
T. Gross et al. (Eds.): INTERACT 2009, Part I, LNCS 5726, pp. 892–905, 2009.
© IFIP International Federation for Information Processing 2009

Model-Based Design of Multi-device Interactive
Applications Based on Web Services

Fabio Paternò, Carmen Santoro, and Lucio Davide Spano

ISTI-CNR, HIIS Lab, Via Moruzzi 1,
56124 Pisa, Italy

{Fabio.Paterno,Carmen.Santoro,Lucio.Davide.Spano}@isti.cnr.it

Abstract. Creating an interactive application based on pre-existing functional-
ities poses a number of novel issues in the design process. We discuss a method
and an associated model-based language, which aim to address such issues
in multi-device contexts. One specific aspect of this method is the ability to
obtain user interfaces for accessing multiple services. In addition, the possibility
to specify interactive objects, Web services accesses and scripts allows design-
ers to describe Rich Internet Applications as well.

Keywords: Model-Based Design, Multi-device Environments, User Interface
Design, Web Services.

1 Introduction

Model-based approaches for UI design are characterised by the use of some represen-
tations (models) of the aspects that are supposed to be relevant in the UI software
lifecycle. This involves the identification and representation of the characteristics that
are meaningful at each design stage, and mainly highlights one of the most difficult
parts of the work: identifying what characterizes a UI without having to deal with a
plethora of low-level implementation details that can distract the designer from the
most important issues. After having identified such characteristics, the next issue is
specifying them through suitable languages that can enable simple integration within
software environments, so as to facilitate the work of the designers.

The design of interactive multi-platform systems has further stimulated interest in
model-based approaches in HCI. In the design and development of such systems the
use of model-based approaches has revealed to be useful, especially through the
capture and modelling of different levels of abstractions in which it is possible to
gradually move from aspects that are technology-neutral to more concrete, platform-
dependent detailed aspects. In such a way it is possible to start with a general abstract
vocabulary and then obtain concrete languages for each type of platform by just refin-
ing the abstract language.

However, recently, the design of multi-platform systems has become even more
challenging. Indeed, not only must the same interactive application be accessible from
different devices within different contexts of use, but also the way in which such
interactive applications are built/created has changed, since there is the need to reuse
existing code to reduce development time and effort. An example of this can be seen

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 893

in the role that Web services are playing in the development of interactive applica-
tions. Indeed, the increasing availability of functional units within Web services has
driven the need to develop methods that are able to exploit such pre-existing function-
alities by including them into more composite interactive applications. In particular,
some heterogeneous issues have to be faced by the designers in this case. First, the
need to exploit some (generally small) legacy functionalities that were developed
without accounting for human interaction, since they were basically intended to sup-
port computer-to-computer (service-to-service) communication. Therefore, the first
issue is how to obtain the UI for such functionalities, possibly in a semi-automatic
way, so that it can ease the designer’s work. Secondly, even when a UI for such por-
tions of functionalities is available, there is the issue of including and integrating pre-
existing user interfaces associated with functionalities into new, composite ones, and
possibly support the designer during such composition.

In the paper, after discussing some related work we describe the main features of
our approach for designing user interfaces for Web services. We also introduce the
dimensions of a design space for composing user interfaces in such context. After-
wards, we express the requirements that have driven the development of MARIA, an
XML-based language for describing user interfaces at various abstraction levels.
Then, we detail an example to show more concretely how the proposed approach is
able to support the design of user interfaces for applications exploiting Web Services
in multi-device environments. Lastly, some conclusions and directions for future
work are provided.

2 Related Work

Several model-based approaches have been put forward in the field of multi-device
UIs. A sign of the maturity of this area can be seen by the recent interest in defining
connected international standards (e.g.: new W3C Group on Model-based User Inter-
faces: http://www.w3.org/2005/Incubator/model-based-ui/) and their adoption in
industrial settings (e.g.: dedicated Working Group in the NESSI NEXOF-RA IP,
http://www.nexof-ra.eu/).

