
B.6  The Variogram and Kriging 

Margaret A. Oliver 

B.6.1  Introduction 

Spatial statistics and geostatistics have developed to describe and analyze the 
variation in both natural and man-made phenomena on, above or below the land 
surface.  Spatial statistics includes any of the formal techniques that study entities 
that have a spatial index (Cressie 1993). Geostatistics is embraced by this general 
umbrella term, but originally it was more specifically concerned with processes 
that vary continuously, i.e. have a continuous spatial index. The term geostatistics 
applies essentially to a specific set of models and techniques developed largely by 
Matheron (1963) in the 1960s to evaluate recoverable reserves for the mining in-
dustry. These ideas had arisen previously in other fields; they have a long history 
stretching back to Mercer and Hall (1911), Youden and Mehlich (1937), Kolmo-
gorov (1941), Gandin (1965), Matérn (1960) and Krige (1966). Geostatistics has 
since been applied in many different fields, such as agriculture, fisheries, hydrol-
ogy, geology, meteorology, petroleum, remote sensing, soil science and so on. In 
most of these fields the data are fragmentary and often sparse, therefore there is a 
need to predict from them as precisely as possible at places where they have not 
been measured. This chapter covers two of the principle techniques of geostatistics 
that solve this need for prediction; the variogram and kriging.  

B.6.2   The theory of geostatistics 

A brief summary only is given here of the theory that underpins geostatistics (for 
more detail see Journel and Huijbregts, 1978; Goovaerts, 1997; Webster and 
Oliver 2007). Most spatial properties vary in such a complex way that the varia-
tion cannot be defined deterministically. To deal with this spatial uncertainty a dif-
ferent approach from the traditional deterministic methods of spatial analysis was 
required that relies on a stochastic or probabilistic approach. The basis of modern 
geostatistics is to treat the variable of interest as a random variable. This implies 
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that at each point x in space there is a series of values for a property, Z(x), and the 
one observed, z(x), is drawn at random according to some law, from some prob-
ability distribution. At x, a property Z(x) is a random variable with a mean, μ and 
variance, σ2. The set of random variables, Z(x1), Z(x2), …, is a random process, 
and the actual value of Z observed is just one of potentially any number of realiza-
tions of the random process. In classical statistics this set of observed values, the 
realization, is the population. 

To define the variation of the underlying random process, we can take into ac-
count the fact that the values of regionalized variables at places near to one an-
other tend to be related. As well as estimating the mean and variance of the prop-
erty, we can also estimate the spatial covariance to describe this relation between 
pairs of points. The covariance for the random variables is given by 
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where μ(x1) and μ(x2) are the means of Z at x1 and x2, and E denotes the expected 
value. This solution is unavailable, however, because the means are unknown as 
there is only ever one realization of Z at each point. To proceed we have to invoke 
assumptions of stationarity.  

Stationarity 

Under the assumptions of stationarity certain attributes of the random process are 
the same everywhere. We assume that the mean, μ = E[Z(x)], is constant for all x, 
and so μ(x1) and μ(x2) can be replaced by μ, which can be estimated by repetitive 
sampling. When x1 and x2 coincide, Eq. (B.6.1) defines the variance (or the a pri-
ori variance of the process), σ ² = E [{Z(x) – µ}²], which is assumed to be finite 
and, as for the mean, the same everywhere. When x1 and x2 do not coincide, their 
covariance depends on their separation and not on their absolute positions, and 
this applies to any pair of points xi, xj separated by the lag h = xi – xj (a vector in 
both distance and direction), so that 
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which is also constant for a given h. This constancy of the first and second mo-
ments of the process constitutes second-order or weak stationarity. Equation 
(B.6.2) indicates that the covariance is a function of the lag and it describes quan-
titatively the dependence between values of Z with changing separation or lag dis-
tance. The autocovariance depends on the scale on which Z is measured; therefore, 
it is often converted to the dimensionless autocorrelation by 
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where 2)0( σ=C is the covariance at lag zero.  

Intrinsic variation and the variogram 

The mean often appears to change across a region and then the variance will ap-
pear to increase indefinitely as the extent of the area increases. The covariance 
cannot be defined because there is no value for μ to insert into Eq. (B.6.2). This is 
a departure from weak stationarity. Matheron’s (1965) solution to this was the 
weaker intrinsic hypothesis of geostatistics. Although the general mean might not 
be constant, it would be for small lag distances and so the expected differences 
would be zero as follows:  
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and the expected squared differences for those lags define their variances  
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The quantity γ(h) is known as the semivariance at lag h, or the variance per point 
when points are considered in pairs. As for the covariance, the semivariance de-
pends only on the lag and not on the absolute positions of the data. As a function 
of h, γ (h) is the semivariogram or more usually the variogram.  

If the process Z (x) is second-order stationary, the semivariance and covari-
ance are equivalent: 
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However, if the process is intrinsic only there is no equivalence because the co-
variance function does not exist. The variogram is valid, however, and therefore it 
can be applied more widely than the covariance function. This makes the 
variogram a valuable tool and as a consequence it has become the cornerstone of 
geostatistics.  

B.6.3  Estimating the variogram 

This section describes two methods for estimating the variogram from data, 
Matheron’s method of moments and the residual maximum likelihood (REML) 
method, together with the main features that variograms are likely to have.   
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L

The method of moments estimator 

The empirical semivariances can be estimated from data,  z(x1), z(x2), …, by  

 

2
)(

1
)}()({

)(2
1)(ˆ hxzxz

hm
h i

hm

i
i +−= ∑

=

γ  (B.6.7) 

 
where z(xi) and z(xi+h) are the actual values of Z at places (xi) and (xi+h), and m(h) 
is the number of paired comparisons at lag h. By changing h, an ordered set of 
semivariances is obtained; these constitute the experimental or sample variogram. 
Equation (B.6.7) is the usual formula for computing semivariances; it is often re-
ferred to as Matheron’s method of moments (MoM) estimator. The way that this 
equation is implemented as an algorithm depends on the configuration of the data. 
For a regular transect the lag becomes a scalar, h = |h|, for which the semivari-
ances can be computed only at integral multiples of the sampling interval. The 
number of paired comparisons decreases one at a time as the lag interval is in-
creased. The maximum lag should be set to no more than a third of the length of 
the transect.  For a regular grid, semivariances can be calculated along the rows 
and columns of the grid and the lag increment is the grid interval. For irregularly 
sampled data in one or more dimensions, or to compute the omnidirectional 
variogram of data on a regular grid, the separations between pairs of points are 
placed into bins with limits in both separating distance and direction, Fig. B.6.1. In 
this figure, 0L is the nominal lag interval of length h, w is the width of the bin, 
α /2 is the angular tolerance and θ is one of a set of directions. To calculate the 
variogram over all directions, the omnidirectional variogram, α /2 is set to 180º 
and θ is set to zero. 

