : {0, 1}r → {0, 1}n is an ε-bit-biased generator against sums
modulo M if the distribution G(Ur) is ε-bit-biased against sums modulo M . That
is, for every coefficient vector (a1, . . . , an),

|biasG(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε

The name “bit-biased” in the above definitions is meant to stress the difference
from standard ε-biased generators modulo M . Here we compare the bias under
the generator to the bias under uniformly selected bits (rather than uniformly
selected elements in ZM ).

We first reduce the problem of constructing pseudorandom modular genera-
tors to that of constructing ε-bit-biased modular generators.

Lemma 1. Let X = (X1, . . . , Xn) be an ε-bit-biased distribution against sums
modulo M . Then X is (ε

√
M)-pseudorandom against sums modulo M .

From now on, we focus on constructing ε-bit-biased generators. We will need to
differentiate two types of linear combinations, based on the number on non-zero
terms in them.

Definition 7. The weight of a coefficient vector (a1, . . . , an) ∈ Zn
M is the num-

ber of non-zero coefficients ai.

We will construct two generators: one fooling linear combination with small
weights, and the other fooling linear combinations with large weight. Our fi-
nal generator will be the be the bitwise-XOR of the two, where each is chosen
independently. The following lemma shows this will result in an ε-bit-biased
generator fooling all linear combinations.

Lemma 2. Fix a weight threshold W . Let X ′ = (X ′
1, . . . , X

′
n) be a distribution

over {0, 1}n such that for any vector coefficient a1, . . . , an of weight at most W ,

|biasX′(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε.

Let X ′′ = (X ′′
1 , . . . , X

′′
n) be a distribution over {0, 1}n such that for any vector

coefficient a1, . . . , an of weight at least W ,

|biasX′(a1, . . . , an)− biasUn(a1, . . . , an)| ≤ ε.

Let X be the bitwise-XOR of two independent copies of X ′ and X ′′, i.e.

X = X ′ ⊕X ′′ = (X ′
1 ⊕X ′′

1 , . . . , X
′
n ⊕X ′′

n).

Then X is ε-bit-biased against sums modulo M .

Convergence of the Bias for Large Weights. The bias of a coefficient
vector with respect to the uniform distribution can be large if there are only a
few non-zero elements in the vector. However, when the weight is large, the bias
is guaranteed to be small.
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Lemma 3. Let (a1, . . . , an) ∈ Zn
M be a coefficient vector of weight w. Then

|biasU (a1, . . . , an)| ≤
(

1− 1
M2

)w

In particular, for w ≥M2 log(1/ε) the bias is at most ε/2.

Notice that the above lemma holds for all coefficient vectors (a1, . . . , an) and
moduli M , even when M is composite and the coefficients are not relatively
prime to M . For example, when M = 6 and (a1, . . . , an) = (2, . . . , 2). In such
a case,

∑
i aiRi mod M does not converge to the uniform distribution on Zn

M ,
but the above lemma still says that the bias tends to zero.

A similar result holds if we consider the bias of a large weight coefficient vector
under a skewed distribution.

Lemma 4. Let (a1, . . . , an) ∈ Zn
M be a coefficient vector of weight w. Let

Z1, . . . , Zn ∈ {0, 1} be independently distributed with Pr[Zi = 0] = (1 + α)/2.
Then

|biasZ1,...,Zn(a1, . . . , an)| ≤
(

1−Ω

(
1− α2

M2

))w

In particular, for w ≥ cM2 log(1/ε)/(1− α2) for a sufficiently large constant c,
the bias is at most ε/2.

2.2 Hashing

We use hashing as one of the ingredients in our construction. A family (multi-
set) of functions H = {h : [n] → [k]} is called a family of hash functions, if a
randomly chosen function from the family behaves pseudorandomly under some
specific meaning. We consider a hash function H : [n] → [k] to be a random
variable depicting a randomly chosen function from the family. We say H can
be generated efficiently and explicitly using s random bits, if a random func-
tion in the family can be sampled by a randomized polynomial-time algorithm
using s random bits, and this function can be evaluated using a deterministic
polynomial-time algorithm.

Fix S ⊂ [n]. We define the j-th bucket of H with respect to S, to be the set
of elements of S mapped by H into j, i.e. {s ∈ S : H(s) = j} = H−1(j) ∩ S.

We will use the following three constructions of hash functions.

Lemma 5. Assume k is a power of 2. There exists a hash function H1 : [n]→ [k]
such that for every set S ⊂ [n] of size at most k log(1/ε), the probability that
H1 has a bucket H−1

1 (j) ∩ S with more than 100 log(1/ε) elements is at most
ε/100. Moreover, H1 can be generated explicitly and efficiently using O(log n +
log(k/ε) log(k log(1/ε))) random bits.

Lemma 6. Assume k is a power of 2. There exists a hash function H2 : [n]→ [k]
such that for every S ⊂ [n] of size at least 100k2, the probability that H2 has
an empty bucket H−1

2 (j) ∩ S is at most 1/100. Moreover, H2 can be generated
explicitly and efficiently using O(log n + log2 k) random bits.
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Lemma 7. There exists a hash function H3 : [n] → [16 log(1/ε)] such that for
every S ⊂ [n] of size at least 800k log(1/ε), the probability that H3 has at least
log(1/ε) bucketsH−1

3 (j)∩S with at most k elements is at most ε/100.Moreover, H3
can be generated explicitly and efficiently using O(log n+ log(1/ε) log(k log(1/ε)))
random bits.

The constructions of the hashes in Lemmas 5, 6 and 7 are based on almost t-wise
independence. A sequence of random variables X1, . . . , Xn ∈ {0, 1} is said to be
t-wise independent if any t random variables in it are independent. It is said to be
δ-almost t-wise independent if any t random variables in it are δ-close in statisti-
cal distance to independent. Explicit constructions of δ-almost t-wise independent
distributions are known, with nearly optimal seed length [NN, AGHP].

We identify a function h : [n] → [], where  is a power of 2, by a sequence
of n log  bits. We construct the hash functions by choosing the sequence of bits
according to an δ-almost t-wise independent distribution, where the values of δ
and t differ in the three constructions. The main tool in our analysis is a tail
bound on t-wise independent distributions, due to Bellare and Rompel [BR],
extended to the case of δ-almost t-wise distributions. We defer further details
to the full version of the paper.

2.3 Pseudorandom Generators for Small Space

An ingredient in our construction is the small-space pseudorandom generator of
Impagliazzo, Nisan, and Wigderson [INW]. We first define branching programs,
which form a non-uniform model of small-space computations.

Definition 8. A (read-once, oblivious) branching program of length n, degree
d and width w is a layered graph with n + 1 layers, where each layer contains
at most w vertices. ¿From each vertex in the i-th layer (1 ≤ i ≤ n) there are d
outgoint edges, numbered 0, 1, . . . , d− 1. A vertex in the first layer is designated
as the start vertex. Running the branching program on an input x1, . . . , xn ∈ [d]
is done by following the path according to the inputs, starting at the start vertex.
The output of the branching program is the vertex reached in the last layer.

Definition 9. A pseudorandom generator for branching programs of length n,
degree d and width w with error ε is a function G : {0, 1}r → [d]n, such that for
every branching program of length n, degree d and width w, the statistical dis-
tance between the output of the branching program when run on uniform element
in [d]n, and the output when run on G(Ur), is at most ε.

Lemma 8. [INW] There exists an explicit pseudorandom generators for branch-
ing programs of length n, degree d, width w with error ε, which uses r = O(log d+
(logn)(log(n/ε) + logw)) truly random bits.

3 Construction Using PRG for Low-Degree Polynomials

We present in this section a simple construction for prime powers M , based
on pseudorandom generators for low-degree polynomials. This construction is
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optimal for constant M , achieving a pseudorandom generator with seed length
OM (log(1/ε)) (where the constant depends exponentially on M).

Let W = Ω(M3 log 1/ε). We will construct two generators: one for coefficient
vectors of weight at most W , and one for coefficient vectors of weight at least W .
Lemma 2 shows that the bitwise-XOR of the two generators is a pseudorandom
generator for all coefficient vectors.

For small weights, we will use a distribution that is ε-almost W -wise inde-
pendent. Such a distribution trivially fools coefficient vectors of weight at most
W . It can be explicitly generated using O(log n + W + log 1/ε) = OM (logn/ε)
random bits [NN].

For large weights, let (a1, . . . , an) ∈ Zn
M be a coefficient vector of weight at

least W . Consider first the distribution of a1R1 + . . . anRn for independent and
uniform bits R1, . . . , Rn. By Lemma 3, |biasUn(a1, . . . , an)| < ε/2.

Consider now Zi ∈ {0, 1}, where Pr[Zi = 0] = c/M for some integer 1 ≤ c ≤
M − 1. By Lemma 4,

|biasZ1,...,Zn∼(c/M,1−c/M)(a1, . . . , an)| < ε/4,

given that W = Ω(M3 log(1/ε)) with a large enough hidden constant.
The benefit of using this skewed distribution, is that it can be simulated by

low-degree polynomials modulo M . Since we assume M is a prime power, there
is a polynomial g : ZM → ZM that maps some c elements of ZM to 0, and
the rest to 1. For example, if M = pk, the polynomial g(x) = x(p−1)pk−1

maps
elements divisible by p to 0, and the rest to 1. The degree of this g is at most
M − 1.

Let Z1, . . . , Zn ∈ {0, 1}n be generated by g(Y1), . . . , g(Yn), where Y1, . . . , Yn ∈
ZM are uniform and independent. We thus have:

|biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an)| < ε/4

Note that

biasZ1,...,Zn∼g(UZM
)n(a1, . . . , an) = EY1,...,Yn∈ZM [ωa1g(Y1)+···+ang(Yn)],

and that a1g(Y1) + · · ·+ ang(Yn) is a polynomial of degree deg(g) in Y1, . . . , Yn.
Thus we can derandomize the choice of Y1, . . . , Yn using a a pseudorandom gen-
erator for low-degree polynomials [BV, Lov, Vio]. We note the results in these
papers are stated for polynomials over prime finite fields, but they hold also for
polynomials over ZM , using small-bias spaces for Zn

M [Kat, AIK+, RSW, EGL+,
AM] as a building block.

Lemma 9. For every M,n, d ∈ N, there is an explicit generator G : {0, 1}r →
Zn

M such that for every polynomial f : Zn
M → ZM of degree at most d, the dis-

tribution of f(Zn
M ) and f(G(Ur)) are ε-close in statistical distance. The number

of random bits required is r = O(d2d log(M/ε) + d log(nM)).

We use the generator of Lemma 9 for error ε/4 and degree d = M − 1. We thus
get an explicit generator whose output distribution (Y ′

1 , . . . , Y
′
n) ∈ Zn

M , such that:

|E(Y ′
1 ,...,Y ′

n)[ωa1g(Y ′
1 )+...+ang(Y ′

n)]− EY1,...,Yn∈Zn
M

[ωa1g(Y1)+...+ang(Yn)]| < ε/4
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Thus, if we define our generator G′ to output g(Y ′
1), . . . , g(Y ′

n), we have
Y ′

1 , . . . , Y
′
n are the output of G, we get an explicit generator,such that

|biasG′(a1, . . . , an)| < ε/2. Hence, we get that

|biasG′(a1, . . . , an)− biasG(a1, . . . , an)| < ε

The randomness requirement of our generator comes directly from that of G,
which is O(M2M−1 log(M/ε) + M log(nM)) = OM (log(n/ε)) for constant M .

4 Construction Based on Pseudorandom Walk
Generators

4.1 A Generator for Small Sums

We construct an ε-bit-biased generator for weights at most W = 105M24 log(1/ε).
Let (a1, . . . , an) ∈ Zn

M be a coefficient vector of weight at most W .
The construction has three stages:

1. Partitioning the set of indices [n] into W buckets using the hash function H1.
Lemma 5 guarantees that with probability at least 1− ε/100, each bucket
contains at most O(log(1/ε)) non-zero coefficients.

2. For each bucket j, generate the Xi’s for i’s in the j’th bucket using an almost
O(log(1/ε))-wise independent distribution.

3. Use the INW generator given by Lemma 8 to generate the W seeds for the
O(log(1/ε))-wise independent distributions used for the different buckets.

Lemma 10. The above construction is an ε-bit-biased generator against coef-
ficient vectors of weight at most W , using O(log n + log(M/ε) log(M log(1/ε)))
random bits.

4.2 A Generator for Large Sums

In this section we construct an ε-bit-biased distribution for coefficient vectors of
weight at least W = 105M24 log(1/ε),

Recall that by Lemma 3, when the weight is large, the bias under the uniform
distribution is small. Thus, to prove that a distribution is ε-bit-biased against
large weight sums modulo M , it is enough to show that its bias is also small.
We construct our ε-bit-biased generator in three steps:

– G1: a generator that has bias at most 1− 1/M2 on every coefficient vector
which is not all zeros.

– G2: a generator that has bias at most 0.91 on every coefficient vector of
weight at least 100M24.

– G3: a generator that has bias at most ε/2 on every coefficient vector of weight
at least 105M24 log 1/ε.

The generator G3 will be our ε-bit-biased generator for large weights. We will
sketch the constructions of G1, G2 and G3, deferring full details and proofs to
the full version of the paper. The main ingredient in the construction will be a
derandomized expander product, which we now define and analyze.
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Derandomized Expander Products

Definition 10. We say an undirected graph H is a (2r, 2d, λ)-expander if H
has 2r vertices, it is regular of degree 2d and all eigenvalues but the first have
absolute value at most λ. We will identify the vertices of H with {0, 1}r, and the
edges exiting each vertex with {0, 1}d in some arbitrary way.

We will need explicit constructions of expanders, which can be obtained from
various known constructions.

Lemma 11. For some constant Q = 2q, there exist an efficient sequence Hk of
(Qk, Q, 1/100)-expanders.

Impagliazzo, Nisan, and Wigderson [INW] compose two pseudorandom genera-
tors using an expander as follows:

Definition 11. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators. Let H be
a (2r, 2d, λ)-expander. We define G′ ⊗H G′′ : {0, 1}r+d → {0, 1}2t to be the
concatenation (G′(x), G′′(y)), where x is a random vertex in H, and y is a
random neighbor of x in H.

Our main lemma relates the bias of G′ ⊗H G′′ to the biases of G′ and G′′:

Lemma 12. Let G′, G′′ : {0, 1}r → {0, 1}t be two bit generators and let H be a
(2r, 2d, λ)-expander. Let (a1, . . . , at),(b1, . . . , bt) be two coefficient vectors. Then:

|bias(G′⊗HG′′)(Ur+d)(a1, . . . , at, b1, . . . , bt)|
≤ fλ(|biasG′(Ur)(a1, . . . , at)|, |biasG′′(Ur)(b1, . . . , bt)|)

where fλ(x, y) = xy + λ
√

1− x2
√

1− y2.

The bounds of [RV] imply that if maxk∈ZM\0 |biasG′(Ur)(ka1, . . . , kat)| ≤ x
then maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(a1, . . . , at, a1, . . . , at)| ≤ x2 + λ · (1− x2) =
fλ(x, x). If also maxk∈ZM\0 |biasG′′(Ur)(kb1, . . . , kbt)| ≤ y, then [RV] proof can be
extended to show maxk∈ZM\0 |bias(G′⊗HG′)(Ur+d)(ka1, . . . , kat, kb1, . . . , kbt)| ≤
xy+λ · (1−xy), which is a worse than our bound f(x, y) in case x �= y and does
not suffice for our purposes. In addition, our result only requires a bound on the
bias for the specific coefficient vectors (a1, . . . , at), (b1, . . . , bt) of interest, and
not multiples of those coefficient vectors; this is crucial for our analysis when M
is composite (cf., discussion after Lemma 3). On the other hand, the results of
[RV] are more general in that they apply to generators G′,G′′ that correspond
to random walks on any expander, not just Cayley graphs of ZM .

Construction of G1. As in [INW, RV], we iterate the above product. Like
[RV] we can use the constant-degree expander graphs H1, H2, . . . of Lemma 11
(as opposed to the expanders of degree poly(nw/ε) used by [INW] to prove
Lemma 8). We define G′

	 : {0, 1}	q → {0, 1}2	−1q iteratively. G′
1 : {0, 1}q →

{0, 1}q is the identity mapping, and G′
	 = G′

	−1 ⊗H	−1 G′
	−1. We set G1 = G′

	

for the minimal  such that 2	−1q ≥ n. We have:
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Lemma 13. Let (a1, . . . , an) ∈ Zn
M be a coefficient vector, which is not all

zeros. Then:
biasG1(a1, . . . , an) ≤ 1− 1

M2 .

The seed-length of G1 is O(log n).

Construction of G2. We will construct G2 based on G1. Let (a1, . . . , an) be a
coefficient vector. Assume first a special case: Let n = k2s, and partition the set
of coefficients into 2s consecutive parts, each of size k. Assume that each part
contain at least one non-zero coefficient. By Lemma 13, applying G1 to each
part independently gives bias of at most 1− 1/M2. We use this to analyze the
bias of G1 when applied in the special case:

Lemma 14. Let n = k2s. Let a1, . . . , an be a coefficient vector such that for
every j ∈ [2s], weight(ajk+1, ajk+2, . . . , a(j+1)k) > 0. Then:

biasG1(a1, . . . , an) ≤ min
(

1−
(

9
8

)s 1
M2 , 0.9

)
.

In particular if s ≥ 12 logM , we have biasG1(a1, . . . , an) ≤ 0.9.

We now construct the generator G2 in three steps:

– Obliviously partition the coefficients, using the hash function H2. Re-order
the coefficients according to the partition. This guarantees that with proba-
bility at least 0.99, the conditions of Lemma 14 hold.

– Use G1 on the re-ordered coefficients.
– Return the pseudorandom bits back to the original order.

We have:

Lemma 15. Let (a1, . . . , an) ∈ Zn
M be a coefficient vector, of weight at least

100M24. Then:
biasG2(a1, . . . , an) ≤ 0.91.

The seed length of G2 is O(log n + log2 M).

Construction of G3. We use G2 to build our final ε-bit-biased generator G3.
The construction of G3 has three parts:

– Use H3 to partition the inputs to O(log(1/ε)) buckets, such that with proba-
bility 1− ε/100, most buckets contain at least 100M24 non-zero coefficients.

– Use G2 on each bucket.
– Combine the generators for the separate buckets using expander products,

with expanders of growing degree as in [RV].

Lemma 16. Let (a1, . . . , an) ∈ Zn
M be a coefficient vector, of weight at least

105M24 log(1/ε). Then:

biasG3(a1, . . . , an) ≤ ε/2.

The randomness required by G3 is O(log n + log(M/ε) log(M log(1/ε))).
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Abstract. Westudy theGlauberdynamicsMarkov chain fork-colourings
of trees with maximum degree Δ. For k ≥ 3, we show that the mixing time
on every tree is at most nO(1+Δ/(k log Δ)). This bound is tight up to the
constant factor in the exponent, as evidenced by the complete tree. Our
proof uses a weighted canonical paths analysis and a variation of the block
dynamics that exploits the differing relaxation times of blocks.

1 Introduction

The Glauber dynamics is a Markov chain over configurations of spin systems
on graphs, of which k-colourings is a special case. Such chains have generated a
great deal of interest for a variety of reasons. For one thing, counting k-colourings
is a fundamental #P-hard problem, and Markov chains that sample colourings
can be used to obtain an FPRAS to approximately count them. For another,
k-colourings are equivalent to the antiferromagnetic Potts model from statistical
physics, and there is a large body of research into this and similar models.

The Glauber dynamics has received a very large part of this interest (see eg.
[12]). It is particularly appealing because it is a natural and simple algorithm and
it underlies more substantial procedures such as block dynamics and systematic
scan (see [12,5]). It is also commonly used in practice, eg. in simulations, and is
closely related to other important areas such as infinite-volume Gibbs distribu-
tions [2,10,14]. It is generally conjectured that the Glauber dynamics mixes in
polynomial time on every graph of maximum degree Δ so long as k ≥ Δ + 2.
Vigoda [19] has shown polynomial mixing time for k ≥ 11

6 Δ.
The focus of this paper will be the performance of the Glauber dynamics on

trees. Of course, the task of sampling a k-colouring of a tree is not particularly
difficult. Nevertheless, people have studied the Glauber dynamics on trees as a
means of understanding its performance on more general graphs, and because
� This extended abstract presents two pieces of work. The first [13] proves the case

k ≥ 4 (amongst other things); it has been submitted to a journal. The second covers
the case k = 3; a full version is in progress.
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the performance on trees is particularly relevant to related areas such as Gibbs
distributions. Berger et al. [1] showed that the Glauber dynamics mixes in poly-
nomial time on complete trees of maximum degree Δ, and Martinelli et al. [14]
showed that this polynomial is O(n log n) so long as k ≥ Δ + 2.

Hayes, Vera and Vigoda [7] showed that it mixes in polytime for all planar
graphs if k ≥ CΔ/ logΔ for a particular constant C. They remarked that this
was best possible, up to the value of C: The chain takes superpolynomial time
on every tree when k = o(Δ/ logn), and hence trees with Δ ≥ nε provide lower-
bound examples for any constant ε. They asked whether such examples exist for
smaller values of Δ; in particular, is the mixing time superpolynomial for the
complete (Δ− 1)-ary tree with k = 3 and Δ = O(1)?

Proposition 2.5 of Berger et al. [1] shows that the mixing time is polynomial
for every constant k ≥ 3 and Δ ≥ 2 (in fact, it shows this for general particle
systems on trees for which the Glauber dynamics is ergodic, of which proper
colouring is a special case). Independently, Goldberg, Jerrum and Karpinski [6]
and Lucier and Molloy [13] showed a lower bound of nΩ(1+Δ/k log Δ) on the
mixing time for the case of the complete tree. Goldberg, Jerrum and Karpinski
also give an upper bound of nO(1+Δ/ log Δ) for complete trees and constant Δ.

Our main result is an upper bound for every tree. Our bound is asymptotically
tight, matching the lower bound up to a constant factor in the degree.

Theorem 1. For k ≥ 3, the Glauber dynamics on k-colourings of any tree with
maximum degree Δ mixes in time at most nO(1+Δ/k log Δ).

Thus, for every k ≥ 3 and Δ = O(1), we have polytime mixing on every tree.
But if Δ grows with n, no matter how slowly, then on some trees (eg. complete
trees) we require the Ω(Δ/ logΔ) colours for polytime mixing that Hayes, Vera
and Vigoda noted were required at Δ = nε.

Let us describe the difficulties that occur when k = o(Δ/ logΔ). If k ≥ Δ+ 2
then no vertex will ever be frozen; i.e. there will always be at least one colour
that it can switch to. (It also corresponds to the threshold for unique infinite-
volume Gibbs distributions[10].) Much of the difficulty in showing rapid mixing
for smaller values of k is in dealing with frozen variables. From this perspective,
k ≥ CΔ/ logΔ for C > 1 is another natural threshold: if the neighbours of
a vertex are assigned independently random colours then we expect that the
vertex will not be frozen. But if k < (1 − ε)Δ/ logΔ, then even in the steady
state distribution most degree Δ vertices on a tree will be frozen.

If the children of a vertex u change colours enough times, then eventually
u will become unfrozen and change colours. This allows vertices to unfreeze,
level by level, much like in the level dynamics of [7]. This is a slow process: the
number of times that the children of u have to change before u is unfrozen is
(roughly) exponential in Δ/k. However, this value is manageable for Δ = O(1):
the running time is a high degree polynomial rather than superpolynomial. For
balanced trees, it is very helpful that there are only O(log n) levels. For taller
trees, a more complicated approach is necessary.



The Glauber Dynamics for Colourings of Bounded Degree Trees 633

The proofs of our main theorems use a variation of the well-known block
dynamics which takes account of differing mixing times amongst the blocks. To
the best of our knowledge, this is the first time that this variation has been used.

In order to apply the block dynamics, we need to analyze the mixing time of
the Glauber dynamics on subtrees which have colours on their external bound-
aries fixed. This is equivalent to fixing the colours on some leaves of a tree.
Markov chains on trees with fixed leaves are well-studied. When every leaf is
fixed, Martinelli, Sinclair and Weitz [14] prove rapid mixing for k ≥ Δ + 2; at
k ≤ Δ+1 the chain might not be ergodic. In our setting, k may be much smaller
and so we must bound the number of fixed leaves. Theorem 1 extends to show:

Theorem 2. For any k ≥ 4, the Glauber dynamics on k-colourings of any tree
with maximum degree Δ and with the colours of any b ≤ k− 2 leaves fixed mixes
in time nO(1+b+Δ/k log Δ).

Due to space constraints, some proofs are omitted from this extended abstract
and may be found in the full versions of the papers.

Remark 1. Our arguments can be extended to other instances of the Glauber
dynamics, e.g. the Ising model. Details will appear in a full version of the paper.

2 Preliminaries

2.1 Graph Colourings

Let G = (V,E) be a finite graph, and let A = {0, 1, . . . , k − 1} be a set of k
colours. A proper colouring of G is an assignment of colours to vertices such
that no two vertices connected by an edge are assigned the same colour. Define
Ω ⊂ AV to be the set of proper colourings of G. Given σ ∈ Ω and x ∈ V , we
write σ(x) to mean the colour of vertex x in σ. Given S ⊆ V , we write σ(S) to
refer to the assignment of colours to S in σ; that is, σ(S) is σ restricted to S.

Given some S ⊆ V , Ωσ
S is the set of proper colourings of G that are fixed to

σ at all vertices not in S. We can think of Ωσ
S as being equivalent to the set

of proper colourings of S with boundary configuration σ. However, technically
speaking, an element of Ωσ

S will be viewed as a colouring of the entire graph G.

2.2 Glauber Dynamics

The Glauber dynamics for k-colourings of G is a Markov process over the space
Ω of proper colourings. We make use of the continuous-time Metropolis version
of the Glauber dynamics. (Standard methods, eg. [3,17], show that our theorems
also hold for the heat-bath version.) Informally, the behaviour of this process is
as follows: each vertex has a (rate 1) poisson clock. When the clock for vertex v
rings, a colour a is chosen uniformly from A. The colour of v is set to a if a does
not appear on any neighbour of v, otherwise the colouring remains unchanged.

More formally, recall that a continuous-time Markov process is defined by
generator L. We can think of L as a |Ω| × |Ω| matrix, whose non-diagonal
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entries represent the jump probabilities between colourings (and diagonal entries
are such that all rows sum to 0). For σ �= η, we will write K[σ → η] to denote
the (σ, η) entry in this matrix. Under this framework, the jump probabilities for
the Metropolis version of the Glauber dynamics are given by

K[σ → η] =

{
1
k if σ, η differ on exactly one vertex
0 otherwise

Note that this process is symmetric and, for k ≥ 3, ergodic on trees (see eg. [1]).
In many applications we are interested in the discrete analog of the Glauber

dynamics. We then think of K[σ → η] as the probability of moving from colour-
ing σ to colouring η, scaled by a factor of n. The mixing time for the discrete
chain is precisely n times the mixing time for the corresponding continuous
process (see eg. [1]), so our bounds on mixing time apply to the discrete setting.

We will additionally be interested in a variant of the Glauber dynamics, the
2-path Glauber dynamics, L2, that can also recolour pairs of adjacent vertices.
That is, on each step of L2, a connected subgraph S ⊆ T of size at most 2 is
chosen uniformly at random. If the initial configuration is η, then the subgraph
S is recoloured according to the uniform distribution on Ωη

S .

2.3 Mixing Time

Given probability distributions π and μ over space Ω, the total variation distance
between π and μ is defined as

||μ− π||TV =
1
2

∑

x∈Ω

|μ(x) − π(x)|.

Suppose L is the generator for an ergodic markov process over Ω. The sta-
tionary distribution for L is the unique measure π on Ω that satisfies πL = π. It
is well-known that the Glauber dynamics has uniform stationary distribution.

Given any σ ∈ Ω, denote by μt
σ the measure on Ω given by running the

process with generator L for time t starting from colouring σ. Then the mixing
time of the process, M(L), is defined as

M(L) = min
{
t : sup

σ∈Ω
||μt

σ − π||TV ≤
1
4

}
.

We define the spectral gap of L, Gap(L), to be the second-largest eigenvalue
of −L. The relaxation time of L, denoted τ(L), is defined as the inverse of the
spectral gap. We will use the following standard bound (see eg. [17]):

M(L) ≤ τ(L) log(|Ω|) ≤ (n log k)τ(L) since |Ω| ≤ kn. (1)

2.4 Colourings of Trees

Consider a (not necessarily complete) tree G = (V,E) with maximum degree Δ.
A subtree T of G is a connected induced subgraph of G. We shall write ∂T and
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∂T to mean the exterior and interior boundaries of T . That is, ∂T = {x ∈ V \T :
N(x) ∩ T �= ∅} and ∂T = {x ∈ T : N(x) ∩ ∂T �= ∅}. Note that for each x ∈ ∂T
there is a unique y ∈ ∂T adjacent to x.

The following simple Lemma analyzes the ergodicity of the Glauber dynamics
and 2-path Glauber dynamics on trees.

Lemma 1. Let T be a subtree of G and suppose k ≥ max{3, |∂T |+2}. Then the
Glauber dynamics is ergodic over Ωσ

T for all σ ∈ Ω. If additionally k = 3 and
|∂T | ≤ 2, the 2-path Glauber dynamics is also ergodic over Ωσ

T for all σ ∈ Ω.

3 Weighted Block Dynamics

In this section we present a generalization of the well-known block dynamics for
local spin systems. We prove the result for the Glauber dynamics acting on a
finite graph G = (V,E). Our statement of the block dynamics actually applies
to a more general setting, holding for all local update chains, including the 2-
path Glauber dynamics defined above. We avoid a statement in full generality
for succinctness. See [12] for a general treatment of local spin systems.

Suppose D = {V1, . . . , Vr} is a collection of subsets of V with V = ∪iVi. For
each 1 ≤ i ≤ r and σ ∈ Ω, let Lσ

Vi
be the generator for the Glauber dynamics

(or 2-path Glauber dynamics) restricted to Vi with boundary configuration σ.
In other words, colours can change only for nodes in Vi.

Suppose that Lσ
Vi

is ergodic for each i and σ. Let πσ
Vi

denote the stationary
distribution of Lσ

Vi
. For each i, define gi := infσ∈Ω Gap(Lσ

Vi
), the minimum spec-

tral gap for Lσ
Vi

over all choices of boundary configurations. The block dynamics
is a continuous-time Markov process with generator LD defined by

KD[σ → η] =

{
πσ

Vi
[η] if there exists i such that η ∈ Ωσ

Vi

0 otherwise.

Note that KD[σ → η] > 0 precisely when η and σ differ only within a single block
Vi. Informally, we think of the weighted block dynamics as having a poisson clock
of rate 1 for each block Vi. When clock i rings, the colouring of Vi is replaced
randomly according to πσ

Vi
, where σ is the previous colouring.

Using τVi = 1/gi to denote the maximum relaxation time of Lσ
Vi

over all
choices of boundary configurations, Proposition 3.4 of Martinelli [12] is:

Proposition 1. τ(LV ) ≤ τ(LD)× (max1≤i≤r τVi)× supx∈V |{i : x ∈ Vi}| .
We are now ready to define the weighted block dynamics corresponding to D.
This is a continuous-time Markov process whose generator L∗

D is given by

K∗
D[σ → η] =

{
giπ

σ
Vi

[η] for all η,i such that η ∈ Ωσ
Vi

0 otherwise.

The weighted block dynamics is similar to the block dynamics, but the transition
probabilities for block Vi are scaled by a factor of gi. The main result for this
section is the following variant of Proposition 1:
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Proposition 2. τ(LV ) ≤ τ(L∗
D)× supx∈V |{i : x ∈ Vi}|.

The proof of Proposition 2 is a simple modification to the proof of Proposition 1
[12]. It is worth noting the difference between Proposition 2 and the original block
dynamics, Proposition 1. In the original version, the block dynamics Markov
process can be thought of as having a poisson clock of rate g for each block,
where g is the minimum over all gi. In other words, each block is chosen with
the same rate, that being the worst case over all blocks. On the other hand, in the
modified version each block is chosen with the rate corresponding to that block.
The original version yields a simpler Markov process, but a looser bound on the
gap of the original process. In particular, applying the original block dynamics
to our main result yields a mixing time of nO(1+Δ/k), while the modified block
dynamics tightens the bound to nO(1+Δ/k log Δ) (see Remark 4).

We next show that the weighted block dynamics is equivalent to a related pro-
cess. Informally, we wish to “collapse” each block to its set of internal boundary
nodes. We will assign colours to these boundary nodes according to the proba-
bility such a boundary configuration would occur in the block dynamics. More
formally, suppose D = {V1, . . . , Vm} is a set of blocks of vertices of T . Let
B = ∪m

i=1∂Vi. That is, B contains all internal boundary nodes for the blocks in
D. Note B ∩ Vi = ∂Vi. We define a Markov process LB on ΩB, which simulates
the behaviour of LD restricted to the nodes in B. Given distribution π over ΩT ,
S ⊆ T , and η ∈ ΩS , write πT [η′ : η′(S) = η(S)] to denote

∑
η′:η′(S)=η(S) πT [η′],

the probability that the configuration of S agrees with η. Then LB is defined by

KB[σ → η] =

{
giπ

σ
Vi

[η′ : η′(∂Vi) = η(∂Vi)] if σ and η differ only on ∂Vi

0 otherwise.
(2)

In other words, η is chosen according to the probability that η is the configuration
on B after a step of the block dynamics. Our claim is that the relaxation times
of L∗

D and LB are the same; this is similar to Claim 2.9 due to Berger et al [1].

Proposition 3. τ(L∗
D) = τ(LB).

4 An Upper Bound for General Trees

We now begin our proof of Theorem 1. Our approach is to decompose a tree
into smaller subtrees, apply the block dynamics to the resulting subgraphs, and
then use induction to bound the mixing time of the entire tree. Implicitly, this
yields an iterative decomposition of the tree into smaller and smaller subtrees.
How should we decompose a tree? A first idea is to root the tree at a vertex v,
then take each subtree rooted at a child of v as a block (and v itself as a block of
size 1). A nice property of this decomposition is that each subtree has at most
one boundary node, adjacent to its root. In this case there will be h levels of
recursion in the induction, where h is the height of tree T , and we will obtain
a bound of the form ch, where c = c(Δ, k) is the mixing time for an instance of
the block dynamics. This method works for complete trees (and indeed was used
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by Berger et al. [1]) since they have logarithmic height. However, the height of
a general tree could be much greater, leading to a super-polynomial bound.

Instead, we will partition the tree in a manner that guarantees each block
has size at most half the size of the tree. This ensures that our recursion halts
after logarithmically many steps, and yields a polynomial mixing time. To obtain
such a partition, we choose a central node x and conceptually split the tree by
removing x, obtaining at most Δ subtrees plus {x}.

There are difficulties with the above approach that must be overcome. First, a
subtree T may have multiple boundary nodes, which complicates the behaviour
of the block dynamics. We therefore make our choice of x carefully, so that
boundaries are of size at most 2. Second, for non-complete trees we might have
blocks of vastly differing sizes, which makes a tight analysis of the block dynamics
more difficult. We therefore use the weighted version of the block dynamics.

In this section we describe our choice of blocks for the block dynamics. We then
show that the upper bound of Theorem 1 holds, given a bound on the relaxation
time of the block dynamics. The details of analyzing the block dynamics are
encapsulated in Lemma 3, which is proved in Section 4.1.

Let T be any tree with maximum degree Δ. Suppose |T | = n and |∂T | ≤ 2
(that is, T has at most two external boundary nodes). Let σ be a boundary
configuration for T . If k ≥ 4, then let L denote the Glauber dynamics on T
with k colours and boundary configuration σ. If k = 3, then take L to be the
2-path Glauber dynamics on T with boundary configuration σ. Either way, since
|∂T | ≤ 2, Lemma 1 implies that L is ergodic. Let τσ

T denote the relaxation time
for L. We wish to consider the maximum relaxation time over all boundary
configurations and trees of a certain size. To this end, we define

τT := max
σ∈Ω

τσ
T and τi(n) := max

T :|T |≤n, |∂T |≤i
τT .

We will prove Theorem 1 by showing the slightly stronger result that τ2(n) =
nO(1+Δ/k log Δ). We will show that, for some fixed constant c and some 2 ≤ i ≤ Δ,

τ2(n) ≤ ci2
(
k − 1
k − 2

)i+1

τ2 (�n/i�) . (3)

First let us show how (3) implies Theorem 1 when k ≥ 4. By induction on n, (3)
implies that τ2(n) ≤ nd(1+Δ/k log Δ) for some constant d (since we can assume k ≤
2Δ, as otherwise the result is known [7]). By (1), the mixing time of the Glauber
dynamics satisfies M(L) ≤ (n log k)τG ≤ (n log k)τ2(n) = nO(1+Δ/k log Δ) as
required. For k = 3, (3) implies that the 2-path Glauber dynamics mixes in time
nO(1+Δ/k log Δ). Theorem 1 then follows from Lemma 2 below.

