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C.3.1  Introduction 

Spatial econometric theory and practice have been dominated by a focus on object 
data. In economic analysis these objects correspond to economic agents with dis-
crete locations in geographic space, such as addresses, census tracts and regions. 
In contrast spatial interaction or flow data pertain to measurements each of which 
is associated with a link or pair of origin-destination locations that represent points 
or areas in space. While there is a voluminous literature on the specification and 
estimation of models for cross-sectional object data (see, Chapter C.1 in this vol-
ume), less attention has been paid to sample data consisting of origin-destination 
pairs that form the basic units of analysis in spatial interaction models. 

Spatial interaction models represent a class of methods which are used for 
modeling origin-destination flow data. The interest in such models is motivated by 
the need to understand and explain flows of tangible entities such as persons and 
commodities or intangible ones such as capital, information or knowledge across 
geographic space. By adopting a spatial interaction modeling perspective attention 
is focused on interaction patterns at the aggregate rather than the individual level.  

The basis of modeling is the use of a discrete zone system. Discrete zone sys-
tems can obviously take many different forms, both in relation to the level of reso-
lution and the shape of zones. The subdivision of the geography into zones intro-
duces spatial aggregation problems. Such problems come from the fact that 
substantially different conclusions can be obtained from the same dataset and the 
same spatial interaction model, but at another spatial aggregation level (see, for 
example, Batty and Sidkar 1982). Spatial aggregation problems involve both a 
scale issue and a zoning issue. The tidiest, and often most convenient system to 
use would be a square grid. But quite often one is forced to use administratively 
defined regions, such as NUTS-2 regions in Europe, counties in a country or the 
wards of a city.  
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The subject of spatial interaction modeling has a long and distinguished history 
that has led to the emergence of three major schools of analytical thought: the 
macroscopic school based upon a statistical equilibrium approach (see Wilson 
1967; Roy 2004), the microscopic school based on a choice-theoretic approach 
(see Smith 1975; Sen and Smith 1995), and the geocomputational school based 
upon the neural network approach that processes spatial interaction models as uni-
versal function approximators (see Fischer 2002; Fischer and Reismann 2002). In 
these schools there is a deep-seated view that spatial interaction implies movement 
of entities, and that this has little to do with spatial association (Getis 1991). 

Spatial interaction models typically rely on three types of factors to explain 
mean interaction frequencies between origins and destinations of interaction: (i) 
origin-specific attributes that characterize the ability of the origins to produce or 
generate flows, (ii) destination-specific attributes that represent the attractiveness 
of destinations, and (iii) origin-destination variables that characterize the way spa-
tial separation of origins from destinations constrains or impedes the interaction. 
They implicitly assume that using spatial separation variables such as distance will 
eradicate the spatial dependence among the sample of spatial flows.  

However, research dating back to the 1970s, noted that spatial dependence or 
autocorrelation might be intermingled in spatial interaction model specifications. 
This idea was first put forth in a theoretical context by Curry (1972), with some 
subsequent debate in Curry et al. (1975). Griffith and Jones (1980) documented 
the presence of spatial dependence in conventional spatial interaction models. De-
spite this, most practitioners assume independence among observations and few 
have used spatial lags of the dependent variable or disturbances in spatial interac-
tion models. Exceptions are Bolduc et al. (1992), and Fischer and Griffith (2008) 
who rely on spatial lags of the disturbances, and LeSage and Pace (2008) who use 
lags of the dependent variable. 

The focus of this chapter is on problems that plague empirical implementation 
of conventional regression-based spatial interaction models and econometric ex-
tensions that have recently appeared in the literature. These new models replace 
the conventional assumption of independence between origin-destination flows 
with formal approaches that allow for spatial dependence in flow magnitudes. We 
follow LeSage and Pace (2008) and extend the generic version of the spatial inter-
action model to include spatial lags of the dependent variable. 

C.3.2   The analytical framework  

Spatial interaction data represent phenomena that may be described in their most 
general terms as interactions between populations of actors and opportunities dis-
tributed over some relevant geographic space. Such interactions may involve 
movements of individuals from one location to another, such as daily traffic flows 
in which case the relevant actors are individual travellers (commuters, shoppers, 
etc.) and the relevant opportunities are their destinations (jobs, stores, etc.). Simi-
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larly, one may consider annual migration flows, where the relevant actors are mi-
grants (individuals, family units, firms, etc.) and the relevant opportunities are 
their possible new locations. Interactions may also involve flows of information 
such as telephone calls or electronic messages. Here the callers or message send-
ers may be the relevant actors, and the possible receivers of calls or electronic 
messages may be considered as the relevant opportunities (Sen and Smith 1995). 
With this range of examples in mind, the purpose of this section is to outline a 
framework in which all such spatial interaction behaviour can be studied. 

The classical spatial interaction model 

Suppose we have a spatial system consisting of n discrete zone (locations, regions) 
where i (i = 1, …, n) denotes the origin and j (j = 1, …, n) the destination of inter-
action. Let m(i, j) denote observations on random variables, say M(i, j), each of 
which corresponds to a movement of tangible or intangible entities from i to j. The 
M(i, j) are assumed to be independent random variables. They are sampled from a 
specified probability distribution that is dependent upon some mean, say μ (i, j). 
Let us assume that no a priori information is given about the origin and destination 
totals of the observed flow matrix. Then the mean interaction frequencies between 
origin i and destination j may be modeled by 

 

( , ) ( ) ( ) ( , )i j C A i B j S i jμ =  (C.3.1) 

 
where ( , ) [ ( , )]i j E M i jμ =  is the expected flow, C denotes a constant term, the 
quantities A(i) and B(j) are called origin and destination factors or variables re-
spectively, and S(.) is some unspecified distance deterrence function (see Fischer 
and Griffith 2008). Note if the outflow totals for each origin zone and/or the in-
flow totals into each destination zone are known a priori, then model (C.3.1) 
would need to be modified to incorporate the explicitly required constraints to 
match exact totals. Imposing origin and/or destination constraints leads to so-
called production-constrained, attraction-constrained and production-attraction-
constrained spatial interaction models that may be convincingly justified using en-
tropy maximizing methods (see Fotheringham and O’Kelly 1989; Bailey and Ga-
trell 1995 for a discussion). 

Equation (C.3.1) is a very general version of the classical (unconstrained) spa-
tial interaction model. The exact functional form of the three terms A(.), B(.) and 
S(.) on the right hand side of Eq. (C.3.1) is subject to varying degrees of conjec-
ture. There is wide agreement that the origin and destination factors are generally 
best given by power functions 
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( ) ( )iA i A β=  (C.3.2a) 

( ) ( )jB j B γ=  (C.3.2b) 

 
where iA  represents some appropriate variable measuring the propulsiveness of 
origin i, and jB  some appropriate variable measuring the attractiveness of destina-
tion j in a specific spatial interaction context. The product ( ) ( )A i B j  can be inter-
preted simply as the number of distinct (i, j)-interactions that are possible. Thus, 
for origin-destination pairs (i, j) with the same level of separation, it follows from 
Eq. (C.3.1) that mean interaction levels are proportional to the number of possible 
interactions between such (i, j)-pairs. The exponents, β and ,γ  indicate the origin 
and destination effects respectively, and are treated as statistical parameters to be 
estimated. 