 

 
Fig. B.6.1. Discretization of the lag into bins for irregularly scattered data 
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The choice of narrow bins tends to give rise to erratic variograms, whereas wide 
bins tend to smooth and result in a loss of detail. You can see the effect of this in 
Fig. B.6.4. For a grid, it is usual to choose the grid interval as the nominal lag in-
terval and for irregularly scattered data, the average distance between sampling 
points.  

Webster and Oliver (1992) have shown that at least 100 sampling points are 
required to estimate the MoM variogram reliably. For many situations these are 
more data than can be afforded, for example where the costs of sampling and or 
sample analysis are considerable. In other situations this sample size might result 
in a closer  sample  spacing  than  is  needed  to  resolve  the variation  adequately; 
this occurs where the property of interest has a large scale of spatial variation rela-
tive to the  extent  of the  study area.  This  would result in  over-sampling and  a 
waste of resources. Pardo-Igúzquiza (1997) suggested the maximum likelihood 
(ML) approach as an alternative to Matheron’s estimator. He also suggested that 
where the number of data is relatively small (a few dozen), the ML variogram es-
timator offers an alternative that gives an estimate of the variogram parameters 
and of their uncertainty (Pardo-Igúzquiza 1998, pp. 462-464).  

The residual maximum likelihood (REML) variogram estimator  

By contrast to the MoM approach, the ML methods are parametric and they also 
assume that the process, Z, is second-order stationary. Following the notation of 
Kerry and Oliver (2007), it is assumed that the data, z(xi), i = 1, …, n, a realization 
of this process, follow a multivariate Gaussian distribution with the joint probabil-
ity density function (pdf) of the measurements defined by 
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where z is a vector that contains the n data, θ  contains the parameters of the co-
variance matrix, V  is the n-by-n variance-covariance matrix, and Xβ represents 
the trend. The matrix V can be factorized as 

 

V = σ 2A (B.6.9) 

 

where σ 2 is the variance and A is the autocorrelation matrix. The pdf can then be 
rewritten as 
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where θ  is the set of covariance parameters excluding the variance. The parame-
ters, β, σ2, θ, are estimated in such a way that they minimize the negative log-
likelihood function given by 
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In the ML approach the drift parameter, β, is estimated at the same time as the set 
of covariance parameters.  

Simultaneous estimation of the trend and covariance parameters in the ML 
approach results in biased covariance parameter estimates (Matheron 1971; Ki-
tanidis and Lane 1985). Residual maximum likelihood (REML) developed by Pat-
terson and Thompson (1971) avoids this problem because instead of working with 
the original data, it uses linear combinations of the data. These latter, known as 
generalized increments, filter out the trend. The generalized increments, g, can be 
represented as  

 
g = Λ z (B.6.12) 

 

where the matrix Λ is derived from the projection matrix 

 
P = I – X(XTX)–1XT (B.6.13) 

 

by dropping p rows in Λ because there are p generalized increments that are line-
arly dependent on others (Kitanidis 1983). The matrix P has the property that  

 

PX = 0 (B.6.14) 
 
then 
 

Pz = PXβ + Pe = Pe (B.6.15) 
 

which filters out the trend regardless of what the coefficients β are. The e are the 
residuals. Then 

 
E(g) = 0 (B.6.16) 

 
and 

 
E(g gT) = ΛVΛT. (B.6.17) 
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The increments, g, are assumed to be Gaussian and the covariance parameters are 
estimated by minimization of the negative log-likelihood function (NLLF), given 
by 
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The covariance parameters, θ, can include the nugget variance (see below for the 
definition), long- and short-range distance components for isotropic and anisot-
ropic situations, together with the anisotropy ratio for the latter. Pardo-Igúzquiza’s 
(1997)  MLREML  program  computes these parameters for three covariance 
models, the spherical, exponential and Gaussian.  

For both the ML and REML approaches there is no experimental variogram, 
and as a consequence there is no smoothing of the spatial structure because there 
is no ad hoc definition of lag classes (bins). This is particularly advantageous for 
irregularly spaced data. 

Features of the variogram 

Continuity. Most environmental variables are continuous, therefore we should ex-
pect γ(h) to pass through the origin at h = 0 [Fig. B.6.2(a)]. In practice, however, 
the variogram often appears to approach the ordinate at some positive value as h 
approaches zero, Fig. B.6.2(b), which suggests that the process is discontinuous. 
This discrepancy is known as the nugget variance. For properties that vary con-
tinuously the nugget variance usually includes some measurement error, but 
mostly comprises variation that occurs over distances less than the shortest sam-
pling interval. Figure B.6.2(c) is a pure nugget variogram which usually indicates 
that the sampling interval is too large to resolve the variation present. 

Monotonic increasing. Figure B.6.2(a) and (b) shows that the semivariance in-
creases with increasing lag distance. This indicates that at short distances the val-
ues of the Z(x) are similar, but as the lag distance increases they become increas-
ingly dissimilar on average. The monotonic increasing slope indicates that the 
process is spatially dependent.  

Sill and range. Figure B.6.2(b) shows a variogram that reaches an upper bound af-
ter the initial slope; this bound is known as the sill variance. It is the a priori vari-
ance, σ2, of the process. A bounded variogram describes a process that is second-
order stationary. The distance at which the variogram reaches its sill is the range, 
i.e. the range of spatial dependence. Places further apart than the range are spa-
tially independent, Fig. B.6.2(b).  
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Hole effect and periodicity.  The variogram may decrease from its maximum to a 
local minimum and then increase again.  This maximum is equivalent to a mini-
mum in the covariance function in which it appears as a ‘hole’.  It suggests fairly 
regular repetition in the process. A variogram that fluctuates in a periodic way 
with increasing lag distance indicates greater regularity of repetition.   
 