Lemma 2. Let L1 denote the Glauber dynamics with k = 3 colours, and L2
denote the 2-path Glauber dynamics again with k = 3 colours. For any T with
|∂T | ≤ 1 and boundary configuration ξ, τ(Lξ

1) ≤ nO(Δ/ log Δ)τ(Lξ
2).

Proof (sketch). We wish to apply the comparison method of Diaconis and Saloff-
Coste [3]. We note that this application is not immediate, since a step of L2
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cannot always be simulated by a small number of steps of L1. We therefore
consider an intermediate process, which performs a cyclic shift of all colours of a
subtree of T in one step. Such a process can be used to simulate a step of L2. To
compare with L1, we simulate a rotation step by changing the colours of nodes
in a bottom-up fashion. If these changes are ordered carefully, one can simulate
a rotation of colours in O(n) steps of L1, where each step has a congestion
of nO(Δ/ log Δ). The term nO(Δ/ log Δ) derives from a bound on the number of
siblings of ancestors of a given node. Details are given in the full version.

We now turn to proving (3). The following Lemma will be our main tool.

Lemma 3. Suppose k ≥ 3 and let T be a subtree of a tree G with |∂T | ≤ 2
and let σ ∈ Ω be a boundary condition for T . Choose v ∈ T and let Dv =
{{v}, V1, . . . , Vt} be a partition of T into disjoint connected subtrees, where 1 ≤
t ≤ Δ. Suppose |∂Vi| ≤ 2 for each Vi. Then there exists constant c such that

τσ
T ≤ c max

1≤i≤t
i2

(
k − 1
k − 2

)i

τVi .

We prove Lemma 3 in Section 4.1. Let us show how it implies (3). We first
consider trees with boundaries of size one, then size two.

Lemma 4. For some 2 ≤ i ≤ Δ, we have τ1(n) ≤ ci2
(

k−1
k−2

)i

τ2 (�n/i�).

Proof. Suppose |∂T | ≤ 1. It is well-known that we can find a vertex x ∈ T such
that if Dx = {{x}, V1, . . . , Vt}, we will have |Vi| ≤ �n/2� for all 1 ≤ i ≤ t (see eg.
[11]). We will choose our indices so that |V1| ≥ |V2| ≥ . . . ≥ |Vt|. Since |∂T | ≤ 1,

we have |∂Vi| ≤ 2 for all i. By Lemma 3, τT ≤ ci2
(

k−1
k−2

)i

τVi for some 1 ≤ i ≤ t.
If i ≥ 2, we get τVi ≤ τ2(|Vi|) ≤ τ2(�n/i�), since the Vi are given by increasing

size. Thus τT ≤ ci2
(

k−1
k−2

)i

τ2 (�n/i�) for some 2 ≤ i ≤ t as required. If i = 1,

then we recall that |V1| ≤ �n/2� by our choice of x. Hence τT ≤ c
(

k−1
k−2

)
τV1 <

c(2)2
(

k−1
k−2

)2
τ2 (�n/2�) as required.

Proposition 4. For some 2 ≤ i ≤ Δ, τ2(n) ≤ c2i2
(

k−1
k−2

)i+1
τ2(�n/i�).

Proof. Let T be a subtree with |T | = n and |∂T | = 2, say ∂T = {z1, z2}. Choose
x as in Lemma 4, with x separating T into subtrees of size at most �n/2�. We
will call the unique path in G from z1 to z2 the boundary path for T . Suppose
x is on the boundary path for T . Let Dx = {{x}, V1, . . . , Vt} be a partition into
disjoint connected subtrees, indexed so that |V1| ≥ . . . ≥ |Vt|; note that |∂Vi| ≤ 2
for all i. We then apply Lemma 3 as in Lemma 4 and obtain the desired result.

Now suppose that x is not on the boundary path for T . Consider T to be rooted
at some r ∈ ∂T . Let y be the least ancestor of x that lies on the boundary path.
Consider Dy = {{y}, V1, . . . , Vt}. Since x separates T into subtrees of size at
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most �n/2�, in particular the subtree containing y must have size at most �n/2�.
This implies that the subtree separated by y that contains x must contain at
least �n/2� nodes, and is therefore V1, the largest subtree separated by y. Also,
|∂Vi| ≤ 2 for all i, since y is on the boundary path for T . Lemma 3 implies

τT ≤ ci2
(
k − 1
k − 2

)i

τVi

for some i. If i > 1 then we obtain the desired result since |Vi| ≤ �n/i�. If i = 1,
then since |V1| < n and |∂V1| = 1 ( by our choice of y), Lemma 4 implies

τT ≤ c

(
k − 1
k − 2

)
τ1(|V1|) ≤ c

(
k − 1
k − 2

)
τ1(n)

≤ c2i2
(
k − 1
k − 2

)i+1

τ2 (�n/i�) for some 2 ≤ i ≤ Δ.

We have now derived (3), completing the proof of Theorem 1.

4.1 Proof of Lemma 3

We now proceed with the proof of Lemma 3, which bounds the relaxation time
on a tree with respect to the relaxation times for subtrees. Our approach is to
use a canonical paths argument to bound the behaviour of the block dynamics.
Indeed, there is a simple canonical path to move between configurations σ and η:
modify the configuration of each Vi to an intermediate state so that v is free to
change colour to η(v), make that change to v, then set the configuration of each
Vi to η(Vi). The block dynamics paired with this path yields a bound on the
relaxation time. However, that bound is not tight enough to imply the mixing
rate we desire: it only implies a mixing time of nO(Δ). We therefore apply the
following sequence of improvements to the above approach.

1. We explicitly describe an intermediate configuration for the neighbours of
v, in order to balance congestion over all start and end configurations. This
improves the bound on the mixing time to nO(log Δ+log k+Δ/k).

2. Our path shifts between 3 different intermediate configurations to maximize
the dependency on the start and end configurations at each step. This im-
proves our bound to nO(log Δ+Δ/k).

3. We apply the weighted block dynamics, to differentiate between large and
small subtrees. We always change configurations of blocks in order of subtree
size. This improves our bound to nO(log Δ+Δ/k log Δ). See Remark 4.

4. We apply weights to our canonical path to discount the congestion on smaller
subtrees. The net effect is that the presence of many small subtrees does
not influence the congestion of our paths. This improves our bound to
nO(1+Δ/k log Δ). See Remark 3.
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The Block Dynamics. Recall the conditions of Lemma 3. Suppose k ≥ 3 and
let T be a tree with |∂T | ≤ 2 and let σ ∈ Ω be a boundary condition for T .
Choose v ∈ T and consider D = {{v}, V1, . . . , Vt}, where 1 ≤ t ≤ Δ. Suppose
we choose v so that |∂Vi| ≤ 2 for each Vi. We will think of T as being rooted at
v; then let ui denote the root of Vi (ie. the neighbour of v in Vi). Due to space
limitations, we prove Lemma 3 under the assumption that ui �∈ ∂T for all i. The
(simple) extension to remove this assumption is discussed at the conclusion of
the section; see Remark 2.

Let L∗
D be the generator for the weighted block dynamics corresponding to D

and boundary configuration σ. Let τσ
D denote the relaxation time of L∗

D. Since
no vertex lies in more than one block, Proposition 2 implies τσ

T ≤ τσ
D.

Next recall the definition of graph B and dynamics LB from Proposition 3.
In this context, we can view LB as a version of LD wherein each block is treated
like a single vertex. That is, B is a star with internal node v; we will refer to
u1, . . . , ut as the leaf nodes of B. When such a leaf node, say ui, is chosen by the
dynamics, its colour updates with probability corresponding to the probability of
seeing that colour as the root of Vi in LD. By Proposition 3, τ(Lσ

D) = τ(Lσ
B). It

is therefore sufficient to bound τ(Lσ
B). Note that this is true even for the special

case of k = 3, as Lσ
B depends only on the ergodicity of L (the 2-path Glauber

dynamics) and its stationary distribution, which is uniform. The following simple
Lemma bounds the transition probabilities of Lσ

B .

Lemma 5. Choose S ⊆ T with |∂S| ≤ 2 and boundary configuration ξ, and
suppose x ∈ ∂S. Choose c ∈ A and suppose there exists some η ∈ Ωξ

S with
η(x) = c. Then πξ

S [ω : ω(x) = c] ≥ 1/k.

Corollary 1. Suppose α, ω ∈ Ωσ
B, KB[α → ω] > 0, and α(ui) �= ω(ui). Then

KB[α→ ω] ≥ (kτσ
Vi

)−1.

Defininition of Intermediate Configurations. Choose two colourings α, η ∈
ΩB. Our goal is to define a sequence of steps of LB that begins in state α and
ends in state η. If α(v) = η(v) this sequence is simple: the colours of nodes
u1, . . . , ut are changed from α to η one at a time. If α(v) �= η(v), our strategy
is to first change the colours of u1, . . . , ut so that none have colour η(v), then
change the colour of v to η(v), and finally set the colours of the ui nodes to
match η. The obvious way to do this requires two “passes” of changes over the
leaf nodes, but this method generates too much congestion (defined below). We
therefore introduce a more complex path that uses three passes. We now define
the colours used in the intermediate configurations of this path.

If α(v) �= η(v) then for each 1 ≤ i ≤ t we will define three colours, ai, bi, and
ci, that depend on α and η. The first two colours are easy to define:

ai =

{
α(ui) if α(ui) �= η(v)
α(v) otherwise

bi =

{
η(ui) if η(ui) �= α(v)
η(v) otherwise

That is, (a1, . . . , at) are the colours of the children of v in α, with occurrences of
η(v) replaced with α(v). Note that our assumption that ui is not adjacent to the
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external boundary of T ensures that there exists a configuration in which ui has
colour ai. We define bi in the same way, but with the roles of α and η reversed.

The definition of colour ci is more involved. These will be the colours to
which we set the leaf nodes to allow v to change from α(v) to η(v). We will
apply a function f that will map the colours (α(u1), . . . , α(ut)) to a vector of
colours (c1, . . . , ct) such that for all i, ci �∈ {α(v), η(v)}. We want f to satisfy the
following balance property: for all 1 ≤ i ≤ t, writing x for (x1, . . . , xt),

#{x : (xj = α(uj) ∀j > i) ∧ (f(x)j = cj ∀j ≤ i)} ≤
⌈(

k − 1
k − 2

)i
⌉

. (4)

That is, for any 1 ≤ i ≤ t, if we are given c1, . . . , ci and α(ui+1), . . . , α(ut),

there are at most
⌈(

k−1
k−2

)i
⌉

possibilities for α(u1), . . . , α(ut). Such an f is guar-

anteed to exist; see Lucier and Molloy [13] for a construction.

The Path Definition. Let Γ be the transition graph over ΩG with (ω, β) ∈ Γ
if and only if KB[ω → β] > 0. We are now ready to define a path γ(α, η) of
transitions of Γ . If α(v) = η(v), our path simply changes the colour of each ui

from α(ui) to η(ui), one at a time. If α(v) �= η(v), we use the following path:

1. For each ui in increasing order: recolour from α(ui) to bi, then to ci.
2. Recolour v from α(v) to η(v).
3. For each ui in decreasing order: recolour from ci to η(ui), then to ai.
4. For each ui in increasing order: recolour from ai to η(ui).

The reader is encouraged to verify that all steps are valid transitions according
to Lσ

B. The number of changes to the colour of each ui seems excessive, but we
define our path this way to maintain an important property: each change is from
a colour derived from α to a colour derived from η, or vice-versa. This will be
important in our analysis of the path congestion, defined below.

Analysis of Weighted Path Congestion. We will now define the weighted
congestion of our choice of paths. For each (ω, β) ∈ Γ , we will define a weight
w(ω, β) > 0. Set w(ω, β) = 1 if ω and β differ on the colour of v, and set
w(ω, β) = i−2 if ω and β differ on the colour of vertex ui. We define the weight
of a path by w(γ(α, η)) =

∑
(ω,β)∈γ(α,η) w(ω, β). Then note that for all γ(α, η),

w(γ(α, η)) ≤ 1+5
∑t

i=1 i−2 < 1+5
(

π2

6

)
< 10. For each edge (ω, β) ∈ Γ , define

the weighted congestion of that edge, ρw(ω, β), as

ρw(ω, β) :=
1

w(ω, β)

⎛

⎝
∑

γ(α,η)�(ω,β)

π[α]π[η]w(γ(α, η))
π[ω]KB[ω → β]

⎞

⎠ .

The weighted congestion for our set of paths is ρw := supω,β ρw(ω, β). The
weighted canonical paths bound is τσ

D ≤ ρw. We note that this bound and its
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proof are implicit in [4] (see their Remark on page 38). The standard canonical
path bound sets w(ω, β) = 1 for all (ω, β) ∈ Γ . Our choice of a different weight
function will allow us to tighten the bound we obtain on τσ

D (see Remark 3).
Our result follows by bounding ρw(ω, β). Uniformity of π implies

ρw(ω, β) ≤ 10
(

1
w(ω, β)

× |{γ(α, η) % (ω, β)}| × 1
(k − 1)t+1KB[ω → β]

)
. (5)

We now consider cases depending on the nature of the transition (ω, β).

Case 1: ω and β differ on the colour of v. Note that w(ω, β) = 1. Also, from
the definition of LB, we have KB[ω → β] = infσ∈Ω gap(Lσ

{v})π
ω
{v}[φ : φ(v) =

β(v)]. But note that gap(Lσ
{v}) = 1 for all boundary conditions, and πω

{v} is the
uniform distribution over a set of at most k − 1 colours.We conclude

KB[ω → β] ≥ 1
k − 1

. (6)

Consider the number of (α, η) such that (ω, β) ∈ γ(α, η). This occurs precisely
when α(v) = ω(v), η(v) = β(v), and α(ui) = ω(ui) for all ui.

Consider the possibilities for η. Configuration β determines η(v), and there
are (k−1)t choices for η given η(v) (consider choosing the colours for u1, . . . , ut,
which cannot be η(v)). Now consider α: the colour α(v) is determined by ω,
as are (c1, . . . , ct). Thus by (4) there are at most &(k−1

k−2 )Δ' possibilities for
(α(u1), . . . , α(ut)), which determines α. Putting this together, the total number

of colourings α and η that satisfy (ω, β) ∈ γ(α, η) is at most (k− 1)t

⌈(
k−1
k−2

)t
⌉
.

Substituting this and (6) into (5), we conclude

ρw(ω, β) ≤ 10(1)(k − 1)t

⌈(
k − 1
k − 2

)t
⌉

k − 1
(k − 1)t+1 ≤ 20

(
k − 1
k − 2

)t

.

Case 2: ω and β differ on the colour of ui for some i. In this case,
w(γ(α, η)) = i−2. Also, since there exists a colouring of Vi in which ui has colour
β(ui) (recalling our assumption that ui �∈ ∂T ), Corollary 1 implies

KB[ω → β] ≥ (kτVi)
−1. (7)

How many paths in γ(α, η) use the transition (ω, β)? We consider subcases for
α and η. We give only one subcase here; the remaining 5 cases (which are very
similar) are omitted due to space constraints.

Subcase: α(v) �= η(v) and (ω, β) is the first change to ui in γ(α, η). That is,
(ω, β) is the first change in Step 1 of the canonical path description. In this case
we know α(v) = ω(v), α(uj) = ω(uj) for all j ≥ i, bi = β(ui), and cj = β(uj)
for all j < i. How many α,η satisfy these conditions?

There are at most k−1 possibilities for η(v), since η(v) �= α(v) = ω(v). Given
η(v), there are k−1 possibilities for η(uj) for each j �= i. Note that β determines
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bi, from which η(v) determines η(ui). Thus the total number of possibilities
for η is (k − 1)t. Next consider α. ω determines α(v) and also α(uj) for all
j ≥ i. Also, β determines cj for all j < i. By (4), the number of possibilities

for α(u1), . . . , α(ut) is at most
⌈(

k−1
k−2

)i−1
⌉
. The total number of α and η is

therefore at most
⌈(

k−1
k−2

)i−1
⌉

(k − 1)t. This completes the subcase.

Summing up over all subcases, we get that the total number of possibilities
for α and η, given that (ω, β) is a change in the colouring of ui, is at most

12
(

k−1
k−2

)i

(k − 1)t. Substituting this and (7) into (5), we have

ρw(ω, β) ≤ 120i2
(
k − 1
k − 2

)i

(k − 1)t

(
τVik

(k − 1)t+1

)
≤ 180i2

(
k − 1
k − 2

)i

τVi .

This concludes our case analysis. Cases 1 and 2 (and the fact that τVt ≥ 1)

imply ρw ≤ max1≤i≤t 180i2
(

k−1
k−2

)i

τVi . Applying the canonical paths bound and

Proposition 2 we conclude τσ
T ≤ τσ

D ≤ 180 max1≤i≤t i
2
(

k−1
k−2

)i

τVi as required.

Remark 2. Recall that in the analysis above we assumed that no ui was in ∂T .
We now sketch the method for removing this assumption; additional details
appear in the full version of this paper. We used the assumption to guarantee
that no leaf of B was adjacent to the boundary of T . We modify our selection
of blocks to maintain this property: we replace block {v} with a block R ⊆ T
that contains v and any neighbouring nodes in ∂T . Our new set of blocks D will
contain R and all subtrees separated by R. Then B will no longer be a star, but
rather a tree or forest with few internal nodes. We then bound the relaxation
time of LB as before, extending our set of canonical paths in the natural way.
The congestion analysis for this set of paths is similar to the original, and we
obtain the same result up to a constant factor.

Remark 3. We note the effect of using the weighted canonical paths bound. If
we had used the standard canonical paths bound, then we would replace the
factor of i2 in Lemma 3 by the maximum length of a path, which is 5Δ + 1.
However, this would lead to a bound of nO(log Δ+Δ/k log Δ) on the mixing time
of the Glauber dynamics, which is weaker than nO(1+Δ/k log Δ).

Remark 4. We also note the effect of using the weighted block dynamics. If we
had applied Proposition 1 instead of Proposition 2, the bound in (7) would
become KB[ω → β] ≥ (kτ)−1, where τ = maxi τVi . This would lead to a bound

of τσ
T ≤ ct2

(
k−1
k−2

)t

max1≤i≤t τVi for Lemma 3. With this modified Lemma, the

bound in (3) would become τ2(n) ≤ ct2
(

k−1
k−2

)t

τ2 (&n/2'), leading to a mixing

time bound of nO(1+Δ/k), which is weaker than nO(1+Δ/k log Δ).
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5 Open Problems

Our results raise questions about the Glauber dynamics on planar graphs of
bounded degree. Hayes, Vera and Vigoda [7] noted that when Δ ≥ nη for any
η > 0 then certain trees require k ≥ cΔ/ logΔ for polytime mixing, where c is
an absolute constant. The same is true for any Δ that grows with n [13]. But
for Δ = O(1), Theorem 1 shows that no trees require k > 3. Is there a constant
K such that for every k ≥ K and constant Δ, the Glauber dynamics mixes in
polytime on k-colourings of every planar graph with maximum degree Δ?

Another question is how far Theorem 2 can be extended. In other words, how
many leaves can we fix and still guarantee polytime mixing? It is easy to fix the
colours of k−1 neighbours of each of two adjacent vertices u, v so that the chain
is not ergodic, so the answer lies between k − 2 and 2k − 2.
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Abstract. We consider the problem of testing whether a Boolean function f :
{−1, 1}n → {−1, 1} is a ±1-weight halfspace, i.e. a function of the form
f(x) = sgn(w1x1 + w2x2 + · · · + wnxn) where the weights wi take values in
{−1, 1}. We show that the complexity of this problem is markedly different from
the problem of testing whether f is a general halfspace with arbitrary weights.
While the latter can be done with a number of queries that is independent of n
[7], to distinguish whether f is a ±1-weight halfspace versus ε-far from all such
halfspaces we prove that nonadaptive algorithms must make Ω(log n) queries.
We complement this lower bound with a sublinear upper bound showing that
O(

√
n·poly( 1

ε
)) queries suffice.

1 Introduction

A fundamental class in machine learning and complexity is the class of halfspaces, or
functions of the form f(x) = (w1x1 + w2x2 + · · · + wnxn − θ). Halfspaces are a
simple yet powerful class of functions, which for decades have played an important
role in fields such as complexity theory, optimization, and machine learning (see e.g.
[1, 5, 8, 9, 11, 12]).

Recently [7] brought attention to the problem of testing halfspaces. Given query
access to a function f : {−1, 1}n → {−1, 1}, the goal of an ε-testing algorithm is
to output YES if f is a halfspace and NO if it is ε-far (with respect to the uniform
distribution over inputs) from all halfspaces. Unlike a learning algorithm for halfspaces,
a testing algorithm is not required to output an approximation to f when it is close to a
halfspace. Thus, the testing problem can be viewed as a relaxation of the proper learning
problem (this is made formal in [4]). Correspondingly, [7] found that halfspaces can be
tested more efficiently than they can be learned. In particular, while Ω(n/ε) queries
are required to learn halfspaces to accuracy ε (this follows from e.g. [6]), [7] show that
ε-testing halfspaces only requires poly(1/ε) queries, independent of the dimension n.

In this work, we consider the problem of testing whether a function f belongs to a
natural subclass of halfspaces, the class of ±1-weight halfspaces. These are functions
of the form f(x) = sgn(w1x1 + w2x2 + · · · + wnxn) where the weights wi all take

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 646–657, 2009.
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values in {−1, 1}. Included in this class is the majority function on n variables, and
all 2n “reorientations” of majority, where some variables xi are replaced by −xi. Al-
ternatively, this can be viewed as the subclass of halfspaces where all variables have
the same amount of influence on the outcome of the function, but some variables get a
“positive” vote while others get a “negative” vote.

For the problem of testing ±1-weight halfspaces, we prove two main results:

1. Lower Bound. We show that any nonadaptive testing algorithm which distinguishes
±1-weight halfspaces from functions that are ε-far from±1-weight halfspaces must
make at least Ω(log n) many queries. By a standard transformation (see e.g. [3]),
this also implies an Ω(log logn) lower bound for adaptive algorithms. Taken to-
gether with [7], this shows that testing this natural subclass of halfspaces is more
query-intensive then testing the general class of all halfspaces.

2. Upper Bound. We give a nonadaptive algorithm making O(
√
n · poly(1/ε)) many

queries to f , which outputs (i) YES with probability at least 2/3 if f is a±1-weight
halfspace (ii) NO with probability at least 2/3 if f is ε-far from any ±1-weight
halfspace.

We note that it follows from [6] that learning the class of ±1-weight halfspaces
requires Ω(n/ε) queries. Thus, while some dependence on n is necessary for test-
ing, our upper bound shows testing ±1-weight halfspaces can still be done more
efficiently than learning.

Although we prove our results specifically for the case of halfspaces with all weights
±1, we remark that similar results can be obtained using our methods for other similar
subclasses of halfspaces such as {−1, 0, 1}-weight halfspaces (±1-weight halfspaces
where some variables are irrelevant).

Techniques. As is standard in property testing, our lower bound is proved using Yao’s
method. We define two distributions DY ES and DNO over functions, where a draw
from DY ES is a randomly chosen ±1-weight halfspace and a draw from DNO is a
halfspace whose coefficients are drawn uniformly from {+1,−1,+

√
3,−

√
3}. We

show that a random draw from DNO is with high probability Ω(1)-far from every
±1-weight halfspace, but that any set of o(log n) query strings cannot distinguish be-
tween a draw from DY ES and a draw from DNO.

Our upper bound is achieved by an algorithm which uniformly selects a small set
of variables and checks, for each selected variable xi, that the magnitude of the corre-
sponding singleton Fourier coefficient |f̂(i)| is close to to the right value. We show
that any function that passes this test with high probability must have its degree-1
Fourier coefficients very similar to those of some ±1-weight halfspace, and that any
function whose degree-1 Fourier coefficients have this property must be close to a
±1-weight halfspace. At a high level this approach is similar to some of what is done
in [7], but in the setting of the current paper this approach incurs a dependence on
n because of the level of accuracy that is required to adequately estimate the Fourier
coefficients.
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2 Notation and Preliminaries

Throughout this paper, unless otherwise noted f will denote a Boolean function of the
form f : {−1, 1}n → {−1, 1}. We say that two Boolean functions f and g are ε-far if
Prx[f(x) �= g(x)] > ε, where x is drawn from the uniform distribution on {−1, 1}n.

We say that a function f is unate if it is monotone increasing or monotone decreasing
as a function of variable xi for each i.

Fourier analysis. We will make use of standard Fourier analysis of Boolean functions.
The set of functions from the Boolean cube {−1, 1}n to R forms a 2n-dimensional
inner product space with inner product given by 〈f, g〉 = Ex[f(x)g(x)]. The set of
functions (χS)S⊆[n] defined by χS(x) =

∏
i∈S xi forms a complete orthonormal ba-

sis for this space. Given a function f : {−1, 1}n → R we define its Fourier coef-
ficients by f̂(S) = Ex[f(x)xS ], and we have that f(x) =

∑
S f̂(S)xS . We will be

particularly interested in f ’s degree-1 coefficients, i.e., f̂(S) for |S| = 1; for brevity
we will write these as f̂(i) rather than f̂({i}). Finally, we have Plancherel’s identity
〈f, g〉 =

∑
S f̂(S)ĝ(S), which has as a special case Parseval’s identity, Ex[f(x)2] =

∑
S f̂(S)2. It follows that for every f : {−1, 1}n → {−1, 1} we have

∑
S f̂(S)2 = 1.

Probability bounds. To prove our lower bound we will require the Berry-Esseen theo-
rem, a version of the Central Limit Theorem with error bounds (see e.g. [2]):

Theorem 1. Let (x) = c1x1 + · · · + cnxn be a linear form over the random ±1 bits
xi. Assume |ci| ≤ τ for all i and write σ =

√∑
c2i . Write F for the c.d.f. of (x)/σ;

i.e., F (t) = Pr[(x)/σ ≤ t]. Then for all t ∈ R,

|F (t)− Φ(t)| ≤ O(τ/σ) · 1
1 + |t|3 ,

where Φ denotes the c.d.f. of X , a standard Gaussian random variable. In particular, if
A ⊆ R is any interval then |Pr[(x)/σ ∈ A]− Pr[X ∈ A]| ≤ O(τ/σ).

A special case of this theorem, with a sharper constant, is also useful (the following can
be found in [10]):

Theorem 2. Let (x) and τ be as defined in Theorem 1. Then for any λ ≥ τ and any
θ ∈ R it holds that Pr[|(x)− θ| ≤ λ] ≤ 6λ/σ.

3 A Ω(log n) Lower Bound for Testing ±1-Weight Halfspaces

In this section we prove the following theorem:

Theorem 3. There is a fixed constant ε > 0 such that any nonadaptive ε-testing algo-
rithmA for the class of all±1-weight halfspaces must make at least (1/26) logn many
queries.
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To prove Theorem 3, we define two distributions DY ES and DNO over functions. The
“yes” distribution DY ES is uniform over all 2n ±1-weight halfspaces, i.e., a function
f drawn from DY ES is f(x) = sgn(r1x1 + · · · rnxn) where each ri is independently
and uniformly chosen to be ±1. The “no” distribution DNO is similarly a distribution
over halfspaces of the form f(x) = sgn(s1x1 + · · · snxn), but each si is independently
chosen to be ±

√
1/2 or±

√
3/2 each with probability 1/4.

To show that this approach yields a lower bound we must prove two things. First,
we must show that a function drawn from DNO is with high probability far from any
±1-weight halfspace. This is formalized in the following lemma:

Lemma 1. Let f be a random function drawn from DNO. With probability at least
1 − o(1) we have that f is ε-far from any ±1-weight halfspace, where ε > 0 is some
fixed constant independent of n.

Next, we must show that no algorithm making o(logn) queries can distinguish DY ES

and DNO. This is formalized in the following lemma:

Lemma 2. Fix any set x1, . . . , xq of q query strings from {−1, 1}n. Let D̃Y ES be the
distribution over {−1, 1}q obtained by drawing a random f from DY ES and evalu-
ating it on x1, . . . , xq . Let D̃NO be the distribution over {−1, 1}q obtained by draw-
ing a random f from DNO and evaluating it on x1, . . . , xq . If q = (1/26) logn then
‖D̃Y ES − D̃NO‖1 = o(1).

We prove Lemmas 1 and 2 in subsections 3.1 and 3.2 respectively. A standard argument
using Yao’s method (see e.g. Section 8 of [3]) implies that the lemmas taken together
prove Theorem 3.

3.1 Proof of Lemma 1

Let f be drawn from DNO, and let s1, . . . , sn denote the coefficients thus obtained. Let
T1 denote {i : |si| =

√
1/2} and T2 denote {i : |si| =

√
3/2}. We may assume that

both |T1| and |T2| lie in the range [n/2−
√
n logn, n/2+

√
n logn] since the probability

that this fails to hold is 1 − o(1). It will be slightly more convenient for us to view f as
sgn(

√
2(s1x1 + · · ·+snxn)), that is, such that all coefficients are of magnitude 1 or

√
3.

It is easy to see that the closest ±1-weight halfspace to f must have the same sign
pattern in its coefficients that f does. Thus we may assume without loss of generality
that f ’s coefficients are all +1 or +

√
3, and it suffices to show that f is far from the

majority function Maj(x) = sgn(x1 + · · ·+ xn).
Let Z be the set consisting of those z ∈ {−1, 1}T1 (i.e. assignments to the variables

in T1) which satisfy ST1 =
∑

i∈T1
zi ∈ [

√
n/2, 2

√
n/2]. Since we are assuming

that |T1| ≈ n/2, using Theorem 1, we have that |Z|/2|T1| = C1 ± o(1) for constant
C1 = Φ(2)− Φ(1) > 0.

Now fix any z ∈ Z , so
∑

i∈T1
zi is some value Vz ·

√
n/2 where Vz ∈ [1, 2]. There

are 2n−|T1| extensions of z to a full input z′ ∈ {−1, 1}n. Let CMaj(z) be the fraction of
those extensions which have Maj(z′) = −1; in other words, CMaj(z) is the fraction of
strings in {−1, 1}T2 which have

∑
i∈T2

zi < −Vz

√
n/2. By Theorem 1, this fraction
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is Φ(−Vz)± o(1). Let Cf (z) be the fraction of the 2n−|T1| extensions of z which have
f(z′) = −1. Since the variables in T2 all have coefficient

√
3, Cf (z) is the fraction of

strings in {−1, 1}T2 which have
∑

i∈T2
zi < −(Vz/

√
3)

√
n/2, which by Theorem 1

is Φ(−Vz/
√

3)± o(1).
There is some absolute constant c > 0 such that for all z ∈ Z , |Cf (z)−CMaj(z)| ≥

c. Thus, for a constant fraction of all possible assignments to the variables in T1, the
functions Maj and f disagree on a constant fraction of all possible extensions of the
assignment to all variables in T1 ∪ T2. Consequently, we have that Maj and f disagree
on a constant fraction of all assignments, and the lemma is proved. �

3.2 Proof of Lemma 2

For i = 1, . . . , n let Y i ∈ {−1, 1}q denote the vector of (x1
i , . . . , x

q
i ), that is, the vector

containing the values of the ith bits of each of the queries. Alternatively, if we view the
n-bit strings x1, . . . , xq as the rows of a q × n matrix, the strings Y 1, . . . , Y n are the
columns. If f(x) = sgn(a1x1 + · · ·+ anxn) is a halfspace, we write sgn(

∑n
i=1 aiY

i)
to denote (f(x1), . . . , f(xq)), the vector of outputs of f on x1, . . . , xq; note that the
value sgn(

∑n
i=1 aiY

i) is an element of {−1, 1}q.
Since the statistical distance between two distributions D1, D2 on a domain D of

size N is bounded by N · maxx∈D |D1(x) − D2(x)|, we have that the statistical dis-
tance ‖D̃Y ES − D̃NO‖1 is at most 2q ·maxQ∈{−1,1}q |Prr[sgn(

∑n
i=1 riY

i) = Q] −
Prs[sgn(

∑n
i=1 siY

i) = Q]|. So let us fix an arbitrary Q ∈ {−1, 1}q; it suffices for us
to bound ∣∣

∣
∣Pr

r
[sgn(

n∑

i=1
riY

i) = Q]− Pr
s

[sgn(
n∑

i=1
siY

i) = Q]
∣∣
∣
∣ . (1)

Let InQ denote the indicator random variable for the quadrant Q, i.e. given x ∈ Rq the
value of InQ(x) is 1 if x lies in the quadrant corresponding to Q and is 0 otherwise. We
have

(1) =
∣
∣
∣
∣Er[InQ(

n∑

i=1
riY

i)]−Es[InQ(
n∑

i=1
siY

i)]
∣
∣
∣
∣ (2)

We then note that since the Y i vectors are of length q, there are at most 2q possibilities
in {−1, 1}q for their values which we denote by Ỹ 1, . . . , Ỹ 2q

. We lump together those
vectors which are the same: for i = 1, . . . , 2q let ci denote the number of times that Ỹ i

occurs in Y 1, . . . , Y n. We then have that
∑n

i=1 riY
i =

∑2q

i=1 aiỸ
i where each ai is

an independent random variable which is a sum of ci independent±1 random variables
(the rj’s for those j that have Y j = Ỹ i). Similarly, we have

∑n
i=1 siY

i =
∑2q

i=1 biỸ
i

where each bi is an independent random variable which is a sum of ci independent
variables distributed as the sj’s (these are the sj’s for those j that have Y j = Ỹ i). We
thus can re-express (2) as

∣
∣
∣
∣Ea[InQ(

2q∑

i=1
aiỸ

i)]−Eb[InQ(
2q∑

i=1
biỸ

i)]
∣
∣
∣
∣ . (3)

Let us define a sequence of random variables that hybridize between
∑2q

i=1 aiỸ
i and

∑2q

i=1 biỸ
i. For 1 ≤  ≤ 2q + 1 define
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Z	 :=
∑

i<	

biỸ
i +

∑

i≥	

aiỸ
i, so Z1 =

2q∑

i=1
aiỸ

i and Z2q+1 =
2q∑

i=1
biỸ

i.

(4)
As is typical in hybrid arguments, by telescoping (3), we have that (3) equals

∣
∣
∣∣Ea,b[

2q∑

	=1
InQ(Z	) − InQ(Z	+1)]| =

∣
∣
∣∣

2q∑

	=1
Ea,b[InQ(Z	)− InQ(Z	+1)]

∣
∣
∣∣

=
∣
∣
∣
∣

2q∑

	=1
Ea,b[InQ(W	 + a	Ỹ

	)− InQ(W	 + b	Ỹ
	)]

∣
∣
∣
∣ (5)

where W	 :=
∑

i<	 biỸ
i +

∑
i>	 aiỸ

i. The RHS of (5) is at most

2q · max
	=1,...,2q

|Ea,b[InQ(W	 + a	Ỹ
	)− InQ(W	 + b	Ỹ

	)]|.

So let us fix an arbitrary ; we will bound
∣
∣
∣Ea,b[InQ(W	 + a	Ỹ

	)− InQ(W	 + b	Ỹ
	)]

∣
∣
∣ ≤ B (6)

(we will specify B later), and this gives that ‖D̃Y ES − D̃NO‖1 ≤ 4qB by the argu-
ments above. Before continuing further, it is useful to note that W	, a	, and b	 are all
independent from each other.

Bounding (6). Let N := (n/2q)1/3. Without loss of generality, we may assume that the
the ci’s are in monotone increasing order, that is c1 ≤ c2 ≤ . . . ≤ c2q . We consider two
cases depending on the value of c	. If c	 > N then we say that c	 is big, and otherwise
we say that c	 is small. Note that each ci is a nonnegative integer and c1+ · · ·+c2q = n,
so at least one ci must be big; in fact, we know that the largest value c2q is at least n/2q.

If c	 is big, we argue that a	 and b	 are distributed quite similarly, and thus for any
possible outcome of W	 the LHS of (6) must be small. If c	 is small, we consider some
k �=  for which ck is very big (we just saw that k = 2q is such a k) and show that
for any possible outcome of a	, b	 and all the other contributors to W	, the contribution
to W	 from this ck makes the LHS of (6) small (intuitively, the contribution of ck is so
large that it “swamps” the small difference that results from considering a	 versus b	).

Case 1: Bounding (6) when c	 is big, i.e. c	 > N. Fix any possible outcome for
W	 in (6). Note that the vector Ỹ 	 has all its coordinates ±1 and thus it is “skew” to
each of the axis-aligned hyperplanes defining quadrant Q. Since Q is convex, there is
some interval A (possibly half-infinite) of the real line such that for all t ∈ R we have
InQ(W	 + tỸ 	) = 1 if and only if t ∈ A. It follows that

|Pr
a	

[InQ(W	 +a	Ỹ
	) = 1]−Pr

b	

[InQ(W	 +b	Ỹ
	) = 1]| = |Pr[a	 ∈ A]−Pr[b	 ∈ A]|.

