
Functional Integrity of Multi-agent
Computational System Supported by
Component-Based Implementation

Kamil Piętak, Adam Woś, Aleksander Byrski, and Marek Kisiel-Dorohinicki

AGH University of Science and Technology, Kraków, Poland
{kpietak,awos,olekb,doroh}@agh.edu.pl

Abstract. In the paper a formalism is proposed to describe the hierar-
chy of multi-agent systems, particularly suitable for the design of a cer-
tain class of distributed computational intelligence systems. The notions
of algorithms and dependencies among them are introduced, which allow
for the formulation of functional integrity conditions for the whole sys-
tem. General considerations are illustrated by modeling a specific case of
an evolutionary multi-agent system. Component techniques introduced
in AgE computing environment facilitate the implementation of the sys-
tem in such a way that algorithm dependencies are represented as con-
tracts, which support checking of the system’s functional integrity.

Keywords: functional integrity, components, mutli-agent systems.

1 Introduction

The notion of functional integrity may be understood as the ability to fulfill
functional requirements in a complex system. In agent-based environments, it
may be really difficult to check whether the set of cooperating but autonomous
agents is able to achieve the global goal of the system (solve the problem) [1].
Due to their dynamic nature, it may require to forecast and manage different
critical situations, such as sudden breakdown of hardware [2]. But first of all
agents must be able to cooperate with one another, which requires adequate
infrastructure addressing interoperability issues [3].

The paper focuses on a specific class of agent systems, which use compu-
tational intelligence paradigms – particularly hybrid techniques based on the
concept of decentralized evolutionary computation [4]. These systems consist of
a hierarchy of agents and nested multi-agent subsystems, which should use com-
patible structures and mechanisms to be able to work together. What is more,
some agents perform similar tasks, but work with different structures and mech-
anisms. Thus from the software engineering perspective it may be said that the
system is decomposed into particular agents, but a single agent implementation
is too complex to serve as an assembly unit. In fact agents implementations may
be further decomposed into functional parts (components), which are replace-
able, as long as they are compatible to one another, even when used by different
agents (this ensures agents interoperability at implementation level).

V. Mařík, T. Strasser, and A. Zoitl (Eds.): HoloMAS 2009, LNAI 5696, pp. 82–91, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Functional Integrity of Multi-agent Computational System 83

As it was discussed in [3], both agents and components can be considered in
software development as assembly units, which implement in various ways the
concept of responsibility delegation. However, agents-based technology focuses
more on executing complex tasks in a community to achieve defined goals and,
on the other side, component-based technology is rather aimed at reusability and
integrity aspects of software development [5]. Indeed, it seems that component-
oriented approach can be also successfully exploited in agent-based systems for
assembling parts of agents implementation and checking the integrity of the
system.

To facilitate the design of the systems under consideration a dedicated for-
malism was proposed in [6]. The goal of this paper is to show how it may be
extended to formulate the functional integrity conditions of the system, and how
these conditions may be supported by component technology. In the course of
paper the notion of algorithms (used by agents for performing actions) is in-
troduced, as well as additional relation (dependency) imposing the existence
of algorithms required by actions, as well as other algorithms. Agents and al-
gorithms are implemented and provided to AgE computing environment1 as
components. Relations between them are implemented as component contracts
handled by the configuration engine of AgE system, which is also responsible for
the verification of the system functional integrity.

The paper begins with the presentation of a formalism, which allows for the
formulation of functional integrity conditions of the system. The case of an evo-
lutionary multi-agent system is discussed as an illustration in the next section.
Finally the realization of these concepts using component techniques in AgE
computing environment is shown and some conclusions are drawn.

2 Functional Integrity of a Computing MAS

The model proposed in [6] defines an agent as a tuple:

AG � ag = 〈id, tp, dat1, . . . , datn〉 (1)

where id ∈ ID is a unique identifier of an agent2, tp ∈ TP denotes the type
of an agent (depending on its type, an agent is equipped with specific data
and may perform specific actions), and dati ∈ DATi, i = 1, . . . , n represents
problem-dependent data (knowledge) gathered by an agent.

