
B.4  Spatial Clustering 

Jared Aldstadt 

B.4.1  Introduction 

Spatial clustering analysis has become common in many fields of research, and is 
most commonly used in epidemiology and criminology applications.  Knox (1989, 
p.17) defines a spatial cluster as, ‘a geographically bounded group of occurrences 
of sufficient size and concentration to be unlikely to have occurred by chance.’  
This is a useful operational definition, but there are very few situations when phe-
nomena are expected to be distributed randomly in space.  In most cases an im-
plicit assumption in spatial cluster analysis is that the researcher has accounted for 
all the factors known to influence the variable of study.  This would lead to an ex-
amination of residual spatial variation in a spatial modeling exercise.  Spatial clus-
tering analysis is carried out on raw variables or rates when there are no a priori 
hypotheses regarding the process. 

There are an ever increasing number of methods available for the analysis of 
spatial clustering.  These techniques can be divided into two categories: those that 
are used to determine if clustering is present in the study region, and those that at-
tempt to identify the location of clusters. The first category of tests is called global 
clustering techniques and these methods provide a single statistic that summarizes 
the spatial pattern of the region.  These will be discussed in the section that fol-
lows.  The second type of methodology is called local clustering.  Local methods 
examine specific sub-regions or neighborhoods within the study to determine if 
that area represents a cluster of high values (a hot spot) or low values (a cold 
spot).  These methods can be further differentiated as either focused or non-
focused tests.  Focused tests examine one or a small set of pre-defined foci of in-
terest.  Non-focused tests are designed to find clusters that exist throughout the en-
tire region of analysis.  Local clustering methods will be discussed in Section 
B.4.3.  Considerations for choosing a spatial clustering method and some conclud-
ing remarks are provided in Section B.4.4. 

© Springer-Verlag Berlin Heidelberg 2010

M.M. Fischer and A. Getis (eds.), Handbook of Applied Spatial Analysis: 279
Software Tools, Methods and Applications, DOI 10.1007/978-3-642-03647-7_15,



280      Jared Aldstadt 

B.4.2  Global measures of spatial clustering 

The methods developed to detect global clustering are also called general tests of 
clustering.  In most cases, the null hypothesis is one of spatial randomness.  These 
methods provide a single summary statistic which describes the degree of cluster-
ing present in the mapped pattern.  The value of the statistic indicates whether the 
pattern is clustered, random, or dispersed.  In contrast to a clustered pattern, a dis-
persed pattern is one where high values and low values are nearby each other more 
often than would be expected in a random pattern.  Clustered and dispersed pat-
terns may also be labeled positive and negative spatial autocorrelation respec-
tively.   

Areal data methods 

The first set of methods deal with areal data, or the attributes of units that are 
mapped as polygons.  These attributes are most often aggregate data such as a 
density or a rate per unit of population.  It does not usually make sense to carry out 
spatial analysis with a raw count of events within a spatial unit.  Much of the 
variation in the attribute is likely to be a function of the size of the unit or the 
population at risk within the unit.  The use of rates may also confound cluster 
analysis when there is substantial variation in the size of the denominator to be 
used to calculate rates.  Consequently, variants of general tests have been devel-
oped that account for this variation in population size and examine the spatial pat-
tern of the excess or deficiency of events occurring in each spatial unit.  These 
analyses are not limited to scale data, and a method that examines clustering in a 
map with two classes will also be discussed. 

Global clustering statistics take a common form that compares the similarity 
of values at locations to the spatial proximity of the locations.  This type of statis-
tic is called a general cross-product statistic, and it was introduced by Mantel 
(1967) for computing the similarity between two matrices.  The spatial proximity 
between each pair of locations i and j is denoted Wij and entered into an n-by-n 
matrix called the spatial weights matrix.  The spatial weights matrix is most often 
denoted as W, and is discussed further below.  The similarity of two data values xi 
and xj is denoted Sij and can be entered into an n-by-n matrix that is labeled S. 
Clustering is indicated when spatial proximity and similarity are positively related.  
In summation notation, the general form of the statistic is 
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Each of the techniques presented in this section are a variation of this form, with 
the distinguishing variant being the measure of similarity between values.  Often 
the indices are normalized by global measures of similarity and spatial connec-
tivity. 

The spatial weights matrix defines the structure of spatial relationships in the 
study region.  It delimits the extent of clustering that the clustering technique is 
able to detect.  The choice of W, therefore, should be considered carefully in clus-
tering analysis.   The simplest and perhaps most commonly used set of spatial 
weights is the binary contiguity matrix.  Here, Wij is equal to one if units i and j 
share a common boundary and zero otherwise.  There are two variants of the bi-
nary contiguity matrix.  The Rook case requires that neighbors share a common 
edge.  A common vertex or point is all that is required for contiguity in the Queen 
case.  Other binary weights matrices include a number of nearest neighbors and 
the complete set of neighbors with a given distance.  Spatial relationships may 
also be defined as a function of the distance between units.  Most commonly ele-
ments are defined as 

 

α−= ijij dW  (B.4.2) 

 
where dij is the distance between units i and j and α  is larger than zero.  It should 
also be noted that the diagonal of the weights matrix, the values Wii, are usually set 
to zero. 

