

Lecture Notes in Computer Science 5737
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Yong Dou Ralf Gruber Josef M. Joller (Eds.)

Advanced
Parallel Processing
Technologies

8th International Symposium, APPT 2009
Rapperswil, Switzerland, August 24-25, 2009
Proceedings

13

Volume Editors

Yong Dou
National University of Defense Technology
Department of Computer Science
Changsha 410073, P.R.China
E-mail: yongdou@nudt.edu.cn

Ralf Gruber
Ecole Polytechnique Fédérale de Lausanne (EPFL)
Dépt. Physique
1015 Lausanne, Switzerland
E-mail: Ralf.Gruber@epfl.ch

Josef M. Joller
HSR - Hochschule für Technik Rapperswil
Oberseestr. 10
8640 Rapperswil, Switzerland
E-mail: jjoller@hsr.ch

Library of Congress Control Number: 2009931946

CR Subject Classification (1998): B.2.1, B.4.3, B.5.1, B.6.1, C.1.2, C.1.4, D.1.3,
F.1.2, G.1

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-642-03643-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03643-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12736133 06/3180 5 4 3 2 1 0

Preface

This volume contains the papers presented at the 8th International Conference on Ad-
vanced Parallel Processing Technologies, APPT 2009. This series of conferences
originated from collaborations between researchers from China and Germany and has
evolved into an international conference for reporting advances in parallel processing
technologies. APPT 2009 addressed the entire gamut of related topics, ranging from
the architectural aspects of parallel computer hardware and system software to the
applied technologies for novel applications.

For this conference, we received over 76 full submissions from researchers all over
the world. All the papers were peer reviewed in depth and qualitatively graded on
their relevance, originality, significance, presentation, and the overall appropriateness
for their acceptance. Any concerns raised were discussed by the Program Committee.
The Organizing Committee did an excellent job in selecting 36 papers for presenta-
tion. In short, the papers included here represent the forefront of research from China,
Switzerland, Germany, and other countries.

APPT 2009 was made possible by the collective efforts of many people and or-
ganizations. We would like to express our special thanks to the Architecture Profes-
sional Committee of China Computer Federation, HSR University of Applied Sci-
ences in Rapperswil, Switzerland, National Laboratory for Parallel and Distributed
Processing, China, and the Computer Science and Technology School of Harbin Insti-
tute of Technology, China. Without the extensive support from many communities for
both the technical program and the local arrangements, we would not have been able
to hold the conference in time. Our thanks also go to Springer for its assistance in
putting the proceedings together.

We would like to take this opportunity to thank all the authors, many of whom trav-
eled great distances to participate in this conference and make their valuable contribu-
tions. We would also like to express our gratitude to the Program Committee members
for reviewing the large number of papers submitted. Last but not least, our thanks also
go to the local Organizing Committee for the great job in making the local arrange-
ments and organizing an attractive social program.

August 2009 Yong Dou
Ralf Gruber
Josef Joller

Organization

General Co-chairs

Hermann Mettler HSR University of Applied Sciences of Eastern
Switzerland

Xingming Zhou Chinese Academy of Sciences, China

Program Co-chairs

Yong Dou NUDT, China
Ralf Gruber EPFL, Switzerland
Josef Joller HSR University of Applied Sciences of Eastern

Switzerland

Technical Program Committee

Hamid R. Arabnia The University of Georgia, USA
Peter Arbenz ETHZ, Switzerland
Arndt Bode TU Munich, Germany
Tianzhou Chen Zhejiang University, China
Wenzhi Chen Zhejiang University, China
Frederic Desprez Ecole Normale Superieure, France
Beniamino Di Martino Seconda Universita' di Napoli, Italy
Ramon Doallo University of A Coruña, Spain
Xiaoshe Dong Jiaotong University, China
Aristides Efthymiou University of Edinburgh, UK
Xiaoya Fan Northwestern Polytechnical University, China
Len Freeman University of Manchester, UK
Walter Gander ETHZ, Switzerland
Georgi Gaydadjiev TU Delft, The Netherlands
Minyi Guo University of Aizu, Japan
Lifeng He Aichi Prefectural University, Japan
Xiangdong Hu Jiangnan Computing Institute, China
Zhenzhou Ji Harbin Institute of Technology, China
Gerhard R. Jouber Technical University of Clausthal, Germany
Pierre Kuonen University of Applied Sciences of Western Switzerland
Arjen Lenstra Laboratory for Cryptologic Algorithms EPFL,

Switzerland
Yijun Liu Guangdong University of Technology, China
Chaoguang Men Harbin Engineering University, China
Tsuyoshi Nakamura Nagoya Institute of Technology, Japan

 Organization VIII

Thomas Rauber University of Bayreuth, Germany
Wolfgang Rosenstiel University of Tübingen, Germany
Marie-Christine Sawley ETHZ, group CERN, Switzerland
Ruth Shaw University of New Brunswick, Canada
Ruedi Stoop UZH, ETHZ, Switzerland
Ruppa K. Thulasiram University of Manitoba, Canada
Dongsheng Wang Tsinghua University, China
Ji Wang National Laboratory of Parallel and Distributed

Processing, China
Xingwei Wang North-East University, China
Chenggang Wu Institute of Computing Technology, China
Minyou Wu Shanghai Jiao Tong University, China
Zhibo Wu Harbin Institute of Technology, China
Jie Xu University of Leeds, UK
Jingling Xue The University of New South Wales, Australia
Ramin Yahyapour University of Dortmund, Germany
Laurence T. Yang St. Francis Xavier University, Canada
Pen-Chung Yew University of Minnesota, USA
Zhiwen Yu Kyoto University, Japan
Binyu Zang Fudan University, China
Zhao Zhang Iowa State University, USA
Eckart Zitzler ETH, Switzerland

Organization and Publicity Chair

Tina Sasse Abricot GmbH, Switzerland

Table of Contents

I Architecture

A Fast Scheme to Investigate Thermal-Aware Scheduling Policy for
Multicore Processors . 1

Liqiang He and Cha Narisu

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols for
Many-Core CMPs . 11

Alberto Ros, Manuel E. Acacio, and José M. Garćıa

An Efficient Lightweight Shared Cache Design for Chip
Multiprocessors . 28

Jinglei Wang, Dongsheng Wang, Yibo Xue, and Haixia Wang

A Novel Cache Organization for Tiled Chip Multiprocessor 41
Xi Zhang, Dongsheng Wang, Yibo Xue, Haixia Wang, and
Jinglei Wang

A Performance Model for Run-Time Reconfigurable Hardware
Accelerator . 54

Gang Wang, Du Chen, Jian Chen, Jianliang Ma, and Tianzhou Chen

SPMTM: A Novel ScratchPad Memory Based Hybrid Nested
Transactional Memory Framework . 67

Degui Feng, Guanjun Jiang, Tiefei Zhang, Wei Hu,
Tianzhou Chen, and Mingteng Cao

Implementation of Rotation Invariant Multi-View Face Detection on
FPGA . 82

Jinbo Xu, Yong Dou, Yuxing Tang, and Xiaodong Wang

The Design and Evaluation of a Selective Way Based Trace Cache 95
Deze Zeng, Minyi Guo, Song Guo, Mianxiong Dong, and Hai Jin

A Fine-Grained Pipelined Implementation for Large-Scale Matrix
Inversion on FPGA . 110

Jie Zhou, Yong Dou, Jianxun Zhao, Fei Xia, Yuanwu Lei, and
Yuxing Tang

L1 Collective Cache: Managing Shared Data for Chip
Multiprocessors . 123

Guanjun Jiang, Degui Fen, Liangliang Tong, Lingxiang Xiang,
Chao Wang, and Tianzhou Chen

X Table of Contents

II Graphical Processing Unit

Efficient Multiplication of Polynomials on Graphics Hardware 134
Pavel Emeliyanenko

Performance Optimization Strategies of High Performance Computing
on GPU . 150

Anguo Ma, Jing Cai, Yu Cheng, Xiaoqiang Ni, Yuxing Tang, and
Zuocheng Xing

A Practical Approach of Curved Ray Prestack Kirchhoff Time
Migration on GPGPU . 165

Xiaohua Shi, Chuang Li, Xu Wang, and Kang Li

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache . . . 177
Han Wan, Xiaopeng Gao, Xiang Long, and Zhiqiang Wang

A Hybrid Parallel Signature Matching Model for Network Security
Applications Using SIMD GPU . 191

Chengkun Wu, Jianping Yin, Zhiping Cai, En Zhu, and Jieren Chen

III Grid

HPVZ: A High Performance Virtual Computing Environment for Super
Computers . 205

Kai Lu, Wanqing Chi, Yongpeng Liu, and Hongwei Tang

High Performance Support of Lustre over Customized HSNI for HPC . . . 220
Yufeng Guo, Xuejun Yang, Li Luo, Qiong Li, and Lu Liu

ViroLab Security and Virtual Organization Infrastructure 230
Jan Meizner, Maciej Malawski, Eryk Ciepiela, Marek Kasztelnik,
Daniel Harezlak, Piotr Nowakowski, Dariusz Król, Tomasz Guba�la,
W�lodzimierz Funika, Marian Bubak, Tomasz Miko�lajczyk,
Pawe�l P�laszczak, Krzysztof Wilk, and Matthias Assel

E2EDSM: An Edge-to-Edge Data Service Model for Mass Streaming
Media Transmission . 246

Junfeng He, Hui Wang, Ningwu He, Zhigang Sun, and Zhenghu Gong

IV Grid Scheduling

Iso-Level CAFT: How to Tackle the Combination of Communication
Overhead Reduction and Fault Tolerance Scheduling 259

Mourad Hakem

Table of Contents XI

MaGate Simulator: A Simulation Environment for a Decentralized Grid
Scheduler . 273

Ye Huang, Amos Brocco, Michele Courant, Beat Hirsbrunner, and
Pierre Kuonen

V Mobile Applications

A Distributed Shared Memory Architecture for Occasionally Connected
Mobile Environments . 288

Christophe Schneble, Thomas Seidmann, and Hansjörg Huser

Time-Adaptive Vertical Handoff Triggering Methods for Heterogeneous
Systems . 302

Qingyang Song, Zhongfeng Wen, Xingwei Wang, Lei Guo, and
Ruiyun Yu

Energy-Saving Topology Control for Heterogeneous Ad Hoc
Networks . 313

Lei Zhang and Xuehui Wang

VI Parallel Applications

Computational Performance of a Parallelized Three-Dimensional
High-Order Spectral Element Toolbox . 323

Christoph Bosshard, Roland Bouffanais, Christian Clémençon,
Michel O. Deville, Nicolas Fiétier, Ralf Gruber, Sohrab Kehtari,
Vincent Keller, and Jonas Latt

Research on Evaluation of Parallelization on an Embedded Multicore
Platform . 330

Tao Liu, Zhenzhou Ji, Qing Wang, Dali Xiao, and Shuyan Zhang

MapReduce-Based Pattern Finding Algorithm Applied in Motif
Detection for Prescription Compatibility Network . 341

Yang Liu, Xiaohong Jiang, Huajun Chen, Jun Ma, and
Xiangyu Zhang

Parallelization of the LEMan Code with MPI and OpenMP 356
N. Mellet and W.A. Cooper

The Recursive Dual-Net and Its Applications . 363
Yamin Li, Shietung Peng, and Wanming Chu

Parallelization Strategies for Mixed Regular-Irregular Applications on
Multicore-Systems . 375

Gudula Rünger and Michael Schwind

XII Table of Contents

Performance Improvement of Multimedia Kernels by Alleviating
Overhead Instructions on SIMD Devices . 389

Asadollah Shahbahrami and Ben Juurlink

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP
Architecture . 408

Joar Sohl, Jian Wang, and Dake Liu

Implementing Fast Packet Filters by Software Pipelining on x86
Processors . 420

Yoshiyuki Yamashita and Masato Tsuru

VII Parallel Libraries

OSL: Optimized Bulk Synchronous Parallel Skeletons on Distributed
Arrays . 436

Noman Javed and Frédéric Loulergue

VIII Performance

Evaluating SPLASH-2 Applications Using MapReduce 452
Shengkai Zhu, Zhiwei Xiao, Haibo Chen, Rong Chen,
Weihua Zhang, and Binyu Zang

MPTD: A Scalable and Flexible Performance Prediction Framework for
Parallel Systems . 465

Chuanfu Xu, Yonggang Che, and Zhenghua Wang

Author Index . 477

A Fast Scheme to Investigate Thermal-Aware
Scheduling Policy for Multicore Processors

Liqiang He and Cha Narisu

College of Computer Science, Inner Mongolia University
Hohhot, Inner Mongolia 010021 P.R. China

{liqiang,csnars}@imu.edu.cn

Abstract. With more cores integrated into one single chip, the over-
all power consumption from the multiple concurrent running programs
increases dramatically in a CMP processor which causes the thermal
problem becomes more and more severer than the traditional superscalar
processor. To leverage the thermal problem of a multicore processor, two
kinds of orthogonal technique can be exploited. One is the commonly
used Dynamic Thermal Management technique. The other is the ther-
mal aware thread scheduling policy. For the latter one, some general ideas
have been proposed by academic and industry researchers. The difficult
to investigate the effectiveness of a thread scheduling policy is the huge
search space coming from the different possible mapping combinations
for a given multi-program workload. In this paper, we extend a simple
thermal model originally used in a single core processor to a multicore
environment and propose a fast scheme to search or compare the ther-
mal effectiveness of different scheduling policies using the new model.
The experiment results show that the proposed scheme can predict the
thermal characteristics of the different scheduling policies with a reason-
able accuracy and help researchers to fast investigate the performances
of the policies without detailed time consuming simulations.

1 Introduction

Chip Multicore Processor (CMP) has become the mainstream in nowadays mi-
croprocessor industry. Dual core and Quad core processor from Intel and AMD
have been widely used by general users. The product to integrate more cores into
one silicon chip can also be seen in not far away future. CMP processor improves
the overall performance through exploiting both instruction-level parallelism and
thread-level parallelism from the concurrent running multiple threads in it.

With more cores integrated into one single chip, the overall power consump-
tion from the multiple running programs increases dramatically in a CMP pro-
cessor which causes the thermal problem becomes more and more severe than
that of the traditional superscalar processor. High power density in a proces-
sor unit can potentially cause a high temperature at the unit, named Hot-spot
phenomenal. A temperature surpassing the chip thermal threshold can greatly
reduce the reliability of the processor, even broken it at an extreme circumstance.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 1–10, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 L. He and C. Narisu

To leverage the thermal problem of a multicore processor, two kinds of orthog-
onal technique can be exploited. One is the commonly used Dynamic Thermal
Management techniques, such as DVFS (Dynamic Voltage and Frequency Scal-
ing) and Clock Gating. The other is the thermal aware thread scheduling policy.
For the latter one, some general ideas have been proposed by academic and in-
dustry researchers, for example moving the hottest thread to the coldest core [1,2
] or core hopping based on some neighborhood thermal information [5]. One big
difficult to investigate or evaluate the effectiveness of a thread scheduling policy
is the huge searching space coming from the different possible mapping combi-
nations for a given multiple program workload. Most previous researches [1,2,3]
justify their works through comparing their proposed thermal aware scheduling
policy with the base one that does not consider the thermal information at all,
and seldom works [4] have been done to compare the effectiveness of different
thermal aware policies. To our best knowledge, there is no work to investigate the
best thermal case for a given multi-program workload with different scheduling
policies.

To search a thread scheduling solution with a lowest temperature for a given
multi-program workload, it needs to explore a huge searching space of differ-
ent mapping combinations. Using traditional cycle-by-cycle simulating scheme,
it will be very time consuming or even impossible when the number of cores
is greater than eight, In this paper, we extend a simple thermal model with
polynomial complexity originally used in a single core processor to a multicore
environment and propose a fast scheme to search or compare the thermal ef-
fectiveness of different mappings for a multi-program workload using the new
model. Comparing with the simulating scheme, our scheme is two orders faster.
Also, experiment results show that the proposed scheme can predict the thermal
characteristics of the different mappings with a reasonable accuracy and help
researchers to fast investigate the performance of different scheduling policies.

The rest of this paper is organized as follows. Section 2 presents our extended
thermal model for a multicore processor. Section 3 and 4 give the experimental
methodology and results. Section 5 discusses the related works, and Section 6
concludes this paper.

2 Thermal Model for a Multicore Processor

In this section, first, we introduce a simple thermal model used by single core
processor. Then we extend the model to our multicore environment and propose
a fast scheme to help exploring the searching space or comparing the thermal
effectiveness of different thermal aware scheduling policies.

2.1 Thermal Model for Single Core Processor

Han et al [6] proposes a simple thermal model used for temperature aware floor-
planning in traditional superscalar processor. The basic idea of temperature or
thermal aware floorplanning is to adjust the placement of the units of a pro-
cessor according to their power densities and areas in order to obtain a lower

A Fast Scheme to Investigate Thermal-Aware Scheduling Policy 3

average/peak temperature in the final chip. Temperature aware floorplanning is
a multi-objective optimization problem and the thermal model is the basis of it.
There are many proposals for floorplanning in academic and industry literature,
but discussion of them is out of the scope of this paper. In this paper, we only
care of the thermal model used by them.

In Han’s model, each unit i (i = 1, · · · , n) is a block with a fixed area Ai

and the height and width are hi and wi. The power consumption of unit i is
Pi. To estimate the maximum temperature of a floorplanning, the model needs
to calculate the potential temperatures for all the units. The particular temper-
ature of a unit depends not only on its own power dissipation but also on the
temperatures of the adjacent blocks. Because the power density di of an isolate
block is linear to its temperature, the model uses the power density as an esti-
mation of the temperature. So the heat diffusion between two adjacent blocks
with shared length longer common edge can be expressed as follow:

H(d1, d2) = (d1 − d2) ∗ shared length (1)

For each block, its total heat diffusion from all the neighbor blocks di is :

H(d) =
∑

H(d, di) (2)

To estimate the maximum temperature of a chip, the model picks the top m
(1 ≤ m ≤ n) possibly hot blocks and calculates the final thermal diffusion D
by summing all the heat diffusions Hi. D is used as the approximation of the
maximum temperature of the chip.

In Han’s experiment, the selection of 2 possibly-hot blocks produces the best
temperature estimation result for the Alpha processor.

2.2 Extended Model for Multicore Processor

To evaluate the effectiveness of different thermal aware scheduling policies, we
need compare the average/peak temperatures of them. Two types of policies
exist for multicore processor in literature. One is for the case that the number
of threads being scheduled is greater than the number of cores. At this case, the
scheduling policy selects a thread from the waiting queue and puts the thread
to an available core according to a pre-defined policy, for example to the coldest
core or to the core with most cooler neighbors [2, 5]. For this case, the most effort
is spent to select the thread, not to determine where to put the thread. Another
type of policy, more accurate speaking, mapping policy, focuses on how to select
the target core such as to obtain a lower average/peak run-time temperature. The
first one does not relay much on the thermal model or it assumes a simple basic
model, and the final temperature is worse than the second one which considers
more about the thermal relationship of the mapped threads.

Figure 1 shows a simple experiment result which maps one eight-thread work-
load on a sixteen cores processor using hundred of different mappings. The dif-
ference of average temperatures of the mappings is close to 1 ◦C, whereas the
difference of peak temperatures can be up to 5 ◦C in Figure 1. The blue lines

4 L. He and C. Narisu

Fig. 1. The average (left) and peak (right) temperature of different mapping schemes
for a eight program workload, the blue lines are the temperatures of mapping scheme
in Fig.2

Fig. 2. Mapping scheme for the eight program workload in Fig.1 corresponding to the
blue temperature line

show the result of one particular mapping shown in Figure 2. In this paper, we
focus on the effectiveness of second type of policies, and try to come up with
a fast scheme to investigate or evaluate different mapping schemes using our
extended thermal model in this section.

In a multicore processor, an unit becomes the hottest block so as to have a
highest temperature over the chip either Figure 1 when it is the hottest block in
a core and all the neighbor blocks are in the same core and all the units in other
cores have lower temperatures than it, or Figure 2 when it is surrounded by hot
units that some of them belong to the same core and some others belong to the
adjacent cores, and the temperature is boosted by the heat spreading from the
surrounded blocks. In case Figure 1, the peak temperature of the chip does not
depend on the mapping scheme. It only depends on the workload itself. But in
case Figure 2, the peak temperature does depend on the mappings. Different
mappings can put different surrounded blocks for the unit such as getting a
different temperature of it. A good mapping scheme can put relative cooler
blocks around a potential hot unit such as to obtain less heat diffusion from
the neighbors. Combining both above two cases, we give our extended model to
estimate the maximum temperature of a chip multicore processor with n cores
as follows:

Dcmp = MAX(Di, A) i = 1, 2, 3, · · · , n (3)

A Fast Scheme to Investigate Thermal-Aware Scheduling Policy 5

Where

Di =
∑

j=1,···,m
H(dj) (4)

In formula (4), Dj is the j th block among the m possibly hot blocks in core i and
does not adjacent to the blocks in other cores; If block dj is an internal block,
H(dj) is computed using formula (2). But if block dj sits at the edge of the chip
it can dissipate heat to the ambient and thus decrease the temperature of the
core. At this case, due to the ability of heat dissipation of ambient is more than
the intra-blocks in the same core, we need use formula (5) to calculate H(dj).

H(d1, d2) = (d1 - d2) * shared length where d2 is internal neighbor block;
H(d1,A)=α *(- d1) * length where A is ambient and α is a parameter;

H(dj) =
∑

H(dj , dm) + H(dj , A) (5)

In addition,if core i does not have a program running, then Di equals to zero.
So Di measures the maximum temperature of the running core i.

In formula (3),

A =
∑

i=1,···,n
Ai (6)

Where

Ai =
∑

H
′
(dk) (7)

and dk is the k th block at the edge of core i. Where H
′
(d) =

∑
H

′
(d, dl) and

dl is the l th block around block d which is either in the same core as d or in the
neighbor cores. H

′
(d1, d2) is similar as H(d1, d2) in section 2.1 and presented as

follows. Where shared length’ is the length of the shared edge between block dl

in core i and block d2 in core j.

H
′
(d1, d2) = (d1 − d2) ∗ shared length’ (8)

Here, if dl is in a neighbor core which does not have a program running, then
H

′
(d, dl) equals to zero. So a measures the heat spreading effect of the blocks at

the edges of all the running cores.
The basic idea of this model is to consider all the potential hot blocks inside

the cores and the heat spreading effect between the running cores and peak the
maximum value Dcmp as the estimation of the peak temperature of the chip.

2.3 Scheme to Fast Searching Space Exploring

Using the thermal model of last section, we can simply investigate or compare
the effectiveness of different mapping policies through computing and comparing
the estimated temperature values Dcmp shown in the following algorithm.

6 L. He and C. Narisu

lowest temp = MAX TEMP;
For each Mi in possible mappings

d = Dcmp(Mi);
if (lowest temp < d)

{ lowest temp = d; lowest mapping = i; }
end.

The complexity to compute one Dcmp is O(n*(j+k)) where n is the number of
cores,j is the selected hottest block inside a core, and k is the number of blocks
at the edge of a core. So the overall complexity to investigate the effectiveness
of different m mappings is O(n*m).

Discussion: When the number of mappings being compared is not much, the
algorithm in the algorithm works well. But if we want to find a best mapping
with lowest peak temperature, we need to compute and compare all the possible
Dcmp. It is very time consuming or even impossible if a processor has more
then sixteen cores and the workload includes more then eight threads. This is a
common limitation for all the technologies that wants to find an optimal solution
among a huge search space. A more smart mechanism, such as heuristics based
scheme, is needed to help to reduce the space so as to get a sub-optimal result.
This is part of our future work.

In addition, although the target in this paper is not the fist type of scheduling
policy discussed in last section the above algorithm can also be used to com-
pare the different thermal performances after the particular policy has made the
mapping decision.

3 Methodology

To validate our multicore thermal model, we compare the results from our model
and a trace-driven thermal simulator ATMI [7]. We construct three workloads,
one is eight threads, one is twelve threads, and the other is sixteen threads,
as shown in Table 1. We then randomly generate different mappings for them.
The power densities are from an in-house cycle-by-cycle multicore simulator. We
get 70K sample points during the program running, and use the average value
as the input power densities of our model and ATMI simulator. The sample
interval is 1ns. The architecture of the simulated multicore chip is a sixteen
cores homogeneous CMP processor organized as a 4X4 grid where each core has
an Alpha EV6 [8] like organization.

4 Experiment Result

Figure 3,4 and 5 show our estimated peak temperatures and the temperatures
obtained from ATMI for three workloads.

A Fast Scheme to Investigate Thermal-Aware Scheduling Policy 7

Table 1. Workloads in our experiment

NO. Workload

1 art-applu-crafty-facerec-fma3d-mesa-perlbmk-twolf
2 art-applu-crafty-facerec-fma3d-mesa-perlbmk-twolf-galgel-vortex-swim-mcf
3 art-applu-crafty-facerec-fma3d-mesa-perlbmk-twolf-galgel-vortex-swim-mcf

-eon-wupwise-gzip-gap

 42.3

 42.35

 42.4

 42.45

 42.5

 42.55

 42.6

 0 20 40 60 80 100

T
em

pe
ra

tu
re

(C
el

si
us

)

Est-16th
Real-16th

Fig. 3. Estimated and real peak temperatures for the sixteen-thread workload with
different mapping schemes (x-axis)

 36.2

 36.3

 36.4

 36.5

 36.6

 36.7

 36.8

 36.9

 37

 37.1

 0 5 10 15 20 25 30 35 40 45 50

T
em

pe
ra

tu
re

(C
el

si
us

)

Est-12th
Real-12th

Fig. 4. Estimated and real peak temperatures for the twelve-thread workload with
different mapping schemes (x-axis)

For sixteen-thread workload (Figure 3), the estimated temperatures are very
close to the values from the accurate thermal simulator. The maximum difference
for a specific mapping between the two schemes is less than 0.05 ◦C. In term
of simulating speed, the time to simulate a 70K power densities and get the
thermal values for a sixteen cores processor needs about 3 days in an Intel Core
Due processor with 2.8GHz clock frequency if we set the maximum number (18)
of sensors for each core. If we use the average power densities for 70K sample
points as the inputs of ATMI and calculate the steady-state temperature, it takes
about 3 to 5 minutes. But in our model, it talks less than 1 second to calculate
the value. The speedup is 200 to 300 times faster.

8 L. He and C. Narisu

 29.2

 29.4

 29.6

 29.8

 30

 30.2

 30.4

 0 20 40 60 80 100 120 140
T

em
pe

ra
tu

re
(C

el
si

us
)

Est-8th
Real-8th

Fig. 5. Estimated and real peak temperatures for the eight-thread workload with dif-
ferent mapping schemes (x-axis)

Figure 4 shows the temperatures of twelve-thread workload. The difference
between the values of our model and ATMI simulator can be up to 0.3 ◦C,
but we can tolerate the inaccuracy in our model because it can still show the
trend and give the correct comparison information between different mappings
at most cases. One source of the inaccuracy of our model comes from the not-
running holes in the processor which affects the heat diffusion values calculated
by formula (6). Another reason is due to the heat dissipation effects from the
blocks at the edge of the chip. Different mappings have different number of
threads running in the edge cores, and different threads in the edge cores have
different potential hot blocks. Some blocks can become the hottest spot due to
the heat spreading from the internal blocks in the same core, but also it can
reduce temperature due to the edge position close to ambient. The combination
effects from internal blocks and ambient determines the final temperature of
the edge block, and some inaccuracies are introduced. In our experiment, α in
formula (5) is set to 5 in order to enlarge the heat dissipation effect from the
ambient.

In Figure 5, the temperatures of eight-thread workload are given. Due to half
of the cores have no thread running, more inaccuracies are introduced in our
model. Although the trend is similar as the one from the ATMI simulator, the
maximum temperature difference is close to 0.6 ◦C. The reasons are same as
in twelve-thread case which calls for a more accurate model for the few thread
running cases in a multicore processor and is part of our future work.

5 Related Works

There are many thermal-aware thread scheduling policies proposed in academic
and industry literature. [1] proposes a policy which considers the power load
balance and uses energy as a represent of thermal for embedded system, but
unfortunately power or energy do not always reflect the temperature in a real
system. [2] gives two simple policies, one is sending workload to the coldest core,
another is similar but gives priority to the core with more “idle” neighbors so as
to dissipate more heat to the idle ones. In [3], Choi considers the heat balance for

A Fast Scheme to Investigate Thermal-Aware Scheduling Policy 9

SMT processor in system software level. The basic idea is to assign hot task and
cold task to each core in order to create opportunities for leverage temporal heat
slack. [4] compares some temperature-aware scheduling policies in a same infras-
tructure. The targets of the policies can be lowest average temperature, highest
peak temperature in order to extract maximum performance, or minimum safe
temperature to avoid performance degradation. In [5], different parameters, the
intra hot spots, the idle neighbors, the busy neighbors, and the edge blocks, are
considered together in order to get a final lowest average temperature. Our work
is similar as [5], but we use different thermal model and our target is to find
a lowest temperature mapping scheme among a huge possible mapping search
space.

In addition, Chen [9] uses fuzzy logic to calculate the suitability between
programs and cores for heterogeneous multicore system in order to save energy
consuming. Zhou [10] et al use the similar principles as [5] to adjust the task
allocation in a 3D processor.

6 Conclusion

Multiple thermal-ware scheduling policies have been proposed for chip multicore
processor. Most of the works compare or validate their policies with the baseline
policy which does not consider temperature when scheduling at all. For a mul-
ticore processor, a huge number of possible mapping schemes exist for a given
multi-program workload. Different mapping schemes reflect different scheduling
decisions at a given running interval. In our motivation experiment, there can
be as high as 5 ◦C temperature difference for a eight-thread workload with more
than hundred of random generate mappings. So how to evaluate the effective-
ness of different thermal aware scheduling policies in an efficient way becomes
important for a multicore processor. This paper presents a simple multicore ther-
mal model which combines multiple parameters into together and calculates a
value as an estimation of the real temperature for a specific mapping scheme.
Our model can be used to compare the effectiveness of different thermal aware
scheduling policies, and also can be used to find the lowest peak temperature
among a huge number of possible mapping decisions. We validate our model
against an accurate analytic thermal model ATMI using a sixteen cores proces-
sor. The experiment results show that our model can match the temperatures
from ATMI at most cases, and some inaccuracy will be fixed in our future work.
In term of speedup, our model is two orders faster than ATMI simulator which
shows that our method is a fast scheme to investigate the thermal-aware schedul-
ing policy for multicore processor.

Acknowledgement

This work is supported by Inner Mongolia Natural Science Foundation Project
No. 20080404ms0901, and the Ph.D Research Startup Foundation of Inner Mon-
golia University No. 208041.

10 L. He and C. Narisu

References

1. Bautista, D., Sahuquillo, J., Hassan, H., Petit, S., Duato, J.: A Simple Power-
Aware Scheduling for Multicore Systems when Running Real-Time Applications.
In: 22rd IEEE International Symposium on Parallel and Distributed Processing,
pp. 1–7. IEEE Press, Los Alamitos (2008)

2. Coskun, A.K., Rosing, T.S., Whisnant, K.: Temperature Aware Task Scheduling
in MPSoCs. In: Design Automation and Test in Europe (DATE), pp. 1659–1664
(2007)

3. Choi, J., Cher, C., Franke, H.: Thermal-aware Task Scheduling at the System
Software Level. In: IEEE International Symposium on Low Power Electronics and
Design, pp. 213–218 (2007)

4. Kursun, E., Cher, C.-Y., Buyuktosunoglu, A., Bose, P.: Investigating the Effects of
Task Scheduling on Thermal Behaviour. In: 3rd Workshop on Temperature-Aware
Computer System, conjunction with ISCA-33 (2006)

5. Stavrou, K., Trancoso, P.: Thermal-aware scheduling for future chip multiproces-
sors. J. EURASIP Embedded Syst. (2007)

6. Han, Y., Koren, I., Moritz, C.A.: Temperature Aware Floorpalnning. In: 2nd Work-
shop on Temperature-Aware Computer System, conjunction with ISCA-32 (2005)

7. Michaud, P., Sazeides, Y., Seznec, A., Constantinou, T., Fetis, D.: An Analyti-
cal Model of Temperature in Microprocessors. Research report RR-5744, INRIA
(November 2005)

8. McLellan, E.J., Webb, D.A.: The Alpha 21264 Microprocessor Architecture. In:
Proc. of the International Conference on Computer Design (1998)

9. Chen, J., John, L.K.: Energy-Aware Application Scheduling on a Heterogeneous
Multi-core System. In: IEEE International Symposium on Workload Characteriza-
tion (2008)

10. Zhou, X., Xu, Y., Du, Y., Zhang, Y., Yang, J.: Thermal Management for 3D Proces-
sors via Task Scheduling. In: 37th International Conference on Parallel Processing,
pp. 115–122 (2008)

Dealing with Traffic-Area Trade-Off in Direct
Coherence Protocols for Many-Core CMPs

Alberto Ros, Manuel E. Acacio, and José M. Garćıa

Departamento de Ingenieŕıa y Tecnoloǵıa de Computadores
Universidad de Murcia, 30100 Murcia, Spain
{a.ros,meacacio,jmgarcia}@ditec.um.es

Abstract. In many-core CMP architectures, the cache coherence proto-
col is a key component since it can add requirements of area and power
consumption to the final design and, therefore, it could restrict severely
its scalability. Area constraints limit the use of precise sharing codes to
small- or medium-scale CMPs. Power constraints make impractical to
use broadcast-based protocols for large-scale CMPs.

Token-CMP and DiCo-CMP are cache coherence protocols that have
been recently proposed to avoid the indirection problem of traditional
directory-based protocols. However, Token-CMP is based on broadcast-
ing requests to all tiles, while DiCo-CMP adds a precise sharing code to
each cache entry. In this work, we address the traffic-area trade-off for
these indirection-aware protocols. In particular, we propose and evalu-
ate several implementations of DiCo-CMP which differ in the amount of
coherence information that they must store. Our evaluation results show
that our proposals entail a good traffic-area trade-off by halving the traf-
fic requirements compared to Token-CMP and considerably reducing the
area storage required by DiCo-CMP.

1 Introduction

Current chip multiprocessors (CMPs) have a relatively small number of cores,
which are typically connected through a shared medium, i.e., a bus or a cross-
bar (e.g., the dual-core IBM Power6 [1] and the eight-core Sun T2 [2]). How-
ever, CMP architectures that integrate tens of processor cores (usually known
as many-core CMPs) are expected for the near future [3], making undesirable el-
ements that could compromise the scalability of these designs. For example, the
area required by a shared network becomes impractical as the number of cores
grows [4]. Therefore, tiled CMPs designed as arrays of replicated tiles connected
over a point-to-point network are a scalable alternative to current small-scale
CMP designs and they will help in keeping complexity manageable.

In these architectures, each tile contains at least one level of private caches
which are kept coherent by using a cache coherence protocol. The cache coher-
ence protocol is a key component since it adds requirements of area and power
consumption, which can condition systems scalability. Although a great deal of
attention was devoted to scalable cache coherence protocols in the last decades

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 11–27, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

12 A. Ros, M.E. Acacio, and J.M. Garćıa

in the context of shared-memory multiprocessors, the technological parameters
and constrains entailed by many-core CMPs demand new solutions to the cache
coherency problem [5]. One of these constrains is the use of unordered networks,
that prevent from using the popular snooping-based cache coherence protocol.

Two traditional cache coherence protocols aimed to be used with unordered
networks are Hammer [6], implemented in the AMD OpteronTM, and Directory
[7]. Hammer avoids keeping coherence information at the cost of broadcasting
requests to all cores. Although it is very efficient in terms of area requirements, it
generates a prohibitive amount of network traffic, which translates into excessive
power consumption. On the other hand, Directory reduces network traffic com-
pared to Hammer by storing in a directory structure precise information about
the private caches holding memory blocks. Unfortunately, this storage could
become prohibitive for many-core CMPs [3]. Since neither the network traffic
generated by Hammer nor the extra area required by Directory scale with the
number of cores, a great deal of attention was paid in the past to address this
traffic-area trade-off [8,9,10].

On the other hand, these traditional cache coherence protocols introduce the
well-known indirection problem. In both protocols, the ordering point for the
requests to the same memory block is the home tile. Therefore, all cache misses
must reach this ordering point before performing coherence actions, a fact that
introduces extra latency in the critical path of cache misses. Recently, Token-
CMP [11] and DiCo-CMP [12] protocols have been proposed to deal with the
indirection problem. These indirection-aware protocols avoid the access to the
home tile through alternative serialization mechanisms. Token-CMP only cares
about requests ordering in case of race conditions. In those cases, a persistent
requests mechanism is responsible for ordering the different requests. In DiCo-
CMP the ordering point is the tile that provides the block in a cache miss
and indirection is avoided by directly sending the requests to that tile. These
indirection-aware protocols reduce the latency of cache misses compared to Ham-
mer and Directory, which translates into performance improvements. Although
Token-CMP entails low memory overhead, it is based on broadcasting requests
to all tiles, which is clearly non-scalable. Otherwise, DiCo-CMP sends requests
to just one tile, but it adds a bit-vector field that keeps track of sharers to each
cache entry, which does not scale with the number of cores.

The aim of this work is to address the traffic-area trade-off of indirection-aware
protocols for many-core tiled CMPs. Although this trade-off has been widely
studied for traditional protocols, in this work we consider protocols that try to
avoid indirection. Particularly, we perform this study by relaxing the accuracy
of the sharing codes used in DiCo-CMP. The other important contribution of
this work is the evaluation of the state of the art in cache coherence protocols
for future many-core CMPs in a common framework.

We have implemented and evaluated several cache coherence protocols based
on the direct coherence concept which differ in the amount of coherence infor-
mation that they store. Particularly, DiCo-LP-1, which only stores the identity
of one sharer along with the data block, and DiCo-NoSC, which does not store

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 13

any coherence information along with the data caches, are the best alternatives.
DiCo-LP-1 presents a good traffic-area trade-off by requiring slightly more area
than Token-CMP (1% for 32 cores, and same complexity order –O(log2n)–) and
slightly increasing network traffic compared to DiCo-CMP (11% on average for
32 cores). DiCo-NoSC does not need to modify the structure of caches to add
any extra field and, therefore, introduces less area requirements than Token-
CMP (4% for 32 cores). However, it increases network traffic by 35% compared
to DiCo-CMP, but still halving the traffic when compared to Token-CMP.

The rest of the paper is organized as follows. Section 2 discusses the cache co-
herence protocols that could be be used in many-core CMPs. DiCo-CMP and the
implementations evaluated in this work are described in Section 3. Section 4 focus
on the evaluation methodology. Section 5 shows performance results. In Section 6
we present the related work. Finally, Section 7 concludes the paper.

2 Background on Cache Coherence Protocols

This section describes the cache coherence protocols proposed in the literature
aimed to be used in systems with unordered networks. We describe their imple-
mentation for a tiled CMP, in which each tile includes private L1 caches (both
instruction and data caches) and a slice of the L2 cache. The L2 cache is phys-
ically distributed and logically shared among the different processing cores (L2
NUCA architecture [13]). Each memory block is assigned to a particular cache
bank (or tile) which is called its home bank (or home tile). We focus on the
cache coherence protocol employed for avoiding inconsistencies between data
stored in the L1 caches. We also assume that caches use MOESI states, and
that L1 and L2 caches are non-inclusive. We classify these cache coherence pro-
tocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem.

2.1 Traditional Protocols

In traditional protocols, the requests issued by several cores to the same block
are serialized through the home tile, which enforces cache coherence. Therefore,
all requests must be sent to the home tile before coherence actions can be per-
formed. Then, the request is forwarded to the corresponding tiles according to
the coherence information (or it is broadcast if the protocol does not maintain
any coherence information). All processors that receive the forwarded request
answer to the requesting core by sending either an acknowledgment (invalidat-
ing the block in case of write misses) or the requested data block. The requesting
core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that cache
misses take three hops in the critical path.

Examples of these traditional protocols are Hammer and Directory. As com-
mented in the introduction, Hammer has the drawback of generating a consider-
able amount of network traffic. On the other hand, directory protocols that use
a precise sharing code to keep track of cached blocks introduce an area overhead
that does not scale with the number of cores.

14 A. Ros, M.E. Acacio, and J.M. Garćıa

Hammer-CMP. Hammer is the cache coherence protocol used by AMD in
their Opteron systems. Like snooping-based protocols, Hammer does not store
any coherence information about the blocks held in private caches and it relies
on broadcasting requests to solve cache misses. The advantage with respect to
snooping-based protocols is that Hammer targets systems that use a point-to-
point interconnection. However, the ordering point in this protocol is the home
tile, a fact that introduces indirection for every cache miss. In this work we
evaluate an implementation of the AMD’s Hammer protocol for tiled CMPs, that
we call Hammer-CMP. As an optimization for tiled CMPs, our implementation
adds a small structure to each home tile which stores the tag of the blocks that
are held in the private L1 caches. This optimization avoids off-chip accesses when
the block can be obtained on-chip, and uses a small structure whose size does
not increase with the number of cores.

Directory-CMP. The directory-based protocol that we have implemented is
similar to the intra-chip coherence protocol used in Piranha [14]. This protocol
avoids broadcasting requests by storing in the home tile precise information
about the state of each block in the private caches. This information consists in
a full-map (or bit-vector) sharing code employed for keeping track of the sharers,
and a pointer identifying the owner tile, i.e., the tile that provides the data block.
The bit-vector field allows the protocol to send invalidation messages just to the
caches currently sharing the block. The owner field is used in a MOESI protocol
to avoid forwarding requests to all sharers on read misses. In this way, requests
are only forwarded to the tile that provides the block. This precise directory
information allows the protocol to reduce considerably network traffic compared
to Hammer-CMP.

2.2 Indirection-Aware Protocols

Recently, new cache coherence protocols have been proposed to avoid the indirec-
tion problem of traditional protocols. Token-CMP avoids indirection by broad-
casting requests to all tiles and maintains coherence through a token counting
mechanism. Although the area required to store the tokens of each block is rea-
sonable, network requirements are prohibitive for may-core CMPs. On the other
hand, DiCo-CMP keeps traffic low by sending requests to only one tile. How-
ever, coherence information used by its previous implementations [12] include
bit-vector sharing codes, which are not scalable in terms of area requirements.

Token-CMP. Token coherence is a framework for designing coherence proto-
cols whose main asset is that it decouples the correctness substrate from the
performance policies. Token coherence protocols avoid both the need of a totally
ordered network and the introduction of indirection. They keep cache coher-
ence by assigning T tokens to every memory block, where one of the T is the
owner token. Then, a processor can read a block only if it holds at least one
token for that block. On the other hand, a processor can write a block only if it
holds all tokens for that block. Token coherence avoids starvation by issuing a

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 15

Table 1. Summary of cache coherence protocols

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

persistent request when a processor detects potential starvation. In this paper,
we evaluate Token-CMP [11], which is a performance policy aimed to achieve
low-latency cache-to-cache transfer misses. Token-CMP uses a distributed arbi-
tration scheme for persistent requests, which are issued after a single retry to
optimize the access to contended blocks.

DiCo-CMP. Direct coherence protocols where proposed both to avoid the in-
direction problem of traditional directory-based protocols and to reduce the
traffic requirements of token coherence protocols. In direct coherence, the or-
dering point for the requests to a particular memory block is the current owner
tile of the requested block. In this way, the tile that must provide the block in
case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead to
the home one. In this paper we evaluate DiCo-CMP [12], an implementation of
direct coherence for CMPs. Particularly, we implement the base policy presented
that work because it is the policy that incurs in less area and traffic requirements
and it obtains similar execution times than Token-CMP.

2.3 Summary

Table 1 summarizes the described protocols. Hammer-CMP and Token-CMP
are based on broadcasting requests on every cache miss. Although the storage
required to keep coherence in these protocols is small, they generate a prohibitive
amount of network traffic. On the other hand, Directory-CMP and DiCo-CMP
achieve more efficient utilization of the interconnection network at the cost of
increasing storage requirements compared to Hammer-CMP and Token-CMP.

3 Traffic-Area Trade-Off in Direct Coherence Protocols

3.1 DiCo-CMP Basis and Storage Requirements

As previously discussed, traditional protocols introduce indirection in the crit-
ical path of cache misses. Figure 1(a) (left) gives an example of a cache miss
suffering from indirection in Directory-CMP. When a cache miss takes place it is
necessary to access the home tile to obtain the directory information and order
the requests before performing coherence actions (1 Get). In case of a cache-
to-cache transfer, the request is subsequently sent to the owner tile (2 Fwd)
where the block is provided (3 Data). As it can be observed, the miss is solved
in three hops. Moreover, other requests for the same block cannot be processed

16 A. Ros, M.E. Acacio, and J.M. Garćıa

R O

H&D

1
G
et 2

Fw
d

3 Data

3
U

nb
l

R

O&D1 Get

2 Data

(a) Cache-to-cache transfer in Directory-
CMP (left) and DiCo-CMP (right).
(R=Requester; H=Home; D=Directory;
O=Owner).

CPU Core

L2$ (Data)

L2$
(Tags)

D
irectory

R
outer

L1I$ L1D$

CPU Core

L2$ (Data)

L2C$

L1C$

(Tags)
L2$

R
outer

L1D$

L1I$

D
ir

(b) Organization of a tile in Directory-
CMP (left) and DiCo-CMP (right).
Black boxes are the elements added by
DiCo-CMP.

Fig. 1. Behavior and tile design of Directory-CMP and DiCo-CMP

by the directory until it receives the unblock message (3 Unbl). As shown in
Figure 1(a) (right), DiCo-CMP sends directly the request to the owner tile (1
Get). In this way, data is provided by it (2 Data), thus requiring only two hops
to solve the miss. This is achieved by assigning the task of keeping cache co-
herence and ensuring ordered accesses to the owner tile. Therefore, DiCo-CMP
extends the tags’ part of the L1 data caches with a bit-vector field (L2 caches
already include this field in Directory-CMP) to allow the protocol to keep track
of sharers of a block along with its owner copy. In contrast, DiCo-CMP does not
need the directory structure in the home tile that traditional directory protocols
require. Additionally, by keeping together the owner block and the directory in-
formation, control messages between them are not necessary, thus saving some
network traffic.

On the other hand, the drawback of DiCo-CMP is that the owner tile can
change on write misses and, therefore, finding it could be difficult in some cases.
Hence, DiCo-CMP needs two extra hardware structures that are used to record
the identity of the owner cache of every memory block: the L1 coherence cache
and the L2 coherence cache, as shown in Figure 1(b).

– L1 coherence cache (L1C$): The information stored in this structure is used
by the requesting core to directly send local requests to the owner tile. There-
fore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this work
the base policy presented in [12], in which this information is updated by
using the coherence messages sent by the protocol, i.e., invalidation and data
messages.

– L2 coherence cache (L2C$): Since the owner tile can change on write misses,
this structure is responsible for tracking the owner cache for each block
allocated in any L1 cache. The L2C$ replaces the directory structure required
by Directory-CMP and it is accessed each time a request fails to locate the
owner tile. Therefore, this information is updated through control messages
whenever the owner tile changes.

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 17

3.2 DiCo-CMP Cache Coherence Protocol

When a processor issues a request that misses in its private L1 cache, the request
is directly sent to the owner tile in order to avoid indirection. The identity of
the potential owner tile is obtained from the L1C$, which is accessed at the time
that the cache miss in detected. If there is a hit in the L1C$, the request is sent
to the owner tile. Otherwise, the request is sent to the home tile, where the L2C$
will be accessed to get the identity of the current owner tile.

If the request is received by a tile that is not the current owner of the block,
it is simply re-sent to the home tile, where the L2C$ is accessed. Then, in case
of a hit in the L2C$, the request is sent to the current owner tile. In absence
of race conditions the request will reach the owner tile. If there is a miss in the
L2C$ the request is solved by providing the block from main memory, where, in
this case, a valid copy of the block resides. In this case, a new entry pointing to
the current L1 owner tile has to be allocated in the L2C$.

If the request reaches the owner tile, the miss can be immediately solved. If the
owner is the home tile all requests (reads and writes) are solved by deallocating
the block from the home tile and allocating it in the L1 cache of the requester.
Again, the identity of the new owner tile is stored in the L2C$.

When the owner is the L1 cache, read misses are completed by sending a
copy of the block to the requester and adding it to the sharing code field. Write
misses are solved by sending invalidation messages to all the tiles sharing the
block and by sending the data block to the requester. Acknowledgement messages
are collected at the requesting cache as in all protocols evaluated in this work.

Finally, since the L2C$ must store up-to-date information regarding the owner
tile, every time that the owner tile changes, a control message is sent to the L2C$
indicating the identity of the new owner. These messages must be processed
by the L2C$ in the very same order in which they were generated. Otherwise,
the L2C$ could fail to store the identity of the current owner. The order is
guaranteed by sending an acknowledgement from the L2C$ to the new owner.
Until this message is not received by the new owner, it cannot give the ownership
to another tile. Note that these two control messages are not in the critical path
of the current miss.

3.3 Reducing Storage Requirements for DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the
owner copy of the block resides. These two structures does not compromise
scalability because they have a small number of entries and each one stores a
tag and a pointer to the owner tile (log2n bits, where n is the number of cores).
The L2C$ is necessary to solve cache misses in DiCo-CMP, since ensures that
the tile that keeps coherence for each block can always be found. On the other
hand, the L1C$ is necessary to avoid indirection in cache misses and, therefore,
it is essential to obtain good performance.

Apart from these structures, DiCo-CMP also adds a full-map sharing code to
each cache entry. Since the memory overhead of this field can become prohibitive

18 A. Ros, M.E. Acacio, and J.M. Garćıa

for many-core CMPs, we study some alternatives that differ in the amount of
coherence information stored. These alternatives have at least area requirements
of order O(log2n), due to the L1C$ and the L2C$. The particular compressed
sharing code employed only impacts on the number of invalidations sent for write
misses, because in DiCo-CMP cache misses are solved from the owner tile and,
therefore, read misses are never broadcast. Next, we comment on the alternatives
evaluated in this work.

DiCo-CV-K is a DiCo-CMP protocol that reduces the size of the sharing
code field by using a coarse vector [10]. In a coarse vector, each bit represents a
group of K tiles, instead of just one. A bit is set when at least one of the tiles
in the group holds the block in its private cache. Therefore, if one of the tiles
in the group holds the block, all tiles belonging to that group will receive an
invalidation message. Particularly, we study two configurations using a coarse
vector sharing code with values for K of 2 and 4. Although this sharing code
reduces the memory required by the protocol, its size still increases linearly with
the number of cores.

DiCo-LP-P employs a limited pointers sharing code [9]. In this scheme, each
entry has a limited number of P pointers for the first P sharers of the block.
Actually, since DiCo-CMP always stores the information about the owner tile in
the L2C$, the first pointer is employed to store the identity of the second sharer
of the block. When the sharing degree of a block is greater than P + 1, write
misses are solved by broadcasting invalidations to all tiles. However, this kind of
misses is not very frequent since the sharing degree of applications is usually low
[7]. The overhead of this sharing code is O(P × log2n). In particular, evaluate
this protocol with a value for P of 1.

Finally, DiCo-NoSC (no sharing code) does not maintain any coherence in-
formation along with the owner block. In this way, this protocol does not need to
modify the structure of data caches to add any field. This lack of information im-
plies broadcasting invalidation messages to all tiles upon write misses, although
this is only necessary for blocks in shared state because the owner tile is always
known in DiCo-CMP. This scheme incurs in more network traffic compared to
DiCo-CV-K or DiCo-LP-P. However, it incurs in less traffic than Hammer-CMP
and Token-CMP. Hammer-CMP requires broadcasting requests on every cache
miss, and what is more expensive in a network with multicast support, every
tile that receives the request answers with a independent control message. On
the other hand, although Token-CMP avoids unnecessary acknowledgements, it
also relies on broadcasting requests for all cache misses.

4 Simulation Environment

We perform the evaluation using the full-system simulator Virtutech Simics [15]
extended with Multifacet GEMS 1.3 [16], that provides a detailed memory sys-
tem timing model. Since the network modeled by GEMS 1.3 is not very precise,
we have extended it with SICOSYS [17], a detailed interconnection network sim-
ulator. We simulate CMP systems with 16 and 32 tiles to show that our proposals

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 19

Table 2. System parameters

GEMS Parameters SICOSYS Parameters
Processor frequency 4 GHz Network frequency 2 GHz
Cache hierarchy Non-inclusive Topology 4x4 & 8x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 4 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 4 ways, Data message size 4 flits

L2 cache 7 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 200 cycles Link bandwidth 1 flit/cycle

scale with the number of cores. Table 2 shows the values of the main parameters
used for the evaluation, where cache latencies have been calculated using the
CACTI 5.3 tool [18] for 45nm technology. We also have used CACTI to measure
the area of the different structures needed in each one of the evaluated protocols.
In this study, we assume that the length of the physical address is 44 bits, like
in the SUN UltraSPARC-III architecture [19].

The ten applications used in our simulations cover a variety of computa-
tion and communication patterns. Barnes (8192 bodies, 4 time steps), FFT
(256K points), Ocean (258x258 ocean), Radix (1M keys, 1024 radix), Ray-
trace (teapot), Volrend (head) and Water-Nsq (512 molecules, 4 time steps)
are scientific applications from the SPLASH-2 benchmark suite [20]. Unstruc-
tured (Mesh.2K, 5 time steps) is a computational fluid dynamics application.
MPGdec (525 tens 040.m2v) and MPGenc (output of MPGdec), are multime-
dia applications from the APLBench suite [21]. We account for the variability in
multithreaded workloads by doing multiple simulation runs for each benchmark
in each configuration and injecting random perturbations in memory systems
timing for each run.

5 Evaluation Results

5.1 Impact on Area Overhead

First, we compare the memory overhead introduced by coherence information
for all the protocols considered in this work. Although some protocols can en-
tail extra overhead as a consequence of the additional mechanisms that they
demand (e.g., timeouts for reissuing requests in Token-CMP), we only consider
the amount of memory required to keep coherence information. Figure 2 shows
the storage overhead introduced by these protocols in terms of both number of
bits and estimated area, varying the number of cores from 2 to 1024.

Although the original Hammer protocol does not require coherence informa-
tion, our optimized version for CMPs adds a new structure to the home tile.
This structure is a 512-set 4-way cache that contains a copy of the tags for
blocks stored in the private L1 caches but not in the shared L2 cache. However,
this structure introduces a slight overhead which however keeps constant when
the number of cores increases.

20 A. Ros, M.E. Acacio, and J.M. Garćıa

2 4 8 16 32 64 128 256 512 1024

Number of cores

0

1

2

3

4

5

M
em

o
ry

 O
ve

rh
ea

d
 (

%
)

Hammer-CMP
Directory-CMP
Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4
DiCo-LP-1
DiCo-NoSC

(a) Overhead in terms of bits.

2 4 8 16 32 64 128 256 512 1024

Number of cores

0

2

4

6

8

10

12

14

16

18

20

A
re

a
O

ve
rh

ea
d

 (
%

)

Hammer-CMP
Directory-CMP
Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4
DiCo-LP-1
DiCo-NoSC

(b) Overhead in terms of area.

Fig. 2. Overhead introduced by the coherence protocols evaluated in this work

Directory-CMP stores the directory information either in the L2 tags, when
the L2 cache holds a copy of the block, or in a distributed directory cache, when
the block is stored in any of the L1 caches but not in the L2 cache. Since the
information is stored by using a bit-vector, the number of required bits is n and,
consequently, the width of each entry grows linearly with the number of cores.

Token-CMP keeps the token count for any block stored both in the L1 and
L2 caches, which requires log2(n + 1) bits (the owner-token bit and non-owner
token count). These additional bits are stored in the tags’ part of both cache
levels. Therefore, Token-CMP has an acceptable scalability in terms of area.

DiCo-CMP stores directory information for owner blocks stored in any L1 or
L2 cache. Therefore, a full-map sharing code is added to each cache line. More-
over, it uses two structures that store the identity of the owner tile, the L1C$ and
the L2C$. Each entry in these structures contains a tag and an owner field, which
requires log2n bits. Hence, this is the protocol with more area requirements.

In this work, we propose to reduce this overhead by introducing compressed
sharing codes in DiCo-CMP. DiCo-CV-2 and DiCo-CV-4 save storage compared
to DiCo-CMP but they are still non-scalable. In contrast, DiCo-LP-1, which only
adds a pointer for the second sharer of the block (the first one is given by the
L2C$) has better scalability –O(log2n)–. Finally, DiCo-NoSC, which does not
require to modify data caches to add coherence information, is the implementa-
tion of DiCo with less overhead (although it still has order O(log2n) due to the
presence of the L1 and L2 coherence caches), at the cost of increasing network
traffic. Finally, we can see that a small overhead in the number of required bits
results in a major overhead when the area of the structures is considered.

5.2 Impact on Network Traffic

Figure 3 compares the network traffic generated by the protocols discussed pre-
viously for the 16-core and the 32-core configurations. Each bar plots the number
of bytes transmitted through the interconnection network normalized with re-
spect to Hammer-CMP.

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 21

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-N
sq

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Hammer-CMP
Directory-CMP

Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4

DiCo-LP-1
DiCo-NoSC16 cores

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-N
sq

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 n
et

w
or

k
tr

af
fic

Hammer-CMP
Directory-CMP

Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4

DiCo-LP-1
DiCo-NoSC

1.10 1.63

32 cores

Fig. 3. Normalized network traffic

As expected, Hammer-CMP introduces more network traffic than the other
protocols due to the lack of coherence information, which implies broadcasting re-
quests to all cores and receiving the corresponding acknowledgements. Directory-
CMP reduces considerably traffic by adding a bit-vector that filters unnecessary
invalidations. Token-CMP generates more network traffic than Directory-CMP,
because it relies on broadcast, and less than Hammer-CMP, because it does
not need to receive acknowledgements from tiles without tokens (i.e., the tiles
that do not share the block). However, for some applications, like MPGdec and
MPGenc, Token-CMP generate more traffic than Hammer-CMP for the 32-core
configuration. This increase is due to two main factors. First, in Hammer-CMP,
read misses that found the data block in the L2 cache do not broadcast requests
whereas Token-CMP always needs to broadcast read requests. Second, the high
contention found in these applications increases the amount of reissued persis-
tent requests in Token-CMP. Finally, we can also observe that DiCo-CMP has
similar traffic requirements than Directory-CMP.

22 A. Ros, M.E. Acacio, and J.M. Garćıa

7.5 8.0 8.5 9.0 9.5

Area required (mm2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 N
et

w
or

k
tr

af
fic

Traditional
Ind.-aware

Hammer-C
MP

Directory-CMP

Token-CMP

DiCo-CMP

DiCo-CV-2

DiCo-CV-4/DiCo-LP-1

DiCo-NoSC

16 cores

7.5 8.0 8.5 9.0 9.5 10.0 10.5

Area required (mm2)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 N
et

w
or

k
tr

af
fic

Traditional
Ind.-aware

Hammer-C
MP

Directory-CMP

Token-CMP

DiCo-CMP

DiCo-CV-2

DiCo-CV-4

DiCo-LP-1
DiCo-NoSC

32 cores

Fig. 4. Traffic-area trade-off

In general, we can see that compressed sharing codes increase network traffic.
However, the increase in traffic is admissible. Even DiCo-NoSC, which does not
keep track of sharers, generates an acceptable amount of network traffic (36%
less traffic than Token-CMP for 16 cores and 50% for 32 cores). As previously
commented, DiCo-NoSC stores in the L2C$ a pointer to the owner block which
prevent read misses of broadcasting requests, as happens in Hammer-CMP and
Token-CMP.

5.3 Traffic-Area Trade-Off

Figure 4 shows the traffic-area trade-off for all the protocols evaluated in this
work. The figure also differentiates between traditional and indirection-aware
protocols. We can see that, in general, the base protocols aimed to be used with
tiled CMPs do not have a good traffic-area trade-off: both Hammer-CMP and
Token-CMP are constrained by traffic while both Directory-CMP and DiCo-
CMP are constrained by area.

However, the use of different compressed sharing codes for DiCo-CMP can lead
to a good compromise between network traffic and area requirements. The DiCo-
CV approaches have low traffic overhead but the area requirements considerably
increase with the number of cores. Both DiCo-LP-1 and DiCo-NoSC are very
close to an ideal protocol with the best of the base protocols. The difference is
that DiCo-LP-1 is more efficient in terms of generated traffic while DiCo-NoSC
is more efficient in terms of area requirements. Particularly, DiCo-LP-1 requires
slightly more area than Token-CMP (1% for 32 cores, and same complexity order
–O(log2n)–) and slightly increases network traffic compared to DiCo-CMP (11%
on average for 32 cores). On the other hand, DiCo-NoSC does not need to modify
the structure of caches to add any extra field and, therefore, introduces less area
requirements than Token-CMP (4% for 32 cores), but with the same complexity

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 23

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-N
sq

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Hammer-CMP
Directory-CMP

Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4

DiCo-LP-1
DiCo-NoSC16 cores

Barnes
FFT

MPGdec

MPGenc
Ocean

Radix

Raytra
ce

Unstru
ctured

Volrend

Water-N
sq

Average
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Hammer-CMP
Directory-CMP

Token-CMP
DiCo-CMP

DiCo-CV-2
DiCo-CV-4

DiCo-LP-1
DiCo-NoSC32 cores

Fig. 5. Normalized execution times

order –O(log2n)–. However, it increases network traffic by 35% compared to
DiCo-CMP, but still halving the traffic when compared to Token-CMP.

5.4 Impact on Execution Time

Figure 5 plots the average execution times for the applications evaluated in this
work normalized with respect to Hammer-CMP. Compared to Hammer-CMP,
Directory-CMP improves performance for all applications as a consequence of an
important reduction in terms of network traffic. Moreover, on each miss Hammer-
CMP must wait for all the acknowledgement messages before the requested block
can be accessed. On the contrary, in Directory-CMP only write misses must wait
for acknowledgements.

On the other hand, indirection-aware protocols reduce average execution time
when compared to traditional protocols. Particularly, Token-CMP obtains av-
erage improvements of 16% compared to Hammer-CMP and 4% compared to

24 A. Ros, M.E. Acacio, and J.M. Garćıa

Directory-CMP for 16 cores. Similar improvements are obtained with DiCo-
CMP. For 32 cores, the average improvements of indirection-aware protocols
becomes more significant. On the other hand, when DiCo-CMP employs com-
pressed sharing codes, the execution time increases. However, it remains close to
DiCo-CMP, except for DiCo-NoSC mainly when a 32-core CMP is
considered.

6 Related Work

DiCo-CMP was recently proposed by Ros et al. [12] to avoid the indirection
of traditional coherence protocols in tiled CMPs. This protocol adds a bit-
vector sharing code to each cache entry (particularly, in the tags part), thus
compromising scalability. In this work, we propose and evaluate several imple-
mentations of DiCo-CMP that use compressed sharing codes to scale gracefully
with the number of cores and do not require a prohibitive amount of network
traffic.

Snoopy protocols do not introduce indirection because they are based on
a totally-ordered interconnection network. Unfortunately, these interconnection
networks are not scalable. Some proposals have focused on using snoopy proto-
cols with arbitrary network topologies. Martin. et al. [22] present a technique
that allows SMPs to utilize unordered networks (with some modifications to
support snooping). Bandwidth Adaptive Snooping Hybrid (BASH) [23] is an
hybrid coherence protocol that dynamically decides whether to act like snoopy
protocols (broadcast) or directory protocols (unicast) depending on the available
bandwidth. In contrast, the protocol presented in this work does not changes dy-
namically, but only broadcast requests for a small number of cache misses, thus
obtaining network traffic reductions.

Cheng et al. [24] adapt already existing coherence protocols for reducing en-
ergy consumption and execution time in CMPs with heterogeneous networks.
In particular, they assume a heterogeneous network comprised of several sets
of wires, each one with different latency, bandwidth, and energy characteristics,
and propose to send each coherence message through a particular set of wires
depending on its latency and bandwidth requirements. Our proposals are or-
thogonal to this work and the ideas presented in [24] could also be applied to
direct coherence protocols.

Martin et al. propose to use destination-set prediction to reduce the band-
width required by a snoopy protocol [25]. Differently from our proposals, this
approach is based on a totally-ordered interconnect, which is not suitable for
large-scale tiled CMPs. Regarding indirection avoidance, Cheng et al. propose
to convert 3-hop read misses into 2-hop read misses for memory blocks that
exhibit the producer-consumer sharing pattern [26] by using extra hardware to
detect when a block is being accessed according to this pattern. In contrast, di-
rect coherence obtains 2-hops misses for read, write and upgrade misses without
taking into account sharing patterns.

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 25

7 Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to cur-
rent small-scale CMP designs, and will be probably the architecture of choice
for future many-core CMPs. On the other hand, although a great deal of at-
tention was devoted to scalable cache coherence protocols in the last decades in
the context of shared-memory multiprocessors, the technological parameters and
power constrains entailed by CMPs demand new solutions to the cache coher-
ence problem. New cache coherence protocols, like Token-CMP and DiCo-CMP,
have been recently proposed to cope with the indirection problem of traditional
protocols. However, neither Token-CMP nor DiCo-CMP scale efficiently with
the number of cores.

This work addresses the traffic-area trade-off of indirection-aware cache coher-
ence protocols through several implementations of direct coherence for CMPs.
We evaluate several cache coherence protocols that differ in the amount of coher-
ence information that they store. Particularly, DiCo-LP-1, which only stores the
identity of one sharer along with the data block, and DiCo-NoSC, which does
not store any coherence information in the data caches, are the alternatives that
achieve a best compromise between traffic and area. Note that both approaches
include the coherence caches required by direct coherence protocols. DiCo-LP-1
presents a good trade-off by requiring slightly more area than Token-CMP (1%
for 32 cores and same order –O(log2n)–) and slightly increasing network traf-
fic compared to DiCo-CMP (11% for 32 cores). DiCo-NoSC does not need to
modify the structure of caches and, therefore, has less area requirements than
Token-CMP (4% for 32 cores), but with the same complexity order –O(log2n)–.
However, it increases network traffic by 35% compared to DiCo-CMP, but still
halving the traffic when compared to Token-CMP. Finally, DiCo-LP-1 improves
execution time compared to DiCo-NoSC due to reductions in network traffic.
Finally, we believe that both alternatives can be considered for many-core tiled
CMPs depending on the particular system constraints.

References

1. Le, H.Q., et al.: IBM POWER6 microarchitecture. IBM Journal of Research and
Development 51(6), 639–662 (2007)

2. Shah, M., et al.: UltraSPARC T2: A highly-threaded, power-efficient, SPARC SOC.
In: IEEE Asian Solid-State Circuits Conference, November 2007, pp. 22–25 (2007)

3. Azimi, M., et al.: Integration challenges and tradeoffs for tera-scale architectures.
Intel. Technology Journal 11(3), 173–184 (2007)

4. Kumar, R., Zyuban, V., Tullsen, D.M.: Interconnections in multi-core architec-
tures: Understanding mechanisms, overheads and scaling. In: 32nd Int’l. Symp. on
Computer Architecture (ISCA), June 2005, pp. 408–419 (2005)

5. Bosschere, K.D., et al.: High-performance embedded architecture and compilation
roadmap. Transactions on HiPEAC I, 5–29 (January 2007)

6. Owner, J.M., Hummel, M.D., Meyer, D.R., Keller, J.B.: System and method
of maintaining coherency in a distributed communication system. U.S. Patent
7069361 (June 2006)

26 A. Ros, M.E. Acacio, and J.M. Garćıa

7. Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers, Inc., San Francisco (1999)

8. Agarwal, A., Simoni, R., Hennessy, J.L., Horowitz, M.: An evaluation of direc-
tory schemes for cache coherence. In: 15th Int’l. Symp. on Computer Architecture
(ISCA), May 1988, pp. 280–289 (1988)

9. Chaiken, D., Kubiatowicz, J., Agarwal, A.: LimitLESS directories: A scalable cache
coherence scheme. In: 4th Int. Conf. on Architectural Support for Programming
Language and Operating Systems (ASPLOS), April 1991, pp. 224–234 (1991)

10. Gupta, A., Weber, W.D., Mowry, T.C.: Reducing memory traffic requirements for
scalable directory-based cache coherence schemes. In: Int’l. Conference on Parallel
Processing (ICPP), August 1990, pp. 312–321 (1990)

11. Marty, M.R., Bingham, J., Hill, M.D., Hu, A., Martin, M.M., Wood, D.A.: Im-
proving multiple-cmp systems using token coherence. In: 11th Int’l. Symp. on
High-Performance Computer Architecture (HPCA), February 2005, pp. 328–339
(2005)

12. Ros, A., Acacio, M.E., Garćıa, J.M.: DiCo-CMP: Efficient cache coherency in
tiled cmp architectures. In: 22nd Int’l. Parallel and Distributed Processing Symp.
(IPDPS) (April 2008)

13. Kim, C., Burger, D., Keckler, S.W.: An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In: 10th Int. Conf. on Architectural Support
for Programming Language and Operating Systems (ASPLOS), October 2002, pp.
211–222 (2002)

14. Barroso, L.A., et al.: Piranha: A scalable architecture based on single-chip mul-
tiprocessing. In: 27th Int’l. Symp. on Computer Architecture (ISCA), June 2000,
pp. 12–14 (2000)

15. Magnusson, P.S., et al.: Simics: A full system simulation platform. IEEE Com-
puter 35(2), 50–58 (2002)

16. Martin, M.M., et al.: Multifacet’s general execution-driven multiprocessor simula-
tor (GEMS) toolset. Computer Architecture News 33(4), 92–99 (2005)

17. Puente, V., Gregorio, J.A., Beivide, R.: SICOSYS: An integrated framework for
studying interconnection network in multiprocessor systems. In: 10th Euromicro
Workshop on Parallel, Distributed and Network-based Processing, January 2002,
pp. 15–22 (2002)

18. Thoziyoor, S., Muralimanohar, N., Ahn, J.H., Jouppi, N.P.: Cacti 5.1. Technical
Report HPL-2008-20, HP Labs (April 2008)

19. Horel, T., Lauterbach, G.: UltraSPARC-III: Designing third-generation 64-bit per-
formance. IEEE Micro. 19(3), 73–85 (1999)

20. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 pro-
grams: Characterization and methodological considerations. In: 22nd Int’l. Symp.
on Computer Architecture (ISCA), June 1995, pp. 24–36 (1995)

21. Li, M.L., Sasanka, R., Adve, S.V., Chen, Y.K., Debes, E.: The ALPBench bench-
mark suite for complex multimedia applications. In: Int’l. Symp. on Workload
Characterization, October 2005, pp. 34–45 (2005)

22. Martin, M.M., et al.: Timestamp snooping: An approach for extending SMPs. In:
9th Int. Conf. on Architectural Support for Programming Language and Operating
Systems (ASPLOS), November 2000, pp. 25–36 (2000)

23. Martin, M.M., Sorin, D.J., Hill, M.D., Wood, D.A.: Bandwidth adaptive snoop-
ing. In: 8th Int’l. Symp. on High-Performance Computer Architecture (HPCA),
January 2002, pp. 251–262 (2002)

Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols 27

24. Cheng, L., Muralimanohar, N., Ramani, K., Balasubramonian, R., Carter, J.B.:
Interconnect-aware coherence protocols for chip multiprocessors. In: 33rd Int’l.
Symp. on Computer Architecture (ISCA), June 2006, pp. 339–351 (2006)

25. Martin, M.M., Harper, P.J., Sorin, D.J., Hill, M.D., Wood, D.A.: Using destination-
set prediction to improve the latency/bandwidth tradeoff in shared-memory mul-
tiprocessors. In: 30th Int’l. Symp. on Computer Architecture (ISCA), June 2003,
pp. 206–217 (2003)

26. Cheng, L., Carter, J.B., Dai, D.: An adaptive cache coherence protocol optimized
for producer-consumer sharing. In: 13th Int’l. Symp. on High-Performance Com-
puter Architecture (HPCA), February 2007, pp. 328–339 (2007)

An Efficient Lightweight Shared Cache Design
for Chip Multiprocessors�

Jinglei Wang, Dongsheng Wang, Yibo Xue, and Haixia Wang

Tsinghua National Laboratory for Information Science and Technology
Department of Computer Science and Technology, Tsinghua University,

Beijing 100084, China
wjinglei00@mails.tsinghua.edu.cn, {wds,yiboxue}@tsinghua.edu.cn

Abstract. The large working sets of commercial and scientific work-
loads favor a shared L2 cache design that maximizes the aggregate cache
capacity and minimizes off-chip memory requests in Chip Multiproces-
sors (CMP). The exponential increase in the number of cores results in
the commensurate increase in the memory cost of directory, restricting
its scalability severely. To resolve this hurdle, a novel Lightweight Shared
Cache design is proposed in this paper, which applies two small fast
caches to store and manage the data and directory vectors for the blocks
recently cached by L1 caches in each tile of CMP. The proposed cache
scheme removes the directory vectors from L2 cache, thus decreases on-
chip directory memory overhead and improves the scalability. Moreover,
the proposed cache scheme brings significant reductions in terms of the
L1 cache miss latencies, which lead to the improvement of program per-
formance by 6% on average, and up to 16% at best, with 0.18% storage
overhead.

Keywords: Chip Multiprocessors (CMP), Directory-based Cache Co-
herence Protocol, Lightweight Shared Cache.

1 Introduction

The large working sets of commercial and scientific workloads favor a shared L2
cache design that maximizes the aggregate cache capacity and minimizes off-chip
memory requests in Chip Multiprocessors (CMP). Current CMP systems, such
as Piranha [18], Sun Niagara [19], XLR [20] and Power 5 [21], employ shared
L2 caches to maximize the on-chip cache capacity. Physical and manufacturing
considerations suggest that future CMP integrating hundreds of cores on chip
will be probably designed as tiles connected over a switched direct network [1, 2,
3, 4]. In most current proposals, each tile contains a processor core, a private L1
cache, a bank of shared cache (commonly, the L2 cache) and a router. Private
caches are kept coherent by using directory-based cache coherence protocol [5].

� This work has been supported by NSFC grants No. 60833004, No. 60773146 and No.
60673145.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 28–40, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 29

In tiled CMP, the directory structure is distributed within each L2 cache bank,
usually included in the L2 tags’ portion. In this way, each tile keeps the directory
vectors of blocks mapped to its L2 cache bank. L1 cache misses are sent to the
corresponding home node, which looks up the directory vector and performs the
actions needed to ensure coherence. The directory access latency is equal to the
L2 cache bank access time.

The exponential increase in the number of cores results in the commensu-
rate increase in the memory cost of directory vectors, restricting its scalability
severely. For example, considering cache line size is 64Bytes and full-map bit-
vector is adopted, the memory cost of directory vectors will be 100% of L2 cache
when the number of cores increases to 512 [14]. Since CMP designs are con-
strained by area, the directory should occupy a small fraction of the total chip
area.

In fact, only a small fraction of data blocks are caching in L1 caches at a
particular time (temporal locality). In L2 cache, when a data block is cached to
L1 caches, its directory vector is used to track the locations of L1 caches. In the
worst cases, the number of directory vectors used in L2 cache is equal to the
number of data blocks of L1 caches able to contain at any time when CMP is
running. Since the capacity of L1 caches is far smaller than that of L2 cache,
most of directory vectors are unused and wasted.

In this paper, we firstly analyze the occupation of directory vectors in shared
L2 cache of CMP. Experiment results show that the average number of blocks
cached to L1 caches does not exceed 41% of the capacity of L1 caches due to
redundant copies existing in L1 caches. In the worst cases, up to 96.8% of the
directory vectors are vacant.

Motivated by the observation and analysis, we propose a Lightweight Shared
Cache design that applies a Shared Data Cache (SDC) and a Victim Directory
Cache (VDC) to store and manage data and directory vectors for the blocks
recently cached by L1 caches in each tile of CMP. The SDC stores data and
directory vectors for the local blocks cached by L1 caches. The VDC stores only
directory vectors for those blocks evicted from the SDC. In this way, directory
vectors are removed from L2 cache.

The proposed lightweight shared cache design shows the following benefits:
(1) Decreases on-chip directory memory overhead and improves the scalability
of CMP by removing directory vectors from L2 cache. (2) Reduces L1 cache
miss latencies by accelerating the access to shared data blocks. (3) Obtains less
number of off-chip memory requests by increasing the capacity of on-chip cache.

Since shared data access and directory maintenance are correlated with net-
work communication, the proposed scheme embeds SDC and VDC into the
network interface of each router to decrease L1 cache miss latency further.

Full-system simulations of 16-core CMP show that the lightweight shared
cache scheme provides the robust performance: it decreases L1 miss latency
by 20% on average and reduces off-chip memory requests by 13% on average.
Consequently, this leads to 6% improvement in execution time on average, and
up to 16% at best, with 0.18% storage overhead.

30 J. Wang et al.

The rest of the paper is organized as follows: Section 2 presents a review of the
related work. Section 3 analyzes the occupation of directory vectors in L2 cache.
Section 4 describes the lightweight shared cache design and the cache coherence
protocol required by it. Section 5 evaluates the performance of the lightweight
shared cache. And finally, section 6 concludes the paper and points out some
future work.

2 Related Work

Most of previous work about directory structure of cache coherence protocol
focused on the private L2 cache design in CC-NUMA multiprocessors. In CC-
NUMA, directory is stored in main memory, and implies memory overhead and
long L2 miss latencies.

Directory caches have been originally proposed in [6] for cutting down direc-
tory memory overhead, which can also be used for reducing the latency of L2
misses by obtaining directory information from a much faster structure than
main memory. Fox example, in [7, 8] the integration of directory caches inside
the coherence controllers was proposed to minimize directory access time. In [9],
the remote memory access latency is reduced by placing caches in the crossbar
switches of the interconnection network to capture and store shared data as they
flow from the memory module to the requesting processor. In [10], a 3-level di-
rectory organization was proposed, including a directory cache on chip and a
compressed directory structure in main memory.

The lightweight directory architecture proposed in [12] adds directory informa-
tion to the L2 caches, thus removing the directory structure from main memory.
However, this structure increases the number of cache misses as a result of the
premature invalidations that arise when a particular memory block is replaced
from the L2 cache of the corresponding home node. To minimize such premature
invalidations, a new L2 cache design [13] was proposed which splits the cache
structure into two different parts: one for storing data and directory information
for the blocks requested by the local processor, and another one for storing only
directory information for blocks accessed by remote processors.

This paper studies the directory structure of shared L2 cache design in CMP.
In CMP, directory is stored in L2 cache, and implies the similar problem as CC-
NUMA: memory overhead and long miss latencies. But the directory capacity
and the directory access latency have significantly difference between CMP and
CC-NUMA. The directory capacity of CMP is much smaller than that of CC-
NUMA, but it will consume the constrained on-chip resource. The directory
access latency of CMP is much lower than that of CC-NUMA, but the directory
accesses are more frequent than that in CC-NUMA due to different L2 cache
design. Thus, the directory access latency can also lead to long miss latency in
CMP.

In this paper, we propose a lightweight shared cache design to decrease mem-
ory overhead of on-chip directory and reduce the L1 miss latencies in CMP.

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 31

3 Characterizing CMP Directory

In CMP, only a small fraction of data blocks in shared L2 cache are cached in the
L1 caches at a particular time. We analyzes the average and maximum number
of data blocks cached to L1 caches in L2 cache, through running multithreads
and single-thread programs in 16-core CMP simulator. Section 5 describes the
simulation environment and workloads in detail.

Table 1. Number of Data Blocks Cached by L1 Caches in L2 Cache

CMP: 16 cores, L1 Cache:32KB, L2 Cache Bank: 1MB, Cache Line: 64B
Benchmarks Average number of data blocks Maximum number of data blocks

% of L1 capacity % of L2 capacity % of L1 capacity % of L2 capacity

fft 29.3% 0.9% 92.0% 2.9%
lu 41.0% 1.3% 99.6% 3.2%
radix 40.0% 1.3% 98.2% 3.1%
radiosity 23.2% 0.7% 45.9% 1.4%
raytrace 29.9% 0.9% 52.3% 1.6%
ocean 30.5% 1.0% 60.5% 1.9%
art 15.4% 0.5% 31.4% 1.0%
apsi 25.0% 0.8% 47.3% 1.5%

Table 1 gives the number of data blocks cached by L1 caches in L2 cache.
In L2 cache, the average number of data blocks cached by L1 caches accounts
for 15.4-41.0% of the capacity of L1 caches, and accounts for 0.5-1.3% of the
capacity of L2 cache. The maximum number of data blocks cached by L1 caches
in L2 cache is 31.4-99.6% of the capacity of L1 caches, and is 1.0-3.2% of the
capacity of L2 cache.

From table 1, we observe that:

(1) In the worst cases, up to 96.8% directory vectors in L2 cache are unused
and wasted.

(2) The number of data blocks recently cached by L1 caches does not exceed
41% of the capacity of L1 caches on average.

Motivated by the observation, we propose a lightweight shared cache to store
the data blocks recently cached by L1 caches and ensure their coherence. The
directory vectors removed from L2 cache to save on-chip resources are justly
used to compensate for the cost of the proposed lightweight shared cache.

4 The Lightweight Shared Cache Design

In this section, we present the structure of the lightweight shared cache, as well
as the coherence protocol required by it.

32 J. Wang et al.

4.1 Structure of the Lightweight Shared Cache

The lightweight shared cache proposed in this paper stores data and directory
vectors for the blocks recently cached by L1 caches to reduce on-chip directory
overhead and decrease L1 cache miss latencies.

To reduce on-chip directory overhead, directory vectors in L2 cache are
removed due to its low utilization rate. The lightweight shared cache should
contain enough directory vectors to satisfy the demand of L1 cache misses. Pre-
vious experiment and analysis show that the maximum number of data blocks
recently cached by L1 caches in L2 cache is close to the capacity of L1 caches
in the worst cases. So the number of directory vectors stored in the proposed
lightweight shared cache should be larger than the maximum number of data
blocks recently cached by L1 caches.

To decrease L1 cache miss latencies, the lightweight shared cache should con-
tain data blocks recently cached by L1 caches. From previous experiment, the
number of data blocks recently cached by L1 caches in L2 cache does not exceed
41% of the capacity of L1 caches on average. According to temporal locality, we
place these data blocks in the proposed lightweight shared cache in the home
node. Most of L1 miss requests sent to this home node will be satisfied in the
lightweight shared cache and need not travel to L2 cache bank to access data
blocks. The lightweight shared cache should have desirable space to contain
blocks recently cached by L1 caches.

Fig. 1. The lightweight shared cache

The proposed lightweight shared cache consists of two structures as shown in
figure 1:

(1) The Shared Data Cache (SDC) that maintains both local data blocks and
corresponding directory vectors recently cached by L1 caches. In SDC, a cache
line contains tag, coherence state, directory vector and data block. Because the
goal of SDC is to reduce L1 cache miss latencies, the SDC should be able to
contain the blocks recently cached by L1 caches, larger SDC will waste on-chip
resource. According to previous analysis, when the size of SDC is equal to that
of L1 cache, most of L1 misses could be satisfied in the SDC.

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 33

(2) The Victim Directory Cache (VDC) that stores only directory vectors
for the local blocks recently cached by L1 caches and not present in SDC. As
the name implies, VDC works as a victim directory cache of SDC. Because the
limited capacity, the SDC increases the number of L1 cache misses as a result of
the premature invalidations that arise when a particular data block is replaced
from the SDC. To minimize the number of premature invalidations, when a data
block is replaced from SDC, the evicted directory vector is stored in the VDC.
The aim of VDC is to increase the capacity of directory vectors in the proposed
lightweight shared cache. In VDC, a cache line contains tag, coherence state and
directory vector, but not containing data block.

Since the lightweight shared cache is small and its function is correlated with
network communication, it is embedded into the network interface of router
to reduce the access latency of data blocks and directory vectors further. The
modified router is shown in Figure 2.

Fig. 2. Modified Router Structure

Differently from conventional router, the modified router adds a lightweight
shared cache module into the network interface. The lightweight shared cache
module intercepts and captures local/remote L1 cache requests sent to the local
L2 cache bank at local input/output port respectively. The lightweight shared
cache’s requests and responses sent to local L1 cache and L2 cache bank are
transmitted through local output port. The lightweight shared cache’s requests
and responses sent to remote L1 caches are injected into network through the
local input port.

4.2 Cache Coherence Protocol for Lightweight Shared Cache

The proposed lightweight shared cache design requires a cache coherence proto-
col similar to MSI [14] with some minor modifications. These modifications are
performed to ensure that the lightweight shared cache can intercept and cap-
ture the messages transmitted between L1 caches and local L2 cache bank to
handle all operations related to coherence maintenance. Although implementing
a full-map MSI protocol, the proposed cache scheme has no special limits to
directory-based coherence protocol.

34 J. Wang et al.

Read and Write Requests: Each L1 read or write miss request is sent to L2
cache bank in home node.

(1) At home node, the lightweight shared cache intercepts and captures lo-
cal/remote L1 miss request at local input/output port, then snoops SDC and
VDC.

(2) In case of a SDC hit, the SDC is responsible for providing the data and
sending the reply to the requestor. After updating directory vector, the reply
is directly sent to local L1 cache, or is injected into network to transmit to the
remote L1 cache through local input port.

(3) In case of a VDC hit, VDC requests data from local L2 cache bank. After
receiving the requested data from local L2 cache bank, the directory vector is
updated and the reply is forwarded to requestor like (2).

(4) If the requested address is not present in SDC and VDC, SDC requests
data from local L2 cache bank through local output port. After receiving the
requested data from local L2 cache bank through local input port, SDC stores
this data and updates directory vector, and then sends reply to requestor.

Lightweight Shared Cache Replacement: When a cache line is replaced
from the SDC, the evicted data block is written back to local L2 cache bank,
while the evicted directory vector is stored in the VDC. When a cache line is
replaced from the VDC, and if the SDC has a free line, VDC will store the
directory vector in SDC, and then reads corresponding data block from local L2
cache bank and stores it in SDC. Otherwise, VDC sends invalidations to shared
L1 caches. After having collected all invalidation acknowledges, the cache line is
removed from VDC. If VDC has received write back message, it forwards this
message to local L2 cache bank to store the data block.

L2 Requests from Lightweight Shared Cache: When local L2 cache bank
receives read request from SDC or VDC, L2 cache bank returns data block to
the requestor. If the request is from SDC, the requested data block is removed
from L2 cache bank. The data blocks stored in SDC need not hold in L2 cache
bank. Thus, the capacity of on-chip cache increases.

5 Evaluation Results and Analysis

The lightweight shared cache improves the performance of CMP by reducing L1
cache miss latencies and decreasing the number of off-chip memory requests.

In this section, we evaluate the performance of the proposed lightweight shared
cache in terms of total execution time as well as we analyze the impact on
L1 cache miss latencies, the number off-chip memory requests and the number
of L1 cache misses. We compare the proposed lightweight shared cache design
with the conventional shared L2 cache design. The CMP structure adopting the
lightweight shared cache is shown in Figure 3. Differently from a conventional
CMP, the directory is removed from L2 cache and a lightweight shared cache is
added to router in the CMP.

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 35

Fig. 3. CMP Architecture with the lightweight shared cache

5.1 Simulation Environment

This paper uses GEMS simulator [11] to evaluate the performance of the
lightweight shared cache. Table 2 shows the detailed system parameters. The
benchmarks are selected from SPLASH-2 [16] and SPEC2000 [17]. Table 3 shows
the benchmarks used in this evaluation. In this evaluation, the size of SDC is
equal to the size of L1 cache, and the number of entries of VDC is equal to that
of L1 cache. The impact on the performance of CMP when different size of SDC
and VDC are adopted will be evaluated in future work.

Table 2. System parameters

Processors: 16 cores, Cache line size: 64B
L1 I/D Cache: 32KB -2way, 1 cycle
L2 Cache: 6 cycles, 1MB-16way/bank, (Total 16MB)
Lightweight Shared Cache: 16-way, 1 cycle,

SDC: 32KB, VDC: 512 Entries
L1/L2/SDC/VDC Replacement Policy: Psuedo-LRU
Network: 4 x 4 Mesh; One-hop latency: 3 cycles
External memory latency: 256 cycles

Table 3. Benchmarks parameters

Benchmarks Parameters
fft 256K complex doubles
lu 1024 x 1024 matrix
radiosity room environment
radix 1M keys, 1024 radix
raytrace car environment
ocean 258 x 258 grid
art lgred input
apsi lgred input

36 J. Wang et al.

5.2 Impact on L1 Cache Miss Latencies

Figure 4 shows the normalized L1 cache miss latencies. As it can be observed, the
proposed lightweight shared cache decreases the L1 cache miss latencies by from
15% to 25%. The L1 cache miss latencies are reduced by 20% on average. One
of the reasons is that most of L1 cache misses can be satisfied in the lightweight
shared cache, and need not travel to L2 cache to access directory vectors and
data blocks. Another reason is the reduction of the number of off-chip memory
requests which will be discussed in the following subsection.

Fig. 4. Reduced L1 cache miss latencies

5.3 Impact on Off-Chip Memory Requests

Figure 5 shows the normalized number of off-chip memory requests. The pro-
posed lightweight shared cache decreases the number of off-chip memory re-
quests by from 2% to 24%. The number of off-chip memory requests is reduced
by 13% on average. The reason is that the lightweight shared cache increases
the capacity of on-chip cache through moving blocks recently accessed by L1
caches to the SDC. Reduced off-chip memory requests can significantly decrease
the latency of off-chip memory access, which result in the reduction of L1 miss
latency. As can be seen in Figure 4 and Figure 5, less number of off-chip memory
requests will lead to lower L1 miss latency relatively.

5.4 Impact on L1 Cache Miss Ratio

Figure 6 shows that the proposed lightweight shared cache increases the L1 miss
ratio of each workload by 1-33% except lu. For lu workload, the L1 miss ratio
does not increase, but decrease by 12%. The reason is that we selected a ”-c”
parameter in lu’s command line, which means that non-locally allocated blocks
will be copied to local memory before they are needed. Well spatial locality makes
lu obtain lower L1 miss ratio than conventional CMP. In addition, the L1 miss

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 37

Fig. 5. Reduced off-chip memory requests

Fig. 6. Normalized L1 miss ratio

ratio of fft increases by 33%, which is far higher than that of other workloads.
This is due to its lower spatial locality. The L1 cache miss ratio increases by 5%
on average. The increase of L1 cache miss ratio is caused by the limited capacity
of the lightweight shared cache.

5.5 Impact on Execution Time

For benchmarks running on CMP, their execution time is decided by the latency
of memory system which further depends on the L1 miss latency and the L1
miss ratio. For example, we assume the L1 miss ratio is Rm, the L1 miss latency
is Lm, and the L1 hit latency is 1. So the average latency of memory system (L)
will be described as follow:

L = 1 − Rm + Rm ∗ Lm (1)

Figure 7 shows that the lightweight shared cache reduces the execution time
of each benchmark by 3-16%. As discussed above, although the L1 miss ratio

38 J. Wang et al.

Fig. 7. Improvement of the total performance

increases, the larger decrease of L1 miss latencies finally lead to the reductions
of execution time. In this figure, the execution time of lu is reduced by 16% due
to its lower L1 miss ratio and 15% reduction of L1 miss latency. This is because
that lu has better memory locality as the previous analysis. The lightweight
shared cache improves the performance of CMP by 6% on average.

5.6 Storage Overhead

The lightweight shared cache will consume some on-chip resource, while the
memory space of directory in L2 cache is saved. Compared to conventional shared
L2 cache design, the lightweight shared cache design increases on-chip storage
by only 0.18%. The detailed storage overhead can be seen in Table 4. As the
number of cores increases, the saved directory storage from L2 cache will increase
significantly, while the storage overhead of the proposed scheme will increase far
slower. So, the proposed lightweight shared cache design can provide much better
scalability than the conventional shared L2 cache design.

Table 4. Storage Overhead Comparison (in Each Tile of CMP)

Conventional scheme Proposed cache scheme
L1 cache 32KB 32KB
L2 cache 1MB 1MB
L2 directory 32KB 0
Lightweight 0 SDC data blocks: 32KB
shared cache SDC directory: 1KB

VDC directory: 1KB
Total 1088KB 1090KB
Normalization 1 1.0018

An Efficient Lightweight Shared Cache Design for Chip Multiprocessors 39

6 Conclusions and Future Work

This paper proposes an efficient Lightweight Shared Cache design that applies
Share Data Cache (SDC) and Victim Directory Cache (VDC) to store and man-
age data and directory vectors for the blocks recently cached by L1 caches in
CMP. In this way, directory vectors are removed from L2 cache, thus decreas-
ing the on-chip directory overhead and improving the scalability of CMP. The
proposed lightweight shared cache also reduces the L1 cache miss latencies and
increases the capacity of on-chip cache, which translates into reductions in ap-
plications’ execution time. This paper evaluates the performance of the pro-
posed lightweight shared cache. Simulation results show that the proposed cache
scheme provides the robust performance: it decreases L1 miss latency by 20%
on average and reduces off-chip memory requests by 13% on average. Conse-
quently, this leads to 6% improvement in execution time on average, with 0.18%
storage overhead. When the data blocks of applications are locally allocated,
the lightweight shared cache can improve their performance significantly by up
to 16%.

For future work, we plan to evaluate the performance of the lightweight shared
cache when the different size of SDC and VDC are adopted. We will also evaluate
the performance of the lightweight shared cache when the number of cores in-
creases. Another area of interest is to study the method to improve data blocks’
locality. Finally, in order to reduce even more directory memory overhead, we
would like to evaluate the effect of limited pointers or compressed sharing codes
in the lightweight shared cache design.

References

1. Taylor, M.B., Kim, J., Miller, J., et al.: The raw microprocessor: A computational
fabric for software circuits and general purpose programs. IEEE Micro. 22(2), 25–35
(2002)

2. Zhang, M., Asanovic, K.: Victim replication: Maximizing capacity while hiding wire
delay in tiled chip multiprocessors. In: 32nd Int’l. Symp. on Computer Architecture
(ISCA 2005), June 2005, pp. 336–345 (2005)

3. Azimi, M., Cherukuri, N., Jayasimha, D.N., Kumar, A., Kundu, P., Park, S.,
Schoinas, I., Vaidya, A.S.: Integration challenges and tradeoffs for tera-scale ar-
chitectures. Intel. Technology Journal 11(3), 173–184 (2007)

4. Vangal, S., Howard, J., Ruhl, G., et al.: An 80-tile 1.28tflops network-on-chip in
65nm cmos. In: IEEE Int’l. Solid-State Circuits Conference (ISSCC) (February
2007)

5. Chaiken, D., Fields, C., Kurihara, K., Agarwal, A.: Directory-based cache coher-
ence in large-scale multiprocessors. Computer 23(6), 49–58 (1990)

6. Gupta, A., Weber, W., Mowry, T.: Reducing Memory Traffic Requirements for
Scalable Directory-Based Cache Coherence Schemes. In: Int’l. Conference on Par-
allel Processing (ICPP 1990), August 1990, pp. 312–321 (1990)

7. Nanda, A., Nguyen, A., Michael, M., Joseph, D.: High-Throughput Coherence Con-
trollers. In: 6th Int’l. Symposium on High-Performance Computer Architecture
(HPCA-6), January 2000, pp. 145–155 (2000)

40 J. Wang et al.

8. Michael, M., Nanda, A.: Design and Performance of Directory Caches for Scal-
able Shared Memory Multiprocessors. In: Fifth International Conference on High
Performance Computer Architecture, HPCA-5 (1999)

9. Iyer, R., Bhuyan, L.: Switch Cache: A Framework for Improving the Remote Mem-
ory Access Latency of CC-NUMA Multiprocessors. In: 5th Int’l. Symposium on
High-Performance Computer Architecture (HPCA-5), January 1999, pp. 152–160
(1999)

10. Acacio, M.E., Gonzalez, J., Garcia, J.M., Duato, J.: An architecture for highper-
formance scalable shared- memory multiprocessors exploiting on-chip integration.
IEEE Transactions on Parallel and Distributed Systems 15(8), 755–768 (2004)

11. Martin, M.M., Sorin, D.J., Beckmann, B.M., Marty, M.R., Xu, M., Alameldeen,
A.R., Moore, K.E., Hill, M.D., Wood, D.A.: Multifacet’s general execution-driven
multiprocessor simulator (GEMS) toolset. Computer Architecture News 33(4),
92–99 (2005)

12. Ros, A., Acacio, M.E., Garca, J.M.: A Novel Lightweight Directory Archi-tecture
for Scalable Shared-Memory Multiprocessors. In: Cunha, J.C., Medeiros, P.D.
(eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 582–591. Springer, Heidelberg (2005)

13. Ros, A., Acacio, M.E., Garca, J.M.: An efficient cache design for scalable glueless
shared-memory multiprocessors. In: Proceedings of the 3rd conference on Comput-
ing frontiers, pp. 321–330 (2006)

14. Culler, D.E., Singh, J.P., Gupta, A.: Parallel Computer Architecture: A Hard-
ware/Software Approach, 2nd edn. Harcourt Asia Pte Ltd. (2002)

15. Woodacre, M., Robb, D., Roe, D., Feind, K.: The SGI AltixTM 3000 global shared-
memory architecture.Technical Whitepaper, Silicon Graphics, Inc. (2003)

16. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 pro-
grams: Characterization and methodological considerations. In: 22nd Int’l. Symp.
on Computer Architecture (ISCA 1995), June 1995, pp. 24–36 (1995)

17. SPEC2000, http://www.spec.org
18. Barroso, L., et al.: Piranha: a scalable architecture based on single-chip multipro-

cessing. In: ISCA-27, Vancouver, BC, Canada (May 2000)
19. Krewell, K.: Sun’s Niagara pours on the cores. Microprocessor Report 18(9), 11–13

(2004)
20. Raza Microelectronics, Inc. XLR processor product overview (May 2005)
21. Sinharoy, B., Kalla, R., Tendler, J., Eickemeyer, R., Joyner, J.: Power5 System

Microarchitecture. IBM Journal of Research and Development 49(4) (2005)

http://www.spec.org

A Novel Cache Organization for Tiled Chip
Multiprocessor�

Xi Zhang, Dongsheng Wang, Yibo Xue, Haixia Wang, and Jinglei Wang

Tsinghua National Laboratory for Information Science and Technology,
Department of Computer Science & Technology,

Tsinghua University, Beijing 100084, China
{zhang-xi06,wjinglei00}@mails.tsinghua.edu.cn

{wds,yiboxue,hx-wang}@tsinghua.edu.cn

Abstract. Increased device density and working set size are driving a
rise in cache capacity, which comes at the cost of high access latency.
Based on the characteristic of shared data, which is accessed frequently
and consumes a little capacity, a novel two-level directory organization is
proposed to minimize the cache access time in this paper. In this scheme,
a small Fast Directory is used to offer fast hits for a great fraction of mem-
ory accesses. Detailed simulation results show that on a 16-core tiled chip
multiprocessor, this approach reduces average access latency by 17.9%
compared to the general cache organization, and improves the overall
performance by 13.3% on average.

Keywords: Chip Multiprocessor(CMP), Tiled Architecture, Multi-level
Directory, Cache Organization.

1 Introduction

Chip multiprocessor (CMP) is proposed to maintain the expected performance
advances within the power and design complexity constraints. Future CMP will
integrate more cores on a chip to increase the performance, meanwhile will in-
crease the on-chip cache size to reduce access latency. The increasing number
of cores and growing cache capacity will challenge the design of on-chip cache
hierarchy which is now working well on 2 or 4-core CMP.

When CMP is scaled to tens or even hundreds of cores, the organization of
on-chip cache and the design of cache coherence will become one of the key
challenges. There have been dance-hall CMP architectures with processing cores
on one side and shared L2 cache on the other side, which are connected by bus
or network [25]. But dance-hall architecture is not well scalable because mini-
mum L2 hit latency increases with the number of cores. Hence, to design CMP
with more cores, tiled architecture which has better scalability and can reduce
the design efforts is considered to be more appropriate. Directory-based cache

� This work is supported by the Natural Science Foundation of China under Grant
No. 60673145, No. 60773146 and No. 60833004.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 41–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

42 X. Zhang et al.

coherence protocols have been widely used in large-scale multichip multiproces-
sor [1,2], which have been proved to be scalable, will be adopted by future CMP
together with tiled architecture [24].

Advancements in semiconductor technology enable designers to exploit more
transistors to improve performance. To minimize average access latency, increas-
ing on-chip cache sizes to reduce the number of off-chip memory access is an ef-
fective solution. At the same time, growing application working sets can benefit
from enlarging on-chip cache capacity as more cache lines can be kept on-chip.
Manufacturers also ship CMP with large on-chip cache size (e.g., Intel Dual-Core
Xeon 7100 [3] with 16MB cache, and Dual-Core Intel Itanium 2 with 24MB [4]).
However, large cache size result in the increasing of hit latency-e.g. 4cycles in
Intel Pentium III and 14cycles in Dual-Core Itanium 2, which penalty the perfor-
mance. Nikos Hardavellas et al [5] investigate performance of database workloads
on modern CMP. When the capacity of L2 cache is enlarged from 1MB to 26MB,
the performance increases at first but begins to decrease quickly, even before the
cache captures the entire working sets. The phenomenon indicates that merely
increasing on-chip cache capacity is no longer enough to attain maximum perfor-
mance, because bottleneck will be shifted from off-chip memory access to on-chip
L2-hits. The on-chip cache hit latency mainly depends on the organization of
last-level cache (LLC). Access latency of LLC generally consists of two parts: the
network latency depending on the distance between requesting core and data,
and the cache-bank access latency. There has been a flurry of researches on cache
line replication or migration to place data close to requesting core, which can re-
duce network latency [6,7,8,9,10], but not suitable to cache-bank access latency.
Our research is focusing on how to reduce the LLC cache-bank access latency.

Previous works [8,20,21,23] observe the characteristic of shared data: a small
set of shared data which consumes small capacity in LLC serves a substantial
fraction of total memory accesses. Moreover, shared data has good temporal
locality. This observation indicates the bottleneck of existing cache organization:
most of the memory accesses involve only a small fraction of total cache lines
in LLC, but the access of such a small fraction of cache lines has to suffer from
high latency incurred by large LLC.

Motivated by the observation, we propose a novel two-level directory organi-
zation to reduce LLC access latency while avoid issuing more off-chip memory
accesses. The first-level directory is a small cache named FAST Directory, which
is placed in each tile to offer fast hit for frequently accessed lines. The Second-
level directory is the large L2 cache slice to reduce the number of off-chip memory
accesses. We evaluate the two-level directory organization on a range of scientific
workloads and show that 13.3% speedup in execution time in 16-core CMP, and
up to 38.1% at best.

The rest of this paper is organized as follows. Section 2 presents background
and related work. Section 3 describes our two-level organization in detail. In
section 4 we evaluate the design with cycle-accurate full-system simulation, and
finally we conclude in section 5.

A Novel Cache Organization for Tiled Chip Multiprocessor 43

2 Background and Related Work

Tiled architecture is considered to be main architecture of large-scale CMP for its
good scalability and simple design [27]. A typical tiled CMP comprises of multiple
tiles which are replicated to fill the die area. Each tile includes a processor core,
network router, private L1 data and instruction caches and an L2 cache slice.
The L2 cache slice can be either private to its local core or can be one slice
of a monolithic shared L2. We base our design on shared L2 scheme due to its
simplicity in maintaining cache coherence and less storage overhead [10]. Though
shared L2 scheme can lead to long wire delays on chip, there have been a flurry
of previous works on how to manage it [6,7,8,9,10]. These proposed techniques
are aiming at reducing network latency by decreasing the distance between the
requesting node and data. The motivation of our proposed approach is to reduce
the high L2 cache bank access latency which constitutes the overall L2 cache
access latency together with the network latency. Hence, these techniques and
our work aim at different parts of L2 cache access latency, and can be combined.

Liu et al. [22] and Guz et al. [23] added a central cache which holds shared data
to a DNUCA-based CMP. The central cache is surrounded by processing cores,
which can reduce access latency to shared data. The central cache is relatively
small to speed up accessing to shared cache lines, which is similar to our work. But
their architecture is asymmetric which fits for 4 or 8-core, and don’t scale well to
large-scale CMP. Moreover, several cores access the same shared cache may incur
heavy contention and form a hot spot on chip. In our design, the same cache is in
banks and distributed across chip, avoiding heavy contention and hot spot.

There is a lot of previous research on SMP-based multi-level directory ar-
chitecture, which is used to solve the scalability of directory memory over-
head [12,13,14]. Michael et al. [11] implemented directory cache on directory
controller chip. Gonzalez et al. [13] and Acacio et al. [14] moved off-chip main
memory directory to SMP processor chip. In their approach based on SMP, off-
chip directory access latency can be reduced, but it doesn’t reduce the on-chip
cache hit latency. Brown et al [15] suggested a directory cache on CMP chip,
which caches the frequent accessed directory entries to reduce off-chip memory
access times, and improve average access latency. But there is still a directory in
off-chip memory, which leads to large memory overhead. Unlike these multi-level
directory designs, our proposal focus on reducing on-chip cache hit latency in-
curred by large L2 cache capacity. Hence the added Fast Directory, which holds
frequent accessed L2 cache lines, lies between L1 and L2 cache on CMP chip. To
reduce memory overhead, there is no directory in off-chip memory.

3 Two-Level Directory Cache Organization

3.1 Overview

The characteristic of shared data indicates that a small number of shared cache
lines which reside only a small fraction of total LLC lines are accounting for a
significant fraction of total memory accesses, which suggests that a relatively

44 X. Zhang et al.

small cache is sufficient for serving the majority of memory accesses [23]. Thus,
the basic idea of two-level directory organization given in this paper is to place
frequently accessed cache lines in a relatively small cache to provide fast access
while preserve the L2 cache slice to keep on-chip capacity. As a result, reduction
in access latency for these frequently accessed lines leads to reduction in average
access latency.

The basic idea is implemented based on a shared L2 tiled CMP scheme. Com-
pared to this scheme, a small cache named Fast Directory is placed in each
tile. The small cache holds the recently accessed cache lines and can provide
low hit latency. According to temporal locality of shared data [20], there is a
great possibility that the recently accessed cache lines will be accessed by other
processors in a short while. Thus, subsequent accesses to this cache line will be
served by Fast Directory. If there is a conflict, less frequently accessed lines will
be replaced first, as same as a general cache replacement strategy. Therefore, the
more frequently cache line is accessed, the longer it will reside in Fast Directory.
As a result, more reduction in average access latency can be expected.

Besides Fast Directory, the large L2 cache slice is used to store more data
and directory information on chip. If the L2 cache slice is removed or the size is
decreased, more replacements and off-chip memory accesses will lead to perfor-
mance degradation.

Throughout this paper, a standard directory-based MSI protocol [16] is as-
sumed, but our approach can be applied to any directory protocol. The organi-
zation and mechanism of two-level directory will be described in detail as below.

3.2 Structure

The two-level directory structure for the case of 16-core CMP is shown in Fig.1.
A shared L2 tiled scheme is taken as baseline. A Fast Directory is added between
router and L2 cache slice in each tile. The Fast Directory is an inclusive cache,

Fig. 1. Two-level Directory organization

A Novel Cache Organization for Tiled Chip Multiprocessor 45

that is, cache lines in Fast Directory are a subset of L2 cache slice. Each cache
line contains three fields aside from Data: the Tag used to identify the block, the
State which is one of the 3 states used by the MSI protocol, and the Dir used to
specify which nodes’ L1 cache are actively sharing the data.

In such organization, one most important problem is to decide which direc-
tory maintains coherence, and how to ensure the coming request see the latest
coherence information. Fast Directory, which is accessed more frequently, is used
to keep the latest State, Data and Dir information. If a cache line resides both
in Fast Directory and L2 cache, coherence of this line is maintained by Fast Di-
rectory. Otherwise, the cache line will be fetched from L2 cache slice and saved
in Fast Directory. When Fast Directory cache line is replaced, the latest State
and Dir field value of that line will be written back to L2 cache slice.

3.3 Two-Level Cache Coherence

Two-level directory cache coherence is implemented based on a generic directory-
based MSI protocol. States in Fast Directory and L2 cache have the same mean-
ing. M (Modified) state means the cache line was modified, and the latest data is
in L1 cache of some node, which is specified by Dir field of this line. S (Shared)
state means the cache line has a clean copy, but other nodes’ L1 cache may also
have copies. I (Invalid) state means the cache line has been invalidated. The NP
(Not Present) state means the cache line is not in the cache, so it is not a real
state saved in cache line.

The state transitions diagram for Fast Directory is shown in Fig.2. Since a
great deal of memory accesses which are acknowledged by L2 cache slice in base-
line are now processed by Fast Directory, the state transitions of Fast Directory
are much similar to that of a general L2 cache. So we emphasize the difference
with broken lines in Fig.2. Actions triggered during state transition from I to
M(S) are the same as those triggered when state transition takes place from NP
to M(S) (not shown in Fig.2 for simplicity).

The events triggering Fast Directory state transition have two sources: local
router and L2 cache slice. Compared to baseline protocol, several types of mes-
sages are added for communication between two level directories. The added
types of messages are summarized in Table 1.

The state transitions of L2 cache slice in two-level directory are shown in
Fig.3. Messages triggering L2 cache transitions are GETLINE and PUTLINE
from Fast Directory. Upon receiving the PUTLINE, State and Dir field in L2
cache line are updated if a match is found. When cache line in L2 cache slice is
replaced, the INVLINE, which comprises of State and Dir of the cache line, will
be sent to Fast Directory.

3.4 Memory Access Walkthrough

To tie the state transitions in Fig.2 and Fig.3 together, three typical walkthrough
cases are presented. Each step is described in detail below. Fig.4, Fig.5 and Fig.6
describe the operations of Fast Directory miss, Fast Directory Replacement, and
L2 cache replacement respectively.

46 X. Zhang et al.

Fig. 2. Fast Directory state transitions

Fig. 3. L2 cache state transitions

A Novel Cache Organization for Tiled Chip Multiprocessor 47

Fast Directory issues GETLINE message to local L2 cache slice;
Upon L2 is receiving the GETLINE message,

If the requested cache line cached in L2 then
L2 cache returns the requested cache line to Fast Directory.

Else L2 cache
Fetch data from off-chip memory;
Allocate a new line to keep data;
Set the new line to state S;
Send the new line to Fast Directory.

Fast Directory reissues the stalled memory requests;
Subsequent operations perform as Fast Directory hit.

Fig. 4. Pseudo code of operations of Fast Directory miss

Fast Directory issues PUTLINE message to local L2 cache slice;
Upon receiving the PUTLINE message, L2 cache,

Update the corresponding cache line;
Send a PUTLINE ACK to Fast Directory.

Upon receiving the PUTLINE ACK, Fast Directory,
Set the replaced line to state I.

Fig. 5. Pseudo code of operations of Fast Directory replacement

L2 cache sends an INVLINE message to Fast Directory;
Upon Fast Directory receiving the INVLINE message,

If there is a hit in the Fast Directory then
Fast Directory issues invalidations to all sharers according to
the Dir vector in Fast Directory;

Else Fast Directory
Send invalidations to sharers according to Dir vector in the
INVLINE message;
If receives all invalidation ACKs then

If the line exists then
Set the cache line to state I.

Else if receives the latest data from an exclusive node then
Send data to L2 cache;
If the line exists then

Set the cache line to state I.
Send INVLINE ACK to L2 cache.

Upon receiving INVLINE ACK message, L2 cache,
Set the replaced cache line to state I;
If the latest data arrives then

Write it back to memory.

Fig. 6. Pseudo code of operations of Fast Directory replacement

48 X. Zhang et al.

Table 1. Messages between Fast Directory and L2 cache

Message Description

GETLINE Message from Fast Directory to L2 cache to fetch cache line.
RETLINE Message from L2 cache to Fast Directory to acknowledge the

GETLINE request.
The message includes all four fields of the corresponding cache
line in L2 cache.

PUTLINE Message from Fast Directory to L2 cache to update the corre-
sponding cache line in L2 cache.
The message includes a Tag, State, Dir field of the requested
line.

PUTLINE ACK Message from L2 cache to Fast Directory to acknowledge PUT-
LINE.

INVLINE Message from L2 cache to Fast Directory to invalidate the cor-
responding line in Fast Directory.
The message includes Tag, State, Dir field of the requested line.

INVLINE ACK Message from Fast Directory to L2 cache to acknowledge
INVLINE.

4 Evaluation

4.1 Experiment Setup

By using full-system simulation based on Simics [17] and the GEMS toolset [18],
we evaluate our two-level directory scheme against baseline.

The parameters of configurations are given in Table 2. Fast Directory is imple-
mented with two alternative sizes: 32KB and 64KB. All designs use write-back,
write-allocate caches. The L2 cache is inclusive with the L1 caches as well as
the Fast Directory. The network-on-chip is modeled in detail, including all mes-
sages required to maintain coherence. We study our design using six scientific
workloads from SPLASH-2 [19] as shown in Table 3.

4.2 Memory Access Latency

Fig.7 presents normalized reduction of access latency. For all the 6 workloads,
17.9% savings in average access latency can be gained relative to baseline with
32KB Fast Directory configuration. With 64KB configuration, the savings are
19.1%, a little more than that of 32KB configuration. However, the results are
based on the assumption that 32KB and 64KB Fast Directory have the same hit
latency. But in reality, larger cache may result in more cycles to access, which
may penalty the performance.

4.3 Hit Ratio of Fast Directory

The hit ratios of Fast Directory are shown in Table 4. Hit ratios in 64KB config-
uration are a little higher than that in 32KB configuration. Except radix with

A Novel Cache Organization for Tiled Chip Multiprocessor 49

Table 2. Processor and cache/memory/network parameters

Component Parameter

CMP Size 16-core
Processing Core Sparc V9 ISA/in-order/ 1.4GHz

Cache Line Size 64B

L1 I-Cache Size/ Associativity 32KB /2-way
L1 I-Cache Size/ Associativity 32KB /2-way
L1 Load-to-Use Latency 2-cycle
L1 Replacement Policy Psuedo-LRU

Fast Directory (per tile) 32KB/16-way and 64KB/16-way
Fast Directory Load-to-Use Latency 2-cycle

Network Configuration 4x4 Mesh
One-hop Latency 3-cycle
External Memory Latency 300-cycle

Table 3. Workloads description

Workload Problem Set

FFT 256K points
LU 1024*1024 matrix, 16x16 blocks
RADIX 1048576 keys, radix=1024
RAYTRACE Teapot.env
OCEAN 258 x 258 ocean
WATER 512 molecules

Table 4. Hit ratios of Fast Directory in different configurations

fft lu ocean radix raytrace water

32KB Fast Directory 97.19% 98.18% 97.87% 86.84% 99.47% 98.28%
64KB Fast Directory 97.43% 98.57% 98.50% 89.92% 99.58% 98.70%

3.28% increase, the average increase in hit ratios of other 5 workloads is only
0.36%, which indicates that 32KB Fast Directory is sufficient to hold frequently
accessed cache lines.

4.4 Execution Time

Fig.8 shows speedups in execution time of 6 workloads relative to baseline.
Results of 32KB Fast Directory configuration show that the average speedup

50 X. Zhang et al.

Fig. 7. Normalized reduction in access latency

Fig. 8. Speedup in execution time

is 13.3%, and the best case is 38.1% in ocean. For 64KB Fast Directory, the
average speedup is 13.7%, nearly the same as that of 32KB configuration. Con-
sidering only a half of storage overhead against 64KB configuration, 32KB config-
uration is a more appropriate choice for leveraging performance and overhead.
For workload water, the execution time of the 64KB configuration is a little
more than that of 32KB though the reduction in access latency is more than
that of 32KB configuration. Considering some indeterminism in multithreaded
application execution, such a little difference is in a reasonable scope.