According to [6] a multi-agent system includes agents, actions to be executed
by the agents, and the environment represented by some common data, which
may acquired by the agents. This definition must be extended here with a set
available algorithms:

AS � as = 〈Ag, Act, Alg, qr1, . . . , qrm〉 (2)
1 http://age.iisg.agh.edu.pl/
2 For each element of the model its domain, which is a finite set of possible values, is

denoted by the same symbolic name in upper case, e.g. ID is the set of all possible
agent identifiers.

84 K. Piętak et al.

where Ag ⊂ AG is the set of agents of as, Act ⊂ ACT describes actions that may
be performed by the agents of as, Alg ⊂ ALG is the set of algorithms available
in as, and qri ∈ QRi, i = 1, . . . , m denote queries providing data (knowledge)
available for all agents in as.

An agent may provide an environment for a group of other agents, which by
themselves constitute a multi-agent system, which is essentially different then
the one of the “parent” agent. These nested (multi-agent) subsystems introduce a
tree-like structure, which will be further referred as physical hierarchy of agents.
The relation γ : AS → AG ∪ {∅} identifies an agent that provides the environ-
ment for a particular agent system. For details see [6].

In the space of types, a subsumption relation “	” ⊂ TP × TP is defined,
introducing a partial order in TP. In terms of this relation, A 	 B : A, B ∈ TP
means that A is a subtype of B.

Agents may perform actions in order to change the state of the system. An
action is defined as the following tuple (Hoare’s triple equivalent [7]):

ACT � act = 〈tp, pre, post〉 (3)

where tp ∈ TP denotes the type of agents allowed to execute the action (only
agents of the type tp and descendant types – according to the “	” relation –
may perform the action); pre ∈ X is the state of the system which allows for
performing action act; post ∈ X × X is the relation between the state of the
system before and after performing action act.

Actions may depend on algorithms, i.e. in order to perform an action, one or
more algorithms may be needed. This dependency is described by the following
relation:

“�” ⊂ ACT × ALG (4)

For algorithms there is also a subsumption relation “	” defined, which states
whether one algorithm is a specialization of another:

“	” ⊂ ALG × ALG (5)

Relation “	” introduces a partial order in ALG (it is reflexive, transitive and
antisymmetric), i.e. if A1 	 A then A1 can be used in place of A when needed.

When an action is about to be performed, a subset of algorithms is selected
from Alg according to the 	 relation and any further restrictions described
below. These algorithms are said to be “available” in the environment for the
execution of a particular action3. For example, if action act depends on algorithm
A, and in a particular system ∃! subA ∈ Alg : subA 	 A, then when the action
is executed, it uses algorithm subA.

Further dependencies between algorithms used in the system may be described
using the following relation:

“�” ⊂ ALG × ALG (6)

3 A discussion on how this selection is realized in AgE is provided in section 4.

Functional Integrity of Multi-agent Computational System 85

If algorithm A depends on algorithm B (A � B) it means that B or its subtype
is needed for A to function properly, and must be available in the system. Rela-
tion “�” allows for defining families of algorithms that are designed to be used
together (i.e. if one of them is selected by the environment for the execution of a
particular action, then other algorithms from the same family are also selected).

For example, let us assume that the set of all known algorithms is ALG =
{A, A1, B, B1, B2, C}, where A1 	 A, B1 	 B and B2 	 B, the set of all known
actions is ACT = {act} and that A1 � B1 and A1 � C. Moreover, let us con-
sider an AS with the set of available algorithms Alg = {A1, B1, B2, C}. When
action act dependent on both A and B (act � A, act � B) is to be performed,
the set of algorithms that must be available for its execution is determined. For
this set, A1 is selected as the only algorithm subsuming A, and B1 is selected
because A1 depends on it, even though B2 could be selected as well if depen-
dencies between algorithms were not considered. Moreover, C is selected because
A1 depends on it, even though act does not depend on C explicitly.