The weights matrix used in cluster analysis is often standardized so that the 
elements of each row sum to one (row standardization).  This procedure serves to 
equalize the weight given each observation in the analysis with respect to its num-
ber of neighbors.  The elements of this standardized matrix are calculated as  
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Standardization should not be carried out in cases when the weights have mean-
ingful interpretation with regards to the analysis (Anselin 1988).  For example, 
standardizing inverse distance matrices will distort the relative spatial relation-
ships between units and cloud interpretation of the clustering index.  The effects of 
standardization are examined and an alternative to row standardization is provided 
by Tiefelsdorf et al. (1999).  A more complete examination of the spatial weights 
matrix with references to many alternative forms and several reviews is given by 
Getis and Aldstadt (2004). 
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Join-count statistic.   The join count statistic is a measure of clustering for a binary 
classification of data.  These values could be visualized as a two-category chorop-
leth map.  The two classes are usually referred to as black (B) and white (W).  A 
join is another name for the contiguity relationship of two areas sharing a bound-
ary.  The statistic value is the number of joins of a given type.  Each boundary 
may connect two black units (BB), two white units (WW) or one unit of each type 
(BW).  Cliff and Ord (1973) define the number of BW joins as the general cross 
product statistic 
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where xi equal to one corresponds to B and xi equal to zero corresponds to W.  Fol-
lowing from the definition of join, the weights, Wij are usually restricted to a bi-
nary contiguity representation.  Under a free sampling assumption, the expected 
number of BW joins in a random spatial distribution is  

 

E [BW]  = 2 Jpq  (B.4.5) 

  
where J is the total number of joins. p is the probability that a unit is coded B and 
is often estimated as the proportion of units that are in the class B.  q is the prob-
ability that a unit is coded W and is equal to one minus p.  The number of joins 
may be calculated from the binary contiguity weights as  
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If the classes are clustered together, there would be fewer observed BW joins than 
expected.  Likewise, if the pattern is dispersed or similar to a checkerboard pat-
tern, there would be more BW joins than expected in a spatially random pattern.  
The variance of the BW statistic under both free and non-free sampling are derived 
in Cliff and Ord (1973) along with an extension to the case when there are more 
than two classes. 

Moran’s I.  Moran’s I is a well known test for spatial autocorrelation (Moran 
1950).  The index is similar to covariance and correlation statistics.  The measure 
of similarity between values at two locations i and j is the product of the deviation 
between the value at each location and the estimate of the global mean x . This 
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product is weighted by the spatial proximity of the two locations, and the sum of 
the resulting values for all pairs of locations is the spatial autocovariance.  The 
standardized index is given as 
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The expected value for a spatially random distribution is minus one over (n–1). 
This quantity tends towards zero as the sample size increases.  Values greater than 
this indicate clustering of units with high and or low values.  Values that are 
smaller than the expected value indicate negative association between proximate 
locations.  Unlike the Pearson’s correlation coefficient, Moran’s I is not bounded 
between negative one and one, but usually falls within this interval (Bailey and 
Gatrell 1995).  A correlogram displays the Moran’s I value calculated for a num-
ber of increasing distances.  The distances are most often mutually exclusive dis-
tance bands or orders of contiguity.  The correlogram can be used to determine the 
extent of spatial autocorrelation and at what distance spatial autocorrelation is 
maximized. 