If more than one origin and one destination variable are relevant in a specific 
context the above specification may be extended to 

 

q
iqQq

AiA β)()(
∈
Π=  (C.3.3a) 

r
jrRr

BjB γ)()(
∈
Π=  (C.3.3b) 

 
where ( )iqA q Q∈  and ( )jrB r R∈  represent sets of relevant (positive) origin-
specific and destination-specific variables, respectively. The exponents 
( : )q q Qβ ∈ and ( : )r r Rγ ∈  are parameters to be estimated. See Fotheringham and 
O’Kelly (1989) for a range of explicit variable specifications. 

The distance deterrence function ( , )S i j  constitutes the very core of spatial in-
teraction models. Hence, a number of alternative specifications have been pro-
posed in the literature (for a discussion see Sen and Smith 1995). One prominent 
example is the following power function specification given by 

 

S (i, j) = [D (i, j)] θ (C.3.4) 

 
for any positive scalar distance measure, D(i, j), and negative distance sensitivity 
parameter θ  that has to be estimated. Another popular specification is the expo-
nential function ( , ) exp[ ( , )]= −S i j D i jθ , where θ  has to be an univariate pa-
rameter with specific value depending on the choice of units for distance (see Sen 
and Smith 1995). 
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The deterrence function reflects the way in which spatial separation or distance 
constrains or impedes movement across space. In general we will refer to this as 
distance between an origin i and a destination j, and denote it as D(i, j). At rela-
tively large scales of geographical inquiry this might be simply the great circle 
distance separating an origin from a destination zone measured in terms of the dis-
tance between their respective centroids. In other cases, it might be transportation 
or travel time, cost of transportation, perceived travel time or any other sensible 
measure such as political distance, language distance or cultural distance meas-
ured in terms of nominal or categorical attributes. To allow for the possibility of 
multiple measures of spatial separation, the power function specification in Eq. 
(C.3.4) can be extended to the following class of multivariate power deterrence 
functions 

 

kjiDjiS k

Kk

θ)],([),(
∈
Π=  (C.3.5) 

 
with corresponding distance sensitivity vector ( : ).k k Kθ θ= ∈  

From the positivity of the functions A(.), B(.) and S(.), it follows that the spa-
tial interaction model (C.3.1) with the specifications (C.3.3) and (C.3.4) can be 
expressed equivalently as a log-additive model of the form 

 

( , ) ( ) ( ) ( , )q q r r
q Q r R

y i j c a i b j d i jβ γ θ
∈ ∈

= + + +∑ ∑  (C.3.6) 

 
where ( , ) log ( , ),y i j i jμ= log ,c C= ( ) log ,q iqa i A= ( ) log ,r jrb j B=  and ( , )d i j =  
log ( , ).D i j  In the sequel we will illustrate how these 2 ( )n N=  equations can be 
written more compactly using vector and matrix notation. 

The spatial interaction model in matrix notation 

Let Y denote an n-by-n square matrix of origin-destination flows from each of the 
n origin zones to each of the n destination zones as shown in Eq. (C.3.7) where the 
n columns represent different origins and the n rows different destinations. The 
elements on the main diagonal of the matrix represent intrazonal flows, and we 
use 2N n=  for notational simplicity. 
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(C.3.7) 

 

LeSage and Pace’s (2008) introduction of notational conventions allow use of  
origin-centric or destination-centric flow matrices.  An origin-centric ordering of 
the flow matrix Y is shown in Table C.3.1, where the dyad label denotes the over-
all index from 1, …, N for the ordering. The first n elements in the stacked vector 
y reflect flows from origin zone 1i =  to all n destinations and the last n elements 
flows from origin zone i n=  to destinations 1, …, n. This case often arises in 
practice when intraregional flows cannot be measured or are difficult to measure. 

Table C.3.1. Data organization convention  

Dyad 
label 

ID 
origin 

ID 
destination 

Flows Origin  
variables 

Destination  
variables 

Distance 
variable 

1 1 1 (1,1)y  1(1) (1)Qa aK  1(1) (1)Rb bK  (1,1)d  
M  M  M  M  M M  M M  M  
n  1 n  (1, )y n  1(1) (1)Qa aK  1( ) ( )Rb n b nK  (1, )d n  

1n +  2 1 (2,1)y  1(2) (1)Qa aK  1(1) (1)Rb bK  (2,1)d  
M  M  M  M  M M  M M  M  

2n  2 n  (2, )y n  1(2) (2)Qa aK  1( ) ( )Rb n b nK  (2, )d n  
M  M  M  M  M M  M M  M  

1N n− +  n  1 ( ,1)y n  1( ) ( )Qa n a nK  1(1) (1)Rb bK  ( ,1)d n  
M  M  M  M  M M  M M  M  
N  n  n  ( , )y n n  1( ) ( )Qa n a nK  1( ) ( )Rb n b nK  ( , )d n n  

The least-squares regression approach widely used in practice to explain variation 
in origin-destination flows relies on two sets of explanatory variable matrices. One 
is an N-by-Q matrix of Q  origin-specific variables for the n regions that we label   

oX .  This  matrix  reflects  an   n-by-q    matrix  of  explanatory   variables Xq (q = 
1, …, Q) that is repeated n times using o n= ⊗X X ι , where nι  is an n-by-1 vector 
of ones. The matrix Kronecker product ( )⊗  works to multiply the right-hand ar-
gument nι  times each element in the matrix X, which strategically repeats the ex-
planatory variables so they are associated with observations treated as origins. 
Specifically, the matrix  product would repeat the origin characteristics of the first 
zone to form the first n rows, the origin characteristics of the second zone n times 
for the next n rows and so on (see Table C.3.1), resulting in the N-by-Q matrix 

oX . LeSage and Pace (2008) point out that if we organized the matrix of flows Y 
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using a destination-centric ordering based on YT, then the matrix of origin-specific 
explanatory variables would consist of o n= ⊗X Xι .  

The second matrix is an   N-by-R matrix ( 1,..., )d n r r R= ⊗ =X Xι  that repre-
sents the R destination characteristics of the n regions. The Kronecker product 
works to repeat the matrix rX  n times to produce an N-by-R matrix representing 
destination characteristics (see Table C.3.1) that we label dX .  

