
V. Mařík, T. Strasser, and A. Zoitl (Eds.): HoloMAS 2009, LNAI 5696, pp. 183–192, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Design and Implementation of LabVIEW-Based
IEC61499 Compliant Device

Grzegorz Polaków and Mieczyslaw Metzger

Department of Automatic Control, Electronics and Computer Science
Silesian University of Technology, ul. Akademicka 16, 44-100 Gliwice, Poland

{grzegorz.polakow,mieczyslaw.metzger}@polsl.pl

Abstract. The method of IEC 61499 compliant device implementation with the
National Instruments LabVIEW is proposed. The work focuses on these aspects
of the tasks of the event generation and dispatching, which have no direct coun-
terparts in the G language. A mapping of all the IEC 61499 concepts onto the G
language concepts is described. Because of the limited multithreading support
in LV (multithreading is possible but a number of parallel threads is fixed at the
stage of the program development and compilation) it is needed to fit all the
IEC 61499 defined functionalities in a fixed number of threads. A FIFO queue
based dispatching algorithm is implemented, similar to the one used in the
C++FBRT implementation. The ultimate objective of the work is the develop-
ment of the FBLV run-time environment, which converts the LabVIEW com-
patible industry grade hardware into the IEC 61499 compliant device.

Keywords: distributed control, IEC 61499, holonic systems, LabVIEW, run-
time environment.

1 Introduction

The first standard for holonic industrial systems is the IEC 61499 [1]. It took place of
previously existing non-standardized products, however the market still lacks any
successful industrial implementations. The most known run-time environment for the
IEC 61499 is the FBRT developed by Holobloc [2], which is a part of the FBDK. The
FBDK framework is designed primarily as a reference environment [3] as it exploits
every aspect of the standard. The FBDK is developed using the Java programming
language. There are not many industry-grade hardware implementing the Java Virtual
Machine, which limits possible industrial use of the FBRT software. The process of
industrial adaptation of the IEC 61499 advanced when the ICS Triplex [4] included
the support for the standard in their ISaGRAF software suite. It allows to develop
event-based applications, which may be targeted for the large set of supported operat-
ing systems. Drawbacks of this solution are: the lack of support for the purely indus-
trial hardware, and controversial method of algorithm scheduling using the scan-based
approach [5]. There are few more run-time environments implementing the norm
compliant events and function blocks (see [6] for a brief survey), but usually those
environments rely heavily on an underlying operating system. The only embedded
environment known at the moment is the C++ conversion of the FBRT [7][8], which
apparently did not get beyond the stage of research.

184 G. Polaków and M. Metzger

This paper presents the progress of the development of a run-time environment
complying to the IEC 61499 norm (see [9] and [10] for reference). The environment
is developed using the G language of the LabVIEW platform [11]. The G language is
equipped with a wide set of capabilities, some of which are similar to the concepts of
the norm (i.e. event queues, basic OOP). However, the G language constructs are
general in nature, and using them to implement the norm compliant behavior requires
much work. Proposed mapping of the concepts of the IEC 61499 norm onto G lan-
guage constructs is the main contribution of this work. With the approach presented in
this paper it is possible to program the LabVIEW compatible industry-grade hardware
in the norm compliant way. The ultimate objective of the work described is the devel-
opment of complete run-time environment (called from now on as a FBLV) which,
when uploaded to a PAC (Programmable Automation Controller – see [11]), converts
the PAC into the IEC 61499 compliant device.

It should be noted that the FBLV is not designed as a complete framework exploit-
ing fully all the concepts of the standard. The goal of the implementation is to develop
a run-time environment for industry-grade hardware, because the standard did not
receive any attention from the biggest automation equipment manufacturers, which
resulted in a lack of IEC 61499 compliant equipment (for now the most popular solu-
tion of this problem was uploading the FBRT to the Netmaster family controllers).

At the moment, preferred method of the FBLV device programming is by upload-
ing an XML file generated by the FBDK, describing the function block network.
However, in future it is expected that the FBLV device will be fully cooperative
online as a part of system configuration. Such run-time environment would largely
expand the set of the IEC 61499 compliant hardware by inclusion of all the PLCs and
PACs made by National Instruments. An additional contribution of the work is the
description of proposed single threading scheduling algorithm and low-level imple-
mentation of the norm defined FBs. This description can be easily adopted for other
programming languages with limited multi threading capability.