Cliff and Ord (1973) derive the distribution of Moran’s I under the null hy-
pothesis for two different sampling assumptions.  Under the randomization as-
sumption the n observed values are fixed, but they are relocated randomly among 
the locations in a random fashion.  The normality assumption assumes that the 
values at each location are drawn from independent and identical normal distribu-
tions.  Underlying both of these assumptions is the additional assumption of sta-
tionarity.  In the spatial context, stationarity implies that the mean and variance of 
the variable of interest is constant throughout the study region.  Cliff and Ord 
(1973) prove that under both the randomization and normality assumptions 
Moran’s I is asymptotically normally distributed.  When n is large, a reliable sig-
nificance value can be computed based on this distribution.  Tiefelsdorf and Boots 
(1995) show that the rate of convergence to normality is a function of the spatial 
weights matrix and the distribution of the data values as well as sample size.  A 
Monte Carlo approach, as outlined by Besag and Newell (1991), is often used to 
generate significance values under either the randomization or normality assump-
tions. 
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Adjusting for heterogeneous variance. When the spatial units vary significantly in 
size, the assumption of constant variance is violated.  Specifically, units with large 
populations are less likely to deviate from the global mean with respect to units 
with small populations (Haining 2003).  Walter (1992) demonstrates that variation 
in size of population at risk can result in incorrectly rejecting the null hypothesis.  
Several methods have been proposed to test the spatial randomness hypothesis 
when the background population is heterogeneous (Waller and Gotway 2004).  
Oden (1995) proposed a version of Moran’s I, Ipop , that is based on individual 
level data.  Inference is again based on the randomization assumption. However, 
the randomization refers to the status of individuals.  This is most often applied in 
studies of disease clustering where cases are denoted as one and the remaining in-
dividuals are denoted zero.  Tango (1995) proposed the excess events test (EET) 
that is defined as 
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where ci is the number of cases in unit i, ni is the population of unit i, and C is the 
total number of cases in the study region. Like Ipop a large variation from the ex-
pected number of cases within a region contribute to large statistics, and Ipop is an 
affine transformation of EET (Oden et al. 1998; Tango 1998). Tango suggested an 
exponentially  decreasing  function  of  distance  as  the  weight  between  units 
exp (–dij /λ), where dij is the distance between locations i and j, and λ is a measure 
of the spatial scale of clustering.  The maximized excess events test (MEET) 
searches over a plausible range of λ for the minimum p-value (Tango 2000).  This 
methodology examines clustering at a number of scales while accounting for mul-
tiple testing.  Assunção and Reis (1999) propose an Empirical Bayes method for 
standardizing rates when variances are not stable.  In this approach xi is 
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In the accompanying simulation study, the authors determine that the standardized 
index is more powerful than the traditional Moran’s I.   Assunção and Reis (1999) 
also compare their method to Oden’s Ipop which is powerful in detecting rate het-
erogeneity within units, but is not as useful for detecting spatial correlation of 
rates. 

Geary’s c. Geary’s c is an alternative measure of spatial clustering that takes 
the familiar cross-product form (Geary 1954).  The similarity of two locations is 



B.4     Spatial clustering      285 

quantified as the difference between the values at each location squared.  This 
leads to the statistic 
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Two values that are similar will have a small contribution to the global value, 
therefore low values of c are indicative of a clustered pattern.  The expected value 
of a random pattern is one, and c ranges between zero and two.  Cliff and Ord 
(1973) derived the variance under the randomization and normalization assump-
tions. 

Getis-Ord G.  The Getis-Ord G statistic quantifies the relationship between 
two locations as the product of the values at the locations (Getis and Ord 1992).  
The statistic is 
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Use of the general G requires that the variable of analysis is positive valued with a 
natural origin.  The expected value under a random pattern is 
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G values greater than the expected value result from a pattern that is dominated by 
concentrations of high values because the product of neighboring units is large.  A 
low G value results from a pattern dominated by clusters of low values.  Accep-
tance of the null does not necessarily imply a random pattern, but may result in the 
case that clusters of both high and low values exist in the study region.  The G sta-
tistic differs from the other indexes discussed in this section in that it is not strictly 
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a measure of clustering, but provides an indication of the type of clustering that is 
present in the study region. 

Point data methods 

A second set of methods is used to analyze phenomena that are mapped as points.  
These could be the location of a set of objects or the locations of a set of events.    
Complete spatial randomness (CSR) describes the pattern of points that would oc-
cur by chance in a completely undifferentiated environment.  The process that 
generates this pattern is called the homogeneous planar Poisson point process.  In 
this process points are generated in a study are under the conditions: (a) each loca-
tion in the study area has an equal probability of receiving a point; and (b) the se-
lection of a location for a point is independent of the location of existing points.  
As with areal data, patterns may deviate from CSR by being either clustered or 
dispersed.  In a clustered pattern, points are on average closer than expected in 
CSR.  In a dispersed pattern, points are uniformly distributed throughout the study 
area. 

The CSR hypothesis is limiting and rejection of this null may not be meaning-
ful.  There are few instances when the homogeneous and independent probability 
of occurrence is plausible.  To avoid this limiting assumption, comparative analy-
sis of two or more point patterns is conducted.  This allows for examination of 
clustering above and beyond what would be expected due to spatial variation in 
the probability of occurrence.  The aim is often to determine whether some attrib-
ute is clustered in a population given its heterogeneous distribution.  When analy-
zing one or more types of events or objects, the point patterns are often referred to 
as marked point patterns. 

Quadrat analysis.  Quadrat analysis is one of the first techniques used to test 
the CSR hypothesis.  Quadrat analysis involves partitioning the study area into a 
number of scattered or contiguous equal sized quadrats and was originally deve-
loped in the plant ecology literature (Greig-Smith 1952).  The number of events in 
each cell is tabulated and a frequency table of these cell counts is computed.  A 
goodness-of-fit test is then performed to determine if the frequencies are signifi-
cantly different from those expected under a Poisson process.  An excess number 
of low and high cell counts indicate a clustered pattern.  An excess number of cells 
with average density indicate a dispersed pattern.  The results are dependent on the 
size of the quadrats, and often the analysis is repeated for a range of quadrat sizes 
(Boots and Getis 1988).  The general clustering methods described above are also 
used to analyze the pattern of events aggregated into quadrats. 