In addition to explanatory variables consisting of origin and destination char-
acteristics, a vector of distances between each origin-destination dyad is included 
in the regression model. This vector is formed using the n-by-n distance matrix D 
containing distances between each origin and destination zone. The N-by-1 vector 
of distances is formed using vec( )=d D , where vec is an operator that converts a 
matrix to a vector by stacking the columns of the matrix,  as shown in Table C.3.1. 

This results in a regression model of the type shown in Eq. (C.3.8) that repre-
sents the log-additive power deterrence function spatial interaction model in ma-
trix notation 

 

n o dα θ= + + + +y X X dι β γ ε  (C.3.8) 

 
where 

 
y  N-by-1 vector of origin-destination flows, 

oX  N-by-Q matrix of Q origin-specific variables that characterize the ability of 
the origin zones to produce flows, 

β  the associated Q-by-1 parameter vector that reflects the origin effects, 

dX  N-by-R matrix of R destination-specific variables that represent the attrac-
tiveness of the destination zones, 

γ  the associated R-by-1 parameter vector that reflects the destination effects, 
d  N-by-1 vector of distances between origin and destination zones, 
θ  scalar distance sensitivity parameter that comes from the power deterrence 

function and reflects the distance effects, 

nι  N-by-1 vector of ones, 
α  constant term parameter on ,nι  
ε  N-by-1 vector of disturbances with ε ~ N (0, σ 2 IN).  
 
This spatial interaction model is based on the independence assumption for the 
case of a square matrix where each origin zone is also a destination zone and 
where no a priori information is given on the row and/or column totals of the in-
teraction data matrix. In the sequel we will refer to this model as the independence 
(log-normal) model. 
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C.3.3  Problems that plague empirical use of 
conventional spatial interaction models 

There are several problems that arise in applied practice when estimating the con-
ventional spatial interaction model given by Eq. (C.3.8). We enumerate each of 
these problems in the following section and discuss solutions that have been pro-
posed in the literature. These solutions often rely on elaborations of the basic 
model specification given in Eq. (C.3.8).  

Efficient computation 

One problem that can arise in cases where the sample of regions n is large in-
volves computational memory. For the case of the U.S. counties, for example, we 
have 3 000n > ,  leading to N-by-Q  and N-by-R  matrices for the explanatory vari-
ables involving 2 9 000 000.= > , ,N n  LeSage and Pace (2008) propose a solution 
for the case where Q R k= =  and we rely on the same n-by-k  explanatory vari-
ables matrix X  for both origin and destination characteristics. They point out that 
repeating the same sample of n-by-k explanatory variable information is not nec-
essary if we take a moment matrix approach to the estimation problem.  

If we let ( ),N d o=Z X X dι  we can form the moment matrix ZTZ shown 
in Eq. (C.3.9), with the symbol k0  denoting a 1-by-k vector of zeros, and tr  rep-
resenting the trace operator 

 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

)( 2TT

TTTT

TTTT
T

DXDιXDι

ιDXXX

ιDXXX
ZZ

tr

n

n

N

nn

nkkk

nkkk

kk

0

000

000

000

 
(C.3.9) 

 
where we assume that the matrix X and vector d are in deviation from means form. 
This leads to many of the entries in Eq. (C.3.9) taking values of zero.  

For the case of the ZTy required to produce least-squares estimates for the pa-
rameters, δ = (ZT Z)–1ZT y, we have 
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Kronecker products prove extremely useful in working with origin-destination 
flows, as we will see. However, there are limitations associated with this approach 
that were not fully elaborated by LeSage and Pace (2008). One limitation is that 
the system of flows is a closed system with the same number of origins (n) as des-
tinations (n). This will be required when we discuss modeling spatial dependence 
by constructing spatial lags of the dependent variable or disturbance terms. For 
example, if we were modeling shopping trips from various residential locations to 
a single store, this limitation would come into play.  

Another limitation pertains to moment-based expressions in Eqs. (C.3.9) and 
(C.3.10) for working with large problems. These require that the same matrix X  
is used to form both the origin and destination characteristics matrices so that 

d n= ⊗X ι X  and o n= ⊗X X ι . This is equivalent to imposing the restriction that 
Q R=  in Table C.3.1. The moment-based expressions in Eqs. (C.3.9) to (C.3.10) 
also assume the matrix X  is in deviation from means form, but LeSage and Pace 
(2009a) provide moment expressions that relax this requirement.  

If these limitations are consistent with the problem at hand, the moment-based 
approach to estimation of the model parameters saves a great deal of computer 
memory. This is accomplished by working with n-by-n matrices rather than n2-by-
(2k + 2), where we have k explanatory variables for regions treated as origins, k 
for the destination regions in addition to the intercept term and distance vector.  

Spatial dependence in origin-destination flows 

As already indicated, numerous applied work has pointed to the presence of spa-
tial dependence in the least-squares disturbances from models involving origin-
destination data samples (Porojan 2001; Lee and Pace 2005; Fischer and Griffith 
2008).  

One way to incorporate spatial dependence into a log-normal spatial interac-
tion model of the form (C.3.8) is to specify a spatial process that governs the spa-
tial interaction variable y. This approach leads to a family of models depending on 
restrictions imposed on the spatial origin-destination filter specification set forth in 
LeSage and Pace (2009a). Specifically, this type of model specification takes the 
form 

 

= + + + + + + +o o d d w w n o dρ ρ ρ α θy W y W y W y ι X β X γ d ε  (C.3.11a) 

ε ~ N (0, σ ² IN) (C.3.11b) 

 
where the spatial weight matrix o n= ⊗W W I  is used to form a spatial lag vector 

oW y  that captures origin-based dependence arising from flows (observation dy-
ads) that neighbor the origins. The n-by-n spatial weight matrix W is a non-
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negative sparse matrix with diagonal elements set to zero to prevent an observa-
tion from being defined as a neighbor to itself. Non-zero values for element pairs 
( i j, )  denote  that zone i  is a neighbor to zone j .  Neighbors could be defined 
using contiguity or other measures of spatial proximity such as cardinal distance 
(for example, kilometers) and ordinal distance (for example, the five closest 
neighbors). The spatial weight matrix is typically standardized to have row sums 
of unity, and this is required to produce linear combinations of flows from 
neighboring regions in the model given by Eq. (C.3.11).  

Given an origin-centric organization of the sample data, the spatial weight 
matrix o n= ⊗W W I  will form an N-by-1 vector containing a linear combination 
of flows from regions neighboring each observation (dyad) treated as an origin. In 
the case where neighbors are weighted equally, we would have an average of the 
neighboring region flows. Similarly, a spatial lag of the dependent variable formed 
using the weight matrix d n= ⊗W I W  to produce an N-by-1 vector dW y  captures 
destination-based dependence using an average (or linear combination) of flows 
associated with observations (dyads) that neighbor the destination regions. Finally, 
a spatial weight matrix, w = ⊗W W W  can be used to form a spatial lag vector that 
captures origin-to-destination based dependence using a linear combination of 
neighbors to both the origin and destination regions.  