In particular, a number of approaches have been proposed to support descriptions
of logical user interfaces. UIML [1] was one of the first model-based languages target-
ing multi-device interfaces. It structures the user interface in: structure, style content,
behavior. However, it has not been applied to obtain rich multimodal-user interfaces.
XForms [http://www.w3.org/MarkUp/Forms/] is a W3C initiative, and represents a
concrete example of how the research in model-based approaches has been incorporated
into an industrial standard. XForms is an XML language for expressing the next genera-
tion of Web forms, through the use of abstractions to address new heterogeneous envi-
ronments. The language includes both abstract and concrete descriptions (control
vocabulary and constructs are described in abstract terms, while presentation attributes
and data types in concrete terms). XForms supports the definition of a data layer within
the form, and is mainly used for expressing form-based UIs, though it does not
seem particularly suitable for supporting other interaction modalities, such as voice.
UsiXML (USer Interface eXtensible Markup Language) [3] is an XML-compliant
markup language, which aims to describe the UI for multiple contexts of use. UsiXML is

894 F. Paternò, C. Santoro, and L.D. Spano

decomposed into several meta-models describing different aspects of the UI. There is
also a transformation model that is used to define model-to-model transformations. The
authors use graph transformations to support model transformations, which is an inter-
esting academic approach, albeit with some performance issues. TERESA XML [5]
defines several abstraction levels for expressing the characteristics of a user interface.
Among such levels, one (the concrete interface) is specified through a number of plat-
form-dependent languages. These are refinements of the abstract level, which describes
the user interface using a platform-neutral vocabulary: interactors (describing single
interaction objects), composition operators (indicating how to compose interactors),
presentations (indicating the elements that can be perceived at a given time). Various
modalities are supported through this approach. However, it does not support data or
event models.

One issue with such model-based approaches is that they have not sufficiently ad-
dressed the recent increasing trend in software design towards building atomic soft-
ware components, called Web services, which are available in distributed settings.
Thus, applications have to be assembled starting from such pre-existing building
blocks. Especially for enterprises this offers several advantages in terms of code re-
use, increase productivity and leveraging integration processes. Some work has been
dedicated to the generation of user interfaces for Web services [7, 8] but without ex-
ploiting model-based approaches. Previously, there have been approaches investigat-
ing the possibility of automatic generation with model-based support for applications
based on Web services [4]. but such approaches work well only with not too complex
cases and when the application domain is well-known. In [9] there is a proposal to
extend service descriptions with user interface information. For this purpose the
WSDL description is converted to OWL-S format, which is combined with a hierar-
chical task model and a layout model. We follow a different approach, which aims to
support the access to the WSDL without requiring its substantial modification in order
to generate the corresponding user interfaces, still exploiting logical interface descrip-
tions. Therefore, model-based approaches have to cope with further requirements.
There is less need to design an application from scratch, but they have to support
interactive application development starting with small functionalities (services) that
are already available, even if these were not built with that particular application in
mind. In addition, there is a need to access the same service through an increasing
number of device types (in particular mobile) available in the mass market, sometimes
able to exploit a variety of sensors (e.g. accelerometers, tilt sensors, electronic com-
pass), localization technology (such as RFIDs, GPS) and interaction modalities
(multi-touch, gestures, camera-based interaction). This has further urged the identifi-
cation of suitable universal declarative languages able to address such composite
number of aspects in a comprehensive specification.

3 The Approach

A top-down approach essentially consists in breaking down and progressively refin-
ing an overall system into its sub-systems, thus it is particularly effective when the
design starts from scratch. In such cases the designer has an overall picture of the
system to be designed and can refine it gradually, without any particular constraints.

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 895

However, when the designer wants to include already existing pieces of software as
services, this necessarily requires that a bottom-up approach is considered in the de-
sign process in order to include and exploit not only such legacy, fine-grained func-
tionalities, but also composite and higher level functionalities obtained by assembling
the elementary ones. Therefore, the best option seems to be a hybrid solution in which
a mix of bottom-up and top-down approaches is used.