Nearest neighbor analysis. Nearest neighbor analysis also has it origins in the 
plant ecology literature.  These methods are based on the distance between each 
point and its closest neighbor.  Clark and Evans (1954) derived the expected value 
and variance of the average nearest neighbor distance in a CSR pattern.  The use 
of the mean nearest neighbor distance provides an easy to interpret summary sta-
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tistic, but is a crude representation of a point pattern.  For instance, a few very 
large nearest neighbor distances associated with isolated points could obscure an 
otherwise clustered pattern.  Refined nearest neighbor analysis overcomes this is-
sue by examining the entire distribution of nearest neighbor distances.  The test 
statistic is the maximum difference between the observed nearest neighbor dis-
tance frequency distribution and the distribution expected under the null hypothe-
sis (Diggle 1990).  A rigorous analysis of a point data set can also include the 
analysis of higher order neighbors.   

Ripley’s K function. One problem with quadrat analysis and nearest neighbor 
analysis is that they examine only one scale of interaction at a time (Bailey and 
Gatrell 1995).  Most commonly these techniques detect clustering at short dis-
tances.  Advances in computational capabilities have enabled the examination of 
all inter point distances.  Ripley’s K function can be computed over a range of dis-
tances and be used to identify the scales over which clustering occurs (Ripley 
1976).  The estimator is defined as 
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where R is the size of the study area.  The weights matrix is binary and equal to 
one when points i and j are within distance d, and zero otherwise. A standardized 
measure that simplifies interpretation is given as 

 

( )ˆ
ˆ( )

K d
L d

π
= . (B.4.15)

 
The expected value of ˆ( )L d under CSR is d. A value greater than d indicates clus-
tering and a value less than d indicates dispersion.  The statistical significance of 
the results is determined through Monte Carlo simulations under an appropriate 
null hypothesis (Besag and Diggle 1977). 

The points outside the study region are unobserved and cannot be included in 
the summation.  In order to correct for this edge effect, points near the boundary 
may be given a larger weight in the analysis.  Ripley (1976) provided one such 
correction for rectangular study areas (see Chapter B.3). The boundary problem is 
also overcome by transforming or duplicating the existing dataset to create points 
outside the boundary.  A comparison of the various edge correction methods is 
provided by Yamada and Rogerson (2003). 

Ripley’s K function is a form of second order analysis because it is examining 
the interaction or dependence between points. This is in contrast to the intensity of 
points, which are termed first-order effects. There is an implicit assumption that 
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the density of points is uniform within the study area (Diggle 2003).  When the 
density of points is heterogeneous within the study area, this first-order effect may 
be captured in the K function. To avoid this ambiguity the distances of analysis 
should be limited so that they are small relative to the size of the study area.  One 
rule of thumb is to limit the maximum distance of analysis to no longer than one-
half the length of the shorter side of a rectangular study area. 

Bivariate point patterns.  The methods above have only considered points of a 
single type.  Bivariate point pattern methods may be used to answer questions 
concerning the spatial dependence of two types of events.  One set of points may 
also be used as a control group to correct for the variations in density within the 
study area.  This type of analysis is especially relevant to epidemiological studies 
where inhomogeneous populations at risk are the norm. 

The cross K function is a useful tool for examining the relationship between 
two sets of events (Bailey and Gatrell 1995).  The estimator is given as  
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where n1 and n2 are the number of each type of points.  The result can be standard-
ized in the same manner as above (see Eq. (B.4.15)).  In this case, a value greater 
than d indicates that attraction between the two types of events and a value lower 
than d indicates repulsion between the two types of events. Significance is calcu-
lated through randomization.  In this case, the patterns are preserved in their origi-
nal form, but they are shifted relative to one another. These shifts may be per-
formed using a toroidal transformation of the study area. 

Spatial randomness may not always be an important hypothesis to test.  Very 
often the potential locations of an event are limited within the study area.  Exam-
ples include crimes which are geocoded to the nearest available street address or 
cases of disease which are distributed among the population at risk.  This type of 
heterogeneity can be accounted for using bivariate point pattern analysis.  Cuzick 
and Edwards (1990) presented a method based on the number of nearest neighbors 
of each type of point.  The method depends on a scale parameter, k, that indicates 
the extent of analysis in terms of the number of nearest neighbors.  The method 
was designed to detect clusters in epidemiological datasets, and the events of in-
terest are usually cases of disease.  The second set of events is called controls and 
is selected as being representative of the population at risk.  The statistic is given 
as  
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where n1 is the number of cases, and mi(k) is the number of cases among the k 
nearest neighbors.  When cases are clustered, the resulting statistic will be large.  
Tk will be small when the cases are dispersed and therefore, surrounded by con-
trols.  Jacquez (1994) developed a modification to the Cuzick and Edwards’ test 
that can be used to evaluate aggregate data as well.   