This model specification can also be written as 

 

( )( )− − = +n o o n d dρ ρI W I W y Z δ ε  (C.3.12a) 

( )n o o d d o d o dρ ρ ρ ρ− − + = +I W W W W y Z δ ε  (C.3.12b) 

{ }[ ] [ ] [ ]n o n d n o dρ ρ ρ ρ− ⊗ − ⊗ + ⊗ = +I W I I W W W Z δ ε  (C.3.12c) 

 
where the matrix cross-product term, o d o d w wρ ρ ρ≡W W W  motivates the term re-
flecting origin-to-destination based dependence. LeSage and Pace (2008) note that 
this  specification implies  that w o dρ ρ ρ= − ,  but these restrictions  need to  be 
applied during  estimation. There is a need to impose restrictions on the values of 
the scalar dependence parameters d o wρ ρ ρ, ,  to ensure stationarity in the case 
where wρ  is free of the restriction. LeSage and Pace (2008) discuss maximum 
likelihood estimation of this specification, and LeSage and Pace (2009a) set forth 
a Bayesian heteroscedastic variant of the model along with Markov Chain Monte 
Carlo (MCMC) estimation methods.  

This variant allows for non-constant variance in the disturbances by introduc-
ing a set of N  scalar variance parameters. Specifically, ( ),N0ε Σ~ N , where the    
N-by-N  diagonal matrix Σ  contains variance scalar parameters to be estimated 
on the diagonal and zeros elsewhere.  
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A virtue of the model in Eq. (C.3.11) is that changes in the value of an explanatory 
variable associated with a single region will potentially impact flows to all other 
regions. For example, a ceteris paribus change in observation i of the explanatory 
variables matrix X for variable Xr implies that region i will be viewed differently 
as both an origin and destination. Given the structure of the matrices o d,X X  
changes in observation i  imply changes in 2n observations from the explanatory 
variables matrices. This is true for the independence model as well as the spatial 
model. In the case of the independence model such a ceteris paribus change will 
lead to changes in the flows associated with the same 2n  observations and no oth-
ers. Intuitively, if, for example, the labor market opportunities in a single region i 
decrease, this region will look less attractive as a destination when considered by 
workers residing in the own and other 1n −  regions in a migration application 
context, for example. This should lead to a decrease in migration pull from within 
and outside region i, the impact of changing the n-elements in dX  and associated 
parameter. Region i will exert more push leading to an increase in out-migration to 
the other 1n −  regions (as well as a decrease in within-region migration). This 
impact is reflected by the n-elements in oX  and associated parameter. In the inde-
pendence model, changes in the explanatory variables associated with the 2n  ob-
servations can only impact changes in flows in the same 2n  observations (by 
definition).  

Turning to the spatial model that includes spatial lags of the dependent vari-
able, these 2n  changes will lead to changes in flows involving more than the 2n  
observations whose explanatory variables have changed. The additional impacts 
arising from changes in a single region’s characteristics represent spatial spillover 
effects. Intuitively, a decrease in labor market opportunities for region i will indi-
rectly impact the attractiveness of a region that neighbors i, say region j. Region 
j  will become less attractive as a destination for migrants given the decrease in 

labor market opportunities in neighboring region i. Residents of region j who work 
in region i and suffer from the labor market downturn in this neighboring region 
might also find out-migration more attractive. In-migrants to region j may con-
sider labor market opportunities not only in region j but also in neighboring re-
gions such as i. The partial derivative impacts on observations iy  arising from 
changes in the explanatory variables associated with observations j are zero (by 
definition) in the independence model, but not in the spatial model containing lags 
of the dependent variable (see LeSage and Pace 2009a for a discussion of this). 
Correct calculation and interpretation of the partial derivative impacts associated 
with the spatial lag model allow one to quantify the spatial spillover impacts. 

LeSage and Polasek (2008) provide a minor modification to the model that 
can be used in the case of commodity flows. In an application involving truck and 
train commodity flows between 40 Austrian regions, they provide a procedure that 
adjusts the spatial weight matrix to account for the presence or absence of interre-
gional transport connectivity. Since the mountainous terrain of Austria precludes 
the presence of major rail and highway infrastructure in all regions, they use this 
priori non-sample knowledge regarding the transportation network structure con-
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necting regions to produce a modified spatial weight structure. Bayesian model 
comparison methods indicate that these adjustments to the spatial weight matrix 
result in an improved model.  

Another approach to dealing with spatial dependence in origin-destination 
flows is to specify a spatial process for the disturbance terms, structured to follow 
a (first-order) spatial autoregressive process (see Fischer and Griffith 2008). This 
specification could be estimated  using  maximum  likelihood  methods. In this 
framework, the spatial dependence resides in the disturbance process ε , as in the 
case of serial correlation in time series regression models. Griffith (2007) also 
takes this specification approach that focuses on dependence in the disturbances 
but relies on a spatial filtering estimation methodology.  

Specifically, the most general variant of this type of model specification takes 
the form 

 

n o dα θ= + + + +y ι X  β X γ d u  (C.3.13a) 

= + + +o o d d w wρ ρ ρu W u W u W u ε  (C.3.13b) 

2(0 ), Nσ Iε ~ N  (C.3.13c) 

 
where the definitions for the spatial lags involving the disturbance terms in         
Eq. (C.3.13), W0 u, Wd u and Ww u, are analogous to those for the spatial lags of 
the dependent variable in Eq. (C.3.12).  

Simpler models can be constructed by imposing restrictions on the general 
specification in Eq. (C.3.13). For example, we could specify the disturbances us-
ing  

 

εuWu += ~ρ  (C.3.14a) 

2(0 ), Nσ Iε ~ N  (C.3.14b) 

 
which merges origin- and destination-based dependence to produce a single (row-
normalized) spatial weight matrix W~ consisting of the sum of oW  and dW  which 
is row-normalized to produce a single vector uW~  reflecting a spatial lag of the 
disturbances. This specification also restricts the origin-to-destination based de-
pendence in the disturbances to be zero, since wρ  is implicitly set to zero.  
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The virtue of a simpler model such as this is that conventional software for esti-
mating spatial error models could be used to produce an estimate for the parameter 
ρ  along with the remaining model parameters α, β, γ and θ. It may or may not be 
apparent that estimating the more general models that involve more than a single 
spatial dependence parameter requires customized algorithms of the type set forth 
in LeSage and Pace (2008). These are needed to maximize a log-likelihood that is 
concentrated with respect to the parameters α, β, γ, θ and 2σ  resulting in an opti-
mization problem involving the three dependence parameters d o wρ ρ ρ, , . Of note 
is the fact that an extended version of the moment-based expressions involving the 
matrix Z from Eq. (C.3.9) and Eq. (C.3.10) can be used for both maximum likeli-
hood and Bayesian MCMC estimation (see LeSage and Pace 2009a for details).  