4.5 Overhead

Area overhead is introduced in implementing the Fast Directory. Storage space
(in bits) is used for estimating the area overhead. The added storage space is

A Novel Cache Organization for Tiled Chip Multiprocessor 51

dominantly decided by the capacity of the Fast Directory. In our configuration,
the capacity of Fast Directory is in two configurations: 32KB and 64KB, which
increase on-chip storage space by 3% and 6% respectively. Area overhead of
32KB configuration is comparable to that of Cooperative Caching [11]. We do
not model the area of point-to-point network connecting Fast Directory and L2
cache slice as it requires consideration of many physical constraints, which is not
our focus. We believe it is comparable to the existing and future network-on-chip.

4.6 Impact of Associativity

In order to find the optimal configuration for our scheme, we performed differ-
ent configurations of Fast Directory. With the 32KB size of Fast Directory, we
evaluate 3 configurations of associativity for the lu workload: 8-way, 16-way and
32-way, and hit ratios are shown in Table 5. Results show that hit ratio is in-
creasing with more ways of associatively. It can be explained that more ways of
associativity results in higher utilization ratio of Fast Directory capacity. More-
over, increasing associativity from 8-way to 16-way improves hit ratio more,
while increasing from 16-way to 32-way changes it much less. Since more ways
of associativity leads to more area overhead and power consumption, 16-way
configuration is a compromise between performance and overhead.

Table 5. Hit ratios of 32KB Fast Directory with different ways of associativity for
workload lu

Associativity Fast Directory Hit Ratio

8-way 97.26%
16-way 98.18%
32-way 98.34%

5 Conclusions and Future Work

The trend of increasing on-chip cache sizes comes at the cost of high on-chip hit
latency, which challenges cache organization design. There is a lot of previous
work on decreasing the latency of on-chip communication, while this paper fo-
cuses on how to reduce access latency of cache slice. By utilizing characteristic
of shared data, a two-level directory organization is proposed, which offers fast
access for a great fraction of memory accesses. Evaluated on a 16-core CMP,
our proposal reduces average access latency by 17.9%, and improves the overall
performance by 13.3% on average.

Organization and mechanics of Fast Directory can be optimized further. In
addition, LLC bank access latency is only part of the overall access latency, while
wire delays and limited off-chip bandwidth are also challenging the memory hier-
archy design of CMP. Techniques to manage wire delays and off-chip bandwidth
can be explored to combine with our work.

52 X. Zhang et al.

References

1. Briggs, F., et al.: Intel 870: A Building Block for Cost-Effective Scalable Servers.
IEEE Micro., 36–47 (March-April 2002)

2. Chaiken, D., Fields, C., Kurihara, K., Agarwal, A.: Directory-based cache coher-
ence in large-scale multiprocessors. IEEE Computer, 49–58 (June 1990)

3. Rusu, S., et al.: A Dual-Core Multi-Threaded Xeon Processor with 16MB L3 Cache.
In: IEEE International Solid-State Circuits Conference Digest of Technical Papers
(February 2006)

4. Wuu, J., Weiss, D., Morganti, C., Dreesen, M.: The Asynchronous 24MB On-Chip
Level-3 Cache for a Dual-Core Itanium-Family Processor. In: IEEE International
Solid-State Circuits Conference Digest of Technical Papers (February 2005)

5. Hardavellas, N., Pandis, I., Johnson, R., Mancheril, N., Ailamaki, A., Falsafi, B.:
Database servers on chip multiprocessors: limitations and opportunities. In: CIDR
(2007)

6. Zhang, M., Asanovic, K.: Victim Replication: Maximizing Capacity while Hiding
Wire Delay in Tiled Chip Multiprocessors. In: Proc. of the 32nd International
Symposium on Computer Architecture, June 2005, pp. 336–345 (2005)

7. Zhang, M., Asanovic, K.: Victim Migration: Dynamically Adapting between Pri-
vate and Shared CMP Caches. MIT Technical Report MIT-CSAIL-TR-2005-
064,MIT-LCS-TR-1006 (October 2005)

8. Beckmann, B.M., et al.: ASR: Adaptive Selective Replication for CMP Caches. In:
Proc. of the 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, December 2006, pp. 443–454 (2006)

9. Chang, J., et al.: Cooperative Caching for Chip Multiprocessors. In: Proc. of the
33rd Annual International Symposium on Computer Architecture, ISCA 2006, May
2006, pp. 264–276. IEEE, Los Alamitos (2006)

10. Eisley, N., Peh, L.-S., Shang, L.: Leveraging On-Chip Networks for Cache Migra-
tion in Chip Multiprocessors. In: Proceedings of 17th International Conference
on Parallel Architectures and Compilation Techniques (PACT), Toronto, Canada
(October 2008)

11. Michael, M.M., Nanda, A.K.: Design and Performance of Directory Caches for
Scalable Shared Memory Multiprocessors. In: 5th Int’l. Symposium on High Per-
formance Computer Architecture (January 1999)

12. Acacio, M.E., Gonzalez, J., Garcia, J.M., Duato, J.: A Two-Level Directory Ar-
chitecture for Highly Scalable cc-NUMA Multiprocessors. IEEE Transactions on
Parallel and Distributed Systems 16(1), 67–79 (2005)

13. Ros, A., Acacio, M.E., Garćıa, J.M.: A Novel Lightweight Directory Architec-
ture for Scalable Shared-Memory Multiprocessors. In: Cunha, J.C., Medeiros, P.D.
(eds.) Euro-Par 2005. LNCS, vol. 3648, pp. 582–591. Springer, Heidelberg (2005)

14. Acacio, M.E., Gonzalez, J., Garcia, J.M., Duato, J.: An Architecture for High-
Performance Scalable Shared-Memory Multiprocessors Exploiting On-Chip Inte-
gration. IEEE Transactions on Parallel and Distributed Systems 15(8), 755–768
(2004)

15. Brown, J., Kumar, R., Tullsen, D.: Proximity-Aware Directory-based Coherence
for Multi-core Processor Architectures. In: Proceedings of SPAA-19. ACM, New
York (June 2007)

16. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W., Gupta, A., Henessy, J.,
Horowitz, M., Lam, M.: The stanford DASH multiprocessor. IEEE Computer
(1992)

A Novel Cache Organization for Tiled Chip Multiprocessor 53

17. Virtutech AB. Simics Full System Simulator, http://www.simics.com/
18. Wisconsin Multifacet GEMS Simulator, http://www.cs.wisc.edu/gems/
19. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs:

Characterization and Methodological Considerations. In: Proceedings of the 22nd
Annual International Symposium on Computer Architecture, June 1995, pp. 24–37
(1995)

20. Wang, H., Wang, D., Li, P.: Exploit Temporal Locality of Shared Data in SRC
enabled CMP. In: Li, K., Jesshope, C., Jin, H., Gaudiot, J.-L. (eds.) NPC 2007.
LNCS, vol. 4672, pp. 384–393. Springer, Heidelberg (2007)

21. Beckmann, B.M., Wood, D.A.: Managing wire delay in large chip multiprocessor
caches. Micro. 37 (December 2004)

22. Liu, C., Sivasubramaniam, A., Kandemir, M., Irwin, M.J.: Enhancing L2 organi-
zation for CMPs with a center cell. In: IPDPS 2006 (April 2006)

23. Guz, Z., Keidar, I., Kolodny, A., Weiser, U.C.: Utilizing shared data in chip multi-
processors with the Nahalal architecture. In: Proceedings of the 20th Annual ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA 2008), New
York, NY, USA, pp. 1–10 (2008)

24. Azimi, M., Cherukuri, N., Jayasimha, D.N., Kumar, A., Kundu, P., Park, S.,
Schoinas, I., Vaidya, A.S.: Integration challenges and trade-offs for tera-scale ar-
chitectures. Intel. Technology Journal (August 2007)

25. Haff, G.: Niagara2: More Heft in the Weft. Sun Analyst Research Reports (August
2007)

http://www.simics.com/
http://www.cs.wisc.edu/gems/

A Performance Model for Run-Time Reconfigurable
Hardware Accelerator�

Gang Wang, Du Chen, Jian Chen, Jianliang Ma, and Tianzhou Chen

ZJU-INTEL Technology Center
College of Computer Science, Zhejiang University

Hangzhou, Zhejiang, P.R. China
{gangwang,xiaoyin,jianjian,majl,tzchen}@zju.edu.cn

Abstract. The reconfigurable devices such as CPLD and FPGA become more
popular for its great potential on accelerating applications. They are widely used
as an application-specified hardware accelerator. Many run-time reconfigurable
platforms are introduced such as the Intel R© QuickAssist Technology. However,
it’s time consuming to design a hardware accelerator while the performance is
hard to determine because of the extra overheads it involved. In order to estimate
the efficiency of the accelerator, a theoretical analysis of such platforms was done
in our paper. Three factors which impact the performance of the accelerator were
concluded as well: speed up ratio, reconfiguration overhead and communication
overhead. Furthermore, a performance model was established and an experiment
on bzip2 was done to verify the model. The results showed that the model’s es-
timation is very close to the real world and the average error on the efficiency’s
threshold is less than 5%.

1 Introduction

Today reconfigurable devices have been widely used because of their flexibility and
high performance [1] . The RTR logic is a popular design alternative in SoC sys-
tem [2][4], which achieves great speedup over a general processor by implementing
applications on reconfigurable devices, making them application-specified hardware
accelerator. Intel R© QuickAssist Technology [19][20][21] brings such a reconfigurable
hardware accelerator (RHA) based platform. The programming model is similar to a
function call with registered procedure: if the programmer wants to use a pre-designed
accelerator, she or he has to register the accelerator in the system. As soon as the accel-
erator finishes configuration, it can be called to execute.

Much research has been done in the fields of RTR platform. That research can be
classified into two categories: platforms hardware and RTR based applications. The
former concentrates on the platform hardware design such as the reconfigurable de-
vices properties, the power consuming, hardware interface and etc. The latter focuses

� Supported by the National Natural Science Foundation of China under Grant No. 60673149
and the National High-Tech Research, Development Plan of China under Grant Nos.863-
2007AA01Z105 and the Research Foundation of Education Bureau of Zhejiang Province
under Grant No. Y200803333.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 54–66, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 55

on the accelerator design and the usage model of the platform. With the sophistical de-
sign, the accelerator can achieve great speedup over general CPU. However, the RHA is
not suitable for every situation. In some applications, the overhead involved by the ac-
celerator may eclipse the performance improvement or even make the platform slower.
Estimating the accelerators performance will help to using the reconfigurable hardware
efficiently.

In this paper, we give a theoretical analysis of the factors of the reconfigurable plat-
form. A performance model is established according to our work. The model estimates
the accelerators performance and help to find the efficiency threshold. Experimental
results based on bzip2 are presented in order to evaluate our model.

In next section, there is the related work. The key features of the RTR platform
are discussed in section 3 and section 4 analyzes the performance influencing factors
and introduces the performance model. To evaluate our model, experimental results is
shown in section 5. The conclusion is described in section 6, and finally, the references
are listed.

2 Related Work

Due to its potential to greatly accelerate a wide variety of applications, RTR plat-
forms have been explored much in recently years. [1] gave a survey on reconfigurable
computing, mainly on the hardware and software architecture. On-chip, reconfigurable
coprocessor such as Garp [5] and off-chip reconfigurable accelerator such as Intel R©
QuickAssist Technology introduce the reconfigurable accelerator based platform to us.
Not only the hardware but also the software for RTR platform is researched. Hybri-
dOS [6] is an operation system designed for the reconfigurable accelerator based plat-
form. Applications on RTR platforms are researched as well such as the digital signal
processing [7], scientific computing like grid [8], logic comparison [9], network intru-
sion detection [10] and etc. At the same time, the overhead caused by the reconfigurable
logic also attracts much attention. Techniques such as configuration context prefetch-
ing [11][12], configuration cache [13][14], partial reconfiguration [15][18] and config-
uration scheduling [17][16] are focusing on reducing the reconfiguration overhead of
the reconfigurable logic. [2] introduced a hybrid reconfigurable computer and gives the
statistic results on the performance and overhead.

Previous works on RTR platform are mostly on the individual aspect such as specific
application’s performance enhancement, physical hardware design and overhead reduc-
tion. Our work focuses on an overview of the reconfigurable accelerator in the platform
and gives a performance model to measure the accelerators efficiency. The next section
will describe the key features of the RTR platform and give a theoretical analysis.

3 Key Features of RTR Platform

Like co-processor architecture, the general RTR platform’s architecture is showed in
Figure 1 . The general processor and the RHA are connected by the hardware inter-
face including the FSB, PCI-E and other attaching technologies. In most cases, a local
memory is attached with it.

56 G. Wang et al.

Fig. 1. Architecture of RTR platform

Fig. 2. Work flow of the RHA of the platform

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 57

The work flow is described in Figure 2 . First the accelerator is registered to the
platform and then the platform check whether the accelerator is the same type as last
one. If it matches, the reconfiguration procedure can be omitted. Otherwise it needs to
be reconfigured. Once the reconfiguration is complete, the data processing begins. The
input data is fetched though the hardware interfaces by DMA or other technique. They
are sent back to the platform as soon as they are processed.

From the work flow, we find that the performance enhancement is achieved during
the data processing stage. The reconfiguration stage is the extra stage compared to the
normal platforms, which takes extra time to execute. In addition, the data fetching and
sending stages increase the overhead of the platform. In conclusion, the key feature of
the run-time reconfigurable platform including the speed up ratio of the data processing
stage, the reconfiguration overhead and the communication overhead caused by the data
transferring. In next section, we will analyze each of the key features and give an overall
performance model based on them.

4 Factors Affecting the Performance and Modeling

4.1 Hardware Speedup Ratio

Amdahl’s law shows the relation between the speedup part and the whole system. Ac-
cording to the Amdahls law, the better performance improvement comes from greater
fraction of the accelerating part. Another important factor of performance is the fre-
quency of the accelerator. High frequency is desired, however, the design of the RHA
is restricted by the reconfigurable device’s limited resource. For that reason, the clock
frequency of general-purpose processors is about 20 times of typical FPGA implemen-
tations [3]. Our work focuses on the RHA’s speedup ratio rather than the platforms.
What we want is to give a performance model that can help the compiler or the pro-
grammer to decide whether the situation is suitable for using the RHA.

In order to compare the RHA with the software, we define the operation time as
Equation (1) where SUR = speed up ratio of the RHA

TimeCPU = execution time of the general CPU
Timeacc = execution time of the RHA
CycleCPU = Total cycle of the CPU runs
FreqCPU = Frequency of the general purpose processor
CPI = Average number of clock cycles per instruction
Timesaved = The operation time saved by using the RHA

T imesaved = T imeCPU − TIMEacc

= T imeCPU ∗ (1 − 1
SUR

)

=
CycleCPU

FreqCPU
∗ (1 − 1

SUR
)

(1)

58 G. Wang et al.

4.2 Communication Overhead

The communication overhead of the RTR platform comes from the data transfer, in-
cluding the control process. The control process contains the data channel establishing,
protocol acting and etc. The data transfer refers to the time of moving the data between
the accelerator and the platform, which mainly depends on the interconnection. The
control process takes a constant time as long as the protocol is designed. We combine it
with the data transfer and discuss them together.

As the difference types of the interconnection, the data transfer rate ranges from
133MB/s to 8.6GB/s, which is showed in Table 1 . Theoretically, the faster data transfer
ratio is, the less communication overhead it brings. The Intel R© QuickAssist Technology
introduced several attaching technologies including the PCI-Express and FSB with a
software level called AAL [20][21](abstract accelerator level). It provides a uniform set
of platform services for using the reconfigurable hardware accelerators. The FSB based
platform is tightly coupled while the PCI-Express based one is loosely coupled [20][21].
Because of the different interconnection; the communication overhead will be different.

In order to evaluation the communication overhead, we also use a Equation to de-
scribe the model. Since the data transfer is related with the number that the accelerator
is called, we define the overhead as Equation (2) , where NoTacc = the number of times
that the accelerator is called

Datasize = the size of data that transfer between the accelerator and the platform for
each call

Transratio = the specific attach technology’s data transfer ratio

Overheadcomm = NoTacc ∗ (Ctrl + Trans)

= NoTacc ∗ (Ctrl +
Datasize

Transratio
)

(2)

Table 1. Data transfer ratio of Attaching technologies

Attaching technology Data transfer ratio
PCI 133MB/s
AGP-1X 266MB/s
AGP-2X 533MB/s
AGP-4X 1.0GB/s
AGP-8X 2.1GB/s
PCI Express 1X 500MB/s
PCI Express 2X 1GB/s
PCI Express 4X 2GB/s
PCI Express 8X 4GB/s
PCI Express 16X 8GB/s
Intel FSB 400MHz 3.6GB/s
Intel FSB 533MHz 4.2GB/s
Intel FSB 800MHz 7.2GB/s
Intel FSB 1066MHz 8.6GB/s

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 59

4.3 Reconfiguration Overhead

Besides the communication, the reconfiguration overhead is another dominative factor
that has to be taken into consideration. Like the communication overhead, it is a negative
affecter.

Today the most popular reconfigurable device is CPLD or FPGA. But even the most
advanced device such as the Xilinx Vertex5 [23], the reconfiguration process takes sev-
eral milliseconds. According to the user guide of the Xilinx FPGA, the configuration
has 8 modes [24]. The differences between them are bandwidth, clock, interface and
storages. No matter what mode is, the reconfiguration is made up with three basic steps:
setup, bitstream loading and finishing. The reconfiguration overhead can be defined as
Equation (3)

Overheadreconfig = Overheadsetup

+ Overheadbitstream load

+ Overheadfinish

(3)

Among these parts, the bitstream loading takes much more time than the other steps.
For convenience, we omit the time taken by the setup and finishing steps. Then we get

Overheadreconfig ≈ Overheadbitstream load (4)

The bitstream loading can be calculated by three parameters: the bit file size, the data
width of configuration and the configuration clock frequency. The bit file size depends
only on the FPGA type [24]. We list some of Virtex-5 bitstream length in Table 2. Since
the bitstream length is a fixed value, we modify Equation (4) into Equation (5), which
is our final reconfiguration overhead model.

Overheadreconfig =
Bitfilesize

Buswidth ∗ Freqreconfig
(5)

There are much research on reducing the overhead of reconfiguration such as config-
uration context prefetching [11][12], configuration cache [13][14], partial reconfigura-
tion [15][18] , configuration scheduling [17][16] , configuration overlapping and etc.
The model we presented here is one of the cases, which do not include any overhead
reducing technique. Specific model can substitute here when specific overhead reducing
technique is put to use.

Table 2. Virtex-5 Bitstream Length

Device Total Number of Configuration Bits
XC5VLX30 8,374,016
XC5VLX110 29,124,608
XC5VLX30T 9,371,136
XC5VLX110T 31,118,848
XC5VFX30T 13,517,056
XC5VFX100T 39,389,696
XC5VFX200T 70,856,704

60 G. Wang et al.

4.4 Performance Modeling

Whether a program is suitable for the RHA depends on the three factors we discussed:
the speed up ratio of the accelerator, the communication overhead and the reconfigu-
ration overhead. Some statistic work is done in [2] but without a theoretical model. In
order to establish the performance model, We define EFFacc as the accelerators effi-
ciency. It is the performance’s measurement showed in Equation (6),

EFFacc =
T imesaved

Overheadcomm + Overheadreconfig
(6)

EFFacc =
Cyclecpu

Freqcpu
∗ (1 − 1

SUR)

NoTacc ∗ (Ctrloverhead + Datasize

Transratio
) + Bitfilesize

Buswidth∗Freqreconfig

(7)

EFFacc =
NoTacc∗CyclePerCall

Freqcpu
∗ (1 − 1

SUR)

NoTacc ∗ (Ctrloverhead + Datasize

Transratio
) + Bitfilesize

Buswidth∗Freqreconfig

(8)

Bigger EFFacc shows greater performance improvement. The efficiencys threshold is
when the EFFacc equals 1. We define that point as EFF point. EFFacc is greater than 1
means the accelerator can improve the performance of the system. We put the previous
equations into the definition yields the Equation (7) . Cyclecpu is NoTacc multiplied
by CPU cycles per call of the accelerator, where the NoTacc is the accelerator called
times. Then we get Equation (8). In the next section, an experiment based on bzip2 is
presented to evaluate the performance model and shows how it works to guide the usage
of the accelerator.

5 Performance Model Evaluation

5.1 Experiment Platform

Our experiment is made on a RTR platform with a Xilinx Vertex5 FPGA (xc5vlx110t)
installed. The interconnection between the RHA and general PC is through PCI-
Express. The accelerator is a hardware version of MoveToFront (MTF) function of
bzip2, which is made by hand translation without much optimize. It is an encoding
of data designed to improve the performance of entropy encoding techiques of com-
pression. It takes advantage of local correlation of frequencies to reduce the entropy
of message. Burrows-Wheeler transform producing a sequence that exhibits local fre-
quency correlation in bzip2 and after that, MTF handle the sequence. More detailed
information can be find in [25]. The reason we choose the MTF function is by our pro-
filing results, which is showed in table 3 . The average value tells that the MTF function
takes much time (38.48%) in the software version of bzip2.

From the Figure 3 we can see that the MTF unit is a module designed, sequential
working unit. The MTF unit is constructed in three layers. The upper layer is the in-
terconnection. In our implementation, the data transfer is by DMA through the PCIE

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 61

Table 3. Profiling results of CPU2006 bzip2

Module Name Input.com Input.pro Chicken.jpg Input.source Text.html Liberty.jpg Avg.
mainGtU 35.12% 28.18% 2.29% 52.72% 24.44% 1.38% 24.02%
MTF 17.53% 38.36% 76.94% 8.07% 11.11% 78.84% 38.48%
mainSort 3.78% 11.62% 9.69% 14.26% 18.89% 7.61% 10.98%
sendMTF 2.60% 8.41% 5.84% 5.91% 12.22% 6.09% 6.85%
mainQSort 1.45% 5.55% 0.60% 9.34% 11.11% 0.83% 4.81%
copy input 0.96% 3.17% 1.51% 3.97% 5.56% 0.97% 2.69%
mainSimple 0.41% 2.25% 0.84% 3.96% 2.22% 0.69% 1.73%
others 38.15% 2.46% 2.29% 1.77% 14.45% 3.59% 10.45%

Fig. 3. Architecture of the MTF unit

Table 4. Device utilization summary of MTF unit

Logic Utilization Used Utilization
Slice Registers 8537 12%
Slice LUTs 31859 46%
Fully used Bit Slices 4398 12%
Bonded IOBs 16 2%
RAM/FIFO 56 37%
BUFG/BUFGCTRLs 7 21%
PLL ADVs 1 16%

channel. The middle layer is called IO unit, it is the local storage with the controller. IO
units task is arranging the local storage for both the accelerator and the PCIE channel.
The bottom is the core layer of the MTF unit. The MTF work is done here.

62 G. Wang et al.

localbuffer

Fetch the word

Word = table[0]

Run length encoding

Mtf work

Write back the mtf
value & value freq

last word

Dma/spl transfer

F

F

T

last block

end

F

localram

look up table

shift the table

start

zPend++

Fig. 4. Work flow of the MTF unit

Table 5. Input file size, MTF called times and speedup ratio. The number following the name
means the times it was enlarged according to the original file.

File name File size MTF called Speedup
(MB) times ratio

chicken.jpg 0.62 1 4.52
chicken2.jpg 1.24 2 4.02
chicken4.jpg 2.48 3 4.05
chicken8.jpg 4.96 6 4.06
chicken16.jpg 9.92 12 4.01
chicken32.jpg 19.84 24 4.03
chicken64.jpg 39.68 47 4.04
chicken128.jpg 79.36 93 4.05
chicken256.jpg 158.72 186 3.91
chicken512.jpg 317.44 371 3.88

Our hardware MTF’s work flow is similar to the software version as shown in
Figure 4. The slight difference is the additional hardware controlling demand. When
using the accelerator, the programmer should register the RHA and prepare the input
data, when everything is ready, call the pre-defined system call to start the RHA. The

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 63

platform first configures the FPGA board. The data is read into the RHA by DMA when
configuration is completed. After that, the platform will halt until the RHA finishes the
job and write the results back. The speedup achieved is mainly on the parallel hardware
look up table compared with the software loops. The hardware resource the RHA used
is showed in Table 5 , which is generated from the ISE9.2.02i. Both the MTF RHA and
the PCIE interface runs at 125 MHz and the data width is 64 bits.

5.2 Experiment Result and Analysis

According to the performance model, the reconfiguration overhead can be estimated
while other parameter depends on the input file. The bit file of xc5vlx110t is about
3800KB [24] including the PCIE interface IP and the MTF RHA. The maximum con-
figuration frequency is about 60MHz with the x32 bits data width. The reconfiguration
overhead is about 16 ms. In order to evaluate the parameter that depends on the input
source we choose a standard input of SPEC CPU 2006: chicken.jpg. To make the results
more obvious, we extend the input file several times to increase the times the accelerator
is called. As Table 5 shows, the chicken.jpg is extended at most 512 times, whose size is
317.44 MB. The MTF times increases with the enlargement of the input file. We com-
pare the RHA with a software version of MTF on a general PC with Intel R© Celeron R©
CPU 2.40GHz and 1G RAM. The speedup ratio collected from our experiment shows it
is not related with the file enlargement. The reason is the enlargement does not change
the property of the original input file. Figure 5-8 shows the results that we get from the
chicken.jpg. The x-axis indicates the MTF routine called times that each input file gets.

In Figure 5, the execution time of hardware MTF is compared with the software im-
plementation and the average speed up ratio is about 4. With the MTF times increasing,
the time that the RHA saved is increasing according to the speed up ratio.

Figure 6 shows the comparison of time saved by the RHA and the overhead it
brings. From it we can find that between the 93 and 186 MTF times (represents the

Fig. 5. Comparison of MTF execution time between hardware version and software version on
the series of chickenX.jpg

64 G. Wang et al.

Fig. 6. Comparison of time saved by the RHA and the overhead it brings on series of chickenX.jpg

Fig. 7. EFF value generated by the real data and calculated by the performance model on the
series of chickenX.jpg

chicken128.jpg and chicken256.jpg), the saved time becomes greater than the overhead.
It means from that point, the RHA begin to work effectively.

Figure 7 gives the EFF value generated by bzip2 experiment and calculated by the
performance model. For the performance model, the speed up ratio is 4, the CPU cycles
is about 465925183.92 per MTF call. The communication time per MTF call equals
about 376.5 us including the controlling process and the data transfer process. The
reconfiguration overhead equals 16 ms as we calculated before. What needs to be em-
phasized here is the EFF point. It implies that if the MTF times are greater than that
value, the accelerator works effectively. Our performance model gives the point where
MTF times equals 110 while the real data shows the point at 115. The error between
them is about 4.37%. The gap grows with the increasing of MTF times. That is because
the performance model is ideal. Some factors are neglected such as parts of the recon-
figuration steps and hardware error checking. More MTF times brings more inaccuracy.
However, the performance model gives important EFF point and is precise enough for
trend analysis.

A Performance Model for Run-Time Reconfigurable Hardware Accelerator 65

Fig. 8. Overhead partition figure represents the relation between the reconfiguration and the com-
munication on the series of chickenX.jpg

The Figure 8 indicates the composition of the overhead and shows the relation be-
tween the reconfiguration and the communication overhead. It can be seen that though
the communication overhead is increased by the growth of the MTF times; the recon-
figuration overhead still occupies a great part. Even the MTF times is 371, the recon-
figuration overhead takes more than 80%. It shows the bottleneck of the platform is the
reconfiguration process if no special technique is used to reduce it.

6 Conclusion

In this paper, we analyzed the performance factors of the RTR platform. The object of
our analysis is to identify the RHAs factors that contribute to the performance improve-
ment and bring the overhead. A performance model on those platforms is established
according to three major factors: speed up ratio, communication overhead and reconfig-
urable overhead. We also evaluate the performance model by introducing an experiment
based on bzip2. The MTF routine is translated into hardware and implemented on the
FPGA as the RHA. The results show that our performance model gives a very close
estimate of the real world and the average error of the efficient point is under 5%. We
believe our performance model not only gives a guidance of when to use the accelerator
on RTR platforms but also gives the accelerator designer view of the RHA in the sys-
tem. In conclusion, our performance model is a theoretical estimation of RTR platform,
which shows the efficient point and the trend of the RHA in the platform.

References

1. Compton, K., Hauck, S.: Reconfigurable computing: a survey of systems and software. ACM
Comput. Surv., P171–P210 (2002)

2. Fidanci, O.D., Poznanovic, D., Gaj, K., El-Ghazawi, T., Alexandridis, N.: Performance and
Overhead in a Hybrid Reconfigurable Computer. In: IPDPS 2003: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing. IEEE, Los Alamitos (2003)

66 G. Wang et al.

3. Guo, Z., Najjar, W., Vahid, F., Vissers, K.: A quantitative analysis of the speedup factors
of FPGAs over processors. In: FPGA 2004: Proceedings of the 2004 ACM/SIGDA 12th
international symposium on Field programmable gate arrays (2004)

4. Carrillo, J.E., Chow, P.: The effect of reconfigurable units in superscalar processors. In:
FPGA 2001: Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field
programmable gate arrays (2001)

5. Callahan, T.J., Hauser, J.R., Wawrzynek, J.: The Garp Architecture and C Compiler. Com-
puter, P62–P69 (2000)

6. Kelm, J.H., Lumetta, S.S.: HybridOS: runtime support for reconfigurable accelerators. In:
FPGA 2008: Proceedings of the 16th international ACM/SIGDA symposium on Field pro-
grammable gate arrays (2008)

7. Shoa, A., Shirani, S.: Run-Time Reconfigurable Systems for Digital Signal Processing Ap-
plications: A Survey. J. VLSI Signal Process. Syst., P213–P235 (2005)

8. Dydel, S., Benedyczak, K., Bala, P.: Enabling Reconfigurable Hardware Accelerators for the
Grid. In: PARELEC 2006: Proceedings of the international symposium on Parallel Comput-
ing in Electrical Engineering. IEEE, Los Alamitos (2006)

9. Platzner, M.: Reconfigurable Accelerators for Combinatorial Problems. Computer, P58–P60
(2000)

10. Mitra, A., Najjar, W., Bhuyan, L.: Compiling PCRE to FPGA for accelerating. In: SNORT
IDS ANCS 2007: Proceedings of the 3rd ACM/IEEE Symposium on Architecture for net-
working and communications systems (2007)

11. Li, Z., Hauck, S.: Configuration prefetching techniques for partial reconfigurable coprocessor
with relocation and defragmentatio. In: FPGA 2002: Proceedings of the 2002 ACM/SIGDA
tenth international symposium on Field-programmable gate arrays (2002)

12. Resano, J., Mozos, D., Catthoor, F.: A Hybrid Prefetch Scheduling Heuristic to Minimize
at Run-Time the Reconfiguration Overhead of Dynamically Reconfigurable Hardware. In:
DATE 2005: Proceedings of the conference on Design, Automation and Test in Europe
(2005)

13. Li, Z., Compton, K., Hauck, S.: Configuration Caching Management Techniques for Re-
configurable Computing. In: FCCM 2000: Proceedings of the 2000 IEEE Symposium on
Field-Programmable Custom Computing Machines (2000)

14. Sudhir, S., Nath, S., Goldstein, S.C.: Configuration Caching and Swapping. In: Brebner, G.,
Woods, R. (eds.) FPL 2001. LNCS, vol. 2147, p. 192. Springer, Heidelberg (2001)

15. Robertson, I., Irvine, J.: A design flow for partially reconfigurable hardware. Trans. on Em-
bedded Computing Sys., P257–P283 (2004)

16. Mtibaa, A., Ouni, B., Abid, M.: An efficient list scheduling algorithm for time placement
problem. Comput. Electr. Eng., P285–P298 (2007)

17. Resano, J., Mozos, D.: Specific scheduling support to minimize the reconfiguration over-
head of dynamically reconfigurable hardware. In: DAC 2004: Proceedings of the 41st annual
conference on Design automation. IEEE, Los Alamitos (2004)

18. McDonald, E.J.: Runtime FPGA Partial Reconfiguration. In: IEEE Aerospace Conference
(2008)

19. Intel Corp., http://www.intel.com/
20. Intel Corp. Intel QuickAssist Technology White Paper (2007)
21. http://www.intel.com/technology/platforms/quickassist/
22. Xilinx Solutions Guide for PCI Express
23. Xilinx Virtex-5 FPGA User Guide
24. Xilinx Virtex-5 FPGA Configuration User Guide
25. bzip2 source code, http://www.bzip.org/

http://www.intel.com/
http://www.intel.com/technology/platforms/quickassist/
http://www.bzip.org/

SPMTM: A Novel ScratchPad Memory Based
Hybrid Nested Transactional Memory

Framework

Degui Feng, Guanjun Jiang, Tiefei Zhang, Wei Hu, Tianzhou Chen,
and Mingteng Cao

College of Computer Science, Zhejiang University, Hangzhou,
Zhejiang, 310027, China

{loosen,libbug,tfzhang,ehu,tzchen}@zju.edu.cn,cmt75827@gmail.com

Abstract. Chip multiprocessor (CMP) has been the mainstream of pro-
cessor design with the progress in semiconductor technology. It provides
higher concurrency for the threads compared with the traditional single-
core processor. Lock-based synchronization of multi-threads has been
proved as an inefficient approach with high overhead. The previous works
show that TM is an efficient solution to solve the synchronization of
multi-threads. This paper presents SPMTM, a novel on-chip memory
based nested TM framework. The on-chip memory used in this frame-
work is not cache but scratchpad memory (SPM), which is software-
controlled SRAM on chip. TM information will be stored in SPM to
enhance the access speed and reduce the power consumption in SPMTM.
Experimental results show that SPMTM can obtain average 16.3% per-
formance improvement of the benchmarks compared with lock-based syn-
chronization and with the increase in the number of processor core, the
performance improvement is more significant.

Keywords: Chipmultiprocessor, synchronization, transactionalmemory,
scratchpad memory.

1 Introduction

More than one processor is integrated into a single chip as chip multiprocessor
(CMP) to solve the problem of performance improvement, power consumption
and design cost in sing-core processor [1]. CMP provides higher concurrency prob-
ability to explore thread level parallelism (TLP) for applications. Traditional lock-
based synchronization is used to manage the shared objects in programming for
CMP. Though these lock-based synchronization methods can provide ready-made
solutions, the locks are the source of contention perhaps becuase they will block
the potential parallel threads which are non-interference between each other [2].

Transactional memory (TM) is proposed to improve the performance of
multi-threads programming [3,4]. There are three types of TM in the literature:
hardware transactional memory (HTM) [5,6,7,8,9,10,23], software transactional
memory (STM) [4,11,12,13,14] and hybrid transactional memory (HybridTM)

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 67–81, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

68 D. Feng et al.

[15,16,17,18,19,24] according to the dependence on hardware, software or a hybrid
of hardware and software during the design and implementation. These studies
have proved that TM can avoid deadlock and reduce the overhead in management
of shared resources, so TM is efficient in multi-thread programming.

This paper proposes SPMTM, a novel on-chip memory based hybrid nested
transactional memory framework. Scratchpad memory (SPM), which is a special
type of on-chip memory, is used in this framework. SPM is software-controlled
on-chip SRAM and used in embedded system traditionally [20]. Compared with
cache, SPM has faster access time, lower power consumption and simpler struc-
ture [21,22]. SPMTM introduces SPM into CMP architecture as the architectural
support for TM framework. The hybrid nested transactional memory framework
is designed based on SPM. SPMTM tries to take advantages of SPM to provide
better performance and lower power consumption. SPMTM will have less execu-
tion time and power consumption. It will have lower complexity compared with
the existing methods.

The rest of this paper is organized as follows. Section 2 describes the related
work. Section 3 describes the SPMTM hardware. Section 4 presents the open
nested transactions in SPMTM. Section 5 provides the experimental results. And
at last, Section 6 offers conclusions and future work.

2 Related Work

Herlihy and Moss proposed architectural supported transactional memory from
the transaction concept of database [7]. The transactions of transactional mem-
ory are code segments with atomicity, consistency and isolation to provide syn-
chronization mechanism for multi-threads [5]. TM can support concurrency of
multiple transactions if there are no conflicts and has higher performance than
lock-based synchronization. More and more designs and implementations were
proposed concerning transactional memory after Herlihy and Moss.

HTM is architectural supported transactional memory. Special hardware de-
signs are provided for transaction operations in typical HTM. Most HTM will
add new special buffers and new cache tags for transactions. The buffers are
used to store the intermediate results of the shared data. And the write/read
operations of the shared data in transactions are marked by the new cache tags.
Transactional memory coherence and consistency (TCC) [23] is typical HTM.
TCC added a write buffer and read tag of cache for a single processor core. Ad-
ditionally “commit control” component was also added to control the commit
of the transactions, detects the conflicts and insure the coherence of the shared
data. [5,6,7,8,9,10] were similar to it with their special features for TM. [24]
and [25] extended the instruction set architecture (ISA) to support transactions.
[26] proposed a different HTM, in which the main modification is the additional
hardware primitives. STM is TM implemented in software [5] and it provides
shared data management as transactions through software programming. Typ-
ical STM focuses on the following concerns: programming interfaces, running
environments and TM grain etc. [4] presented a basic model of software transac-
tional memory. Locks were still important in this STM, they were used to protect

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 69

the shared data. It would not make the transactions in waiting state, which was
different from the locks in traditional lock-based synchronization methods. STM
is non-blocking for the conflict detection and arbitration of the transactions.
[11,12,13,14] were also typical software transactions.

HTM can provide strong atomicity and be faster than the other TM methods
through the architectural support. But the additional hardware has higher cost
and limited resources. STM will have no cost in hardware and can be imple-
mented on existing hardware. But the efficiency of STM is lower for its complex-
ity. The comparison research in [24] shows that STM may slow down each thread
by 40% or more. HybridTM is the combination of HTM and STM. HybridTM
tries to combine the advantages of HTM and STM to solve the synchronization
problem of CMP. Architectural support will be added and at the same time the
corresponding features of STM will also be defined according to the architec-
tural support. The existing HybridTM [15,16,17,18,19,24] are different in design
and implementation according to their different combination of hardware and
software. The main disadvantage of HybridTM is that the architectural support
is still limited and lacks of flexibility from the perspective of the programmers.

SPMTM proposed in this paper introduces scratchpad memory as the archi-
tectural support for transactions. SPM is on-chip SRAM with the same level with
cache in the memory hierarchy. But SPM has different hardware structure from
cache. SPM does not need the tag arrays and comparators, which are necessary
for caches. SPM has 34% smaller die and 40% lower energy consumption com-
parison with cache of the same capacity [22]. SPM is used in embedded system
including embedded multi-core processor based embedded system traditionally.
Though SPM is on-chip, it is software-controlled memory and different from
the hardware-controlled caches. The allocation of the SPM will be controlled by
the compiler or the programmers. The studies on SPM focus on the allocation
of the hotspot of the programs to SPM [26,27,28] and SPM has been proved
that it can be expected to continue to gain improved performance. SPMTM
explores the utilization of SPM in CMP architecture to support transactions
and designs the corresponding software transaction mechanism according to the
features of SPM.

3 SPMTM Hardware

3.1 Architecture

Traditionally cache is the main type of on-chip memory, which is managed by
hardware and invisible to software. SPMTM introduces another type of on-chip
memory (SPM) to provide more flexibility for software. The processor architec-
ture adopted in SPMTM is shown in Fig. 1. Each processor core has two types of
on-chip memory: private data cache and scratchpad memory. The private data
cache is used for non-transaction data. SPM is integrated onto the chip for trans-
actions. The data in cache and the data in SPM will be not overlapped for the
isolation of transactions.

70 D. Feng et al.

Processor Core

Data Cache
ScratchPad

Memory

On-Chip Connection

Fig. 1. Processor architecture of SPMTM

The address space of SPM is a part of the whole address space of the system.
All the SPM space of the processor cores will be mapped to the entire unified
memory space. The local SPM space of a processor core is called local SPM
(LS) and the SPM space of other processor cores is called remote SPM (RS). A
processor core can access its local SPM space or remote SPM space. Each SPM
will be divided into different blocks for management. These blocks will be same
to the page size of main memory. The blocks of SPM are called SPM pages (SP)
in this paper. When the transactions are executing, the transaction data will be
transferred to the SPM pages.

When the transactions access SPM, they can access LS or RS. But during
the access, the data in RS will not be fetched to the LS. The fetch operations
need more time for transmission. In fact, the data in RS means that they are
transaction data and may be used by another transaction. Thus there are shared
data conflicts perhaps. Though there are some delays in remote access, the data
in RS can not be fetched to arbitrarily to reduce such delays. At the same time,
the access speed of SPM is very fast and then the delays are not prominent.
Thus the data access can be divided into LS access (LSA) and RS access (RSA)
in SPMTM.

3.2 Transactions on SPM

When the transactions are executing, the data of these transactions will be fetched
and stored in SPM. The size of SPM is limited. SPM should be well organized to
support the execution of transactions in SPM. The organization of SPM is shown
in Fig. 2 (a). The basic space in SPM for transactions is divided into different
transaction blocks. The data used during the transactions will be stored in these
transaction blocks. And it is convenient to protect the transaction data.

Transaction information blocks (TIB), which is a data structure for transac-
tions in SPM, are stored in SPM. The structure of TIB is shown in Fig. 2 (b).

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 71

SPM

SPM Handler

Transaction

Control Block

Transaction Block

…

Transaction Block

(a)

SPM

Management

Transaction

Management

SPM Handler

(b)

User Interface

PT ID

Readset

Transaction

Information Block

Status

Writeset

(c)

Priority

Transaction ID

Fig. 2. The structure of SPM data. (a) The organization of SPM; (b) the structure of
transaction information block; (c) SPM handler structure.

TIB records the control information of transactions including transaction ID,
transaction status, readset and writeset etc. Transaction ID is used to identify
the different transactions. The status of the transactions will be recorded in
transaction status. Readset and writeset are used to record the read/write oper-
ations of the transactions respectively. Priority is also stored in TIB. A special
field of TIB named PT ID is the father transaction ID of the transaction. The
definition of father transaction is described in subsection 4.3.

There is also one special component titled SPM handler (SPMH) designed in
SPMTM for management as shown in Fig. 2 (c). SPMH is used to manage the
SPM and the transactions in SPM, it has three parts including SPM manage-
ment, user interface, and transaction management. SPM management is used to
manage memory space of SPM including the memory allocation, memory deallo-
cation and the protection of SPM space. User interface will provide the operation
interface on transactions and SPM space to the users. Transaction management
will be implemented via TIB. SPMH can add, modify and delete the TIBs of
the transactions to manage the transactions.

The data in SPM can be locked if the data are shared. Each data line of SPM
has two tag bits for read/write lock as shown in Fig. 3. The owner ID is the tag
to denote the owner transaction of the data line. It means that the data line
is first used by this transaction and the original value is fetched to LS of this
transaction. Read tag and write tag are set to denote the read/write operations
of the special data line. The modified data and original data are both recorded.
Original data is recorded to restore the data when the owner transaction of the
data is aborted.

72 D. Feng et al.

Read Tag Write Tag Data LineOwner ID Data Line

0 0 Modified XT1 Original X

1 0 Modified YT1 Original Y

0 1 Modified ZT2 Original Z

Fig. 3. Data line of SPM

4 Nested Transactions in SPMTM

SPMTM provides software nested transactions through the utilization of SPM. A
software transactional memory is a shared object operating on memory hierarchy.
Transactions should be atomic and isolated. The access sequence of different
transactions of the shared data should be under the control of the system for
high performance. If there are conflicts, transactional memory should detect
them and provide the solutions. SPMTM will be described in detail of these
aspects in this section.

4.1 Basic Transaction Model

Each transaction is an instruction sequence including the access of local memory
and shared memory [4]. The lifecycle of a transaction has four stages: initializa-
tion, execution, committing and committed in SPMTM as shown in Fig. 4 (a).
During the execution stage, there will be conflicts perhaps. The conflicts will
emerge under the following circumstances:

• During the procedure of the read operation of transaction T1, T1 finds that
the target object is under the write operation of some other transaction;

• During the procedure of the write operation of transaction T1, T1 finds
that the target object is under the write or read operation of some other
transaction.

The solution of conflicts in SPMTM will be described in subsection 4.2.
Each transaction in SPMTM has five states during its execution including

active, suspended, aborted, committing and committed as shown in Fig. 4 (b).

• Active: transactions are executing on the rails;

• Suspended: when the conflicts are from the read conflicts, the transactions
will not be aborted directed. These transactions will be suspended. The cost
of transaction resume is lower than that of restart.

• Aborted: the transactions are judged to be aborted by the conflict policy.

• Committing: The operations of transactions are all completed and waiting
for final commit.

• Committed: The commits of transactions are completed.

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 73

SPMTM provides the transaction interfaces of the different state transitions
through the library. The main interfaces are listed in the following:

• TMBegin (): it defines the beginning of the transactions.

• Suspend (): it will suspend some transactions when there are conflicts.

• Resume (): it will resume the execution of the suspended transactions.

• Abort (): it will abort the transactions, which are judged to be aborted by
the conflict policy.

• getStatus(): the state of the transactions can be obtained through this in-
terface.

• Commit (): It will complete the commit operation of the transactions.

Initialization

Execution

Committing

Committed

L
if
e
c
y
c
le

(a)

Active Committing

Aborted

Committed

Suspended

(b)

Initialization

Conflict
Conflict

Completion

Commit

Conflict

Fig. 4. The lifecycle of transactions in SPMTM; (b) the states and states transitions
of transactions in SPMTM

4.2 Conflict Arbitration Policy

As mentioned in subsection 4.1, data operations of the transactions will have
conflicts during the execution of them. When the conflict occurs, there are two
transactions impacted by the conflict at least. Which one of the transactions in
conflict should be aborted or delayed plays an important role in transaction per-
formance. Different Conflict arbitration policies have different operations on the
conflicted transactions. The transactions in conflicts will not have the same pri-
orities in different conflict arbitration policies. Conflict arbitration policy is also
defined in SPMTM to detect conflicts and provide the corresponding solutions.

The conflict arbitration policy in SPMTM is priority-based policy. The quan-
tity of write/read operations completed is important in software supported trans-
actional memory. When a conflict occurs, aborting a transaction with many
write/read operations completed will have more penalty than aborting a trans-
action in initialization stage. Thus it is more efficient to abort the transaction
with less write/read operations.

Each transaction in SPMTM has a priority (TPri) with the initial value zero
in its initialization stage. After each write/read operation, TPri will be increased

74 D. Feng et al.

Initialization

…

…

List.Insert(a)

Initialization

…

List.Insert(c)

Conflict

Transaction T1 Transaction T2

Aborted

Pri(T1)>Pri(T2)

Execution

Initialization

…

…

List.Insert(a)

Initialization

…

List.Insert(c)

Conflict

Transaction T1 Transaction T2

Execution

Pri(T1)<Pri(T2)

Aborted

(a) (b)

Fig. 5. Conflict arbitration in SPMTM. The operations are insertions of a list: (a) if
priority of transaction T1 (Pri (T1)) > priority of transaction T2 ((Pri(T2)), T2 is
aborted; (b) if Pri(T1) < Pri(T2), T1 is aborted.

by one. When the conflict occurs, the TPri of the conflicted transactions will be
compared. The transaction with higher TPri will continue and the transaction
with lower TPri will be suspended or aborted. Fig. 5 shows the detail of the
execution of two conflicted transactions in SPMTM.

When the conflicts are read conflicts, the transactions with lower priorities will
not be aborted at once. These transactions are suspended first. These suspended
transactions are called TSu and the transactions which continue to execute are
called TCo. TSu must wait in suspended state for the availability of the shared
data after the release from TCo. When the shared data is available, TSus are
resumed to execute. If TCos are aborted, the corresponding TSus will also be
aborted. If transactions are aborted, their Pri values will not be cleared. The
Pri will be inherited when the aborted transactions are restarted. Thus the
transactions will not be in starvation.

4.3 Nested Transactions

Nested transactions will improve the performance of the transactional memory.
When there are no conflicts in semantics, two or more transactions can be nested
during the execution. SPMTM supports open nesting for transactional memory.
SPMH can keep tracks on the data modification through readset, writeset and
the original data records. The old data of the transactions can be obtained
through SPMH. If the conflicts occur, SPMH can restore the old data to eliminate
the operations of the aborted transactions.

The outer transaction of the nested transactions is called the parent transac-
tion (PT); and the inner transaction of the nested transactions is called the leaf
transaction (LT). All the outer transactions of a transaction can be a set called
the ancestor transaction set (ATS). During the execution of a transaction, the
operations of committed transactions will be combined into its PT. The opera-
tions of each LT will be combined into its PT. At last, all the operations will be

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 75

…

Transaction T1

T1_Begin

…

Transaction T2

T2_Begin

…

T2_Committed

T2_End

…

T1_Committed

T1_End

…

(1)

(4)

T
1

T
2

(3)

(2)

Fig. 6. An example of nested transactions in SPMTM

combined into the most outer transaction. The modification from the operations
of each committed LT will be kept even if its PT is aborted. Fig. 6 shows an
example of the nested transactions.

There are two nested transactions (T1 and T2) in Fig. 6. T1 is the outer
transaction (PT) of T2 (T2 is the leaf transaction). There are four time points
in these nested transactions. Time point (3) is the committed time of T2. SPMH
will combine the committed data to T1. And then SPMH will delete the TIB of
T2 from SPM. All the modification to the original data by T2 will not be found
through TIB. And all the modifications can not be restored.

5 Experiments

5.1 Experiment Setup

Simics [29] is adopted as the simulation platform for the experiments in this
paper. The configuration of the CMP system is shown in Table 1. The simulated
processors have two cores, four cores and eight cores respectively. All the process
cores in the same processor are all same to each other. The processor cores
are connected by the on-chip bus. The access time of SPM, cache and off-chip
memory is set to two cycles, two cycles and two hundred cycles respectively.

The List and HashMap in Java class library are selected as the benchmarks
in these experiments. All the operations are created with random. During the
experiments each time unit of these experiments is twenty seconds. The baseline
of the experiments is the basic traditional lock-based method. The List and
hashMap are tested on the simulated processors with different cores.

76 D. Feng et al.

Table 1. The configuration of the processors with multi-cores

Core Numbers 2 4 8
Frequency 2.9GHz 2.9GHz 2.9GHz
L1 Cache 32KB 64KB 64KB
L2 Cache 2MB 4MB 4MB
SPM 256K 256K 256K
Main Memory 2GB 2GB 2GB

5.2 Experimental Results

The experiments have two different types: one tests the number of committed
transactions of List and HashMap and the other tests the execution time of
SPMTM compared with the traditional lock-based synchronization method for
multi-threads.

The numbers of committed transactions in List and HashMap are shown in
Fig. 7 and Fig. 8 respectively. When the number of processor cores is increased,
more transactions in system will be created accordingly. The committed transac-
tions are also increased during the execution. When the threads are more created
for higher currency, more transactions will also be created. When the number
of threads and cores is increased, it means that the concurrency is increased.
Thus there are more concurrent transactions. Though there is still possibility
of conflicts in these transactions, more transactions are committed successfully.
The experimental results show that SPMTM is efficient for the high concur-
rency of CMP. And as the increase of the core number, SPMTM will have better
performance.

Transactional memory is waiting-free compared with traditional lock-based
synchronization. The performance of SPMTM and lock-based synchronization
(as “Locks” shown in Fig. 9 and Fig. 10) is compared with each other of List

Fig. 7. Number of committed transactions in List

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 77

Fig. 8. Number of committed transactions in HashMap

 Fig. 9. List: Performance comparison of SPMTM and lock-based synchronization

 Fig. 10. HashMap: Performance comparison of SPMTM and lock-based synchronization

78 D. Feng et al.

0

300

600

900

1200

4 Threads 8 Threads 16 Threads

2 Cores/Non-Nest 2 Cores/Nested

4 Cores/Non-Nest 4 Cores/Nested

8 Cores/Non-Nest 8 Cores/Nested

Fig. 11. The performance comparison of nested and non-nested transactions

and HashMap. The experimental results are shown in Fig. 9 and Fig. 10 for List
and HashMap respectively.

When there is only one processor core, the performance of locks is better for
SPMTM will consume more time in creation, initialization, abortion and other
operations on transactions. But when there are more processor cores than one,
the threads have to spend more time in busy-waiting by locks. Thus SPMTM
has better performance than locks in CMP architecture. When there are more
processor cores, the complexity of the locks is enhanced, and the time consumed
in waiting is more. Contrarily SPMTM can provide high concurrency of the
transactions with the increase of processor cores.

SPMTM has also supported nested transactions. The performance of nested
transactions and non-nested transactions is compared as shown in Fig. 11. As
shown in Fig. 11, when the number of processor cores is small (two cores), the
performance of non-nested transactions is better than nested transactions. The
reason is that when there are only limited processor cores, the nested transac-
tions will have more abortion penalty. But when the number of processor cores is
increased, the performance of nested transactions is better than non-nested trans-
actions for more available computing resources. The experimental results when
there are many processor cores, nested transactions will have better performance.

Experimental results show that SPMTM can obtain average 16.3% perfor-
mance improvement of the benchmarks compared with lock-based synchroniza-
tion when there are only two cores. And with the increase in the number of
processor core, the performance improvement is more significant.

6 Conclusions and Future Work

Chip multiprocessor (CMP) can provide higher concurrency for the integrated
more processor cores on chip. Though the traditional lock-based synchronization

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 79

can be used in such architecture for thread level parallelism, this mechanism may
block the threads without contentions. The overhead is the main problem of per-
formance improvement. Transactional memory is proposed to solve this problem.
The existing research shows that TM is efficient for synchronization in CMP pro-
cessors. In this paper, a new type of on-chip memory, titled scratchpad memory
(SPM), is introduced as the architectural support of transactional memory. SPM
is software-controlled on-chip memory and its address space is a part of the whole
address space of the system. And then the hybrid nested transactional memory
framework titled SPMTM is designed based on SPM. SPMTM can take advan-
tages of SPM to provide better performance and lower power consumption as
shown by the experimental results.

SPM is on-chip memory with more flexibility. SPMTM is an exploration of
transactional memory on such type of on-chip memory. The following areas will
have important impacts on the performance of transactional memory including
the distribution of processor cores, different organization of SPM and the address
organization of SPM space etc. SPMTM will be improved in these areas in the
future.

Acknowledgments. This work is supported by National Nature Science Foun-
dation of China (No. 60673149), the National High-Tech Research and Develop-
ment Program of China (863) (No. 2007AA01Z105) and the Research Foundation
of Education Bureau of Zhejiang Province (No. Y200803333).

References

1. Nayfeh, B.A., Olukotun, K.: A single-chip multiprocessor. IEEE Computer 30(9),
79–85 (1997)

2. Herlihy, M., Luchangco, V., Moir, M., Scherer, W.N.: Software transactional mem-
ory for dynamic-sized data structures. In: The twenty-second annual symposium
on Principles of distributed computing (PODC 2003), pp. 92–101. ACM Press,
New York (2003)

3. Larus, J.R., Rajwar, R.: Transactional Memory. Morgan and Claypool (2007)
4. Shavit, N., Touitou, D.: Software transactional memory. Distributing Comput-

ing 10, 99–116 (1997)
5. Blundell, C., Devietti, J., Lewis, E.C., Martin, M.K.: Making the fast case common

and the uncommon case simple in unbounded transactional memory. In: The 34th
Annual International Symposium on Computer Architecture (ISCA 2007), San
Diego, California, USA, pp. 24–34 (2007)

6. Bobba, J., Moore, K.E., Volos, H., Yen, L.: Performance pathologies in hardware
transactional memory. In: The 34th Annual International Symposium on Computer
Architecture (ISCA 2007), San Diego, California, USA, pp. 81–91 (2007)

7. Herlihy, M., Moss, J.: Transactional memory: Architectural support for lock-free
data structures. In: The Twentieth Annual International Symposium on Computer
Architecture (ISCA 1993), San Diego, California, United States, pp. 289–300 (1993)

8. Sanchez, D., Yen, L., Hill, M.D., Sankaralinga, K.: Implementing Signatures for
Transactional Memory. In: The 40th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 123–133. IEEE Computer Society, Los Alamitos (2007)

80 D. Feng et al.

9. Agrawal, K., Leiserson, C.E., Sukha, J.: Memory models for open-nested transac-
tions. In: The 2006 workshop on Memory system performance and correctness, San
Jose, California, pp. 70–81. ACM Press, New York (2006)

10. Saha, B., Adl-Tabatabai, A.R., Jacobson, Q.: Architectural Support for Software
Transactional Memory. In: The 39th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 185–196. IEEE Computer Society, Los Alamitos (2006)

11. Abadi, M., Birrell, A., Harris, T., Isard, M.: Semantics of transactional memory
and automatic mutual exclusion. In: The 35th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, San Francisco, California,
USA, pp. 63–74. ACM Press, New York (2008)

12. Scherer, W.N., Scott, M.L.: Advanced contention management for dynamic soft-
ware transactional memory. In: The twenty-fourth annual ACM symposium on
Principles of distributed computing, Las Vegas, NV, USA, pp. 240–248 (2005)

13. Riegel, T., Fetzer, C., Felber, P.: Time-based transactional memory with scalable
time bases. In: The nineteenth annual ACM symposium on Parallel algorithms and
architectures, San Diego, California, USA, pp. 221–228 (2007)

14. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based soft-
ware transactional memory. In: The 13th ACM SIGPLAN Symposium on Princi-
ples and practice of parallel programming, Salt Lake City, UT, USA, pp. 237–246
(2008)

15. Shriraman, A., Spear, M.F., Hossain, H.: An integrated hardware-software ap-
proach to flexible transactional memory. In: The 34th annual international sym-
posium on Computer architecture (ISCA 2007), San Diego, California, USA, pp.
104–115 (2007)

16. Chung, J.W., Minh, C.C., McDonald, A., et al.: Tradeoffs in transactional memory
virtualization. In: Thirteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2006), San Jose,
California, USA, pp. 371–381 (2006)

17. Kumar, S., Chu, M., Hughes, C.J., et al.: Hybrid transactional memory. In: The
eleventh ACM SIGPLAN symposium on Principles and practice of parallel pro-
gramming (PPoPP 2006), New York, USA, pp. 209–220 (2006)

18. Moravan, M.J., Bobba, J., Moore, K.E., et al.: Supporting nested transactional
memory in logTM. In: Thirteenth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS 2006), San
Jose, California, USA, pp. 359–370 (2006)

19. Ananian, C.S., Asanovic, C., Kuszmaul, B.C., Leiserson, C.E., Lie, S.: Un-
bounded Transactional Memory. In: The 11th International Symposium on High-
Performance Computer Architecture (HPCA-11 2005), pp. 316–327 (2005)

20. Avissar, O., et al.: An optimal memory allocation scheme for scratch-pad-based
embedded systems. ACM Trans. on Embedded Computing Sys. 1(1), 6–26 (2002)

21. Delaluz, V., et al.: Energy-Oriented Compiler Optimizations for Partitioned Mem-
ory Architectures. In: International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pp. 138–147. ACM Press, New York (2000)

22. Banakar, R., et al.: Scratchpad memory: A design alternative for cache on-
chip memory in embedded systems. In: 10th International Symposium on Hard-
ware/Software Codesign (CODES), pp. 73–78. ACM Press, New York (2002)

23. Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., et al.: Transactional Mem-
ory Coherence and Consistency. In: The 31st annual international symposium on
Computer architecture, pp. 102–113 (2005)

SPMTM: A Novel SPM Based Hybrid Nested TM Framework 81

24. Minh, C.C., Trautmann, M., Chung, J.W., McDonald, A., et al.: An effective hybrid
transactional memory system with strong isolation guarantees. In: The 34th annual
international symposium on Computer architecture, San Diego, California, USA,
pp. 69–80 (2007)

25. McDonald, A., Chung, J.W., Carlstrom, B.D., Minh, C.C.: Architectural Semantics
for Practical Transactional Memory

26. Panda, P.R., et al.: On-chip vs. off-chip memory: The data partitioning problem in
embedded processor-based systems. ACM Trans. Des. Autom. Electron. Syst., 5(3),
682–704 (2000)

27. Paulin, P.G., et al.: Embedded software in realtime signal processing systems: Ap-
plication and architecture trends. Proceedings of IEEE 85(3), 419–435 (1997)

28. Zhang, C., et al.: On combining iteration space tiling with data space tiling for
scratchpad memory systems. In: The 2005 conference on Asia South Pacific design
automation, pp. 973–976. ACM Press, New York (2005)

29. Virtutech Simics, http://www.virtutech.com/products

http://www.virtutech.com/products

Implementation of Rotation Invariant
Multi-View Face Detection on FPGA

Jinbo Xu, Yong Dou, Yuxing Tang, and Xiaodong Wang

National Laboratory for Parallel and Distributed Processing
National University of Defense Technology

Changsha, P.R. China, 410073
{xujinbo,yongdou,tyx,xdwang}@nudt.edu.cn

Abstract. This paper aims at detecting faces with all -/+90-degree
rotation-out-of-plane and 360-degree rotation-in-plane pose changes fast
and accurately under embedded hardware environment. We present a
fine-classified method and a hardware architecture for rotation invari-
ant multi-view face detection. A tree-structured detector hierarchy is
designed to organize multiple detector nodes identifying pose ranges
of faces. We propose a boosting algorithm for training the detector
nodes. The strong classifier in each detector node is composed of multi-
ple novelly-designed two-stage weak classifiers. Each detector node deals
with the multi-dimensional binary classification problems by means of
a shared output space of multi-components vector. The characteristics
of the proposed method is analyzed for fully exploiting the spatial and
temporal parallelism. We present the design of the hardware architecture
in detail. Experiments on FPGA show that high accuracy and amazing
speed are achieved compared with previous related works. The execution
time speedups are significant when our FPGA design is compared with
software solution on PC.

Keywords: Face Detection, Rotation Invariant, Multi-View, Hardware
Architecture, FPGA.

1 Introduction

Great advances have been achieved on face detection research [14] (for example
[6][8][10]). The breakthrough happened in 2001 when Viola and Jones [10] devel-
oped their Boosted Cascade Framework whose remarkable performance owes to
the fast speed of Haar-like feature calculation based on the integral image, the
high accuracy of boosted strong classifiers, and the asymmetric decision making
of the cascade structure.

Although many early researches have good performance for detection of frontal
faces, Rotation Invariant Multi-View Face Detection (RIMVFD), which is used
to detect faces with both ±90-degree rotation-out-of-plane (ROP) and 360-
degree rotation-in-plane (RIP) pose changes, remains a challenging problem due
to the much more complicated variation within the multi-view face class.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 82–94, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Implementation of RIMVFD on FPGA 83

In the past few years, many derivatives of Viola’s work have been proposed for
rotation invariant frontal face detection and multi-view face detection (MVFD),
which can be categorized into four aspects: the detector structure (for example
[12][3]), designing of strong classifiers (for example [7][3]), training of weak clas-
sifiers (for example [12][4]), and selecting of features (for example [1]). Most of
these works focus on increasing the detection accuracy. However, these methods
are only evaluated with software solution, which can hardly achieve real-time
MVFD for some time-constraint applications.

To meet the needs of various applications, using dedicated hardware to ac-
celerate RIMVFD is an effective solution. In the literature, there are hardware
implementations of frontal face detection based on Neural Networks(for example
[9]) and AdaBoost(for example [13]). However, few researches focus on hardware
implementation of RIMVFD.

In this paper, a fine-classified method and an FPGA-based hardware archi-
tecture for RIMVFD are presented. Firstly, a tree-structured detector hierarchy
is designed to organize detector nodes for RIP and ROP pose changes. To train
branching nodes of the detector tree, a fine-classified boosting algorithm with a
novel two-stage weak classifier design is proposed. Then, the temporal and spa-
tial parallelism of the proposed method is fully exploited. Next, the hardware
architecture for RIMVFD is designed and implemented on FPGA. The main
contributions of this paper are: (1) RIMVFD with all 90-degree ROP and 360-
degree RIP pose changes is achieved using tree-structured detector hierarchy
and fine-classified Vector Boosting; (2) The execution time of the classification
procedure is significantly reduced by fully exploiting the parallelism.

2 Design of Our RIMVFD Method

2.1 Framework of AdaBoost-Based Face Detection

Face detection based on AdaBoost algorithm has been accepted by the com-
puter vision community as the state-of-the-art in terms of speed and accuracy.
The basic idea of AdaBoost is that a combination of single rules or “weak clas-
sifiers” gives a “strong classifier”. Viola and Jones proposed the use of Haar-like
features which can be computed efficiently with integral image [11]. In Viola’s
cascade framework, a group of features composes a classification stage based
on AdaBoost. The outcome of a stage determines whether the examined image
region contains a face or not. When the base size is processed for all regions,
the features are enlarged in subsequent scales, and evaluated for each scale to

Source

Image

Feature

Pool

Integral

Image

Feature

Values for

All Sub-

Windows

Stage

1

Stage

2

Stage

N

Further

Processing

Pass Pass Pass

Fail Fail Fail

Classifier

Image

Rescaler

Fig. 1. Framework of AdaBoost-based face detection

84 J. Xu et al.

be able to detect faces of larger sizes. Additional algorithm details can be found
in [11]. The algorithm outline is shown in Figure 1.

The difference between our RIMVFD method and the framework in Figure 1 is
mainly reflected in the classifier part. The integral image computation and image
rescaler are the same. In this paper, we will focus on the classifying strategy for
RIMVFD.

2.2 Tree-Structured Detector Hierarchy

For RIMVFD, pose changes should be identified in addition to face/non-face clas-
sification. There have been some related works, such as [12][3]. Huang claimed
his tree structure [3] can balance the face/non-face distinguishing and pose iden-
tification tasks, so as to enhance the detector in both accuracy and speed. Lim-
ited by the parallel processing ability in general-purpose processor, Huang’s tree
structure only divides all faces into 5 categories according to ROP to control the
computational cost.

As illustrated in Figure 2, we design a fine-grained tree structure with more
detector nodes so as to achieve more accuracy and speed with the aid of hardware
acceleration. The tree structure covers all ±90-degree ROP and 360-degree RIP
pose changes and the detection granularities in ROP and RIP are 20 degrees
and 30 degrees respectively. The coarse-to-fine strategy is adopted to divide the
entire face space into smaller and smaller subspaces. Which branches a sample
should be sent to is determined by computing a determinative vector G(x) =
[g1(x), ...,gn(x)] for each node except the leaves, where n is the number of
branches of a node. The sample is processed from the root node down to the leaf
nodes. After the sample is processed by some selected leaf nodes, the RIP and
ROP ranges where the sample belongs are determined.

360º RIP、[-90º，90º]

ROP face classifier

[-45º,45º] RIP

classifier

[-135º,-45º]

RIP classifier

[135º,-135º]

RIP classifier

[45º,135º] RIP

classifier

[-30º,30º] ROP

classifier

[-90º,-30º] ROP

classifier

[30º,90º] ROP

classifier

[-90º,-70º] ROP

classifier

[-70º,-50º] ROP

classifier

[-50º,-30º] ROP

classifier

[-45º,-15º] RIP

classifier

[-15º,15º] RIP

classifier

[15º,45º] RIP

classifier

Fig. 2. Illustration of the proposed fine-grained tree structure

2.3 Fine-Classified Boosting

This section proposes a fine-classified boosting method to get G(x) fast and
accurately. The designing and training of the method are detailed.

Many derivations from the basic AdaBoost method have been proposed for
MVFD (for example [7][3]). Huang proposed Vector Boosting [3] in which both

Implementation of RIMVFD on FPGA 85

its weak learner and final output are vectors rather than scalars. Vector Boosting
deals with the decomposed binary classification problems in a unified framework
by means of a shared output space of multi-components vector. Each binary
problem has its own “interested” direction in this output space, denoted as
its projection vector. For each binary problem, a confidence value is calculated
using an extended version of the Real AdaBoost. Then the strong classifier with
Boolean outputs is got with a threshold vector B. Classification criterion only
uses single threshold for each dimension and only considers the discrimination
in the current dimension of multiple classes. The disadvantage is that some
classes may be unnecessarily considered as candidate classes to which a sample
may belong. If G(x) is (1, 0, 1, 0) when the classification criterion uses single
threshold, it may be refined to (1, 0, 0, 0) when the criterion is improved.

Therefore, we propose a fine-classified boosting method. It is configured to
handle a complicated problem in a k-dimensional output space, which can
be decomposed into n binary ones. Figure 3 gives the generalized descrip-
tion of the proposed method. We define the training set of m samples as
S = (x1,v1,y1), ..., (xm,vm,ym), where xi belongs to an instance space χ, vi
belongs to a finite k-dimensional projection vector set Ω and the label yi = ±1.

The primary idea is that each weak classifier has two stages. The first stage
h

′
t : χ → R

k based on piecewise function is trained to assign each sample a
real-value confidence vector xi|i = 1, ..., k for k dimensions based on a sample’s
Haar-like feature. Each element in the vector indicates the probability whether
the sample belongs to the corresponding class. Then the second stage h

′′
t : R

k →
{−1| + 1}k based on hyper-rectangles is trained to output a Boolean value for
each dimension to further determine whether a sample belongs to the i-th class
based on the confidence vector. h

′
t : χ → R

k and h
′′
t : R

k → {−1| + 1}k are
merged to form the final weak classifier h∗

t : χ → {−1| + 1}k, which estimates
whether a sample belongs to the i-th class or not, i = 1, ..., k.

 For a classification problem that has been decomposed into n binary ones, given:

(1) Projection vector set Ω={ω1, ..., ωn}, ωi∈
k

(2) Sample set S={(x1,v1,y1), ..., (xm,vm,ym)}, where x∈χ, v∈Ω and its label y=±1

� Initialize the sample distribution D1(i)=1/m for all i = 1, ..., m.

� For t=1, ..., T

� Under current distribution, train a weak classifier: *()
t

h x : χ→{-1|+1}k.(weak learner)

� Calculate the weighted error εt of *

t
h : *

1
() (())

m

t t i i t ii
D i I yε

=
= ≠ •∑ v h x .

� Compute the coefficient αt:
11

log
2

t

t

t

εα
ε

⎛ ⎞−= ⎜ ⎟
⎝ ⎠

.

� Update the sample distribution:
*

1 *

() exp((()))
() t t i i t i

t

t

D i y
D i

Z

α
+

− •= v h x , where *

t
Z is the

normalization factor so as to keep Di+1 as a probability distribution.

� Stop if εt=0 or εt≥1/2 and set T=t-1.

� The final output space is: *

1

() ()
T

t t

t

α
=

=∑H x h x .

� The confidence space is: () ()=F x AH x , where the transformation matrix A={ω1, ..., ωn}
T.

� The final strong classifier is: () (())sgn=G x F x .

Fig. 3. A generalized description of the fine-classified boosting method

86 J. Xu et al.

The weak learner is called repeatedly under the updated distribution to form
a highly accurate classifier. The margin of a sample xi with its label y and pro-
jection vector vi is defined as yi(vi •h∗

t (xi)). Thus, the orthogonal component of
a weak classifier’s output makes no contribution to the updating of the sample’s
weight. The final output is the linear combination of all trained weak classi-
fiers. A n × k matrix A made up of all n projection vectors in set Ω is used to
transform the k-dimensional output space into n-dimensional confidence space.
Each dimension of the confidence space corresponds to a certain binary problem.
Finally, the output of the strong classifier is the sign of F(x).

The first stage is based on piecewise function [12], which is more efficient than
threshold-type function and can be efficiently implemented with Look Up Table
(LUT). The objective of the training procedure is to minimize the normaliza-
tion factor of current round if adopting greedy strategy. A piecewise function is
configured by two parts: the division of feature space and the constant for each
division (i.e. bin). For the training of classifier in the i-th dimension, assuming
the feature value of each training sample fHaar has been normalized, the feature
space is divided evenly into p sub-ranges: binj = [(j − 1)/p, j/p], 1 ≤ j ≤ p.
A partition on the range corresponds to a partition on χ. Thus, h

′
t can be de-

fined as: fHaar(x) ∈ binj ⇒ h
′
t(x) = cj , where cj can be easily trained with a

proper optimization algorithm such as Newton-Step method. Finally, h
′
t can be

expressed as :

h
′
t(x) =

p∑
j=1

c∗jB
j
p(fHaar(x)) (1)

where Bj
p(u) =

{
1 u ∈ [(j − 1)/p, j/p)
0 u /∈ [(j − 1)/p, j/p) , j = 1, ..., p, c∗j = {cj(i)|i = 1, ..., k}

and h
′
t = {h′

t(i)|i = 1, ..., k}.
The second stage will learn the distribution of the confidence vectors for all

samples, and generate a precise criterion to discriminate different classes. In
this paper, the second stage is based on hyper-rectangles. It has been proved
that decision functions based on hyper-rectangles instead of a single threshold
give better results [2] and can be easily implemented in parallel. We define the
generalized hyper-rectangle as a set H of 2k thresholds and a class yH , with
yH ∈ {−1, +1} : H = {θl

1, θ
u
1 , θl

2, θ
u
2 , ..., θl

k, θu
k , yH}, where θl

i and θu
i are the

lower and upper limits of a given interval in the i-th dimension. The decision
function is ⎧⎨

⎩
hH(x) = yH ⇔

k∏
i=1

((xi > θl
i)and(xi < θu

i)),

hH(x) = −yH , otherwise.
(2)

The core of the training procedure is the hyper-rectangle set SH determination
from a set of samples S. We use the training method proposed in [5]. The basic
idea is to build around each sample xi,yi ∈ S a hyper-rectangle H(xi) containing
no sample of opposite classes, where xi is the confidence vectors of all samples
in this section and yi = ±1.

Implementation of RIMVFD on FPGA 87

3 Proposed Hardware Architecture for RIMVFD

3.1 The Global Structure

We exploit the temporal and spatial parallelism of the proposed RIMVFD
method first. The phase of acquiring frames, computing integral frames and
classifying faces within frames can form a pipeline. The image rescaler and the
classification procedure can work in parallel. In our work, we rescale the image
instead of the features, which means each iteration of rescaling has a correspond-
ing rescaled integral image. In the classification procedure, different levels in the
detector tree work on different sub-windows in a pipelined fashion, and different
detector nodes in the same level work in parallel (see Figure 2).

According to the parallel characteristics of the system, the global architec-
ture for RIMVFD is designed as illustrated in Figure 4. The key parts of the
system are the Integral Image Computer, the Face Detector Module and Image
Rescaler. The results of Integral Image Computer are required by Face Detec-
tor Module and Image Rescaler. The rescaled integral image data generated by
Image Rescaler are required by Face Detector Module, too. In each detector
node, a Feature Calculator and a Face Classifier are included. The intermedi-
ate results of these processing modules are stored in the Main Memory via the
multi-port Memory Interface for later use. For the computation of integral image
and the rescaling of image, they have been researched in many related works (e.
g. [13][15]). Therefore, we will not discuss them in this paper and focus on the
design of Face Detector Module.

The number of detector nodes as shown in Figure 2 can be reduced about 75%
without significantly affecting the speed. The reason is that the detector branches
for [-45◦, 45◦], [45◦, 135◦], [135◦, -135◦] and [-135◦, -45◦] RIP ranges can reuse
the same structure. The only differences among them are the data acquisition
addresses during the feature calculation procedure. Therefore, only the [-45◦,
45◦] RIP classifier and its child nodes are configured into the system at first,
together with the root node (i.e. 360◦ RIP, [-90◦, 90◦] ROP face classifier). If a
sub-window is rejected by the root node, it is considered as non-face; otherwise,
it flows into the [-45◦, 45◦] RIP classifier. The locations of sub-windows rejected
by the [-45◦, 45◦] RIP classifier are buffered and reprocessed by the same detec-
tor tree, except that the data acquisition scheme in the feature calculation part is

Video

Capturer/Database

Image Buffer

Integral Image

Computer

Image

Rescaler

Feature Calculator

Face Classifier

Main Memory

Memory Interface

Face Detector

Module

Display/Database

Detector Node

Fig. 4. Global architecture of the RIMVFD system

88 J. Xu et al.

updated to rotate the feature values for 90 degrees, 180 degrees and 270 degrees
successively. Only sub-windows rejected by the previous 90-degree RIP classi-
fier are sent into the successive one. Since most multi-view faces concentrate in
[-45◦, 45◦] RIP range in real world, the number of sub-windows that are rejected
by the [-45◦, 45◦] RIP classifier will be tiny. Therefore, although the number of
detector nodes as shown in Figure 2 is reduced from 161 to 41, the detection
speed is hardly affected and the detection accuracy remains unchanged.

3.2 Design and Implementation of the Detector Hierarchy

Different nodes in the detector tree have similar structure with different clas-
sification parameters. The inputs of each node are some feature values of
sub-windows, and an Enable Signal indicating whether the node needs to be
activated. The output is a Boolean value indicating whether a sub-window be-
longs to the current face class. All direct child nodes of a parent node use the
same feature set calculated by the Feature Calculator. If the node is not a leaf,
the output will be sent into all its child nodes in the next level as their Enable
Signals; otherwise, the output is the final result for a sub-window. In each node,
cascaded structure [10] is also adopted to organize strong classifiers, where sim-
ple classifiers at early stages can filter out most negative sub-windows efficiently.
The output of the previous cascade stage is connected with the Enable Signals
of its successive stage. Different stages work on the sub-windows in a pipelined
fashion. In Figure 5, we pick up several detector nodes from two adjacent levels
to illustrate the structure and their communications.

stage 1

stage 2

stage N

F
e
a
tu
r
e

C
a
lc
u
la
to
r

stage 1

stage 2

stage N

F
e
a
tu
r
e

C
a
lc
u
la
to
r stage 1

stage 2

stage N

stage 1

stage 2

stage N

Parent Layer

Child Layer

Feature Value

Enable Signal

……

……

……

Fig. 5. Structure of detector nodes and their communications

In the detector nodes, different strong classifiers have similar structure with
different classification parameters and different number of weak classifiers. Each
strong decision function is a particular sum of products, where each product is
made of a constant αt and the value -1 or +1 depending on the output of h∗

t . In
our design, the results of additions and subtractions of αt are encoded into LUT
units beforehand. The outputs of weak classifiers are used as addresses of LUT
units. The more additions and subtractions are encoded in a LUT unit, the less
online addition operations are required in the hierarchy of adders. The structure
of the strong classifier with 16-bit LUT unit is presented in Figure 6(a).

Implementation of RIMVFD on FPGA 89

Feature Calculator

sub-window

data

h0

+α0+α1+α2+α3

+α0+α1+α2-α3

+α0+α1-α2+α3

......

-α0-α1-α2-α3

Hierarchy of Adders

sgn stage i

to stage i in

other brother

nodes

h1 h2 h3 h4 h5 h6 h7

+α0+α1+α2+α3

+α0+α1+α2-α3

+α0+α1-α2+α3

......

-α0-α1-α2-α3

Feature Calculator

sub-window

data

h't(1)

h''t(1)
Node 1

...... h't(2)

h''t(2)
Node 2

...... h't(k)

h''t(k)
Node k

......
feature t

......

...

(a) (b)

Fig. 6. Structure of the strong classifier and the weak decision function. (a)strong
classifier; (b)weak decision function.

Next, we will introduce the hardware structure of the two-stage weak classi-
fiers. The first stage h

′
t : χ → R

k has the form as shown in Equation (1), and
c∗j is trained off-line. The second stage : h

′′
t : R

k → {−1| + 1}k has the form
of Equation (2) for each dimension of the k classes. For the t-th weak classifier,
the feature value is sent into all dimensions of h

′
t first, where each dimension

corresponds to each direct child node of a parent node. All k outputs of h
′
t are

sent into each dimension of h
′′
t for further hyper-rectangle-based decision. Figure

6(b) shows the dataflow.
Different h

′
t have similar structure. The piecewise decision function can be

easily implemented on hardware by using LUT units, as shown in Figure 7(a).
Each element in a LUT corresponds to the constant value for a feature bin.
The input is the normalized feature value, which is used as the address for
LUT. If the feature value is located at the j-th bin of all p bins, cj in the LUT
will be selected as output. Different h

′′
t have similar structure, too. The hyper-

rectangle-based decision function can be easily implemented on hardware only
by using some comparison units and logical operation units, as illustrated in
Figure 7(b).

c1
c2
c3

......

cp

LUT

Normalized

Feature Value

Confidence

Value

(a)

AND

AND

AND

.

.

.

x0>θ
l
0

x0<θ
u
0

xk>θ
l
k

xk<θ
l
k

x0

xk

XNOR

yH

(b)

result

Fig. 7. Structure of the two-stage weak classifier. (a) the first stage; (b) the second
stage.

90 J. Xu et al.

4 Experimental Results

In this section, several experiments are performed to evaluate the proposed
RIMVFD method and hardware architecture. More than 85,000 face samples
are collected by cropping from various sources, which are normalized to the
standard 24×24 pixel patch and cover all ±90-degree ROP and ±45-degree RIP
pose changes. We partition the sample space into smaller and smaller subspaces
of narrower view ranges. The nodes in the detector tree are trained by using
the training method introduced in Section 2.3 upon these samples. As described
in Section 3.1, the detection in the [45◦, 135◦], [135◦, -135◦] and [-135◦, -45◦]
RIP ranges can be implemented by simply rotating the trained classifiers for
90 degrees, 180 degrees and 270 degrees clockwise. Figure 8 gives some training
samples. Finally the detector tree is composed of 41 nodes in 5 levels.

Fig. 8. Some training samples

A prototype of the proposed design has been implemented in an FPGA testbed
for evaluation, which includes a large capacity FPGA chip and a SDRAM mod-
ule, connecting to the host processor through USB interface. Our target device
is Altera Stratix II EP2S130F1020C5, containing 106,032 ALUTs and 6,747,840
bits of on-chip memory. The SDRAM module with capacity of 1G Bytes is de-
ployed as off-chip memory. The host processor functions as the Video Capture
Device and Display/Store Device as shown in Figure 4. The FPGA implemen-
tation is coded with Verilog HDL, simulated with Mentor Graphics ModelSim,
and synthesized with Quartus II.

To give an overall evaluation, we test our system on the CMU profile set,
which consists of 208 images with 441 faces. Since the CMU profile set can not
evaluate the rotation invariant characteristics well, we also collect a database of
360-degree rotation invariant test images from various sources, containing 213
images with 682 rotation invariant multi-view faces. The CMU+MIT frontal face
test set containing 130 images with 507 main frontal faces is also used to evaluate
the frontal face detection performance. Some detection results generated by the
proposed system are shown in Figure 9.

4.1 Resource Utilization

We synthesize the design using Quartus II. The size of the sub-window for clas-
sification, x0-by-y0, is 24×24. The scanning steps in the x- and y-direction Sx

and Sy are set to be 1 pixel, and the scaling factor r is 1.25. The number of de-
tector nodes is 41, which are organized as described in Section 3.1. The number
of cascade stages in each detector node, and the number of weak classifiers in

Implementation of RIMVFD on FPGA 91

Fig. 9. Some detection results of the proposed system

Table 1. Resource utilization for different parts of the system

Modules
Area On-Chip

(ALUTs) Memory(bits)
Video Capturer/Database Interface 238 67239
Results Display/Database Interface 322 8325

Main Memory Controller 819 19200
Integral Image Computer 657 48921

Face Detector Tree 102512 69038
Image Rescaler 579 32973

Total 105127 245696

each cascade stage are determined by selecting operating points within a receiver
operator characteristic (ROC) curve. Finally, 3820 weak classifiers are included
in the detector tree. Based on the synthesis results, the clock speed of the entire
design reaches 98MHz. Table 1 gives the resource utilization for different parts of
the system. We can see that the Face Detector Tree occupies most of the ALUT
resources. The reason is that the number of weak classifiers in it is pretty large.

4.2 Speed Comparison with Software Solution and Related Works

We compare the processing speed of the hardware implementation with that of
the software solution on PC with a Pentium IV 2.8GHz CPU and 1GB memory
bank. The software solution is implemented based on OpenCV. The program
code is written in Visual C++ language under WindowsXP OS. Table 2 gives
the comparison of execution latency for detecting rotation invariant multi-view
faces in one image frame using these two solutions and the off-chip memory
bandwidth requirements. Test images with different sizes are used. We can see
that although the system clock speed is only 98MHz, which is much slower than
that of PC (i.e. Pentium IV 2.8GHz), the processing speed of the hardware
solution is still faster than that of the software solution. The detection speed

92 J. Xu et al.

Table 2. Performance comparison between the hardware and software solution and
the off-chip memory bandwidth requirements

Image Execution Latency(ms) Speed Bandwidth
Size Hardware Software Up (MB/s)

160×120 1.58 23.2 14.68 99.8
192×144 2.06 33.6 16.31 110.7
320×240 5.36 93.9 17.52 158.7
384×288 7.27 135.4 18.62 168.5
480×320 9.71 188.2 19.38 175.4
640×480 18.42 376.6 20.45 185.1
768×576 26.08 542.5 20.8 188.3
800×600 28.22 588.7 20.86 188.9

is also much faster than other related works tested on PC or FPGA [12][3][15].
The reason is that our design uses tree-structured detector hierarchy, and the
temporal/spatial parallelism is fully exploited to construct highly parallel and
pipelined hardware architecture. The off-chip memory bandwidth requirements
for different image sizes are also described in Table 2. The available off-chip
memory bandwidth in our prototype system is about 200MB/s, which can meet
the requirements.

4.3 Accuracy Comparison with Related Works

Frontal face detection test on CMU+MIT frontal face. As frontal faces
are very useful in face-related applications, we first evaluate the proposed method
on the CMU+MIT frontal face test set, and compare the results with those of
Rowley’s ANN method [6], Viola’s cascade detector [10] and Wu’s parallel cas-
cade method [12]. Figure 10(a) gives the detection results and the correspond-
ing ROC curves. We can see that our proposal has a much higher detection
rate.
MVFD test on CMU profile set. We compare the proposed method with
Schneiderman’s Bayesian decision rule method [8], Wu’s parallel cascade method
[12] and Huang’s WFS tree method [3] for MVFD. All tests are based on the
CMU profile set. Figure 10(b) gives the detection results and the corresponding
ROC curves.
RIMVFD test on our own database. For the rotation invariant MVFD,
since there is no available standard test set, we use our own collected database
containing 213 images with 682 rotation invariant multi-view faces. Wu’s parallel
cascade method [12] and Huang’s WFS tree method [3] did some experiments
on RIMVFD, but they didn’t give the ROC curves. In our experiment, the ROC
curve of our proposal on our own test set is given in Figure 10(c).

The main reason why our proposal achieves a better performance is that
the outputs of the first stage in weak classifiers are further classified by the
second stage. Consequently, faces belonging to each class can be well separated

Implementation of RIMVFD on FPGA 93

0 200 400 600
0.75

0.8

0.85

0.9

0.95

1

False Alarm

D
e
te
c
ti
o
n
 R
a
te

Rowley's

Voila's

Wu's

Ours

0 200 400 600 800
0.75

0.8

0.85

0.9

0.95

1

False Alarm

D
e
te
c
ti
o
n
 R
a
te

Schneiderman's

Wu's

Huang's

Ours

0 200 400 600 800
0.84

0.86

0.88

0.9

0.92

0.94

False Alarm

D
e
te
c
ti
o
n
 R
a
te

(a) (b)

(c)

Fig. 10. ROC curves on (a)CMU+MIT frontal face set; (b)CMU profile set; (c)our
own test set

from other classes. Since the Haar-like feature values of face samples are mainly
reflected by the color differences of different organs in the face and not the
absolute color values, the face objects can be distinguished from other objects
with similar color such as shirts on people, and face colors of various races (white,
black,) will not influence the detection accuracy too much.

5 Conclusions

We presented a fine-classified method and an FPGA-based hardware architec-
ture for detecting rotation invariant multi-view faces with all -/+90-degree ROP
and 360-degree RIP pose changes. A tree-structured detector hierarchy was de-
signed to organize multiple detector nodes. We proposed a fine-classified boost-
ing algorithm to train each detector node, where each weak classifier has a novel
two-stage structure. The proposed method achieves higher accuracy than related
works. Due to the highly parallel and pipelined design of the hardware archi-
tecture for RIMVFD and the reusability of detector nodes, amazing speed were
realized compared with previous related works.

Acknowledgments. This work is supported in part by the National Science
Foundation of China through grants 60633050 and 60833004.

94 J. Xu et al.

References

1. Baluja, S., Sahami, M., Rowley, H.A.: Efficient Face Orientation Discrimination.
In: IEEE International Conference on Image Processing (ICIP), pp. 589–592 (2004)

2. DeMacq, I., Simar, L.: Hyper-Rectangular Space Partitioning Trees, a Few Insight.
Technical report, Universite Catholique de Louvain, Belgium (2002)

3. Huang, C., Li, Y., Ai, H.Z., Lao, S.H.: Vector Boosting for Rotation Invariant
Multi-View Face Detection. In: IEEE International Conference on Computer Vision
(ICCV), pp. 446–453 (2005)

4. Mita, T., Kaneko, T., Hori, O.: Joint Haar-Like Features for Face Detection. In:
IEEE International Conference on Computer Vision (ICCV), pp. 1619–1626 (2005)

5. Mitéran, J., Matas, J., Bourennane, E., Paindavoine, M., Dubois, J.: Automatic
Hardware Implementation Tool for a Discrete Adaboost-Based Decision Algorithm.
EURASIP Journal on Applied Signal Processing 2005(1), 1035–1046 (2005)

6. Rowley, H.A.: Neural Network-Based Human Face Detection. PhD thesis, Carnegie
Mellon University (1999)

7. Schapire, R.E., Singer, Y.: Improved Boosting Using Confidence-Rated Predictions.
Machine Learning 37(3), 297–336 (1999)

8. Schneiderman, H., Kanade, T.: A Statistical Method for 3D Object Detection Ap-
plied to Faces and Cars. In: IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 746–751 (2000)

9. Theocharides, T., Link, G., Vijaykrishnan, N., Irwin, M., Wolf, W.: Embedded
Hardware Face Detection. In: IEEE International Conference on VLSI Design
(ICVLSI), pp. 133–138 (2004)

10. Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple
Features. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 511–518 (2001)

11. Viola, P., Jones, M.: Robust Real-Time Face Detection. International Journal of
Computer Vision 57(2), 137–154 (2004)

12. Wu, B., Huang, C., Ai, H.Z., Lao, S.H.: Fast Rotation Invariant Multi-View Face
Detection Based on Real Adaboost. In: IEEE International Conference on Auto-
matic Face and Gesture Recognition (FGR), pp. 79–84 (2004)

13. Yang, M., Wu, Y., Crenshaw, J., Augustine, B., Mareachen, R.: Face Detection for
Automatic Exposure Control in Handheld Camera. In: IEEE International Con-
ference on Computer Vision Systems, pp. 17–24 (2006)

14. Yang, M.H., Kriegman, D.J., Ahuja, N.: Detecting Faces in Images: A Survey.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 24(1),
34–58 (2002)

15. Yu, W., Xiong, B., Chareonsak, C.: FPGA Implementation of Adaboost Algorithm
for Detection of Face Biometrics. In: IEEE International Workshop on Biomedical
Circuits and Systems, pp. 17–20 (2004)

The Design and Evaluation of a Selective Way
Based Trace Cache�

Deze Zeng1,2, Minyi Guo1,3, Song Guo1, Mianxiong Dong1, and Hai Jin2

1 School of Computer Science and Engineering, The University of Aizu,
Aizu-Wakamatsu, Fukushima, 965-8580, Japan
{m5112104,sguo,d8101104}@u-aizu.ac.jp

2 School of Computer Science and Technology, Huazhong University of Science and
Technology, Wuhan, 430074, China

hjin@hust.edu.cn
3 Department of Computer Science and Engineering, Shanghai Jiao Tong University

Shanghai, 200030, China
guo-my@cs.sjtu.edu.cn

Abstract. Energy efficient and performance efficient instruction fetch
unit is a critical issue in modern processor design. Trace cache which
stores dynamic basic-block stream can significantly improve performance
efficiency. Conventional trace cache (CTC) usually adopts set associative
structure which requires probing all the data ways in parallel such that
only the output of the matched way is used, but the energy for accessing
the other ways is wasted. In this paper, we propose a selective way based
trace cache (SWTC), which probes only the selected way(s) instead of
probing all the data ways. In SWTC, traces are divided into several
types and stored into cache by type. Then the trace cache is partially ac-
tivated and accessed. Based on these design principles, a SWTC model
is proposed and evaluated in this paper. Simulation results show that
compared to CTC, SWTC can reduce energy consumption on the fetch
unit by 20.1% on average, while providing almost the same performance
in terms of number of instructions per cycle.

Keywords: computer architecture; instruction fetch unit design; energy
efficient; trace cache; selective way.

1 Introduction

The development of superscalar processors has placed great demand on the in-
struction fetch mechanism. The instruction fetch unit is desired to fetch instruc-
tions as many as possible, by fully utilizing the datapath resources to achieve
� This work is supported by the National 973 Basic Research Program of China under

grant No.2007CB310900, National High-Tech Research and Development Plan of
China (863 Plan) under Grant Nos. 2008AA01Z106 and 2006AA01Z202, the National
Natural Science Foundation of China under Grant Nos. 60811130528, 60725208 and
60533040, Shanghai Pujiang Plan No. 07pj14049 and Research Fellowships of the
Japan Society for the Promotion of Science for Young Scientists Program.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 95–109, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

96 D. Zeng et al.

a higher instruction level parallelism (ILP). Higher instruction fetch rate can
potentially increase the performance of the processor [1]. On the other side, en-
ergy efficiency has become an important issue in modern processor design. The
instruction fetch unit consumes a considerable proportion of the total power
consumption in a processor [2][3]. The design of fetch unit for future superscalar
processors should achieve a high instruction fetch rate in an energy efficient way.

The capacity of conventional fetch units is limited as it can only fetch at most
one block from instruction cache per cycle. In order to improve the instruction
fetch rate, many novel fetch mechanisms have been proposed, such as Braid [1],
branch address cache (BAC) [4], collapsing buffer (CB) [5] and trace cache (TC)
[6]. Among them, trace cache has received much attention from both academia
[7][8][9][10] and industry [11]. Trace cache was first proposed by Rotenberg et al. in
[6], known as conventional trace cache (CTC). It has been proved that trace cache
can improve performance and save energy over the instruction cache [8]. Recent
research shows that the energy efficiency of CTC can be improved further.

There are at least two drawbacks resulting in energy inefficiency of CTC. One
is its low utilization of cache space. Some literatures [15][16] improve the cache
space utilization of trace cache by optimizing fill-in policy of CTC. Another is
the simultaneous access to both trace cache and instruction cache in every fetch
cycle. Previous work, such as sequential trace cache (STC), selective trace cache
(SLTC) [17] and dynamic direction prediction based trace cache (DPTC) [18],
all try to avoid the simultaneous access to reduce energy consumption.

Cache usually adopts a set associative structure because it can lower miss rate
as well as minimize access time. However it has to probe all the data ways in
parallel using tag lookup and only data from only the matched way is used. The
energy spent for accessing other unmatched ways can be viewed as a waste of
energy. It has been proved that the wasted energy can be reduced by predicting
the way to be possibly matched and then only accessing the predicted way
[12][13][14]. This mechanism is known as the selective way access.

In this paper, the selective way access technique is applied to trace cache and
a selective way based trace cache (SWTC) for reducing energy consumption of
trace cache is proposed. A natural characteristic of trace cache is exploited to
realize selective access. The basic idea is that the partial access can make trace
cache more energy efficient. We notice that trace cache itself is endowed with
the capacity of way selection. One trace is specified by its start address and the
branch outcomes in the trace. So, according to their branch outcomes in the
trace, traces can be divided into several types. Trace cache is also divided into
a set of ways and traces are allocated into different ways by type. Then, the
multiple-branch prediction [22] is used as the prediction of the matched way.
Only the possibly matched way is selected by this prediction and activated.
Therefore, the energy for activating other invalid ways can be saved.

Based on this principle, a SWTC architecture model is introduced in this
paper. In the model, trace cache is evenly divided into 6 ways and each way
can accept one or two types of trace. In each fetch cycle, two ways are selected,
activated and accessed using a three-branch prediction while the other four ways

The Design and Evaluation of a Selective Way Based Trace Cache 97

remain in a quiescent state. Experimental results show that compared to CTC,
SWTC can reduce energy consumption on the fetch unit by 20.1% on average
while achieving 1.2% close to the performance of CTC.

The remaining part of this paper is structured as follows. Section 2 intro-
duces selective ways cache techniques and summarizes the related work which
made efforts on reducing power dissipation of trace cache. Section 3 presents
the design principles and a architecture model of SWTC. Simulation model and
experimental results are presented in Section 4. Section 5 concludes our findings
and points out several future research problems.

2 Related Work

As reducing energy consumption, especially cache energy consumption, is one of
the most important issues in modern processor design, some work have pioneered
in proposing efficient solutions. One trend is to partition cache into smaller ways
and to access one way selectively. On the other hand, since trace cache is an
effective way to achieve high performance, some work have also been done to
reduce energy consumption on trace cache.

2.1 Selective Way Cache

Selective cache ways [12] can achieve good performance by partitioning the set
associative caches into subarrays such that some ways of the cache can be dis-
abled during the periods when full cache functionality is not needed. The cache
is partitioned and tailored to the requirements of different applications based
on a performance on-demand approach that can achieve energy saving. Another
way is to predict the cache way that will be accessed on each cache access. Inoue
et al. [13] evaluated one such scheme that predicts the most-recently used way
to be accessed to reduce energy consumption in set associative caches. Powel et
al. [14] further refined the way prediction scheme by selective direct-mapping.
In order to increase the prediction accuracy, a selective direct-mapping scheme
was exploited. Nonconflicting blocks are placed in a direct-mapping way while
conflicting blocks still use the set associative mapping. Therefore, it can be de-
termined whether the direct-mapping way or the set-associative mapping way
should be used by predicting whether a block is conflicting or nonconflicting.
However, all these way prediction schemes have a drawback that if a mispredic-
tion occurs, the rest of the ways need to be accessed in the following cycle, which
results in performance degradation. SWTC, different from previous work, as a
selective way cache, can guarantee that the access missed in the selected way
will not hit in the unselected way either. This can be viewed as an immediate
trace cache miss and the instruction fetch will proceed normally from instruction
cache instead of probing other unselected ways in the next cycle.

2.2 Energy Efficient Trace Cache

There has been a lot of research work on reducing energy consumption of trace
cache. Some work mainly exploits the “hot/cold trace” principle to optimize

98 D. Zeng et al.

trace cache building. Hot traces are executed many times and contribute to
the majority of committed instructions. Cold traces are rarely executed but
may be written into trace cache many times. Using trace filtering methodology
to prevent cold traces from entering trace cache can significantly improve its
space utilization of trace cache, improve performance and reduce the energy
consumption at the same time. Kosyakovsky et al. [15] propose a profile-based
trace cache management. They use profiling to identify the “hot traces” and
supply the hardware with hints to store hot traces. Michael Behar at al. [16]
propose a trace cache sampling filter which selects traces to be stored in trace
cache on a periodic basis. It selects traces into trace cache randomly, without
any prior knowledge of trace behavior. Since most traces are cold traces, by
preventing them from being written into trace cache, this mechanism can reduce
much power consumption.

There are also some work exploiting the way to try to avoid simultaneous
access to both trace cache and instruction cache at each fetch stage. Hu et al.
propose two fetch models: Selective trace cache (SLTC) [17] and dynamic direc-
tion prediction based trace cache (DPTC) [18]. SLTC uses profile information
to get the locality of traces, and then use a modified ISA, compiler optimization
and hardware support to control trace cache lookup. DPTC is a pure hardware
theme to implement selective access to trace cache and instruction cache. It aug-
ments the branch targe buffer entry with two additional saturating counters to
predict next fetch direction either to instruction cache or to trace cache.

In [19], Dynamic Voltage and Frequency Scaling (DVFS) technique is applied
to trace cache, in which the first basic block is not voltage-scaled while all other
blocks are voltage-scaled down so as to reduce energy consumption.

Our current work is also a pure hardware scheme, but it takes a completely
different approach from all previous work on reducing energy consumption of
trace cache. It can be incorporated into existing work to achieve even higher
energy efficiency.

3 Selective Way Based Trace Cache

In this section, some fundamentals of trace cache and principle of SWTC will
be discussed first. A selective way based trace cache micro-architecture will then
be proposed based on the principle.

3.1 Fundamentals of Trace Cache

Trace cache captures dynamic sequential blocks in dynamic program order, called
trace, instead of static program order generated by compiler in each cache line.
Each trace is specified by its start address and branch outcomes. A trace can be
formally denoted by a tuple, T = {A, C}, where A is the start address and C is
the branch outcomes.

The microarchitecture of the CTC fetch unit is shown in Fig. 1. Trace cache
mainly consists of instruction trace, line-fill buffer logic and control information.

The Design and Evaluation of a Selective Way Based Trace Cache 99

Fig. 1. Microarchitecture of the CTC fetch unit

Control information has two functions. One is to specify the instruction trace
by its tag, branch flags and branch mask. Tag identifies the start address of
the trace. Branch flags are the branch outcomes within the trace and the branch
mask indicates the number of branches in the trace. The other function of control
information is to produce the next fetch address after the current trace. The last
bit of the branch mask indicates whether the trace ends with a branch or not.
If it ends with a branch and the last branch in the trace is predicted as taken,
target address will be selected as the next fetch address. Otherwise, fall-through
address will be selected.

In CTC, trace cache is accessed simultaneously when instruction cache is
accessed. If the fetch address matches the tag and the results from the multiple
branch predictor (MBP) match the branch flags, trace cache hits and instruction
selection logic (ISL) will feed the corresponding trace into instruction fetch queue
(IFQ). The data from instruction cache are bypassed.

3.2 Principle of SWTC

Power dissipation in CMOS circuits mainly consists of two parts, static power
dissipation due to leakage current and dynamic power dissipation due to logic

100 D. Zeng et al.

switching current, the charging and discharging of the load capacitance. Let
Pstatic and Pdynamic be the static power dissipation and the dynamic power dis-
sipation of trace cache, respectively. In N way set associative cache, the N ways
are accessed simultaneously, resulting in the power dissipation being equals to N
* Pdynamic. In a selective way cache, if only one selected way is activated while
all other ways stay in a quiescent state, the power dissipated can reduce to: 1 *
Pdynamic + (N-1) * Pstatic In the above power expressions, the power dissipation
consists of several component, such as tag array power dissipation, data array
power dissipation, etc. These components are not detailed, but sufficient for our
discussion.

In trace cache, each trace consists of several basic blocks. The number of
basic blocks is limited by the capacity of cache line and the number of branch
prediction that can be made in each cycle. Each trace should at least have two
basic blocks and can accommodate up to N basic blocks, there are at least 1
branch and up to N-1 branches in one trace. Let i be the number of branch in
a trace (1≤i≤N-1), the total number of possible branch outcomes is equal to∑N−1

i=1 2i = 2N − 2. Since each trace is denoted by T = {A, C}, traces can be
classified into 2N -2 types by branch outcomes C. If traces are stored in different
ways by type, branch prediction can be viewed as trace type prediction to select
the possible matched way. Then, instead of probing all the data ways in CTC,
only the selected way is accessed for saving energy.

It is ideal that only one way is selected to access if every trace has the same
number of basic blocks. But in general, traces can consist of various number of
basic blocks, so for each multiple-branch prediction, more than one way may be
valid. For example, in a trace cache where each trace can accommodate up to
4 basic blocks, suppose the multiple-branch prediction is “1001”. Traces with
branch outcomes “1”, “10” and “100” are all possibly valid. If each trace can
accommodate up to N basic blocks, N-1 types should be selected to access
simultaneously in SWTC. Suppose both CTC and SWTC have the same trace
cache size, if trace cache in SWTC is divided into 2N -2 ways equally and each
way accept one type of trace . A more general case, in which each way can accept
more than one type of trace, will be discussed in the next section. Here we only
consider a one-to-one rule. Regarding the power expression shown above, the
relationship between the trace cache power dissipation in each access of SWTC
and CTC can be obtained as the following formula:

PSWTC

PCTC
=

(2N − 2 − (N − 1)) ∗ Pstatic + (N − 1) ∗ Pdynamic

(2N − 2) ∗ Pdynamic

Since dynamic power dissipation contributes to most of the total power dis-
sipation as shown in the above formula, we can conclude that SWTC has a
great power efficiency advantage over CTC. However, this can not guarantee
that SWTC has also a energy advantage to CTC because energy is approxi-
mately the product of power and time. If performance of SWTC is much lower
than CTC, it is possible that SWTC may finally consume more energy than
CTC. On the other hand, performance efficiency is also an important issue in

The Design and Evaluation of a Selective Way Based Trace Cache 101

modern processor design. So we cannot evaluate efficiency of SWTC only in
terms of energy consumption of each trace cache access without the considera-
tion of performance.

When it comes to the performance evaluation of systems with trace cache,
the first thing to be concerned is how many instructions can be fetched from
trace cache since more instructions from trace cache are fetched, more benefits
from trace cache are obtained. In general, the bigger the trace cache is, the
more instructions from the trace cache can be fetched. However, for trace cache
with the same capacity, the utilization of the physical capacity should also be
taken into account. In CTC, a trace can be filled into any way of trace cache
according to the mapping rule and replacement policy. While in SWTC, a trace
can only be filled into one way determined by its type. It can be concluded that
SWTC has lower space utilization than CTC. In other words, CTC may be more
performance efficient than SWTC.

However, the above conclusion is not always true. Recall that while filling
a trace into trace cache, some other trace in the trace cache may be evicted.
It is possible that the trace is evicted out before it will be used again. This is
known as the cache pollution problem. In CTC, trace in any set has the same
possibility to be evicted out since new trace can be inserted into any cache set.
However in SWTC, the new trace can only be filled into the way specified by its
branch outcomes and therefore only trace within the same way can be evicted
out. This property makes less chances of performance degradation due to the
cache pollution problem compared to CTC.

By the discussion above, we predict that SWTC may suffer some performance
degradation compared to CTC, but it should have a great energy efficiency
advantage over CTC.

3.3 Microarchitecture of a SWTC Model

Based on the design principle discussed, a microarchitecture model of SWTC is
proposed. The microarchitecture of SWTC is shown in Fig. 2. Comparing Fig. 2
with Fig. 1 roughly, we can observe that only little modifications over CTC are
required. It implies that the hardware cost is similar to the original system.

Since it is difficult to make a precise prediction for over three branches due to
the technical limitations [20], a three-branch predictor is adopted in our SWTC
model. So one trace can accommodate 2 or 3 blocks and the number of branch
outcomes in each trace is 1 or 2, respectively. By the branch outcomes, traces
can be classified into six types, represented as TC00, TC01, TC10, TC11, TC0
and TC1. The notations are in binary form and each bit represents one branch
outcome. The relationship between each multiple-branch prediction and the pos-
sibly matched traces is shown in Table 1. For each branch prediction, there are
two types of possibly matched trace. By the principle discussed in previous sec-
tion, trace cache is divided into six ways and one way accepts one type of trace.
As shown in Fig. 2, each way corresponds to one trace type, such as Way00 to
TC00, Way01 to TC01, Way1 to TC1 and so on. At each fetch stage, two types

102 D. Zeng et al.

Fig. 2. Microarchitecture of six-way SWTC fetch unit

Table 1. Relationship between multiple-branch prediction and matched trace

Prediction00 Prediction01 Prediction10 Prediction11
TC00

√

TC01
√

TC10
√

TC11
√

TC0
√ √

TC1
√ √

of trace may be valid for each multiple-branch prediction as shown in Table 1
and two corresponding ways should be activated.

Now we consider a more general case that each way can accept multiple types
of traces such that the number of trace cache ways can be reduced to four. For
example, Way00 can accpet not only TC00 but also TC0. In summary, each
way accepts two types of traces, the relationship between cache way and trace
type is as following: Way00{TC00, TC0}, Way01{TC01, TC0}, Way10{TC10,

The Design and Evaluation of a Selective Way Based Trace Cache 103

Fig. 3. Structure of line-fill buffer

TC1}, Way11{TC11, TC1}. Now two ways should be probed simultaneously
during each access. For example, upon obtaining the branch prediction result
“01”, both Way01 and Way00 should be probed because there may exist TC0
locating in either Way00 or Way01. Since other two ways stay in a quiescent
state, approximately 50% dynamic energy consumption can be saved compared
to CTC.

To select the possibly matched way or to allocate traces into the right way,
a Way Selector (WSel) is needed, as shown in Fig. 2. It plays the key role in
SWTC. First of all, it can be viewed as located between line-fill buffer and
trace cache. To access trace cache selectively by branch prediction, it is the first
requirement that all the traces are stored in different ways according to their
type determined by the branch outcomes. As a result, WSel is to select one way
of trace cache and put the trace from line-fill buffer to the selected way. The
structure of line-fill buffer is the same as in CTC, as shown in Fig. 3. But the
fill-in process is different from CTC in that the trace should be filled into the
specified way with the help of WSel. While filling in a trace, Branch Flags and
Branch Mask are first used by WSel to select the right way. Start Address is
then used to find an entry from the selected way(s) according to the mapping
rule and replacement policy. Finally the trace as well as its corresponding control
information is inserted into the entry.

After allocating traces into different ways, how to extract the wanted trace at
fetch stage should be considered. Now, WSel can be viewed as located between
PC and trace cache. Since traces have been classified and stored into different
ways according to their branch outcomes. Before access to trace cache, multiple-
branch prediction from MBP is used by WSel to select and activate the possible
matched ways. And at the same time, fetch address is sent to the selected ways.
As presented before, two ways may be valid for each three-branch prediction.
So at each fetch stage, WSel activates two ways and send fetch address the two
ways to see whether there is an entry whose tag matches fetch address while
leaving the other four ways stay in quiescent state. If one entry matches in the
selected ways, there is trace cache hit.

If there is a trace cache hit, instructions should be fetched from the matched
entry. This requires that which way hits should be known accurately. Since there
are six ways in SWTC, there are six datapaths from trace cache to instruction
fetch queue (IFQ). Each way has its own hit logic (HL). If there is a hit in
one way, its HL will signal instruction selection logic (ISL) to select instructions
from the datapath of that way correspondingly. The entire trace of instructions
is then fed into IFQ and the instruction cache will be bypassed. If none of the
ways hits, fetching just proceeds normally from the instruction cache.

104 D. Zeng et al.

4 Experiment and Analysis

4.1 Experimental Methodology

All the experiments were performed on a modified SimpleScalar Toolset [21]. A
cycle-accurate execution-driven out-of-order simulator executing the Alpha ISA
was extended to a conventional trace cache (CTC) following Fig. 1. Based on
CTC, the trace cache as well as the fetch unit were redefined to simulate SWTC.
The SWTC has a four-way trace cache, in which each way accept two types of
trace. Each trace is defined to accommodate two or three basic blocks, up to 16
instructions. Besides, a three-branch predictor MGAg [22] capable of generating
three branch predictions is also implemented to support trace cache.

We configured a highly parallelizing execution core with 128 instruction queue
entries, 128 physical registers and 128 load/store queue entries. It can fetch,
execute and commit as many as 16 instructions per cycle. The configuration of
our simulator model is summarized in Table 2. All the experiments in our work
are based on the configuration.

To evaluate energy consumption, we also augmented Wattch [23] infrastruc-
ture by including the ability to calculate the energy consumption of trace cache,

Table 2. Basic simulator model

Processor Core Memory Hierachy

Instruction queue 128 entries L1 instruction cache 32KB, 4-way,
LRU,

Physical register 128 entries 1-cycle
latency

Load/store queue 128 entris Trace cache 32KB, 4-way,
LRU, 1-cycle

Fetch width 16 instructions latency
Execute width 16 instructions L1 data cache 64KB,2-way,

LRU,
Commit width 16 instructions write-back,
ALU unit 16 IntAddALU, 4 IntMult/Div 1-cycle

latency
16FPAddALU, 4 FPMulti/Div Unified L2 cache 512KB, 4-way

LRU,
4 memory ports write-back, 6-

Branch Predictor cycle latency
BTB 2K-entry, 2-way Main memory First chunk:

128-cycle
latency

RAS 32 entry TLB ITLB:4-way
128-entry,

Branch predictor MGAg, 16-bit branch history DTLB: 4-way
128-entry,

register, 4K-entry 30-cycle
miss penalty

The Design and Evaluation of a Selective Way Based Trace Cache 105

which consists of dynamic energy consumption and static energy consumption.
In our experiments, we consider that the trace cache (or one way of the cache)
not in use consumes 10% of energy when in use. This setting also applies to all
other ports or units, i.e., instruction cache. Fetch unit energy is defined as the
sum energy consumption of instruction cache, trace cache and branch predictor
(including two-level branch predictor, return address stack and branch target
buffer).

All the experiments were carried out with the programs from SPEC
CPU-2000INT benchmark suite and all the programs were run into competi-
tion with the MinneSPEC reduced input sets [24].

4.2 Experimental Results

The main purpose of this work is to reduce the overall energy consumption of
trace cache so as to reduce energy consumption of fetch unit. Fig. 4 shows the
trace cache energy consumption of one instruction for the benchmarks. The en-
ergy consumption consists of two parts, dynamic energy consumption and static
energy consumption. The lower part of each bar shows the dynamic energy con-
sumption of trace cache for each program while the higher part shows the static
energy consumption. In Fig. 4, we observe that SWTC saves 46.1% dynamic en-
ergy of CTC on average, which is consistent with the analysis in section 3. But
this can not demonstrate the energy efficiency of SWTC since energy consump-
tion consists of dynamic and static energy consumption. However, keeping some
ways of trace cache quiescent will increase the static energy component that
can not be ignored. Furthermore, static energy consumption is linearly with the
execution time. Taking both static and dynamic energy into consideration, the
energy reduction of SWTC is still significant. For example, SWTC can save up to
45.2% on the dynamic energy and 36.0% on the overall energy for gcc compared
to CTC. For the overall trace cache energy consumption over all benchmark
programs, SWTC can save 39.2% energy consumption of CTC.

When it comes to the overall fetch unit energy consumption, both instruction
cache and branch predictor are also taken into account with trace cache. Fig. 5
shows our experimental results of average fetch unit energy consumption of one
instruction for each benchmark program. Thanks to the energy reduction in
the trace cache of SWTC, SWTC also shows energy efficiency advantage over
CTC on the whole fetch unit. SWTC has an average energy reduction of 20.1%
compared to CTC. From Fig. 5, we ,can conclude that we have achieved our first
goal, to reduce the overall energy consumption of fetch unit.

However, we can not analyze energy consumption without consideration of
performance. First of all, a good architecture should reduce energy consumption
while maintaining the performance. On the other hand, recall that energy con-
sumption is approximately linear with the execution time that the performance
also has some influence on the energy consumption. Fig. 6 depicts performance
of SWTC and CTC for each benchmark in terms of number of Instruction Per
Cycle (IPC). From Fig. 6, we can see that SWTC has almost the same IPC with
CTC for all benchmark programs. The simulation result shows that SWTC can

106 D. Zeng et al.

Fig. 4. Average Trace Cache Energy Consumption comparison between CTC and
SWTC

Fig. 5. Average Fetch Unit Energy Consumption comparison between CTC and SWTC

achieve 1.2% close to the performance of CTC. The result is consistent with
our analysis in Section 3.2 that SWTC may suffer little performance degrada-
tion compared to CTC. Now, we can conclude that SWTC is a good solution
to design both performance efficient and energy efficient processor with trace
cache.