2 General Concept

The G language used by the National Instruments LabVIEW development environ-
ment is a graphical language exploiting the concept of the function blocks similar to
the FBD language of the IEC 61131 standard [12]. The G language was developed at
first as a tool simplifying the data acquisition process, but nowadays it is more gen-
eral. LabVIEW implements the concepts of loops, data structures, subprograms,
GUIs, etc. – all of them realized in the form of dataflow driven block diagrams. The
language is compilation-based, the diagrams are compiled into executable code,
which may be targeted for various platforms, including FPGAs and PACs. The code
is generated with a support for multithreading, parallel fragments of code are executed
as separate threads. The most obvious drawback of the G is the complete lack of C-
style memory pointers, which makes it impossible to construct, for example, linked
list. The other problem is the limitation of the dataflow-based multithreading. While
parallel loops are executed as concurrent threads, the number of threads is determined
automatically (depending on the structure of the code and the capabilities of the target
hardware) and fixed at the compilation stage. In effect, LV lacks the mechanism

 Design and Implementation of LabVIEW-Based IEC61499 Compliant Device 185

similar to the Java thread class – it is not possible to execute a given subprogram as a
separate thread. However, LabVIEW is aware of the event-based programming con-
cept. Typically, events are used in LabVIEW for GUI servicing, but it is possible to
define user’s own class of events. Such user-created classes of events are then dis-
patched with the LabVIEW built-in event manager in a G language construct called
the Event Structure.

2.1 Mapping the Basic Concepts of IEC 61499 onto G Language

The standard defines three classes of devices, numbered from 0 to 2. The FBLV was
designed to implement the functionality of the class 1 device. The class 0 was consid-
ered as too simple – it is more fitted for the intelligent sensors or actuators. For effec-
tive programming of the control algorithms, the support for FB instances is required,
which leaves classes 1 and 2 under consideration. However, class 2 device, while
more powerful, requires a compilation or an interpretation of a FB block algorithm
given by an user. A run time-compilation of LabVIEW subprograms is not possible, a
LabVIEW application has to be compiled and uploaded to the embedded device at
once. An interpretation of the FB source code during run-time could be implemented,
but it would lack the performance required in industrial use. In effect, the FBLV was
decided to implement the functionality of class 1 device. The class 1 is well balanced
between simplicity and capabilities, assuming that the library of FB types provided by
the device is rich enough.

To keep the prototype implementation simple, it was decided that the FBLV will
not provide a support for the multiple resources. The FBLV device accommodates a
network of function blocks directly, which is equivalent to zero resources [9].

Events and scheduling algorithm. It is proposed to implement the events defined by
the standard directly as the LabVIEW events serviced with the Event Structure. In
consequence, the IEC 61499 events which are issued in the network of function
blocks are stored in the LabVIEW internal event queue, which is working according
to the FIFO principle. The IEC 61499 events are defined as the LabVIEW user events
(distinct to the LabVIEW standard GUI events) carrying additional data – reference
number of the block instance and the event input number at which the event arrived.
Using the data carried by the event, the scheduling algorithm thread determines the
proper reaction to the event, as shown in the Fig. 1.

The consecutive steps of the event dispatching process are as follows (numbered as
in the Fig. 1):

1. The event is removed from the queue. Using the variables carried by the
event, it is determined on which input of which of the existing FB instances
the event is issued.

2. Using the table of the existing FB instances the FB type of the considered FB
instance is read. Knowing the state of the FB instance (stored in the table of
instances), the FB type, and the considered event input, the Event Dispatcher
determines a chunk of code to be executed. The algorithm performs the task
defined by IEC 61499 for the given input of a given FB type.

186 G. Polaków and M. Metzger

Fig. 1. The idea of the scheduling algorithm

3. If the task is supposed to result in issuing the new event, the proper entry is
added to the queue of events waiting to be dispatched (after resolving the FB
network and finding the destination FB instance and input).

A similar scheduling algorithm introduced in [6] by Zoitl et al. was named the
Event Dispatcher. Due to this similarity, the scheduling algorithm proposed for the
FBLV platform will be called the same. The work principle of the Event Dispatcher
algorithm has a peculiar property: all the events issued in the FB network are serviced
in the same processing thread, the events are dispatched sequentially. In effect, each
of the events is eventually dispatched, events cannot be lost, as it is observable in the
scan-based approach [13].

Block types. In the most of the existing implementations, the FB types are repre-
sented as the classes of a object oriented programming language (e.g. in FBDK).
Algorithms executed by the events incoming to FBs are implemented as the methods
of the classes. Although the LabVIEW implements the basics of the OOP, it is limited
by the nature of the data-flow based programming, i.e. it lacks the dynamic thread
creation. In effect, implementation of the FBs as the LabVIEW classes is unreason-
able. Instead, a procedural programming based concept is introduced. Each of the FB
type definitions is divided into basic procedures implementing the FB reaction to the
events at the specific inputs. These procedures are spread and programmed as parts of
the Event Dispatcher code. If a function block uses the ECC and its behavior depends
on its internal state, a procedure additionally reads the state of the FB and executes a
proper subroutine.