One point to note regarding modeling spatial dependence in the model distur-
bances is that the coefficient estimates α, β, γ, θ  will be asymptotically equal to 
those from least-squares estimation. However, there may be an efficiency gain that 
arises from modeling dependence in the disturbances. Another point is that the 
partial derivative impacts associated with this model are the same as those from 
the independence model. That is, no spatial spillover impacts arise in this type of 
model so that ceteris paribus changes in region i ’s explanatory variable only re-
sult in changes in the 2n  regions associated with the 2n  dyad relationships in-
volving region i .  

A third approach to modeling spatial dependence is motivated by the use of 
fixed effects parameters for origin and destination regions in non-spatial versions 
of the gravity model in the empirical trade literature (Feenstra 2002). Assuming 
the origin-centric data organization set forth in Table C.3.1, a fixed effects model 
would take the form in Eq. (C.3.15). The N-by-n  matrix oΔ  contains elements 
that equal  one if  region I  is the origin  region and  zero otherwise, and oθ  is an 
n-by-1 vector of associated fixed effects estimates for regions treated as origins. 
Similarly, the N-by-n  matrix dΔ  contains elements that equal one if region j  is 
the destination region and zero otherwise leading to an n-by-1  vector dθ  of fixed 
effects estimates for regions treated as destinations 

 

y = α + ßoXo + ßdXd + γ d + Δoθo + Δdθd + ε. (C.3.15)

 
LeSage and Llano (2007) extend this model to the case of spatially structured ran-
dom effects. This involves introduction of latent effects parameters that are struc-
tured to follow a spatial autoregressive process. This is accomplished using a 
Bayesian prior that the origin and destination effects parameters are similar for 
neighboring regions.  

In the context of commodity flows between Spanish regions, the model takes 
the form  
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= + + +d d o oδy Z Δ θ Δ θ ε  (C.3.16a) 

d d d dρ= +θ W θ u  (C.3.16b) 

0o o oρ= +θ W θ u  (C.3.16c) 

2(0 ),d d nσNu I~  (C.3.16d) 

2(0 ).,o o nσNu I~  (C.3.16e) 

 
Given our origin-centric orientation of the flow matrix (columns as origins and 
rows as destinations), the matrices d n n= ⊗Δ I ι  and o n n= ⊗Δ ι I  produce N-by-n 
matrices. It should be noted that estimates for these two sets of random effects pa-
rameters are identified, since a set of n sample data observations are aggregated 
through the matrices dΔ  and oΔ  to produce each estimate in dθ  and oθ .  

The spatial autoregressive prior structure placed on the destination effects pa-
rameters dθ  (conditional on the parameters dρ  and 2

dσ ) is shown in Eq. (C.3.17) 
and that for the spatially structured origin effects parameters oθ  in Eq. (C.3.18), 
where we use the symbol (.)π  to denote a prior distribution: 
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 (C.3.18) 

( )d n dρ= −B I W  (C.3.19) 

( ).= −o n oρB I W  (C.3.20) 

 
Estimation of the spatially structured effects parameters requires that we estimate 
the dependence parameters d oρ ρ,  and associated variances 2 2

d oσ σ, . LeSage and 
Llano (2007) provide details regarding using of Markov Chain Monte Carlo meth-
ods for estimation of this model.  
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This model does not allow directly for spatial spillover effects. It does, however, 
provide a spatially structured effect adjustment for each origin and destination re-
gion. These act in the same fashion as non-spatial effects parameters producing an 
intercept shift adjustment that would be added to the parameters β  and γ  when 
considering the partial derivative impacts arising from ceteris paribus changes in 
region i’s explanatory variable. Another point about the spatially structured prior 
is that if the scalar spatial dependence parameters ( )o dρ ρ,  are not significantly 
different from zero, the spatial structure of the effects vectors disappears, leaving 
us with normally distributed random effects parameters for the origins and desti-
nations similar to the conventional effects models described in Feenstra (2002).  

Large diagonal flow matrix elements 

Another problem that arises in empirical work is the fact that the diagonal ele-
ments of the flow matrix Y  representing intraregional flows are often quite large 
relative to the off-diagonal elements reflecting interregional flows. Since the ob-
jective of spatial interaction modeling is typically a model that attempts to explain 
variation in interregional rather than intraregional flows, practitioners often view 
intraregional flows as a nuisance, and introduce dummy variables for these obser-
vations (see, for example, Koch et al. 2007). For the case of the independence 
model this approach is fine, but it can have deleterious impacts on models involv-
ing spatial lags of the dependent variable. To see this, consider the case of a sim-
ple model involving  

 

y = ρ W~  y + Z δ + ε (C.3.21a) 

2(0 ), Nσ Iε ~ N  (C.3.21b) 

 
where W~  is a row-normalized version of the sum of the spatial weight matrices 

o d w, ,W W W . The n zero elements associated with the diagonal of the vectorized 
flow matrix =y  vec(Y) in the N-by-1 vector of flows will have the impact of pro-
ducing outliers in the spatial lags when these observations are involved in the li-
near combination used to form  W~ y.  

To avoid this problem, LeSage and Pace (2008) suggest a procedure that em-
beds a separate model for the intraregional flows into the spatial interaction mo-
del. This is accomplished by adjusting the explanatory variables matrices o d,X X  
and the intercept vector nι  to have zero values for the n observations associated 
with the main diagonal elements (intraregional flows) of the flow matrix .Y  We 
use ,% %

o dX X  to denote these adjusted matrices. A new matrix that we label iX  is 
introduced containing the n observations associated with intraregional flows set to 
zero in the matrices o d,X X , and zeros in the other N n−  observations. That is, 
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o o i= −X X X% , and d d i= −X X X% . In addition, a new intercept vector iι  is intro-
duced that contains ones in the n positions so that N N i−ι = ι ι% . The adjusted inde-
pendence model now takes the form 

 

( ) ( )= + + − + − + + +%N i i o i d i iα α ψ θy ι ι X X β X X γ X d ε  (C.3.22a) 

= + + + + + +% %%N i i o d iα α ψ θy ι ι X β X γ X d ε  (C.3.22b) 

 
where a corresponding adjustment can be used for the case of the spatial lag model 
in Eq. (C.3.11)  or the spatial error model in Eq. (C.3.13).  This model uses the 
(orthogonal) intercept term iι  and explanatory variables iX  (and associated Ψ ) to 
capture variation in the vector of flows y across dyads representing intraregional 
flows and the adjusted variables: , , N d oι X X% %%  to model variation in interregional 
flows.  