The Design and Evaluation of a Selective Way Based Trace Cache 107

Fig. 6. Performance comparison between CTC and SWTC, measured in Instruction
Per Cycle(IPC)

5 Conclusion

In this paper, we have discussed a selective way based trace cache (SWTC)
principle, in which traces are divided into several types according to their branch
outcomes. Traces are stored into different ways by type. In the fetch cycle, multiple-
branch prediction is used as trace type prediction to select the possible matched
ways. Only selected ways are activated while leaving other unselected ways in a
quiescent state to achieve energy saving. Based on the SWTC principle, a microar-
chitectural model is also proposed and evaluated in this paper. Simulation results
show that compared to CTC, SWTC can reduce energy consumption on the fetch
unit by 20.1% on average, while providing almost the same performance in terms
of number of instructions per cycle. The measurement testifies the soundness of
SWTC principle and implies that SWTC is an efficient solution to design perfor-
mance and energy efficient processorwith trace cache. Beyond the model proposed
in this paper, the principle of SWTC can be applied to other architectures with
trace cache and can be also integrated with the other energy efficient optimization
technique to trace cache to reduce energy consumption further.

References

1. Tseng, F., Patt, Y.N.: Achieving Out-of-Order Performance with Almost In-Order
Complexity. In: ISCA 2008: Proceedings of the 35th International Symposium on
Computer Architecture, pp. 3–12. IEEE Computer Society, Los Alamitos (2008)

108 D. Zeng et al.

2. Wilcox, K., Manne, S.: Alpha processors: A history of power issues and a look to
the future Cool-Chips. Tutorial (1999)

3. Manne, S., Klauser, A., Grunwald, D.: Pipeline gating: speculation control for
energy reduction. ACM SIGARCH Comput. Archit. News 26, 132–141 (1998)

4. Yeh, T., Marr, D.T., Patt, Y.N.: Increasing the instruction fetch rate via multiple
branch prediction and a branch address cache. In: ICS 1993: Proceedings of the 7th
international conference on Supercomputing, pp. 67–76. ACM, New York (1993)

5. Conte, T., Menezes, K., Mills, P., Patel, B.: Optimization of instruction fetch mech-
anisms for high issue rates. In: Proceedings of the 22nd Annual International Sym-
posium on Computer Architecture, pp. 333–344 (1995)

6. Rotenberg, E., Bennett, S., Smith, J.: Trace cache: a low latency approach to high
bandwidth instruction fetching. In: Proceedings of the 29th annual ACM/IEEE
international symposium on Microarchitecture, pp. 24–35 (1996)

7. Chaver, D., Rojas, M., Pinuel, L., Prieto, M., Tirado, F., Huang, M.: Energy-
aware fetch mechanism: trace cache and BTB customization. In: ISLPED 2005.
Proceedings of the 2005 International Symposium on Low Power Electronics and
Design, pp. 42–47. IEEE, Los Alamitos (2005)

8. Co, M., Weikle, D., Skadron, K.: Evaluating trace cache energy efficiency. ACM
Transactions on Architecture and Code Optimization (TACO) 3, 450–476 (2006)

9. Hu, J., Vijaykrishnan, N., Irwin, M., Kandemir, M.: Optimising power efficiency in
trace cache fetch unit. Computers and Digital Techniques, IET 1, 334–348 (2007)

10. Kim, C., Hwang, I., Chae, C., Choi, D., Jung, T., Chung, S.: Energy-Effective
Instruction Fetch Unit for Embedded Processors. In: 5th IEEE Consumer Com-
munications and Networking Conference, 2008. CCNC 2008, pp. 734–735 (2008)

11. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., Roussel,
P.: The microarchitecture of the Pentium 4 processor. Intel Technology Journal 5,
1–13 (2001)

12. Albonesi, D.: Selective cache ways: On-demand cache resource allocation. In:
Proceedings. 32nd Annual International Symposium on Microarchitecture, 1999.
MICRO-32, pp. 248–259 (1999)

13. Inoue, K., Ishihara, T., Murakami, K.: Way-predicting set-ssociative cache for high
performance and low energy consumption. In: Proceedings of the 1999 international
symposium on Low power electronics and design, pp. 273–275. ACM, New York
(1999)

14. Powell, M., Agarwal, A., Vijaykumar, T., Falsafi, B., Roy, K.: Reducing set-
associative cache energy via way-prediction and selective direct-mapping. In: Pro-
ceedings of the 34th annual ACM/IEEE international symposium on Microarchi-
tecture, pp. 54–65 (2001)

15. Kosyakovsky, O., Mendelson, A., Kolodny, A.: The Use of Profile-based Trace Clas-
sification for Improving the Power and Performance of Trace Cache Systems. In:
4th Workshop on Feedback-Directed and Dynamic Optimization (2001)

16. Behar, M., Mendelson, A., Kolodny, A.: Trace cache sampling filter. ACM Trans.
Comput. Syst. 25, 3 (2007)

17. Hu, J., Irwin, M., Vijaykrishnan, N., Kandemir, M.: Selective Trace Cache: A Low
Power and High Performance Fetch Mechanism. Pennsylvania State University,
Dept. of Computer Science and Engineering, College of Engineering (2002)

18. Hu, J., Vijaykrishnan, N., Irwin, M., Kandemir, M.: Using dynamic branch be-
havior for power-efficient instruction fetch. In: IEEE Computer Society Annual
Symposium on VLSI, 2003. Proceedings, pp. 127–132 (2003)

The Design and Evaluation of a Selective Way Based Trace Cache 109

19. Jang, H.B., Choi, L., Chung, S.W.: A Trace Cache with DVFS Techniques for a
Low Power Microprocessor. In: ICCIT 2008: Proceedings of the 2008 Third In-
ternational Conference on Convergence and Hybrid Information Technology, pp.
587–592. IEEE Computer Society, Los Alamitos (2008)

20. Hennessy, J., Patterson, D., Goldberg, D., Asanovic, K.: Computer Architecture: A
Quantitative Approach, 4th edn., p. 129. Morgan Kaufmann, San Francisco (2003)

21. Burger, D., Austin, T.: The SimpleScalar Tool Set, Version 2.0
22. Yeh, T., Patt, Y.: Alternative implementations of two-level adaptive branch predic-

tion. In: International Symposium on Computer Architecture, pp. 451–461 (1998)
23. Brooks, D., Tiwari, V., Martonosi, M.: Wattch: a framework for architectural-level

power analysis and optimizations. In: Proceedings of the 27th annual international
symposium on Computer architecture, pp. 83–94 (2000)

24. KleinOsowski, A., Lilja, D.: MinneSPEC: A New SPEC Benchmark Workload for
Simulation-Based Computer Architecture Research. Computer Architecture Let-
ters 1, 10–13 (2002)

A Fine-Grained Pipelined Implementation for
Large-Scale Matrix Inversion on FPGA

Jie Zhou1, Yong Dou1, Jianxun Zhao2, Fei Xia1, Yuanwu Lei1,
and Yuxing Tang1

1 National Laboratory for Parallel & Distributed Processing, NUDT, Changsha,
P.R. China, 410073

{zhoujie,yongdou,xcyphoenix,yuanwulei,tangyuxing}@nudt.edu.cn
2 Academy of Armored Forces Engineering, Beijing, China, 100072

ajianbear@163.com

Abstract. Large-scale matrix inversion play an important role in many
applications. However to the best of our knowledge, there is no
FPGA-based implementation. In this paper, we explore the possibility of
accelerating large-scale matrix inversion on FPGA. To exploit the com-
putational potential of FPGA, we introduce a fine-grained parallel algo-
rithm for matrix inversion. A scalable linear array processing elements
(PEs), which is the core component of the FPGA accelerator, is pro-
posed to implement this algorithm. A total of 12 PEs can be integrated
into an Altera StratixII EP2S130F1020C5 FPGA on our self-designed
board. Experimental results show that a factor of 2.6 speedup and the
maximum power-performance of 41 can be achieved compare to Pentium
Dual CPU with double SSE threads.

1 Introduction

Large-scale matrix inversion is widely used in many fields, such as signal pro-
cessing [8][17], large image processing [9], computational fluid dynamics [2] and
computational structure dynamics [15]. But it is a tremendous time-consuming
algorithm with the computation complexity of O(n3). To accelerate it, the tra-
ditional methods tie to parallel programming executing on parallel computers
[1][4][16][19][11]. In contrast, the FPGA-based design for large-scale matrix in-
version has not been previously reported.

Recently, many works [18][7][14][5][6][3] have been spent on studying how to
implement small-scale (4× 4 etc) or mid-scale (64× 64 etc) matrix inversion on
FPGA. Small-scale matrix inversion is usually used in the real-time systems. To
satisfy the computation speed, two-dimension systolic structure array including
O(n2) processing elements is generally adopted [18][7][14]. It can achieve high
parallelzation and performance, but consumes a mass of hardware resources. For
the limitation of chip area and power dissipation, it is hard to map a mid-scale
matrix inversion into a full pipeline of two-dimension systolic structure array
currently [12]. To implement mid-scale matrix inversion, researchers have pro-
posed various mapping and folding approaches to fold the two-dimension systolic

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 110–122, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Fine-Grained Pipelined Implementation 111

structure into one-dimension [5][6][3]. [5] maps the traditional triangular array
architectures employing O(n2) processing elements onto a scalable linear array
architecture with O(n) processing elements. And the mapping and folding meth-
ods introduced in [6][3] are similar to [5]. However, the number of the processing
elements is increasing with the matrix size.

In this paper, we explore the possibility of accelerating large-scale matrix in-
version on FPGA. For this purpose, there exists two main challenges: limited ex-
ternal DRAM bandwidth and on-chip memory resource. On the one hand, a mass
of on-chip storage is needed for large-scale matrix inversion to reduce the exter-
nal DRAM access. And on the other hand, the limited on-chip storage cannot
hold all O(n2) matrices, especially for large ones, resulting in long-latency data
load from external DRAM. For limited external DRAM bandwidth, this paper
proposes a fine-grained parallel algorithm which introduces none extra external
DRAM access with varying the number of PEs. And we design the accelerator
system as Ping-Pong DRAM structure to double the DRAM access bandwidth.
For the bottleneck of on-chip memory, we present dynamic access mechanism
to reuse the FPGA memory blocks, which can save one half of on-chip storage.
Furthermore, we propose a hardware design on FPGA for large-scale matrix
inversion fine-grained pipeline implementation with Givens Rotation, which is
based on a scalable linear array of processing elements. Our hardware design for
fine-grained design has implemented into an Altera StratixII EP2S130F1020C5
FPGA on our self-designed development board with two 1 GB SDRAMs running
at 100 MHz. A total of 12 PEs can be integrated into this FPGA, on which the
run time of matrix inversion for size of 4096×4096 is 106.404s, outperforming the
performance of 2.0GHz Pentium Dual CPU with double SSE threads by the fac-
tor of 2.6. Moreover, our design can achieve 41 times of the power-performance
efficiency compare with the Pentium Dual CPU. Note that one PE in this pa-
per includes one FGR-PE and one InvMul-PE, which are used to operate the
QR decomposition and up-triangular matrix inversion and matrix multiplication
respectively.

The remainder of this paper is organized as follows. Section 2 gives some
brief background and related work. Section 3 describes the fine-grained parallel
algorithm and performance model. Section 4 presents the fine-grained pipeline
FPGA implementation for matrix inversion. Section 5 provides the experimental
results and section 6 concludes this paper.

2 Fine-Grained Parallel Algorithm and Performance
Model

In this section, we present a fine-grained parallel algorithm by analyzing the data
dependency of QRD-based matrix inversion and a model to project performance.

2.1 Fast Givens Rotation

Many fields, such as signal processing [10][13], image processing [9], need QR-
based matrix inversion which are a class of algorithms with good numerical

112 J. Zhou et al.

1id = (1, ,)i n=
 1, 2, , (1) for i n begin= −

 (1), , for j i n begin= +
 A 0 jiif begin≠

/ ;ii jiA Aα = − / ;j id dβ α= − ;γ αβ= −

 ;q qexchange d and d (1) ;i id dγ= + (1) ;j jd dγ= +
end

end

end
(,) (,);nA n n d A n n= ∗

1/ ();i id sqrt d=

1/ ();n nd sqrt d= (, (1:)) (, (1:));nQ n n d Q n n= ∗

(, (:)) (, (:));iA i i n d A i i n= ∗ (, (1:)) (, (1:));iQ i n d Q i n= ∗

 1, 2, ,for i n=
 1, 2, ,for j n=

(, (1:)) ((1:) :);ijIA IR i n Q n j= ∗end
end

Step1: FGR-QR Decomposition

Step2:Up-triangular Matrix Inversion Step3: Matrix Multiplication

// Update factors calculation

// Update operations
1

;
1

ii in ii in

ji jn ji jn

A A A A

A A A A
β

α
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

1 1

1 1

1
;

1
i in i in

j jn j jn

Q Q Q Q

Q Q Q Q
β

α
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 1, 2, ,for i n=

 (1), ,for j i n= +
(, (1: 1)) ((1: 1) :);ijIR IR i j A j j= − ∗ −

/ ;ij ij jjIR IR A= −

1/ ;ii iiIR A=

end
end

Fig. 1. Matrix inversion with fast Givens Rotation

stability. And Givens Rotation is most stable algorithm of QR decomposition
and more suitable for fine-grained implementation on FPGA [20]. So we choose
the matrix inversion with fast Givens Rotation (FGR) as our implementation
algorithm. Figure 1 shows the algorithm of matrix inversion with fast Givens
Rotation, which is composed of QR decomposition, up-triangular matrix inver-
sion and matrix multiplication. The first step produces the up-triangular matrix
A (covering the raw matrix) and the transpose of orthogonal matrix Q. The sec-
ond step execute the calculation of up-triangular matrix inversion and matrix
multiplication is operated in the third step.

2.2 Data Dependency of QRD-Based Matrix Inversion

Figure 2 illustrates the data dependency of fast Givens Rotation shown the first
step of Figure 1. Here, up(i,j) of the left part denotes the jth inner loop of the
ith outer loop and op(i,k) of the right part denotes one update operation. The
inner loops of one outer loop must be calculated in sequence and the calculation
of the ith outer loop depends the i-1’s results. But further analysis reveals that
the ith outer loop can be started as soon as the needed update result is produced
by the (i-1)th outer loop, as shown in the right part of Figure 2. That is to say,
we can extract pipeline parallelism between the successive outer loops for fast
Givens Rotation.

We suppose that matrix IR is the inversion of up-triangular matrix R.
Figure 3 shows the data dependency for calculating one element of IR. The
calculation of IRij needs the jth column of R and the produced elements of ith
row of IR. Furthermore, the elements of IR should be stored in external memory
for large number of data. To avoid storing of IR by combining up-triangular
inversion and matrix multiplication, we develop another version of up-triangular
inversion as the third step shown in Figure 1. For differentiating, we call it as

A Fine-Grained Pipelined Implementation 113

up(1,2)

up(1,3)

outer-loop i

in
ne

r-l
oo

p
j

i=1 i=2 i=3 i=4

j=6

j=2

j=3

j=4

j=5

up(1,4)

up(1,5)

up(1,6)

up(2,4)

up(2,3)

up(2,5)

up(2,6)

up(3,4)

up(3,5)

up(3,6)

up(4,5)

up(4,6)

op(1,2)
op(1,3)
op(1,4) op(2,3)

op(2,4)
op(3,4)

op(4,5)

update factor calculation

update operation

op(1,5)
op(1,6)
op(1,7)

op(2,5)
op(2,6)
op(2,7)

op(3,5)
op(3,6)
op(3,7) op(4,6)

op(4,7)

22 22

32 32

1
;

1
A A

A A
β

α
⎡ ⎤ ⎡ ⎤⎡ ⎤=⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦

Fig. 2. Data dependency of fast Givens Rotation

R IR

i

jj

Fig. 3. Data dependency of up-triangular matrix inversion

row-oriented up-triangular matrix inversion for it produces the elements of IR
row by row.

2.3 Fine-Grained Parallel Algorithm

As implied by Figure 2, the outer loops can be executed by fine-grained pipeline
in parallel. For load balance, we adopt the ”one-row-cyclic” task partitioning in
this paper, where each PE holds one outer loop cyclically in turn. Let n and p
be the size of raw matrix A and the total number of PEs respectively, assuming
that p is less than n. By four-phase organization, Figure 4 describes the fine-
grained parallel fast Givens Rotation algorithm in a Single Program Multiple
Data (SPMD) style with message passing primitives. And the primary message
primitives are defined as:

Load(pid,X): PE(pid) loads array X from external DRAM;
Store(pid,X): PE(pid)stores array X to external DRAM;
Store QR(pid,X,Y): PE(pid)stores array X and Y to external DRAM;
Send(pid,X): send array X to PE(pid);
Rcv(pid,X): receive array X from PE(pid);
The fist part of Figure 4 shows variable, parameter definitions and symbol

illuminations. At the initial phase, each FGR-PE assigns its PE identifier, pid, to
the row index indicating the initial row assignment. Here, each FGR-PE updates

114 J. Zhou et al.

Initial Phase:

Variables Define:Input/Output Parameters:
n: Size of the raw matrix;

Symbol Illuminate:

S1: SetPID(pid); k = pid+1; (0 1)pid p≤ ≤ −
Calculating:

S2: if (pid==0) then Load (pid, A(i,i~n)) and Load (pid, Q(i,1~n));
else Rcv((pid-1), A(i,i~n)) and Rcv((pid-1), Q(i,1~n));

S3: for j=(i+1):1:n

Parallel do S32 S33 and S34:

S33: Update(A(i,i+1~n), A(j,i+1~n), Q(i,1~n), Q(j,1~n), di , dj);
S34: if (pid==p-1) then Store(pid, A(j,i+1~n)) and Store(pid, Q(j,1~n));

else Send((pid+1), A(j,i+1~n)) and Send((pid+1), Q(j,1~n));
Synchronizing and storing:

S4: if (FGR-PE(p) computing finished == 1) then Store_QR(pid, A(i,i~n), Q(i,1~n)) ;
else wait();

Ready next section:
S5: i = i+p; k = k+p;
S6: if (k>n) then stop;

// the default position assigning for FGR-PE[pid];

else Rcv((pid-1), A(j,i+1~n)) and Rcv((pid-1), A(j,1~n));

// calculation is started as soon as FGR-PE receives the first data;

//last FGR-PE store the updated results to DRAM;

// calculating the next initial computing position;
// judging whether the algorithm is over;

i, j: Current element index;
k: Variable of over judging;

S32: if (pid==1) then Load (pid, A(j,i+1~n)) and Load (pid, Q(j,1~n));

S31: Cal α, β, γ; // update factors (α, β, γ) calculation;

p: Number of FGR-PE

(0 1)pid p≤ ≤ −Algorithm 1: Fine-grained Parallel Algorithm of FGR-PE[pid]

A: Raw matrix or up-triangular matrix (covering the raw matrix);

for j=(i+1):1:n : (i+1) is initial value, n is final value and 1 is step length;
A(j,i+1~n): Elements from (i+1) to 2n of the jth row of matrix A; pid: Current FGR-PE number;

// the first FGR-PE load data from DRAM;
// the other FGR-PEs Receive data from previous FGR-PE;

// the other FGR-PEs send the updated

Q: Identity matrix or orthogonal matrix (covering the identity matrix);

// results to the next one;

else goto S2;

Fig. 4. The fine-grained parallel algorithm for FGR-PE[pid]

the assigned row with all rows behind it in sequence and finally produces one
row of matrix R and Q. The first FGR-PE loads data from external DRAM
and the others receive data from their previous ones as shown in S32. And as
shown in S34, the last FGR-PE stores the updated results to external DRAM,
the others send their updated results to the next ones. Each updated result of
FGR-PE[pid] is sent to the next one as soon as it is produced. And each FGR-
PE is driven when receiving the first effective data. Therefore, S32, S33 and S34
can be executed in parallel. When one row of matrix R and Q are produced, the
FGR-PE enters the synchronizing and storing phase. When the last FGR-PE
completes all update operations, indicating all FGR-PEs complete the update
task assigned, the final results of matrix R and Q are stored to external DRAM.
In ready next section phase, each FGR-PE adds p to its row index and judges
whether it accomplishes all tasks assigned.

To avoid storing inversion of up-triangular matrix to external DRAM, we
intercross the calculation of up-triangular matrix inversion and matrix multi-
plication. Similar to fast Givens Rotation, Figure 5 lays out the description of
fine-grained parallel up-triangular matrix inversion and matrix multiplication
algorithm in a SPMD style. Each InvMul-PE produces one row of inversion of
up-triangular matrix and one row of inversion of the raw matrix. What’s more,
its execution procedure resembles to FGR-PE. But each InvMul-PE sends data,
received from the previous InvMul-PE, to the next one directly except the last
InvMul-PE.

2.4 Performance Model

In this sub-section, we analyze the scalability of proposed parallel algorithm
detailedly. And in our performance model, a single linear array is considered.

A Fine-Grained Pipelined Implementation 115

Initial Phase:

R: Upper triangular matrix;

IA: Inversion of the raw matrix;

Q: Orthonormal matrix;

S1: SetPID(pid); k = pid+1; (1)pid p≤ ≤
Inversion Calculating:

S2: if (pid == 1) then Load (pid, R(i,i));
else Receive (pid-1, R(i,i));

S3: Cal IR(i,i);
S4: for j=(i+1):1:n

Parallel do S41, S42 and S43:
S41: if (pid==1) then Load (pid, R((1:j-1),j));

S42: Cal IR(i,j);
S43: if (pid != p) then Send (pid+1, R((1:j-1),j));

Synchronizing and storing:
S6: if (InvMul-PE(p) computing finished == 1) then Store (pid, IA(i,*));

else wait;
Ready next section:

S7: i = i+p; k = k+p;
S8: if (k>n) then stop; else goto S2;

else Receive (pid-1, R((1:j-1),j));

for j=1:1:n : 1 is initial value, n is final value and 1 is step length;
R((1:j-1),j) : Elements from 1 to (j-1) of the jth column of matrix R;

Matrix Multiplication:
S5: for j=1:1:n

Parallel do S51, S52 and S53:
S51: if (pid==1) then Load (pid, Q(*,j));

S52: Cal IA(i,j);
S53: if (pid != p) then Send (pid+1, Q(*,j));

else Receive (pid-1, Q(*,j));

Algorithm 2: Fine-grained Parallel Up-Triangular Matrix Inversion and Matrix
Multiplication Algorithm of InvMul-PE[pid] (1)pid p≤ ≤

Input Parameters:

Output Parameters:

Variables Define:
n: Size of the raw matrix;
i,j: Current element index;

k: Variable of over judging;
p: Number of InvMul-PE

pid: Current PE number;
Symbol Illuminate:

Q(*,j): The jth column of matrix Q;

// the default position assigning for InvMul-PE[pid];

// the first InvMul-PE load data from DRAM;
// the other InvMul-PEs Receive data from the previous one;

IR: Inverse matrix of R;

// calculation is started as soon as InvMul-PE receives the first data;

// send R((1:j-1),j) to the next InvMul-PE as soon as
// receiving from the the previous one, except the last one;

// calculation is started as soon as InvMul-PE receives the first data;

// send the jth row of Q to the next InvMul-PE as soon as
// receiving from the the previous one, except the last one;

// store the ith row of IA to DRAM ;

// calculating the next initial computing position;
// judging whether the algorithm is over;

Fig. 5. The fine-grained parallel algorithm for InvMul-PE[pid]

RD0 RD1 RD2 RD3 RD4

R1 R2 R3 R4 R5

RD5

U01 U02 U03 U04 U05

U12 U13 U14 U15

R2 R3 R4 R5
U23 U24 U25

R3 R4 R5
U34 U35

WD4 WD5

FGR_PE0

FGR_PE1

FGR_PE2

FGR_PE3

time

FG
R_

PE
s

RDi: Read the ith row from DRAM
Uij: Update the ith and jth row
Ri: Read the ith row from the previous FGR_PE
WDi: Write the ith updated row to DRAM

L

L

L

L

Rn-1

RDn-1

U0n-1

U1n-1

Rn-1
U2n-1

Rn-1
U3n-1

WDn-1

Latency of update factors calculation
Time of update operation or receive/send data

Transfer time of one cycle

*pα(2 *)(*)n i p n i p
B

− −

W_QR

(2 *)*n i p p
B

−

W_QR: Write the result of Q and R to DRAM

DRAM_0

DRAM_1

Fig. 6. Time estimation for fine-grained pipeline of fast Givens Rotation

To analyze the scalability of the proposed fine-grained fast Givens Rotation par-
allel algorithm, we built an analytical performance model for one sweep execution
as shown in Figure 6. And here, we call one outer loop execution of all FGR-PEs as
one sweep. The overhead of data communication among FGR-PEs is almost fully
overlapped with pipelined computation. And efficiency of the pipeline is mainly
limited by the external DRAM access bandwidth. To present the parallel algo-
rithm’s performance and scalability, we assume the following notations: (1) n -
size of the matrix; (2) p - the number of FGR-PE, here n >> p; (3) α - pipeline
depth of update operation, and n >> α; (4) B - external DRAM access band-
width; (5) F - execution frequency. Then the execution time of one sweep mainly
consists of external DRAM read, pipeline flushing of update operation and ex-
ternal DRAM writing of Q and R results. For the ith sweep, the corresponding
overheads are (2n− i∗p)(n− i∗p)/B, α ∗p/F and (2n− i∗p)∗p/B respectively.
That is to say, the execution time of the ith sweep of matrix R and Q is:

116 J. Zhou et al.

Ti =
(2n2 + 2np) − (np − p2)i + p2i2

B
+

αp

F
(1)

Here 0 ≤ i ≤ s and s = 	n/p
.
Then the total execution time is:

TFGR = T0 + T1 + · · · + Ts = 5n3

6pB + 5n2

B − 5np
6B + αn

F
(2)

Since n >> p and n >> α, the total execution time can be approximately
considered as:

TFGR =
5n3

6pB
(3)

Similar to fast Givens Rotation parallel algorithm, the execution time of up-
triangular matrix inversion and matrix multiplication is:

TInvMul =
2n3

3pB
(4)

Then the total execution time of the parallel algorithm of matrix inversion is:

T = TFGR + TInvMul =
3n3

2pB
(5)

So, for the large-scale matrix inversion, the execution time of our parallel al-
gorithm is increasing with the number of PEs, showing good parallelism and
scalability.

3 Hardware Implementation on FPGA

Based on the proposed fine-grained parallel algorithm, we present a scalable lin-
ear array structure for large-scale matrix inversion and its FPGA implementation
in this section.

3.1 Hardware Structure

As shown in Figure 7, the structure for large-scale matrix inversion is mainly
composed of an FPGA chip, two SDRAM modules and one I/O channel to the
host PC. The FPGA chip integrates a linear array of PEs, SDRAM Controller,
Phase Controller and on-chip memories, including Rams and FIFOs. We set two
SDRAM modules in order to double the SDRAM access bandwidth and form
full pipeline structure. The I/O channel is responsible for transferring the initial
data, final results and the commands between the accelerator and the host.

The on-chip memories, Rams, are used to store the middle or final results
of one row of matrix R and Q during the QR decomposition phase. And they
are used to store one row of inversion of up-triangular matrix or raw matrix

A Fine-Grained Pipelined Implementation 117

FIFO_0 FIFO_1 FIFO_2 FIFO_p-1

FGR-PE_p-1

InvMul-
PE_p-1

Ram_p-1

Ram_D

FIFO_out

SDRAM_0 SDRAM_1

SDRAM Controller

FGR-PE_1

InvMul-
PE_1

Ram_1

FGR-PE_0

InvMul-
PE_0

Ram_0

Phase Controller

Host

FPGA

I/O

Fig. 7. Structure for fine-grained pipeline implementation

FactorCal_
Pipeline

UpdateCal_Pipeline

FIFO_Dj

id iiA

α

βγ
Data From

Previous FGR-PE

Data To Next
FGR-PE

Dj To Next
FGR-PE

To Ram From Ram

Dj From
Previous FGR-PE

1

MAC

From Previous
InvMul-PE

To Next
InvMul-PE

From Ram To Ram

Div
ijR−

iiR

(a) FGR-PE (b) InvMul-PE

Fig. 8. The structure of FGR-PE and InvMul-PE

during up-triangular matrix inversion and matrix multiplication phase. So the
capability of RAM block is increasing with the matrix size. The two phases are
not executed at the same time. Therefore, Rams and FIFOs, connecting the
PEs and SDRAM controller, can be reused and nearly one half of on-chip RAM
blocks will be saved.

The computational core of the FPGA matrix inversion accelerator is a cluster
of FGR-PEs and InvMul-PEs, as shown in Figure 8. FGR-PEs produce matrix R
and Q and InvMul-PEs execute the computation of the inversion of up-triangular
matrix and matrix multiplication. FGR-PE is composed of FactorCal Pipeline
module, FIFO Dj, UpdateCal Pipeline module, a selector and some registers.
FactorCal Pipeline module performs the update factors (α, β and γ) calcu-
lation and updates the parameters di(1 ≤ i ≤ n) receiving from the previous
FGR-PE. FIFO Dj is used to cache parameters dj (i < j ≤ n), which will
send the next FGR-PE for further updating. The updated data executing by
UpdateCal Pipeline module include two parts, one loaded from Ram and the
other received from the previous FGR-PE. And the corresponding results are
stored back into Ram and sent to the next FGR-PE separately. When all up-
date tasks is completed, the final results, one row of matrix R and Q, stay in
Ram. InvMul-PE, which is simpler compared to FGR-PE, is mainly composed
of Multiply-Add Cumulation (MAC), division module, a selector and some reg-
isters. MAC module executes the Multiply-Add-Cumulation operations during
the up-triangular inversion and matrix multiplication. And the division module
performs the division operations during up-triangular inversion. Finally, one row
of the raw matrix inversion is stored in Ram.

118 J. Zhou et al.

FGR-PE_0
FGR-PE_1
FGR-PE_2
FGR-PE_3

FGR-PE_0
FGR-PE_1
FGR-PE_2
FGR-PE_3

Logic Matrix Logic Matrix Physical StoragePhysical Storage

(a) Matrix of R (b) Matrix of Q

Fig. 9. Storage methods of R and Q

3.2 Storage Method of Matrix R and Q

In QR decomposition phase, each FGR-PE produces one row of matrix R and
QT (transposition matrix of Q). But matrix R and QT need to be accessed by
column during up-triangular matrix inversion and matrix multiplication phase.
If we store the results of R and QT in sequence of row, n times of row-store
operations are needed. However, (n2−p2)/2p times of column-load operation are
needed during up-triangular matrix inversion and matrix multiplication phase.
And the bandwidth of column access is about 1/8 of that of row access [21]. So
we store the results of R and QT in sequence of column. To store the columns
efficiently, we pack the produced elements of the same column by FGR-PEs into
one packet and store the results packet by packet, as shown in Figure 9. Suppose
that the number of FGR-PE is p and the extra cyclic of once storage is λ, then
the element number of each packet is p and (λ + p)/(λ + 1) times of storage
efficiency can be achieved. So the efficiency of column storage is increase with
the number of FGR-PE.

4 Experimental Results

We implement the fine-grained pipeline accelerator for matrix inversion on our
self-designed development board, which is composed of an FPGA chip of Altera
Stratix EP2S130F1020C5, two 1GB SDRAMs of Micron MT16LSDT12864A and
an USB 2.0 interface to the Host. All modules including FGR-PE, InvMul-PE,
Phase Controller, SDRAM Controller and USB 2.0 interface are coded in Ver-
ilog and synthesized with Altera QuartusII 6.0. And the power dissipations are
estimated by PowerPlay Power Analyzer. In addition, we measure the software
execution time on the platforms of 2.80GHz Intel Celeron CPU and 2.0GHz
Intel(R) Pentium Dual CPU E2180 with.

4.1 FPGA Resources Usage

The scalable array FPGA accelerator is implemented by parameterized design
methodology, which makes them execute the problems of different size, and the
maximum size is 4096× 4096. Then a tool is designed to automatically generate
Verilog codes that describe the connection between the Verilog modules. So we

A Fine-Grained Pipelined Implementation 119

Table 1. Single precision floating-point operations circuit statistics

Adder Multiplier Divider SquareRoot

Pipeline depth 8 3) 13 25

ALUTs) 554 107 1791 1152

Registers 365 91 921 1056

DSP Blocks 0 8 0 0

Frequency(MHz) 227.32 164.17 150.35 255.95

Table 2. Synthesis results for different modules

SDRAM USB 2.0
FGR-PE InvMul-PE

Controller Controller

ALUTs) 458 952 4888 3130

Registers 363 612 3278 1848

Memory Bits 13824 2048 2647 801

M4Ks 0 0 2 0

DSP Blocks 0 0 24 8

Fmax(MHz) 213.86 206.36 130.07 130.67

Power Dissipation (mW) 54.98 49.75 530.79 529.11

can specify the number of PEs to generate different length of linear arrays. In
addition, the two SDRAMs operate in Ping-Pong model so that the current
step’s output data will be input data for the next step, speeding up the pipeline
of PEs.

The synthesis results of single precision floating-point operation, which are
resource-consuming, are shown in Table 1. The floating-point divider may oc-
cupy more areas than the other operations and also be the critical path of the
hardware design. Table 2 details the synthesis results for different modules im-
plemented on FPGA. The frequency of SDRAM controller and USB2.0 inter-
face modules is higher than 200MHz, while the power dissipations are about
50 mW.

Figure 10 illustrates the resources utilization ratio, power dissipation and
frequency of the hardware design with varying number of PEs. To operate large-
scale matrix inversion, the local storages are implemented using M4Ks and M-
RAMs blocks. And to utilize the RAM blocks efficiently, we firstly try to use the
M4Ks blocks and then M-RAMs blocks. As shown in Figure 10, a total of 12 PEs
can be integrated into one EP2S130F1020C5 FPGA chip due to the limitation
of ALUTs, M4Ks and M-RAMs resources. But for larger matrix inversion imple-
mentation, such as 8k × 8k, the M4Ks and M-RAMs blocks will be the limited
resources. In addition, the utilization of other resources are increasing linearly
with the number of PEs. The right part of Figure 10 shows that the power dis-
sipation also increases linearly as the number of PEs increases. And the power
dissipation of the 12-PE accelerator is 4031mW . However, as the number of
PEs increases from 1 to 12, the degradation in achievable maximum frequency
is less 13%. The achievable maximum frequency is 103Mhz for the hardware de-
sign of 12 PEs, which can still correctly operate at 100MHz on our development
board.

120 J. Zhou et al.

2 4 6 8 10 12

20

40

60

80

100

Number of PEs

R
es

ou
rc

e
U

til
iz

at
io

n
R

at
io

 (%
)

ALUTs
Registers
Memory Bits
M4Ks & M-RAM
DSP Blocks

2 4 6 8 10 12 14

1000

0

20

Power Dissipation (mW)

Maximum Frequency (MHz)

Number of PEs

Po
w

er
 D

is
si

pa
tio

n
(m

W
)

M
ax

im
um

 F
re

qu
en

cy
 (M

H
z)

2000

3000

4000

5000

40

60

80

100

120

Fig. 10. Resource utilization ratio, power dissipation and frequency with varying
number of PEs

2 4 6 8 10 12

2

4

6

8

10

12 512 512×
1024 1024×

2048 2048×
4096 4096×

Number of PEs

Sp
ee

du
p

Fig. 11. Speedup with varying the number of PEs

4.2 Performance

Figure 11 shows the speedup of the scalable linear array FPGA accelerator for
matrix inversion comparing to one PE. More detailedly, our FPGA accelerator
can achieve nearly linear speedup, but introduces none external DRAM access
bandwidth with the number of PEs. Furthermore, the speedup of 4096 × 4096
matrix is larger than that of 512 × 512 matrix. Because the external DRAM
bandwidth is increasing with the size of matrix and the larger matrix can use
the external DRAM bandwidth and calculation pipelines more efficiently.

Table 3 shows the execution time on 2.80GHz Intel Celeron CPU, 2.0GHz In-
tel(R) Pentium Dual CPU E2180 and our FPGA accelerator running at 100MHz

Table 3. Performance and speedup on different platforms

512 × 512 1024 × 1024 2048 × 2048 4096 × 4096
Time(s) Sp Time(s) Sp Time(s) Sp Time(s) Sp

Celeron C++ 3.907 1.000 30.844 1.000 242.734 1.000 1862.539 1.000
SSE(1) 1.407 2.777 10.797 2.857 81.282 2.986 616.813 3.020

Pentium C++ 3.187 1.226 25.781 1.196 203.953 1.190 1703.635 1.093
SSE(1) 0.578 6.760 4.687 6.581 39.422 6.157 306.797 6.071
SSE(2) 0.531 7.358 4.031 7.652 34.891 6.957 265.245 7.022

FPGA accelerator 0.236 16.555 1.758 17.545 13.551 17.931 106.404 17.504

A Fine-Grained Pipelined Implementation 121

platforms. The 2.80 Intel Celeron CPU has the features of 1GB Memory, 12kB
L1 cache and 256kB L2 cache. And the Intel(R) Pentium Dual CPU E2180
has the features of 1GB Memory, 32kB*2 L1 cache and 1MB L2 cache. For
general-purpose CPUs, the C++ code is written in VC++ 6.0 environment and
compiled into release version. And SSE(1) and SSE(2) in Table 3 denote single-
and double-thread with SSE separately. For the hardware platform, the FPGA
accelerator is consisted of 12 PEs. Taking C++ code on Celeron CPU as the
base, our FPGA accelerator can achieve more than 17 times speedup on aver-
age. And compare to Pentium Dual CPU with double SSE threads, our FPGA
accelerator also can achieve the factor of 2.6 times speedup. Moreover, the power
dissipation of 12-PE accelerator is 4.031W. That is say, the FPGA accelerator
can reach the maximum power-performance of 41 than the Pentium Dual CPU
with the power dissipation of 65W.

5 Conclusion

This paper presents an FPGA implementation for large-scale matrix inversion.
And to the best of our knowledge, this is the first reported FPGA-based im-
plementation. To exploit the computational potential of FPGA, we propose a
fine-grained parallel algorithm. And a scalable linear array of PEs is introduced
to implement the proposed parallel algorithm on our self-designed board. What’s
more, one half of on-chip memory resource can be save due to the reusing of RAM
blocks. The experimental results show that linear array accelerator can achieve
nearly linear speedup with the number of PEs. And compare to Pentium Dual
CPU with double SSE threads, our FPGA accelerator can achieve a factor of
2.6 times speedup and the maximum power-performance of 41.

Acknowledgments

This work is supported in part by the National Science Foundation of China
through grants 60633050 and 60833004.

References

1. Bailey, D.H., Ferguson, H.R.: A strassen-newton algorithm for high-speed paral-
lelizable matrix inversion. In: Proceedings of Supercomputing 1988, pp. 419–424.
IEEE, Los Alamitos (November 1988)

2. Batchelor, G.: Introduction to Fluid Dynamics, 2nd edn. Cambridge University
Press, Cambridge (2000)

3. Bigdeli, A., Biglari-Abhari, M., Salcic, Z., Lai, Y.T.: A new pipelined systolic
array-based architecture for matrix inversion in fpgas with kalman filter case study.
EURASIP Journal on Applied Signal Processing archive 2006(1), 75 (2006)

4. Caron, E., Utard, G.: Parallel out-of-core matrix inversion. In: Proceedings of Inter-
national Parallel and Distributed Processing Symposium (IPDPS 2002), pp. 71–76
(2002)

122 J. Zhou et al.

5. Echman, F., Owall, V.: A scalable pipelined complex valued matrix inversion ar-
chitecture. In: IEEE International Symposium on Circuits and Systems, vol. 5, pp.
4489–4492 (2005)

6. Edman, F., Owall, V.: Implementation of a scalable matrix inversion architecture
for triangular matrices. In: 14th IEEE Proceedings on Personal, Indoor and Mobile
Radio Communications, vol. 3, pp. 2558–2562 (2003)

7. El-Amawy, A.: A systolic architecture for fast dense matrix inversion. IEEE Trans-
actions on Computers 38(3), 449–455 (1989)

8. Farina, A., Timmoneri, L.: Parallel algorithms and processing architectures for
space-time adaptive processing. In: Proceedings of CIE International Conference
of Radar, pp. 770–774 (1996)

9. Fischer, B., Modersitzki, J.: Fast inversion of matrices arising in image processing.
Computer Science 22(1), 1–11 (1999)

10. LaRoche, I., Roy, S.: A efficient regular matrix inversion circuit architecture for
mimo processing. In: Proceedings of IEEE International Symposium on Circuits
and Systems, May 2006, pp. 4819–4822 (2006)

11. Lau, K., Kumar, M., Venkatesh, S.: Parallel matrix inversion techniques. In: Pro-
ceedings of the 16th Annual Symposium on Foundations of Computer Science,
October 1975, pp. 11–12 (1975)

12. Lightbody, G., Walke, R., Woods, R., McCanny, J.: Linear qr architecture for
a single chip adaptive beamformer. Journal of VLSI Signal Processing Systems
archive 24(1), 67–81 (2000)

13. Lim, C.H., Mulgrew, B.: Prediction of inverse covariance matrix (picm) sequences
for stap. IEEE Signal Processing Letters 13(4), 236–239 (2006)

14. Milovanovic, E., Milovanovic, I., Stojcev, M., Jovanovic, G.: Fault-tolerant matrix
inversion on processor array. Electronics Letters 28(13), 1206–1208 (1992)

15. Ojalvo, I.: Proper use of lanczos vectors for large eigenvalue problems. Computers
& Structures 20(1-3), 115–120 (1985)

16. Quintana, E.S., Quintana, G., Sun, X., van de Geijn, R.: Efficient matrix inversion
via gauss-jordan elimination and its parallelization. Technical Report TR-98-19,
Dept. of Computer Sciences, The University of Texas at Austin (1998)

17. Rabideau, D., Kogon, S.: A signal processing architecture for space-based gmti
radar. In: The Record of the 1999 IEEE Radar Conference, pp. 96–101 (1999)

18. Singh, C.K., Prasad, S.H., Balsara, P.T.: Vlsi architecture for matrix inversion
using modified gram-schmidt based qr decomposition. In: 20th International Con-
ference on VLSI Design, pp. 836–841 (2007)

19. Xiaodong, W., Roychowdhury, V.: Minimizing communication overhead for ma-
trix inversion algorithms on hypercubes. In: Proceedings of the 9th International
Parallel Processing Symposium, April 1995, pp. 446–450 (1995)

20. Yong, D., Jie, Z., Xiaoyang, C., Yuanwu, L., Jinbo, X.: Fpga accelerating three qr
decomposition algorithms in the unified pipelined framework. In: FPL 2009 (2009)

21. Yong, D., Jie, Z., Yuanwu, L., Xingming, Z.: Fpga sar processor with window
memory accesses. In: IEEE International Conf. on Application-specific Systems,
Architectures and Processors, pp. 95–100 (2007)

L1 Collective Cache: Managing Shared Data for
Chip Multiprocessors

Guanjun Jiang, Degui Fen, Liangliang Tong, Lingxiang Xiang, Chao Wang,
and Tianzhou Chen

College of Computer Science, Zhejiang University, China
Department of Computer Science, Hongkong University, China

{libbug,loosenvon,lxxiang,cw,tzchen}@zju.edu.cn,
lltong@cs.hku.hk

Abstract. In recent years, with the possible end of further improve-
ments in single processor, more and more researchers shift to the idea
of Chip Multiprocessors (CMPs). The burgeoning of multi-thread pro-
grams brings on dramatically increased inter-core communication. Un-
fortunately, traditional architectures fail to meet the challenge, as they
conduct such a kind of communication on the last level of on-chip cache
or even on the memory.This paper proposes a novel approach, called
Collective Cache, to differentiate the access to shared/private data and
handle data communication on the first level cache. In the proposed cache
architecture, the share data found in the last level cache are moved into
the Collective Cache, a L1 cache structure shared by all cores. We show
that the mechanism this paper proposed can immensely enhance inter-
processors communication, increase the usage efficiency of L1 cache and
simplify data consistency protocol. Extensive analysis of this approach
with Simics shows that it can reduce the L1 cache miss rate by 3.36%.

Keywords: CMP, cache design, L1 cache.

1 Introduction

The Chip-Multiprocessors technology, which allows more than one executing
processor to be integrated in a single chip, has substituted traditional single
processor as future architectures for high-performance computing. As Chip-
Multiprocessors emerge in mainstream systems, they must provide better per-
formance for general workloads, especially for those that require intense data
communication between different on-chip processors, like the multi-thread pro-
grams. It imposes challenges on the design of CMPs, in particular on the corre-
sponding on-chip storage system, for it acts as the key that defines the system
performance.

Computer systems normally adopt a 2- or 3-level hierarchy for cache archi-
tecture. As for how to design each cache level, however, different researchers
propose various approaches. Such as for the L2 caches, Some CMP systems, for
example the IBM Power5 [2] and Sun Niagara [3], employ shared L2 caches to

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 123–133, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

124 G. Jiang et al.

maximize available on-chip capacity to each processor by preventing data repli-
cations, whereas [4] [5] provide an alternative way of private L2 caches, as it
suits with the characteristics of current NUCA and leads to average reductions
in access latency to on-chip cache. In private L2 caches structure data can be
replicated to make it close to the requesting processor, yet it also sacrifices ef-
fective capacity and incurs more miss compared with shared L2 cache structure.

Recent cache architecture designs mainly focus on the L2 cache, as researchers
regard L2 cache as the key role of defining the performance of on-chip storage
system for Chip Multiprocessors. Most of these researches seek to gain a balance
between access latency and capacity efficiency, by techniques like replicating
data blocks and thus migrating them among different on-chip processors, etc.
For example, Cooperative Caching [6] employs data replications and migration
mechanism for a normal private L2 cache infrastructure, whereas [7] dynami-
cally allocates the ownership of each L2 cache blocks to requesting processors,
and proposes to keep hot blocks that responsible for inter-processor misses in a
specially designed Processor Owned Private (POP) caches. These schemes per-
form relatively better than simply designed shared cache structure or private
cache structure. But mechanisms like data replications and migration, however,
inevitably decrease cache capacity efficiency, and to some extent complicate the
cache coherency protocols. As the data communication among cores rise dra-
matically, particularly for execution of multi-thread programs, they also see lim-
itations on providing a high-efficiency data sharing and exchanging scheme.

Interestingly, although most of the researchers perceive L1 caches as the most
important role to determine system performance, they scarcely pay any attention
to improve L1 cache for Chip Multiprocessors, but simply use the private L1
cache architecture which is designed for traditional single processor. This paper
realizes the critical position of L1 caches and proposes collective cache for it
accordingly.

The highlight of our mechanism is to propose to add a collective cache to
traditional L1 cache architecture and differentiate on-chip processor access to
two kinds of data: Shared Data and Private Data. It is the former data that are
responsible for data communication and exchange among on-chip processors.
Generally speaking, collective cache can be seemed as a special L1 cache that is
shared by every on-chip processors, which can fetch data from L2 cache in the
same way as other private L1 caches do. The only difference between them is
that shared data are fetched into collective cache, while private data into private
cache. Our design requires few changes to lower storage level such as on-chip L2
cache or off-chip memory.

We make the following contributions in this paper:
1. We present the importance of L1 cache architecture to performance en-

hancement of CMPs, for it is the first level of storage system that processors can
access.

2. We propose to add collective cache to differentiate processor access to
shared and private data. The mechanism of storing shared data in collective
cache and private data in private L1 caches brings the level of data commu-

L1 Collective Cache: Managing Shared Data for Chip Multiprocessors 125

nication from L2 cache or memory to L1 cache, thus immensely enhance the
corresponding efficiency. By prohibiting replications it also helps to increase
cache capacity efficiency and simplify coherency protocol.

3. In order to guarantee the implementation of collective cache, we furthermore
suggest a 4T mechanism to facilitate design: parallel hunting, single writing, early
evicting and late invalidating.

4. We extensively evaluate the above approaches in Simcs and GEMS, which
shows an average 3.36% L1 cache misses reduction for Splash2 benchmark.

The reminder of this paper is organized as follows. After characterizing CMP
data access distributions in section 2, Section 3 detail the design and implemen-
tation of collective cache, while section 4 presents simulation results. The related
works are discussed in section 5, and section 6 summarizes the entire work.

2 Characterizing CMP Data Access

Before demonstrating the merits of our mechanism, we firstly analyze the char-
acteristics of processors’ requests for cache data.

Unlike single processor, there may be more than one on-chip processor in
CMPs to request concurrently for the same data block. Such a distinguishing
feature brings on many challenges in design CMPs architecture. The possible
performance enhancement thus depends on cache blocks’ sharing types.

According to the request characteristics, on-chip data can be classified into
two distinct types: shared data and private data. The former kind of data is
accessed by more than one on-chip processors while the latter by a single pro-
cessor, so private data are irresponsible for data communication. This paper
concentrates on the management of shared data, for it not only defines commu-
nication workload but also is the reason for data replications and consistency
protocols. Beckmann et al. [8] makes an in-depth exploration into such a kind
of sharing type. They show that although many requests are to the shared data,
single requestor blocks consume the majority of the cache capacity. Furthermore,
shared blocks exhibit strong locality, especially for shared read-only blocks, as
averagely 10% shared blocks account for 70% of request to all the shared data.

Our study simulated a four-processor CMP executing Splash2 benchmark
under the red-hat 7.3 operating system, and Table 1 lists the result of simulation,
which accords with that of [8].

Table 1. L2 cache request capacity characteristics

Benchmark Single requests Shared requests
% of all requests % of capacity % of all requests % of capacity

FFT 20 70 80 30
Cholesky 99 99 1 1
Lu non 19 93 81 7
Water 94 98 6 2

126 G. Jiang et al.

Instead of L1 Cache, we analyze the profile of L2 cache requests, the reason
for which will be explained in the following section.

On how to handle these shared data, previous researches focus on data replica-
tions and migration in a private L1 cache and shared/private L2 cache structure.
The impact of replications falls into two aspects: Firstly, although replicating
blocks can reduce the cache access latency, it also decreases the effective L2
cache size [8], because multiple replications for a single blocks must be present
in the private L2 cache or L1 cache; secondly, the existence of transverse repli-
cations in the same cache level complicates cache coherency protocol. The use
of these complex protocols, for example the snoop protocol, produces more co-
herency misses for caches. Due to the afore-mentioned matters, we thus propose
the collective cache to manage shared data in CMPs.

3 Collective Cache

In this section we explore into the details of design and optimization of col-
lective cache for L1 caches. The content includes the overall framework of our
mechanism and how will the processors operate after collective cache is added.

3.1 Frameworks

After adding collective cache, the new CMPs architecture looks like that in
Figure 1.

As depicted in Figure 1, each on-chip processor owns an independent private
L1 cache, whereas the collective cache is shared by all of them. The low-lever L2
caches could be design as private or shared, as both of them will be supported
by the collective cache.

The basic aim of this architecture is to differentiate processors access to shared
data and private data. It works based on the following concepts:

1. Shared data were all stored in collective cache. Every processor requests
data by fetching data from L1 caches. In the following part we will show how to
collect the shared data to collective cache.

2. Private data were all stored on the private cache of requesting processor.
Private data will only be used by the requesting processor, so it is beneficial to
only fetch it into the corresponding private cache.

In the last section we analyze the requesting characteristics for L2 cache data
blocks in CMPs. General speaking, L1 cache data come from L2 caches. If the
data blocks in L2 caches are marked as shared or private, and fetched to L1
collective cache and L1 private cache separately based on the marks, we could
probably implement the proposed mechanism.

Figure 2 show the cooperation between L1 caches and L2 caches. The upper
level of figure is L1 cache including both private L1 cache and collective cache,
the strip of green and blue is L2 cache. Whether a cache block is shared or not is
up to the requesting status: If there are more one processors that are requesting
for this datum block, then it is marked as shared, otherwise it is private data.

L1 Collective Cache: Managing Shared Data for Chip Multiprocessors 127

Core 0

Collective
Cache

P
rivate L1

Shared or Partial shared L2

Core 2

P
rivate L1

Core 1

P
rivate L1

Core 3

P
rivate L1

Fig. 1. The proposed cache architecture for a 4-core CMP

0 1 2 3 4 5 6 7 8 D F

CCache Private L1

S
 (1) V Tag L2 cache Data

R
eq

L2 Share

E

L2 Private

...

L1 Block

Core 0

16

16

Req

Fe
tc

h

Fig. 2. Example of how processors request data

When the data request for L1 cache turn out to be a miss, the L1 cache controller
will put a miss signal on the bus in order to fetch data from L2 cache. The L2
cache controller will look itself for possible address matches. If found, based on
the status of this datum block, the controller will return the data to L1 collective
cache if it is shared, or private L1 cache if it is private.

128 G. Jiang et al.

3.2 Operations

Here we demonstrate how the cache operate after collective cache is added by
a solid example, as depicted in Figure 2, which is the case happens in miss.
For simplifications we assume that the number of sets for L1 cache is 4, L2
cache 16, L1 and L2 cache are all direct-mapped. When Core 0 releases a data
requesting instruction of address 16 to both collective cache and private cache,
three possibilities may arise:

1. One hit and one miss. This is the most favorite case, when the cache just
needs to return the requesting processor with the relating datum.

2. Two misses. The request meets with misses both in collective cache and
corresponding private cache. The L1 cache controller then must redirect the miss
address 16 to L2 cache. For the L2 cache is direct-mapped, cache controller will
look for set 0 for matching tag. In this circumstance it is found shared. So the L2
cache disables the request from L1 private cache and responds the L1 collective
cache with the requesting datum.

3. Two hits. This possibility must be strictly prohibited from happening, the
reason for which we will explain immediately in the following part.

3.3 Methodology

In order to furthermore realize the functions collective cache, we proposed the 4T
mechanisms as ways of implementations methodology. They are: Parallel HunT-
ing, Exclusive WriTing, Early EvicTing, and Replacing InvalidaTing, namely
“4T”. Parallel Hunting. L1 caches locate in the critical path of system execu-
tion, whose access time can influence the performance immensely, so we introduce

L1 Cache CCache

Core

Multiplex

Fig. 3. Parallel hunting

L1 Collective Cache: Managing Shared Data for Chip Multiprocessors 129

CCache

W V Tag Data

Core 0 Core 1

Fig. 4. Exclusive writing

parallelism into the L1 collective cache. As depicted in Figure 3, when the pro-
cessor plans to request for a datum, it will release the corresponding instruction
to both private cache and collective cache. This will help to maintain the L1
cache access time at its minimum.

Exclusive Writing. The circumstance of writing to one datum block concur-
rently by different processors must be prevented, for it will lead to writing col-
lapse that result in fault actions.

As depicted in Figure 4, we propose to add a writing bit (W) to each block
in collective cache. When a processor starts writing to a block, the writing bit
will be accordingly set to 1. This bit will not be set to 0 again until the writing
action is finished.

Early Evicting. The mechanism prepares for the circumstance when request
hits both in collective cache and private cache, and it demands the precondition
that the cache write policy is write through. When there are two hits on L1 cache
level, early evicting tells the cache controller to evict or invalidate the datum
block in private cache while preserve the one in collective cache. In the following
part we will describe the other ways to manage this circumstance. Replacing
Invalidating. The sharing status of a block in L2 cache will not be removed until
the eviction of its corresponding peer datum block in L1 cache or the eviction
of itself.

Care must be taken that our mechanism is proposed aiming at the L1 data
cache. The instruction cache is not included, for there is no writing for instruction
cache. Now we make more in-depth explorations into the reason and settlements
of two hits.

Firstly core 0 starts fetching data. If there are misses both in collective cache
and private cache, controller will request the L2 cache for the datum, which is
found private. It is then returned to the private L1 cache of core 0 to facilitate
the future usage. If before this datum’s eviction from the private cache, core 1
also requests for it. For core 1 has no right to access the private cache of processor

130 G. Jiang et al.

Table 2. Critical N values

Parameter for L1 private cache Value Parameter for L2 cache Value

Size 32KB Size 1024KB
Number of lines 1024 Number of lines 32768
Line size 32B Line size 32B
Associativity 2 Associativity 4
Replacement policy LRU Replacement policy LRU
Write policy Write through Write policy Write back

0, this request still ends up with two misses. The datum in the second time is
fetch to L1 cache, but is stored in collective cache, for now it is requested by two
processors. If shortly after this fetch core 0 requests for this datum again, the
circumstance of two hits happens.

Previously we said that if the cache write policy is writing through, we could
employ early evicting to avoid possible data inconsistency. For writing back, the
corresponding mechanism must be changed. After the miss of L1 cache hunting,
the cache controller must monitor the status of relating datum block. If this
block changed from single to shared, controller must issue a write back signal to
the up-level private L1 cache that owns the block to write the data back to L2
cache, or to transmit the corresponding datum block to collective cache.

Further optimizations can be applied to our design, like to a more practical
protocol for two hits, or enhance the communication between collective cache
and private caches. We leave them for future works.

3.4 Evaluation

By using full-system simulation based on Simics [9] and GEMS toolset [10], we
implement our mechanism in order to evaluate its performance.

3.5 Platform Setup

Here a 4-core CMP is used as the baseline. For each core, we assume an in-order
execution model and set the write policy of L1 cache to writing through. The
parameter of collective cache is the same as the private. The only difference is
collective cache’s size, which is 4KB. For Simics is a full-system simulator we
execute the programs in redhat 7.3 operating system with kernel of Linux-2.4.18.
We use Stanford Splash2 as the benchmark.

3.6 Experiment Result

Figure 5 depicts the L1 cache miss rate achieved by traditional MESI protocol
and our proposed mechanism. The result shows that our proposed mechanism
reduces the L1 cache miss rate by 3.36% on average and achieves suitable en-
hancement in the system performance, compared with traditional MESI protocol
based CMPs architecture.

L1 Collective Cache: Managing Shared Data for Chip Multiprocessors 131

0

2

4

6

8

FFT Cholesky LU non Water

L1
 c

ac
he

 m
iss

 r
at

e
(%

)

MESI
CCache

Fig. 5. L1 cache miss rates for MESI and CCache

3.7 Mechanism Analysis

This part analyzes the merits of our mechanism.
1. Data Communication. We put all the shared data in the L1 collective and

thus all the data sharing is conducted on the L1 cache level, which can enhance
the communication efficiency.

2. Capacity Efficiency. Employing our mechanism data replications for shared
data can be prevented, so it will boost the capacity efficiency of L1 cache.

3. Protocol simplification. Remove of transverse data replications will in-
evitably simplify the cache coherency protocol, such as snoop protocol and
directory-based protocol.

4 Related Works

4.1 Chip Multiprocessors

The concept of Chip Multiprocessors (CMPS) is firstly proposed in 1997 [11].
In order to examine possible design space for CMPs, [12] analyzes several de-
sign energy/performance trade-offs for parallel applications when varying core
complexity, L2 cache size and the number of cores, and arrives at the following
conclusions that on-chip cache is very important to the system performance. As
there exist two distinct ways to implement on-chip cache, [13] compares the mem-
ory system for CMPs which draws the conclusion that both hardware-managed
coherent caches and software-managed streaming memory are practical and use-
ful for on-chip memory system design. That which method outperforms depends
on the environment. Owing to the critical role of cache, in the following section
we will briefly discuss its current researches.

4.2 CMPs On-Chip Storage System

Nowadays researches on CMPs on-chip storage system mainly concentrate on L2
cache architecture. As increases in on-chip communication delays make the hit

132 G. Jiang et al.

time of large on-chip caches a function of a line’s physical location within the
cache, [14] first proposes physical designs for Non-Uniform Cache Architectures
(NUCAs), and furthermore extend their design to support data migration on
the same cache level. In order to place the vast majority of frequently-accessed
data in the fast sub-arrays and thus decrease the access time, [15] suggests to
separate the access of data and of tags up, which is called Non-Uniform access
with replacement and placement using Distance associativity cache (NuRAPID
cache). Some researches, such as [16], point out that although NUCA reduces
latency by allowing fast access to the regions of the cache close to the processor,
it may turn out to be ineffective in the presence of sharing because each sharer
pull the block toward it, leaving eventually the block in the middle, far away from
all the sharers. Because neither pure shared not pure private cache accommodate
the objects, [17] extends the NuRAPID mechanism and proposes to adopt a
hybrid design of private, per-processor tag arrays and a shared data array. As
an alternative, [18] proposes Shared Processor-Based Split L2 to capture the
benefits of shared/private organizations.

Although many researches have been conducted in CMPs L2 cache design,
the investigations on L1 cache are relatively insufficient. Among them [19] just
briefly mentions L1 prefetching mechanism as a possibility to hide average hit
latencies, and [16] talks something about stride-based prefetching between L1
and L2 caches to improve performance. Many of L2 cache researches propose
data replications and migration in L2 cache to reduce access time, but to some
extent they reduce capacity efficiency and complicate cache coherency protocol,
which our proposed mechanism can handle better.

5 Conclusions

As the trend of multi-thread programming steps further, it imposes more and
more challenges on on-chip communication efficiency for CMPs. Although many
researches have been conducted to balance the on-chip access latency and capac-
ity efficiency, their mechanisms, such as data replications and migration, result in
either capacity inefficiency or longer access time. The existence of complex cache
coherency protocols also leads to decline of communication efficiency, sometimes
even gives rise to coherency storm.

In this paper, we propose to construct the collective cache framework and
differentiate access to on-chip shared/private data. Our mechanism puts mass
of data sharing in L1 cache level to accelerate data communication, at the same
time it prevents possible data replications on the same cache level thus increases
capacity efficiency and simplifies coherency protocols. The result is a more effi-
cient cache hierarchy that suits small CMPs system.

References

1. Monchiero, M., Canal, R., Gonzalez, A.: Design space exploration for multicore
architectures: A power/performance/thermal view. In: IEEE conference on super-
computing (June 2006)

L1 Collective Cache: Managing Shared Data for Chip Multiprocessors 133

2. Sinharoy, B., Kalla, R., Tendler, J., Eickemeyer, R., Joyner, J.: Power5 System
Microarchitecture. IBM Journal of Research and Development 49(4) (2005)

3. Kongetira, P.: A 32-way Multithreaded SPARC? Processor. In: Proceedings of the
16th HotChips Symposium (August 2004)

4. Krewell, K.: UltraSPARC IV Mirrors Predecessor. In: Microprocessor. Report,
November 2003, pp. 1–3 (2003)

5. McNairy, C., Bhatia, R.: Montecito: A Dual-Core Dual-Thread Itanium Processor.
IEEE Micro. 25(2), 10–20 (2005)

6. Chang, J., Sohi, G.S.: Cooperative cache for chip multiprocessors. In: ISCA (2006)
7. Srikantaiah, S., Irwin, M.K.M.J.: Adaptive set pinning: Managing shared caches

in Chip Multiprocessors. In: ASPLOS 2008 (2008)
8. Beckmann, B.M., Marty, M.R., Wood, D.A.: ASR: Adaptive selective replication

for CMP caches. In: MICRO (2006)
9. Peter, S.: Magnusson: Simics: a full system simulator. IEEE Computer Society, Los

Alamitos (2002)
10. Martin, M.M.K.: Multifacet’s general execution-driven multiprocessor simulator

(GEMS) toolset. In: Computer Architecture News (September 2005)
11. Hammond, L., Nayfeh, B.A., Olukotun, K.: A single-chip multiprocessor. IEEE

Computer Society, Los Alamitos (1997)
12. Monchiero, M., Canal, R., Gonzalez, A.: Design space exploration for multicore

architectures: A power/performance/thermal view. In: IEEE conference on super-
computing (June 2006)

13. Leverich, J., Arakida, H., Solomatnikov, A.: Comparing memory systems for chip
multiprocessors. In: ISCA (2007)

14. Kim, C., Burger, D., Keckler, S.W.: An adaptive, non-uniform cache structure for
wire-delay dominated on-chip caches. In: ASPLOS (2002)

15. Cgushti, Z., Powell, M.D., Vijaykumar, T.N.: Distance associativity for high-
performance energy-efficient non-uniform cache architectures. In: MICRO (2003)

16. Beckmann, B.M., Wood, D.A.: Managing Wire Delay in Large Chip-Multiprocessor
Caches. In: Proc. 37th Int’l. Symp. Microarchitecture (MICRO-37) (December)

17. Chishti, Z., Powell, M.D., Vijaykumar, T.N.: Optimizing Replication, Communica-
tion, and Capacity Allocation in CMPs. In: Proc. 32nd Ann. Int’l. Symp. Computer
Architecture (ISCA 2005) (June 2005)

18. Liu, C., Sivasubramaniam, A., Kandemir, M.: Organizing the last line of Defense
before hitting the memory wall for CMPs. In: 10th HPCA (2004)

19. Huh, J., Kim, C.: A NUCA substrate for flexible CMP cache sharing. IEEE trans-
actions on parallel and distributed systems (2007)

Efficient Multiplication of Polynomials on
Graphics Hardware

Pavel Emeliyanenko

Max-Planck-Institut für Informatik, Saarbrücken, Germany
asm@mpi-inf.mpg.de

Abstract. We present the algorithm to multiply univariate polynomials
with integer coefficients efficiently using the Number Theoretic transform
(NTT) on Graphics Processing Units (GPU). The same approach can be
used to multiply large integers encoded as polynomials. Our algorithm
exploits fused multiply-add capabilities of the graphics hardware. NTT
multiplications are executed in parallel for a set of distinct primes fol-
lowed by reconstruction using the Chinese Remainder theorem (CRT)
on the GPU. Our benchmarking experiences show the NTT multiplica-
tion performance up to 77 GMul/s1. We compared our approach with
CPU-based implementations of polynomial and large integer multiplica-
tion provided by NTL and GMP2 libraries.

Keywords: large integer arithmetic, parallel computations, graphics
hardware, GPU, CUDA.

1 Introduction

Large integer and polynomial arithmetic constitutes the core of many scientific
computations. For instance, algorithms in algebraic geometry involve a substan-
tial amount of symbolic computations performed over integer polynomials in
one or more variables (e.g., polynomial subresultants and derived quantities [5]).
The performance of public key cryptosystems also relies on the efficiency of large
integer arithmetic.

Schönhage and Strassen [21] have shown that the Number Theoretic trans-
form (NTT), as generalization of discrete Fourier transform to finite fields, is
asymptotically the fastest known way to multiply two large integers. Moreover,
the inherent parallel structure of the NTT and the absence of round-off errors, as
opposed to floating-point Fourier transforms, makes it very tempting candidate
for realization on parallel architectures. Unfortunately, the graphics hardware,
driven by the needs of the game industry, was originally designed for efficient
low-precision floating-point arithmetic.

1 GMul/s stands for “109 modular multiplications per second”, not to confuse with
GFlop/s, see Section 6 for explanations.

2 NTL: http://www.shoup.net/ntl, GMP: http://gmplib.org

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 134–149, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.shoup.net/ntl
http://gmplib.org

Efficient Multiplication of Polynomials on Graphics Hardware 135

Although floating-point Fourier transforms are also applicable to integer con-
volutions3, the number of bits to be stored in a floating-point number to guar-
antee the provably correct rounding is substantially limited (see [20] for precise
estimates). As a result, single-precision floating-point is practically not applica-
ble for error-free integer convolutions, while the double-precision arithmetic is
still relatively slow on modern GPUs. The NVIDIA’s CUDA API [2] makes it
possible to utilize graphics processors for integer computations.

Main contribution. we present the algorithm to compute integer polynomial
products using the NTT on graphics processors. We use efficient 24-bit modular
multiplication which reflects the native multiplication capabilities of the GPU.
Our algorithm operates on partially reduced 24-bit residues represented by 32-
bit integers, deferring the final reduction as long as possible. This enables us
to avoid a great deal of expensive operations. Optimized FFT-kernels utilize
fused multiply-add capabilities of the graphics hardware. The reconstruction
of convolution digits is performed on the GPU using the Chinese Remainder
theorem (CRT) allowing us to multiply polynomials with moderate coefficient
bit-length entirely on the GPU.

The remaining part of the paper is structured as follows. In Section 2 we survey
existing algorithms for modular techniques and large integer multiplication on
parallel architectures. Section 3 gives an overview of 3D graphics hardware and
CUDA programming model. Some background theory underlying the Number
Theoretic transforms and the CRT reconstruction is presented in Section 4. In
Section 5 we discuss the algorithm and its mapping to the GPU in detail. Then,
in Section 6 we compare our algorithm with existing CPU-based implementations
and draw conclusions in Section 7.

2 Related Work

Over the past years there was a lot of research carried out to implement effi-
cient FFT algorithms on graphics processors ([10], [1], [17]). Unfortunately, all
of them operate in a single-precision floating-point arithmetic and, hence, are
not suitable for integer convolutions. There were attempts to emulate extended
precision using a pair or a quad of low-precision floating-point numbers ([12],
[11]). However, this leads to rather complicated arithmetic operations thereby
annihilating all the advantages of the floating-point and, moreover, it doubles
the memory bandwidth between the host and the graphics card which is a major
performance killer for GPU algorithms.

There are two recent papers employing modular techniques on the GPU ([18],
[24]). Despite the fact that they are concentrated on the acceleration of modu-
lar exponentiation, it is interesting within our context how they deal with the
modular reduction after multiplication.

The authors of [18] used a traditional shader approach to program the GPU.
As a result, they could only handle integers that fit the floating-point mantissa
3 By convolution we mean here the integer polynomial product (acyclic convolution)

which is a cyclic convolution of zero-padded sequences, see Section 4.

136 P. Emeliyanenko

(24 bits). They suggested to use composite moduli consisting of 2 primes whose
product fits in 24 bits. Hence, unfolding the CRT over these two primes, the
modular multiplication can proceed without intermediate values that exceed 24
bits. We find that this method involves too many arithmetic operations and does
not take any advantage of the floating-point nature of the arithmetic.

The second paper [24] used CUDA framework and all computations were
carried out in integer arithmetic. The authors reported that, while the graphics
hardware supports fast 24-bit integer multiplication, CUDA does not expose an
intrinsic to obtain the most-significant 16 bits of the product. Therefore, they
were constrained to use full 32-bit moduli and slow 32-bit multiplication. Luckily,
we have been able to deal with this limitation (see Section 5.3). Unfortunately,
their paper does not explain in a concrete way how the 32-bit modular reduction
is realized.

An interesting approach to large integer multiplication on parallel archi-
tectures appears in [8]. It uses multi-dimensional Fermat Number transform
(FNT)4. Although, the FNT has clear advantages credited to Schönhage and
Strassen, we believe that the modular approach with CRT is more suitable for
GPU implementation because of its relative simplicity (as opposed to multi-
dimensional transform) and flexibility since it allows us to convolve variable
length sequences using the same transform length. On the contrary, dimension-
ality of the FNT depends on the length of input sequences. Moreover, according
to [8], 1024-point FNT requires 213 processors arranged in a 4-dimensional hy-
percube to work cooperatively. This number exceeds by far the maximal number
of threads allowed per one GPU’s thread block while threads of different blocks
cannot communicate with each other directly (see Section 3).

3 Overview of the GPU Architecture and CUDA
Framework

In this overview we only consider the GPUs with NVIDIA Tesla architecture [16].
However, the new standard for heterogeneous programming OpenCL [19] will
provide a unified API (which is very similar to that of CUDA) and will be
supported by many other vendors. The NVIDIA Tesla architecture unifies vertex
and fragment processors in streaming multiprocessors (SMs) that can execute
any shader programs as well as general-purpose parallel programs. For instance,
GeForce GTX 280 GPU contains 30 SMs.

The GPU executes instructions in a SIMT – single-instruction, multiple-thread
– fashion. In other words, the SM’s instruction issue unit (MT issue, see Figure 1)
applies a single instruction to a group of 32 threads called warps. As a result,
threads of a single warp are always executed synchronously. When the threads
follow different execution paths (diverge on a branch instruction), the warp has
to serially execute all taken branch paths. The full efficiency is attained when
4 A well-known restriction of using Fermat ring to compute convolutions relates to the

fact that the maximal transform length is proportional to the modulus bit-length.
Multi-dimensional techniques are supposed to overcome this difficulty.

Efficient Multiplication of Polynomials on Graphics Hardware 137

SP SP

SP SP

SP SP

SP SP

SFUSFU

C cache

shared
memory

MT issue

I cache

SM

SP SP

SP SP

SP SP

SP SP

SFUSFU

C cache

shared
memory

MT issue

I cache

SM

geometry controller

SM controller

tex L1 cache
Texture unit

TPC

block
(1,0)

block
(2,0)

block
(0,1)

block
(0,0)

(2,1)
blockblock

(1,1)

CPU serial
code Inter−grid synchronisation barrier

launch 1

launch 2
GPU grid

GPU grid Data grid 1

(1,0)
thread
(2,0)

thread
(2,1)

thread
(0,1)

thread
(0,2)

thread
(1,2)

thread
(2,2)

Block (1,1)

(1,1)
thread

thread

Data grid 2

Pe
r−

th
re

ad
 r

eg
is

te
r

fi
le

an
d

lo
ca

l m
em

or
y T
ex

tu
re

/c
on

st
an

t m
em

or
y

G
lo

ba
l m

em
or

y
sh

ar
ed

 m
em

or
y

Pe
r−

C
T

A(0,0)
thread

Fig. 1. Texture/processor cluster (TPC) comprising two SMs (left); CUDA execution
model, thread and memory hierarchy (right)

a branch condition is warp-aligned. Different warps are independent from each
other and can execute disjoint paths without penalties.

Each SM contains two special function units (SFU) and eight streaming
processors cores (SP), see Figure 1. The SM processes simple arithmetic in-
structions in four clock cycles for the entire warp. These instructions also in-
clude single-precision floating-point multiply/multiply-add and 24-bit integer
multiply/multiply-add. Integer division and modulo are particularly costly and
should be avoided, we use floating-point arithmetic instead.

CUDA is a heterogeneous serial-parallel programming model, i.e., a parallel
GPU code is interleaved with a serial code executed on the host (see Figure 1). On
the top level, threads are grouped into cooperative thread arrays (CTAs) or thread
blocks. Each block consists of up to 512 concurrent threads which execute the
same CUDA code, can share the results of computations and synchronize their
execution with barriers. In its turn, blocks are organized in a grid of thread blocks
which is launched on a single CUDA program. Threads of different blocks cannot
communicate with each other explicitly but can share the results by means of
global memory5. Inter-grid synchronization can be achieved by serialized grid
launches. The CTA model implements a coarse-grained parallelism as opposed
to fine-grained parallelism achieved by warps.

Memory system of the GPU is organized as follows: each thread has its own
register file. The SM has a fixed number of registers split evenly between threads
of a block, by exceeding this amount registers get spilled into slow local memory

5 Block independence naturally comes from the scalability requirements allowing a
binary program to run unchanged on any number of SMs. However, it imposes
additional difficulties in algorithms’ realization. In this respect, we find the Intel’s
Larrabee architecture more advantageous, see Section 7.

138 P. Emeliyanenko

residing in external DRAM. All threads within a single block can access the fast
on-chip shared memory (see Figure 1). It is organized in 16 banks in such a way
that consecutive addresses are mapped to different banks. If all 16 threads of a
half-warp access memory from different banks, no delays occur. Memory accesses
with a stride s where GCD(s, 16) �= 1 lead to bank conflicts and are serialized6.
The remaining three memory spaces – read-write global memory and read-only
constant and texture memory – are visible to all threads of the entire grid. Global
memory is not cached and has much higher latency than shared memory, it is
important to access it in a way that separate memory accesses of a half-warp
can be coalesced in a single wide memory access. A good programming practise
is to preload data from global memory at once, and then use shared memory
for subsequent computations. Constant memory has on-chip cache, amortized
access to it is fast provided that all threads of a warp read the same address.
Texture memory is also cached and optimized for 2D spatial locality.

High memory access latencies can be hidden as long as the code has high
arithmetic intensity and the SM has enough warps to switch between in order
to interleave memory access with ALU operations.

4 Mathematical Preliminaries

In this section we overview some basic facts from the number theory underlying
fast multiplication algorithms in finite fields and recall the Chinese remainder
theorem (CRT) to recover multidigit result after modular multiplication.

4.1 Number Theoretic Transforms and Fast Convolutions

The forward and backward Number Theoretic transforms are defined respec-
tively as follows:

Xk ≡m

N−1∑
j=0

xjα
jk and xj ≡m N−1

N−1∑
k=0

Xkα−jk,

where j, k = 0, . . . , N −1, all arithmetic is performed over Z/mZ and α is an N-
th primitive root of unity (an element of order N). The necessary and sufficient
conditions for existence of such transforms are [7]:

– N | GCD{(pi − 1), i = 1, . . . , l}, where m =
∏l

i=1 pri

i ;
– GCD(N, m) = 1 (existence of modular inverse);
– αs �= 1 (mod m) : ∀s = [1, 2, . . . , N − 1].

A cyclic convolution of two length-n sequences a = [a0 . . .an−1] and b =
[b0 . . . bn−1] is a length-n sequence h = a ∗ b with hj =

∑n−1
i=0 aib(j−i) mod n.

Once the conditions above are satisfied, the transform possesses the so-called

6 Bank conflicts only occur within a half-warp – a group of 16 threads.

Efficient Multiplication of Polynomials on Graphics Hardware 139

cyclic convolution property (CCP) allowing for fast convolutions in Z/mZ. The
CCP states that if

Xk ≡m

N−1∑
j=0

xjα
jk and Yk ≡m

N−1∑
j=0

yjα
jk , then for h = x ∗ y,

hj ≡m N−1
N−1∑
k=0

Hkα−jk where Hk ≡m Xk · Yk.

Accordingly, the usual polynomial product of a and b, defined as
rj =

∑n−1
i=0 aibj−i, is a cyclic convolution of zero-padded sequences, i.e.,

[an/2 . . . an−1] = 0 and [bn/2 . . . bn−1] = 0. To multiply two K-bit integers using
this technique, they are first partitioned into N/2 chunks of P = 2K/N bits
each, where N is the size of the transform. Then, the resulting sequences a and
b are zero-padded and convolved, i.e., r ≡m a ∗ b. The modulus m is chosen to
be large enough so that the “convolution digits” are recovered exactly (see esti-
mates in Section 5.1). Finally, one obtains the resulting product by evaluating:
z =

∑N−1
i=0 ri · 2Pi.

In our approach we use 24-bit prime moduli of the form m = 2n · k + 1 (for
transforms of length 2n). The reasons for that are: first, the number of 24-bit
primes of this form is considerably large, which is suitable for the CRT recon-
struction. Second, the modular reduction with 24-bit primes can be performed
efficiently in floating-point arithmetic.

4.2 Chinese Remainder Theorem

Let (m1, m2, . . . , mk) be pairwise coprime moduli and M =
∏k

i=1 mi (M is called
dynamic range). Then, for the set of residues (x1, x2, . . . , xk) with 0 ≤ xi < mi

(1 ≤ i ≤ k) there exists a unique X (0 ≤ X < M), such that: xi = X mod mi.
A classical approach for incremental Chinese remaindering is the one of Szabo

and Tanaka [23] based on Mixed Radix System (MRS). Here X is defined by the
associated mixed-radix digits (α1, α2, . . . , αk) in the following way:

X = α1M1 + α2M2 + . . . + αkMk

where M1 = 1, Mj = m1m2 . . .mj−1 (2 ≤ j ≤ k). We omit precise formulae for
αi for brevity. There exist efficient MRS conversion algorithms based on look-up
tables (see [14], [3]), however the size of the tables they require is proportional
to the modulus bit-length which draw them impractical for the GPUs7. We
have decided in favour a simple algorithm from [25] which rearranges Szabo and
Tanaka formulae in a more structured way, thereby exposing some parallelism.
The αi are computed as below (1 ≤ i ≤ k):

α1 = x1, α2 = (x2 − α1)c2 mod m2

7 Using large look-up tables residing in external DRAM turn to be inefficient on the
GPU due to the high memory latencies and the lack of gather operation.

140 P. Emeliyanenko

α3 = ((x3 − α1)c3 − (α2M2c3 mod m3)) mod m3

αi = ((xi − α1)ci − (α2M2ci mod mi) − . . .

−(αi−1Mi−1ci mod mi)) mod mi

where ci = (m1m2 . . . mi−1)−1 mod mi. Here ci and Mjci mod mi can be pre-
computed in advance.

5 Mapping Multiplication Algorithm to Graphics
Processor

In this section we consider the multiplication algorithm step-by-step. First, we
present our approach at a high-level to give the reader an intuitive feeling about
the algorithm. Then, we describe how the FFT algorithm is mapped to the
graphics hardware to achieve even work distribution between threads. The next
sections cover the efficient modular reduction and optimizations aimed to utilize
fused multiply-add capabilities of the GPU and reduce the amount of reductions
using redundant residue representation. At the end, we discuss how the CRT
reconstruction is realized on the graphics processor.

5.1 Algorithm Overview

The multiplication on the GPU proceeds as follows: we are given a set of N
integer polynomials of degree at most 2n−1, where 2n is the size of the transform8.
Polynomials of higher degree can be processed by encoding them in fixed degree
polynomials using the binary segmentation [9]. Large integers are handled by
partitioning them into respective number of pieces.

Each piece (or polynomial coefficient) is reduced modulo a set of distinct 24-bit
primes, the number of primes K is chosen such that the resulting products can
be recovered exactly9. The GPU executes N ×K NTT modular multiplications
in parallel. Once all products are ready, another kernel groups every K modular
products and recovers multiprecision digits using the CRT (see Section 5.5). K
is chosen to be small enough (typically K < 10), so that the CRT reconstruction
can proceed entirely on the GPU. However, this is not a restriction – the GPU
can run modular convolutions for large values of K and recover multiprecision
digits only partially, leaving the final reconstruction for the CPU.

The number of primes required to recover the product of two large integers is
estimated as follows: each “digit” after 2n-point convolution is bounded by 22M ·
2n−1, where M is a bit-length of an input sequence digit. Hence, a “convolution
digit” has at most 2M +n−1 bits. For the CRT reconstruction with c primes, it
holds that: 2M+n−1 = 23·c or Mc = (23·c−n+1)/2, here we assumed that each
prime is 23-bits long on the average. Thus, c convolutions with different moduli
8 Recall that, the input sequences must be initially zero-padded, hence these numbers.
9 For small values of K, the initial modular reduction can be done directly on the

graphics processor.

Efficient Multiplication of Polynomials on Graphics Hardware 141

ra
di

x−
8

st
ep

 3

ra
di

x−
8

st
ep

 2

ra
di

x−
8

st
ep

 1

ra
di

x−
8

st
ep

 3

ra
di

x−
8

st
ep

 2

ra
di

x−
8

st
ep

 1

po
in

tw
is

e
m

od
ul

ar
 m

ul
tip

lic
at

io
n

Two radix−8 512−pt NTTs radix−4 512−point inverse NTT

ra
di

x−
4

st
ep

 3

ra
di

x−
4

st
ep

 4

16
x1

6
m

at
. t

ra
ns

p.

ra
di

x−
4

st
ep

 2

ra
di

x−
4

st
ep

 1

ra
di

x−
4

st
ep

 3

ra
di

x−
4

st
ep

 4

16
x1

6
m

at
. t

ra
ns

p.

ra
di

x−
4

st
ep

 2

ra
di

x−
4

st
ep

 1

64
 th

re
ad

s
64

 th
re

ad
s

64
 th

re
ad

s
64

 th
re

ad
s

(0
..5

11
)

(0
..5

11
)

64
 th

re
ad

s
ra

di
x−

8
51

2−
pt

 N
T

T
64

 th
re

ad
s

64
 th

re
ad

s
64

 th
re

ad
s

in
ve

rs
e

tr
an

sf
or

m

64
 th

re
ad

s
b−

th
 o

ut
pu

t o
f

b−
th

 o
ut

pu
t o

f
ra

di
x−

4
ke

rn
el

ra
di

x−
4

ke
rn

el

ro
ot

s
of

 u
ni

ty
 (

0.
.5

11
)

in
v.

 r
ad

ix
−

4
ke

rn
el

operand A (0..1023)

operand B (0..1023)

pr
ec

om
pu

te
 tw

id
dl

e
fa

ct
or

s
fo

r
51

2−
pt

 N
T

T

po
in

tw
is

e
m

ul
tip

lic
at

io
n

(1
28

 th
re

ad
s)

20
48

−
pt

 in
ve

rs
e

N
T

T
 b

y
2

bl
oc

ks
 (

b
=

 0
,1

)

ra
di

x−
8

51
2−

pt
 N

T
T

in
v.

 r
ad

ix
−

4
ke

rn
el

64
 th

re
ad

s

in
ve

rs
e

ro
ot

s
of

 u
ni

ty
(0

..5
11

)
b−

th
 h

al
f

of
 a

 s
eq

ue
nc

e
to

 tr
an

sf
or

m
 (

0.
.1

02
3)

m
ul

. b
y

in
v.

 r
oo

ts
 o

f
un

ity
 (

12
8

th
re

ad
s)

64
 th

re
ad

s
ra

di
x−

8
51

2−
po

in
t

in
ve

rs
e

N
T

T

64
 th

re
ad

s
ra

di
x−

8
51

2−
po

in
t

in
ve

rs
e

N
T

T

(0
..2

55
)

op
er

an
d

A
(0

..1
27

)
(0

..2
55

)
op

er
an

d
B

m
ul

tip
lic

at
io

n
by

 m
od

ul
ar

 in
ve

rs
e

pr
ec

om
pu

te
 tw

id
dl

e
fa

ct
or

s
fo

r
in

v.
 N

T
T

ra
di

x−
2

pr
es

te
p

(1
28

 th
re

ad
s)

pr
ec

om
pu

te
 tw

id
dl

e
fa

ct
or

s

ro
ot

s
of

 u
ni

ty

pr
ec

om
pu

te
 tw

id
dl

e
fa

ct
or

s
fo

r
51

2−
pt

 N
T

T

m
ul

tip
lic

at
io

n
by

 m
od

ul
ar

 in
ve

rs
e

20
48

−
pt

 f
or

w
ar

d
N

T
T

 b
y

4
bl

oc
ks

 (
b

=
 0

..3
)

Fig. 2. Schematic view of 512-point (left) and 2048-point (right) NTT multiplication
on the GPU

are enough to multiply numbers of 2n−1Mc bit-length. For example, with c = 4,
2048-point transform can be used to multiply integers having at most 1024 · 41
bits each (1312 32-bit machine words).

5.2 The FFT Algorithm

Parallel FFT algorithms are commonly based on the Stockham out-of-place FFT.
We use Bailey’s variation of this algorithm [4]. This is a self-sorting algorithm,
such that an expensive index permutation phase (as opposed to the classical
Cooley-Tukey FFT [6]) can be skipped. Moreover, all data fetches and stores
are performed solely with unit strides, hence, no bank conflicts occur. Roots of
unity are still accessed with power-of-two strides but this can be alleviated by
storing the roots in contiguous arrays for each FFT step. In contrast to floating-
point transforms, the roots of unity in Z/mZ cannot be computed on-the-fly, but
must be precomputed in advance and loaded to the GPU. We have implemented
Bailey’s FFT for transform sizes 512, 1024 and 2048.

Figure 2 depicts the mapping of 512- and 2048-point NTTs to the
graphics hardware, 1024-point transform is realized by analogy. The core
of the algorithm constitute radix-2, -4 and -8 kernels (or “butter-
fly” operations). The radix-n FFT-kernel is defined as: [y0, . . . , yn−1] =
Fndiag(1, αk, . . . , α(n−1)k)[x0, . . . , xn−1], where αk is a twiddle factor and Fn

is an n × n Fourier matrix, i.e., Fn = [wj·k
n]j,k=0,...,n−1 (wn is an n-th root of

unity). In the following subsections we consider optimized FFT-kernels in detail.
The 512-point NTT multiplication is done by a single block of 128 threads,

after each radix-4/-8 step the data is reordered in shared memory. The forward
2048-point transform is run by 4 blocks collectively, they first evaluate a radix-4
kernel for both multiplicands. Then, the outputs are split evenly between the
blocks, each single block processes its parts, multiplies them elementwise and
runs the first radix-4 step of the inverse transform. By multiplying the operands
early in the forward kernel, we effectively reduce the memory bandwidth be-
cause only one (resulting) sequence is written out to global memory. The inverse

142 P. Emeliyanenko

Algorithm 1. 24-bit modular multiplication: computes a · b mod m

1: procedure mul mod(a, b, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(a, b) � compute upper 32 bits of the product
3: prodf = fmul rn(hi, invm) � multiplication in floating-point
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m�
5: return (umul24(a, b) − umul24(l, m)) � in [−m + ε; m + ε] with 0 ≤ ε < m
6: end procedure

2048-point NTT is run by 2 blocks, each block transforms its 1024-element part
separately.

5.3 Multiplication and Modular Reduction

The reason for choosing 24-bit primes was that the graphics hardware does not
support a full 32-bit integer multiplication natively. It provides only 24-bit mul-
tiplication realized in mul24.lo/hi instructions10. mul24.lo computes multiplies 24
least significant bits (LSB) of the operands and returns 32 LSB of 48-bit product,
it is available via umul24 intrinsic. mul24.hi returns 32 most significant bits of
the product respectively. Strangely enough, it is not accessible from a high-level
CUDA code. Fortunately, we have been able to rebuild the nvopencc (which is
based on open64) from sources to insert the “missing intrinsic”, in what follows
we will refer to it as umul24hi11.

Having all prerequisites at hand, we now discuss how the modular arithmetic
is realized on the GPU. We consider only modular multiplication in detail (see
Algorithm 1) as the remaining operations (addition and subtraction) are rather
trivial. Algorithm 1 splits the product in two parts, i.e., a · b = 216hi + lo (32
and 16 bits), and the following holds (0 ≤ r < m):

216hi + lo = (m · l + r) + lo ≡m r + lo = 216hi + lo − m · l = a · b − l · m

Observe that, l = 	216hi/m
 is at most 24-bits long, thus it is exactly repre-
sentable with 24-bit mantissa. Let γ = a · b− l ·m = lo + r, hence γ ∈ [0; m + ε]
(0 ≤ ε < m)12. As a result, γ fits into 32 bits and is computed as a difference of
32 LSB of both products using umul24 intrinsic. The final reduction needs two
additional steps to map the range [−m + ε; m + ε] to [0; m − 1]. Owing to the
redundant representation of residues, these steps can be deferred until the next
modular multiplication takes place. We discuss this and other optimizations in
the following section.

10 The 32-bit integer multiplication gets demoted to a more primitive operations and
is 4 times slower than its 24-bit counterpart.

11 The compiler built for Linux platform with a set of new intrinsics is available at
http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

12 According to our tests, γ ∈ [−m+ε;m+ε] due to the loss of accuracy when converting
hi to floating-point but this is not critical for us.

http://www.mpi-inf.mpg.de/~emeliyan/cuda-compiler

Efficient Multiplication of Polynomials on Graphics Hardware 143

Algorithm 2. Realization of radix-2 kernel (fma bfy2) and modular reduction
of 32-bit operand (reduce mod)
1: procedure fma bfy2(x0, x1, w, m, invm) � invm = 216/m (in floating-point)
2: hi = umul24hi(x1, w) � compute upper 32 bits of the product
3: prodf = hi ∗ invm + 2.0f � floating-point multiply-add
4: l = float2uint rz(prodf) � integer truncation: l = �hi · 216/m� + 2
5: y0 = x0 + umul24(x1, w) − umul24(l, m) � a pair of 24-bit multiply-adds
6: return [y0, sad(x0, y0, x0)] � y1 = |x0 − y0| + x0 = 2x0 − y0

7: end procedure
8: procedure reduce mod(a, m, invm) � invm = 1/m (in floating-point)
9: ai = a + umul24(100, m) � make sure a is positive

10: af = fmul rn(uint2float rn(ai), invm) � multiply in floating-point
11: l = float2uint rz(af) � integer truncation: l = �a/m� + 100
12: r = ai − umul24(l, m) � r ∈ [−m + ε; ε] with 0 ≤ ε < m
13: if r < 0 then r = r + m � adjust the result in case of negative sign
14: return r
15: end procedure

5.4 FMA-Optimized FFT Kernels and Exploiting Redundancy in
Residue Representation

The graphics hardware has fused multiply-add (FMA) capabilities. Namely,
it supports floating-point FMA as well as 24-bit integer FMA instructions.
To achieve the full efficiency, it is therefore important to respect these hard-
ware features. In our implementation we use both of them. Our radix-4 and -8
FFT kernels are based on the FMA-optimized factorization of a matrix prod-
uct given in [15]. In its core it has a primitive radix-2 “butterfly” defined as
([y0, y1] = fma bfy2([x0, x1], w)): y0 ← x0 + x1 · w and y1 ← 2 · x0 − y0. Its real-
ization is given by procedure fma bfy2 of Algorithm 2. Remark that, y1 cannot
be computed with 24-bit FMA because x0 can exceed 24 bits (when redundant
representation is used). Remarkably, the GPU has a native sad(x, y, z) instruc-
tion which computes |x − y| + z. Thus, if we ensure that x0 − y0 > 0, we can
use sad to compute y1. We guarantee this by adding 2 to prodf in line 3 of the
algorithm. Indeed, x0 − y0 = l · m − x1 · w = γ, and, according to the estimates
above, γ ∈ [−m + ε; m + ε]. Altogether, the fma bfy2 is compiled in 6 flops on
the GPU13.

Remark that, y0 and y1 in general are not valid residues, while umul24 can
only handle 24-bit operands. To this end, the argument x1 of the next fma bfy2
must be reduced prior to multiplication, this is achieved by procedure re-
duce mod of Algorithm 2. By adding 100·m to a we ensure that l = 	a/m
+100
is positive and, hence, umul24(l, m) delivers the correct result14. We will refer to

13 Generated low-level GPU assembly code can be inspected using the decuda tool:
http://www.cs.rug.nl/~wladimir/decuda

14 It can be estimated that a never deviates from 0 by more than 100·m, thus, a+100·m
is guaranteed to be positive and fits within 32 bits.

http://www.cs.rug.nl/~wladimir/decuda

144 P. Emeliyanenko

reduce mod(x1) followed by fma bfy2([x0, x1, w]) as fma red bfy2. FMA-optimized
radix-4 kernel is defined below ([y0, . . . , y3] = fma bfy4([x0, . . .x3], u)):

[d0, d1] = fma red bfy2([x0, x2], u2) [d2, d3] = fma red bfy2([x1, x3], u2)
[y0, y2] = fma red bfy2([d0, d2], u) [y1, y3] = fma red bfy2([d1, d3], u · w4),

here u = αk denotes a twiddle factor and w4 is 4-th root of unity. Radix-8
kernel is realized by analogy. Note that, the first step of the FFT algorithm
does not need any twiddle factors and FFT-kernels are simplified. Moreover, the
input sequences are initially zero-padded, hence the first stage of the forward
transform can be simplified even further.

The redundancy in residue representation is exploited as follows: modular re-
ductions after addition/subtraction as well as correction steps after multiplication
are performed on demand only. In other words, they are deferred until either the
next multiplication takes place or until the very last stage of the NTT algorithm.

5.5 CRT Reconstruction on the GPU

Owing to the fact that each “convolution digit” is recovered independently, it is
advantageous to run the CRT reconstruction directly on the GPU provided that
the number of moduli k is small (typically k ≤ 10). We compute the MRS digits
αi defined in Section 4.2 in a straightforward way. Threads are split logically
into groups of P = (k − 2)/2 threads each. We require P to be a power-of-two,
so that the groups of P threads are always warp-aligned and access to shared
memory proceeds without synchronization. We have chosen the block size of 64
threads15.

We assume that the moduli are sorted, i.e., m1 < m2 < . . . < mk. Thus, for
respective residues x1, x2, . . . , xk, it holds that xi < mj for 1 ≤ i < j ≤ k. This
enables us to save on reductions when the quantities of the form (xj−xi) mod mj

are computed. Each thread computes two values of xi in one step (we refer to
them by δ = {1, 2}). Let j = 1 . . .k/2, the algorithm takes k − 1 steps:

step 1: for threads i = 1 . . .P : x2i+δ ← (x2i+δ − x1)c2i+δ mod m2i+δ. For the
1st thread additionally: x2 ← (x2 − x1)c2 mod m2;

step (2j): for threads i = j . . . P : x2i+δ ← (x2i+δ − x2jM2jc2i+δ) mod m2i+δ;
step (2j + 1): for threads i = j − 1 . . .P : x2i+δ ← (x2i+δ −

x2j−1M2j−1c2j+δ) mod m2j+δ, a thread i = j − 1 computes only x2i+2.

The number of threads involved decrements every 2 steps, this way we achieve
sufficiently even work distribution. We use precomputed values for ci and
sl

i = Mlci mod mi defined in Section 4.2. Once MRS digits are computed, the
resulting “convolution digit” is recovered as: X = α1M1 + α2M2 + . . . + αkMk.
We extract some parallelism by evaluating this expression in a “tree-like” fash-
ion. To realize multiprecision additions required here, we use addition-with-carry
intrinsics provided by our nvopencc compiler.
15 As we only need P threads to work cooperatively, a small block size is reasonable

since the GPU has more freedom in scheduling light-weight blocks to hide memory
access latencies.

Efficient Multiplication of Polynomials on Graphics Hardware 145

6 Experimental Results and Comparison

We have tested our algorithm on the GeForce GTX 280 graphics processor and
compared it with GMP 4.2.1 (http://gmplib.org) for large-integer multipli-
cation and with NTL 5.5 (http://www.shoup.net/ntl) for polynomial multi-
plication. As a target CPU we have used Quad-Core Intel Xeon E5420 clocked
at 2.5Ghz with 12MB L2 cache and 8Gb RAM. Both libraries were built under
native 64-bit Linux platform (Debian Etch), such that they were able to benefit
from AMD64 instruction set.

For benchmarks we have implemented two versions of the CRT reconstruc-
tion: a completely inlined one using 4 moduli where each digit is processed sepa-
rately by a single thread, and the 6-moduli CRT which realizes the algorithm from
Section 5.5. The initial modular reduction of input digits was performed directly on
the GPU prior to modular multiplications because the digits’ bit-length is small.
The bit-length of numbers to be multiplied depending on the CRT size and the
transform length was estimated using the formula from Section 5.1. We use these
estimates to compare our multiplication with that of provided by GMP and NTL.
For instance, 1024-pointNTT with 6-moduli CRT is enough to multiply 512·64-bit
numbers exactly. Hence, GMP was used to multiply numbers of 512·64 bit-length,
while NTL – to multiply 512-degree polynomials with 64-bit coefficients.

Remark that, our algorithm does not perform the digit adjustment after mul-
tiplying two integers encoded as polynomials. In other words, we do not compute
the sum of “convolution digits”, i.e., z =

∑N−1
i=0 ri · 2Pi (see Section 4.1). Nev-

ertheless, we suppose this would not make our comparison with GMP unfair

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x16
(128)

64x32
(512)

128x64
(2048)

256x64
(4096)

256x128
(8192)

256x256
(16384)

of NTT-muls with 4-CRT (# of 256x41-bit muls for CPU)

512-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x8
(64)

64x16
(256)

128x32
(1024)

256x32
(2048)

256x64
(4096)

256x128
(8192)

of NTT-muls with 4-CRT (# of 512x41-bit muls for CPU)

1024-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

32x8
(64)

64x16
(256)

128x32
(1024)

256x32
(2048)

256x64
(4096)

256x128
(8192)

of NTT-muls with 4-CRT (# of 1024x41-bit muls for CPU)

2048-point NTT mul
GMP 4.2.1

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

48x16
(128)

96x32
(512)

192x32
(1024)

192x64
(2048)

192x128
(4096)

252x256
(10752)

of NTT-muls with 6-CRT (# of 256x64-bit muls for CPU)

512-point NTT mul
GMP 4.2.1

NTL 5.4

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

48x8
(64)

96x16
(256)

192x16
(512)

192x32
(1024)

192x64
(2048)

252x128
(5376)

of NTT-muls with 6-CRT (# of 512x64-bit muls for CPU)

1024-point NTT mul
GMP 4.2.1

NTL 5.4

Fig. 3. Time comparison of batched large integer/polynomial multiplication with
GMP/NTL implementations. Top row: 512-(left), 1024-(middle) and 2048-
point(right) NTTs with 4-moduli CRT. Bottom row: 512-(left) and 1024-point(right)
NTTs with 6-moduli CRT. All times are in milliseconds.

http://gmplib.org
http://www.shoup.net/ntl

146 P. Emeliyanenko

Table 1. Performance of the 512-point and 2048-point convolutions in “GMul/s”: 109

modular multiplications per second

of 512-point NTTs 32x16 64x32 128x64 256x64 256x128 256x256
time (ms) 0.26 0.98 4.04 7.78 15.22 29.13
GMul/s 68 72 73 75 77 77
of 2048-point NTTs 32x8 64x16 128x32 256x32 256x64 256x128
time (ms) 0.74 2.49 9.83 19.34 38.39 76.55
GMul/s 58 67 72 73 73 74

because this step is rather cheap as it only involves additions16. Moreover, the
digit adjustment is not required in case of polynomial multiplication.

Figure 3 shows the time comparisons for batched multiplications. The la-
bels along x-axes have the following meaning: for instance, on the top-left plot
32x16(128) denotes that the CPU performs 128 multiplications of 256 × 41-bit
numbers while the GPU runs 16 512-point convolutions for each of 32 mod-
uli (total of 512 convolutions) since a group of every 4 moduli contributes to
a single multiplication. The GPU timing includes the time taken for memory
transfer to the GPU and back to the host for a more objective comparison.
We use page-locked memory to achieve higher bandwidth. From Figure 3 one
can see that the GPU is superior for batched multiplications with moderate
bit-lengths. Moreover, the gap increases for larger transforms. Increasing the
number of CRT moduli is also advantageous for our algorithm, although it is
yet unclear whether increasing the transform length or increasing the number
of moduli is overall more efficient. Note that, NTL performs worse than GMP
which is expectable because GMP uses hand-optimized assembly while NTL is
written in a high-level language.

Table 1 summarizes the “effective” performance of the NTT multiplication,
computed as: GMul/s = 10−9 · batch · (3 ·2.5N log2 N +2N)/t, here 2.5N log2 N
is the complexity of the Cooley-Tukey style NTT (N is the transform length), t
is the elapsed time in seconds and batch is the number of parallel multiplications.
Each multiplication uses 2 forward and 1 backward transform, hence, the factor
3 in front of the formula. The term 2N represents the complexity of the point-
wise multiplication and the multiplication by modular inverse. Remark that, the
Cooley-Tukey NTT bound counts the number of multiplications in Z/mZ. To
evaluate the “real” performance in flops recall that fma bfy2 realizing modular
multiplication executes in 6 flops (see Section 5.4). Hence, 77 GMul/s is roughly
equivalent to 462 GFlop/s of the real performance17, while the GeForce GTX
280 has peak parallel performance of 933 GFlop/s.

16 Carry propagation after mutliprecision addition can be realized efficiently, for in-
stance, using Hillis-and-Steele-style reductions [13].

17 It worth mentioning that the Cooley-Tukey bound tends to overestimate the number
of multiplications, nevertheless it is a commonly used tool to evaluate the FFT/NTT
performance.

Efficient Multiplication of Polynomials on Graphics Hardware 147

 0

 10

 20

 30

 40

 50

 60

 70

 80

128x64 256x64 256x128 256x256
number of NTT muls (mods x batches)

NTT convolution
4-moduli CRT
Mem. transfer

 0

 20

 40

 60

 80

 100

 120

192x16 192x32 192x64 252x128
number of NTT muls (mods x batches)

NTT convolution
6-moduli CRT
Mem. transfer

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

128x64 256x64 256x128 256x256
number of NTT muls (mods x batches)

NTT convolution
4-moduli CRT
Mem. transfer

Fig. 4. Time breakdown (in milliseconds) for 512-(left), 1024-(middle) and 2048-
point(right) transforms. Abbreviations along x-axis are the same as in Figure 3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 3 4 6 8
number of streams

256x64
256x128
256x256

Fig. 5. The number of parallel streams influencing the overall time (in milliseconds)
for 512-point NTTs including the memory transfer

Figure 4 depicts the time distribution over algorithm stages. Observe that, the
CRT reconstruction is rather cheap while the time needed for memory transfer
comprises the major part. This is known to be the main bottleneck for GPU
algorithms. Fortunately, CUDA allows us to split a single kernel launch into
several streams which execute asynchronously such that the memory transfer of
one stream can overlap with a kernel execution of another stream18. Figure 5
evaluates the performance of 512-point NTTs with several streams. The figure
shows that the optimal number of streams is 4.

To sum-up, our algorithm outperforms GMP and NTL for batched multipli-
cations with moderate bit-length. We agree that this is not an objective picture
because, for instance, GMP is particularly fast when the numbers of million bits
are multiplied. We were not able to benchmark our algorithm on such instances
due to the lack of implementation of larger transform lengths which is an object
of ongoing research. Still, we believe that the this gives a good estimate of what
the GPUs are practically capable of, because this area of GPU application is yet
not well-explored.

18 At the time of writing the new CUDA 2.2 has been released. It supports allocation
of pinned memory mapped to the device’s address space (cudaHostAllocMapped).
Due to the time limitations we have not been able to test its performance.

148 P. Emeliyanenko

7 Summary and Outlook

We have presented the algorithm to multiply polynomials on the GPU using the
NTT modular convolution with the CRT reconstruction. Our approach shows
a good performance for batched multiplication of polynomials with moderate
coefficient bit-length. Clearly, the approach presented here is only the first step
in realization of a robust large integer and polynomial arithmetic on the GPU.

Note that, this application domain is pretty novel for the graphics hardware
and we see many promising perspectives for future work. First, we would like
to increase the NTT transform length and make it adaptable to the bit-lengths
of numbers to be multiplied. Second, we would like to realize multiprecision
addition on the GPU using parallel reductions in order to be able to reconstruct
multiprecision numbers by means of binary segmentation. It is also worthwhile
to try out the technique called GPU virtualization given in [10] to handle inputs
that do not fit in a single grid launch due to the hardware limitations. Finally,
we would like to realize other algorithms requiring multiprecision arithmetic
on the GPU using the modular approach, for example, evaluation of matrix
determinants with large integer coefficients which is a fundamental operation in
many scientific fields.

We also find very promising the oncoming Intel’s Larrabee architecture [22]
and would like to test our algorithm with it. It has a number of salient features
lacked on the current GPUs. First, Larrabee’s 16-wide Vector Processing Unit
(VPU – somewhat similar to SM) supports double-precision arithmetic at full
speed19, which allows us to increase the moduli bit-length (up to 54 bits) or
employ floating-point transforms for integer convolutions. Second, Larrabee has
a coherent L2 cache, such that the data is transparently shared between all
processor cores (in contrast, GPU thread blocks can share data only through
a high-latency GDDR memory). This considerably simplifies the realization of
large FFT transforms which are realized by a hierarchy of grid launches on the
GPU. Moreover, Larrabee supports scatter/gather operations, i.e., VPU lanes
can access data at non-contiguous addresses while uncoalesced global memory
access by a half-warp is considerably slow and should be avoided.

Acknowledgements. We would like to thank Michael Kerber for reviewing the
paper and for useful and pragmatic suggestions.

References

1. CUDA CUFFT library. NVIDIA Corp. (2007)
2. NVIDIA CUDA: Compute Unified Device Architecture. NVIDIA Corp. (2007)
3. Akkal, M., Siy, P.: A new Mixed Radix Conversion algorithm MRC-II. J. Syst.

Archit. 53, 577–586 (2007)
4. Bailey, D.H.: A High-Performance FFT Algorithm for Vector Supercomputers.

International Journal of Supercomputer Applications 2, 82–87 (1988)

19 The GPU has only one double-precision FPU per SM, therefore the double-precision
arithmetic is 8 times slower than the single-precision.

Efficient Multiplication of Polynomials on Graphics Hardware 149

5. Basu, S., Pollack, R., Roy, M.-F.: Algorithms in Real Algebraic Geometry (Algo-
rithms and Computation in Mathematics). Springer, New York (2006)

6. Cooley, J.W., Tukey, J.W.: An Algorithm for the Machine Calculation of Complex
Fourier Series. Mathematics of Computation 19, 297–301 (1965)

7. Elliott, D.F., Rao, K.R.: Fast Transforms: Algorithms, Analyses, Applications.
Academic Press, Inc., Orlando (1983)

8. Fagin, B.S.: Large integer multiplication on hypercubes. J. Parallel Distrib. Com-
put. 14, 426–430 (1992)

9. von zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University
Press, Cambridge (1999)

10. Govindaraju, N.K., Lloyd, B., Dotsenko, Y., Smith, B., Manferdelli, J.: High per-
formance discrete Fourier transforms on graphics processors. In: SC 2008, pp. 1–12.
IEEE Press, Los Alamitos (2008)

11. Graça, G.D., Defour, D.: Implementation of float-float operators on graphics hard-
ware. CoRR abs/cs/0603115 (2006)

12. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for Quad-Double Precision Floating
Point Arithmetic. In: Proceedings of the 15th Symposium on Computer Arithmetic,
pp. 155–162. IEEE Computer Society Press, Los Alamitos (2001)

13. Hillis, W.D., Steele Jr., G.L.: Data parallel algorithms. ACM Commun. 29,
1170–1183 (1986)

14. Huang, C.H.: A Fully Parallel Mixed-Radix Conversion Algorithm for Residue
Number Applications. IEEE Trans. Computers 32, 398–402 (1983)

15. Karner, H., Auer, M., Ueberhuber, C.W.: Accelerating FFTW by Multiply-Add
Optimization. Tech. rep., Institute for Applied and Numerical Mathematics, Vi-
enna University of Technology, TR1999-13 (1999)

16. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: A Unified
Graphics and Computing Architecture. IEEE Micro. 28, 39–55 (2008)

17. Moreland, K., Angel, E.: The FFT on a GPU. In: HWWS 2003. Eurographics
Association, pp. 112–119. ACM Press, New York (2003)

18. Moss, A., Page, D., Smart, N.: Toward Acceleration of RSA Using 3D Graph-
ics Hardware. In: Galbraith, S.D. (ed.) Cryptography and Coding 2007. LNCS,
vol. 4887, pp. 364–383. Springer, Heidelberg (2007)

19. Munshi, A.: OpenCL: Parallel Computing on the GPU and CPU. SIGGRAPH
2008 (2008) (presentation)

20. Percival, C.: Rapid multiplication modulo the sum and difference of highly com-
posite numbers. Mathematics of Computation 72, 241, 387–395 (2003)

21. Schönhage, A., Strassen, V.: Schnelle Multiplikation grosser Zahlen. Computing 7,
281–292 (1971)

22. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing. ACM
Trans. Graph. 27, 1–15 (2008)

23. Szabo, N., Tanaka, R.: Residue arithmetic and its applications to computer tech-
nology. SIAM 11, 103–104 (1969)

24. Szerwinski, R., Güneysu, T.: Exploiting the Power of GPUs for Asymmetric Cryp-
tography. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp.
79–99. Springer, Heidelberg (2008)

25. Yassine, M.: Matrix Mixed-Radix Conversion For RNS Arithmetic Architectures
(1991)

Performance Optimization Strategies of
High Performance Computing on GPU�

Anguo Ma, Jing Cai, Yu Cheng, Xiaoqiang Ni,
Yuxing Tang, and Zuocheng Xing

National Laboratory for Parallel and Distributed Processing, School of Computer,
National University of Defense Technology,

ChangSha, China
{anguo.ma,jing.cai,y.cheng,xq.ni,tyx,zcxing}@nudt.edu.cn

http://www.nudt.edu.cn

Abstract. Recently GPU is widely utilized in scientific computing and
engineering applications, owing primarily to the evolution of GPU ar-
chitecture. Firstly, we analyze some key performance characters of GPU
in detail, and the relationships among GPU architecture, programming
model and memory hierarchy. Secondly, we present three performance op-
timization strategies: Prefetching, Streamlizing, and Task Division. Ad-
equate experiments have been done to abstract the relationships among
different factors and efficiency. Finally, we map the HPL benchmark to
testify our strategies and achieve certain speedup.

Keywords: GPGPU, Optimization Strategy, Stream Computing, Task
Division, HPL Benchmark.

1 Introduction

Driven by new demands of emerging applications, computing architectures keep
on improving with the support of CMOS technology scaling. Whereas today how
to harness the theoretic peak performance of the powerful multi-core processors
is the key to high performance computing. Exposing and utilizing parallelism in
different levels rely on the efforts of architecture designer and programmer. Al-
though great efforts has been made to modeling underline hardware architecture
into special software platform, the gap between the ability of parallel hardware
and the ability of software to use the parallisim continues expanding.

Besides the huge effort to create a brand-new architecture with high-efficient
parallel programming models, there are two directions to save both commer-
cial vendors and academic researchers from the dilemma: to make the general
processor more powerful or to make the custom processor more general, both
with advanced developing environment. Many commercial vendors and academic

� This work is supported by National High Technology Development 863 Program of
China under Grant No.2009AA01Z102 and National Natural Science Foundation of
China under Grant No.60873016.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 150–164, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.nudt.edu.cn

Performance Optimization Strategies on GPU 151

Table 1. Environment Configuration

Environment Platform1 Platform2
CPU Intel Core2 E7200 Intel Core i7
GPU NVIDIA GeForce 9800GTX NVIDIA GTX280

Motherboard GIGABYTE EDP43-DS3L GIGABYTE EX58-UD4

researchers have made great efforts. New arechitecture with own programming
model has been proposed, such as Imagine, Cell, RAW, Many-core plan, Fusion
plan and so on. Meanwhile, new multi-core programming platforms have been
stimulated to grow rapidly to face the era of parallel computing on multi-core
computing hardware, such as Ct [1], SWARM [2], and RapidMind [3].

In the way of making custom processor more general, GPU is one of the most
successful candidates. GPU architecture has achieved revolutionary progress to
support scientific computing and engineering applications, along with new pro-
gramming platforms which is convenient for mapping these applications onto it.
As the explosion of GPGPU applications shows, GPU can be widely used in the
general-purpose and scientific computing field, besides the traditional graphics
processing.

Because many scientific computing applications are full of dense linear algebra
[4], hence the performance of Linpack is the most important criterion to eval-
uate the capability of supercomputers. HPL (High Performance Linpack), an
advanced implementation of Linpack, solves the dense linear algebra in double
precision (64-bits) arithmetic on distributed-memory computers. Matrix multi-
plication and LU factorization are the key parts of HPL. HPL also provides a
testing and timing program to quantify the accuracy of the obtained solution as
well as the time it took to compute it [5].

In this paper, based on three optimizing methods: prefetching, streamlizing,
and task division, we speedup Matrix multiplication on different GPU hardware
platforms. The core of optimization is to improve the ratio of computing oper-
ations to memory accesses, and hide the transfer latency in different memory
levels. Ths task division can utilize the computing power of CPU and GPU at
the same time. We summarized the relationship between advisable division fac-
tor and a large variety of factors including the capability of GPU and CPU in
the heterogeneous system and transfer bandwidth. Moreover, we tried to hide
the transfer latency in system level by packing subsets of transfer operations and
computing operations into multiple streams. In final experiment, the HPL bench-
mark was optimized on our heterogeneous hardware platforms. Specifications of
two platforms used in our experiments are listed in Table. 1.