 
    (a)                                            (b)                                       (c) 

 
Fig. B.6.2. Three idealized variogram forms: (a) unbounded; (b) bounded; and (c) is the 
spatially correlated component [c0 is nugget variance, a is the range of spatial dependence, c 
+ c0 is the sill variance, and c pure nugget] 
 

Unbounded variogram.  If the variogram increases indefinitely with increasing lag 
distance as in Fig. B.6.2(a), the process is intrinsic only.  

Anisotropy.  Spatial variation might not be the same in all directions. To explore 
data for any anisotropy, i.e. directional variation, the variogram must be computed 
in at least three directions. For a regular grid, it is usual to compute the variogram 
along the rows, columns and the principal diagonals. If there are four directions, 
start by setting the angular discretization to 22.5º, for example, and this angle can 
be decreased if there appears to be anisotropy. If the initial gradient or range of the 
variogram changes with direction and a simple transformation of the coordinates 
will remove it, then this is known as geometric anisotropy. An example of this is 
given in Fig. B.6.5 later in the case study; it shows the variogram of pH at 
Broom’s Barn Farm computed in four directions from data on a regular grid. If the 
sill variance fluctuates with changes in direction, this might indicate the presence 
of preferentially orientated zones with different means. This is known as zonal 
anisotropy. It can sometimes be dealt with by stratifying the area of interest and 
then computing the variogram from the residuals of the class means. This is some-
times called the pooled within-class variogram.  
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Nested variation. Variation in the environment often occurs at several spatial 
scales simultaneously, and patterns in the variation can be nested within one an-
other. This is usually evident when there are many data, for example from remote 
sensing etc. The experimental variogram will often appear more complex if more 
than one spatial scale is present; this can be seen in Fig. B.6.6. A combination of 
two or more simple models that are authorized can be used to model such a 
variogram. The simplest combined model is one with a nugget component. Spatial 
dependence may occur at two distinct scales and these can be represented in the 
variogram as two spatial components.  Models describing more than one spatial 
structure are often known as nested functions; the nested or double spherical 
model has been the most commonly fitted, Fig. B.6.6(b).  

B.6.4   Modeling the variogram 

The experimental MoM variogram comprises a set of discrete estimates at particu-
lar lag intervals, which are subject to error that arises largely from sampling fluc-
tuation. The underlying variogram, which represents the regional variation, is con-
tinuous. To obtain an approximation to this we can fit what are known as 
authorized functions that are conditional negative semi-definite (CNSD) to the ex-
perimental values. Functions that are CNSD will not give rise to negative vari-
ances when random variables are combined (see Webster and Oliver 2007 for 
more detail on this). There are a few principal features that the function must be 
able to represent: 

 
(i)    a monotonic increase with increasing lag distance from near the ordinate, 
(ii)   a constant maximum or asymptote (the sill), 
(iii)  a positive intercept on the ordinate (the nugget),  
(iv)  anisotropy. 

 
There are a few simple functions only that encompass the above features and that 
are CNSD. They can be divided into those that are bounded, which represent 
processes that are second-order stationary, and those that are unbounded that are 
intrinsic only. There are several functions, but here we shall focus on those that 
are fitted most commonly in the environmental sciences. The formulae for the se-
lected functions are given in their isotropic form, i.e. for h = |h | . A nugget vari-
ance, c0, has been included because most experimental variograms if extended to 
the ordinate would have a positive intercept. The Gaussian model is included in 
many popular geostatistical packages, but it is excluded here. Its use can give rise 
to unstable kriging equations because the model approaches the origin with zero 
gradient (the limit for random variation), and this function will be replaced with 
the stable exponential model (Wackernagel 2003). Webster and Oliver (2007) de-
scribe a wide range of suitable variogram functions.  
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Circular model. The equation for the circular function is 
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for h = 0 

(B.6.19) 

 
where γ(h) is the semivariance at lag h, c is the a priori variance of the autocorre-
lated process, c0 is the nugget variance which represents the spatially uncorrelated 
variation at distances less than the sampling interval and measurement error, and a 
is the distance parameter, the range of spatial dependence or spatial autocorrela-
tion. Values at places less than this apart are correlated, whereas those further 
apart are not. The combined c0 + c is the sill of the model. Theoretically the 
semivariance at lag zero is itself zero, but in practice there are usually too few es-
timates of γ(h) near to the ordinate to fit a model through the origin. This function 
is CNSD in two dimensions. It curves tightly as it approaches the range (see Fig. 
B.6.4(i)). 

Spherical function. This is one of the two most widely fitted models in the envi-
ronmental sciences. Its equation is 
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for h ≤ a 
 

for h > a 
 

for h = 0. 

(B.6.20) 

 
The symbols have the same meaning as above. This model curves more gradually 
as the sill is reached than the circular one, see Fig. 6.4.4(c). This function is CNSD 
in three dimensions. It represents transition features that have a common extent 
that appear as patches, some with large values and other with small ones. The av-
erage diameter of the patches is represented by the range of the model.  

Pentaspherical function. This model curves more gently as it approaches its sill 
than the preceding models, see Fig. B.6.3(b). It is CNSD in three dimensions. The 
pentaspherical function has the equation 
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Exponential function. The exponential and spherical functions together account for 
a large proportion of the models fitted in the environmental sciences. Its equation 
is  
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where c0 and c have the same meanings as above, but the distance parameter is 
now r. The exponential model approaches its sill even more gently than the pre-
ceding models and also asymptotically so that it does not have a finite range. In 
practice, an effective range is assigned at the distance at which the function has 
reached 95 percent of c. The effective range, a’, is 3r. It is CNSD in three dimen-
sions. The exponential function also represents transition structures, but they now 
have random extents.  

Stable exponential. This is a useful substitute for the Gaussian function for ex-
perimental variograms that appear to approach the origin with a reverse curvature; 
they can be represented by the general equation 
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in which 1 < α < 2.  For the Gaussian function α  = 2, which is excluded because 
it represents differentiable variation in the process, which is not random. Webster 
and Oliver (2006) used the stable exponential function to describe topographic 
variation.  