A form of the K function can be employed in the same situation (Diggle and 
Chetwynd 1991).  The statistic becomes the difference between the two univariate 
K functions, 
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where 1

ˆ ( )K d  and 2
ˆ ( )K d  are the K functions for each set of points.  If the events 

of type one are distributed randomly in relation to the remaining points, the differ-
ence will be approximately zero.  A positive difference indicates that points of 
type one are more clustered than points of type two.  A negative value indicates 
that points of type one are more dispersed than points of type two.  The signifi-
cance of both Tk and Diff (d) can be examined under the random labeling null hy-
pothesis.  The designation of event type is randomly permuted or shuffled among 
the points for each realization in a Monte Carlo procedure. 

B.4.3   Local measures of spatial clustering 

When the null hypothesis of spatial randomness is rejected by a general test for 
spatial clustering two additional questions are raised: where are the clusters and 
what is their spatial extent.  Local clustering statistics are used to answer these 
questions.  It should be noted, however, that there may be significant local cluster-
ing even in the case that the general test results in acceptance of the null hypothe-
sis.  Local measures can be either tests of clustering or focused tests.   

Areal data methods 

As with global clustering statistics, the local tests take a general form.  A local 
clustering statistic is the product of a spatial weights vector and a similarity vector.  
It is represented in summation notation as  
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Several of the global methods presented in Section B.4.2 have a local equivalent 
that is the ith unit’s contribution to the global statistic. 

Getis-Ord Gi and Gi
* .  Getis and Ord (1992) present a local clustering test that 

is based on the concentration of values in the neighborhood of a unit.  The original 
statistic was given as 
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The authors derive the expected value and variance of Gi when Wij are elements of 
a binary spatial weights matrix.  Most often the weights are based on proximity 
with the value at all units within a given distance being summed in the numerator.  
The Gi

* statistic includes the contribution of the ith unit in the calculation of local 
concentration.  This amounts to adding the value xi to both the numerator and de-
nominator in Eq. (B.4.20). The Gi

* matches the usual definition of cluster as a con-
tiguous and non-perforated set of units.  In this original formulation, the statistics 
are intended for use with variables that possess a natural origin.   

Modified versions of the Gi and Gi
* statistics are presented by Ord and Getis 

(1995).  The newer formulation standardizes the statistic by subtracting the ex-
pected value and dividing the difference by the standard error.  This eases inter-
pretation as the result can be interpreted as approximately following a standard 
normal distribution.  A positive value indicates clustering of high values and a 
negative value indicates a cluster of low values.  This update also allows for the 
use of non-binary weights matrices and variables without a natural origin.  The 
standardized Gi

*  statistic is given in Chapter B.3. 
The Moran scatter plot and local Moran’s I.  The Moran scatter plot was in-

troduced by Anselin (1996) as an exploratory spatial data analysis (ESDA) tool for 
assessing local patterns of spatial association (see also Chapter B.1).  This bivari-
ate scatter plot places the unit values (xi) on the horizontal axis and the spatial lag 
(lagi) for the same variable on the vertical axis (see Fig. B.4.1).  The spatial lag is 
the spatially weighted average of the values at neighbouring units, and is calcu-
lated as 
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The axes of the plot are drawn so that they cross at the average value of xi and lagi, 
respectively.  The four quadrants of the plot separate the spatial association into 
four components.  The first letter in the quadrant labels indicates whether the 
value of xi is higher (H) or lower (L) than the average of all values.  Correspond-
ingly, the second letter in the quadrant labels indicates whether the value of lagi is 
higher (H) or lower (L) than the average of all the spatial lags.  Units that fall into 
the quadrants labelled ‘HH’ and ‘LL’ represent clustering of high and low values 
respectively.  The remaining quadrants contain units that have negative associa-
tion with their neighbours and can be considered as spatial outliers.  A spatial out-
lier may arise from a cluster consisting of just one unit.  The Moran scatter plot is 
a useful visualization tool for assessing spatial pattern and spatial clustering. 

 

Fig. B.4.1. The Moran scatter plot 

The significance of extreme points in the Moran scatter plot can be assessed using 
local Moran’s I or Ii (Anselin 1995).  For each region, Ii is calculated as 
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As discussed in Chapter B.3, Ii represents a decomposition of the global Moran’s 
I.  This form of local method is called a Local Indicator of Spatial Association 
(LISA).  Anselin (1995) also presents the formulation of the local Geary’s c or ci.  
Statistical significance can be determined through the provided expected value and 
variance or by Monte Carlo procedure.  A positive Ii indicates clustering of high or 
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low values.  A negative Ii indicates a spatial outlier.  Several results are, therefore, 
reported for each unit.  These include the statistic value, the significance value, 
and the label of corresponding quadrant of the Moran scatter plot. 