This distribution of the FB types behavior amongst the code of Event Dispatcher is
the most important modification of the usual approach, resulting in the possibility of
the FBLV development. The Event Dispatcher is simply the collection of basic algo-
rithms, which are executed in an order defined by a FB connection network. It should
be noted that the internal FB algorithms do not have to be developed exactly as the

 Design and Implementation of LabVIEW-Based IEC61499 Compliant Device 187

norm proposes – only the external behavior of the given algorithm has to be exactly as
the standard defines. ECCs defined by the standard do not need to be implemented to
the letter. ECCs are, in the case of the FBLV, less the programming tool, more a
guideline for the programmers of the Event Dispatcher algorithms.

The algorithm collection stored in the Event Dispatcher is described by the global
memory structure describing the implemented FB types, their names, inputs and out-
puts. This structure is the connection between the naming introduced by the standard
and the pieces of code distributed in the Event Dispatcher.

Block instances. In the OOP-based implementations, FB instances of a given FB type
are the objects of the given class. In the FBLV FB instances are stored as entries in
the separate memory structure. The structure contains two fields describing properties
of the instance: number of the FB type of which it is an instance, and the variant
structure (similar to the non-typed memory pointer in C language) storing the state of
the FB instance. The state consist of current values of data outputs of the instance, and
any data specific to the instance (file handles, network socket handles, number of
internal state according to the ECC, etc.). The creation of the FB instance consists of
simple adding of the entry in the table and initiating its state.

Event and data connections. The connections between the FB instances are stored in
an additional memory structure. A record of the structure contains four fields: the
reference to the source FB and its connected output number, and the reference to the
destination FB and its input number. There are two separate structures for the event
connections and for the data connections. The structure of event connections is used
directly by the Event Dispatcher, so it can find the correct destinations of newly in-
duced events (step 3 in the Fig. 1). The structure of data connections is used by the
algorithms, which find the source FB instance of the data values they require, so the
correct entry containing the values can be found in the instances table.

Data types. The large part of the data types defined by the IEC 61131 standard (from
where, they were adopted to the IEC 61499) have native equivalents in the G lan-
guage. Integer and floating typed are currently implemented in the FBLV using the
native types. STRING and WSTRING are easily implementable using the LabVIEW
built-in string type. The IEC 61499 specific data types i.e. color, arrays and matrices
have native equivalents. The time and date, user-defined and complex types are the
most difficult, the proper implementation method is not determined at the moment.
The TIME type bears the specific problem, as its resolution (i.e. 1μs) is out of Lab-
VIEW capabilities – see Timed Events section below.

The most effective way of all the data types implementation is the development of
the classes hierarchy, similar to the FBRT. The G language limited OOP support is
sufficient enough for such an application.

2.2 Sources of Events

The presented idea of the Event Dispatcher assumes that all the events issued in the
FB network are produced by the algorithms called during dispatching the previously
existing events. Function blocks which are the sources of the events do not fall into
this category, and they have to be implemented in other way. The two categories of
such FBs are: the service interface blocks, and the blocks issuing the output events

188 G. Polaków and M. Metzger

according to the pass of time. The solutions proposed below are basically a LabVIEW
specific implementation of timed interrupts, which are the most fit for this task and
used in the C++FBRT [14].

Timed events. The standard defines three FBs measuring the time, i.e. E_DELAY,
E_CYCLE and E_TRAIN. Because the latter two may be implemented using the
E_DELAY, it is actually the only time related FB requiring implementation. In the
FBLV it is proposed to implement the second event dispatcher specifically for this
task. The Timed Events Dispatcher is not based on a FIFO queue as the original one,
instead its buffer holds the unordered list of the events which are scheduled to be
issued by E_DELAY blocks in a future. A separate thread (i.e. parallel while loop)
cyclically checks the buffer with a minimal achievable in LV period, removes the
events due in the last period, and adds them to the main Event Dispatcher. The Lab-
VIEW specific problem is the lack of widely compatible precise hard real-time timers.
The only real-time loop provided by the G language, which is compatible with all the
National Instruments hardware, has the resolution of 1ms. More precise timers are
available on selected platforms only. At the current stage of FBLV development, for
the compatibility, it is assumed that the 1ms resolution is enough, but it surely may be
not precise enough in industrial applications. As a consequence part of the TIME data
type capacity is ignored.