(7)
Now observe that as in Theorem 1, a	 and b	 are each sums of c	 many independent
zero-mean random variables (the rj’s and sj’s respectively) with the same total variance
σ =

√
c	 and with each |rj |, |sj | ≤ O(1). Applying Theorem 1 to both a	 and b	, we
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get that the RHS of (7) is at most O(1/
√
c	) = O(1/

√
N). Averaging the LHS of (7)

over the distribution of values for W	, it follows that if c	 is big then the LHS of (6) is
at most O(1/

√
N).

Case 2: Bounding (6) when c	 is small, i.e. c	 ≤ N. We first note that every possible
outcome for a	, b	 results in |a	 − b	| ≤ O(N). Let k = 2q and recall that ck ≥ n/2q.
Fix any possible outcome for a	, b	 and for all other aj , bj such that j �= k (so the
only “unfixed” randomess at this point is the choice of ak and bk). Let W ′

	 denote the
contribution to W	 from these 2q − 2 fixed aj , bj values, so W	 equals W ′

	 + akỸ
k

(since k > ). (Note that under this supposition there is actually no dependence on bk

now; the only randomness left is the choice of ak.)
We have

|Pr
ak

[InQ(W	 + a	Ỹ
	) = 1]− Pr

ak

[InQ(W	 + b	Ỹ
	) = 1]|

= |Pr
ak

[InQ(W ′
	 + a	Ỹ

	 + akỸ
k) = 1]− Pr

ak

[InQ(W ′
	 + b	Ỹ

	 + akỸ
k) = 1]| (8)

The RHS of (8) is at most

Pr
ak

[the vector W ′
	 + a	Ỹ

	 + akỸ
k has any coordinate of magnitude at most |a	 − b	|].

(9)
(If each coordinate of W ′

	 + a	Ỹ
	 + akỸ

k has magnitude greater than |a	 − b	|, then
each corresponding coordinate of W ′

	 + b	Ỹ
	 + akỸ

k must have the same sign, and so
such an outcome affects each of the probabilities in (8) in the same way – either both
points are in quadrant Q or both are not.) Since each coordinate of Ỹ k is of magnitude
1, by a union bound the probability (9) is at most q times

max
all intervals A of width 2|a	−b	|

Pr
ak

[ak ∈ A]. (10)

Now using the fact that |a	−b	| = O(N), the fact that ak is a sum of ck ≥ n/2q indepen-
dent ±1-valued variables, and Theorem 2, we have that (10) is at most O(N)/

√
n/2q.

So we have that (8) is at most O(Nq
√

2q)/
√
n. Averaging (8) over a suitable distribu-

tion of values for a1, b1, . . . , ak−1, bk−1, ak+1, bk+1, . . . , a2q , b2q , gives that the LHS
of (6) is at most O(Nq

√
2q)/

√
n.

So we have seen that whether c	 is big or small, the value of (6) is upper bounded by

max{O(1/
√
N), O(Nq

√
2q)/

√
n}.

Recalling that N = (n/2q)1/3, this equals O(q(2q/n)1/6), and thus ‖D̃Y ES −
D̃NO‖1 ≤ O(q213q/6/n1/6). Recalling that q = (1/26) logn, this equals
O((log n)/n1/12) = o(1), and Lemma 2 is proved.

4 A Sublinear Algorithm for Testing ±1-Weight Halfspaces

In this section we present the ±1-Weight Halfspace-Test algorithm, and prove the
following theorem:
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Theorem 4. For any 36/n < ε < 1/2 and any function f : {−1, 1}n → {−1, 1},

– if f is a ±1-weight halfspace, then ±1-Weight Halfspace-Test(f, ε) passes with
probability≥ 2/3,

– if f is ε-far from any ±1-weight halfspace, then ±1-Weight Halfspace-Test(f, ε)
rejects with probability≥ 2/3.

The query complexity of ±1-Weight Halfspace-Test(f, ε) is O(
√
n 1

ε6 log 1
ε ). The al-

gorithm is nonadaptive and has two-sided error.

The main tool underlying our algorithm is the following theorem, which says that if
most of f ’s degree-1 Fourier coefficients are almost as large as those of the majority
function, then f must be close to the majority function. Here we adopt the shorthand
Majn to denote the majority function on n variables, and M̂n to denote the value of the
degree-1 Fourier coefficients of Majn.

Theorem 5. Let f : {−1, 1}n → {−1, 1} be any Boolean function and let ε > 36/n.
Suppose that there is a subset of m ≥ (1 − ε)n variables i each of which satisfies
f̂(i) ≥ (1 − ε)M̂n. Then Pr[f(x) �= Majn(x)] ≤ 32

√
ε.

In the following subsections we prove Theorem 5 and then present our testing algorithm.

4.1 Proof of Theorem 5

Recall the following well-known lemma, whose proof serves as a warmup for Theorem 5:

Lemma 3. Every f : {−1, 1}n → {−1, 1} satisfies
∑n

i=1 |f̂(i)| ≤ nM̂n.

Proof. Let G(x) = sgn(f̂(1))x1 + · · · + sgn(f̂(n))xn and let g(x) be the ±1-weight
halfspace g(x) = sgn(G(x)). We have

n∑

i=1
|f̂(i)| = E[fG] ≤ E[|G|] = E[G(x)g(x)] =

n∑

i=1
M̂n,

where the first equality is Plancherel (using the fact that G is linear), the inequality is
because f is a ±1-valued function, the second equality is by definition of g and the
third equality is Plancherel again, observing that each ĝ(i) has magnitude M̂n and sign
sgn(f̂(i)). �
Proof of Theorem 5. For notational convenience, we assume that the variables whose
Fourier coefficients are “almost right” are x1, x2, ..., xm. Now define G(x) = x1 +
x2 + · · ·xn, so that Majn = sgn(G). We are interested in the difference between the
following two quantities:

E[|G(x)|] = E[G(x)Majn(x)] =
∑

S

Ĝ(S) ˆMajn(S) =
n∑

i=1

ˆMajn(i) = nM̂n,

E[G(x)f(x)] =
∑

S

Ĝ(S)f̂(S) =
n∑

i=1

f̂(i) =
m∑

i=1

f̂(i) +
n∑

i=m+1

f̂(i).
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The bottom quantity is broken into two summations. We can lower bound the first
summation by (1 − ε)2nM̂n ≥ (1 − 2ε)nM̂n. This is because the first summation
contains at least (1−ε)n terms, each of which is at least (1−ε)M̂n. Given this, Lemma 3
implies that the second summation is at least −2εnM̂n. Thus we have

E[G(x)f(x)] ≥ (1− 4ε)nM̂n

and hence
E[|G| −Gf ] ≤ 4εnM̂n ≤ 4ε

√
n (11)

where we used the fact (easily verified from Parseval’s equality) that M̂n ≤ 1√
n
.

Let p denote the fraction of points such that f �= sgn(G), i.e. f �= Majn. If p ≤
32
√
ε then we are done, so we assume p > 32

√
ε and obtain a contradiction. Since

ε ≥ 36/n, we have p ≥ 192/
√
n. Let k be such that

√
ε = (4k+2)/

√
n, so in particular

k ≥ 1. It is well known (by Stirling’s approximation) that each “layer” {x ∈ {−1, 1}n :
x1 + · · · + xn = } of the Boolean cube contains at most a 1√

n
fraction of {−1, 1}n,

and consequently at most a 2k+1√
n

fraction of points have |G(x)| ≤ 2k. It follows that

at least a p/2 fraction of points satisfy both |G(x)| > 2k and f(x) �= Majn(x). Since
|G(x)| −G(x)f(x) is at least 4k on each such point and |G(x)| − G(x)f(x) is never
negative, this implies that the LHS of (11) is at least

p

2
· 4k > (16

√
ε) · (4k) ≥ (16

√
ε)(2k + 1) = (16

√
ε) ·

√
εn

2
= 8ε

√
n,

but this contradicts (11). This proves the theorem. �

4.2 A Tester for ±1-Weight Halfspaces

Intuitively, our algorithm works by choosing a handful of random indices i ∈ [n], es-
timating the corresponding |f̂(i)| values (while checking unateness in these variables),
and checking that each estimate is almost as large as M̂n. The correctness of the al-
gorithm is based on the fact that if f is unate and most |f̂(i)| are large, then some
reorientation of f (that is, a replacement of some xi by −xi) will make most f̂(i)
large. A simple application of Theorem 5 then implies that the reorientation is close to
Majn, and therefore that f is close to a ±1-weight halfspace.

We start with some preliminary lemmas which will assist us in estimating |f̂(i)| for
functions that we expect to be unate.

Lemma 4

f̂(i) = Pr
x

[f(xi−) < f(xi+)]− Pr
x

[f(xi−) > f(xi+)]

where xi− and xi+ denote the bit-string x with the ith bit set to −1 or 1 respectively.

We refer to the first probability above as the positive influence of variable i and the
second probability as the negative influence of i. Each variable in a monotone function
has only positive influence. Each variable in a unate function has only positive influence
or negative influence, but not both.
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Proof. (of Lemma 4) First note that f̂(i) = Ex[f(x)xi], then

Ex[f(x)xi] = Pr
x

[f(x) = 1, xi = 1] + Pr
x

[f(x) = −1, xi = −1]

−Pr
x

[f(x) = −1, xi = 1]− Pr
x

[f(x) = 1, xi = −1].

Now group all x’s into pairs (xi−, xi+) that differ in the ith bit. If the value of f is the
same on both elements of a pair, then the total contribution of that pair to the expectation
is zero. On the other hand, if f(xi−) < f(xi+), then xi− and xi+ each add 1

2n to the
expectation, and if f(xi−) > f(xi+), then xi− and xi+ each subtract 1

2n . This yields
the desired result. �
Lemma 5. Let f be any Boolean function, i ∈ [n], and let |f̂(i)| = p. By drawing m =
3

pε2 · log 2
δ uniform random strings x ∈ {−1, 1}n, and querying f on the values f(xi+)

and f(xi−), with probability 1 − δ we either obtain an estimate of |f̂(i)| accurate to
within a multiplicative factor of (1 ± ε), or discover that f is not unate.

The idea of the proof is that if neither the positive influence nor the negative influence
is small, random sampling will discover that f is not unate. Otherwise, |f̂(i)| is well
approximated by either the positive or negative influence, and a standard multiplicative
form of the Chernoff bound shows that m samples suffice.

Proof. (of Lemma 5) Suppose first that both the positive influence and negative influ-
ence are at least εp

2 . Then the probability that we do not observe any pair with positive
influence is ≤ (1 − εp

2 )m ≤ e−εpm/2 = e−(3/2ε) log(2/δ) < δ
2 , and similarly for the

negative influence. Therefore, the probability that we observe at least some positive in-
fluence and some negative influence (and therefore discover that f is not unate) is at
least 1− 2 δ

2 = 1− δ.
Now consider the case when either the positive influence or the negative influence is

less than εp
2 . Without loss of generality, assume that the negative influence is less than

εp
2 . Then the positive influence is a good estimate of |f̂(i)|. In particular, the probability

that the estimate of the positive influence is not within (1 ± ε
2 )p of the true value (and

therefore the estimate of |f̂(i)| is not within (1 ± ε)p), is at most < 2e−mpε2/3 =
2e− log 2

δ = δ by the multiplicative Chernoff bound. So in this case, the probability that
the estimate we receive is accurate to within a multiplicative factor of (1± ε) is at least
1− δ. This concludes the proof. �
Now we are ready to present the algorithm and prove its correctness.

±1-Weight Halfspace-Test (inputs are ε > 0 and black-box access to f :
{−1, 1}n → {−1, 1})

1. Let ε′ = ( ε
32 )2.

2. Choose k = 1
ε′ ln 6 = O( 1

ε′ ) many random indices i ∈ {1, ..., n}.
3. For each i, estimate |f̂(i)|. Do this as in Lemma 5 by drawing m = 24 log 12k

M̂nε′2 =

O(
√

n
ε′2 log 1

ε′ ) random x’s and querying f(xi+) and f(xi−). If a violation of
unateness is found, reject.

4. Pass if and only if each estimate is larger than (1− ε′

2 )M̂n.
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Proof. (of Theorem 4) To prove that the test is correct, we need to show two things:
first that it passes functions which are ±1-weight halfspaces, and second that anything
it passes with high probability must be ε-close to a ±1-weight halfspace. To prove the
first, note that if f is a ±1-weight halfspace, the only possibility for rejection is if any
of the estimates of |f̂(i)| is less than (1− ε′

2 )M̂n. But applying lemma 5 (with p = M̂n,

ε = ε′

2 , δ = 1
6k ), the probability that a particular estimate is wrong is < 1

6k , and
therefore the probability that any estimate is wrong is < 1

6 . Thus the probability of
success is ≥ 5

6 .
The more difficult part is showing that any function which passes the test whp must

be close to a ±1-weight halfspace. To do this, note that if f passes the test whp then
it must be the case that for all but an ε′ fraction of variables, |f̂(i)| > (1 − ε′)M̂n. If
this is not the case, then Step 2 will choose a “bad” variable – one for which |f̂(i)| ≤
(1 − ε′)M̂n – with probability at least 5

6 . Now we would like to show that for any bad

variable i, the estimate of |f̂(i)| is likely to be less than (1 − ε′

2 )M̂n. Without loss of

generality, assume that |f̂(i)| = (1 − ε′)M̂n (if |f̂(i)| is less than that, then variable i

will be even less likely to pass step 3). Then note that it suffices to estimate |f̂(i)| to
within a multiplicative factor of (1 + ε

2 ) (since (1 + ε′

2 )(1 − ε′)M̂n < (1 − ε′

2 )M̂n).

Again using Lemma 5 (this time with p = (1 − ε′)M̂n, ε = ε′

2 , δ = 1
6k ), we see that

12
M̂ε′2(1−ε′)

log 12k < 24
M̂ε′2 log 12k samples suffice to achieve discover the variable is

bad with probability 1− 1
6k . The total probability of failure (the probability that we fail

to choose a bad variable, or that we mis-estimate one when we do) is thus < 1
6+ 1

6k < 1
3 .

The query complexity of the algorithm is O(km) = O(
√
n 1

ε′3 log 1
ε′ ) = O(

√
n ·

1
ε6 log 1

ε ). �

5 Conclusion

We have proven a lower bound showing that the complexity of testing ±1-weight
halfspaces is is at least Ω(log n) and an upper bound showing that it is at most
O(
√
n · poly(1

ε )). An open question is to close the gap between these bounds and
determine the exact dependence on n. One goal is to use some type of binary search
to get a poly log(n)-query adaptive testing algorithm; another is to improve our lower
bound to nΩ(1) for nonadaptive algorithms.
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Abstract. Small-bias, or ε-biased, spaces have found many applications
in complexity theory, coding theory, and derandomization. We gener-
alize the notion of small-bias spaces to the setting of group products.
Besides being natural, our extension captures some of the difficulties
in constructing pseudorandom generators for constant-width branching
programs - a longstanding open problem. We provide an efficient de-
terministic construction of small-bias spaces for solvable groups. Our
construction exploits the fact that solvable groups have nontrivial nor-
mal subgroups that are abelian and builds on the construction of Azar
et al. [AMN98] for abelian groups. For arbitrary finite groups, we give
an efficient deterministic construction achieving constant bias. We also
construct pseudorandom generators fooling linear functions mod p for
primes p.

1 Introduction

In this work we generalize the notion of small-bias spaces to the setting of group
products. Small-bias, or ε-biased, spaces over Z2 have been very useful in con-
structions of various pseudorandom objects. In particular, they are used in the
construction of almost k-wise independent spaces ([NN93]), which in turn have
many applications such as universal sets ([LY94], [BEG+94]). An application of
interest to us is that ε-biased spaces fool branching programs of width two. Can
we generalize this observation to fool constant-width branching programs? Our
extension of small-bias spaces to finite groups besides being interesting on its
own, could be useful for constructing pseudorandom generators for small width
branching programs. We address the problem of explicitly constructing such
small-bias spaces over finite groups, and give an efficient deterministic construc-
tion for solvable groups and a partial solution to the problem for arbitrary finite
groups.

Constructing pseudorandom generators for constant-width branching pro-
grams is a fundamental problem with many applications in circuit lower bounds
and derandomization. The problem is largely open even for strongly restricted
classes such as width three read-once permutation branching programs
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(ROPBPs) - branching programs where no variable is read more than once and
the edges between any two layers with the same label define a permutation.

Our notion of small-bias spaces is motivated by the following group-theoretic
formulation of the problem of constructing pseudorandom generators for
constant-width ROPBPs. Consider the edges between layers i and i + 1 of a
width-w ROPBP. By relabeling the nodes if necessary, we may assume that
the permutation corresponding to the edges labeled 0 is the identity permu-
tation. Then the permutation corresponding to the label 1 is some permuta-
tion gi ∈ Sw, where Sw denotes the permutation group on w elements. Under
this description, if the variable read by the branching program at layer i is xi,
the computation performed by the ROPBP can be written as follows: on input
(b1, . . . , bn) ∈ {0, 1}n, output gb1

1 gb2
2 . . . gbn

n ∈ Sw.
Thus, pseudorandom generators for width w ROPBPs are equivalent to func-

tions P : {0, 1}r → {0, 1}n that fool products of group elements in the sense
that, for all g1, . . . , gn ∈ Sw, the distributions of gb1

1 gb2
2 . . . gbn

n with b ∈u {0, 1}n

and g
P (y)1
1 g

P (y)2
2 . . . g

P (y)n
n with y ∈u {0, 1}r are ε-close in variation distance (for

a multi-set S, x ∈u S denotes a uniformly sampled element of S.).
In this work we consider a dual of the above problem. A PRG for ROPBPs

outputs Boolean exponents that fool products of arbitrary group elements raised
to these exponents. Our notion of ε-biased space outputs group elements that
fool products of these elements raised to arbitrary exponents. For convenience
we use the max norm instead of variation distance.

Definition 1.1. A multi-set S ⊆ Gn is an ε-biased space for products over G1

if for all b1, . . . , bn ∈ {0, 1} not all zero, and every h ∈ G
∣
∣∣
∣Prg∈uS [ gb1

1 gb2
2 . . . gbn

n = h ]− 1
|G|

∣
∣∣
∣ ≤ ε.

Remark. The definition can naturally be extended to non-binary exponents
b1, . . . , bn ∈ [|G|] and arbitrary permutations π : [n] → [n], where we look
at products of the form gb1

π(1)g
b2
π(2) · · · g

bn

π(n). In this abstract we only consider
the definition above for simplicity. Our results extend straightforwardly to ar-
bitrary permutations π as well as for non-binary powers bi ∈ [|G|], provided
gcd(b1, . . . , bn, |G|) = 1.

When the group G is the additive group Z2, the definition above coincides with
the usual notion of small-bias spaces over Z2 of Naor and Naor [NN93]. Besides
being a natural generalization of ε-biased spaces over Z2, the definition above
captures some of the difficulties involved in constructing PRGs for constant-
width ROPBPs, as PRGs for constant-width ROPBP imply ε-biased spaces for
finite groups.

Theorem 1.1. Given a PRG G : {0, 1}r → {0, 1}n for width w ROPBP with
error at most ε and running time t(n, ε), for every group H ⊆ Sw there exists
1 By convention, ε-biased spaces with no explicit mention of a group will correspond

to ε-biased spaces over Z2. For brevity, we will refer to small-bias spaces for products
over G simply as small-bias spaces over G.
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an algorithm with running time O(t(n, ε)2r) that outputs a 2ε-biased set over H
of size poly(2r, n, 1/ε).

We defer the proof to Section 6.

Remark. Azar et al. [AMN98] characterize ε-biased spaces for abelian groups in
terms of the characters of the group. One could generalize this definition to non-
abelian groups using the irreducible characters or irreducible representations of
the group. However, there does not seem to be any connection between such
objects and pseudorandom generators for constant-width read-once branching
programs, our original motivation. As far as we know, a notion of small-bias
spaces for finite groups in terms of irreducible representations is incomparable
to our notion of small-bias spaces and to pseudorandom generators for constant-
width ROPBPs.

By the probabilistic method it can be shown that for any group G, ε-biased
sets of size O(|G|n/ε2) exist. The constructions of Naor and Naor [NN93], Alon
et al. [AGHP92], Azar et al. [AMN98] give explicit polynomial size ε-biased
spaces for abelian groups. However, the problem seems to be considerably harder
for non-abelian groups and the techniques of [NN93, AGHP92, AMN98] fail
when the group is non-abelian. We prove the following results for general finite
groups.

Theorem 1.2. Let G be a finite group. There exists a deterministic algorithm
running in time poly(n) that takes as input n and outputs a set S of size poly(n)
that is α-biased over G, where α < 1/|G| is a fixed constant depending on |G|.

Theorem 1.3. Let G be a finite solvable group. There exists a deterministic
algorithm running in time poly(n, 1/ε) that takes as input n, ε and outputs a set
S of size poly(n, 1/ε) that is ε-biased over G.

Our constructions are based on the ε-biased spaces for abelian groups of Azar et
al. The construction for solvable groups is recursive and uses the fact that every
solvable group has a nontrivial normal subgroup that is abelian.

It is instructive to examine the dual objects - PRGs and ε-biases spaces - for
simpler families of constant-width ROPBPs such as the class of linear functions
modulo a prime p. For this case, our notion of ε-biased spaces with group G = Zp

corresponds to the usual notion of ε-biased spaces over Zp except that our notion
assumes the linear functions have {0, 1} coefficients. As far as we know there were
no previous efficient constructions of PRGs for the ROPBPs corresponding to
the family of linear functions modulo a prime p.

Definition 1.2. A function G : {0, 1}r → {0, 1}n is said to be an ε-pseudorandom
bit generator (ε-PBG) for sums mod p, if for every v ∈ Fn

p , v �= 0 and all a ∈ Fp

|Prz∈u{0,1}r [ 〈v, G(z)〉 = a ]− Prx∈u{0,1}n [ 〈v, x〉 = a ]| ≤ ε, (1)

where the inner product is taken over Fp.

Note that the existence of an efficient ε-PBG G : {0, 1}r → {0, 1}n with r =
O(log n + log(1/ε)) does not follow from the known constructions of ε-biased
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spaces for Zp. (The main difference is that ε-biased spaces mod p, by def-
inition, take values in Zp.) We present a construction of ε-PBG with r =
O(log n+log(1/ε)) based on pseudorandom generators for low-degree polynomi-
als obtained in [Vio08, Lov08, BV07]. Recently, independent of our work, Lovett
et al. [LRTV09] constructed ε-PBG with better dependence on the field size p
which also works for composite moduli. However, for our intended application,
the field size is always a constant and the construction below is optimal up to
constant factors.

Theorem 1.4. For all ε > 0 and primes p, there exists an efficient ε-PBG for
Fp, G : {0, 1}r → {0, 1}n, with seed length r = O(log n + log(1/ε)).

Observe that a pseudorandom generator for width 3 read-once branching pro-
grams gives both an ε-biased set over F2 and an ε-PBG for F3. Motivated in
part by our construction of ε-biased space for the permutation group on three
elements - S3, a solvable group - we conjecture that a weak converse of the above
statement holds.

Conjecture 1.5. Let G1 : {0, 1}r → S generate uniform samples from a ε-
biased set S ⊆ {0, 1}n. Let G2 : {0, 1}r → {0, 1}n be a ε-PBG for F3. Then,
the sum G1 ⊕ G2 : {0, 1}r × {0, 1}r → {0, 1}n defined by (G1 ⊕ G2)(z1, z2) =
G1(z1)⊕G2(z2) is pseudorandom with respect to width 3 read-once permutation
branching programs.

We also provide an example showing that the sum of two constant-bias spaces
over Z2 does not fool linear functions mod 3; in particular, the sum of two
constant-bias spaces does not fool width 3 ROPBPs. Reingold and Vadhan
[RV06] had asked whether the sum of two n−O(1)-biased spaces fools logspace.
Although we do not resolve the question, we remark that previously there was
no known example ruling out the possibility that the sum of two constant-biased
spaces gives a hitting set for logspace computations.

Theorem 1.6. There exists an absolute constant α, 0 < α < 1/2, such that for
all n > 0, there exists an α-biased space S ⊆ {0, 1}n, such that the dimension
of the span of S ⊕ S = {x⊕ y : x, y ∈ S} viewed as a subset of the vector space
Fn

3 is o(n). In particular, there exists a linear function f mod 3 such that f is
constant on S ⊕ S.

2 Previous Work and Preliminaries

We first present the notions of pseudorandom generators for small width branch-
ing programs and small-bias spaces over abelian groups.

Definition 2.1. A branching program (BP) of width w and length t ((w, t)-BP)
is a rooted, layered directed acyclic graph with t + 1 layers and at most w nodes
at each layer. The nodes (internal nodes) at a layer j ≤ t in the graph are
labeled with a variable xi and have two outgoing edges each, corresponding to
the two possible values of xi. The nodes at the last layer (leaf nodes) are labeled
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either 0 or 1. An instance x ∈ {0, 1}n defines a unique directed path through
the branching program starting at the root and following the outgoing arc from
internal nodes labeled by the value of the variable at that node. The output of the
branching program is the label of the leaf node reached by this path.

A branching program is read-once (ROBP) if no variable occurs more than
once on any path from the root to a leaf. A branching program is a permuta-
tion branching program (PBP) if any two edges pointing to the same node have
different labels.

Definition 2.2. A pseudorandom generator (PRG) for width w BPs with er-
ror ε is a function G : {0, 1}r → {0, 1}n such that for every (w, t)-BP A with
t = poly(n), A(Un) is ε-close to A(G(Ur)), where Uk denotes the uniform dis-
tribution on {0, 1}k. Pseudorandom generators for ROBP and read-once permu-
tation branching programs (ROPBP) are defined similarly.

Constructing pseudorandom generators for constant-width branching programs
with seed length r = O(log n + log(1/ε)) is a fundamental open problem. It is
known that ε-biased spaces over F2 fool width two branching programs ([SZ],
[BDVY08]). Generalizing this observation, Bogdanov et al. [BDVY08] show that
PRGs for degree k polynomials over GF(2) fool width two branching programs
that are allowed to read up to k bits at each internal node.

However, for width more than two little is known. In fact, by Barrington’s the-
orem ([Bar86]) constructing pseudorandom generators for width five branching
programs would imply lower bounds for the circuit class NC1 - a longstanding
open problem in complexity theory. In view of the above, focus on the problem
has been restricted to the class of read-once branching programs. Most known
PRGs for ROBPs are based on their relation to space-bounded computations;
nonuniform logspace computations in particular are equivalent to polynomial-
width ROBPs. Even for width three ROBPs, the best generators are the much
more powerful generators for logspace machines of Nisan [Nis92] and Impagliazzo
et al. [INW94] that achieve a seed-length of O(log2 n).

Constructing pseudorandom generators for logspace-computations with log-
arithmic seed-length is an outstanding open problem with progress being rela-
tively slow. The main nontrivial results are those of [AKS87], [NZ96], [RR99],
[Rei08]. In particular, Nisan and Zuckerman [NZ96] give a generator with seed-
length O(log n) for logspace machines that use polylogarithmic randomness and
Reingold [Rei08] gives a logspace algorithm for undirected st-connectivity.

The notion of ε-biased spaces over Z2 was introduced by Naor and Naor
[NN93] who also gave efficient constructions of such spaces of size poly(n, 1/ε).
Subsequently, Alon et al. [AGHP92] and Azar et al. [AMN98] obtained efficient
constructions that work for arbitrary abelian groups.

In our construction of ε-biased spaces over solvable groups we make use of
the fact that for abelian groups we can construct polynomial size sets that are
strongly ε-biased in the following sense.
Definition 2.3. Let N be an abelian group. A set S ⊆ Nn is strongly ε-biased
in N if, for all non-empty I = {i1, . . . , ik} ⊆ [n], automorphisms Φi1 , . . . , Φik

:
N → N , and h ∈ N ,
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∣∣
∣
∣Prg∈uS [ Φi1(gi1)Φi2 (gi2) · · ·Φik

(gik
) = h ]− 1

|N |

∣∣
∣
∣ ≤ ε.

To get intuition for the above definition, consider the case when N is the
cyclic group {1, ω, ω2, . . . , ωp−1} with ω a p’th root of unity for p prime. Then,
the automorphisms of N are functions of the form Φa : N → N defined by
Φa(ωx) = ωax mod p, for a �≡ 0 mod p. Thus strongly ε-biased spaces for N
in this case correspond to pseudorandom sets for linear functions mod p. The
explicit constructions of ε-biased spaces of Azar et al. are in fact strongly
ε-biased.

Theorem 2.1 ([AMN98]). For every d > 0, there exists a deterministic algo-
rithm running in time poly(n, 1/ε) that takes as input n, ε and outputs a set S
of size poly(n, 1/ε) that is strongly ε-biased in Zd.

Proof. Follows from the fact that small-bias spaces of Azar et al. fool the irre-
ducible characters of Zd. �

As a corollary we obtain strongly ε-biased sets for all abelian groups.

Corollary 2.2. For an abelian group N , there exists a deterministic algorithm
running in time poly(n, 1/ε) that takes as input n, ε and outputs a set S of size
poly(n, 1/ε) that is strongly ε-biased in N .

Proof. Follows from Theorem 2.1 and the fact that abelian groups are isomor-
phic to direct products of cyclic groups. �

3 Constant-Bias Spaces for Arbitrary Groups

We now give a construction that achieves constant bias and works for arbitrary
finite groups. We use the efficient constructions of small-bias spaces for Z|G|
given by Azar et al.

Proof of Theorem 1.2. Let S ⊆ [|G|]n be a 1/(2|G|)-biased space in Z|G| of
size poly(n) as given by setting ε = 1/(2|G|) in Theorem 2.1. Consider the set

T = {(gx1 , gx2 , . . . , gxn) : g ∈ G, (x1, . . . , xn) ∈ S}. (2)

We claim that the set T is α-biased for a constant α < 1/|G|. We will use the
following lemma.

Lemma 3.1. For any l with gcd(l, |G|) = 1, the random variable X = gl, where
g is uniform in G, is uniformly distributed in G.

Proof of lemma. The lemma follows from the fact that the map φ : G → G,
φ(x) = xl is bijective. For, if gl

1 = gl
2, then for a, b such that al + b|G| = 1,

g1 = g
al+b|G|
1 = g

al+b|G|
2 = g2. �
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Fix a sequence b1, . . . , bn ∈ {0, 1} and let I = {i1, . . . , ik} = {i : bi �= 0} ⊆ [n].
Let Y (g, x) = gxi1+...+xik . Note that for a fixed x = (x1, . . . , xn), if gcd(xi1 +
. . . + xik

, |G|) = 1, then by Lemma 3.1 Y (UG, x) is uniformly distributed in G,
where UG is the uniform distribution over G. Further, since x ∈u S and S is
1/2|G|-biased, Pr[gcd(xi1 + . . . + xik

, |G|) = 1] ≥ φ(|G|)(1/|G| − 1/2|G|), where
φ is the Euler function. Thus, for a fixed h ∈ G,

Prg∈uG,x∈uS [Y (g, x) = h] ≥ β

|G| ,

where β = φ(|G|)/2|G|. Therefore T is α-biased in G, where α = (1− β)/|G| <
1/|G| and |T | = |G||S| = poly(n). �

For abelian groups G, given a set that achieves constant bias, we can combine
several independent copies of the constant bias space to obtain a space with
smaller bias. The construction of ε-biased spaces in [NN93], at a high level, takes
this approach. However, for non-abelian groups it is not clear how to perform
such amplification. In particular, we ask the following question:

Question 3.2. Let T be α-biased over G. Define

T k = {(g11g21 · · · gk1, g12g22 · · · gk2, . . . , g1ng2n · · · gkn) : gi = (gi1, gi2, . . . , gin)
∈ T, 1 ≤ i ≤ k}.

Then, is T k ε-biased over G for ε = αΩ(k)?

For abelian groups the answer to the above question is yes, but the answer is
not clear for non-abelian groups. An answer to the question even for the specific
constant-bias space of equation (2) would be very interesting.

4 Small-Bias Spaces for Solvable Groups

We now address the case of solvable groups and prove Theorem 1.3. Our con-
struction of ε-biased spaces is recursive, by using the fact that every solvable
group G has a nontrivial abelian subgroup, say N , that is normal in the group
G. We use the known constructions of ε-biased spaces for the abelian group
N and combine them with an ε-biased space for the factor group G/N which
can be obtained recursively, since G/N is also solvable. We first present some
preliminaries from group theory.

Let N be a nontrivial normal subgroup of G and let H = G/N be the factor
group of N in G. Without loss of generality assume that the factor group H is
given by elements of G which are in distinct cosets of N in G. Note that the
representatives of H may not form a subgroup in G. In case of ambiguity in
group operations we will denote multiplication in H by ◦.

Lemma 4.1. Every g ∈ G can be written uniquely as g = nh, where n ∈ N and
h ∈ H.
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The following lemma gives us a way to separate a mixed product n1h1n2h2 . . .
nkhk with ni ∈ N , hi ∈ H into products of elements in N and H respectively.

Lemma 4.2. Let g1 = n1h1, g2 = n2h2, . . . , gk = nkhk, with ni ∈ N and hi ∈
H. Let h = (h1, . . . , hk). Then,

g1g2 . . . gk = (n1h1)(n2h2) . . . (nkhk) = n1 Φ1,h(n2)Φ2,h(n3) . . . Φk−1,h(nk) ah

(h1 ◦ h2 ◦ · · · ◦ hk),

where Φi,h : N → N is an automorphism for 1 ≤ i ≤ k−1, and ah ∈ N depends
only on h1, . . . , hk.

Proof. For 1 ≤ i ≤ k− 1, define Φi,h : N → N by Φi,h(n) = (h1 . . . hi) n (h1 . . .
hi)−1. Since N is a normal subgroup of G, Φi,h are automorphisms on N . Observe
that,

(n1h1)(n2h2) . . . (nkhk) = n1 Φ1,h(n2)Φ2,h(n3) . . . Φk−1,h(nk) (h1h2 . . . hk).

Further, h1h2 . . . hk and h1 ◦h2 ◦ · · · ◦hk (as elements of G) lie in the same coset
of N . Thus, there exists ah ∈ N depending only on h1, h2, . . . , hk such that
h1h2 . . . hk = ah (h1 ◦ h2 ◦ · · · ◦ hk). The lemma now follows. �

Definition 4.1. A group G is said to be solvable if there exist subgroups G =
N0 ⊃ N1 ⊃ N2 ⊃ . . . ⊃ Nr = (e) such that each Ni is normal in Ni−1 and
Ni−1/Ni is abelian.

The following properties of solvable groups can be found, for instance, in
[Her75].

Lemma 4.3 ([Her75]). Let G be a solvable group. Then,

– For a normal subgroup N ⊆ G, the factor group G/N is solvable.
– G contains a nontrivial abelian subgroup N which is normal in G.

Proof of Theorem 1.3. Let G be a solvable group. Let N be a nontrivial
abelian subgroup of G that is also normal and let H = G/N . Such an N is
guaranteed to exist by Lemma 4.3. As before, we assume that the factor group
H is given by elements of G which are in distinct cosets of N in G, with group
operation of H denoted by ◦.

Lemma 4.4. Let S ⊆ Nn be strongly ε-biased in N and let T ⊆ Hn be ε-biased
in H. Let

S × T = {(n1h1, . . . , nnhn) : (n1, . . . nn) ∈ S, (h1, h2, . . . , hn) ∈ T } ⊆ Gn. (3)

Then, the set S × T is ε-biased in G.

Given the above lemma, Theorem 1.3 follows from Corollary 2.2 and induction,
as H is a solvable group with |H | < |G|. We now calculate the exact dependence
of the size of the small-bias space on n, ε, |G|.
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For an abelian group N , and sufficiently large n, Azar et al. give a strongly
ε-biased set of size (cn/ε)2 log |N |, where c is an absolute constant independent of
n, ε, |N |. Combining the above with Lemma 4.4, for sufficiently large n, we get
an ε-biased space for G of size (cn/ε)2 log |G|. In general, using a similar estimate
of Azar et al. we get a bound of (n/ε)O(log |G|). �

Proof of Lemma 4.4. Fix b1, . . . , bn ∈ {0, 1} and let I = {i : bi �= 0}. Without
loss of generality, let I = {1, . . . , k}. For n = (n1, . . . , nn) ∈ Nn and h =
(h1, . . . , hn) ∈ Hn, let X(n, h) = (n1h1)(n2h2) . . . (nkhk). Using the notation of
Lemma 4.2, let X(n, h) = Yh(n)Z(h), where

Yh(n) = n1Φ1,h(n2)Φ2,h(n3) . . . Φk−1,h(nk)ah ∈ N,

Z(h) = (h1 ◦ h2 ◦ · · · ◦ hk) ∈ H.