Local clustering of categorical data. In the case of global clustering statistics, 
the methods for categorical data preceded the methods for metric data.  This was 
not the case for local methods of pattern analysis.  Boots (2003, 2006) details the 
issues in this research area and presents ESDA methods for describing and under-
standing patterns of categorical data. 

Accounting for multiple and dependent testing 

Local spatial statistics are often used in an exploratory mode to test for clustering 
at each location in the study area simultaneously.  In this case, the issue of multi-
ple and dependent testing is a concern when assessing the significance of cluster-
ing.  Multiple testing problems arise whenever more than one hypothesis test is 
carried out using the same dataset.  The probability of rejecting the null hypothesis 
at least once when it is true in all cases is much higher than the nominal type I er-
ror rate, α.  The dependence part of the problem is a result of nearby local tests re-
lying on many of the same data values.  The results of these tests are, therefore, 
correlated.  Failure to account for these effects results in over identification of 
clusters by local spatial statistics (Anselin 1995; Ord and Getis 1995). 

The Bonferroni correction is commonly used to account for multiple testing 
(Warner 2007).  In this approach, a new critical value is calculated for the individ-
ual tests by dividing the overall level of type I error by the number of tests.  For 
example, if an overall significance level of 0.05 is desired for 20 simultaneous 
tests, a significance level of 0.0025 is used in each separate test.  Caldas de Castro 
and Singer (2006) demonstrate the usefulness of a less conservative approach 
called the false discovery rate (FDR).  FDR controls for the rate of false positives 
among  the  nominally  significant  results  and  was  introduced by Benjamini and  
Hochberg (1995). It is based on the distribution of significance values for a set of 
tests, and is therefore adaptive to the characteristics of each dataset.  Simulation 
studies performed by Caldas de Castro and Singer (2006) compared uncorrected 
local statistics with the Bonferroni and FDR corrected versions.  FDR was supe-
rior in properly identifying the location and extent of spatial clusters. Another 
common approach to account for multiple testing is to examine just the most ex-
treme value of all the individual tests (Baker 1996; Tango 2000).  This approach 
provides a satisfying solution in a general test of clustering, but it does not address 
each local test individually. 

Local spatial tests are most often evaluated under the assumption that there is 
no global spatial autocorrelation.  Some attempts have been made to relax this as-
sumption and evaluate clustering in the presence of spatial autocorrelation.  One 
technique, that of Ord and Getis (2001), is described in Chapter B.3 of this hand-
book.  Goovaerts and Jacquez (2004) present a geostatistical technique for gener-



B.4     Spatial clustering      293 

ating datasets under a realistic null hypothesis.  These models include both spatial 
autocorrelation and heterogeneous populations in the examinations of clustering. 

Cluster detection algorithms 

A second set of local methods are the automated search procedures and their asso-
ciated test statistics.  These computational techniques involve testing a large num-
ber of regions within the study area for spatial clustering.  These methods have 
primarily been applied to spatial analysis of epidemiological data.  They are flexi-
ble in that they can, for the most part, be applied to both point and aggregate data.  
In the case of aggregate data, the location associated with spatial units is most of-
ten taken as the centroid of the unit.  They differ from the methods presented 
above in that they are not limited to a fixed definition of neighborhood, and thus 
cluster size, but are designed to detect clusters of varying sizes.  It should be 
noted, however, that the test statistics discussed in the previous section could be 
used in conjunction with the search procedures outlined below. 

Geographical Analysis Machine (GAM).  The Geographical Analysis Ma-
chine (GAM) was the first automated approach to finding cluster locations in spa-
tial patterns (Openshaw et al. 1987).  The original GAM involves searching a 
large number of circles across the study area.  The circles are centered on a grid, 
and the radius of these circles is allowed to vary over a suitable range of values.  
The number of cases in each circle is counted and the significance of the count is 
evaluated.  A Monte Carlo procedure is used, and the circles that fall within a 
given threshold are retained.  The resulting set of circles is then mapped to show 
cluster centers.  One weakness of the GAM is the lack of control for multiple test-
ing (Besag and Newell 1991).  The GAM did, however, show the utility of a geo-
computational approach to cluster detection and has inspired several modifications 
and improvements.  Each of the methods described below has built on the founda-
tion of the GAM.  There have also been several improvements to the GAM proce-
dure itself.  One example is the method of Conley et al. (2005).  This technique 
uses genetic algorithms to speed search times and reduce over-reporting of cluster 
sizes. 