Of course, it is not necessary to rely on the same set of explanatory variables 
for o d i, ,X X X , but this will simplify computation via the moment matrices for 
models involving large samples n as discussed earlier. LeSage and Pace (2009a) 
provide expressions for the moment matrices that arise for these adjustments to the 
model.  

As an example, consider that variation in intraregional flows might be ex-
plained by variables such as the area of the regions or in the case of a migration 
flow model the population of the regions. We would expect that regions having 
larger population and area should exhibit more intraregional migration. This sub-
set of two explanatory variables could then be used to form the matrix iX , with 
corresponding adjustments to these two variables undertaken for the matrices 

o d,X X  to produce o d,X X% % . Inference regarding the parameter ψ  for these two 
variables would not be of primary interest (since associated with the intraregional 
control variables) whereas the focus of the model is on the parameters β, γ  and θ .  

The advantage of this approach is that non-zero intraregional flows can be in-
cluded in the matrix Y used to form the dependent variable vector y and the spatial 
lags o d w, ,W y W y W y. Variation in the flows associated with the large diagonal 
elements is captured by the embedded model variables iι  and iX  allowing the co-
efficient estimates associated with the adjusted explanatory variables o d,X X% %  to 
more accurately characterize variation in interregional flows.  

As an illustration of the differences that arise from these adjustments to the 
model, we use a sample of 1998 commodity flows between the 48 lower U.S. 
states plus the District of Columbia leading to a sample size of 49n =  and N = 
2,401. The commodity flows were taken from the Federal Highway Administra-
tion Freight Analysis Framework State to State Commodity flow Database. As ex-
planatory variables we use the (logged) area of each state and the 1998 Gross State 
Product (gsp). The model was based on a single spatial weight matrix constructed 
using a row-normalized matrix consisting of d o w+ +W W W , where the n-by-n ma-
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trix W was based on six nearest neighbors. Following convention, the commodity 
flows were transformed using logs as were the explanatory variables representing 
area and gsp.  

Table C.3.2 shows the coefficient estimates labelled β
^

1 for the adjusted model 
along with those from the unadjusted model labeled β

^
0. In the table, we use the 

symbol I_gsp and I_area to denote the variables contained in the matrix iX  in the 
adjusted model expression given by Eq. (C.3.22). A t-test for significant differ-
ences between the coefficients (β

^
0 – β

^
1) common to the two models is presented in 

Table C.3.3. From the table reporting test results for differences in the two sets of 
estimates we see evidence of differences that are significant at the 99 percent level 
in the coefficients on distance and the spatial lag of the dependent variable. There 
is also a difference between the origin area explanatory variable that is significant 
at the 90 percent level. It is also worth noting that twice the difference in the log-
likelihood function values from the two models is 249, which suggests a signifi-
cant difference between the models. This would be an informal indication since 
the two models cannot be viewed as formally nested.  

Table C.3.2. Unadjusted and adjusted model estimates 

Variables Unadjusted model Adjusted model 

 Coefficient 
0

ˆ( )β  t-statistic Coefficient 
1

ˆ( )β  t-statistic   

Constants    

Nι / Nι%  –19.2770  –38.9  –19.9888  –41.1   

iι  –   –     –5.2012  –2.2   
     
Origin variables     
O_gsp / O% _gsp 0.3397  15.7  0.3520  17.0   
O_area / O% _area 0.5679  27.1  0.4961  23.6   
     
Destination variables     
D_gsp / D% _gsp 0.7374  30.7  0.7021  30.8   
D_area / D% _area 0.2806  17.2  0.2608  16.5   
     

I_gsp –   –     0.6169  4.3   

I_area –   –     0.3738  3.5   

Distance –0.5123  –22.2  –0.3101  –13.1   

ρ  0.5219  23.5  0.6429  31.6   
2σ  1.1549   1.0337   

Log-likelihood          –2762.7            –2638.2  

We can also use this model and sample data to illustrate how problems arise when 
setting the intraregional flows to zero values. For this illustration a spatial weight 
matrix based on row-normalized d o+W W  was used, and the unadjusted model 
was estimated for values of the dependent variable representing intraregional 
flows flows set to zero as well as the full set of non-zero flows.  
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Table C.3.3. Test for significant differences between the unadjusted and  
adjusted model estimates 

Variables 0 1
ˆ ˆ( )−β β   t-statistic  t-probability   

Constant 0.7118 0.7264  0.4677   
    
Origin variables    
O_gsp  –0.0123 –0.2905  0.7715   
O_area  0.0718 1.7139  0.0867   
    
Destination variables    
D_gsp  0.0352 0.7529  0.4516   
D_area  0.0198 0.6195  0.5357   

Distance  –0.2022 –4.3319  0.0000   

ρ   –0.1210 –2.8511  0.0044   

The results from this illustration are presented in Table C.3.4 where we see a seri-
ous degradation in the log-likelihood function value for the zero-flows model and 
a dramatic six-fold rise in the noise variance estimate 2.σ  A number of problem-
atical coefficient estimates arise, for example the coefficient on distance is nega-
tive but not significantly different from zero, contrary to the conventional result. 
The magnitude of the spatial dependence parameter ρ  decreased dramatically, 
consistent with our admonition that setting the main diagonal elements of the flow 
matrix to zero will have an adverse impact on the spatial nature of the sample flow 
data. Finally, given the reported t-statistics, we can infer that the coefficient esti-
mates on the origin and destination gsp variables are significantly different in the 
two regressions. 

Table C.3.4. Zero intraregional flows versus non-zero intraregional flows 

Variables Zero diagonal flows Non-zero diagonal flows 

 Coefficient 
0

ˆ( )β   t-statistic Coefficient 
1

ˆ( )β   t-statistic   

Constant 2.1675  2.30  –16.1351  –33.55   
     
Origin variables     
O_gsp 0.3801 7.73 0.2805 13.92  
O_area 0.5573  13.42 0.4552  22.72  
     
Destination variables     

D_gsp / D% _gsp 0.8504 15.35  0.5969 25.77 

D_area / D% _area 0.1801 5.01  0.2341  15.31 

     
Distance –0.0230 –0.75 –0.4113 –19.15 

ρ  0.2979 6.80 0.6449 33.71 
2σ  5.8627  0.9911  

Log-likelihood            –4,707.2           –2,612.1  
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The zero flows problem 

Another problem that arises involves the presence of a large number of zero 
flows1. This problem arises when analyzing sample data collected using a fine spa-
tial scale. As an example, population migration flows between the largest 50 U.S. 
metropolitan areas over the period 1995-2000 resulted in only 3.76 percent of the 
OD-pairs contained zero flows, whereas 9.38 percent of the OD-pairs were zero 
for the largest 100 metropolitan areas and for the largest 300 metropolitan areas, 
32.89 percent of the OD pairs exhibited zero flows.  