2 Background and Overview

2.1 GPGPU Trend

The emergence of development platforms and SDKs - CUDA from NVIDIA and
Brook+ from AMD - has attracted the attention of researchers and

152 A. Ma et al.

programmers devoted to scientific computing and parallel programming, and
also guided them to find that GPUs could be reharnessed for tasks other than
graphics easily [6]. And the trend mapping general-purpose applications onto
GPU is called GPGPU (General Purpose Computing on GPU). Masses of suc-
cessful implementations have proved that GPU can be used widely and efficiently
in fields of Computational Biology [7][8], Physically Based Simulation[9][10][11],
Computational Biophysics[12][13][14], Signal and Image Processing[15][16] and
so on.

2.2 GPU Architecture and Programming Model

Over the past few decades, GPU architecture has developed dramatically and
changed rapidly. Targeting load balance and high hardware utilization, GPU
has evolved from fixed-function architecture to general parallel programmable
architecture, which merged special-purpose shaders - Programmable Vertex Pro-
cessor and Programmable Fragment Processor - into the unified shader. Early
in 2005, AMD implemented the first unified shader architecture in Xenos GPU,
and later in 2006 announced the AMD Stream Processor with CTM (Close To
Metal) runtime, addressing the needs of high-performance computing. Mean-
while, NVIDIA introduced CUDA (Compute Unified Device Architecture) in
November 2006. The main strategy of them is to utilize the powerful computing
resources efficiently by scheduling masses of threads dynamically.

In contrast to CPU, GPU addresses throughput related issues other than
latency, and GPU architecture is designed for data parallel applications with high
arithmetic density. As to NVIDIA, GTX280 is composed of 10 Thread Processing
Clusters (TPC), each of them consisting of 3 Streaming Multiprocessor (SM),
which is made up of 8 Streaming Processor (SP), a 64 bit fused multiply-add

HardWareThread Execution Manager

Atomic Constant Memory

Global Memory

Texture Memory

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

L1 Cache

IU

T

F

T

F

T

F

IU

T

F

T

F

T

F

IU

T

F

T

F

Fig. 1. GTX280 Architecture

Performance Optimization Strategies on GPU 153

unit and a Special Function Unit (SFU) sharing a front-end, similar to a 8-wide
SIMD CPU.

With respect to different types of data structure in diverse applications, it
implements a complex memory hierarchy and related texture and render output
pipelines to reuse data on chip including temporal computing result adequately
and to hide the data transfer delay. GTX280 employs 1GB off-chip global mem-
ory which is shared by all the threads on GPU to link GPU and CPU by PCIe
interface. Computing kernels run on GPU can access the global memory directly,
or access read-only texture memory and constant memory via texture cache and
constant cache. Each SM has 16KB on-chip shared memory and 16KB 32-bit reg-
isters. Shared memory is organized into 16 banks and partitioned among thread
blocks dynamically, while registers are partitioned among active thread blocks
on SM dynamically and assigned to a given thread statically. Without bank con-
flict, access to shared memory is as fast as that of register file, while access to
global memory may take multiple hundreds of cycles. Data will be spilled out to
private local memory located in global memory when registers assigned are not
enough in a thread.

Only one program can be performed on single GPU device, and the program
launched to device by CPU(host) is called kernel, which is executed in manner of
SPMD(Single Program Multiple data), running thousands of threads in parallel
on different data sets. The thread grid is divided into many thread blocks with
the same dimension and mapped onto SMs after the kernel is launched. The
maximum number of active blocks per SM is 8, and at most 1024 threads can
be executed on single SM concurrently. The practical numbers are limited by
resource demands of single thread. Every 32 threads in one block are grouped as
a warp and performed in SIMD manner by 8 SPs. The SM in device of Compute
Capability 1.3 can have as many as 32 active warps, which are switched peri-
odically to hide the latency of stalled threads. Threads in the same block can
cooperate via shared memory using synchronization instruction, yet communi-
cation among threads from different blocks isn’t supported at present.

2.3 GPGPU in High Performance Computing

Though the development platforms and SDKs(software development kits) have
been introduced to facilitate utilizing powerful hardware efficiently, it is still not
easy for programmers used to traditional programming, owing to insufficient de-
tails exposed to programmer and intrinsic limitations inherited from graphics.
Many efforts have been made to enhance the performance of linear algebra algo-
rithms like matrix multiplication on GPU from aspects of parallel programming,
compiling optimization and heterogeneous computing and so on.

Volkov et al. [17] concluded the characters of modern GPU in a special view
and useful experiences being of benefit to code optimization. Their work pre-
sented the size and latency of cache and TLB in GPU memory system. Con-
sidering the parallel computing of CPU and GPU in heterogeneous system,
their matrix-matrix multiply routine ran up to 60% faster than CUBLAS1.1
and achieved 80-90% of the peak GEMM rate.

154 A. Ma et al.

Massimiliano Fatica [18] analyzed the bandwidth between host (CPU) and de-
vice (GPU), then concluded the division factor used in dividing tasks to perform
simultaneously on both CPU and GPU.

Castillo et al. [19] ported libFlame, developed from PLAPACK application
programming interface(API), to a multi-GPU system using a wrapper for the
CUBLAS, and achieved an ideal speedup.

Quintana-Orti et al. [20] testified FLAME methodology by adapting FLAME
to a complex heterogeneous system including multiple types of accelerator, CPU,
GPU and CELL B.E.

3 GPU Features

The performance of an application depends on many factors including the capa-
bilities of different system computing resources and transfer bandwidth between
host (CPU) and devices (other computing resources). Kernel running on GPU
can access global memory directly, but it may take several hundreds of cycles
greater than that of on-chip memory, hence how to utilize limited registers and
shared memory have a great effect on algorithms. In this section we analyze the
transfer bandwidth between CPU and GPU, and the layout of passed parameters
of kernel and located shared memory space.

3.1 Transfer Bandwidth between CPU and GPU

Although GPU is more and more powerful, how to feed them with data in time
is a great problem for programmers. CUDA2.2beta released recently introduces
a new runtime feature called zero-copy, which can hide data transfer latency au-
tomatically. According to the programming guide released by NVIDIA officially,
transfer with Pinned memory is faster than that of Pageable memory, because
it can eliminate an extra copy existing right before DMA transfer between CPU
and GPU[18]. Unfortunately, this transfer speedup comes at the cost of CPU
performance, because Pinned memory is page-locked and can’t be used until it
is released.

We tested different transfer modes with different data sizes on different plat-
forms, and motherboards in both of them are compatible with PCIe2.0 x16
standard, the ideal bandwidth of which can approach 8.0GB/s.

As presented in Fig. 2, bandwidth of Pinned memory is much higher than
that of Pageable memory apparently. Bandwidth of Pinned memory increases
with data amount, then reaches and maintains 4.6GB/s steadily. As for Pageable
memory, the steady bandwidth only can approach 1.7 GB/s when transfer data
from host to device, in the opposite direction, the steady bandwidth is 1.55
GB/s.

Testing on platform 2, we got a better result. As presented in Fig. 3, the steady
H2D bandwidth of Pinned memory can reach 5.7 GB/s, and that of opposite
direction is 5.4 GB/s. The bandwidths of Pageable memory in both directions
tend toward the same 2.3 GB/s.

Performance Optimization Strategies on GPU 155

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1
k

1
0
k

5
0
K

6
0
k

1
0
0
k

5
1
2
k

1
M

5
M

1
0
M

5
0
M

1
0
0
M

Data Size

B
a
n
d
w
id
th
(G
B
/s
)

Pageable memory H2D

Pageable memory D2H

Pinned memory H2D

Pinned memory D2H

Fig. 2. Transfer Bandwidth between CPU and GPU on Platform1 (H2D: host to device
D2H: device to host)

0

1

2

3

4

5

6

1
k

1
0
k

6
0
k

1
0
0
k

5
1
2
k

1
M

5
M

1
0
M

5
0
M

1
0
0
M

Data Size

B
a
n
d
w
id
th
(G
B
/s
)

Pageable memory H2D

Pageable memory D2H

Pinned memory H2D

Pinned memory D2H

Fig. 3. Transfer Bandwidth between CPU and GPU on Platform2

3.2 Layout of Shared Memory

Threads in a block can cooperate using a synchronize operation, and commu-
nicate with each other via shared memory. Moreover, shared memory also can
be used to reuse data on-chip among threads and mitigate pressure of limited
register file. As demonstrated above, access to shared memory is as fast as reg-
ister access in absent of bank conflicts. When a kernel is launched from host to
device, the execution configuration parameters and kernel parameters are passed
to device and kept in shared memory. Using several benchmarks with different
configuration and shared memory usage, as presented in Table. 2, we can find

156 A. Ma et al.

Table 2. Layout of Shared Memory

Random data
Extern shared memory

(Start from the first address divide 16B exactly)

Random data
shared memory
Parameter n

Parameter n-1
. . .

Parameter 0
Zero(4B)
Dg.y(2B)
Dg.x(2B)
Db.z(2B)
Db.y(2B)
Db.x(2b)

(Start from address 0)

that execution configuration parameters are kept from address 0 in order (Db
and Dg are Dim3 type, and Db is dimension of a block, while Dg is dimension
of a grid), after 4B unknown space storing zero, kernel parameters are kept in
sequence. Then there is a memory space allocated statically according to the
code, while the memory space allocated dynamically starts from the first ad-
dress dividing 16B exactly after the last data in static space. And the data in
between static space and dynamic space are random.

3.3 Optimization Methodology and Performance Analysis

The basic principle of optimization is to make the most of computing units in the
whole system effectively during the entire execution period. So we emphasize the
load balance in three levels. Firstly, we optimized the scalable algorithms by im-
proving the ratio of computing operations to memory accesses, and made great
efforts to increase data reusage to avoid high latency of off-chip memory access.
By comparison, we abstracted an appropriate prefetching stride factor to guide
scheduling instructions manually in instruction level, based on the assemble code
generated by decuda[20]. Furthermore, in order to overlap kernel execution with
transfers between CPU and GPU, we wrapped related transfer and comput-
ing operations into several streams, and analyzed the relationship between the
amount of streams and performance. Based on the above works, we tried to fig-
ure out the most appropriate factor when we divide the whole application into
several tasks running on different processors in the system concurrently.

According to the Amdahl’s Law, optimizing the part of application with high
computing ratio is the most effective method to improve the overall perfor-
mance. As to the HPL benchmark, it is matrix multiplication. So we focus on the

Performance Optimization Strategies on GPU 157

matrix multiplication algorithm, and the corresponding optimization strategies
are described in following sections.

3.4 Prefetching

Compiler always works in a relatively conservative way. Hence there still is a vast
space for programmer to schedule instructions or assemble operations. Placing ir-
relevant instructions between instructions with data dependence could hide the
instruction stalls, however inadequate scheduling may lower the performance.
Prefetching is a popular scheduling strategy aiming at hiding the latency of
memory access. Global memory access in GPU takes several hundreds of cycles
and hurt much performance. We use prefetching strategy in our matrix multi-
plication algorithm, and bring some global memory access operations forward
and place them between instructions in data hazard. How many memory access
operations should be brought forward depends on the ratio of memory access
latency and computing overhead. Furthermore, because of active thread warps
being scheduled periodically, there is a complex relationship between the pe-
riod and scheduling. So we move different amount of irrelevant memory access
operations up in main loop.

When the dimensions of both matrices are 2048*2048, our matrix multiplica-
tion application scheduled two memory access operations runs up to 8.5% faster
than algorithm without prefetching. However, when four or eight memory access
operations are moved up, it only reaches 38% of original performance.

3.5 Stream Computing

Many types of operations in CUDA runtime are asynchronous, such as cud-
aMemcpyAsync, kernel launch operation, cudaEventRecord and so on, control
is returned to host after they are launched. Hence we can utilize the parallelism
in system level and stream level. A subset of transfer operations and kernels
can be wrapped into a stream, and operations from different streams without
resource conflict can be performed in parallel. Although there are some restric-
tions, especially for stream 0, it is still worth streamlizing the application to
overlap operations from different streams.

As illustrated by Fig. 4, the traditional way of GPU computing can be de-
scribed as: transfer data and code into device, kernel execution on device, and
then transfer results to host from device. Due to the data parallelism in applica-
tion and the SPMD manner of GPU computing, an application can be divided
into several streams, which are performed in parallel partially as illustrated in
Fig. 5.

Apparently, streamlizing application will increase the amount of operations,
incurring more launch overhead. Furthermore, limited by global memory, the
transfer of divided data input possibly can’t make use of the peak bandwidth
between CPU and GPU. In addition, the streamlizing strategy targets hiding
the transfer latency from computing, hence little speedup could be gained when

158 A. Ma et al.

Data Transfer

HostToDevice

Data Transfer

Kernel Execution

on GPU

Data Transfer

DeviceToHost

Total time

Fig. 4. Traditional Way of GPU Computing

Kernel in

Stream0

Data Transfer

Kernel Execution on

GPU

Kernel in

Stream1

Stream 0

Data Transfer

Kernel Execution on

GPU

Stream 1

Total time

Shared data

Fig. 5. Stream Computing in GPU

the ratio of transfer time to computing time is very small or very large, and even
performance is likely to be worse.

In Fig. 6, compared to unstreamlized routine, 4% speedup is achieved av-
eragely with nstreams being 3. When nstreams is 6, streamlized routine runs
up to 5% faster than the original routine, except for some special situation as
described above.

As Fig. 7 presented, when the matrix dimension exceeds 4096, a steady 2.3%
speedup can be achieved with nstreams being 4. And when the matrix dimension
is under 4096, streamlized applications behave not well, even worse.

Performance Optimization Strategies on GPU 159

0

50

100

150

200

250

300

768 1536 3072 4608 6144

Matrix Dimension

P
e
rf
o
rm
a
n
c
e
 (
G
F
L
O
P
S
) CUBLAS2.1

Unstreamlized

Nstreams=3

Nstreams=6

Fig. 6. Performance comparison on platform1. Nstreams is the number of streams.

0

50

100

150

200

250

300

350

400

51
2

10
24

20
48

30
72

40
96

51
2
0

61
44

71
68

81
92

Matrix Dimension

P
e
rf
o
rm
a
n
c
e
(G
F
L
O
P
S
) CUBALS2.2

Unstreamlized2

Nstreams=2

Nstreams=4

Nstreams=8

Fig. 7. Performance comparison on platform2

3.6 Task Division for CPU and GPU

After kernel is launched, control is returned to host, consequently host can pro-
cess in parallel with GPU. So we divide the application into two work sets, and
make them run in different hardware concurrently as illustrated in Fig. 8. The
division factor relies on the capabilities of device and host, and the transfer
bandwidth between them.

As for matrix multiplicaiton A*B=C, matrix A is divided into two sub-
matrices Ahost and Adevice by division factor, so the equation A*B=C is divided
into Ahost*B=Chost and Adevice*B=Cdevice. Because the launch overhead can
be ignored, it can be assumed that the ideal factor should be Gdevice / (Ghost

160 A. Ma et al.

Asynch Data

Transfer

HostToDevice

Asynch Data

Transfer

DeviceToHost

Kernel Execution on GPU

Task on CPU

Launch

Overhead

Total time

Working

Set

Task

running

on GPU

Task

running

on CPU

Task Division

Fig. 8. Task Division

+ Gdevice), that is the ratio of device capability to the sum of device capabil-
ity and host capability. Then matrices Adevice and B are transferred to device
asychronously, kernel is launched, and matrix Cdevice is transferred from de-
vice to host asychronously. Concurrently, Ahost*B is calculated on host using
MKL10.1.0.018 (mentioned as MKL later throughout this paper), and the result
Chost is stored in host directly. The division algorithm is demonstrated simply
as follows.

Pseudo Code of parallel computing in system level

For(;division factor < 1;division factor += stride)
{

Async transfer matrix B to device
Async transfer matrix A partially to device
Kernel lanuch
Async transfer matrix C partially to device
Cblas_sgemm // task running on host
cudaThreadSynchronize()
//blocking until task on device complete

}

As presented in Fig. 9, the performance of device improves while the size of
matrix increases. As a whole, the speedup is rough equal to Ghost / Gdevice. For
example, when the matrix dimension is 4096, Ghost is 35GFLOPS and Gdevice is
301GFLOPS. And the system achieves the peak performance of 341GFLOPS
with the factor being 0.875 which approaches 0.89, the theoretical result of
Gdevice / (Ghost + Gdevice). And the practical speedup is 13%, which is close to
12%, the result of Ghost / Gdevice.

Performance Optimization Strategies on GPU 161

0

50

100

150

200

250

300

350

400

0

0
.1
25

0
.2
5

0
.3
75 0

.5

0
.6
25

0
.7
5

0
.8
75

1

Division Factor

P
e
rf
o
rm
a
n
c
e
(G
F
L
O
P
S
)

1024

2048

3072

4096

5120

Fig. 9. Task Division on Platform 2

3.7 Streamlizing the Divided Task on Device

Based on the above attempts, three task division routines, CUBLAS2.2 with
MKL, optimized algorithm with MKL, and streamlized algorithm with MKL,
are tested on platform2 and compared with each other.

In Fig. 10, owing primarily to the extra launch overhead and transfer band-
width, the advantage of streamlization reveals until the matrix dimension is big
enough to approach the peak transfer bandwidth. With appropriate division fac-
tor, streamlized routine with 6 streams can run up to 436GFLOPS, about 2%
faster than optimized routine, and 18% faster than the vendor’s implementation
optimized by task division strategy. Compared with the traditional way of GPU
computing, the streamlized routine using task division strategy runs up to 23.5%
faster than the vendor’s implementation.

4 Accelerating HPL Benchmark in Heterogeneous
System

4.1 Key Parameters

There are two controllable parameters playing important roles in tuning the
practical implementation of HPL benchmark targeting at the peak performance.
N is the matrix dimension, and NB is the block sizes one wants to run, which
can be used to control the width of matrix A and the hieght of B. Therefore we
analyze effects of N and NB on the performance of benchmark firstly.

Using CUBLAS2.1 and Pageable memory, we test HPL benchmark on Plat-
form2. As presented by Fig. 11, both N and NB have a positive effect on the
performance for the most part. Furthermore, as NB increases, the effect of NB
on performance becomes weaker and weaker.

162 A. Ma et al.

0

50

100

150

200

250

300

350

400

450

500

0

0

.

0

6

0

.
1

1

0

.

1

7

0

.

2

2

0

.

2

7

0

.

3

1

0

.

3
8

0

.

4

7

0

.

5

5

0

.
6

1

0

.

6

4

0

.

6

9

0
.

7

6

0

.

8

0

.

8

3

0

.

8

8

0

.

9

5

0

.

9
8

Division Factor (Matrix Dimension : 7168)

P
e
rf
o
rm
a
n
c
e
(G
F
L
O
P
S
)

CUBLAS2.2

Optimized

Streamlized with 6 streams

Fig. 10. Performance comparison of three routines using MKL

0

5

10

15

20

25

30

35

40

45

50

64 128 256 384 512 640 768 896 1024 1152

NB

P
e
rf
o
rm
a
n
c
e
(G
F
L
O
P
S
)

2048X2048

4096X4096

6144X6144

8196X8196

Fig. 11. N and NB’s effects on performance

4.2 Acceleration Results

HPL benchmark is divided into different working sets running on host and de-
vice in parallel, using CUBLAS2.1 and MKL respectively. Before utilizing the
capability of the whole system, the performances of HPL on device and host are
tested apart and compared in Fig. 12.

Apparently, as N increases linearly, the performance of HPL implemented
using CUBLAS improves remarkably on the whole and becomes sustained at
last, while the performance of HPL running on host using MKL improves slowly
in waves. Because of the transfer overhead, the application using MKL behaves
better than the application implemented with CUBLAS. When the transfer over-
head is hidden by the advantage brought by GPU’s computing capability, the
situation reversed.

The theoretical Double Precision performance of host and device on Plat-
form 2 are 40GFLOPS and 78GFLOPS respectively. According to the division

Performance Optimization Strategies on GPU 163

NB

0

5

10

15

20

25

30

35

40

45

50

1024 2048 3072 4096 5120 6144 7168 8192 9216 10240

Matrix Dimension (N)

D
P
 P
e
rf
o
rm
a
n
c
e
(G
F
L
O
P
S
) 256

512

768

1024

32

64

128

192

Fig. 12. HPL performance using CUBLAS and MKL. Real line is on behalf of
CUBLAS2.1, Broken line is on behalf of MKL

Table 3. DP performance of HPL (N=12288)

Division factor(ratio) 0.64 0.65 0.66 0.67 0.68 0.69
DP Performance(GFLOPS) 61.28 61.64 62.62 62.07 61.55 60.94

equation Gdevice / (Ghost + Gdevice), the best division factor should be 0.66,
which is confirmed by our later experiment results in Table. 3. Moreover, the
parallel implementation delivers 62.62GFLOPS, 53% of the 118GFLOPS sys-
tem peak performance. Given more memory on device, we will take advantage
of under-utilized hardware further.

5 Conclusions and Future Work

Although we have achieved considerable speedup for matrix multiplication al-
gorithm and HPL benchmark by means of three basic optimization strategies,
there still is a wide optimization space with limited transfer bandwidth. Ad-
dressing the load balance issue, effective instruction scheduling and application
streamlizing would introduce much more improvements. Furthermore, we will
explore the optimization space of sparse linear algebra, tune the optimization
factors and improve our experimental theory.

References

1. Ghuloum, A., Sprangle, E., Fang, J., Wu, G., Zhou, X.: Ct: A Flexible Parallel
Programming Model for Tera-scale Architectures. Technical report, Intel Research
(2007)

164 A. Ma et al.

2. Gutowitz. H.: A tutorial introduction to Swarm. Technical report, The Santa Fe
Institute (1993)

3. Monteyne, M.: RapidMind: Multi-Core Develpment Platform, RapidMind Official
Page (2007), http://www.rapidmind.net/

4. Dongarra, J.J., Luszczek, P., Petitet, A.: The LINPACK Benchmark: Past, Present,
and Future. Concurrency and Computation: Practice and Experience 15, 803–820
(2003)

5. http://www.netlib.org/benchmark/hpl/index.html

6. Halfhill, T.R.: Parallel Processing With CUDA. Microprocessor Report (January
2008)

7. Stone, J.: Accelerating Computational Biology by 100x with CUDA. In: NVISION
(2008) (presentation)

8. Hartley, T.D.R., Catalyurek, U., Ruiz, A., Igual, F., Mayo, R., Ujaldon, M.:
Biomedical image analysis on a cooperative cluster of gpus and multicores. In: ICS
2008: Proceedings of the 22nd annual international conference on Supercomputing,
pp. 15–25. ACM, New York (2008)

9. Bond, A.: Havok FX: GPU-accelerated physics for PC games. In: Proceedings of
Game Developers Conference 2006 (2006)

10. Hagen, T.R., Lle, K.-A., Natvig, J.R.: Solving the Euler equations on graphics
processing units. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra,
J. (eds.) ICCS 2006. LNCS, vol. 3994, pp. 220–227. Springer, Heidelberg (2006)

11. Zeller, C.: Cloth simulation on the GPU. In: ACM SIGGRAPH 2005 Conference
Abstracts and Applications (2005)

12. Elsen, E., Houston, M., Vishal, V., Darve, E., Hanrahan, P., Pande, V.S.: N-Body
simulation on GPUs. In: Proc. 2006 ACM/IEEE Conf. on Supercomputing, p. 188
(2006)

13. Phillips, J.C., Braun, R., Wang, W., Gumbart, J., Tajkhorshid, E., Villa, E.,
Chipot, C., Skeel, R.D., Kale, L., Schulten, K.: Scalable molecular dynamics with
NAMD. J. Comp. Chem. 26, 1781–1802 (2005)

14. Stone, J.E., Phillips, J.C., Freddolino, P.L., Hardy, D.J., Trabuco, L.G., Schul-
ten, K.: Accelerating molecular modeling applications with graphics processors. J.
Comp. Chem. 28, 2618–2640 (2007)

15. Stone, S.S., Haldar, J.P., Tsao, S.C., Hwu, W.W., Liang, Z., Sutton, B.P.:
Accelerating advanced MRI reconstructions on GPUs. In: ACM Computing Fron-
tier Conference (2008)

16. openVIDIA, http://openvidia.sourceforge.net/
17. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In:

SC 2008: Proceedings of the 2008 ACM/IEEE conference on Super-computing, pp.
1–11. IEEE Press, Los Alamitos (2008)

18. Fatica, M.: Accelerating Linpack with CUDA on heterogenous clusters. In: GPGPU
2009. ACM, New york (2009)

19. Castillo, M., Chan, E., Igual, F.D., Mayo, R., Quintanaorti, E.S., Quintana-orti,
G., Van De Geijn, R., Van Zee, F.G.: Making Programming Synonymous with
Programming for Linear Algebra Libraries, FLAME Working Note #31. The Uni-
versity of Texas at Austin, Department of Computer Sciences. Technical Report
TR-08-20 (April 17, 2008)

20. Quintana-Orti, G., Igual, F.D., Quintana-Orti, E.S., van de Geijn, R.: Solving
Dense Linear Systems on Platforms with Multiple Hardware Accelerators. In:
PPoPP, pp. 121–129 (2009)

21. decuda, http://www.cs.rug.nl/~wladimir/decuda/

http://www.rapidmind.net/
http://www.netlib.org/benchmark/hpl/index.html
http://openvidia.sourceforge.net/
http://www.cs.rug.nl/~wladimir/decuda/

A Practical Approach of Curved Ray Prestack
Kirchhoff Time Migration on GPGPU�

Xiaohua Shi, Chuang Li, Xu Wang, and Kang Li

School of Computer Science,
Beihang University, Beijing 100083, China
xhshi@buaa.edu.cn, whlichuang@126.com,

{xu.wang,kang.li}@sei.buaa.edu.cn

Abstract. We introduced four prototypes of General Purpose GPU so-
lutions by Compute Unified Device Architecture (CUDA) on NVidia
GeForce 8800GT and Tesla C870 for a practical Curved Ray Prestack
Kirchhoff Time Migration program, which is one of the most widely
adopted imaging methods in the seismic data processing industry. We
presented how to re-design and re-implement the original CPU code to
efficient GPU code step by step. We demonstrated optimization meth-
ods, such as how to reduce the overhead of memory transportation on
PCI-E bus, how to significantly increase the kernel thread numbers on
GPU cores, how to buffer the inputs and outputs of CUDA kernel mod-
ules, and how to utilize the memory streams to overlap GPU kernel
execution time, etc., to improve the runtime performance on GPUs. We
analyzed the floating point errors between CPUs and GPUs. We pre-
sented the images generated by CPU and GPU programs for the same
real-world seismic data inputs. Our final approach of Prototype-IV on
NVidia GeForce 8800GT is 16.3 times faster than its CPU version on
Intel’s P4 3.0G.

Keywords: General Purpose GPU, Prestack Kirchhoff Time Migration,
CUDA.

1 Introduction

The main goal of earth exploration is to provide the oil and gas industry with
knowledge of the earth’s subsurface structure to detect where oil can be found
and recovered. To do so, large-scale seismic surveys of the earth are performed,
and the data recorded undergoes complex iterative processing to extract a ge-
ological model of the earth. The data are then interpreted by experts to help
decide where to build oil recovery infrastructure[1].

In practice, seismic data processing is divided into two steps. The first step
applies signal processing algorithms to normalize the signal over the entire survey
� This work was supported by grants from the National High Technology Research and

Development Program of China (863 Program) No.2007AA01A127 and the Special-
ized Research Fund for the Doctoral Program of Higher Education (New Faculty)
2007006028.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 165–176, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

166 X. Shi et al.

Fig. 1. Relationship between source, receiver, scatter point and their corresponding
migration curve in PKTM.TS is the sending time from the source to the scatter point.
TR is the reflecting time from the scatter point to the receiver.

and to increase the signal-to-noise ratio. Hundreds of mathematical algorithms
are available during this step, from which geophysical specialist will select the
particular candidates for seismic data by experience. The second step, which is
the most time-consuming one, is designed to correct for the effects of changing
subsurface media velocity on the wave propagation through the earth. Prestack
Kirchhoff Time Migration (PKTM) algorithm used in the second step is one
of the most widely adopted imaging methods in the seismic data processing
industry.

Fig. 1 shows the relationship between the source, receiver and scatter point
as well as their corresponding migration curves used in PKTM algorithm. It
assumes that the energy of a sampled point on an input trace is the superposition
of the reflections from all the underground scatter points that have the same
travel time. The purpose of the migration processing is to spread the points
on an input trace to all possible scatter points in the 3D space. Each input
trace is independent of the others when it is migrated, and this makes this
problem suitable for parallelization on the cluster. After all input traces are
migrated, the migrated samples are accumulated to get the migrated image. The
algorithm is heavily time-consuming because of the huge number of iterations at
runtime.

A PKTM program, especially Curved Ray PKTM (CR-PKTM) program [2],
usually runs days or weeks to process a typical seismic job on clusters with
hundreds of machines. Fig. 2 illustrates a typical approach of CR-PKTM on
cluster [3]. Process 1–N on different nodes will get the same amount of trace data
as inputs. And the calculation work on each node is almost the same. Clearly,
one of the efficient ways to improve the overall performance of CR-PKTM is to
improve the average calculating performance for each node in the cluster.

In a matter of just a few years, the programmable graphics processor unit
has evolved into an absolute computing workhorse. With multiple cores driven
by very high memory bandwidth, today’s GPUs offer incredible resources for
both graphics and non-graphics processing [4]. The GPUs could achieve up to
hundreds or even thousands of GFLOPS, comparing to the general CPUs that
only have dozens of GFLOPS so far.

A Practical Approach of CR-PKTM on GPGPU 167

Read traces

Broadcast
Migration
computing

Local disk

Mem bufferloop

Process 0

Receive
Migration
computing

Local disk

Mem bufferloop

Process 1

⋯⋯Receive
Migration
computing

Local disk

Mem bufferloop

Process 2

Fig. 2. A parallelized CR-PKTM program on cluster

The main reason behind such an evolution is that the GPU is specialized for
compute-intensive, highly parallel computation - exactly what graphics rendering
is about - and therefore is designed such that more transistors are devoted to
data processing rather than data caching and flow control. When GPUs are
used as general platforms to exploit data-level-parallelism (DLP) for non-graphic
applications, they are known as General Purpose GPUs (GPGPUs).

As a leading role in the seismic data processing industry, Compagnie Gen-
erale de Geophysique (CGG) has evaluated the GPGPU and Compute Unified
Device Architecture (CUDA) as accelerating platforms in its migrating software
[1]. For the DLP programming models on GPU, there are a lot of research works.
I. Buck et al. presented the Brook system for GPGPU [5]. Brook extends C to
include simple data-parallel constructs, enabling the use of the GPU as a stream-
ing coprocessor. D.Tarditi et al. presented Accelerator, a system that uses data
parallelism to program GPUs for general-purpose uses instead [6]. Peakstream
Corp. developed a DLP programming platform for GPGPU [7]. The Peakstream
platform was a new software development platform that offered an easy-to-
use stream programming model for multi-core processors and accelerators such
as GPUs.

In this paper, we demonstrate how to utilize CUDA [4], GeForce 8800GT and
Tesla C870 GPUs of NVidia, to exploit the data-level-parallelism for a practical
CR-PKTM program.

2 Implement Curved Ray Prestack Kirchhoff Time
Migration on GPGPU

Fig. 3 presents the simplified pseudo code of a practical CR-PKTM program.
There are four-layer loops in the program. The outer two layers survey the
incoming floating points that represent different coordinates on the earth surface,
choose the appropriate candidates and pass them to the inner two loops to be
migrated on a particular cluster node.

168 X. Shi et al.

for(loopcount1){

for(loopcount2){ ...

while(condition1){ ...

if(condition2){ ...

for(loopcount3){... ...}

}else if(condition3){ ...

for(loopcount4){... ...}

}else{

for(loopcount5){... ...}

}

... ...

}//while

}//for loopcount2

}//for loopcount1

Fig. 3. Simplified pseudo code of a practical CR-PKTM program

Comparing with the Kirchhoff migration CPU code of PeakStream [7], the
practical CR-PKTM program has more branches, one more layer loop and more
complicated floating point calculations. As we known, the branches will hurt the
efficiency of the SIMD instructions of GPGPU at runtime.

2.1 Prototype I

There are four-layer loops in the practical CR-PKTM program in Fig. 3. The
outer two-layer loops select appropriate coordinates to be migrated in the inner
two-layer loops. Rewriting the inner two-layer loops from CPU code to CUDA
code is an easy way to utilize the GPGPU. Fig. 4 illustrates how Prototype-I
works. For every selected coordinate, we send the input data from CPU memory
to the GPU memory, start CUDA kernels on the GPU [4], calculate the migration
results, and then send the result back to CPU memory.

CPU mem. to GPU mem.

Start kernels on GPU

GPU mem. to CPU mem.

every trace

Fig. 4. Flowchart of Prototype-I

A Practical Approach of CR-PKTM on GPGPU 169

However, there are serious bandwidth issues in Prototype-I. Because the input
data for every trace, including the original collected data, the pre-processed
data and the result array, are as large as more than 100M bytes, the average
transporting overhead between CPU memory and GPU memory could be 150–
160ms (for about 300M bidirectional data), with an ideal transporting rate about
5GB/s and practical transporting rate about 2GB/s. Although the GPU could
finalize every thread in 5ms, the total cost of calculation and data transportation
is much higher than the original CPU code, which could be less than 15ms on
Intel’s P4 3.0G.

2.2 Prototype II

With a deeper study on the CR-PKTM program in Fig.3, we found the input
data for every trace include a large data array with more than 100M bytes, which
record the migration result and are partly used in the next traces. We could keep
these arrays in the GPU memory until them out of usage. For the 512M GPU
memory, we could keep up to 300 traces of data in the GPU memory.

Fig.5 presents the flowcharts of Prototype-II. Comparing to Prototype-I,
Prototype-II pre-sends the large data arrays to GPU memory before the loop,
and only transports about 1M bytes between CPU memory and GPU memory
for every trace. The transportation overhead between the two memories is less
than 1ms per trace. Because the CUDA code of the inner two-layer loops could
be finalized in 5ms, the GPU code on NVidia GeForce8800GT could be more
than 4 times faster than the CPU code on Intel’s P4 3.0G.

Send the large arrays
to GPU mem.

Send ~1M bytes to
GPU mem.

Start kernels on GPU

Send ~1M bytes to
CPU mem.

Send back the large
arrays to CPU mem.

every trace

Fig. 5. Flowchart of Prototype-II

170 X. Shi et al.

Although Prototype-II dramatically decreased the transportation overhead
between CPU and GPU memories, the straightly translated CUDA code from
CPU code did not take advantage of the powerful SIMD cores of GPU well.
For every incoming trace, there are at most 256 coordinates will be selected to
the inner loops, that means at most 256 threads on the GPU will be triggered.
For the NVidia GeForce8800GT GPU, there are 14 multiprocessors and every
multiprocessor has 8 stream processors. Every stream processor will run less than
3 threads on average. That means most stream processors will be idle during the
calculation.

Furthermore, there are a lot of branch instructions in the inner loops. These
branches will seriously hurt the runtime efficiency of the SIMD cores also.

2.3 Prototype III

Fig. 6 demonstrates the flowcharts of Prototype-III. The original CR-PKTM pro-
gram has been separated in 5 steps, Step0–Step4. Step0 runs on CPU, initializes
the input data and send them to the GPU memory.

Step1–Step4 run on GPU as CUDA kernels. Step1 starts one thread for ev-
ery incoming coordinate. It will survey every coordinate, select the appropriate
candidates, do some pre-migration calculations and send the results to Step2.

Step2 starts one thread for every appropriate coordinate, deals with the same
calculation work as the 3rd layer loop (the while loop) in Fig. 3. There is an
if-elseif-else conditional statement in the 3rd layer loop. The for loop with loop-
count3 will be rewritten to the CUDA code in Step3, and the for loop with

Send the large arrays
to GPU mem.

Step0

Step1

Step2

Step3 Step4

every trace

Send back the large
arrays to CPU mem.

Fig. 6. Flowchart of Prototype-III

A Practical Approach of CR-PKTM on GPGPU 171

loopcount4 will be rewritten to the CUDA code in Step4 also. The for loop with
loopcount5 is never executed in practical, so we just ignore it.

Step2 makes the decision which Step, Step3 or Step4 will be executed next.
Step3 and Step4 are well designed CUDA kernels for NVidia’s SIMD cores.

According to the iteration times of the more inner loops, Step3 will trigger at
least 3000 threads, and Step4 will trigger at least 1000 threads, respectively.

Prototype-III redesigned the original CPU code to fit the GPU and CUDA
features better, and improved the runtime efficiency more than 7.2 times com-
paring with the CPU code on Intel’s P4 3.0G.

2.4 Prototype IV

Using CUDA Profiler to analyze the runtime performance of Prototype-III, we
can find Step2 dominated the executing time, like Fig. 7. Step2 starts one thread
for every appropriate coordinate, deals with the same calculation work as the
3rd layer loop (the while loop) in Fig. 3. There are at most 256 threads will be
triggered in Step2 for every input trace. However, for GPUs like 8800GT or Tesla
C870 with more than 100 cores, the thread number is too small to utilize the
cores well. These threads will spend more time in waiting I/O instead of kernel
code.

One efficient way to improve the runtime performance of Step2 is to increase
the thread number of it. Because Step2 uses the output of Step1 as input, we
applied input and output buffers for both steps. The buffers save multiple input
and output trace data. With the input and output buffers, Step1 and Step2
could start N*256 threads before Step3 and Step4, respectively, in which N is
the buffered trace number. Fig. 8 presents the flowchart of Prototype-IV.

Fig. 9 demonstrates how many traces should be buffered to get the best run-
time performance in Step1 and Step2. For the 8800GT and Tesla C870 GPUs we
used, the best trace number is 20. That means there are at most 20*256, about
5120 threads, will be trigger in Step1 and Step2.

Fig. 10 shows the profiling data of Prototype-IV. The memcopy function in-
stead of any Steps dominates the execution time now. The memcopy functions
before Step3 and Step4 send a large array namely WAVE, from CPU to GPU.

GPU Time

0.00% 5.00% 10.00% 15.00% 20.00% 25.00% 30.00% 35.00% 40.00%

step2 (290)

step3 (290)

step4 (290)

memcopy (11)

step1 (291)

Fig. 7. CUDA profiling data of Prototype-III

172 X. Shi et al.

Send the large arrays
to GPU mem.

Step0

Step1

Step2

Step3 Step4

every N trace

every trace

Send back the large
arrays to CPU mem.

Fig. 8. Flowchart of Prototype-IV

Parallelizing Step1 & Step2

430

440

450

460

470

480

490

500

510

520

1 2 3 4 5 6 10 15 20 25 30 60 100 150
Trace

Ti
m

e
(m

s)

Fig. 9. Parallelizing Step1 and Step2 by buffering their inputs and outputs for multiple
traces

GPU Time

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00%

step2 (14)

step3 (270)

step4 (270)

memcopy (330)

step1 (14)

Fig. 10. CUDA profiling data of Prototype-IV

A Practical Approach of CR-PKTM on GPGPU 173

Stream Numbers of Prototype-IV

360
370
380
390
400
410
420
430
440
450
460

N/A 1 2 4 5 10 20
Stream Number

Ti
m

e
(m

s)

Fig. 11. Streaming Prototype-IV from 0 to 20

We can use the CUDA streams to overlap the I/O time by kernel execution
time. Fig. 11 shows how many streams should be applied to get the best runtime
performance. The best stream number should be 5 under this scenario.

The Prototype-IV with streams support is more than 16.3 times faster than
its CPU version on Intel’s P4 3.0G.

3 Floating Point Errors

The Curved Ray PKTM accumulates the floating point errors. Fig. 12 demon-
strates a piece of CR-PKTM code at the image generating phase. The image
buffer WOT will be accumulated times and times, before the final image been
generated. It is easy to know, the floating point errors will be accumulated times
and times too, if they do exist.

Both 8800GT and Tesla C870 have IEEE-compliant additions and multiplica-
tions. However, the two operations are often combined into a single multiply-add

for(...)

{

int ITM1 = KTM1>>12;

WOT(IT,KF,MC,N4,NOFF)= WOT(IT,KF,MC,N4,NOFF)

-TA1*(WAVE(ITM1-KP1,1,1,NTNEW,NBAND)

-WAVE(ITM1,1,1,NTNEW,NBAND)

-WAVE(ITM1,1,1,NTNEW,NBAND)

+WAVE(ITM1+KP1,1,1,NTNEW,NBAND));

KTM1=KTM1 + KDELT;

TA1=TA1 + ADELT;

}

Fig. 12. Sample CR-PKTM code at image generating phase

174 X. Shi et al.

Table 1. Relative floating point errors between CPU and GPU results

Relative Error % 1 Trace 10 Traces 50 Traces 100 Traces 300 Traces

0 26974088 26960697 26787671 26584427 26041297
� 0.0001 124528 104584 225252 358052 734273
�0.001 5340 34188 78441 135211 268185
�0.01 0 3460 8164 16866 31859
�0.1 1 377 873 1869 3787
�1 1 83 490 1230 5129
�10 14 310 2000 4180 13981
�100 43 286 1022 1989 4920
> 100 17 47 119 208 601
Errors/Total % 0.479 0.529 1.167 1.917 3.921

instruction fmad, which truncates the intermediate result of the multiplication
and has a maximum error more than 0.5 ulp (unit in the last place). For other
operations, like divisions, sqrtf, etc., the maximum ulp errors could up to 3–4.
CPU operations have the similar ulp problems also. That means, the two differ-
ent types of processors may get different calculation results for the same code
fragment, cf. Fig. 12.

For instance, the integer number KTM1 in Fig. 12 is rounded from floating
points. It will be right shifted 12 bits, to get an index number of array WAVE. If
CPU and GPU get different KTM1 numbers before, like 13000704 and 13000703,
they will get different shifted indexes like 3174 and 3173. The two different
indexes of WAVE will cause totally different calculation results of WOT.

Table 1 shows the relative errors of final images between CPU and GPU code.
The outputs of CPU code, which are assumed to be more accurate, are selected
as baseline. The relative error rates have been accumulated trace by trace, from
0.479% to 3.921% after 300 traces.

4 Performance Evaluation

We implemented the practical CR-PKTM program on NVidia 8800GT and Tesla
C870 GPUs, which have 512M and 1G GPU memory, respectively, and both have
PCIE-16X and CUDA2.0 support. The GPUs could achieve up to 336GFLOPs
and 350GFLOPs in terms of single-precision floating point calculation, respec-
tively. The host machine of 8800GT has an Intel’s P4 3.0G CPU and 2G DDR400
memory. The Tesla’s has an AMD Athlon64 3000+ CPU and 2G DDR400 mem-
ory. The operation systems are Linux 2.4.21. The GCC version is 3.2.3.

For 30000 traces of input data, Prototype-III and Prototype-II on 8800GT are
7.2 times and 4 times faster than the CPU code on Intel’s P4 3.0G, respectively,
like Fig. 13. Prototype-IV on 8800GT and Prototype-IV on Tesla C870 are 16.3
and 11.6 times faster than the CPU code, respectively. It is interesting that
8800GT is faster than Tesla C870, although it is not a strictly “apple-to-apple”
comparison because they have different types of host machines.

A Practical Approach of CR-PKTM on GPGPU 175

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

300 3000 30000 Traces

Ti
m

e
(m

s)

Intel P4 3.0G

Prototype-I
Prototype-II

Prototype-III

Prototype-IV 8800
Prototype-IV Tesla

Fig. 13. Performance of CPU code, Prototype I, Prototype-II, Prototype-III and
Prototype-IV

Fig. 14. Final images on CPU and GPU. The Left image was generate by CPU code,
the right image was generated by GPU code.

Prototype-I on 8800GT is much slower, almost 10 times, than the CPU code
on P4, because of the significantly heavy transportation overhead between CPU
and GPU memories, as what we have aforementioned in Section 2.1.

Fig. 14 shows the final images generated by the CPU and GPU CR-PKTM
programs for the same input traces. Although Section 3 describes that the
floating point errors could be a serious issue when implementing CR-PKTM on
GPUs, the final images do not have distinct difference and are all acceptable by
geophysicists.

5 Conclusion

For seismic data processing, GPGPU is an appropriate accelerating platform.
Many seismic data processing applications, like CR-PKTM, accept the single-
precision results of floating point calculation. As we known so far, comparing
with the double precision, the single precision is the strength of GPU in terms
of performance and power consumption.

176 X. Shi et al.

However, it is not a “free lunch” to port the original CPU code to GPGPU
code. It is not easy to transform the sequential CPU code, C or Fortran programs,
to data-parallelized GPU code with hundreds and thousands threads and more
suitable to the SIMD cores.

In this paper, we introduced a serial of GPGPU prototypes for a practical
CR-PKTM program, and presented the not-easy code migration work. We hope
this work could be helpful for the future GPGPU applications, especially the
seismic data procession applications, and the GPGPU programmers.

References

1. Deschizeaux, B., Blanc, J.Y.: Imaging Earth’s Subsurface Using CUDA, http://
developer.download.nvidia.com/books/gpu_gems_3/samples/gems3_ch38.pdf

2. Taner, M.T., Koehler, F.: Velocity spectra-digital computer derivation and applica-
tion of velocity functions. Geophysics 34, 859–881 (1969)

3. Zhao, C.H., Shi, X.H., Yan, H.H., Wang, L.: Exploiting coarse-grained data paral-
lelism in seismic processing. In: Proceedings of the 2008 Workshop on Architectures
and Languages for Throughput Applications: Held in conjunction with the 35th
International Symposium on Computer Architecture, Beijing, China (2008)

4. NVidia, NVidia CUDA Computer Unified Device Architecture Programming Guide,
Version 2.0 (2008)

5. Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., Hanra-
han, P.: Brook for GPUs: Stream Computing on Graphics Hardware, ACM 0730-
0301/04/0800-0777, pp. 777–786. ACM Press, New York (2004)

6. Tarditi, D., Puri, S., Oglesby, J.: Accelerator: Using Data Parallelism to Program
GPUs for General-Purpose Uses. In: Proceedings of ASPLOS 2006, pp. 325–335
(2006)

7. Papakipos, M.: The PeakStream Platform: High-Productivity Software development
for Nulti-Core Processors, Writepaper, PeakStream Corp. (2007)

http://developer.download.nvidia.com/books/gpu_gems_3/samples/gems3_ch38.pdf
http://developer.download.nvidia.com/books/gpu_gems_3/samples/gems3_ch38.pdf

GCSim: A GPU-Based Trace-Driven Simulator
for Multi-level Cache

Han Wan, Xiaopeng Gao, Xiang Long, and Zhiqiang Wang

State Key Laboratory of Virtual Reality Technology and System,
School of Computer Science and Engineering, Beihang University

Xueyuan Rd.37, 100191, Beijing, China
{wanhan,gxp,long,wangzhiqiang}@les.buaa.edu.cn

Abstract. We describe the design of parallel trace-driven cache simu-
lation for the purposes of evaluating different cache structures. As the
research goes deeper, traditional simulation methods, which can only
execute simulation operations in sequence, are no longer practical due
to their long simulation cycles. An obvious way to achieve fast parallel
simulation is to simulate the independent sets of a cache concurrently on
different compute resources. We considered the use of generic GPU to
accelerate cache simulation which exploits set-partitioning as the main
source of parallelism. But we show this technique is not efficient in the
case that just simulating one cache configuration, since a high correlation
of the activity between different sets. Trace-sort and multi-configuration
simulation in one single pass techniques are developed, taking advantage
of the full programmability offered by the Compute Unified Device Ar-
chitecture (CUDA) on the GPU. Our experimental results demonstrate
that the cache simulator based on GPU-CPU platform gains 2.44x per-
formance improvement compared to traditional sequential algorithm.

Keywords: parallel algorithms; caches; trace-driven simulation;
GPGPU; CUDA.

1 Introduction

Caches are small high-speed buffer memories that shorten the performance gap
between the CPU and memory in the computer systems. Consequently, as part of
the design of a new system, many different cache architectures are evaluated and
compared. Such analysis is generally performed by trace-driven Cache simulator
[1]. Compared to execution-driven cache simulator [2] and model analysis [3],
trace-driven simulator has the advantage of yielding better accuracy and being
of more flexibility.

As the cache architecture grows in complexity, trace-driven simulation demand
lots of storage for reference and computer time to produce statistically reliable
results. It becomes worthwhile to consider parallel methods for cache simulation.
An algorithm for parallel simulation is the subject of this paper.

Several researchers have contributed techniques for reducing the simulation
time. For example, one single pass simulation [4] is able to compute statistics for

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 177–190, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

178 H. Wan et al.

different sizes of cache within a single pass. But it is confined to certain range
of parameters and may create large overhead as flexibility increases. Trace re-
duction technique [5] can greatly reduce trace length but cannot guarantee the
accuracy of performance metrics. There are also parallel simulation method such
as time-parallel simulation [6] and SIMD massive parallel simulation [7]. Com-
pared to the time-parallel simulation, the method proposed in this paper exploits
both set-parallelism and search-parallelism in the trace-driven cache simulation.
Our method can simulate the behavior of the cache accurately without extra pro-
cessing for simulation result correction. Furthermore, our algorithm is of more
flexibility as it is not limited to LRU simulation or other acceleration condition.

In this paper, we introduce a general parallel method to accelerate the simu-
lation of multi-level cache, which utilizes the computation ability of GPU. Ex-
tension of our proposed method can be applied to GPU based multi-core cache
simulator.

For implementation, we map our parallel trace-driven simulation algorithm
to the SIMD computation model in GPU. A trace-driven simulator for two-level
cache is constructed based on the GeForce 8800GTX with Compute Unified
Device Architecture (CUDA). With different parallel granularities, we imple-
mented several parallel algorithms for our experiment. The most efficient algo-
rithm shows 2.44x speedup compared to traditional CPU-based serial algorithm.

The paper is organized as follows: section 2 describes concepts of Graphics
Processing Unit and parallel processing model. Section 3 presents our CUDA
based parallel algorithm as well as related techniques. Section 4 gives the imple-
mentation of simulation algorithms. Section 5 elaborates the results of experi-
ments. Finally, Section 6 summarizes the results.

2 Preliminaries

2.1 Traditional Trace-Driven Cache Simulator

Sequential simulation algorithm in traditional trace-driven cache simulator can
be described as fellows:

For each memory reference address, the cache simulator computes its set num-
ber and tag information according to cache parameters such as the block size
and associativity. Then simulator checks corresponding set to find out whether
there is a cache line has the same tag as current memory reference. And finally
set status and metrics will be updated accordingly.

2.2 General-Purpose Computation on GPUs

In the last decade, GPU performance has been increasing so fast that even out
paces the speed of integrated circuit predicted by Moore’s Law. This rapid in-
crease in GPU performance takes advantage of the highly parallel nature of visual
computing. State of the art graphic architectures provide tremendous memory
bandwidth and computational power. Besides performance improvement of the

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 179

hardware, the programmability also has been significantly increased. These im-
provements make GPU a compelling platform for general-purpose computing as
well as visual computing.

Advanced GPU architecture offers significant level of parallelism with rela-
tively low cost. The operations executed in GPU are similar to the well known
vector processing model, which is also known from Flynn’s taxonomy as Sing
Instruction Multiple Data or SIMD. Therefore it can be predicted that many ap-
plications use to be hosted on vector supercomputers in the past can be deployed
on GPU platform. With the ever increasing programmability, specific powerful
programming tools (e.g. CUDA [8] and CTM [9]) can be used for implementa-
tion of algorithms. For example, GPU has been utilized as a math co-processor
in special games and physics simulations in [10]; [11] introduces a GPU based
implementation of Reyes-style adaptive surface subdivision; [12] presents fast
algorithms for scan and segmented scan on GPUs; [13] develops a programming
framework on the graphics architectures and applies it to a variety of problems
(e.g. matrix multiplication); [14] introduces a framework for the implementation
of linear algebra operators on GPUs; And in [15], Fast Fourier Transform is
implemented on NVIDIA graphics architecture.

Among the various applications of GPU programming, the major challenge
is how to map the algorithm to units of graphics architecture. As shown in the
GPGPU technique, applications need be partitioned into independent parallel
sections. And each section needs to be implemented as a kernel executes on a
processing unit. While input and output of a kernel are stored in the memory of
GPU.

2.3 Parallel Processing Model

It has been observed that the simulation process of each memory reference shows
a weakly partial order. Whether current reference is a cache hit is dependent
on cache status, which is modified by the memory references that have been
simulated. This observation implies that memory references belonging to the
same cache set should be simulated jointly while simulation of different sets
need to be carried separately.

During cache simulation, the following operations are performed on an
address:

� Fetch address from the trace;

� Break address into tag, block number, block offset;

� Calculate set number;

� Search blocks in corresponding set;

� Update the set status and metrics.

Among all five steps, step 4 and step 5 are the two most time-consuming steps,
which can be performed independently on different sets. This observation leads

180 H. Wan et al.

to exploit of set-parallelism (i.e. trace-driven cache simulation can be performed
in parallel on a set base). Parallel simulation algorithm first classifies trace by set
numbers, and then implements simulation kernel. In addition to set-parallelism,
searching in the step 4 can also work in parallel.

In a coarse granularity, multi-configuration can be parallelized using the com-
putational resource on GPU. Once trace file is read into memory, the simulator
can generate metrics for cache with different parameters within a single pass.
Together with set-parallelism and search-parallelism in the process of cache sim-
ulation are explored, the cache simulator acceleration utilizing GPU is feasible.

3 Parallel Simulation Scheme on CUDA

3.1 CUDA

Modern NVIDIA GPUs, such as GeForce 8800 GTX are fully programmable
manycore chips built around an array of parallel processors as shown in Fig. 1.
The GPU consists of an array of SM multiprocessors, each can support up to
1024 concurrent threads. A single SM contains 8 scalar SP processors, each with
1024 32-bit registers, for total of 64KB on-chip memory that has very low access
latency and high bandwidth. A read-only constant/texture cache is shared by
all the processors and serves the purpose of speeding up reads from the con-
stant/texture memory. The local and global memory spaces are implemented as
read-write regions of device memory and are not cached. All thread manage-
ment including creation, scheduling, and synchronization is performed entirely
in hardware by the SM.

CUDA provides the means for developers to execute parallel programs on the
GPU. It issues and manages computations on GPU as a data-parallel computing

GPU

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

TPC

Texture Unit
Tex L1

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

Host Interface

Interconnection Network

ROP L2 ROP L2

DRAM DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

ROP L2

DRAM

Vertex Work
Distribution

Pixel Work
Distribution

Compute Work
Distribution

Input Assembler

Host CPU Bridge System Memory

Viewport / Clip /
Setup / Raster /

ZCull

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Fig. 1. Block Diagram of a G80 GPU

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 181

Block
(0,0)

Block
(2,1)

Block
(1,1)

Block
(0,1)

Block
(2,0)

Block
(1,0)

Grid 2

Grid 1

Block(1,1)
Thread
(0,0)

Thread
(2,1)

Thread
(1,1)

Thread
(0,1)

Thread
(4,0)

Thread
(3,0)

Thread
(2,0)

Thread
(1,0)

Thread
(3,1)

Thread
(4,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Thread
(3,2)

Thread
(4,2)

Fig. 2. CUDA Programming Model

device without the need of mapping computation to a graphics API. When
programming CUDA, programmers take GPU as a processing device capable
of executing a large number of threads in parallel. In the CUDA programming
model, an application is organized into a sequential host program that may
execute parallel program, referred to as kernels, on a parallel device as shown in
Fig. 2.

Host can request services of the device via specific programming interfaces.
Each kernel is executed as a batch of threads which are organized as a grid
of thread blocks. A thread block is a cluster of threads that communicate with
each other efficiently via fast shared memory and synchronize their execution for
memory access competition. Synchronization points are specified in the kernel.
Once such a point exists, threads in a block will be suspended until they all
reach the synchronization point. There is a limitation on the maximum number
of threads that a block can host. However, blocks of same dimensionality and
size that execute the same kernel can be clustered into a grid of blocks. Therefore
the total number of threads that can be launched in a single kernel invocation is
much larger than single block limitation. But threads in different thread blocks
from the same grid cannot communicate and synchronize with each other.

3.2 Parallel Simulation Algorithm Based on CUDA

As analyzed in section 2.3, we can utilize the GPU parallel architecture to opti-
mize the following computations:

� The simulation processes on different cache sets are independent. And the
computations on different thread blocks are also independent. Therefore the
parallel simulation on different cache set can be implemented by distributing
the simulation process of each cache set to a separate thread block in GPU.

182 H. Wan et al.

� Searching process is time-consuming when large associativity presents. As
this process is inherently parallel, given that threads in one block can com-
municate with each other in the same block, the search-parallelism can be
exploited by distributing the search operations to several threads.

3.3 Key Techniques

Bucket Sort. The original sort process is implemented on the CPU. It classifies
the trace data according to the cache set, and holds the original sequence of the
same cache set. It also sets up several buckets which numbers are in accordance
to the set numbers. And ultimately, the sort process matches memory references
to buckets according to the sequence in cache sets.

Since the sort process needs lots of time in the whole simulation, we finally
sorted trace on the GPU using radix sorting algorithm.

Ping-pong Buffer. In general, as cache lines are stored in static arrays in
memory, they need to be reordered after searching process is over. Ping-pong
buffer is therefore adopted to parallelize the reordering process.

� The information about one cache set is stored in two buffers: Buf0 and Buf1.
Assume initial input is Buf0;

� After each searching process, all information stored in Buf0 is copied to Buf1
according to the replacement policy and updating policy, then set the input
as Buf1 and output as Buf0;

� After each memory reference is simulated, exchange the position of input and
output buffer until the whole trace file is simulated. And the input buffer at
the time is the final status.

Memory Model on the GPU. Different memories on GPU vary greatly in
terms of bandwidth, which has a significant impact on the performance of the
simulator. The memory model adopted here is:

� Since the trace data is large, it can be only stored in the global memory;

� The information about the cache set, such as the cache lines, tag, status
and metrics, which needs high memory access speed, is stored in the shared
memory.

Stream Management. In order to improve performance, we use two streams
to parallelize cache simulation process and bucket sort process. As trace data
can be divided into multiple segments, one stream prepares the bucket sort for
next phase, while the other stream executes the simulation process on the sorted
stream. Parallelizing the two streams, we can achieve approximate 2x speedup
compared to one stream implementation.

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 183

There are specific limitations about the feature of supporting overlapped mem-
ory copy concurrently with kernel execution using new stream management in-
terface. Overlapping is only allowed on the 1.1 architectures (g84/g86/g92), and
it will revert to serial operation on the 1.0 architectures (g80).

4 The General Algorithm

When programming on the CUDA, users need to allocate device memory first,
then transfer data from host to device, and finally get results back from device
when computation is finished.

4.1 Parallel Simulation Algorithms for a Single-Level Cache
Simulation

The five parallel algorithms for single-level cache simulator are described as
follows:

Parallel Simulation Algorithm 1. Example of a references process Program
about one cache set on a thread block

program references process (reference)
begin
repeat
If(the memory reference is mapped to this cache set)
simulation the reference process;

Else
Discard it;

until reference = NULL
end.

In this algorithm, Trace data is not sorted, but simply stored in an array. The
simulation is parallelized at both set-parallelism level and search-parallelism
level. One thread block is dedicated to the simulation of one cache set, and
each thread in the block is in charge of searching in one cache line. For every
memory reference, each thread block needs to compute whether this data be-
longs to the cache set it is simulating, and simulates the cache function in case
the memory reference does. Since there are multiple threads executing the search
process and they work independently, synchronization is needed to find out if
the memory reference is hit, and then to update status and metrics.

Parallel Simulation Algorithm 2. Perform bucket sort on trace data. One
thread block is dedicated to the simulation of one cache set. And each thread in
the block is in charge of searching in one cache line.

184 H. Wan et al.

Parallel Simulation Algorithm 3. Perform bucket sort on trace data. One
thread block is dedicated to the simulation of one cache set. Only one thread in
each thread block is in charge of searching.

The difference between algorithm 2 and 3 is the searching process. While
algorithm 2 does searching in parallel, algorithm 3 does it in sequential. This
improvement to algorithm 3 is based on the consideration that the thread syn-
chronization consumes lots of computation cycles.

Parallel Simulation Algorithm 4. Similar to algorithm 2, but it using the
ping-pong buffer to accelerate the update process.

Parallel Simulation Algorithm 5. The simulation of multi-configuration is
implemented in a single pass. Since the sort process takes lots of cycles, sorted
trace data are used to simulate caches with different degrees of associativity. In
this algorithm, each thread block is dedicated to the simulation of one cache set,
while each thread within this thread block is dedicated to the simulation under
different degrees of associativity.

4.2 Algorithm for Multi-level Cache Simulator

Single-Configuration. Example of a Multi-level Cache Simulator Program

program CacheSimulation (Output){
initializeCache();
While (reference needs to be simulated)
{
Compute the access type and address of the reference;
If (access type == data access)
{

Find in the L1 cache data;
If (hit)

Update the cache set;
Else (miss)
{

Replace and update;
Find in the next level cache, if hit, data copy to L1 cache,
else find in the next level till the memory;

}
}
Else (access type == instruction read)
{

Find in the L1 instruction cache;
If (hit)

Update the cache set;
Else (miss)

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 185

{
Replace and update;
Find in the next level cache, if hit, data copy to L1 cache,
else find in the next level till the memory;

}
}

}
Write the dirty cache block to the memory;
Output the statistic;}

Multi-configuration parallel simulation in a single pass. When parallel
simulating the multi-configuration in a single pass, we use several threads to
parallel simulate traces belong to different cache set. One thread block simu-
lates one cache set, and each thread in this thread block takes charge of one
configuration simulation.

5 Performance

We use DineroIV sequential uniprocessor cache simulator for our evaluation. The
experiments were conducted on a test bed equipped with an Intel core 2 E6550
and GeForce 8800 GTX graphics card.

Our experiments consist of the simulation on various input traces which are
obtained from the NMSU Trace Base facility. The traces are collections of mem-
ory references from programs in the SPEC 92 benchmark suite.

5.1 Time Measurement

The CPU simulation time does not include the time that read trace file from
disk to memory. While the GPU simulation time includes the bucket sort time,
the time of data transfer from CPU to GPU, GPU simulation time, and the time
of results feed back from GPU to CPU.

5.2 Single Configuration Simulation for Single Level Cache

We simulate one trace file of 10MBytes to get the GPU simulation time distri-
bution as shown in TABLE II. The cache is 64 sets, 4-way set associative, with
16B line size, using LRU and write back policy.

It can be observed from the results Fig. 3: bucket sort process occupies a
great amount of time in simulation; Data download time is bounded to the
memory bandwidth between CPU and GPU; and data upload is very fast and
not significant compared to the others.

The rest experiments and analysis adopt alvinn.din as an example.

186 H. Wan et al.

Process Average Time (ms) Percentage
Bucket sort 40.09 36.609%

Data download 7.05 6.438%
Kernel executing 62.35 56.935%

Data upload 0.02 0.018%

Fig. 3. GPU Simulation Time Distributions

Fig. 4. Simulation Time Curve with Increasing Set Number

Increasing the Associativity. As shown in Fig. 4, A2-A4 represent parallel
algorithm 2-4 respectively. And we choose LRU as replacement policy, write-
back as updating policy in this experiment. X-axis represents cache configura-
tion in following format: number of sets (64), block size (16) and associativity
(4—16—64—128).

We found that the time using by A1 is several dozen times longer than others
so we do not show it in this figure. The reason behind this is that the unsorted
trace data is large and stored in the global memory. Thus A1 experiences long
memory access latency.

As the degree of associativity increase:

� Serial simulation time increased slowly. It benefits from the principle of lo-
cality. Hit rate is high since the memory reference is located centralized in an
address range. When associativity is increased, hit rate would not increase
dramatically, and thus the simulation time is not improved significantly.

� A2 and A4 simulation time increased. Since the thread number is increased
when associativity is increased in A1, this results in much more time spending
on synchronization.

� A1’s simulation time increased evidently. Since each thread block needs to
access all memory references, synchronization time is increased.

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 187

� A3 simulation time increased slowly. As each thread block has only one
thread, the sequential searching time is increased as the associativity in-
crease. When hit rate increased, searching time increment is negligible.

Increasing Set Number. Fig. 5 shows simulation time curves with increasing
set number when the cache block size and associativity are fixed.

Fig. 5. Simulation Time Curve with Increasing Set Number

As set number increase:

� Sequential simulation time reduces slowly. Hit rate increases as the set num-
ber increased. Since the degree of associativity is 4, the replacement and
update execution on CPU is fast.

� A1, A2, A3 and A4 simulation time first reduces fast and then slows down.
Hit rates are low when there are few sets. And hit rate increases as set
number increases.

Single Configuration Simulation Summary. Results have shown that A1-
A4 algorithms cannot speed up the simulation of single cache configuration:

� Too much time is spent on bucket sort process;

� Fetching data from the global memory of GPU suffers from long latency and
the computation density on the GPU is small.

� The computation capability of CPU is much larger than that of the single
processor in the GPU.

� A high correlation of the activity between different sets.

188 H. Wan et al.

Using Radix Sort Algorithm to Speedup Sort Process. Since the sort
process occupies a great amount of time in simulation, we adopted radix sorting
algorithm to speed up the sort process.

The sort process classifies the trace data according to the cache set num-
ber, and holds the original sequence. We implemented a radix sorting algorithm
on the GPU to accelerate this process. The key which is processed by sorting
algorithm is the set number of the trace address.

0.000000

10.000000

20.000000

30.000000

40.000000

50.000000

60.000000

70.000000

Trace Files

T
im

e
(m

s
)

2.000000

2.500000

3.000000

Fig. 6. Speedup of Radix Sorting Algorithm

As shown in Fig. 6, we use 10 bits as the key’s length to implement the
sort algorithm, which means the number of keys is 210. We can sort 1024 sets’
references. The minimum and average speedup of radix sorting algorithm is 2.26
and 2.52.

5.3 Multi-configuration Simulation in Single Pass for Single-Level
Cache

Fig. 7 shows the speedup of GPU multi-configuration simulation for single level
cache in single pass. The cache is 128 sets, with 32B line size, and the degree of
associativity is varied from 1 to 32. The average speedup is 2.76.

5.4 Multi-configuration Simulation in Single Pass for Two-Level
Cache

Fig. 8 shows the speedup of GPU multi-configuration simulation for two-level
cache in single pass. The first level cache is 32 sets, with 32B line size, and the

GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache 189

0

100

200

300

400

500

600

700

Trace File

T
im

e
(m

s
)

0

1

2

3

4

5

6

7

8

Fig. 7. Simulation Time of Multi-configuration in Single Pass for Single Level Cache

0

50

100

150

200

250

300

350

400

450

Trace File

T
im

e
(m

s
)

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 8. Simulation Time of Multi-configuration in Single Pass for Two Level Cache

degree of associativity is varied from 1 to 32. The second level cache is 4096 sets,
with 32B line size. The average speedup is 2.44.

6 Conclusion and Future Work

In this paper, we suggest that the trace-driven cache simulator can be accelerated
on the GPU. Our experiments show that this method is low-cost and easy to
use. Performance is analyzed according to the GPU architecture and CUDA
programming environment.

The functionality and performance of our GPU based simulator could be easily
improved by incorporating the following changes:

� Improve our method to make use of hardware and the extensive features of
SDK;

� When simulate cache coherency in multi-core system, it needs to execute
cache simulation of different cores on different thread blocks and use global
memory to simulate the coherency;

190 H. Wan et al.

� Use two streams to parallelize cache simulation process and bucket sort pro-
cess on 1.1 graphics hardware;

� Use Pin to generate the trace, pipelined the trace generation process and
simulation process.

Acknowledgments. Our thanks to the support provided by the National High
Technology Research and Development Program (2007AA01Z183).

References

1. Uhlig., R.A., Mudge, T.N.: Trace-driven Memory Simulation: A survey. ACM Com-
puting surveys 29 (1997)

2. Mattson, R.L., Gecsei, J., Slutz, D.R., Traiger, I.L.: Evaluation Techniques for
Storage Hierarchies. IBM Systems Journal 9(2), 78–117 (1970)

3. Puzak, T.R.: Analysis of Cache Replacement Algorithms. Ph. D. Dissertation,
University of Massachusetts, Amherst, MA (1985)

4. Wu, Y., Muntz, R.: Stack evaluation of arbitrary set-associative multiprocessor
caches. IEEE Tram on Parallel and Distribured Systems 6(9), 930–942 (1995)

5. Milenkovi’c, A., Milenkovi’c, M.: An efficient single-pass trace compression tech-
nique utilizing instruction streams. ACM Transactions on Modeling and Computer
Simulation 17(1), Article 2 (2007)

6. Ingalls, R.G., Rossetti, M.D., Smith, J.S., Peters, B.A. (eds.): Approximate Time-
parallel Cache simulation. In: Proceedings of the 2004 Winter Simulation Confer-
ence, vol. 1, pp. 337–346 (2004)

7. Kiesling, T., Pohl, S.: Time-Parallel Simulation with Approximative State Match-
ing, pads. In: 18th Workshop on Parallel and Distributed Simulation, pp. 195–202
(2004)

8. NVIDIA CUDA Programming Guide, http://developer.nvidia.com/cuda
9. ATI CTM Guide, http://ati.de/companyinfo/researcher/documents.html

10. Zamith, M.P.M., Clua, E.W.G., Conci, A., Montenegro, A., Leal-Toledo, R.C.P.,
Pagliosa, P.A., Valente, L., Feijo, B.: A game loop architecture for the GPU used
as a math coprocessor in real-time applications. In: Computers in Entertainment
(CIE), pp. 1–19 (2008)

11. Patney, A., Owens, J.D.: Real-time Reyes-style adaptive surface subdivision. In:
ACM SIGGRAPH Asia 2008 papers, pp. 1–8 (2008)

12. Dotsenko, Y., Govindaraju, N.K., Sloan, P.-P., Boyd, C., Manferdelli, J.: Fast scan
algorithms on graphics processors. In: Proceedings of the 22nd annual international
conference on Supercomputing, pp. 205–213 (2008)

13. Thompson, C.J., Hahn, S., Oskin, M.: Using Modern Graphics Architectures for
General-Purpose Computing: A Framework and Analysis. In: Proceedings of In-
ternational Symposium on Microarchitecture, Istanbul, pp. 306–317 (2002)

14. Krüger, J., Westermann, R.: Linear algebra operators for GPU implementation of
numerical algorithms. In: ACM SIGGRAPH 2005 Courses, p. 234 (2005)

15. Romero, S., Trenas, M.A., Gutierrez, E., Zapata, E.L.: Locality-improved FFT
implementation on a graphics processor. In: Proceedings of the 7th WSEAS In-
ternational Conference on Signal Processing, Computational Geometry Artificial
Vision, pp. 58–63 (2007)

http://developer.nvidia.com/cuda
http://ati.de/companyinfo/researcher/documents.html

A Hybrid Parallel Signature Matching Model for
Network Security Applications Using

SIMD GPU

Chengkun Wu�, Jianping Yin, Zhiping Cai, En Zhu, and Jieren Chen

School of Computer Science,
National University of Defense Technology,
410073, Changsha, Hunan Province, China

{chengkun_wu,jpyin,enzhu,zpcai,jrchen}@nudt.edu.cn

Abstract. High performance signature matching against a large dic-
tionary is of great importance in network security applications. The
many-core SIMD GPU is a competitive choice for signature matching.
In this paper, a hybrid parallel signature matching model (HPSMM) us-
ing SIMD GPU is proposed, which uses pattern set partition and input
text partition together. Then the problem of load balancing for mul-
tiprocessors in the GPU is discussed carefully, and a balanced pattern
set partition method (BPSPM) employed in HPSMM is introduced. Ex-
periments demonstrate that using pattern set partition and input text
partition together can help achieve a better performance, and the pro-
posed BPSPM-Length works well in load balancing.

Keywords: signature matching, parallel model, network security, GPU.

1 Introduction

Signature matching against a large dictionary or a set of many patterns is of
great importance in network security applications.Typical applications include
digital forensics tools, intrusion detection/prevention systems, antivirus soft-
ware, etc. Signature matching usually becomes the performance bottleneck in
those applications. Take the famous open source network intrusion detection
system Snort for example, signature matching can consume up to 70% of the
execution time [1].

A conventional way to improve the performance of signature matching is to
use hardware technologies like ASIC [2], FPGA [3,4,5] and TCAMs [6,7]. Those
solutions can achieve a throughput up to tens of gigabits per second, compared to
several hundreds of kilobits per second of software solutions on general purpose
CPUs. However, the hardware solutions are usually very weak in adaptability
and scalability, and they are very expensive, thus confine their applications.

� This work is supported by the National Natural Science Foundation of China
(NO.60603015, NO.60603062), Science Foundation of Hunan Province (06JJ3035).

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 191–204, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

192 C. Wu et al.

The rapid development of multi-core technologies makes it possible to de-
velop flexible and cheaper high-performance solutions. Solutions based on cur-
rent multi-core CPUs can achieve a throughput about hundreds of megabits per
second. Yet it’s still not fast enough. Application Specific Instruction Processor
(ASIP) is another choice, for example, the multi-core network processors (NP)
can combine the flexibility of commodity processors with the high performance
of ASICs. The throughput of NP-based solutions can be up to several gigabits
per second [8,9], which is not that far from the fastest solutions using hardware
technologies. NPs are optimized for network packet processing, and often appear
as part of network devices, which can be suitable for network applications but
not applications like antivirus software and host forensics tools.

Many-core and SIMD Graphic Processing Unit (GPU) becomes another po-
tential alternative. The mainstream GPUs like Nvidia G80 [10] comprise many
general purpose stream processors, and support thousands of concurrent threads
executed in the SIMD fashion. SIMD GPU has demonstrated its power in com-
putationally intensive applications. Many attempts have been made to use SIMD
GPUs for security purpose applications like digital forensics tools, intrusion de-
tection or prevention systems, and anti-virus software.

In this paper, we proposed a hybrid parallel signature matching model using
SIMD GPU, called HPSMM. In HPSMM, we used pattern set partition and
input text partition together, and we introduced a balanced pattern set partition
method (BPSPM) to balance the workload of different multiprocessors inside the
GPU. Then we presented experiments about pattern set partition and input text
partition, at last we evaluated the efficiency of BPSPM.

The paper is organized as follows: in Section 2, we give an overview of a
typical SIMD GPU at first, then we perform a survey of most recent related
work. In Section 3, we propose a hybrid parallel signature matching model using
SIMD GPU. Then in Section 4, we describe the BPSPM algorithms in detail. In
Section 5, we present our experiments and evaluate the correctness of our model
and the efficiency of BPSPM. Finally, in Section 6, we draw some conclusions
and outline some ideas for future work.

2 Related Work

2.1 Overview of a Typical SIMD GPU

Nvidia G80 [10] series GPUs are typical SIMD GPUs. The G80 series and later
are designed to be highly parallel,massive-threading, and many-core processors.
They’re optimized for compute-intensive applications that execute the same pro-
gram on many data elements in parallel, namely, the SIMD fashion. A G80 GPU
consists of sixteen multiprocessors. Each multiprocessor is composed of eight
Stream Processors (SPs), two special function units, on-chip shared memory,
and a shared Instruction Unit. A sketch map is depicted in Fig.1 [11].

Each multiprocessor executes one or more thread blocks, and each block has
the same number of threads. The number of threads in a block can be up to 768
for devices with Compute Capability 1.0 [11], limited by the number of on-chip

A Parallel Signature Matching Model Using SIMD GPU 193

Fig. 1. The G80 GPU Architecture

registers. The maximum number of blocks supported is 65535. Threads within
a block can communicate with each other through the shared memory, they can
also synchronize by a barrier synchronization intrinsic. But threads in different
blocks cannot synchronize with each other.

The G80 GPU is programmed through the Compute Unified Device Architec-
ture (CUDA) [11], which is a parallel programming model for using the GPU as
a general purpose SIMD processor. CUDA consists of a set of extension to the C
language, a supporting library that provides control to the GPU from the host,
and some built-in functions and data types. With the help of CUDA, we can
write a program for a thread, specify the parameters that determine the number
of threads, and then CUDA will organize all the threads to execute the instruc-
tions of the program in SIMD fashion. Moreover, CUDA can support multiple
GPUs at the same time, which can provide more computation power.

2.2 A Brief Survey of Signature Matching Using SIMD GPU

L. Marziale, et al. illustrated that binary string searches can be substantially sped
up by utilizing a SIMD GPU (Nvidia 8800GTX) [12]. In their work, the 8800GTX
GPU executes a kernel that creates 65,536 threads; each thread is responsible for
a portion of the incoming data; a simple sequential string search is used to avoid
thread divergence. Experiments against multi-threaded and multi-core CPUs are
carried out to prove that GPU can provide higher performance at a lower cost
than adding additional cores or CPUs. The search algorithm employed in their
GPU implementation is the naive brute-force method whereas a more efficient
algorithm, the Boyer-Moore algorithm is used in CPU implementations, thus
the GPU implementation can be further optimized and improved to obtain even
higher performance.

G. Vasiliadis, et al. presented a Snort based prototype system Gnort assisted
by GPU and explored how SIMD GPUs like Nvidia G80 can be used to speed up
the processing throughput of NIDS by offloading the signature matching opera-
tions to the GPU [13]. The multi-pattern matching Aho-Corasick algorithm [14]

194 C. Wu et al.

was used. In the preprocessing phase, the deterministic finite automaton (DFA)
of the state machine is stored as a two-dimensional array, each element in the
array is made up of four bytes: the first two bytes contain the next state to move
and the last two contain the ID of the matching pattern if the state is final or
zero otherwise; the DFA array is then copied to the texture memory to utilize
the texture memory cache. In the search phase, two different approaches split-
ting the computation were introduced: one packet per multiprocessor, in which
each thread in a block process a portion of the packet; one packet per stream
processor, in which each thread process a different packet. Experiment results
showed that the performance of two counterparts were almost the same. Gnort
could achieve a throughput of 2.3 Gbit/s in the best case, which outperformed
conventional Snort by a factor of two.

N. Goyal, et al. analyzed the basic memory, control flow, and concurrency
properties of signature matching for network processing in detail [15]. Different
platforms for signature matching such as ASICs, FPGAs, network processors,
general purpose processors, and SIMD architectures were compared. They also
identified the feasibility of using SIMD architecture for signature matching ap-
plications. Results showed that SIMD GPUs can provide significantly higher
performance at a cost similar to general purpose processors. Two methods for
signature matching were examined: deterministic finite automata (DFAs) based
and extended finite automata (XFAs) [16] based. The DFA based method is
simple and uniform in per byte processing, which map it naturally to the SIMD
architecture. The XFA method has been proved to be a high performance solu-
tion at much lower memory cost on general purpose microprocessors [16], but
it’s more complex and less uniform, and requires auxiliary storage and extra op-
erations which will cause threads divergence. A SIMD design that supports both
methods was outlined and an implementation with a speed up of 6X to 9X was
achieved using Nvidia G80 GPU compared to normal schemes using Pentium
4 CPU. It was also concluded that a number of other applications like virus
scanning could benefit from SIMD architectures.

3 A Hybrid Parallel Signature Matching Model Using
SIMD GPU

In this section, an analysis of the parallelism inside signature matching against
a large pattern set in network security applications is performed at first, then a
hybrid parallel processing model using an SIMD GPU as a signature matching
co-processor to a multi-core CPU is proposed.

3.1 Data Parallelism Analysis

In this paper, we mainly focus on data parallelism as we are using the SIMD
GPU, which is weak in the sophisticated and complex control brought by in-
struction parallelism. There are two kinds of data in the signature matching

A Parallel Signature Matching Model Using SIMD GPU 195

procedure of security applications: the input text and the signature set with a
large number of patterns.

The input text can be split into chunks and different chunks can be processed
by different processors in parallel, some previous works like [13] make use of
this method. If the chunks are equal, then the working load of all the different
processors will be the same. The method can reduce the processing time of each
input text to a degree.

The signature set can be partitioned into several smaller subsets then each
multiprocessor is responsible for matching the input text against one or several
smaller signature subsets. The partition can be done once when the system
is initialized, no overhead will be introduced at runtime. Our experiments in
Section 5 proved that pattern set partition can help increase the throughput of
each multiprocessor.

Some parallelism exists outside the GPU too. An important point in our
paper is that the SIMD GPU is used as the co-processor for CPU, which means
the concurrency between CPU and GPU should also be taken into consideration.
The CUDA enables the CPU continue to execute instructions while the GPU are
running a kernel (the program that runs on GPU) by using the asynchronous
function calls. At the same time, CUDA supports multiple GPUs around one
CPU, thus the concurrency between the GPUs will be taken account of.

3.2 The Hybrid Parallel Signature Matching Model

Our HPSMM (hybrid parallel signature matching model) is depicted in Fig.2.
In this model, the SIMD GPU is used as a co-processor of a multi-core CPU.
Inside the GPU, pattern set partition for multiprocessors and input text partition
for stream processors within a multiprocessor are introduced to gain maximum
parallelism.

On the CPU side, input texts are buffered in order to transfer the data from
the CPU to the GPU in batches, which can reduce the overhead associated with
the memory copy from CPU to GPU. The number of buffers will be twice as
many as the number of GPUs, that is, dual buffers for each GPU, thus the CPU
can continue collecting input texts while the data in the fully filled buffer is being
transferred to the GPU. Besides, once a new kernel (the program that runs on
GPU) is launched, the CPU can perform other operations like post processing
for results generated by preceding GPU kernel launch or preprocessing for the
next kernel launch.

On the GPU side, the pattern set is partitioned into several subsets, and the
number of the subsets is no less than the number of multiprocessors on the GPU.
Each subset is processed by one multiprocessor, and one multiprocessor might
possess multiple subsets. The partition is done on the host, and copied to the
GPU in the form of the data structures required by specific pattern matching
algorithms and stored in the cached texture memory. Input text partition is
introduced inside each multiprocessor to decrease the processing time of each
multiprocessor, stream processors (SP) will operate on equally split chunks, each
chunk will be assigned to a unique SP, as depicted in Fig.3. The results are all

196 C. Wu et al.

written to the result buffer residing on the global memory. When the pattern
matching on the GPU is finished, the content of the result buffer is copied to
the host for post-processing in a single operation.

The HPSMM model can be easily extended to the multi-GPUs scheme, and
the scheme of four GPUs is shown in Fig.4, which can be implemented easily
with the help of CUDA. A dispatcher is added, which is essential for load bal-
ancing among different GPUs. Each GPU is allocated a dual buffer. The results
generated by each GPU will be integrated on the CPU, the post processing and
final result generation will be done on the CPU too. The operation of transfer-
ring data between the CPU and GPUs will be organized in streams in case of
the memory bandwidth problem.

Fig. 2. The hybrid parallel signature matching model - HPSMM

Fig. 3. Input text partition inside each multiprocessor

A Parallel Signature Matching Model Using SIMD GPU 197

Fig. 4. Multi-GPU scheme for HPSMM

3.3 Analysis of HPSMM

Three types of parallelism are considered in HPSMM: parallelism inside the
SIMD GPU, parallelism between CPU and GPU, parallelism among multi-
GPUs.

Inside the GPU, pattern set partition and input text partition is carefully
examined at the level of data parallelism. Theoretically, input text partition can
reduce the processing time by a factor of the number of processors. However,
the experiments in Section 5 demonstrate that the processing time decreases
when the number of processors increases, which turned out to be a smoothly
lower down curve rather than a straight line. This phenomenon is caused by the
memory access operations. The input text is stored in the GPU’s cached texture
memory, but the cache size is quite small, up to 16 KB [11]. Input text partition
will cause more cache misses, thus affects the performance. On the contrary,
smaller pattern set will have better locality, which can increase the chance of
cache hits.

In HPSMM, pattern set partitioning and input text partitioning are combined
in the following way: for different multiprocessors, each input text is sent to every
multiprocessor, each pattern subset obtained from the pattern set partitioning
is sent to one single multiprocessor, so different multiprocessors operate on the
same input text but on different pattern subset; for different stream processors
inside a multiprocessor, they operate on the same pattern subset allocated to
the multiprocessor, but different stream processors will handle different parts of
the input text assigned to the multiprocessor. In other words, pattern set parti-
tioning is introduced at the multiprocessors’ level while input text partitioning
is introduced between different stream processors. By doing this, SPs inside a
multiprocessor operate on different text chunks in parallel, and different MPs
process the same input text but on different pattern set, thus we maximize the
parallelism inside the GPU.

We are emphasizing the use of multi-core CPU for two reasons: the first is
that in security applications there are some preprocessing need to be done be-
fore the signature matching begins, such as capturing packets, decoding and
so on. Instead of waiting for the matching results, we want the CPU to do the

198 C. Wu et al.

preprocessing for the coming input while the preceding input are being processed
by the GPU, the multi-core CPU can handle this well; the second is that some
more processing need to be done after the matching procedure on GPU, for ex-
ample, some Snort rules require specific signatures to appear at certain offset,
and checking this is not a job that suits the SIMD GPU well.

When using multiple GPUs, there are also two methods to distribute the
workloads: the input flow segmentation and the pattern set partition. The former
one will split the input flows and assign them to different GPUs. The latter one
will broadcast the input data to every GPU but different GPUs will work one
different pattern subsets. Load balancing is an important issue that must be
covered in both methods, and that’s not an easy question, because in security
applications there are many extra requirements, this part will not be discussed
in this paper. Another possible problem is that different GPUs may perform
memory copy operations between the host and GPU through PCI-E16 bus at
the same time, solutions to this problem will be discussed in future work rather
than in this paper.

4 Load Balancing Inside the GPU

In this section, we will discuss the problem of load balancing inside the GPU,
which includes load balancing for input text partition and load balancing for
pattern set partition.

4.1 Load Balancing When Using Input Text Partition

As described in Section 3, the input text partition will be split into chunks that
are equal in length, and that’s a pretty good load balancing strategy. There’s no
need to employ other sophisticated strategy, the reasons run as follows:

(1) More complex load balancing strategies require more control, in which
the SIMD GPU is weak.

(2) In most commonly used multi-pattern matching algorithm, the length
of the input text will affect the performance most rather than the content of the
input text, thus partition the text by equal length is well enough.

4.2 BPSPM: The Balanced Pattern Set Partition Method

The balanced pattern set partition method (BPSPM) is proposed to balance
the workload of different multiprocessors when performing pattern set partition.
The idea is to make each subset as similar as possible. If two pattern subsets
have the approximate number of patterns and the structure of the patterns are
close to each other, then we consider the two subsets to be similar.

BPSPM uses the round-robin dispatch, which will make the number of pat-
terns in pattern subsets approximately the same, the difference between any
subset will be at most one pattern.

A Parallel Signature Matching Model Using SIMD GPU 199

To make the structures of patterns in different subsets similar, BPSPM sorts
the patterns. Two typical methods for sorting strings are the length-first sort-
ing and the lexically sorting. Both are considered for BPSPM, called BPSPM-
Length and BPSPM-Lexical, respectively. Our experiments in Section 5 shows
the BPSPM-Length algorithm outperforms its counterpart on Snort signature
set.

The BPSPM-Length algorithm can be finished in O(rlogr) time (r is the
number of patterns), and will be executed only once at the initial phase of
the calling application. The BPSPM-Lexical algorithm is obtained by replac-
ing the Length-First-Sort function in BPSPM-Length with a lexically string
sorting function.

The BPSPM-Length algorithm is listed as follows:

Algorithm 1. BPSPM-Length: The Length First Balanced
Pattern Set Partition Method

Input:
The pattern set P = {p1, p2, . . . , pr};
The number of output subsets m

Output:
A set of pattern subset {P1, P2, . . . , Pm},
where Pi ⊂ P , and

m⋃
i=1

Pi = P,∀i, j, Pi ∩ Pj = ∅
Boolean Function Pattern-Compare(pattern pi , pattern pj)
Begin

if |pi| = |pj | and pi < pj return TRUE;
if |pi| < |pj | then return TRUE;
return FALSE;

End
Procedure Length-First-Sort(Pattern-Set P)
Begin

Sort the elements in P such that
for any i, j, Pattern-Compare(pi, pj) = TURE;

End
Begin

(1) Length-First-Sort(P);
(2) for i:=1 to m do P i = �
(3) for j:=1 to r

m do
for i:=1 to m do Pi = Pi ∪ {pm×(j−1)+i};

End

5 Experiments and Results

In this section, we present our experiments about pattern set partition and input
text partition.

We use a SIMD GPU GTX 9800+, whose architecture is similar to the G80
series. The input texts are constructed randomly on the ASCII alphabet, and

200 C. Wu et al.

the size is 128MB. The Snort signature set and the ClamAV signature set are
chosen because of their different pattern length distribution characteristics: the
signature set of Snort has shorter average length and the most frequent patterns
are the 5 bytes patterns; the signature set of ClamAV has longer average length
and the most frequent patterns are the 38 bytes patterns.

5.1 Experiments on Pattern Set Partition and Input Text Partition

We measured the average throughput of the multiprocessors using the pattern
partition based method BPSPM-Length. The experiments were carried out using
the Aho-Corasick algorithm [14] both on Snort and ClamAV signature sets. The
number of subsets is equal to the exponent of 2, ranging from 4 to 2048; the
throughput of a single multiprocessor is obtained for each division. We can see
that the throughput will increase with the number of subsets until the number is
greater than 2048, as is depicted in Fig.5. The result demonstrates that pattern
partition introduced in our model can help improve the throughput.

We also measured the maximum execution time of all the stream processors
inside a multiprocessor using both the pattern partition based and text parti-
tion based methods. The experiments were carried out using the Aho-Corasick
algorithm [14] both on Snort and ClamAV signature sets.

The pattern partition method is the same as the antecedent experiment of
throughput variation. When using the text partition method, the input text T

is split into equal chunks TCi, and |TCi| = |T |
m + pmaxl, 1 ≤ i ≤ m, where |T |

is the length of the input text, |TCi| is the length of chunk i, m is the number
of chunks per text, and pmaxl is the max pattern length. The number of chunks
per text is equal to the exponent of 2, ranging from 4 to 2048; the maximum
execution time of the stream processors inside a multiprocessor is obtained for
each division.

On the Snort signature set, the maximum execution time decreases if the
number of pattern subsets increases when the patterns are partitioned, as is
shown in Fig.6(a); the maximum execution time also decreases if the number of

0

100

200

300

400

500

600

700

800

4 8 16 32 64 128 256 512 1024 2048

Th
ro

ug
hp

ut
(/

M
bp

s)

Number of Pattern Subsets

ClamAV

Snort

Fig. 5. The throughput variation using pattern set partition

A Parallel Signature Matching Model Using SIMD GPU 201

0

1000

2000

3000

4000

5000

6000

4 8 16 32 64 128 256 512 1024 2048

M
ax

 E
xe

cu
ti

on
 T

im
e(

s)

Number of Pattern Subsets

(a) Pattern set partition used

0

200

400

600

800

1000

1200

4 8 16 32 64 128 256 512 1024 2048

M
ax

 E
xe

cu
ti

on
 T

im
e(

s)

Number of Chunks per Input Text

(b) Input text partition used

Fig. 6. The max execution time variation on Snort signature set

145

150

155

160

165

170

175

180

4 8 16 32 64 128 256 512 1024 2048

M
ax

 E
xe

cu
ti

on
 T

im
e(

s)

Number of Pattern Subsets

(a) Pattern set partition used

0

10

20

30

40

50

60

70

4 8 16 32 64 128 256 512 1024 2048

M
ax

 E
xe

cu
ti

on
 T

im
e(

s)

Number of Chunks per Input Text

(b) Input text partition used

Fig. 7. The max execution time variation on ClamAV signature set

chunks increases when the input texts are split, as is presented in Fig.6(b). But
the former max execution time is 5 times larger than the latter one.

On the ClamAV signature set, similar results can be obtained, which is de-
picted in Fig.7(a) and Fig.7(b), and the maximum execution time of the former
one is 3˜5 times larger than the latter one.

This proves that both pattern set partition and input text partition can help
reduce the processing time of stream processors. But text partition based method
has smaller maximum execution time than pattern set partition based methods.
That is why input text partition is introduced inside the multiprocessor be-
tween different stream processors, while the pattern set partition is introduced
between multiprocessors. And the correctness and feasibility of the idea adopted
in HPSMM that considers combining pattern set partition and input text parti-
tion is verified.

5.2 Effects of Load Balancing

As discussed in Section 4, input text partition works well at load balancing,
so we only present experiments of the load balancing effect of BPSPMs. The
time Coefficient Variant (C.V) is introduced as a measurement of load balancing

202 C. Wu et al.

0

1

2

3

4

5

6

2 4 8 16 32 64 128

Ti
m

e
C.

V

Number of Sub Groups

Not Sorted

BPSPM-Lexical

BPSPM-Length

Fig. 8. Time C.V variation with the number of pattern subsets on Snort signature set

effect. For an array of data d = {d1, d2, . . . , dn}, C.V of d is defined as:

C.V (d) =
∑n

i=1 (di − d)2

n ∗ d
. (1)

From the above equation, greater C.V value means a more dispersive distribution
of data which represents poor effect of load balancing, and zero means a uniform
distribution which represents perfect effect of load balancing.

We performed signature matching on pattern subsets generated from Snort
signature set, and then we calculated the C.V of the signature matching time on
different pattern subsets. The same procedure was executed three times using
the BPSPM-Lexical, BPSPM-Length and the not sorted pattern set partition
method respectively. The results are depicted in Fig.8. We can see that BPSPM-
Length outperforms the other two, which demonstrates the power of our method.

5.3 Comparison with Hardware Based Methods

Our method is quite different from the hardware based methods in many ways,
such as performance, cost, scalability, and adaptability. A comparison is listed
in Table.1.

A GPU that supports CUDA costs no more than several hundred dollars,
which is approximate to the price of a general purpose CPU, while dedicated
hardware cost much more; the GPU based signature matching applications can

Table 1. Comparison between GPU based and hardware based methods

Parameters GPU based method Hardware based method
Performance medium high

Cost low high
Scalability high low

A Parallel Signature Matching Model Using SIMD GPU 203

be run on any host with a GPU that supports CUDA, rather than a small number
of devices, while hardware based methods is usually designed to run on certain
hardware such as FPGA,TCAM,etc; the performance of GPU based methods is
much higher than that of CPU based methods, but it is still not that high as
hardware based methods.

However, there are some applications like network situation awareness and
network attack prediction, which require a massive number of high performance
network sensors, hardware based methods are too expensive and not scalable
enough, but GPU based methods can be quite suitable.

6 Conclusions

In this paper, the SIMD GPU is introduced to speed up the signature matching
in network security applications. A thorough analysis of the data parallelism
when using the SIMD GPU to speed up signature matching is made at first.
Then an HPSMM using SIMD GPU is presented, which combines the pattern set
partition and input text partition to gain more parallelism. The load balancing
problem of HPSMM is discussed carefully, and a load balance method based on
pattern set partition BPSPM is proposed. Experiment results on a SIMD GPU
GTX 9800+ demonstrate the feasibility and rationality of the HPSMM model,
and the load balancing effect of BPSPM-Length is proved to be good.

There are four points that differentiate our work from previous ones:

(1) A hybrid architecture that combines pattern set partition and input
texts partition to maximize parallelism inside the GPU.

(2) An effective load balancing method is proposed for the multiprocessors
inside the GPU.

(3) Multi-core CPUs are used, which help increase the concurrency between
the host and the GPU device.

(4) Multi-GPUs scheme is outlined, which introduce more processing power.

Further study will focus on the workload balancing when multi-GPUs are
employed.

References

1. Antonatos, S., Anagnostakis, K.G., Markatos, E.P.: Generating realistic workloads
for network intrusion detection systems. In: ACM SIGSOFT Software Engineering
Notes, vol. 29, pp. 207–215 (2004)

2. Tuck, N., Sherwood, T., Calder, B., Varghese, G.: Deterministic memory-efficient
string matching algorithms for intrusion detection. In: Proc. of INFOCOM, vol. 4,
pp. 2628–2639 (2004)

3. Clark, C.R., Schimmel, D.E.: Scalable Pattern Matching for High Speed Networks.
In: Proceedings of the 12th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pp. 249–257. IEEE Computer Society, Washington
(2004)

204 C. Wu et al.

4. Tan, L., Sherwood, T.: A High Throughput String Matching Architecture for In-
trusion Detection and Prevention. In: Proceedings of the 32nd annual international
symposium on Computer Architecture, vol. 4, pp. 112–122 (2005)

5. Dharmapurikar, S., Lockwood, J.W.: Fast and scalable pattern matching for net-
work intrusion detection systems. IEEE Journal on Selected Areas in Communica-
tions 24, 1781–1791 (2006)

6. Yu, F., Katz, R.H., Lakshman, T.V.: Gigabit rate packet pattern-matching using
TCAM. In: Proceedings of the 12th IEEE International Conference on Network
Protocols, 2004, pp. 174–183 (2004)

7. Alicherry, M., Muthuprasanna, M., Kumar, V.: High speed pattern matching for
network IDS/IPS, pp. 187–196. IEEE Computer Society, Los Alamitos (2006)

8. Lei, S., Yue, Z., Jianming, Y., Bo, X., Bin, L., Jun, L.: On the Extreme Parallelism
Inside Next-Generation Network Processors. In: Proceedings of INFOCOM, pp.
1379–1387 (2007)

9. Ni, J., Lin, C., Chen, Z., Ungsunan, P.: A Fast Multi-pattern Matching Algorithm
for Deep Packet Inspection on a Network Processor. In: International Conference
on Parallel Processing (2007)

10. Nvidia G80 Specs, http://www.nvidian.com/page/8800_features.html
11. Nvidia CUDA Programming Guide 2.1.,

http://developer.download.nvidia.com/compute/cuda/2_1/NVIDIA_CUDA_

Programming_Guide_2.1.pdf

12. Marziale, L., Richard, G.G., Roussev, V.: Massive threading: Using GPUs to in-
crease the performance of digital forensics tools. Digital Investigation 4, 73–81
(2007)

13. Vasiliadis, G., Antonatos, S., Polychronakis, M., Markatos, E.P., Ioannidis, S.:
Gnort: High performance network intrusion detection using graphics processors.
In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 2008. LNCS, vol. 5230,
pp. 116–134. Springer, Heidelberg (2008)

14. Aho, A.V., Corasick, M.J.: Efficient String Matching: An Aid to Bibliographic
Search. Communications of the ACM 18, 333–340 (1975)

15. Goyal, N., Ormont, J., Smith, R., Sankaralingam, K., Estan, C.: Signature Match-
ing in Network Processing using SIMD/GPU Architectures. UW CS technical re-
port 1628 (January 2008)

16. Smith, R., Estan, C., Jha, S., Kong, S.: Deflating the big bang: fast and scalable
deep packet inspection with extended finite automata. In: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, pp. 207–218. ACM, New York
(2008)

http://www.nvidian.com/page/8800_features.html
http://developer.download.nvidia.com/compute/cuda/2_1/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/NVIDIA_CUDA_Programming_Guide_2.1.pdf

HPVZ: A High Performance Virtual Computing
Environment for Super Computers

Kai Lu, Wanqing Chi, Yongpeng Liu, and Hongwei Tang�

School of Computer Science in National University of Defense Technology,
Changsha, 410073, P.R. China

kai_lu@263.net,

chiwq@yahoo.com,

liupy@nudt.edu.cn,

hwtang@nudt.edu.cn

Abstract. Because of the features of isolation, security and consolida-
tion, virtual machine technology is widely used in data center for server
consolidation, which can support different operating systems or differ-
ent isolated applications running on a single server. Besides this usage
scenario on server systems, there are other scenarios that require more
performance, isolation and security than consolidation. Such scenarios
include HPC and Cluster for scientific computing. Because of the partic-
ularity of system architectures and usage requirements, existing virtual
machine techniques cannot be used in HPC directly. Aiming to pro-
vide the features of architecture and requirements for HPC, we present
a virtual machine technique for HPC system named High Performance
Virtual Zone(HPVZ). HPVZ technique is the first complete solution for
virtualization of HPC systems, and can provide users an isolated and
secure running environment based on the structure of the HPC system.
The evaluation shows that the HPVZ technique is the most cost-effective
for HPC, compared to other virtual machine techniques.

Keywords: Virtualization HPC Isolation Security.

1 Introduction

In recent years, virtual execution environments (VEEs), such as Xen [14] and
VMware Workstation[4], have grown in popularity. A key advantage of the Vir-
tual Machine is that several different OS images can simultaneously exist on the
same machine with strong isolation from each other. This allows easy man-
agement and configuration, the virtual machine technique is widely used in
Data-Centers or Enterprises to implement the service consolidation. For server
consolidation, each VM can run an independent operating system. Different ser-
vices, which used to run on individual machines in order to avoid interference,
are instead running in separate VMs on the same physical machine.
� This research is supported by National 973 Plan (2005CB321801) and Funder of

Huoyingdong (111072).

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 205–219, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

206 K. Lu et al.

The desire to run multiple operating systems was the original motivation for
virtual machines, as it allowed time-sharing a single computer between several
single-tasking OSes. According to the layer where the system virtualization is
implemented, the virtual machine can be classed into two major categories. If
the VM is running on bare hardware, this kind of VM is called Type-I or native
VM. Xen and ESX Server are running on hardware directly and support booting
multiple OSes. These OSes are often called guest OSes. The resources of the real
machine are controlled by the VM, and then shared by different guest OSes on
top of the VM. In order to avoid interference with resource usage, the VM can
support quality-of-service (QoS) isolation to prevent a guest operating system
from occupying too many resources and preventing access to resources from being
obtained by other guest OSes. The Type-II or hosted VM is the kind of VM
running on the top of an operating system. The typical system of Type-II VM is
VMware. Each VMware process can boot an independent new operating system.
The performance of a virtual machine is a big problem you have to consider when
you want to use VM technology, especially for I/O performance [12,19].

An alternate technique for isolation is the Container technique of operating
system, such as Solaris Zones [15], VServer [2] and Linux Virtuozzo [1]. The Con-
tainer technique is not a virtual machine, but an example of ”operating-system
virtualization”. The Container technique can provide some form of encapsula-
tion of processes within an operating system. One of the Container technique’s
advantages is that it is much more performance-efficient than Type-I and Type-
II virtual machines, and has better observability into multiple guests simulta-
neously [1,2,15]. The disadvantage of the Container is that the Container can
only support one kind of operating system running environment for applications,
which means the Container technique cannot provide two kinds of ABI at the
same time, such as Windows and UNIX.

The system architecture and the application requirements will play an im-
portant role when designing the system. In this paper, we describe the usage
scenarios of super computer and analyze the requirements of Parallel applica-
tions. Based on our analysis, we present the first complete virtualization solution
for HPC, named High Performance Virtual Zone(HPVZ). The contributions of
this paper are as follows.

1. First, this is the first complete solution for High Performance Computer
virtualization. Before this work, people would like to use the VMware or
Xen technique on small cluster systems directly to construct virtual nodes,
but ignoring the characteristics of HPC. This will be analyzed in the later
part.

2. Second, based on the distributed computing environment of HPC, we
create new optimization techniques to diminish the overheads caused by
virtualization.

3. Third, we compare the performance of HPVZ to the machine without virtu-
alization, and also compare the support for isolation and security of HPVZ
with other VM techniques.

A Virtual Computing Environment for Super Computers 207

The rest of the paper is organized as follows. In the next section, we briefly
describe the motivation for our HPVZ design. Section 3 describes the structure of
HPVZ and its optimizing techniques. In section 4, we compare the performance
of HPVZ with the machine without virtualization. We then analyze the isolation
and security of HPZV. Section 5 describes the related works of VMs for HPC.
In the final section, we summarize the major points of the paper and present
our conclusions.

2 Motivation

In this section, we will discuss the background of our work and analyze the
HPC’s requirements of virtualization.

Rather than a single address space system, modern HPC systems consist of
multiple computing nodes with different function. Normally, the HPC system
can be divided into three parts: front-end or server nodes, computing nodes and
storage nodes. All these three parts are integrated into a tight coupling system by
the high-speed inter-connecting network to provide high performance computing
capability and massive storage capacity. HPC system is a shared computing
environment, and provides service based on the scheduling of resources managing
system.

The DARPA High Productivity Computing Systems project [3] is focused on
providing a new generation of economically viable high productivity computing
systems for national security and for the industrial user community. HPCS pro-
gram researchers have initiated a fundamental reassessment of how to define and
measure performance, programmability, portability, robustness and ultimately,
productivity in the HPC domain.

High performance: The performance is the primary evaluation criteria of
HPC. According to test, the parallel application can only gain a small part
of peak performance of whole HPC system. In order to improve the real perfor-
mance of applications can gain, the project FAST-OS [6] hopes to use simplified
kernel technique to reduce the noise of the operating system and runtime service.
FAST-OS project includes SSI research for Petascale Computer, configurable OS
and Right-Weight Kernels. These researches hope to use simpler OS to diminish
the running noise of the HPC system. But unfortunately, current research of
using virtual machine techniques to improve reliability of HPC or save power
will bring in more performance overhead to HPC. According to the [7], The per-
formance loss of compiling on ESX server and Xen are 10% and 30% each, and
the loss of message passing on ESX server and Xen are 10% and more than 50%
each . This is not acceptable for HPC.

Easy use and management: Traditional HPC provides a shared environment
to all users. But different users will need different running environments. And
sometimes these environments even conflict. For example, different applications
need different versions of compilers and libraries. But on shared server nodes,
this requirement causes difficulty of management and easy leading to misuse. The

208 K. Lu et al.

demands of easy use and management require the HPC can provide independent
running environments for different users.

High security: The system security is often omitted during designing HPC.
According to statistics, more than 70% attacks or security threats are induced
by interior-users or misuse. To be a public information infrastructure, the ca-
pability of protect user’s information security is very important to HPC. The
leaking of important running information or data files is intolerable. Traditional
UNIX OS on HPC uses ACL to prevent un-authority users from accessing others’
information, whose isolation capacity is rather weak. Besides the danger caused
by un-authority accessing, the misuse can also damage the system. The memory
leaking of application will cause the system daemon can’t work properly, or even
result in this node’s crashing. The security isolation and resource usage control
are very important to system security.

High availability: The failure of nodes of HPC is inevitable in such a huge
system. Normally, people use Checkpoint/Restart technique to diminish the loss
when computing nodes crash. Checkpoint/Restart can help application to re-
cover from last checkpoint and can reduce the loss of computing time for batched
jobs on computing nodes. But for server nodes, Checkpoint/Restart technique is
not enough. The failure of server node will cause the pause of users’ operation.
Users hope the system can provide a continual service no matter any server node
fails. Checkpoint/Restart can’t support this function.

According to the former analysis, the factor of performance should always be
put on the first position in the design of the virtualized HPC. But using Xen or
VMware to construct virtual nodes is not suitable for HPC, the performance loss
is unaffordable and the isolation is over powerful for HPC system. Aiming at up-
per requirements of HPC and the shortcomings of current design, we bring out a
complete solution of HPC virtualization in this paper, named High Performance
Virtual Zone (HPVZ).

3 HPVZ

3.1 Overview

Current VMM technologies, including Type-I/Type-II and container based vir-
tual technique, provide different isolated running environments based on a shared
machine. But for a super computer with multiple independent nodes, these VMM
techniques can’t provide multiple independent virtual running environments di-
rectly. This section introduces the HPVZ, the system of virtual executing envi-
ronment of High Performance Computer, and describes the techniques used to
achieve a secure virtual running environment on a multi-nodes supercomputer
with high performance.

A Virtual Computing Environment for Super Computers 209

3.2 System Structure of HPVZ

HPVZ consists of three parts, Virtual Zone of Server Node (VZSN), High Perfor-
mance Zone of Computing Node (HZCN) and Zone Based Resource Management
(ZBRM). The structure is showed in Fig.1.

Zone Based Resource Management

Resource management and allocate module

Environment abstract and setting module

HPVZ l i Vi FS

Zone Oriented QoS Module

HPVZ tool suite

Task Oriented QoS Module

VirFS

Virtual Zone Constructing Module

Zone Oriented QoS Module

Virtual Zone Constructing Module

Task Oriented QoS Module

Virtual Zone of Server Node High Performance Zone of Computing Node

Virtual Zone Constructing Module Virtual Zone Constructing Module

Fig. 1. Structure of HPVZ

The virtual zone of server node is constituted based on the OpenVZ technique
[5]. The OpenVZ provides multiple running environments independently in a
single OS, including a unique root and system runtime service. The system
resource is assigned to each VM whenever it is created. In OpenVZ, the boot
and shutdown of each VM just like a regular independent operating system.
Because booting a VM in OpenVZ need not the initialization done by the BIOS
and operating system kernel, the reboot time may only takes several seconds
when necessary. To applications and the users, the management and usage of
this zone appears just like a separated host. From this point, there is little
difference between a container and hypervisor based VM. However, they differ
fundamentally in the techniques they use to implement isolation. Rather than
construct multiple virtualized machine, OpenVZ only construct multiple isolated
user executing environments, which means only objects needed by application
running, such as user’s file directory, UID, PID, pty and network address, are
virtualized. The advantage of using OpenVZ technique in HPC over Type-I or
Type-II VMM is OpenVZ’s performance is much higher than Xen or VMware.

The High Performance Zone of Computing Node provides an isolated com-
puting runtime service with high performance on computing nodes compactable
with the virtual zone of server node. As mentioned in Section 2, computing
nodes have a closed running environment, which means users can’t log in the
computing nodes directly. They can only submit their jobs from Server nodes to

210 K. Lu et al.

computing nodes. Computing nodes will treat these jobs in batched way. Com-
pared with server nodes, the problems of security and requirements of isolation
on computing node are much less. On the contrary, the performance should be
more considered about. Based on the situation analyzed before, the HZCN uses
chroot technique to construct an isolated running environment corresponding to
the server nodes. In order to make an isolated file system for different users,
we add a VirFS layer between the VFS and the GPFS. When constructing
the HZCN, the system will chroot to user’s working directory. A VirFS will be
booted. VirFS will treat the chrooted directory as its root, and build the proc
file system based on this new root. Based on VirFS, we construct an entirely file
system, include process file system and PGFS. The layer of VirFS is very thin,
the overhead of VirFS can be omitted when accessing files.

The Zone Based Resource Management (ZBRM) is the central controller of
the whole HPVZ. The ZBRM is built based on SLURM [20]. The SLURM is a
wildly used resources manage system. SLURM can allocate exclusive and/or non-
exclusive access to computing nodes to users for some duration of time so they
can perform work. SLURM also provides a framework for starting, executing,
and monitoring work (typically a parallel job) on a set of allocated nodes. When
user submit jobs by using SLURM commands, ZBRM will extract the virtual
zone’s actually absolute path. This path parameter will be passed to comput-
ing nodes with the job. The SLURM-stepd will use this parameter to create a
corresponding isolated running environment on computing nodes. The SLURM
system can support batched and interactive jobs. The processing batched job
consists of two procedures of interactive jobs. Instead of treating the script of
batched jobs as an interactive job, the ZBRM uses different ways to cope with
batched jobs and interactive jobs.

There are two kinds of HPVZ in a HPC system. One kind is Common HPVZ
(CVZ), and the other is called Special HPVZ (SVZ). The CVZ is established by
the system manager by default. The CVZ provides the running environment for
most users, just like the environment of traditional HPC before. In CVZ, users
can edit, compile and debug their programs, and submit jobs, just like they used
to. The SVZ is established for special users. The template of SVZ is provided by
the system manager. But the template of SVZ only includes a minimal running
requirement. Once the SVZ is established, the management is left to SVZ users.
Users in SVZ can install and configure the software of SVZ independently.

3.3 File System Structure

When designing the file system structure of HPVZ image, what should be taken
into account includes the contents and the location of the images. There are
two kinds of virtual zones in HPVZ, Common VZ and Special VZ. The image
contents and location of these two kinds of virtual zone are different.

The images of SVZ are stored on GPFS shared by every server node.
Whichever server node the user will log on, the SVZ image will be loaded to
that node. When SVZ started, all users belong to this SVZ will log in this SVZ.
The CVZ is a common running environment for all users. In order to balance

A Virtual Computing Environment for Super Computers 211

the workload in the whole server nodes array, there are several CVZ instances
running concurrently on each server node. The tool suite, including configura-
tion and user management, provides a consistent view of files and users. That
means users can log in any server node and has the same operating environ-
ment. If the image of CVZ and SVZ are all stored on GPFS, the performance
will be a problem. The read latency of files on GPFS is much larger than that
of local disks. Because there is only one instance in the whole system and the
SVZ user will log in any server node randomly, the SVZ image has to be stored
on the shared file system. But for CVZ, there is a CVZ instance running at
every server node, and the system runtime services of the CVZs are the same in
each instance. Only the files of users in CVZ need be shared by all server nodes
from the consistent viewpoint. According to this usage scenario, and in order
to improve the performance, we divide the file image of CVZ into system part
and global part. The system part of CVZ image includes system directories and
files. This part is managed by the system manger, and won’t change often. The
global user part is the users’ working home. In HPVZ, we put the system part
on the local file system of each server node, and store the global user part on
the GPFS. The performance of CVZ will be improved for running commands in
system part of CVZ locally.

Because system part and user part of CVZ image are stored on different
partitions, which will result a link from ”/HPVZ/root/CVZ/home/” directory
to ”/PGFS/root/CVZ/home/”, as showed in Fig.2. The penetration link of the
virtual root set by OpenVZ will cause secure problems, whcih is forbidden by
OpenVZ technique. In order to generate a safe penetration, we invent a nail-
link technique. The penetrating node will be tagged in the inode structure and
linked with real directory when creating the CVZ. When you access the nail-
link directory, the system will check the tag and translate the path from local
partition to the path of global part. The tag of nail-link can only be set by
special tool suite of HPVZ, and only linked to the corresponding directory, this
nail-link technique won’t add any danger to system.

Lo /HPVZ/root/CVZ/
/HPVZ/root/CVZ/

/sbin
/bincalfile

sy

/HPVZ/root/CVZ/
/HPVZ/root/CVZ/
/HPVZ/root/CVZ/
/HPVZ/root/CVZ/

/bin
/var
/etc
/opt

/sbin
/bin

ystem

/HPVZ/root/CVZ/
/HPVZ/root/CVZ/
/HPVZ/root/CVZ/
/HPVZ/root/CVZ/

/opt
/usr

……
/home

/bin
/var
/etc
/opt/HPVZ/root/CVZ/ …… /opt
/usr
/home/usr1
/home/usr2

G
lobal

/usr1
/usr2

/home/usr2
/home/usr3
/home/usr4
/home/usr5shared

f

/usr2
/usr3
/usr4
/usr5/GPFS/root/CVZ/home

/home/usr5
/home/usr6
……

file
syste

/usr5
/usr6
/usr7
…….

/GPFS/root/CVZ/home

m

Virtual Root

Fig. 2. Nail-link technique

Send username to load balancing node

Login directly using
IP address Judge the username

belong to CVZ or SVZbelong to CVZ or SVZ

CVZ SVZ

Choosing a lightest loaded node Check the SVZ is booted or NOT

NOT running, boot it first on a
lightest loaded node

Return the IP address to user’s
terminal

Send passwd to VZ to finish the
procedure of Loginterminal

Fig. 3. Login procedure in HPVZ

212 K. Lu et al.

3.4 Resource Isolation

For high available requirement, the multi-level Quality of Service functions are
provided by HPVZ. In OpenVZ, the amount of using resource can only be con-
trolled at Zone level. That means you can only configure the maximum and
minimum resources limits for a zone, but not for a separated process in a Zone.
In HPVZ, we provide different levels of resource limits: process level, job level
and VZ level.