Automatic or semi-automatic composition of user interfaces associated with vari-
ous services is one important issue in this context. Indeed, the design and develop-
ment of an interactive application based on pre-existing Web services is by definition
driven by a composition-oriented approach. Not only must functionalities be com-
posed (for this purpose various approaches already exist, e.g. BPEL, WS-BPEL) in
order to provide arbitrarily complex functionalities, but also the corresponding user
interface specifications associated with the elementary services (which can be pro-
vided through specific annotations) can be composed as well. In order to better under-
stand how this composition activity can be carried out, we have identified a design
space for this specific activity (see Figure 1).

Fig. 1. The Design Space for UI Composition

Three main aspects have been identified as important in order to compose user inter-
faces: the abstraction level of the user interface description, the granularity of the user
interface considered, and the types of aspects that are affected by the UI composition.
Regarding the abstraction level, since a user interface can be described at various ab-
straction levels (task and objects, abstract, concrete, and implementation), it is straight-
forward that the user interface composition can occur at each of them. The granularity
refers to the size of elements to be composed: indeed, we can compose single user
interface elements (for example a selection object with an object for editing a value),

896 F. Paternò, C. Santoro, and L.D. Spano

groups of objects (for instance a navigation bar with a list of news), we can also com-
pose various types of interface elements and groups to obtain an entire presentation,
and we can compose presentations in order to obtain the user interface for an entire
application. It is worth pointing out that by the term ‘presentation’ we refer to the set of
user interface elements that can be perceived at a given time, a common example being
a graphical Web page.

Lastly, we have to distinguish the compositions depending on the main UI aspects
they affect, which are: i) the dynamic behaviour of the user interface, which means
the possible dynamic sequencing of user actions and system feedback (e.g.: when
some elements of the UI appear or disappear depending on some conditions); ii) the
perceivable UI objects (for example in graphical user interface we have to indicate the
spatial relationships among the composed elements); iii) the data that are manipulated
by the user interface.

More specifically, in the proposed approach first a bottom-up step is envisaged, in
order to analyse the Web services providing functionalities useful for the new applica-
tion. We then specify the application task model in ConcurTaskTrees (CTT) [6], a
standard de facto for task model specification (http://giove.isti.cnr.it/ctte.html).

The Web services can be seen as a particular type of task (system tasks, namely
tasks whose performance is entirely allocated to the application), and the temporal
relationships that are specified in a task model indicate how to compose such func-
tionalities. The specification of the task model should be driven by the user require-
ments, and it also implies some constraints on how to express such model. Indeed, in
order to address the right level of granularity, not only will a Web service be associ-
ated with an application task, but it is useful that each operation of the Web service be
associated to a specific system task. Thus, if a Web service supports three operations,
then there would be three basic system tasks, with the parent task being another appli-
cation task (corresponding to the web service itself). Such system tasks are related to
the user and interaction tasks in the overall task model.

Fig. 2. The Approach

After having performed this step, we have obtained a level of composition, which
also involves the functionalities associated with the Web services. The result is a struc-
tured model in which such functionalities have been progressively organised in a hierar-
chical task model, which includes system tasks associated with Web services and their
operations. At this point, once we have obtained the task model it is possible (through a
top-down step) to generate the various UI logical descriptions, and then refine them up
to the implementation, by using the MARIA language (the final phase in Figure 2).

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 897

4 MARIA

Based on the lessons learned from the analysis of the state of the art and previous
experiences conducted by various groups with TERESA (see [2] for a test in an indus-
trial setting), we have identified a number of requirements for a new language suitable
to support user interfaces in ubiquitous environments.

In particular, the following requirements have been identified for the new language:

• providing the designer with higher control of the user interface produced,
also through an event model;

• a more flexible dialogue and navigation model, also supporting parallel in-
teractions;

• a flexible data model, which allows the association of various types of data
to the various interactors;

• support for recent dynamic techniques, such as ajax scripts;
• streamlining the specifications of the abstract and concrete languages, in or-

der to make the specifications shorter and more readable.