Besag and Newell’s method. One additional shortcoming of the original GAM 
is that the circles examined are based on a distance only approach.  If the popula-
tion at risk varies, then circles of the same size contain different size populations.  
This variation in population at risk must be included in the analysis.  The Besag 
and Newell (1991) method overcomes this difficulty by requiring the expected 
cluster size, say k, as a user input.  Each unit with at least one case of disease is 
examined as a potential center of clustering.  The circle is expanded in order of 
nearest neighbor distance until at least k cases are included within the circle.  The 
inference is then based on the number of units, Li, containing k cases.  The signifi-
cance of each potential cluster is evaluated using the Poisson cumulative distribu-
tion function under the uniform risk null hypothesis 
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where li is the observed number of units containing k cases, and μ is the expected 
number of cases within those units. μ is calculated as the product of the global risk 
and the population at risk within the set of units under examination.  Fotheringham 
and Zhan (1996) compare GAM, Besag and Newell’s method and their own modi-
fication of the GAM search algorithm.  All methods are deemed successful at de-
tecting clusters, but Besag and Newell’s method is the least likely to result in false 
positives.  Additionally, Fotheringham and Zhan (1996) provide a formulation of 
Besag and Newell’s method for use with point data, as the original presentation 
was based on areal spatial units. 

The SaTScan procedure.  The SatScan procedure is another cluster finding 
procedure inspired by the GAM (Charlton 2006). Like the GAM, SaTScan 
searches a large number of circles and examines the number of cases in relation to 
the population at risk (Kulldorff 2004).  Most analysts choose to examine clusters 
that are centered on cases or region centroids as in the Besag and Newell method, 
but any number of potential clusters could be examined.  At each center, the size 
of the circle is increased until a user defined maximum cluster size is reached.  
The maximum cluster size could be given in terms of geographic area or popula-
tion at risk.  The minimum cluster size does not need to be specified.  During the 
search procedure, the likelihood that each cluster has occurred by change is evalu-
ated using the spatial scan statistic.  Kulldorff (1997) derived the spatial scan sta-
tistic for count or marked point pattern data.  Variants of the spatial scan statistic 
appropriate for other types of data have also been developed (Huang et al. 2007; 
Jung et al. 2007).  The spatial scan statistic based on the Poisson distribution is 
employed for aggregate case data.  A uniform risk null hypothesis is evaluated.  
L(R) is the likelihood that there is a cluster in a region R, and L0 is the likelihood 
under the null.  A likelihood ratio test statistic is given by 
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if cR > µR, and one otherwise.  Here C is the total number of cases for the popula-
tion, cR is the number of cases in region R, and µR is the expected number of cases 
in the region R.  The most likely cluster or clusters are those with the largest like-
lihood ratio values.  An exact p-value is calculated using a Monte Carlo proce-
dure.  A primary advantage of the spatial scan statistic is that it takes multiple test-
ing into account.  A version of the SaTScan procedure that examines elliptical 
regions as potential clusters is presented by  Kulldorff et al. (2006). 
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Finding arbitrarily shaped clusters. To this point, each of the cluster detection 
methods discussed are limited to either a prespecified and fixed definition of 
neighborhood or the examination of a large number of circles or ellipses.  In most 
cases there is little reason to expect that spatial clustering would take a regular 
shape.  To overcome this limitation, a variety of tests have been developed to lo-
cate irregularly shaped clusters.  Each of these approaches uses a definition of 
proximity equivalent to the binary contiguity matrix.  Spatial units are treated as 
nodes on a connected graph.  The resulting clusters are not limited to being regular 
shapes, but must be contiguous regions or connected sub-graphs. 

Tango and Takahashi (2005) proposed an examination of all possible con-
nected sub-graphs up to a pre-selected maximum cluster size.  This approach 
works well for clusters containing a small number of units, but is not feasible for 
finding larger clusters.  Two approaches use stochastic optimization techniques to 
overcome this shortcoming.  Duczmal and Assunção (2004) employ simulated an-
nealing, and Duczmal et al. (2007) a genetic algorithm.  These techniques are not 
restricted to a maximum cluster size, but they require additional inputs, known as 
hyper parameters, that govern the search process.   

Aldstadt and Getis (2006) proposed an iterative region growing approach to 
finding arbitrarily shaped clusters called AMOEBA.  To begin this procedure a 
single unit is selected as the seed location.  All possible combinations of contigu-
ous units are examined and the set that maximizes the clustering statistic is re-
tained.  The algorithm then continues by examining the units at each order of con-
tiguity until the addition of units no longer increases the test statistic.  At this point 
a cluster based on the first seed location is delimited.  The procedure can be re-
peated using every location as the seed location.  The significance of each delim-
ited cluster is evaluated using a Monte Carlo procedure.  The iterative approach 
ensures that low value units will not be included in clusters of high values.  This 
prohibits the linking of two or more disjoint clusters as one, which is possible in 
the other approaches. 