The proposed formalism allows to formulate the conditions of functional in-
tegrity of the whole system. The system is functionally integral when the fol-
lowing coherency conditions are true for all agent subsystems AS � as =
〈Ag, Act, Alg, qr1, . . . , qrm〉:

∀ act ∈ Act [(∃ alg ∈ ALG : act � alg) ⇒ (∃ algc ∈ Alg : algc 	 alg)] (7)
∀ alg1 ∈ Alg [(∃ alg2 ∈ ALG : alg1 � alg2) ⇒ (∃ algg ∈ Alg : algg 	 alg2)] (8)

i.e. for each action that may be performed in the agent system (act ∈ Act), if this
action depends on algorithm alg, then an algorithm algc subsuming alg must
be available in the system (i.e. must be present in the Alg set of the system).
As was mentioned before, the subsumption relation “	” is a partial order, and
therefore algc can equal alg because alg 	 alg. Similarly, for each algorithm
alg1 that is available in the AS, if alg1 depends on alg2, then an algorithm
subsuming alg2 (in particular, alg2 itself) must be also available in the agent
system (∃ algg ∈ Alg).

3 Functional Integrity of an Evolutionary Multi-agent
System

The idea of an evolutionary multi-agent system (EMAS) was proposed as a
particular technique of decentralized evolutionary computation [8,4]. The system
consists of individual agents decomposed into several subpopulations (demes).
Agents possess (possibly partial) solutions of the given optimization problem.
They also possess a non-renewable resource called life energy, which is the base of
a distributed selection process. Agents exchange their energy based on the quality
of their solutions (fitness). Those which gather more energy have greater chances
of reproducing, and those with low energy have greater chances of dying. This
energy-based selection is used instead of classical global selection mechanisms,
because of the assumed autonomy of agents. Agents may also migrate to another
subpopulation if they have enough energy.

86 K. Piętak et al.

The model of EMAS which follows the concepts of [6] defines two types of
agents:

TP = {ind, isl} (9)

where ind denotes the type of an individual agent (as described above), and
isl — of an aggregate agent, which is introduced to manage subpopulations of
individual agents (an evolutionary island).

Consequently, at the top of the physical structure of EMAS there is a system
of evolutionary islands:

as = 〈Ag, ∅〉 γ(as) = ∅ (10)

where:
Ag � ag = 〈id, isl, Nb〉 (11)

and Nb ⊂ Ag is the set of evolutionary islands, which is used to define the
topology of migration.

Every evolutionary island ag provides an environment for the population of
individual agents:

∀ ag ∈ Ag ∃ as∗ = 〈Ag∗, Act∗, Alg∗, f indAg, findLoc〉 : ag = γ(as∗) (12)

and an individual agent is defined as:

Ag∗ � ag∗ = 〈id, ind, sol, en〉 (13)

where:

sol ∈ SOL is the solution of the problem (usually for optimization problems
SOL ⊂ R

n, n ∈ N),
en ∈ R

+ is the amount of energy gathered by the individual agent,
ACT ⊇ Act∗ = {init, migr, get, repr, die} is the set of actions available in as∗:

init – initialization of agent’s solution,
migr – migration of an agent from one to another subpopulation,
get – transfer of a portion of energy from one to another agent,
repr – creation of a new agent by two parents,
die – removing of an agent from the system,

ALG ⊇ Alg∗ = {rand, prep, eval, recomb, mut} is the set of algorithms available
in as∗,

findAg : 2AG → M(AG) is the query which allows to choose the neighboring
individual agent (another agent present in the same system),

findLoc : 2AG → M(AG) is the query which allows to choose the neighboring
island (using Nb ⊂ Ag).

An action of solution initialization init performed by ag∗ = 〈id, ind, sol, en〉 ∈
Ag∗ is defined in the following way:

Act∗ � init = 〈ind, [τ(sol) = 0], [τ(sol) = 1]〉 (14)

Functional Integrity of Multi-agent Computational System 87

where τ : SOL → {0, 1} is a problem-dependent function, which indicates if a
solution is initialized (by returning 1) or not (by returning 0). During this process
a problem-dependent algorithm prep ∈ Alg∗ is used, and therefore: init �
prep. Also, algorithm prep depends on another algorithm rand, necessary for
generating random solutions. This is denoted as: prep � rand.