4.1 Main Features

A number of features have been included in the language:

a) introduction of data model
We have introduced an abstract description of the underlying data model of the user
interface, needed for representing the data (types, values, etc.) handled by the user
interface. Indeed, by means of defining an abstract data model, the interactors (the
elements composing an abstract [concrete] user interface) can be bound to a specific
type or an element of a type defined in the abstract [concrete] data model. The intro-
duction of a data model also allows for more control over the admissible input that
can be provided to the various interactors. In MARIA XML, the data model is de-
scribed using the XSD type definition language. Therefore, the introduction of the
data model can be useful for: doing some correlations between the values of interface
elements (for instance, the value of one element can vary depending on the value of
another element), conditional presentation connections (triggering the activation of a
presentation depending on a certain value associated to an interactor), conditional
layout of interface parts (showing or not a portion of a presentation depending on the
value associated with a UI element), specifying the format of the input values (de-
pending on the data type it is possible to specify a certain acceptable template for
input values associated with that data type), application generation from the interface
description (having information on the values associated with a UI description enables
the actual generation of a working application).

b) Introduction of an event model
In addition, an event model has been introduced at different abstract/concrete levels of
abstractions. The introduction of an event model allows for specifying at different
abstraction levels how the user interface is able to respond to events triggered by the
user. In MARIA XML two types of events have been introduced:

898 F. Paternò, C. Santoro, and L.D. Spano

i) Property change events: events that change the status of some UI properties
(e.g. when a user selects an element in a drop-down menu then the text label
of a text field changes accordingly).

ii) Activation events: some interactors can raise events with the purpose of acti-
vating some application functionality (e.g. access to a database or to a web
service).

c) Support for Ajax scripts, which allow continuously updating of fields
Another aspect that has been included in MARIA is the possibility of supporting con-
tinuously updating of fields at the abstract level. To this aim we have added an attrib-
ute to the interactors: continuosly-updated= "true"["false"]. At the concrete level more
detail on this feature should be provided, depending on the technology used for
the final UI (Ajax for web interfaces, callback for standalone application, etc.). For
instance, with Ajax asynchronous mechanisms, there is a behind-the-scene communi-
cation between the client and the server about what has to be modified in the presenta-
tion, without an explicit request from the user. When it is necessary the client redraws
the relevant part rather than redrawing the entire presentation from scratch.

d) Dynamic set of user interface elements
Another feature that has been included in MARIA XML is the possibility to express
the need to dynamically change only a part of the UI. This has been specified in such
a way to be able to affect both how the UI elements are arranged in a single presenta-
tion, and how it is possible to navigate between the different presentations. Therefore,
the content of a presentation can dynamically change (this is also useful for support-
ing Ajax techniques). In addition, it is also possible to specify a dynamic behaviour
that changes depending on specific conditions: this has been implemented thanks to
the use of conditional connections between presentations.

In the next sections we provide a more detailed description of concepts/models that
have been included in MARIA, both for the Abstract UI and the Concrete UI.

4.2 MARIA – Abstract Level

The advantage of using an abstract description of a user interface is that designers can
reason in abstract terms without being tied to a particular platform/modality/
implementation language. In this way, they have the possibility to focus on the
semantic of the interaction (namely: what the intended goal of the interaction is),
regardless of the details and specificities of the particular environment considered.
Figure 3 shows the main elements of the abstract user interface meta-model (some
details have not been shown for readability reasons). An interface is composed of one
data model and one or more presentations. The presentation includes a data model and
a dialog model, which contains information about the events that can be triggered by
the presentation in a given time. The dynamic behaviour of the events is specified
using the CTT temporal operators. When an event occurs, it produces a set of effects
(such as performing operations, calling services etc.) and can change the set of cur-
rently enabled events (e.g. an event occurring on an interactor can affect the behavior
of another interactor, by e.g. disabling the availability of an event associated to an-
other interactor). The dialog model can also be used to describe parallel interactions

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 899

between the user and the interface. A connection indicates what the next active pres-
entation will be when a given interaction is performed and it can be either an elemen-
tary connection, or a complex connection (when a Boolean operator composes several
connections) or a conditional connection (when various conditions on connections are
specified).