Unbounded models. Variograms that are intrinsic only increase without bound as 
the lag distance increases. These can usually be fitted by power functions, which 
have the general equation including a nugget variance of  

 
γ (h) = c0 + whα (B.6.24) 

 
where w describes the intensity of the process, and the exponent, α, describes the 
curvature. If α <1, the curve is convex upwards; if it is one it is a straight line and 
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w is the gradient; and if α > 1 the curve is concave upwards. The exponent must 
lie strictly between zero and two. 

Modeling anisotropy. If the experimental variogram is anisotropic, then the varia-
tion is a function of distance, h, and direction, θ. Geometric anisotropy can be 
made isotropic by a linear transformation of the coordinates. The transformation is 
defined by reference to an ellipse 
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where A and B are the long and short diameters of the ellipse, respectively, and φ 
is its orientation, i.e. the direction of the long axis. For bounded models, Ω re-
places the distance parameter of the isotropic variogram as follows for the expo-
nential variogram (see Fig. B.6.5(b)). 
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and for the power function it replaces the gradient 
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Nested models. The nested spherical function is given by  
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(B.6.28) 

where c1 and a1 are the sill and range of the short-range component of the varia-
tion, and c2 and a2 are the sill and range of the long-range component. A nugget 
component can also be added as above (see Fig. B.6.6(b)).  
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B.6.5  Case study: The variogram 

We illustrate some of the principles of geostatistics with results from a recent 
study on precision farming for the British Home-Grown Cereals Authority (Oliver 
and Carroll 2004). The field (UK National Grid reference SU 458174) covers      
23ha on the Yattendon Estate, Berkshire, England. It is on part of the Chalk 
downland of southern England and has the typical undulating topography of this 
region. From the extensive set of survey data obtained during 2002 we have se-
lected topsoil (0–15 cm) available potassium. Data on yield of winter wheat were 
available for 2001 to illustrate nested variation. Table B.6.1 gives the summary 
statistics for these two variables.  

Sampling for the soil survey was at the nodes of a 30m × 30m grid, with addi-
tional observations at 15m intervals along short transects from randomly selected 
grid nodes. The sampling intervals were based on scales of variation determined 
from several years of yield data with the aim of ensuring that the variation in the 
soil (of which there was no prior knowledge) would be represented adequately and 
efficiently. At each site ten cores of soil were bulked from a support of 5m × 2m 
to form the sample; this helps to reduce the locally erratic variation that contrib-
utes to the nugget variance. There were 230 data points, which enabled any anisot-
ropy in the variation to be determined; this sample size is close to the 250 data 
recommended by Webster and Oliver (1992).    

 
Table B.6.1. Summary statistics 

Statistic Topsoil K [mg l-1] Yield 2001 [t  ha-1] 

Number   230     4060 
Mean   142.5       6.838 
Median   143.0       7.050 
Minimum     48.1       1.000 
Maximum   254.4            14.600 
Variance 1367.5       3.909 
Standard deviation     37.0       1.977 
Skewness      0.1            –0.298 

Experimental variograms were computed by Eq. (B.6.7) in four directions to re-
veal any anisotropy in the variation. The results for topsoil K are shown in Fig. 
B.6.3(a) for the directions 0°, 45°, 90° and 135°. There is little divergence among 
the different directions until lag 130m, after which the sills start to diverge. This 
suggests that there is zonal anisotropy in the variation of topsoil K in this field. 
Since the directional variograms are close together for the initial lags, the variation 
can be treated as isotropic for kriging, and the solid line shows the best fitting iso-
tropic exponential function to the omnidirectional variogram. 
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Fig. B.6.3.   (a)  Directional  variogram  computed  on  the  raw  data  (230 points) from the  
Yattendon Estate, and (b) directional variogram computed on the residuals from the class 
means.  The symbols  represent:  ∗ denotes 0º (E–W),   denotes 45º, × denotes 90º (N–S), 
▲ denotes 135º 

To illustrate the effect of sample size on the variogram, we subsampled the com-
plete set of data (230 sampling points) to give subsets of 94 and 47 data. Experi-
mental omnidirectional variograms were computed from the total data and two 
subsets for topsoil K. To explore the effect of different bin widths, variograms 
were computed for lag intervals of 15m (the sampling interval for the transects), 
20m (mid-way between the transect and overall grid interval) and 40m (for illus-
tration). Models were fitted to the experimental values using GenStat (Payne 
2008).   

Figure B.6.4 shows the experimental values as symbols and the fitted models 
as solid lines. The experimental variograms suggest that the 20m lag interval is a 
good comprise between the rather erratic result for the 15m interval and the loss of 
detail with the 40m lag interval. The experimental variograms also show the effect 
of decreasing the number of data; the variograms becomes more erratic and that 
computed from 47 data also shows a serious loss of variance. 

Table B.6.2 gives the models and their parameters fitted to the experimental 
variograms. These show how sensitive the model parameters are to changes in lag 
interval and number of data. For the 230 data, the main difference in the model pa-
rameters for the variograms computed with different lag intervals is in the nugget 
variance, which is zero for the 15m lag. This suggests that the data from the tran-
sect sampling have resolved the local variation in topsoil K well. This is an impor-
tant consideration when designing a sampling scheme. For a grid survey, it is 
worthwhile having some additional sampling points at shorter distances than the 
grid interval as in this survey because it helps to reduce the nugget variance. There 
were 40 sampling points at the shorter interval which is only 17 percent of the to-
tal data. 
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Fig. B.6.4. Experimental variograms (∗) computed by the method of moments (MoM) esti-
mator for lag distances of 20m, 15m and 40m, and for the complete data set of 230 sites 
[(a), (b) and (c), respectively], subset of 94 data [(d), (e), (f)] and subset of 47 data [(g), (h), 
(i)] for topsoil K on the Yattendon Estate. The solid line is the model fitted to the MoM 
variogram and the dashed line is the variogram estimated by residual maximum likelihood 
(REML)  

 
For the subsample of 94 data, the difference in model parameters from those for 
complete set of data is small; this indicates that Webster and Oliver’s (1992) rec-
ommendation of a minimum of 100 data is adequate to obtain a reliable 
variogram. The model parameters for the smallest data set are considerably differ-
ent from those of the complete set of data, suggesting that the variograms of the 
smallest data set are not an accurate reflection of the structure of the variation. For 
example,  the sill variances are markedly less and the ranges of spatial dependence 
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Table B.6.2. Variogram model parameters 