On computing node, HPVZ provides a task-oriented resource control. HPVZ
divides the tasks running on computing node into two classes. One class is system
daemon tasks, like resource manage tasks and communicating tasks, the other
is user applications, like users’ job. In our design, the system tasks have higher
priority than users’ applications. So, the resource limit of system tasks is infinite.
The maximum of resource of user applications is the total amount of system
resource minus the lower limit of system tasks’. This configuration of resources
can protect the system daemons from out of resource. The HPVZ can support
the resource control at the job and process level. Sometimes in a job, the amount
of resource used by each process is imbalance. For example, the first process, who
responses for the file operation, will need more resources than other process in
the same job. It is unfair to give them the same limit. The job level control can
treat the resource usage of each process in the job as a whole. If the total amount
of resource doesn’t exceed the limit, the applications won’t be disturbed. There
are two kinds of limits of resource control: soft limit and hard limit. When you
exceed the soft limit, the HPVZ will give you a warning. If you overrun the hard
limit, the HPVZ will kill the job. In our system, the soft limit is set as 80% of
hard limit by default. Based on soft and hard limits, the HPZV provides a QoS
negotiable flow.

After the SLURM-stepd spawns a user process, the function setjobid(jobID)
is called to set the job ID to the process. The processes sharing the same jobID
will have the same resource control structure. If the jobID equals to -1, that
means the process will have a process level QoS control.

The resource control also can provide the information of the maximum re-
source usage at different level. This information is very useful to optimize the
application’s performance. Currently, the majority of resource limits include
physical memory, virtual memory, open file and disk spaces.

3.5 HPVZ’s Tool Suite

HPVZ management tools include the manage and configure tools of CVZ, user
manage tool and login tool, etc. These tool suites provide the functions of cre-
ating, deleting, starting, stopping and configuring of HPVZ.

1. Manage tools of CVZ: The CVZ has two parts of image as mentioned
in Section 3.2. There is a copy of system image on each server node’s local
disk, and the only copy of global user image stored on the GPFS. When
creating the CVZ, the creating tools will copy the system image to each
server node and put the user image on the GPFS. Besides these copying

A Virtual Computing Environment for Super Computers 213

works, the creating tool will set the nail-link in system image pointing to the
directory of users’ working environment.

2. Configure tools of CVZ: Because the system images of CVZ are dis-
tributed on every server node. The configurations of CVZ are stored in the
system directory in each system image. We provide a configure tool which
can keep all configure files in all system images the same. The configuration
of CVZ is a trick. Most of configure parameters of system images are the
same, but some are not, such as the network address. Each CVZ instance
has its own network address. The configuration tool of HPVZ provides an
easy way to manage these configure parameters.

3. User manage tools: The username is unique in the whole HPVZ, that
means each username can only belong to a CVZ or SVZ. The management of
username is like NIS. When you add the a new user on a VZ, the vz adduser()
command will call a remote server to add this name in a central database
first. When successed, the vz adduser() will call local adduser command to
add username and passwd in local passwd and shadow files. The vz deluser()
command will operate in a reversed way.

4. Login tool: When users log in the VZ from remote terminal, the load-
balancing node of server array will check the VZ’s status which this name
belongs to. If VZ is CVZ, the load balancing node will relay the login request
to a lightest load node in server array. If the user belongs to a SVZ and this
SVZ is alive already, the load balancing node will relay the login request to
the node where the SVZ is running. If the SVZ is not active, load balancing
node will choose a lightest node to start the SVZ first. The login procedure
is shown in Fig.3.

4 Evaluation

4.1 Experimental Environment

We evaluated the performance of the HPVZ on a cluster composed of 8 comput-
ing nodes and 2 server nodes. One of server nodes also acts as a load-balancing
node. Each node is equipped with dual core Intel Xeon 2.66G CPUs, 8G mem-
ory and Mellanox MT25204 PCI-E InfiniBand HCA, which can provide a 20Gb
connecting bandwidth. Besides the Infiniband, all nodes in this cluster are also
connected by Gigabit Ethernet as controlling network. All nodes in cluster share
a global file system supported by Lustre file system.

4.2 Server Node Performance Evaluation

The interacting operations and compiling are main part of Server nodes’ work-
load. In this subsection, we use the micro-benchmark and the way of compiling
kernel to evaluate the overhead of using HPVZ technique. The evaluation is com-
pared with the performance of raw machine and HPVZ. The micro-benchmarks
we used include Lmbench benchmark(version 3.0-a3) and iozone benchmark. The
compiling performance testing is the method of parallel compiling (make -j).

214 K. Lu et al.

Fig.4 shows the main results for Lmbench benchmark. We can find out that
the discrepancy for all testing items of Lmbench’s is less than 3%, and only
the performance loss of create process (sh proc item) reaches about 10%. The
majority works of virtualization is done about management of process. When a
process is created, the additional structures, including virtual relation structure
and managing structures should be allocated. If we create and destroy processes
repeatedly, the additional spending will be cumulated and be obvious in such a
specialized test. But in normal usage scenario, this overhead is so small that can
be omitted, such like in Fig.8.

Fig.5 shows the bandwidth of read and write for iozone benchmark. From
the figure, we can know that the bandwidth of HPVZ is lower than the raw
machine by no more than 3%. The main cost is caused by the VirFS between
the VFS and real File system. Every I/O operation will be checked first, and
then passed from VFS to real file system by the VirFS. The overhead of VirFS is
the main overhead of this I/O benchmark. In VirFS, because only the checking
and transferring overhead of file operations is involved in, without any file data
copy, the performance loss of I/O is quite small.

The compiling performance of server node is always cared by HPC users. The
parallel compiling test is a test for overall performance for server nodes. From the
Fig.6, we find that the difference for user time of these application compiling tests
between HPVZ system and original system is quite small. Only system time is
larger in HPVZ than raw machine. The reason is that the image of HPVZ is stored
on GPFS. The accessing performance of PGFS is worse than local file system.

But for CVZ, we divide the whole CVZ image into system image and global
user image, and store them at local disk and global file system separately. And
we also adopt the nail-link technique to diminish the executing time of system
applications. In order to figure out the improvement of CVS, we construct a SCZ
with the same configuration with CVS, but with only one whole image located
on the shared file system. From the Fig.7, we can know that because of a shorter
accessing latency of system command and dynamic library, the system time of
executing system application is shorten by 19%, and the total compiling time is
shorten by 7%.

Fig. 4. Lmbenchmark Fig. 5. I/O zone

A Virtual Computing Environment for Super Computers 215

Fig. 6. Compling performance Fig. 7. Optimization of Nail-link technique

4.3 Parallel Application Performance Evaluation

In this subsection we examine the performance of HPC benchmarks on HPVZ.
We use the NAS Parallel Benchmarks (NPB) for evaluation. NPB is a represen-
tative benchmark for evaluating HPC systems. It can almost utilize the system’s
CPU and memory fully. We select some typical programs to test HPVZ. The
test is made on eight computing nodes. Fig.8 shows the execution time of some
NPB programs under these two systems. The comparative results vary little even
though the HPVZ technology is adopted. Most of programs have the equivalent
results, lu.A even has a better performance than on raw machine. This may
be caused by system’s noise during the testing. According to our former micro-
benchmark test, the observable performance loss on HPVZ only occurs when
forking testing item and I/O testing. The NPB benchmarks are mainly com-
puting intensive programs, HPVZ only using chroot technique to construct an
isolated environment. If the application won’t open files too much, the HPVZ’s
overhead of parallel applications on computing node could be omitted at all.

Fig. 8. NPB benchmark

216 K. Lu et al.

According to the mechanism of HPVZ, the scalability of HPVZ should be
quite good. We examine the boot time for HPVZ (both for service and com-
putation) at different scale. Because the CVZ is booted in advance, its time
consumption is zero. The SVZ is booted when user want to login. We test the
boot time of different number of SVZs on a single server node. When the number
of SVZs is no more than 256, the average boot time is about 28 seconds. Because
constructing time of HPVZ only involves chroot operation when creating jobs,
the constructing time of HPVZ remains stable when number of processes in a
job changes.

4.4 QoS Performance Evaluation

Qos function is used to control the resource usage and ensuring high quality
service on computing nodes. The implementation of Qos function involves cre-
ating QoS structure with process and recording the resource usage during each
resource consumption. Fig.9 and Fig.10 show the comparative test for Lmbench
and programs between the kernels of having Qos functions and without. As
shown in figures, except for the test items of fork and exec (20% performance
loss because of allocation for management data structure of Qos repeatedly), the
other items and programs’ performance nearly have no obvious performance loss.
These testing results show that the allocation of QoS structure is the main over-
head of QoS functions. The recording resource usage in each memory allocating
and file opening can be omitted.

Fig. 9. Lmbenchmark on QoS Fig. 10. NPB benchmark on QoS

4.5 Isolation and Security Analysis

Efficiency can be easily measured by overall performance, including throughput,
latency and the scalability. But to isolation and security, it is hard to quantify.
The fuller isolation the system can provide, including fault isolation, resource
isolation, configure isolation, file isolation and running information isolation, etc,
the better the security of the system will be. But on the other side, the better
isolation means the more performance overhead. The choice of sufficiency of

A Virtual Computing Environment for Super Computers 217

Table 1. Comparison of Isolation and Performance

Technique Fault iso. File iso. Resource iso. Run Iso. Perf. Rank
kernel application kernel application domain process

Type-II X X X X X - X 4
Type-I X X X X X - X 3

OpenVZ - X - X X - X 2
HPVZ - X - X X X X 1

isolation is the key point of a successful design of HPC. The Table 1 lists the
capacity of different virtual machine techniques and the rank of the performance.
In the columns of fault and file isolation, the ”X” stands for this virtual machine
technique can support isolation at kernel or application level. From the Table
1, we can know that the isolating functions for fault and files of HPVZ are
less than other virtual machine techniques, but sufficient for users. On resource
isolation, the HPVZ provides a fine-grained support at the process and job level,
while other virtual machine techniques can only provide QoS control at the
domain level.

The last column of Table 1 is the performance. According to the testing of [7]
and [13], the performance of Type-I virtual machine technique (Xen) is better
than Type-II virtual machine (VMware). The performance of resource container
technique is even better because it only virtualizes the user running environment.
HPVZ is developed based on OpenVZ technique, one kind of resource container
technique. And the HPVZ adopts techniques of nail-link optimization and chroot
as mentioned in Fig.7 and in section 3.2 to gain higher performance. That is the
reason why HPVZ occupies the first position in the performance rank column.

Based on the analysis in the Section 2, the performance is the most important
to HPC, and other supports, such as easy use, security and high availability
follows. From the Table 1, we can find that the HPVZ can provide sufficient
isolating support to HPC and with least performance lost.

5 Related Works

The virtual machine technique is mainly used for the consolidation on network
servers. In recent years, because of the requirements of high productivity of HPC,
the research of how to utilize the virtual machine technique on HPC is becoming
hotter and hotter. People hope to use the virtual machine technique to achieve
the goals of high available, easy use, high security of HPC designing.

The reliability is a big problem to HPC. The function of dynamic migration of
virtual machine can be helpful to improve the reliability of the super computer
system. Laura and Santhanam researched the techniques to take the advantage
of the VMM to manage and allocate the resource in the super computer [8,9,21].

The efficiency of virtual machine is very important to HPC system. A lot of
research are the fields of improving the performance of performance of Xen [14].
The overhead of managing the memory allocations and deletion in Xen is very

218 K. Lu et al.

high. According to the test of malloc/free, and performance of fork() and exec()
will decrease to 40% at most. Even though the shadow page table technique is
used in Xen, the memory management performance is still lower to 20% [13,19].
J. Liu researched the technology of bypass I/O to improve the IO performance of
Xen for HPC[12]. With the way of bypass I/O, the advantage migration of VMM
is absent. Wei Huang did the further research on providing efficient Infiniband-
based communication and support dynamic migration as well [11].

The Stephen brought out a container based OS virtualization: Vserver [13],
and compared the isolation and efficiency of Vserver and Xen techniques. But
about how to construct a virtual environment on HPC, the paper did not men-
tioned much.

The power consumption becomes a big problem with the scale of the HPC
getting larger and larger. Akshat pointed out the principle of how to place
the application in the HPC to construct a power-aware system [10]. Currently,
taking the advantage of migration of VMM, Tyler [17] and Fabien [18] hope to
decrease the total power consumption of the system, and also to avoid the hot
spot in the system. This research can save the running expenses of HPC and
also can expand the computing node’s life-span of HPC.

6 Conclusion

Virtualization technology benefits a wide variety of usage scenarios. It promises
such features as configuration independence, software interoperability, better
overall system utilization, and resource guarantees. Aiming at the usage scenarios
of HPC, we analyze the requirements of the virtualization on HPC. Based on
our analysis, this paper has presented a new approach HPVZ to virtualized
HPC system. The HPVZ utilizes the container technique of operating system
to construct different virtual zones for users. The analysis and evaluation of
Section 4 show the HPVZ can fully meet the requirements of resource guarantee
and configuration isolation of HPC. And the test results also show the overhead
of HPVZ is very small, and can almost get the raw performance of the machine.

Unfortunately, in order to prevent additional overhead of bandwidth and la-
tency, HPVZ does not support dynamic migration on computing nodes. This
problem will be conquered in the future.

References

1. SWsoft. Virtuozzo Linux Virtualization, http://www.ncbi.nlm.nih.gov
2. Linux-VServer Project, http://linux-vserver.org
3. HPCS Project, http://www.highproductivity.org
4. VMware, http://www.vmware.com/
5. OpenVZ Project, http://wiki.openvz.org/Main_Page
6. FAST-OS Project, http://www.cs.unm.edu/~fastos/
7. A Performance Comparison of Hypervisors,

http://www.vmware.com/pdf/hypervisor_performance.pdf

http://www.ncbi.nlm.nih.gov
http://linux-vserver.org
http://www.highproductivity.org
http://www.vmware.com/
http://wiki.openvz.org/Main_Page
http://www.cs.unm.edu/~fastos/
http://www.vmware.com/pdf/hypervisor_performance.pdf

A Virtual Computing Environment for Super Computers 219

8. Grit, L., Irwin, D., Marupadi, V., Shivam, P.: Harnessing Virtual machine resource
control for job management. In: First Workshop on System-level Virtualization for
High Performance Computing (March 2007)

9. Santhanam, S., Elango, P., Arpaci-Dusseau, A., Livny, M.: Deploying Virtual Ma-
chines as Sandboxes for the Grid. In: Proceedings of the Second Workshop on Real,
Large Distributed Systems (WORLDS) (December 2005)

10. Verma, A., Ahuja, P.: Power-aware Dynamic Placement of HPC Applications. In:
ICS 2008, Greece (2008)

11. Huang, W., Liu, J., Abail, B.: A case for high performance computing with virtual
machines. In: ICS (June 2006)

12. Liu, J., Huang, W., Abali, B., Panda, D.K.: High Performance VMM-Bypass I/O
in Virtual Machines. In: Proceedings of USENIX 2006, Boston, MA (2006)

13. Soltesz, S., Potzl, H.: Container-based Operating System Virtualization: A Scal-
able, High-performance Alternative to Hypervisors. In: EuroSys 2007, Lisboa, Por-
tugal (March 2007)

14. Barham, P., Dragovic, B.: Xen and the Art of Virtualization. In: SOSP 2003, Bolton
Landing, New York, USA (October 2003)

15. Solaris Cntainers: Server Virtualization and Manageability, White Paper,
http://www.sun.com/software/whitepapers/solaris10/grid_containers.pdf

16. Kamp, P.-H., Watson, R.N.M.: Jails: Confining the omnipotent root,
http://www.watson.org/~robert/freebsd/sane2000-jail.pdf

17. Bletsch, T., Lim, M.Y.: Power Aware Domain Migration in a Virtualized Cluster,
http://domino.watson.ibm.com/acas/w3www_acas.nsf/images/conf08/$FILE/

caspaper-tkbletsc.pdf

18. Hermenier, F., Loriant, N.: Power Management in Grid Computing with Xen. In:
Min, G., Di Martino, B., Yang, L.T., Guo, M., Rünger, G. (eds.) ISPA Workshops
2006. LNCS, vol. 4331, pp. 407–416. Springer, Heidelberg (2006)

19. Menon, A.: Diagnosing Performance Overheads in the Xen Virtual Machine Envi-
ronment. In: VEE 2005, Chicago, Illinois, USA, June 11-12 (2005)

20. Jette, M.: Resource Management using SLURM. In: 7th International Conference
on Linux Clusters, University of Oklahoma, May 1 (2006)

21. Nagarajan, A.B.: Proactive Fault Tolerance for HPC with Xen Virtualization. In:
ICS 2007, Seattle, WA, USA, June 18-20 (2007)

http://www.sun.com/software/whitepapers/solaris10/grid_containers.pdf
http://www.watson.org/~robert/freebsd/sane2000-jail.pdf
http://domino.watson.ibm.com/acas/w3www_acas.nsf/images/conf08/$FILE/caspaper-tkbletsc.pdf
http://domino.watson.ibm.com/acas/w3www_acas.nsf/images/conf08/$FILE/caspaper-tkbletsc.pdf

High Performance Support of Lustre over
Customized HSNI for HPC

Yufeng Guo, Xuejun Yang, Li Luo, Qiong Li, and Lu Liu

School of Computer,
National University of Defense Technology, Changsha 410073, China

yfguo21@yahoo.com.cn

Abstract. Parallel I/O needs keep pace with the demand of high per-
formance computing applications. I/O bottleneck still is one of the key
problems which restrict the development of high performance computer.
Object-based storage combines the advantages of SAN and NAS, adopts
an object-based interface, and has been a new orientation of massive
storage. The trend as such makes it very promising to build a scalable
I/O system for highperformance computing through implementation of
object-based storage system based on high-performance interconnects.
Lustre is a high performance distributed object parallel file system, is
being widely studied and applied. Exploiting performance of Lustre de-
pends on supports of high performance interconnects. In this paper,
firstly we designed and implemented a customized high performance in-
terconnect chip, HSNI (High performance Storage Network Interface),
and introduced the characteristics of HSNI. Then we analyzed the com-
munication features which support high performance of Lustre. Exper-
imental results show that HSNI can greatly exert the performance of
Lustre and has a very good scalability, so its very suitable for building
the high performance object-based storage systems for high performance
computing.

1 Introduction

With the population of information technology, digital data increased at expo-
nential rates over the past decade, the data gross of whole world increased at
rate of 30 percent per year [1]. Storage has entered the age of PB level. The
new Moore theorem [2] proposed by Turing award winner Jim Gray told us that
the new data arise in the next 18 months would equal to the sum of all the
old data arise before under network environment. Information technology has
entered into a new developing stage which should center on storage.

Driven by the requirements for extremely high bandwidth and large capac-
ity for high performance computing, storage subsystem architectures are un-
dergoing fundamental changes. Object-based storage combines the advantages
of high-speed, direct-access of SAN, and the data sharing and security capa-
bilities of NAS, adopts interface based on objects, store data as objects in a
group of self-contained object-based intelligent storage devices (OSD), provides

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 220–229, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

High Performance Support of Lustre over Customized HSNI for HPC 221

high capacity, throughput, reliability, availability cross-platform data sharing
and good scalability. Object-based storage is on the verge of becoming the next
generation standard storage interface. The American national standards insti-
tute (ANSI) ratified the object-based storage interface standard (OSD T10) [3]
in 2005. Object-based storage system separates the storage management from
the file hierarchy management. The storage management functionalities, such
as data allocation, block mapping, and request scheduling, are all offloaded to
storage devices.

At present, object-based storage studies are mainly on distributed parallel file
systems over OSD. For example, Lustre [4,6] of Cluster Inc, panFs [5] of Panasas
Inc, zFS [7] of IBM, etc. Lustre is a high performance object-based parallel file
systems, it comes from Coda project [8] of Carnegie Mellon University, and
developed by Cluster File System Inc. Lustre is a POSIX-compliant, object-
based parallel file system. It provides fine-grained parallel file services with its
distributed lock management, and can serve up to 10,000s of nodes, move 100s of
GB/s with state of the art security and management infrastructure. Lustre has
been deployed on many supercomputers, such as Jaguar at Oak Ridge National
Lab, Thunderbird at Sandia National Lab, Tera-10 at CEA in Europe, and
TSUBAME at Tokyo Tech in Japan.

To meet the demand of high performance computing, parallel I/O clusters al-
ways adopt to enhance I/O performance, most machines of top500 use this way,
through a large number of I/O nodes and concurrent I/O operations to achieve
a very high aggregate I/O bandwidth. While this architecture depends on high
performance storage interconnects. The trend as such makes it very promising
to build a scalable I/O system for high performance computing through imple-
mentation of object-based storage system based on high performance intercon-
nects. High performance interconnects such as Myrinet [9], InfiniBand [10], and
Quadrics [11] not only have been deployed into large commodity component-
based clusters to provide higher computing power, but also have been utilized
in commodity storage systems to achieve scalable parallel I/O support [12,13].
So it would have very important practical significance to study on high perfor-
mance interconnects and communication interface, and provide efficient support
for parallel file systems.

The basic contributions of this paper include: firstly we designed and imple-
mented a customized high performance interconnect chip, HSNI. And developed
efficient communication features to support high performance of parallel file sys-
tems. Finally, we evaluated the performance and scalability of Lustre over HSNI,
results show the communication interface designed by us can greatly exert the
performance of Lustre, and has a very good scalability.

The organization of this paper is as below: Section1 introduces the challenge
of development of storage and I/O system, and analyzes the tread of I/O system.
Section2 introduces object based parallel file system, Lustre. Section3 introduces
the architecture and communication mechanism of our customized high perfor-
mance interconnect chip, HSNI. Section4 introduces the communication features
which support high performance of Lustre. Section5 evaluates the performance

222 Y. Guo et al.

of Lustre over HSNI, and analyzes the results. Section6 is the summary of the
paper and future work.

2 Overview of Lustre

Lustre is a POSIX-compliant object-based parallel file system that presents high
aggregated I/O bandwidth by striping file extents across many storage devices.
It can serve more than 10,000 nodes, and achieve more than 100GB/s aggregated
I/O bandwidth. Lustre clusters contain three kinds of components: File system
client, which can be used to access the file system. Object storage servers (OSS),
which provide file I/O service. Metadata servers(MDS), which manage the names
and directories in the file system. All these components connect with storage
interconnect.

text

PC
IE Interface

3.125GHzX122.5GHzX16

Virtual
Port0 Addr

Translation

Data
Transfer
Engine

Core Communicaiton Module

DDR2 Interface

Virtual
PortN

N
etw

ork Interface(N
I)

Fig. 1. Architecture of Lustre System

Fig.1 shows the architecture of Lustre system. Clients exchange metadata with
MDS, and carry out I/O operation with OSS directly. The role of the client file
systems is to provide a directory tree, which provides Unix file sharing seman-
tics. The namespace is managed by metadata services which manage the Lustre
inodes. The MDS stores the file inodes for all Lustre files. The information about
the file striping pattern, objects of the file, location of the objects are all kept as a
part of the extended attributes on the file inode. OSSs are responsible for objects
store in the storage devices. Lustre provide numerous ways of handling storage
management functions, storage management is achieved through stacks of object
modules interacting with each other and dynamically changing the driver stacks.
Luster employs a distributed lock manager to handle access to files and directo-
ries and synchronize updates, improving on the metadata journaling approach
used by most modern file systems. Lustre also provides other features such as
read-ahead and write-back caching for performance improvements. Lustre has
below key features:

1) Scalability: object-based storage architecture that scales to tens of thou-
sands of clients and hundreds of TB of data-a file system without limits.

2) High Performance: dramatic increase in throughput and I/O bandwidth
by intelligent serialization and separation of metadata operations from data
manipulation.

High Performance Support of Lustre over Customized HSNI for HPC 223

3) Innovative distributed lock manager: intent-based optimizations pre-
vent bottlenecks and increase overall data throughout.

4) Cost effective: support for industry standard platforms and heteroge-
neous network environments significantly reduce deployment and support costs.

5) High availability: designed to support failover in all server components.

3 Customized High Performance Interconnect-HSNI

3.1 Architecture of HSNI

HSNI is a high performance network interface control chip based on independent
light weight communication protocol, and can be applied to high bandwidth, low
latency interconnect. HSNI provides a common solution framework for commu-
nication within computing nodes and I/O systems. Host interface adopts PCI
Express link, and uses customized high performance serial link connect to the
system network. HSNI supports virtual address to physical address translation
and non-align RDMA to realize user-level communication efficiently.

Client Client Client

OSS OSS OSS

Storage Interconnect MDS

IO
/S

to
ra

ge

op
er

at
io

ns

Metadata server

Fig. 2. Architecture of HSNI

As shown by Fig.2, HSNI includes below components:

1) PCI Express Interface: Used as the host interface. HSNI is an endpoint
device of PCI Express system. It is compliant with PCI Express1.0a specification,
support 16 lanes, 2.5Gbps per lane, up to 4 virtual channels. Max Payload Size
is 512B, bidirectional bandwidth is 80Gbps.

2) Network Interface(NI): Used to connect with networks. It’s a high
speed serial link, implemented optical transmission by photoelectric conversion,
supports 12 lanes, 3.125Gbps per lane, and two virtual channels, bidirectional
bandwidth is 75Gbps. So the bandwidth can match with PCI Express link, and
the performance is balance.

3) DRAM Interface: Adopted DDR2 interface, used to connect out-of-chip
DRAM, frequency is 266MHz, data width is 64bit, max DRAM capacity is 4GB.
DRAM used to store address translation table for virtual address to physical
address, the translation table can be big enough for translation unlimited.

224 Y. Guo et al.

4) Core Communication Module: It’s the key module of HSNI, and is
designed for high performance communication mechanism. Includes several sub-
components: Virtual Ports, Data Transfer Engine, Address Translation Module,
e.g. Virtual Ports virtualized the hardware resource, all the operation registers
are mapped to VP space, supported users access hardware directly, and provided
a communication interface based on descriptors. Data Transfer Engine supports
both short messages pass and RDMA, short messages pass used to transfer
short package for management and notification, RDMA used for large data block
transmission, and supports non-align RDMA transmission. Address Translation
Module translates virtual address to physical address, and supports user level
communication based on virtual address by search address translation table.

3.2 Characteristics of HSNI

HSNI chip is designed in for a CU-11 process, die size is about 20mmx20mm.
Core frequency is 250MHz. The internal data path width is 128b. Power is
about 14W.

The major characteristics of HSNI are below:

1. Provide a flexible programming interface based on descriptors mechanism,
users can start data transfer by submission of descriptions.

2. Support two transfer mechanisms: Short Message Pass for management and
notification, and RDMA for data block transmission.

3. Support user level communication, users can operate HSNI directly, without
intervention of OS, so can by pass the costs of software.

4. Support non-align RDMA transfer based on virtual address, data transfer
can start at any address needn’t alignment.

5. Support Zero-Copy Non-Contiguous I/O efficiently, divided non-contiguous
I/O into multi contiguous I/O by driver without user awareness.

6. Short Message Pass supports broadcast and multicast, which can accelerate
the scientific applications.

7. Support 32 virtual ports, the descriptors processing of these virtual ports
used round-robin arbitrator. Up to 32 processes can operate synchronously.

8. Results of transfer can be reported by interruption or message.
9. Support blocking with ACK validation and non-blocking without ACK val-

idation data transfer.
10. Use key and protected bit to enhance security of communication, prevent

misoperations which would destroy the system.

4 High Performance Communication Features

4.1 User Level Communication

User level communication allows user applications access communication inter-
face directly, reduce the cost of software operations. OS kernel maps registers
and DRAM space to user address space, so user processes can access them by-
pass OS kernel, and data can be send from user buffer without copy, so needn’t

High Performance Support of Lustre over Customized HSNI for HPC 225

system call, data copy and context switch between kernel and user process, user
level communication also reduces the utilization of host CPU. Following we will
use RDMA write as an example to show how user level communication process.
Firstly, user processes use virtual address to prepare the descriptor and start
data transferring. HSNI uses physical address read data from source memory by
virtual address to physical address translation, then send data to target HSNI
through NI. Target HSNI write data to user data buffer directly by virtual ad-
dress to physical address translation, too. After all data transmission done, target
user process can read from user data buffer without data copy. HSNI adopts vir-
tual address to physical address translation based on address translation table
(ATT) to support user level communication. The function of ATT is similar to
TLB of memory, ATT can build the virtual address space of communication
interface, and the index of table is similar to virtual page address. Contiguous
virtual address of communication interface can be mapped to non-contiguous
physical memory address by configuration of ATT.

Address translation module is the key component which supports user level
communication. Address translation based on ATT is adopted by HSNI. The
translation is done by hardware, and doesn’t need software intervention. HSNI
uses out-of-chip DRAM to build ATT. OS kernel manages ATT, every unit of
table is 8B, can keep 64b page physical base address, ATT can be accessed by
index. Driver registers the first unit index of a group of continuous ATT and the
first page offset of user process space in the identifier of memory, and returns it to
user process, so all user address have been translated into index and offset. HSNI
only lookup ATT, and shouldn’t modify it. To reduce access latency of ATT, we
designed cache to store units of ATT, only cache miss would read DRAM. HSNI
gets virtual address from descriptors, then uses the index to match ATT and
get physical base address, physical base address add to offset will get physical
address which used for data transfer. The process of address translation just
needs one search operation and one add operation, and can be parallelization
and pipeline with data translation, so it’s very efficient.

HSNI adopts following methods efficiently realize virtual address to physical
address translation:

1. Virtual address to physical address translation is completed by hardware, so
it can bypass cost of software, reduce utilization of host CPU.

2. Out-of-chip DRAM can store enough ATT units, address translation invali-
dation will never happen, so there is no cost of invalid operation.

3. Use cache to reduce the search cost of ATT, and improve the performance of
address translation.

4. By parallelization and pipeline with data transfer to reduce the latency and
the cost of address translation.

4.2 Zero-Copy Non-contiguous I/O

Non-contiguous I/O access is the main access pattern in scientific applications.
Thakur et. al. [14] also noted that it is important to achieve high performance

226 Y. Guo et al.

MPI-IO by providing native support of noncontiguous access in file systems.
HSNI can support zero-copy non-contiguous I/O efficiently, user just need start
one transfer operation, driver will divide this non-contiguous I/O into multi
contiguous I/O, and write multi descriptors in descriptor queue, all these are
unaware by user. After all data transfer completion, HSNI can notify host by
interruption or short message. Fig.3 shows how zero-copy non-contiguous I/O is
carried out: Firstly, the source and destination memory address/length pairs of
the IO fragments are collected by the process which would initiate the RDMA
operations. Then, user process call RDMA function provided by driver, and
passes the non-contiguous address and length link to driver. Drivers separate
non-contiguous I/O into multi contiguous I/O, construct descriptors and write
in descriptor queue. HSNI start RDMA data transfer. After all data transfers
have been done, notify the completion of this non-contiguous I/O to user process.

Data Transfer
Engine

Data Transfer
Engine

Source Memory Destination Memory

Descriptor Queue

HSNI HSNI

Fig. 3. Zero-Copy Non-contiguous RDMA

4.3 Non-align RDMA

HSNI supports any byte address non-align RDMA transfer, and offset of source
and destination can be different. So data needn’t copy to buffer which address is
align, this can reduce software cost. Data transfer shouldn’t cross page boundary,
because the start data address offset of source and destination may be different,
so source address maybe cross page boundary at destination, so we must align
address according to destination address. The align module of HSNI supports
non-align RDMA, to reduce the latency of align operations, we pipeline address
align process, and pay little impact on communication performance.

5 Performance Evaluations

We construct an object-based storage system based on HSNI. File system adopts
object parallel file system Lustre. Then we evaluate the performance of the
object-based storage system. Section5.1 will introduce experimental environment
and evaluation method. Section5.2 will show the results of test, and we will
analyze these results.

High Performance Support of Lustre over Customized HSNI for HPC 227

5.1 Experimental Setup

Our object storage servers use Intel servers with three PCI Express slots, one
used to plug HSNI card, and the other two used to plug RAID card. The disk
interface of RAID card uses 3Gb/s SATA II interface, each RAID connects seven
400GB SATA II disks, the disk capacity of single OSS is about 6TB. An Intel
server works as MDS, MDS connects to system network by HSNI, too. All clients
use HSNI to connect to system network, and run Lustre Client program.

Benchmark uses IOR. IOR [15] (Interleaved or Random) is a parallel file
system test code developed by the Scalable I/O Project at Lawrence Livermore
National Laboratory. This parallel program performs parallel writes and reads
to/from a file using MPI-IO (or optionally POSIX or HDF5) and reports the
throughput rates. We used IOR not only to test aggregate bandwidth, but also
to test the scalability of our system.

5.2 Experimental Results

In the single client experiments, the client would read from or write to multi
OSD concurrently. The total size of I/O file is 64GB, strips across multi OSD
uniformly. Fig. 4. shows the changes of I/O read and write bandwidth with an
increasing number of OSD. The measurement results show that the read and
write performance both improve with an increasing number of OSD. When OSD
number is 4, read reaches its peak performance, 590MB/s. When OSD number
is 8, write reaches its peak performance, 698MB/s. Also shown in the figure,
the read and write performance would decrease appreciably with increase OSD
number continuously, that’s because just one client, the client communication
would be the bottleneck of system. From the measurement results, we find HSNI
can provide greatly support of read and write bandwidth for I/O operations of
parallel file system.

Fig.5 shows the results of the I/O aggregate bandwidth measurements. The
total size of I/O file is 64GB, strips across multi OSD uniformly. The OSD
number is 16. The measurement results show the I/O aggregate read and write
bandwidth changes with an increasing number of clients, the results would also

Fig. 4. Single Client I/O Bandwidth

228 Y. Guo et al.

Fig. 5. Aggregate I/O Bandwidth

reflect the scalability of system. The left figure is the result of the write mea-
surement, when the client number is less than 16, that’s say every OSD would
server no more than one client, the write bandwidth would increase linearly.
But the write bandwidth would decrease appreciably if increase client number
continuously after that, that’s because the competition of OSD and MDS. The
right figure shows the read bandwidth changes with an increasing number of
clients, the read bandwidth would increase linearly with increase of the client
number. Compare the left figure with right figure, we can find the read perfor-
mance is better than write, and access competition would pay little effect to
read performance. That’s because the clients used cache. If cache hit, clients can
get data directly without access OSD. All the results show that the scalability
of the object-based storage system based on HSNI designed by us is very good,
so it’s very suit for building high performance computing system for scientific
applications.

6 Conclusions

With the PB level computing power and storage capacity coming of age, how to
construct an I/O system catches the demand of more and more complex appli-
cations becomes very important. Object model enhances the intelligent of I/O
systems, reduces costs of file systems, cluster enhances parallelism of I/O, so
they have been the effective ways to improve I/O performance. Building object-
based storage system with high performance interconnects has been the tread of
high-performance computing development. Rapid improvement of serial interface
bandwidth provides well support for performance improvement of communica-
tion interface. In Future work, we will adopt host interface and network interface
with higher bandwidth, and use more effective methods to reduce latency and
improve data transfer bandwidth, so HSNI could greatly exert the performance
of object based parallel file system Lustre, and meet the demand of development
of high performance computing.

High Performance Support of Lustre over Customized HSNI for HPC 229

References

1. Lyman, P., Varian, H.R., et al.: How much information (2003)
2. Gray, J.: What Next? A Few Remaining Problems in Information Technology

(1988)
3. Wber, R.O.: SCSI Object-Based Storage Device Commands(OSD), Document

Number: ANSI/INCITS 400-2004. International Committee for Information Stan-
dards (December 2004)

4. Lustre, http://www.lustre.org
5. David Nagle, A.M., Serenyi, D.: The Panasas ActiveScale Storage Cluster-

Dellivering Scalable High Bandwidth Storage. In: Proceedings of Supercomputing
2004 (2004)

6. Braam, P.J.: The Lustre storage architecture. Technical report, Cluster File Sys-
tems, Inc. (2002)

7. Rodeh, O., Teperman, A.: zFS- a scalable distributed file system using object
disks. In: Proceedings of the 20th IEEE/11th NASA Goddard Conference on Mass
Storage Systems and Technologies, pp. 207–218 (2003)

8. Coda Project, http://www.codaproject.org/
9. Myrinet, http://www.myri.com/

10. InfiniBand Architecture Specification, Release1.1. InfiniBand Trade Association
(2002)

11. Petrini, F., Feng, W.C., Hoisie, A., Coll., S., Frachtenberg, E.: The Quadrics net-
work: High-Performance Clustering Technology. IEEE Micro. 22(1) (2002)

12. Yu, W., Noronha, R., Liang, S., Panda, D.K.: Benefits of High Speed Interconnects
to Cluster File Systems: A Case Study with Lustre. In: IPDPS 2006 (2006)

13. Yu, W., Panda, D.K.: Benefits of Quadrics Scatter/Gather to PVFS2 Noncontigu-
ous IO. In: PACT 2005 (2005)

14. Thakur, R., Gropp, W., Lusk, E.: On Implementing MPI-IO Portably and with
High Performance. In: Proceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, pp. 23–32 (1999)

15. IOR Benchmark, http://www.llnl.gov/asic/purple/benchmarks/limited/ior

http://www.lustre.org
http://www.codaproject.org/
http://www.myri.com/
http://www.llnl.gov/asic/purple/benchmarks/limited/ior

ViroLab Security and Virtual Organization
Infrastructure

Jan Meizner2, Maciej Malawski1, Eryk Ciepiela2, Marek Kasztelnik2,
Daniel Harezlak2, Piotr Nowakowski2, Dariusz Król2, Tomasz Gubała2,

Włodzimierz Funika1, Marian Bubak1,2, Tomasz Mikołajczyk3, Paweł Płaszczak3,
Krzysztof Wilk3, and Matthias Assel4

1 Institute of Computer Science AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 ACC CYFRONET AGH, ul. Nawojki 11, 30-950 Kraków, Poland

3 GridwiseTech, ul. Chrobrego 28/4, 31-428 Kraków, Poland
4 High Performance Computing Center Stuttgart, Nobelstrasse 19 70569 Stuttgart, Germany

jm@jjpm.pl, {malawski,funika,bubak}@agh.edu.pl,
{e.ciepiela,m.kasztelnik,p.nowakowski,

d.harezlak,t.gubala}@cyfronet.pl,
dkrol@student.agh.edu.pl, {tomasz.mikolajczyk,

pawel.plaszczak,chris.wilk}@gridwisetech.com, assel@hlrs.de

Abstract. This paper introduces security requirements and solutions present in
the ViroLab Virtual Laboratory. Our approach is to use a federated Single Sign-
On mechanism based on the Shibboleth framework that enables multiple partners
to authenticate against their local identity systems and use resources provided by
all other partners. Since the basic Shibboleth capabilities do not meet our specific
requirements related to supporting non-web-based services, we created a set of
custom tools that allow us to develop a homogeneous, Shibboleth-based secu-
rity solution for both Web and non-web-based software components. This paper
describes these tools in detail, together with other services of the virtual labora-
tory which have been integrated with the security infrastructure. A decentralized,
attribute-based approach facilitating the creation and management of virtual or-
ganizations is the key achievement of our work.

Keywords: virtual laboratory, security, virtual organization, single sign-on, fed-
erations, decentralized security, attribute-based authorization, Shibboleth.

1 Introduction

The ViroLab Virtual Laboratory (VL) is a distributed collaborative computing environ-
ment, which allows researchers to conduct in-silico experiments involving access to
multiple data resources and processing of data using complex compositions of compu-
tational services [1,2]. The main application field of ViroLab is study of the Human
Immunodeficiency Virus (HIV) where experiments combine simulations and analysis
of data ranging from molecular dynamics to epidemiological effects [3]. The research
results can improve clinical treatment of HIV patients.

The users of the virtual laboratory come from multiple disciplines and include clini-
cians, virology researchers and computer scientists. Clinicians interact with the system

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 230–245, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

ViroLab Security and Virtual Organization Infrastructure 231

Fig. 1. High-level architecture of the ViroLab Virtual Laboratory

as experiment users, by routinely executing prepared experiments to obtain support in
the treatment of their patients. Clinical researchers, virologists and epidemiologists are
both designers and users of more advanced experiments needed to analyze the feder-
ated datasets of patients from ViroLab databases and acquire new knowledge, suitable
for clinical decision support. Finally, the computer scientists’ role is to act as experi-
ment developers, supporting the researchers in implementing their experiment plans in
an executable format, developing and integrating heterogeneous computing and data re-
sources with the overall environment, and creating novel tools and services facilitating
the usage of the entire infrastructure.

A simplified architecture of the Virtual Laboratory is presented in Fig. 1. The users
may have multiple roles, such as experiment developers, scientists and clinical virolo-
gists, accessing the system via a set of dedicated user interfaces [4]. The user tools pro-
vide access to a generic set of virtual laboratory services, which allow execution of the
available experiments and management of their results. The experiments are specified
using a high-level notation based on Ruby scripts [5] and executed by the runtime sys-
tem (GSEngine) [6]. They can perform computations using a multitude of middleware
technologies [7] (such as Web services, MOCCA components [8] and Grid jobs e.g.
on EGEE). They can also access multiple data sources, including federated databases,
using the Data Access Services [9].

The users come from multiple institutions and can play various roles, which imply
different access rights within the system. These aspects are particularly important since
in the eHealth domain medical datasets (even those available for research purposes)
need to be carefully protected from unauthorized access. For these reasons, there is
a need to create a flexible virtual organization [10] management mechanism, which
allows defining users, resources and policies in order to regulate their trust relationships
and secure interactions accordingly.

232 J. Meizner et al.

In this paper we explain how the problem of security and virtual organization man-
agement was solved in ViroLab with the use of a federated attribute-based authentica-
tion and authorization system based on Shibboleth [11]. We present an overall security
model and show how it deals with possible threats. An interesting challenge was to
adapt Shibboleth, which is a Web-based solution, to non-web rich-client tools and dis-
tributed services which use multiple protocols (such as SOAP-based services, Subver-
sion (SVN) repositories, application execution engine and data sources). We describe
in detail how this was achieved and how the specific tools and services of the virtual
laboratory are integrated with the developed security infrastructure. We also discuss the
lessons learned from our experience with building and running such an infrastructure,
including the limitations of Shibboleth.

2 Related Work

Well-established security solutions for Grid systems include authentication, authoriza-
tion and credential delegation methods based on X.509 certificates. The most notable
example of support for authentication and credentials delegation is the Grid Security
Infrastructure (GSI) [12]. It enables users to authenticate themselves using so-called
proxy certificates (short-lived certificates). Proxies might also be easily delegated to ob-
tain indirect access to services. Following generation the proxy might be used for some
time (until it expires); hence this solution is an example of a Single Sign-On (SSO)
mechanism. Authorization could be implemented with the help of mechanisms such as
VOMS [13] that manages VO membership of Grid users, enabling service providers to
grant or deny access based on the user’s VO. The main drawback of certificate-based
solutions is that their usage that may be too complicated for regular users.

Web-based software is certainly friendlier to the user, as proven by high popularity
of web solutions in science (e.g. web interfaces for drug or genetics databases), busi-
ness as well as in blogs and social networks. This popularity prompted the need for
solutions providing the security in those systems. As a result, many web-based security
solutions have been created, providing support for SSO mechanisms. Shibboleth [14] is
a federated SSO framework based on SAML [15] (a detailed description can be found
in Section 4). Another example is the Java Open Single Sign-On (JOSSO) project [16].
Web applications are referred to as SPs (Service Provider) and the part providing user
identities is called IdP (Identity Provider). IdP requires a J2EE container (such as plain
Tomcat, JBoss or WebLogic), while SP might be developed using either Java or other
popular Web technologies, e.g. PHP or ASP.NET. OpenID [17] is currently gaining
popularity, although applying it to non-web scenarios is not straightforward.

One of the Shibboleth-based solutions, called GridShib [18], was created specifically
for the Globus Toolkit. It integrates Shibboleth with standard Grid certificate solutions
by issuing special Grid certificates (with the embedded Shibboleth attributes as an ex-
tension) for the users who only have a Shibboleth account. Another similar solution is
called ShibGrid [19]. It enables users with and without Grid certificates to access GSI-
protected services by either using their certificates for proxy generation or generating
short-lived certificates based on the Shibboleth credentials.

ViroLab Security and Virtual Organization Infrastructure 233

3 Basic Threat Model for the ViroLab Infrastructure

The most common security requirements are authentication and authorization. Our
system requires a federated Single Sign-On mechanism which enables different centres
to manage their users on their own. Once authenticated, users are able to become au-
thorized to use the services provided by various partners on the basis of the attributes
released by their organizations. Other important requirements include confidentiality
and integrity of data both stored in the system, as well as transmitted via the network.
We must protect databases, experiments, experiment results and all types of transmitted
credentials supplied by the user from being stolen or tampered with. Finally, we must
ensure high availability of all parts of the architecture, especially security components.
Any unavailability of security components might disable or seriously limit access to
certain services and resources.

The Virtual laboratory infrastructure contains different types of potentially valuable
assets that have to be protected. We present them in Tab. 1. In addition, the table de-
scribes possible threats against these assets.

The Virtual Laboratory might be a target of various types of attacks. It is well pro-
tected against simple plain-text transmission eavesdropping as all communication is
encrypted with TLS, but there are other possible techniques, including: dictionary or
brute-force attack against user credentials guessing user passwords; phishing and
other social engineering techniques to lure potential victims (or pharming to redi-
rect them) to a fake portal to intercept their credentials. In addition, the attacker might
try to directly exploit security services used in the infrastructure (e.g. the LDAP or
the Apache web server). To prevent these attacks we have to: enforce reasonably strong
passwords, educate users not to give credentials to anyone/anything suspicious and keep
our services up-to-date and well-patched.

Table 1. Protected assets and threats against them

Assets
Medical Users Experiments Results Computer and net-
databases databases work resources

Description
HIV virus mu- User creden- Source code Experiment Computational
tations, dru- tials and at- of the expe- results;Also power and net-
gs; Data is tributes; Must riments; intelectual work connecti-
anonymized be well pro- Containing property; vity;
but still ve- tected from IP, may com- Must be prote- Possible abuse
ry valueable tampering and promise sys- cted from be- for password
Must be well theft. tem if tamp- ing tampered cracking or to
protected ered with. with and stol- perform DDoS
from theft. len. attacks.

Threats
DBMS LDAP Apache/SVN Apache/Web- Any service
exploited exploited exploited DAV exploited exploited
Plain text eavesdropping, man in the middle attack, theft of credentials,
social engineering, compromising node hosting the service (e.g. kernel bugs)

234 J. Meizner et al.

4 Used Technology

Following in-depth analysis of various possible technologies, Shibboleth was selected
as the best solution from the point of view of our requirements.

Shibboleth is a well-established federated Single Sign-On solution, proposed by the
Internet2 consortium. It features a group of so-called Home Organizations (HO) in dif-
ferent centers. Each of them hosts an Identity Provider (IdP) composed of the SSO and
Attribute Authority (AA) components. SSO supports user authentication against local
user databases (in our case – LDAP servers) and produces authentication tokens trusted
by other federated HOs. The Attribute Authority (AA) supplies attributes describing
and characterizing HO users. AAs also protect the attributes from being released to
anyone outside the federation. The exchange of authentication tokens (so-called han-
dles) as well as the attributes is conducted with the help of SAML – a standard for
exchanging security assertions.

Shibboleth is a complete solution that suits our security requirements described in
this paper. SSO provides a solution for authentication while AA is used for authoriza-
tion. All communication between the SP and IdP is secured with the TLS protocol
and exchange of security assertions features the use of SAML, which guarantees con-
fidentiality and integrity of the transmitted security information. The ability to create
many HOs (including backup HO) ensures optimal availability and consistency of the
infrastructure.

Despite the fact that Shibboleth seems to be a perfect fit for our needs there is one
problem we have had to deal with. Originally, Shibboleth was strictly web-based, de-
signed to protect web applications only. However, we also need to protect our non-web
services such as GSEngine, SVN repositories, MOCCA components or the Data Access
Services. Because of that we have created a set of tools (described later in this paper)
that enable us to acquire and then use the Shibboleth handles in a non-web-based envi-
ronment.

5 Security Architecture of ViroLab

In this section we describe how we understand the concept of a Virtual Organization
(VO) in the context of ViroLab and, subsequently, present an overview of the security
architecture. A ViroLab VO forms a group of entities (typically users) that share a legit-
imate need to access similar resources (typically – applications, services, or data). VO
membership can be further restricted by other characteristics (attributes) common to
this group of entities. Membership in a VO is not static – it can be enabled and disabled
at any time. For example, two entities (e.g. doctor A and hospital B) within the same
VO can dynamically establish each other’s identity and initiate secure communication,
even if they have no prior knowledge of each other’s existence. The novelty of ViroLab
VOs comes from the decentralized approach based on attributes. Here we should stress
that the security implementation in ViroLab enables easy setup of an unlimited number
of VOs in various configurations. The three VOs (developers, users, clinicians) that we
are referring to serve as examples for our system validation.

The overall architecture of the ViroLab virtual laboratory, as seen from the security
perspective, is shown in Fig. 2. A user can belong to any of the four home organizations.

ViroLab Security and Virtual Organization Infrastructure 235

Fig. 2. Overall security architecture in the ViroLab virtual laboratory

Each home organization hosts an Identity Provider (IdP) which enables authentication
using a web browser, and which returns user attributes to trusted service providers, like
the ViroLab portal, which redirects users to the corresponding authentication capability
of the chosen Identity Provider. Once the user is authenticated, the portal server obtains
a Shibboleth handle that enables it to request user attributes. A handle, together with
the IdP URL, can be further used as a security credential within the system to obtain
access to other resources and services.

A typical Shibboleth handle and IdP URL pair appears as follows:

133e6bb9458bcb1cf0313a#https://idp.gridwisetech.pl/shibboleth-idp

The portal offers several tools (available as portlets) for authenticated users, in-
cluding: the Experiment Management Interface (EMI) (see Section 6.6), the VO
Management (see Section 6.13) and the Database Browser – a Web interface to the
ViroLab Data Access Services (DAS) (see Section 6.10). In addition to the portal, a
user can access the system with a set of specialized tools, both grahpical and command-
line, such as ShibIdPClient (see Section 6.1). The handle can be used directly by the
command-line GSEngine client tool, which is responsible for the execution of ex-
periments through GSEngine (see Section 6.8). Alternatively, the experiment devel-
oper can use the Experiment Planning Environment (EPE) (see Section 6.5). The
user tools (web-based, GUI-based or command-line) provide access to generic vir-
tual laboratory services, all of which are remotely accessible and protected using the
Shibboleth security mechanisms. The main runtime service is called GSEngine (see

236 J. Meizner et al.

Section 6.8). It communicates with the client using a dedicated protocol over a se-
cure channel (SSL-based) and, during experiment execution, accesses the application-
specific Web services or distributed components using a delegated set of credentials;
namely the Shibboleth handle. Other generic services include the Grid Resource Reg-
istry (GRR) (see Section 6.9) and ShibSVN (see Section 6.7), which acts as the
experiment repository. Fig. 2 shows that the crucial component providing authorization
is the ShibAuthAPI together with ShibRPC, both developed within the project. It is
noteworthy that ShibRPC is not a single service, but there may be (and actually are)
more instances deployed at different institutions and configured using distinct policies.
A detailed description of these modules is given in Sections 6.2 and 6.3. In order to fa-
cilitate the creation of authorization policies, project partners agree to use the same set
of user attributes (Shibboleth attributes). The common set of attributes, the mutual trust
between IdPs, the services and the new Shibboleth-compatible tools (described in the
following section) together constitute the foundations of ViroLab security and virtual
organization infrastructure.

6 Security Features, Tools and Services within ViroLab

In this section we describe our tools that are related to the security of the Virtual Labo-
ratory. We emphasize innovative solutions that enable us to integrate web and non-web-
based elements. In addition we explain the relation between the requirements presented
in the threat model and the functionality supplied by these tools.

6.1 ShibIdPClient

ShibIdpClient is a software library designed to enable users to acquire Shibboleth han-
dles by authentication against the SSO, without the need for any web browser. Once
supplied with proper configuration and a list of trusted IdP certificates, this compo-
nent is able to perform automatic authentication of the users based on their credentials.
The library fulfills the authentication requirements mentioned in the threat model. It
also supports the HTTPS protocol and thus can be used to connect to SSL/TLS se-
cured endpoints, providing confidentiality and integrity of the transmitted data. It might
be incorporated in any non-web software to enable it to authenticate users against any
Shibboleth IdP protected via basic HTTP authentication and secured with SSL/TLS.
In effect, this library constitutes a basic solution to the aforementioned problems with
authentication in non-web environments.

ShibIdpCliClient is a command-line tool which uses ShibIdpClient to acquire Shib-
boleth handles without the need to run any web browser, or even any graphical envi-
ronment. It is a perfect solution for Unix or Unix-like OS users who prefer to work
remotely (e.g. via SSH).

6.2 ShibAuthAPI

The goal of the Shibboleth Attribute Authority API, or ShibAuthAPI for short, is to pro-
vide a generic interface that can be used by other developers to shibbolize

ViroLab Security and Virtual Organization Infrastructure 237

(Shibboleth-enable) their modules. Users of these modules can be authorized via Shib-
boleth. ShibRPC (see section 6.3) is an example of a shibbolized module. In other
words, ShibAuthAPI is a low-level authentication and authorization Java library that
matches non-web use cases, built upon Shibboleth 1.3 and GridShib [18]. ShibAu-
thAPI contains two elements which are necessary to perform user authentication: (1)
AttributeRequestor (responsible for authentication) and (2)PolicyResolver
(responsible for authorization).

AttributeRequestor performs authentication of a given user based on the provided
Shibboleth handle, which can be obtained either from the portal or from ShibIdPClient.
The handle is used for querying a Shibboleth IdP for user attributes. If correct attributes
are returned by Shibboleth, we can assume that the given user is known and has been
authenticated. PolicyResolver is then asked to make an authorization decision. The At-
tributeRequestor configuration includes information on all available Shibboleth IdP cer-
tificates, Shibboleth SP certificates, a Service Provider certificate (along with a private
key) and the access policy file name.

PolicyResolver loads access policies from its configuration file in order to autho-
rize users, or denies authorization, basing on the corresponding policies. If all policy
attributes match user attributes, the user is authorized. Each policy has a name (pol-
icy name), a publication date (publication date) and a set of attributes (rules).

6.3 ShibRPC

ShibRPC is an XML-RPC service that is implemented as a Java servlet running in-
side Apache Tomcat. It provides a bridge between Shibboleth and client applications.
Using ShibRPC it is possible to shibbolize applications without tight integration with
any of the Shibboleth libraries (e.g. ShibAuthAPI). This matches the needs of vari-
ous applications, including web applications. In order to access the ShibRPC service, a
XML-RPC client is necessary. This client complies with the XML-RPC standard spec-
ification. Due to the fact that this protocol is popular there are many ready-to-use li-
braries that are available for C/C++, Java, Ruby, Python, PHP and other programming
languages that support TCP/IP sockets. The added value of this library is that it is based
on ShibAuthAPI (see section 6.2) and it exposes its key functions. By using ShibRPC,
an application can easily access user attributes by passing a Shibboleth handle and the
IdP URL to the XML-RPC method. Based on these attributes the application can decide
whether the user is allowed to access a dedicacted service or not. As ShibRPC is based
on ShibAuthAPI, user authorization can also be performed using access policy files on
the ShibRPC server side.

6.4 Portal

The goal of the ViroLab Portal, commonly referred to as Portal, is to provide a single en-
try point to the Virtual Laboratory for experiment users (scientists and physicians) and
Home Organization administrators (see section 6.13). The Portal is especially suited for
non-technical users, such as experiment users. The main features of the Portal include
distributed security using Shibboleth, support for multiple user institutions, Single Sign-
on (SSO) and support for Adobe Flash and AJAX portlets. The Portal uses distributed

238 J. Meizner et al.

security mechanisms (federated identity-based security approach), which in turn ap-
ply Shibboleth in a standard way: the user is redirected to the Home Organization to
perform authentication using a local username and password.

The Portal was designed to offer its services to users from multiple institutions. In
order to support authentication and authorization of users from diverse and dispersed
groups it uses the Home Organization concept. The user is only requested to select the
institution s/he belongs to. The remaining actions are performed automatically behind
the scenes.

The Portal provides a means for hosting multiple applications (portlets); hence, it
plays the role of a scientific gateway. In other words, once users log on to the Portal, they
obtain access to all applications that are installed inside. These applications can then
invoke remote services, which perform user authorization using the same credentials.
The Portal is powered by the GridSphere portal framework so Java portlets are fully
supported, including JSR-168 compliant portlets (plain JSP), AJAX-powered portlets
(mixture of JSP, JavaScript, and XML), and Flash-enhanced portlets (JSP files with
embedded Flash content).

6.5 Experiment Planning Environment

The Experiment Planning Environment [4] is an Eclipse-based Integrated Develop-
ment Environment (IDE), which supports developing ViroLab-related experiments in
an easy and user-friendly way. This is achieved by gathering different facilities that
support each part of the experiment development process: creation, development, ex-
ecution with GSEngine and sharing via the Experiment Repository. At each of these
steps the developer has to take care of obtaining secure access to data and computational
resources. Thus, the ShibIdPClient library is integrated with the environment. Be-
fore experiments can be executed using the GSEngine runtime system, or accessed in
the Experiment Repository, the developer must verify his/her identity by obtaining a
handle from the Shibboleth system. To do so, the developer can use a dedicated dia-
log window within the IDE. Upon choosing one of the available Identity Providers and
entering the login and password, EPE obtains the security handle and can store it on
the local machine. The handle is then refreshed automatically in any subsequent EPE
session; therefore, the developer can focus on developing new experiments.

All of the security-related information about existing Identity Providers is kept both
on the server (where the default GSEngine instance is running) and the client (where the
EPE instance is located). On the server side a configuration file – properties.xml
– is maintained. It contains information about various URIs, which describe IdP access
points. On the client side, public certificates of the IdPs are stored. By distributing the
security information to different sites we reduce the likelihood of a successful men-in-
the-middle attack.

6.6 Experiment Management Interface

The Experiment Management Interface (EMI) [4] allows users to securely execute and
monitor experiments by integrating with the Portal in the hosted mode and with a dedi-
cated ShibIdpClient library in the standalone mode. In the former case a web session is

ViroLab Security and Virtual Organization Infrastructure 239

used to pass the user’s Shibboleth handle from the Portal to the EMI web widget. The
handle is then forwarded to GSEngine and the experiment repository to perform corre-
sponding tasks on behalf of the user. The latter, standalone mode requires the user to
log in through a dedicated login widget. During this process the user handle is obtained
through the ShibIdpClient library and can then be forwarded to underlying components
in a similar fashion as in the former case.

6.7 ShibSVN

The goal of the ShibSVN (Shibboleth-enabled Subversion) module is to provide ac-
cess to Subversion repositories with Shibboleth authorization by means of a generic,
unmodified Subversion client. The solution depends on ShibRPC (see section 6.3) to
which it delegates user credentials so that authorization decisions can be made. The
core of ShibSVN is an authorization module for the Apache HTTP Server (bundled
with the ShibRPC client), which uses ShibRPC to authorize users.

Authorization for accessing Subversion repositories is based on Basic Authentica-
tion, i.e. an authentication method included in the HTTP standard since its 1.0 release.
By default, the Apache HTTP Server uses user names and passwords stored in text files,
LDAP or a database. The developed Apache module provides authorization to any web
resource inside an Apache server by invoking XML-RPC methods on a remote server
(see section 6.3). In place of a password, the user must provide his or her Shibboleth
handle and the IdP URL.

Summing up, due to the fact that Subversion repositories are exposed to the external
world as web resources, accessible via URLs using the standard HTTPS (HTTP over
SSL) protocol and end users are authorized on the basis of usernames and passwords
(namely, their Shibboleth handles), each end user is free to use a Subversion client of
his/her choice, including any web browser sufficient for read-only access to data in
Subversion repositories. In this way both EPE and EMI user tools are integrated with
the ViroLab experiment repository based on ShibSVN.

6.8 GSEngine

GSEngine [6] constitutes the central point inside the ViroLab virtual laboratory and
therefore it is the first module that requires authorized access in the course of experiment
execution. GSEngine is secured in order to restrict access to computational resources
for external parties. On the other hand, it is expected to run experiments that access re-
sources (services, components) which are also secured. Therefore, GSEngine maintains
a kind of security context for experiments during their execution and delegates security
credentials to secured resources in the form of Shibboleth handles.

The GSEngine client communicates with the GSEngine server using an application
specific protocol employing the Secure Socket Layer (SSL), thus securing the passing
of handles against eavesdropping. GSEngine is integrated with the newest ShibRPC
– Shibboleth Authorization Point module, maintained as an external standalone ser-
vice. Authorization is performed according to a given configurable policy of access
to GSEngine within the ViroLab Virtual Organization. The default policy allows ac-
cess to GSEngine for any identified member of any Home Organization federated in

240 J. Meizner et al.

the ViroLab Virtual Organization, or, more accurately, to any user who is assigned a
proper value of the homeOrganization attribute and a valid mail attribute. Going beyond
default policy definitions, GSEngine providers are technically capable of specifying
custom policies. From the architectural point of view, GSEngine encapsulates security
integration in a pluggable module that exposes a well-defined interface, thus separating
GSEngine business logic and security aspects.

6.9 Grid Resource Registry

The aim of the Grid Resource Registry (GRR) is to store information about all compu-
tational resources (Web services, WSRF, MOCCA components, EGEE jobs, etc.) avail-
able in the ViroLab Virtual Laboratory. As our laboratory is open for external users, we
allow everyone to browse the registry content. A different case should be considered
when modifying information stored in the registry. This requires defining a policy that
describes who can perform modifications and in what manner. The registry content can
be changed by invoking a special web service, secured using WS-Security. By apply-
ing the Username Token Profile [20] the Shibboleth handle is transmitted to
the registry. Subsequently, the registry contacts the ShibRPC component, receives user
attributes and checks if the user has the attributes required by the defined GRR security
policy. Basing on this information, the registry either allows or denies the possibility to
make modifications.

6.10 Data Access Services

For protecting the integrated biomedical data resources appropriately, access to certain
underlying resources follows a two-step approach. Firstly, users who want to browse
and query particular data sets (using the Database Browser Portlet) need to authenti-
cate themselves with the above described security infrastructure. Afterwards, a prop-
erly identified user can take advantage of the Data Access Services (DAS) [9] in order
to perform actions on integrated resources. These services accept the user’s identity to-
ken in order to decide whether the given user is permitted to interact with a particular
resource or not.

The final decision on whether a resource is accessible or not is based on the cur-
rent user attributes (released from the user’s home organization) and, of course, on the
decision of the local data resource manager [22]. These attributes are requested via a so-
called attribute request by sending the user handle (identity token) to the corresponding
IdP (using ShibAuthAPI).

For authorization purposes, the user’s attributes and the list of all currently available
resources are passed to a specific component, the so-called Policy Decision Point (PDP).
PDP stores several access control policies that each contain a set of rules specifying the
conditions (usually a number of attributes a user has to have) necessary to become au-
thorized for a dedicated resource. The policies are written in a well-established policy
description language named XACML [23]. It is a powerful language with many ex-
tension mechanisms for defining dedicated policies for custom use cases. In ViroLab,
the initial policy structure is kept simple but leaves a lot of freedom for creation of
fine-grained rules. In order to easily manage corresponding resources and access rules,

ViroLab Security and Virtual Organization Infrastructure 241

a simple application has been developed that enables administrators of particular data
resources to dynamically define and (de-)activate certain access rules. This tool directly
connects to the PDP, downloads the existing policies, allows manipulation of certain
rules, and sends back the policy to the PDP. Once an updated policy is pushed back to
the PDP, DAS is automatically notified and can enforce transparent re-authorization of
the current user.

6.11 Data Source Registry

The Data Source Registry is a component of the ViroLab architecture, which is respon-
sible for maintaining information about the required data sources and enabling experi-
ment developers to interface with databases and other types of data structures. In order
to facilitate this functionality, the Data Source Registry enables developers to register
sources and allows them to store credentials necessary for accessing such sources. DSR
contains a wallet mechanism, which is based on the Shibboleth user credentials. It uses
the Shibboleth client library to request information regarding the user who is actually
performing a registry operation and stores the submitted credentials accordingly.

When an experiment user wishes to interface a data source registered in DSR, s/he
does not have to supply a separate set of credentials, provided the DSR actually stores
valid credentials for a given data source. In order to determine who is running an exper-
iment, the Data Access Client (DAC) [9] queries Shibboleth for user attributes and con-
structs a handle which uniquely identifies users. This handle is subsequently employed
when contacting DSR. If appropriate credentials are found, the given data source can
be instantiated with no need for further input on the part of the user.

6.12 MOCCA Component Framework

The reason for the creation of the MOCCA Shibboleth authenticator was to secure ac-
cess to MOCCA [8] resources with the technology used in the project. We have imple-
mented a new authenticator, which fits into the pluggable authenticator modules of the
H2O [24] kernel (a container for MOCCA components). This software enables users
to authenticate and become authorized for access based on their handle, previously ac-
quired with the help of the Portal or the ShibIdpCliClient. Once the user supplies his/her
Shibboleth credentials the authenticator requests the attributes from the AA via the Shi-
bRPC mechanism. ShibRPC also acts as the primary PDP supplying authorization de-
cisions (based e.g. on the user’s HO). In addition, the authenticator contains additional
policies that are used for final user authorization and assignment to a specific group.
This group defines the privileges that are granted to the users who possess the specified
Shibboleth attributes. Each user is also identified by his or her unique username (the
combination of the Shibboleth username and the HO).

6.13 VO Management GUI

The objective of the VO Management GUI is to provide HO administrative users with
a graphical tool for managing and controlling multiple Virtual Organizations. A crucial
requirement suggested by future GUI users was to provide HO administrators with a

242 J. Meizner et al.

single tool that would allow them to control the entire ViroLab infrastructure in a secure
manner. The most important feature of this tool is the ability to create, modify, store
and remove VOs. A new VO can be created by linking users from different institutions
(Home Organizations) and granting them access to multiple, geographically-dispersed
resources.

In order to meet the aforementioned goals and requirements, the GUI was designed
and built as a portlet and then deployed to the ViroLab Portal. Thus, the GUI is al-
ways accessible and available everywhere and from any access device (i.e. PC, PDA or
smartphone) running a modern graphical Web browser. Moreover, due to the fact that
this application is based on the Adobe Flex technology it is both visually pleasing and
it has an intuitive user interface.

The GUI is integrated with the ShibRPC, LDAP, ShibSVN and DAS components.
ShibRPC is used internally by the GUI to authorise itself when connecting to Apache
Tomcat servlets that allow reading and writing ShibSVN and DAS access policies. In
other words, these two servlets (one for ShibSVN and one for DAS) are Shibboleth-
enabled, which means that they delegate their authorization decisions to ShibRPC.
Other ViroLab resources can also be integrated with the GUI in the same manner. An
alternative approach to integration between the GUI and other ViroLab resources is to
create an Apache Tomcat servlet that implements the public user API. Currently the
ShibSVN and DAS services are integrated using this API.

7 Usage Examples

The software components described in this paper were created by the following project
partners: GridwiseTech (Shibboleth configuration, ShibAuthAPI, ShibRPC, Portal,
ShibSVN, VO Management), Cyfronet (ShibIdpClient, ShibIdPCliClient, EPE, EMI,
GSEngine, GRR, DSR, MOCCA), and HLRS (Data Access Services). The developed
solutions have been validated in a production infrastructure which enables the virtual
laboratory users to run their experiments.

In the ViroLab project, this virtual laboratory is used to plan and execute impor-
tant virological experiments, focusing on analysis of the HIV virus genotype [25]. This
includes calculation of drug resistance, querying historical and provenance [26] infor-
mation about experiments, and developing a drug resistance measurement system based
on multiple rulesets. It has also been applied to other application domains, such as pro-
tein folding and structural comparison [27], data mining using the Weka library, and
computational chemistry (developing and running a series of Gaussian application on
the EGEE infrastructure and as an education tool in computer science classes).

8 Conclusions and Future Work

In this paper we presented our approach to building a security infrastructure in the Vi-
roLab Virtual Laboratory. Instead of using traditional Grid solutions, which are usually
based on GSI and its extensions, we have followed a novel approach based on a feder-
ated attribute-based security framework.

ViroLab Security and Virtual Organization Infrastructure 243

Our work has yielded considerable results on several fronts. Firstly, we demonstrated
that Shibboleth can be used to create a complete decentralized security environment,
which can integrate multiple organizations, resources and services, including non-web-
based ones. This was achieved by the development of the ShibIdPClient tool, which can
obtain a security token (Shibboleth handle) without the need to use a web browser. This
security token can be subsequently used to access multiple services, such as GSEngine,
Grid Resources Registry, ShibSVN and Data Access Services, as well as application-
specific web services and distributed MOCCA components. The authorization decisions
on the resource side are fully decentralized and can either be configured by custom local
policies or delegated to external entities such as the ShibRPC service or other Policy
Decision Points.

It should be noted that we have implemented a user-friendly drag-and-drop inter-
face for dynamic Virtual Organization management. From the users’ perspective it is
a considerable improvement over traditional command-line tools. This work will be
continued and expanded by GridwiseTech (see [28] for more information).

One of the limitation of Shibboleth, which we have encountered, is the problem of
the lifetime of the security handle used as a credential that can be delegated to invoke
computational services. As computations may take a long time (on the order of hours
and possibly days) we had to extend the default lifetime of the handle, which in typ-
ical web scenarios is set to 5 minutes. Extending this lifetime may lead to potential
security risks, however we assume that the combination of secure communications and
mutual trust between identity providers and service providers minimizes the threat of
unauthorized handle acquisition and usage. A possible solution could involve migra-
tion to Shibboleth 2.0 or applying a combination of Shibboleth and GSI-based proxy
certificates, such as in GridShib [18] or ShibGrid [19] projects.

Another limitation of our infrastructure stems from the fact that all client tools
(Portal, ShibIdPClient) need to know and trust all the identity providers. This is not
a problem if the participating institutions do not change frequently, but in more dy-
namic scenarios the management of server certificates may become an issue. In such
cases a common set of trusted certificates (or CA) should be managed and published.
A possible solution would be to use a dedicated institution (such as EUGridPMA [29]),
which coordinates authentication in large-scale infrastructures such as EGEE.

It should be noted that XACML is a very extensible language offering substantial
flexibility for developers. However, this flexibility and expressiveness can result in com-
plexity and verbosity when creating richly structured policies. Another limitation of the
language is the lack of policy versioning and management in the XACML framework.
The administrators themselves must solve this issue.

Future work will focus on the enhancement of current policy specifications in order
to achieve more fine-grained access control e.g. for individual data sets. Furthermore,
we are planning to extend the PDPs and the management tools with further capabilities
that provide an improved level of trust among participating entities. We will also inves-
tigate advanced sandboxing techniques (e.g. based on virtualization) to provide better
isolation between experiments running concurrently in GSEngine on behalf of multiple
users. The presented solution can be augmented to support other security mechanisms
similar to Shibboleth can be applied in upcoming projects, such as PL-Grid.

244 J. Meizner et al.

Acknowledgments. This work was partly supported by the European Commission
ViroLab Project [30] Grant 027446, the corresponding Polish SPUB-M grant, AGH
grant 11.11.120.777, and ACC CYFRONET-AGH grant 500-08.

References

1. Bubak, M., Gubala, T., Malawski, M., Balis, B., Funika, W., Bartynski, T., Ciepiela, E., Hare-
zlak, D., Kasztelnik, M., Kocot, J., Krol, D., Nowakowski, P., Pelczar, M., Wach, J., Assel,
M., Tirado-Ramos, A.: Virtual laboratory for development and execution of biomedical col-
laborative applications. In: Proceedings of the Twenty-First IEEE International Symposium
on Computer-Based Medical Systems, Jyväskylä, Finland, June 17-19, pp. 373–378. IEEE
Computer Society, Los Alamitos (2008)

2. ViroLab team at CYFRONET: The ViroLab Virtual Laboratory Website (2009),
http://virolab.cyfronet.pl

3. Sloot, P.M.A., Tirado-Ramos, A., Altintas, I., Bubak, M., Boucher, C.: From molecule to
man: Decision support in individualized e-health. Computer 39(11), 40–46 (2006)

4. Funika, W., Harezlak, D., Krol, D., Bubak, M.: Environment for collaborative development
and execution of virtual laboratory applications. In: Bubak, M., van Albada, G.D., Dongarra,
J., Sloot, P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 446–458. Springer, Hei-
delberg (2008)

5. Malawski, M., Gubala, T., Kasztelnik, M., Bartynski, T., Bubak, M., Baude, F., Henrio, L.:
High-level scripting approach for building component-based applications on the grid. In:
Danelutto, M., Fragopoulou, P., Getov, V. (eds.) Making Grids Work: CoreGRID Workshop
on Grid Programming Model Grid and P2P Systems Architecture Grid Systems, Tools and
Environments, Heraklion, Crete, pp. 307–320. Springer, Heidelberg (2008)

6. Ciepiela, E., Kocot, J., Gubala, T., Malawski, M., Kasztelnik, M., Bubak, M.: Gridspace
engine of the virolab virtual laboratory. In: Proceedings of Cracow Grid Workshop 2007,
ACC CYFRONET AGH, pp. 53–58 (2008)

7. Bartynski, T., Malawski, M., Gubala, T., Bubak, M.: Universal grid client: Grid operation
invoker. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.) PPAM
2007. LNCS, vol. 4967, pp. 1068–1077. Springer, Heidelberg (2008)

8. Malawski, M., Bubak, M., Placek, M., Kurzyniec, D., Sunderam, V.: Experiments
with distributed component computing across grid boundaries. In: Proceedings of HPC-
GECO/COMPFRAME Workshop in Conjunction with HPDC 2006, pp. 109–116 (2006)

9. Assel, M., Nowakowski, P., Bubak, M.: Integrating and accessing medical data resources
within the ViroLab virtual laboratory. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 90–99. Springer, Heidelberg (2008)

10. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual
organizations. Int. J. High Perform. Comput. Appl. 15(3), 200–222 (2001)

11. Internet 2 Project: Shibboleth (2008), http://shibboleth.internet2.edu/
12. Foster, I.T., Kesselman, C., Tsudik, G., Tuecke, S.: A security architecture for computational

grids. In: ACM Conference on Computer and Communications Security, pp. 83–92 (1998)
13. Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L., Frohner, Á., Lörentey, K., Spataro,

F.: From gridmap-file to voms: managing authorization in a grid environment. Future Gener-
ation Comp. Syst. 21(4), 549–558 (2005)

14. Internet 2 Consortium: Shibboleth system, http://shibboleth.internet2.edu/
15. OASIS: Security assertion markup language,

http://saml.xml.org/saml-specifications
16. Alticore, Inc.: Josso: Java open single sign-on (2009), http://www.josso.org/

http://virolab.cyfronet.pl
http://shibboleth.internet2.edu/
http://shibboleth.internet2.edu/
http://saml.xml.org/saml-specifications
http://www.josso.org/

ViroLab Security and Virtual Organization Infrastructure 245

17. OpenID Foundation: OpenID specifications, http://openid.net/specs/
18. Scavo, T., Welch, V.: A grid authorization model for science gateways. Concurrency and

Computation: Practice and Experience (2008) (to appear)
19. Spence, D., et al.: Shibgrid: Shibboleth access for the uk national grid service. In: E-

SCIENCE 2006: Proceedings of the Second IEEE International Conference on e-Science
and Grid Computing, p. 75. IEEE Computer Society, Washington (2006)

20. OASIS: Web services security: Username token profile v1.0
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-
username-token-profile-1.0.pdf

21. Globus Alliance: The WS-resource framework toolkit/ (2007),
http://www.globus.org/

22. Assel, M., Kalyoncu, O.: Dynamic access control management for distributed biomedical
data resources. In: Cunningham, P., Cunningham, M. (eds.) eChallenges e-2008 Conference,
Collaboration and the Knowledge Economy: Issues, Applications, Case Studies, pp. 1593–
1599. IOS Press, Amsterdam (2008)

23. Moses, T.: eXtensible Access Control Markup Language TC v2.0 (XACML) (Febru-
ary 2005), http://docs.oasis-open.org/xacml/2.0/access control-
xacml-2.0-core-spec-os.pdf

24. Kurzyniec, D., et al.: Towards Self-Organizing Distributed Computing Frameworks: The
H2O Approach. Parallel Processing Lett. 13(2), 273–290 (2003)

25. de Oliveira, T., Deforche, K., Cassol, S., Salminen, M., Paraskevis, D., Seebregts, C., Snoeck,
J., van Rensburg, E.J.J., Wensing, A.M.J., van de Vijver, D.A., Boucher, C.A., Camacho, R.,
Vandamme, A.M.: An automated genotyping system for analysis of hiv-1 and other microbial
sequences. Bioinformatics 21(19), 3797–3800 (2005)

26. Balis, B., Bubak, M., Pelczar, M., Wach, J.: Provenance tracking and querying in the virolab
virtual laboratory. In: 8th IEEE International Symposium on Cluster Computing and the Grid
(CCGrid 2008), Lyon, France, May 19-22, pp. 675–680. IEEE Computer Society Press, Los
Alamitos (2008)

27. Brylinski, M., Jurkowski, W., Konieczny, L., Roterman, I.: Limited conformational space for
early-stage protein folding simulation. Bioinformatics 20(2), 199–205 (2004)

28. ViroLab team at GridwiseTech: GridwiseTech in the ViroLab Project (2009),
http://www.gridwisetech.com/virolab

29. The EUGridPMA: Coordinating grid authentication in e-science,
http://www.eugridpma.org/

30. ViroLab Project Consortium: ViroLab (2009), http://virolab.org

http://openid.net/specs/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf
http://www.globus.org/
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://www.gridwisetech.com/virolab
http://www.eugridpma.org/
http://virolab.org

E2EDSM: An Edge-to-Edge Data Service Model
for Mass Streaming Media Transmission

Junfeng He�, Hui Wang, Ningwu He,
Zhigang Sun, and Zhenghu Gong

School of computer science, National University of Defense Technology,
Changsha 410073, China

{He3.2001,wanghuinudt,Ningwu.He}@gmail.com

{sunzhigang,gzh}@nudt.edu.cn

Abstract. Existing distributed content delivery systems like P2P ap-
plications may provide significant benefits for content providers and end
users. However, they just shifted the considerable cost and burden to In-
ternet Service Providers (ISPs) and well-behaved end users. In P2P ap-
plications, the amount of data served by each ISP and payment of many
costly transit links are increasing, but the corresponding service revenue
from the peer-hosted data services provided doesnt return. In this paper,
we present a novel Edge-to-Edge Data Service Model (E2EDSM) which
aims to avoid transferring redundant data over the costly core transit
links as well as improving the transmission efficiency of mass streaming
media. E2EDSM describes a new way for ISP to take part in the process-
ing of content distribution and makes an effort to achieve a winwin goal.
Experimental results based on simulation show that E2EDSM achieves
better network performance.

Keywords: Edge-to-Edge network, peer-to-peer network, ISP infras-
tructure, network architecture.

1 Introduction

Current Internet is very different from its origin. The great majority of Internet’s
users are normal residential users rather than researchers, and the amount of end
users has been increasing greatly. At the same time, information exchanged over
Internet changes from small files to mass information like various streaming me-
dia. Unlike the traditional C/S service model, end users now prefer to exchange
information between each other for their own willingness by the way of peering.
Main proportions of Internet traffic are P2P traffic (file sharing and stream-
ing media transmission) in all regions[1][2]. But most existing P2P applications
which are based on the End-to-End network architecture[3] have incurred a lot of
� This work is supported by a grant from the Major State Basic Research Devel-

opment Programs of China (973 Programs) (No.2009CB320503), and Chinese Na-
tional Programs for High Technology Research and Development (863 Programs)
(No. 2008AA01A325 and No. 2008AA01A323).

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 246–258, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

E2EDSM 247

Google, Yahoo, Youtube , ,

AS1
AS2

AS3

LAN3

LAN4

LAN1

LAN2

core edgeedge

AS1AS1

AS3AS3
AS4

edgeedge

Semantic Layer
(Interest Layer)

Content Layer

TCP/IP Layer
(Internet Layer)

P2P

P2P

P2PStorage

Content Distribution
Networks

Mapping and Adaptation

Mapping and Adaptation

Hollywood movies

AS4

AS2

Fig. 1. Network Layers

problems such as network congestion, performance degradation of other applica-
tions and so on[4][5]. Lacking of close cooporation between application layer and
network layer, a great amount of replicated information is being transferred over
Internet and this results in ineffective usage rate of network bandwidth. Those
end users who are consumers of P2P applications are trying to utilize their full
link speed at all times, which make ISPs bearing heavy load of anxiety.

Most existing solutions are either for the sake of users, or from ISPs view.
Few attentions have been paid to the root cause of these problems. We believe
that rethinking of the network architecture which most solutions are based on
is required indeed.

To understand the complicated relations amongst users, content providers
and ISPs, we describe three network layers: Semantic Layer (or Interest Layer),
Content Layer and TCP/IP Layer (or Internet Layer), which are depicted in
Fig. 1. Semantic layer network with focus on users logic behavior is trying to
find out characters of requirements. Content layer is the content distribution
layer where most solutions belong to. TCP/IP layer (or Internet Layer) is the
actual network layer where data will be transferred.

Some observations can be made, as follows:
End users are both the content producers and consumers, and have diverse

interests. Users with the same interest form social networks which are labeled
with their interests. As a result of users social property in real world, interests
of different regional users show strong geographic features. For example, most
Chinese users will visit the famous websites in China such as SOHU, 163, and
Youku which may not be known by people of other countries. Contents are
distributed over networks of interests and can be classified by users interests.

There are two couplings (semantic layer and content layer, content layer and
Internet layer) needed to be considered before figuring out appropriate solutions.

248 J. He et al.

Mapping and adaptation: between Semantic Topology and Content Topology,
and between Content Topology and Internet Topology, we think it will be the
best way to find out appropriate solutions. Take the content layer as an exam-
ple, optimization over lower TCP/IP layer: Network-aware, cooperation between
ISPs and P2P applications such as P4P[6]. On the other hand, optimization from
upper semantic layer: semantic-driven network storage or semantic-driven con-
tent distribution networks[7][8].

Moreover, conflicts between distributed system design and network architec-
ture become more severe. For example, excessive use of network middleware
technologies in the network makes the concept of end-to-end network architec-
ture existing in name only[9]. After rethinking the architecture of Internet, we
introduce the thought of Edge-to-Edge (E2E) architecture, which explicitly di-
vides the whole network into core network and edge network. In a high level,
Internet has changed from Research network to Worldwide pubic network- social
network, so we can introduce some key features of social network into Internet.

Main contributions of the paper are summarized as follows: (1) we find out
that two couplings must be considered before proposing appropriate solutions.
(2) We classify the steaming media data transmission into three types by users
usage behavior, which are IPTV like type traffic, click and watch type traffic
and download and watch type traffic. (3) we present a novel Edge-to-Edge Data
Service Model (E2EDSM) in which we explicitly divide the whole network space
into core network space and edge network space. E2EDSM aims to avoid redun-
dant data being transferred over the costly core transit links as well as improving
the transmission efficiency of mass streaming media. E2EDSM presents a new
way for ISP to take part in the processing of content distribution and makes
an effort to achieve a win-win goal. (4) we have developed a simulator namely
Phoenix and preliminary experiment results show that solutions under Edge-to-
Edge architecture have better performances for the large scale streaming media
delivery.

This paper proceeds as follows. After a discussion of previous work in
Section 2, Section 3 presents our solution under Edge-to-Edge network archi-
tecture design. Section 4 presents simulation and preliminary result analysis,
and Section 5 makes some discussions. Finally, Section 6 ends this paper with
conclusions and future work.

2 Related Work

Our work relates to several aspects of research, such as streaming media appli-
cations, mass data transmission, network architecture and distributed system
design. Though file sharing and media streaming applications over P2P have
been the mainstream of the whole Internet traffic in all regions[1][2], these P2P
applications also incur lots of problems such as network congestion, performance
degradation of other applications[4][5]. So, many solutions have been presented
to solve these issues.

In order to reducing redundant data transferred, researchers came to multicast
technology firstly. Li Lao[10] classified multicast technology into three types: IP

E2EDSM 249

multicast, overlay multicast and application multicast, and made a comparison
among them. Then, solutions of deploying caches in network were proposed. Bing
Wang[11] presented an effective proxy cache allocation mechanism for streaming
media distribution. Ashok[12] considered deploying cache on router to reduce
universal redundant traffic. Mukaddim Pathan[7] introduced the state of the
art of content distribution networks, and pointed out the possible research di-
rections of CDN. More and more attentions have been paid to localization of
content and service. Frederic[13] suggested that streaming media distribution
should combine CDN and P2P. Thomas[4] showed that simple locality-aware
P2P delivery solutions can significantly alleviate the induced cost of ISPs, while
providing an overall performance approximated to a perfect world-wide caching
infrastructure.

Most recently, some researches try to find out the possibility of cooperation be-
tween applications and service providers. Arkko[5] analyzed incentives for P2PI
(Peer-to-Peer Infrastructure) solutions and presented some deployment consider-
ations. Haiyong Xie[6] presented P4P, a kind of provider portal for applications.
Nikolaos[14][15] also shown that ISP storage enable is a feasible way to deal with
delay-tolerant data transmission, and presented a new design idea named IPO
(Internet Post Office). David D. Clark[16] pointed out that there were many
tussles among different stakeholders which were parts of the Internet milieu.
Different parties may have interests that may be adverse to each other, so it is
very import to understand their requirements clearly before proposing a viable
solution.

Applications such as Videos-On-demand or IPTV, which are becoming more
and more prevalent, exert a subtle influence on network architecture. How to
design the next generation Internet architecture to support these new applica-
tions is a question which needs to be paid considerable attention in the research
community recently. We believe that study on the requirements of the preva-
lent applications is the first step to answer the above question. And we notice
that the 23rd statistical survey report on the Internet Development in China[17]
state that the number of users of video online, music online and network games
is increasing continuously and dramatically. Meanwhile, traffic from the P2P
applications and streaming media such as PPlive[18] and[19] occupies 50∼90%
of the core link bandwidth of Chinas backbone network during night time and
30∼50% during daytime which is about four times of American[2].

Saltzer[3] defined the network architecture design principles. However, with
the development of Internet, many middle box techniques are widely used, and
the heterogeneous network connected to the Internet offend against the End-To-
End architecture.

Now it is time for network designers to rethink the network architecture.
We argue that the distributed system without well understanding of the net-
work level information will lead to network performance declining and core
link bandwidth abusing. Recent studies[11][13] suggest adding cache or storage
repositories near users to improve the streaming media transmission quality. But
we believe this problem could be solved from the network architecture in which

250 J. He et al.

the network itself can satisfy the application requirements of high performance.
Inspired by the recent studies, we rethink the network architecture and present
an Edge-to-Edge Data Service Model.

3 Edge-to-Edge Data Service Model

3.1 Definitions

The key ideal of our design is to separate the diversity of users network from core
transit network. As a result, the core transit network will be simpler and the
members of core transit network are the large top transit ISPs all over the world,
which are rather stable and responsible. Other ISPs, especially the access ISPs,
take part in the network content distribution process by adding some storage
nodes at the edge of access network near end users. Therefore, the edge network
is more controllable, because all requests form internal end users should first go
to an edge network infrastructure (ENI) which is designed to locate at the point
of presence of access ISP. See Fig. 2.

Core Transit
network

Origin

Replica

Edge Network
Infrastructure

Residential
User

Edge Network

Edge Network

Agent

Data
flow

Data
flow Data

flow

Fig. 2. The sketch map of edge-to-edge network design

Some important notions discussed thorough the paper are explained as follows:

Core Network: A network consists of the large top Transit ISP all over the
world. It dedicates to make high speed transmission between its members which
are usually big transit ISPs distributed over the whole world.

Edge Network: A network consists of a certain number of users in the same
ISP and the ISP constructed Edge Network Infrastructure. It dedicates to meet
users various demands of various services.

E2EDSM 251

Edge Network Infrastructure (ENI): An infrastructure which is deployed
at the access ISP, i.e., close to end-users. ENI is the only access point to the
outside network for all internal end users. It works with responsibility for packets
forwarding both in and out of the edge network. Whether the special request
is forwarded to the destination depends on ENIs corresponding policies. It can
works as Internet Post Office[14]. In order to partaking ENIs burdens, ISP can
deploy caches, servers attached to it. It can host a website to offering streaming
media service locally. In order to support P2P applications, ISP can also deploy
iTracker in the Edge Network Infrastructure according to P4P[6] design principle.
The difference is that this particular iTracker will not return peers which are
outside of ISPs network (or even edge network), and ENI itself can act as a
super peer.

According to our design, Network Space (NS) can be explicitly divided into
Core Network Space (CNS) and Edge Network Space (ENS). Different network
technologies can be developed and deployed for each space separately.

3.2 Architecture

We expand the concept of End-to-End network architecture[3] to Edge-to-Edge
network architecture. A suitable number of end users who belong to the same
access ISP make up an edge network that acts as a super end user. ISP con-
structs Edge Network Infrastructure (ENI) for each edge network to make a
management. ENI understands the network topology well, especially the net-
work topology in the same ISP. It can get data from peer edge networks ENI,
local ISPs storage nodes if it has, and other networks. See it from Fig. 3. We
divide the access ISPs network into a set of edge networks according to some
factors such as users location, users access model and so on. End users who are
social people in reality have the property of society, so those users who live in a
certain area may also have a certain degree of similarity in the special contents
that they may be interested in, the periods of using time, and the access model.
Based on these observations, we arrange end users into a set of edge networks
by making use of the Principle of locality. The scale of edge network can be
decided by ISPs according to some rules that may make them benefit from those
rules. For example, end users who link to the same Point of Presence (POP)
can form an edge network. For the large scale ISP which have thousands POPs,
more hierarchies can be constructed by forming a larger edge network over the
origin POP level edge network. ISPs can make this decision depending on which
level of domination that they want to achieve.

There are advantages from the whole network, ISPs and end users.

The whole network: Benefits by explicitly dividing Network Space into Core
Network Space and Edge Network Space, simplicity and effectivity of Core Net-
work Space (CNS) and controllability of Edge Network Space (ENS). According
to our design, the traffic load of core transit network can be considerably allevi-
ated. New technologies can be applied and evolved easier both in CNS and ENS.

252 J. He et al.

Fig. 3. The data plane of edge-to-edge net-
work design

New open
Module

Traditional router

Routing
control
plane

Value-
added

process
plane

 Data plane
Forward and switch

A

C

B

Routing
protocols

and
 Network

management

Application
layer

control
and

Third part
software

Physical network
interfaces

Fig. 4. New type router based implemen-
tation of ENI

ISPs: Benefits by taking full control of the data transmission from end users.
First, the traffic load of ISPs backbone network can be reduced remarkably.
With ENI deployment, ISP can effectively reduce traffic that out ISPs network
and can control the outward traffic to select the economic links. Second, ISP can
provide a platform for the application providers to deploy their own programs
in ENI to improve application performance, and then charge certain fees from
those application providers. Last but not the least, due to the edge network
infrastructures of the ISPs, the impact of users activities on the core network is
not explicit. The streaming media data can be distributed in the way of CDN,
and the contents used frequently are cached by ISPs in the place near users. By
this way, ISP can avoid content transmission across over different ISPs and cut
down the cost of bandwidth.

Users: Benefits by gaining better services, higher transit speed and lower delay
time. For example, in transmission of the streaming media, edge network infras-
tructures can pre-cache the popular movie data in the local network, and then
users can get the videos from the edge network infrastructures directly[12]. The
download rates are accelerated and the watch experiences are better.

3.3 Content Distribution under the E2E Network Architecture

We have been considering the implementation of ENI based on new type router.
See Fig. 4.

According to our design, the processing of packet transmission will be split into
multi-phase, in order to avoiding long-time holding of core transit links. Under
the Edge-to-Edge network architecture design, the basic packet processing is
described as followed:

Downstream traffic: All requests from internal end users of an edge network
should first go to the ENI. If the content that user requesting is already in

E2EDSM 253

the storage repositories of ENI, then the request will be accomplished at local.
Otherwise, ENI differentiates the flow type of request. If it is the interactive
traffic type[5]which is short-lived and delay sensitive, it will be forwarded to
the destination of the packets directly. If it is the always-on traffic type such
as online streaming traffic or delay-tolerant high-volume file transmission, ENI
records this request, and then sends a new request to outside networks to get the
content which is requested. After having received the object data, ENI stores
the content in its storage repositories and sends the object data to the end user
who needs it.

Upstream traffic: All packets from outside should first go to the ENI. If the
requested content is already in ENIs storage repositories, then the request will be
accomplished immediately without forwarding the packet to destination which
belongs to the internal edge network. Other steps are almost the same as down-
stream traffic, besides the content of interactive type traffic will not be repli-
cated at ENI. Because outside requests may be from various different networks,
requested content of interactive type traffic which is short-lived and delay sensi-
tive may not be valuable enough to be stored. Of course, ENI can select to store
it or not. Moreover, ENI may have a corresponding algorithm to decide whether
to store it or not. See Fig. 5.

As ISPs network (especially, the access ISPs network) has been divided into
a set of edge networks, some internet technologies which may be not practice

Internal end user
send a request

ENI has the
request content?

what is the request
type?

Record this request
and send a new

request from ENI to
get the object from

outside network

Replicate the object
content and send it
to internal end user

 end user's request be
accomplished

forward the
request to the

destination directly

Need to
replicate?

Send the
object data

for ENI

Yes

No

Always-on type

Interactive
type

Receive the
object data

Receive the
object data

Yes

No

Fig. 5. The Flow chart of request processing

254 J. He et al.

feasible to be widely used in the hole Internet space can be rather suitable for
an edge network, like IP multicast and Qos mechanisms. According to Edge-to-
Edge network architecture, the whole packet transmission process has been split
into several steps. Each small step of packet transmission is completed quicker,
so the valuable core transit links and resources can be released in time.

Firstly, bulk data from content providers original server will be transferred
to ISPs storage nodes of ISPs network. And then it will be transferred to ENIs
storage repositories of edge network. At last, the data will be delivered to its
internal end users. If ISP has not deployed storage nodes, the first transfer stage
that data from content providers to ISP can make use of CDNs service[8]. In
practice, the second step may be not needed. ISP can offer conditions such
as equipments and space for Application Provider (AP) or Content Provider
(CP) to deploy their own software in the platform of ENI to improve service
performance. For example, they can deploy overlay multicast software to develop
their own special service. For ISPs, they just provide value-added-cast (VDC).

Streaming media transmission
Based on users usage behavior of streaming media, we classify streaming traffic
into three types: IPTV like type traffic, Download and watch type traffic and
Click and watch type traffic.

�In the case of IPTV like type traffic such as live program or video conference,
the particular server sends out the same data to a great deal of users at the same
time. And users receive data passively, cant replay or forward it. Download
and watch type traffic is delay-tolerant and the requirement to delay is not so
sensitive to affect users experience, in other words, it is file download type traffic.
When it is Click and watch type traffic such as Video-On-Demand, users select
the streaming media contents according to their interests and can replay or
forward the program at will[13].

�In the case of Click and watch type traffic, if the request video or other kind
streaming media is already in ENIs storage repositories, the streaming media
server in ENI can service this request quickly with good QoS guarantee and
lower startup delay. If not, ENI sends a new request for the specified data from
outside network, and then stores the received data to its storage repositories.
After having received the prefix of the movie, ENI can service the users request
locally. Obviously, it can get the request data with a higher transfer speed and
more stable than its internal end users, because of the location of ENI in the
network. As a result, internal end user can get better experience.

�In the case of Download and watch type traffic, it is simply like file trans-
fer.Due to its delay-tolerant property and ENIs storage capacity, internal end
user can also get better experience[14]. More internal end users need the same
content, more benefits ISP will gain.

4 Simulation and Preliminary Result Analysis

We implement a customized python version simulator in which the interac-
tion among users, ENIs and servers are described in a precise manner. The

E2EDSM 255

simulator captures users actions of requesting multimedia data which are con-
sistent with Poisson distribution just like what happened in real world. Our
evaluation shows that E2E network architecture can gain significant network
performance improvement in terms of shortening the startup delay and reducing
traffic of core links.

Our simulator is event driven. Each interaction among each user, ENI or the
server will be taken as an event. We ran the simulator in windows XP on a 2.0
GHz Intel Pentium Dual CPU with 2.0 GB memory.

In this section, we mainly evaluate two important metrics: startup delay and
traffic saved in core links. We use a user-ENI-server setup, where the user sim-
ulate multiple media players by generating requests for media objects according
to a Poisson process which is exponentially distributed with a mean of 1/λ,
where λ is the request rate. The selection of the videos is modeled using a Zipf
distribution. We sort the videos by access frequency, and then the access fre-
quency for ith the video is given by fi = c/i1−θ, where θ is the parameter for
the distribution and c =

[
1
/∑N

i=1

(
1
/
i1−θ

)]
is the normalization constant.

Each movie is divided into 10 segments. The basic unit transferred in our
system is a segment. In simulation, we set the delay between user and ENI as
0.001ms and set the delay between ENI and server as 0.001ms, 0.05ms and 0.1
ms respectively.

One benefit brought by deployment of the ENI is effectively reducing redun-
dancy traffic. At the ENI, we setup a buffer whose replacing strategy is LRU.
During the period of simulation, we set the buffer with infinite size and leave
experiments with finite size as future work. We can use a simple expression to
calculate the traffic transmission reducing. r = (TENI - Tserver)/TENI where
TENI denotes the total amount of the data transferred from the ENI to the user
and Tserver is the total amount of data transferred from the server to the ENI.
r shows reduced proportion of core transit link traffic. In the Fig. 6 and Fig. 7,
delay ratio means the ratio of the link delay between server and ENI to the link

Fig. 6. Start-up delay under different user
numbers and different Delay Ratio

Fig. 7. The amount of traffic reduced un-
der different user numbers and different
Delay Ratio

256 J. He et al.

delay between ENI and user. Different delay ratio means the different distances
between server and ENI. We see that as the user number increases, the reduced
traffic in the core link becomes more. When the user number reaches more than
500, we can reduce more than 90% of the traffic which is a big win brought by
enabling ENI with a big buffer.

Because the user can fetch the data from ENI, the user start-up latency is
shortened dramatically which is shown in Fig. 6.

5 Discussion

In view of the large potential for large amount of streaming media transmission,
an important question is ”Whether ENI will be the bottleneck of the whole
architecture?”. This is a complicated question to answer. We make some initial
discussions on this issue.

There is a tradeoff between storage and bandwidth. We intend to save the
cost of bandwidth and costly transit-links by adding some storage nodes (cache
or replica servers) attached to POPs of ISP to construct a new kind of POP-may
be called as POPX which is referred to ENI (Edge Network Infrastructure) in
this paper.

Whether the storage size needed by ENI will be too large to implement? We
do not think so. Because ENI is located at the point of presence of access ISP,
the number of end users who link to one ENI will not be too large. And accord-
ing to the Zipfs law[20], 80 percents users will request the same 20 percentile
content at most time. Nikolas[15] also has shown that it is feasible to set up
some storage nodes at proper points make ISP storage-enable. Many cache and
replica mechanisms can be implemented, which is out of this papers scope,and
interested readers can refer to[11].

Whether the computational capacities and link bandwidth of ENI will become
the bottleneck? Due to the existence of large amounts redundancy data request,
ISPs can implement multicast mechanisms to deliver content to multiple end
users at the same time. In addition, we classified users requirement of streaming
media into three types to schedule users requests at different time. Also, ENI
can do the download and upload work for end users at a higher speed, so the
outside links and computational resource will be released earlier. E2EDSM also
support existing content distribution solutions such as CDN and P2P.

There may be many edge networks under the authority of one ISP, which can
be united to form clusters. A perfect perspective we believe is that the whole
edge network is a Cloud[21] where ENI is the portal.

6 Conclusions and Future work

To address the problems brought by large scale data transmission like P2P traf-
fic and streaming media traffic, we should understand the involved parties and
their requirements. Take those into account, methodology presented in this pa-
per is an evolutional way. Starting from the understanding two couplings among

E2EDSM 257

different network layers, we proposed a solution in the form of Edge-to-Edge
network architecture. Moreover, we classify the steaming media data transmis-
sion into three types by users usage behavior, which are IPTV like type traffic,
Click and watch type traffic and Download and watch type traffic. Then, we
presented E2EDSM which aims to avoid redundant data being transferred over
the costly core transit links as well as improving the transmission efficiency of
mass streaming media. E2EDSM describes a new way for ISP to take part in
the processing of content distribution and makes an effort to achieve a win-win
goal; we have developed a simulator namely Phoenix and preliminary experi-
ment results show that solutions under Edge-to-Edge architecture have better
performances for the large scale streaming media delivery.

There are still much related work need to be studied, such as the relation-
ship between the number of internal end users and the computational capacity
and bandwidth requirements of ENI and so on. We have been considering the
possibility of deploying agents on new type routers to implement functions of
ENI. In addition, we have made a detailed plan to enhance our simulator named
Phoenix, which is planned to be putted on our research webpage.

Acknowledgments

This work is supported by a grant from the Major State Basic Research Devel-
opment Programs of China (973 Programs) (No.2009CB320503), and Chinese
National Programs for High Technology Research and Development (863 Pro-
grams) (No. 2008AA01A325 and No. 2008AA01A323). The authors would like
to acknowledge the help of Wei Peng, Gaowei Cheng, and Bin Dai as well as the
anonymous reviewers in improving the paper.

References

1. Schulze, H., Mochalski, K.: Internet Study 2008/2009 (2009),
http://www.ipoque.com

2. Wu, H.: BroadBand World Forum Asia (2007),
http://www.iec.org/events/2007/bbwf_asia/

3. Salter, J.H., Reed, D.P., Clark, D.D.: End-to-End Arguments In System Design. In:
Second International Conference on Distributed Computing Systems, pp. 509–512
(1981); ACM Transactions on Computer Systems 2(4), 277–288 (November 1984)

4. Karagiannis, T., Rodriguez, P., Papagiannaki, K.: Should Internet Service
Providers Fear Peer-Assisted Content Distribution? In: IMC 2005 (2005)

5. Arkko, J.: Ncentives and Deployment Considerations for P2PI Solutions.
draftarkko-p2pi-inventives-00, Internet-Draft (2008)

6. Xie, H., Yang, Y.R., Krishnamurthy, A., Liu, Y., Silberschatz, A.: P4P: Provider
Portal for Applications. In: ACM SIGCOMM 2008 (2008)

7. Pathan, M., Buyya, R., Vakali, A.: Content Delivery Networks: State of the Art,
Insights, and Imperatives. In: Content Delivery Networks. Springer, Heidelberg
(2008)

8. http://www.akamai.com

http://www.ipoque.com
http://www.iec.org/events/2007/bbwf_asia/
http://www.akamai.com

258 J. He et al.

9. Huston, G.: The End of End to End? In: The ISP Columm, ISOC (2008)
10. Lao, L., Cui, J.-H., Gerla, M., Maggiorini, D.: A Comparative Study of Multicast

Protocols Top, Bottom, or In the middle. Technical Report TR040054 (2005)
11. Wang, B., Sen, S., Adler, M., Towsley, D.: Optimal Proxy Cache Allocation for

Efficient Streaming Media Distribution. In: IEEE INFOCOM (2002)
12. Anand, A., Gupta, A., Akella, A., Seshan, S., Shenker, S.: Packet Caches on

Routers: The Implications of Universal Redundant Traffic Elimination. In: ACM
SIGCOMM 2008 (2008)

13. Thouin, F., Coates, M.: Video-on-Demand Networks: Design Approaches and Fu-
ture Challenges. IEEE Nework 21(2), 42–48 (2007)

14. Laoutaris, N., Rodriguez, P.: Good things come to Those Who (Can) Wait or
how to handle Delay Tolerant traffic and make peace on the Internet. hotnets2008
(2008)

15. Laoutaris, N., Smaragdakis, G., Rodriguez, P., Sundaram, R.: Delay Tolerant Bulk
Data Transfers on the Internet. sigmetric2009 (2009)

16. Clark, D.D., Wroclawski, J., Sollins, K.R., Braden, R.: Tussle in Cyberspace: Defing
Tomorrows Internet. In: ACM SIGCOMM 2002 (2002)

17. Statistical Survey Report on the Internet Development (in China),
http://www.cnnic.net.cn/uploadfilees/pdf/2009/3/23/131303.pdf

18. http://www.pplive.com

19. http://www.bittorrent.com

20. Zipf, G.K.: Human Behavior and the Principle of Least-Effort. Addison- Wesley,
London (1949)

21. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berke-
ley View of Cloud Computing. Technical report No. UCB/EECS-2009-28 (2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

http://www.cnnic.net.cn/uploadfilees/pdf/2009/3/23/131303.pdf
http://www.pplive.com
http://www.bittorrent.com
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

Iso-Level CAFT: How to Tackle the
Combination of Communication Overhead
Reduction and Fault Tolerance Scheduling

Mourad Hakem

LIFC Laboratory, Université de Franche-Comté, Belfort, France
Mourad.Hakem@lifc.univ-fcomte.fr

Abstract. To schedule precedence task graphs in a more realistic frame-
work, we introduce an efficient fault tolerant scheduling algorithm that
is both contention-aware and capable of supporting ε arbitrary fail-silent
(fail-stop) processor failures. The design of the proposed algorithm which
we call Iso-Level CAFT, is motivated by (i) the search for a better load-
balance and (ii) the generation of fewer communications. These goals
are achieved by scheduling a chunk of ready tasks simultaneously, which
enables for a global view of the potential communications. Our goal is
to minimize the total execution time, or latency, while tolerating an ar-
bitrary number of processor failures. Our approach is based on an active
replication scheme to mask failures, so that there is no need for detecting
and handling such failures. Major achievements include a low complex-
ity, and a drastic reduction of the number of additional communications
induced by the replication mechanism. The experimental results fully
demonstrate the usefulness of Iso-Level CAFT.

1 Introduction

With the advent of large-scale heterogeneous platforms such as clusters and grids,
resource failures (processors/links) are more likely to occur and have an adverse
effect on the applications. Consequently, there is an increasing need for develop-
ing techniques to achieve fault tolerance, i.e., to tolerate an arbitrary number of
failures during execution. Scheduling for heterogeneous platforms and fault tol-
erance are difficult problems in their own, and aiming at solving them together
makes the problem even harder. For instance, the latency of the application will
increase if we want to tolerate several failures, even if no actual failure happens
during execution.

In this paper, we introduce the Iso-Level Contention-Aware Fault Tolerant
(Iso-Level CAFT) scheduling algorithm (a new version of CAFT [4] that were
initially designed to address both problems of network contention and fault-
tolerance scheduling) that aims at tolerating multiple processor failures without
sacrificing the latency. Iso-Level CAFT is based on an active replication scheme
to mask failures, so that there is no need for detecting and handling such fail-
ures. Our choice for the active replication scheme is motivated by two important

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 259–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

260 M. Hakem

advantages. On the one hand, the schedules obtained are static, thus it is easy
to have a guarantee on the latency of the schedule. On the other hand, the
deployment of the system does not require complicated mechanisms for failure
detection. Major achievements include a low complexity, and a drastic reduc-
tion of the number of additional communications induced by the replication
mechanism.

We suggest to use the bi-directional one-port architectural model, where each
processor can communicate (send and/or receive) with at most one other pro-
cessor at a given time-step. In other words, a given processor can simultaneously
send a message, receive another message, and perform some computation. The
bi-directional one-port model seems closer to the actual capabilities of modern
networks (see the discussion of related work in [4,5,6]). Indeed, it seems to fit the
performance of some current MPI implementations, which serialize asynchronous
MPI sends as soon as message sizes exceed a few megabytes [4].

The rest of the paper is organized as follows: Section 2 presents basic defi-
nitions and assumptions. Then we describe the principle of the new Iso-Level
CAFT algorithm in Section 3. We experimentally compare Iso-Lvel CAFT with
its initial version CAFT in Section 4; the results assess the very good behavior
of the new algorithm. Finally, we conclude in Section 5.

The review of related work on fault tolerance scheduling is provided in [4].

2 Framework

The execution model for a task graph is represented as a weighted Directed
Acyclic Graph (DAG) G = (V, E), where V is the set of nodes corresponding to
the tasks, and E is the set of edges corresponding to the precedence relations
between the tasks. In the following we use the term node or task indifferently;
v = |V | is the number of nodes, and e = |E| is the number of edges. In a
DAG, a node without any predecessor is called an entry node, while a node
without any successor is an exit node. For a task t in G, Γ−(t) is the set of
immediate predecessors and Γ+(t) denotes its immediate successors. A task is
called ready if it is unscheduled and all of its predecessors are scheduled. We
target a heterogeneous platform with m processors P = {P1, P2, . . . , Pm}, fully
interconnected. The link between processors Pk and Ph is denoted by lkh. Note
that we do not need to have a physical link between any processor pair. In-
stead, we may have a switch, or even a path composed of several physical links,
to interconnect Pk and Ph; in the latter case we would retain the bandwidth
of the slowest link in the path for the bandwidth of lkh. For a given graph G
and processor set P , g(G,P) is the granularity, i.e., the ratio of the sum of
slowest computation times of each task, to the sum of slowest communication
times along each edge. H(α) is the head function which returns the first task
from a sorted list α, where the list is sorted according to tasks priorities (ties
are broken randomly). The number of tasks that can be simultaneously ready
at each step in the scheduling process is bounded by the width ω of the task graph

Iso-Level CAFT 261

(the maximum number of tasks that are independent in G). This, implies that
|α| ≤ ω.

Our goal is to find a task mapping of the DAG G on the platform P obeying
the one-port model. The objective is to minimize the latency L(G), while toler-
ating an arbitrary number ε of processor failures. Our approach is based on an
active replication scheme, capable of supporting ε arbitrary fail-silent (a faulty
processor does not produce any output) and fail-stop (no processor recovery)
processor failures.

3 The Iso-Level CAFT Scheduling Algorithm

In the previous version of CAFT algorithm [4], we consider only one ready task
(the one with highest priority) at each step, and we assign all its replicas to the
currently best available resources. Instead of considering a single task, we may
deal with a chunk of several ready tasks, and assign all their replicas in the same
decision making procedure. The intuition is that such a “global” assignment
would lead to better load balance processor and link usage.

We introduce a parameter B for the chunk size: B is the maximal number
of ready tasks that will be considered at each step. We select the B tasks with
the higher bottom levels b(t) (the length of the longest path starting at t to an
exit node in the graph) and we allocate them in the same step. Then, we update
the set of ready tasks (indeed some new tasks may have become ready), and we
sort them again, according to bottom levels. Thus, we expect that the tasks on
a critical path will be processed as soon as possible.

The difference between CAFT and the new version, which we call Iso-Level
CAFT (or ILC), is sketched in Algorithm 3.1. With CAFT we take the ready
task with highest priority all allocate all its replicas before proceeding to the
next ready task. In contrast, with Iso-Level CAFT, the second replicas of tasks
in the same chunk are allocated only after all first replicas have been placed.
Intuitively, this more global strategy will balance best resources across all tasks
in the chunk, while CAFT may assign the ε + 1 best resources to the current
task, at the risk of sacrificing the next one, even though it may have the same
bottom level.

We point out that we face a difficult tradeoff for choosing an appropriate value
for B. On the one hand, if B is large, it will be possible to better balance the
load and minimize communication costs. On the other hand, a small value of B
will enable us to process the tasks on the critical path faster. In the experiments
(see Section 4) we observe that choosing B = m, the number of processors, leads
to good results.

Theorem 1. The time complexity of Iso-Level CAFT is

O
(
em(ε + 1)2 log(ε + 1) + v log ω

)
Proof. The proof is similar to that given in [4]. Note that since ε < m, we can
derive the upper bound O

(
em3 log m + v log ω

)
.

262 M. Hakem

Algorithm 3.1 CAFT vs Iso-Level CAFT (ILC)

1: initialization; U ← V ;
2: while U 	= ∅ do
3: T ← H(α); ILC: repeat B times (*CAFT: |T | = 1 | ILC: |T | = B*)
4: for 1 ≤ i ≤ ε + 1 do
5: for t ∈ T do
6: allocate task-replica t(i) to processor with shortest finish time
7: end for
8: end for
9: end while

Notice that, allocating many copies of each task will severely increase the
total number of communications required by the algorithm: we move from e
communications (one per edge) in a mapping with no replication (fault free
schedule), to e(ε + 1)2 with replication (fault tolerant schedule), a quadratic
increase. In fact, duplicating each task ε + 1 times is an absolute requirement
to resist to ε failures, but duplicating each precedence edge e(ε + 1)2 times
is not mandatory. We can decrease the total number of communications from
e(ε + 1)2 down to e(ε + 1) as it was proved in [4]. Unfortunatly, this reduction
does not work all the time. The linear number of communications e(ε + 1) holds
only in special cases, typically for tasks having a unique predecessor, or when
every replica of all predecessors are mapped onto distinct processors or when all
the replicas belonging to the same processor communicate with only the same
successor-replica.

The problem becomes more complex when tasks have more than one pre-
decessor and several replicas of predecessors mapped on the same processor
communicate with different successor-replicas. In the following, we show how to
reduce this overhead in the design of Iso-Level CAFT.

3.1 Reducing Communication Overhead

When dealing with realistic model platforms, contention should be considered
in order to obtain improved schedules. We account for communication overhead
during the mapping process by removing some of the communications. To do so,
we propose the following mapping scheme.

Let t be the current task to be scheduled. Consider a predecessor tj of t,
j ∈ Γ−(t), that has been replicated on ε + 1 distinct processors. We denote by
Du the set of replicas assigned to processor Pu, and ηu = |Du| its cardinality. The
maximum cardinality is η = max1≤u≤m ηu. Also we denote by N the number of
processors involved/used by all replicas of tasks in Γ−(t).

We would like to reduce the number of communications from all predeces-
sors tj to t when possible. The idea is to attempt to place each replica on the
non-locked (locked processors are already either involved in a communication
with a replica of t, or processing it) processor which currently contains the most
predecessor replicas. To this purpose, we sort processors by non increasing or-
der of number of replicas ηu, 1 ≤ u ≤ m, assigned to them. At each step in

Iso-Level CAFT 263

(0) (1)

(2) (3)

Fig. 1. Iso-Level CAFT Scheduling Steps

the mapping process, we try to take communications from replicas belonging
to the non-locked processors, whenever possible. If not, we insert ε additional
communications.

Fig. 1 illustrates this procedure. We set ε = 2 in this example. At step (0),
no processor is blocked. The three predecessors of the current task t, namely
t1, t2 and t3, are assigned. At step (1), we place the first replica t(1) on P1,
which becomes locked. This is represented in the figure with a superscript ∗,
and the processor is also hatched in the figure. No communication is added in
this case. At step (2), we need to add a communication from P3 to P2, and thus
we have three locked processors. At step (3), we place replica t(3) on the only
non-locked processor which is P3, and we need to add extra communication since
all processors are locked.

Theorem 2. The schedule generated by Iso-Level CAFT algorithm is valid and
resists to ε failures.