Let g0 = n0h0 ∈ G with n0 ∈ N, h0 ∈ H . Then, for a fixed h, since S is
strongly ε-biased in N ,

|Prn∈uS [Yh(n) = n0]−
1
|N | | ≤ ε. (4)

Further, since T is ε-biased in H ,

|Prh∈uT [Z(h) = h0]−
1
|H | | ≤ ε. (5)

Therefore,

Prn∈uS,h∈uT [X(n, h) = g0] = Prn∈uS,h∈uT [Yh(n) = n0 ∧ Z(h) = h0]

=
∑

h:Z(h)=h0

1
|T |Prn∈uS [Yh(n) = n0]

≥
∑

h:Z(h)=h0

1
|T |

(
1
|N | − ε

)
from equation (4)

≥
(

1
|N | − ε

)
Prh∈uT [Z(h) = h0]

≥
(

1
|N | − ε

)(
1
|H | − ε

)
from equation (5)

≥ 1
|G| − β,

where β = ε/|N | + ε/|H | − ε2/|G|. As the above argument is applicable for all
non-empty I ⊆ [n], and β < ε for |N |, |H | ≥ 2, we get that S × T is ε-biased
in G. �

4.1 Width 3 Branching Programs

We now study the particular case of width 3 ROPBPs and present some moti-
vation for our Conjecture 1.5. Let S3 be the symmetric group on three elements
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{1, 2, 3}. Let a ∈ S3 be the transposition (12), b ∈ S3 be the cyclic-shift (123),
and e be the identity permutation. Then, the group N = {1, b, b2} ∼= Z3 is an
abelian subgroup of S3 that is also normal. The factor group S3/N is isomor-
phic to the group {1, a} ∼= Z2. Thus, for the special case of S3, the construction
presented in the previous section becomes,

S × T = {(ax1by1 , ax2by2, . . . , axnbyn) : (x1, . . . , xn) ∈ S, (y1, . . . , yn) ∈ T },

where S ⊆ {0, 1}n is ε-biased over Z2 and T ⊆ {0, 1, 2}n is ε-biased over Z3. This
provides some motivation for Conjecture 1.5. Also, note that any pseudorandom
generator for width three permutation branching programs must be pseudoran-
dom with respect to linear functions mod 2 and mod 3 - a property satisfied by
the generator of (1.5).

5 Pseudorandom Bit Generators for Modular Sums

As the existence of ε-PBG as required in Conjecture 1.5 does not follow di-
rectly from known constructions of ε-biased spaces, we provide an efficient con-
struction of ε-PBG of size poly(n, 1/ε) below. Our construction is based on the
pseudorandom-generators for low-degree polynomials obtained by Viola [Vio08].

Proof of Theorem 1.4. Suppose that p is an odd prime; for p = 2, ε-PBG can
be obtained from ε-biased spaces straightforwardly. For the rest of this section,
the arithmetic is over Fp and let ⊕ denote addition mod 2. To motivate our
construction, let v ∈ Fn

p , v �= 0. We consider two cases depending on the support
size of v. Let C be a large enough constant depending on p such that for all
v ∈ Fp with |support(v)| ≥ C log(1/ε)

|Prx∈u{0,1}n [ 〈v, x〉 = a ]− 1
p
| ≤ ε

3
, (6)

|Pry∈uFn
p

[
∑

i

viy
p−1
i = a ]− 1

p
| ≤ ε

3
.

Case 1. |support(v)| ≤ C log(1/ε). This case can be handled by a generator
H1 : {0, 1}r → {0, 1}n that generates a ε-almost C log(1/ε)-wise independent
distribution. Such generators with r = O(log n + log(1/ε)) are given in [NN93].

Case 2. |support(v)| > C log(1/ε). Let H : {0, 1}r → Fn
p be such that for every

degree at most p− 1 polynomial P : Fn
p → Fp, and a ∈ Fp,

|Prz∈u{0,1}r [ P (H(z)) = a ]− Pry∈uFn
p

[ P (y) = a ]| ≤ ε

3
. (7)

Pseudorandom generators for low-degree polynomials as above with r=O(log n
+ log(1/ε)) were given by Viola building on the works of Bogdanov and Viola
[BV07], Lovett [Lov08]. Define H2 : {0, 1}r :→ {0, 1}n by H2(z) = (yp−1

1 , . . . ,
yp−1

n ), where (y1, . . . , yn) = H(z). We will show that H2 satisfies the conditions
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of ε-PBG. For z ∈ {0, 1}r, we have 〈v, H2(z)〉 =
∑

i vi(H(z)i)p−1 = Pv(H(z)),
where Pv is the degree p−1 polynomial Pv(y) =

∑
i viy

p−1
i . Since H fools degree

p− 1 polynomials over Fn
p ,

|Prz∈u{0,1}r [ 〈v, H2(z)〉 = a ]− Pry∈uFn
p

[ Pv(y) = a ]| =

|Prz∈u{0,1}r [ Pv(H(z)) = a ]− Pry∈uFn
p

[ Pv(y) = a ]| ≤ ε

3
. (8)

From equations (6), (8), for v ∈ Fn
p with |support(v)| > C log(1/ε),

|Prz∈u{0,1}r [ 〈v, H2(z)〉 = a ]− 1
p
| ≤ 2ε

3
. (9)

We now combine the generators H1, H2 from the above cases to obtain (H1 ⊕
H2) : {0, 1}2r → {0, 1}n by defining (H1 ⊕ H2)(z1, z2) = H1(z1) ⊕ H2(z2).
Observe that for b, c ∈ {0, 1}, b⊕ c = b+ c+(p−2)bc mod p. Let v ∈ Fn

p , v �= 0.
Then,

〈v, (H1 ⊕H2)(z1, z2)〉 =
∑

i

vi(H1(z1)i ⊕H2(z2)i)

=
∑

i

vi (H1(z1)i + H2(z2)i + (p− 2)H1(z1)iH2(z2)i)

=
∑

i

viH1(z1)i +
∑

i

vi(1 + (p− 2)H1(z1)i)H2(z2)i

= 〈v, H1(z1)〉+ 〈v(z1), H2(z2)〉,

where v(z1) is the vector defined by v(z1)i = vi(1 + (p − 2)H1(z1)i). Note
that |support(v)| = |support(v(z1))|. Fix a ∈ Fp and suppose |support(v)| >
C log(1/ε). Then, for a fixed z1, by equation (9)

|Prz2∈u{0,1}r [ 〈v(z1), H2(z2)〉 = a ]− 1
p
| ≤ 2ε

3
.

Since z1, z2 are chosen independently, from the above equation and equation (6)

|Prz1,z2∈u{0,1}r [ 〈v, (H1 ⊕H2)(z1, z2)〉 = a ]− Prx∈u{0,1}n [ 〈v, x〉 = a ]| ≤ ε.

Proceeding similarly for the case |support(v)| ≤ C log(1/ε), it follows that the
above inequality holds for all v ∈ Fn

p , v �= 0 and a ∈ Fp. Hence H1 ⊕ H2 is an
ε-PBG for sums mod p. �

6 Relation to Branching Programs

Here we prove that PRGs for constant-width ROPBP imply small-bias spaces
for finite groups.
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Proof of Theorem (1.1). Assume we are given a PRG fooling constant-width
ROPBPs. We want to construct an ε-biased space for a group H . Since finite
groups are isomorphic to subgroups of the permutation groups, we can assume
H to be a subgroup of the symmetric group Sw on w elements. Let G : {0, 1}r →
{0, 1}n fool width w ROPBPs of length n with error at most ε. Consider the
following procedure for generating a sequence in Hn:

1. Generate ε-almost k-wise independent sequences (g1, . . . , gn), (h1, . . . , hn) ∈
Hn for k = O(log(1/ε)) to be chosen later. For k = O(log n), Naor and Naor
[NN93], Alon et al. [AGHP92] give efficient constructions of almost k-wise
independent sequences using O(log n + log(1/ε)) bits of randomness.

2. Choose y ∈u {0, 1}r and output the sequence (g1h
G(y)1
1 , g2h

G(y)2
2 , . . . ,

gnh
G(y)n
n ).

Note that the procedure uses O(log n + log(1/ε)) + r bits of randomness. We
will show that the multi-set of sequences generated by the above procedure is a
O(ε)-biased space over H . We need the following lemmas.

Let g1, . . . , gl ∈ H , for l to be chosen later. Call a sequence of group elements
(h1, . . . , hl) complete if {g1h

x1
1 g2h

x2
2 · · · glh

xl

l : xi ∈ {0, 1}} = H .

Lemma 6.1. There exists a constant c such that for l = c|H |2, a sequence
(h1, . . . , hl) ∈u H l is complete with probability at least 1/2.

Proof. For 1 ≤ i ≤ l, let Si = {g1h
x1
1 · · · gih

xi

i : xj ∈ {0, 1}} and let random
variable Xi = |Si|. Note that given h1, . . . , hi and a g ∈ H, g /∈ Si, Prhi+1∈uH [g ∈
Si+1 | h1, . . . , hi] = Xi/|H | ≥ 1/|H |. Thus, if Xi < |H |, then Pr[Xi+1 ≥ Xi +
1 | Xi] ≥ 1/|H |. The lemma now follows. �

Lemma 6.2. For any group H and 0 < ε < 1/2, there exists k = O(log(1/ε)),
such that for all t > k and g1, . . . , gt ∈ H the following holds. For (x1, . . . , xt) ∈u

{0, 1}t and h1, . . . , ht ∈ H chosen from an ε-almost k-wise independent distribu-
tion, the distribution of g1h

x1
1 g2h

x2
2 . . . gth

xt
t is 4ε-close in variation distance to

the uniform distribution on H.

Proof. Let l = c|H |2 be as in Lemma 6.1. Let k = 4ml log(1/ε), for m to
be chosen later, and partition (h1, . . . , hk) into 4m log(1/ε) blocks of length l
each. Then, by Lemma 6.1 and Chernoff bounds, for (h1, . . . , hk) ∈ Hk chosen
from an ε-almost k-wise independent distribution, with probability at least 1−
(exp(−Ω(m log(1/ε))+ ε), m log(1/ε) of the 4m log(1/ε) blocks will be complete
for g1, . . . , gk.

Note that for any complete sequence (hi1 , . . . , hil
) the distribution of gi1h

x1
i1

gi2h
x2
i2

. . . gil
hxl

il
for x ∈u {0, 1}l is at least α = (1 − 1/2l)-close in variation

distance to the uniform distribution on H . Thus, with probability at least 1 −
(exp(−Ω(m log(1/ε))) + ε), the distribution of g1h

x1
1 g2h

x2
2 . . . gth

xk

k with xi ∈u

{0, 1} is (1−1/2l)m log(1/ε)-close in variation distance to the uniform distribution
on H . The lemma now follows by taking m = O(2l). �
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Let k = O(log(1/ε)) be such that the above lemma holds for H . Let I =
{i1, . . . , it} = {i : bi �= 0} ⊆ [n]. We consider two cases.

(a) |I| = t ≤ k: Since, (g1, . . . , gn) is chosen independently of (h1, . . . , hn) and
is ε-almost k-wise independent, the distribution of gi1h

G(y)i1
i1

gi2h
G(y)i2
i2

. . .

gith
G(y)it

it
is ε-close to the uniform distribution on H .

(b) |I| > k: By relabeling the nodes according to the gi, we can construct a
width w ROPBP of length at most n such that on input x1, . . . , xt, . . . , xn

the output is gi1h
xi1
i1

gi2h
xi2
i2

. . . gith
xit

it
∈ Sw. Since G fools ROPBPs of width

w and length at most n, we have for every π ∈ Sw,
∣
∣
∣Pry∈u{0,1}r [gi1h

G(y)i1
i1

gi2h
G(y)i2
i2

. . . gith
G(y)it

it
= π]−

Prx∈u{0,1}n [i1h
xi1
i1

gi2h
xi2
i2

. . . gith
xit

it
= π]

∣
∣
∣ ≤ ε.

Now, by lemma 6.2 when x ∈u {0, 1}n, the distribution of gi1h
x1
i1

gi2h
x2
i2

. . .
gith

xt

it
is 4ε-close to the uniform distribution on H . Therefore, for every π ∈ Sw,

∣∣
∣
∣Pry∈u{0,1}r [gi1h

G(y)i1
i1

gi2h
G(y)i2
i2

. . . gith
G(y)it

it
= π]− 1

|H |

∣∣
∣
∣ ≤ 5ε.

It follows that the generator defined above is O(ε)-biased over H . �

7 Sum of Constant-Bias Spaces Does Not Fool Width 3

We now show that the sum of two constant-bias spaces over Z2 does not fool
width 3 branching programs and prove Theorem 1.6. We do this by constructing
a constant-bias space S over Z2 such that S ⊕ S is contained in a subspace of
dimension o(n) in Fn

3 . To avoid confusion in the following let + denote addition
in F3 and ⊕ denote addition in F2. For a set T ⊆ Fn

3 , let d3(T ) denote the
dimension of span of T in Fn

3 and let T $ T = {x$ y = (x1y1, . . . , xnyn) : x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ T }. We’ll use the following lemmas.

Lemma 7.1. For any T ⊆ Fn
3 , d3(T $ T ) ≤ d3(T )2.

Proof. If u1, . . . , uk ∈ Fn
3 span T , then the

(
k
2

)
+k vectors ui$uj span T $T . �

Lemma 7.2. Let T ⊆ {0, 1}n. Then d3(T ⊕ T ) ≤ 2d3(T ) + d3(T )2.

Proof. Observe that for x, y ∈ {0, 1}, x⊕y = x+y+xy. Therefore the dimension
of span of T1⊕T2 is at most the dimension of span of T +T +T $T . The lemma
now follows from Lemma 7.1. �

Proof of Theorem 1.6. Let n =
(
d
5

)
. We will denote vectors x ∈ Fn

3 , by
(xI)I∈C , where C =

([d]
5

)
is the collection of subsets of [d] of size 5. Let p : F5

3 → F3
be the degree two multi-variate polynomial defined by

p(y1, y2, y3, y4, y5) = (y1 + y2 + y3 + y4 + y5)2.
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Let q : F5
2 → F2 be the degree five multi-variate polynomial defined by

q(y1, y2, y3, y4, y5) =
⊕

i

yi ⊕
⊕

i�=j

yiyj ⊕
⊕

i,j,k,l distinct

yiyjykyl ⊕ y1y2y3y4y5.

Our construction is based on the observation - which can be verified by direct
computation - that evaluated over the set {0, 1}5 the polynomials p and q are
identical. That is, for all (y1, . . . , y5) ∈ {0, 1}5, p(y1, . . . , y5) = q(y1, . . . , y5).
Now, let

S = {(p(yi1 , yi2 , yi3 , yi4 , yi5)){i1,i2,i3,i4,i5}∈C : (y1, . . . , yd) ∈ {0, 1}d}.

Let T = {(yi1 +yi2 +yi3 +yi4 +yi5){i1,i2,i3,i4,i5}∈C : (y1, . . . , yd) ∈ {0, 1}d}. Now,
d3(T ) ≤ d and S ⊆ T $ T . Therefore, by Lemma 7.1 d3(S) ≤ d2. However, the
dimension of the span of S viewed as a subset of Fn

2 is n =
(
d
5

)
. In fact, for any

non-zero α ∈ Fn
2 , {〈α, x〉 : x ∈ S} = {qα(y) : y ∈ Fd

2}, where qα : Fd
2 → F2 is a

non-constant polynomial of degree 5. For,

qα(y) =
∑

I∈C
αI

∏

i∈I

yi + Rα(y),

where Rα is a degree at most four polynomial. Since α �= 0, qα has degree five.
Using the fact that the minimum distance of the Reed Muller code of degree 5
over F2 is 1/32, we get that for a ∈ {0, 1},

Prx∈uS [〈α, x〉 = a] = Pry∈uFd
2
[ qα(y) = a ] ≤ 31

32
.

Thus, S is ε-biased over F2 for ε = 15/32. Further, from Lemma 7.2 d3(S⊕S) ≤
2d2 + d4 = o(n). �
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Abstract. Recently, Hazan and Krauthgamer showed [12] that if, for a
fixed small ε, an ε-best ε-approximate Nash equilibrium can be found in
polynomial time in two-player games, then it is also possible to find a
planted clique in Gn,1/2 of size C log n, where C is a large fixed constant
independent of ε. In this paper, we extend their result to show that if an
ε-best ε-approximate equilibrium can be efficiently found for arbitrarily
small ε > 0, then one can detect the presence of a planted clique of size
(2+ δ) log n in Gn,1/2 in polynomial time for arbitrarily small δ > 0. Our
result is optimal in the sense that graphs in Gn,1/2 have cliques of size
(2 − o(1)) log n with high probability.

1 Introduction

The computational complexity of finding a Nash equilibrium in a given game has
been the focus of extensive research in recent years: The problem of finding a best
Nash equilibrium (i.e., an equilibrium that maximizes the sum of the expected
payoffs) in a two-player game has been shown to be NP-hard by Gilboa and
Zemel [9] in 1989. The easier problem of computing an arbitrary equilibrium in
a finite two-player game was shown to be PPAD-complete by Chen et al [4] and
Daskalakis et al [6].

Given these results, it is unlikely that Nash equilibria can be computed in
polynomial time. However, some positive results show that Nash equilibria can
at least to some extent be approximated. The most recent result, following ex-
tensive work in the area, provides a polynomial time algorithm that computes
a 0.3393-equilibrium [15]. Another algorithm due to Lipton et al computes an
ε-equilibrium in quasi-polynomial time N log N/ε2

, where N ×N is the dimension
of the game matrix. The latter result also extends to the case of an ε-equilibrium
that maximizes the sum of payoffs.

Having a quasi-polynomial time approximation algorithm probably means
that finding ε-equilibria is not NP-hard. It is however still not known whether
the problem has a polynomial time approximation scheme.

Recently, Hazan and Krauthgamer [12] showed that for sufficiently small yet
constant ε the problem of computing an ε-equilibrium whose sum of payoffs is
off by at most ε from the best Nash equilibrium (for short, we call this problem

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 673–685, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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ε-best ε-equilibrium) is at least as hard as finding a planted k-clique in the
random graph Gn,1/2, where k = c logn 1, and c ≈ 106 is a fixed large constant
(by “hard” we mean the standard notion of polynomial – maybe randomized –
reductions). The planted k-clique problem consists of finding a clique of size k
that was planted into an otherwise random graph with density 1/2. This problem
is a well-known notoriously hard combinatorial problem.

– Despite considerable efforts, the currently best known efficient algorithm to
solve the planted clique problem [2] needs a clique size of k = Ω(

√
n).

– The planted k-clique problem is (for certain values of k) related to the as-
sumption that refuting low-density 3CNF formulas is hard on the average.
This fact was used by Feige [7] to derive constant-factor hardness of approx-
imation for several well-known problems.

1.1 Our Contribution

In this paper, we strengthen the result of Hazan and Krauthgamer in the fol-
lowing sense: We show that if a polynomial time approximation scheme exists
that finds for any ε > 0 an ε-best ε-equilibrium, then for any δ > 0 there is a
polynomial time algorithm that detects the presence of a planted clique of size
(2 + δ) logn with high probability (whp for short).

Note that random graphs contain a clique of size (2 − o(1)) logn. Hence the
2 logn threshold that we achieve is a natural boundary implied by the problem
statement. See in this context also the work of Juels and Peinado [11] for the
planted clique problem when k < 2 logn.

More formally, our main result can be stated as follows.

Theorem 1. There exists a positive constant ε0 so that if there is a polynomial
time algorithm that finds in a two-player game the ε-best ε-equilibrium, 0 < ε ≤
ε0, then there is a probabilistic polynomial time algorithm that distinguishes whp
between two graphs: G ∈ Gn,1/2 and H, an arbitrary graph on n nodes with a
clique of size (2 + 28ε1/8) logn.

As explained in Section 3.3, our analysis gives ε0 = 32−8, although this estimate
is somewhat loose. The probability in the statement is taken over the choices of
the algorithm and the distribution Gn,1/2.

Our result in particular implies that finding an ε-best ε-equilibrium is at least
as hard as distinguishing between Gn,1/2 and Gn,1/2,k (i.e., Gn,1/2 with a planted
k-clique) for k = (2 + 28ε1/8) logn.

Let us also briefly mention that our analysis implies that for every fixed
δ > 0, given an efficient algorithm for finding an ε-best ε-equilibrium, one can
efficiently find a planted clique of size (3 + δ) log n in Gn,1/2. For details, see
section 4.

In the next section we describe our technical contribution.

1 In this paper, log denotes the base-2 logarithm.
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1.2 Techniques

The main idea of the reduction, as put out by [12], is to incorporate the graph
with the planted clique into a game so that the ε-best ε-equilibrium reflects in
some useful sense that clique.

More formally, let G be a simple graph with self-loops added, and let A be its
adjacency matrix. Construct the following game matrices R and C, composed
of four blocks. C = RT so let us just describe R.

R =
(

A −BT

B 0

)

Here, 0 stands for the all-0 matrix. The matrix B is constructed as follows. The
constants t ≤ 2, p and s, whose values depend on ε, are chosen as in the proof of
Proposition 1. B is an ns × n matrix, each entry of which is a scaled Bernoulli
random variable Bi,j which takes the value t with probability p and 0 otherwise.

The difference from the construction in [12] is our different choice of param-
eters for the matrix B. The heart of the analysis outlined in [12] lies in proving
that if a clique of size c1 logn is planted in Gn,1/2 then a graph of size c2 logn,
c2 ≤ c1, with edge-density greater than, say, 0.55 can be recovered using the
above construction and the ε-best ε-equilibrium which one assumes can be found
efficiently. Since this graph is denser than what one expects in Gn,1/2, and the
constant c2 is sufficiently large, it has whp many edges in common with the
planted clique. This fact can then be used to recover the clique. In [12], c1 was
a large constant, and so was c2, and the question of how tight the gap between
them can be was not considered. This is however exactly our main question. Our
new choice of parameters and a refined analysis (based on [12]) allows us to get
essentially the best possible ratio between c1 and c2 (which would be 1), and
essentially the best value for c1 (which would be 2). The “price” we pay for those
optimal constants is that we are unable to find the planted clique, but rather
distinguish between a random graph and a random graph with a slightly larger
clique planted in it.

1.3 Notations

Let R and C (for “row” and “column”) be two N×N -matrices with entries in R.
Let x, y be in RN , with non-negative entries, and such that

∑N
i=1 xi =

∑N
i=1 yi =

1; such a pair (x, y) is called a pair of mixed strategies. The (expected) payoff of
the row player is xTRy, and the one of the column player is xTCy.

The strategies (x, y) is an ε-equilibrium if none of the players can increase his
payoff by more than ε by changing his strategy. In other words, the pair (x, y)
is an ε-equilibrium if for all strategies x̃ and ỹ, we have

x̃TRy ≤ xTRy + ε and xTCỹ ≤ xTCy + ε.

(For the definition of approximation we use the following conventional assump-
tions: the value of the equilibrium lies in [0, 1] and the approximation is additive).
A 0-equilibrium is more succinctly called a Nash equilibrium.
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A Nash equilibrium is best if it maximizes the average payoff of the players,
i.e., if it maximizes its value

1
2
xT (R + C)y.

A pair of strategies (x, y) is an ε-best ε-equilibrium if it is an ε-equilibrium and its
value is at least as large as the value of the best Nash equilibrium minus ε, i.e.,

(
max
x̃,ỹ

1
2
x̃T (R + C)ỹ

)
− ε ≤ 1

2
xT (R + C)y,

where (x̃, ỹ) runs over the Nash equilibria of the game.

2 Preliminaries: Properties of the Matrix B

In this section we describe several properties that the matrix B has whp, which
play a crucial role in our proof. We remind the reader that the entries of B are
scaled Bernoulli variables of some scale t and probability p, i.e.,

Bi,j =

{
0 with probability 1− p,
t with probability p,

where t and p are parameters to be selected.

Proposition 1. Fix small enough β > 0, and let c1 = 2+7β1/2, c2 = 2+6β1/2.
There exists parameters t, p and s such that the matrix B of size ns × n, filled
with independent and identically distributed scaled Bernoulli-variables of scale t
and parameter p, enjoys the following properties whp:

(i) Fix a set I ⊆ [1, n] of c1 logn indices (independently of B). For every row
i of B,

1
c1 logn

∑

j∈I

Bi,j ≤ 1.

(ii) For every set J ⊆ [1, n] of c2 logn indices, there exists a row i = i(J) in B
so that Bi,j ≥ 1 + 9β for every j ∈ J .

The proof uses the following variant of the Chernoff bound. If X1, . . . , Xm are
m independent Bernoulli variables of scale t and parameter p, then

Pr

(

m−1
m∑

i=1

Xi ≥ tp(1 + δ)

)

≤ emp[δ−(1+δ) ln(1+δ)], (1)

for any δ > 0.
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Proof. The c1-calculation. Write m = c1 logn, and fix a row j. Using (1), we
see that

Pr

(

m−1
m∑

i=1

Aj,i ≥ 1

)

≤ exp
(
m[1− tp + ln(tp)]

t

)
.

Hence using the union bound over all the rows, the first property does not hold
with probability at most

ns+c1[1−tp+ln(tp)]/(t ln 2).

So the first property holds with high probability if

s <
c1

t ln 2
[tp− 1− ln(tp)]. (2)

The c2-calculation. For the second property to hold, we need t ≥ 1 + 9β.
Fix a set I = {i1, . . . , ic2 log n} ⊂ [n] of c2 logn indices. Then for a fixed row

j, the probability that Bj,i ≥ t for every i ∈ I is pc2 log n, so the probability that
there is no good row for the indices I is

(1− pc2 log n)ns

,

hence by the union bound, the probability that there is a set of indices with no
good row is at most

(
n

c2 logn

)
(1− pc2 log n)ns ≤ exp

(
c2 log n lnn + ns ln(1− pc2 log n)

)
,

which tends to 0 with n→∞ if

ns ln(1− pc2 log n) < −c2 logn lnn.

i.e., if −ns−c2 log(p−1) < −c2 logn lnn. So, for the second property to hold, it
suffices to require that

s > c2 log(p−1), (3)

in which case ns ln(1 − pc2 log n) goes polynomially fast to −∞.

Choice of p and t. We can now deduce a sufficient condition by combining (2)
and (3), which gives

c1
t ln 2

[tp− 1− ln(tp)] > c2 log(p−1).

Plugging in the values for c1 and c2 we obtain the following condition on p and t.

2 + 7β1/2

2 + 6β1/2 >
t ln(p−1)

tp− 1− ln(tp)
.
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Now, the limit of the right hand side as p→ 0 equals t, hence if we set t = 1+9β,
we see that the right hand side is indeed smaller than the left hand side for
sufficiently small (yet constant) p, provided that

(2 + 7β1/2)− (1 + 9β)(2 + 6β1/2) > 0.

The left hand side of the above is a polynomial in β1/2 with no constant term
and whose dominant term, the coefficient in β1/2, is positive (in fact, equal to
one). Hence this polynomial is positive for small positive values.

3 Proof of Theorem 1

Before giving the actual details let us outline the proof in general lines.

3.1 Proof Outline

For the graph H (with the clique of size (2+28ε1/8) logn) we show that whp the
game has a Nash equilibrium of social welfare at least 1. Then, given an ε-best ε-
equilibrium, we show that a 3ε-best 7ε-equilibrium can be efficiently calculated
whose support lies entirely on A (this is very similar to [12]). Then we show
how to efficiently extract a very-dense subgraph D from that strategy (here our
density is much higher than [12], we need this higher density as we don’t have
slackness in the size of the planted clique). On the other hand, we prove that
G ∈ Gn,1/2 whp does not contain such subgraph, causing the algorithm to fail
at some point. The graph D then allows us to distinguish H from G.

3.2 Formal Proof

In this section, we assume that the matrix B satisfies the properties of Propo-
sition 1, which is the case whp. We assume that c1 and c2 are chosen according
to Proposition 1, that is c1 = 2 + 7β1/2, c2 = 2 + 6β1/2.

Proposition 2. If A represents a graph H with a clique of size at least c1 logn,
then every equilibrium that maximizes the utilities of the players has value at
least 1.

Proof. Let C be a clique of H of size c1 logn. Consider the following strategies
for both players: each player puts probability |C|−1 on every row (column) of
that clique. The value of that strategy is clearly 1 for both players. The first
property of Proposition 1 guarantees that none of the players has an incentive
to defect, thus ensuring that the strategies we chose indeed constitute a Nash
equilibrium.

Proposition 3. If (x, y) is a δ-equilibrium of value at least 1 − δ then every
player has at least 1− 2δ of his probability mass on A.
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Proof. The sum of payoffs of both players from the entries outside A is 0. If one
player has more than 2δ of his probability mass outside A, then the value of the
game cannot exceed (observing that the maximal entry in A is 1)

1
2

(1 + (1 − 2δ)) = 1− δ.

This contradicts our assumption on the value of the game.

Proposition 4. Given a δ-equilibrium of value 1−δ one can efficiently compute
a 7δ-equilibrium of value at least 1− 3δ whose support is entirely on A.

Proof. Given a δ-equilibrium (x, y), define (x′, y′) as follows: take the proba-
bilities outside A in both x and y and spread them arbitrarily over A. Let us
consider the row player (the column player is symmetric). The maximal entry
outside A has value at most 2 (since t ≤ 2), hence the payoff of the row player
from the entries outside A is (in absolute value) at most 2δ · 2 = 4δ. The gain
of relocating 2δ-probability to A is at most 1 · 2δ (he does not gain from the
upper-right part of the matrix). Thus (x′, y′) is a δ + 4δ + 2δ = 7δ-equilibrium.
As for its new total value, the total probability mass relocated for both players
is 4δ, thus gaining at most 0.5 · 4δ · 1 = 2δ (0.5 factor comes from the definition
of game-value, and the 1 is the maximal entry in A. The game outside A is
zero-sum, so is disregarded).

Proposition 5. Let (x, y) be a 7δ-equilibrium played entirely on A. Suppose also
that the matrix B is generated with parameter β ∈ [δ, 1/9]. Then every subset of
the rows Σ whose probability in x is at least 1 − β satisfies |Σ| ≥ c2 logn. The
same applies for y.

Proof. We shall prove for the column player, the proof of the row player is
symmetric. For contradiction, say there exists a set Σ of columns whose total
probability is at least 1 − β but |Σ| ≤ c2 logn (recall: c2 = (2 + 6β1/2)). By
the second property of B in Proposition 1, there exists a row in B in which all
corresponding entries have value at least 1 + 9β. If the row player relocates all
his probability mass to that row, his new payoff is at least (1 + 9β)(1 − β) >
1 + 7β ≥ 1 + 7δ (the last inequality is true for our choice of β). His current
payoff is at most 1 (as all entries in A are bounded by 1), and so he will defect,
contradicting the 7δ-equilibrium.

For two sets of vertices (not necessarily disjoint), we let e(V,W ) be the number
of edges connecting a vertex from V with a vertex from W . We use e(V ) as a
shorthand for e(V, V ). It is easy to see that the maximal number of edges is

K(V,W ) = |V | · |W | −
(
|V ∩W |

2

)
. (4)

The density of the two sets is defined to be

ρ(V,W ) =
e(V,W )
K(V,W )

. (5)
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Proposition 6. Assume we are given a 7δ-equilibrium of value 1−3δ played en-
tirely on A, and the matrix B was generated with β = 16δ1/4. One can efficiently
find two sets of vertices S1, S2 that enjoy the following properties:

– |S1|, |S2| ≥ (2 + 6β1/2) logn,
– ρ(S1, S2) > 1− β.

Proof. First observe that if the value of the game (played on A) is 1− 3δ, then
each player’s payoff is at least 1 − 6δ (as the maximum payoff on A is 1). Let
ei ∈ Rn be the unit vector whose entries are 0 except the ith which is 1. Consider
the following set of columns:

Γt = {i : xTAei ≥ t}, Γ̄t = {i : xTAei < t}. (6)

Since the payoff of the column player is at least 1−6δ (and in particular at least
1 − 6δ1/2), Γ1−6δ1/2 �= ∅. We now claim that the total probability mass of y on
the columns in Γ̄1−7δ1/2 is at most 16δ1/2. If not, by relocating 16δ1/2-probability
from Γ̄1−7δ1/2 to Γ1−6δ1/2 the gain is at least (7 − 6)δ1/2 · 16δ1/2 = 16δ > 7δ,
which contradicts the 7δ-equilibrium. Thus, by Proposition 5,

|Γ1−7δ1/2 | ≥ (2 + 6β1/2) log n

(we can use Proposition 5 since 1− 16δ1/2 ≥ 1− β = 1− 16δ1/4).
For a set T of vertices, let UT ∈ Rn be the uniform distribution over T and

0 elsewhere. The condition of Γt implies that (this is just a simple averaging
argument)

xTAUΓ
1−7δ1/2 ≥ 1− 7δ1/2. (7)

Now define a set of rows Σ according to:

Σ = {j : eT
j AUΓ

1−7δ1/2 ≥ 1− 8δ1/4}. (8)

We claim that
∑

j∈Σ xj ≥ 1− δ1/4. If not,

xTAUΓ
1−7δ1/2 ≤

(
1− δ1/4

)
· 1 + δ1/4 · (1 − 8δ1/4) = 1− 8δ1/2.

This contradicts (7). Applying Proposition 5 once more yields |Σ| ≥ (2 +
6β1/2) logn. Equation (8) implies (again, averaging argument):

UT
ΣAUΓ

1−7δ1/2 ≥ 1− 8δ1/4. (9)

Finally we show how this gives the subgraph of correct density. Set S1 = Σ,S2 =
Γ1−7δ1/2 . They are both of the required size, denoted s1, s2 respectively. The
number of edges is (by dS(v) we denote the degree of v in the set S):

e(S1, S2) =

(
∑

v∈S1

dS2(v)

)

− e(S1 ∩ S2).



Small Clique Detection and Approximate Nash Equilibria 681

Here,
∑

v∈S1
dS2(v) is just the total number of one-entries in the sub-matrix of

A corresponding to S1 × S2, which, by Equation (9), is at least (1− 8δ1/4)s1s2,
and we subtract the number of edges in the intersection (since they were counted
twice). Thus,

e(S1, S2) ≥ (1 − 8δ1/4)s1s2 − e(S1 ∩ S2).

Recalling the definition of the density ρ(S1, S2), Equation (5), we get

ρ(S1, S2) =
e(S1, S2)
K(S1, S2)

≥ (1− 8δ1/4)s1s2 − e(S1 ∩ S2)

s1s2 −
(|S1∩S2|

2

)

≥
(1− 8δ1/4)s1s2 −

(|S1∩S2|
2

)

s1s2 −
(|S1∩S2|

2

) .

This in turn equals

1− 8δ1/4s1s2

s1s2 −
(|S1∩S2|

2

) .

Observing that s1s2 −
(|S1∩S2|

2

)
≥ s1s2/2, we get

ρ(S1, S2) ≥ 1− 2 · 8δ1/4 = 1− 16δ1/4 = 1− β.

Finally we present the property of Gn,1/2 that we require.

Proposition 7. The following assertion holds whp for Gn,1/2. For no 0 ≤ α ≤
1/8, there exist two sets of vertices S1, S2 of size at least (2+6α) logn each and
such that e(S1, S2) ≥ (1− α2)K(S1, S2).

Proof. The proof idea is as follows. The expected number of such sets S1, S2 is
at most (summing over all possible sizes for S1 and S2 and intersection size)

μ ≤
∑

y,z≥(2+6α) log n

min{y,z}∑

x=0

(
n

x

)(
n

y − x

)(
n

z − x

)
2−K

α2K∑

i=0

(
K

i

)

where K = K(S1, S2). The first term accounts for choosing the intersection
vertices, then completing each of S1 and S2. Next choose which edges are present
and finally multiply by the probability for edges/non-edges. We need to show
that μ = o(1), and then the claim follows from Markov’s inequality.