The presence of a large number of zero flows invalidates use of least-squares 
regression as a method for estimating the independence model and maximum like-
lihood methods for spatial variants of the interaction model. This is because zero 
values for a large proportion of the dependent variable invalidate the normality as-
sumption required for inference in the regression model and validity of the maxi-
mum likelihood method.  Despite this, a number of applications can be found 
where the dependent variable is modified using log (1 + y) to accommodate the 
log transformation. This, however, ignores the mixed discrete/continuous nature of 
the flow distribution. Intuitively, this type of practice should lead to downward 
bias in the coefficient estimates for the model.  

If we can view flows as arising from say positive utility in the case of migra-
tion flows or positive profits when considering commodity flows, then the pres-
ence of zero flows might be indicative of negative utility or profits. This type of 
argument is often used to motivate sample censoring models such as in the Tobit 
regression model. In a non-spatial application to international trade flows, Ranjan 
and Tobias (2007) treat zero flows using a threshold Tobit model. Their argument 
is that zero trade flows are indicative of situations where the transportation and 
other costs associated with trade exceed a threshold making trade unprofitable. A 
similar argument could be applied to migration flows. Non-zero flows could be 
viewed as an indication that the origin versus destination characteristics are such 
that at least one migrant perceives positive utility arising from movement between 
the origin-destination dyad. In contrast, zero observed migration flows could be 
interpreted to mean that no individual views destination utility to be greater than 
utility at the origin for these OD dyads, leading to net negative utility from migra-
tion. We note that similar arguments regarding utility from program participation 
have been used to motivate sample truncation leading to the use of Tobit regres-
sion models when evaluating the level of program participation by individuals.  

LeSage and Pace (2009a) set forth estimation methods for Tobit models where 
a spatial lag of the dependent variable is involved. This requires Bayesian MCMC 
estimation where a set of parameters representing negative utility are introduced 
for the zero-valued dependent variable observations. Some important caveats are 
associated with this approach to dealing with zero-valued flows. One is that Tobit 

                                                           
1  Note that zero counts present no serious problem in Poisson regression, but must be han-

dled in the log-normal spatial interaction model case. 
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models assume the dependent variable follows a truncated normal distribution. 
This assumption seems reasonable when we are faced with a sample of flows con-
taining less than 50 to 70 percent zero or censored values. However, in situations 
where we are faced with a very large proportion of zero values, the assumption of 
a truncated normal distribution seems less plausible.  

In the context of modeling knowledge flows between European Union re-
gions, LeSage et al. (2007) note that a large proportion of zero knowledge flows 
between the sample of European regions should be viewed as indicative that 
knowledge flows are perhaps a rare event. This view is more consistent with a 
Poisson distribution for the dependent variable. We will have more to say about 
this later.  

To demonstrate how spatial autoregressive Tobit models can be used to ad-
dress the issue of zero observations we generated a sample of 2,401 OD flow ob-
servations using the explanatory variables area and gsp from our previous exam-
ple involving state level commodity flows involving the 48 lower U.S. states and 
the District of Columbia. A Queen-based spatial contiguity weight matrix was 
used for W and a single matrix W~  was generated using a row-normalized version 
of d o+W W . The true parameter values for β and γ  were set to one and minus one 
for the gsp and area variables respectively. Use of both positive and negative co-
efficient values ensures that the generated flows will include negative values. The 
parameter θ  for distance was set to minus one and that for the intercept to 20. A 
value of 0 65ρ = .  was used. This procedure for producing data-generated flows 
resulted in 1,020 negative flows out of 2,401 observations, or slightly more than 
42 percent sample censoring. We should view the dependent variable generated in 
this fashion as profitability associated with interregional commodity flows, so the 
magnitude of commodity flows is proportional to profitability. Consistent with 
this view, we set negative values of the dependent variable to zero, reflecting the 
absence of commodity flows between dyads where negative profits existed.  

Estimates from the set of continuous values for the flows/profitability were 
constructed using maximum likelihood estimation of the spatial autoregressive 
model in Eq. (C.3.11). These estimates should of course be close to the true values 
used to generate the sample data. A second set of estimates were based on the 
sample with zero values assigned for negative values of the generated dependent 
variable, to explore the impact of ignoring zero flow values and proceeding with 
conventional maximum likelihood estimation of the spatial autoregressive model. 
Here we would expect to see downward bias in the coefficient estimates due to the 
sample truncation.  

A third set of spatial autoregressive Tobit model estimates were based on the 
sample with zero values assigned for negative values of the dependent variable. 
Ideally, the spatial Tobit model parameters should be close to the true parameter 
values used to generate the sample of flows, if we have been successful in our spa-
tial econometric treatment of zero valued flows as representing sample truncation. 
MCMC estimation methods described in LeSage and Pace (2009a) were used to 
produce estimates for the spatial autoregressive Tobit model.  
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Results from this illustration are reported in Table C.3.5, where we see coefficient 
estimates labeled Uncensored sample close to the true values used to generate the 
flow vector y. These were based on the sample flow vector that did not impose 
sample truncation on the negative values of the dependent variable. The estimates 
labeled Non-Tobit censored are those based on ignoring the existence of zero val-
ued flows. The Bayesian spatial autoregressive Tobit model estimates are reported 
in the columns labeled Tobit censored, where the posterior mean reported in the 
table is based on a sample of 1,000 MCMC draws. The posterior mean was di-
vided by the posterior standard deviation to produce a pseudo t-statistic for com-
parability with these measures of dispersion for the maximum likelihood esti-
mates. 

From the table we see that ignoring zero valued flows produces a dramatic 
downward bias in the coefficient estimates. Most of the estimates are around 50 to 
60 percent lower than the true parameters used to generate the sample y-vector. In 
contrast, the spatial autoregressive Tobit estimates produced coefficients very 
close to the true parameters as well as the benchmark estimates based on the un-
censored sample. A point worth noting is that use of the spatial autoregressive To-
bit model will lead to larger dispersion in the estimates, which from a Bayesian 
viewpoint reflects greater uncertainty in the posterior means.  