Actions migr, get, repr and die were defined in [6] and will not be discussed in
detail here. However, several interesting observations follow. The action of energy
transfer get is performed by an individual agent depending on the quality of its
solution, which is given by problem-dependent algorithm eval. This relation may
be defined as: get � eval. Similarly, the action of reproduction repr depends on
the algorithms realizing recombination and mutation operators — recomb and
mut respectively. This is denoted as: repr � recomb, repr � mut.

Application of EMAS to solving concrete optimization problems requires un-
dertaking several decisions typical for the evolutionary approach, e.g. the choice
of genotype representation and adequate variation operators. As an illustration
one may consider EMAS with binary representation — it requires specializations
(in terms of the subsumption relation) of algorithms prep, eval, recomb, mut:

binPrep 	 prep denotes an algorithm necessary to generate binary solutions,
binEval 	 eval denotes an algorithm which evaluates binary solutions,
binRecomb 	 recomb denotes an algorithm responsible for recombination of

two binary solutions,
binMut 	 mut denotes an algorithm responsible for mutation of a binary

solution.

All these elements must be introduced into ALG and Alg∗, and the latter will
be defined as:

Alg∗ = {rand, binPrep, binEval, binRecomb, binMut} (15)

Such system definition satisfies equations (7) and (8) so it is functionally integral.
According to the mechanism presented in the previous section, all algorithms are
applicable without changing existing actions’ definitions.

4 Component Techniques for AgE Environment

The model presented is the base for the design of the core of the computing
environment AgE4, which is developed as an open-source project at the Intelli-
gent Information Systems Group of AGH-UST. A system implemented on AgE
platform is composed of agents – the main functional entities, which represent
the core logic of the computation [9]. Agents are further decomposed into func-
tional units according to Strategy design pattern [10]. Algorithms, as presented
in the model, are implemented in the form of strategies in AgE. Both agents
and strategies can have properties (described in more detail in [6]), which can
be either simple values or references to other entities in the system.
4 http://age.iisg.agh.edu.pl/

88 K. Piętak et al.

Actions are implemented and executed as methods of external strategies
classes or the parent agent class, which represents the agent’s environment. Dur-
ing the execution of these methods other strategies can be used to perform
different activities within the action. Therefore, the dependency (described by
the relation “�”) between actions and algorithms is represented in AgE as a
reference property to the required algorithm, preceded by @Inject annotation.

Dependency between algorithms introduced in the model maps to dependency
between strategies. In different cases this relation can be represented in two ways
in AgE.

Let us consider dependent algorithms A and B (A � B) represented in AgE
by Java classes A and B. In the first case strategy A directly uses strategy B and
the dependency relation is realized in the same way that dependency between
actions and algorithms, i.e. by using a reference property marked with @Inject
annotation. In the next case, strategy A does not directly use B, but B is required
for proper processing of A. For example, a binary mutation strategy needs a
binary initialization strategy which generates the proper type of solutions, al-
though the initialization is not directly used by mutation. To define this kind of
dependency, class A must be preceded by annotation @Require(B.class).

An example code of a strategy with dependencies is shown below:

@Require(C.class) public class A {
@Inject @PropertyField(name="b")
private B b;

}

Strategy A directly uses strategy B and requires strategy C for proper process-
ing. Therefore it defines two dependencies, the first by an annotated reference
property (for strategy B) and the second by adding @Require annotation to class
definition (for strategy C).

AgE was designed with the emphasis on achieving the main advantages of
component-oriented techniques, i.e. independent development, reusability and
elementary contracts [7]. Its realization is vastly supported by dependency injec-
tion pattern, an implementation of the inversion of control paradigm proposed
by Robert Martin [11] and later popularized by Martin Fowler5, and by utilizing
the freely available PicoContainer framework6.

Component-oriented techniques are exploited to implement the process of
automatic assembly of different agents structures with dependant strategies.
The input configuration (in XML file format) together with agents and strategies
classes with described annotations are used to initialize computing environment
and provide appropriate instances in runtime.