Define

f(x, y, z) =
(
n

x

)(
n

y − x

)(
n

z − x

)
2−K

α2K∑

i=0

(
K

i

)
, (10)

so that

μ ≤
∑

y,z≥(2+6α) log n

min(y,z)∑

x=0

f(x, y, z). (11)
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Our first goal is to estimate the sum
∑α2K

i=0

(
K
i

)
. We start out with the standard

estimate
ρK∑

i=0

(
K

i

)
≤ 2Kh(ρ) for 0 ≤ ρ ≤ 1/2,

where h(ρ) = −ρ log(ρ)− (1−ρ) log(1−ρ) is the binary entropy function. In the
range of interest 0 ≤ ρ = α2 ≤ 1/64, we get

h(ρ) ≤ ρ(− log(ρ) + 64 log(64/63)),

by bounding log(1− ρ) by the appropriate linear function.
Now, studying the first and second derivatives of −α2 log(α2), we see that this

function is increasing in the range 0 ≤ α ≤ 1/8 and reaches its maximal slope
in this range at α = 1/8. The maximal slope is less than 1.2. Therefore,

h(α2) ≤ 1.2α + 64 log
(

64
63

)
α2 ≤

(
1.2 + 8 log

(
64
63

))
α ≤ 3

2
α,

and so
α2K∑

i=0

(
K

i

)
≤ 2

3
2 Kα.

Going back to (10), bounding
(
n
t

)
by nt and recalling that K = yz−

(
x
2

)
, we get

log f(x, y, z) ≤ (y + z − x) log n−K

(
1− 3

2
α

)

= (y + z) logn− yz

(
1− 3

2
α

)
− x logn +

(
1− 3

2
α

)
x2

2
.

The maximum of the function x 
→ −x logn + (1 − 3
2α)x2/2 in the range x ∈

[0,min{y, z}] is reached at the boundary x = min{y, z}, which, assuming wlog
y ≥ z, is at x = z. Thus,

log f(x, y, z) ≤ (y + z) logn− yz

(
1− 3

2
α

)
− z logn +

(
1− 3

2
α

)
z2

2

= y logn−
(

1− 3
2
α

) (
yz − z2

2

)
.

Observe that yz − z2/2 ≥ yz/2, and hence

log f(x, y, z) ≤ y logn−
(

1− 3
2
α

)
yz

2
≤ y

(
logn− z

2

(
1− 3

2
α

))
.

Recall our choice of z: z ≥ (2 + 6α) logn (and the same goes for y). Since
(1− 3

2α)(2 + 6α) ≥ 2 for our values of α,

log f(x, y, z) = −Ω(log2 n).
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Plugging this into (11) one obtains

μ ≤
∑

y,z≥(2+6α) log n

min{y,z}∑

x=0

2−Ω(log2 n) ≤ n3 · n−Ω(log n) = o(1).

The proposition follows by Markov’s inequality.

3.3 The Distinguishing Algorithm

Let A be a polynomial time algorithm that finds the ε-best ε-equilibrium in a
two player game. We shall show that there exists an algorithm B that runs in
polynomial time and distinguishes whp between a graph randomly chosen from
Gn,1/2 and an arbitrary graph with a clique of size c1 logn.

The algorithm B does the following on an input graph G, which is either a
graph from Gn,1/2 or a graph containing a clique of size at least (2+28ε1/8) logn.

1. If any of the below steps fails, return “G belongs to Gn,1/2”.
2. Generate the game matrix with parameter β = 16ε1/4 in the matrix B.
3. Run A to receive an ε-best ε-equilibrium of that game.
4. Calculate a 7ε-equilibrium of value at least 1−3ε whose support lies entirely

on A(G) (according to the procedure in the proof of Proposition 4).
5. Use this equilibrium to find two sets S1 and S2 satisfying |S1|, |S2| ≥

(2 + 6β1/2) logn and ρ(S1, S2) ≥ 1 − β (use the procedure in the proof
of Proposition 6).

6. If succeeded, return “G does not belong to Gn,1/2”.

We shall analyze the algorithm for ε ≤ ε0. ε0 is determined by the constraint
of Proposition 7. Specifically, for the algorithm to answer correctly on Gn,1/2,
it suffices if step 5 fails. For this we want to choose β so that whp Gn,1/2 does
not contain two sets S1, S2 of the prescribed size and density. This is achieved
by plugging α = β1/2, that is α = 4ε1/8, in Proposition 7, which translates to
ε0 = (4 · 8)−8.

It remains to prove that the algorithm answers correctly when G has a clique
of size ≥ c1 logn. Assume that the matrix B satisfies Proposition 1, which is the
case whp. Propositions 2 and 4 then guarantee that Step 4 succeeds, and Step 5
succeeds by Proposition 6. Thus again the correct answer is returned.

4 Finding a Clique of Size 3 log n

Let β = 16ε1/4 as in the proof of Theorem 1, and let H ∈ Gn,1/2,k with k ≥
(3 + 14β1/2) logn. Let C be the vertices of the planted clique. Observe that in
no place in Section 1 did we use the actual size of the planted clique, just the
“separation” properties as given by Proposition 1. Proposition 1 can be restated
easily with c1 ≥ (3 +14β1/2) and c2 = (3 +13β1/2) logn. Therefore by the same
arguments as in the Proof of Theorem 1, we are guaranteed to efficiently find
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two sets S1, S2 of size at least c2 logn each and density 1−β. Our first goal is to
show that S1∪S2 must intersect the planted clique on many vertices. Suppose by
contradiction that the intersection size is no more than (1 + β1/2) logn vertices.
Define S′

1 = S1 \ C and similarly S′
2 = S2 \ C. Clearly, S′

1, S
′
2 still contain at

least (2 + 12β1/2) logn vertices, and all edges between S′
1 and S′

2 are random
edges of Gn,1/2. Finally let us compute the density ρ(S′

1, S
′
2). Recall Equation

(9) which guarantees that in A[S1 × S2] there are at most (β/2)S1S2 zeros. As
for A[S′

1 × S′
2], the fraction of zeros is at most

(β/2)|S1||S2|
|S′

1||S′
2|

≤ (β/2)|S1||S2|
(2/3)2|S1||S2|

=
9β
8

.

In the inequality we use |S′
1| ≥ 2|S1|/3, |S′

2| ≥ 2|S2|/3. Now the same arguments
that follow Equation (9) give ρ(S′

1, S
′
2) ≥ 1 − 2 · 9β

8 ≥ 1 − 3β. To conclude,
we found two sets of size at least (2 + 12β1/2) logn each, and density 1 − 3β,
involving only edges of Gn,1/2. This however contradicts Proposition 7 (when
plugging α2 = 3β in that proposition).

Let us now assume that S1∪S2 contains at least (1+β1/2) log n vertices from
the planted clique, call this set I. Further assume w.l.o.g. that |S1∪S2| = O(log n)
(we can always do this since in Equations (6) and (8), which define S1, S2, we
can limit the set size). Thus one can find I in polynomial time (using exhaustive
search). Finally, let us compute the probability that a vertex x /∈ C has full
degree in I. Since the planted clique was chosen independently of the random
graph, this probability is at most

2−|I| = 2−(1+β1/2) log n = n−(1+β1/2).

Using the union bound, whp no such vertex exists. Now apply the following
greedy procedure on I: go over the vertices of G and add each vertex if its degree
in I is full. By the latter argument, this algorithm succeeds whp in reconstructing
the planted clique.

5 Discussion

In this work we explored the technique of [12] in the regime where the planted
clique is close to the smallest possible, that is of size (2+δ) log n for small δ > 0.
We showed that for the problem of distinguishing Gn,1/2 from Gn,1/2,k, where
k = (2 + δ) log n, the reduction works for arbitrarily small δ > 0, provided that
ε-best ε-approximate Nash equilibria can be found for a corresponding small
ε(δ) > 0.

We also showed that the problem of finding a planted clique of size (3 +
δ) logn for small δ > 0 can be reduced to finding an ε-best ε-approximate Nash
equilibrium for a sufficiently small ε > 0. But since the maximal clique in Gn,1/2
is only of size (2 − o(1)) log n, this is possibly not optimal, and the question
whether one could achieve the optimal 2 logn clique size barrier for finding the
clique is still open.
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13. Kučera, L.: Expected Complexity of Graph Partitioning Problems. Discrete Ap-
plied Mathematics 57(2-3), 193–212 (1995)

14. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies.
In: 4th ACM conference on Electronic commerce, USA, pp. 36–41 (2003)

15. Tsaknakis, H., Spirakis, P.G.: An Optimization Approach for Approximate Nash
Equilibria. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
42–56. Springer, Heidelberg (2007)



Testing Computability by Width Two OBDDs

Dana Ron� and Gilad Tsur

School of Electrical Engineering, Tel Aviv University, Tel Aviv Israel
danar@eng.tau.ac.il,
giladt@post.tau.ac.il

Abstract. Property testing is concerned with deciding whether an ob-
ject (e.g. a graph or a function) has a certain property or is “far” (for
some definition of far) from every object with that property. In this paper
we give lower and upper bounds for testing functions for the property of
being computable by a read-once width-2 Ordered Binary Decision Di-
agram (OBDD), also known as a branching program, where the order of
the variables is known. Width-2 OBDDs generalize two classes of func-
tions that have been studied in the context of property testing - linear
functions (over GF (2)) and monomials. In both these cases membership
can be tested in time that is linear in 1/ε. Interestingly, unlike either of
these classes, in which the query complexity of the testing algorithm does
not depend on the number, n, of variables in the tested function, we show
that (one-sided error) testing for computability by a width-2 OBDD re-
quires Ω(log(n)) queries, and give an algorithm (with one-sided error)
that tests for this property and performs Õ(log(n)/ε) queries.

1 Introduction

Property testing is concerned with deciding whether an object (e.g. a graph or
a function) has a certain property or is “far” (for some definition of far) from
every object with that property [9, 18]. Typical property testing algorithms are
randomized, and perform queries regarding local properties of the object (e.g.,
the value of a function f on the input x), returning a correct answer with high
probability. Generally, the distance parameter, denoted ε, is given as an input
to the property testing algorithm and effects its running time. Property testing
algorithms are designed to run in time that is sublinear in the size of the tested
object or to perform a number of queries that is sublinear in it. Indeed, many of
them use a number of queries that is independent of the object’s size.

Our Results. In this paper we give lower and upper bounds for testing func-
tions for the property of being computable by a read-once width-2 Ordered Bi-
nary Decision Diagram (OBDD), also known as a read-once Oblivious Branching
Program of width 2, where the order of the variables is known. Width-2 OB-
DDs generalize two classes of functions that have been studied in the context
of property testing - linear functions (over GF (2)) [18] and monomials [15]. In
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both these cases membership can be tested in time that is linear in 1/ε. In-
terestingly, unlike either of these classes, in which the query complexity of the
testing algorithm does not depend on the number of variables in the tested
function, we show that (one-sided error) testing for computability by a width-2
OBDD requires Ω(log(n)) queries, and we give an algorithm (with one-sided
error) that performs Õ(log(n)/ε) queries.1 We note that it is open whether al-
lowing two-sided error can decrease the complexity of the problem. Observe that
the logarithmic dependence on n is still much lower than the linear dependence
that is necessary for learning this family. We later shortly discuss the extensive
research on OBDDs in the learning literature.

Function classes for which property testing algorithms have been designed are
usually characterized as either algebraic (e.g. [1, 3, 10, 11, 18]) or non-algebraic
(e.g., [5, 7, 15]), though some results can be viewed as belonging to both categories.
We view the family of functions we study as falling naturally into the second cat-
egory, since it is described by a type of computational device and not by a type
of algebraic formula. As opposed to many algorithms for algebraic families, algo-
rithms for non-algebraic families generally rely on the fact that the functions in
the family are close to juntas, that is, functions that depend on a small number of
variables. This is true, by definition, for singletons [15] and juntas [7], but also for
monomials, monotone DNF with a bounded number of terms [15], general DNF,
decision lists and many other function classes, studied in [5]. In contrast, our al-
gorithm tests for membership in a class of functions in which the function may
depend (significantly) on many variables.

Techniques. Variables in functions that are computable by width-2 OBDDs can
be divided into two groups. Variables that the function is “linear” in, and all
other variables. This distinction is made more precise in Section 2. Our algorithm
attempts to locate the last (according to the fixed order) O(log(1/ε)) non-linear
variables, and uses this structural information to determine whether a function
is computable by a width-2 OBDD. This can be contrasted with the results in [5]
that cover a wide-range of non-algebraic function families. There, the algorithms
detect a small number of subsets of variables, each containing a relevant variable.
If the tested function belongs to the class in question then it depends almost
entirely on this small set of relevant variables. Our algorithm learns something
of the structure of the OBDD computing the function that relates to a small set
of variables, yet many variables can have non-negligible influence.

Since our algorithm rejects only when it finds evidence that the tested function
is not computable by a width-2 OBDD, it immediately follows that it always
accepts functions in this family. The core of the proof is in showing that if the
function is ε-far from the family, then the algorithm rejects with high constant
probability. More precisely, we prove the contrapositive statement. Since our
algorithm works by verifying that various restrictions of the tested function are
close to having certain properties, the difficulty is in proving that we can “glue”
together these restrictions and obtain a single width-2 OBDD.

1 Here the notation Õ(T ) represents an upper bound that is linear in T up to a
polylogarithmic factor.
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Additional related work. We note that the type of question we ask differs
from that studied by Newman [14]. Newman shows that a property testing algo-
rithm exists for any property decidable by a constant width branching program. In
[14] the property is defined with regard to a particular branching program, and the
algorithm tests membership in a language decidable by that program. In contrast,
in our result, the language we test for membership in is one where every word is
the truth table of a width-2 branching program.

OBDDs and, in particular, bounded width OBDDs have been studied in the
machine learning context rather extensively. In particular it has been shown that
width-2 OBDDs are PAC-learnable, while width-3 and wider OBDDs are as hard
to learn as DNF formulas [6]. These results were strengthened in [2, 4]. When mem-
bership queries are allowed and the underlying distribution is uniform, width-2
branching programs with a single 0 sink are efficiently learnable [2]. When both
membership and equivalence queries are allowed then there are several positive
results for other restricted types of branching programs [2, 8, 12, 13, 16].

Organization. In Section 2 weprovide some basic definitions and present general
claims regarding OBDDs and width-2 OBDDs in particular. In Section 3 we give
a lower bound for one-sided error testing of computability by width-2 OBDDs. In
Section 4 we give a one-sided error testing algorithm for computability by a width-
2 OBDD. All missing details can be found in the full version of this paper [17].

2 Preliminaries

2.1 Basic Definitions

Definition 1. The distance between a function f and a function g (both from do-
main X to range R), denoted d(f, g), is defined as Prx[f(x) �= g(x)] where x is
drawn uniformly at random from X. When d(f, g) > ε we say that f is ε-far from
g. This definition extends to the distance of a function f from a family of functions
G (also denoted d(f,G)). Here we have d(f,G) = ming∈G{d(f, g)}. When f is ε-
far from all g ∈ G we say that f is ε-far from G. We may occasionally describe a
function f as ε-close to g. This means that f is not ε-far from g.

Definition 2. A property testing algorithm T for property P is given oracle ac-
cess to an object in the form of a function f from domain X to range R and a
distance parameter 0 < ε < 1.

1. If f ∈ P then T accepts with probability at least 2/3 (over its internal coin
tosses);

2. If f is ε-far from P then T rejects with probability at least 2/3 (over its
internal coin tosses).

A property testing algorithm is said to be a one-sided error property testing algo-
rithm if it accepts with probability 1 when f ∈ P .

Of course, if we wish to accept or reject incorrectly with probability at most δ we
can repeat the application of a property testing algorithm Θ(log(1/δ)) times and
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take a majority vote. Later in this work we will routinely “amplify” probability
of success as required.

A property testing algorithm that we use as a basic building block in our
algorithm is the linearity tester, proposed by Blum, Luby and Rubinfeld [3].
In [3] it is assumed that for a linear function f it holds that f(0n) = 0. For
our purposes linearity allows for a single coefficient that doesn’t depend on any
variable, and the BLR algorithm is easily adapted for such a case.

Definition 3. We say that f : {0, 1}n → {0, 1} is a linear function if there exist
coefficients b0, b1, . . . , bn ∈ {0, 1} such that for x = x1, . . . , xn ∈ {0, 1}n, f(x) =
b0 + Σn

i=1bixi.

Theorem 1. [3] There exists a one-sided error testing algorithm for linearity.
Its query complexity is O(1/ε).

Definition 4. A Binary Decision Diagram (BDD), also known as a branching
program, is an acyclic directed graph with a single source where sinks are labeled
0 or 1, and other nodes are labeled by a Boolean variable from X = {x1, . . . , xn}.
The Boolean function associated with a BDD is computed on a particular assign-
ment to the variables in X by returning the label of the sink reached when these
assignment values are used to trace a route through the graph.

There are different definitions in the literature for Ordered Binary Decision Dia-
grams. Our results hold for the definition of a strict fixed width read-once binary
decision diagram:

Definition 5. A read-once Ordered Binary Decision Diagram (OBDD) is a BDD
where each path from the root to a sink must pass through all variables in a
fixed order (where each variable appears once). The width of an OBDD is the
maximum number of nodes in a level of the rooted graph.

Branching programs can, of course, compute functions from other, non-binary,
finite domains and to other finite ranges. Indeed, it may sometimes be more
convenient to consider such programs, and we do this in Claim 1. As each path
from the root to a sink must pass through all variables in a given order, xi’s
level in the OBDD is well defined.

Throughout the following text we refer to OBDD’s over a fixed order of the
variables x1, . . . , xn that is known to us. Once the order of the variables has
been fixed there exists an automaton corresponding to any OBDD, that is, the
OBDD can be thought of as an automaton without loops and with accepting
states corresponding to 1 sinks of the OBDD.

2.2 Properties of OBDDs

Our first claim follows directly from the definition of OBDDs.

Claim 1. A function f : {0, 1}n → [k] (where [k] = {0, . . . , k−1}) is computable
by a width-k OBDD if and only if f(x1, . . . , xn) = gn(fn−1(x1, . . . , xn−1), xn)
where fn−1 is a function computable by a width-k OBDD (over 0 variables if
n = 1) and gn is a function from [k]× {0, 1} to [k].
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Definition 6. A set S is said to be an i-Prefix Equivalence Class (or just an
i-equivalence class) for a function f : {0, 1}n → {0, 1} (where i ≤ n) when S is
a maximal subset of {0, 1}i such that for all x, y ∈ S and for all z ∈ {0, 1}n−i it
holds that f(xz) = f(yz).

As a corollary of Claim 1 we have:

Corollary 1. A function f : {0, 1}n → {0, 1} is computable by a width k OBDD
if and only if ∀i ∈ [1, n] there are at most k distinct i-prefix equivalence classes
for f .

Definition 7. A string z ∈ {0, 1}n−i is a distinguishing assignment for two i-
prefix equivalence classes S1, S2 over a function f if for x ∈ S1, y ∈ S2 it holds
that f(xz) �= f(yz).

In describing our algorithm we routinely restrict a function over some of its input
variables. We introduce a notation for such restrictions:

Definition 8. Let f be a function of n boolean variables, and let w ∈ {0, 1}m.
We define fi,j,w, where j = i + m − 1, to be the function f with the variables
xi, . . . , xj restricted to the values w1, . . . , wm accordingly. This means that

fi,j,w(x1, . . . , xn) ≡ f(x1, . . . , xi−1, w1, . . . , wm, xj+1, . . . , xn).

As the values xi, . . . , xj have no influence on fi,j,w we view it, interchangeably,
as a function of n variables or as a function of n−m variables.

For a width-2 OBDD we can arbitrarily equate each of the (at most) 2 nodes in
the i’th level of the OBDD with a value in {0, 1}. We denote by fi : {0, 1}i →
{0, 1} the function that is given the string x1, . . . , xi and returns the value of
the node in the i + 1’th level reached from the source by traversing the OBDD
according to them. Thus, for a distinguishing assignment w of length n − i we
have that either fi(x1, . . . , xi) = fi+1,n,w(x1, . . . , xi) for all x1, . . . , xi, or that
fi(x1, . . . , xi) = ¬fi+1,n,w(x1, . . . , xi) for all x1, . . . , xi.

Merging Levels and Bit Influence

Definition 9. An OBDD is said to be 0-merging (1-merging) on the i’th level
if in level i + 1 there exists a node with two incoming edges marked by 0 (1).
For σ ∈ {0, 1}, if an OBDD isn’t σ-merging on the i’th level we say it is σ-non-
merging on the i’th level.

Claim 2. Let M be a width-2 OBDD and let fi−1 be the function that maps
the variables x1, . . . , xi−1 to a node on the i’th level. If layers i to n are 0, 1-
non-merging, then M computes a linear function of fi−1(x1, . . . , xi−1) and of
xi, . . . , xn. That is, there exists a linear function f̂ such that f(x1, . . . , xn) =
f̂i(fi−1(x1, . . . , xi−1), xi, . . . , xn).
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Definition 10. Let xi be the string x with the i’th bit flipped. The bit influence
of the i’th bit in the function f , denoted inff (i) or just inf(i) is Pr[f(x) �= f(xi)]
when x is drawn from the uniform distribution.

Claim 3. For a width-2 OBDD M where layer i is 0-merging or 1-merging, for
j < i it holds that inffi(j) ≤ 1

2 inffi−1(j).

Claim 4. For a function f computable by a width-2 OBDD M , the influence of
the bits x1, . . . , xi−1 in fi is no greater than their influence in fi−1.

Claims 3 and 4 will later allow us to find several merging levels in width-2
OBDDs and to disregard all the variables coming before these levels. In Section 4
we will use the following corollary of these claims to show the correctness of our
algorithm.

Claim 5. Let f be a function of the form

f(x1, . . . , xn) = f ′(g(x1, . . . , xn−m), xn−m+1, . . . , xn)

where f ′ is computable by a width-2 OBDD M . If M has at least k merging levels,
then f is 2−k-close to the function f ′(0, xn−m+1, . . . , xn), that is computable by
a width-2 OBDD.

3 A Lower Bound

Theorem 2. Any one-sided error tester for computability by a width-2 OBDD
requires Ω(log(n)) queries.

We prove Theorem 2 by noting that any one-sided error property testing algo-
rithm that rejects a function f must have queried, for some i ∈ [1, n], several
strings indicating that f has at least 3 different i-equivalence classes. If this were
not the case, then by Claim 1, f may be computable by a width-2 OBDD. We
describe a family of Θ(n) functions, all 1/4-far from any function computable
by a width-2 OBDD, where each function is fully specified by a unique value
i where the function has more than two equivalence classes. We note that any
one-sided error property testing algorithm for width two OBDDs would, in fact,
implicitly correspond to an exact learning algorithm for members of this family,
and that due to the family size this would require at least Ω(log(n)) queries.
The construction is as follows: We define the function γj , for 1 < j < (n− 1) as
x1 ⊕ · · · ⊕ (xj ∧ xj+1)⊕ · · · ⊕ xn. Essentially, for all prefixes except for the j’th
this function has two equivalence classes, but it has more than two equivalence
classes for the prefix x1, . . . , xj , and it has a constant distance from any function
computable by a width-2 OBDD.

Claim 6. Let f be a function computable by a width-2 OBDD. For 1 < j <
(n− 1), it holds that d(γj , f) ≥ 1/4.
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We prove this claim using the fact that for all j it holds that x1 has influence 1
in γj , and that all the variables have influence greater than or equal to 1/2 (all
the variables have influence 1 except xj and xj+1 , that have influence 1/2).

The following is a well known fact.

Claim 7. A (possibly randomized) algorithm L that is given oracle access to a
boolean function f ∈ F , performs queries on f and determines the identity of f
with probability greater than 2/3 must perform at least Ω(log(|F |)) queries.

Theorem 2 follows directly from Claims 6 and 7.

4 The Testing Algorithm

Imagine that we are promised that a function f given to us as input is either
computable by a width-2 OBDD that has no merging levels, or that it is far
from any function computable by a width-2 OBDD. We could check which of
the above is the case using BLR’s linearity test on f , as a function computable
by a width-2 OBDD that has no merging levels is a linear function.

Now, imagine we are promised that f is either far from any function com-
putable by a width-2 OBDD or that it is computable by a width-2 OBDD that
has exactly one merging level, in the i’th level, where i is known. We could check
to see which of the cases above holds by going through the following procedure.
First we’d like to see if f has at most two i-equivalence classes. We cannot know
this exactly, but we are able to tell if f is close to a function with 1, 2, or
more i-equivalence classes using an algorithm we will describe below. If we only
find one i-equivalence class for f it remains to check if f is a linear function of
xi+1, . . . , xn. If it is then f is computable by a width-2 OBDD with one merging
level, i (and we can accept). If f has more than two i-equivalence classes then
it is clearly not computable by a width-2 OBDD (of any kind), and we can re-
ject. Finally, if f has two i-equivalence classes we must check that the function
fi−1 (the function that maps the variables x1, . . . , xi−1 to (i − 1)-equivalence
classes) is linear, and that the function which maps the i-equivalence class and
the variables xi+1, . . . , xn to f(x1, . . . , xn) is linear, as well.

As a final hypothetical scenario, consider the following promise: f is either far
from every function computable by a width-2 OBDD, or can be computed using
a width-2 OBDD with a single unknown merging level. If we could locate the
merging level, we know we could tell which of the two cases holds, as done in the
previous paragraph. We note that as a consequence of Claim 3 any function that
is computable by a width-2 OBDD and isn’t linear is far from linear, so we would
like to check f and see what parts of it are linear. We can do this by performing
a binary search for a linear section. Begin by restricting the first n/2 variables
to 0, and checking if the function computed on all the rest of the variables is
(close to) linear. If it is, repeat the process with fewer variables restricted. If it
isn’t, repeat the process with more variables restricted. If we are, indeed, given a
function that is computable by a width-2 OBDD that has only a single merging
level, this process will allow us to detect the merging level with high probability.
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The property testing algorithm we suggest for computability by a width-2
OBDD is based on the observations made above and on those made in the
previous sections. In particular, we note that, as a consequence of Claim 5, any
function f computable by a width-2 OBDD is ε-close to a function g computable
by a width-2 OBDD that has at most O(log(1/ε)) merging levels, where the
merging levels of g are all merging levels of f . When our algorithm is given as
input a function computable by a width-2 OBDD, it will (with high probability)
locate the last O(log(1/ε)) merging levels (if such merging levels exist, of course).
Locating these levels will be done using a binary search technique reminiscent
of the one suggested above. We will restrict the function on some of its bits
(x1, . . . , xj) and test whether the restricted function is linear, using a version
of the BLR linearity test. For any function f computable by a width-2 OBDD
our algorithm will find the structure of a function g that is close to it, and for
every function that passes our test, we will show that it is likely to be close to
a function computable by a width-2 OBDD.

A notion that is used repeatedly is that of a function f that can be computed
by a width-2 OBDD that accepts as input the value of a function g(x1, . . . , xt)
and the bits xt+1, . . . , xn (in that order) and outputs the value f(x1, . . . , xn).
We define this formally:

Definition 11. A function f : {0, 1}n → {0, 1} is said to be a W2-function of
g : {0, 1}t → {0, 1} and of xt+1, . . . , xn if there exists a width-2 OBDD that
accepts as input the value g(x1, . . . , xt) and the bits xt+1, . . . , xn (in that order)
and outputs the value f(x1, . . . , xn).

In Fig. 1 we present the testing algorithm for computability by a width-2 OBDD.
In the algorithm we use the value ε′, which intuitively stands for the amount of
error we are willing to accumulate during each round of the algorithm. We set
ε′ = ε/(4 log(1/ε)). The algorithm uses two sub-procedures, Get-linear-level
and Count-equiv-classes, both described after the algorithm.

Theorem 3. Algorithm Test-width-2 is a one-sided error testing algorithm for
the property of being computable by a width-2 OBDD, that runs using Õ(log(n)/ε)
queries.

We now proceed to discuss the probabilistic procedures used in Test-width-2.
We later return to proving Theorem 3. We have already mentioned the BLR
linearity test, one procedure that we will use as an internal building block in our
own sub-procedures. We now turn to describe an additional building block - a
procedure that is given access to a function f and a number i, and attempts to
check whether f has 1, 2 or more i-equivalence classes. Despite the fact it only
counts up to 2, or perhaps up to ”many”, we dub this sub-procedure Count-
equiv-classes. A precise description of the algorithm appears in Fig. 2. The
straightforward approach to performing this task may be to take a set of pre-
fixes of length i and compare each two (or all of them) on a set of suffixes, trying
to find prefixes that belong to different equivalence classes. A simple analysis im-
plies a procedure that performs Θ(1/ε2) queries. The approach we take is slightly
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Test-width-2
Input: Oracle access to a function f ; Precision parameter ε.

1. Let f0 = f . Let r = 1 and t0 = n.
The variable t will represent the number of variables of f that we haven’t re-
stricted, and r will be the number of the current round. The indexes on t and
f will indicate the round r and help us keep track of different values for the
analysis.

2. While tr−1 �= 1 and r ≤ log(1/ε) + 2
(a) Locate linear section: Run Get-linear-level(fr−1, ε′/3, 1

6(log(1/ε)+2) ).

This locates the last index j such that fr−1 is (ε′/3)-close to a linear function
of fr−1

j+1,tr−1,w
(x1, . . . , xj) and of xj+1, . . . , xtr−1 for a distinguishing sequence

w.
(b) If Get-linear-level indicated the existence of more than 2 different i-

equivalence classes on some level i, reject.
(c) Otherwise, let j be the level returned by Get-linear-level and let w be the

distinguishing sequence returned by it.
(d) Let gr = fr−1

j+1,tr−1,w
and let t̃r = j.

(e) If j �= 1
i. Run Count-equiv-classes(gr, t̃r − 1, ε′/3, 1

12 log(1/2ε) ).

This tells us whether the number of (t̃r − 1)-equivalence classes in gr is
1, 2 or more with precision ε′/3.

ii. If a single equivalence class is found, accept.
iii. If more than 2 equivalence classes are found, reject.
iv. Let w′ denote the distinguishing assignment (of size 1) between the

2 equivalence classes found (returned by Count-equiv-classes). Let
fr = gr

j,j,w′ and let tr = j − 1.

(f) Else, let fr = gr and let tr = t̃r.
(g) r = r + 1.

3. return accept.

Fig. 1. Algorithm Test-width-2

different. We start with the arbitrary string 0i, which belongs to some equiva-
lence class. To identify a second equivalence class we simply test the equality of
f(x1, . . . , xn) with f1,i,0i(xi+1, . . . , xn). If a second equivalence class is detected
then we use a similar technique to try and find a third equivalence class (with a
small adjustment). This approach leads to a Θ(1/ε) algorithm.

The proof of the following claim can be found in [17].

Claim 8. The algorithm Count-equiv-classes, given oracle access to a func-
tion f acts as follows:
1. If f is ε-far from every function with one i-equivalence class, then with prob-

ability at least 1− δ Count-equiv-classes will return representatives of at
least two equivalence classes.

2. If f is ε-far from every function with two i-equivalence classes, then with
probability at least 1−δ Count-equiv-classes will return representatives of
three equivalence classes.
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Count-equiv-classes
Input: Oracle access to a function f ; Integer value 0 < i ≤ n; Precision parameter ε;
Confidence parameter δ.

1. Select m = Θ(log(1/δ)/ε) strings x1, . . . , xm from {0, 1}n.
2. If f(x) = f1,i,0i(xi+1, . . . , xn) for all x ∈ {x1, . . . , xm} output that 1 equivalence

class was found. Otherwise, let y ∈ {0, 1}i, w ∈ {0, 1}n−i be such that f(yw) �=
f(0iw).

3. Select m = Θ(log(1/δ)/ε) new strings z1, . . . , zm ∈ {0, 1}i.
4. Define g(zj) as 0 if f(0i, w) = f(zj

1, . . . , z
j
i , w), and as 1 otherwise. Compute g(zj)

for all j.
5. For all j, if g(zj) = 0 and f(zj) �= f(0i, zj

i+1, . . . , z
j
n), then output representa-

tives of 3 different i-equivalence classes (0i, y and zj
1, . . . , z

j
i ) and distinguish-

ing assignments for them (w and zj
i+1, . . . , z

j
n). Do the same if g(zj) = 1 and

f(zj) �= f(y, zj
i+1, z

j
n).

6. Output the representatives of 2 equivalence classes (0i and y) and a distinguishing
assignment for them (w).

Fig. 2. Algorithm Count-equiv-classes

3. In any case Count-equiv-classes does not indicate the existence of more
than the number of i-equivalence classes of f .

4. Conditioned on Count-equiv-classes(f) returning the representatives of 2 dif-
ferent i-equivalence classes and a distinguishing assignment, with probability
at least 1 − δ it holds that f is ε-close to a function of fi+1,n,w(x1, . . . , xi)
(where w is the distinguishing assignment) and of the variables xi+1, . . . , xn.

The algorithm performs O
(

log(1/δ)
ε

)
queries.

An additional building block we use is the algorithm Get-linear-level, pre-
sented in Fig. 3. The general approach here is to perform a binary search for a

Get-linear-level
Input: Oracle access to a function f ; Precision parameter ε; Confidence parameter δ.

1. Let min = 1 and max = n.
2. Let w be the empty string.
3. While min < max

(a) Let mid = �(max + min)/2�
(b) Run Test-level-linearity(f , mid, ε, δ′ = δ/ log(n)). If Test-level-linearity

finds 3 different mid-equivalence classes, reject.
(c) If Test-level-linearity returns accept set max = mid and set w to be the

distinguishing sequence.
(d) Otherwise, set min = mid + 1

4. return mid and w.

Fig. 3. Algorithm Get-linear-level
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“linear level” (as described in the claim below), at each point counting the equiv-
alence classes using Count-equiv-classes, and testing each equivalence class for
linearity using the BLR linearity test. The algorithm uses a sub-procedure called
Test-level-linearity (described in [17]) that tests whether a particular level of
the input behaves as expected. The proof of the next claim can be found in [17].

Claim 9. When Get-linear-level is given oracle access to a function f (of n
variables), a precision parameter ε and a confidence parameter δ it acts as fol-
lows. Get-linear-level rejects only if more than 2 different i-equivalence classes
were located for some i. Otherwise, with probability greater or equal to 1 − δ it
returns a value 1 ≤ i ≤ n and a string w so that the following hold:

1. The function f is ε-close to a linear function of fj+1,n,w(x1, . . . , xj) and of
the variables xj+1, . . . , xn.

2. If j �= 1, then the function f is not a linear function of fj,n,w(x1, . . . , xj−1)
and of the variables xj , . . . , xn for any2 w.

The algorithm performs O
(

log(n) log(log(n)/δ)
ε

)
queries.

Before proving Theorem 3 we prove a small claim that will assist us in the proof.
In both the claim and the proof of the claim we describe a situation where none of
the (probabilistic) sub-procedures used by Test-width-2 fail. By “Procedures
not failing” we mean, e.g., that if the BLR test accepts, then the function is
indeed ε-close to a linear function.

Claim 10. Assuming none of the sub-procedures used by it fail, at the end of
the r’th round of Test-width-2, the function f r−1 is ε′-close to a W2 function
of f r(x1, . . . , xtr ) and the variables xtr+1, . . . , xtr−1 .

The relationship between f r−1 and f r is demonstrated in Fig. 4.

Proof: By Claim 9 we have that at the end of Item 2d of Test-width-2 in the
r’th round, the function f r−1 is (ε′/3)-close to a W2 function of gr(x1, . . . , xj)
and the variables xj+1, . . . , xt̃r . When j = 1 this suffices (as we set f r = gr).
When j > 1 we have by Claim 8 that at Item 2(e)iv f r is set to a function
ε′/3-close to a W2 function of gr and of the variable xt̃r . This function is surely
a W2 function and thus f r−1 is 2ε′/3-close to a W2 function of f r(x1, . . . , xtr )
and the variables xtr+1, . . . , xtr−1 , as required. �

Proof of Theorem 3: We prove Theorem 3 in three stages. We first show the
correctness of the algorithm assuming that none of the probabilistic procedures
it performed erred in any way. We follow this by bounding the probability of
error for the different probabilistic procedures, and finally, we analyze the query
complexity, concluding the proof.

2 Note that this is true with probability 1 due to the one-sided rejection criteria of
Test-level-linearity, but the claim as is suffices.
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Correctness assuming the success of sub-tests involves proving the
following:

1. Completeness: Test-width-2, given oracle access to a function computable
by a width-2 OBDD, accepts.

2. Soundness:Test-width-2, given oracle access to a function ε-far from any
function computable by a width-2 OBDD, rejects with probability at least 2/3.

Proof of the completeness condition is straightforward: Rejection by Test-
width-2 occurs only when 3 different i-equivalence classes are detected. By
Corollary 1 this never happens in a function computable by a width-2 OBDD.
As Test-width-2 always terminates either by accepting a function or rejecting
it, the completeness condition holds.

We prove the soundness condition by proving the contrapositive - any func-
tion that passes the tester with probability greater than 1/3 is ε-close to a
function computable by a width-2 OBDD. To this end we assume that all the
sub-procedures performed by Test-width-2 succeed and show that in such a
case any function passing the test is, indeed, ε-close to a function computable by
a width-2 OBDD. We later prove that the cumulative probability of the “sub-
procedures” failing is less than 2/3, thus ensuring that Test-width-2 is indeed
a one-sided error property testing algorithm.