Proof. The proof is similar to that of CAFT (see [4])

In the following, we give an analytical expression of the actual number of commu-
nications induced by the Iso-Level CAFT algorithm. First we give an interesting
upper bound for special graphs, and then we derive an upper bound for the
general case.

Special graphs
First, we bound the number of communications induced by Iso-Level CAFT
for special graphs like classical kernels representing various types of parallel
algorithms [1]. The selected task graphs are:

264 M. Hakem

(a) LU: LU decomposition
(b) LAPLACE: Laplace equation solver
(c) STENCIL: stencil algorithm
(d) DOOLITTLE: Doolittle reduction
(e) LDMt: LDMt decomposition

Miniature versions of each task graph are given in Fig. 2.

(a) (b) (c) (d) (e)

Fig. 2. Classical kernels of parallel algorithms

Theorem 3. The number of messages generated by Iso-Level CAFT for the
above special graphs is at most

V2(ε + 1) + V3

(
ε
⌈

(ε+2)
2

⌉
+ 2

)
,

where V2 ≤ 	 e
2
 is the number of nodes of in-degree 2 and V3 ≤ 	 e

3
 is the number
of nodes of in-degree 3 in the graph.

Proof. One feature of the special graphs is that the in-degree of every task is
at most 3. At each step when scheduling current task t, we have three cases
to consider, depending upon its in-degree (the cardinal of Γ−(t)). Recall that
processors are ordered by non increasing ηu values, where ηu. is the number of
replicas already assigned to Pu, hence which do not need to be communicated
again.

(1) |Γ−(t)| = 1. In this case, in order to pay no communication, we just need to
place each replica of t with a replica of its predecessor.
(2) |Γ−(t)| = 2. The two redecessor tasks of t are denoted t1 and t2. If replicas
of t1 and t2 are mapped on the same processor (P(t(z)

1) = P(t(z
′)

2) = P for some
1 ≤ z, z′ ≤ ε + 1), then there is no need for any additional communication.
Other replicas of t1 and t2 which does not satisfy the previous property are
thus mapped onto singleton processors. We perform the one-to-one mapping
algorithm to allocate the corresponding other replicas of t. For each replica, at
most one communication is added.
(3) |Γ−(t)| = 3. Here we consider the number of replicas allocated to proces-
sor Pu, denoted as ηu.

Iso-Level CAFT 265

– We place a replica on each processor with ηu = 3, thus no communication
need to be paid for

– Consider a processor with ηu = 2. When allocating a replica of t on such a
processor Pu, we need to receive data from the third predecessor allocated
to Pv �= Pu. Pv may be either a singleton processor (ηv = 1) or it may
handle two predecessors (ηv = 2).
- if ηv = 1, then we need only one communication for mapping the replica
of t. In this case Pv communicates only to Pu.
- if ηv = 2, then we may need to add extra communications. For the first⌈

ε+1
2

⌉
replicas of t, we add only one communication per replica, and lock

processors accordingly. But for the remaining set
⌊

ε+1
2

⌋
of replicas, we will

have to generate ε + 1 communications for each of these replicas. Overall,
the number of communications is at most

⌈
ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
Let X =

⌈
ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. Let Y = ε

⌈
(ε+2)

2

⌉
+ 1. If ε = 2k is even,

then X = 2k2 + k + 1 ≤ 2k2 + 2k + 1 = Y . If ε = 2k + 1 is odd, then
X = 2k2 +2k+1 ≤ 2k2 +3k+1 = Y . In all cases X ≤ Y , hence the number
of communications is at most Y .

– Now, all remaining processors have at most one replica (η = 1). Thus task t
needs its data from two other replicas. So we have to take at most two
communications for each replicas mapped. Thus for the mapping of ε + 1
replicas, we will have at most a number of communications equal to 2(ε+1).
Note that 2(ε + 1) ≤ Y + 1 = ε

⌈
(ε+2)

2

⌉
+ 2 for all ε, hence the result.

General graphs

Theorem 4. For general graphs, the number of messages generated by Iso-Level
CAFT is at most

e
(
ε
⌈

(ε+2)
2

⌉
+ 1

)

Proof. At each step when scheduling current task t:

(i) For the first
⌈

ε+1
2

⌉
replicas, we generate at most

∑� (ε+1)
2 �

u=1 (|Γ−(t)| − ηu)
communications (recall that ηu is the number of replicas already assigned to Pu,
hence which do not need to be communicated again). Altogether, we have at
most

⌈
(ε+1)

2

⌉
|Γ−(t)| communications for these replicas.

(ii) We still have to map the remaining
⌊

ε+1
2

⌋
of t replicas. In the worst case,

each replica placed will generate ε+1 communications (this is because processors
may be locked in this case).

Thus for this remaining set of replicas, the number of communications is at
most (ε + 1)

∑ε+1
u=� (ε+1)

2 �+1
(|Γ−(t)| − ηu) ≤ (ε + 1)

⌊
ε+1
2

⌋ |Γ−(t)|
From (i) and (ii), we have a total number of communications of |Γ−(t)|X ,

where X =
⌈

ε+1
2

⌉
+ (ε + 1)

⌊
ε+1
2

⌋
. As in the proof of Theorem 3, we knwo that

X ≤ Y , where Y = ε
⌈

(ε+2)
2

⌉
+ 1. Hence the number of communications is at

most Y .

266 M. Hakem

Fig. 3. Complementary/disjoint sets of replicas

Thus, summing up for all the v tasks in G, the total number of messages is
at most

∑v
u=1 |Γ−(t)|

(
ε
⌈

(ε+2)
2

⌉
+ 1

)
= e

(
ε
⌈

(ε+2)
2

⌉
+ 1

)
.

The following last Theorem deals with disjoint and complementary replica
sets. In fact, the number of communications can be drastically reduced in such
a case:

Theorem 5. For general graphs, if at each step when scheduling a task t, we
can determine replica sets Du that are both disjoint (Du∩Du′ = ∅ if u �= u′) and
complementary (σm

u=1|Du| = |Γ−(t)|, or in other words ∪1≤u≤mDu contains a
replica of each predecessor of t), then the number of messages is at most e(ε+1).

Proof. We map a replica on Du and add communications from all complementary
sets, which generates at most |Γ−(t)| − |Du| = | ∪1≤u′≤m,u′ �=u Du′ | ≤ |Γ−(t)|.

Thus, for the mapping of ε+1 replicas, and summing up for the set V of tasks
in G, the total number of messages is at most

∑
t∈V |Γ−(t)|(ε + 1) = e(ε + 1).

Fig. 3 illustrates, for the mapping of the first replica t(1) we have |Γ−(t)|−|D1| =
5 − 3 = 2 = |D3|. In addition, both D1 and D3 are mutually complemen-
tary/disjoints and they form a complete instance of all predecessors. Also, for the
mapping of the second replica t(2), we have |Γ−(t)|−|D2| = 5−2 = 3 = |D4∪D5|.
Similarly, the condition of complementarity/disjunction of the sets D2, D4 and
D5 holds.

4 Experimental Results

We assess the practical significance and usefulness of the Iso-Level CAFT al-
gorithm through simulation studies. We compare the performance of Iso-Level
CAFT with its initial version CAFT algorithm. We use randomly generated
graphs, whose parameters are consistent with those used in the literature [4].
We characterize these random graphs with three parameters: (i) the number
of tasks, chosen uniformly from the range [80, 120]; (ii) the number of incom-
ing/outgoing edges per task, which is set in [1, 3]; and (iii) the granularity of

Iso-Level CAFT 267

the task graph g(G). We consider two types of graphs, with a granularity (a)
in [0.2, 2.0] and increments of 0.2, and (b) in [1, 10] and increments of 1. Two
types of platforms are considered, first with 10 processors and ε = 1 or ε = 3,
and then with 20 processors and ε = 5 (a full set of results is available in the
dedicated research report [3]). To account for communication heterogeneity in
the system, the unit message delay of the links and the message volume between
two tasks are chosen uniformly from the ranges [0.5, 1] and [50, 150] respectively.
Each point in the figures represents the mean of executions on 60 random graphs.
The fault free schedule is defined as the schedule generated without replication,
assuming that the system is completely safe. Recall that the upper bounds of
the schedules are computed as explained in [2].

Each algorithm is evaluated in terms of achieved latency and fault toler-

ance overhead CAFT0|Iso-Level CAFT0|CAFTc|Iso-Level CAFTc−CAFT∗

CAFT∗ , where
the superscripts ∗, c and 0 respectively denote the latency achieved by the fault
free schedule, the latency achieved by the schedule when processors effectively
fail (crash) and the latency achieved with 0 crash. We have also compared the
behavior of each algorithm when processors crash down by computing the real
execution time for a given schedule rather than just bounds (upper bound and
latency with 0 crash).

Comparing the results of Iso-Level CAFT to the results of CAFT, we ob-
serve in Fig. 4 and 5 that Iso-Level CAFT gives the best performance. It always
improves the latency significantly in all figures. This is because the Iso-Level
CAFT algorithm tries incrementally to ensure a certain degree of load balanc-
ing for processors by scheduling a chunk of ready tasks before considering their
corresponding replicas. This better load balancing also decreases communica-
tions between tasks. Consequently, this leads to minimize the final latency of
the schedule.

We also find in Fig. 6 and 7 that the performance difference between CAFT
and Iso-Level CAFT increases when the granularity increases. This interesting
result comes from the fact that larger granularity indicates that we are deal-
ing with intensive computations applications in heterogeneous platforms. Thus,
in order to reduce the latency for such applications, it is important to better
parallelize the application. That is why we changed the backbone of CAFT to
perfectly balance the load of processors at each step of the scheduling process.

Finally, we readily observe from all figures that we deal with two conflict-
ing objectives. Indeed, the fault tolerance overhead increases together with the
number of supported failures. We also see that latency increases together with
granularity, as expected. In addition, it is interesting to note that when the
number of failures increases, there is not really much difference in the increase of
the latency achieved by CAFT and Iso-Level CAFT, compared to the schedule
length generated with 0 crash. This is explained by the fact that the increase
in the schedule length is already absorbed by the replication done previously, in
order to resist to eventual failures.

268 M. Hakem

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 8

 10

 12

 14

 16

 18

 20

 22

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(b) Latency achieved with crash

 20

 30

 40

 50

 60

 70

 80

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Leval CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(c) Fault tolerance overhead

Fig. 4. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT (Bound and Crash cases, m = 10, ε = 1)

Iso-Level CAFT 269

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso Level CAFT With 0 Crash
Iso level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 15

 20

 25

 30

 35

 40

 45

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(b) Latency achieved with crash

 120

 140

 160

 180

 200

 220

 240

 260

 280

 300

 320

 340

 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(c) Fault tolerance overhead

Fig. 5. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT (Bound and Crash cases, m = 10, ε = 3)

270 M. Hakem

 0

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 2

 4

 6

 8

 10

 12

 14

 16

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(b) Latency achieved with crash

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Leval CAFT With 0 Crash
Iso-Level CAFT With 1 Crash

CAFT With 0 Crash
CAFT With 1 Crash

(c) Fault tolerance overhead

Fig. 6. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT for coarse grain graphs g(G) ≥ 1 (Bound and Crash cases, m = 10, ε = 1)

Iso-Level CAFT 271

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso Level CAFT With 0 Crash
Iso level CAFT-UpperBound

CAFT With 0 Crash
CAFT-UpperBound

FaultFree-CAFT

(a) Latency bounds

 0

 5

 10

 15

 20

 25

 30

 35

 1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 L
at

en
cy

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(b) Latency achieved with crash

 150

 200

 250

 300

 350

 400

 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 O
ve

rH
ea

d
(%

)

Granularity

Iso-Level CAFT With 0 Crash
Iso-Level CAFT With 2 Crash

CAFT With 0 Crash
CAFT With 2 Crash

(c) Fault tolerance overhead

Fig. 7. Average normalized latency and overhead comparison between Iso-Level-CAFT
and CAFT for coarse grain graphs g(G) ≥ 1 (Bound and Crash cases, m = 10, ε = 3)

272 M. Hakem

5 Conclusion

In this paper, an efficient fault-tolerant scheduling algorithm (Iso-Level CAFT)
for heteorgeneous systems is studied and analysed. Iso-Level CAFT is based on
an active replication scheme, and is able to drastically reduce the communication
overhead induced by task replication, which turns out a key factor in improving
performance when dealing with realistic, communication contention aware, plat-
form models. The design of Iso-Level CAFT is motivated by (i) the search for a
better load-balance and (ii) the generation of fewer communications. These goals
are achieved by scheduling a chunk of ready tasks simultaneously, which enables
for a global view of the potential communications. To assess the performance of
Iso-Level CAFT, simulation studies were conducted to compare it with CAFT,
which seems to be its main direct competitor from the literature. We have shown
that Iso-Level CAFT is very efficient both in terms of computational complexity
and quality of the resulting schedule.

An extension of Iso-Level CAFT would be to extend it to the context of
pipelined workflows made up of collections of identical task graphs (rather than
dealing with a single graph as in this paper). We would then need to solve
a challenging tri-criteria optimization problem (latency, throughput and fault-
tolerance).

References

1. Beaumont, O., Boudet, V., Robert, Y.: A realistic model and an efficient heuristic
for scheduling with heterogeneous processors. In: Proc. of the 11th Heterogeneous
Computing Workshop HCW 2002 (2002)

2. Benoit, A., Hakem, M., Robert, Y.: Fault tolerant scheduling of precedence task
graphs on heterogeneous platforms. In: Proc. of the 10th Int. Workshop in Advances
Parallel and Distributed Computational Models APDCM 2008, pp. 1–8 (2008),
http://graal.ens-lyon.fr/~abenoit/

3. Benoit, A., Hakem, M., Robert, Y.: Iso-Level CAFT: How to Tackle the Combination
of Communication Overhead Reduction and Fault Tolerance Scheduling. In: RR
2008-25, LIP, ENS Lyon, France (July 2008), http://graal.ens-lyon.fr/~mhakem/

4. Benoit, A., Hakem, M., Robert, Y.: Realistic models and efficient algorithms
for fault tolerance scheduling on heterogeneous platforms. In: Proc. of the 37th
IEEE Int. Conference on Parallel Processing ICPP 2008, pp. 246–253 (2008),
http://graal.ens-lyon.fr/~abenoit/

5. Sinnen, O., Sousa, L.: Experimental evaluation of task scheduling accuracy: Im-
plications for the scheduling model. IEICE Transactions on Information and Sys-
tems E86-D(9), 1620–1627 (2003)

6. Sinnen, O., Sousa, L.: Communication contention in task scheduling. IEEE Trans.
on Parallel and Distributed Systems 16(6), 503–515 (2005)

http://graal.ens-lyon.fr/~abenoit/
http://graal.ens-lyon.fr/~mhakem/
http://graal.ens-lyon.fr/~abenoit/

MaGate Simulator: A Simulation Environment
for a Decentralized Grid Scheduler

Ye Huang, Amos Brocco, Michele Courant,
Beat Hirsbrunner, and Pierre Kuonen

Department of Informatics, University of Fribourg, Switzerland
Department of Information and Communication Technologies, University of Applied

Sciences Western Switzerland (Fribourg)
{ye.huang,amos.brocco,michele.courant,beat.hirsbrunner}@unifr.ch,

pierre.kuonen@hefr.ch

Abstract. This paper presents a simulator for of a decentralized modu-
lar grid scheduler named MaGate. MaGate’s design emphasizes scheduler
interoperability by providing intelligent scheduling serving the grid com-
munity as a whole. Each MaGate scheduler instance is able to deal with
dynamic scheduling conditions, with continuously arriving grid jobs. Re-
ceived jobs are either allocated on local resources, or delegated to other
MaGates for remote execution. The proposed MaGate simulator is based
on GridSim toolkit and Alea simulator, and abstracts the features and
behaviors of complex fundamental grid elements, such as grid jobs, grid
resources, and grid users. Simulation of scheduling tasks is supported by
a grid network overlay simulator executing distributed ant-based swarm
intelligence algorithms to provide services such as group communication
and resource discovery. For evaluation, a comparison of behaviors of dif-
ferent collaborative policies among a community of MaGates is provided.
Results support the use of the proposed approach as a functional ready
grid scheduler simulator.

Keywords: Grid Scheduling, SmartGRID, MaGate Simulator,
Simulation.

1 Introduction

Distributed heterogeneous systems under decentralized control are convention-
ally understood as grid computing [1], pervasive computing [2] or peer-to-peer
(P2P) computing [3] systems. Grid nodes are organized as decentralized virtual
organizations (VO) with each member sharing its resources with the community.
The goal of a grid is thus to construct and manage a powerful shared pool of
resource that enables large scale usage and better resource throughput.

Grid scheduling services, also known as ’high level’ scheduling [4], are con-
sidered as a crucial component for grid computing because they determine the
effectiveness and efficiency of the grid. Scheduling services are in charge of iden-
tifying, characterizing, discovering, selecting, and allocating the resources best
suited for a particular job.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 273–287, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 Y. Huang et al.

The contribution of this paper is a simulation based implementation of a
decentralized modular grid scheduler named MaGate. As a grid scheduler, the
MaGate enables the scheduling of a job across a variety of grid resources such as
computational clusters, parallel supercomputers, desktop machines that belong
to different VOs. More precisely, submitted job may not be executed only on
nodes within same VO, but also on appropriate remote resource from other VO
with independent scheduling systems and polices. By allocating user’s jobs to a
proper resource, selected from the entire grid community, improvement of the
rate of successfully job execution can be expected. In other words, the MaGate
schedulers are designed to cooperated with each other, in order to provide in-
telligent scheduling for the scope of serving the grid community as a whole, not
just for a individual grid nodes.

The MaGate simulator is implemented on GridSim [5] and Alea [6], which
together provide the modeling of different kinds of essential grid components,
such as grid jobs with various parameters, heterogeneous grid resources, and grid
users. Based on this simulated grid ecosystem, each MaGate scheduler receives
locally submitted jobs throughout its lifecycle, and matches job requirements
with local resource characteristic using the adopted scheduling policies. Jobs
suited for local execution are kept, whereas for each unsuited job, a resource
search query is propagated to other grid nodes in order to discover remote Ma-
Gates accepting remote execution of the job.

This work is implemented within the SmartGRID[7] project, which aims at de-
veloping a flexible grid middleware supported by fully decentralized bio-inspired
algorithms. Accordingly, in order to support scheduling activities, the MaG-
ate simulator relies on a grid overlay simulator that provides services such as
group communication and resource discovery. Due to the requirements of the
SmartGRID project, actual implementation only considers fully decentralized
peer-to-peer systems where nodes are connected over an unstructured topolo-
gies. Communication between the MaGate and overlay simulators is achieved by
means of asynchronous message passing: the scheduler simulator can control the
grid overlay one by requesting connection of new nodes, disconnection or crash
of existing nodes, as well as by starting resource discovery queries. Currently
the overlay simulator supports static overlays, as well as dynamic unstructured
overlays managed by different algorithms such as BlatAnt [8], Gnutella[9], and
Newscast [10].

Both the MaGate and the overlay simulator are designed and developed within
the SmartGRID project, which aims at bringing a decisive increase in efficiency,
robustness, and reliability regarding the volatile, dynamics, and heterogeneous
grid computing infrastructure. The SmartGRID is comprised of two layers and
one internal interface: the Smart Resource Management Layer (SRML) to sup-
port grid scheduling; the Smart Signaling Layer (SSL) to provide reactive re-
source discovery, and the Datawarehouse Interface (DWI) to facilitate data
exchanging between SRML and SSL. Detailed description of SmartGRID can
be found at [7] [11].

MaGate Simulator 275

The remainder of the paper is organized as follows: in section 2, an overview of
related work is introduced. Section 3 and Section 4 details the framework of Ma-
Gate simulator and Overlay simulator respectively, followed by a discussion on
the experimental results as an illustration of its usage in Section 5. Conclusions
and future work are presented in section 6.

2 Related Work

This section provides an overview of related work concerning both the scheduling
simulator, as well as the grid overlay simulator.

2.1 Grid Simulator

The management of a real grid system has shown its complexity, which limits
researchers’ capability to test and explore ideas at the investigating stage. In
order to remedy the unnecessary pain at an early phase, a simulation system is
quite necessary.

GridSim. GridSim [5] is a toolkit implemented in Java, which allows parallel
modeling and simulation of different grid entities, such as distributed grid users,
applications, resources, schedulers, and resource brokers. It provides the facility
for creating different classes of heterogeneous resources that can be aggregated
by resource brokers, and mapped to job requirements.

GridSim supports modeling of uni-processor and/or multi-processors
machines with time-shared and/or space-shared scheduling policies. Furthermore
GridSim lets users define their own application behaviors, and supports various
types of jobs, which are known as gridlets and are parameterized by information
like MIPS, I/O, etc. A range of protocols enable the gridlets to be mapped on
different kinds of resources.

Other salient features of GridSim toolkit include: resource time zone, special
time slots for resources (weekend, holidays, etc), advance reservation, market-
driven economic models, network speed specification, statistic and analyzing of
GridSim actions, etc.

Alea. Alea [6] is a simulator based on GridSim, developed for the purpose of
dealing with common scheduling problems in grid environment, such as hetero-
geneous resources and jobs, dynamic job arriving flow, etc.

Alea is a strong addition to GridSim because it brings many important and
useful features including an experimental centralized grid scheduler with ad-
vanced scheduling techniques for schedule generation, support of jobs requesting
single-processor and/or multi-processor, a set of separated profiles for describ-
ing job requirement and resource capability, various implemented queue based
algorithms (FCS, EDF, Easy Backfilling, EDF-Backfilling), improved simulation
determinism, and support of Grid Workload Format (GWF) [12].

276 Y. Huang et al.

GSSIM. GSSIM [13] is another simulation framework based on GridSim, which
provides an easy-to-use grid scheduling framework for enabling simulations of
a wide range of scheduling algorithms in multi-level heterogeneous grid infras-
tructures. GSSIM is structured with a set of flexible and replaceable plugin
components, such as grid scheduling plugins, local scheduling plugins, and run-
time calculation plugins. Moreover by means of a specific developed network
manager, GSSIM improves the speed of grid simulations by avoiding the need to
packetize large network transfers, and by providing a network-aware scheduling
simulation in distributed environment.

2.2 Overlay Simulator

To simulate the underlying network connecting grid nodes, a variety of networks
simulators are available [14] [15]. Although these tools provide precise discrete
simulation and evaluation of network protocols, they are too low-level for the
purpose of evaluating the SmartGRID approach. Accordingly, a more high-level
network simulator geared toward peer-to-peer protocols was considered. In this
respect, there exist different simulators that allow rapid prototyping and eval-
uation of peer-to-peer algorithms, both for simple membership management as
well as for resource discovery.

PeerSim. PeerSim [16] is a Java simulator that provides a set of classes to
ease the implementation of peer-to-peer algorithms. In order to keep the simu-
lation process simple, PeerSim is not concerned with the transport layer. Two
simulation models are provided: an event-based and a cycle-based model. As
concurrency is not supported, nodes operate in a sequential order.

PlanetSim. PlanetSim [17] provides a simulation environment for overlay net-
works and services. The platform enables the implementation and evaluation of
network services on top of different overlay algorithms, as well as the implemen-
tation of new network management protocols. Furthermore, PlanetSim allows
seamless deployment on the PlanetLab1 network for real world experiments.

AntHill. In contrast to the previously described simulators, AntHill focuses on
multi-agent systems and distributed bio-inspired ant colony algorithms: software
agents can migrate between peers and collaborate to solve complex tasks.

The simulator implemented within SmartGRID borrows ideas from these
projects and provides an environment for the evaluation of fully distributed al-
gorithms based both on swarm intelligence, as well as on traditional peer-to-peer
protocols.

3 MaGate Simulator

In this section we introduce the MaGate simulator framework. First the design
goals are presented, followed by an overview of the framework, and an in-depth
discussion of its components.
1 http://www.planet-lab.org/

MaGate Simulator 277

3.1 Design Goals

The MaGate simulator is developed with goal of providing a set of easy-to-use
simulated decentralized grid schedulers, which are able to interact with each
other for job exchanging, collaborate with external grid services and/or simula-
tions, and help researchers to evaluate different scheduling relevant algorithm-
s/models under various using scenarios.

3.2 MaGate Simulator Modules

As the adopted grid scheduler by SmartGRID, the MaGate scheduler is dedi-
cated to tackle different grid scheduling relevant events within an uniform and
loosely coupled architecture, including delegating jobs with appropriate remote
nodes, using dynamic resource discovery service, open structured for cooperating
with external grid components, etc. The MaGate simulator addresses such goals
with a modular architecture that corresponds to the real world, as illustrated in
Figure 1.

Co
m

m
un

ity

M
od

ule

LRM Module

SAGA-I DRMAA-I

Res. Discovery

Res. Monitoring

Scheduling Policy

Ex
te

rn
al

M
od

ule

Data Storage

Community Monitor

Input Responser

Output Responser

Input Requester

Output Requester others

Interface Module

WS-I CL-I APP-I SIM-I

Kernel Module

Module Controller

MaGate Monitor

Match Maker

others

MaGate

SIM-I

Fig. 1. MaGate Modular Architecture

Kernel Module. The Kernel Module is responsible for MaGate’s self-
management, which addresses various MaGate internal events, provides local
scheduling decisions, and interacts with other modules to make the MaGate
work as a whole. Meanwhile, the Kernel Module is also in charge of system
logging and analysis.

The ModuleController plays an important role because it is in charge of pro-
cessing the continuously incoming internal simulation events during the
scheduler lifecycle, including: job submission/scheduled/completion events, com-
munity knowledge updates, system self-inspection requests. In response to these

278 Y. Huang et al.

...

Sim_event ev = new Sim_event();

while (Sim_system.running()) {

super.sim_get_next(ev);

<routine code for system/community checking>

if (ev.get_tag() == Message.JobToMatchMaker) {

<code to process job submission>

continue;

} if (ev.get_tag() == Message.ScheduleMadeByMatchMaker) {

<code to process schedules made due to local scheduling policy>

continue;

} ...

if (ev.get_tag() == GridSimTags.END_OF_SIMULATION) {

<code to process signal of end of simulation>

break;

}

}

<code to finalize the simulation>

Fig. 2. ModuleController checking the continuously arriving internal events

events, the ModuleController determines its future actions. Figure 2 shows how
self-management is achieved.

The MatchMaker receives jobs transferred from the ModuleController, evalu-
ates the adopted policy with knowledge of local resource capabilities, and decides
whether the job could be executed locally. If a job can be fulfilled by local re-
sources, the MatchMaker allocates the job to the implemented SIM-I interface
of the LRM Module; otherwise, the MatchMaker either looks up appropriate re-
mote nodes from the local cached direct neighbors list, or sends the propagated
queries to the External Module, in order to discover potential suitable remote
nodes from the grid community directly. At a later stage, the MatchMaker filters
discovered results, and invokes the Community Module to delegate correspond-
ing jobs to the selected remote resources. The MaGateMonitor is used to record
MaGate behavior and scheduling history for statistical purposes.

Interface Module. The Interface Module manages the interfaces for accepting
job submission from multi-type local invokers, such as grid users, high level grid
applications, and simulation based instances, and for giving the responses back.

The CL-I provides a command line based interface to receive parametrized job
submission. Similarly, both the APP-I and the WS-I offer alternative approaches
for receiving job submission from specific grid applications and web service based
invokers respectively.

Furthermore, for the purpose of MaGate simulator validation, the SIM-I also
accepts submission of simulated grid jobs.

MaGate Simulator 279

Community Module. The Community Module is a vital component of the
MaGate scheduler, because it mediates the interaction between different sched-
ulers, and facilitates the work (job) exchange among the interconnected grid
community. With help from the Community Module, jobs that cannot be satis-
fied by local resources are allowed to be delegated for remote execution. In other
words, connected schedulers collaborate to construct a dynamic and interoper-
able grid scheduler community, namely a Smart Resource Management Layer.
The design of the Community Module follows the suggestion of the Scheduling
Instance [18].

As illustrated in Figure 3, the OutputRequester firstly checks whether jobs
need to be delegated to remote nodes. In that case, the OutputRequester is re-
sponsible for searching appropriate remote MaGate schedulers based on adopted
resource searching policy, and tries job delegation to each discovered remote
nodes, until the delegation request is accepted. Inversely, the InputRequester
is responsible for incoming job delegation requests, has to determine job del-
egation acceptance depending on the utilized community collaborative policy,
and manages transfer of accepted delegated jobs to the Kernel Module for local
execution.

After delegated jobs are processed, the OutputResponser is used to construct
corresponding responses, and deliver them back to the delegation initiators. Simi-
larly, the InputResponser monitors the incoming delegation response information
from other grid schedulers.

The CommunityMonitor keeps a cached direct neighbors list, which is estab-
lished and maintained by the interconnected resource discovery service through

... JobInfo fetchedJobInfo = null;

while(!this.maGate.getStorage().isEmpty_localUnsuitedJob()) {

<code to fetch well presented jobs for delegation>

boolean status = false;

if(RDProtocol.equals(Message.RDFromDirectNeighbors)) {

remoteNodes = this.maGate.getStorage().getNeighborList();

} else if (RDProtocol.equals(Message.RDFromCommunitySearch)) {

remoteNodes = searchRemoteMaGate(fetchedJobInfo.getJobProfile());

} else {

<code of other resource discovery approaches>

}

for(Node rNode : remoteNodes) {

status = inputRequestToRemoteMaGate(rNode, fetchedJobInfo);

if(status) { break; }

}

<code to process job delegation success/failure result>

}

Fig. 3. OutputRequester delegate local unsuited jobs

280 Y. Huang et al.

the External Module. Each member of such list mainly contains the information
of remote scheduler’s published profile, as well as the recent node status. In this
case, each MaGate has a partial knowledge of its grid community, enabling fast
resource discovery, work exchanging, load balancing and failure recovery of the
entire grid.

LRM Module. The LRM Module bridges the interaction between the Ma-
Gate and existing grid infrastructure, e.g., local resource management systems.
Accepted local suited jobs, from both local users and the grid community, are al-
located to the interconnected local resources, and retrieved back once the process
is completed. Instead of supporting all of the existing facilities, the LRM Module
prefers to make use of emerging standardized API-based specifications, such as
SAGA-I (Simple API For Grid Application) [19] and DRMAA-I (Distributed
Resource Management Application API) [20], to support various heterogenous
resources.

At current stage, in order to validate the MaGate simulator, implementation
of the SIM-I is focused on processing simulated jobs on simulated resources.

External Module. The External Module offers a plug-in mechanism, which
strengthen each MaGate scheduler instance by integrating available external grid
components/services/algorithms, and makes the grid scheduler fit various usage
scenarios.

The ResourceDiscovery is a critical component because it connects the Ma-
Gate scheduler to an existing grid community, which makes the job delegation

HashMap<String,Object> maGateProfile = new HashMap<String,Object>();

maGateProfile.put("os", this.maGate.getLRM().getOsType());

<code to put other resource characteristic>

this.maGate.setMaGateProfile(maGateProfile);

this.maGate.getMaGateInfra().updateProfile(maGateId, maGateProfile);

Fig. 4. Resource community profile publish

getMaGateInfrastructure().startQuery(this.maGateId, queryId, queryProfile);

this.results.put(queryId, queryProfile);

Thread.sleep(MaGateParam.timeAllowedForCommunitySearch);

SearchResult result = this.results.get(queryId);

this.results.remove(queryId);

Fig. 5. Resource discovery from grid community

MaGate Simulator 281

on remote nodes to be possible. As shown in Figure 4, once a MaGate sched-
uler applies to join an existing grid community, its community available ca-
pability information has to be published in the meantime. Afterward, once the
ResourceDiscovery is invoked to discover remote resources with expected charac-
teristic, the published community profile of each arrived remote scheduler will be
used for mapping and resource selection (shown in Figure 5). The ResourceMon-
itoring component works in a similar way as the ResourceDiscovery component,
by monitoring changes in the published community profile of already contacted
remote MaGate schedulers.

Besides that, the SchedulingPolicy offers a parameter based approach for
adopting external scheduling algorithms, which follow the uniform I/O param-
eter schema and may be developed by other organizations. Finally, the DataS-
torage component enables the storage of MaGate’s data into external storage
facilities.

4 Overlay Simulator

The overlay simulator provides both membership management for grid nodes,
as well as resource discovery and group communication services. The topology
maintained within the simulator is fully controllable by the MaGate simulator:
nodes can be connected to the network, disconnected, or forced to crash (i.e.
disconnect abruptly from the network).

Although the implementation focuses on BlatAnt [8] as the main overlay man-
agement algorithm, several other are also available (for example, Gnutella[9] and
Newscast [10]). BlatAnt constructs and maintains a self-structured overlay using
a collaborative approach inspired by the behavior of ant colonies. The overlay is
resilient to node failures, and exhibits low path distances between nodes, as well
as a small number of connections between nodes.

Communication between the overlay simulator and MaGates is based on an
asynchronous message passing protocol: this ensures independence between the
simulators, and permits them to be executed on different computers. Each Ma-
Gate interact with a corresponding overlay node to publish its resource profile
(used to match resource discovery queries), request new connections to other
nodes or disconnect from a node. The interface with the MaGate simulator only
exposes these high-level services, and is not tied to the actual algorithm used to
manage the overlay.

Resource discovery is currently achieved using a restricted flooding algorithm.
When a MaGate issues a resource discovery query the overlay node propagates
the query to all of its neighbors. Each receiving node will forward the query
up to a determined distance. Forwarding is stopped when a node with a profile
matching the query is found: in this case a notification is sent to the requesting
MaGate for each matching node found. As queries are tagged with a unique
identifier, nodes will not forward queries that have already been received in
the past.

282 Y. Huang et al.

5 Case Study

As an example of usage of the MaGate simulator, this section presents a ref-
erence experiment made by using the simulator, and the adopted community
collaborative policies. In Subsection 5.1, the internal interaction workflow of the
MaGate simulator is given. In Subsection 5.2 and 5.3, the adopted community
collaborative policies are discussed as reference for future work. The configura-
tion of the experiment is illustrated in Subsection 5.4, followed by the results
discussion in Subsection 5.5.

5.1 Interaction Scenarios

Once a new MaGate scheduler instance is established within the simulation, an
external resource discovery service must be interconnected for future community
collaboration; meanwhile, a profile with regards to the MaGate’s community
capability contribution has to be published.

Afterward, the newly established MaGate receives job submission from its
local users, and decides whether the job requirement could be satisfied by the
local resources. If yes, the job is accepted and allocated to the local resource
management system for local execution; if not, the MaGate tries to discover an
appropriate remote node which matches the job requirement, and delegates the
local unsuited job for remote execution.

Once a MaGate scheduler instance receives a job delegation request from the
grid community, acceptance decision is made according to the adopted commu-
nity policies. If such a request is acceptable, the delegated job will be preserved
locally until the process is completed; if not, the reject response is delivered back
to the request initiator, with optional reject reasons. Then it is the responsibility
of the request initiator to decide whether another re-negoation process should
be issued later, depending its the adopted community policy again.

Noteworthy that once a delegated remote job is accepted by the local MaGate
instance, there is no difference between jobs submitted locally, and jobs delegated
from the grid community.

5.2 Resource Discovery Policies

To delegate local unsuited jobs to appropriate remote resources, such resources
have to be discovered firstly. Concerning the ecosystem of MaGate simulator, we
address the problem of decentralized resource discovery by using flooding based
protocols on a self-structured overlay topology maintained with the help of a
bioinspired algorithm that borrows ideas from the swarm intelligence and ant
colony optimization.

Two alternative approaches are evaluated in the reference experiment, and
illustrated as follows:

Neighbors look-up policy. The Neighbors means that each MaGate scheduler
instance is supposed to discover remote MaGates from a local cached direct

MaGate Simulator 283

neighbors list, which is maintained and kept up-to-date by the adopted overlay
resource discovery service, regarding to the network connection status with the
local MaGate.

Community search policy. The Search stands for each MaGate scheduler
instance is responsible for propagating resource discovery queries according to
the job requirement, submitting such queries to the grid community, and ob-
taining the return results after a certain period of waiting time. For example,
the Search100 presents the waiting time between query submission and result
obtaining is 100 milliseconds.

5.3 Job Delegation (Re)Negotiation and Acceptance Rules

Many rules can be applied to determine whether a job delegation request should
be accepted, as well as the subsequent behaviors. During experiments two simple
rules to be the reference benchmark for the future work has been used.

Job delegation (re)negotiation rule. The Nego defines the maximal allowed
number of times of negotiation for each individual job delegation. For example,
the Nego1 stands implies that if a job delegation is rejected by a remote MaGate,
the same request should not be resent to the same remote MaGate anymore;
inversely, the Nego10 implies that a rejected delegation request is allowed to
be retried with the same remote MaGate for ten times, with same or different
parameters.

Job delegation acceptance rule. The Queue stands for the length limit
of the Community Input Queue. Each time the host MaGate approves a job
delegation request, the accepted but unprocessed remote job will be preserved
in the Community Input Queue until the job is processed and sent back to the
delegation initiator. In our experiment, for example, the Queue5 presents that
the host MaGate is able to manage at most five accepted but unprocessed remote
jobs, as long as the length limit is reached, the subsequent delegation requests
to the host MaGate will be rejected.

5.4 Simulation Configuration

The experiment were performed on an Intel Core Duo 2.2GHz physical machine,
with 2GB RAM. In order to obtain stable values, the results were averaged from
10 repeated iterations. The experiment is done on a grid with 100 MaGates,
each MaGate manages a Massive Parallel Processor System (MPP) with 64 or
128 processors. Each MaGate is supposed to receive 100 jobs submitted from the
local user during 12 hours, each job may require 1 to 5 processors. the choices of
operating system owned by all MPPs fall into the same distribution as the job
requirement: [Linux, Windows, Mac]; similarly, the processors MIPS owned by
all MPPs is configured as same as the job requirement.

Additionally, size of the direct neighbors list of each MaGate is 6, the number
of times allowed for (re)negotiation is either 1 or 3, and length of the Community
Input Queue is either 5 or 10.

284 Y. Huang et al.

5.5 Results and Discussion

The benefit of large scale grid computing has been verified by many researchers
[21] [22]. In our work, a new criterion titled RJC (Rate of successfully executed
Jobs from the entire grid Community) is proposed to demonstrate the function-
alities of the MaGate simulator. The reference experiment aim at increasing the
value of RJC, as it represents the effectiveness of allowing local unsuited jobs
to be shared amongst different grid schedulers, from the grid’s point of view.
Other criterions such as resource throughput and network workload are not yet
considered.

The behaviors of different scenarios in a 100-MaGate community illustrated
in Figure 6.

The Local represents a reference scenario where no jobs sharing between Ma-
Gate scheduler instances is allowed. If a locally submitted job cannot be fulfilled
by the local resource, it is considered as a local unsuited job and marked as fail-
ure. Considering that each MaGate manages one MPP machine with a single
operating system, and the submitted jobs vary their operating system require-
ments from an uniform three-option distribution, in average each MaGate could
only process 1/3 locally submitted jobs on its local resource. Conversely, consid-
ering that the choices of operating system owned by all MPPs within the grid
community fall into the same distribution as job requirements, it is expected
that for each individual local unsuited job an average of 1/3 of the MaGates of
the entire grid community has the expected capabilities to accept them.

 0

 2000

 4000

 6000

 8000

 10000

Local
33.33%

Neighbors
Nego1

Queue5
48.66%

Search100
Nego1

Queue5
33.33%

Search250
Nego1

Queue5
72.47%

Search250
Nego1

Queue10
78.14%

Search250
Nego3

Queue5
78.36%

Search500
Nego1

Queue5
90.36%

Search1000
Nego1

Queue5
97.94%

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
ot

al
 n

um
be

r
of

 jo
bs

 s
ub

m
itt

ed
 to

 th
e

co
m

m
un

ity

pe
rc

en
ta

ge

Scenarios

100-MaGate Community Behavior

local-processed-job
local-unsuited-job

community-processed-job

Fig. 6. Grid community of 100 MaGates

MaGate Simulator 285

Next, as presented by scenario Neighbor-Nego1-Queue5, if the Neighbors Look-
up Policy is adopted as the resource discovery approach, it is evident that useful
remote MaGates can be discovered sometimes when needed by job delegation
requests. In this case, the RJC has been improved by approximate 15%.

An alternative way of seeking remote MaGates for job delegation is the Com-
munity Search Policy. It is to be expected that if appropriate remote MaGates
exist, are connected within the same community, are represented properly, and
are pproved to be publicly available by their community policies, the correspond-
ing resource discovery queries will be matched within a reasonable time delay.
However, as shown in scenario Search100-Nego1-Queue5, if the waiting time is
too limited, for example 100 milliseconds, no remote MaGates can be discovered,
which makes no difference in the obtained RJC.

If the waiting time allowed for Community Search Policy is increased a little,
such as 250 mili-seconds by scenario Search250-Nego1-Queue5, and 500 milli-
seconds by scenario Search500-Nego1-Queue5, discovery becomes more success-
ful, and the RJC is improved by 39.14% and 57.03% respectively.

Additionally, results illustrated in scenario Search250-Nego1-Queue10 and
Search250-Nego3-Queue5 demonstrate that even within the same waiting time
for the Community Search Policy, the RJC can be still improved by utilizing
various job delegation related rules, such as increased times for (re)negotiation
and expanded length limit of the Community Input Queue.

Finally, it is noteworthy that allowing enough waiting time for resource dis-
covery using the Community Search Policy, as shown by scenario Search1000-
Nego1-Queue5, is a necessary condition to achieve an RJC of 100%. Nonetheless,
failure to obtain results might still be possible either because of limits of the re-
stricted flooding algorithm used by the Overlay simulator, or because candidate
remote MaGates that may already reached their length limit of the Community
Input Queue and have not been released during the delegation waiting period.

6 Conclusion and Future Work

In this paper, we presented the MaGate simulator as a grid simulation envi-
ronment. The MaGate simulator is composed of different modules, and aims at
providing a simulation based implementation for the MaGate scheduler, an in-
teroperable decentralized grid scheduler used within the SmartGRID project [7],
and dedicates to cooperate with each other to provide intelligent scheduling for
the scope of serving the grid community as a whole, not just for a single grid node.
Moreover the simulator itself can be easily extended, and adopted for evaluating
newly developed decentralized scheduling algorithms, models, or workflows. An
overlay simulator is employed by the MaGate simulator, to provide services such
as group communication and resource discovery on fully decentralized peer-to-
peer network.

As an example, two resource discovery polices, along with another two job
delegation (re)negotiation and acceptance rules have been used as reference

286 Y. Huang et al.

scenarios, and the validated results have shown the use of a functionally ready
grid scheduler simulator.

Future work will focus on the the extension of the simulator with an ad-
vanced Community Module supporting web services technology (especially the
WS-Agreement specification [23]), as well as better support to other existing
local scheduling algorithms. Furthermore, a study of an automatic mechanism
to dynamically generate user customized community collaborative policies will
be carried out, in order to evaluate all the different parameters that can be used
to generate various community collaborative policies. This work our may bring
increased flexibility and adaptability in grid scheduling.

Acknowledgements

MaGate simulator is developed within SmartGRID project, a collaborative work
led by PAI group2 from University of Fribourg, and GridGroup3 fromUniversity
of Applied Sciences Western Switzerland (Fribourg). This work is supported
by the Swiss Hasler Foundation4, in the framework of the ManCom Initia-
tive (ManCom for Managing Complexity of Information and Communication
Systems), project Nr. 2122.

References

1. Foster, I., Kesselman, C., Tuecke, S.: The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. International Journal of High Performance Computing
Applications 15(3), 200 (2001)

2. Satyanarayanan, M.: Pervasive computing: vision and challenges. IEEE Personal
Communications, [see also IEEE Wireless Communications] 8(4), 10–17 (2001)

3. Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., Xu, Z.: Peer-to-Peer Computing. HP Laboratories Palo Alto (March
2002)

4. Schwiegelshohn, U., Yahyapour, R.: Attributes for communication between
scheduling instances. Global Grid Forum, GGF (December 2001)

5. Buyya, R., Murshed, M.: GridSim: a toolkit for the modeling and simulation of
distributed resource management and scheduling for Grid computing. Concurrency
and Computation: Practice and Experience 14(13-15), 1175–1220 (2002)

6. Klusacek, D., Matyska, L., Rudova, H.: Alea-Grid Scheduling Simulation Environ-
ment. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Wasniewski, J. (eds.)
PPAM 2007. LNCS, vol. 4967, pp. 1029–1038. Springer, Heidelberg (2008)

7. Huang, Y., Brocco, A., Kuonen, P., Courant, M., Hirsbrunner, B.: SmartGRID: A
Fully Decentralized Grid Scheduling Framework Supported by Swarm Intelligence.
In: Seventh International Conference on Grid and Cooperative Computing, 2008.
GCC 2008, China, pp. 160–168. IEEE Computer Society, Los Alamitos (2008)

2 http://diuf.unifr.ch/pai/
3 http://gridgroup.tic.hefr.ch/
4 http://www.haslerstiftung.ch/

MaGate Simulator 287

8. Brocco, A., Frapolli, F., Hirsbrunner, B.: Bounded diameter overlay construction:
A self organized approach. In: IEEE Swarm Intelligence Symposium, SIS 2009.
IEEE, Los Alamitos (2009)

9. Ripeanu, M., Foster, I.: Peer-to-peer architecture case study: Gnutella network. In:
First Conference on Peer-to-peer Computing, Sweden, pp. 99–100. IEEE Computer
Press, Los Alamitos (2001)

10. Jelasity, M., van Steen, M.: Large-scale newscast computing on the internet. Tech-
nical Report IR-503, Vrije Universiteit Amsterdam, Department of Computer Sci-
ence, Amsterdam, The Netherlands (October 2002)

11. Brocco, A., Hirsbrunner, B., Courant, M.: A modular middleware for high-level
dynamic network management. In: Proceedings of the 1st workshop on Middleware-
application interaction: in conjunction with Euro-Sys 2007, pp. 21–24. ACM Press,
New York (2007)

12. GridWorkloadsArchive: http://gwa.ewi.tudelft.nl/pmwiki/
13. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Grid scheduling simulations

with GSSIM. In: 3rd Workshop on Scheduling and Resource Management for Par-
allel and Distributed Systems, Proceedings of the 13th International Conference
on Parallel and Distributed Systems, Hsinchu, Taiwan (2007)

14. Henderson, T., Lacage, M., Riley, G.: Network simulations with the ns-3 simulator.
Demo paper at ACM SIGCOMM 2008 (2008)

15. Mathieu Lacage, T.R.H.: Yet another network simulator. In: WNS2 2006: Proceed-
ing from the 2006 workshop on ns-2: the IP network simulator, p. 12. ACM, New
York (2006)

16. Jelasity, M., Montresor, A., Jesi, G.P., Voulgaris, S.: The Peersim simulator,
http://peersim.sf.net

17. Garćıa, P., Pairot, C., Mondéjar, R., Pujol, J., Tejedor, H., Rallo, R.: Planetsim: A
new overlay network simulation framework. Software Engineering and Middleware,
123–136 (2005)

18. Tonellotto, N., Wieder, P., Yahyapour, R.: A proposal for a generic grid scheduling
architecture. In: Integrated Research in Grid Computing Workshop, Greece, pp.
337–346. Springer, Heidelberg (2005)

19. Goodale, T., Jha, S., Kaiser, H., Kielmann, T., Kleijer, P., von Laszewski, G.,
Lee, C., Merzky, A., Rajic, H., Shalf, J.: SAGA: A Simple API for Grid Applica-
tions. High-level application programming on the Grid. Computational Methods
in Science and Technology 12(1), 7–20 (2006)

20. Troger, P., Rajic, H., Haas, A., Domagalski, P.: Standardization of an API for
Distributed Resource Management Systems. In: CCGRID 2007: Proceedings of
the Seventh IEEE International Symposium on Cluster Computing and the Grid,
pp. 619–626. IEEE Computer Society, Washington (2007)

21. Ernemann, C., Hamscher, V., Yahyapour, R.: Benefits of global grid computing for
job scheduling. In: Fifth IEEE/ACM International Workshop on Grid Computing,
Pittsburgh, USA, pp. 374–379. IEEE Press, Los Alamitos (2004)

22. Ernemann, C., Hamscher, V., Schwiegelshohn, U., Yahyapour, R., Streit, A.: On
Advantages of Grid Computing for Parallel Job Scheduling. In: 2nd IEEE Interna-
tional Symposium on Cluster Computing and the Grid (CC-GRID 2002), Berlin,
Germany, pp. 39–46. IEEE Press, Los Alamitos (2002)

23. Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M.: Web Services Agreement Specification (WS-
Agreement). Technical report, Open Grid Forum, USA (2004)

http://gwa.ewi.tudelft.nl/pmwiki/
http://peersim.sf.net

A Distributed Shared Memory Architecture for
Occasionally Connected Mobile Environments�

Christophe Schneble1, Thomas Seidmann2, and Hansjörg Huser1

1 Institute for Networked Systems,
University of Applied Science Rapperswil, Switzerland

{christophe.schneble,hhuser}@hsr.ch
2 Cdot AG, Altishofen (LU), Switzerland

thomas.seidmann@cdot.ch

Abstract. In this paper we present a distributed cache architecture for
occasionally connected systems. The system is realised using an underly-
ing P2P-infrastructure. The gridNet Framework provides a transparent
interface for working with distributed cache-objects. The paper also con-
tains a description of an envisioned example application running on top
of the GridNet framework.

Keywords: Distributed Shared Memory, object cache, peer to peer,
P2P, healthcare, occasionally connected systems, mobile environments,
mobile grids.

1 Introduction

Peer-to-peer (P2P) networks are very popular nowadays. The peer-to-peer model
has been widely used on file-sharing applications such as Bittorent [2] or Gnutella
[1]. Those systems have proved the usage of peer-to-peer in an highly dynamic
and large-scale setting. However, they share immutable files, thus dealing only
with read-only data. Distributed Shared Memory Systems (DSM-Systems) have
been well studied over the past years, and the problem of sharing mutable data in
distributed environments has thereby been addressed. A large number of consis-
tency models and their protocols have been presented [6,7,10,11,14,19]. However,
most of those systems use either a well-defined static topology in which reconfig-
uration events occur infrequently or they need at least one coordinator to handle
change and transaction management.

In this paper we present gridNet, a distributed shared memory architecture
that combines the advantages of the P2P-Model with the notion of a shared
memory. The gridNet Framework is intended for occasionally connected sys-
tems. Thus dealing in an environment of mobile clients where a highly dynamic
topology is of main concern. The Framework provides programmers with a sim-
ple and easy-to-use programming interface, thus letting developers work like on
� This work was partially founded by the Swiss Innovation Promotion Agency CTI

(KTI) within the project Cdot.gridNET: Grid-Computing Framework for distributed
and mobile Applications KTI P-Nr:9540.1.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 288–301, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Distributed Shared Memory Architecture 289

local objects. The Framework is being developed using Microsoft’s .Net Frame-
work. The Peer Channel and its underlying Peer Name Resolution Protocol [4],
which is provided by the Windows Communication Foundation (WCF), is used
for P2P communication. Querying for objects can be achieved by sending a LINQ
Query [3] out to the wire.

The rest of this paper is organised as follows: Related work in this area is
presented in section 2; the novel DSM approach is presented in section 3; some
typical use cases will be discussed in section 4; the architectural implementation
is outlined in section 5; the API is presented in section 6; and finally conclusions
and future work are discussed in section 7.

2 Related Work

2.1 General Considerations

The grid computing infrastructure was already implemented in an earlier project
state [9]. This infrastructure consists at each node of a job queue, a resource
chooser, and a communication framework. The whole grid infrastructure works
as a fully distributed peer-to-peer application, thus allowing a highly flexible
topology.

There are various approaches to the architecture and design of cache sys-
tems for computing grids both in academia and industry. Juxmem [5] applies
distributed shared memory (DSM) principles to object cache systems, yet it is
more focused on cluster-like systems and precludes permanent accessibility of
the participating nodes. Globe [17] (pp 472), an object-based distributed sys-
tem, uses the entry consistency model for replication, which by its nature also
requires the participating nodes to be connected.

Numerous database system vendors try to position their products as cache
components for grid systems, namely Oracle. The common characteristic in this
case is the relational (n-tuple)-based nature of these systems, which poses a well
known impedance mismatch between classes (of objects) and relational tables.
On the other hand, such systems usually cope well with occasionally connected
scenarios.

None of cache systems studied actually fulfils the requirements we have pos-
tulated, namely:

– Replaceable consistency model and coherence protocol,
– Support for occasionally connected systems,
– Object-based nature,
– Full distribution (without any centralised components).

2.2 P2P-Systems

Three major characteristics of a peer-to-peer Network can be identified as
follows:

290 C. Schneble, T. Seidmann, and H. Huser

– Each node provides both client and server functionality and in that way can
act as either provider or consumer of services or data.

– Decentralisation : there is no central coordinating authority for the organ-
isation of the network or the use of resources and communication between
the peers in the network.

– Autonomy : Each node can autonomously determine when and to what ex-
tent it makes its resources available.

A great variety of P2P frameworks have been developed such as Pastry and
Chord [13]. Common to all those frameworks is the DHT approach for name
resolution and the use of a seed server for getting an initial set of neighbour
nodes. This is also true in the PeerChannel architecture of the .Net Framework,
which will be outlined in the following paragraph.

WCF Peer Channel. Our P2P-Infrastructure uses the WCF Peer Channel
provided by the Microsoft .Net Framework 3.5. The Peer Channel enables scal-
able message delivery. Before sending messages to the mesh, a node needs to
discover its peer neighbours. This is achieved either by using a self-implemented
resolver or the provided Peer Name Resolution Protocol (PNRP) [4]. Based on
IPv6, the PNR Protocol enables joining the mesh over the whole Internet. A
PNRP node can participate in one or more clouds. A cloud is a group of nodes
that can communicate with one another to resolve names into addresses. Each
node maintains a cache of PNRP ID-to-endpoint mappings. A node is required

Fig. 1. PNRP-Cloud Hierarchy

A Distributed Shared Memory Architecture 291

to cache its leaf set, plus any other it knows of. A cloud has a scope property
that may be Global, Site Local or Link Local as illustrated in Figure 1. Commu-
nication between nodes never crosses from one cloud to another. Cloud discovery
(the process by which a node outside the cloud finds existing nodes within the
cloud) is different at different scope levels. To discover nodes on the same link
(Link local) a node uses the Simple Service Discovery Protocol (SSDP, as speci-
fied by the UPnP Architecture) [4]. If there are no other nodes in the cloud that
exist on the node’s link then the discovery mechanism uses a seed server. To dis-
cover nodes in the global cloud (Global) a node contacts one of the well-known
seed servers. Discovery at the site level (Site local) is achieved by contacting a
seed server whose address can be supplied either manually, by configuration, or
by an application.

2.3 DSM Systems

Over the last decades numerous research activities have been carried out in the
area of Distributed Shared Memory (DSM) [15]. However, this architectural ele-
ment of distributed computing systems has not thus far become mainstream. The
only applications of DSM that have surfaced until now are those of (distributed)
caches of distributed object systems and distributed file systems, mainly when
replication comes into play [16] [8]. On the other hand, such cache systems are
very often designed and built using simplified semantics compared to what is in-
volved int the design of DSM systems. For example, some of them do not include
a coherence protocol at all: Neither write-invalidate nor write-update messages
are sent upon performing write operation to shared objects. Instead they simply
rely on lifetimes expressed as (global) time spans after whose expiry the object
state somehow gets refreshed upon the next access. Such an approach is clearly
insufficient in situations where full replication (multiple readers and multiple
writers, MRMW) is needed. In our research we have committed ourselves to
cache systems with real DSM semantics. A large number of consistency models
and their protocols have been developed over the last decade [6,7,10,11,14,19]
and play an important role in designing a DSM-System.

2.4 The Basic Gossip Protocol

One particularly interesting species of coherence protocols, used mainly in dis-
tributed file systems for keeping replicas up-to-date, is the gossip protocol [17]
(pp 170). These algorithms belong to a broader family of epidemic protocols
very well suited for fast and reliable spreading of information within very large-
scale distributed systems. The primary purpose of gossip protocols is to support
high availability in an environment where failures of nodes are likely and reliable
multicast of updates is impractical or impossible. The simplest form of a gos-
sip protocol is the basic gossip protocol [8], which uses Lamport’s logical clock
timestamps for versioning update messages while maintaining an open group
of participants and overwrite semantics for updates (although it is desirable to
control the granularity of these overwrite updates, as depicted in section 5.3).

292 C. Schneble, T. Seidmann, and H. Huser

We decided to apply a modified basic gossip protocol and to use the underlying
peer-to-peer network in order to deliver write-update messages.

3 A Novel DSM-Approach for Occasionally Connected
Systems

A DSM system’s most important building blocks are the consistency model and
coherence protocol. The coherence protocol can be understood to implement
the consistency model. We do not wish to hard-wire one particular consistency
model into the cache implementation but rather to define clear interfaces and
keep the consistency model pluggable (see section 5.3).

All employed algorithms and protocols must be fully distributed. This pre-
cludes the use of some consistency models based on synchronisation variables
constituting a kind of critical section that must be respected by all participants.
In occasionally connected systems (OCS) such a requirement would be impossi-
ble to achieve.

Another important design concept of our cache system is the desired lack of
any central component or element, which could otherwise become a single point
of failure, as well as the occasionally connected nature of participating nodes.
However when the PNR Protocol is used in global mode at least one seed Server
must be specified which may be clustered, thus reducing the chance of a single
point of failure. Using PNRP on a local network eliminates a single point of
failure as cloud discovery is achieved using the SSDP protocol [4].

Security plays an important role in our system. Standard claim-based authen-
tication mechanism such as SAML tokens will be used for authentication.

The proposed DSM-System consists of an unlimited number of Nodes inter-
connected with the already mentioned peer-channel provided by the Microsoft
.NET Framework. As we are dealing with an occasionally connected system each
node may join or leave the mesh at will. During an offline phase, a node may
modify its local dataset or a synchronised one. Those changes will be propagated
upon reconnect, based on a modified basic gossip protocol, to be described later.

4 Application Example

Healthcare’s data sovereignty is still dedicated to the healthcare-provider (hos-
pital, home for the aged, doctor). Thus this is a case of highly distributed data.
For example getting all data about a patient involves querying all participants
data stores. Even inside an organisation, data may be distributed over various
nodes or data stores. This implies the need for a distributed grid infrastructure.
Our application example will prove the usage of our grid.Net Framework in such
a complex environment. An excerpt of some of the following scenarios will be
used in our application example.

A Distributed Shared Memory Architecture 293

4.1 Activity Recording

Doctors or nurses record their activities involving medical treatments to the elec-
tronic patient record which is synchronised to the local node before the users goes
offline. We assume that the client will be disconnected during activity recording.
Upon reconnect, the recorded activities are propagated to the mesh. Working on
the same patient record is allowed and supported.

4.2 Benchmarking

Getting statistics about treatments involves all participating nodes. Thus a query
is formulated and sent to the mesh. The nodes evaluate the query and send back
an aggregated result.

4.3 GetPatientData

A doctor treating a patient’s disease wants to access all data available on the
mesh. Thus, he sends a request for a specified patient. It may be necessary
for a third party to grant access to the data. However, it may be necessary to
access all data in case of an emergency. For such a case access rules will be
provided.(see [18]).

5 Architectural Implementation

This section is organised as follows: In section 5.1 the main building-blocks
of our cache architecture shall be presented and described. In section 5.2 our
implementation of a cacheable object shall be outlined. Section 5.3 describes
the consistency and coherence protocol. The change tracking and notification is
described in section 5.4. In section 5.5 different message-types as well as their
triggering based on cache operations shall be discussed. In section 5.6 we reason
about our conflict handling mechanism. Section 5.7 finally presents the finite
state machine of cacheable objects.

5.1 System Overview

Every node consists of the same components. However, based on the different
roles (replier or requester) a node is currently assigned to, different components
will be used to fulfil the operation. As depicted in Figure 2 the main components
are the following

– Local Object Cache
– Query Processor
– Coordinator
– Persistence Layer (Log- and Application-Store)
– Log
– Job Engine

294 C. Schneble, T. Seidmann, and H. Huser

Fig. 2. Main-Cache-Entities (Connecting lines depecit the chronology of the usage of
components when querying for an Object)

Query Processor. The Query-Processor handles any incoming query-message.
It is responsible for getting an object out of the Persistence Layer, or the Local
Object Cache, as well as returning all log entries of the queried object.

Persistence Layer. The Persistence Layer stores all application data.

Local Object Cache. Currently active objects are stored in a local memory
object cache, thus allowing efficient access.

Coordinator and Consitency Handler. The Coordinator is responsible for
handling requests from the application layer as well as handling incoming mes-
sages from other nodes. It takes the appropriate actions based on the role the
node is in for handling an operation. The Coordinator also consists of a queue
that stores all write update messages that cannot be sent when the node is of-
fline (see also Section 5.5). Another part of the coordinator is the pluggable (and
thus replaceable) module of the consistency handler. This module’s task is to
implement the consistency model and coherence protocol, as will be explained
in section 5.3.

Log. The Log stores every write update message. It is a central component as
the consistency of all object states relies on the persitent log entries. Whenever
a node crashes the object states have to be reconstructed by querying the log,
using a bootstrapping mechanism.

Job Engine. The job engine executes jobs sent by another node and returns
the result to the initiator.

5.2 Cacheable Objects

A cacheable object is a serialisable plain-old CLR object. Every cacheable ob-
ject is identified by a system-wide unique identifier. Furthermore, each object

A Distributed Shared Memory Architecture 295

contains a version number (scalar logical clock) identifying its current version.
Operation on variables that may alter any value within an object are conducted
over Properties. This allows a lightweight change tracking mechanism as de-
scribed in section 5.4. The level of granularity can be set at different levels as
described below.

5.3 Consistency and Coherence Protocol

The goal of our system is to allow grid applications to access data in a distributed
environment. In such a system data is mutable and can be read and updated by
multiple peer nodes in a sequential manner or at the same time. When a node
modifies data, the consistency protocol is in charge of updating or invalidating
the modified object to avoid returning invalid data. We provide an extensible
and exchangeable consistency protocol allowing one to choose between different
consistency models. Currently the sequential and causal consistency models are
supported. Other advanced consistency models may be supported in the future.

Sequential consitency. Sequential consitency guarantees that changes to any
object are seen by all nodes in the same order. Sequential consitency is weaker
then strict consitency, which assumes ordering by (global) physical time (which
actually doesn’t exist in distributed systems).

Causal consitency. Weakens the notion of sequential conistency in that it
makes distinction between events that are potentially causally related and those
that are not. Only causally related operations must be seen by all nodes in the
same order, whereas causally unrelated can be observed by differemt nodes in
any order.

The cache system architecture includes the concept of a pluggable consistency
model and its corresponding coherence protocol, called consistency handler. This
is achieved by submitting the object version of a newly received write-update
message and the current object version to the consistency handler. The consis-
tency handler keeps a list of pending updates and decides in which order these
get applied based on comparison of object versions.

5.4 Change Tracking and Notification

With the use of an event notification mechanism a lightweight change-tracking
mechanism can be implemented without the use of complex interception. The
level of granularity (whole object/ fields, members) can be configured for each
cacheable object type. Setting the granularity level influences how the consis-
tency model will handle updates on objects. Setting the level to object granularity
will replace one object state with the newer one. This can be a problem if two
nodes propagate updates on the same object resulting in an equal version num-
ber. Here is where tie breaking criteria come into operation. On the other hand,
setting the level to field granularity allows merging the field and members of two
objects with the same version if no conflicts are detected in the comparison of
the change-vector.

296 C. Schneble, T. Seidmann, and H. Huser

Change Vector. The change vector is the Boolean representation of changes
of the data on an object’s properties and members. Modification of a property
triggers changing the Boolean value of at specified dimension of the vector. This
allows a performant conflict checking of two write update messages (with the
same object ID and version number).

5.5 Message Handling

Modifying, adding, and querying for an object triggers a message. The following
subsections present a brief explanation of each message type. These messages
are the main component of our modified basic gossip protocol. Messages are
sent through a flooding mechanism. This in fact does not ensure reliable message
delivery to all nodes in the mesh. Ladin et al. [12] ensure reliable message delivery
by sending an acknowledgment message upon arrival of the write update message
so that the sender can keep track of whether or not all nodes received the write
update message. This architecture assumes that the node knows the entire mesh
topology even if some nodes are disconnected. Let us consider the sending of
a write update message. We cannot guarantee that the Message arrives at all
nodes: a node may be broken or in an offline state. Thus, the task of receiving
changes is transferred to the node by having it get all changes which occurred
during its offline phase, upon reconnecting to the mesh.

Write Update Message. The message consists of the following set <NodeID,
ObjectID, ObjectVersion, ObjectState, Change Vectors>. Whenever a cacheable
object is modified, or added, a write update message is sent onto the wire to notify
the resulting nodes about changes. Modification occurring during an offline phase
on the same object would result in as many messages as alternations in the
object’s values. Consider that the node is an in offline state and the object to
be modified has field granularity then multiple changes would result in multiple
write update messages. If comparison of the change vectors does not detect a
conflict , then the messages can be compacted into one write update message.

Query Message. Querying the grid for an object triggers the sending of a
query message. The result of a query message returns a cacheable object and
the corresponding object log. The requester (here sender of the query-message)
only accepts responses within a well-defined time span since the query message
was sent. The enquiring node may obtain multiple responses or it may not receive
any response. Possible reasons for this include following:

– The object is not present or the node holding the object is in an offline state.
– The node is working on an offline copy,
– The node is working on a completely new object.

Adding an Object to the Cache. Adding an object to the cache is done by
calling the update method. Each cacheable object is assigned a unique identifier.
Adding the object triggers the sending of a write update message.

A Distributed Shared Memory Architecture 297

5.6 Conflict-Handling Mechanism

Conflicts are the result of the sending of at least two write update messages with
the same version number and object ID. If the granularity-level is set to field
granularity, conflicts may be resolved by merging the two objects together. A
failing match would result in a conflict. Resolving conflicts requires an overall
agreement of all nodes on a tie-breaking criterion. The message to be applied
when a conflict is detected is computed by the tie-breaking algorithm.

Tie-Breaking Criteria and -Algorithm. The tie-breaking criteria used by
the tie-breaking-algorithm should be configurable. Currently the messages with
the highest node ID will be applied in case of conflicting write update messages.
Future implementations could for example implement a quorum-consensus or a
home-based approach[19].

apply diff(s)

Initialized

Created

No pending diffs

Diffs pending

restart timer
send global request,

timer expired/

start timer
object state received/

send global request
(no input)/

Diffs missing

timer expired/

restart timer
send direct request(s),

receive in−order write update msg/
apply diff, restart timer

timer expired/
restart timer

apply diff(s), restart timer
receive write update msg resolving all pending diffs/

purge all received diffs, send global request,
timer expired or diff not available/

restart timer

receive out−of−order write update msg/
save diff, restart timer

receive write update msg resolving some pending diffs/
apply diff(s)

receive write update msg resolving all pending diffs/
apply diff(s), restart timer

receive write update msg resolving some pending diffs/

Fig. 3. Objects State Diagram

298 C. Schneble, T. Seidmann, and H. Huser

5.7 Finite State Machine of Cached Objects

Figure 3 represents the Mealy state machine of an object. As illustrated, an
object can be in five states during its life cycle, which are created, initialised,
no pending diffs, diffs pending, diffs missing. When an object is created a global
request message is sent, requesting other nodes for the state of the newly created
object (in case any other node has it) and a timer is started. The object state is
then changed to initialised.

After either this timer has expired or a write update message answering the
object state query has been received, the state is changed to no pending diffs.
This state is maintained if any write update messages are received in correct
order (updates can be applied then) or the timer expires again, in which case it
is restarted and a global request message is sent to query changes.

If however the received message is out of order, the state of the object is
changed to pending diffs and another timer is started. This state is maintained
until an update arrives that resolves the conflict (the state is then changed back
to no pending diffs) or the timer runs out, in which case the state is changed to
diffs missing and a query message is sent to get all log entries corresponding to
the object.

If write update messages are received that resolve all conflicts the state is then
changed to no pending diffs ; otherwise, the object state stays in diffs missing.
In any case, the diffs are applied to the object. If the timer expires, however,
before all missing diffs have been received, all received messages are purged, the
state is changed to initialised, and a global request message is sent.

It is important to point out that during all state changes the local availability
and functionality of the shared (cached) object is not at all disrupted.

6 API

Table 1 provides an overview of the cache interface. We agree on the semantic
as proposed by most of the cache systems. However dealing with OCS-systems
(occasionally connected systems) implies an enhancement over traditional cache-
systems. As shown in Table 1 we introduced the method GetAndScheduleQuery.
This method gets an object from the cache and a timer is started to query the
mesh (at a specified interval) about changes occurring. This can be useful if a
node goes temporarily offline and after reconnecting wants to get new modifi-
cation which occurred during the offline-Phase. Implications of our finite state
machine for the design were discussed above in section 5.7.

7 Conclusion and Future Work

The described cache system constitutes a work in progress: We have completed
the design and architecture and are presently at work on the implementation of
the base system as well as a reference application. The design and implementa-
tion of the job scheduling system as a separate part of the whole project gives

A Distributed Shared Memory Architecture 299

Table 1. API-Interfaces

Interface Description

Add(Object,GUID) Adds the object with the specified
unique identifier to the cache.

Get(CacheableObject,
Timeout) Gets an object that matches the

fields of the assigned prototype-
object. a

Get(GUID,Timeout) Retrieves the object with the spec-
ified GUID.

Get(LinqQuery,Timeout) Retrieves an IEnumerable of ob-
jects as specified in by the LINQ-
query.

GetAndScheduleQuery(CacheableObject,
Timeout,Interval) Gets an object that matches the

fields of the assigned prototype-
object. Object is added to a queue
and updated periodically.

GetAndScheduleQuery(GUID,Timeout,
Interval) Retrieves the object with the spec-

ified GUID. Object is added to a
queue and updated periodically.

Put(CachableObject) Adds the modified object to the
cache. This method triggers send-
ing a write-update-message.

GetUpdateLog(CachableObject) Retrieves the change-log of the
specified object.

GetUpdateLog(CachableObject,
Revision) Retrieves the change-log of the

specified object since the specified
version.

a A prototype-object is an instance of an object that should be retrieved from the
cache. Along with the specified fields filled out that must match.

us confidence that the choice of the underlying technology was sound and that
the peer network infrastructure we are using fulfils our needs. In addition, we
can conclude that the job scheduling, control, and monitoring we designed and
implemented works as desired.

The next logical step is proof-of-concept of our grid cache design by imple-
menting the base system along with a reference application. Part of this is also
design of the security subsystem used both within the grid as well as for interfac-
ing with it. Although outside the scope of this paper, the security subsystem will
be claims-based; that is, all messages within the grid system will carry tokens
containing appropriate claim sets that will be evaluated for authentication and
authorisation purposes.

300 C. Schneble, T. Seidmann, and H. Huser

One major issue we will have to tackle in the near future is system testing of a
large-scale distributed system using the technology we develop. Even though we
are applying a test-drive approach by means of unit testing during development,
this is not sufficient for a system test. For this reason we are considering and
evaluating simulation techniques prior to and as a first step in system-testing
real distributed systems.

References

1. The annotated gnutella protocol specification v0.4.,
http://rfc-gnutella.sourceforge.net/developer/stable/index.html

2. Bittorent protocol specification (2009),
http://www.bittorrent.org/beps/bep0003.html

3. The linq project (2009),
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx

4. Peer name resolution protocol (pnrp) version 4.0 specification (2009),
http://download.microsoft.com/download/a/e/6/

ae6e4142-aa58-45c6-8dcf-a657e5900cd3/MS-PNRP.pdf

5. Antoniu, G., Bougé, L., Jan, M.: Juxmem: An adaptive supportive platform for
data sharing on the grid. Scalable Computing: Practice and Experience 6(33), 43–
45 (2005)

6. Bershad, B.N., Zekauskas, M.J., Sawdon, W.A.: The midway distributed shared
memory system, February 1993, pp. 528–537 (1993)

7. Carter, J.B., Bennett, J.K., Zwaenepoel, W.: Implementation and performance of
munin. In: SOSP 1991: Proceedings of the thirteenth ACM symposium on Oper-
ating systems principles, pp. 152–164. ACM, New York (1991)

8. Chow, R., Johnson, T.: Distributed Operating Systems & Algorithms. Addison
Wesley Longman, Inc., Amsterdam (1997)

9. Thomas Corbat and Lukas Felber. Cdot.gridnet: Internal working paper (2009)
10. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:

Memory consistency and event ordering in scalable shared-memory multiproces-
sors, May 1990, pp. 15–26 (1990)

11. Iftode, L., Singh, J.P., Li, K.: Scope consistency: A bridge between release consis-
tency and entry consistency. In: Proceedings of the 8th Annual ACM Symposium
on Parallel Algorithms and Architectures, pp. 277–287 (1996)

12. Ladin, R., Liskov, B., Shrira, L., Ghemawat, S.: Lazy replication: Exploiting the
semantics of distributed services. In: IEEE Computer Society Technical Committee
on Operating Systems and Application Environments, pp. 43–57. IEEE Computer
Society, Los Alamitos (1990)

13. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-
to-peer systems. In: PODC 2002: Proceedings of the twenty-first annual symposium
on Principles of distributed computing, pp. 233–242. ACM, New York (2002)

14. Protic, J., Tomasevic, M., Milutinovic, V.: Distributed shared memory: con-
cepts and systems. IEEE Parallel & Distributed Technology: Systems & Appli-
cations 4(2), 63–71 (summer 1996)

15. Seidmann, T.: Distributed Shared Memory in Modern Operating Systems. PhD
thesis, Slovak University of Technology in Bratislava (2004)

http://rfc-gnutella.sourceforge.net/developer/stable/index.html
http://www.bittorrent.org/beps/bep0003.html
http://msdn.microsoft.com/en-us/vbasic/aa904594.aspx
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/MS-PNRP.pdf
http://download.microsoft.com/download/a/e/6/ae6e4142-aa58-45c6-8dcf-a657e5900cd3/MS-PNRP.pdf

A Distributed Shared Memory Architecture 301

16. Tanenbaum, A.S.: Distributed Operating Systems. Prentice Hall, Inc., Englewood
Cliffs (1995)

17. Tanenbaum, A.S., van Steen, M.: Distributed System, Principles and Paradigms,
2nd edn. Pearson Education, Inc., Upper Saddle River (2007)

18. Moses, E.T.: Xacml 2.0 rsa 2008 interop scenarios walk through - version 0.7 (2009),
http://xml.coverpages.org/RSA-UseCasesGuideV7-20081020.pdf

19. Zhou, Y., Iftode, L., Li, K.: Performance evaluation of two home-based lazy release
consistency protocols for shared virtual memory systems. SIGOPS Oper. Syst.
Rev. 30(SI), 75–88 (1996)

http://xml.coverpages.org/RSA-UseCasesGuideV7-20081020.pdf

Time-Adaptive Vertical Handoff Triggering
Methods for Heterogeneous Systems�

Qingyang Song, Zhongfeng Wen, Xingwei Wang, Lei Guo, and Ruiyun Yu

Department of Information Science and Engineering, Northeastern University,
Shenyang, China

Abstract. Vertical handoff decision is an important process in heteroge-
neous systems. In order to find an appropriate time to trigger a handoff,
deciding a stability period before performing the handoff has been stud-
ied formerly. In this paper, we introduce the definition of the residence
time of a handoff zone (HZ) into the stability period decision method.
Then two algorithms, Stability Period Decision Scheme with HZ Resi-
dence Time (SPDRT) and Stability Period Decision Scheme Based on
Fuzzy Logic (SPDFL), are proposed to adjust the stability period dy-
namically. Moreover, we apply the two schemes to solve the handoff call
queuing problem. Simulation results show that the proposed methods
can decrease handoff call dropping rate effectively and adjust the stabil-
ity period intelligently and sensibly.

1 Introduction

With the prevalent development of the current third-generation (3G) networks,
the heterogeneous wireless networks, called next-generation networks (NGN) or
fourth-generation (4G) networks [1] coordinating many different types of networks
such as Wireless Local Area Networks (WLAN), Wireless Metropolitan Area Net-
works (WMAN) and 3G Cellular Networks (WWAN) are going to appear. Nowa-
days, there is an obvious trend to integrate the 3G Cellular Networks and WLANs.
The 3G Cellular Networks will provide the limited bandwidth and expensive ser-
vice price but universal coverage as an upper layer. At the same time, the WLAN
will offer high-speed and low-cost data services within limited coverage areas as a
lower layer. The integration of all kinds of networks enables users to obtain always-
best-connected (ABC) services [2] at any time and in any location.

In all radio technologies of heterogeneous networks, vertical handoff is a chal-
lenging problem and has been studied widely. The vertical handoff is the process of
maintaining the communication connections between the mobile terminal (MT)

� This work is supported by the National Natural Science Foundation of China under
Grant No. 60673159, No. 70671020 and No. 60802023; the Key Project of Chinese
Ministry of Education under Grant No. 108040; the National High-Tech Research and
Development Plan of China under Grant No. 2007AA041201; Specialized Research
Fund for the Doctoral Program of Higher Education under Grant No. 20060145012,
No. 20070145017 and No. 20070145096.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 302–312, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Time-Adaptive Vertical Handoff Triggering Methods 303

and systems when a user is roaming in different types of networks [3], which in-
cludes three steps: system discovery, handoff decision, and handoff execution [4].
The second step is especially important. For vertical handoff decision algorithms,
there are three directions mainly referred in the field [5]. The first direction is the
traditional received signal strength (RSS) -based method combined with other pa-
rameters such as hysteresis margin and dwell time [6]. The second approach is the
multiple-attribute decision making scheme of vertical handoff, which quotes sev-
eral metrics such as available bandwidth, signal to noise ratio (SNR), cost, and
speed in a utility function [7]. The third way uses artificial intelligence techniques
such as fuzzy logic and neural networks with a few parameters about the quality
of service (QoS). For example, the fuzzy logic theory has been referred to dealing
with the vertical handoff decision problem in [8] and [9].

In [10], a handoff decision scheme has been presented to deal with handoff
decision problem. The users should use cost function to measure the QoS of
all the candidate networks and select the best as the target network. Then the
stability period TS is set as follows:

TS = lhandoff +
lhandoff

(r − 1)
, (1)

where r = fcurrent /fbetter, lhandoff presents the handoff latency, fcurrent and
fbetter are the cost function value of current and target network, respectively.
Stability period is expressed as a waiting period from finding a network to switch
to triggering handoff. Only if the target network is consistently the best of all
networks within a stability period does the MT execute handoff. Equation (1) is
based on making up handoff latency and the lost time due to it. In real world,
the handoff latency of every network varies all the time but the latency in [10] is
assumed to be fixed. Afterward, a few improvements have been done in [4] and
[11]. In [4], the authors presented two methods to adjust stability period based
on network utility ratio. Reference [11] emphasized on obtaining handoff metrics
by using the MAC layer sensing technique to adjust stability period dynamically.
However, all the optimization methods are based on (1). The setup of handoff
latency is unavoidable. In fact, handoff latency is hard to measure in wireless
network.

In this paper, we apply the utility function to measure the QoS provided by all
networks and find a right one as the target network to perform handoff. Two time-
adaptive vertical handoff triggering methods, which both focus on adjusting the
stability period dynamically, are proposed. The remainder of this paper is orga-
nized as follows. Section 2 describes the proposed methods. In Sect.3, simulations
are done through two scenarios. Finally, conclusions are drawn in Sect.4.

2 Time-Adaptive Vertical Handoff Triggering Methods

This section describes the time-adaptive vertical handoff triggering methods:
Stability Period Decision Scheme with HZ Residence Time (SPDRT) and Sta-
bility Period Decision Scheme Based on Fuzzy Logic (SPDFL). We will present

304 Q. Song et al.

the definition of so called Handoff Zone (HZ) residence time and focus on the
setup of the stability period.

2.1 HZ

The boundary between cells is determined by average RSS from adjacent cells in
wireless communication networks. However, due to shadowing and fading effects,
the RSS varies from time to time although the transmitting signal strength is
constant and distance from a base station or an access point is fixed. Figure 1
presents an example of our proposed system model, the 3G network is used to
cover universal area and the WLAN can provide local coverage. Here, we regard
the area lying in the common boundary between WLANs as HZ. Generally, the
cell shape is defined as a hexagon in the cellular environment. We assume that
the HZ shape is ellipse because that will be close to real condition.

Fig. 1. Handoff zone in wireless overlay networks

2.2 HZ Residence Time

The residence time presents the time that an MT resides in the current cell
before it enters the adjacent cell. Because of that, we define the HZ residence
time as the time between the moment an MT begins to accept service in HZ
and the moment it leaves HZ or the time an MT spent when crossing the HZ.
The calculation of residence time has been studied extensively in the past. In
[12], the negative exponential distribution model is presented and the Gamma
distribution model is shown in [13]. Those methods are quite complex and time-
consuming. Here, we adopt the geometrical analysis method which can calculate
the HZ residence time simply and fast. Equation (2) is the trajectory function
of the HZ boundary.

x2

a2 +
y2

b2 = 1, (2)

where a and b are the major axis and minor axis of the ellipse, respectively.

Time-Adaptive Vertical Handoff Triggering Methods 305

The trajectory function of the MT’s movement can be determined by

(x − x0) ∗ tanθ = y − y0, (3)

where θ is the angle of user’s current moving direction and (x0, y0) is the user’s
coordinate point of his initial position in the HZ. From (2) and (3), the inter-
section point of the trajectory of the MT’s movement and the trajectory of the
HZ boundary can be found. Then the MT’s moving distance d in the HZ before
it leaves the HZ may be achieved. Finally, the HZ residence time TH is given as:

TH =
d

v
, (4)

where v is the user’s current moving velocity which is obtained randomly by the
initialization process.

2.3 SPDRT

As discussed in Sect.1, after selecting a target network, the MT should perform
the process of stability period decision. The stability period is deduced based on
the idea of making up. In (1), the handoff latencies of different wireless networks
are derived from a large amount of experiments [10]. In order to simplify the
simulation process, (5) is applied to define stability period TS−P in our SPDRT
scheme.

TS−P = Tmin + (Tmax − Tmin)(1 − r), (5)

where r = Utar /Ucur, Tmin and Tmax are the lower bound and the higher
bound of the initialization time value. Ucur is the utility function value of the
network that the user resides in currently. Utar, which is larger than Ucur, is
the utility function value of the network that the user will perform handoff
into. Likewise, r is also used to adjust the stability period. The utility function
value of any network varies from time to time with the continuing changes of the
network conditions. Then the stability period changes simultaneously. Therefore,
the stability period can be dynamically adjusted according to the actual network
conditions. Moreover, TS−P is a linear function of r. The stability period will
vary more sharply with the slight change of r than the condition in (1).

When the MT enters the HZ, it needs a better network to switch because of
the QoS’s getting worse in the current network. After choosing a network as the
target, it starts the measure process of QoS within a stability period. As there
are several better networks to be selected and any of the candidate networks may
be the optimal option, the measure process of QoS will be performed frequently.
If the MT doesn’t perform handoff successfully before it moves out of the HZ
boundary, the handoff call is dropped. So we use the HZ residence time to be the
final time for triggering the handoff, the MT will be forced to perform handoff
once the final time exceeds the HZ residence time. As a result, the dropped
handoff calls caused by frequent QoS measurements in corresponding stability
period are effectively avoided.

306 Q. Song et al.

2.4 SPDFL

The fuzzy multiple-attribute decision making algorithm has been used to deal
with the vertical handoff decision problem. Through measuring network’s QoS
parameters and selecting a suitable network, it can provide adaptive and accurate
handoff decision because of its intelligent character. The method based on fuzzy
logic is especially sensitive to QoS parameters’ change, so in this section, we use
it for realizing stability period’s dynamic adjustment and call it SPDFL scheme.
As shown in Fig.2, a fuzzy logic controller is applied in the SPDFL scheme. The
fuzzifier receives the considered context parameters and transforms them to the
fuzzy sets which have a varying degree of membership. Therefore, the real-time
measurements will change to a series of values like low, medium or high if the
bandwidth alone is considered. Then every value is mapped onto a membership
value and all the values become a membership function together.

Fig. 2. Fuzzy logic controller

In our scheme, we consider four parameters: available bandwidth, SNR, ve-
locity, HZ residence time as the input variables of the fuzzifier as shown in Fig.2.
We transform them to the linguistic variables as: Available Bandwidth = {High
(H), Medium (M), Low (L)}; SNR = {High (H), Medium (M), Low (L)}; Ve-
locity = {Fast (F), Medium (M), Slow (S)}; HZ residence time = {Long (L),
Medium (M), Short (S)}. Figure 3 illustrates the membership functions of the
parameters.

Unlike conventional application of fuzzy logic that the output parameter is a
precise quantity which is mapped to the membership value, the output variable
in our scheme is a degree which presents a time value. We set the time value as
the stability period here. According to fuzzy rule base shown in Table 11, there
are 81 rules. Also, the 81 rules stand for 81 different stability period time at
the corresponding degree. The degrees are determined by the QoS parameters of
the target network such as available bandwidth, SNR, velocity and HZ residence
time. The suitable stability period varies with the network’s real-time QoS.

1 It is a breviary of the entire table due to space.

Time-Adaptive Vertical Handoff Triggering Methods 307

Fig. 3. Membership functions

Table 1. Fuzzy rule base

Rules HZ residence time Available bandwidth SNR Velocity Degrees

1 S H H F 1
2 S H H M 2
3 S H H S 3
4 S H M F 4
5 S H M M 5
6 S H M S 6
7 S H L F 7
8 S H L M 8
9 S H L S 9
10 S M H F 10
.
79 L L L F 79
80 L L L M 80
81 L L L S 81

2.5 Delaying Handoff Scheme in HZ

Here we discuss a particular phenomenon: several users enter the HZ at the
same moment, which is called the handoff call queuing problem. In the utility
function-based method, the MT will switch to the most appropriate one once
the target network can provide the best QoS. But the problem appears when
all the users need to perform handoff: the users will execute the handoff into
the same network and the limited resource can’t fulfill so many service requests

308 Q. Song et al.

for a network. Subsequently, some of the users will be out of service. A general
idea, which delays some handoff calls, is presented to deal with this problem.
Although this method can reduce the occurrence of handoff call dropping, the
handoff delay process will last too long and the handoff will not be triggered in
time. In order to achieve the purpose of adjusting delay time dynamically, we
apply the theory of (5) to decide the delay time TD−T and rewrite it as (6). We
call this dynamic delay scheme here.

TD−T = Tmin + (Tmax − Tmin)(1 − r), (6)

where r = Utar /Ucur.
Also, the SPDFL scheme can be adopted to deal with this problem. We call it

fuzzy logic-based delay scheme. In addition, it is important to differentiate real-
time and non-real-time applications in the handoff decision process because the
real-time applications such as voice service need to perform handoff as soon as
possible. So we add the service level of the application as an input parameter of
the fuzzifier. This proposal makes the delay time more sensible to the real-time
applications.

3 Performance Evaluation

The performance of the proposal is evaluated by simulations. We set a heteroge-
neous structure where a 3G system and two WLANs overlay, as shown in Fig.4.
In Table 2, we list the simulation parameters of network environment. An MT is
randomly generated within the whole simulation area. In the simulation model,
the arrival of the MT follows a Poisson distribution and the total number of
users is set to be 1000. The initial velocity of an MT is set to be a random num-
ber between 0.5 m/s and 3 m/s. In order to simplify the simulation process, the
MT is assumed to do the rectilinear motion. The range of movement direction
is uniformly distributed from 0 to 2π. Three applications, voice conversation,

Fig. 4. Simulation environment

Time-Adaptive Vertical Handoff Triggering Methods 309

Table 2. Simulation parameters of the networks

Wireless environment WCDMA WLAN

Cell radius (m) 800 100
Shadowing deviation (dB) 6 6

Tx power (dBm) 37 24
Frequency (Hz) 2.1e9 2.4e9

Transmitter antenna height (m) 50 1
Receiver antenna height (m) 2 1

Transmitter antenna gain (dB) 1 1
Receiver antenna gain (dB) 1 1

Rx sensitivity (dBm) -98 -94

Table 3. Service characteristics

Service class Bandwidth Real-time or not

Voice conversation 0.384M Real-time
Video streaming 1M Real-time
Data download 2M Non-real-time

video streaming and data download, are chosen by the users. The bandwidths
occupied by these services are shown in Table 3.

In Fig.5, we compare the handoff call dropping rates of using the following
methods: utility function-based scheme, stability period decision (SPD) scheme
[10], SPDRT and SPDFL. In SPDRT, Tmin and Tmax are set to be 2s and 5s,
respectively. The simulation results show that the utility function-based scheme
has the higher handoff call dropping rate compared to all other schemes since the
target network conditions changed so fast that there could be no enough resource
to provide for the user after he performed handoff to the network without mea-
suring the network’s QoS within a stability period. The SPDRT is slightly better
than SPD as it introduces the HZ residence time, which avoids handoff call drop-
ping by the time-consuming stability period decision process. In SPDFL, more
parameters of the target network are collected in order to obtain an appropriate
stability period and choose a suitable time point to trigger handoff. However, it
achieves the highest sensitivity in stability period’s adjustment.

Figure 6 and 7 are the simulation results about dealing with the handoff
call queuing problem. The comparisons among the four algorithms are shown
in Fig.6. They are non-delay, fixed delay, dynamic delay and fuzzy logic-based
delay schemes. When multiple users enter the HZ at the same time, some calls
could be blocked due to the limited resource. So, the non-delay scheme has
very high handoff call dropping rate. Though the Fixed delay scheme can solve
the blocking problem, the handoff time point can’t be decided flexibly because
the delay time is fixed, and the MT may lose the best opportunity of triggering

310 Q. Song et al.

the handoff. The dynamic delay scheme resolves this delay problem. Moreover,
the dropping would happen frequently if the handoff request of an MT with
real-time application can’t be satisfied. In fuzzy logic-based delay scheme, we
consider the service level of the application as an input parameter. In this way,
the handoff request of the real-time service will be dealt with timely. So this

Fig. 5. Handoff call dropping rate versus call arrival rate

Fig. 6. Handoff call dropping rate versus call arrival rate

Time-Adaptive Vertical Handoff Triggering Methods 311

Fig. 7. Average handoff call queuing delay time versus call arrival rate

scheme obtains the lowest rate and shows about 6% decrease for handoff call
dropping rate over the dynamic delay scheme averagely.

As shown in Fig.7, the average handoff call queuing delay time of all users
entering the HZ is compared. We can see that the average handoff call queuing
delay time in the fixed delay scheme is longer than that in the dynamic delay
scheme due to inappropriate delay time setting. The fuzzy logic-based delay
scheme has the shortest average handoff call queuing delay time. This indicates
that the fuzzy logic-based scheme is more intelligent and sensible in deciding
delay time. Though the average handoff call queuing delay time is longer than
conventional handoff latency and may lead to handoff call dropping to some
extent, but the delaying handoff method prevents a lot of handoff calls being
blocked and makes a tradeoff between them.

4 Conclusion

In this paper, we proposed two time-adaptive vertical handoff triggering schemes
that find an appropriate time point to trigger handoff based on the residence
time in the HZ. The two schemes, SPDRT and SPDFL, both focus on decid-
ing the stability period dynamically. Furthermore, we apply them to solve the
handoff call queuing problem. The simulations show that the proposed schemes
outperform previous schemes in decreasing handoff call dropping rate. Moreover,
the schemes are intelligent and sensible in adjusting the stability period.

312 Q. Song et al.

References

1. Bria, A., Gessler, F., Queseth, O., Stridh, R., Unbehaun, M., Jiang, W., Zander,
J.: 4th-generation wireless infrastructures: scenarios and research challenges. IEEE
Wireless Communications 8(6), 25–31 (2001)

2. Chen, Y.P., Yang, Y.H.: A new 4G architecture providing multimode terminals al-
ways best connected services. IEEE Wireless Communications 14(2), 36–41 (2007)

3. Zhu, F., Mcnair, J.: Optimizations for vertical handoff decision algorithms. In:
Wireless Communications and Networking Conference, vol. 2, pp. 867–872 (2004)

4. Chen, W.T., Liu, J.C., Huang, H.K.: An adaptive scheme for vertical handoff in
wireless overlay networks. In: IEEE International Conference on Parallel and Dis-
tributed Systems, pp. 541–548 (2004)

5. Zahran, A.H., Liang, B., Saleh, A.: Signal Threshold Adaptation for Vertical
Handoff in Heterogeneous Wireless Networks. Mobile Networks and Applications
(MONET) journal 11(4), 625–640 (2006)

6. Liu, M., Li, Z.C., Guo, X.B., Lach, H.Y.: Design and Evaluation of Vertical Handoff
Decision Algorithm in Heterogeneous Wireless Networks. In: IEEE International
Conference on Networks, vol. 2, pp. 1–6 (2006)

7. Lee, D.Y., Han, Y.N., Hwang, J.Y.: QOS-based Vertical handoff decision algorithm
in heterogeneous networks. In: Personal. IEEE International Symposium on Indoor
and Mobile Radio Communications, pp. 1–5 (2006)

8. Guo, Q., Zhu, J., Xu, X.H.: An adaptive multi-criteria vertical handoff decision
algorithm for radio heterogeneous network. In: IEEE International Conference on
Communications, vol. 4, pp. 2769–2773 (2005)

9. Barolli, L., Xhafa, F., Durresi, A., Koyama, A., Takizawa, M.: An intelligent hand-
off system for eireless cellular networks using fuzzy logic and random walk model.
In: International Conference on Complex, Intelligent and Software Intensive Sys-
tems, pp. 5–11 (2008)

10. Wang, H.J., Katz, R.H., Giese, J.: Policy-enabled handoffs across heterogeneous
wireless networks. In: Proc. of the Second IEEE Workshop on Mobile Computing
Systems and Applications, New Orleans, Louisiana, pp. 51–61 (1999)

11. Jia, H.L., Cheng, P., Zhang, Z.Y., Li, S.J.: An improved adaptive decision scheme
for vertical handoff in heterogeneous wireless networks. In: IEEE International
Conference on Communications, Circuits and Systems, vol. 3, pp. 1816–1820 (2006)

12. Zonoozi, M., Dassanayake, P.: User mobility modeling and characterization of mo-
bility patterns. IEEE Journal on Selected Areas in Communication 15(7), 1239–
1252 (1997)

13. Fang, Y.G., Chlamtac, I., Lin, Y.B.: Call performance for a PCS network. IEEE
Journal on Selected Areas in Communication 15(8), 1568–1581 (1997)

Energy-Saving Topology Control for
Heterogeneous Ad Hoc Networks

Lei Zhang and Xuehui Wang

School of Computer,
National University of Defense Technology, Changsha 410073, China

findzhanglei@hotmail.com

Abstract. Topology control with per-node transmission power adjust-
ment in wireless ad hoc networks has been shown to be effective with
respect to prolonging network lifetime and increasing network capacity.
In this paper, we propose a fully distributed, asynchronous and local-
ized energy-saving topology control algorithm for heterogeneous ad hoc
networks with non-uniform transmission ranges. We prove the topology
derived from the algorithm preserves the network connectivity and bi-
directionality. It need not the position system support and dramatically
reduces the communication overhead compared to other topology con-
trol algorithms. Simulation results show the effectiveness of our proposed
algorithm.

1 Introduction

Wireless ad hoc networks have been the focus of many recent research and devel-
opment efforts for its applications in military, commercial, and educational envi-
ronments. Since wireless nodes are usually powered by batteries, energy-saving is
a prime consideration in these networks. Topology control via per-node transmis-
sion power adjustment has been shown to be effective in extending network life-
time and increasing network capacity (due to better spatial reuse of spectrum),
but reducing transmission power arbitrarily on each node may result in a discon-
nected network. Energy-saving topology control aims at reducing the transmission
power as much as possible while maintaining the network connectivity.

Most of the literature in this area has focused on the topology control problem
in homogeneous ad hoc networks with uniform transmission ranges. Ramanathan
et al. [1] proposed a centralized algorithm CONNECT that requires global in-
formation, thus cannot be applied to large ad hoc networks. He also presented
two distributed algorithms LINT and LILT, but both are heuristic and can-
not preserve the network connectivity. Roger Wattenhofer al. [2] introduced a
cone-based distributed topology control algorithm (CBTC) with the support of
directional antenna. The basic idea is that a node i transmits with the minimum
power p such that there is at least one neighbor in every cone of angle centered
at i. The obtained communication graph is made symmetric by adding the re-
verse edge to every asymmetric link. The authors show that setting β ≤ π2/3 is
a sufficient condition to ensure connectivity. Ning Li [3] proposed a distributed

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 313–322, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

314 L. Zhang and X. Wang

topology control algorithm LMST basing on the local minimum spanning tree
theory, each node builds its local minimum spanning tree and only keeps on-tree
nodes that are one-hop away as its neighbors in the final topology.

The assumption of homogeneous nodes does not always hold in practice, be-
cause the devices in the network may have dramatically different capabilities,
for instance, the communication network in the battle field involves different
wireless devices on soldiers, vehicles and UAVs. Ning Li and Jennifer C. Hou [4]
showed that most existing topology control algorithms cannot be directly applied
to heterogeneous wireless multi-hop networks in which the transmission range
of each node may be different. They proposed two localized topology control
algorithms for heterogeneous wireless ad hoc networks with non-uniform trans-
mission ranges: Directed Relative Neighborhood Graph (DRNG) and Directed
Local Minimum Spanning Tree (DLMST). The authors prove that if the origi-
nal network is bi-directional and strongly connected, both DRNG and DLMST
are localized algorithms to preserve the network connectivity, but if the original
network is not bi-directional (this is not uncommon in heterogeneous ad hoc net-
works), the neighborhood topology information needed by DRNG and DLMST
cannot be obtained locally, which will result in extensive global broadcasts in
the network. Jilei Liu and Baochun Li [5] proposed a solution that is based on
the minimum-power vicinity tree (MPVT), each node gets its vicinity topology
and build a minimum-power vicinity tree using the single source shortest-paths
algorithm, such as the Bellman-Ford or Dijkstra’s algorithms, but the vicinity
topology also cannot be obtained locally if there exist unidirectional links. More-
over, all the mentioned topology control algorithms for heterogeneous ad hoc
networks need GPS or other position system to obtain the location information
of each node, which maybe inapplicable in practice.

In this paper, we propose a distributed energy-saving topology control al-
gorithm MINS (minimum-power ingress neighbor sub-network) for heteroge-
neous ad hoc networks with non-uniform transmission ranges. Each node builds
a minimum-power ingress neighbor sub-network based on the locally collected
ingress neighbor (defined in section 2) topology information and adjusts its trans-
mission power according to the received transmission power control messages
from its ingress neighbors. Compared with other topology control algorithms for
heterogeneous ad hoc networks, MINS need not position system support and
dramatically reduces the communication overhead, the topology generated by
MINS preserves the network connectivity and has less average node degree.

The rest of the paper is organized as follows. The network model is de-
scribed in Section 2. Then we present the MINS topology control algorithm in
Section 3, and discuss its scalability, preservation of network connectivity and
bi-directionality in Section 4. Finally, we present a simulation-based performance
study in Section 5, and conclude the paper in Section 6.

2 Network Model

Consider n heterogeneous nodes are randomly deployed in a two-dimensional
plane. Each node is assigned a unique id (such as an IP/MAC address) and

Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks 315

equipped with an omni-directional antenna with adjustable transmission power.
Since nodes are heterogeneous, they have different maximum transmission pow-
ers and radio ranges, which will result in unidirectional links in the network.

Let V denote the node set in the network, we assume the wireless channel
is symmetric and obstacle-free, each node has the ability to gather its location
information via position system, such as GPS. ∀u ∈ V , suppose dmax

u is its
maximum transmission range, we define ingress neighbor and ingress neighbor
set as follows.

Definition 1. Ingress Neighbor and Ingress Neighbor Set. ∀u, v ∈ V , d(u,v) is
the distance between node u and v, if dmax

u > d(u, v), u is an ingress neighbor of
v, denoted as u → v , all these ingress neighbors of node v constitute its ingress
neighbor set V v

IG (including node v itself).

Since the maximum transmission range of each node may be different, ingress
neighbor is asymmetric, i.e., u → v does not imply v → u. If u is an ingress
neighbor of v, there exists a directed link (u,v) from u to v, its weight is d(u, v).
The network topology generated by having each node transmit with its maximum
power is a directed graph, denoted as G = (V, E), where E = {(u, v) : u → v, u ∈
V, v ∈ V).

The objective of the energy-saving topology control algorithm is to minimize
the transmission power of each node while preserving the network connectivity.

3 The MINS Topology Control Algorithm

In this section, we propose a distributed energy-saving topology control algo-
rithm MINS (Minimum-power Ingress Neighbor Sub-network) for heterogeneous
wireless ad hoc networks with non-uniform transmission ranges, which is com-
posed of four phases: topology information collection, local topology construc-
tion, transmission power adjustment and mobility manipulation.

3.1 Topology Information Collection

In this phase each node collects its ingress neighbor information locally and con-
structs a ingress neighbor topology Gv

IG = (V v
IG, Ev

IG), where V v
IG is the ingress

neighbor set, Ev
IG = {(x, y) : x → y, x ∈ V v

IG, y ∈ V v
IG}is the directed edge set

among all the nodes in V v
IG , Gv

IG = (V v
IG, Ev

IG) is a subgraph of G = (V, E),
which can be obtained as follows.

Each node in the network periodically broadcasts a HELLO message using
its maximum transmission power (in this paper, broadcast means 1-hop broad-
cast, global broadcast means broadcast in the entire network). The information
contained in a HELLO message should at least include the node id, the node
position and its maximum transmission power P smax

u . If u → v, v will receive
u’s HELLO message, assume the received signal power level is P r

(u,v) , according
to the path loss model commonly adopted by previous work [6], it satisfies

P r
(u,v) = c ∗ P smax

u

d(u, v)r
(1)

316 L. Zhang and X. Wang

where d(u, v) is the mutual distance between node u and v, c is a constant, r is
the propagation loss coefficient, its value ranges from 2 to 5 depending on the
environment.

Let P smin
(u,v) represents the receiving threshold of the node vs radio interface (e.g.

it is 3.652E-10w for 914MHz Lucent WaveLAN DSSS radio interface). According
to equation (1),

P rmin
v = c ∗ P smin

u,v

d(u, v)r
(2)

where P smin
(u,v is the minimum transmission power for node u to reach node v,

combine equation (1) and (2), we get

P smin
(u,v) = P smax

u ∗ P rmin
v

P r
(u,v)

(3)

where P rmin
v and P smax

u are known, P r
(u,v) is the signal power of the received

HELLO message, so by equation (3) node v can calculate the minimum trans-
mission power of each ingress neighbor, it records these information in a ingress
neighbor link list (INLL) as Table 1.

The information in the ingress neighbor link list will be broadcasted by each
node in a INLL message using its maximum transmission power. After receiving
the INLL messages from all the ingress neighbors, node v can build its ingress
neighbor topology Gv

IG = (V v
IG, Ev

IG), which is the basis of our energy-saving
topology control algorithm.

Table 1. Ingress neighbor link list

Link Minimum transmitting power for this link
(a, v) P smin

(a,v)

(b, v) P smin
(b,v)

... ...

3.2 Local Topology Construction

With the knowledge of ingress neighbor topology Gv
IG = (V v

IG, Ev
IG), node v

constructs a minimum-power ingress neighbor sub-network Gv
IG

′ = (V v
IG, Ev

IG
′)

using the following algorithm.

Step 1. Construct a subgraph Gv
IG

′ = (V v
IG, Ev

IG
′) without any edges and ini-

tialize the minimum transmission range dmin
v of each node in V v

IG to 0.

Ev
IG

′ = φ dmin
v = 0 Vt = V v

IG − v

Step 2. Sort the edges in Ev
IG according to its weight d(u, v) in a non-decreasing

order, the sort result is denoted as S.

Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks 317

Step 3. Retrieve the first directed edge (x,y) from S.
Step 4. If x ∈ Vt and node x is not connected to node y, add edge (x,y) to Ev

IG
′

and update dmin
x :

if dmin
x < d(x, y), set dmin

x = d(x, y)

Step 5. If node x is connected to node v, delete node x from Vt.
Step 6. If Vt is empty, terminate the algorithm, else go to step 3.

The algorithm is greedy, it iteratively adds edge to Ev
IG

′ until each neighbor
node can reach node v, the maximum power of all edges in the sub-network is
minimized.

3.3 Transmission Power Adjustment

On termination of the local topology construction algorithm, node v obtains
the minimum transmission range for each ingress neighbor. It will send these
information to its ingress neighbors within a transmission power control (TPC)
message.

Since ingress neighbor is not symmetric, node v may be unable to reach some
of its ingress neighbors directly using its maximum transmission power. In this
case, if v broadcasts the TPC message globally, it will result in excessive com-
munication overhead. Instead of globally broadcasting the TPC message to all
the ingress neighbors, node v only broadcasts the TPC message to those ingress
neighbors that are directed connected to it in Gv

IG
′ = (V v

IG, Ev
IG

′), which is
sufficient to guarantee the network connectivity (proved in Theorem 1).Figure
1 gives an illustration, Fig 1(a) is the ingress neighbor topology of node v, in
which u → v but 4 cannot reach u directly, Fig 1(b) is the minimum-power
ingress neighbor sub-network Gv

IG
′ = (V v

IG, Ev
IG

′) constructed by v. To guaran-
tee both ingress neighbor w and u can reach node v in the final topology, v need
only send the TPC message to node w, because u is also w’s ingress neighbor,
edge (u, w) will be added to the minimum-power ingress neighbor sub-network
of node w, which will eventually broadcasting the TPC message to node u.

The only case that node v must globally broadcast the TPC message is that
there is not a ingress neighbor in the green area of figure 2(b), which will result u
is directly connected to v in Gv

IG
′ = (V v

IG, Ev
IG

′), but this rarely happens in the
strongly connected ad hoc networks. Extensive simulations show this method
dramatically reduces the communication overhead caused by global broadcast
(see section 5).

Upon receiving a TPC message, node v compares the transmission power
requirement from the TPC message with its current power setting, and adjusts
its transmission power to the larger value. The final network topology is denoted
as G0 = (V, E0) after the transmission power adjustment.

3.4 Mobility Manipulation

To manipulate the mobility of wireless nodes, each node should broadcast HELLO
message periodically, the interval between two broadcasts is determined by the

318 L. Zhang and X. Wang

maxs

u
P

maxs

v
P

min

),(

s

vu
P

maxs

u
P

maxs

v
P

min

),(

s

vu
P

u

v

w w

u

v

Fig. 1. Illustration of TPC message sending policy

mobility speed. When any node finds the ingress neighbor topology is changed, it
will rebroadcast the INLL message to notify its neighbors to update the ingress
neighbor topology information and readjust the transmission power from scratch.

4 Properties of MINS Algorithm

In this section, we discuss the scalability, connectivity and bi-directionality of
the MINS algorithm.

4.1 Scalability

The MINS algorithm is a fully distributed and localized algorithm to be executed
on each node in the network. Since every node in the network can run the algo-
rithm independently based on its local ingress neighbor topology information, it
is scalable to large heterogeneous ad hoc networks. Moreover, in MINS algorithm
each node need only the ingress neighbor topology instead of the egress neigh-
bor (the neighbors it can reach) topology as in MPVT[4], DRNG or DLMST[3].
Ingress neighbor topology can be obtained by exchanging the HELLO and INLL
messages locally, and the number of global broadcasts during transmission power
adjustment can be dramatically reduced using the minimum-power ingress neigh-
bor sub-network. While obtaining the egress neighbor information need extensive
global broadcasts [3] [4], which will result in too much communication overhead.

Furthermore, MINS algorithm is asynchronous. Each node executes the algo-
rithm periodically and independently, it can start running the algorithm at any
time, transmission power adjustment is activated by the received TPC message,
synchronization mechanism is not needed among the wireless nodes.

Finally, when the node density increases in the network, each node’s trans-
mission power becomes less to maintain the network connectivity, the average
node degree and consequently the network contention level are consistent de-
spite of the node density in the network. The percentage of nodes that globally
broadcast TPC messages is also decreased (see section 5).

Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks 319

4.2 Connectivity

Theorem 1. If the original topology G = (V, E) is strongly connected, then
G0 = (V, E0) obtained by MINS algorithm is also strongly connected.

Proof. Since G = (V, E) is strongly connected, ∀u, v ∈ V , there exists a di-
rected path form u to v in G = (V, E), without loss of generality, we denote it
as p(u, x1, x2...xk−1, xk, v), where x1, x2...xk−1, xk are the k intermediate nodes
from u to v.

Since xk → v, by the MINS algorithm , there must exist a directed path in
G0 = (V, E0) through which node xk can reach node v. Similarly, xk−1 → xk

implies xk−1 can reach xk, xk−2 → xk−1 implies xk−2 can reach xk−1, which
continues until node u can reach node x1. As a result, node u can reach node v
in G0 = (V, E0), therefore G0 = (V, E0) is strongly connected.

4.3 Bi-directionality

It is very important to guarantee the network bi-directionality, because MAC
protocols usually require bidirectional links for proper operation, such as the
RTS-CTS-DATA-ACK handshake protocol in IEEE 802.11 standard. MINS al-
gorithm does not always preserve the bi-directionality even if the initial topology
is bi-directionally connected, as illustrated in figure 2. But MINS algorithm can
be easily extended as follows to guarantee the bi-directionality of the network.

In the first phase of MINS algorithm, after obtaining the ingress neighbor
topology Gv

IG = (V v
IG, Ev

IG), delete all the unidirectional links in Gv
IG =

(V v
IG, Ev

IG) and continue the algorithm.
In the second phase of MINS algorithm, once we add an edge (x, y) to Ev

IG
′,

the corresponding reverse edge (y, x) is also added to Ev
IG

′ simultaneously:

if Px < P smin
(x,y) , set Px = P smin

(x,y)

if Py < P smin
(y,x) , set Py = P smin

(y,x)

so the minimum-power ingress neighbor topology obtained in this phase is bi-
directional.

We denote the modified algorithm as EMINS algorithm.

),(EVG =),(00 EVG =
v

w
u

v

u
w

Fig. 2. Illustration of TPC message sending policy

320 L. Zhang and X. Wang

Theorem 2. If the original topology G = (V, E) is strongly connected and bi-
directional, then G0 = (V, E0) obtained by MINS algorithm is also strongly and
bi-directionally connected .

Proof. Since G = (V, E) is strongly connected and bi-directional, ∀u, v ∈ V ,
there exists a bi-directional path p(u, x1, x2...xk−1 between u and v in G =
(V, E), where x1, x2...xk−1, xk are the k intermediate nodes.

Since xk is node v’s ingress neighbor and the minimum-power ingress neigh-
bor sub-network obtained by EMINS algorithm is bi-directional, there exists
a bi-directional path between node xk and v, thus node xk is bi-directionally
connected with node v in G0 = (V, E0). Similarly, node xk−1 is bi-directionally
connected with sk, node xk−2 is bi-directionally connected with sk−1, which con-
tinues until node u is bi-directionally connected with x1. As a result node u is
bi-directionally connected with node v in G0 = (V, E0). Therefore G0 = (V, E0)
is strongly and bi-directionally connected.

5 Performance Simulation

In this section, we evaluate the performance of the MINS algorithm through
simulations. Assume n nodes are uniformly distributed in a ll square area, two-
ray ground propagation model is used for the wireless channel. The transmission
ranges are uniformly distributed in [200m, 250m] (the corresponding maximum
transmission power is in the range of 0.1154w and 0.2818w), the receiving thresh-
old is 3.652E-10w.

We use the following metrics to evaluate the performance of the topology
control algorithm.

(1) Average Out Degree: A smaller average out degree usually implies less
contention/interference and better spatial reuse.

(2) Communication Overhead: Less communication overhead implies better
scalability and less bandwidth consumption. We use the percentage of the nodes
that make global broadcast during the execution of topology control algorithms
to quantify the communication overhead.

(3) Average Transmission Power: Lower transmission power implies higher
energy efficiency and better network spatial reuse.
In the first simulation, we fix the distribution area l=1000m and vary the num-
ber of nodes from 50 to 300 (node density increases). We compare the average
out degree, communication overhead and average transmission power for the
topologies generated using maximum transmission power, MPVT, DRNG and
MINS algorithm. In Fig. 3(a) the topology under MINS has less average out
degree than those under maximum transmission power, MPVT and DRNG. Fig.
3(b) shows communication overhead of different algorithms, in MINS algorithm
only a few nodes globally broadcast the TPC messages, and the percentage of
nodes decreases rapidly with the increase of node density, while in MPVT and
DRNG, plenty of nodes need global broadcast to construct the egress neighbor
topology. The average transmission power under different algorithms is shown

Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks 321

50 100 150 200 250 300
0

5

10

15

20

25

30

35

40

45

50

Nodes

A
ve

ra
ge

 O
ut

 D
eg

re
e

None
MPVT
DRNG
MINS

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Nodes

C
om

m
un

ic
at

io
n

O
ve

rh
ea

d

MPVT
DRNG
MINS

50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

Nodes

A
ve

ra
ge

 T
ra

ns
m

is
si

on
 P

ow
er

 (
W

)

None
MPVT
DRNG
MINS

Fig. 3. Performance under fixed network size

50 100 150 200 250 300
2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

Nodes

A
ve

ra
ge

 O
ut

 D
eg

re
e

density=5e-5
density=1e-4
density=2e-4

50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Nodes

C
om

m
un

ic
at

on
 O

ve
rh

ea
d

density=5e-5
density=1e-4
density=2e-4

50 100 150 200 250 300

10
-3

10
-2

10
-1

Nodes

A
ve

ra
ge

 T
ra

ns
m

is
si

on
 P

ow
er

density=5e-5
density=1e-4
density=2e-4

Fig. 4. Performance under fixed node density

in Fig. 3(c), the MINS algorithm outperforms others, which implies it provides
higher energy efficiency and better spatial reuse.

To observe the influence of network size on the performance of the MINS
algorithm, we fix the node density and vary the number of nodes in the net-
work from 50 to 300 (the network size increases accordingly), the average node
degrees, communication overhead and average transmission power for the topolo-
gies generated using the MINS algorithm when density=2e-4 , 1e-4 and 5e-5 are
shown in Fig. 4 (a) (b) (c). Under a fixed node density, the average out degree,
communication overhead and average transmission power are almost invariable
despite of the network size, which implies MINS algorithm is scalable to large
wireless ad hoc networks without performance degradation.

6 Conclusion

In this paper, we propose a distributed topology control algorithm for heteroge-
neous ad hoc networks with non-uniform transmission ranges. Each node con-
structs a minimum-power ingress neighbor sub-network based on the locally
collected topology information to save energy and preserve the network connec-
tivity, the transmission power adjustment process is optimized to reduce the
communication overhead. Performance simulation shows the effectiveness of our
proposed algorithm.