The approach allows for creation of fully-initialized components, with all
dependent components injected. Moreover, late binding by a container allows
for runtime injection which facilitates third-party development of the compo-
nents. The annotations describing component dependencies, as presented above,

5 http://martinfowler.com/articles/injection.html
6 http://www.picocontainer.org

Functional Integrity of Multi-agent Computational System 89

+createInstance() : Object

ComponentDefinitionConfiguration

+getValue() : Object

PropertyInitializer

<<Interface>>
IValueProvider

ReferenceValueProvider

SingleTypeValueProvider

Fig. 1. Configuration model

together with class’s public methods treated as component’s operations, may be
perceived as a requirement closely related to component contracts as proposed
by Szyperski [7].

The decision which component should be provided to the other one is made
during instantiating particular components based on the configuration model
shown in Fig. 1. The functional integrity of the system as defined by (7) and (8)
is ensured by verifying the configuration and components requirements – depen-
dencies are processed in order to check if all required components are available
in the classpath, no conflicts occur between components, and all requirements
are fulfilled. Verification is also performed during each request for instantiating
a component, which ensures that no inconsistent unit will be created.

The configuration model describes agents and strategies by defining a set of
ComponentDefinition objects, aggregated in one Configuration. Each defi-
nition can have a list of PropertyInitializers which – each assigned to an
agent’s or strategy’s single property – are responsible for their initialization. To
facilitate this initialization AgE uses IValueProvider objects, which are respon-
sible for providing concrete values to properties. These values can be references
(represented by ReferenceValueProviders) or simple type values (represented
by SingleTypeValueProviders).

The process of system initialization is divided into two steps. In the first
step, the configuration model is created from an XML file with a well-defined
structure7 and a process of verification is executed.

In the next step, a fully initialized system is created, containing agents with
already associated strategies. The advantage of this solution is that one imple-
mentation of an agent can perform actions which use different realizations of
strategies. Therefore a wide variety of possible computations can be performed
without changing an agent’s class, i.e. without recompiling the system. One thing
remains to be done, i.e. to change the XML configuration file.

After being built from an XML configuration file, component definitions are
registered in IoC containers (class PicoContainer) using special adapters of class
CoreComponentAdapter, both shown in Fig. 2. A request to create a hierarchy of
components (agents and strategies) is directed to an IoC container, which in turn
delegates the creation of specific components to adapters assigned to component

7 http://age.iisg.agh.edu.pl/xsd/age-2.3.xsd

90 K. Piętak et al.

+getComponent(String) : Object
+getComponent(Class) : Object
+addAdapter(CoreComponentAdapter) : void

PicoContainer

+getInstance(String) : Object
+getInstance(Class) : Object

CoreComponentAdapter

+createInstance() : Object

ComponentDefinition

+getValue() : Object

PropertyInitializer

IComponentInstanceProvider

Fig. 2. Dependency Injection pattern in AgE

definitions. In the method ComponentDefinition.createInstance, the defini-
tion creates an instance of a component it describes. This method is responsible
for properly initializing all the component’s properties, both simple values and
its dependencies on other components. In order to initialize the dependencies
correctly, the definition can retrieve (via the IComponentInstanceProvider in-
terface) an instance of a required component (either by name or by type) from the
IoC container associated to it. The retrieval of required values and assignment
to component properties is done by specialized PropertyInitializer objects,
one for simple type values and one for references to other components.

5 Conclusions

The formalism proposed in the paper is solely used for design, and that is why
such details as the precise definition of the system state space or state transi-
tion functions were not taken into consideration. The notion of algorithms and
dependency relations (imposing the existence of algorithms required by actions
and other algorithms) were introduced to define functional integrity conditions
for the system. So far the model can be fully mapped to the concepts present in
AgE computing environment. Also component-based approach proved to be a
convenient and flexible technique supporting the assembly of a particular system
according to the provided configuration, and its validation with respect to the
proposed functional integrity rules. Moreover, a prototype graphical configura-
tion editor was created based on the presented solution. It uses the proposed
techniques for suggesting available assembly options according to components
contracts.