We define the function α0 to be f . We next construct for every round r of the
algorithm a function αr that has the following properties:

1. The function αr is close to the function αr−1. In particular d(αr, αr−1) ≤
ε′ = ε/(4 log(1/ε)).

2. The function αr is a W2 function of f r(x1, . . . , xtr ) and of xtr+1, . . . , xn,
and has at least r−1 merging levels. The W2 function that accepts as input
the values f r(x1, . . . , xtr ) and xtr+1, . . . , xn is denoted βr.

We construct αr based on αr−1 as follows: By Claim 10, at the end of the
r’th round the function f r−1 is ε′-close to a W2 function, which we denote ψr,
of f r(x1, . . . , xtr ) and the variables xtr+1, . . . , xtr−1 . Let

αr = βr−1(ψr(f r(x1, . . . , xtr ), xtr+1, . . . , xtr−1), xtr−1+1, xn) .

���
���
���
���

��������������������������
������
������
������������������ ��������������

αr−1 αr

βr

ψr βr−1βr−1 fr(x1, ..., xtr )fr−1(x1, ..., xtr−1 )

Fig. 4. An illustration for the construction of αr and βr
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As we wish to view αr as equivalent to βr(f r(x1, . . . , xtr ), xtr+1), we define βr

accordingly (see Fig. 4). We have that d(αr , αr−1) ≤ ε′. We note that βr is
computable by a width-2 OBDD by a straightforward construction, and that
unless j = 1 on the r’th round, the new width-2 OBDD constructed by this
procedure (that computes βr) has one more merging level than the one on the
r − 1’th round.

Denoting the last round of Test-width-2 as s we now note that αs is (ε/4)-
close to a function computable by a width-2 OBDD (assuming f passed the
test). There are three ways the test can terminate successfully:

1. The test reaches the (log(1/ε)+2)’th round. In such a case αs is ε′ close to a
W2 function (that accepts fs(x1, . . . , xts) and xts+1, . . . , xn as input) with
log(1/ε) + 2 merging levels in the OBDD computing it, and by Claim 5 is
(ε/4)-close to a function computable by a width-2 OBDD.

2. The test terminates because ts = 1. In such a case, by Claim 10, at the end
of the s’th round the function fs is a function of 0 variables (a constant
function), surely computable by a width-2 OBDD.

3. The test terminates because a single equivalence class was found in Item 2e.
In such a case fs is (ε′/3)-close to a constant function, as above.

Let h be a function computable by a width-2 OBDD that’s (ε/2)-close to αs,
and let W2 be the set of functions computable by width 2 OBDDs. We have

d(f,W2) ≤ d(f, h) (1)
≤ d(f, α1) + d(α1, α2) + · · ·+ d(αs−1, αs) + ε/2 (2)
≤ ε/2 + (log(1/ε) + 2)(ε/(4 log(1/ε))) (3)
≤ ε (4)

as required.

The probability of any sub-test failing. The cumulative probability of
any sub-procedure used by Test-width-2 of failing during Test-width-2’s exe-
cution is less than 2/3. This is due to the fact that in each of at most log(1/ε)+2
rounds the algorithm performs two probabilistic sub-procedures, each with a
probability of failure of at most 1

6(log(1/ε)+2) . Using a simple union bound we get
a total probability of failure of at most 2(log(1/ε) + 2) · 1

6(log(1/ε)+2) = 1/3.

The query complexity. It remains to analyze the query complexity of the
algorithm. The tester repeats the outer loop at most log(1/ε) + 2 times, and
performs queries in two Items - 2a and 2e, where the number of queries in
Item 2a is by far the larger and sums up to Θ(log(n)(log(log(n)/δ′)/ε′′)) where
ε′′ = ε/(12 log(1/ε)) and δ′ = 1

6(log(1/ε)+2) , giving us a total number of queries of

Θ

(
log(n) log(log(n) log(1/ε)) log(1/ε)

ε

)

and the proof is complete. �
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Abstract. An arithmetic read-once formula (ROF for short) is a for-
mula (a circuit whose underlying graph is a tree) in which the operations
are {+, ×} and such that every input variable labels at most one leaf.
In this paper we study the problems of giving deterministic identity
testing and reconstruction algorithms for ROFs. Our main result is an
nO(k+log n) time deterministic algorithm for checking whether a black
box holding the sum of k n-variate ROFs computes the zero polynomial.
In other words, we provide a hitting set of size nO(k+log n) for the sum of

k ROFs. This result greatly improves [27] where an nO(k2+
√

n) algorithm
was given for the problem.

Using our new results we obtain a deterministic reconstruction algo-
rithms for read-once formulas that runs in time nO(log n).

In fact, our results also hold for the more general model of preprocessed
read-once formulas that we define in this paper. In this model we are
allowed to replace each variable xi with a polynomial Ti(xi).

Our techniques are very close to the techniques in [27]. The main
difference is that we obtain several tighter versions of the tools first
used there. In particular we obtain a better version of the hardness of
representation approach which was first used in [27]. This technique can
be thought of as a very explicit way of transforming (mild) hardness of
a very structured polynomial to an identity testing algorithm.

1 Introduction

In this paper we study the polynomial identity testing problem for several models
based on read-once formulas. In the polynomial identity testing problem (PIT
for short) we are given (either explicitly or via black-box access) an arithmetic
circuit (or formula) and we have to decide whether the circuit computes the zero
polynomial. Schwartz and Zippel [25, 28] gave a black-box randomized algorithm
for the problem, that was later improved in several cases [2, 8, 16]. However, we
are interested in the question of giving a deterministic algorithm to the problem.

In general, the PIT problem is believed to be very difficult and several results
connecting deterministic algorithms for PIT and lower bounds for arithmetic
circuits are known [1, 3, 10, 12]. However, for several special cases in which the
underlying circuit comes from a restricted class of arithmetic circuits, efficient de-
terministic PIT algorithms were found. For example, efficient deterministic iden-
tity testing algorithms are known for depth-2 arithmetic circuits (that computes

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 700–713, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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sparse polynomials) [5, 15, 17] and references within, for depth-3 arithmetic cir-
cuits with bounded top fan-in (also known as ΣΠΣ(k) circuits) [4, 9, 13, 14, 24]
and for non-commutative arithmetic formulas [20]. Interestingly, [3] showed that
polynomial time deterministic black-box PIT algorithms for depth-4 arithmetic
circuits imply exponential lower bounds on the size of general arithmetic circuits
and a quasi-polynomial time algorithm for the general PIT problem. Indeed, ef-
ficient deterministic PIT algorithms are known only for a very restricted class
of depth-4 circuits [4, 23] (and even those algorithms are non black-box).

In view of the difficulty in providing efficient deterministic PIT algorithms
and the tight connection to lower bounds it is natural to study the PIT problem
for models for which lower bounds are known. In particular, the recent results
of [18, 19, 21, 22] on lower bounds for multilinear circuits and formulas suggest
that giving efficient deterministic PIT algorithms for multilinear formulas may
be possible. Unfortunately, except for the models of multilinear depth-2 and
multilinear ΣΠΣ(k) circuits no such algorithm is known. As a consequence the
problem of PIT for read-once formulas, which can be thought of as the simplest
form of multilinear formulas,1 was considered in [27]. There, sub-exponential
time deterministic PIT algorithms for (sums of) read-once arithmetic formulas
in the black-box and non black-box models were given.

1.1 Our Results

In this work we improve and extend the results from [27] (obtained by the same
authors as this paper). There are two aspects for this improvement. First, we give
quasi-polynomial time identity testing algorithms, which greatly improve upon
the previous sub-exponential time algorithms. Secondly, we consider the more
general model of preprocessed read-once formulas. These are read-once formulas
in which we substitute a univariate polynomial Ti(xi) for every variable xi. Using
our new results we obtain new identity-testing algorithms for multilinear depth-
3 circuits and preprocessed multilinear depth-3 circuits, which are a restricted
class of depth-4 circuits.

Our main result is the following Black-Box identity testing algorithm for the
sum of k PROFs.

Theorem 1. Given black-box access to F = F1 + · · · + Fk, where the Fi-s are
preprocessed-read-once formulas in n variables, with individual degrees at most
d, there is a deterministic algorithm that checks whether F ≡ 0. The running
time of the algorithm is (nd)O(k+log n).

We note that this result greatly improves the previous nO(k2+
√

n) time algorithm
of [27] that worked for ROFs. Using the techniques of [27] this result implies
a deterministic reconstruction algorithm for a single PROF that runs in time
(nd)O(log n). We also obtain a non black-box analog of the PIT result.

1 Indeed, a read-once formula is a restricted form of multilinear formulas in which a
variable can label at most one leaf of the formula (see Definition 3).
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Theorem 2. Given k preprocessed-read-once formulas in n variables, with in-
dividual degrees at most d, there is a deterministic algorithm that checks whether
they sum to zero or not. The running time of the algorithm is (nd)O(k).

This result improves the nO(k2) time algorithm [27] (that worked for ROFs).
Besides these two results we also improve the results of [27] of PIT for the sum
of small depth PROFs and obtain an (nd)O(D+k) time deterministic algorithm
for checking whether a black-box holding the sum of k depth-D preprocessed
read-once formulas on n-variables, with individual degrees at most d, computes
the zero polynomial.

As a corollary of the above result we obtain an nO(k) time PIT algorithm for
multilinear ΣΠΣ(k) circuits (a multilinear ΣΠΣ(k) circuit can be considered
as a sum of k ROFs of depth 2). We note that this result does not rely on bounds
on the rank of zero ΣΠΣ(k) circuits, which is the main tool for giving black-
box PIT algorithms for depth-3 circuits. This result also extends to preprocessed
multilinear depth-3 circuits.

1.2 Proof Technique

Most of our tools are taken from our previous paper [27]. The main difference
is that we obtain tighter versions of the tools developed there combined with
several basic observations.

The first step for obtaining a black-box identity testing algorithm is to start
with a single ROF. We note that if the top gate of the formula is a + then P can
be written as a sum of two, variable-disjoint ROPs P = P1+P2 and the two basic
observation are that w.l.o.g P1 depends on at most n/2 variables and that if P1
depends on (a variable) xi then so does P . Using these observations we show that
for  = &log2 t'+ 1 the function G	 : F2	 → Fn, that we define next, is a hitting
set generator for PROFs: Let a1, . . . , an ∈ F be n distinct2 field elements. Let
u1(w), . . . , un(w) be univariate polynomials of degree n − 1 such that ui(aj) =

δi,j . For every i ∈ [n] let Gi
k : F2k → F be defined as Gi

k(y1, . . . , yk, z1, . . . , zk) Δ=

ui(y1) · z1 + . . . + ui(yk) · zk. Set Gk(y1, . . . , yk, z1, . . . , zk) Δ=
(
G1

k, G
2
k, . . . , G

n
k

)
.

In particular, by evaluating G	 on [n2d]2	 we get a hitting set for PROFs with
individual degrees at most d, of size (nd)O(log n).

This simplifies and greatly improves the generator given in [27] that con-
structed a hitting set of size nO(

√
n) for ROFs. The extension from a PIT al-

gorithm for a single PROF to an algorithm for the sum of k PROFs is via
hardness of representation approach, first used in [27]. This technique enables
us to transform a mild lower bound for a very structured polynomial into a PIT
for sum of (preprocessed) ROFs. The idea behind this approach is the following:
A common justifying assignment to a set {Fm}m∈[k] of PROFs is an assignment
ρ = (ρ1, . . . , ρn) such that (for every m) Fm(ρ1, . . . , ρi−1, xi, ρi+1, . . . , ρn) de-
pends on xi if and only if Fm(x1, . . . , xn) depends on xi (see Definition 1). Our
hardness of representation theorem shows that if ρ is a justifying assignment for
2 If F is too small then we move to an extension field.
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{F1, . . . , Fk}, where k = O(n), then if F1+. . .+Fk = g(x1, . . . , xn)·
∏n

i=1(xi−ρi),
for some polynomial g, then g ≡ 0. This form of the theorem generalizes and
strengthens the corresponding theorem of [27] that only held for ROFs and that
only showed that

√
n ROFs are needed.

We apply this theorem in the following way. Assume that F = F1 + . . .+Fk is
a sum of k ROFs. Using the PIT algorithm for a single PROF we can find (a-la
[27]) a common justifying assignment to all the Fm-s (actually we find a set, of
polynomial size, of assignment that contains a common justifying assignment).
Then, by the idea of [27] we evaluate F on all points of the form ρ + v, where
v ∈ [d+1]n has weight at most 3k. If all the evaluations are zero then we conclude
that F ≡ 0. To get an intuitive feeling why this work, assume w.l.o.g. that ρ = 0.
We thus evaluate F on all the points of weight at most 3k in [d+1]n. Fix xn = 0.
Using induction we conclude that if F vanishes on all those assignments in which
xn = 0 then F |xn=0 ≡ 0. In other words, xn divides F . As this holds for every
xi we get that x1 · . . . · xn divides F . By the hardness of representation result
we now get that F ≡ 0. Note, that the basis for the induction is when n = 3k
and then clearly evaluating a polynomial with individual degrees ≤ d on all the
points in [d + 1]3k tells us whether the polynomial is zero or not.

1.3 Comparison to Previous Works

Read-once arithmetic formulas were mostly studied in the context of computa-
tional learning theory. Various works considered the problem of reconstructing
the unknown read-once formula using membership queries. A membership query
to a ROF f(x̄) is simply a query that asks for the value of f(x̄) on a specific in-
put. In [11] a deterministic learning algorithm for read-once arithmetic formulas
that uses membership and equivalence queries was given. An equivalence query
gives the oracle holding the unknown formula a certain hypothesis, h(x̄), and
the oracle answers “equal” if f ≡ h or returns an input ᾱ such that f(ᾱ) �= h(ᾱ).
In [7] a different approach was taken. They considered randomized learning al-
gorithms that only use membership queries. It is not difficult to see that using
randomness one does not need to use equivalence queries any more. The learning
algorithm of [7] can reconstruct, with high probability, arithmetic read-once for-
mulas that also use division gates (and not just +,× gates). This result was later
generalized by [6] who gave a randomized reconstruction algorithm for read-once
formulas that use additions, multiplications, divisions and exponentiations.

In [27] a sub-exponential time (i.e. nO(
√

n) time) PIT algorithm for black-box
read-once formulas was given. Using this algorithm together with the learning
methods of [7, 11] a deterministic sub-exponential time reconstruction algorithm
for arithmetic ROFs was obtained. In addition, PIT algorithms for sum of ROFs
both in the black-box and in the non black-box models were obtained in that
work.

In this work we improve the PIT algorithms for sum of ROFs. In the black-
box case we give a deterministic algorithm that runs in nO(k+log n) time. In the
non black-box case our algorithm runs in time nO(k). Moreover, both algorithms
also work for the general model of preprocessed ROFs.
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We are also able to apply our methods to depth-3 circuits, also known as
ΣΠΣ(k) circuits. This model was extensively studied in recent years [4, 9, 13, 14,
24, 26, 27] as it stands between the simpler depth-2 case and the depth-4 case that
is as hard as the general case, for lower bounds and polynomial identity testing
[3]. Prior to this work the best known black-box PIT algorithm for ΣΠΣ(k, d)
circuits had running time nO(k3 log d) for the general case [13, 24] and nO(k2) in
the multilinear case [27]. We improve the algorithm for the multilinear case and
obtain an nO(k) algorithm that also works in the preprocessed case.

1.4 Organization

In Section 3 we define the notion of ROF and state several of their important
properties (mostly results proved in [27]). In Section 4 we consider the case of
a single ROF. In Section 5 we extend the result from the previous section to
sums of ROFs, proving Theorems 2 and 1. Due to space limitations we will not
manage to give more proofs and, moreover, we only give proofs for the case of
ROFs and not PROFs.

2 Preliminaries

For a positive integer n we denote [n] = {1, . . . , n}. As usual, we define the
Hamming weight of a vector ā ∈ Fn as: wH(ā) Δ= |{i | ai �= 0}|. For a polyno-
mial P (x1, . . . , xn) a variable xi and a field element α we denote with P |xi=α

the polynomial resulting after substituting α to the variable xi. The following
definitions, taken from [27], are for a polynomial P ∈ F[x1, . . . , xn] and an as-
signment ā ∈ Fn. We say that P depends on xi if there exist two inputs ā
and b̄ that differ only on the i-th coordinate such that P (ā) �= P (b̄). We de-
note var(P ) Δ= {xi | P depends on xi }. Clearly, P depends on xi if xi “appears”
when P is listed as a sum of monomials. Given a subset I ⊆ [n] we say that P is
defined on I if var(P ) ⊆ I. E.g., the constant function is defined on every subset
of [n]. Given a subset I ⊆ [n] and an assignment ā ∈ Fn we define P |xI=āI to be
the polynomial resulting from substituting ai to the variable xi for every i ∈ I.
In particular P |xI=āI is defined on [n] \ I. It is clear that if J ⊆ I ⊆ var(P ) are
subsets of var(P ), then for every assignment ā ∈ Fn it must be the case that
var(P |xI=āI ) ⊆ var(P |xJ=āI ) ⊆ var(P ) \ J . That is, by substituting a value to
a variable of P we, obviously, eliminate the dependence of P on this variable,
however we may also eliminate the dependence of P on other variables and thus
lose more information than intended. For the purposes of reconstruction and
identity testing we cannot allow losing any information as it would affect our
final answer. We now define a lossless type of an assignment. Similar definitions
were given in [11] and [7], but we repeat the definitions here to ease the reading
of the paper (we also slightly change some of the definitions).

Definition 1 (Justifying assignment). Given an assignment ā ∈ Fn we say
that ā is a justifying assignment of P if for each subset I ⊆ var(P ) we have that
var(P |xI=āI ) = var(P ) \ I.
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Note that ā ∈ Fn is a justifying assignment of P if and only if var(P |xI=āI ) =
var(P )\ I for every subset I of size |var(P )|−1. Given an assignment ā ∈ Fn we
say that ā is a weakly-justifying assignment of P if var(P |xI=āI ) = var(P )\ I for
every |I| = 1. Clearly, justification implies weak-justification, but not vice versa.
We also define justification as a property of polynomials: A polynomial P is ā-
justified if ā is justifying assignment of P . We define the term weakly-ā-justified
in a similar manner. By shifting we can convert any polynomial to a 0̄-justified
form. The following lemma is similar to Lemma 2.3 of [27].

Lemma 1. Let ā ∈ Fn and let f(x̄) be a (weakly) ā-justified polynomial. Then
fā(x̄) Δ= f(x̄ + ā) is a (weakly) 0̄-justified polynomial. In addition, fā ≡ 0 if and
only if f ≡ 0.

2.1 Partial Derivatives

Discrete partial derivatives will play a important role in our proofs.

Definition 2. Let P be an n variate polynomial over a field F. We define the
discrete partial derivative of P with respect to xi as ∂P

∂xi
= P |xi=1 − P |xi=0.

If P is a multilinear polynomial then this definition coincides with the “analyt-
ical” one when F = R or F = C. The following lemma is easy to verify.

Lemma 2 (Lemma 2.5 of [27]). The following properties hold for a multilin-
ear polynomial P : P depends on xi iff ∂P

∂xi
�≡ 0. ∂P

∂xi
does not depend on xi (in par-

ticular ∂2P
∂x2

i
≡ 0). ∂2P

∂xi∂xj
= ∂

∂xi
( ∂P

∂xj
) = ∂2P

∂xj∂xi
. ∀i �= j ∂P

∂xi
|xj=a = ∂

∂xi
(P |xj=a).

ā ∈ Fn is a justifying assignment of P iff ∀i ∈ var(P ) it holds ∂P
∂xi

(ā) �≡ 0. “Chain
rule”: Let Q(y, z̄) be a multilinear polynomial such that P (x̄, z̄) ≡ Q(G(x̄), z̄).
Then ∂P

∂xi
= ∂Q

∂y ·
∂G
∂xi

and in addition, ∂Q
∂y does not depend on y.

Since the lemma trivially hold for multilinear polynomials, we will use it implic-
itly. However, notice these basic properties do not hold for general polynomials.
For example, when P (x) = x2 − x we get that ∂P

∂x ≡ 0.

3 Read-Once Formulas

In this section we discuss our computational model. Due to space limitations we
only consider the model of read-once formulas and not the more general model
of preprocessed-read-once formulas. Most of the definitions in this section are
from [11]. The proofs of most properties can be found in Section 3 of [27].

Definition 3. A read-once arithmetic formula (ROF for short) over a field F

in the variables x̄ = (x1, . . . , xn) is a binary tree whose leafs are labeled with the
input variables and whose internal nodes are labeled with the arithmetic opera-
tions {+,×} and with a pair of field elements 3 (α, β) ∈ F2. Each input vari-
able can label at most one leaf. The computation is performed in the following
3 This is a slightly more general model than the usual definition of read-once formulas.
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way. A leaf labeled with the variable xi and with (α, β) computes the polynomial
α · xi + β. If a node v is labelled with the operation op and with (α, β), and its
children compute the polynomials fv1 and fv2 then the polynomial computed at v
is fv = α · (fv1 op fv2) + β. We say that a ROF (instance) f is non-degenerate
if it depends on all the variables appearing in it.

A polynomial P (x̄) is a read-once polynomial (ROP for short) if it can be com-
puted by a read-once formula. A special class of ROFs that will play an important
role in our proofs is the class of multiplicative ROFs.

Definition 4. A ROF is called multiplicative ROF if it has no addition gates.
A polynomial computed by a multiplicative ROF is called a multiplicative ROP.

We shall later see (Lemma 6) that this notion is well defined. Note that from our
definition of the ROF model, the polynomial (5x1 ·x2+1)·((−x3+2)·(2x4−1)+5)
has a multiplicative ROF. We now give some basic properties of ROPs that were
mostly proved in [27]. As all this results were already proved in [27] we only list
them here. Next is the structural lemma of ROPs.

Lemma 3 (Lemma 3.3 of [27]). Every ROP P (x̄) such that |var(P )| ≥ 2 can
be presented in exactly one of the following forms: P (x̄) = P1(x̄) + P2(x̄) or
P (x̄) = P1(x̄) · P2(x̄) + c, where P1, P2 are non-constant variable disjoint ROPs
and c is a constant.

The following is a simple lemma saying that we can remove any gate of a ROF
and still obtain a ROF.

Lemma 4 (Lemma 3.4 of [27]). Let P (x̄) be a ROP and v a node in a ROF
f computing P . We denote by pv(x̄) the polynomial that is computed by v. Then
there exists a polynomial Q(y, x̄) such that Q(pv(x̄) , x̄) ≡ P (x̄) and, in addition,
pv and Q are variable-disjoint ROPs.

The next two lemmas shows that ROPs are somewhat robust. Namely that a
factor and partial derivative of a ROP are also ROPs.

Lemma 5 (Lemmas 3.5, 3.6 and 3.10 of [27]). A partial derivative and a
factor of a ROP is a ROP. Moreover, if the polynomial is weakly-0̄-justified then
so are its factors and partial derivatives.

Lemma 6 (Proposition 3.8 of [27]). A ROP P is a multiplicative ROP iff
∀xi �= xj ∈ var(P ) we have that ∂2P

∂xi∂xj
�≡ 0.

The following is an extension of Lemma 3.9 of [27] that explains the structure of
multiplicative ROFs. Recall that in our model a multiplicative ROF can compute
more than a simple polynomial (due to the linear shifts at the gates).

Lemma 7. Let P (x1, x2, . . . , xn) be a multiplicative ROP with |var(P )| ≥ 2.
Then for every variable xi ∈ var(P ) there exists another variable xj ∈ var(P )
such that ∂P

∂xj
= (xi−α)h(x̄) for some α ∈ F and ROP h(x̄), such that var(h) =

var(P ) \ {xi, xj} (in particular, ∂P
∂xj
|xi=α ≡ 0). If, in addition, P is weakly-0̄-

justified then so is h(x̄). Moreover, α �= 0 and there exists at most one element
β �= α ∈ F such that P |xi=β is not weakly-0̄-justified .
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4 Black-Box PIT for Read-Once Polynomials

In this section we prove Theorem 1 for a single ROF (i.e. the case k = 1). The
main idea is to convert a ROP P , that has many variables, each with a “small”
degree, to a polynomial P ′ with a smaller number of variables while maintaining
a reasonable degree, such that P ′ ≡ 0 if and only if P ≡ 0. In fact, we will
construct a generator for ROPs. In other words, we give a mapping G : Fq → Fn,
for some “small” q, such that if F �≡ 0 then F ◦ G �≡ 0. We shall assume that
|F| > n as we are allowed to use elements from an appropriate extension field.
Throughout the entire section we fix a set A = {α1, α2, . . . , αn} ⊆ F of n distinct
elements.

Definition 5. For every i ∈ [n] let ui(w) : F → F be the i-th Lagrange in-
terpolation polynomial for the set A. Namely, each ui(w) is polynomial of de-
gree n − 1 that satisfies ui(αj) = 1 iff j = i (and 0 otherwise). For every

i ∈ [n] and k ≥ 1 we define Gi
k : F2k → F as Gi

k(y1, . . . , yk, z1, . . . , zk) Δ=
ui(y1) · z1 + . . . + ui(yk) · zk. Finally, let Gk : F2k → Fn be defined as
Gk(y1, . . . , yk, z1, . . . , zk) Δ=

(
G1

k, G
2
k, . . . , G

n
k

)
.

Denote with ēi ∈ {0, 1}n the vector that has 1 in the i-th coordinate and 0

elsewhere. From the definition it is clear that Gk+1 = Gk +
n∑

i=1
ui(yk+1) ·zk+1 · ēi.

Hence, for every k ≥ 1 and αm ∈ A it holds that Gk+1|yk+1= αm = Gk +zk+1 · ēm.
Now we can construct a low-degree generator for ROPs.

Lemma 8. Let P ∈ F[x1, . . . , xn] be a non-zero ROP with |var(P )| ≤ 2t, for
some t ≥ 0. Then P (Gt+1) �≡ 0. Moreover, if P is a non-constant polynomial
then so is P (Gt+1).

Proof. We prove the claim by induction on |var(P )|. For |var(P )| = 0 or 1 the
claim is trivial. Now assume that |var(P )| ≥ 2 (which implies t ≥ 1). By Lemma 3
we get that P can be written in exactly one of the two forms:

Case P (x̄) = P1(x̄) + P2(x̄): Since P1 and P2 are variable disjoint we can
assume w.l.o.g. that |var(P1)| ≤ |var(P )|/2 ≤ 2t−1 (in particular |var(P1)| <
|var(P )|). By the induction hypothesis we see that P1(Gt) �≡ 0 is a non-constant
polynomial. The next lemma shows that there is a variable xm such that even
after substituting all the other Gi-s, P1 still depends on xm.

Lemma 9. Let P ∈ F[x1, . . . , xn] be a polynomial and let G = (G1, . . . , Gn) :
F	 → Fn satisfy that P (G) is a non-constant polynomial. Then there exists
xm ∈ var(P ) such that P

(
G1, . . . , Gm−1, xm , Gm+1, . . . , Gn

)
(the polynomial

resulting from substituting Gi for xi for every i �= m) depends on xm.

Let xm ∈ var(P1) be as promised by the lemma. As xm �∈ var(P2) we ob-
tain that P

(
G1

t , . . . , G
m−1
t , xm , Gm+1

t , . . . , Gn
t

)
depends on xm as well. Recall

that P (Gt+1)|yt+1= αm = P
(
G1

t , . . . , G
m−1
t , Gm

t + zt+1 , Gm+1
t , . . . , Gn

t

)
. Thus,

as zt+1 only appears in the m-th coordinate it follows that P (Gt+1)|yt+1= αm
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depends on zt+1. As a conclusion we get that P (Gt+1) is a non-constant poly-
nomial and in particular P (Gt+1) �≡ 0.

Case P (x̄) = P1(x̄) · P2(x̄) + c: As P1 and P2 are non-constant and variable-
disjoint ROPs it holds that 1 ≤ |var(P1)| , |var(P2)| < |var(P )| ≤ 2t. Hence,
we can apply the induction hypothesis on both P1 and P2. As P (Gt+1) =
P1(Gt+1) · P2(Gt+1) + c it follows that P (Gt+1) is a non-constant polynomial
(since P1(Gt+1) and P2(Gt+1) are non-constant as well). �

Note that the P (Gk) �≡ 0 for the appropriate value of k regardless of the degree
of P . We also note that the requirement that |F| > n is needed for the definition
of Gk. The case k = 1 of Theorem 1 follows from the next theorem.

Theorem 3. Let P be an n-variate ROP that depends on at most t variables.4

Denote  = &log2 t'+ 1. Let W ⊆ F be a set of size n2. Let H = G	

(
W 2	

)
⊆ Fn

(that is, we take the image of W 2	 under G	). Then P ≡ 0 if and only if P |H ≡ 0.

Proof. If P ≡ 0 then the claim is trivial. Assume that P �≡ 0. By Lemma 8 we
get that P (G	) �≡ 0. From the definition, Gi

	 depends on 2 variables {yj , zj}j∈[	].
The degrees of each yj and each zj in G	 are n − 1 and 1, respectively. Hence,
the degrees of each yj and each zj in P (G	) are bounded by (n − 1)n and n,
respectively. This immediately implies that P �≡ 0 if and only if P |H �≡ 0. Finally,
we note that |H| ≤ (n2)	 = nO(log t). �

In particular, since every ROP depends on at most n variables, we obtain a
quasi-polynomial nO(log n) black-box PIT algorithm for ROPs. When the ROF
is of small depth we obtain a faster algorithm using similar techniques. However,
due to space limitation this proof is omitted from this version.

5 PIT for Sum of Read-Once Formulas

In this section we prove Theorems 1 and 2: we are given k ROPs {Fm}m∈[k] and
we have to find whether they sum to zero. In other words, let F = F1 + . . .+Fk,
then we have to check whether F ≡ 0. Our algorithm for the problem has two
steps. First we find a common justifying assignment to F1, . . . , Fk using the PIT
algorithm for a single ROF from Section 4. Once we have a common justifying
assignment we can assume w.l.o.g. that all the input formulas are 0̄-justified (see
Lemma 1). In the second step we simply verify that F vanishes on a relatively
small set of vectors, each of weight at most 3k. Theorem 5 then guarantees that
F ≡ 0. The main tool in the proof is Theorem 6 that shows that we cannot
represent Pn

Δ=
∏n

i=1 xi as a sum of less than 1
3n 0̄-justified ROPs. We call this

approach a hardness of representation approach as the proof is based on the
fact that a simple polynomial cannot be represented (computed) by a sum of a
“small” number of 0̄-justified ROPs.

4 Clearly t ≤ n but we choose this more general statement.
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We now show how to obtain a common justifying assignment from a PIT
algorithm. For this we first note that our PIT for a single ROF actually gives
a generator. Namely, a map G = (G1, . . . ,Gn) : Fq → Fn such that for every
non-zero n-variate ROP P it holds that P (G) �≡ 0. By Lemma 8 we get that for
 = &log2 n' + 1 the mapping G	 : F2	 → Fn is a generator for ROPs. Recall
that the individual degrees of the Gi

	-s are bounded by δ = n − 1. The follow-
ing lemma is based on Lemmas 5.1 and 5.3 from [27]. The lemma summarizes
the connection between PIT algorithms for ROPs and algorithms for finding a
common justifying assignment, in both black-box and non black-box settings.

Lemma 10. Let F be a field with |F| > n and let {Pm}m∈[k] be a set of ROPs.
Then there is an algorithm that computes a common justifying assignment ā for
{Pm}m∈[k] in time O(n4k2).

Moreover, assume that G = (G1, . . . ,Gn) : Fq → Fn is a generator for ROPs,
with individual degrees of each Gi bounded by δ and let V ⊆ F be an arbitrary
subset of size |V | = kn2δ + 1. Then the set J k

G
Δ= G(V q) contains a common

justifying assignment for P1, . . . , Pk. Clearly,
∣
∣J k

G
∣
∣ ≤ (kn2δ + 1)q.

We are now ready to prove Theorems 1 and 2. The next theorem shows that a
common justifying assignment implies a PIT algorithm for sum of ROFs. First
we need the following definition. For a set W ⊆ F, such that 0 ∈ W , and
k ≤ n we define An

k (W ) to be the set of all vectors in Wn with Hamming
weight at most k, that is vectors that have at most k non-zero coordinates.
Formally: An

k (W ) Δ= {ā ∈ Wn | wH(ā) ≤ k }. An immediate conclusion is that
|An

k (W )| = (n · (|W | − 1))O(k).

Theorem 4. Let W = {0, 1} and ā be a common justifying assignment for the
ROPs F1, F2, . . . , Fk. Consider F =

∑k
m=1 Fm. Then F ≡ 0 iff F |An

3k(W ) ≡ 0.
Thus, if G = (G1, . . . ,Gn) : Fq → Fn is a generator as in Lemma 10 then F ≡ 0
iff for every γ̄ ∈ J k

G it holds that Fγ̄ |An
3k(W ) ≡ 0.

The theorem implies an nO(k) time non black-box PIT algorithm as we can
acquire a justifying assignment ā in O(n4k2) time given the Fm’s (Lemma 10),
and an O

(∣∣J k
G

∣
∣ · |An

3k(W )|
)

= (kn2δ + 1)q · (n)O(k) = (nδ)O(k+q) time black-
box PIT algorithm. When δ is the bound on the individual degrees of the Gi-s.
Recalling Lemma 8 we get a black-box PIT algorithm for the sum of k ROPs of
running time nO(k+2	) = nO(k+log n). The correctness of Theorem 4 follows from
Lemma 1, Lemma 10 and Theorem 5.

Theorem 5. Let F (x̄) = F1(x̄) + . . . + Fk(x̄) be a sum of k 0̄-justified ROPs
over F. Set W = {0, 1}. Then F ≡ 0 if and only if F |An

3k(W ) ≡ 0.

The main in proving Theorem 5 is a hardness of representation theorem for
ROPs. Such a theorem was first given in [27] and here we prove an improved
version of it. Namely, we show that the polynomial Pn

Δ= x1 · x2 · . . . · xn cannot
be represented as a sum of k ≤ n

3 0̄-justified ROPs. We note that over a large
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field (|F| > n) the polynomial Pn(x̄) can be represented as a sum of n 0̄-justified
ROPs (by interpolation). Thus our theorem is nearly optimal.

Proof. We prove the Theorem by induction on n. Our base case is when n ≤ 3k.
In this case F is a multilinear polynomial in n ≤ 3k variables so clearly
F |An

3k(W ) ≡ 0 iff F ≡ 0. We now assume that n > 3k ≥ 4. Let  ∈ [n]. Consider
the restriction of the Fm’s and F to the subspace x	 = 0. We now show that the
required conditions hold for F ′ Δ= F |x	=0 and

{
F ′

m
Δ= Fm|x	=0

}

m∈[k]
as well. In-

deed, the {F ′
m}m∈[k] are 0̄-justified ROPs. Moreover, F ′|An−1

3k (W ) = F ′|An
3k(W ) ≡

0. From the induction hypothesis we conclude that F |x	=0 = F ′ ≡ 0 and there-
fore x	 is a factor of F . As this holds for every  ∈ [n] we get that Pn(x̄) divides
F (x̄) or equivalently F (x̄) = c · Pn(x̄) for some c ∈ F. It follows that c · Pn(x̄) is
a sum of k 0̄-justified ROPs. As n > 3k we get by the next theorem (Theorem 6)
that we must have that c = 0. Hence F = c · Pn ≡ 0. �

Theorem 6. Pn(x̄) cannot be represented as sum of k ≤ n
3 weakly-0̄-justified

ROPs.

Proof. We shall use the following notation in the proof: For a non-empty subset
I =

{
i1, . . . , i|I|

}
⊆ [n], we define the iterated partial derivative with respect to

I in the following way: ∂IP
Δ= ∂|I|P

∂xi1∂xi2∂x
i3

···∂xi|I|
.

Let {Fm(x̄)}m∈[k] be k weakly-0̄-justified ROPs over F[x1, . . . , xn]. We prove
the claim by induction on k. For k = 0, 1 the claim follows from the definition
of 0̄-weak-justification. We now assume that k ≥ 2 and that n ≥ 3k. We shall

assume for a contradiction that
k∑

m=1
Fm = Pn. The idea of the proof is to elimi-

nate a “large” number of ROPs at a cost of a “small” number of variables. More
specifically, we find a small set of (indices of) input variables J ⊆ [n− 1] and a
constant α �= 0 ∈ F such that after we take a partial derivative with respect to
all of the variables in J and substitute xn = α (that is we consider the ROPs
{∂JFm|xn=α}m∈[k]) we eliminate “many” polynomials such that the rest of the
ROPs remain weakly-0̄-justified . This way we get that a representation of poly-
nomial ∂JPn|xn=α = α·Pn̂ (for a relatively large n̂) as a sum of a “small” number
of weakly-0̄-justified ROPs. Then we use the induction hypothesis to reach
a contradiction. We now proceed with the proof. There are two cases to consider.