322 L. Zhang and X. Wang

References

1. Ramanathan, R., Rosales-Hain, R.: Topology control of multihop wireless networks
using transmit power adjustment. In: Proc. IEEE INFOCOM 2000, Tel Aviv, Israel,
March 2000, pp. 404–413 (2000)

2. Li, L., Halpern, J.Y., Bahl, P., Wang, Y.-M., Wattenhofer, R.: Analysis of a cone-
based distributed topology control algorithm for wireless multi-hop networks. In:
Proc. ACM Symposium on Principles of Distributed Computing, Newport, Rhode
Island, United States, August 2001, pp. 264–273 (2001)

3. Li, N., Hou, J.C.: Topology Control in Heterogeneous Wireless Networks: Problems
and Solutions. In: Proc. IEEE INFOCOM 2004, Hong Kong, China (March 2004)

4. Liu, J., Li, B.: Distributed Topology Control in Wireless Sensor Networks with
Asymmetric Links. In: Proc. GLOBECOM 2003, San Francisco, USA (December
2003)

5. Li, N., Hou, J.C., Sha, L.: Design and analysis of an MSTbased topology control
algorithm. In: Proc. IEEE INFOCOM 2003, San Francisco, CA, USA (April 2003)

6. Rodoplu, V., Meng, T.H.: Minimum energy mobile wirelessnetworks. IEEE Journal
on Selected Areas in Communications 17(8), 1333–1344 (1999)

7. Tseng, Y.-C., Chang, Y.-N., Tzeng, B.-H.: Energy-efficient topology control for
wireless ad hoc sensor networks. In: Proc. Int. Conf. Parallel and Distributed Sys-
tems, ICPADS 2002 (2002)

8. Calinescu, A., Mandoui, I., Zelikovsky, A.: Symmetric connectivity with minimum
power consumption inradio networks. In: Proc. of IFIP TCS (2002)

9. Hu, L.: Topology control for multihop packet radio networks. IEEE Trans. on
Communications 41(10) (October 1993)

10. Blough, D.M., Leoncini, M., Resta, G., Santi, P.: The k-Neighbors Approach to
Symmetric Topology Control in Ad Hoc Networks. IEEE J. on Selected Areas in
Communications (submitted)

11. Narayanaswamy, S., Kawadia, V., Sreenivas, R.S., Kumar, P.R.: Power control
in ad-hoc networks: Theory, architecture, algorithm and implementation of the
compow protocol. In: Proc. of European Wireless 2002, Next Generation Wire-
less Networks: Technologies, Protocols, Services and Applications, Florence, Italy,
February 2002, pp. 156–162 (2002)

12. Wattenhofer, R., Bahl, P., Li, L., Wang, Y.M.: Distributed Topology Control for
Power Efficient Operation in Multihop Wireless Ad Hoc Networks. In: Proceedings
of INFOCOM (April 2001)

13. Manber, U.: Introduction to Algorithms. Addison-Wesly, London (1989)

Computational Performance of a Parallelized
Three-Dimensional High-Order Spectral

Element Toolbox

Christoph Bosshard1, Roland Bouffanais2, Christian Clémençon3,
Michel O. Deville1, Nicolas Fiétier1, Ralf Gruber1, Sohrab Kehtari4,

Vincent Keller1, and Jonas Latt1

1 Laboratory of Computational Engineering,
École Polytechnique Fédérale de Lausanne,

STI – ISE – LIN, Station 9,
CH–1015 Lausanne, Switzerland

2 Massachusetts Institute of Technology,
77 Massachusetts Avenue, Room 5-326,

Cambridge MA 02139, USA
3 DIT,

École Polytechnique Fédérale de Lausanne,
CH–1015 Lausanne, Switzerland

4 Swiss Federal Institute of Technology Zurich,
HG J 47, Rämistrasse 101,
8092 Zurich, Switzerland

Abstract. In this paper, a comprehensive performance review of an
MPI-based high-order three-dimensional spectral element method C++

toolbox is presented. The focus is put on the performance evaluation of
several aspects with a particular emphasis on the parallel efficiency. The
performance evaluation is analyzed with help of a time prediction model
based on a parameterization of the application and the hardware re-
sources. A tailor-made CFD computation benchmark case is introduced
and used to carry out this review, stressing the particular interest for
clusters with up to 8192 cores. Some problems in the parallel implemen-
tation have been detected and corrected. The theoretical complexities
with respect to the number of elements, to the polynomial degree, and
to communication needs are correctly reproduced. It is concluded that
this type of code has a nearly perfect speed up on machines with thou-
sands of cores, and is ready to make the step to next-generation petaflop
machines.

1 Introduction

The Spectral unstructured Elements Object-Oriented System (SpecuLOOS) is
a toolbox written in C++ [1]. SpecuLOOS is a spectral and mortar element analy-
sis toolbox for the numerical solution of partial differential equations and more
particularly for solving incompressible unsteady fluid flow problems [2]. The main

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 323–329, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

324 C. Bosshard et al.

architecture choices and the parallel implementation were elaborated and imple-
mented by Van Kemenade and Dubois-Pèlerin [3]. Subsequently, SpecuLOOS’
C++ code has been further developed, see [4].

It is well known that spectral element methods [5] are easily amenable to
parallelization, as the domain decomposition into spectral elements can be made
to correspond in a natural way to an attribution to parallel nodes [6].

The numerous references previously given and the ongoing simulations based
on SpecuLOOS highlight the achieved versatility and flexibility of this C++ tool-
box. Nevertheless, ten years have passed between the first version of SpecuLOOS’
code and the present time and tremendous changes have occurred at both hard-
ware and software levels. Fast dual DDR memory, RISC architectures, 64-bit
memory addressing, compilers improvement, libraries optimization, libraries par-
allelization, and increase in inter-connecting switch performance are all among
the SpecuLOOS improvements.

Here we discuss adaptation of SpecuLOOS to thousands of multi-core nodes.
Performance measurements on a one-core node, on a cluster with hundreds of
nodes, and on a 4096 dual-core BlueGene/L are presented. The obtained com-
plexities are compared with theoretical predictions. First results show that small
cases gave good complexities, but huge cases gave poor efficiencies. These results
led to the detection of a poor parallel implementation. Once corrected, the com-
plexity of SpecuLOOS corresponds to the theoretical one up to the 8192 cores
used.

Test case description

The test case belongs to the field of CFD and consists in solving the 3D Navier–
Stokes equations for a viscous Newtonian incompressible fluid. Based on the
problem at hand, it is always physically rewarding to non-dimensionalize the
governing Navier–Stokes equations which take the following general form

∂u
∂t

+ u · ∇u = −∇p +
1

Re
Δu + f, ∀(x, t) ∈ Ω × I, (1)

∇ · u = 0, ∀(x, t) ∈ Ω × I, (2)

where u is the velocity field, p the reduced pressure (normalized by the constant
fluid density), f the body force per unit mass and Re the Reynolds number

Re =
UL

ν
, (3)

expressed in terms of the characteristic length L, the characteristic velocity U ,
and the constant kinematic viscosity ν. The system evolution is studied in the
time interval I = [t0, T]. Considering particular flows, the governing Navier–
Stokes equations (1)–(2) are supplemented with appropriate boundary conditions
for the fluid velocity u and/or for the local stress at the boundary. For time-
dependent problems, a given divergence-free velocity field is required as initial
condition in the internal fluid domain.

Computational Performance 325

The test case corresponds to the fully three-dimensional simulation of the flow
enclosed in a lid-driven cubical cavity at the Reynolds number of 12 000 placing
us in the locally-turbulent regime. It corresponds to the case denoted under-
resolved DNS (UDNS) in Bouffanais e.a. [7]. The reader is referred to Bouffanais
e.a. [7] for full details on the numerical method and on the parameters used.

The complexity is proportional to the total number of elements E in the three
dimensional space. Each element is transformed to a cube. Since the Gauss–
Lobatto–Legendre basis functions of degrees N = Nx = Ny = Nz

hj(r) = − 1
N(N + 1)

1
LN (ξj)

(1 − r2)L′
N (r)

(r − ξj)
, −1 ≤ r ≤ +1, 0 ≤ j ≤ N,

(4)
are orthonormal, the complexity for the pressure is (N − 1)3, while the com-
plexity for the velocity is (N + 1)3. During the computations, the variables are
frequently re-interpolated between the collocation, and operation which has a
leading complexity of N4, due to the tensorization of the implied linear opera-
tions. At large values of N , these re-interpolations therefore dominate the total
computation time. It should be remarked that from a complexity standpoint, a
term like (N − 1)3 is equivalent to a term like (N +1)3. In the following, a term
N −1 has been applied systematically to read the complexity from experimental
performance curves, while the notation of the equations is simplified by use of
the term N .

The CPU time T of the SpecuLOOS spectral code can then be estimated to

T (N1, NCG, E, N) = a1N1NCGENa3 , (5)

where NCG is the number of conjugate gradient steps, N1 is the number of time
steps, a1 is found through simulation, and 3 < a3 < 4.

2 Complexity on One Node

First, we run SpecuLOOS on one node without any communication using the
Couzy preconditioner [8]. One time iteration step of SpecuLOOS is divided into
three main parts: (1) computes the tentative velocity (through a Helmholtz
equation solved by preconditioned conjugate gradient method), (2) computes
the pressure (through a sophisticated conjugate gradient), and (3) corrects the
tentative velocity. The relative importance of each of these three components
depends on the parameters in a given simulation. With a fine discretization of
the time axis, the second part becomes dominant, and takes as much as 90 % of
the total CPU time in the example described below.

Table 1 presents the results of SpecuLOOS on one node of an Intel Xeon
cluster. The CPU time measurements, TCG,(1 iter), for one time step and one
CG iteration step (N1 = NCG = 1) are used to minimize

∑
(T − TCG,(1 iter))2,

where
T (1, 1, E, N) = a1E

a2Na3 , (6)

326 C. Bosshard et al.

Table 1. SpecuLOOS on one node of an Intel Xeon cluster. The number of conjugate
gradient iterations NCG is an average value over all time steps for the pressure.

Texec NCG TCG
TCG
Texec

TCG,(1 iter)

N1 E N [s] # iter [s] [s]
1 256 8 40.1 198 32.8 0.818 0.17
1 256 10 119.3 247 103.8 0.870 0.42
1 512 6 43.2 205 33.9 0.785 0.17
1 512 8 116.4 268 106.7 0.917 0.40
1 512 10 394.3 344 342.3 0.868 1.00
1 1024 6 105.2 259 83.4 0.793 0.32
1 1024 8 311.0 339 265.4 0.853 0.78

This minimization procedure gives the scaling law.

T (1, 1, E, N) = 2.01 · 10−6E0.97 · N3.3 . (7)

One realises that this complexity law corresponds well to the theoretical one,
(Eq. 5).

Generally, the number of iteration steps is not known. If in the optimization
procedure one includes NCG in the parameters E and N ,

T (N1, ·, E, N) = 1.15 · 10−5 · N1 · E1.30 · N4.19 . (8)

As a consequence, the estimated number of NCG,est is

NCG,est = 5.72 · E0.33 · N0.89 . (9)

This prediction is also close to the expected theoretical complexity NCG,theo:

NCG,theo ≈ E
1
3 · N . (10)

The same type of studies have been made for a diagonal precoditioner varying the
polynomial degree. The complexity found is NCG,est ≈ N1.47. Thus, for N ≥ 12
the diagonal preconditioner is faster, while for N < 12 the Couzy preconditioner
is faster. Since we treat cases with N = 12 or smaller, we concentrate on the
Couzy preconditioner.

3 Wrong Complexity on the BlueGene/L

The SpecuLOOS code has been ported to the IBM BlueGene/L machine at
EPFL with 4096 dual core nodes. Since interelement communication is not that
important, all the cores can be used for computation. Table 2 presents the re-
sults obtained with the original version of the SpecuLOOS code, before impor-
tant adaptations described below where performed. One element is running in a
core. The polynomial degree is fixed to N=12 for the velocity components, and

Computational Performance 327

Table 2. SpecuLOOS on the BlueGene/L machine up to P = 8192 cores. The number
of elements per core have been fixed to one. The polynomial degree for the pressure is
equal to N − 2 = 10.

N1 E = ExEyEz N P # elem
node

Texec

1 8x8x16 12 1024 1 17.22
1 8x16x16 12 2048 1 29.91
1 16x16x16 12 4096 1 57.05
1 16x16x32 12 8192 1 140.50

to N − 2=10 for the pressure. The resulting complexity given by the pressure
computation is illustrated on Table 2, and is identified as

T ≈ E2. (11)

This result shows that the complexity of the original parallel code is far away
from the E1.3 law, which is expected for theoretical reasons and verified numeri-
cally in a serial program execution, eq. 8. The reasons for this bad result could be
identified as follows. An IF instruction over all elements had been introduced in
the code, in order to identify the attribution of elements to computational nodes
dynamically, at each iteration of the conjugate gradient method. Such an in-
struction is typical for rapid corrections in a code, which are made to parallelize
a program rapidly without realising its impact on future program executions.
This did not affect the CPU time for less than P = 100 nodes, but became
dominant for P > 1000. This IF instruction has now been replaced by the use
of a precomputed list, pointing to the elements which are active on a core.

4 Fine Results on the BlueGene/L

The corrected SpecuLOOS code has been rerun again on the BlueGene/L ma-
chine. The effect of the communication has been studied, and results are pre-
sented in Fig. 1. The ideal speedup is presented in the upper straight line. The
measurements for the case of one element per core are presented through the cir-
cular markers. Inter-element communication takes a very small amount of time
in the case of 1024 elements, and about 12% of the total time for 8192 cores. If
the number of elements per core is increased, the communication/computation
decreases, and the computation is closer to ideal scalability.

The measurements in Table 3 show that the symmetric cases with E=16x16x16
take less iteration steps than non-symmetric cases. The complexity laws T ≈ Ea

for the unsymmetric cases give exponents of a2=(1.35, 1.28, 1.36, 1.34) for P =
(1024, 2048, 4096, 8192). These exponents correspond very well to the expected
one, i.e. to a2=1.3, eqs. 6 and 8. This tells us that the present version of the
SpecuLOOS code is well scalable on the BlueGene/L up to 8192, and will for
bigger cases, scale to petaflop machines.

328 C. Bosshard et al.

1

2

4

8

2048 4096 8192
�

�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

S

P

Ideal Speedup
�

�
���

Fig. 1. Speedup S on BlueGene/L as a function of P for the case E=16x16x32, Table 3.
The 12% loss in speedup for P=8192 is due to communication between the cores.

Table 3. SpecuLOOS on the BlueGene/L machine up to P = 8192 cores. The polyno-
mial degree for the pressure is equal to N − 2 = 10. The number of elements per core
vary from 1 to 8. The number of iteration steps is an average value, with a clear drop
for Ex = Ey = Ez.

P E = ExEyEz
E3

P
Nit T [sec]

1024 8x8x16 1 689 29.9
1024 8x16x16 2 966 82.8
1024 16x16x16 4 912 155.3
1024 16x16x32 8 1463 494.2
2048 8x16x16 1 950 42.1
2048 16x16x16 2 912 79.1
2048 16x16x32 4 1461 249.9
4096 16x16x16 1 912 41.9
4096 16x16x32 2 1463 128.4
4096 16x32x32 4 1925 331.2
8192 16x16x32 1 1463 70.7
8192 16x32x32 2 1958 179.1

Computational Performance 329

5 Conclusions

The performance review presented in this paper for the high-order spectral and
mortar element method C++ toolbox, Speculoos, has shown that good perfor-
mances can be achieved with relatively common internode network communi-
cation systems, available software and hardware resources—small commodity
clusters with non-proprietary compilers installed on it.

The parallel implementation of Speculoos based on MPI has shown to be
efficient. Reasonable scalability and efficiency can be achieved on commodity
clusters. The results support the original choices made in Speculoos parallel
implementation by keeping it at a very low-level.

One of the goal of this study was to estimate if Speculoos could run on a
massively parallel computer architecture comprising thousands of computational
units, specifically on the IBM Blue Gene machine at EPFL with 4’096 dual core
units. After detection and correction of a poor implementation choice in the
parallel version, perfect scalabilities on up to 8192 cores have been detected.

The present version of the SpecuLOOS code is well scalable on the Blue-
Gene/L up to 8192, and will for bigger cases, even scale to petaflop machines.

Acknowledgments

This research is being partially funded by a Swiss National Science Foundation
Grant (No. 200020–101707) and by the Swiss National Supercomputing Center
CSCS, whose supports are gratefully acknowledged.

References

1. The OpenSPECULOOS project,
http://sourceforge.net/projects/openspeculoos/

2. Van Kemenade, V.: Incompressible fluid flow simulation by the spectral element
method, Tech. rep., “Annexe technique projet FN 21-40’512.94”, IMHEF–DGM,
Swiss Federal Institute of Technology, Lausanne (1996)

3. Dubois-Pèlerin, Y., Van Kemenade, V., Deville, M.: An object-oriented toolbox for
spectral element analysis. J. Sci. Comput. 14, 1–29 (1999)

4. Bouffanais, R.: Simulation of shear-driven flows: Transition with a free surface and
confined turbulence, EPFL, Thèse no. 3837 (2007)

5. Deville, M.O., Fischer, P.F., Mund, E.H.: High-order methods for incompressible
fluid flow. Cambridge University Press, Cambridge (2002)

6. Fischer, P.F., Patera, A.T.: Parallel spectral element solution of the Stokes problem.
J. Comput. Phys. 92, 380–421 (1991)

7. Bouffanais, R., Deville, M.O., Leriche, E.: Large-eddy simulation of the flow in a
lid-driven cubical cavity. Phys. Fluids 19, Art. 055108 (2007)

8. Couzy, W., Deville, M.O.: Spectral-element preconditioners for the Uzawa pressure
operator applied to incompressible flows. J. Sci. Comput. 9, 107–112 (1994)

http://sourceforge.net/projects/openspeculoos/

Research on Evaluation of Parallelization
on an Embedded Multicore Platform

Tao Liu, Zhenzhou Ji, Qing Wang, Dali Xiao, and Shuyan Zhang

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin, Heilongjiang, 150001, China
{liutao07,jizhenzhou}@hit.edu.cn

Abstract. In order to solve the problem of serious performance bottle-
neck in traditional embedded platform, the parallelization of evaluation
algorithms based on an embedded multicore platform is implemented.
By analyzing the process of the parallel algorithms on the embedded
chip multicore platform, and effectively using the limited memory and
cache resource, the evaluation algorithms are implemented in an embed-
ded multicore processor FPGA full function simulation platform. After
comparing the parallelization effects of the two multithread models, a
conclusion can be made that the shared memory model of parallel mul-
tithread fits the embedded multicore platform well. The parallel model
generates substantial overall performance increase. An average relative
speedup of 3.28 is achieved and meets the low memory resource in em-
bedded architecture. And with the increase in core number the paral-
lelization based on OpenMP model has shown good scalability.

Keywords: embedded, multicore processor, parallelization, FPGA.

1 Introduction

With the increasing performance requirements of digital signal processing appli-
cations, the design of embedded processor is changing from the single-core to the
chip multicore architecture[1]. A multicore system will face the performance bot-
tleneck of traditional single-core algorithms and a good relative speedup cann’t
be got by simply using the multicore platform directly. It’s required to take
reasonable multithread scheduling means of implementation on an embedded
multicore platform[2,10]. However, embedded systems have their own unfavor-
able factors in less storage resource and cache with simple architecture, it has
important theoretical and applicational significance in how to make algorithm
research and parallelization evaluation on the characteristics of embedded mul-
ticore platform. By analyzing the algorithms base on the embedded SMP mul-
ticore platforms and reasonably allocating the limited storage resource for the
efficient realization of multithread mode, making evaluation of parallelization
for the common parallel algorithms in embedded computing area, we research
on the suitable parallelization model for embedded parallel platform in order to
significantly improve the algorithm performance.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 330–340, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Research on Evaluation of Parallelization on an EMP 331

The main contents of this paper is based on the embedded multicore ar-
chitecture platform to complete the evaluation tasks, including Cannon matrix
multiplication algorithm, Fast Fourier Transform(FFT), discrete wavelet trans-
form(DWT), image processing algorithm of SUSAN and 2-D non-steady-state
heat conduction equation (HCE), then evaluate the performance in two paral-
lelization model as OpenMP[3] and Pthread, the execution time of the evaluation
can be obtained through the embedded system timer and by analyzing the par-
allelization efficiency of the embedded multicore platform we make research on
the parallelization design under limited storage resource condition.

2 The Embedded Multicore Processor Platform

Therefore, an embedded platform with four 32-bit RISC cores working in seven-
stage pipeline and with 64bit FPU has been simulated by FPGA. The structure
of LEON3 processor core[4] is shown in Figure 1.

The platform is setup with XILINX XC4VLX160 chip FPGA, the FPGA
main chip has 67,584 slice or 152064 logical units, the equivalent scale of 10
million gates can be designed. In order to make an on-chip quad-core simula-
tion design, the structure code of the IP core has been written into the PROM
with the detailed parameters shown in table 1. With built-in cache snooping for
data coherency the processor provides hardware support for cache coherency,
processor enumeration and interrupts steering. An AMBA round-robin arbiter
provides fair bus utilization for the cores, and the layout and interconnection
of the functional components are implemented in SMP configuration[5]. Due to
the power limit of embedded platform, L2 cache isn’t taken into account in this
simulation. In order to evaluate the parallelization a linux host with GRMON
debug tool is connected to the evaluation platform. Here the onchip enabled core
number can be changed from 1 to 4 by debug commands, then load the parallel
algorithms to evaluate the performce of parallelization models. OpenMP on the
embedded platform is quite different from desktop applications, which compiled
with the limited storage resource to optimize the integration[6]. In order to build
OpenMP compiler for embedded cross-compiler environment[7,8], and there are
two keys to setup the embedded OpenMP cross-compiling environment:

Firstly the compiler should support the precompilation of the OpenMP source
code, secondly there should be standard POSIX[9] thread library supporting the
compiler to deal with the compiled multithread programs[10]. Then the schedule
of multithread needs to configure the embedded operating system to establish
real-time operating system for high-performance embedded applications with the
support for multi-task priority mechanisms, and all the necessary synchroniza-
tion primitives for the embedded platform, additionally with multi-level queue
scheduler for multithread approach. In order to meet the demands of performance
monitoring and extensional functions of embedded applications, the components
of embedded configurable operating system (eCos) kernel functions are enabled
with the cross-compiling procedure[11]. The Embedded multicore platform need
to modify the initialization method of precompiling as cyg start(), the main func-
tion takes into charge after the initialization and the implementation of parallel

332 T. Liu et al.

Fig. 1. The core architecture

Table 1. The Simulation Parameters

Simulation Items Value Description
FPGA chip VIRTEX4 XC4VLX160

configuration PROM 6 × 18V 04 − V Q44
SRAM 4Mbyte (4 × 512 × 16bit)
FLASH 64Mbyte

processing Cores 1 – 4 (Configurable)

L1 Instruction Cache
8Kbyte per core,
direct mapped,
32byte per line

L1 Data Cache
8Kbyte per core,
2-way associated,

32byte line
core feather SMP mode

instruction set SPARC V8

programs start. Additionally the script of the linker named target.ld should be
reconfigured and be enabled to setup the interrupts and the vectors[12] when
the eCos kernel starts the initial execution.

3 The Implementation of Evaluation Algorithms for
Embedded Multicore Platform

3.1 The Parallelization of Cannon Algorithm on Embedded
Platform

The Cannon algorithm has good scalability with the increase in processor num-
ber. In our tests, the number of processor cores is four, the detail algorithm is
like the following:

Research on Evaluation of Parallelization on an EMP 333

1. Generate N×N integer matrix A and B randomly and define two 2D integer
arrays in size N × N with name A and B and four matrix C11, C12, C21,
C22 in size N/2 × N/2 to store the result.

2. Divide A into four equal size blocks and do the same to B, so there are eight
blocks. If we go on defining eight 2D-arrays in size N/2 × N/2 requires too
much memory here, additionally there would be too much critical resource
that may cause some trouble to the synchronization among the threads. Ac-
tually during the execution the processor cores all get their data by accessing
the public data bus in turn, so the execution is parallel but the data fetching
is still serial. Here we define two 2D-arrays in size N/2×N/2 named tmp A
and tmp B as template buffer to deal with blocks from A and B. Define a
global variable named t as a state sign for tmp A and tmp B, the value of t
shows which thread is fit for the content in tmp A and tmp B. For example,
when there are A11 in tmp A and B11 in tmp B, t will be 1 to show that
thread 1 needs the data.

3. Assign the eight blocks to four processor cores, then OpenMP code would
generate four threads automatically and each thread runs on an individual
processor core. When assigning the blocks to each thread, the threads should
wait for the t value until the required blocks have been written into tmp A
and tmp B, then the threads can get data from blocks and begin to do
multiply and add operations. After the result has got ready the threads
would halt.

3.2 The Parallelization of FFT Algorithm on Embedded Platform

Transform N -length FFT into two N/2 -length FFTs and then induce an iterative
procedure, this method accelerated FFT greatly. Next each odd and even sequence
Fourier Transform can be divided into a combo of two subsequence and go on re-
peating these operations. The time complexity of FFT would be decreased from
N2 to N · log N . The FFT process is composed by two steps: the bit-reverse step
and the butterfly computing step, The OpenMP can complete each step in parallel
to shrink the execution time and increase the acceleration ratio.

1. Bit-reverse: The following codes are the step of bit-reverse. There’s no data or
control dependencies, so directives can be added to make parallel execution.

2. Butterfly computing: There would be log N times computing operations in
the process of butterfly computing, if the number of processor cores is M,
then cut the dataset N into M parts, each core takes charge of one part,
when all parts are calculated out they would be merged together to finish
the computing, the serial merging step would be log M in time complexity.
This method can greatly shrink the running time of FFT.

3.3 The Parallelization of DWT Algorithm on Embedded Platform

Set p as the number of processing cores, then allocate Ck
n(n = 0, 1, ..., N/2j − 1)

as the input data to these processing cores, the core i would get data: Ck
n(n =

i N
p2j , ..., (i + 1) N

p2j − 1).

334 T. Liu et al.

First of all randomly generated the L length low-pass coefficient H and the
high-pass coefficient G, N length of the input sequence for C, apply two L-
size integer arrays H and G, and a N -size array C, call srand() function to
generate random contents for G, H and C. The DWT task will be divided into
four parts; the four parts of the task are assigned to the four processor cores.
Algorithm begins from the main thread and initialize the timer, in the main
thread call fork() to create four subthreads, every subthreads have the same
priority, according to the kernel of the multi-level queue scheduling mechanism,
each subthread will be assigned to a different processor core. After the first
calculation round the cores make synchronization and exchange data to update
the array C. When the round counter reaches log(n), the DWT results would be
in array C.

3.4 The Parallelization of SUSAN Algorithm by Blocks

From the image point of view, the method makes a big image divided into a few
parts of the same size and then allocates each part to an individual processing
thread, lastly combine each of the small images into one large image[13]. The
key procedure of the algorithm is like the following:

1. The number of sub-images with equally partitioning. The actual number
of image sub-blocks is associated with the number of system threads, and
according to the characteristics of the SUSAN algorithm the complexity of
the calculation depends on the image resolution, and has nothing to do with
the gray value of the image pixels, so the image is divided into blocks in
same size to ensure inter-thread load balancing. The image segmentation
processing is a common problem. In some image formats it’s very difficult to
find sub-points. SUSAN algorithm processes pgm format images which have
the resolution data in file header, so segmentation can be done according to
the resolution data.

2. Image sub-blocks processing. Each edge of the image pixels will take some
overlaps to ensure that the special points of the correct image extraction,
to prevent missing the edges of small parts in the overlap area. If the block
does not overlap the small image, then it usually causes loss of two-phase
image pixels department information. In the algorithm parallelization the
overlapping area uses the edges of 5-pixel length region, the overlap area is
processed twice during the segmentation procedure.

Commonly used methods of sub-images are shown in Figure 2, (a) for an average
of the image is divided into four parts horizontally, the shadow part of the edge
of the block is the part that need to be processed twice, set up w as the width of
the image, h as the height of the image , d for the distance over shadow part in
pixels, then in (a) the shadow part has pixels number of 3wd, in (b) the images
are divided into four parts, each part needs to be processed twice, then in (b)
the shadow part has pixels number of (w + h)d, in (c) the image are divided
into four parts vertically, then in (c) the shadow part has pixels number of 3hd.

Research on Evaluation of Parallelization on an EMP 335

(a) (b) (c)

Fig. 2. Image segmentation methods for SUSAN

Therefore, in accordance with the specific image pixel value, we can select the
optimal sub-block approach to allow double-handling of the smallest number of
pixels. In this paper, Figure (a) is the selected method.

3.5 The Parallelization of 2-D Non-steady-state HCE

Given two-dimensional non-steady-state heat conduction equation:

Pc × dT/dt = d(K × dT/dx)/dx + d(K × dT/dy)/dy + S (1)

T, K, p, c, S are x, y, t function, p: dielectric coefficient, c: specific heat, K:
thermal conductivity medium, S: The heat generated per unit volume rate (with
heat), T to be a function of demand, and its significance is the temperature of
a point in a plane at a certain time.

Here using the first boundary condition: T = b(x, y, t). To solve the differen-
tial equation, use two-dimensional Crank-Nicolson difference scheme [14], make
Integral on both sides of the equation was:

∫ N

S

∫ E

W

∫ t+Δt

pc
∂T

∂t
dtdxdy =

∫ t+Δt ∫ N

S

∫ E

W

∂

∂x
(K

∂T

∂x
)dxdydt + (2)

∫ t+Δt ∫ E

W

∫ N

S

∂

∂y
(K

∂T

∂y
)dydxdt +

∫ t+Δt ∫ N

S

∫ E

W

Sdxdydt

Assuming that the region is divided into n × n blocks, that is, the total grid
has (n + 1) × (n + 1) nodes, except the nodes around the boundary, and the
remaining (n−1)× (n−1) nodes are waiting to be processed. Then a large-scale
sparse matrix equation is got:

AX = b (3)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

g1 h1
f2 g2 h2

f3 g3 h3
. . .

. . .
. . .

fn−2 gn−2 hn−2
fn−1 gn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1
x2

.

.

.
xn−2

xn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2

.

.

.
bn−2

bn−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

336 T. Liu et al.

Here, gi(i = 1, 2, ..., n − 1) is a (n − 1) × (n − 1) size triple diagonal matrix,
fi(i = 1, 2, ..., n− 1) and hi(i = 1, 2, ..., n− 1) are (n− 1)× (n− 1) size diagonal
matrices. Xi and bi(i = 1, 2, ..., n − 1) for n-1 column vector. The HCE is
transformed into linear equations. The actual matrix in the implementation is
sparse matrix (3) and the parallelization can be put here to solve it.

4 Embedded Multicore Parallel Model Evaluation

4.1 Evaluation Algorithm Parameters

The OpenMP multithread programming model and the Linux system Pthread
model are used to make evaluation to the effectiveness and performance of the
parallelization in all five parallel algorithms on an embedded multicore platform.
The evaluation is performed in the way that each algorithm is executed with a
small and a large input sets to assess the efficiency:

1. Cannon matrix multiplication with the matrices of 100 dimensions and 400
dimensions,

2. FFT computation with operating parameters 211 and 215,
3. Parallel algorithm for DWT Input N = 512 and 2048 with the parameters

L = 500,
4. Image size for SUSAN algorithm to process 8.9Kbyte and 61.2Kbyte,
5. The numbers of HCE equations respectively are 50 and 140.

In the embedded quad-core platform the evaluation generates OpenMP model
and Pthread model parallelized task running time and the corresponding single-
core serial computing time. Calculate the relative speedup according to the Am-
dahl’s law[15] and use eCos system timer to provide execution times. Firstly
define the system clock cyg tick count t handle and then the exact time is got
by calling cyg currunt time() function. The time unit is 10ms.

4.2 Test Data Analysis

The five parallelized tasks for embedded multicore platform run in accordance
with the small and large-scale input sets, every task executes with 10 groups
of input data. The total run time and relative speedup between single-core and
quad-core computing for each task are shown in table 2. The overall behavior
from the evalutaion tasks can be found: With the size of the input data increased,
both OpenMP and Pthread model have a higher speedup ratio, which shows the
performance improvement is well worth the overhead from initialization and
synchronization. The specific performance of each algorithm, such as Cannon
algorithm demonstrates the highest performance relative speedup of more than
3.80 because of the little impact from data correlation. But by the algorithm
structure and some data correlation, the speedup of SUSAN algorithm and HCE
equations task are relatively lower, however they have still shown significant
performance increase.

Research on Evaluation of Parallelization on an EMP 337

Table 2. The Execution Time of the Two Models

���������Algorithm
Model OpenMP Pthread

Single-Core 4 Cores Single-Core 4 Cores

Cannon
Small 5.861 1.548 5.833 1.566
Large 381.077 98.784 380.952 99.892

FFT
Small 6.936 2.393 6.902 2.426
Large 235.417 68.298 234.989 69.732

DWT
Small 2.161 0.668 2.100 0.654
Large 7.435 2.210 7.383 2.215

SUSAN
Small 4.362 1.621 4.304 1.598
Large 31.730 11.413 31.123 11.505

HCE Small 14.143 4.928 14.085 4.776
Large 52.997 17.878 52.913 17.896

A run time difference comparative analysis is shown in Figure 3 for the two
parallelization models. Y-axis is on behalf of the time difference between the
two models as OpenMP task run time minus Pthread task run time. A positive
value means the run time of OpenMP task is longer than that of Pthread task.
On the contrary, a negative value means OpenMP task run time is shorter than
that of Pthread task. X-axis for the five kinds of algorithms corresponding to the
different core numbers, such as the “Small input single (4)” is on behalf of with
the smaller input set running on single (or 4) core(s), “Large input single (4)”
is on behalf of with the larger input set running on single (or 4) core(s). As can
be seen in the single-core conditions, the Pthread model overhead is relatively
low; the corresponding algorithms run at a slightly faster speed, but only a very
small gap here. In the quad-core with large input set conditions OpenMP run
time are all shorter than Pthread model with all algorithms except HCE.

It can be seen that with the increase in the number of threads, OpenMP
model has a better effect. In particular, Cannon matrix multiplication and FFT
algorithms have more obvious changes in run time difference of the two models.
The OpenMP model changes from being slower than the Pthread model tasks
in single-core execution to taking over in the quad-core tasks. So it’s clear that
the OpenMP model in embedded multicore environment has significantly more
effective for calculating the greater data input set with few data correlation
tasks.

A speedup comparison between two multithread parallelization models with
large and small input sets on an embedded quad-core platform is shown in
Figure 4. The relative speedup is calculated according to the Amdahl’s law.
“OpenMP(Pthread) small” is on behalf of the OpenMP(Pthread) model task
speedup with small input set, “OpenMP(Pthread) large” is on behalf of the
OpenMP(Pthread) model task speedup with large input set.

After the comparison two parallel models of multithread both have obvious
effects on raising performance. In OpenMP model four out of all the five tasks
have shown better relative speedup with comparison to Pthread model and
can produce greater performance embedded computing. However, in the HCE

338 T. Liu et al.

Fig. 3. The Run time difference between two parallelization models

Fig. 4. The Relative Speedup of Two Parallelization Models on an Embedded Quad-
core Platform

parallelization because of the need to wait for the sync signal, Pthread model
shows better flexibility, but the design process is relatively complex. It can also
been seen that OpenMP model reduces the speedup gap and gets more speedup
in performance when the input set scale gets larger. Because OpenMP model has
simple features in tasks development, it can be expected on the high-performance
embedded platform in more parallel threads condition with better scalability. An
average relative speedup of 3.28 can be achieved by OpenMP model.

5 Conclusions and Future Work

By analyzing the realization of the parallel process based on embedded multicore
platform, configurations for embedded system scheduling and multi-threaded

Research on Evaluation of Parallelization on an EMP 339

runtime library are made in the limited memory resource and cache. The par-
allelization of five evaluation tasks are implemented on an embedded multicore
architecture FPGA fully functional simulation platform, including Cannon ma-
trix multiplication, FFT, discrete wavelet transform, image processing algorithm
of SUSAN and 2-D non-steady-state heat conduction equation. After comparing
the effect of OpenMP and Pthread multi-thread model, the OpenMP multithread
model is a little better for the current embedded multicore platform. An aver-
age relative speedup of 3.28 can be achieved in the evaluation of five OpenMP
parallelized embedded tasks. It’s a very attractive overall performance improve-
ment on embedded multicore platform, and can meet the low memory overhead
requirement. With the increasing trend of core number, OpenMP model is rela-
tively a more efficient way than Pthread in performance and has good scalability.
At the same time OpenMP model significantly reduces the difficulty of parallel
development. The parallelization of both OpenMP and Pthread based on em-
bedded multicore in the near future can have a significant performance increase
on the new embedded architecture platform.

The future work will be based on the embedded multicore architecture for
performance and energy efficiency for further evaluation and optimization, the
parallelization can be further improved by reducing the synchronization over-
head with different means of communication, in order to look forward to get-
ting better performance and efficiency in new embedded multicore or manycore
architectures.

Acknowledgments. This work is supported by the Science and Technology
Development Project fund of Shandong Province(No.2007GG10001020).

References

1. Burger, D., Goodman, J.R.: Billion-Transistor Architectures: There and Back
Again. Computer 37(3), 22–28 (2004)

2. Hwu, W.M., Ryoo, S., Ueng, S.Z., et al.: Implicitly Parallel Programming Models
for Thousand-Core Microprocessors. In: Proceeding of the 44th annual conference
on Design automation, San Diego, California, USA (2007)

3. Dagum, L., Menon, R.: OpenMP: An Industry-Standard API for Shared-Memory
Programming. Computational Science & Engineering 5(1), 46–55 (1998)

4. Gaisler, J., Catovic, E., Isomaki, M., et al.: GRLIB IP Core User’s Manual. Gaisler
Reserch (2009), http://www.gaisler.com

5. Leon3 Processor Datasheet of Gaisler Reserch,
http://www.gaisler.com/doc/leon3_product_sheet.pdf

6. Berrendorf, R., Nieken, G.: Performance characteristics for OpenMP constructs
on different parallel computer architectures. Concurrency-Practice and Experi-
ence 12(12), 1261–1273 (2000)

7. Cuvillo, J.D., Zhu, W., Gao, G.R.: Landing OpenMP on Cyclops-64: An Efficient
Mapping of OpenMP to a Many-Core System-on-a-Chip. In: Proceding of the 3rd
conference on computing frontiers, Ischia, Italy, pp. 41–50 (2006)

http://www.gaisler.com
http://www.gaisler.com/doc/leon3_product_sheet.pdf

340 T. Liu et al.

8. Bull, J.M.: Measuring synchronization and scheduling overheads in OpenMP. In:
Proceedings of the First European Workshop on OpenMP, Lund, Sweden, pp.
99–105 (1999)

9. IEEE Std 1003.1-2001. Standard for Information Technology - Portable Operating
System Interface (POSIX) Base Definitions. IEEE, New York (2001)

10. Cuvillo, J.D., Zhu, W.R., Hu, Z., et al.: FAST: A functionally accurate simulation
toolset for the Cyclops64 cellular architecture. In: Proceedings of the Workshop on
Modeling, Benchmarking and Simulation, Wisconsin, USA, pp. 11–20 (2005)

11. Massa, A.J.: Embedded Software Development with eCos. Prentice Hall, Indi-
anapolis (2002)

12. Bryant, R.E., O’Hallaron, D.: Computer System: A Programmer’s Perspective,
pp. 461–501. China Electric Power Press, Beijing (2007)

13. Jie, W., Zhang, S., Tao, L., et al.: Multi-core Embeded Processor Based on FPGA
and Parallelization of SUSAN Algorithm. Chinese Journal of Computers 31(11),
1995–2004 (2008)

14. Wenqia, W.: The alternating segment crank-nicolson method for solving
convection-diffusion equation with variable coefficient. Applied Mathematics and
Mechanics 24(1) (2003)

15. John, L.H., David, A.P.: Computer Architecture: A Quantitative Approach, 4th
edn. Elsevier, Singapore (2007)

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 341 – 355, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MapReduce-Based Pattern Finding Algorithm Applied in
Motif Detection for Prescription Compatibility Network

Yang Liu, Xiaohong Jiang*, Huajun Chen, Jun Ma, and Xiangyu Zhang

College of Computer Science, Zhejiang University,
Zheda Road. 38, Hangzhou, China, 310027

{darkwarrior,jiangxh,huajunsir,majun,xiangyu}@zju.edu.cn

Abstract. Network motifs are basic building blocks in complex networks. Motif
detection has recently attracted much attention as a topic to uncover structural
design principles of complex networks. Pattern finding is the most
computationally expensive step in the process of motif detection. In this paper,
we design a pattern finding algorithm based on Google MapReduce to improve
the efficiency. Performance evaluation shows our algorithm can facilitates the
detection of larger motifs in large size networks and has good scalability. We
apply it in the prescription network and find some commonly used prescription
network motifs that provide the possibility to further discover the law of
prescription compatibility.

Keywords: complex network, motif detection, pattern finding, MapReduce,
prescription compatibility.

1 Introduction

Network motifs are specific pattern of local interconnections with potential functional
properties and can be seen as the basic building blocks of complex network [1]. Pattern
finding in a complex network is the first and most important step to analyze motifs.
Some pattern finding methods are already used to analyze the network motifs in real
world such as biochemistry network, ecology network, neurobiology network, and
engineering network [1]. And these applications obtain many valuable research results.
However, in the pattern finding area, there are many NP-complete problems, such as
determining graph isomorphism and maximum independent set [2]. For this reason, the
pattern finding algorithms always have high time-space complexity. Moreover, when
the size of the pattern is big (usually bigger than 4), the number of the intermediate
becomes very large (above millions of items), which makes pattern finding time
consuming and memory exhausted.

Google’s MapReduce framework is known as the framework of Clouding
Computing. MapReduce built on top of the distributed Google File System provides a
parallelization framework that has garnered considerable acclaim for its ease-of-use,

* Corresponding Author.

342 Y. Liu et al.

scalability, and fault-tolerance [3]. Therefore, we try to use the Google’s Mapreduce
framework to speed up pattern finding and avoid running-out-of memory in a
PC-cluster environment. We design a MapReduce-based Pattern Finding algorithm
(MRPF) that provides good efficiency and scalability. We also apply it in prescription
network and successfully find some commonly used prescription structures that
propose the possibility to discover law of prescription compatibility.

In our MRPF algorithm, we reorganize the traditional pattern finding process into
four steps: distributed storage, neighbor vertices finding and pattern initialization,
pattern extension, and frequency computing. Each step is implemented by a
MapReduce pass. In each MapReduce pass, the task is divided into a number of
sub-tasks of the same size and each sub-task is distributed to a node of the cluster.
MRPF uses an extended mode to find the target size pattern. That is trying to add one
more vertex to the matches of i-size patterns to create patterns of size i+1. The
extension doesn’t stop until patterns reach the target size.

To test the computational efficiency of MRPF, we apply it to the prescription
compatibility structure detection. The knowledge discovery of prescription
compatibility is an important part of Traditional Chinese Medicine (TCM) research.
Prescription compatibility investigates the composite structure of herbal medicines.
One prescription contains five or six herbal medicines. However prescriptions are
commonly given based on experiences without theoretical instruction on prescription
structures. So we construct the prescription compatibility network and use our
algorithm to detect the prescription compatibility structure.

The rest of the paper is organized as follows. Section 2 introduces some related
works on pattern finding methods, applications of MapReduce and some data mining
method used in TCM. Section 3 describes our MRPF algorithm in detail. Section 4
gives the case study on prescription compatibility using our algorithm. Section 5
provides some concluding remarks and discussion for future work.

2 Relate Works

The main step in motif detection is pattern finding in the complex network. There are
two distinct problem formulations for pattern finding in graph datasets. One is the
graph-transaction setting that use a set of relatively small graphs as input data, the other
is the single-graph setting using a single large graph instead[4]. Pattern finding in
graph-transaction attracts more attention, so that a number of efficient algorithms
[5-10] have been developed. However, few investigations have been made in pattern
finding from the single-graph setting. Moreover, some algorithms, such as GBI [11]
and SUBDUE [12], will lose a large number of patterns, and at the same time not scale
well for large datasets due to computational complexity. In recent years, with the
application of pattern finding increasingly used in many fields, researchers start to pay
more attention in designing algorithms for single-graph setting. In 2005, Michihiro
Kuramoch and George Karrypis developed an algorithm to find patterns in a large

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 343

sparse graph [4]. Falk Schreiber and Henning Schwobbermeyer designed a FPF
multiple-thread algorithm [13] to improve the performance of Michihiro’s algorithm.
Jin Chen et al. designed a NeMoFinder algorithm that can mine meso-scale network
motifs in large protein-protein interaction networks [14]. In 2007, Chen Chen et al.
invented a gApprox algorithm that does consider approximate matching in its search
space [15]. However all these algorithms mentioned above ignored to consider the
limitation of the main memory of one computer. So for further improving the
performance of pattern finding and breaking through single computer resource
constraints, we design a parallel pattern finding algorithm based on MapReduce
Framework. It’s a complete algorithm without losing any target-size pattern in the
network.

MapReduce Framework, as a parallel model, is often used in data mining, such as
machine learning [16], svm [17]. These experiments demonstrate that MapReduce
Framework is effective for problems with high complexity and large dataset. It is also
proved that MapReduce can be adapted to manipulating graphs. Implementation of
pattern finding in the context of MapReduce Framework is able to address the issues of
insufficient memory, computational complexity and fault tolerance. Many of data
mining methods have been used in the Modernization of Traditional Chinese Medicine.
Text mining method is used for finding functional community of TCM Knowledge
[18]. Mining compatibility rules are used for TCM databases [19]. Clustering method is
applied to analyzing Chinese Text Categorization [20]. Prescription compatibility is
investigated in [21-23], but very little work has been done on motif detection in
prescription network, which is very important for law discovery of prescription
compatibility. We analyze the prescription compatibility using the complex network
and find some commonly used prescription structures.

3 MRPF: MapReduce-Based Pattern Finding

MapReduce-based pattern finding (MRPF) framework aims to implement frequent
pattern finding on complex graphs based on Hadoop. Although it also works well on
undirected graphs, here we still focus on introducing its application on directed graphs.
It’s more interesting and representative to apply this framework on directed graphs. For
clearly depicting MRPF, we show the serial pattern finding algorithm in Algorithm 1.

3.1 MRPF Framework

Here we define the size of a pattern by its vertices number. We use the generation of a
canonical label described in [24] to check graphs for isomorphism. After loading a
dataset of a network, MRPF uses one MapReduce pass to parse the dataset and form
three information tables. Another MapReduce pass is used to extend matches that are
subgraphs of the network from size i to i+1. The frequency of new patterns will be
calculated after all matches of patterns of size i+1 have been obtained. Fig. 1 depicts the
outline of MRPF.

344 Y. Liu et al.

Fig. 1. The MRPF framework

Algorithm 1. Normal Pattern Finding

Data: Dataset of Graph G, target pattern size s, minimum support (f_min)

Result: Set P of pattern of target size

begin

 P ← {all pattern of size 2};

 size ← 2; /* initial size */

 MATCHp2 ← all matches of p2;

 TPS ← Φ; /* TPS: target pattern size */

 while size < target size do

 foreach pattern p ∈ P do

 foreach match m ∈ MATCHp do

 foreach incident vertex v of m do

 m’ ← m ∪{v };

 p’ ← pattern of {m’};

 TPS ← TPS∪{p};

 MATCHp’ ← MATCHp’∪{ m’};

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 345

 end

 end

 end

 P ← Φ;

 foreach p ∈ TPS do

 frequency ← sizeof (MATCHp);

if frequency > f_min then P ← P∪{p};

end

size++;

end.

Step 1: Distributed storage. MRPF is based on Hadoop, a Google’s GFS
implementation, hosted as a project of the Apache Software Foundation [16]. In Step 1,
the target network is stored as textual files in a specific format. Using Hadoop, the file
can be easily divided into a set of blocks with the same size and distributed on nodes of
the cluster to keep load balance in the cluster. Hadoop can process the blocks
concurrently on nodes where the data is located.

Step 2: Neighbor vertices finding and pattern initialization. In this step we use a
MapReduce pass to do two tasks, one is to find adjacent neighbor of each vertex to form
an adjacent vertices table (Adj_Table), the other is to find patterns of size two (one edge
and two vertices) and their matches. Each mapper inputs one block of the dataset. The
results are respectively stored in Adj_Table, Match_Set and Pattern_List. Please note
that Adj_Table is distributed to every node in the cluster and it will be used in pattern
extension (Step 3). It is used to detect the patters on the borders of blocks and to
guarantee our algorithm to be complete (against losing patterns). Match_Set and
Pattern_List are updated by Step 3 and Step 4 respectively. We will introduce the
details in Section 3.2.

Step 3: Pattern extension. It is the key step of the MRPF. This step also takes one
MapReduce pass. The map stage working with reduce stage extends patterns of size i to
i+1. The details will be explained in Section3.3.

Mapper – extend the matches of size i to i+1, calculate their patterns and produce a
group key with the patterns and matches. Each mapper outputs one or more key-value
pairs, and the pairs with the same key will automatically be grouped into the same
reducer.

Reducer - remove the duplicated matches. Since different matches may get the same
subgraph of size i+1 when the matches i are extended. During the grouping process
mentioned above, we compare the canonical label of each match and keep just one of

346 Y. Liu et al.

the same matches. The outputs of reducers are grouped into different files according to
the pattern label.

Step 4: Frequency computing. After pruning the identical subgraphs, a MapReduce
pass is used to count the support value of all patterns that appear in the big simple
graph. We prune the patterns lower than the minimum required frequency. Then we
store new patterns in Pattern_List. Go back to Step 3 to process iteratively till the target
pattern size is reached. The details are given in Section 3.4.

3.2 Neighbor Vertices Finding and Pattern Initialization

Just like a classical application of MapReduce, each mapper of the first MapReduce
pass is fed with one block of dataset. The input key-value pairs would be like <key,
value = edge (Vi,Vj) > (Vi and Vj are adjacent vertex to each other), where edges belong
to dataset. Mappers produce two kinds of keys: the vertex key according to vertex label
and the pattern key according to the pattern canonical label. Mappers travel through all
edges of the graph, each Mapper outputs three key-value pairs <key1 = Vi, value1=Vj>,
<key2 =Vj, value2=Vi> and <key3 = pattern2, value3= edge (Vi,Vj) >.

After all mapper instances have finished, the MapReduce infrastructure automatically
collects and groups the key-value pairs according to the keys. The values with the same
key are put into the same group, called G (key), and reducers receive the key value pairs
<key, G (key)> where G (key) is adjacent vertices of a vertex or the match of a pattern
whose size is two. Reducers compose the G (key) into an adjacent vertices list or match
list and outputs <key, list> into Adj_Table or Match_Set according to the class of each
key, where the list is vertices list or match list. Algorithm 2 presents the pseudo code of
this step. Through this process, it registers each vertex’s adjacent vertices. Meanwhile, it
finds the smallest patterns (of size 2) and their matches.

Algorithm 2. Neighbor Vertices Finding and Pattern Initialization

Procedure: Mapper(key, value = Edge(Vi :Vj))

/* p is the canonical label of Edge(Vi:Vj) */

 p getPattern(Edge(Vi:Vj))

 EmitIntermediate (<key = Vi, value = Vj>)

 EmitIntermediate (<key = Vj, value = Vi>)

 EmitIntermediate (<key = p, value = Edge(Vi:Vj)>)

Procedure: Reduce(key, value = G(key))

/* Adj_List : adjacent vertices list;

 Match_List: matches of the same pattren */

Adj_List

Match_List

if key is vertex label then

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 347

 foreach item vi in G(key) do

 Adj_List Adj_List {vi}

 end

 Emit(<key, Adj_List >)

else

 foreach item matchi in G(key) do

 Match_List Match_List { matchi}

 end

 Emit(<key, Match_List>)

end

3.3 Pattern Extension

This step is the key part of the MRPF algorithm. This step, together with the step 4
frequency computing, will be repeated until the target size pattern is obtained. In the
pseudo code of the Algorithm 3 below we will see the procedure of how we use the
MapReduce Framework clearly.

(a) Example graph GT (b) example pattern of size 3

Fig. 2. (a) GT is a graph. The subgraph (highlighted with bold lines) in GT is a match of the pattern
in (b). Gray vertices in GT are incident vertices of the match and gray edges are detected edges.
(b) A pattern of size 3.

First, we load the adjacent vertices table (Adj_Table) which can be stored in memory
to find incident vertices of matches. Then load the Pattern_List where keeps all the
patterns of size i. The initial state of the Pattern_List is defined as “Starting”. The input
of mapper is from Match_Set. As shown in Fig. 2, if a match (highlighted in bold black
line) is found in the graph, we call the vertices (in gray) adjacent to the matched
vertices (in black) incident vertex of a match. And the edge between an incident vertex
and the match is called detected edge.

348 Y. Liu et al.

Fig. 3. (a) A graph with a randomly selected subgraph (highlighted with bold lines). The
subgraph is a match (M3) of some pattern. (b), (c), (d) are the extension matches from M3.

In mappers, the input pair would be like <key, value=Patterni & matchi> from the
Match_Set, where Patterni means the pattern has i vertices and matchi means the match
has i vertices. If the Patterni is contained in Pattern_List or Pattern_list is in initial state,
it extends matchi to matchi+1 through adding each incident vertex into matchi as shown
in Fig.3. Then it adds various combinations of detected edges into matchi and forms
new matches.

We compute Patterni+1 of matchi+1 and the canonical label of the Patterni+1 as part of
output value. Each mapper outputs one or more pairs like <key’= matchi+1,
value’=pattern i+1>.

Each reducer receives a <key’= matchi+1, S (key’))> where the S (key’) has only one
element------the pattern of the matchi+1 that is the key of key-value pair. In this way we
can easily wipe off the identical matches. Each reducer outputs one <key’’ = Patterni+1,
key’>, the MapReduce infrastructure sorts and groups the key-value pairs according the
key’’ value, then produces the successive block based on grouping. Blocks are stored in
N different computers, which is convenient to deal with the data in the next MapReduce
process.

Algorithm 3. Pattern Extension

Procedure: Mapper(key, value = Patterni & matchi)

Load Adj_Table

Load Pattern_List

if Patterni in Pattern_List

 or Pattern_list is in the Starting state then

 foreach incident vertex of matchi do

 foreach combination Ci of detected edges

 between the incident vertex and matchi do

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 349

 matchi+1 matchi { Ci }

 Patterni+1 corresponding pattern of matchi+1

 EmitIntermediate(<key = matchi+1, Patterni+1>)

 end

 end

Procedure: Reduce(key= matchi+1, S (key))

 Patterni+1 one of S (key)

 Emit(<key = Patterni+1, matchi+1>)

3.4 Frequency Computing

Frequency computing is a simple counting process, a classical application of
MapReduce. Its input is the output of the step3. Algorithm 4 presents the pseudo code
of the two steps: grouping and parallel counting. The mapper’s input is <key, value =
T>, where T is composed of pattern canonical label and matches. It picks up the pattern
canonical (P) from T. The mapper outputs a key-value pair <key’ = P, value’=1>.

After completing all of the Mapper instances, for each key transmitted by Mapper, a
value set (S (key’)) is automatically formed. And each reduce is fed with <key’, S
(key’)>. The reducer outputs <key’’= key’ value’’ = sum(S (key’))>.

Then the pattern frequency is calculated based on the occurrence quantity of each
pattern. In this paper, to show the full potential of the prescription network we use the
frequency concept which counts every match of the pattern. It gives a complete
overview of all possible occurrences of a pattern even if elements of the target graph are
used several times. So it does not satisfy the Downward Closure Property [4]. And we
do not prune the infrequent patterns that lower than the target pattern size. Note that the
occurrence quantity of some patterns is too small to affect the pattern finding results.
We call these patterns dust patterns. A minimum required frequency variable (f_min) is
defined to prune the dust patterns. The value of f_min is given by experts according to
their experience.

Algorithm 4. Frequency Computing

Procedure: Mapper(key, value = Patterni & matchi)

/* PL: pattern label*/

PL the canonical label of Patterni

EmitIntermediate(<key = PL, ‘1’>)

Procedure: Reduce(key , S (key))

Sum 0

foreach item ‘1’ in S(key) do

 Sum Sum + 1

350 Y. Liu et al.

end

/* total is the quantity of all patterns, f_min is a minimum

required frequency variable */

if Sum total * f_min

 Emit(<key = Patterni+1, Sum>)

end

4 Application to Prescription Compatibility Structure Detection

4.1 Motifs Detection Results

A key subject of prescription research is theoretical study on prescription compatibility
regularity. The structure of Monarch, Minister, Assistant and Guide is the compatibility
principle for prescriptions and the base for the overall efficacy of prescriptions.
However, people as yet know nothing about the commonly used compatibility
structure. In other words, people still have no acquaintance with most appropriate ratio
of these four kinds (e.g. Monarchs, Ministers, Assistants and Guides) of Chinese herbal
medicines respectively participating in the compatibility of a prescription, which is
very important to exert the overall efficacy.

In the prescription compatibility network, node represents Chinese herbal medicine,
while edge describes the compatibility relation that might exist between the two herb
nodes, and edge direction indicates the relative position between the two connected
herb nodes from the higher one to the lower one. According to the multi-types of the
relative positions between any two herb nodes, the compatibility relations of them vary
greatly. Table1 shows in detail all types of possible compatibility relations in terms of
criteria for the classification of herbs.

Table 1. All types of possible compatibility relations

We select 201 prescriptions that are explicit in the compatibility structure from [25]
to construct the prescription compatibility network. The network contains about 300
vertices and 2, 000 edges, as shown in Fig.4.

We apply our algorithm in the prescription network, and after comparing with
random networks, we find a number of motifs of prescription network (see Fig.5) and
their occurrence quantity shown in table 2.

Herbal compatibility relation Herbal compatibility relation

Monarch, Minister Monarch Minister Monarch, Assistant Monarch Assistant

Monarch, Guide Monarch Guide Minister, Assistant Minister Assistant

Minister, Guide Minister Guide Assistant, Guide Assistant Guide

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 351

Fig. 4. The topological structure of the prescription compatibility network

These motifs are the basic structure of the prescription compatibility. For example,
Motif1 consists of one Monarch, one Minister, one Assistant and one Guide; Motif3
contains one Monarch, one Minister, one Assistant and one Guide; Motif5 contains one
Monarch, two Ministers and two Assistants. They are of great value to further discover
the law of prescription compatibility.

Fig. 5. Six motifs of size 4 and size 5 separately

352 Y. Liu et al.

Table 2. Frequency for each motif in Fig.4

Motif Frequency

Motif1 0.4093750%

Motif2 0.3534964%

Motif3 0.3728833%

Motif4 0.0038188%

Motif5 0.0026400%

Motif6 0.0018862%

4.2 Performance Analysis

Our algorithm automatically divides the job and distributes them to each node. So we
can dynamically add the quantity of nodes, which will enhance the performance of the
algorithm. We run the program on a blade-cluster with 48 nodes. Each node is equipped
with Intel (R) Xeon (TM) CPU 2.80 GHZ and 1 GB memory. In the experiment, we run
the algorithm to do the same task on cluster of varying nodes. And the experiment
results of finding size 4 and size 5 motifs are shown in Fig.6.

(a) Motif size = 4 (b) Motif size = 5

Fig. 6. Algorithm performance on the cluster

From the above figure, it’s clear that execution time decreases quickly while the
cluster nodes increase. It implies that our algorithm scales well with the computing
nodes. However, the performance acceleration decreases when the cluster exceeds a
number of nodes for a fixed size task. In this experimentation, we just prove the
scalability of MRPF. Here we theoretically analyze reasons of the acceleration
decreasing. We define the formula of the execution time of MRPF as followed:

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 353

 . (1)

In the formula (1), N is the number of data nodes; is a constant that represents
the computation complexity of the fixed size task and it is distributed to each node
evenly; , and respectively denote Map Task
initialization time, the time for each reducer receiving the intermediate, and the time for
the communication between the master node and slave nodes. The Map Task
initialization time includes assigning tasks, preparing data and task issuing.
According to our experience, the total number of map tasks is better to be set about 3 or
4 times of the number of nodes, which can make full use of the resource of the cluster.
So we divide the task dynamically according to N. While the number of the data blocks
increasing with N, the number of the Map Task increases and the total time of map
initialization and intermediate distribution increase too. It is obvious that and

 are increasing with N. And the cluster is organized in master/slaves mode,
with only one master node responsible for data retrieval, task assignment and task
snooping on the slave nodes. So while the node number N increase, the communication
overhead between master and slaves will also increase. So the value of is
increasing with N. The speedup of MRPF can be calculated using the following
formula:

 . (2)

From the formula (2), it can be deduced that the speedup might degrade due to the
increasing overhead even if Cfix is allocated by the cluster nodes. It can be clearly
observed that there is an inflection point in exertion time curve in figure 6(b) when the
number of the data nodes equals 16. It may be caused by the topology of the cluster or
architecture of MapReduce Framework. We need to do further experiments to
investigate into it.

5 Conclusion

In summary, the contributions of this paper are as follows:

1. We designed a MapReduce-based pattern finding algorithm (MRPF) for
analyzing the complex network. We reorganized the pattern finding process and
implemented each step using the MapReduce framework, which makes MRPF
parallelizable and extensible. The experiment evaluation on the expending of nodes in
Section 4.2 indicated that increasing the number of the nodes would enhance the
performance of MRPF.

2. We applied the complex network analysis method to the prescription
compatibility network and used MRPF to find the commonly used compatibility
structure. And we found some prescription structures which reflect characters of the
law of compatibility of medicines in prescriptions in some way.

354 Y. Liu et al.

More experiments need to be done to evaluate the algorithm performance
considering the factors of data block size, node number, and network bandwidth, etc. In
fact, developing MapReduce based pattern finding algorithm is actually the first step to
our target, to develop a parallel data mining library based on MapReduce that can be
applied in many fields. And we will also testify these parallel algorithms in data mining
in TCM.

Acknowledgements

Supported by Program for Changjiang Scholars and innovative Research Team in
University (IRT0652, PCSIRT), China 863 project under grant 2006AA01A123, the
National 973 Basic Research Program of China under grant No.2007CB310900,
National Science Fund for Distinguished Young Scholars under grant No.60525202,
J20060103, J20050710, the Defense Advanced Research Foundation of the General
Armaments Department of the PLA under Grant No.9140A06060307JW0403.

References

1. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network Motifs:
Simple Building Block of Complex Networks. Science 5594, 824–827 (2002)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

3. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters. In: ACM
OSDI (2004)

4. Kuramochi, M., Karypis, G.: Finding Frequent Patterns in a Large Sparse Graph. In: Data
Mining and Knowledge Discovery, vol. 5810, pp. 243–271. Springer, Heidelberg (2005)

5. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: 2002 IEEE
International Conference on Data Mining, 2002. ICDM 2002. Proceedings, pp. 721–724.
IEEE Press, Maebashi City (2002)

6. Inokucbi, A., Wasbio, T., Motoda, H.: Complete mining of frequent patterns from graphs:
Mining graph data. Machine Learning 50(3), 321–354 (2003)

7. Hong, M., Zhou, H., Wang, W., Shi, B.: An efficient algorithm of frequent connected
subgraph extraction. In: Whang, K.-Y., Jeon, J., Shim, K., Srivastava, J. (eds.) PAKDD
2003. LNCS, vol. 2637, pp. 40–51. Springer, Heidelberg (2003)

8. Yan, X., Hart, J.: CloseGraph: Mining closed frequent patterns. In: The 9th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp.
286–295. ACM, Washington (2003)

9. Huan, J., Wang, W., Prins, J.: Efficient mining of frequent subgraph in the presence of
isomorphism. In: 2003 International Conference on Data Mining (ICDM), Melbourne, pp.
549–552. IEEE, Florida (2003)

10. Gudes, E., Shimony, S.E., Vanetik, N.: Discovering frequent graph patterns using disjoint
paths. IEEE Transactions on Knowledge and Data Engineering 18(11), 1441–1456 (2006)

11. Yoshida, K., Motoda, H., Indurkhya, N.: Graph-based induction as a unified learning
framework. Journal of Applied Intelligence 4, 297–328 (1994)

 MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection 355

12. Cook, J., Holder, L.: Substructure discovery using minimum description length and
background knowledge. J. Artificial Intelligence Research, 231–255 (1994)

13. Schreiber, F., Schwöbbermeyer, H.: Frequent Concepts and Pattern Detection for the
Analysis of Motifs in Networks. In: Priami, C., Merelli, E., Gonzalez, P., Omicini, A. (eds.)
Transactions on Computational Systems Biology III. LNCS (LNBI), vol. 3737, pp. 89–104.
Springer, Heidelberg (2005)

14. Chen, J., Hsu, W., Lee, M.-L., Ng, S.-K.: Nemofinder: dissecting genome-wide
protein-protein interactions with meso-scale network motifs. In: KDD, pp. 106–115 (2006)

15. Chen, C., Yan, X., Zhu, F., Han, J.: gApprox: Mining frequent approximate patterns from a
massive network. In: Perner, P. (ed.) ICDM 2007. LNCS (LNAI), vol. 4597, pp. 445–450.
Springer, Heidelberg (2007)

16. Chu, C., Kim, S.K., Lin, Y., Yu, Y.Y., Bradski, G.: Map-Reduce for Machine Learning on
Multicore. NIPS (2006)

17. Chang, E., Zhu, K., Wang, H., Bai, H., Li, J., Qiu, Z., Cui, H.: PSVM: Parallelizing Support
Vector Machines on Distributed Computers. NIPS (2007)

18. Wu, Z., Zhou, X., Liu, B., Chen, J.: Text Mining for Finding Functional Community of
Related Genes using TCM Knowledge. In: Boulicaut, J.-F., Esposito, F., Giannotti, F.,
Pedreschi, D. (eds.) PKDD 2004. LNCS (LNAI), vol. 3202, pp. 459–470. Springer,
Heidelberg (2004)

19. Ying, T., Guo-fu, Y., Gui-bing, L., Jian-ying, C.: Mining Compatibility Rules from Irregular
Chinese Traditional Medicine Database by Apriori Agorithm. Journal of Southwest Jiaotong
University (English Edition) 15, 288–292 (2007)

20. Xuezhong, Z., Zhaohui, W.: Distributional Character Clustering for Chinese Text
Categorization. In: Zhang, C., Guesgen, H.W., Yeap, W.-K. (eds.) PRICAI 2004. LNCS
(LNAI), vol. 3157, pp. 575–584. Springer, Heidelberg (2004)

21. Xiao, H., Liang, X., Lu, P., Chan, C.: New method for analysis of Chinese herbal complex
prescription and its application. Chinese Science Bulletin 44, 1164–1172 (1999)

22. Feng, Y., Wu, Z., Zhou, X., Zhou, Z., Fan, W.: Knowledge discovery in traditional Chinese
medicine: State of the art and perspectives. Artificial Intelligence in Medicine. 38(3),
219–236 (2006)

23. Chang, Y.-H., Lin, H.-J., Li, W.-C.: Clinical evaluation of the traditional Chinese
prescription Chi-Ju-Di-Huang-Wan for Dry Eye. Phytotherapy Research 19(4), 349–354
(2005)

24. Kuramochi, M., Karypis, G.: An efficient algorithm for discovering frequent subgraphs.
Technical Report 02-026, Department of Computer Science, University of Minnesota
(2002)

25. Fujing, D.: Prescription: for the Specialty of Chinese Traditional Medicine. Shanghai
Publishing House of Science and Technology Press, Shanghai (2006)

Parallelization of the LEMan Code with MPI
and OpenMP

N. Mellet and W.A. Cooper

Ecole Polytechnique Fédérale de Lausanne (EPFL)
Centre de Recherches en Physique des Plasmas

Association Euratom-Confédération Suisse
CH-1015 Lausanne, Switzerland

nicolas.mellet@epfl.ch

http://crppwww.epfl.ch

Abstract. The low-frequency wave propagation code LEMan has been
parallelized. Due to large memory requirement but fast computation with
the cold model, the parallelization is limited to a low number of proces-
sors. The specific block-tridiagonal structure of the matrix to be solved
has been taken into account for the MPI implementation. It has then
been compared with the performance of OpenMP in order to determine
the optimal method depending on the case studied.

Keywords: Plasma physics, Alfvén, ICRF, Parallelization, MPI,
OpenMP.

1 Introduction

Thermonuclear fusion is a very promising source of energy. The reaction that is
based on fusion of light nuclei needs specific conditions to happen. These can
be reached for example by confining plasma in a magnetic field with sufficient
density and temperature. A great variety of waves can then propagate in this
case. The low-frequency domain studied by the LEMan code [1] is especially
interesting. Waves can be sources of instabilities or be used for heating purpose
to obtain parameters required for a self-sustained reaction.

The concept of the LEMan code is to provide a fast computation of the wave
field in fully three-dimensional geometries. As plasma is a charged fluid, it con-
sists then essentially in the direct solution of the Maxwell’s equations. These
are solved using a Galerkin weak form with a discretization that is character-
istic of a toroidal topology: radial finite elements, toroidal and poloidal Fourier
harmonics. Such a scheme leads to a full block tridiagonal matrix for the linear
system.

2 Parallelization

The parallelisation of the LEMan code can mainly be separated in three parts:
the matrix construction, the solver and the diagnostics. The third point corre-
sponds essentially to the computation of the plasma quantities relative to the

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 356–362, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://crppwww.epfl.ch

Parallelization of the LEMan Code with MPI and OpenMP 357

solution (electric and magnetic fields, power deposition, etc). The tasks are how-
ever easy to share between processors in this case. This paper will then concen-
trate on the two first steps of the computation.

A first point has to be mentioned about the solver. Due to the huge size of
the matrix, it is impossible to use a parallel library like SCALAPACK. As the
matrix width is large, the temporary arrays reach quickly the memory limit of
the machine. The method that will involve parallelization with MPI has to be
implemented directly on the matrix blocks. It uses Gauss elimination which is
expressed for one processor as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B1 C1 0 . . . 0

A1 B2 C2
. . .

...

0 A2 B3
. . . 0

...
. Cn−1

0 . . . 0 An−1 Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

f1
f2
f3
...

fn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

d1
d2
d3
...

dn

⎞
⎟⎟⎟⎟⎟⎠

B1 = B1,
Bi = Bi − Ai−1Di−1,
di = di − Ai−1ei−1,

(1)

where ei = B−1
i di and Di = B−1

i Ci. Once the matrix has been factorized, the
second step is to perform the backsolve:

fi = ei − Difi+1, (2)

We note that with this method, only one block (Di) has to be stored for each
radial node. Compared to the usual band matrix storage in LAPACK, this rep-
resents a gain of 82%. The main memory concern does not, however, come from
the total matrix storage as hard drives can be used for this purpose but from
the memory required for the blocks that correspond to a single radial position.
As a huge number of Fourier modes is needed for the more complex geometries
and cases, their memory can represent altogether more than 10 GB. In such
cases, the optimal machines are SMP whose memory is shared over processors.
As OpenMP can be used on those computers, the number of MPI tasks can be
kept very low. A method that provides a good scaling is Cyclic Reduction. It
has however the disadvantage to require 31 times more operation that a simple
Gauss decomposition in the present case where the matrix blocks are full. This
technique becomes then faster than a serial run only with more than 32 MPI
tasks. With the possibility to take advantage of OpenMP and other paralleliza-
tion methods, the use of Cyclic Reduction can be avoided. In what follows, we
will concentrate on the optimization of the solver with a much lower number of
processors.

The first technique that is used is a two-processor method. The method called
BABE (Burn At Both Ends) [2] consists in applying a Gauss decomposition with
one processor from the top and with the other from the bottom of the matrix:

Processor 1: Bi = Bi − Ai−1Di−1, Processor 2: Bi = Bi − CiDi+1,
where Di = B−1

i Ci, where Di = B−1
i Ai−1,

di = di − Ai−1ei−1. di = di − Ciei+1.
(3)

358 N. Mellet and W.A. Cooper

The elimination process is performed until a central system that contains 4
blocks is obtained:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

B1 C1 0 . . . 0

0 B2
. . .

0
. Cn

2 −1
. . .

...
0 Bn

2
Cn

2
...

. . . An
2

Bn
2 +1 0

An
2 +1

. 0

. . . Bn−1 0
0 . . . 0 An−1 Bn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f1
f2
...

fn
2

fn
2 +1
...

fn−1
fn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1
d2
...

dn
2

dn
2 +1
...

dn−1
dn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Its solution is given by the following expression:

fn
2

=
(
Bn

2
− Cn

2
B−1

n
2 +1An

2

)−1 (
dn

2
− Cn

2
B−1

n
2 +1dn

2 +1

)
(5)

Once this element has been computed, the backsolve can be undertaken simul-
taneously until the top and bottom of the matrix:

Processor 1: fi = ei − Difi+1. Processor 2: fi = ei − Difi−1. (6)

Such a method has the advantage to divide the time by two in separating totally
the tasks between processors. As for the simple Gauss decomposition, only the
Di block is stored involving a reduced memory usage. It must be mentioned that
this element has a different definition for each processor.

In order to reduce the computation time further, other possibilities exist but
do not give the same scalability as the BABE algorithm. For example, the com-
putation of the matrix elements and the solver can be alternated. This method
gives very different results depending on the resolution used for the problem.
It is obvious that the biggest gain is obtained if those two tasks last the same
amount of time.

Finally Di−1 in Eq. (1) is computed by factorizing Bi−1 and solving with Ci−1
as right-hand side. It is possible to take advantage of the fact that in this case
the solution needs three times more time than the factorization. All processors
perform then the decomposition as the columns of the right-hand side matrix
are shared among them. Possible gain with this technique is limited by the time
required to undertake the factorization.

3 CPU Time Results

In this section, we will concentrate on three types of case that appear when
performing computations with LEMan. It must be mentioned that the require-
ments depend mostly on the model under consideration and on the geometry.

Parallelization of the LEMan Code with MPI and OpenMP 359

As we want to compute the wave propagation in a plasma, Maxwells equations
are used and can be written as:

∇×∇× E− k2
0 ε̂ · E = ik0

4π

c
jant. (7)

where E is the electric field and jant is the antenna excitation that appears in
the right-hand side of the linear system. The ε term is the dielectric tensor. As
it relates together the electric current density and the electric field, the physical
model is crucial to determine its value. In the cold formulation it is calculated
with the help of Newton’s equation by considering a charged element of fluid
submitted to an electromagnetic field. In this case its value is obtained in the
real space and can be inserted directly inside the equation to be solved. As the
same number of operations is required to compute each term of the matrix, it
is proportional to N2

mn where Nmn is the number of Fourier Harmonics. The
solver in itself involves inversions and multiplications of square matrices with
Nmn rows and columns and scales then as N3

mn. With a great number of Fourier
harmonics, the solver dominates over the matrix computation.

In the warm model where the effects of the distribution function of the par-
ticles in the velocity space have to be taken into account, the requirements for
the matrix computation changes drastically. The dielectric tensor is then calcu-
lated by using the Vlasov equation which describes the distribution function (f)
evolution:

∂f

∂t
+ v · ∂f

∂x
+

q

m
[E + v × B] · ∂f

∂v
= 0. (8)

Several simplifications are then performed on (8) postulating that the radius of
the particle trajectories around the magnetic field lines is negligible compared
to the wavelength of the perturbation and to the characteristic length of vari-
ation of the plasma parameters. In order to solve the relation obtained after
simplification and to conserve the exact expression for all the terms in general
three-dimensional geometry, the dielectric tensor is determined as the convolu-
tion connecting together the electric current density and the electric field. The
inversion of a polynomial linear system of degree 1 in v‖ is in this case needed:

⎛
⎜⎜⎜⎝

a1,1 + b1,1v‖ a1,2 + b1,2v‖ . . . a1,p + b1,pv‖
a2,1 + b2,1v‖ a2,2 + b2,2v‖ a2,p + b2,pv‖

...
. . .

ap,1 + bp,1v‖ ap,2 + bp,2v‖ ap,p + bp,pv‖

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

fl,1
fl,2
...

fl,p

⎞
⎟⎟⎟⎠ = g(v,E, l). (9)

The number of operations required for this inversion scales as N5
mn. It becomes

then obvious that the matrix construction is much longer than the solver as the
latter has a N3

mn dependence.

3.1 Warm Model

The first situation is relative to the warm model. The speed-up plotted against
the number of processor is displayed in Fig 1. As the computation time is much

360 N. Mellet and W.A. Cooper

1 10 100
1

10

100

n
procs

S
pe

ed
−

up

Ideal
MPI

Fig. 1. Speed vs number of processors for the warm model with 96 Fourier harmonics

higher for the matrix construction than for the solver, the parallelization con-
sists simply in sharing equally the number of radial nodes on every processor.
The CPU time behaviour is then theoretically 1/nprocs. Fig 1 shows that it is
effectively close to it. In the warm case, the parallelization seems not to be then
a major problem.

3.2 Cold Model

Now that the warm case, where simple parallelization can be performed, has
been investigated, we will concentrate on the cold model where it is subtler.
Two different situations are presented. The first one contains a reduced number
of Fourier harmonics (Nm = 319). The idea is that the matrix construction and
the solver take almost the same time. As we work on a SMP machine, it is also
interesting to compare parallelization between MPI and OpenMP. The results are
presented in Figure 2 against the ideal behaviour. OpenMP has a better scaling
than MPI but is far away from perfect when it reaches 16 processors. It must be
pointed out than this technique has been implemented in order to compute cases
with a high number of Fourier harmonics. This is obviously not the case here.
Concerning the behaviour of the MPI curve, some explanations must be given.
The first scheme used for 2 processors is BABE. The speed-up is very close to
what has been obtained with OpenMP but is not as perfect as expected. The
step to 4 processors is performed by alternating the matrix construction and the
solver. This is quite efficient as those two computations take roughly the same
order of computational time. For a higher number of tasks, the separation of the
right-hand side matrices in the solver between processors has been used. The gain
of time is quite interesting from nprocs = 4 to nprocs = 8 but it is practically

Parallelization of the LEMan Code with MPI and OpenMP 361

1 10
1

10

n
procs

S
pe

ed
−

up

Ideal
OpenMP
MPI

Fig. 2. Comparison of the speed-up with a parallelization using OpenMP and MPI for
the cold model with an intermediate number of Fourier harmonics (Nm = 319)

1 10
1

10

n
procs

S
pe

ed
−

up

Ideal
OpenMP
MPI

Fig. 3. Comparison of the speed-up with a parallelization using OpenMP and MPI for
the cold model with a high number of Fourier harmonics (Nm = 841)

negligible for the last step. MPI seems then to give satisfactory results when
limited to less than 8 tasks.

The final simulation is made with a higher number of Fourier modes (Nm =
841). Results are expected to be better as the code is mainly optimised for this
kind of situation. They are effectively those which require the most resources.
The speed-up is shown in Fig. 3. Again OpenMP exhibits a better dependence
than MPI. In this case, this method uses BABE for two processors. For a higher

362 N. Mellet and W.A. Cooper

number of tasks, sharing of the right-hand side matrices has been used for the
solver. Going from 2 to 4 processors is efficient with this method. For a higher
number of tasks the gain progressively diminishes.

The highest number of Fourier harmonics that has been used with the LEMan
code is around 2000. In this case, the dependence in increasing the number of
processors is better than for the cases shown here. Taking account of them, we
can deduce that the best results would be obtained using the BABE method
and OpenMP inside the nodes. In that situation, a speed-up of about 24 is
reached. A possible gain with cyclic reduction would be achieved with more
than 744 processors as this method requires more than 31 times more operations.
This is a very large requirement for solving of a single linear system. With 32
processors, the largest case can take about 2 days. Furthermore, this computation
applies for a single frequency. For a frequency scan, it is possible to separate the
computation by dividing the spectrum.

4 Conclusions

The warm model for plasma wave propagation, destabilisation and absorption
has been shown to give a good scaling with a simple decomposition of the task
along the magnetic surfaces. The size of the problem can be increased directly by
incrementing the number of processors. For the cold model, the problem is more
complex as it depends on the characteristics of the resolution. A high number
of Fourier harmonics gives a better scaling. A balance has to be found for the
parallelization between MPI and OpenMP. If the SMP nodes contain a sufficient
number of processors, the best method is obviously to use two nodes related by
the BABE algorithm when the computation is parallelized with OpenMP inside
them for the processors with shared memory. If the cyclic reduction would be
implemented, a huge number of processors would then be required for a single
linear system to be solved.

Acknowledgments. The computations have been performed on the Pleiades2
cluster of EPFL and Blanc at CSCS. This work was partly supported by the
Swiss National Foundation and Euratom.

References

1. Popovich, P., Cooper, W.A., Villard, L.: A full-wave solver of the Maxwell’s equa-
tions in 3D cold plasmas. Comput. Phys. Comm. 175, 250 (2006)

2. Gruber, R., Cooper, W.A., Beniston, M., Gengler, M., Merazzi, S.: Software de-
velopment strategies for parallel computer architectures. Physics Reports 207, 167
(1991)

The Recursive Dual-Net and Its Applications

Yamin Li1, Shietung Peng1, and Wanming Chu2

1 Department of Computer Science
Hosei University

Tokyo 184-8584 Japan
{yamin,speng}@k.hosei.ac.jp

2 Department of Computer Hardware
University of Aizu

Aizu-Wakamatsu 965-8580 Japan
w-chu@u-aizu.ac.jp

Abstract. In this paper, we propose a universal network, called re-
cursive dual-net (RDN). It can be used as a candidate of effective in-
terconnection networks for massively parallel computers. The RDN is
generated by recursively applying dual-construction on a base-network.
Given a regular and symmetric graph of size n and node-degree d, the
dual-construction generates a regular and symmetric graph of size 2n2

and node-degree d+1. The RDN has many interesting properties includ-
ing low node-degree and small diameter. For example, we can construct
an RDN connecting more than 3-million nodes with only 6 links per
node and a diameter of 22. We investigate the topological properties of
the RDN and compare it to other networks including 3D torus, WK-
recursive network, hypercube, cube-connected-cycle, and dual-cube. We
also describe an efficient routing algorithm for RDN.

Keywords: Interconnection networks and routing algorithm.

1 Introduction

In massively parallel processor (MPP), the interconnection network plays a cru-
cial role on the issues such as communication performance, hardware cost, com-
putational complexity, fault-tolerance, etc. Much research has been reported in
the literatures for interconnection networks that can be used to connect par-
allel computers of large scale (see [2,6,12] for the review of the early work).
The following two categories have attracted a great research attention. One is
the hypercube-like family that has the advantage of short diameters for high-
performance computing and efficient communication [5,7,8,9,10]. The other is
2D/3D mesh or torus that has the advantage of small and fixed node-degrees
and easy implementations. Traditionally, most MPPs in the history including
those built by NASA, CRAY, FGPS, IBM, etc., use 2D/3D mesh or torus or
their variations with extra diagonal links. The recursive networks also have been
proposed as effective interconnection networks for parallel computers of large

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 363–374, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

364 Y. Li, S. Peng, and W. Chu

scale. For example, the WK-recursive network [4,13] is a class of recursive scal-
able networks. It offers a high-degree of regularity, scalability, and symmetry
and has a compact VLSI implementation.

Recently, due to the advance in computer technologies, the community of su-
percomputers rises competition to construct supercomputers of very-large scale
that might contain millions of nodes [11]. For example, the IBM new Blue Gene
system was proposed that will contain more than a million processors. It was
predicted that the MPPs of the next decade will contain 10 to 100 millions
of nodes [3]. For such a parallel computer of very-large scale, the traditional
interconnection networks may no longer satisfy the requirements for the high-
performance computing or efficient communication. For the future generation
of MPPs with millions of nodes, the node-degree and the diameter will be the
critical measures for the effectiveness of the interconnection networks. The node-
degree is limited by the hardware technologies and the diameter affects directly
all kind of communication schemes. Other important measures include bisection
bandwidth, scalability, and efficient routing algorithms.

In this paper, we propose a set of networks, called Recursive Dual-Net (RDN).
A recursive dual-net is based on the recursive dual-constructions of a regular
base-network. The dual-construction extends a regular network with n nodes and
node-degree d to a network with 2n2 nodes and node-degree d+1. The recursive
dual-net is especially suitable for the interconnection network of the parallel
computers with millions of nodes. It has the merits of regularity, scalability and
symmetry and can connect a huge number of nodes with just a small number
of links per node and very short diameters. For example, a 2-level RDN with
n = 25 can connect more than 3-million nodes that has only 6 links per node and
its diameter equals to 22. For parallel computers with millions of nodes, most
of the known topologies will either require a large number of links per node
(hypercube-like family) that is difficult to implement or have a large diameter
(3D torus or WK-recursive network) that affects tremendously its performance.

We investigate the topological properties of the recursive dual-net and show
some examples of recursive dual-net with rather simple base-networks. Then we
compare them with other networks such as 3D torus [1], WK-recursive network
[13], hypercube [10], CCC (cube-connected-cycle) [9], and dual-cube [7,8]. We
also propose efficient basic routing algorithms for the recursive dual-net.

The rest of this paper is organized as follows. Section 2 describes the recursive
dual-net in details. Section 3 discusses the topological properties of the recursive
dual-net. Sections 4 compares recursive dual-net with other networks. Section 5
gives a few examples of recursive dual-net for parallel computers of large-scale
or very large-scale. Section 6 describes an efficient routing algorithm. Section 7
concludes the paper and presents some future research directions.

2 Recursive Dual-Net

Let G be an undirected graph. The size of G, denoted as |G|, is the number of
vertices. A path from node s to node t in G is denoted by s → t. The length of

The Recursive Dual-Net and Its Applications 365

the path is the number of edges in the path. For any two nodes s and t in G, we
denote D(s, t) as the length of a shortest path connecting s and t. The diameter
of G is defined as D(G) = max{D(s, t)|s, t ∈ G}. For any two nodes s and t in
G, if there is a path connecting s and t, we say G is a connected graph.

Suppose we have a symmetric connected graph B and there are n0 nodes in B
and the node degree is d0. A k-level Recursive Dual-Net RDNk(B), also denoted
as RDNk(B(n0)), can be recursively defined as follows:

1. RDN0(B) = B is a symmetric connected graph with n0 nodes, called base
network;

2. For k > 0, an RDNk(B) is constructed from RDNk−1(B) by a dual-
construction as explained below (also see Figure 1).

RDNk−1(B) RDNk(B)

type

0

type

1

0 1 nk−1 − 1

0 1 nk−1 − 1

Cluster

Fig. 1. Build an RDNk(B) from RDNk−1(B)

Dual-construction. Let RDNk−1(B) be referred to as a cluster of level k and
nk−1 = |RDNk−1(B)| for k > 0. An RDNk(B) is a graph that contains 2nk−1
clusters of level k as subgraphs. These clusters are divided into two sets with
each set containing nk−1 clusters. Each cluster in one set is said to be of type
0, denoted as C0

i , where 0 ≤ i ≤ nk−1 − 1 is the cluster ID. Each cluster in the
other set is of type 1, denoted as C1

j , where 0 ≤ j ≤ nk−1 − 1 is the cluster ID.
At level k, each node in a cluster has a new link to a node in a distinct cluster
of the other type. We call this link cross-edge of level k. By following this rule,
for each pair of clusters C0

i and C1
j , there is a unique edge connecting a node

in C0
i and a node in C1

j , 0 ≤ i, j ≤ nk−1 − 1. In Figure 1, there are nk−1 nodes
within each cluster RDNk−1(B).

We give two simple examples of recursive dual-nets with k = 1 and 2, in which
the base network is a ring with 3 nodes, in Figure 2 and Figure 3, respectively.
Figure 2 depicts an RDN1(B(3)) network. There are 3 nodes in the base network.

366 Y. Li, S. Peng, and W. Chu

Fig. 2. A Recursive Dual-Net RDN1(B(3))

Fig. 3. A Recursive Dual-Net RDN2(B(3))

Therefore, the number of nodes in RDN1(B(3)) is 2× 32, or 18. Figure 3 shows
the RDN2(B(3)) constructed from the RDN1(B(3)) in Figure 2. We did not
show all the nodes in the figure. The number of nodes in RDN2(B(3)) is 2×182,
or 648.

Similarly, we can construct an RDN3(B(3)) containing 2 × 6482, or 839,808
nodes with node-degree of 5 and diameter of 22. In contrast, the 839,808-node
3D torus machine (adopt by IBM Blue Gene/L [1]) configured as 108× 108× 72
nodes, the diameter is equal to 54 + 54 + 36 = 144 with a node degree of 6.

3 Topological Properties of RDN

We can see from the recursive dual-construction described above that an
RDNk(B) is a symmetric connected network with node-degree d0 + k, where d0
is the node-degree of the base network B. The number of nodes nk in RDNk(B)
satisfies the recurrence nk = 2n2

k−1 for k > 0. Solving the recurrence, we get
nk = (2n0)2

k

/2.
Concerning the diameter Dk of RDNk(B), we know that the worst-case (the

longest one) for the shortest path P (u, v) connecting any two nodes u and v
in RDNk(B) is as follow: u and v are of the same type and path P = u →
u′ → w → w′ → v, where u → u′ and w → w′ are cross-edges of level k, and
|u′ → w| = |w′ → v| = Dk−1, as shown as in Figure 4. Therefore, the diameter

The Recursive Dual-Net and Its Applications 367

u

u′
w

w′
v

Dk−1

Dk−1

1 1

Fig. 4. The diameter of the Recursive Dual-Net

of RDNk(B) satisfies the recurrence Dk = 2Dk−1 + 2 for k > 0. Solving the
recurrence, we get Dk = 2kD0 + 2k+1 − 2, where D0 is the diameter of the base
network.

The bisection bandwidth is important for fault-tolerance. Next, we investigate
the bisection bandwidth of the RDNk(B) for k ≥ 1. From the dual-construction,
we know that there is no link between the clusters of level k that are of the same
type. Therefore, the minimum number of links those removal will disconnect two
halves occurs when both halves contain equal numbers of clusters of type 0 or 1.
That is, the minimum number of links those removal will disconnect two halves
equals to half of the total number of cross-edges of level k which is �(2n0)2

k

/8�.
Notice that if n0 is odd and k = 1 we should divide the RDN into two halves

such that one half contains 	n0/2
 (or �n0/2�) type 0 clusters and �n0/2� (or
	n0/2
) type 1 clusters. For example, the bisection bandwidth of RDN1(B(3))
is �62/8� = �9/2� = 5.

We summarize the discussion above about the fundamental properties of the
Recursive Dual-Net in the following theorem.

Theorem 1. Assume that the base network B is a symmetric graph with size
n0, node-degree d0, and the diameter D0. Then, the size, the node-degree, the
diameter and the bisection bandwidth of RDNk(B) are (2n0)2

k

/2, d0+k, 2kD0+
2k+1 − 2, and �(2n0)2

k

/8�, respectively.

4 Comparison to Other Interconnection Networks

An interconnection network is evaluated in terms of a number of parameters such
as node-degree, diameter, bisection width, average distance, regularity, symme-
try, etc. Let G be a regular, symmetric graph. There are trade-offs among the
node-degree, the diameter, and the size of a graph G. It is not easy and maybe
unfair to use a single parameter to compare the effectiveness of networks that
have different topologies and sizes. However, it should be worth to have such a
parameter that shows the combined effects of the topology on three important

368 Y. Li, S. Peng, and W. Chu

measures: node-degree, diameter and size. There might be an argument that the
diameter is not an important issue if the system adopts the wormhole switching
technique. However, for the MPPs with millions of nodes, it seems not possible to
use wormhole switching technique since the whole system will occupy a big hall
and the connection must be done with cables. Therefore, for the interconnection
networks of MPPs, the diameter should play an important role for measuring
the ability of high-performance computing and efficient communication.

In this paper, we introduce cost ratio CR(G) as an important measure for the
combined effects of the hardware cost and the software efficiency of an intercon-
nection network presented as graph G. Let |(G)|, d(G), and D(G) be the number
of nodes, the node-degree, and the diameter of G, respectively. We define CR(G)
as

CR(G) = (d(G) + D(G))/ lg |(G)|
The motivation here is that the node-degree and diameter should not increase
faster than the logarithm of the size of of the graph. It should be considered as
a basic rule for high-performance MPPs. The design of interconnection network
should make effort to reduce the cost ratio, especially for an MPP with very large
scale. The cost ratio of hypercube is a constant 2 for any size. One of the reasons
that hypercube has been and will be still popular as an interconnection network
of MPPs is that its node-degree and diameter grow logarithmically with its size.
However, for an MPP with more than a million of nodes, the logarithmic growth
rate of the node-degree is still too big for the current hardware technologies (each
node requires more than 20 ports and channels).

Other important measures for the performance of networks include the exis-
tence of simple and efficient routing and communication algorithms for certain
communication patterns such as multicast or total exchange. We present a sim-
ple and efficient routing algorithm on RDN. The design of efficient algorithms
for collective communication is beyond the scope of this paper. It should be an
interesting subjects for the further research.

Table 1 summarizes the number of nodes, the node-degree, the diameter, and
the cost ratio for 3D torus, hypercube, CCC, dual-cube, WK-recursive network
and recursive dual-net. The torus, also called wrap-around mesh or a toroidal
mesh, was adopt by IBM Blue Gene/L. This topology includes the p-ary, q-cube
which is a q-dimensional torus with the restriction that each dimension is of the
same size p. In a CCC(n), each node in an n-cube is replaced with an n-node
ring [9]. A dual-cube DC(n) contains 2n (n−1)-cubes called clusters [7]. Half of
the clusters are of type 0 and the other half are of type 1. There is a unique link
(cross-edge) connecting each pair of clusters of distinct types. DC(n) is equal to
RDN(2n−1, 1), where the base network is an (n − 1)-cube.

A WK-recursive network of level t denoted as WK(n, t) can be constructed
recursively as follows [13]. WK(n, 1) is an n-node complete graph augmented
with n open links each at a node. Each node of WK(n, t) is incident with n− 1
substituting links and one flipping link (or open link). The substituting links are
those within basic building blocks, and the j-flipping links are those connecting
two embedded WK(n, j). Figure 5 shows a WK-recursive network with n = 4
and t = 2.

The Recursive Dual-Net and Its Applications 369

Table 1. CR of recursive dual-net and the other networks

Network Number of nodes Node-degree Diameter
p-ary, 3-cube p3 6 3p/2

n-cube 2n n n

CCC(n) n ∗ 2n 3 2n + �n/2� − 2
DC(n) 22n−1 n 2n

WK(n, t) nt n 2t − 1
RDNk(B) nk = (2n0)2

k

/2 d0 + k 2k ∗ D0 + 2k+1 − 2
Network CR

p-ary, 3-cube (6 + 3p/2)/3 lg p

n-cube 2
CCC(n) (2n + �n/2� + 1)/(n + lg n)
DC(n) 3n/(2n − 1)

WK(n, t) (n + 2t − 1)/ lg nt

RDNk(B) (d0 + k + Dk)/ lg nk

Fig. 5. A WK-recursive network WK(4, 2)

5 Samples of RDN for Massively Parallel Computers

In this section, we describe some selections of base-networks such that the corre-
sponding recursive dual-net will be the candidate as an effective interconnection
network for MPPs of different sizes. A good choice for the base-network is p-ary,
q-cube. The p-ary, q-cube has many nice properties and is suitable as an inter-
connection network for parallel computers of small sizes. For example, a 5-ary,
2-cube or a 3-ary, 3-cube can be easily built into a 2D or 3D chip. The second
choice for the base-network is a WK-recursive network with n = 4 and t = 2
or 3. The nature of WK-recursive network makes it easily to be implemented
on a 2D chip. The selection of value k for recursive dual-net depends on the
sizes of the MPPs. For the MPPs of large-scale (thousands of nodes), k = 1 is a

370 Y. Li, S. Peng, and W. Chu

good choice, while for the MPPs of very large-scale (millions of nodes), we can
set k = 2 that applies dual-construction twice. We list below a few examples
of the RDN as candidates of interconnection networks for MPPs based on the
discussion above.

1. MPPs of large-scale:
– RDN1(B(25)), where B(25) is a 5-ary, 2-cube: Since n0 = 25, d0 = 4,

and D0 = 4, this network has 1250 nodes. its node-degree, diameter and
cost ratio are 5, 10, and 1.46, respectively.

– RDN1(B(27)), where B(27) is a 3-ary, 3-cube: Since n0 = 27, d0 = 6,
and D0 = 3, this network has 1458 nodes. its node-degree, diameter and
cost ratio are 7, 8 and 1.43, respectively.

– RDN1(B(16)), where B(16) is a WK(4, 2): Since n0 = 16, d0 = 4, and
D0 = 3, this network has 512 nodes. its node-degree, diameter and cost
ratio are 5, 8 and 1.44, respectively.

2. MPPs of very large-scale:
– RDN2(B(25)), where B(25) is a 5-ary, 2-cube: This network has 3,125,000

nodes. its node-degree, diameter and cost ratio are 6, 22 and 1.30,
respectively.

– RDN2(B(27)), where B(27) is a 3-ary, 3-cube: This network has 4,251,528
nodes. its node-degree, diameter and cost ratio are 8, 18 and 1.18,
respectively.

– RDN2(B(16)), where B(16) is a WK(4, 2): This network has 524,288
nodes. its node-degree, diameter and cost ratio are 6, 18 and 1.26,
respectively.

Table 2. CR for MPPs of large-scale

Network n d D CR

10-ary 3-cube 1,000 6 15 2.11
10-cube 1,024 10 10 2.00
CCC(8) 2,048 3 18 1.91

WK(8, 3) 512 8 7 1.67
DC(6) 2,048 6 12 1.64

RDN1(B(25)) 1,250 5 10 1.46
RDN1(B(27)) 1,458 7 8 1.43
RDN1(B(16)) 512 5 8 1.44

We show the comparisons of the RDN and other networks for MPPs of large-
scale and very large-scale in Table 2 and Table 3, respectively. It can be seen
from the tables that the RDN with properly selected base-networks are superior
to other networks.

The Recursive Dual-Net and Its Applications 371

Table 3. CR for MPPs of very large-scale

Network n d D CR

100-ary 3-cube 1,000,000 6 150 7.83
20-cube 1,048,576 20 20 2.00
CCC(16) 1,048,576 3 38 2.05
WK(8, 7) 2,097,152 8 127 6.43
DC(11) 2,097,152 11 22 1.57

RDN2(B(25)) 3,125,000 6 22 1.30
RDN2(B(27)) 4,251,528 8 18 1.18
RDN2(B(16)) 524,288 6 18 1.26

Finally, concerning the physical layout of an MPP with recursive dual-net, it
can be described briefly as follows. The base-network that is a 5-ary, 2-cube, or
a 3-ary, 3-cube, or an WK(4, 2) can be built on a 2D or 3D chip. The MPP of
large-scale that contains clusters of level 1 can be packed into a dual-rack that
connects to sets of clusters face-to-face. The MPP of very large-scale can be built
and displayed in a big hall with dual-racks connected through cables. With the
advance of technologies, the above configuration of an MPP with the recursive
dual-net might become a reality.

6 An Efficient Routing Algorithm in RDN

The problem of finding a path from a source s to a destination t and forwarding
a message along the path is known as the basic routing problem. In this section,
we present efficient algorithms for the basic routing in RDN.

In order to describe the routing algorithm, we first give a presentation for
RDNk(B) that provides an unique ID to each node in RDNk(B). Let the IDs
of nodes in B, denoted as ID0, be i, 0 ≤ i ≤ n0 − 1. The IDk of node u in
RDNk(B) for k > 0 is a triple (u0, u1, u2), where u0 is a 0 or 1, u1 and u2
belong to IDk−1. We call u0, u1, and u2 typeID, clusterID, and nodeID of u,
respectively.

More specifically, IDi, 1 ≤ i ≤ k, can be defined recursively as follows:
IDi = (b, IDi−1, IDi−1), where b = 0 or 1. The ID of a node u in RDNk(B)
can also be presented by an unique integer i, 0 ≤ i ≤ (2n0)2

k

/2 − 1, where i is
the lexicographical order of the triple (u0, u1, u2). For example, the ID of node
(1, 1, 2) in RDN1(B) is 1 ∗ 32 + 1 ∗ 3 + 2 = 14. It can be verified easily that the
definition is consistent with the definition of the recursive dual-net in Section 2.

With this ID presentation, (u, v) is a cross-edge of level k in RDNk(B) iff
u0 �= v0, u1 = v2, and u2 = v1.

Assume that a routing algorithm for the base network B is available. The
proposed routing algorithm that routes node u to node v in RDNk(B) for k > 0
is a recursive one. If u and v are in the same cluster of level k then just call itself

372 Y. Li, S. Peng, and W. Chu

for k − 1. Otherwise, we assume that u and v has distinct typeID (for the case
u0 = v0, we simply route u to w via a cross-edge of level k then we treat w as
u). We route u to u′ with u′

2 = v1 and v to v′ with v′2 = u1 inside the clusters of
level k where u and v belong to. This can be done by recursive calls for k − 1.
Then we can route u′ to v′ in 1 hop since there is a cross-edge of level k from u′

to v′. The proposed routing algorithm is described formally as Algorithm 1.

Algorithm 1: RDN routing(RDNk(B), u, v)
begin

if k = 0 then RDN routing(RDN(m, 0), u, v)
else

Case 1:u0 = v0 and u1 = v1

RDN routing(RDNk−1
u0,u1(B), u2, v2);

/* RDNk−1
u0,u1(B) is the cluster with typeID = u0

and clusterID = u1. */
Case 2: u0 	= v0

RDN routing(RDNk−1
u0,u1(B), u2, v1);

u′ = (u0, u1, v1);
RDN routing(RDNk−1

v0,v1(B), v2, u1);
v′ = (v0, v1, u1);
connect u′ and v′ via a cross-edge of level k;

Case 3: u0 = v0 and u1 	= v1

route u to w via the cross-edge of level k;
route node w to node v as in Case 2;

endif
end

Example (also see Fig. 6):
k = 2 :

u = (u0, u1, u2) = (0, (0, 0, 0), (0, 0, 0))
v = (v0, v1, v2) = (1, (1, 2, 2), (0, 2, 2))
u0 = 0, u1 = (0, 0, 0), u2 = (0, 0, 0)
v0 = 1, v1 = (1, 2, 2), v2 = (0, 2, 2)
u0 �= v0 (Case 2, cross-edge):
u′ = (u0, u1, v1) = (0, (0, 0, 0), (1, 2, 2))
v′ = (v0, v1, u1) = (1, (1, 2, 2), (0, 0, 0))
u2 = (0, 0, 0) → v1 = (1, 2, 2), see k = 1 (1)
v2 = (0, 2, 2) → u1 = (0, 0, 0), see k = 1 (2)

k = 1 (1): in cluster (0, (0, 0, 0), ∗)
u = (u0, u1, u2) = (0, 0, 0)
v = (v0, v1, v2) = (1, 2, 2)
u0 = 0, u1 = 0, u2 = 0
v0 = 1, v1 = 2, v2 = 2
u0 �= v0 (Case 2, cross-edge):

The Recursive Dual-Net and Its Applications 373

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(0, (0, 0, 0), *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(0, (1, 2, 2), *)

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

(1, (0, 0, 0), *) (1, (1, 2, 2), *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

(0, 0, *) (0, 1, *) (0, 2, *)

(1, 0, *) (1, 1, *) (1, 2, *)

Fig. 6. Routing in RDN2(B)

u′ = (u0, u1, v1) = (0, 0, 2)
v′ = (v0, v1, u1) = (1, 2, 0)
u2 = 0 → v1 = 2, (Case 1, k = 0)
v2 = 2 → u1 = 0, (Case 1, k = 0)

k = 1 (2): in cluster (1, (1, 2, 2), ∗)
u = (u0, u1, u2) = (0, 2, 2)
v = (v0, v1, v2) = (0, 0, 0)
u0 = 0, u1 = 2, u2 = 2
v0 = 0, v1 = 0, v2 = 0
u0 = v0 and u1 �= v1 (Case 3)
w = (w0, w1, w2) = (1, 2, 2)
Let u = w, then do similarly in k = 1 (1).

Theorem 2. In RDNk(B), routing from source s to destination t can be done
in at most 2k ∗D0+2k+1−2 steps, where D0 is the diameter of the base network.

Proof. The correctness of the algorithm 1 can be proved easily by induction on k.
The worst-case for the length of the routing path is Case 3. In Case 3, the length
of routing path d(u, v) satisfies the inequality d(u, v) ≤ d(w, w′) + d(v, v′) + 2
for k > 0, where d(w, w′) ≤ Dk−1 and d(v, v′) ≤ Dk−1. Therefore, we have
d(u, v) ≤ 2k ∗ D0 + 2k+1 − 2, where D0 is the diameter for the base network. ❏

374 Y. Li, S. Peng, and W. Chu

7 Conclusion

In this paper, we described a universal network, recursive dual-net, that can be
used as an effective interconnection network of an MPP with very large scale
(having millions of nodes). If the base-network is properly selected, the recursive
dual-net has many attractive properties including small and flexible node-degree,
short diameter, recursive structure, and efficient routing algorithms. We studied
the topological properties of the recursive dual-net. We also described an efficient
routing algorithm in RDNk(B) for k > 0. To design efficient algorithms for
collective communications, parallel prefix computation, sorting, and numerical
computations in recursive dual-net are certainly worth of the further research.
The other direction of the future work includes the study of architectural aspects
of the proposed network.

References

1. Adiga, N.R., Blumrich, M.A., Chen, D., Coteus, P., Gara, A., Giampapa, M.E., Hei-
delberger, P., Singh, S., Steinmacher-Burow, B.D., Takken, T., Tsao, M., Vranas,
P.: Blue gene/l torus interconnection network. IBM Journal of Research and De-
velopment 49(2/3), 265–276 (2005),
http://www.research.ibm.com/journal/rd/492/tocpdf.html

2. Aki, S.G.: Parallel Computation: Models and Methods. Prentice-Hall, Englewood
Cliffs (1997)

3. Beckman, P.: Looking toward exascale computing, keynote speaker. In: Interna-
tional Conference on Parallel and Distributed Computing, Applications and Tech-
nologies (PDCAT 2008), University of Otago, Dunedin, New Zealand, December 2
(2008)

4. Chen, G.H., Duh, D.R.: Topological properties, communication, and computation
on wk-recursive networks. Networks 24(6), 303–317 (1994)

5. Ghose, K., Desai, K.R.: Hierarchical cubic networks. IEEE Transactions on Parallel
and Distributed Systems 6(4), 427–435 (1995)

6. Leighton, F.T.: Introduction to Parallel Algorithms and Architectures: Arrays,
Trees, Hypercubes. Morgan Kaufmann, San Francisco (1992)

7. Li, Y., Peng, S.: Dual-cubes: a new interconnection network for high-performance
computer clusters. In: Proceedings of the 2000 International Computer Symposium,
Workshop on Computer Architecture, ChiaYi, Taiwan, December 2000, pp. 51–57
(2000)

8. Li, Y., Peng, S., Chu, W.: Efficient collective communications in dual-cube. The
Journal of Supercomputing 28(1), 71–90 (2004)

9. Preparata, F.P., Vuillemin, J.: The cube-connected cycles: a versatile network for
parallel computation. Commun. ACM 24, 300–309 (1981)

10. Saad, Y., Schultz, M.H.: Topological properties of hypercubes. IEEE Transactions
on Computers 37(7), 867–872 (1988)

11. TOP500. Supercomputer Sites (June 2008), http://top500.org/
12. Varma, A., Raghavendra, C.S.: Interconnection Networks for Multiprocessors

and Multicomputers: Theory and Practice. IEEE Computer Society Press,
Los Alamitos (1994)

13. Vicchia, G., Sanges, C.: A recursively scalable network vlsi implementation. Future
Generation Computer Systems 4(3), 235–243 (1988)

http://www.research.ibm.com/journal/rd/492/tocpdf.html
http://top500.org/

Parallelization Strategies for Mixed
Regular-Irregular Applications on

Multicore-Systems

Gudula Rünger and Michael Schwind

Department of Computer Science,
Chemnitz University of Technology, Germany
{ruenger,schwi}@informatik.tu-chemnitz.de

Abstract. Scientific simulation codes often exhibit a mixed structure
of regular and irregular data accesses. Since the organization of data ac-
cesses has a large influence on the overall performance of parallel code, a
careful planning of parallelism is required. In this article, we consider a
mixed regular-irregular particle simulation code and investigate several
parallelization strategies for multicore architectures consisting of several
multicore processors in a shared memory system. The interaction of ir-
regular and regular data accesses are the specific challenge for a cache
optimized parallel multicore-code. We present performance experiments
on three different multicore systems and show that a mixture of paral-
lelization techniques for irregular and regular applications leads to the
best performance.

1 Introduction

Many codes from scientific computing combine irregular and regular features.
Examples are particle simulation codes which have a natural irregular behavior
caused by a non-predictive movements of particles. Due to the computational de-
mands these simulation codes require parallelism to deliver simulation results in a
reasonable timescale. For pure irregular as well as pure regular computation pat-
tern there are well-known parallelization strategies for a good data distribution
and cache utilization leading to a good performance. However, these strategies
are complementary and for a specific mixed irregular-regular algorithm a specific
parallel implementation has to be determined. In this article, we consider a par-
allel simulation algorithm with an internal loop nest with irregular and regular
access pattern in the different loops. Specifically, we investigate parallelization
strategies leading to a good cache utilization on parallel multicore platforms.

Recent multicore systems offer a cost effective way to execute parallel simula-
tion algorithms. These systems consist of several multicore processors which can
access a shared memory. Each multicore processor consists of several cores and
a common memory with several cache levels. Altogether a shared memory par-
allel system with a hierarchical memory results. To achieve a good performance
for a parallel application, the parallel program has to be designed such that the
memory hierarchy is exploited. Program parts accessing the same or neighboring

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 375–388, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

376 G. Rünger and M. Schwind

data elements should be performed on cores accessing the same cache. However,
spatial or temporal locality of data accesses are difficult to achieve for mixed
irregular-regular algorithms.

The scientific algorithm we consider in this paper is a particle simulation for a
Lennard-Jones fluid [6]. This application code executes a sequence of time steps.
Within each time step the algorithm computes the reference trajectory, the tan-
gent space and an orthogonalization step. The execution of the tangent space
consists of a nested loop with mixed irregular-regular data accesses. In an earlier
article [7], we have investigated transformations on this nested loop for the se-
quential and parallel implementation on distributed memory high performance
computers. In this article, we consider shared memory multicore machines and
use OpenMP for the implementation. Our focus in this paper is a cache opti-
mized implementation exploiting the memory hierarchy. The starting point for
the parallelization is the best sequential algorithm from [7]. The contribution of
this article is the design of different parallelization strategies for shared mem-
ory machines, the mapping of data and computation to cores of the multicore
system, and the investigation of the performance on recent multicore systems.
Performance tests have been performed on three multi-core systems, an AMD
Opteron System without shared cache, an AMD Opteron System, where 4 cores
share a level 3 cache, and an Intel XEON System, where 2 cores share a second
level cache.

The rest of the article is organized as follows. Sections 2 describes the simula-
tion algorithm. Section 3 introduces different parallelization strategies. Section 4
presents performance experiments. Section 5 discusses related work and Section
6 concludes.

2 Mixed Regular-Irregular Simulation Program

Mixed regular-irregular computation structures occur in many advanced simu-
lation algorithms from scientific computing. One class of simulation algorithms
are many-particle system, for which a large variety of different algorithms and
implementations exists. The many-particle codes differ in the physical model, the
numerical method used for the computer program and the data, which reflect
the different aspects to be simulated. The mixed regular-irregular simulation pat-
tern usually stems from the movement of particles and the varying interactions
of particles on the one hand and the accesses to data stored in a fixed order on
the other hand. In both, a sequential or parallel implementation, the data stor-
age and the calculation of varying interactions has to be organized carefully to
avoid a large overhead when calculation interaction in consecutive time steps on
fixed data layouts. The memory hierarchy of a specific machine and the cache
utilization is the challenging task. The data information of the many-particle
simulation and the amount of data plays a crucial role to achieve efficiency.

In this article, we consider a many-particle simulation with N particles based
on a Lennard-Jones system in d dimensions [11]. This physical model belongs
to the short range particle simulations so that in the numerical simulation the
interaction of particles with a distance larger than a predefined cut-off radius
is treated as zero. Thus, interactions do not occur between all particles but

Parallelization Strategies for Mixed Regular-Irregular Applications 377

only between particles within a certain area. An interaction between particles
corresponds to a calculation on the data stored for the two interacting particles.
Due to the movement of particles, the interaction partner of a particle may
change in each time step since particles leave the area within the cutoff radius
of this particle. The interaction partners are stored in a specific data structure,
called the interaction list, which is updated after each time step. The specific
simulation code is a statistical molecular dynamic method which determines the
reference trajectory of particles in the phase space. This leads to a very large set
of data of size 2dN × 2d to be stored for each particle. The data of all particles
are stored in two two-dimensional arrays a and p of size 2dN × d. The array
p holds positions and the array a holds accelerations later used to update the
positions. Typical numbers for d and N are d = 3 and N between 100 − 1000.
We concentrate on the main loop of the computation of tangent space dynamics
which suffers most from the the mixed regular-irregular computation pattern.
This code has the form

Algorithm 1. Basic sequential code
begin
for i = 1 to N do
for each j ∈ interaction_list(i) do

calculation of data of size 2dN in a loop k = 1, . . . , 2dN

end

Algorithm 2. Sequential code with block data accesses
begin

for w = 1 to 2dN/s do1
for i = 1 to N do2
for each j ∈ interaction_list(i) do3
-computation of constant values4
for k = (w − 1) · s + 1 to w · s do5
computation of interaction6

end

In a previous investigation, we have shown that a transformed computation pat-
tern and a reorganized data storage leads to much higher performance. The code
structure is given in Algorithm 2 and is the starting point for an implementa-
tion on multicore systems. The code structure results from the original code by
a loop exchange of the loop over the particles and the loop over the data for
each partner as well as a blocking of data. The data are stored in blocks of size
s so that each block contains 2dN · s data. Each data block contains d · s data
for each of the N particles, see Figure 1 for an illustration.

378 G. Rünger and M. Schwind

Fig. 1. Data layout for the 2dN × 2d arrays a and p

The loop in line 1 visits the blocks of data, the loop in line 2 visits each
particle and its interactions in line 3, and the loop in line 5 visits the data
in each block. For a sequential implementation, the blocked version leads to
a good cache utilization since entire blocks fit into cache and calculation for
interactions occur only within the same column block. This code structure also
leads to good performance for a parallel implementation on distributed memory
machines by distributing blocks of data. In this article, we investigate parallel
implementations with OpenMP on shared memory systems and especially on
multicore architectures, see Section 3.

3 Parallel Implementation on Multicore Systems

In this section, we present several parallel implementation strategies for the
mixed regular-irregular code on multicore systems. The multicore systems have
a hierarchical structure consisting of multicore processors accessing a shared
memory, where each multicore processor has several cores and a cache hierarchy
consisting of L1, L2, and L3 caches. Figure 2 depicts three different multicore
architectures used in this article. The systems are also described in Table 2.

The parallel programs use OpenMP for a threaded shared memory implemen-
tation but differ in the decomposition into tasks which are assigned to threads.
The number of threads corresponds to the number of cores in the multicore sys-
tem. Furthermore, a thread is mapped to a specific core in the system so that the
different implementation strategies can be investigated. This is done by mapping
a thread name t=omp_get_thread_num() to a specific operating system thread.

3.1 Parallelization with Respect to Data Blocks

In the first parallel program, the parallel tasks are formed according to a de-
composition into data blocks. The starting point is the sequential code shown in
Algorithm 2, which already exhibits an outer loop over panels of data, see also
Figure 1. Each of the panels of data consists of 2dN · s elements of the array
a and p where s is the number of columns of the panel. The parallel program
version uses the OpenMP #pragma omp for for the parallelization of the loop
over loop parameter w; the pseudocode is given in Algorithm 3. The loop bodies
of the w-loop are mapped to the cores for execution in a round-robin way to
achieve load balance.