 Parameter 

Topsoil 
Property 

Model type Nugget 
variance 

Correlated  
component 

Range 
(m) 

    Sill 
variance 

MoM estimator      c0       c1 

      c2  
a1/m 

a2/m  

or r/m* 

 

K (230 sites) 
    Lag 20 m 
    Lag 15 m 
    Lag 40 m 

 
Spherical 
Exponential 
Spherical 

 
319.3 

    00 
355.6 

 
  1070.0 
  1441.0 
  1035.7 

 
142.9 
151.7 
148.4 

 
1389.3 
1441.0 
1391.3 

K residuals 
    Lag 20 m 

 
Pentaspherical 

 
145.5 

     
830.7 

   
90.8 

   
976.2 

K (94 sites) 
    Lag 20 m 
    Lag 15 m 
    Lag 40 m 

 
Exponential 
Exponential 
Spherical 

 
163.7 

    00 
338.9 

 
  1138.0 
  1282.0 
  1051.0 

 
  44.6 
  44.6 
146.4 

 
1301.7 
1109.0 
1389.9 

K (47 sites) 
   Lag 20 m 
   Lag 15 m 
   Lag 40 m 

 
Spherical 
Exponential 
Circular 

 
 0 

    00 
    00 

   
  1098.0 
  1109.0 
  1100.0 

 
   85.3 
   30.5 
   79.6 

 
1098.0 
1109.0 
1100.0 

pH Broom’s Barn Exponential 
Anisotropic  
Exponential 

    00 
    00 

        0.37 
        0.38 

   89.70 
   69.54 
 114.50 

0.37 
 φ=1.09 

Yield 1995 
 

Double  
Spherical 

    1.76         1.04 
        1.16  

   44.19 
 277.50  

0.8882 

REML estimator      
REML 230 Spherical 334.5   1273.5  170.6 1608.0 
REML 94 Exponential 300.0  1262.6    74.0  1562.6 
REML 47 Spherical     1.9  1171.1    95.7 1173.0 

Notes:   is the spatially correlated variance of the long-range spatial component,  is the range of the 
long-range spatial component, * is the distance parameter of the exponential function; to obtain a work-
ing range a′ =3r 

are shorter. Table B.6.2 shows that the models are all bounded functions indicat-
ing that the variation has a patchy distribution. 

Variograms were also computed by REML for the 20m grid interval, and are 
shown as the dashed line in Fig B.6.4(a), (d) and (g). The variograms estimated by 
REMLfor the two larger data sets are not as similar to those computed by MoM as 
one might expect. The sill variances are larger than the variance of the data. The 
range of the exponential model for the subset of 94 data is also much longer than 
that for the MoM variogram. The variograms estimated by REML and MoM are 
more similar to one another for the smallest data set, yet it is for these data that 
one would expect the greatest difference in model parameters. Although Kerry and 
Oliver (2007) showed a distinct advantage in computing variograms by REML for 
small sets of data, this is not particularly evident in the study described here.  

The experimental variogram computed from the yield data of a crop of winter 
wheat (2001) shows a complex structure [see Fig. B.6.6(a)]. The best fitting model 
was a spherical function with two spatial components; one with a range of 44m 
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and the other of 278m. Figure B.6.6(b) shows the experimental variogram with the 
fitted model; the nugget, short- and long-range components of the model are also 
shown separately. 

Anisotropy.  Figure B.6.3(a) shows the directional variogram for topsoil K. It is 
evident that the sill variances disperse after a lag of about 130m. Zonal anisotropy 
cannot be dealt with by a simple transformation of the coordinates. If the region 
can be stratified into zones, then this is one way in which zonal anisotropy can be 
resolved. The variogram models suggest that the variation is patchy, which could 
arise from zones that are preferentially orientated and with different means. A 
classification of these data had been done previously (see Frogbrook and Oliver 
2007 for details), therefore the class means were subtracted from the values of K 
for the appropriate class.  

The directional variogram was then computed on the residuals from the class 
means, Fig. B.6.3(b). The directional variogram is shown by the symbols for the 
four directions and the isotropic models fitted to the omnidirectional variograms 
by the solid black line for both the raw data and the residuals. Stratification has ef-
fectively removed the zonal anisotropy – some scatter remains in the different di-
rections but this is to be expected from sampling fluctuations. The model parame-
ters have also changed considerably; the best fitting model is now a pentaspherical 
function with a sill variance of less than 1000 and a range of 91m. The model now 
has a much shorter range of spatial dependence, Table B.6.2, and so the variogram 
has been plotted to a maximum lag of 150m to take into account this difference. 
There is no marked evidence of anisotropy over distances less than the range.  

 

 
Fig. B.6.5. Directional variogram computed on the pH data from Broom’s Barn Farm (433 
sampling points): (a) with the best fitting isotropic model (solid line), and (b) with an iso-
tropic exponential function (the solid lines show the envelope of this function). The sym-
bols represent: ∗ denotes 0º (E–W),  denotes 45º, × denotes 90º (N–S), ▲ denotes 135º, and 
the solid lines are the isotropic models fitted to the omnidirectional variograms 
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To illustrate geometric anisotropy we have used the data for pH from Broom’s 
Barn Farm. This is an experimental sugar beet farm near to Bury St. Edmunds, 
Cambridgeshire, UK (see Webster and Oliver 2007, for more detail on these data). 
Figure B.6.5(a) shows the directional variogram which illustrates how the 
semivariances in the different directions start to diverge after a lag of 80m. The 
solid line is the best fitting isotropic model, an exponential function (Table B.6.2). 
Figure B.6.5(b) shows the directional variogram with the fitted anisotropic expo-
nential function. The two lines show the envelope of this function and Table B.6.2 
gives the parameters of the fitted function. The direction of maximum variation 
and of the shorter range is about 60º (where 0º is E–W) and the direction of mini-
mum variation is perpendicular to this.   

Nested variation.  Figure B.6.6(a) shows the experimental variogram for yield 
2001 at the Yattendon Estate; it appears to have a complex structure.  Several 
models were fitted and the one with the smallest residual sums of squares was a 
nested spherical function, which is shown as the solid line fitted to the experimen-
tal values in Fig. B.6.6(b). The model parameters for yield 2001 are given in Table 
B.6.2. To illustrate the individual components of this model, we have shown them 
separately in Fig. B.6.6(b) as lines with different ornament.  The complex struc-
ture identified from the experimental variogram is evident as two markedly differ-
ent ranges of spatial variation of 44m and 278m.  