Fig. 3. An overview of the AUI metamodel

There are two types of interactor composition: grouping or relation, the latter has
at least two elements (interactor or interactor compositions) that are in relation to each
other. An interactor can be either an interaction object or an only_output object. The
first one can assume one of the following types: selection, edit, control, interactive
description, depending on the type of activity the user is supposed to carry out
through such objects. An only_output interactor can be object, description, feedback,
alarm, text, depending on the supposed information that the application provides to
the user through this interactor. The selection object is refined into single_choice and
multiple_choice depending on the number of selections the user can perform. The
further refinement of each of these objects can be done only by specifying some plat-
form dependent characteristics, therefore it is specified at the concrete level (see next
section for some examples). All the interaction objects have associated events in order
to manage the possibility for the user interface to model how to react after the occur-
rence of some events in their UI. The events differ depending on the type of object
they are associated with.

4.3 MARIA – Concrete Level

The concrete description is aimed at providing a platform-dependent but implementa-
tion language-independent description of the user interface. It assumes that there are
certain available interaction resources that characterise the set of devices belonging to
the considered platform. Moreover, it provides an intermediate description between
the abstract description and that supported by the available implementation languages

900 F. Paternò, C. Santoro, and L.D. Spano

for that platform. Thus, for example, if at the abstract level there is a single selection
object at the concrete level, this can be refined into a radio-button or a drop-down
menu or a list (in case of a graphical platform) but it can also be refined into a vocal
selection or gesture-based selection if different platforms are addressed.

In order to enhance the readability of the language and also for consistency reasons
(cross-references between different models enabling more consistency because they
avoid to replicate the same data in two different places), we decided to furnish the
concrete user interface only with the details of the concrete elements, leaving the
specification of the higher hierarchy in the abstract meta-model. At this level differ-
ences associated with the specific characteristics of the platform will be modelled. For
instance, when focusing on a iPhone platform the concrete user interface language has
to express the fact that interaction is carried out through the use of not only a simple
touch-based interface (which is also to some extent available on PDA), but it also has
to handle multi-touch events. Therefore, on this platform, there is the need of intro-
ducing and modelling a different group of events, the so-called touch property events,
which includes touch start (activated when a finger tap the screen surface), touch
move (triggered when a finger moves on the surface), touch end (activated when a
finger leaves the screen surface). In addition, the zoom gesture event (which is done
through a multi-touch interaction) notifies that a zoom command has been recognized
by the system and contains the scale factor that should be considered for zooming.
Another peculiar characteristics of the iPhone is the existence of an accelerometer. In
this case, the concrete user interface language has to support the specification of the
current screen orientation and also to support the associated events.

More generally, the flexibility introduced at the abstract level is reflected also at
the concrete level. Thus, for example, there is no more a rigid separation between
interface elements for activating functions and elements supporting a selection (as it
happened in traditional model-based approaches) but it is possible to model a radio-
button, which is associated with different functionalities depending on the selected
element.

5 Example Application

As an example application of the features of MARIA XML we consider a home appli-
cation in which users can control some interactive devices and appliances. In this home
application we focus on a specific subset of functionality for demonstrating some of the
MARIA XML features. In particular, we focus on i) the possibility to provide sugges-
tions for searching a device through a text editing interactor (for example, the user en-
ters a part of the device name and some suggestions for the completion appear) and ii)
displaying information on a set of appliances in a part of the presentation while the user
can dynamically add or remove elements from the appliance set.

Regarding the first aspect, let us consider in the home scenario a web service
which, given a string, returns a list of suggestions for selecting an appliance that
matches the input string. For modelling such a situation we need at the abstract level:
an edit interactor for receiving the input string from the user; when the user enters the
text, we need to express that the web service has to be invoked and a selection interac-
tor must be populated with the web service output.