Case 1: There exist i �= j ∈ [n] and m ∈ [k] such that ∂2Fm

∂xi∂xj
≡ 0 (namely,

Fm does not contain xi · xj in any of its monomials). Assume w.l.o.g. that
i = n− 1, j = n and m = k. By considering the partial derivatives with respect

to {xn, xn−1} we get that
k−1∑

m=1

∂2Fm

∂xn∂xn−1
= Pn−2. It may be the case that more

than one Fm vanishes when we take a partial derivative w.r.t. {xn, xn−1},
however they cannot all vanish simultaneously (as Pn contains xn · xn−1). By
Lemma 5 we have that the polynomials

{
∂2Fm

∂xn∂xn−1

}
are weakly-0̄-justified
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ROPs. Hence, we obtain a representation of Pn−2 as a sum of 0 < k̂ ≤ k − 1
weakly-0̄-justified ROPs such that 0 < 3k̂ ≤ 3(k − 1) = 3k − 3 < n − 2 which
contradicts the induction hypothesis.

Case 2: For every i �= j ∈ [n] and m ∈ [k] we have that ∂2Fm

∂xi∂xj
�≡ 0. Thus,

by Lemma 6 we get that the polynomials {Fm}m∈[k] are multiplicative ROPs.
In addition, for every m ∈ [k] we have that var(Fm) = [n]. In particular,
|var(Fm)| ≥ 6. Lemma 7 implies that ∀m ∈ [k] there exist jm ∈ [n], αm �= 0 ∈ F

and a ROP hm(x̄) such that ∂Fm

∂xjm
= (xn −αm)hm(x̄). Let A = {αm | m ∈ [k]}.

Clearly 0 /∈ A. For every α ∈ A we define: Eα
Δ= {m ∈ [k] | αm = α},

Bα
Δ= {m ∈ [k] | αm �= α ∧ Fm|xn=α is not weakly-0̄-justified }. Intuitively, Eα

is set of the ROPs that can be eliminated by substituting xn = α and Bα is set
of (“bad”) ROPs that will become non weakly-0̄-justified upon the substitution
and thus require a special treatment. From the definition of A we have that
|Eα| ≥ 1 and

∑

α∈A

|Eα| = k. More specifically, the Eα’s form a partition of [k].

Similarly, Lemma 7 implies that for each α �= α′ ∈ A the sets Bα and Bα′ are
disjoint (since for every ROP there exists at most one bad value β of xn) and
therefore

∑

α∈A

|Bα| ≤ k. Hence, there exists α0 ∈ A such that |Bα0 | ≤ |Eα0 |.

Now, let I = Eα0 ∪ Bα0 and J = {jm | m ∈ I }. From the definition, I ⊆ [k]
and J ⊆ [n]. In addition, 1 ≤ |J | ≤ |I| ≤ |Eα0 | + |Bα0 | ≤ 2 |Eα0 | and n /∈ J .
Consider the following ROPs for every m ∈ [k]: F ′

m
Δ= ∂JFm. Then the ROPs

F ′
m’s have the following properties.

1. By Lemma 5 we get that every F ′
m is a weakly-0̄-justified ROP.

2. For every m ∈ I we have that F ′
m = (xn − αm)h′

m(x̄) for some ROP
h′

m(x̄). Indeed, as jm ∈ J we have that F ′
m = ∂JFm = ∂J\{jm}( ∂Fm

∂xjm
) =

∂J\{jm} ((xn − αm)hm(x̄)) = (xn − αm) · ∂J\{jm}hm(x̄)
3. For every m ∈ I we have that h′

m(x̄) is a weakly-0̄-justified ROP (this follows
from Lemma 5 and the previous two properties).

For m ∈ [k] consider the following ROPs: F ′′
m

Δ= ∂JFm|xn=α0 = F ′
m|xn=α0 . Based

on the above we can conclude that:

– For every m ∈ Eα0 it holds that F ′′
m = (α0 − αm)h′

m(x̄) ≡ 0 (by definition
of Eα0 we have that αm = α0).

– For every m ∈ Bα0 we have that F ′′
m = (α0 − αm)h′

m(x̄) is a non-zero
weakly-0̄-justified ROP. Notice that in contrary to Fm, the structure of F ′

m

guarantees that it remains weakly-0̄-justified when substituting xn = α0.
– For m ∈ [k] \ I the definitions of Eα0 and Bα0 guarantee that Fm|xn=α0 is

a weakly-0̄-justified ROP. Lemma 5 implies that the same holds for F ′′
m =

∂J(Fm|xn=α0) as well. Note that in this case it is also possible that F ′′
m ≡ 0.

Thus, F ′′
m ≡ 0 for m ∈ Eα0 and F ′′

m is a weakly-0̄-justified ROP for m ∈ [k]\Eα0 .
W.l.o.g. let us assume that J = {n̂ + 1, n̂ + 2, . . . , n− 2, n− 1} for some n̂. We
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get that
k∑

m=1
F ′′

m = ∂JPn|xn=α0 = α0 · Pn̂. That is, we found a representation of

α0 ·Pn̂ as a sum of weakly-0̄-justified ROPs, where at least |Eα0 | of the ROPs are
zeros. Notice that 2 |Eα0 | ≥ |J | = (n− 1)− n̂ and |Eα| ≥ 1. Therefore, we have
found a representation of α0 · Pn̂ as a sum of 0 ≤ k̂ < k weakly-0̄-justified ROPs
such that 0 ≤ 3k̂ ≤ 3(k − |Eα|) = 3k − 3 |Eα| ≤ n− 3 |Eα| ≤ n̂ + 1 − |Eα| ≤ n̂.
By our induction hypothesis we get that α0 = 0, which is a contradiction (recall
that α0 ∈ A and 0 /∈ A). Hence, Pn cannot be represented as a sum of less than
n
3 weakly-0̄-justified ROPs. This completes the proof. �

6 Conclusions

In this short version we gave a black-box identity testing algorithm for the sum of
k ROFs of running time nO(k+log n). In the full version of this paper5 we actually
show that a similar result also holds for the more general model of preprocessed
ROFs. It is an interesting question to obtain a polynomial time identity testing
algorithm for this model, or to even just improve the running time to be of the
form f(k) ·nO(1) for some function f not depending on n. As shown in [27] a PIT
algorithm for ROFs implies a reconstruction (learning) algorithm for them. Thus
our results imply a quasi-polynomial time deterministic reconstruction algorithm
for (preprocessed) ROFs. It will be interesting to get a reconstruction algorithm
for sums of ROFs. Another question is obtaining a deterministic polynomial time
reconstruction algorithm for a single ROF.
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Abstract. A few years ago, Spielman and Teng initiated the study of
Smooth analysis of the condition number and the least singular value
of a matrix. Let x be a complex variable with mean zero and bounded
variance. Let Nn be the random matrix of sie n whose entries are iid
copies of x and M a deterministic matrix of the same size. The goal
of smooth analysis is to estimate the condition number and the least
singular value of M + Nn.

Spielman and Teng considered the case when x is gaussian. We are
going to study the general case when x is arbitrary. Our investigation
reveals a new and interesting fact that, unlike the gaussian case, in the
general case the “core“ matrix M does play a role in the tail bounds
for the least singular value of M + Nn. Consequently, our estimate in-
volves the norm ‖M‖ and it is a challenging question to determine the
right magnitude of this involvement. When ‖M‖ is relatively small, our
estimate is nearly optimal and extends or refines several existing result.

1 Introduction

Let M be an n × n matrix and s1(M) ≥ · · · ≥ sn(M) its singular values. The
condition number of A, as defined by numerical analysts, is

κ(M) := s1(M)/sn(M) = ‖M‖‖M−1‖.

This parameter is of fundamental importance in numerical linear algebra and
related areas, such as linear programming. In particular, the value

L(M) := log κ(M)

measures the (worst case) loss of precision the equation Mx = b can exhibit
[22,2].

The problem of understanding the typical behavior of κ(M) and L(M) when
the matrix M is random has a long history. This was first raised by von Neumann
and Goldstein in their study of numerical inversion of large matrices [32]. Several
years later, the problem was restated in a survey of Smale [22] on the efficiency
of algorithm of anaylsis. One of Smale’s motivations was to understand the
efficiency of the simplex algorithm in linear programming. The problem is also

I. Dinur et al. (Eds.): APPROX and RANDOM 2009, LNCS 5687, pp. 714–737, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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at the core of Demmel’s plan about the investigation of the probability that a
numerical analysis problem is difficult [8].

To make the problem precise, the most critical issue is to choose a probability
distribution for M . A convenient model has been random matrices with inde-
pendent gaussian entries (either real of complex). An essential feature of this
model is that here the joint distribution of the eigenvalues can be written down
precisely

(Real Gaussian) c1(n)
∏

1≤i<j≤n

|λi − λj | exp(−
n∑

i=1

λ2
i /2). (1)

(Complex Gaussian) c2(n)
∏

1≤i<j≤n

|λi − λj |2 exp(−
n∑

i=1

λ2
i /2). (2)

Here c1(n), c2(n) are normalization factors whose explicit formulae can be seen
in, for example, [16].

Most questions about the spectrum of these random matrices can then be an-
swered by estimating a properly defined integral with respect to these measures.
Many advanced techniques have been worked out to serve this purpose (see, for
instance [16]). In particular, the condition number is well understood, thanks to
works of Kostlan, Oceanu [22], Edelman [6] and many others (see Section 2).

The gaussian model, however, has serious shortcomings. As pointed out by
many researchers (see, for example [3,24]), the gaussian model does not reflex the
arbitrariness of the input. Let us consider, for example, a random matrix with
independent real gaussian entries. By sharp concentration results, one can show
that the fraction of entries with absolute values at most 1, is, with overwhelming
probability, close to the absolute constant 1√

2π

∫ 1
−1 exp(−t2/2)dt. Many classes

of matrices that occur in practice just simply do not possess this property. This
problem persists even when one replaces gaussian by another fixed distribution,
such as Bernoulli.

About 10 years ago, Spielman and Teng [24,25], motivated by Demmel’s plan
and the problem of understanding the efficiency of the simplex algorithm pro-
posed a new, exciting distribution. Spielman and Teng observed that while the
ideal input maybe a fixed matrix M , it is likely that the computer will work with
a perturbation M +N , where N is a random matrix representing random noise.
Thus, it raised the issue of studying the distribution of the condition number
of M + N . This problem is at the heart of the so-called Spielman-Teng smooth
analysis. (See [24,25] for a more detailed discussion and [3,4,5,26,9] for many
related works on this topics.) Notice that the special case M = 0 corresponds to
the setting considered in the previous paragraphs.

The Spielman-Teng model nicely addresses the problem about the arbitrari-
ness of the inputs, as in this model every matrix generates a probability space
of its own. In their papers, Spielman and Teng considered mostly gaussian noise
(in some cases they also considered other continuous distributions such as uni-
form on [−1, 1]). However, in the digital world, randomness often does not have
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gaussian nature. To start with, all real-world data are finite. In fact, in many
problems (particularly those in integer programming) all entries of the matrix
are integers. The random errors made by the degital devices (for example, some-
time a bit gets flipped) are obviously of discrete nature. In other problems,
for example those in engineering, the data may contain measurements where it
would be natural to assume gaussian errors. On the other hand, data are usually
strongly truncated. For example, if an entry of our matrix represents the mass
of an object, then we expect to see a number like 12.679 (say, tons), rather than
12.6792347043641259. Thus, instead of the gaussian distribution, we (and/or our
computers) often work with a discrete distribution, whose support is relatively
small and does not depend on the size of the matrix. (A good toy example is
random Bernoulli matrix, whose entries takes values ±1 with probability half.)
This leads us to the following question

Question. (Smooth analysis of the condition number) Estimate the condition
number of a random matrix Mn := M + Nn, where M is a fixed matrix of size
n, and Nn a general random matrix ?

The goal of this paper is to investigate this question, where, as a generalization
of Spielman-Teng model, we think of Nn as a matrix with independent random
entries which (instead as being gaussian) have arbitrary distributions. Our main
result will show that with high probability, Mn is well-conditioned. This result
could be useful in further studies of smooth analysis in linear programming. The
Spielman-Teng smooth analysis of the simplex algorithm [24,25] was done with
gaussian noise. It is a natural and (from the practical point of view) important
question to repeat this analysis with discrete noise (such as Bernoulli). This ques-
tion was posed by Spielman to the authors few years ago. The paper [24] also con-
tains a specific conjecture on the least singular value of random Bernoulli matrix.

In connection, we should mention here a recent series of papers by Burgisser,
Cucker and Lotz [3,4,5], which discussed the smooth analysis of condition num-
ber under a somewhat different setting (they considered the notion of conic
condition number and a different kind of randomness).

Before stating mathematical results, let us describe our notations. We use the
usual asymptotic notation X = O(Y ) to denote the estimate |X | ≤ CY for some
constant C > 0 (independent of n); X = Ω(Y ) to denote the estimate X ≥ cY
for some c > 0 independent of n, and X = Θ(Y ) to denote the estimates
X = O(Y ) and X = Ω(Y ) holding simultaneously. In some cases, we write
X $ Y instead of X = O(Y ) and X � Y instead of X = Ω(Y ). Notations
such as X = Oa,b(Y ) or X $a,b (Y ) mean that the hidden constant in O or
$ depend on previously defined constants a and b. We use o(1) to denote any
quantity that goes to zero as n→∞. X = o(Y ) means that X/Y = o(1).

Recall that
κ(M) := s1(M)/sn(M) = ‖M‖‖M−1‖.

Since ‖M‖2 ≥
∑

ij |mij |2/n (where mij denote the entries of M) it is expected
that ‖M‖ = nΩ(1). Following the literature, we say that M is well-conditioned
(or well-posed) if κ(M) = nO(1) or (equivalently) L(M) = O(log n).
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By the triangle inequality,

‖M‖ − ‖Nn‖ ≤ ‖M + Nn‖ ≤ ‖M‖+ ‖Nn‖.

Under very general assumptions, the random matrix Nn satisfies ‖Nn‖ =
nO(1) with overwhelming probability (see many estimates in Section 3). Thus, in
order to guarantee that ‖M + Nn‖ is well-conditioned (with high probability),
it is natural to assume that

‖M‖ = nO(1). (3)

This is not only a natural, but fairly safe assumption to make (with respect
to the applicability of our studies). Most large matrices in practice satisfy this
assumption, as their entries are usually not too large compared to their sizes.

Our main result shows that under this assumption and a very general as-
sumption on the entries of Nn, the matrix M + Nn is well-conditioned, with
high probability. This result extends and bridges several existing results in the
literature (see next two sections).

Notice that under assumption (3), if we want to show that M+Nn is typically
well-conditioned, it suffices to show that

‖(M + Nn)−1‖ = sn(M + Nn)−1 = nO(1)

with high probability. Thus, we will formulate most results in a form of a tail
bound for the least singular value of M + Nn. The typical form will be

P(sn(M + Nn) ≤ n−B) ≤ n−A

where A,B are positive constants and A increases with B. The relation between
A and B is of importance and will be discussed in length.

2 Previous Results

Let us first discuss the gaussian case. Improving results of Kostlan and Oceanu
[22], Edelman [6] computed the limiting distribution of

√
nsn(Nn) when Nn is

gaussian. His result implies

Theorem 1. There is a constant C > 0 such that the following holds. Let x
be the real gaussian random variable with mean zero and variance one, let Nn

be the random matrix whose entries are iid copies of x. Then for any constant
t > 0

P(sn(Nn) ≤ t) ≤ n1/2t.

Concerning the more general model M + Nn, Sankar, Spielman and Teng
proved [26]

Theorem 2. There is a constant C > 0 such that the following holds. Let x be
the real gaussian random variable with mean zero and variance one, let Nn be
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the random matrix whose entries are iid copies of x, and let M be an arbitrary
fixed matrix. Let Mn := M + Nn. Then for any t > 0

P(sn(Mn) ≤ t) ≤ Cn1/2t.

Once we give up the gaussian assumption, the study of the least singular value sn

becomes much harder (in particular for discrete distributions such as Bernoulli,
in which x = ±1 with equal probability 1/2). For example, it is already non-
trivial to prove that the least singular value of a random Bernoulli matrix is
positive with probability 1 − o(1). This was first done by Komlós in 1967 [13],
but good quantitative lower bounds were not available until recently. In a series
of papers, Tao-Vu and Rudelson-Vershynin addressed this question [27,29,19,20]
and proved a lower bound of the form n−Θ(1) for sn with high probability.

We say that x is subgaussian if there is a constant B > 0 such that

P(|x| ≥ t) ≤ 2 exp(−t2/B2)

for all t > 0. The smallest B is called the subgaussian moment of x. The fol-
lowing is a corollary of a more general theorem by Rudelson and Vershynin
[20, Theorem 1.2]

Theorem 3. Let x be a subgaussian random variable with zero mean, variance
one and subgaussian moment B and A be an arbitrary positive constant. Let Nn

be the random matrix whose entries are iid copies of x. Then there is a positive
constant C (depending on B) such that for any t ≥ n−A we have

P(sn(Nn) ≤ t) ≤ Cn1/2t.

A similar result was obtained in [20] assuing only fourth moment control on x,
but with a right-hand side which was o(1) for t = o(n−1/2).

We again turn to the general model M + Nn. In [17], the results of [20] were
extended to this case assuming that the operator norm of M +Nn was O(n1/2),
which largely restricts the range of applicability to the case when x has bounded
fourth moment. A variant of this result also appears in [11], in which the operator
norm of M + Nn was allowed to be somewhat larger (in particular, treating the
case in which x has bounded 2 + η moment for some η > 0) but the right-hand
side was again of the form o(1). In [29], the present authors proved

Theorem 4. [29, Theorem 2.1] Let x be a random variable with non-zero vari-
ance. Then for any constants A,C > 0 there exists a constant B > 0 (depending
on A,C, x) such that the following holds. Let Nn be the random matrix whose
entries are iid copies of x, and let M be any deterministic n × n matrix with
norm ‖M‖ ≤ nC . Then

P(sn(M + Nn) ≤ n−B) ≤ n−A.

Notice that this theorem requires very little about the variable x. It does not
need to be sub-gaussian nor even has bounded moments. All we ask is that the
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variance is bounded from zero, which basically means x is indeed “random”.
Thus, it guarantees the well-conditionness of M + Nn in a very general setting.

The weakness of this theorem is that the dependence of B on A and C, while
explicit, is too generous. The main result of this paper, Theorem 6, will improve
this dependence significantly and provide a common extension of Theorem 4 and
Theorem 3.

In a slightly different direction,

3 Main Result

As already pointed out, an important point is the relation between the constants
A,B in a bound of the form

P(sn(M + Nn) ≤ n−B) ≤ n−A.

In Theorem 2, we have a simple (and optimal) relation B = A + 1/2. It is
natural to conjecture that this relation holds for other, non-gaussian, models of
random matrices. In fact, this conjecture was our starting point of this study.
Quite surprisingly, it turns out not to be the case.

Theorem 5. There are positive constants c1 and c2 such that the following
holds. Let Nn be the n×n random Bernoulli matrix with n even. For any L ≥ n,
there is an n× n deterministic matrix M such that ‖M‖ = L and

P(sn(M + Nn) ≤ c1
n

L
) ≥ c2n

−1/2.

The assumption n is even is for convenience and can easily be removed by re-
placing the Bernoulli matrix by a random matrix whose entries take values 0,±1
with probability 1/3 (say). Notice that if L = nD for some constant D then we
have the lower bound

P(sn(M + Nn) ≤ c1n
−D+1) ≥ c2n

−1/2,

which shows that one cannot expect Theorem 2 to hold in general and that the
norm of M should play a role in tail bounds of the least singular value.

The main result of this paper is the following.

Theorem 6. Let x be a random variable with mean zero and bounded second
moment, and let γ ≥ 1/2, A ≥ 0 be constants. Then there is a constant c
depending on x, γ,A such that the following holds. Let Nn be the random matrix
of size n whose entries are iid copies of x, M be a deterministic matrix satisfying
‖M‖ ≤ nγ , and let Mn := M + Nn. Then

P(sn(Mn) ≤ n−(2A+1)γ) ≤ c
(
n−A+o(1) + P(‖Nn‖ ≥ nγ)

)
.

Note that this theorem only assumes bounded second moment on x. The as-
sumption that the entries of Nn are iid is for convenience. A slightly weaker
result would hold if one omit this assumption.
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Corollary 1. Let x be a random variable with mean zero and bounded second
moment, and let γ ≥ 1/2, A ≥ 0 be constants. Then there is a constant c2
depending on x, γ,A such that the following holds. Let Nn be the random matrix
of size n whose entries are iid copies of x, M be a deterministic matrix satisfying
‖M‖ ≤ nγ , and let Mn := M + Nn. Then

P(κ(Mn) ≥ 2n(2A+2)γ) ≤ c
(
n−A+o(1) + P(‖Nn‖ ≥ nγ)

)
.

Proof. Since κ(Mn) = s1(Mn)/sn(Mn), it follows that if κ(Mn) ≥ n(2A+2)γ),
then at least one of the two events sn(Mn) ≤ n−(2A+1)γ and s1(Mn) ≥ 2nγ

holds. On the other hand,

s1(Mn) ≤ s1(M) + s1(Nn) = ‖M‖+ ‖Nn‖ ≤ nγ + ‖Nn‖.

The claim follows.

In the rest of this section, we deduce a few corollaries and connect them with
the existing results.

First, consider the special case when x is subgaussian. In this case, it is well-
known that one can have a strong bound on P(‖Nn‖ ≥ nγ) thanks to the
following theorem (see [20] for references).

Theorem 7. Let B be a positive constant. There are positive constants C1, C2
depending on B such that the following holds. Let x be a subgaussian random
variable with zero mean, variance one and subgaussian moment B and Nn be
the random matrix whose entries are iid copies of x. Then

P(‖Nn‖ ≥ C1n
1/2) ≤ exp(−C2n).

If one replaces the subgaussian condition by the weaker condition that x has
forth moment bounded B, then one has a weaker conclusion that

E(‖Nn‖) ≤ C1n
1/2.

From Theorem 6 and Theorem 7 we see that

Corollary 2. Let A and γ be arbitrary positive constants. Let x be a subgaussian
random variable with zero mean and variance one and Nn be the random matrix
whose entries are iid copies of x. Let M be a deterministic matrix such that
‖M‖ ≤ nγ and set Mn = M + Nn. Then

P(sn(Mn) ≤ (n1/2 + ‖M‖)−2A−1) ≤ n−A+o(1). (4)

In the case ‖Mn‖ = O(n1/2) (which of course includes the Mn = 0 special case),
(4) implies

Corollary 3. Let A be arbitrary positive constant. Let x be a subgaussian ran-
dom variable with zero mean and variance one and Nn be the random matrix
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whose entries are iid copies of x. Let M be a deterministic matrix such that
‖M‖ = O(n1/2) and set Mn = M + Nn. Then

P(sn(Mn) ≤ n−A−1/2) ≤ n−A+o(1). (5)

Up to a loss of magnitude no(1), this matches Theorem 3, which treated the base
case M = 0.

If we assume bounded fourth moment instead of subgaussian, we can use the
second half of Theorem 7 to deduce

Corollary 4. Let x be a random variable with zero mean, variance one and
bounded forth moment moment and Nn be the random matrix whose entries are
iid copies of x. Let M be a deterministic matrix such that ‖M‖ = nO(1) and set
Mn; = M + Nn. Then

P(sn(Mn) ≤ (n1/2 + ‖M‖)−1+o(1)) = o(1). (6)

In the case ‖M‖ = O(n1/2), this implies that almost surely sn(Mn) ≤ n−1/2+o(1).
For the special case M = 0, this matches (again up to the o(1) term) Theorem
[20, Theorem 1.1].

Let us now take a look at the influence of ‖M‖ on the bound. Obviously, there
is a gap between (4) and Theorem 5. On the other hand, by setting A = 1/2,
L = nγ and assuming that P(‖Nn‖ ≥ nγ) is negligible (i.e., super-polynomially
small in n), we can deduce from Theorem 6 that

P(sn(Mn) ≤ c1L
−2) ≤ c2n

−1/2+o(1).

This, together with Theorem 5, suggests that the influence of ‖M‖ in sn(Mn)
is of polynomial type.

In the next discussion, let us normalize and assume that x has variance one.
One can deduce a bound on ‖Nn‖ from the simple computation

E‖Nn‖2 ≤ E trNnN
∗
n = n2.

By Chebyshev’s inequality we thus have

P(‖Nn‖ ≥ n1+A/2) ≤ n−A

for all A ≥ 0.
Applying Theorem 6 we obtain

Corollary 5. Let x be a random variable with mean zero and variance one and
Nn be the random matrix whose entries are iid copies of x. Then for any constant
A ≥ 0

P(sn(Nn) ≤ n−1− 5
2 A−A2

) ≤ n−A+o(1).

In particular, sn(Nn) ≥ n−1−o(1) almost surely.
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It is clear that one can obtain better bounds for sn, provided better estimates
on ‖Nn‖. The idea of using Chebyshev’s inequality is very crude (we just like to
give an example) and there are more sophisticated tools. One can, for instance,
use higher moments. The expectation of a k-th moment can be expressed a sum
of many terms, each correspond to a certain closed walk of length k on the
complete graph of n vertices (see [12,33]). If the higher moments of Nn (while
not bounded) do not increase too fast with n, then the main contribution in
the expectation of the kth moment still come from terms which correspond to
walks using each edge of the graph either 0 and 2 times. The expectation of such
a term involves only the second moment of the entries in Nn. The reader may
want to work this out as an exercise.

One can also use the following nice estimate of Seginer [23]

E‖Nn‖ = O(E max
1≤i≤n

√√
√
√

n∑

j=1

x2
ij + E max

1≤j≤n

√√√
√

n∑

i=1

x2
ij).

Due to space limitation, we will give all proofs in the appendices. We will,
however, discuss the main ideas in the next section.

4 Main Ideas for Proving Lower Bounds on the Least
Singular Value

There are two recent sequences of papers that investigate the least singular values
of random matrices, [19,20,21] and [27,28,29]. The main idea can be sketched
(with some simplifications) as follows. Let di be the distance from the ith row
vector of M + Nn to the subspace spanned by the rest of the rows. Elementary
linear algebra shows

‖(M + Nn)−1‖ = nO(1)( min
1≤i≤n

di)−1. (7)

Ignoring various factor of nO(1) for a moment, our main ask with be to under-
stand the distribution of di, for a given i. If v = (v1, . . . , vn) is the normal vector
of a hyperplane V , then the distance from a random vector (a1 +ξ1, . . . , an +ξn)
to V is

|
n∑

i=1

vi(ai + ξi)| = |S +
n∑

i=1

aivi |,

where S :=
∑n

i=1 viξi.
Playing the key role now will be the relation between P(|S +

∑n
i=1 aivi | ≤ β),

for some given β, and the structure of the normal vector v.
If v is such that the probability in question is small, then we can be done

using a relatively simple conditioning argument. The main task is to deal with
the exceptional v when the probability in question is large. One tries to classify
these vectors and show that there are not too many of them, and then use a direct
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counting argument. Here the main ingredient is the so-called Inverse Littlewood-
Offord theorems, introduced in [27]. These theorems lead to a sufficiently strong
characterization and consequently an efficient counting.

There are two types of Inverse theorems in the above mentioned sequences of
papers. They have led to results of different strengths. The approach in [27,28,29]
results in theorems which hold under very mild assumptions on the random
entries (of Nn) and the “core” matrix M , but with non-optimal relation between
the parameters (such as A and B in the exponent). The approach in [19,20,21]
treats more restrictive models (in particular the matrix M is zero and the entries
of Nn are sub-gaussian or at least have bounded 4th moment), but gives near
optimal dependence between the parameters.

The results of this paper, as discussed, are sort of “best of two worlds” type.
They provide strong quantitative bounds under very general assumptions. Not
too surprisingly, the arguments that we will use combine ideas from both ap-
proaches. We are goping to rely on a counting lemma (Theorem C.8) from [29]
which gives a sharp estimate for the number of exceptional normal vector v.
Another important ingredient is Lemma F.1 from [20] which gives agood way to
reduce the error term nO(1) in (7). These two ingredients and some additional
technical ideas turn out to be sufficient to finish the job.

Finally, let us mention a very recent development in [30], where we managed
to compute the asymptotic of the least singular value in the case M is zero. The
approach there is very different and does not seem to extend to the case with
general M .

5 Theorem 5: The Influence of M

Let M ′ be the n − 1 × n matrix obtaining by concatenating the matrix LIn−1
with an all L column, where L is a large number. The n×n matrix M is obtained
from M ′ by adding to it a (first) all zero row; thus

M =

⎛

⎜⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 0
L 0 . . . 0 L
0 L . . . 0 L
...

...
. . .

...
...

0 0 . . . L L

⎞

⎟⎟
⎟
⎟
⎟
⎠

.

It is easy to see that

‖M‖ = Θ(L).

Now consider Mn := M+Nn where the entries of Nn are iid Bernoulli random
variables.

P(sn(Mn) $ n1/4L−1/2)� n−1/2.
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Let M ′
n be the (random) (n− 1)× n matrix formed by the last n− 1 rows of

Mn. Let v ∈ Rn be a unit normal vector of the n− 1 rows of M ′
n. By replacing

v with −v if necessary we may write v in the form

v =
(

1√
n

+ a1,
1√
n

+ a2 + . . . ,
1√
n

+ an−1,
−1√
n

+ an

)
,

where −1√
n

+ an ≤ 0.
Multiplying v with the first row of M ′

n, we have

0 = (L + ξ1)(1 + a1) + (L + ξn)(−1 + an)
= L(a1 + an) + (ξ1 − ξn) + ξ1a1 + ξnan.

Since |ai| = O(1), it follows that |a1 + an| = O( 1
L). Repeating the argument

with all other rows, we conclude that |ai + an| = O( 1
L) for all 1 ≤ i ≤ n− 1.

Since v has unit norm, we also have

1 = ‖v‖2 =
n−1∑

i=1

(
1√
n

+ ai

)2

+
(
−1√
n

+ an

)2

,

which implies that

2√
n

(a1 + · · ·+ an−1 − an) +
n∑

i=1

a2
i = 0.

This, together with the fact that |ai + an| = O( 1
L) and all 1 ≤ i ≤ n − 1,

yields

na2
n − 2nan(

1√
n

+
1
L

) = O(
√
n

L
+

1
L2 ).

Since − 1√
n

+an ≤ 0 and L ≥ n, it is easy to show from here that |an| = O( 1
L).

It follows that |ai| = O( 1
L) for all 1 ≤ i ≤ n.

Now consider

‖Mnv‖ =

∣
∣
∣
∣
∣

n−1∑

i=1

(
1√
n

+ ai)ξi + (− 1√
n

+ an)ξn

∣
∣
∣
∣
∣
.

Since n is even, with probability Θ( 1√
n
), ξ1 + · · ·+ ξn−1 − ξn = 0, and in this

case

‖Mnv‖ =

∣
∣
∣
∣
∣

n∑

i=1

aiξi

∣
∣
∣
∣
∣
= O

(n

L

)
,

as desired.
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6 Controlled Moment

It is convenient to establish some more quantitative control on x. We recall the
following notion from [29].

Definition 1 (Controlled second moment). Let κ ≥ 1. A complex random
variable x is said to have κ-controlled second moment if one has the upper bound

E|x|2 ≤ κ

(in particular, |Ex| ≤ κ1/2), and the lower bound

ERe(zx− w)2I(|x| ≤ κ) ≥ 1
κ

Re(z)2 (8)

for all complex numbers z, w.

Example. The Bernoulli random variable (P(x = +1) = P(x = −1) = 1/2) has
1-controlled second moment. The condition (8) asserts in particular that x has
variance at least 1

κ , but also asserts that a significant portion of this variance
occurs inside the event |x| ≤ κ, and also contains some more technical phase
information about the covariance matrix of Re(x) and Im(x).

The following lemma was established in [29]:

Lemma 1. [29, Lemma 2.4] Let x be a complex random variable with finite
non-zero variance. Then there exists a phase eiθ and a κ ≥ 1 such that eiθx has
κ-controlled second moment.

Since rotation by a phase does not affect the conclusion of Theorem 6, we con-
clude that we can assume without loss of generality that x is κ-controlled for
some κ. This will allow us to invoke several estimates from [29] (e.g. Lemma 3
and Theorem 9 below).

Remark 1. The estimates we obtain for Theorem 6 will depend on κ but will
not otherwise depend on the precise distribution of x. It is in fact quite likely
that the results in this paper can be generalised to random matrices Nn whose
entries are independent and are all κ-controlled for a single κ, but do not need
to be identical. In order to simplify the exposition, however, we focus on the iid
case.

7 Small Ball Bounds

In this section we give some bounds on the small ball probabilities P(|ξ1v1 +
· · ·+ ξnvn − z| ≤ ε) under various assumptions on the random variables ξi and
the coefficients vi. As a consequence we shall be able to obtain good bounds on
the probability that Av is small, where A is a random matrix and v is a fixed
unit vector.

We first recall a standard bound (cf. [29, Lemmas 4.2, 4.3, 5.2]):
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Lemma 2 (Fourier-analytic bound). Let ξ1, . . . , ξn be independent variables.
Then we have the bound

P(|ξ1v1 + · · ·+ ξnvn − z| ≤ r) $ r2
∫

w∈C:|w|≤1/r

exp(−Θ(
n∑

j=1

‖wvj‖2j)) dw

for any r > 0 and z ∈ C, and any unit vector v = (v1, . . . , vn), where

‖z‖j := (E‖Re(z(ξj − ξ′j))‖2R/Z)1/2, (9)

ξ′j is an independent copy of ξj , and ‖x‖R/Z denotes the distance from x to the
nearest integer.

Proof. By the Esséen concentration inequality (see e.g. [31, Lemma 7.17]), we
have

P(|ξ1v1+· · ·+ξnvn−z| ≤ r) $ r2
∫

w∈C:|w|≤1/r

|E(e(Re(w(ξ1v1+· · ·+ξnvn))))|dw

for any c > 0, where e(x) := e2πix. We can write the right-hand side as

r2
∫

w∈C:|w|≤1/r

n∏

j=1

fj(wvj)1/2 dw

where
fj(z) := |E(e(Re(ξjz)))|2 = E cos(2πRe(z(ξj − ξ′j))).

Using the elementary bound cos(2πθ) ≤ 1−Θ(‖θ‖2R/Z) we conclude

fj(z) ≤ 1−Θ(‖z‖2j) ≤ exp(−Θ(‖z‖2j))

and the claim follows.

Next, we recall some properties of the norms ‖z‖j in the case when ξj is κ-
controlled.

Lemma 3. Let 1 ≤ j ≤ n, let ξj be a random variable, and let ‖‖j be defined
by (9).

(i) For any w ∈ C, 0 ≤ ‖w‖j ≤ 1 and ‖ − w‖j = ‖w‖j.
(ii) For any z, w ∈ C, ‖z + w‖j ≤ ‖z‖j + ‖w‖j.
(iii) If ξj is κ-controlled for some fixed κ, then for any sufficiently small positive

constants c0, c1 > 0 we have ‖z‖j ≥ c1Re(z) whenever |z| ≤ c0.

Proof. See [29, Lemma 5.3].

We now use these bounds to estimate small ball probabilities. We begin with a
crude bound.
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Corollary 6. Let ξ1, . . . , ξn be independent variables which are κ-controlled.
Then there exists a constant c > 0 such that

P(|ξ1v1 + · · ·+ ξnvn − z| ≤ c) ≤ 1− c (10)

for all z ∈ C and all unit vectors (v1, . . . , vn).

Proof. Let c > 0 be a small number to be chosen later. We divide into two cases,
depending on whether all the vi are bounded in magnitude by

√
c or not.

Suppose first that |vi| ≤
√
c for all c. Then we apply Lemma 2 (with r := c1/4)

and bound the left-hand side of (10) by

$ c1/2
∫

w∈C:|w|≤c−1/4
exp(−Θ(

n∑

j=1

‖wvj‖2j)) dw.

By Lemma 3, if c is sufficiently small then we have ‖wvj‖j ≥ c1Re(wvj), for
some positive constant c1. Writing each vj in polar coordinates as vj = rje

2πiθj ,
we thus obtain an upper bound of

$ c1/2
∫

w∈C:|w|≤c−1/4
exp(−Θ(

n∑

j=1

r2
j Re(e2πiθjw)2)) dw.

Since
∑n

j=1 r2
j = 1, we can use Hölder’s inequality (or Jensen’s inequality) and

bound this from above by

$ sup
j

c1/2
∫

w∈C:|w|≤c−1/4
exp(−Θ(Re(e2πiθjw)2)) dw

which by rotation invariance and scaling is equal to
∫

w∈C:|w|≤1
exp(−Θ(c−1/4Re(w)2)) dw.