 

 
Fig. B.6.6. Variogram of yield 2001 for the Yattendon Estate: (a) experimental variogram 
(symbols), and (b) the experimental variogram with the fitted double spherical model (solid 
line); the ornamented lines represent the individual model components 
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B.6.6   Geostatistical prediction: Kriging 

Kriging is a method of optimal prediction or estimation in geographical space, of-
ten known as a best linear unbiased predictor (BLUP). It is the geostatistical 
method of interpolation for random spatial processes. Matheron (1963) first used 
the term ‘kriging’ for the method in recognition of D. G. Krige’s contribution to 
improving the precision of estimating concentrations of gold and other metals in 
ore bodies. Krige (1951) had observed that he could improve estimates of ore 
grades in mining blocks by taking into account the grades in neighbouring blocks.  
Matheron (1963) expanded Krige’s empirical ideas and put them into the theoreti-
cal framework of geostatistics. However, Matheron’s developments were not in 
isolation; the mathematics of simple kriging had been worked out by A. N. Kol-
mogorov in the 1930s (Kolmogorov 1939, 1941), by Wold (1938) for time series 
analysis and later by Wiener (1949). Cressie (1993) gives a brief history of the ori-
gins of kriging.  

Kriging provides a solution to a fundamental problem faced by environmental 
scientists of predicting values from sparse sample data based on a stochastic 
model of spatial variation. Most properties of the environment (soil, vegetation, 
rocks, water, oceans and atmosphere) can be measured at any of an infinite num-
ber of places, but for economic reasons they are measured at relatively few. Sev-
eral mathematical methods of interpolation are available, for example, Thiessen 
polygons, triangulation, natural neighbour interpolation, inverse functions of dis-
tance, least-squares polynomials (trend surfaces) and splines. Most of these me-
thods take account of systematic or deterministic variation only and disregard the 
errors of prediction. Kriging, on the other hand, overcomes the weaknesses of 
these mathematical interpolators. It makes the best use of existing knowledge by 
taking account of the way a property varies in space through the variogram or co-
variance function. Kriging also provides not only predictions but also the kriging 
variances or errors. It can be regarded simply as a method of local weighted mov-
ing averaging of the observed values of a random variable, Z, within a neighbour-
hood, V. Kriging can be done for point (punctual kriging) or block supports of 
various size (block kriging), depending upon the aims of the prediction, even 
though the sample information is often for points. 

Since its original formulation, kriging has been elaborated to tackle increas-
ingly complex problems in disciplines that use spatial prediction and mapping. It 
is used in mining,  petroleum engineering,  meteorology, soil science, precision 
agriculture, pollution control, public health, monitoring fish stocks and other ani-
mal densities, remote sensing, ecology, geology, hydrology and other disciplines. 
As a consequence, kriging has become a generic term for a range of BLUP least-
squares methods of spatial prediction in geostatistics. The original formulation of 
kriging, now known as ordinary kriging (Journel and Huijbregts 1978), is the most 
robust method and the one most often used.  
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Types of kriging 

Ordinary kriging assumes that the mean is unknown and that the process is locally 
stationary. Simple kriging, which assumes that the mean is known, is used little 
because the mean is generally unknown. However, it is used in indicator and dis-
junctive kriging in which the data are transformed to have known means. Log-
normal kriging is ordinary kriging of strongly positively skewed data transformed 
by logarithms to approximate a lognormal distribution. Kriging with trend enables 
data with a strong deterministic component (non-stationary process) to be ana-
lyzed;  

Matheron (1969) originally introduced universal kriging for this purpose, but 
the state-of-the-art is empirical-BLUP (Stein 1999), which uses the REML 
variogram (Lark et al. 2006). Matheron (1982) developed factorial kriging or 
kriging analysis for variation that is nested. It estimates the long- and short-range 
components of the variation separately, but in a single analysis. Ordinary co-
kriging (Matheron 1965) is the extension of ordinary kriging to two or more vari-
ables that are spatially correlated. If some property that can be measured cheaply 
at many sites is spatially correlated or coregionalized with others that are expen-
sive to measure and recorded at many fewer sites, the latter can be estimated more 
precisely by cokriging with the spatial information from the former.  

Disjunctive kriging (Matheron 1973) is a non-linear parametric method of 
kriging. It is valuable for decision-making because the probabilities of exceeding 
(or not) a predefined threshold are determined in addition to the kriged estimates. 
Indicator kriging (Journel 1982) is a non-linear, non-parametric form of kriging in 
which continuous variables are converted to binary ones (indicators). It can handle 
distributions of almost any kind and can also accommodate ‘soft’ qualitative in-
formation to improve prediction. Probability kriging was proposed by Sullivan 
(1984) because indicator kriging does not take into account the proximity of a 
value to the threshold, but only its geographic position.  Bayesian kriging was in-
troduced by Omre (1987) for situations in which there is some prior knowledge 
about the drift or trend. 

Ordinary kriging 

Ordinary kriging is by far the most widely used type of kriging. It is based on the 
assumption that the mean is unknown. Consider that a random variable, Z, has 
been measured at sampling points, xi,  i = 1, … n, and we want to use this informa-
tion to estimate its value at a point x0 (punctual kriging) with the same support as 
the data by 
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),( Bxiγ

where n usually represents the data points within the local neighbourhood, V, and 
is much less than the total number in the sample, N, and λi are the weights. To en-
sure that the estimate is unbiased the weights are made to sum to one 
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and the expected error is E[ )()(ˆ

00 − xZxZ ] = 0. The prediction variance is  
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where γ (xi, xj) is the semivariance of Z between points xi and xj, γ(xi, x0) is the 
semivariance between the ith sampling point and the target x0. The semivariances 
are derived from the variogram model because the experimental semivariances are 
discrete and at limited distances. 