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 901

To explain how it is possible to model such interaction at the abstract level, we use
the following MARIA XML features:

• Abstract events on interactors (to detect the change in the input string);
• Syntax for expressing external functions calls;
• Binding between the UI model and the data model within the UI definition.

First of all we need to “import” the Web service into the UI definition. This is pos-
sible using the external functions introduced before. An external function is an ab-
stract representation of services and functionalities that are not defined in the UI (such
as Web services or database access). When an abstract function is declared, it can be
called by the abstract scripts to express how the interface should use the output of
these functions. The following XML excerpt shows a possible abstract representation
of the suggestion service:

<aui:external_functions>
 . . .
 <aui:function name="getSuggestions" type="web_service">
 <aui:output type="UserSession/suggestions" />
 <aui:input type="xs:string" name="inputString"/>
 </aui:function>
 . . .
<aui:external_functions>

The external_functions tag contains all the external function declarations. A single
function is declared specifying: a name (e.g. getSuggestions); its type (such as Web
service, database, code etc); its output type (in this case we presume a data type Us-
erSession in the data model that contains an element suggestions, which is the sugges-
tion list and corresponds to the external function output type); its parameters (in this
case the input string).

Now we can describe that when the input string changes, the external function
must be called and the suggestions must be displayed. To this end, we use the value
changed event of the text_edit interactor. When this event occurs, the function is
called using an abstract script, and the hidden property of the choice interactor (a
single choice in this case) is changed to false. The following excerpt is the definition
of the text edit interactor:

<aui:text_edit id="device_search">
 <aui:events>
 <aui:value_change>
 <aui:handler>
 <aui:script>
 <![CDATA[
 data:UserSession/suggestions

=external:getSuggestions(ui:device_search.value);]]>
[…]
 <aui:handler>
 <aui:change_property interactor_id="device_suggestions"
 property_name="hidden" property_value="false" />
 </aui:handler>
[…] </aui:text_edit>

902 F. Paternò, C. Santoro, and L.D. Spano

The previous definition states that when the input text, which is specified by using
an abstract object of type text_edit with id=”device_search”, changes (this is specified
by the fact that the event type is “value_change”), the field suggestions of the Us-
erSession data type (see “UserSession/suggestions” field in the previous excerpt) is
populated with the output of the external function getSuggestions, invoked by passing
the input text value, see “external:getSuggestions(ui:device_search.value);” in the
excerpt above. After the function call, the device_suggestion interactor (a single
choice interactor) has to be shown. This interactor is bound to the same data field
populated by the external function invocation so, when this field changes, the interac-
tor is also updated with the new options. The following excerpt contains the sin-
gle_choice interactor definition:

<aui:single_choice id="device_suggestions"

data_reference="UserSession/suggestions" >
 <aui:events>
 <aui:selection_change>
 <aui:handler>
 <aui:change_property interactor_id="device_select_activator"
 property_name="enabled"
 data_value="true" />
 <aui:change_property interactor_id="device_monitor_activator"
 property_name="enabled"
 data_value="true" />
 <aui:change_property interactor_id="device_search"
 property_name="value"
 data_value="ui:device_suggestions.selected" />
 <aui:change_property interactor_id="device_suggestions"
 property_name="hidden" property_value="true" />
[…]
 </aui:single_choice>

Fig. 4. The interaction modelled in the example

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 903

The interactor is bound to the data using the data_reference attribute. When the se-
lected element changes, it enables two activators (activator is the interactor type that
models interface elements dedicated to activate functionalities): one for getting the
control panel for the device and the other for monitoring it (see Select and Monitor
buttons in Figure 4). Then it completes the input text of the text_edit presented before
(setting the value attribute with its selected value) and hides itself. Note that the speci-
fication is completely abstract, it is not specified how the service is called, how the
interactors are hidden or shown and what the UI platform is.

