C.1 Spatial Econometric Models

James P. LeSage and R. Kelley Pace

C.1.1 Introduction

Spatial regression models allow us to account for dependence among observa-
tions, which often arises when observations are collected from points or regions
located in space. The spatial sample of observations being analyzed could come
from a number of sources. Examples of point-level observations would be indi-
vidual homes, firms, or schools. Regional observations could reflect average re-
gional household income, total employment or population levels, tax rates, and so
on. Regions often have widely varying spatial scales (for example, European Un-
ion regions, countries, or administrative regions such as postal zones or census
tracts).

Each observation is linked to a location which in the case of point-level sam-
ples could be latitude-longitude coordinates. For region-level observations we can
rely on latitude-longitude coordinates of a point located within the region, perhaps
a centroid point.

It is commonly observed that sample data collected for regions or points in
space are not independent, but rather positively spatially dependent, which means
that observations from one location tend to exhibit values similar to those from
nearby locations.

The data generating process (DGP) that produced the sample data determines
the type of spatial dependence. Of course, we never truly know the DGP, so alter-
native approaches to applied modeling situations have been advocated. One ap-
proach is to rely on flexible model specifications that can accommodate a wide
range of different possible data generating processes. For example, LeSage and
Pace (2009) advocate use of the spatial Durbin model (SDM), since it nests a
number of other models as special cases.

A second approach would be to rely on economic or other types of theory to
motivate the DGP. For example, Ertur and Koch (2007) use a theoretical model
that posits physical and human capital externalities as well as technological inter-
dependence between regions. They show that this leads to a reduced form growth
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regression that should include an average of growth rates from neighboring re-
gions as an explanatory variable in the model.

A third approach might be to rely on a purely econometric argument that fa-
vors use of particular models to protect against heterogeneity, omitted variables or
other types of problems that arise in applied practice. For example, LeSage and
Pace (2008) show that in the case of spatial interaction models of the type dis-
cussed in Chapter C.3, omitted variables or latent unobservable influences will
lead to a model that includes a spatial lag of the dependent variable.

A fourth approach is to formally incorporate our uncertainty regarding the
DGP into the estimation and inference procedure, which is illustrated in Chapter
C.4. This involves drawing conclusions about the phenomena being modeled from
a host of different model specifications, where each model is probabilistically
weighted according to its consistency with the sample data evidence.

Conventional regression models commonly used to analyze cross-section and
panel data assume that observations are independent of one another. In the case of
spatial data samples where each observation represents a point or region located in
space, this means that nearby regions are no more closely related than those more
distant. A fundamental tenant of regional analysis is that regions located nearby
tend to be more similar than those separated by great distances. This means that
positive spatial dependence seems more plausible than spatial independence when
analyzing regional data samples.

As an example, a conventional regression model that relates commuting times
to work for region i to the number of persons in region i assumes that these
commuting times are independent of those for persons located in a neighboring
region j. Since it seems unlikely that regions i and j do not share parts of the road
network, we would expect this assumption to be unrealistic. In addition to lack of
realism, ignoring a violation of independence between observations can produce
estimates that are biased and inconsistent. We pursue a demonstration of this in
the sequel.

In our commuting time example, it may seem intuitively appealing to include
an average of dependent variables observations from other nearby regions as a
right-hand-side explanatory variable in the cross-sectional regression model. This
could be formally implemented using a spatial indicator matrix that identifies
neighboring observations in our sample. For example, in the case of regions lo-
cated on a regular lattice we might specify that neighboring observations are the
eight regions surrounding each region (ignoring the fact that regions on the edge
have less than eight neighbors). This is sometimes referred to as Queen-based con-
tiguity using an analogy to the board moves of the queen piece in the game of
Chess. This would result in an extension of the regression model for observation i
taking the form shown in Eq. (C.1.1), where the sample contains n observations.
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In Eq. (C.1.1), the dependent variable for observation i is y,, the k explanatory
variables are X;,, r = 1, ..., k with associated coefficients 3, and the disturbance
term is ¢, . The n-by-n matrix W reflects the Queen’s contiguity relations between
the n regions and we use W, to denote the (i,j)th element. The matrix W is defined
so that each element in row i of the matrix W contains values of zero for regions
that are not neighbors to region i, and values of 1/8 for the eight contiguous
neighbors to region i. By definition we do not allow region i to be a neighbor to it-
self, leading to the matrix W having zeros on the main diagonal. This leads to the
product: E:L ;W;; yi representing a scalar value equal to the average of values taken
by the eight regions neighboring region i. The scalar p in model given by Eq.
(C.1.1) is a parameter to be estimated that will determine the strength of the aver-
age (over all observations i = 1, ..., n) association between the dependent variable
values for regions/observations and the average of those values for their
neighbors.