Kriged predictions are often required over areas (block kriging) that are larger 
than the sample support of the data. The estimate is a weighted average of the 
data, z(x1), z(x2), …, z(xn), at the unknown block,  
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The estimation variance of )(BZ  is: 
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where            is the average semivariance between data point xi and the target 
block B, and  

–
y (B, B) is the average semivariance within B, the within block vari-

ance.  
Equation (B.6.31) for a point leads to a set of n + 1 equations in the n + 1 un-

knowns 

 



340      Margaret A. Oliver 

1

 allfor ),()(),(

1

00
1

=

=+

∑

∑

=

=

n

i
i

jji

n

i
i jxxxxx

λ

γψγλ
 

(B.6.34) 
 
 
 

(B6.35) 

 

the Lagrange multiplier, ψ, is introduced to achieve minimization. The kriging 
equations in matrix form for punctual kriging are 

 

Aλ = b (B.6.36) 

 
where A is the matrix of semivariances between data points, γ(xi, xj), b  is the vec-
tor of semivariances between data points and the target, γ (xi, x0) and λ is the vec-
tor of weights and the Lagrange multiplier. The kriging weights are obtained as 
follows by inverting matrix A, 

 

λ = A–1 b. (B.6.37) 

 
The weights, λi, are inserted into Eq. (B.6.29) to give the prediction of Z at x0. The 
kriging (prediction or estimation) variance is then  
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and in matrix form 
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Punctual kriging is an exact interpolator – the kriged value at a sampling site is the 
observed value there and the estimation variance is zero. The equivalent kriging 
system for blocks is 
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and the block kriging variance is obtained as  
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and in matrix form 

 

).,()( T2 BBbB γλσ −=  (B.6.43) 

 
Block kriging results in smoother estimates and smaller estimation variances over-
all because the nugget variance is contained entirely in the within-block variance, 
γ ( , )B B , and it does not contribute to the block kriging variance.  

For many environmental applications kriging is most likely to be used for in-
terpolation and mapping. The values of the property are usually estimated at the 
nodes of a fine grid, and the variation can then be displayed by isarithms or by 
layer shading. The estimation variances or standard errors can also be mapped 
similarly: they are a guide to the reliability of the estimates, where sampling is ir-
regular, such a map may indicate if there are parts of a region where sampling 
should be increased to improve the estimates. 

Kriging weights 

The kriging weights depend on the variogram and the configuration of the sam-
pling. The way in which the data points within the search radius are weighted is 
one feature that makes kriging different from classical methods of prediction 
where the weights are applied arbitrarily. Webster and Oliver (2007) illustrate how 
the weights vary according to changes in the nugget: sill ratio, the range, type of 
model, sampling configuration and the effect of anisotropy. The weights are par-
ticularly sensitive to the nugget variance and anisotropy. Weights close to the 
point or block to be estimated carry more weight than those further away, which 
shows that kriging is a local predictor. As the nugget: sill ratio increases the 
weights near to the target decrease and those further away increase. For a pure 
nugget variogram, the kriging weights are all the same and the estimate is simply 
the mean of the values in the neighbourhood. The effect of the range is more com-
plex than for the nugget: sill ratio because it is also affected by the type of 
variogram model. In general, however, as the range increases the weights increase 
close to the target. For data that are irregularly distributed, points that are clustered 
carry less weight individually than those that are isolated.  

The fact that the points nearest to the target generally carry the most weight 
has practical implications. It means that the search neighbourhood need contain no 
more than 16–20 data points, which in turn means that matrix A in the kriging sys-
tem need never be large.  
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Factorial kriging 

If the variogram of Z(x) is nested, it can be represented as a combination of S indi-
vidual variograms 

 

)()()()( 21 hhhh Sγγγλ +++= L  (B.6.44) 

 
where the superscripts refer to the component variograms. If we assume that the 
processes represented by these components are uncorrelated, then Eq. (B.6.44) can 
be written as  
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where gk(h) is the kth basic variogram function and bk is a coefficient that meas-
ures the relative contribution of the variance gk(h) to the sum.  

The components on the right-hand side of Eq. (B.6.45) correspond to S ran-
dom functions that in sum form Z(x), which can be represented as  
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in which μ is the mean of the process. Each Zk(x) has an expectation zero, and the 
squared differences are 
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The last component, ZS(x) could be intrinsic only, so that gS(h) in Eq. (B.6.45) is 
unbounded with gradient bS. This equation expresses the mutual independence of 
the S random functions, and enables the values of the contributing processes to be 
estimated separately by factorial kriging. Each spatial component Z k(x) is esti-
mated as a linear combination of the observations, z(xi), i =  1, …, n 
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The k

iλ are weights assigned to the observations, but now they must sum to zero, 
not to one, to ensure that the estimate is unbiased and to accord with Eq. (B.6.46).  
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Subject to this condition, they are chosen to minimize the kriging variance. This 
leads to the kriging system 
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where ψ k(x0) is the Lagrange multiplier for the kth component. This system of 
equations is solved for each spatial component, k, to find the weights, k

iλ , which 
are then inserted into Eq. (B.6.48) for that component. Estimates are made for 
each spatial scale, k, by solving Eq. (B.6.49).  
     Kriging is usually done in small moving neighbourhoods centred on x0, as for 
ordinary kriging. Thus, from a theoretical point of view, it is necessary only that 
Z(x) is locally stationary. Equation (B.6.46) can then be rewritten as  
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where μ(x) is a local mean that can be considered as a long-range spatial compo-
nent. We need to krige the local mean, which is again a linear combination of the 
data: 
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The weights are obtained by solving the kriging system: 
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Estimating the long-range component can be affected by the size of the moving 
neighbourhood (Galli et al. 1984). To estimate a spatial component with a given 
range, the distance across the neighbourhood should be at least equal to that range. 
If the sampling is intensive and the range is large, there are so many data within 
the chosen neighbourhood that only a small proportion of them is retained for 
kriging,  and those  are all  near to the target. Although modern computers can 
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handle many data at a time, the inversion of such large matrices can be unstable.   
Further, only the nearest few data to the target contribute to the estimate because 
they screen the more distant data. Consequently, the neighbourhood used is 
smaller than the one specified, which means that the range of the component esti-
mated is smaller than that determined from the variogram. Galli et al. (1984) sug-
gested a way of overcoming this shortcoming by selecting only a proportion of the 
data within the specified neighbourhoods. Such a selection is arbitrary, and Jaquet 
(1989) proposed an alternative that involves adding the estimate of the local mean 
to the estimated long-range component. Following Oliver et al. (2000), this is the 
solution we have adopted for the case study below.  