Further research should allow to extend the model to cover other compu-
tation intelligence techniques based on agent paradigm, such as iEMAS (im-
munological evolutionary multi-agent system) [12] or HGS (hierarchical genetic
search) [13]. The mapping between the proposed formalism and existing models
describing these techniques will be provided. The current focus of AgE devel-
opment is to fully implement the verification logic allowing to check the in-
tegrity rules for delivered components. Also, because the implementation of
AgE framework continues, the formalism will surely be updated in the near
future.

Functional Integrity of Multi-agent Computational System 91

Acknowledgments. The authors would like to express their gratitude to Mr. To-
masz Kmiecik, a former student of AGH-UST, for his invaluable contribution to
the design and implementation of dependency injection mechanisms in AgE.

References

1. Cetnarowicz, K., Dobrowolski, G., Kisiel-Dorohinicki, M., Nawarecki, E.: Func-
tional integrity of mas through the dynamics of the agents’ population. In: Proc.
of 3nd Int. Conf. on Multi-Agent Systems (ICMAS 1998). IEEE Computer Society
Press, Los Alamitos (1998)

2. Jamont, J.P., Ocello, M.: Using self-organization for functional integrity mainte-
nance of wireless sensor networks. In: Proc. of the International Conference on
Intelligent Agent Technology IAT 2003, Washington, DC, USA. IEEE, Los Alami-
tos (2003)

3. Bergenti, F., Gleizes, M.P., Zambonelli, F.: Methodologies and Software Engineer-
ing for Agent Systems. Kluwer Academic Publishers, Dordrecht (2004)

4. Kisiel-Dorohinicki, M.: Agent-oriented model of simulated evolution. In: Grosky,
W.I., Plášil, F. (eds.) SOFSEM 2002. LNCS, vol. 2540, pp. 253–261. Springer,
Heidelberg (2002)

5. Krutisch, R., Meier, P., Wirsing, M.: The agentComponent approach, combining
agents, and components. In: Schillo, M., Klusch, M., Müller, J., Tianfield, H. (eds.)
MATES 2003. LNCS (LNAI), vol. 2831, pp. 1–12. Springer, Heidelberg (2003)

6. Byrski, A., Kisiel-Dorohinicki, M.: Agent-based model and computing environment
facilitating the development of distributed computational intelligence systems. In:
Proc. of the Computational Science - ICCS 2009, 9th International Conference,
Baton Rouge, U.S.A., May 25 - 27, 2009. Springer, Heidelberg (2009)

7. Szyperski, C.: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston (2002)

8. Cetnarowicz, K., Kisiel-Dorohinicki, M., Nawarecki, E.: The application of evolu-
tion process in multi-agent world (MAW) to the prediction system. In: Proc. of
2nd Int. Conf. on Multi-Agent Systems (ICMAS 1996). AAAI Press, Menlo Park
(1996)

9. Kisiel-Dorohinicki, M.: Agent-based models and platforms for parallel evolutionary
algorithms. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.)
ICCS 2004. LNCS, vol. 3038, pp. 646–653. Springer, Heidelberg (2004)

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Professional, Reading (1995)

11. Martin, R.C.: The dependency inversion principle. C++ Report 8(6), 61–66 (1996)
12. Byrski, A., Kisiel-Dorohinicki, M.: Immunological selection mechanism in agent-

based evolutionary computation. In: Klopotek, M., Wierzchon, S., Trojanowski, K.
(eds.) Proc. of the Intelligent Information Processing and Web Mining IIS IIPWM
2005, Gdansk, Poland. Advances in Soft Computing. Springer, Heidelberg (2005)

13. Schaefer, R., Kołodziej, J.: Genetic search reinforced by the population hierarchy.
Foundations of Genetic Algorithms 7 (2003)

	Functional Integrity of Multi-agent Computational System Supported by Component-Based Implementation
	Introduction
	Functional Integrity of a Computing MAS
	Functional Integrity of an Evolutionary Multi-agent System
	Component Techniques for AgE Environment
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