There are of course numerous other ways to define the connectivity structure
of the sample observations/regions embodied in the matrix W, details of which are
beyond the scope of this chapter. In cases involving irregular lattices or point ob-
servations these become a consideration in specifying a spatial regression model.
For example, one could use some fixed number of nearest neighbors for the case
of irregular lattices, a number of neighbors selected using a distance cut-off or
some other contiguity definition such as Rook-based contiguity in lieu of ‘Queen-
based’ contiguity described above. There is also flexibility in the way that weights
are assigned to neighboring regions/observations. For example, weighting
schemes based on the length of shared borders separating regions have been pro-
posed as well as weights exhibiting distance decay (LeSage and Pace 2009, Chap-
ter 4). Conventional wisdom is that the specification of the matrix W exerts a great
deal of influence on estimates and inferences regarding the parameters of these
models. However, LeSage and Pace (2009) argue that this is an incorrect conclu-
sion that has arisen from invalid interpretation of parameters from these models, a
subject that we take up later.

It should be clear that if the parameter p = 0, we have a conventional regres-
sion model: y; = Z,;l X, B, + &, so a point of interest would be the statistical sig-
nificance of the coefficient estimate for p.

We can write the model in Eq. (C.1.1) using matrix/vector notation as shown
in Eq. (C.1.2), where y is an n-by-1 vector containing the dependent variable ob-
servations, W is our n-by-n spatial weight matrix that identifies the connectivity or

! Without loss of generality, one of the variable vectors X, could represent an intercept
vector of ones.
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neighbor structure of the sample observations, X is the n-by-k matrix of explana-
tory variables which may include an intercept term. The n-by-1 vector & represents
Zero mean, constant variance, zero covariance, normally distributed disturbances,
for example, &~ M0, o’ I,), where we use I, to denote an n-by-n identity matrix.
The scalar parameter p and the k-by-1 vector g along with the scalar variance pa-
rameter o represent model parameters to be estimated. The associated DGP for
this model which we label SAR is shown in Eq. (C.1.3), and the expected value or
prediction from this model is shown in Eq. (C.1.4).

y=pWy+Xp+e (C.1.2)
y=,-pW)'XB+(I,—-pW)'e (C.1.3)
E(y)=(,-pW)'XB (C.1.4)

£~ N0, 0?1,). (C.1.5)

The expectation follows from the assumption that elements of the matrix W are
fixed/non-stochastic as are observations in the matrix X. This results in E [I, —
W el =, —pW) " E €] =0.

There are of course other ways we could envision spatial dependence arising
as part of the DGP and these lead to other extensions of the conventional regres-
sion model. For example, it may be the case that dependence arises only in the dis-
turbance process leading to the model in Eq. (C.1.6) (which we label SEM), asso-
ciated DGP in Eq. (C.1.7), and expectation in Eq. (C.1.8).

y=XpB+u (C.1.6a)

w=pWu+e (C.1.6b)

y=XB+,-pW)'e (C.1.7)
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E(y)=XpB (C.1.8)

e~ MO0, 6 L,). (C.1.9)

Another elaboration of the basic model is one we label SDM shown in Eq.
(C.1.10) with associated DGP in Eq. (C.1.11) and expectation in Eq. (C.1.12). In
setting forth the SDM model we need to separate out the intercept term from the
explanatory variables matrix X because Wi, =1, , where the n-by-1 intercept vec-
tor of ones is denoted by ¢, . This model includes spatial lags of the dependent
variable is denoted by the matrix Wy, and spatial lags of the explanatory variables
denoted by the matrix product W X in addition to the conventional explanatory
variables X. The matrix product W X creates an average of explanatory variable
values from neighboring regions which are added to the set of explanatory vari-
ables.

y=pWy+ar, +XB+W X0O+¢ (C.1.10)
y=U,—pW)' (a1, +XB+W XO+¢) (C.1.11)
E(y)=,-pW) "' (at,+XB+W X 0) (C.1.12)

e~ MoL,). (C.1.13)

There are also models based on moving average spatial error processes,
u= (I, —pW) ¢ rather than the autoregressive spatial error process, u = (I, —
Yol W) & which we have described here (see LeSage and Pace 2009).

An important point to note is that the SEM model has an expectation equal to
that from a conventional regression model where independence between the de-
pendent variable observations is part of the maintained hypothesis. In large sam-
ples, point estimates for the parameters g from the SEM model and conventional
regression will be the same, but in small samples there may be an efficiency gain
from correctly modeling spatial dependence in the disturbance process. In con-
trast, the SAR and SDM models which are sometimes referred to as spatial lag
models (because they contain terms W y on the right-hand-side) produce expecta-
tions that differ from those of the conventional regression model. Use of least-
squares regression methods to estimate the parameters of these models will result
in biased and inconsistent estimates for the parameters gas well as p.
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C.1.2 Estimation of spatial lag models

From the DGP associated with the SAR model, it should be clear that there is a
Jacobian term involved in the transformation from &to y. The log-likelihood func-
tion for the SAR model takes the form in Egs. (C.1.14) — (C.1.16) (see Ord 1975),
where wis an n-by-1 vector containing eigenvalues of the matrix W. If @ contains
only real eigenvalues, a positive definite variance-covariance matrix is ensured by
conditions relating to the minimum and maximum eigenvalues of the matrix W.
LeSage and Pace (2009, Chapter 4) provide a discussion of situations involving
complex eigenvalues that can arise for certain types of spatial weight matrices W.
Lee (2004) shows that maximum likelihood estimates are consistent for these
models.