Service interface blocks. A similar idea has to be implemented for service interface
blocks. Blocks which send information and do not expect reception confirmation may
be treated as any other blocks, and implemented with the main Event Dispatcher.
However, reception of incoming data which results in issuing new events has to be
serviced in a separate software thread. Therefore, opening of the network sockets is
done within the main Event Dispatcher, handles to the sockets are stored as the state
variable in the table of FB instances. A separate thread cyclically checks opened lis-
tening sockets. If any data arrived and is stored in the buffers of network adapters, the
thread reads the data, assigns it to the outputs of a proper FB instance, creates the IND
event, and adds it to the main event queue.

3 Implementation

The following sections present few fragments of already developed source code,
which may serve as the reference for the developers of similar solutions. The code
presented is developed with the G language, but it is described thoroughly, so the
general idea is adoptable in the other programming languages.

3.1 Event Dispatcher and Function Block Algorithms

The source diagram of the Event Dispatcher thread is shown in the Fig. 2. It is rela-
tively simple, because it uses the LabVIEW built-in Event Structure. At first, the class
of user events is created (1), which carries two variables: the FB block instance num-
ber and the event input number. The event class is registered (2), so the events of the
class may be dispatched in the Event Structure (3) placed in the infinite While Loop
(4). The diagram also illustrates the concept of FB type specific algorithms. Using the
FB Instance number (5) the subVI (6) finds the FB type number of the instance in the

 Design and Implementation of LabVIEW-Based IEC61499 Compliant Device 189

Fig. 2. The source diagram of the scheduling algorithm and the E_MERGE algorithm

Fig. 3. The E_SPLIT algorithm

instances table. The FB type number selects one of the cases from the Case Structure
(7). In the Fig. 1 the implementation of E_MERGE FB type is shown. If the FB type
number equals zero (in the FBLV zero is assigned to the E_MERGE type) the diagram
fragment shown in figure is executed. The algorithms issues the output event regardless
of the input event number which induced the algorithm. At first, the search for the FB
instance connected to the output of the serviced FB instance is performed (8). If found,
the event at its proper event input is added to the Event Dispatcher queue (9).

For comparison, in the Fig. 3 the internal algorithm of the E_SPLIT FB type is
shown. When an event arises at the input of the E_SPLIT instance, a search for the
instances connected to both the event outputs of the E_SPLIT instance are performed.
Events at inputs of those FB instances are then added to the event queue. All the blocks
defined by the standard are implemented in a similar way in the Event Dispatcher code.

190 G. Polaków and M. Metzger

The algorithms embedded in the Event Dispatcher are supplemented by the global ar-
ray of clusters (a cluster is a LV counterpart of a C structure) describing all the imple-
mented FB types and their inputs and outputs. The cluster is shown in the graphical
form in the Fig. 4. The same figure shows also the instances table. In the figure three FB
instances are declared, two of the E_MERGE type and one of the E_SPLIT type.

Additionally, there also exist arrays of clusters not included in the figures, i.e. the
table of event and data connections (containing the pairs of FB instances numbers and
event/data input/output numbers), and the table of defined data types.

At the current stage of the implementation progress, the only method of interaction
with the run-time environment is the GUI pictured in the Fig. 5. FB instances and
connections are presented in the textual form. FBs and connections can be created and
deleted. To help in the debugging tasks, the history of the events fired is provided. In

Fig. 4. The description of implemented FB types and the list of currently existing FB instances

Fig. 5. The user interface of the current pilot implementation of the FBLV

 Design and Implementation of LabVIEW-Based IEC61499 Compliant Device 191

further development a support for XML files is planned, so the files generated by the
FBDK could be parsed into FBLV specific FB network description. It should be noted
that the stage of the FB network creation and the stage of Event Dispatcher work are
not separated. Both the threads work parallel, enabling the support for the dynamic
reconfiguration of the system. It is possible due to the complete lack of structure
compilation – all the connections between the blocks are stored and resolved with the
use of dynamic memory structures.

4 Concluding Remarks and Future Work

In this work the method of IEC 61499 compliant device implementation with the
National Instruments LabVIEW is described. The work focuses on those of the tasks
of the event generation and dispatching, which have no direct counterparts in the G
language. Because of the limited multithreading support in LV (multithreading is
possible but a number of threads is fixed at the stage of the program development) it
is needed to fit all the IEC 61499 defined functionalities in a fixed number of threads.
Currently the FBLV run-time environment is at the development stage, but since all
the main concepts are formulated the full functionality is achievable. The current
prototype implementation uses desktop PCs as a hardware platform, and the interac-
tion with the outer world is HMI based. In future, it is planned to change the target
platform to the PAC hardware, which will effectively enable the creation of industrial
grade IEC 61499 compatible run-time environment. The most challenging task is the
implementation of timed events with the 1μs resolution, which will require the use of
hardware clocks existing in the PAC platforms.