From the monotone convergence theorem (or direct computation) we see that
this quantity is less than 1− c if c is chosen sufficiently small. (If necessary, we
allow c to depend on the hidden constant in Θ.)

Now suppose instead that |v1| >
√
c (say). Then by freezing all of the variables

ξ2, . . . , ξn, we can bound the left-hand side of (10) by

sup
w

P(|ξ1 − w| ≤
√
c).

But by the definition of κ-control, one easily sees that this quantity is bounded
by 1− c if c is sufficiently small (compared to 1/κ), and the claim follows.

As a consequence of this bound, we obtain

Theorem 8. Let Nn be an n×n random matrix whose entries are independent
random variables which are all κ-controlled for some constant κ > 0. Then there
are positive constants c, c′ such that the following holds. For any unit vector v
and any deterministic matrix M ,

P(‖(M + Nn)v‖ ≤ cn1/2) ≤ exp(−c′n).
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Proof. Let c be a sufficiently small constant, and let X1, . . . , Xn denote the rows
of M + Nn. If ‖(M + Nn)v‖ ≤ cn1/2, then we have |〈Xj , v〉| ≤ c for at least
(1 − c)n rows. As the events Ij := |〈Xj , v〉| ≤ c are independent, we see from
the Chernoff inequality (applied to the sum

∑
j Ij of indicator variables) that it

suffices to show that

E(Ij) = P(|〈Xj , v〉| ≤ c) ≤ 1− 2c

(say) for all j. But this follows from Corollary 6 (after adjusting c slightly),
noting that each Xj is a translate (by a row of M) of a vector whose entries are
iid copies of x.

Now we obtain some statements of inverse Littlewood-Offord type.

Definition 2 (Compressible and incompressible vectors). For any a, b >
0, let Comp(a, b) be the set of unit vectors v such that there is a vector v′ with at
most an non-zero coordinates satisfying ‖v−v′‖ ≤ b. We denote by Incomp(a, b)
the set of unit vectors which do not lie in Comp(a, b).

Definition 3 (Rich vectors). For any ε, ρ > 0, let Sε,ρ be the set of unit
vectors v satisfying

sup
z∈C

P(|X · v − z| ≤ ε) ≥ ρ,

where X = (x1, . . . , xn) is a vector whose coefficients are iid copies of x.

Lemma 4 (Very rich vectors are compressible). For any ε, ρ > 0 we have

Sε,ρ ⊂ Comp
(
O(

1
nρ2 ), O(

ε

ρ
)
)

.

Proof. We can assume ρ � n−1/2 since the claim is trivial otherwise. Let v ∈
Sε,ρ, thus

P(|X · v − z| ≤ ε) ≥ ρ

for some z. From Lemma 2 we conclude

ε2
∫

w∈C:|w|≤ε−1
exp(−Θ(

n∑

j=1

‖wvj‖2j)) dw � ρ. (11)

Let s > 0 be a small constant (independent of n) to be chosen later, and let
A denote the set of indices i for which |vi| ≥ sε. Then from (11) we have

ε2
∫

w∈C:|w|≤ε−1
exp(−Θ(

∑

j∈A

‖wvj‖2j)) dw � ρ.

Suppose A is non-empty. Applying Hölder’s inequality, we conclude that

ε2
∫

w∈C:|w|≤ε−1
exp(−Θ(|A|‖wvj‖2j)) dw � ρ
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for some j ∈ A. By the pigeonhole principle, this implies that

|{w ∈ C : |w| ≤ ε−1, |A|‖wvj‖2j ≤ k}| � k1/2ε−2ρ (12)

for some integer k ≥ 1.
If |A| $ k, then the set in (12) has measure Θ(ε−2), which forces |A| $ ρ−2.

Suppose instead that k ≤ s|A| for some small s′ > 0. Since |vj | ≥ sε, we have
s′/|vj | ≤ s′/sε. We will choose s′ sufficiently small to make sure that this ratio
is smaller than the constant c0 in Lemma 3. By Lemma 3, we see that the
intersection of the set in (12) with any ball of radius s′/|vj| has density at most√

k/|A|, and so by covering arguments we can bound the left-hand side of (12)
from above by $ k1/2|A|−1/2ε−2. Thus we have |A| $ ρ−2 in this case also.
Thus we have shown in fact that |A| $ ρ−2 in all cases (the case when A is
empty being trivial).

Now we consider the contribution of those j outside of A. From (11) and
Lemma 3 we have

ε2
∫

w∈C:|w|≤ε−1
exp(−Θ(

∑

j �∈A

Re(wvj)2)) dw � ρ.

Suppose that A is not all of {1, . . . , n}. Using polar coordinates vj = rje
2πiθj as

before, we see from Hölder’s inequality that

ε2
∫

w∈C:|w|≤ε−1
exp(−Θ(r2Re(we2πiθj )2)) dw � ρ

for some j �∈ A, where r2 :=
∑

j �∈A r2
j . After scaling and rotation invariance, we

conclude ∫

w∈C:|w|≤1
exp(−Θ(

r2

ε2 Re(w)2)) dw � ρ.

The left-hand side can be computed to be at most O(ε/r). We conclude that
r $ ε/ρ. If we let v′ be the restriction of v to A, we thus have ‖v − v′‖ $ ε/ρ,
and the claim v ∈ Comp(O( 1

nρ2 ), O( ε
ρ )) follows. (The case when A = {1, . . . , n}

is of course trivial.)

Roughly speaking, Lemma 4 gives a complete characterization of vectors v such
that

sup
z∈C

P(|X · v − z| ≤ ε) ≥ ρ,

where ρ > Cn−1/2, for some large constant C. The lemma shows that such a
vector v can be approximated by a vector v′ with at most C′

ρ2 non-zero coordinates

such that ‖v − v′‖ ≤ C
′′

ε
ρ , where C′, C

′′
are positive constants.

The dependence of parameters here are sharp, up to constant terms. Indeed,
in the Bernoulli case, the vector v = (1, . . . , 1, 0, . . . , 0) consisting of k 1s lies in
S0,Θ(1/

√
k) and lies in Comp(a, 0) precisely when an ≥ k (cf. [7]). This shows that

the O( 1
nρ2 ) term on the right-hand side cannot be improved. On the other hand,
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in the Gaussian case, observe that if ‖v‖ ≤ b then X ·v will have magnitude O(ε)
with probability O(ε/b), which shows that the term O( ε

ρ) cannot be improved.
Lemma 4 is only non-trivial in the case ρ ≥ Cn−1/2, for some large constant

C. To handle the case of smaller ρ, we use the following more difficult entropy
bound from [29].

Theorem 9 (Entropy of rich vectors). For any ε, ρ, there is a finite set S′
ε,ρ

of size at most n−(1/2−o(1))nρ−n + exp(o(n)) such that for each v ∈ Sε,ρ, there
is v′ ∈ S′

ε,ρ such that ‖v − v′‖∞ ≤ ε.

Proof. See [29, Theorem 3.2].

8 Proof of Theorem 6: Preliminary Reductions

We now begin the proof of Theorem 6. Let Nn,M, γ,A be as in that theorem.
As remarked in Section 6, we may assume x to be κ-controlled for some κ. We
allow all implied constants to depend on κ, γ,A. We may of course assume that
n is large compared to these parameters. We may also assume that

P(‖Nn‖ ≥ nγ) ≤ 1
2

(13)

since the claim is trivial otherwise. By decreasing A if necessary, we may fur-
thermore assume that

P(‖Nn‖ ≥ nγ) ≤ n−A+o(1). (14)

It will then suffice to show (assuming (13), (14)) that

P(sn(Mn) ≤ n−(2A+1)γ)$ n−A+α+o(1)

for any constant α > 0 (with the implied constants now depending on α also),
since the claim then follows by sending α to zero very slowly in n.

Fix α, and allow all implied constants to depend on α. By perturbing A and
α slightly we may assume that A is not a half-integer; we can also take α to be
small depending on A. For example, we can assume that

α < {2A}/2 (15)

where {2A} is the fractional part of 2A.
Using the trivial bound ‖Nn‖ ≥ sup1≤i,j≤n |xij |, we conclude from (13), (14)

that
P(|xij | ≥ nγ for some i, j) ≤ min(

1
2
, n−A+o(1)).

Since xij are iid copies of x, the n2 events |xij | ≥ nγ are independent with
identical probability. It follows that

P(|x| ≥ nγ) ≤ n−A−2+o(1). (16)
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Let F be the event that sn(Mn) ≤ n−(2A+1)γ , and let G be the event that
‖Nn‖ ≤ nγ . In view of (14), it suffices to show that

P(F ∧G) ≤ n−A+α+o(1).

Set
b := βn1/2−γ (17)

and
a :=

β

logn
, (18)

where β is a small positive constant to be chosen later. We then introduce the
following events:

– FComp is the event that ‖Mnv‖ ≤ n−(2A+1)γ for some v ∈ Comp(a, b).
– FIncomp is the event that ‖Mnv‖ ≤ n−(2A+1)γ for some v ∈ Incomp(a, b).

Observe that if F holds, then at least one of FComp and FIncomp holds.
Theorem 6 then follows immediately from the following two lemmas.

Lemma 5 (Compressible vector bound). If β is sufficiently small, then

P(FComp ∧G) ≤ exp(−Ω(n)).

Lemma 6 (Incompressible vector bound). We have

P(FIncomp ∧G) ≤ n−A+o(1).

In these lemmas we allow the implied constants to depend on β.
The proof of Lemma 5 is simple and will be presented in the next section.

The proof of Lemma 6 is somewhat more involved and occupies the rest of the
paper.

9 Treatment of Compressible Vectors

If FComp ∧G occurs, then by the definition of Comp(a, b), there are unit vectors
v, v′ such that ‖Mnv‖ ≤ n−(2A+1)γ and v′ has support on at most an coordinates
and ‖v − v′‖ ≤ b.

By the triangle inequality and (17) we have

‖Mnv
′‖ ≤ n−(2A+1)γ + ‖Mn‖‖v − v′‖
≤ n−(2A+1)γ + nγb

≤ 2βn1/2.

A set N of unit vectors in Cm is called a δ-net if for any unit vector v, there is
a vector w in N such that ‖v−w‖ ≤ δ. It is well known that for any 0 < δ < 1,
a δ-net of size (Cδ−1)m exists, for some constant C independent of δ and m.
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Using this fact, we conclude that the set of unit vectors with at most an
non-zero coordinates admits an b-net N of size at most

|N | ≤
(

n

an

)
(Cb−1)an,

Thus, if FComp ∧G occurs, then there is a unit vector v′′ ∈ N such that

‖Mnv
′′‖ ≤ 2βn1/2 + ‖Mn‖b = 3βn1/2.

On the other hand, from Theorem 8 we see (for β ≤ c/3) that for any fixed
v′′,

P(‖Mnv
′′‖ ≤ 3βn1/2) ≤ exp(−c′n),

where c and c′ are the constants in Theorem 8.
By the union bound, we conclude

P(FComp ∧G) ≤
(

n

an

)
(b−1)an exp(−c′n).

But from (17), (18) we see that the right-hand side can be made less than
exp(−c′n/2), given that β is sufficiently small. This concludes the proof of
Lemma 5.

10 Treatment of Incompressible Vectors

We now begin the proof of Lemma 6. We now fix β and allow all implied constants
to depend on β.

Let Xk be the kth row vector of Mn, and let distk be the distance from Xk

to the subspace spanned by X1, . . . , Xk−1, Xk+1, . . . , Xn. We need the following,
which is a slight extension of a lemma from [20].

Lemma 7. For any ε > 0, and any event E, we have

P({‖Mv‖ ≤ εbn−1/2 for some v ∈ Incomp(a, b)} ∧ E) ≤ 1

an

n∑

k=1

P({distk ≤ ε} ∧ E).

Proof. See [20, Lemma 3.5]. The arbitrary event E was not present in that
lemma, but one easily verifies that the proof works perfectly well with this event
in place.

Applying this to our current situation with

ε :=
1
β
n−2Aγ , (19)

we obtain

P(FIncomp ∧G)$ log n

n

n∑

k=1

P({distk ≤ ε} ∧G).
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To prove Lemma 6, it therefore suffices (by symmetry) to show that

P({distn ≤ ε} ∧G) $ n−A+α+o(1).

Notice that there is a unit vector X∗
n orthogonal to X1, . . . , Xn−1 such that

distk = |Xn ·X∗
n|. (20)

If there are many such X∗
n, choose one arbitrarily. However, note that we can

choose X∗
n to depend only on X1, . . . , Xn−1 and thus be independent of Xn.

Let ρ := n−A+α. Let X be the random vector of length n whose coordinates
are iid copies of x. From Definition 3 (and the observation that Xn has the same
distribution as X after translating by a deterministic vector (namely the nth
row of the deterministic matrix M), we have the conditional probability bound

P(distn ≤ ε|X∗
n �∈ Sε,ρ) ≤ ρ = n−A+α.

Thus it will suffice to establish the exponential bound

P({X∗
n ∈ Sε,ρ} ∧G) ≤ exp(−Ω(n)).

Let
J := �2A� (21)

be the integer part of 2A. Let α1 > 0 be a sufficiently small constant (indepen-
dent of n and γ, but depending on α,A, J) to be chosen later. Set

εj := n(γ+α1)jε =
1
β
n(γ+α1)jn−2Aγ (22)

and
ρj := n(1/2−α1)jρ = n(1/2−α1)jn−A+α (23)

for all 0 ≤ j ≤ J .
By the union bound, it will suffice to prove the following lemmas.

Lemma 8. If α1 is sufficiently small, then for any 0 ≤ j < J , we have

P({X∗
n ∈ Sεj ,ρj} ∧ {X∗

n �∈ Sεj+1,ρj+1} ∧G) ≤ exp(−Ω(n)). (24)

Lemma 9. If α1 is sufficiently small, then we have

P(X∗
n ∈ SεJ ,ρJ ) ≤ exp(−Ω(n)).

11 Proof of Lemma 8

Fix 0 ≤ j < J . Note that by (15), we have

ρj ≤ n(J−1)/2n−A+α ≤ n−1/2−{2A}/2+α ≤ n−1/2.
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We can then use Theorem 9 to conclude the existence of a set N of unit
vectors such that every vector in Sεj ,ρj lies within εj in l∞ norm to a vector in
N , and with the cardinality bound

|N | ≤ n−(1/2−o(1))nρ−n
j . (25)

Suppose that the event in Lemma 8 holds, then we can find u ∈ N such that
‖u−X∗

n‖l∞ ≤ εj , and thus ‖u−X∗
n‖ ≤ n1/2εj. On the other hand, since X∗

n is
orthogonal to X1, . . . , Xn−1 and ‖Mn‖ $ nγ , we have

(
n−1∑

i=1

|Xi · u|2)1/2 = (
n−1∑

i=1

|Xi · (u−X∗
n)|2)1/2

= ‖M(u−X∗
n)‖

$ nγn1/2εj

$ n1/2n−α1εj+1.

On the other hand, from (24) and Definition 3 we have

P(|X ·X∗
n − z| ≤ εj+1) ≤ ρj+1 (26)

for all z ∈ C, where X = (x1, . . . , xn) consists of iid copies of x.
To conclude the proof, we will need the following lemma.

Lemma 10. If w is any vector with ‖w‖l∞ ≤ 1, then

P(|X · w| ≥ nγ+α1)$ n−A.

Proof. Write w = (w1, . . . , wn) and X = (x1, . . . , xn). Observe from (14) that
with probability O(n−A−1) = O(n−A), all the coefficients in X are going to be
of magnitude at most nγ . Thus it suffices to show that

P(|w1x̃1 + . . . + wnx̃n| ≥ nγ+α1)$ n−A

where x̃1, . . . , x̃n are iid with law equal to that of x conditioned to the event
|x| $ nγ . As x has mean zero and bounded second moment, one verifies from
(14) and Cauchy-Schwarz that the mean of the x̃i is O(n−(A+2)/2). Thus if we
let x′

i := x̃i −E(x̃i), we see that it suffices to show that

P(|w1x
′
1 + . . . + wnx

′
n| ≥

1
2
nγ+α1) $ n−A.

We conclude the proof by the moment method, using the following estimate

E(|w1x
′
1 + . . . + wnx

′
n|2k) $k n2kγ

for any integer k ≥ 0. This is easily verified by a standard computation (using
the hypothesis γ ≥ 1/2), since all the x′

i have vanishing first moment, a second
moment of O(1), and a jth moment of Oj(n(j−2)γ) for any j > 2. Now take k to
be a constant sufficiently large compared to A/α1.
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We are now ready to finish the proof of Lemma 8. From lemma 10 and the bound
‖u−X∗

n‖ ≤ εj we see that

P(|X · (X∗
n − u)| ≥ εj+1) ≤ n−A ≤ ρj+1;

combining this with (26) using the triangle inequality, we see that

sup
z∈C

P(|X · u− z| ≤ εj+1) $ ρj+1. (27)

We can therefore bound the left-hand side of (24) by

∑

u∈N :(27) holds
P

(
(
n−1∑

i=1

|Xi · u|2)1/2 $ n1/2n−α1εj+1

)
.

Now suppose that u ∈ N obeys (27). If we have
∑n−1

i=1 |Xi · u|2)1/2 $
n1/2n−α1εj+1, then the event |Xi ·u| ≤ εj+1 must hold for at least n−O(n1−2α1)
values of i. On the other hand, from (27) we see that each of these events
|Xi · u| ≤ εj+1 only occurs with probability O(ρj+1). We can thus bound

P(
n−1∑

i=1

|Xi · u|2)1/2 $ n1/2n−α1εj+1) ≤
(

n

n−O(n1−2α1 )

)
(O(ρj+1))n−O(n1−2α1 )

$ no(n)ρn
j+1.

Applying (25), we can thus bound the left-hand side of (24) by

$ n−(1/2−o(1))nρ−n
j ρn

j+1 = n−(α1−o(1))n

and the claim follows.

12 Proof of Lemma 9

Suppose that X∗
n lies in SεJ ,ρJ . Then by Lemma 4, we have

X∗
n ⊂ Comp(O(

1
nρ2

J

), O(
εJ

ρJ
)).

Note from (23) and (21) that

1
nρ2

J

= n2A−J−1+2α1J−2α ≤ n−α1

if α1 is sufficiently small. Thus, by arguing as in Section 9, the set
Comp(O( 1

nρ2
J
), O( εJ

ρJ
)) has a O( εJ

ρJ
)-net N in l2 of cardinality

|N | $
(

n
1

nρ2
J

)
(O(

εJ

ρJ
))

1
nρ2

J = exp(o(n)).
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If we let u ∈ N be within O( εJ

ρJ
) of X∗

n, then we have |Xi · u| $ εJ

ρJ
for all

1 ≤ i ≤ n− 1. Thus we can bound

P(X∗
n ∈ SεJ ,ρJ ) ≤

∑

u∈N
P(|Xi · u| $

εJ

ρJ
for all 1 ≤ i ≤ n− 1).

Now observe from (22), (23), (21) and the hypothesis γ ≥ 1/2 that

εJ

ρJ
= n−α+2α1Jn−(2A−J)(γ−1/2) ≤ n−α/2

(say) if α1 is sufficiently small. Thus by Corollary 6 (or by a minor modification
of Theorem 8) we see that

P(|Xi · u| $
εJ

ρJ
for all 1 ≤ i ≤ n− 1)$ exp(−Ω(n))

for each u ∈ N , and the claim follows.
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Vondrák, Jan 244
Vu, Van 714

Wiese, Andreas 217

Yekhanin, Sergey 339

Zuckerman, David 658


	Title Page
	Preface
	Table of Contents
	Contributed Talks of APPROX
	Approximation Algorithms and Hardness Results for Packing Element-Disjoint Steiner Trees in Planar Graphs
	Introduction
	Previous Literature
	Results in This Paper

	Approximation Algorithms 
	Element-Disjoint Steiner Trees
	Edge-Disjoint Steiner Trees
	Element-Disjoint Steiner Trees in H-Minor-Free Graphs

	Hardness Results
	APX-Hardness for General Graphs with 3 Terminal Nodes
	NP-Hardness of Packing 2 Element-Disjoint Steiner Trees in Planar Graphs

	Integrality Ratio for Packing Steiner Trees in Planar Graphs

	Adaptive Sampling for k-Means Clustering
	Introduction
	Previous Work
	Our Results

	Bi-criteria Approximation by Adaptive Sampling
	Picking a k-Subset of S
	Simplified Lower Bound
	Conclusion

	Approximations for Aligned Coloring and Spillage Minimization in Interval and Chordal Graphs
	Introduction
	Preliminaries and Notation
	The Aligned Coloring Problem
	Chordal Graphs
	Chordal Graph Lower Bound
	Interval Graphs

	Minimum Spillage
	Unaligned Spillage
	Aligned Spillage


	Unsplittable Flow in Paths and  Trees andColumn-Restricted Packing Integer Programs
	Introduction
	UFP on Trees
	LP Relaxations for UFP on Paths
	A New Relaxation
	A Separation Oracle
	Bounding the Integrality Gap

	UFP and Column-Restricted Packing Integer Programs
	Concluding Remarks

	Truthful Mechanisms via Greedy Iterative Packing
	Introduction
	Our Results
	Related Work

	The General Setting
	Preliminaries
	A Motivating Example
	A Sufficient Condition
	Applications

	The Online Setting
	A Sufficient Condition
	Applications

	Additional Applications via Submodular Function Maximization

	Resource Minimization Job Scheduling
	Introduction
	Preliminaries
	The Algorithm
	Partition into Blocks and Job Classes
	Proof of Theorem 1


	The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders
	Introduction
	A Simple Rounding Technique
	A $(4+\e)$-Approximation for $R|r_{ij},pmtn|\sum w_L
C_L$
	A Constant Factor Approximation for $R|r_{ij}|\sum w_L
C_L$
	Further Results

	New Hardness Results for Diophantine Approximation
	Introduction
	A Strengthening of the Lagarias, Rössner-Seifert Reduction 
	Hardness of the Best Denominator

	Directed Diophantine Approximation
	Hardness of Mixing Set

	PASS ApproximationA Framework for Analyzing and Designing Heuristics
	Introduction
	The Theory of PASS Approximation
	OurResults
	Why Use Our Notion of PASS Approximation?

	A Greedy Approach
	Comparison to KPR
	Approximation as a Function of $\alpha$
	Approximation as a Function of the Signature

	A Linear Programming Approach
	An LP Relaxation

	References

	Optimal Sherali-Adams Gaps from Pairwise Independence
	Introduction
	Preliminaries and Notation
	Constraint Satisfaction Problems
	Expanding CSP Instances
	The Sherali-Adams Hierarchy
	Pairwise Independence and Approximation Resistant Predicates

	Towards Defining Consistent Distributions
	Finding Advice-Sets
	Defining the Distributions {\mathcal{P}_{\mu}}

	Constructing the Integrality Gap

	An Approximation Scheme for Terrain Guarding
	Introduction
	Guarding Terrains via Local Search
	Approximation Analysis
	Proof of Lemma 1
	Relaxing the Disjointness Assumption

	Conclusions
	Appendix

	Scheduling with Outliers
	Introduction
	Our Results
	Related Work

	GAP and Makespan
	Weighted Sum of Completion Times
	O(1) Approximation for Weighted Sum of Completion Times
	Analysis

	Average Flow Time on Identical Machines
	The Flow-Time LP Relaxation
	The Rounding Algorithm: Game Plan and Some Hurdles
	Notation and Preliminaries
	The Rounding Algorithm


	Improved Inapproximability Results for Maximum k-Colorable Subgraph
	Introduction
	Problem Statement
	Previous Results
	Our Results

	Unconditional Hardness Results for Max k-Colorable Subgraph
	Inapproximability Result for Max 3-Colorable Subgraph
	Max k-Colorable Subgraph Hardness

	Conditional Hardness Results for Max k-Colorable Subgraph
	Preliminaries
	Noise Operators
	$q$-Ary Functions, Influences, Noise Stability
	PCP Verifier for Max k-Colorable Subgraph


	Improved Absolute Approximation Ratios for  Two-Dimensional Packing Problems
	Introduction
	Important Tools and Preparations
	Strip Packing
	Small Total Height of the $delta$-Wide Items
	Using an Area Guarantee for the Wide Items

	Two-Dimensional Bin Packing
	Packing Instances That Fit into One Bin
	Packing Instances That Fit into a Constant Number of Bins


	On the Optimality of Gluing over Scales
	Introduction
	Preliminaries

	Metric Construction
	$\oslash$-Products
	A Stretched Version of $G$

	Lower Bound
	Extension to Other $L_p$ Spaces


	On Hardness of Pricing Items for Single-Minded Bidders
	Introduction
	Related Work
	Our Results and Techniques

	Preliminaries
	Reduction from Maximum Acyclic Subgraph
	UG Hardness
	LP Integrality Gap

	Hardness of the Bipartite Case

	Real-Time Message Routing and Scheduling
	Introduction
	Routing with Small Congestion and Dilation
	Optimal Fractional Solutions
	Iterative Rounding
	Individual Deadlines
	Arbitrary Travel Times

	Message Routing on Paths

	Approximating Some Network Design Problems with Node Costs
	Introduction
	Problems Considered
	The Unifying Theme of the Problems Considered
	Related Work
	Our Results

	Improved Algorithm for MBB 
	Approximate Greedy Algorithm and Junction Trees
	The LP Used
	Proof of Theorem 3

	A Lower Bound for MaxCT
	The Gap of Set-Cover
	The Reduction
	Analysis


	Submodular Maximization over Multiple Matroids via Generalized Exchange Properties
	Introduction
	Some Useful Properties of Submodular Functions
	New Exchange Properties of Matroids
	Intersection of Two Matroids
	A Generalized Rota-Exchange Property

	Local-Search Algorithm
	Tightness of Analysis
	References

	Robust Algorithms for Max Independent Set on Minor-Free Graphs Based on the Sherali-Adams Hierarchy
	Introduction
	Preliminaries
	A PTAS for Max Independent Set
	Planar Graph Case
	Extending to Minor-Free Graphs

	Vertex Cover
	MainResult:APTASfor Max Independent Set on Noisy Minor-Free Graphs
	Discussion
	References

	Minimizing Average Shortest Path Distances via Shortcut Edge Addition
	Introduction
	Problem Formulation
	Preliminaries and Initial Observations
	Metric k-Median with Penalties
	Single Source ASPDM

	Complexity
	Unweighted ASPDM
	General ASPDM
	1-Shortcut Edge Restricted ASPDM
	Approximating Total Cost
	Approximating Cost Improvement

	Improved k-Median with Penalties Approximation
	The Local Search Algorithm
	Analysis

	Experiments and Future Work

	Approximating Node-Connectivity Augmentation Problems
	Introduction
	Problem Definition
	Our Results
	Previous and Related Work

	The Algorithm (Proof of Theorem 1)
	Maximum Degree of Hypergraph of Minimal Tight Sets (Proof of Theorem 2)
	Open Problems

	A 7/9 - Approximation Algorithm for the Maximum Traveling Salesman Problem
	Introduction
	Upper Bound
	Approximating a Good Cycle Cover

	Extracting a Heavy Tour
	Eliminating Triangles
	Disabling Cycles of Length < 5
	Partition

	Approximation Algorithms for Domatic Partitions of Unit Disk Graphs
	Introduction
	Properties of Uniform Disk Skylines
	The Domatic Partition Algorithm
	The First Reduction
	The Second Reduction
	The Separated Case
	Distributed Algorithm for Domatic Partition

	Weighted Minimum Dominating Set

	On the Complexity of the Asymmetric VPN Problem
	Introduction
	Related Work
	Our Contribution

	Description of the Problem
	Approximation Results
	Linear Costs

	Hardness of Balanced Vpn


	Contributed Talks of RANDOM
	Deterministic Approximation Algorithms for the Nearest Codeword Problem
	Introduction
	An O(n/logn)-Approximation Algorithm
	A Recursive O(k log(s)n / logn)-Approximation Algorithm
	The Remote Point Problem
	Conclusion

	Strong Parallel Repetition Theorem for Free Projection Games
	Introduction
	Preliminaries
	Notations
	Special Types of Games
	Entropy and Relative Entropy

	Our Results
	Technical Lemma
	Main Lemmas


	Random Low Degree Polynomials are Hard to Approximate
	Introduction
	Our Results
	Related Work

	Proof of the Main Theorem
	Proof of Lemma 2
	Proofs of Technical Propositions
	Proof of Lemma 4

	References

	Composition of Semi-LTCs by Two-Wise Tensor Products
	Introduction
	Preliminary Definitions
	Linear Testers as Distributions
	Odd Expanders
	Tensor Product Codes
	Robust Locally Testable Codes

	Main Results
	Main Corollaries

	Semi LTCs
	A New Tester for Two-Wise Tensor Product Codes
	Semi LTCs Results in Robust Tensor
	Proof of Proposition 19
	Proof of Proposition 20
	Proof of Proposition 21


	On the Security of Goldreich's One-Way Function
	Introduction
	Goldreich's Function and Cryptography in NC0
	Our Results
	Our Approach

	Preliminaries
	Obtaining an Almost Correct Assignment
	For Predicates Correlating with One Input
	For Predicates Correlating with a Pair of Inputs

	Amplifying Assignments
	From Almost Correct to Correct

	Random Tensors and Planted Cliques
	Introduction
	Overview of Analysis

	Preliminaries
	Discretization
	Sufficiency of Off-Diagonal Blocks
	A Concentration Bound

	A Bound on the Norm of the Parity Tensor
	Warm-Up: Third Order Tensors
	Higher Order Tensors

	Finding Planted Cliques

	Sampling s-Concave Functions: The Limit of Convexity Based Isoperimetry
	Introduction
	From Concave to Quasi-concave
	The Cauchy Density
	Our Results

	Preliminaries
	Isoperimetry
	Isoperimetry of -1/(n-1)-Concave Functions
	Lower Bound for Isoperimetry

	Sampling s-Concave Functions
	Coupling
	Conductance and Mixing Time
	Sampling the Cauchy Density
	Discussion


	Average-Case Analyses of Vickrey Costs
	Introduction
	The VCG Auction Mechanism
	Average-Case Analysis

	Shortest Paths
	All-Pairs Shortest Paths
	Minimum Spanning Tree
	Assignment Problem

	A Hypergraph Dictatorship Test with Perfect Completeness
	Introduction
	Future Direction
	Related Works

	Preliminaries
	Fourier Analysis
	Influence of Variables
	Gowers Norm

	Dictatorship Test
	Folding
	Basic Test
	Hypergraph Dictatorship Test


	Extractors Using Hardness Amplification
	Introduction
	Preliminaries and Overview of Proofs
	Extractor from XOR Lemma
	Conclusion

	How Well Do Random Walks Parallelize?
	Introduction
	Notation
	Hitting Time of Multiple Random Walks
	Worst to Start in a Single Vertex
	Upper Bound on the Speedup of the Hitting Time of Multiple Random Walks
	Lower Bounds on the Speedup of the Hitting Time of Multiple Random Walks
	 Calculating the Hitting Time of Multiple Random Walks

	Cover Time of Multiple Random Walks
	The Worst Starting Vertices
	The Best Starting Vertices
	Random Starting Vertices

	A New Relation between Cover and Mixing Time
	Future Research

	An Analysis of Random-Walk Cuckoo Hashing
	Introduction
	Definitions and Results
	Expansion and Related Graph Structure
	Random Walks
	Proof of Theorem 1
	Conclusion

	Hierarchy Theorems for Property Testing
	Introduction
	Properties of Generic Functions
	Graph Properties in the Bounded-Degree Model
	Graph Properties in the Adjacency Matrix Model
	The Blow-Up Property 
	Lower-Bounding the Query Complexity of Testing 
	An Optimal Tester for Property 

	Revisiting the Adj. Matrix Model: Monotonicity
	Revisiting the Adj. Matrix Model: One-Sided Error
	Concluding Comments
	References

	Algorithmic Aspects of Property Testing  in the Dense Graphs Model
	Introduction
	Two Related Studies
	Our Results
	Open Problems
	Organization

	The Adaptive Query Complexity of CC
	The Non-adaptive Query Complexity of CC
	References

	Succinct Representation of Codes with Applications to Testing
	Introduction
	Definitions and Main Results
	Invariance and the Single Local Orbit Property
	Main Results
	Implications to Property Testing
	Implications to BCH Codes

	Overview of Techniques
	Representing Sparse Invariant Codes by Sparse Polynomials
	Proofs of Main Theorems
	Analysis of the Cyclic Case
	Analysis of the Affine-Invariant Case

	On Using Results from Additive Number Theory

	Efficient Quantum Tensor Product Expanders and k-Designs
	Introduction
	Quantum Expanders
	Main Result

	Proof of Theorem 2
	Proof Overview
	Action of a Classical 2k-TPE
	Fixed Points of a Quantum Expander
	Fourier Transform in the Matrix Element Basis

	Conclusions

	Hellinger Strikes Back: A Note on the Multi-party Information Complexity of AND
	Introduction
	Data Stream Space Complexity of Frequency Moments
	Information Complexity …
	… to Hellinger Distance

	Preliminaries
	Hellinger Distance
	Information Complexity of $AND_t$

	Pseudorandom Generators and Typically-Correct Derandomization
	Introduction
	Typically-Correct Derandomization and the PRG Approach
	Applications
	Conditional Results
	Unconditional Results

	Comparison with the Extractor-Based Approach
	Circuit Lower Bounds

	Baum's Algorithm Learns Intersections of Halfspaces with Respect to Log-Concave Distributions
	Introduction
	Log-Concave Densities
	Our Approach: Re-analyzing Baum's Algorithm

	Preliminaries
	VC Theory and Sample Complexity
	Log-Concave Densities

	Baum's Algorithm

	Tolerant Linearity Testing and Locally Testable Codes
	Introduction
	Main Notions and Results
	Other Related Work

	Overview of Proofs
	Uniformly Correlatable Distributions are Testable
	Low Bias Distributions are Uniformly Correlatable
	Discussion, Problems and Directions

	Pseudorandom Bit Generators That Fool Modular Sums
	Introduction
	Definitions and Tools
	Small Bias Bit Generators
	Hashing
	Pseudorandom Generators for Small Space

	Construction Using PRG for Low-Degree Polynomials
	Construction Based on Pseudorandom Walk Generators
	A Generator for Small Sums
	A Generator for Large Sums


	The Glauber Dynamics for Colourings of Bounded Degree Trees
	Introduction
	Preliminaries
	Graph Colourings
	Glauber Dynamics
	Mixing Time
	Colourings of Trees

	Weighted Block Dynamics
	An Upper Bound for General Trees
	Proof of Lemma 3

	Open Problems

	Testing $\pm$1-Weight Halfspaces
	Introduction
	Notation and Preliminaries
	A $\Omega$ (logn) Lower Bound for Testing $\pm$1-Weight Halfspaces
	Proof of Lemma 1
	Proof of Lemma 2

	A Sublinear Algorithm for Testing $\pm$1-Weight Halfspaces
	Proof of Theorem 5
	A Tester for $\pm$1-Weight Halfspaces

	Conclusion

	Small-Bias Spaces for Group Products
	Introduction
	Previous Work and Preliminaries
	Constant-Bias Spaces for Arbitrary Groups
	Small-Bias Spaces for Solvable Groups
	Width 3 Branching Programs

	Pseudorandom Bit Generators for Modular Sums
	Relation to Branching Programs
	Sum of Constant-Bias Spaces Does Not Fool Width 3
	References

	Small Clique Detection and Approximate Nash Equilibria
	Introduction
	Our Contribution
	Techniques
	Notations

	Preliminaries: Properties of the Matrix $B$
	Proof of Theorem 1
	Proof Outline
	Formal Proof
	The Distinguishing Algorithm

	Finding a Clique of Size 3 log n
	Discussion
	References

	Testing Computability by Width Two OBDDs
	Introduction
	Preliminaries
	Basic Definitions
	Properties of OBDDs

	A Lower Bound
	The Testing Algorithm
	References

	Improved Polynomial Identity Testing for Read-Once Formulas
	Introduction
	Our Results
	Proof Technique
	Comparison to Previous Works
	Organization

	Preliminaries
	Partial Derivatives

	Read-Once Formulas
	Black-Box PIT for Read-Once Polynomials
	PIT for Sum of Read-Once Formulas
	Conclusions

	Smooth Analysis of the Condition Number and the Least Singular Value
	Introduction
	Previous Results
	Main Result
	Main Ideas for Proving Lower Bounds on the Least Singular Value
	Theorem 5: The Influence of M
	Controlled Moment
	Small Ball Bounds
	Proof of Theorem 6: Preliminary Reductions
	Treatment of Compressible Vectors
	Treatment of Incompressible Vectors
	Proof of Lemma 8
	Proof of Lemma 9


	Author Index