n ele
InL==7In(zro?)+In|, mddary (C.1.14)
e=y—pW y-XpB (C.1.15)
pe[min(w)‘1 ,max(w)™! ] (C.1.16)

A simple manipulation of the SAR model shown in Eq. (C.1.2):y — pWy =Xp+ ¢
suggests that the log-likelihood in Eq. (C.1.14) can be concentrated with respect to
the parameters fand o”. This is accomplished using: = (X"X)"'X (I, — p W)y to
replace this parameter vector in the full likelihood function. We also replace the
parameter " withe'e=(y—pWy-Xp " (y—pWy—-X pn', where g is as de-
fined above. Concentrating the full likelihood in this fashion results in a uni-
variate optimization problem over the parameter p . Since the parameter p

has a well-defined range based on the eigenvalues of the matrix W, this is a well-
defined optimization problem. Given a maximum likelihood estimate for p,
which we label p°, we can use this estimate to recover maximum likelihood
estimates for the parameters f'= (X'X)"' X" (I,— pW)y,and 6’ =e'e=(y - p'
Wy-Xp)(y-pWy-Xp)n.

Of course, similar likelihood functions exist for other spatial regression mod-
els such as the SEM, SDM and moving average processes. See LeSage and Pace
(2009) for details regarding these and computationally efficient approaches to op-
timization. The most computationally challenging part of solving for maximum
likelihood estimates using the concentrated log-likelihood function is evaluating
the log-determinant for the n-by-n matrix: In|I, — pW |, since the number of ob-
servations n can be large in spatial samples. There has been a great deal of re-
search on computationally efficient ways to calculate this term. As a brief over-
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view of the alternative approaches we note that Pace and Barry (1997) discuss use
of sparse LU and Cholesky algorithms and set forth a vector expression for the
concentrated log-likelihood as a gridded function of values taken by the parameter
p involved in the univariate optimization problem. Barry and Pace (1999) de-
scribe an approach to producing a statistical estimate of this term along with con-
fidence intervals for the estimate. There has been a great deal of literature on ap-
proximation approaches (see Pace and LeSage 2003, 2009b; Smirnov and Anselin
2009). In cases involving regular lattices and a repeating pattern of connectivity
relations (a regular locational grid such as arises in satellite remote sensing) be-
tween the spatial units of observation, analytical formulas can be used to calculate
the determinant (LeSage and Pace 2009).

An alternative to tackling what have been perceived as computational difficul-
ties associated with maximum likelihood estimation is to rely on an estimation
method that is not likelihood-based. Examples include the instrumental variables
approach of Anselin (1988, pp.81-90), the instrumental variables/generalized mo-
ments estimator from Kelejian and Prucha (1998, 1999), or the maximum entropy
method of Marsh and Mittelhammer (2004). These alternative methods suffer
from a number of drawbacks. One is that they can produce dependence parameter
estimates (p in our discussion) that fall outside the interval defined by the eigen-
value bounds arising from the matrix W. In addition, inferential procedures for
these methods can be sensitive to implementation issues such as the interaction be-
tween the choice of instruments and model specification, which are not always
obvious to the practitioner.

There are alternative model specifications such as the matrix exponential spa-
tial specification introduced by LeSage and Pace (2007) which they label MESS
that can be estimated using maximum likelihood or Bayesian methods. This spa-
tial regression model specification can be used in situations where the model DGP
is that of the SAR or SDM to produce equivalent estimates and inferences. The
MESS model eliminates the troublesome determinant term from the likelihood
function, allowing rapid maximum likelihood and Bayesian estimation of these
models for large spatial samples. LeSage and Pace (2007) provide a closed-form
solution for estimates of this model. It is also possible to produce a closed-form
solution for maximum likelihood estimates of the SAR, SDM and SEM models
discussed here, a recent innovation introduced by LeSage and Pace (2009). These
approaches greatly reduce the motivation for reliance on non likelihood-based
methods which have been traditionally advocated as a work-around for the per-
ceived computational difficulties of maximum likelihood estimation. These diffi-
culties have been largely resolved with the recent advances described in LeSage
and Pace (2009).
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The bias of least-squares

As noted, one focus of inference is the magnitude and significance of the parame-
ter p, since this distinguishes the SAR model from conventional regression and
provides information regarding the strength of spatial dependence between de-
pendent variable observations.

To contrast the maximum likelihood estimate p* to that from least-squares
which we label o, consider the matrix expressions in Eq. (C.1.17).

y=WyX) [;}s (C.1.17)
(/3]: yTWT (WyX) -1 yTWT i yWTWy yT WTX -1 yTXTy.
B X7 X7 X"wy x"x x"y
(C.1.18)

If we assume zero covariance (or orthogonality) between W y and X, the inverse
matrix in Eq. (C.1.18) becomes diagonal having a simple analytical inverse, lead-
ingto: p= (" W Wy)'y" W'y. Of course, for the case of non-zero covariance
between Wy and X we could rely on a partitioned matrix inverse formulation to
produce a similar, but more complicated result than the one we present here.