We can refine the interface definition to various concrete platforms and final imple-
mentations. The interface can be adapted to the target platform capabilities (screen size,
processor speed etc) and interaction techniques (mouse, multitouch, vocal commands

Fig. 5. Example implementation for desktop platform

Fig. 6. Example implementation for the iPhone platform

904 F. Paternò, C. Santoro, and L.D. Spano

etc). Figures 5 and 6 show two possible final implementations (obtained passing
through a model-to-code generation step) of the same abstract user interface for two
devices (desktop and iPhone).

However, the differences between a desktop computer and the iPhone can require a
different number of presentations for the same content and also different locations of the
groups in the screen (in figure 6 the controls for the selected device and the list of moni-
tored status in the iPhone is in a different page and the groups have a flow layout).
However, the suggestion mechanism is the same in both devices (although it can be
implemented in different ways) and this aspect is reflected in the abstract description.

6 Conclusions, Future Work and Acknowledgments

In this paper we present our method for developing interactive applications based on
the access to Web services. The described approach exploits a multi-layer framework
of languages for describing UIs through a mix of bottom-up and top-down phases.
This allows designers to develop service front-ends for Web services, which were
originally developed without exactly knowing the interactive applications that will
access them. We have also discussed how the MARIA language is able to support
specification of flexible interactions exploiting such Web services and scripts, for
then generate implementations for different types of devices. This type of interactions
are becoming widely used in Web 2.0 and Rich Internet Applications.

We are developing an authoring environment to support the various phases of the
method presented, including the association of system tasks with Web services and
their operations, and ease the use of MARIA and the associated transformations. We
also plan to integrate in MARIA some concepts of the WAI-ARIA (Accessible Rich
Internet Applications, http://www.w3.org/WAI/intro/aria) in order to support genera-
tion of user interfaces accessible to disabled people, such as blind people interacting
through screen readers.

We gratefully acknowledge support from the EU ServFace Project (http://www.
servface.eu).

References

1. Abrams, M., Phanouriou, C., Batongbacal, A., Williams, S., Shuster, J.: UIML: An Appli-
ance-Independent XML User Interface Language. In: Proceedings of the 8th WWW confer-
ence (1999)

2. Chesta, C., Paterno, F., Santoro, C.: Methods and Tools for Designing and Developing Us-
able Multi-Platform Interactive Applications. Psychnology 2(1), 123–139 (2004)

3. Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lopez-Jaquero, V.: USIXML:
A Language Supporting Multi-path Development of User Interfaces. In: EHCI/DS-VIS
2004, pp. 200–220 (2004)

4. Mori, G., Paternò, F., Spano, L.D.: Exploiting web services and model-based user interfaces
for multi-device access to home applications. In: Graham, T.C.N., Palanque, P. (eds.) DSV-
IS 2008. LNCS, vol. 5136, pp. 181–193. Springer, Heidelberg (2008)

5. Paternò, F., Santoro, C., Mantyjarvi, J., Mori, G., Sansone, S.: Authoring Pervasive Multi-
Modal User Interfaces. International Journal of Web Engineering and Technology, Inder-
science Publishers 4(2), 235–261 (2008)

 Model-Based Design of Multi-device Interactive Applications Based on Web Services 905

6. Paternò, F.: Model-Based Design and Evaluation of Interactive Applications. Springer, Hei-
delberg (1999)

7. Song, K., Lee, K.-H.: Generating multimodal user interfaces for Web services. Interacting
with Computers 20(4-5), 480–490 (2008)

8. Spillner, J., Braun, I., Schill, A.: Flexible Human Service Interfaces. In: Proceedings of the
9th International Conference on Enterprise Information Systems, pp. 79–85 (2007)

9. Vermeulen, J., Vandriessche, Y., Clerckx, T., Luyten, K., Coninx, K.: Service-interaction
Descriptions: Augmenting Services with User Interface Models. In: Proceedings Engineer-
ing Interactive Systems 2007, Salamanca. Springer, Heidelberg (2007)

	Model-Based Design of Multi-device Interactive Applications Based on Web Services
	Introduction
	Related Work
	The Approach
	MARIA
	Main Features
	MARIA – Abstract Level
	MARIA – Concrete Level

	Example Application
	Conclusions, Future Work and Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