It should be noted that the performance and reliability of the FBLV approach are
still not verified experimentally. The comparison of the FBLV with the other
IEC61499 approaches is planned as soon, as the FBLV development advances
enough.

The approach based on the dynamic memory structures and FIFO queue enables
the FBLV to change the structure of the FB network without stopping the main Event
Dispatcher thread. In effect, the FBLV is capable of a dynamic reconfiguration, im-
plementation of the RECFB FB type proposed by [15] is considered in the future.

Acknowledgments. This work was supported by the Polish Ministry of Science and
Higher Education using funds for 2008-2010 under grant no. N N514 296335.

References

1. IEC, Geneva. IEC 61499-1: Function Blocks – Part 1 Architecture (2005)
2. HOLOBLOC Inc.: HOLOBLOC Inc. Webpage, http://www.holobloc.com
3. Hall, K.H., Staron, R.J., Zoitl, A.: Challenges to Industry Adoption of the IEC 61499

Standard on Event-based Function Blocks. In: 5th IEEE International Conference on In-
dustrial Informatics, vol. 2, pp. 823–828. IEEE Press, New York (2007)

4. ICS Triplex: ISaGRAF Webpage, http://www.ics.triplex.com

192 G. Polaków and M. Metzger

5. Vyatkin, V., Chouinard, J.: On Comparisons of the ISaGRAF implementation of IEC
61499 with FBDK and other implementations. In: 6th IEEE Conference on Industrial In-
formatics, pp. 289–294. IEEE Press, New York (2008)

6. Zoitl, A., Strasser, T., Hall, K., Staron, R., Sünder, C., Favre-Bulle, B.: The past, present,
and future of IEC 61499. In: Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS
2007. LNCS (LNAI), vol. 4659, pp. 1–14. Springer, Heidelberg (2007)

7. Zoitl, A.: Development of an IEC 61499 based embedded control platform and integration
in a distributed automation system. Master’s thesis, Vienna University of Technology (Oc-
tober 2002)

8. Rumpl, W.E., Auinger, F., Dutzler, C., Zoitl, A.: Platforms for Scalable Flexible Automa-
tion Considering the Concepts of IEC 61499. In: Mařík, V., Camarinha-Matos, L.M., Af-
sarmanesh, H. (eds.) IFIP Conference Proceedings, vol. 229, pp. 237–246. Kluwer B.V.,
Deventer (2002)

9. Vyatkin, V.: IEC 61499 Function blocks for embedded and distributed control systems de-
sign. ISA, Research Triangle Park (2007)

10. Lewis, R.: Modelling control systems using IEC 61499. Applying function blocks to dis-
tributed systems. IEEE, London (2001)

11. National Instruments Website, http://www.ni.com
12. IEC, Geneva. IEC 61131 Programmable controllers – Part 3: Programming languages

(1993)
13. Cengic, G., Ljungkrantz, O., Akesson, K.: Formal Modeling of Function Block Applica-

tions Running in IEC 61499 Execution Runtime. In: Proceedings of the 11th IEEE Confer-
ence on Emerging Technologies and Factory Automation, ETFA 2006, Praque (2006)

14. Sünder, C., Rofner, H., Vyatkin, V., Favre-Bulle, B.: Formal description of an IEC 61499
runtime environment with real-time constraints. In: 5th IEEE International Conference on
Industrial Informatics, vol. 2, pp. 853–859. IEEE Press, New York (2007)

15. Rooker, M.N., Sünder, C., Strasser, T., Zoitl, A., Hummer, O., Ebenhofer, G.: Zero Down-
time Reconfiguration of Distributed Automation systems: The εCEDAC Approach. In:
Mařík, V., Vyatkin, V., Colombo, A.W. (eds.) HoloMAS 2007. LNCS (LNAI), vol. 4659,
pp. 326–337. Springer, Heidelberg (2007)

	Design and Implementation of LabVIEW-Based IEC61499 Compliant Device
	Introduction
	General Concept
	Mapping the Basic Concepts of IEC 61499 onto G Language
	Sources of Events

	Implementation
	Event Dispatcher and Function Block Algorithms

	Concluding Remarks and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