We can show that the least-squares estimate for the parameter p in this sim-
ple case of zero covariance is biased and inconsistent. This involved considering
whether the definition of consistency: plim(p) = p, holds true.

P=G W Wy Y Wy=" W Wy YW oWy + X B+ o)
=p+ G WWy Y WX B+ (W) Y W e
=+ (W Wy Yy W g (C.1.19)

where the last equation follows from zero covariance, y* W' X = 0. Now consider
the probability limit (plim) of the expression: plim (y* W' Wy)" y' W' &.

The term: Q = plim (1 / n)(y" W' Wy)™ could obtain the status of a finite non-
singular matrix with reasonable restrictions/assumptions made in typical applica-
tions. Specifically, we must view W as non-stochastic sample data information
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and assume that as the sample size increases the number of non-zero elements in
each row of the matrix W has a finite limit. In addition, the parameter p must
obey the eigenvalue bounds to ensure bounded y.

We turn attention to the term: R = plim (1 /1) y" W' & Using the model DGP:
y=,-pW)' (XB+¢), we find

R=plim(1/n)y'W' ¢ (C.1.20)
R=plim(1/n)[(I, - pW) " (XB+&)] W' & (C.1.21)
R=plim(1/n) & I,—pW)' W ¢ (C.1.22)
p=p+R. (C.1.23)

It should be clear that the plim (the probability limit operator) of the quadratic
form in the disturbances shown in Eq. (C.1.22), will not equal zero except in the
trivial case where p =0, or if the matrix W is strictly triangular. As noted, under
the simplifying assumption that Wy and X are uncorrelated, the matrix inverse in
Eq. (C.1.18) becomes diagonal having a simple analytical inverse, leading to: ﬁ =
(X" X)™" X" y. It should be clear that a similar proof of inconsistency could be con-
structed for the least-squares estimate of this parameter vector. As already noted
the maximum likelihood estimate should equal: g* xX"x'x"a, - oWy,
which requires an unbiased estimate for p.

Pace and LeSage (2009a) discuss the biases of OLS when applied to spatially
dependent data in more detail. In a richer setting spatial dependence in the ex-
planatory variables as well as in the disturbances can further amplify the bias dis-
cussed here.

Bayesian estimation

An alternative to maximum likelihood estimation is Bayesian Markov Chain
Monte Carlo (MCMC) estimation set forth in LeSage (1997) for the SAR model.
MCMC is based on the idea that a large sample from the Bayesian posterior distri-
bution of our parameters can be used in place of an analytical Bayesian solution
where this is difficult or impossible. We designate the posterior distribution using

2 For an introduction to Bayesian methods in econometrics see Koop (2003).
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p (@ | D), where @ represents the parameters p, £ o and D the sample data. If
the sample from p(@|D) were large enough, we could approximate the form of
the posterior density using kernel density estimators or histograms, eliminating the
need to know the precise analytical form of this complicated density. Simple sta-
tistics could also be used to construct means and variances based on the sampled
values taken from the posterior.

The parameters # and o in the SAR model can be estimated by drawing se-
quentially from the conditional distributions of these two sets of parameters, a
process known as Gibbs sampling because of its origins in image analysis, (Ge-
man and Geman 1984). The conditional distributions for these sets of parameters
take the form of a multivariate normal distribution (for #) and inverse Gamma dis-
tribution (for o). Gibbs sampling has also been labeled alternating conditional
sampling, which seems a more accurate description of the procedure.

To illustrate how this works, assume for simplicity that we knew the true value
for the parameter p . As already motivated in our discussion of concentrating the
likelihood function, the parameter vector f§ can be expressed as: g = (X' X)™'
X', - PW) y, which is the mean of the normal conditional posterior distribution
B~ /I/[(XT X) 'xTa,- pWy o (XT X) '1. We can use this mean express10n in
conjunction with the associated variance-covariance matrix: o’ (XT X) , to con-
struct a multivariate normal draw for the k-by-1 parameter vector g. We note that
being able to condition on the parameter o (that is assume it is known) is what
makes this calculation and multivariate normal draw simple. Similarly, the condi-
tional posterior distribution for the parameter o’ takes the form of an inverse
Gamma distribution that we denote IG(a,b) with a=n/2,and b = [(I,— pW) y
-XB 1" [d,— pW)y — XB] /2. Again, the fact that we can treat the parameter vec-
tor Bas known makes the calculations required to produce this draw simple.

On each pass through the sequence of sampling from the two conditional dis-
tributions for g, 02, we collect the parameter draws which are used to construct a
joint posterior distribution for these model parameters. (We are ignoring the pa-
rameter p here, assuming it is known.) Gelfand and Smith (1990) demonstrate
that sampling from the complete sequence of conditional distributions for all pa-
rameters in the model produces a set of estimates that converge in the limit to the
true (joint) posterior distribution of the parameters. That is, despite the use of con-
ditional distributions in our sampling scheme, a large sample of the draws can be
used to produce valid posterior inferences regarding the joint posterior mean and
moments of the parameters.