B.6.7  Case study: Kriging 

The case study describes applications of ordinary kriging with an isotropic vario-
gram model and with an anisotropic one where there are directional differences in 
the variation. Factorial kriging is applied to explore variation that is described best 
by a nested variogram function. 

Ordinary kriging 

The complete set of data and the two data subsets of topsoil potassium from Yat-
tendon are used to illustrate ordinary kriging. Predictions were made at unsampled 
places at the nodes of a 5m × 5m grid by ordinary punctual and block kriging. A 
minimum of seven and a maximum of 20 points were the limits set for the number 
of data in the neighbourhood. For block kriging, estimates were made over blocks 
of 10m × 10m. The parameters of the variogram models fitted to the MoM ex-
perimental variograms of each data set for the 20m lag (Table B.6.2) were used 
with the respective data for kriging. The kriged predictions were mapped in 
Gsharp. Figure B.6.7 shows the maps of block kriged estimates; those from punc-
tual kriging are not shown as they appear so similar. The map based on the 230 
data, Fig. B.6.7(a), shows the detail in the variation of topsoil K from the intensive 
sampling. The areas of small concentrations are where the soil is more sandy and 
the largest concentrations are in a dry valley that extends from NW to SE across 
the field where the soil contains more clay and silt. The map based on the sample 
size of 94, Fig. B.6.7(b), which is close to Webster and Oliver’s (1992) minimum 
recommended size for computing an accurate variogram, shows  the main features 
of the variation in topsoil K, albeit with some loss of detail. From a management 
perspective this map would form a sound basis to manage applications of K in this 
field. This smaller sample size represents a saving of almost 60 percent in sam-
pling effort. Figure B.6.7(c) is the block kriged map based on 47 data and the loss 
of detail is evident. It is clear that to reduce the sample size to this level would be 
unadvisable for managing K applications in this field. 
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Fig. B.6.7. Maps of block kriged predictions of topsoil potassium at the Yattendon Estate 
for:  (a) complete set of 230 data, (b) subset of 94 data, and (c) subset of 46 data 
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Fig. B.6.8. Maps of block kriged kriging variances for topsoil potassium at the Yattendon 
Estate for: (a) total of 230 data, (b) subset of 94 data, and (c) subset of 46 data 
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Figure B.6.8 (a), (b) and (c) shows the maps of block kriging variances for the 
three sizes of sample (230, 94 and 47, respectively); they show clearly how the 
variances of the predictions increase markedly with fewer data. The large kriging 
variances in the central part of the field in Fig. B.6.8(a) and (b) indicate an area 
with no sampling points where there is a copse. Figure B.6.8(a) shows that the 
smallest errors are along the short transects where the sampling was most inten-
sive. Figure B.6.8(b) and (c) also shows that the kriging variances are smallest 
close to sampling points. The large variances around the field margins show the 
edge effects where there were fewer data from which to predict. These maps show 
that economizing on sampling to a sample size of 47 results in a loss of accuracy 
in the  predictions that could  have  implications for  subsequent  management. 

Figure B.6.9 shows the map of kriging variances from punctual kriging of the 
complete data set. Although the maps of estimates for punctual and block kriging 
were almost indistinguishable, the maps of kriging variance are quite different. 
The punctual kriging variances are much larger because the nugget variance sets a 
lower limit to the kriging variance. For block kriging the nugget variance disap-
pears from the block kriging variance [see Eqs. (B.6.31) and (B.6.37)]. The larger 
is the proportion of nugget variance, the greater is the difference between the 
block and punctual kriging variances.   

Kriging with an anisotropic model 

The pH data from Broom’s Barn Farm were used with the anisotropic exponential 
model for ordinary punctual kriging on a 10m × 10m grid. Figure B.6.10 shows 
the map of predictions. It is evident that there is more variation in pH from SSE to 
NNW than at right angles to this as the model in Table B.6.2 above describes. 
 

 

 

 

 

 

Fig. B.6.9. Map of punctually kriged kriging variances for topsoil potassium at the Yatten-
don Estate for the complete set of 230 data 
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Fig. B.6.10. Map of punctually kriged predictions for topsoil pH at the Broom’s Barn Farm 

Nested variation: factorial kriging 

The yield of winter wheat for 2001 from the Yattendon Estate is used to illustrate 
factorial kriging; its variogram (see Fig. B.6.6 and Table B.6.2) shows that there is 
more than one scale of variation present. Predictions were made at the nodes of a 
5m × 5m grid as for topsoil K at Yattendon. The parameters of the double spheri-
cal model were used for ordinary kriging first; Fig. B.6.11(a) is the map of predic-
tions. The pattern of variation appears complex because of the long- and short-
range components of the variation. These components were then extracted sepa-
rately and predicted by factorial kriging. Figure B.6.11(b) is the map of the long-
range predictions. It is similar to that from ordinary kriging but it is less noisy be-
cause the short-range  variation is no  longer present. The regions of the field with 
large and small yields are clear in both maps. Many of the areas with large yield 
correspond to areas of large topsoil K concentrations [see Fig. B.6.11(a)]. The 
map of the short-range predictions, Fig. B.6.11(c) is quite different from the other 
two maps. It shows a much smaller scale of variation with a strong regular pattern. 

This component of the variation appears to relate to the lines of management 
within the field in a NE–SW direction. The larger values are probably between the 
tramlines where the soil has suffered less compaction from machinery. There is 
some weak evidence of variation perpendicular to these lines that might reflect 
tramlines of previous operations. These management effects that have given rise to 
the short-range variation are not evident in the map of ordinary kriged predictions, 
Fig. B.6.11(a).  
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Fig. B.6.11. Maps of wheat yield for 2001 at the Yattendon Estate for: (a) ordinary kriged 
predictions, (b) predictions of the long-range component of the variation, and (c) predic-
tions of the short-range component of the variation 
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For intensive data such as those from yield monitors, digital elevation models and 
satellites, factorial kriging is a valuable technique to explore the variation at dif-
ferent spatial scales. In this way it might be possible to gain some insight into the 
underlying processes that are responsible for variation at the different spatial 
scales.     
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