Table C.3.5. Spatial Tobit experimental results 

Variables  Uncensored sample Non-Tobit censored Tobit censored 
 True Coefficient t-statistic a  Coefficient t-statistic a   Coefficient t-statistic a   

Constant 20 19.2933  31.4  15.7547  24.9  19.5794  29.9   
        
Origin variables        
O_gsp 1 1.0309  42.5  0.4746  21.2  1.0519  32.5   
O_area –1 –1.0055  –45.0  –0.6128  –29.3  –1.0169  –45.4   
        
Destination variables        
D_gsp 1 0.9833  41.1  0.4564  20.5  0.9940  31.8   
D_area –1 –0.9691  –44.3  –0.5985  –29.0  –0.9849  –43.2   
        
Distance –1 –0.9861  –42.8  –0.6016  –27.9  –1.0075  –41.7   
ρ  0.65 0.6569  81.9  0.7719  90.8  0.6475  75.1   

2σ  1 0.9654   0.9853   0.9786   

Notes: a Pseudo t-statistic, posterior mean divided by posterior standard deviation 

Some caveats regarding this approach to dealing with zero-valued flows are in or-
der. As already mentioned, this approach is most likely applicable for situations 
where there is not an excessive amount of zero values. The ability of this approach 
to produce quality estimates depends on the ability of the spatial Tobit procedure 
to produce good estimates for the latent parameters introduced in the model (see 
LeSage and Pace 2009a for a detailed discussion of this). As economists are fond 
of saying, there is no such thing as a free lunch. This applies to the spatial Tobit 
model where the cost of censoring is increased uncertainty regarding the posterior 
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estimates. Intuitively, as the proportion of the sample that is censored increases, so 
does our uncertainty in the estimation outcomes. A final point is that this same ap-
proach can be used to deal with zero flow values for the spatially structured effects 
model set forth in Eq. (C.3.16). LeSage and Pace (2009a) discuss this and LeSage 
et al. (2008) provide details including an applied example using commuting flows 
in Toulouse. This involves introducing latent parameters for the zero-valued flows 
and estimating these using Bayesian MCMC procedures.  

As already mentioned, cases where the proportion of zero-valued flows is very 
large are not amenable to the Tobit model approach. LeSage et al. (2007) provide 
an extension of the model given by Eq. (C.3.16) that can be used to accommodate 
this situation. They rely on a variant of the model in Eq. (C.3.16) where the flows 
are assumed to follow a Poisson distribution, and treat interregional patent cita-
tions from a sample of European Union regions as representing knowledge flows. 
The counts of patents originating in region i that were cited by regions j = 1, …, n  
are used to form a knowledge flows matrix. Since cross-region patent citations are 
both counts and rare events, a Poisson distribution seems much more plausible 
than the normal distribution assumption made for the Tobit model.  

The extension of the spatially structured effects model relies on work by Früh-
wirth-Schnatter and Wagner (2008) who argue that (non-spatial) Poisson regres-
sion models (including those with random-effects) can be treated as a partially 
Gaussian regression model by conditioning on two strategically chosen sequences 
of artificially missing data. These sequences are similar in spirit to the latent pa-
rameters approach described above for estimating the spatial autoregressive Tobit 
model (LeSage and Pace 2009a). After conditioning on both of these latent se-
quences, Frühwirth-Schnatter and Wagner (2008) show that the resulting model 
can be estimated using an MCMC procedure.  

The one drawback to the approach pointed out by LeSage et al. (2007) is that 
one must sample two sets of latent parameters equal to 1ijy + , where ijy  denotes 
the count for observation i. This can lead to very long sequences of artifically 
missing data that need to be manipulated during MCMC estimation thousands of 
times. The authors report that for a sample of 188n =  regions 23,718 zero values 
and 199,817 non-zero values, a total of 133,535 latent observations were needed 
to sample each of the two latent variable vectors. The estimation procedure took 
over two days to produce estimates for the moderately sized sample based on n = 
188.  

For  the  spatially  structured  random  effects   model  from   Eqs. (C.3.17) to 
(C.3.20),  let y = (y1, …, yN) denote our sample of 2N n=  counts for dyads of 
flows between regions. The assumption regarding iy  is that i iy λ|  follows a Pois-
son, ( )iP λ  distribution, where iλ  depends on (standardized) covariates Zi reflect-
ing the ith row of the explanatory variables matrix Z, with i = 1, …, N. The Pois-
son variant of this model can be expressed as 
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( )i i iy Pλ λ| ,~  (C.3.23a) 

exp( )i i di d oi ozλ δ δ θ δ θ= + +  (C.3.23b) 

 
where diδ  represents the ith row from the matrix dΔ  in Eq. (C.3.16) that identifies 
region i as a destination region and oiδ  identifies origin regions using rows from 
the matrix oΔ  of Eq. (C.3.16). The insight of Frühwirth-Schnatter and Wagner 
(2008) was that conditional on the sequences of artifically missing data MCMC 
samples can be constructed from the posterior distribution of the parameters using 
draws from a series of distributions that take known forms.  

C.3.4   Concluding remarks 

In addition to the challenges discussed above that face practitioners interested in 
empirical implementation of spatial interaction models, there is a need to provide 
a theoretical justification for the use of spatial lags of the dependent variable (or 
disturbances) in spatial interaction models. The description provided here moti-
vates the need for these models based on empirically observed spatial dependence 
in flows.  

LeSage and Pace (2008) provide a purely econometric motivation for inclu-
sion of spatial lags of the dependent variable based on missing variables, and 
LeSage and Pace (2009a) provide a number of additional econometric motivations 
for use of spatial autoregressive regions models in applied settings not specific to 
modeling origin-destination flows. Many of these empirical motivations could be 
extended to the case of flow modeling.  

However, a theoretical basis would give the strongest justification for use of 
these models. Koch et al. (2007) provide a starting point for the special case of in-
ternational trade flows by extending the work of Anderson and van Wincoop 
(2004). They rely on a monopolistic competition model in conjunction with a CES 
(constant elasticity of substitution) utility function to derive a gravity equation for 
trade flows that contains spatial lags of the dependent variable. A study of theo-
retical work in the trade literature (Anderson and van Wincoop 2004; Koch et al. 
2007) suggests that spatial interaction models may suffer from their focus on bi-
lateral flows between origin-destination dyads. The conclusion drawn from recent 
theoretical developments in the trade literature is that bilateral relationships may 
not readily extend to a multilateral world. Simple relationships based on dyads ig-
nore indirect interactions that link all trading partners. The theoretical work of 
Koch et al. (2007) leading to a spatial interaction model for trade flows that in-
cludes spatial lags of the dependent variable has some important implications for 
spatial interaction modeling in more general circumstances. One implication is 
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that introducing spatial dependence leads to a situation where dyad relationships 
are no longer of central importance. In the context of trade flows and spatial de-
pendence, price differences between bilateral partners spillover to produce an im-
plicit dependence that quickly encompasses all other trading partners. Specifi-
cally, the authors argue that when goods are gross substitutes, trade flows from 
any origin to any destination may depend on the entire distribution of bilateral 
trade barriers, which reflect prices of substitute goods.  

As already motivated, use of spatial regression models that include spatial lags 
of the dependent variable leads to an implication consistent with the work of Koch 
et al. (2007). Returning to our example of a ceteris paribus change in labor market 
opportunities for a single region i , the spatial spillover impacts that arise for these 
models have the potential to reflect dependence on the entire distribution of re-
gional labor market opportunities available in all regions.  
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