For the case of the SAR, SEM and SDM models, the conditional distribution
for the spatial dependence parameter o does not take the form of a known distri-
bution. However, LeSage (1997) describes an approach for sampling from the
conditional distribution of this parameter using what has been labeled Metropolis-
Hastings sampling, (Metropolis et al. 1953; Hastings 1970). This allows us to es-
timate spatial regression models using MCMC sampling which involves produc-
ing samples from the complete sequence of conditional distributions for the model
parameters B, o and p .
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C.1.3 Estimates of parameter dispersion and inference

In addition to maximum likelihood or Bayesian estimates for the parameters p, 8
and o, we are often interested in inference regarding these. Bayesian MCMC es-
timation leads to large samples of draws for the model parameters that can be used
to construct measures of dispersion used in Bayesian inference. Maximum likeli-
hood inference usually employs likelihood ratio (LR), Lagrange multiplier (LM),
or Wald (W) tests. These are equivalent asymptotically, but can differ in small
samples. The choice between these methods often comes down to computational
convenience or personal preference.

Pace and Barry (1997) propose likelihood ratio tests for hypotheses such as the
deletion of a single explanatory variable that exploit the computational advantages
of being able to rapidly evaluate the likelihood. Pace and LeSage (2003) discuss
use of signed root deviance statistics which can be used to transform likelihood ra-
tio tests for single variable deletion to a form similar to #-tests.” The signed root
deviance is the square root of the deviance statistic with a sign matching the sign
of the coefficient estimates # (Chen and Jennrich 1996). These statistics behave
similar to t-ratios for large samples, and can be used like a ¢-statistics for hypothe-
sis testing.

Wald inference employs either an analytical or numerical version of the Hes-
sian or the related information matrix to produce a variance-covariance matrix for
the estimated parameters. This can be used to construct conventional regression #-
statistics. An implementation issue is that constructing the analytical Hessian (or
information matrix) involves computing the trace of a dense n-by-n matrix inverse
(I, - pW)™". LeSage and Pace (2009) provide a number of alternative ways to
rapidly approximate elements of the Hessian.

From a computational speed perspective the vector expressions from Pace and
Barry (1997) for rapidly evaluating the log-likelihood function makes a purely
numerical Hessian feasible for these models. However, there are some drawbacks
to implementing this approach in software for general use, since practitioners of-
ten work with poorly scaled and multicollinear sample data. Such data can greatly
degrade the accuracy of numerical estimates of the derivatives populating the Hes-
sian. A second point is that univariate optimization takes place using the likeli-
hood concentrated with respect to the parameters # and o, so a numerical ap-
proximation to the full Hessian from the maximum likelihood estimation
procedure requires additional work. LeSage and Pace (2009) show how a single
computationally difficult term within the analytical Hessian can be replaced with a
numerical approximation. This allows the remaining analytical terms to be em-
ployed, increasing the accuracy and overcoming scaling problems.

3 Deviance is minus twice the log-likelihood ratio.
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C.1.4 Interpreting parameter estimates

Simultaneous feedback is a feature of the spatial regression model that comes
from dependence relations embodied in spatial lag terms such as W y. These lead
to feedback effects from changes in explanatory variables in a region that
neighbors i, say region j, that will impact the dependent variable for observa-
tion/region i. This can of course be a valuable feature of these models if we are in-
terested in quantifying spatial spillover effects associated with the phenomena we
are attempting to model.

To see how these feedback effects work, consider the data generating process
associated with the SAR model, shown in Eq. (C.1.24), to which we have applied
the well-known infinite series expansion in Eq. (C.1.25) to express the inverse.

y=(I,-pW)'XB+,-pW)'e (C.1.24)

I, —pW)'=I1+pW+p" W +p' W’ + ... (C.1.25)

y=XB +pWXB + pWXB + ...+ e+ pWe + pWe+ pWe+.. (C.1.26)

The model statement in Eq. (C.1.26) can be interpreted as indicating that the ex-
pected value of each observation y, will depend on the mean value plus a linear
combination of values taken by neighboring observations scaled by the depend-
ence parameter p, p°, p, ...

Consider powers of the row-stochastic spatial weight matrices W2, W°, ... that
appear in Eq. (C.1.26), where we assume that rows of the weight matrix W are
constructed to represent first-order contiguous neighbors. The matrix W?> will re-
flect second-order contiguous neighbors, those that are neighbors to the first-order
neighbors. Since the neighbor of the neighbor (second-order neighbor) to an ob-
servation i includes observation i itself, W has positive elements on the diagonal.
That is, higher-order spatial lags can lead to a connectivity relation for an observa-
tion i such that WX g and W? ¢ will extract observations from the vectors X 8
and ¢ that point back to the observation i itself. This is in stark contrast with the
conventional independence relation in ordinary least-squares regression where the
Gauss-Markov assumptions rule out dependence of ¢, on other observations j, by
assuming zero covariance between observations i and j in the data generating
process.
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Steady-state equilibrium interpretation