Focused clustering methods 

Focused clustering tests start with a predetermined set of foci, and examine the 
likelihood that each of these foci is the center of a cluster.  Foci are most often 
represented as points, but they may also be linear or areal features.  The most 
common application of these tests is the examination of disease clusters in prox-
imity to a pollution source.  The null hypothesis is that disease risk is not elevated 
in proximity to the foci.  It bears repeating that the potential sources should be 
identified before the initiation of these focused tests.  If potential foci are selected 
based on their proximity to areas of raised incidence identified through cluster de-
tection procedures, the inference is biased toward rejection of the null hypothesis 
(Waller and Gotway 2004).  This is known as the ‘Texas sharpshooter fallacy.’  
The name comes from the Texan that shoots into the side of a barn and then paints 
a target centered on the hits so that it appears he is a sharpshooter. 
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The Lawson-Waller score test. Waller et al. (1992) and Lawson (1993) independ-
ently developed a score tests for focused clustering.  The global risk can be esti-
mated as the total number of cases, C, divided by the total population at risk, n.  
The resulting score statistic is a local version of Tango’s EET statistic.  The score 
statistic for a focus i is given as 
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where cj is the number of cases in unit j, nj is the population of unit j.  Here, the 
spatial weight can take a variety of forms.  A distance decay function depicts the 
setting where exposure decreases as distance to the foci increases.  A binary 
weight may also be used to indicate that all units within a given distance are ex-
periencing similar exposure.  Under the constant risk null hypothesis, the expected 
value of the statistic is zero.  The variance of Ti is  
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can then be compared to the standard normal distribution.  Monte Carlo tests may 
be more appropriate when there is a small number of regions or for a vary rare 
disease (Waller et al. 1992).  A method of determining the exact distribution of Ti 
is provided by Waller and Lawson (1995).  Rogerson (2005) defines both a global 
test and a local clustering statistic based on the score test. 

Other focused clustering tests. Stone (1988) developed a group of tests based 
on the first isotonic regression estimator.  This method assumes that the relation-
ship between exposure and risk is monotonic, but the relationship does not have to 
take a parametric form.  This flexibility is unique among focused clustering tests. 
Bithell (1995) provided a set of tests that are called linear risk score tests.  These 
tests are based on the notion of the relative risk function.  Under this alternative 
hypothesis, relative risk of disease declines as distance to the focus increases.  The 
test statistic is the sum of these estimated relative risk values.  This test is com-
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monly performed using the rank of distances to neighboring units.  In this case the 
risk becomes a function of relative location as opposed to exact location.  Tango 
(2002) provides an extended score test that allows for non-monotonic relative risk 
functions.  The extended score test would be most useful in the situation where 
exposure is expected to peak at some distance form the putative source. 

A focused clustering test for individual or point level data is provided by Dig-
gle (1990) and refined by Diggle and Rowlingson (1994).  This method can be ap-
plied to inhomogeneous point patterns when the locations of disease cases and a 
representative control group are known.  The method is flexible in terms of the 
functional form of the spatial risk, but the type of model must be specified.                    
The parameters of the kernel are estimated using non-linear binary regression.  
The regression framework allows for straightforward inclusion of covariates when 
they are available.  If the kernel function is log-linear or a step function, the model 
reduces to logistic regression (Diggle and Rowlingson 1994). 

B.4.4   Concluding remarks 

The choice of clustering method depends on several factors.  The first considera-
tion is whether the method is appropriate for the available data type.  Beyond this 
practical consideration it is of primary importance that the method evaluates an 
appropriate null and alternative hypotheses (Waller and Gotway 2004).  Some null 
hypotheses that have been mentioned are spatial randomization, constant risk, and 
random labeling.  Possible alternative hypotheses include variations of regional, 
local, or focused clustering.  Beyond these criteria, an analyst might consider the 
power of the test in choosing between appropriate methods.  In the case of spatial 
clustering, power refers to the probability of rejecting the null hypothesis given 
that the data have been generated under the alternative hypothesis.  Monte Carlo 
methods are useful in this regard, and can be used to generate data under a variety 
of hypotheses.  Kulldorff et al. (2003) developed a set of benchmark data, gener-
ated under a variety of alternative hypotheses, that can be used to evaluate and 
compare methods.  A later paper compares a large set of methods using the 
benchmark data (Song and Kulldorff 2003). The power of a test can also be af-
fected by the properties of the data and choice of parameters for clustering meth-
ods (Waller et al. 2006).  For example, the power can vary widely based on the 
choice of spatial weights (Song and Kulldorff 2005).  Takahashi and Tango (2006) 
provide a modified test for power that takes into account not only the ability to re-
ject the null hypothesis but also whether the detected clusters are of the correct 
size and in the proper location. A discussion on method choice and statistical 
power can be found in Waller and Gotway (2004). 

There was a time when, due to a lack of clustering methodologies, researchers 
could be excused for applying techniques without strict adherence to assumptions.  
For the most part,  this is no longer the case.  There are now  tools available to 
handle most data types and a variety of hypotheses.  The research in this field will 
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progress by improving existing methods and developing new ones.  These deve-
lopments combined with the rapid innovation in software for spatial data analysis, 
as covered in Part A of this handbook, will increase the utility of spatial clustering 
analysis as a research tool. 
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