One might suppose that feedback effects would take time, but there is no explicit
role for passage of time in our cross-sectional model. Instead, we view the cross-
sectional sample of regions as the result of an equilibrium outcome or steady state
of the regional process we are modeling. To elaborate on this point, consider a re-
lationship where y represents regional income at time ¢, denoted by y,, and this de-
pends on current period own-region characteristics X, such as labor, human and
physical capital and associated parameters B, plus observed income levels of
neighboring regions from the past period, #—1. This type of space-time depend-
ence could be represented by a space-time lag variable Wy, ,, leading to the
model in Eq. (C.1.27). It seems reasonable to assume that regional characteristics
such as labor, human and physical capital change slowly over time, so we make
the simplifying assumption that these do not change over time, that is we set X, =
X in Eq. (C.1.27).*

y=pWy_ +Xp+¢- (C.1.27)

Note that we can replace y, , on the right-hand-side of Eq. (C.1.27) with
y.,=pWy ,+X B+ &4, and continue this type of recursive substitution and in
the limit with large ¢ and g produce (LeSage and Pace 2009):

im E(y,) =im E[ (1, + pW +p* W+ .+ p W | XB+p' Wiy, +u
q—t q—t

=(I,-pW)"'XB. (C.1.28)

We conclude from this that the long-run expectation of the model in Eq. (C.1.27),
can be interpreted as having a steady-state equilibrium that takes a form consistent
with the data generating process for our cross-sectional SAR model. In other
words, simultaneous feedback is a feature of the equilibrium steady-state for spa-
tial regression models that include spatial lags of the dependent variable. In the
context of our static cross-sectional SAR model where we treat the observed sam-
ple as reflecting a steady state equilibrium outcome, these feedback effects appear
as instantaneous, but they should be interpreted as showing a movement to the
next steady state.

* LeSage and Pace (2009) show that one can produce a similar result to that presented here
if the explanatory variables X, evolve over time in a number of ways.
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Interpreting the parameters

LeSage and Pace (2009) point out that interpretation of the parameter vector £ in
the SAR model is different from a conventional least squares interpretation. In
least-squares the rth parameter, f,, from the vector g, is interpreted as represent-
ing the partial derivative of y with respect to a change in the rth explanatory vari-
able from the matrix X, which we write as X,. In standard least-squares regression
where the dependent variable vector contains independent observations, changes
in observation i of the rth variable which we denote X;, only influence observation
»;, whereas the SAR model allows this type of change to influence y; as well as
other observations y;, where j #i. This type of impact arises due to the interde-
pendence or connectivity between observations in the SAR model.

To see how this works, consider the SAR model expressed as shown in
Eq. (C.1.29).

(I -pW)y=XPB+e (C.1.29)
k
y=2.85MX,+V(W e (C.1.30)
=1
SW)Y=VWw)I, B) (C.1.31)
VW)=, —pW)' =1 +pW + "W’ +p* W’ + .. (C.1.32)

To illustrate the role of S (W), consider the expansion of the data generating
process in Eq. (C.1.30) as shown in Eq. (C.1.33).

» Sy S0y . S, | (X,
LS W S W X
yf =3 f(: )21 f(: )22 . D W eV (W )e.
. =1 . . . .
yn Sr (W)nl Sr(W)nZ Sr(W)nn X’W

(C.1.33)
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To make the role of S (W) clear, consider the determination of a single depend-
ent variable observation y; shown in Eq. (C.1.34).

k
¥ = 2 S, M) Xy, +S, W)y X+ S, (W), X, [+ V) Ina +V (W), 6.
r=1

(C.1.34)

It follows from Eq. (C.1.34) that the derivative of y, with respect to Xj, takes the
form shown in Eq. (C.1.35), where we use S, (W), to represent the (i, j)th element
from the matrix S, (W).

oy,
a5y (C.1.35)

Jr

In contrast to the least-squares case, the derivative of y, with respect to X;, usually
does not equal S, and the derivative of y, with respect to X, for j # i usually
does not equal zero. Therefore, any change to an explanatory variable in a single
region (observation) can affect the dependent variable in other regions (observa-
tions). This is of course a logical consequence of our simultaneous spatial depend-
ence model. A change in the characteristics of neighboring regions can set in mo-
tion changes in the dependent variable that will impact the dependent variable in
neighboring regions. These impacts will continue to diffuse through the system of
regions.

Since the partial derivative impacts now take the form of a matrix, LeSage and
Pace (2009) propose scalar summary measures for these impacts. These cumulate
the impacts across all observations that arise from changes in all observations of
the explanatory variables and then construct an average impact to simplify inter-
pretation.

The scalar summary measures of impact are based on the idea that the own de-
rivative for the ith region takes the form in Eq. (C.1.36), representing the ith
diagonal element of the matrix S (W), which we denote S, (W), .

Vi _
ax, =S Wi (C.1.36)

Of course, the cross-derivative would take the form shown in Eq. (C.1.35) for
i # j, so we can construct scalars by averaging over elements of the matrix
S (W). Averaging over the main diagonal elements of the matrix produces a sca-
lar summary that reflects own-derivatives while averaging over off-diagonal ele-
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ments reflect cross-derivatives. The total impact arising from a change in explana-
tory variable X, is reflected by all elements of the matrix S (W'). This can be de-
composed into direct and indirect or spatial spillover impacts that sum to a total
impact arising from a change (on average across all observations) in the variable
X,

Formally, the LeSage and Pace (2009) definitions for the scalar summary
measures of impact are

(a) Average Direct Impact. The impact of changes in the ith observation of X, —
which we denote X;, —on y, could be summarized by measuring the average
of main diagonal elements S, (W), , from the matrix S, (W).

(b) Average Total Impact. The sum across the ith row of S (W) represents the to-
tal impact on individual observation y, resulting from changing the rth ex-
planatory variable by the same amount across all n observations (for example,
X, + o1, where O is the scalar change). On the other hand, the sum across the
ith column reflects the total impact on all y, arising from changing the rth
explanatory variable by an amount in the jth observation (for example, X;,. +
9). Averaging either the sum of the row or column sums will produce the same
number, which represents the total impact.

(c) Average Indirect Impact. This is by definition the difference between the total
and direct impacts. This summary impact measure reflects what are com-
monly thought of as spatial spillovers, or impacts falling on regions other than
the own-region.

LeSage and Pace (2009) point to an interpretative distinction between the average
total impact summary measure that arises from averaging row-sums versus that
from averaging columns-sums. Despite the equality of these two scalar summa-
ries, the average of row-sums could be viewed as reflecting the (average) Total
Impact to an Observation, whereas the average column-sums are more appropri-
ately interpreted as the (average) Total Impact from an Observation.

To elaborate on the distinction between these two interpretative viewpoints,
consider a modeling situation where interest centers on how a financial crisis in a
single country/observation spills over to produce contagion in financial markets of
other countries (Kelejian et al. 2006). This situation can be viewed as a change in
the jth observation/country (for example, X, + ) impact on all countries y;, i = 1,
..., n, or the (average) Total Impact from an Observation.

In contrast, if interest centers on how a rise in human capital levels across all
regions by some amount will (on average) influence a single region’s growth rate,
then we are working with the (average) Total Impact to an Observation interpreta-
tive viewpoint (Dall’erba and LeGallo 2007).

It is easy to see that the numerical values of the summary measures for the two
forms of average total impacts set forth above are equal, since the average of the
column of row-sums ¢, =S.(W)1,, equal to e, =n zES,(W) 2,. On the other
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hand, the average of the row of column-sums 7, = 0 S, (W), equals n’' r.z, which
is also equal to ntad S, (W) 1,.

The summary measure of total impacts, nta S, (W), for the SAR model
take the simple form in Eq. (C.1.37) for a model that relies on a row-stochastic W
matrix (where the row-sums equal one).

LS, (W) 1= L (L, - pW) B, = (1-p) B (C.1.37)

One point to note is that even the average direct impact for this model does not
equal the coefficient . as in the case of a conventional regression model. The dif-
ference between the coefficient estimate . and the scalar summary measure of av-
erage direct impact arises from the feedback loop reflecting how initial changes in
Y, give rise to impacts on neighboring regions y, which in turn pass through
neighboring regions and feedback to region i. Of course, the magnitude of this
type of feedback will depend on aspects of the spatial regression model used and
the resulting parameter estimates. For example, the nature of the connectivity
structure W used in the model and the magnitude of the parameter estimates for p
and g both play a role in determining the impacts.

Finally, we should bear in mind the discussion in Section C.1.4, indicating that
we should interpret these scalar summary measures of impact as reflecting how
changes in the explanatory variables work through the simultaneous dependence
system over time to culminate in a new steady state equilibrium. For example, if
we find that a ten percent increase in regional levels of human capital give rise to a
five percent direct impact on regional income growth and a ten percent indirect
impact, we would conclude that these changes would be associated with regional
income levels in the new steady-state equilibrium. In the context of our static
cross-sectional model we cannot make informative statements about the time that
will be required to reach this new equilibrium. Another point is that the indirect
impacts will often exceed the direct impacts because the scalar summary measures
cumulate impacts over all regions in the model. LeSage and Pace (2009) provide
ways to decompose these cumulative impacts into those falling on first-order,
second-order and higher-order neighboring regions. These decompositions result
in the more intuitive situation where direct impacts exceed indirect impacts falling
on first-order, second-order and higher-order neighbors. However, the cumulative
impact scalar summary measures add up impacts falling on neighbors of all or-
ders, which often results in indirect or spatial spillover impacts that exceed the di-
rect impacts.

One applied illustration that uses these scalar summary impact estimates can
be found in Chapter E.1. The application considers the direct, indirect and total
impacts of changes in human capital on labor productivity levels in European
Union regions. A number of other applications can be found in LeSage and Pace
(2009) in a wide variety of applied contexts.
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Inference regarding the impacts

For inference regarding the significance of these impacts, we need to determine
their empirical or theoretical distribution. Since the impacts reflect a non-linear
combination of the parameters p and g in the case of the SAR model, working
with the theoretical distribution is not particularly convenient. Given the model es-
timates as well as associated variance-covariance matrix along with the knowledge
that maximum likelihood estimates are (asymptotically) normally distributed, we
can simulate the parameters p and g . These empirically simulated magnitudes
can be used in expressions for the scalar summary measures to produce an empiri-
cal distribution of the scalar impact measures.

For the case of Bayesian MCMC estimates we already have a sample of pa-
rameter draws for p and g which can be used in conjunction with the expressions
for the scalar summary measures to produce a posterior distribution of the total,
direct and indirect impact measures. Gelfand et al. (1990) show that this is a valid
approach to derive the posterior distribution for non-linear combinations of model
parameters.

For the case of the SAR model, this is relatively straightforward requiring that
we need only evaluate the expression: (1— )" 4. to find the total impacts. Calcu-
lating the direct impacts requires that we work with the main diagonal of the ma-
trix (I, — pW)™" for which LeSage and Pace (2009) provide computationally effi-
cient methods. Recall that we would need to carry out these calculations thousands
of times using the simulated parameter values or MCMC draws to determine the
empirical measures of dispersion. These measures are used to determine the statis-
tical significance of direct, indirect and total impacts associated with the various
explanatory variables in the model, in a fashion similar to use of #-statistics in
conventional regression models. In more complicated models such as the SDM,
the scalar summary measures of impact take more complicated forms, but LeSage
and Pace (2009) provide computationally efficient approaches for evaluating these
expressions.

An applied illustration of a simulation approach to determining measures of
dispersion for these scalar summary impact estimates can be found in Chapter E.1.
Another illustration is given in LeSage and Fischer (2008) in the context of model
averaging methods discussed in Chapter C.4.

Spatial heterogeneity, spatial dependence, and impacts

Many authors draw a distinction between models of spatial dependence and those
of spatial heterogeneity. Typically, spatial dependence models estimate a parame-
ter for each variable while spatial heterogeneity models effectively estimate an
n-by-n matrix of parameters. The Casetti expansion method (Casetti 1997, see also
Chapter C.6) and GWR (Fotheringham et al. 2002; see also Chapter C.5) exem-
plify this approach.



C.1  Spatial econometric models 373

However, the distinction between models of spatial dependence and those of spa-
tial heterogeneity is not as clear as it might initially appear. To motivate this dis-
cussion, consider the usual linear model (C.1.38) with the parameters written in
matrix form in Egs. (C.1.39) to ( C.1.41).

E(y):Xlﬂ1+X2ﬂ2+...+Xkﬂk (C138)

EM=0"X+0%X+...+ OV X, (C.1.39)

(r) _ = | =
B =p r=l..k i=1..n (C.1.40)

6" =B". (C.1.41)

Obviously, in the usual linear model the impact of changing the explanatory vari-
able is the same across observations and a change in the explanatory variable for
one observation does not affect the others.

What if we gave geometrically declining weights to the values of the parame-
ters at the neighbors, including parameters at the neighbors of neighbors, and so
forth as shown in Eq. (C.1.42). Given the formula for the infinite series expansion,
this leads to Eq. (C.1.43). Interestingly, the matrix of parameters implied by this
process equals the matrix of impacts (S, (W) ) discussed previously. As before, we
can view the expected value of the dependent variable as a sum of the impacts
from all the explanatory variables as in Eq. (C.1.44).

@ =1,B"+pWB"” + )" W B+ ... (C.1.42)
& =U,-pW)' B"=S. (W) (C.1.43)
E@) =S (W)X, +S, (W) Xo+ ...+ S (W) Xq. (C.1.44)

To summarize, spatial dependence involving a spatial lag of the dependent vari-
able implies a form of spatial heterogeneity where the impacts measure the het-
erogeneity across observations. Error models, however, do not result in heteroge-
nous impacts over space. Therefore, the traditional distinction between spatial
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heterogeneity and spatial dependence is meaningful in the case of error models but
misleading in the case of spatial autoregressive models.

C.1.5 Concluding remarks

Spatial autoregressive processes represent a parsimonious way to model spatial
dependence between observations that often arises in regional economic research.
We have shown how basic regression models can be augmented with spatial auto-
regressive processes to produce models that incorporate simultaneous feedback
between regions located in space. It was also shown that conventional regression
model estimates that ignore this feedback are biased and inconsistent.

Interpretation of estimates and inferences regarding the spatial connectivity re-
lationships modeled require interpretation based on a steady-state equilibrium
view. These models produce a situation where changes in the explanatory vari-
ables lead to a series of simultaneous feedbacks that ultimately result in a new
steady-state equilibrium. Because we are working with cross-sectional sample
data, these model adjustments appear as if they are simultaneous, but we argued
that these models can be viewed as containing an implicit time dimension.

The availability of public domain software to implement estimation and infer-
ence for the models described here should make these methods widely accessible
(Anselin 2006; Bivand 2002; LeSage 1999; Pace 2003).
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