Parallelization Strategies for Mixed Regular-Irregular Applications 379

Fig. 2. Different Multicore Architectures: AMD Opteron (Barcelona and Egypt), Intel
XEON (Cloverstown)

Algorithm 3. Parallel code with regular parallelization
Procedure begin

#pragma omp for schedule(static,1)
for w = 1 to 6N/s do1
for i = 1 to N do2
for each j ∈ interaction_list(i) do3
-compute of constant values4
for k = (w − 1) · s + 1 to w · s do5
-computation of interaction6

end

The data for this program are stored in the so-called numa allocation which
means that the data are stored in the parts of the memory directly connected to
the processors. The data are accessible by all processors, but the data accesses
of a processor to the local parts of the shared memory connected to processors
are faster, which is exploited here. To make sure that the data accesses of the
cores of a processor access the data stored at this processor, blocks of data
panels are mapped to processors in a round robin way. For a number of cores
nc of a processor, blocks of nc data panels are mapped to processors. The static
scheduling with blocksize 1 assigns exactly those computations on panels to a
core for which the processor owns the data in its parts of shared memory. For
static scheduling with a larger blocksize b, the mapping of data panels to memory
parts uses b · nc data panels in a round robin way.

The parallel implementation parallelizing the w-loop can be considered as a
parallelization of the regular part of the application. The entire irregular com-
putation on data within the same panel are executed on the same core so that
irregular data accesses cause no conflict between different cores.

380 G. Rünger and M. Schwind

3.2 Parallelization with Respect to Data Blocks Variation

The order of interactions in line 3 of Algorithm 3 is unspecified. In [7] we have
presented how this loop can be modified to use a different order of interactions
and have shown that this reordering of interaction transformation results in a
higher performance of the computations. here, we consider this transformation
too, and replace the loops of line 2 and 3 with a the version described as algorithm
5 of [7].

3.3 Parallelization with Respect to Particle Interactions Using
Barriers

In the next parallelization strategy, the interactions of the w-loop over the data
panels are executed one after another and the internal irregular calculation are
performed in parallel by all cores of the system. The data are distributed over
all memories on per page (4KByte) basis in a round robin way.

For each iteration of the w-loop, the interactions between the particles are
calculated in a recursive way on boxes which are subvolumes of the entire volume
of the simulation. The subvolumes of the entire d-dimensional volume are divided
into d-dimensional subvolumes according to the dimensions so that n1 × n2 ×
. . .×nd smaller boxes result. The computation of particle interactions in the same
box are combined and form one task which is mapped to a single thread. Also,
the computation of particle interactions between particles in two different boxes
form one task to be computed by a single thread. These tasks can be described by
an interaction matrix S of size n×n, where (i, j), i, j = 0, . . . , n−1, denotes the
interactions of particles pi in subvolume i with particles pj in subvolume j. Since
interactions are computed only once, the upper triangular part of S describes all
interactions. The diagonal of S contains the interactions (i, i), i = 0, . . . , n − 1,
of the particles within the same subvolume.

The mapping of tasks (i, j) to cores, denoted by numbers c ∈ {0, . . . , p − 1},
is done in a recursive way, as described in the pseudocode in Algorithm 4. The
interaction matrix is subdivided recursively into 4 submatrices of equal quadratic
size. The number of subdivisions depends on the number of cores p (where we
assume p < n); for a number p = 2k there are k subdivisions. The tasks are
mapped to cores such that no conflict of data accesses results and, thus, no
locking is needed. The mapping of tasks (i, j) to cores c ∈ T = {0, . . . , p − 1} is
done within the recursive subdivision.

Algorithm 4 shows the mapping of the tasks to cores in an example. Different
colors indicate the different cores. The number of subvolumes 128 comes from
a decomposition of a 3-dimensional volume into 4 × 4 × 8 boxes in the x−, y−
and z− direction. The linear numbering of the subvolumes is done according to
these dimensions.

3.4 Parallelization with Respect to Particle Interactions Using
Locks

The next parallel program is a modification of Algorithm 4. It is possible to
replace the barrier synchronization from the previous algorithm by using lock

Parallelization Strategies for Mixed Regular-Irregular Applications 381

synchronization. Lock synchronization uses for each subvolume u a lock-variable
locku of type omp_lock_t. This lock-variable protects the data of all particles
residing in the subvolume u. To use lock synchronization in Algorithm 4, all
barrier synchronizations have been removed; lock-statements have been inserted
before and unlock-statements after line 2 in Alg. 4. The lock-statements lock both
lock-variables locki and lockj , if i and j are different. If i and j are identical only
one lock-variable is used. The unlock-statements release both locki and lockj or
only one lock-variable, if i and j are identical.

3.5 Combined Parallelization with Barriers

A third parallelization strategy considered is a combination of Algorithm 3 and
Algorithm 4. Each iteration from the outer w − loop is assigned in a round
robin way to a multicore-CPU and not to cores as it was done in Alg. 3. The
irregular computations are parallelized according to Algorithm 4. On machines
with memories directly connected to the processor (numa), we allocate each
panel on that multicore-CPU which computes the panel.

Fig. 3. Interaction matrix S of size 128 × 128. A 3-dimensional volume is subdivided
into 4 × 4 × 8 boxes. The different shaded boxes denote different cores executing the
interactions between boxes.

382 G. Rünger and M. Schwind

Algorithm 4. Parallel code with irrregular parallelization
Procedure begin
input : S 2-dimensional interaction matrix
input : w block to compute
input : T 1-dimensional index set of core numbers
if size of S is 1 × 1 then1
/* subspace has 1 block with (i, j) ∈ S */
compute interactions in Sij on block w by Processor Ts using Alg. 5 ;2

else3
decompose S into four quadratic submatrices S1, S2, S3, S44
if #T = 1 then5
/* size of thread space is one sequential computation */
compute_interactions(S1, T)6
if S2 includes entries below the main diagonal then7

compute_interactions(S2, T)8

compute_interactions(S3, T)9
if S4 is then10

compute_interactions(S4,T)11

else12
/* Parallel decomposition */
decompose T into T1 and T213
compute_interactions(S1, T1)14
compute_interactions(S3,T2)15
Barrier synchronization on all processors in T16
if S includes no entries below the main diagonal then17

compute_interactions(S2,T1)18
compute_interactions(S4,T2)19

else20
if S2 includes entries below the main diagonal then21

compute_interactions(S2, T)22

if S4 includes entries below the main diagonal then23
compute_interactions(S4,T)24

Barrier synchronization on all processors in T25

end

Algorithm 5. Inner regular loop of Algorithm 4
Procedure begin
input : S set of interactions to compute
input : w block of matrix on which to compute
for each (i, j) ∈ S do1
-compute of constant values2
for k = (w − 1) · s + 1 to w · s do3
-computation of interaction4

end

Parallelization Strategies for Mixed Regular-Irregular Applications 383

3.6 Combined Parallelization with Locks

The parallelization from the previous section uses Algorithm 4 for the paral-
lelization of the irregular loop. As in Section 3.4 the barrier synchronization can
be removed using lock-synchronization. In contrast to Section 3.3, where every
subvolume is protected by one lock-variable, in this parallelization there exist
L = p × n lock-variables, where p is the number of multicore-CPUs and n the
number of subvolumes, resulting in a two-dimensional array of lock-variables.
Each row of lock-variables is assigned to a multicore-CPU. Each column of lock-
variables protects the same subvolume but for different panels (different iteration
of the w-loop). The cores of each multicore-CPU calculate the same panel w and
synchronize the updates to different parts of the panel associated to different
subvolumes using the lock-variables of the multicore-CPU they belong to.

3.7 Array Privatization

This parallelization technique uses a buffer of size 2dN · s for each core of the
system. In this parallelization the outer w-loop of Alg. 2 remains a sequential
loop. The irregular computations in Line 2 and Line 3 are parallelized. For the
parallelization, both loops in line 2 and line 3 are merged to get one loop iterating
on a list of tuples. Each tuple stores the interaction between two particles. Each
core computes an equal amount of interactions. For each interaction computed on
a core the core updates only its private buffer after all interactions are calculated
for one panel. The cores accumulate their private results and store it in panel w.

4 Experiments

The efficiency of the different parallel algorithms has been tested on three differ-
ent multi-core systems with the characteristics described in Table 2; the names
are given according to the codenames of the manufacture. Figures 4, 5 and 6
present performance results in GFlop/s for N = 1000 particles on the test sys-
tems with a varying number of cores used. The size of the data read and written
in all Figures is 2 × 2dN × dN = 2 × 6000 × 3000. This data is stored into
panels with a blocksize s = 40 (Fig. 4), s = 80 (Fig. 5), and s = 120 (Fig. 6).
A description of the curves is given in Table 1. The algorithms from Sections
3.3, 3.4, 3.5 and 3.6 use a decomposition of the simulation volume into 4× 4× 4
boxes along the x-, y-, z-axis; the total number of boxes is 64. In Figure 7 the

Table 1. Description of curves in Figures 4, 5 and 6

diagram label Section diagram label Section
data-blocks 3.1 mixed-barrier 3.5

data-blocks-irr 3.2 mixed-locks 3.6
irr-barrier 3.3 repl-bufs 3.7
irr-locks 3.4

384 G. Rünger and M. Schwind

Table 2. Multicore systems used for the experiments

Codename Egypt Barcelona Clovertown
Processor AMD Opteron 870 AMD Opteron 8347 Intel XEON E5345
Frequency 2.0 GHz 1.9GHz 2.33 GHz
GFlop/s per Core (Total) 4 (64) 7.6 (121.6) 9.32 (74.56)
Number of CPU 8 4 2
Cores per CPU (Total) 2 (16) 4 (16) 4 (8)
Architecture Numa Numa Bus

Shared-Cache Level 3 (2MB) Level2 (2MB)
- shared by 4 Cores shared by 2 Cores

Table 3. Maximum performance in GFlop/s

Algorithm Egypt Barcelona Clovertown
s=40 s=80 s=120 s=40 s=80 s=120 s=40 s=80 s=120

data-blocks 1.2 1.3 1.0 2.5 2 1.5 2.8 2.9 3.1
data-blocks-irr 13.7 11.4 13.9 18 16.9 20.4 17.46 15.74 18.5
irr-barrier 9.4 10.4 12.44 15.38 13.7 18 11.7 13.6 14.65
irr-locks 7.0 8.6 9.6 11.2 11 14.7 10.1 10.8 12.1
mixed-barrier 10.5 13.6 17.6 19.54 18.98 22.2 13.8 16.79 18.88
mixed-locks 10.5 13.9 14.6 17.33 18.02 21.1 13.3 15.1 16.9
repl-bufs 3.5 3.5 4.0 5.56 5.6 6.3 6 5.6 6.06

number of misses for the case s = 120 on the system Cloverstown is shown, the
other systems show a similar behavior.

The diagrams show that on all platforms the Algorithm from Section 3.1
(data-blocks) has the lowest performance. The performance does not increase
when more cores are used. The highest performance for the Algorithm from
Section 3.1 was measured on the system Cloverstown with 3.1GFlop/s. The al-
gorithm from Section 3.2 (data-blocks-irr) scales well with an increasing number
of processors. The highest performance of 20.4GFlop/s is achieved on the sys-
tem Barcelona with an block size of s = 120. This shows that the parallelization
is not responsible for the low performance of the algorithm from Section 3.1
since both algorithms use a parallelization of the outer w-loop. The difference of
both algorithms is that the algorithm from Section 3.2 uses a different order of
computing interactions, which tries to increase locality of memory accesses. The
number of L1-, L2- and TLB-misses in Figure 7 substantiate this, because the
Algorithm from Section 3.1 has the most misses in all three cases.

The performance of the algorithm from Section 3.3 (irr-barrier) increases with
an increasing number of cores. The best performance was measured on the sys-
tem Barcelona with 18GFlop/s. The corresponding version without barrier syn-
chronization using locks from Section 3.4 (irr-locks) has a lower performance. It
reaches at its maximum 14.7GFlop/s on the system Barcelona. We think that
the algorithm using locks has a lot more synchronization points. This is the case
because the algorithm use a lock for every access to a subvolume; the algorithm
using barrier synchronization calculates the interaction of subvolumes without
synchronization, when the number of processors in the processor sets T is one.

Parallelization Strategies for Mixed Regular-Irregular Applications 385

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Egypt

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Barcelona

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

G
F

lo
p
/s

number of threads

Cloverstown

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

Fig. 4. Performance in GFlops/s for block
size s = 40 on the systems Egypt,
Barcelona and Cloverstown

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Egypt

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Barcelona

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-lock
repl-bufs

 2

 4

 6

 8

 10

 12

 14

 16

 18

 1 2 3 4 5 6 7 8

G
F

lo
p
/s

number of threads

Cloverstown

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

Fig. 5. Performance in GFlops/s for block
size s = 80 on the systems Egypt,
Barcelona and Cloverstown

386 G. Rünger and M. Schwind

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Egypt

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks
repl-bufs

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12 14 16

G
F

lo
p
/s

number of threads

Barcelona

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 1 2 3 4 5 6 7 8

G
F

lo
p
/s

number of threads

Cloverstown

data-blocks
data-blocks-irr
irr-barrier
irr-locks
mixed-barrier
mixed-locks.
repl-bufs

Fig. 6. Performance in GFlops/s for block
size s = 120 on the systems Egypt,
Barcelona and Cloverstown

 1e+07

 1e+08

 1e+09

 1 2 3 4 5 6 7 8

m
is

s
e
s

number of threads

L1-misses Cloverstown

data-blocks
data-blocks-irr
mixed-barrier
mixed-locks.
irr-barrier
irr-locks.
repl-bufs

 1e+08

 1e+09

 1e+10

 1 2 3 4 5 6 7 8

m
is

s
e
s

number of threads

L2-misses Cloverstown

data-blocks
data-blocks-irr
irr-barrier
irr-locks.
mixed-barrier
mixed-locks.
repl-bufs

 100000

 1e+06

 1e+07

 1e+08

 1 2 3 4 5 6 7 8

m
is

s
e
s

number of threads

TLB-misses Cloverstown

data-blocks
data-blocks-irr
irr-barrier
irr-locks.
mixed-barrier
mixed-locks.
repl-bufs

Fig. 7. L1-,L2-Cache and TLB-Cache
misses on system Cloverstown for block
size s = 120 on the system Cloverstown

Parallelization Strategies for Mixed Regular-Irregular Applications 387

The algorithm using a combination of parallelizing the regular loop and the
irregular loop from Section 3.5 has the best performance of 22.2GFlop/s on the
system Barcelona. This algorithm has the lowest L1-, L2- and TLB-cache misses
for s = 120, which shows that this strategy is most appropriate to reduce cache
misses on our multicore-systems. Mainly the L2-misses are reduced compared
to the Algorithm from Section 3.1, since the L2-Cache is a shared cache on the
system Cloverstown, the reduced number of misses might come from the sharing
of the common L2-cache on this system. The corresponding Algorithm using
locks from Section 3.6 has lower performance.

The algorithm from Section 3.7 (repl-bufs) has a little better performance
than the algorithm from Section 3.1. The number of misses are higher than the
number of misses of the Algorithms from Sections 3.2 to 3.3. The use of the extra
buffer introduce extra memory accesses which might introduce the cache-misses.

A comparison of all three block-sizes shows that the algorithm from Section 3.5
has its highest performance with a blocksize of s = 120. The two smaller blocksizes
give a smaller performance. The reason is that the regular computation in the inner
loop of Algorithm 5 have a higher performance when the blocksize is higher.

5 Related Work

Due to the importance of many-body simulations as a tool for scientists there are
numerous articles about sequential and parallel algorithms and implementations.
Many articles consider distributed memory machines like [10] and [5] to mention
only two.

Another class of research which is related to this article are parallel algorithms
for irregular reduction. An irregular reduction is the accumulation of updates to
objects, where the order of the updates is not known at compile time. The update
to data elements in the irregular loop of Alg. 2 can be considered as an irregular
reduction. A good survey on parallelizing techniques algorithms for irregular
reductions is given in [4]. They present a scheme named Local Write for parallel
irregular reductions targeting distributed shared memory (DSM) systems. We
do not consider this scheme for parallelizing the irregular loop, since it would
considerable increase the amount of floating point computations. A technique
called array privatization [1] is used in Section 3.7; we have adapted it for our
problem of mixed irregular-regular problems. However, none of the mentioned
work addresses the problem of a tightly coupled regular-irregular computations
on modern multicore architectures with caches.

Locality optimization techniques are closely related to this article, they in-
crease the efficiency of memory access using caches efficiently. [3] presents a
technique to increase locality for n-body simulations. It sorts particles into boxes
similar to Algorithm 3.3. In [4], a hierarchical graph partitioning algorithm is
presented and applied to the reordering of particles in arrays to increase spatial
locality. They compare their algorithm with different locality transformations.
The article [8] presents different algorithms for reordering irregular loops based
on hypergraphs. They present metrics to select different reordering techniques.

In [2] and [9] mixed regular and irregular computations are considered. In
both articles a problem is addressed for which first a regular computation and
afterwards an irregular computation is performed. Thus, the problems differ from

388 G. Rünger and M. Schwind

our application algorithm with tightly coupled irregular and regular
computations.

6 Conclusion

In this article, we have presented different parallelization strategies for a many-
body simulation program. The algorithm has the special property of tightly
coupled regular and irregular computations. The experiments on recent multi-
core platforms from AMD and Intel have been shown that an algorithm which
parallelizes regular and irregular computations gives the best performance.

Acknowledgement

We are very grateful to Günter Radons from the Department of Physics, Chem-
nitz University of Technology for providing the code for calculating many-body
interactions.

References

1. Blume, B., Eigenmann, R., Faigin, K., Grout, J., Hoeflinger, J., Padua, D., Pe-
tersen, P., Pottenger, B., Rauchwerger, L., Tu, P., Weatherford, S.: Polaris: The
next generation in parallelizing compilers. In: Proc. of the Workshop on Languages
and Compilers for Parallel Computing, pp. 10–1. Springer, Heidelberg (1994)

2. Chakrabarti, D.R., Shenoy, N., Choudhary, A.N., Banerjee, P.: An Efficient Uni-
form Run-time Scheme for Mixed Regular-irregular Applications. In: Proc. of the
Int. Conf. on Supercomputing, Melbourne, Australia, July 1998, pp. 61–68 (1998)

3. Crummey, J.M., Whalley, D., Kennedy, K.: Improving Memory Hierarchy Perfor-
mance for Irregular Applications Using Data and Computation Reorderings. Int.
J. Parallel Program. 29(3), 217–247 (2001)

4. Han, H., Tseng, C.-W.: Improving Locality for Adaptive Irregular Scientific Codes.
In: Midkiff, S.P., Moreira, J.E., Gupta, M., Chatterjee, S., Ferrante, J., Prins, J.F.,
Pugh, B., Tseng, C.-W. (eds.) LCPC 2000. LNCS, vol. 2017, pp. 173–188. Springer,
Heidelberg (2001)

5. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J.
Comp. Phys. 117, 1–19 (1995)

6. Radons, G., Yang, H.L.: Static and Dynamic Correlations in Many-Particle Lya-
punov Vectors, nlin.cd/0404028, and references therein

7. Rünger, G., Schwind, M.: Cache optimization for mixed regular and irregular com-
putations. In: Proc. of the POHLL 2008 Workshop on Performance Optimization
for High-Level Languages and Libraries (POHLL 2008). IEEE, Los Alamitos (2008)

8. Strout, M.M., Hovland, P.D.: Metrics and models for reordering transformations.
In: Proc. of the The Second ACM SIGPLAN Workshop on Memory System Per-
formance (MSP), June 8, pp. 23–34 (2004)

9. Ujaldon, M., Zapata, E.L.: Efficient Resolution of Sparse Indirections in Data-
Parallel Compilers. In: Proc. of the Int. Conf. on Supercomputing, Barcelona,
Spain, July 1995, pp. 117–126 (1995)

10. Warren, M.S., Salmon, J.K.: A parallel hashed Oct-Tree N-body algorithm. In:
Supercomputing 1993: Proceedings of the 1993 ACM/IEEE conference on Super-
computing, pp. 12–21. ACM, New York (1993)

11. Yang, H., Radons, G.: Lyapunov instabilities of Lennard-Jones fluids. Phys. Rev.
E 71(3), 036211 (2005)

Performance Improvement of Multimedia
Kernels by Alleviating Overhead Instructions on

SIMD Devices

Asadollah Shahbahrami1,2 and Ben Juurlink1

1 Computer Engineering Laboratory,
Delft University of Technology, 2628 CD Delft, The Netherlands

{a.shahbahrami,b.h.h.juurlink}@tudelft.nl
2 Department of Computer Engineering, Faculty of Engineering,

University of Guilan, Rasht, Iran

Abstract. SIMD extension is one of the most common and effective
technique to exploit data-level parallelism in today’s processor designs.
However, the performance of SIMD architectures is limited by some con-
straints such as mismatch between the storage and the computational
formats and using data permutation instructions during vectorization.
In our previous work we have proposed two architectural modifications,
the extended subwords and the Matrix Register File (MRF) to allevi-
ate the limitations. The extended subwords, uses four extra bits for
every byte in a media register and it provides additional parallelism.
The MRF allows flexible row-wise as well as column-wise access to the
register file and it eliminates data permutation instructions. We have
validated the combination of the proposed techniques by studying the
performance of some multimedia kernels. In this paper, we analysis each
proposed technique separately. In other words, we answer the following
questions in this paper. How much of the performance gain is a result
of the additional parallelism? and how much is due to the elimination
of data permutation instructions? The results show that employing the
MRF and extended subwords separately obtains the speedup less than
1 and 1.15, respectively. In other words, our results indicate that us-
ing either extended subwords or the MRF techniques is insufficient to
eliminate most pack/unpack and rearrangement overhead instructions
on SIMD processors. The combination of both techniques, on the other
hand, yields much more performance benefits than each technique.

1 Introduction

Multimedia extensions are one of the most common approach to exploit Data-
Level Parallelism (DLP) in multimedia applications on General-Purpose Proces-
sors (GPPs). With this approach, multiple data items are packed into a wider

This research was supported in part by the Netherlands Organization for Scientific
Research (NWO).

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 389–407, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

390 A. Shahbahrami and B. Juurlink

media register which can be processed using a Single Instruction and Multiple
Data (SIMD) instruction. These extensions can improve the performance of sev-
eral multimedia applications. Nevertheless, they have some limitations. First,
there is a mismatch between the computational format and the storage format
of multimedia data. Because of this many data type conversion instructions are
used in SIMD implementations. Second, existing SIMD computational instruc-
tions cannot efficiently exploit DLP of the 2D and interleaved multimedia data.
In order to vectorize 2D and interleaved multimedia data, many rearrangement
instructions are needed.

In our previous work, two architectural enhancements, the Matrix Register
File (MRF) and extended subwords techniques have been proposed to overcome
the above limitations [16]. Extended subwords use registers that are wider than
the packed format used to store the data. Extended subwords avoid data type
conversion instructions. The MRF allows to load data stored consecutively in
memory to a column of the register file, where a column corresponds to corre-
sponding subwords of different registers. This technique avoids the need of data
rearrangement instructions. The MMX multimedia extension [12] has been mod-
ified by the proposed techniques that was called the Modified MMX (MMMX)
architecture. The MMMX architecture have been validated by studying the per-
formance of several important multimedia kernels. Our results show that the
performance benefits by employing both proposed techniques is higher than just
using the extended subwords technique. In other words, those multimedia ker-
nels which employ the MRF and extended subwrods techniques obtain more
speedups than just using the extended subwords technique. However, we did
not determine how much of the performance gain is a result of employing the
extended subwords technique and how much is due to the employing the MRF.
Our goal in this paper is to analysis each technique separately.
We make the following contributions compared to other works.

– We have applied the proposed techniques on a wide range of multimedia
kernels.

– In order to determine the performance benefits of each proposed technique,
we analysis each technique separately. In other words, we have enhanced the
MMX architecture with extended subwords (MMX + ES) and with an MRF
(MMX + MRF) separately.

– Our results indicate that using either extended subwords or the MRF tech-
niques is insufficient to eliminate most pack/unpack and rearrangement over-
head instructions. In addition, using the MRF is both unuseful and causes
performance loss. The MMMX architecture that employs both proposed
techniques, on the other hand, yields much more performance benefits.

This paper is organized as follows. In Section 2, we present background in-
formation related to the multimedia extensions and their performance bottle-
necks. In Section 3, we describes the MMMX architecture that features the
extended subwords and the MRF techniques. We discuss several multimedia ker-
nels selected for performance evaluation in Section 4 followed by performance

Performance Improvement of Multimedia Kernels 391

evaluation in Section 5. We analysis each proposed technique separately in
Section 6. Finally, conclusions are given in Section 7.

2 Background

We present a short explanation of the multimedia extensions in this section.

2.1 GPPs Enhanced with Multimedia Extension

In order to increase the performance of multimedia applications, GPPs vendors
have extended their ISAs. These ISA extensions use the Subword Level Paral-
lelism (SLP) concept [10]. A subword is a smaller precision unit of data contained
within a word. In SLP, multiple subwords are packed into a word and then whole
word is processed. SLP is used in order to exploit DLP with existing hardware
without sacrificing the general-purpose nature of the processor. In SLP, a regis-
ter is viewed as a small vector with elements that are smaller than the register
size. This requires small data types and wide registers.

The first multimedia extensions are Intel’s MMX [12], Sun’s Visual Instruc-
tion Set (VIS) [17], Compaq’s Motion Video Instructions (MVI) [3], MIPS Digi-
tal Media eXtension (MDMX) [8], and HP’s Multimedia Acceleration eXtension
(MAX) [10]. These extensions supported only integer data types and were intro-
duced in the mid-1990’s. 3DNow [1] was the first to support floating-point media
instructions. It was followed by Streaming SIMD Extension (SSE) and SSE2 from
Intel [13]. Motorola’s AltiVec [4] supports integer as well as floating-point media
instructions. In addition, high-performance processors also use SIMD processing.
An excellent example of this is the Cell processor [7] developed by a partnership
of IBM, Sony, and Toshiba. Cell is a heterogeneous chip multiprocessor consisting
of a PowerPC core that controls eight high-performance Synergistic Processing
Elements (SPEs). Each SPE has one SIMD computation unit that is referred to
as Synergistic Processor Unit (SPU). Each SPU has 128 128-bit registers. SPUs
support both integer and floating-point SIMD instructions. Table 1 summarizes
the common and distinguishing features of existing multimedia instruction set
extensions [15].

2.2 Performance Bottlenecks

SIMD architectures generally provide two kinds of SIMD instructions. The first
are the SIMD computational instructions such as arithmetic instructions. The
second are the SIMD overhead instructions that are necessary for data move-
ment, data type conversions, and data reorganization. The latter instructions
are needed to bring data in a form amenable to SIMD processing. These instruc-
tions constitute a large part of the SIMD codes. For example, Ranghanathan
et al. [14] indicated that the SIMD implementations of the MPEG/JPEG codecs
using the VIS ISA require on average 41% overhead instructions such as pack-
ing/unpacking and data re-shuffling. In addition, the dynamic instructions count

392 A. Shahbahrami and B. Juurlink

Table 1. Summary of available multimedia extensions. Sn and Un indicate n-bit signed
and unsigned integer packed elements, respectively. Values n without a prefix U or S
in the last row, indicate operations work for both signed and unsigned values. 1 Note
that 68 instructions of the 144 SSE2 instructions operate on 128-bit packed integer in
XMM registers, wide versions of 64-bit MMX/SSE integer instructions.

GPP with

Multimedia Extension

ISA Name AltiVec/VMX MAX-1/2 MDMX MMX/ VIS MMX/ SSE SSE2 SPU ISA

3DNow SIMD

Company Motorola/IBM HP MIPS AMD Sun Intel Intel Intel IBM/Sony/Toshiba
Instruction set Power PC PARISC2 MIPS-V IA32 P. V.9 IA32 IA64 IA64 -
Processor MPC7400 PA RISC R1000 K6-2 Ultra P2 P3 P4 Cell

PA8000 Sparc
Year 1999/2002 1995 1997 1999 1995 1997 1999 2000 2005
Datapath width 128-bit 64-bit 64-bit 64-bit 64-bit 64-bit 128-bit 128-bit 128-bit
Size of register file 32x128b (31) /32x64b 32x64b 8x64b 32x64b 8x64b 8x128b 8x128b 128x128b
Dedicated or shared with Dedicated Int. Reg. FP Reg. Dedicated FP Reg. FP Reg. Dedicated Dedicated Dedicated
Integer data types:
8-bit 16 - 8 8 8 8 8 16 16
16-bit 8 4 4 4 4 4 4 8 8
32-bit 4 - - 2 2 2 2 4 4
64-bit - - - - - - - 2 2
Shift right/left Yes Yes Yes Yes Yes Yes Yes Yes Yes
Multiply-add Yes No No Yes Yes Yes Yes Yes Yes
Shift-add No Yes No No No No No No No
Floating-point Yes No Yes Yes No No Yes Yes Yes
Single-precision 4x32 - 2x32 4x16 - - 4x32 4x32 4x32

2x32
Double-precision - - - 1x64 - - - 2x64 2x64
Accumulator No No 1x192b No No No No No
of instructions 162 (9) 8 74 24 121 57 70 1441 213
of operands 3 3 3-4 2 3 2 2 2 2/3/4
Sum of absolute-differences No No No Yes Yes No Yes Yes Yes
Modulo addition/ 8, 16, 32 16 8, 16 8, 16 16, 32 8, 16 8, 16 8, 16 8, 16
subtraction 32 32, 64 32, 64 32,64 32,64
Saturation addition/ U8, U16, U32 U16, S16 S16 U8, U16 No U8, U16 U8, U16 U8, U16 -
subtraction S8, S16, S32 S8, S16 S8, S16 S8, S16 S8, S16 -

of the EEMBC consumer benchmarks running on the Philips TriMedia TM32
shows that over 23% of instructions are data alignment instructions such as
pack/merge bytes (16.8%) and pack/merge half words (6.5%) [5]. The execution
of this large number of the SIMD overhead instructions decreases the perfor-
mance and increases pressure on the fetch and decode steps.

To illustrate where overhead instructions are needed in the SIMD implemen-
tations of multimedia kernels, we explain it in more detail. Data reordering
and data type conversion instructions are used after loading the input data and
before storing the outputs. For example, in case of the RGB-to-YCbCr color
space conversion, 35 and 6 instructions are needed in each loop iteration to con-
vert 8 pixels from the band interleaved format to the band separated format
and unpack the packed byte data types to packed 16-bit word data types, re-
spectively. In addition, 12 instructions are needed to pack the unpacked results
and store in memory. On the other hand, the number of SIMD computational
instructions is 78. This means that the number of overhead instructions is sig-
nificant compared to the number of SIMD computational instructions. As an-
other example, matrix transposition is a very common operation in multimedia

Performance Improvement of Multimedia Kernels 393

applications. 2D multimedia algorithms such as the 2D Discrete Cosine Trans-
form (DCT) consists of two 1D transforms called horizontal and vertical trans-
forms. The horizontal transform processes the rows while vertical transform
processes the columns. SIMD vectorization of the vertical transform is straight-
forward, since the corresponding data of each column are adjacent in memory.
Therefore, several columns can be processed without any rearranging of the sub-
words. For horizontal transform on the other hand, corresponding elements of
adjacent rows are not continuous in memory (in a row-major storage format). In
order to employ SIMD instructions, data rearrangement instructions are needed
to transpose the matrix. This step takes a significant amount of time. For exam-
ple, transposing an 8 × 8 block of bytes, requires 56 MMX/SSE instructions, if
the elements are two bytes wide, then 88 instructions are required. Consequently,
it is important either to eliminate, to alleviate, or to overlap these instructions
with other SIMD computational instructions.

3 MMMX Architecture

The MMMX architecture is MMX enhanced with extended subwords, the MRF,
and a few general-purpose SIMD instructions that are not present in the MMX
and SSE extensions. The employed techniques in the MMMX architecture are
discussed briefly in the following section. More detail about this architecture can
be found in [15].

3.1 Extended Subwords

Image and video data is typically stored as packed 8-bit elements, but interme-
diate results usually require more than 8-bit precision. As a consequence, most
8-bit SIMD ALU instructions are wasted. In the SIMD extensions, the choice is
either to be imprecise by using saturation operations at every stage, or to loose
parallelism by unpacking to a larger format. Using saturation instructions pro-
duces inaccurate results. This is because saturation is usually used at the end of
computation. It is more precise to saturate once at the end of the computation
rather than at every step of the algorithm. For instance, adding three signed
8-bit values 120 + 48 − 10, using signed saturation at every step produces 117
and using signed saturation at the last step produces 127.

SIMD architectures support different packing, unpacking, and extending in-
structions to convert the different data types to each other. For example, the
MMX/SSE architectures provide packss{wb,dw,wb} and punpck {hbw,hwd,hdq,
lbw,lwd,ldq} instructions for data type conversions.

To avoid the data type conversion overhead and to increase parallelism, ex-
tended subwords are employed. This means that the registers are wider than the
data loaded into them. Specifically, for every byte of data, there are four extra
bits. This implies that MMMX registers are 96 bits wide, while MMX has 64-bit
registers. Based on that, the MMMX registers can hold 2× 48-bit, 4× 24-bit, or
8 × 12-bit elements.

394 A. Shahbahrami and B. Juurlink

3.2 The Matrix Register File

The ability to efficiently rearrange subwords within and between registers is cru-
cial to performance. To overcome this problem, a matrix register file is employed,
which allows data loaded from memory to be written to a column of the register
file as well as to a row register. In the MMMX architecture, the MRF provides
parallel access to 12-, 24-, and 48-bit subwords of the row registers that are
horizontally located. This is similar to conventional SIMD architectures, which
provide parallel access to 8-, 16-, and 32-bit data elements of media registers.
In addition, the MRF provides parallel access to 12-bit subwords of the column
registers that are vertically arranged.

Figure 1(a) depicts a block diagram of a register file with one write port (Port
C) and two read ports (Port A and Port B). The input and output of this block
diagram is based on eight 96-bit registers. Figure 1(b) illustrates the combination

muxmuxmuxmuxmux

muxmuxmuxmuxmux

muxmuxmuxmuxmuxmuxmux

muxmux

muxmux

.

.

7 7 567 7 4 7 3 7 2 7 1 7 0

6 7 6 6 5 6 4 6 3 6 2 6 1 6

010203040506070

0

wise access

.

.

.

.

.

.

9
6

 m
u

x
 8

x
1

.

12−bit ALU

Port B

3

3

row− or column−

A
 9

6
−

b
it
 p

a
rt

it
io

n
e
d

read register 2

control signals

A
L
U

read data 1

read data 2

3

3
Data 1

Port B

Port A

96

96
96

write register
3

read register 1

read register 2

wise access
row− or column−

write signal

Port C
Data write data

Data 2

A
 M

a
tr

ix
 R

e
g
is

te
r

F
ile

(b)

(a)

3mxc0 3mxc1 3mxc2 3mxc3 3mxc4 3mxc5 3mxc6 3mxc7

12−bit

96−bit

96 mux 2x 1

Port C

write register

row− or
column wise
access

3mx0

3mx1

3mx7

write signal

0 1 2 ... 7 Subwords

12−bit

96−bit

A
 4

:1
6

 d
e

c
o

d
e

r

96−bit

.

.

96−bit

96−bit

9
6

 m
u

x
 8

x
1

3

Port A

96−bit

96−bit
.

96−bit

96−bit

96−bit

96−bit

read register 1

Fig. 1. (a) A register file with eight 96-bit registers, 2 read ports, and 1 write port, (b)
the implementation of two read ports and one write port for a matrix register file with
8 96-bit registers as well as a partitioned ALU for subword parallel processing

Performance Improvement of Multimedia Kernels 395

of the MRF with a 96-bit partitioned ALU for the MMMX architecture. The
partitioned ALUs have been designed based on the subword adder. Multiplexers
have been used in subword boundaries to propagate or prevent the subword
carries in the carry chain [6]. There are eight 12-bit adders. These adders operate
independently for 12-bit data. They can also be coupled to behave an four pairs
of two adders to perform four 24-bit operations, or combined into two groups of
four adders for two 48-bit format.

3.3 MMMX Instruction Set Architecture

The MMMX architecture has different load/store, ALU, and multiplication in-
structions, which some of them are discussed in the remainder of this section.

The fld8u12 instruction loads eight unsigned bytes from memory and zero-
extends them to a 12-bit format in a 96-bit MMMX register. The fld8s12 in-
struction, on the other hand, loads eight signed bytes and sign-extends them to
a 12-bit format. These instructions are illustrated in Figure 2 for little endian.
The fld16s12 instruction loads eight signed 16-bit, packs them to signed 12-bit

3mx0 0 03 0 02 0 01 F a7 0 2a F aB 0 13 F FF

R1

fld8s12 3mx0, (R1)

0xFF 0x13 0xaB 0x2a 0xa7 0x01 0x02 0x03 . . .Memory

fld8u12 3mx1, (R1)

03 0 0 01 a7 0 2a aB 0 13 FF0 0 0 002

F

3mx1

Fig. 2. The fld8s12 instruction loads eight signed bytes and sign-extends them to 12-
bit values, while the fld8u12 instruction loads eight unsigned bytes and zero-extends
them to 12-bit values

format, and writes in a row register. This instruction is useful for those kernels
that their input data can be represented by the signed 12-bit, while they use
the signed 16-bit storage format. For example, in the DCT kernel, the input
data is the signed 9-bit format. It uses the signed 16-bit storage format, while
it uses the signed 12-bit for computational format. The instruction fldc8u12
(“load-column 8-bit to 12-bit unsigned”) is used to load a column of the MRF.

Load instructions automatically unpack and store instructions automatically
pack and saturate, as illustrated for the load instructions in Figure 2. Store
instructions automatically saturate (clip) and pack the subwords. For example,
the instruction fst12s8 saturates the 12-bit signed subwords to 8-bit unsigned
subwords before storing them to memory.

Most MMMX ALU instructions are direct counterparts of MMX/SSE in-
structions. For example, the MMMX instructions fadd{12,24,48} (packed ad-
dition of 12-, 24-, 48-bit subwords) and fsub{12,24,48} (packed subtraction
of 12-, 24-, 48-bit subwords) correspond to the MMX instructions padd{b,w,d}

396 A. Shahbahrami and B. Juurlink

mm,mm/mem64 and psub{b,w,d} mm,mm/mem64, respectively. MMMX, however,
does not support variants of these instructions that automatically saturate the
results of the additions to the maximum value representable by the subword data
type. They are not needed because as was mentioned the load instructions auto-
matically unpack the subwords and the store instructions automatically pack and
saturate. In other words, the MMMX architecture does not support saturation
arithmetic.

In several media kernels all elements packed in a register need to be summed,
while in other kernels adjacent elements need to be added. Rather than providing
different instructions for summing all elements and adding adjacent elements,
it has been decided to support adding adjacent elements only but for every
packed data type. Whereas summing all elements would probably translate to a
multicycle operation, adding adjacent elements is a very simple operation that
can most likely be implemented in a single cycle.

Another operation that has been found useful in implementing of several mul-
timedia kernels such as the (I)DCT kernels is the possibility to negate some or all
elements in a packed register. The instructions fneg{12,24,48} 3mx0, 3mx1,
imm8 negate the 12-, 24-, or 48-bit subwords of the source operand if the corre-
sponding bit in the 8-bit immediate imm8 is set. If subwords are 24- or 48-bit,
the four or six higher order bits in the 8-bit immediate are ignored.

The MMMX architecture supports three kinds of multiplication instructions.
The first are full multiplication instructions fmulf{12,24}. For example, the
fmulf12 instruction multiplies each 12-bit subword in 3mx0 with the correspond-
ing subwords in 3mx1 and produces eight 24-bit results. This means that each
result is larger than a subword. Therefore, the produced results are kept in
both registers. The second kind of multiplication instructions are the partitioned
multiply-accumulate instructions fmadd{12,24}. These instructions perform the
operation on subwords that are either 12- or 24-bit, while the MMX instruction
pmaddwd performs the MAC operation on subwords that are 16-bit. The MAC
operation is an important operation in digital signal processing. This instruc-
tion multiplies the eight signed 12-bit values of the destination operand by the
eight 12-bit values of the source operand. The corresponding odd-numbered and
even-numbered subwords are summed and stored in the 24-bit subwords of the
destination operand.

The third type of multiplication is truncation. Truncation is performed by the
fmul{12l,12h,24l,24h} instructions. It means that the high or low bits of the
results are discarded. When n-bit fixed point values are multiplied with fractional
components, the result should be n-bit of precision. Specifically, the instructions
fmul12{l,h} multiply the eight corresponding subwords of the source and des-
tination operands and write the low-order (fmul12l) or high-order (fmul12h)
12 bits of the 24-bit product to the destination operand.

4 Multimedia Kernels

Most of the execution time of multimedia applications is spent in multime-
dia kernels. Therefore, in order to evaluate the proposed techniques, some time

Performance Improvement of Multimedia Kernels 397

Table 2. Summary of multimedia kernels

Multimedia Kernels Description

Matrix transpose Matrix transposition is an important kernel for many 2D media kernels.
Vector/Matrix Multiply Vector/matrix multiply kernel is used in some multimedia standards.
Repetitive Padding In this kernel, the pixel values at the boundary of the video object is

replicated horizontally as well as vertically.
RGB-to-YCbCr Color space conversion, which is usually used in the encoder stage.
Horizontal DCT Horizontal DCT in used in most media standards to process the rows

of images in order to remove spatial redundancy.
Horizontal IDCT Horizontal Inverse DCT is used in the multimedia standards in order

to reconstruct the rows of the transformed images.

Vertical DCT Vertical DCT in used in most media standards to process the columns
of images in order to remove spatial redundancy.

Vertical IDCT Vertical IDCT is used in the multimedia standards in order to recon-
struct the columns of the transformed images.

Add block The add block is used in the decoder, during the block reconstruction
stage of motion compensation.

2 × 2 Haar transform The 2 × 2 haar transform is used to decompose an image into four
different bands.

Inverse 2 × 2 Haar transform The inverse 2 × 2 haar transform is used to reconstruct the original
image from different bands.

Paeth prediction Paeth prediction is used in the PNG standard.
YCbCr-to-RGB Color space conversion, which is usually used in the decoder stage.
SAD function The SAD function, which is used in motion estimation kernel to remove

temporal redundancies between video frames.
SAD function with interpolation The SAD function with horizontal and vertical interpolation is used in

motion estimation algorithm.
SAD function for image histograms The SAD function is used for similarity measurements of image his-

tograms.
SSD function The SSD function, which is used in motion estimation kernel to remove

temporal redundancies between video frames.
SSD function with interpolation The SSD function with horizontal and vertical interpolation is used in

motion estimation algorithm.

consuming kernels of multimedia standards have been considered. Table 2 lists
the media kernels along with a small description. In order to clarify which pro-
posed techniques have been used in SIMD implementations of media kernels,
the presented kernels are divided into two groups. First, kernels that use both
extended subwords and the MRF techniques, for instance, the first six kernels.
Second, kernels that just use extended subwords technique, for example, the rest
of the kernels (twelve kernels).

As was mentioned, the 2D transforms such as (I)DCT are decomposed into
two 1D transforms called horizontal and vertical transforms. In order to increase
DLP in SIMD implementation of vertical transform, the extended subwords
technique is used, while in SIMD implementation of horizontal transform both
proposed techniques are needed in order to increase DLP and also to avoid data
rearrangement instructions.

5 Performance Evaluation

In this section we evaluate the proposed techniques by comparing the per-
formance of the SIMD implementations that employ the SIMD architectural

398 A. Shahbahrami and B. Juurlink

enhancements to the performance of the MMX and SSE implementations on a
single issue processor.

5.1 Evaluation Environment

In order to evaluate the SIMD architectural enhancements, we have used the
sim-outorder simulator of the SimpleScalar toolset [2]. We have synthesized
MMX/SSE and MMMX instructions using the 16-bit annotate field, which is
available in the instruction format of the PISA ISA. More detail about our
extension to the SimpleScalar toolset can be found in [9].

The main objective is to compare the performance of the MMX and SSE ex-
tensions without the proposed techniques to the those extensions with the SIMD
architectural enhancements. The main parameters of the modeled processors are
depicted in Table 3. The latency and throughput of SIMD instructions are set
equal to the latency and throughput of the corresponding scalar instructions.
This is a conservative assumption given that the SIMD instructions perform
the same operation but on narrower data types. The latency and throughput
of SIMD multiplier units are set to 3 and 1 respectively, the same as in the
Pentium 3 processor. The latency of SIMD multiplier units in the Pentium 4
processor is 8 cycles.

Three programs have been implemented by C and assembly languages and
simulated using the SimpleScalar simulator for each kernel. Each program con-
sists of three parts. One part is for reading the image, the second part is the
computational kernel, and the last part is for storing the transformed image. One
program was completely written in C. It was compiled using the gcc compiler
targeted to the SimpleScalar PISA with optimization level -O2. The reading and
storing parts of the other two programs were also written in C, but the second
part was implemented by hand using MMX/SSE and MMMX. These programs
will be referred to as C, MMX, and MMMX for each kernel. All C, MMX, and
MMMX codes use the same algorithms. In addition, the correctness of the MMX
and MMMX codes were validated by comparing their output to the output of C
programs.

The speedup was measured by the ratio of the total number of cycles for the
computational part of each kernel for the MMX implementation to the MMMX
implementation. In order to explain the speedup, the ratio of dynamic number
of instructions has also been obtained. These metrics formed the basis of the
comparative study. Ratio of dynamic number of instructions means the ratio
of the number of committed instructions for the MMX implementation to the
number of committed instructions for the MMMX implementation.

5.2 Performance Evaluation Results

Figure 3 and Figure 4 depict the speedup of MMMX over MMX for media kernels
that either use extended subwords technique or use both proposed techniques,
respectively. The results have been obtained for one execution of media kernels
on a single block on the single issue processor. In addition, these figures show

Performance Improvement of Multimedia Kernels 399

Table 3. Processor configuration

Parameter Value

Issue width 1

Integer ALU, SIMD ALU 1

Integer MULT, SIMD MULT 1

L1 Instruction cache 512 set, direct-mapped 64-byte line

LRU, 1-cycle hit, total of 32 KB

L1 Data cache 128 set, 4-way, 64-byte line, 1-cycle

hit, total of 32 KB

L2 Unified cache 1024 set, 4-way, 64-byte line,

6-cycle hit, total of 256 KB

Main memory latency 18 cycles for first chunk, 2 thereafter

Memory bus width 16 bytes

RUU (register update unit) entries 64

Load-store queue size 8

Execution out-of-order

the ratio of committed instructions (MMX implementation over MMMX). Both
figures show that MMMX performs better than MMX for all kernels except SAD.
The speedup in Figure 3 ranges from 0.74 for the SAD kernel to 2.66 for Paeth
kernel. MMMX yields a speedup ranging from 1.10 for the 2D IDCT kernel
to 4.47 for the Transp.(12) kernel in Figure 4. The most important reason why
MMMX improves performance is that it needs to execute fewer instructions than
MMX. In the SAD kernel, on the other hand, MMMX needs to execute more
instructions than MMX. As Figure 3 shows, the ratio of committed instructions
for the SAD kernel is 0.72.

An Special-Purpose psadbw Instruction (SPI) [13] has been used in the MMX
implementation of the SAD function and the SAD function with interpolation,
while in the MMMX implementation this SPI has been synthesized by a few
general-purpose SIMD instructions. Both MMX and MMMX employ 8-way par-
allelism in the SAD function, while MMMX uses more instructions than MMX.
MMX employs both 4- and 8-way parallelism in the SAD function with inter-
polation, which means that it uses many data type conversion instructions. On
the contrary, MMMX always employs 8-way parallelism in the SAD function
with interpolation kernel. This is the reason that the speedup is almost two for
this kernel.

The speedup obtained for the Paeth kernel in Figure 3 is 2.66. The reason
is that intermediate data is at most 10 bits wide and MMMX can, therefore,
calculate the prediction for eight pixels in each loop iteration while MMX com-
putes the prediction for four pixels. The speedups of MMMX over MMX for the
vertical IDCT and 2D IDCT kernels in those figures is less than the speedups for
other kernels. This is because the input data of these kernels is 12-bit and some
intermediate results are larger than 12-bit. Therefore, the MMMX implementa-
tion cannot employ 12-bit functionality (8-way parallel SIMD instructions) all

400 A. Shahbahrami and B. Juurlink

Fig. 3. Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use extended subwords technique
on a single block on the single issue processor

Fig. 4. Speedup of MMMX over MMX as well as the ratio of committed instructions
(MMX over MMMX) for multimedia kernels, which use both proposed techniques on
a single block on the single issue processor

the time but sometimes has to convert to 4 × 24-bit packed data types. The
MMX implementation, on the other hand, is able to use 16-bit functionality all
the time.

The reason why MMMX improves performance by just 20% for the Padding
kernel in Figure 4 is that the MMX implementation employs the special-purpose
pavgb instruction which computes the arithmetic average of eight pairs of bytes.
More precisely, the pavgb instruction is supported in the SSE integer extension
to MMX. MMMX does not support this instruction because with extended sub-
words it offers little extra functionality since it can be synthesized using the
more general-purpose instructions fadd12 and fsar12 (shift arithmetic right on
extended subwords). Nevertheless, because the matrix needs to be transposed
between horizontal and vertical padding MMMX provides a speedup.

The two kernels for which the highest speedups are obtained are the 8 × 8
matrix transpose on 8-bit (Transp.(8)) and 12-bit data (Transp.(12)). If the ma-
trix elements are 8-bit, MMMX can use the MRF to transpose the matrix, while
MMX requires many pack and unpack instructions to realize a matrix transpo-
sition. Furthermore, if the elements are 12-bit (but stored as 16-bit data types),
MMMX is able to employ 8-way parallel SIMD instructions, while MMX can only
employ 4-way parallel instructions. As a result, MMMX improves performance
by more than a factor of 4.47.

Performance Improvement of Multimedia Kernels 401

The average speedup and ratio of committed instructions for kernels that only
use the extended subwords technique are 1.90 and 2.08, respectively, while for
the kernels that use both proposed techniques are 2.05 and 2.56. The reduction
of the dynamic instruction count in Figure 3 is due to extended subwords and in
Figure 4 it is due to extended subwords and the MRF techniques. As a result, the
performance benefits obtained by employing both techniques is higher than just
using the extended subwords technique. Consequently, a part of the performance
benefits is due to extended subwords, which increases DLP and the other part
of the performance improvement is due to the MRF that eliminates the data
rearrangement instructions. In order to clarify how much of the performance
gain is a result of the additional parallelism provided by extended subwords
and how much of it is due to the MRF, we disccuss some examples, horizontal
transform of DCT and 2D DCTin the following section.

6 Analysis of Each Proposed Technique Separately

As already indicated in Table 2, in the SIMD implementations of some kernels
such as the horizontal DCT both proposed techniques have been employed. Con-
sequently, a part of the performance benefits is due to extended subwords, which
increases DLP and the other part of the performance improvement is due to the
MRF that eliminates the data rearrangement instructions. This section discusses
an example, horizontal DCT in order to clarify how much of the performance
gain is a result of the additional parallelism provided by extended subwords and
how much of it is due to the MRF.

6.1 LLM Algorithm to Implement Discrete Cosine Transform

The discrete cosine transform and its inverse are widely used in several image
and video compression applications. JPEG and MPEG partition the input im-
age into 8× 8 blocks and perform a 2D DCT on each block. The input elements
are often either 8- or 9-bit, and the output is an 8 × 8 block of 12-bit 2’s com-
plement data. In this section, we discuss the LLM [11] technique to implement
the DCT.

One of the fastest algorithm to compute the 2D DCT is LLM [11] technique.
This algorithm performs a 1D DCT on each row of the 8 × 8 block followed
by a 1D DCT on each column of the transformed 8 × 8 block. The algorithm
has four stages, the output of each stage is the input of next stage. Figure 5
depicts the data flow graph of this algorithm for 8 pixels using fixed-point
arithmetic.

Four SIMD implementations of the DCT namely, MMX, MMMX, MMX
enhanced with extended subwords, and MMX enhanced with the MRF us-
ing LLM algorithm are explained and then their performance evaluation are
presented.

402 A. Shahbahrami and B. Juurlink

6.2 Four Different SIMD Implementations for Horizontal DCT

In this section different SIMD implementations are discussed.

MMX Implementation: In the MMX implementation of this algorithm, how-
ever, 16-bit functionality (4-way parallelism) has been used because the input
data is either 8- or 9-bit. This means that this kernel needs 16-bit storage format,
while the intermediate results are smaller than 16-bit. Data type conversion in-
structions are not needed because four 16-bit can be loaded from memory to the
four subwords of a media register. Although many rearrangement instructions
are used in this implementation, this implementation exploits 4-way parallelism
in all stages. Figure 6 depicts the MMX/SSE implementation of the first stage of
the LLM algorithm for horizontal DCT. As this figure shows some rearrangement
instructions are required in this implementation.

+
+

+
+ −

−

−
−

+ − −+

+ − + +− −

+−

x1 x7x2 x3 x4 x5 x6x0

a4a3a2a1 a5 a6 a7a0

(a4*(−c2) + a7*c1 + r)>>s

(a4*c1 + a7*c2 + r)>>s
(a5*c3 + a6*c4 + r)>>s
(a5*(−c4) + a6*c3 + r)>>s

(b2*c5 + b3*c6 + r)>>s

(b2*(−c6) + b3*c5 + r)>>s

b0 b1 b2 b3 b4 b5 b6 b7

d0 d1 d2 d3 d4 d5 d6 d7

(d6*c7 + r)>>s
(d5*c7 + r)>>s

X0 X1 X2 X3 X4 X5 X6 X7

Stage 1

Stage 2

Stage 3

Stage 4

Inputs

Outputs

Fig. 5. Data flow graph of 8 pixels DCT using LLM [11] algorithm. The constant
coefficients of c, r, and s are provided for fixed-point implementation.

movq mm0, (dct) ;mm0 =

movq mm3, 8(dct) ;mm3 =

pshufw mm1, mm0,27 ;mm1 =

pshufw mm2, mm3,27 ;mm2 =

paddsw mm0, mm2 ;mm0 =

psubsw mm1, mm3 ;mm1 =

x03 x02 x01 x00

x07 x06 x05 x04

x00 x01 x02 x03

x04 x05 x06 x07

x03+x04 x02+x05 x01+x06 x00+x07

x00-x07 x01-x06 x02-x05 x03-x04

Fig. 6. The MMX/SSE code of the first stage of the LLM algorithm for horizontal
DCT

Performance Improvement of Multimedia Kernels 403

fldc16s12 3mxc0, (dct) ; 3mxc0 =

fldc16s12 3mxc1, 16(dct) ; 3mxc1 =

fldc16s12 3mxc2, 32(dct) ; 3mxc2 =

fldc16s12 3mxc3, 48(dct) ; 3mxc3 =

fldc16s12 3mxc4, 64(dct) ; 3mxc4 =

fldc16s12 3mxc5, 80(dct) ; 3mxc5 =

fldc16s12 3mxc6, 96(dct) ; 3mxc6 =

fldc16s12 3mxc7, 112(dct); 3mxc7 =

fst12s16s 112(dct), 3mx7 ; (mem) =

fmov 3mx7 , 3mx0 ; 3mx7 =

fadd12 3mx0 , 112(dct) ; 3mx0 =

fsub12 3mx7 , 112(dct) ; 3mx7 =

x07 x06 x05 x04 x03 x02 x01 x00

x17 x16 x15 x14 x13 x12 x11 x10

x27 x26 x25 x24 x23 x22 x21 x20

x37 x36 x35 x34 x33 x32 x31 x30

x47 x46 x45 x44 x43 x42 x41 x40

x57 x56 x55 x54 x53 x52 x51 x50

x67 x66 x65 x64 x63 x62 x61 x60

x77 x76 x75 x74 x73 x72 x71 x70

x77 x67 x57 x47 x37 x27 x17 x07

x70 x60 x50 x40 x30 x20 x10 x00

X X X X X X X x00+x07

X X X X X X X x00-x07

Fig. 7. A part of the MMMX implementation for the horizontal DCT algorithm. “X”
denotes to xi0 ± xi7, where 0 ≤ i ≤ 7.

MMMX Implementation: MMMX processes eight rows in one iteration. A
complete 8×8 block is loaded into eight column registers. After that row registers
which have eight subwords are processed. Figure 7 depicts a part of the MMMX
implementation of the LLM algorithm. In this figure, “X” refers to xi0 ± xi7,
where 0 ≤ i ≤ 7. First, eight load column instructions are used to load a complete
8×8 block into column registers. After that two fadd12 and fsub12 instructions
are needed to process 16 pixels simultaneously. In MMX, on the other hand, four
instructions (two pshufw instructions, a paddsw, and a psubsw instructions) are
required to process eight pixels.

MMX Enhanced with Extended Subwords: In MMX enhanced with ex-
tended subwords (MMX + ES), there are eight 12-bit subwords in each me-
dia register. In order to bring these subwords in a form amenable to SIMD
processing, new data permutation instructions such as fshuflh12, fshufhl12,
fshufhh12, fshufll12, and frever12 are needed. This is because of the fol-
lowing reasons. First, there is no shuffle instructions in MMX. MMX performs
data permutation using pack and unpack instructions, while these instructions
are not useful for MMX + ES. Second, there is a pshufw (packed shuffle word)
instruction in SSE that is used for rearrangement of four subwords within a
media register, while MMX + ES has eight subwords.

Figure 8 depicts a part of the horizontal DCT code that has been implemented
by the MMX + ES. In each loop iteration of this implementation eight pixels are
processed, the same as the MMX implementation that was already discussed.

MMX Enhanced with an MRF: In MMX enhanced with an MRF, there are
four 128-bit column registers and eight 64-bit registers the same as MMX. Each

404 A. Shahbahrami and B. Juurlink

fld16s12 mm0, (dct) ;mm0=

frever12 mm2, mm0 ;mm2=

fneg12 mm2, mm2,15;mm2=

fadd12 mm0, mm2 ;mm0=

x7 x6 x5 x4 x3 x2 x1 x0

x0 x1 x2 x3 x4 x5 x6 x7

x0 x1 x2 x3 -x4 -x5 -x6 -x7

x0+x7 x1+x6 x2+x5 x3+x4 x3-x4 x2-x5 x1-x6 x0-x7

Fig. 8. A part of the code for horizontal DCT that has been implemented by MMX
enhanced by extended subwords

fldc16s16 cmm0 , (dct) ; cmm0 =

fldc16s16 cmm1 , 16(dct); cmm1 =

fldc16s16 cmm2 , 32(dct); cmm2 =

fldc16s16 cmm3 , 48(dct); cmm3 =

movq (dct), mm7 ; (mem) =

movq mm7 , mm0 ; mm7 =

paddsw mm0 , (dct) ; mm0 =

psubsw mm7 , (dct) ; mm7 =

x07 x06 x05 x04 x03 x02 x01 x00

x17 x16 x15 x14 x13 x12 x11 x10

x27 x26 x25 x24 x23 x22 x21 x20

x37 x36 x35 x34 x33 x32 x31 x30

x37 x27 x17 x07

x30 x20 x10 x00

x30+x37x20+x27x10+x17x00+x07

x30-x37 x20-x27 x10-x17 x00-x07

Fig. 9. A part of the MMX + MRF implementation of the horizontal DCT algorithm

column register has eight 16-bit subword. Each subword in a column register
corresponds to a subword in a row register. Each load column instruction can
load eight 16-bit pixels into a column register. In addition, Figure 9 depicts a
part of the MMX + MRF implementation of the horizontal DCT algorithm.
There are two loop iterations to process an 8× 8 block. This means that in each
loop iteration, four rows (32 pixels) are processed.

6.3 Experimental Results

Figure 6.3 depicts the speedup of MMX + ES, MMX + MRF, and MMMX over
MMX for one execution of an 8 × 8 horizontal DCT on a single issue processor.
In addition, this figure shows the ratio of committed instructions (MMX over
the other architectures). The speedup of MMX + ES is 1.15, while the speedup
of MMX + MRF is less than 1. These results indicate that using either extended
subwords or the MRF techniques is insufficient to eliminate most pack/unpack
and rearrangement overhead instructions. In addition, using the MRF is both
unuseful and causes performance loss. The MMMX architecture that employs
both proposed techniques, on the other hand, yields much more performance
benefits. Its speedup is 1.52.

In order to explain the behavior of Figure 6.3, Figure 6.3 shows the number
of SIMD computation, SIMD overhead, SIMD ld/st, and scalar instructions for
the four different architectures: MMX, MMX + MRF, MMX + ES, and MMMX

Performance Improvement of Multimedia Kernels 405

Fig. 10. Speedup of the MMX + ES, MMX + MRF, and MMMX over MMX as well as
ratio of committed instructions for an 8×8 horizontal DCT on a single issue processor

Fig. 11. The number of SIMD computation, SIMD overhead, SIMD ld/st, and scalar
instructions in four different architectures, MMX, MMX + MRF, MMX + ES, and
MMMX for an 8 × 8 horizontal DCT kernel

for an 8 × 8 horizontal DCT kernel. As this figure shows, the total number of
instructions in the MMX + MRF is almost the same as MMX. This means
that the former architecture cannot reduce the total number of instructions.
The MMX + MRF reduces the number of SIMD overhead instructions, but it
increases the number of SIMD ld/st instructions. This is because the MMX +
MRF transposes four rows in each iteration and this causes that all eight 64-bit
registers are filled. In order to use some of the filled registers for intermediate
computations, they are stored and loaded in memory hierarchy and this increases
the number of SIMD ld/st instructions. The latency of SIMD ld/st instructions
is almost more than the latency of the SIMD overhead instructions. This is the
main reason why the MMX + MRF has a performance penalty. MMX + ES, on
the other hand, reduces the total number of instructions. The ratio of committed
instructions is 1.23 as shown in Figure 6.3.

The extended subwords technique reduces the number of SIMD computation
and SIMD ld/st instructions more than the MRF technique, while the latter tech-
nique reduces the number of SIMD overhead and scalar instructions more than
the former technique. Consequently, these experimental results indicate that
using either of these techniques is insufficient to mitigate SIMD computation,
SIMD overhead, SIMD ld/st, and scalar instructions. The MMMX architecture
that employs both proposed techniques reduces the total number of instructions
much more than MMX + MRF and MMX + ES.

406 A. Shahbahrami and B. Juurlink

7 Conclusions

SIMD architectures suffer from the mismatch between the storage and the com-
putational formats of multimedia data and using data permutation instructions
during vectorization. We already proposed two architectural enhancement, the
extended subwords and the Matrix Register File (MRF) to alleviate these limi-
tations. The extended subwords provide additional parallelism by avoiding data
tyep conversion instructions. The MRF eliminates data permutation instruc-
tions. The MMX architecture has been modified by the proposed techniques
that was called the Modified MMX (MMMX) architecture. In this paper, we
validated the MMMX architecture on a wide range of multimedia kernels. In
addition, in order to determine the performance benefits of each proposed tech-
nique, we analysised each technique separately. The results showed that employ-
ing the MRF (MMX + MRF) and extended subwords (MMX + ES) separately
obtain the speedup less than 1 and 1.15, respectively. This is because the total
number of instructions in the MMX + MRF is almost the same as MMX. This
means that the former architecture cannot reduce the total number of instruc-
tions. The MMX + MRF reduces the number of SIMD overhead instructions,
but it increases the number of SIMD ld/st instructions. MMX + ES, on the
other hand, reduces the total number of instructions. The results indicate that
using either extended subwords or the MRF techniques is insufficient to eliminate
most pack/unpack and rearrangement overhead instructions. The combination
of both techniques should be employed in SIMD implementation.

References

1. Advanced Micro Devices Inc. 3DNow Technology Manual (2000)
2. Austin, T., Larson, E., Ernst, D.: SimpleScalar: An Infrastructure for Computer

System Modeling. IEEE Computer 35(2), 59–67 (2002)
3. Bannon, P., Saito, Y.: The Alpha 21164PC Microprocessor. In: IEEE Proc. Com-

pcon 1997, February 1997, pp. 20–27 (1997)
4. Diefendorff, K., Dubey, P.K., Hochsprung, R., Scales, H.: AltiVec Extension to

PowerPC Accelerates Media Processing. IEEE Micro 20(2), 85–95 (2000)
5. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Ap-

proach, 3rd edn. Morgan Kaufmann, San Francisco (2002)
6. Huang, L., Lai, M., Dai, K., Yue, H., Shen, L.: Hardware Support for Arithmetic

Units of Processor with Multimedia Extension. In: Proc. IEEE Int. Conf. on Mul-
timedia and Ubiquitous Engineering, April 2007, pp. 633–637 (2007)

7. IBM. Synergistic Processor Unit Instruction Set Architecture (January 2007)
8. Jennings, M.D., Conte, T.M.: Subword Extensions for Video Processing on Mobile

Systems. IEEE Concurrency 6(3), 13–16 (1998)
9. Juurlink, B., Borodin, D., Meeuws, R.J., Aalbers, G.T., Leisink, H.: The Sim-

pleScalar Instruction Tool (SSIT) and the SimpleScalar Architecture Tool (SSAT),
http://ce.et.tudelft.nl/~shahbahrami/

10. Lee, R.B.: Subword Parallelism with MAX-2. IEEE Micro 16(4), 51–59 (1996)
11. Loeffler, C., Ligtenberg, A., Moschytz, G.S.: Practical Fast 1-D DCT Algorithms

With 11 Multiplications. In: Proc. Int. Conf. on Acoustical and Speech and Signal
Processing, May 1989, pp. 988–991 (1989)

http://ce.et.tudelft.nl/~shahbahrami/

Performance Improvement of Multimedia Kernels 407

12. Peleg, A., Weiser, U.: MMX Technology Extension to the Intel Architecture. IEEE
Micro 16(4), 42–50 (1996)

13. Raman, S.K., Pentkovski, V., Keshava, J.: Implementing Streaming SIMD Exten-
sions on the Pentium 3 Processor. IEEE Micro 20(4), 47–57 (2000)

14. Ranganathan, P., Adve, S., Jouppi, N.P.: Performance of Image and Video Pro-
cessing with General Purpose Processors and Media ISA Extensions. In: Proc. Int.
Symp. on Computer Architecture, pp. 124–135 (1999)

15. Shahbahrami, A.: Avoiding Conversion and Rearrangement Overhead in SIMD
Architectures. PhD thesis, Delft University of Technology (September 2008)

16. Shahbahrami, A., Juurlink, B., Vassiliadis, S.: Versatility of Extended Subwords
and the Matrix Register File. ACM Transactions on Architecture and Code Opti-
mization (TACO) 5(1) (May 2008)

17. Tremblay, M., Michael 0’Connor, J., Narayanan, V., He, L.: VIS Speeds New Media
Processing. IEEE Micro 16(4), 10–20 (1996)

Large Matrix Multiplication on a Novel Heterogeneous
Parallel DSP Architecture

Joar Sohl, Jian Wang, and Dake Liu

Department of Electrical Engineering, Linköping University, 581 83 Linköping, Sweden
{joar,dake,jianw}@isy.liu.se

Abstract. This paper introduces a novel master-multi-SIMD on-chip multi-core
architecture for embedded signal processing. The parallel architecture and its
memory subsystem are described in this paper. We evaluate the large size matrix
multiplication performance on this parallel architecture and compare it with a
SIMD-extended data parallel architecture. We also examine how well the new ar-
chitecture scales for different numbers of SIMD co-processors. The experimental
results show that the ePUMA1 architecture’s memory subsystem can effectively
hide the data access overhead. With its 8-way SIMD data path and multi-SIMD
parallel execution, the ePUMA architecture improves the performance of matrix
multiplication with a speedup of 45x from the conventional SIMD extension.

Keywords: ePUMA, matrix multiplication, parallel DSP, SIMD, vector memory,
permutation.

1 Introduction

Parallel computing has been used in embedded signal processing for several decades
to meet the increasing demand of computing power. Particularly, massive parallelism is
of much importance for streaming DSP processors to achieve real-time processing on
large volume streaming data[1].

One kind of data parallel architecture is the SIMD extension which is used in ARM’s
Media Extensions[2] and PowerPC’s AltiVec[3]. It improves processing capability for
streaming media applications while still offering low power consumption. The SIMD
extensions also simplify software development by providing a single tool-chain and
processing core. Another parallel architecture known as VLIW[4] has also been proved
to be an industrial success by TI’s DaVinci and ADI’s TigerShark. The VLIW pro-
cessors take advantages of Instruction Level Parallelism (ILP) and efficiently use the
hardware resources to improve the application performance. However, both the SIMD
based and the VLIW based architectures have shown their bottlenecks in today’s em-
bedded systems. These systems are characterized by high performance and real-time
requirements as well as power and cost constraints. The SIMD extensions’ drawback is
due to its data access overhead for instructions such as vector load, shuffle, pack, and
unpack, which becomes an obstacle to the performance enhancement [5]. The VLIW
architecture has disadvantages at providing power-efficient and cost-effective embed-
ded processing[6]. Moreover, both of these two parallel architectures fail to scale to

1 ePUMA: embedded Parallel DSP processor architecture with Unique Memory Access.

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 408–419, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 409

even higher performance demanding applications such as high definition video codec,
baseband signal processing in communication base-stations, and radar signal process-
ing. Recently, a new trend of master-multi-SIMD on-chip multi-core architectures has
emerged in high performance parallel DSP design, for example the CELL processor
from STI. The Cell architecture provides high performance processing for a wide range
of applications. It has one master processor extended by eight SIMD co-processors
aimed at data-intensive processing. Each co-processor is assigned a local memory and
a DMA controller. The interconnection of these processors is through the Cell Element
Interconnect Bus (EIB), which consists of four ring buses to provide high throughput at
low cost[7].

The ePUMA project is carried out at the Computer Engineering Division of the
Department of Electrical Engineering at Linköping University. This project aims to
develop a novel master-multi-SIMD parallel embedded DSP processor for real-time
high performance computing with low power consumption and low silicon cost. The
goal will be achieved by maximally hiding the data access and control overhead of the
parallel architecture. This project has design challenges that include a power efficient
memory subsystem with the highest possible throughput, and a local multi-bank vector
memory and address permutation design for low latency parallel vector data access. A
parallel programming model and a program-friendly tool chain is another key design
challenge.

In this paper, we evaluate the performance of the ePUMA parallel architecture us-
ing an example of large-size matrix-matrix multiplication. Large matrix operations can
be found in many data intensive computing applications. It is also a good candidate
for parallel processing. The performance is evaluated on two different parallel architec-
tures; a single 8-way SIMD extension, and ePUMA with different numbers of SIMD
co-processors.

The rest of this paper is organized as follows. An overview of the ePUMA master-
multi-SIMD architecture is provided in Section II. The memory subsystem is described
in Section III. Section IV presents the implementations of matrix multiplication. The
evaluation results are in Section V and Section VI concludes the paper.

2 Overview of the ePUMA Architecture

The ePUMA parallel DSP architecture is a master-multi-SIMD on-chip multi-core ar-
chitecture. It consists of one master processing core, eight SIMD cores, and a memory
subsystem. Each SIMD core has a local data memory and program memory. The mem-
ory subsystem includes two main memories, two ring buses, and two DMA controllers.
The master core and all of the SIMD cores have access to both two buses for data and
command communications. The overall architecture is illustrated in Figure 1.

The master core performs scalar operations and program control, while the eight
SIMD cores are assigned by the master with parallel tasks of vector processing. This
parallel DSP architecture has two interfaces to two off-chip main memories. One main
memory attached to Ring Bus 1 is used for streaming data storage. The second main
memory on Ring Bus 2 is used for software programs and coefficient data. The data

410 J. Sohl, J. Wang, and D. Liu

Fig. 1. ePUMA master-multi-SIMD architecture

communications are handled by the DMA controller on each bus. Data exchange
between two main memories is performed by going through the bridge module.

3 Memory Subsystem

In the design of multi-core embedded processors, the memory subsystem keeps being
an important component to achieve high computing performance. The memory access
latency is one of the major factors that affect performance. Moreover, the memory sub-
system is the key component to reduce power consumption and silicon cost. The design
of the memory subsystem determines the implementation complexity. For example, Cell
EIB chooses the ring bus architecture instead of the crossbar interconnection for the
purpose of getting the highest possible throughput from the wire-efficient ring-bus im-
plementation with the limits on area, power and complexity costs[7].

The memory subsystem of ePUMA architecture consists of two main memories,
local store unit in each SIMD core, the interconnection buses, and the DMA controller,
as illustrated by the region in the dash line in Figure 1.

3.1 Interconnection Buses

All the processing cores and memory modules are connected through this interconnec-
tion bus architecture, which contains two ring buses. A bridge module connects these
two buses to enable data communication between them.

Ring bus 1. Ring bus 1 connects the master and all SIMD cores to main memory 1
which is for streaming data storage. A DMA controller is attached to this bus for direct
memory access. A DMA transaction task can be configured and triggered by either the
master processor or any of the SIMD cores. Ring bus 1 uses a cross-bar bus protocol
which supports multi-connections simultaneously.

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 411

Fig. 2. Local store unit with three vector memories and two permutation tables

Ring bus 2. Ring bus 2 connects all the master and SIMD cores to main memory 2
which is prepared for software programs and coefficient data. Here the data communi-
cation load is not as high as in ring bus 1. To simplify implementation complexity, ring
bus 2 applies a shared bus protocol, meaning that at one time only one bus master is
granted the bus to perform its data transfer.

3.2 Vector Memory and Data Permutation

ePUMA’s local store unit in each SIMD core consists of three vector memories and
two permutation tables, as shown in Figure 2. The use of a multi-bank vector memory
and data permutation can provide parallel vector data access with various addressing
patterns at very short latency, usually within one cycle[8][9]. At execution time the local
store unit connects two of the three vector memories to the SIMD data path for vector
operands fetch. The remaining vector memory is connected to the DMA controller for
data communication to the global memory. The SIMD unit works under two modes; a
SIMD mode and a SIMT1 mode[1]. In SIMD mode, data are loaded to register file first
and then used by the data path. While in SIMT mode, the data path can access vector
memory directly. The purpose of using three vector memories is to provide a ”ping-
pong” buffer for simultaneously loading data and executing SIMD tasks. A switch logic
is used to swap the ping-pong buffers.

Data permutation is used with the vector memories to provide conflict-free paral-
lel access[8]. The permutation process decides each vector element’s storage position
in the vector memory. This position information includes a bank number and a local
address of the selected memory bank. A simple way to use a vector memory without
permutation is to use a number of LSB bits from its address for bank selection, and use
the rest bits as the local address. This common solution performs well for consecutive
data access. For more complex SIMD or vector based high performance computing,
many different access patterns are involved. Take matrix multiplication as an example.
One matrix is accessed in row-wise order, and the other one is accessed in column-wise
order. If permutation is available to provide such a column-wise vector access, the time
for matrix transpose can be eliminated. This will improve the performance for matrix
multiplication and other algorithms which access data that is not in row-major order.
Here we give an example of using permutation to achieve conflict-free column-wise

1 SIMT stands for Single Instruction-flow Multiple Tasks [1].

412 J. Sohl, J. Wang, and D. Liu

(a) Input matrix and
its addresses

(b) Storage position
in vector memory
withoutpermutation

(c) Storage position
in vector memory
withpermutation

Fig. 3. Conflict-free vector memory access with permutation

data access, shown in Figure3. Figure 3(a) shows the source 4×4 matrix with its se-
quential addresses. Figure 3(b) and Figure 3(c) use a representation of {S/r} in each
block to present each matrix element’s storage position in the vector memory, where
S represents the bank assignment, r is the local address within the memory bank. Now
we consider the access of vector {0,4,8,12}, that is, access the first column of the input
matrix. Using the approach in Figure 3(b), it can be seen that all the elements are stored
in memory bank 0, and a bank conflict occurs in this case. This means that four cycles
are required to load this column data. When permutation is used as illustrated in Figure
3(c), the elements of the column vector reside in different memory banks, and no bank-
conflict occurs and the access latency is reduced to one cycle. The calculation of storage
position {S/r} is discussed in [8] and formulated in [9]. The permutation function used
in this example is shown in Equations 1 and 2.

S (i) = �i + i/4� mod 4 (1)

r(i) = �i/4� (2)

In the ePUMA local store unit, data permutation is applied on both sides of the vector
memory in the form of lookup tables; the DMA controller uses one permutation table
during a DMA transaction, the SIMD unit uses the other permutation table to generate
data addresses for vector memory. A permutation table takes a single address either
from DMA input or from SIMD load/store unit as an entry to the table, and gets an
output of vector addresses for the vector memory. Each element in the address vector
contains two parts, the bank number and the sub-address within that bank. These ad-
dresses are calculated by the master and the table is configured by the master processor.

3.3 Multi-task DMA Controller

Each bus is allocated a DMA controller for direct memory access. A DMA transaction
task can be configured either by the master core or by any of the SIMD cores. The
DMA controller enables a task queue which supports multiple tasks in the queue. Thus
as soon as one DMA transfer is finished, the next task can start immediately. Another
useful feature of the DMA controller is the priority policy in the task queue. A task
with a higher priority will be issued earlier. Simple data manipulations such as endian
reordering and data width adjustment are also performed in the DMA transactions.

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 413

4 Matrix Multiplication Implementations

The main application domain for ePUMA is streaming DSP. I.e., the important algo-
rithms that must be considered let us load a chunk of data to the vector memories,
compute using a regular data access pattern, write back the results, and repeat.

Algorithms that cannot be decomposed into smaller parts which have this property,
i.e. those who requires irregular data access patterns and/or frequent access to main
memory during the compute phases are not a priority. We do not expect the performance
achieved when running these algorithms on ePUMA to deviate from the performance
on other architectures in any significant way.

In this section, we compare the performance of matrix multiplication of matrices
with dimension 64 ∗ 64. We chose this as our initial algorithm to be evaluated as it has
very regular data access patterns and is typical for the application domain.

The performance will be evaluated on two different architectures using three different
software implementations. Both architectures are assumed to have an identical 8-way
SIMD datapaths. The difference between them is the complexity in memory subsystem.
The first implementation is on a conventional SIMD extension data parallel architecture.
The second and third implementation is on our ePUMA multi-SIMD architecture.

First of all, a mathematical definition of matrix multiplication is provided in
Equation 3:

For A ∈ Rm×n, B ∈ Rn×p, then C = AB ∈ Rm×p, where

Ci, j =

n∑

r=1

Ai,rBr, j (3)

4.1 Architecture 1 - 8-Way SIMD Extension

First we consider the case when an 8-way SIMD extension is used with a cache. For
simplicity we assume that the matrices A and B are already present in the cache. We
also ignore the time it takes for the output matrix C to be written back after when it is
moved from the cache. However, compared to the cycles necessary for this architecture
to complete the matrix multiplication it can be considered negligable.

Since matrix B is in row-major order and it needs to be accessed in column-major
order, we need to transpose B. Using a standard SIMDized version on 8*8 blocks this
take 4810 cycles. The kernel for the matrix multiplication after B is transposed can
be implementad as shown in Listing 1. While most of of the code code is quite self-
explanatory some details are worth mentioning. Using a NISO SIMD datapath[1] the
computation for conv8wdw is given in Equation 4:

rDest.slot =
7∑

i=0

Src1.i ∗ Src2.i. (4)

414 J. Sohl, J. Wang, and D. Liu

Similiarly, sum4dwdw is given by Equation 5:

rDest.slot =
3∑

i=0

Src1.i + Src2.i. (5)

To avoid lengthy code but not add overhead from jumps and managing a counter in the
would be innermost loops generate is run at compile time. Similarly we use macro to
avoid unneccessary repetition.

Listing 1. Matrix multiplication for the 8-way SIMD extension

macro CONV(REG)
gen erate f o r j in 0 . . 3

ld r0 , (rA , r I . 0)
ld r1 , (rB , r I . 1)
s t a l l 2
conv8wdw REG.% j , r0 , r1
addvs r I , 8 −− I n c r e m e n t a d d r e s s o f f s e t s
nop

en d gen erate
endmacro

s e t rA ,A −− rA = a d d r e s s f o r m a t r i x A
s e t rB , B −− rB = a d d r e s s f o r m a t r i x B
s e t rC , C −− rC = a d d r e s s f o r m a t r i x C
f o r i in 0 . . 63

mul r I . 0 , i , 6 4∗WORDSIZE −− s e t o f f s e t f o r A
s e t r I . 1 , 0 −− r e s e t B o f f s e t
rep eat 64

CONV(r0)
CONV(r1)
mul r I . 0 , i , 6 4∗WORDSIZE −− r e s e t A o f f s e t
s t a l l 2
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t m1(rC) , r4 . 0
add rC , 2 ∗WORDSIZE

endrepeat
endfor

4.2 Architecture 2 - SIMD Co-processor with Vector Memory

Using a vector memory with permutation we can implement the multiplication as shown
in Figure 4. A naive implementation can be seen in Listing 2. However, since so much
of the addressing overhead is removed we get a significant number of nops in the inner
loop. A simple optimization by overlapping the iterations results in the code shown in
Listing 3.

The conv8wdw and some others instructions now use the notation < memory > (op)
for operands, where op is the operation to be performed to get the address for the next

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 415

Fig. 4. Implementation on the system with a co-processor and vector memory

operand. When we are in SIMT mode the address generator calculates these in parallel
with the other instructions.

The total cost of the DMA transfer is 2057 cycles.

Listing 2. Matrix multiplication for ePUMA

macro CONV(REG)
gen erate f o r j in 0 . . 3

conv8wdw REG.% j , M1r (+8) ,
M2c(+64∗WORDSIZE∗8)

en d gen erate
endmacro

s e t rM1B , C
f o r i in 0 . . 63

s e t rM1 ,A −− s e t o f f s e t f o r A
mac rM1 , i , 6 4∗WORDSIZE
s e t rM2 , B −− r e s e t B o f f s e t
add r3 , B , WORDSIZE
rep eat 64

CONV(r0)
CONV(r1)
s e t rM1 ,A −− r e s e t A o f f s e t
mac rM1 , i , 6 4∗WORDSIZE
s e t rM2 , r3++
s t a l l 3
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t M1B(+2∗WORDSIZE) , r2 . 0

endrepeat
endfor

Listing 3. Overlapping implementation for ePUMA

macro 8CONV(REG1, REG2)
gen erate f o r j in 0 . . 3

conv8wdw REG1.% j , M1r (+8∗WORDSIZE) ,
M2c(+64∗WORDSIZE∗8)

en d gen erate
gen erate f o r j in 0 . . 2

conv8wdw REG2.% j , M1r (+8∗WORDSIZE) ,
M2c(+64∗WORDSIZE∗8)

en d gen erate
conv8wdw REG2. 3 , M1r (r6) ,

M2c (r7++)

416 J. Sohl, J. Wang, and D. Liu

endmacro

s e t rM2C , C
f o r i in 0 . . 63

s e t rM1 ,A
mac rM1 , i , 6 4∗WORDSIZE
s e t r6 , rM1
s e t rM2 , B
add r7 , B , WORDSIZE
8CONV(r4 , r5)
8CONV(r0 , r1)
sum4dwdw r2 . 0 , r4 , r5
rep eat 62

8CONV(r0 , r1)
s t M2C(+2∗WORDSIZE) , r2 . 0
sum4dwdw r2 . 0 , r0 , r1

endrepeat
s t a l l 6
s t M2C(+2∗WORDSIZE) , r2 . 0
sum4dwdw r2 . 0 , r0 , r1
s t a l l 4
s t M2C(+2∗WORDSIZE) , r2 . 0

endfor

4.3 Architecture 2 - Overlapping DMA

We can improve the performance by overlapping some DMA transactions with compu-
tation. We do not want to split matrix B into sections because the overhead per iteration
for the inner loop will increase significantly. Instead we transfer matrix B in full, and
then transfer each row in matrix A and the destination matrix C by themselves. This
strategy lends itself well to a parallel solution by using a cyclic distribution of the rows
of A and C among the SIMD processors. This is demonstrated in Figure 5 and Figure 6.

In Figure 5 p = 3. We broadcast B and then send each processor one row in A. We
then transfer any finished rows in C to global memory.

Fig. 5. Overlapping DMA

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 417

In Figure 6 we see the vector memory usage. We store B in vector memory 1. Since
we need to access B column-wise we use a permutation table for AGU1. Since we ac-
cess A and C row-wise we do not need any permutation table for these, and we can use
AGU2 and AGU3 for address generation for these memories. We do however swap vec-
tor memories 2 and 3 in the local store unit between each processed row, so that when
we use one memory for calculations while the other one is used for DMA transfers.

Fig. 6. Usage of vector memories

5 Experimental Results

We define the ratio R as in Equation 6:

R =
Total cycles

Arithmetic instructions
. (6)

The number of arithmetic instructions is defined as the number of conv8wdw and
sum4dwdw instructions. For the considered implementations this value is 36864. We
can then use R as a measurement for the amount of overhead for the different imple-
mentations.

In Table 1 we find the results for when we use one core for processing for all the
implementations.

The ePUMA system is not that far from the ideal R value of one. We get an overhead
of 19.5% with the naive DMA transactions. Being a bit more clever we get down to
15.4% by overlapping DMA transactions with computation. Using only SIMD exten-
sions impose quite a significant overhead of 647%.

The speedup of the implementations on ePUMA are quite significant, almost 6.5
when using overlapping DMA. We should also remember that we did not account for
memory transfers for architecture 1, so the improvements by ePUMA should be slightly
larger.

Table 1. Results

Architecture Arch. 1 Arch. 2 Arch. 2 - Overlapping DMA

Total cycles 275342 44043 42531

R 7.469 1.195 1.154

Speedup 1.00 6.25 6.47

418 J. Sohl, J. Wang, and D. Liu

5.1 ePUMA Scalability

In Table 2 we observe the relative speedup of the overlapping DMA implementation
when using more than one SIMD processor. It is not quite linear; however, considering
how much overhead that has already been removed it is not all that surprising that we
cannot entirely hide the DMA transfers.

Table 2. ePUMA scalability

Processors 1 2 4 8

Speedup 1.000 1.973 3.832 7.176

5.2 Permutation Tables vs Parallel Transpose

In Table 3 we compare the relative execution times of using permutation tables vs per-
forming a parallel transpose of matrix B for different numbers of processors. We use the
values for ePUMA with permutation tables as the baseline. We can see that the added
cost when not using permutation tables is 11-12%. As the transpose is Θ(n2) and the
matrix multiplication is Θ(n3) we expect this value to be larger for algorithms with less
computation compared to the input size. Still, avoiding an added cost of 11-12% of the
total execution time is quite significant.

Table 3. Using permutation tables vs parallel transpose

Processors 1 2 4 8

Permutation tables 1.0000 1.0000 1.0000 1.0000

Parallel transpose 1.1147 1.1148 1.1152 1.1164

6 Conclusion

Reviewing the performance increase offered by ePUMA compared to SIMD extensions
we believe that ePUMA holds great promise. Using the same number of processors as
the SIMD extended architecture we increase the performance with a factor of 6.47, and
by using the full 8 SIMD processor version with a factor of 45.64.

While the problem at hand fits ePUMA very well it is quite reasonable to expect
similar results for other algorithms with regular addressing patterns. However, we re-
quire that the data access patterns are predictable and that we will be able to load data
from main memory in advance. As ePUMA is geared towards streaming DSP this is an
acceptable constraint.

Acknowledgements

The authors would like to thank SSF, Swedish Foundation for Strategic Research, for
the support of this project.

Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture 419

References

1. Liu, D.: Embedded DSP Processor Design, ch. 20. Morgen-Kaufmann, Linköping (2008)
2. ARM Media Extensions, http://www.arm.com/products/CPUs/arch-simd.html
3. Tyler, J., Lent, J., Mather, A., Nauyen, H.: AltiVecT M: Bringing Vector Technology to the

PowerPCT M Processor Family. In: IEEE International IPCCC 1999, February 10-12, pp. 437–
444 (1999)

4. Kumura, T., Ikekawa, M., Yosbida, M., Kuroda, I.: VLIW DSP for mobile applications. IEEE
Signal Processing Magazine 19(4), 10–21 (2002)

5. Chang, H., Cho, J., Sung, W.: Performance Evaluation of an SIMD Architecture with a Multi-
bank Vector Memory Unit. IEEE SIPS, Banff, 71–76 (2006)

6. Weiss, M., Fettweis, G.: Dynamic Codewidth Reduction for VLIW Instruction Set Archi-
tectures in Digital Signal Processors. In: 3rd International Workshop on Image ana’ Signal
Processing, pp. 517–520 (1996)

7. Ainsworth, T.W., Pinkston, T.M.: Characterizing The Cell Eib On-Chip Network. IEEE Mi-
cro 27(5), 6–14 (2007)

8. Gössel, M., Rebel, B., Creutzburg, R.: Memory Architecture and Parallel Access. Elsevier
Science, Amsterdam (1994)

9. Lundgren, B., Ödlund, A.: Expose of patterns in parallel memory access. Master thesis,
Linköping university, LiTH-ISY-EX–07/4005-SE

http://www.arm.com/products/CPUs/arch-simd.html

Implementing Fast Packet Filters
by Software Pipelining on x86 Processors�

Yoshiyuki Yamashita1 and Masato Tsuru2

1 Saga University, Honjyo 1, Saga, 840-8502 Japan
yaman@is.saga-u.ac.jp

2 Kyushu Institute of Technology, Kawazu 680-4, Iizuka, 820-8502 Japan
tsuru@ndrc.kyutech.ac.jp

Abstract. Packet filters are essential for network traffic/security
management on the Internet. Filters implemented by software on general-
purpose CPUs are very flexible but occasionally suffer from poor perfor-
mance. In order to address this problem, we have investigated software
pipelining techniques for loops with a number of conditional branches
for use in software-based fast packet filters. Based on our previous re-
searches, we herein apply the software pipelining approach in an attempt
to increase the filter performance for large filter rules. We validate the
effectiveness of the proposed approach on Intel x86-32/64 series, as well
as Intel Itanium 2 processors, which speaks to the generality and practi-
cality of the proposed approach. The software pipelined program codes
on x86-64 processors are 2.2 times faster than C-compiler-based codes
and 1.8 times faster than carefully optimized hand-compiled codes. In
addition, the performance of the pipelined codes we obtained on x86-64
processors is comparable to that on Itanium 2 processors with predicate
registers.

1 Introduction

Packet filters basically inspect the header and/or payload of each incoming
packet and, accordingly, perform appropriate actions (pass, discard, logging,
modification, etc.) on the packet based on a given filter rule (a set of filter pat-
terns). Packet filters are essential for network traffic management and security
management, and so are implemented in a variety of systems and devices, includ-
ing not only IP routers and firewalls, but also various types of network equip-
ment. Software-based packet filters on general-purpose CPUs are cost-effective
and flexible, but are generally relatively slow, whereas hardware-based packet
filters (e.g., packet filters using ASIC or FPGA [9,14]) are fast, but expensive and
less flexible. Recently, the rapid growth of network bandwidth has led to the re-
quirement for high-speed packet filters. On the other hand, emerging applications
of packet filters require much more scalability and flexibility in handling filter

� This work was supported in part by Hitachi, Ltd, National Institute of Information
and Communications Technology, and JSPS.KAKENHI (S 18100001).

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 420–435, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 421

rules, which should be easily modifiable in response to changes in circumstances
or requirements. In order to realize packet filters that enable both flexibility and
high-speed operation in a cost-effective manner, it is of practical importance to
make software-based packet filters fast enough that the filters would be effec-
tive even for a large filter rule consisting of a number of filter patterns or under
intensive traffic load. This requires an effective combination of both the higher-
level optimization related to algorithmic structures that are adaptable for the
input packet sequence and the lower-level (machine code) optimization related
to acceleration techniques in a compiler study.

To address this problem, the authors have focused on the lower-level opti-
mization and have investigated software pipelining techniques for loops with
a number of conditional branches as key techniques for accelerating software-
based packet filters. Several studies have attempted to produce native machine
code from a packet filter rule and to make the filter faster compared with the
conventional interpreter-based packet filter [2,4,8]. However, to the best of our
knowledge, none of these studies applied state-of-the-art optimization techniques
based on software pipelining and fully exploited the performance of modern
general-purpose processors. Although software pipelining is a common technique
in compiler construction, it is technically difficult to apply software pipelining
to a packet filter because the filter consists of a few tens of (more than 20 in
some cases) conditional branches. We solve this problem with predicated execu-
tion [5] and enhanced modulo scheduling [10]. We investigated optimization on
the packet-based loop (see Section 2) [11,12], and also reported experimental re-
sults on rule pattern-based loop optimization using the Itanium 2 processor [13].
Based on these studies, in the present paper, we try to validate the effective-
ness of our approach to accelerating large filter rules (consisting of a number of
filter patters) through extensive experiments using not only the Itanium 2 pro-
cessor but also x86-32/64 series processors, which are the most widely deployed
general-purpose processors.

We discuss and compare the results for both types of processors, thereby
demonstrating the generality of the proposed approach. The software pipelined
codes developed herein are 2.9 times and 2.2 times faster than C-compiler-based
codes run on the Itanium 2 and x86 processors, respectively, and 1.5 times and
1.8 times faster than carefully optimized hand-compiled codes run on the Itanium
2 and x86 processors, respectively.

2 Framework

In the present study, we consider the following two types of optimizations:

Type A optimization applies software pipelining to a packet-based loop to pro-
cess intensive input traffic (i.e., for a huge number of input packets).

Type B optimization applies software pipelining to a pattern-based loop to
handle a lot of filter patterns.

422 Y. Yamashita and M. Tsuru

for(i = 0; i < n_packets; i++){
result = filter1(packet[i]);
action(packet[i],result);

}

(a) Type A program

for(i = 0; i < n_packets; i++){
result[i] = filter1(packet[i]);

}
for(i = 0; i < n_packets; i++){

action(packet[i],result[i]);
}

(b) Type A program revised

result = REJECT;
for(i = 0; i < n_patterns; i++){

r = filter2(packet,pattern[i]);
if(r != NULL){

result = r;
break;

}
}
action(packet,result);

(c) Type B program

Fig. 1. Packet filter programs of types A and B

2.1 Type A Optimization

Suppose that a one-line packet filter (e.g., tcpdump) suffers from highly inten-
sive input traffic such as a Denial Of Service (DOS) attack or an unexpected
traffic load by misconfiguration. In this case, the filter program, which iter-
ates the loop body in terms of input packets, can be regarded as in Figure 1
(a), where the function call filter1(packet[i]) decides the action for the i-
th input packet packet[i], and the function call action(packet[i],result)
processes the packet according to the decision.

In recent years, we have been investigating the case in which a filter pattern is
represented in the syntax of the tcpdump based on the Berkeley Packet Filter [7].
In our approach, the above-described loop is divided into the two loops given
in Figure 1 (b). The first loop is optimized because the function filter1()
contains only logical and arithmetic operations, while the function action()
contains system-calls, which are difficult to optimize. The body of the function
filter1() varies in terms of the contents of the given filter pattern so that a
compiler that translates each filter pattern into an optimized loop code is needed.

We have shown previously that, on an Itanium 2 processor, software pipelining
a program can speedup the program by approximately three to four times com-
pared to the naive C-based program and by approximately two times compared
to the non-pipelined optimized program [11,12].

2.2 Type B Optimization

Type B optimization is the main subject of the present paper. Suppose that a
large packet filter (i.e., a packet filter that consists of a number of filter patterns)
suffers from low throughput due to the long processing time of each input packet.
Figure 2 shows an example of the filter patterns considered herein. Like the
Cisco IOS access list, the example is based on a typical static IP filter rule

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 423

ip filter 1 reject X.X.X.0/24 * * * *
ip filter 2 pass * X.X.X.0/24 established * *
ip filter 3 pass X.X.X.X/29 X.X.X.X tcp * smtp
ip filter 4 pass X.X.X.0/24 X.X.X.X tcp * 5000-6000
ip filter 5 pass * * udp * domain
ip filter 6 pass X.X.X.X/29 X.X.X.X tcp * pop3
...

Fig. 2. Example of a filter rule (each X.X.X.X is replaced with a concrete IP address)

representation [3]. This filter rule consists of one or more lines of filter patterns,
and a filter pattern represents various conditions of IP addresses, protocols, and
port numbers of an input packet. The details are described in Section 3.

In this case, the filter program, which iterates the loop body in terms of rule
patterns, can be regarded as in Figure 1 (c), where the function call
filter2(packet,pattern[i]) returns PASS or REJECT if the input packet
matches the i-th pattern and the program exits the loop. Otherwise, the program
proceeds to the next pattern. In contrast to filter1() in type A, the body of
filter2() is invariant in terms of the contents of filter patterns because the
syntax of filter patterns are restricted so that we can easily translate and store an
arbitrary filter pattern into a memory array of fixed format. Thus, it is sufficient
to construct a program to access to the memory array and check whether the
input packet matches pattern by pattern. We construct such a program using
a code optimizer that performs software pipelining. Note that it is very hard
to perform software pipelining by hand because the loop body includes a few
tens of conditional branches and the optimized code is too complex to write by
hand. We obtained a preliminary result on an Itanium 2 processor, indicating
the potential applicability of the proposed approach [13].

Hereinafter, if there is no confusion, we refer to a packet filter based on type
A (or type B) optimization as a type A packet filter (or type B packet filter).

3 Filter Rule and Execution Model

The syntax and semantics of the proposed filter rule are based on the syntax
and semantics of the common popular static IP filter rules, such as the Cisco
IOS access list [3]. In this section, we summarize the proposed filter rule and
then discuss how to analyze the execution time of type B packet filters.

3.1 Filter Rule

We assume that a filter rule consists of one or more filter patterns, which are
stored in a text formatted file. Figure 2 is such an example; in which each
line represents one filter pattern to check the IP addresses, protocol, and port
numbers of every input packet.

After being invoked, a packet filter program reads the rule file and translates
the contents of the filter patterns into an inner binary representation stored in a

424 Y. Yamashita and M. Tsuru

memory array. The program then checks whether an input packet matches the
conditions that each filter pattern represents. The program proceeds from the
first filter pattern at the top line to the bottom line in descending order. If the
packet matches a filter pattern, the program performs the corresponding action
of the pattern. Otherwise, the program drops the packet1 if the packet matches
no filter pattern in the rule.

Hereinafter, we generally refer to the entire set of rule patterns simply as a
rule and each filter pattern simply as a pattern.

The following is the syntax of every filter pattern in this paper:

ip filter n action sip dip proto spt dpt

The parameters n, action, sip, dip, proto, spt, and dpt are defined below.

n is a pattern identification number (unsigned 16-bit integer). We assume that
the numbers of patterns are arranged in ascending order.

action is an action when the pattern is chosen. Usually, the action is pass,
reject, or another special action.

sip (or dip) is the source (destination) IP address of the input packet, which is
one of the following three patterns. “*” is a wild card, which indicates an
arbitrary address. “x1.x2.x3.x4” is a concrete address, where each xi is an
unsigned 8-bit integer value. “x1.x2.x3.x4/m” is a concrete address with a
mask bit-width m, where m is a non-negative integer such as 0 ≤ m ≤ 32.

proto is a protocol identifier, which is one of the following four patters. “*” is
a wild card, which indicates an arbitrary protocol. “tcp” indicates the tcp
protocol. “udp” indicates the udp protocol. “established” indicates the tcp
packet after the tcp connection is established2.

spt (or dpt) is the source (destination) port number of the input packet, which
is one of the following four patterns. “*” is a wild card, which indicates an
arbitrary port number. We specify an arbitrary port number if the protocol
of the pattern is not tcp/udp. “p” is a concrete port number (unsigned 16-bit
integer). “p1-p2” is a range of port numbers specified by two port numbers
p1 ≤ p2. “name” is a specific port name such as smtp, www, or domain.

3.2 Model of Execution Time

Before proceeding to the experiments and the evaluation thereof, we consider a
simple theoretical model for the execution times of type B packet filters.

We assume that a rule consists of N filter patterns, and that the execution
time t of a packet filter is represented by the linear equation t = TO +kTP when
the input packet matches the k-th pattern (at the k-th line from the top of the
rule), where the constant T0 is the pre-/post-processing time (overhead time)
of the filter program, and the constant TP is the unit processing time for each
1 This is referred to as a default rule. In some cases, the default rule may be to accept

the packet if there is no pattern to match.
2 The packet filter must check the ack and rst bits in the flag field of the tcp packet.

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 425

pattern. If the input packet matches no pattern, we assume t = TO+NTP . Let pk

be the probability for the case in which the packet matches the k-th pattern, and
let p0 = 1 − ∑N

k=1 pk be the probability for the case in which the input packet
matches no pattern. We can define the average (expected) execution time to
check an arbitrary input packet as follows:

t̄ =
N∑

k=1

pk(TO + kTP) + p0(TO + NTP) = TO + αTP (1)

where α =
∑N

k=1 kpk + Np0. This is the relation between the filter rule and its
expected execution time for an arbitrary input packet. Suppose that a set P of
sample input packets and several types of sample rules R1, R2, ..., Rn are given.
Then, for each pair (P, Ri), we can calculate αi, i.e., the coefficient of the second
term of equation (1), by analyzing which filter pattern in Ri matches a packet
in P . Moreover, given a concrete implementation (an executable code) F of our
type B optimization, we can experimentally obtain the average execution time
t̄i, as the left-hand side of equation (1), for the pair (P, Ri). Thus, there are n
equations with unknown constant values TO and TP , as follows:

t̄1 = TO + α1TP , t̄2 = TO + α2TP , ..., t̄n = TO + αnTP

Using the method of least squares, we can obtain the values TO and TP . We will
later see that the above approximation works well, although it is quite simple.

Suppose that, for two given implementations F and F ′ of our packet filter pro-
gram, we can obtain pairs of constant values (TO, TP) and (T ′

O, T ′
P), respectively.

Then, the ratio of the expected execution times t̄ and t̄′ of the implementations
is given as follows:

t̄/t̄′ = (TO + αTP)/(T ′
O + αT ′

P)

Note that α is invariant, independent from program implementations, and is
likely to increase when the number N of filter patterns increases. Hence, t̄/t̄′ ≈
TP /T ′

P holds when α is sufficiently large, which shows that the constants TP and
T ′

P are fundamentally important when comparing two different implementations.
The value TP /T ′

P is regarded as the acceleration ratio of F ′ to F .

4 Code Optimization Techniques

Before explaining code optimization, we restrict our focus on filter patterns for
TCP packets. An input packet for which the IP protocol is p never matches a
filter pattern for which the proto field is neither p nor a wild card *. Therefore,
the filter patterns should be sorted by the IP protocol type. Figure 3 shows the
concrete but straightforward form of the loop in Figure 1 (c) specialized for TCP
packets. Here, the input packet is stored in the variable packet, and the filter
patterns are stored in the array tcp pattern. Their data entities are structured
with the data members such as sip, dip, and proto. Hereinafter, we concentrate
on optimizing this loop.

426 Y. Yamashita and M. Tsuru

result = REJECT;
for(int i = 0; i < n_tcp_patterns; i++){
SIP = packet.sip & tcp_pattern[i].sip_bit_mask;
if(SIP == tcp_pattern[i].sip){ //(1)
DIP = packet.dip & tcp_pattern[i].dip_bit_mask;
if(DIP == tcp_pattern[i].dip){ //(2)
if(tcp_pattern[i].proto == tcp){ //(3)
if(packet.spt >= tcp_pattern[i].spt_minimum_value){ //(4)
if(packet.spt <= tcp_pattern[i].spt_maximum_value){ //(5)
if(packet.dpt >= tcp_pattern[i].dpt_minimum_value){ //(6)
if(packet.dpt <= tcp_pattern[i].dpt_maximum_value){ //(7)
FLAGS = packet.tcp_flag_field

& tcp_pattern[i].tcp_flag_field_bit_mask;
if(FLAGS == tcp_pattern[i].tcp_flag_field){ //(8)
result = tcp_pattern[i].action;
break;

}
...

} else if(tcp_pattern[i].proto == *){ //(9)
result = tcp_pattern[i].action;
break;

}
...

}

Fig. 3. C program for filtering tcp packets

Four types of code optimization techniques have been applied for type A
optimization in our previous studies [11,12], and these types except predicated
execution will also be applied on x86 processors for type B optimization in the
present paper. These are explained briefly in the following.

4.1 Compiling a Naive C Program

The most primitive code optimization technique considered herein is to compile
this program in a straightforward manner with the optimizing option -O3 of
the compiler. We herein refer to this program (and its compiled binary code) as
naive code, because compiling a common C program by a common C compiler
is the simplest solution among the optimization methods considered herein.

4.2 Compiling by Hand

One reason a hand-compiled code is faster than a compiler-generated code is that
the assembly programmer deliberately selects a set of CPU instructions suitable
for a given computation, which cannot be done by the compiler. In the present
case, multimedia instructions that are usually contained in recent commercial
processors are effective for the parallel comparison of IP addresses and port
numbers. In preliminary experiments, gcc and even icc, Intel’s C compiler, did
not generate such a code.

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 427

Thus, the second code optimization technique considered herein is to compile
the program in Figure 3 by hand. We refer to the code as a hand compiled code.

4.3 Software Pipelining

Software pipelining [1] can rearrange the instructions and execute successive
iterations in parallel if the iterations have no dependence on each other3. For
loops in which the body has no conditional branch, this technique is common now
because most compilers, including gcc, can apply the technique. However, the
target loop in Figure 3 has conditional branches and can be software pipelined
by existing compilers. For loops with conditional branches, we apply software
pipelining using the two techniques introduced below.

Predicated Execution. Predicated execution (PE) with predicate registers [5]
eliminates branch instructions, which may seriously slow program execution due
to branch penalties, and transforms a loop body into a straight line code without
branches. If a loop body is a straight-line code, we can optimize the loop by
applying a standard software pipelining technique [1].

The third optimization technique considered in the present paper is to con-
struct such a software pipelined predicated code from the hand compiled code
in Section 4.2. Let us refer to the code obtained in this manner as a PE code.
Since Itanium 2 processor is the only existing commercial processor having the
predication facility, this technique is not applicable to any x86 processor.

Enhanced Modulo Scheduling. It is difficult to precisely explain enhanced
modulo scheduling (EMS) [10] in the limited space available in the present paper.
Put simply, EMS transforms a software pipelined PE code into a code that does
not use predicate registers. Enhanced modulo scheduling simulates predication
by generating a combination of all possible sequences of unpredicated instruc-
tions. Since EMS uses no predicate register, any processor (including, of course,
x86 processors) can execute the code generated by EMS. One drawback of EMS
is that the combination causes an exponential increase in code size, which may
cause the I-cache overflow. Strictly speaking, the EMS algorithm originally pro-
posed in [10] treats a loop having a few unnested conditional branches and is
not sufficient for the optimization of the target loop shown in Figure 3. Thus,
we have extended the algorithm so as to be applicable to loops with a few tens
of deeply nested conditional branches4.

The fourth optimization technique considered herein is to apply EMS to the
hand compiled code presented in Section 4.2. Let us refer to the code generated
in this manner as a EMS code.

Readers who are interested in software pipelining techniques by PE and EMS
can refer to [12] for an easy-to-understand introduction.

3 It is natural to assume that there is no dependence between filter patterns in a static
IP packet filter rule.

4 The authors are currently preparing another paper that explains how to extend the
original EMS.

428 Y. Yamashita and M. Tsuru

4.4 Two Approaches to Fast Type B Packet Filters

In order to obtain a fast code in type B optimization, we consider the following
two approaches.

The first approach is to develop a code optimizer which automatically exploits
characteristics of the targeted processor. By this approach, we have obtained
the PE and EMS codes on an Itanium 2 with the same software pipelining
techniques for type A described in the previous paper [12]. In Section 6, we refer
to the experimental results obtained in our paper [13], in which we use the code
optimizer developed in the previous study [12], with only small modifications,
depending on the differences between type A and type B optimizations.

The second approach is to look for a fast code in generate-and-test manner. By
this approach, we have obtained an optimized EMS code on x86 processors by
performing a generate-and-test method described in the next section. For any C
loop, theoretically, there are an enormous (or an infinite) number of EMS codes.
Some of which are faster or slower, but we do not know which the code is the
fastest. Thus, we first select one EMS code from among the EMS codes. Then,
with sample input packets and a sample rule of filter patterns, we examine the
code in terms of its execution time. Next, we select the second EMS code and
examine this code. In this way, we examine numerous EMS codes, so that we
are expected to eventually obtain the optimal one.

At this moment, a code optimizer (in the first approach) is not developed
for x86 processors because we have little experience in applying EMS to x86
processors and we do not obtain a detail algorithm how to generate faster EMS
codes yet. Of course, the code optimizer for the Itanium 2 cannot be used for
x86 processors because their architectures are quite different. The behaviors of
x86 processors are described in Intel’s IA-32 manuals [6]. However, the behav-
iors of out-of-order completion type processors are generally vague, whereas the
behaviors of in-order completion type processors like the Itanium 2 are strictly
defined in the manuals [5]. Hence, in the future, after validating the effectiveness
of the EMS technique, we intend to establish a concrete optimization algorithm
for x86 processors.

5 Optimizations on x86 Processors

5.1 Generate-and-Test Procedure

The following illustrates the overall procedure for performing generate-and-test
experiments on x86 processors.

1. First, we translate the C program in Figure 3 into a hand compiled code
on an x86 processor. ¿From this code, we select primary instructions that
essentially determine the total order of all instructions executed (explained
in Section 5.2 below).

2. Next, we rearrange the primary instructions according to a certain rule (ex-
plained in Section 5.2). In general, such a rearranged sequence of primary

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 429

instructions does not preserve the semantics of the original hand compiled
code. However, by carefully restricting the sequence as a skeleton (or a ker-
nel) of the software pipelined code, we can derive an executable software
pipelined code equivalent to the original code. Then, we examine the execu-
tion time of the code using a lot of pairs of a sample data (a set of input
packets) and a sample rule.

3. Iterating step 2 above, we generate and test a large number of software
pipelined codes to search for the fastest code.

We apply the procedure to extended 64-bit mode in x86 processors (hereinafter
x86-64) and to common 32-bit mode in x86 processors (hereinafter x86-32).

5.2 Codes for x86-64 Processors

We wrote the hand compiled code for x86-64 processors, as given in Figure 4 (a),
where LOOPBACK(label) is a macro to update a loop counter register and jump
back to the entry point label of the loop.

The 64-bit operation instructions and multimedia (MMX) instructions are
aggressively used in this code in order to decrease the number of conditional
branches. As a result, the nine conditions shown in Figure 3 are reduced to the
five conditional branches shown in Figure 4 (a). Moreover, we prevent any two
basic blocks in the code from sharing local registers because a software pipelined
code derived from this code may execute those blocks in parallel.

The primary instructions are numbered 0 through 15 (see the ends of lines in
Figure 4 (a)). Note that no conditional branch is a primary instruction because,
in x86 architecture, a branch instruction always works with the preceding com-
pare instruction. Thus, we select a compare instruction as a primary instruction,
but not a branch instruction. A loop back jump (or the macro LOOPBACK(label))
is not a primary instruction because it plays an idiomatic role in the loop exe-
cution, i.e., it is not directly associated with the computational contents.

Now, we assume that the sequence of the sixteen numbers 0, 1, ..., 15 denotes
the execution order of the primary instructions in the corresponding software
pipelined code. For example, the sequence

0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15

is assumed to denote the hand compiled code in Figure 4 (a), because the pri-
mary instructions are executed in the same order as in Figure 4 (a). As another
example, the sequence

11,12,13,14,15,0,1,2,3,4,5,6,7,8,9,10

is assumed to denote the software pipelined code, in which the primary instruc-
tions numbered 0 through 10 are executed in the last half of an iteration and
instructions numbered 11 through 15 are executed in the first half of the next
iteration. Thus, a code generator can automatically derive the actual code, as
in Figure 4 (b). In the same way of the software pipelined codes without condi-
tional branches, this software pipelined code consists of the prologue, kernel, and

430 Y. Yamashita and M. Tsuru

Lxxx:
movq %rsi,%r8 // 0
andq 8(%rbp),%r8 // 1
cmpq 0(%rbp),%r8 // 2
je Ltxx
LOOPBACK(Lxxx)

Ltxx:
cmpb $6,36(%rbp) // 3
jne Ltfx

Lttx:
movq 16(%rbp),%mm1 // 4
movq %mm7,%mm0 // 5
pcmpgtd %mm0,%mm1 // 6
pcmpgtd 24(%rbp),%mm0 // 7
por %mm1,%mm0 // 8
movd %mm0,%r9 // 9
testq %r9,%r9 // 10
je Lttt
LOOPBACK(Lxxx)

Lttt:
movzbl 38(%rbp),%r10d // 11
movl %r14d,%r11d // 12
andl %r10d,%r11d // 13
cmpl %r11d,%r10d // 14
je Laccept
LOOPBACK(Lxxx)

Ltfx:
cmpb $0,36(%rbp) // 15
je Laccept
LOOPBACK(Lxxx)

(a) Hand compiled code

Lxxx_zzz: // PROLOGUE PART
movq %rsi,%r8 // 0
andq 8(%rbp),%r8 // 1
cmpq 0(%rbp),%r8 // 2
je Ltxx_zzz_8

... (29 lines are omitted)

Lxxx_ttt: // KERNEL PART
movzbl -2(%rbp),%r10d // 11
movl %r14d,%r11d // 12
andl %r10d,%r11d // 13
cmpl %r11d,%r10d // 14
je Laccept
movq %rsi,%r8 // 0
andq 8(%rbp),%r8 // 1
cmpq 0(%rbp),%r8 // 2
je Ltxx_ttt
LOOPBACK(Lxxx_fxx)

Ltxx_ttt:
cmpb $6,36(%rbp) // 3
jne Ltfx_ttt

Lttx_ttf:
movq 16(%rbp),%mm1 // 4
movq %mm7,%mm0 // 5
pcmpgtd %mm0,%mm1 // 6
pcmpgtd 24(%rbp),%mm0 // 7
por %mm1,%mm0 // 8
movd %mm0,%r9 // 9
testq %r9,%r9 // 10
je Lttt_ttf

Lttf_ttf:
LOOPBACK(Lxxx_ttf)

Lttt_ttf:
LOOPBACK(Lxxx_ttt)

... (112 lines are omitted)

Lzzz_ttt: // EPILOGUE PART
movzbl -2(%rbp),%r10d // 11
movl %r14d,%r11d // 12
andl %r10d,%r11d // 13
cmpl %r11d,%r10d // 14

... (14 lines are omitted)

(b) An example of EMS code

Fig. 4. Codes on an x86-64 processor

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 431

epilogue parts. The total code size is 193 lines in this case and and the sizes of
EMS codes are likely to be over 500 lines when the number of software pipeline
stages are bigger.

In this manner, there is a (partial) mapping from a set of number sequences
to a set of software pipelined codes. Note that not every number sequence can
generate a software pipelined code, but a sequence that satisfies certain condi-
tions can generate a code due to several restrictions of software pipelined codes
(details are not discussed herein due to space limitations). Thus, generating such
a number sequence iteratively, we can generate a code that corresponds to the
number sequence and examine its execution time.

5.3 Codes for x86-32 Processors

The above-described method is also applicable to x86-32 processors. One excep-
tion is that x86-32 processors cannot use 64-bit operation instructions, so that
such instructions are decomposed into two or more 32-bit operation instructions,
and the number of primary instructions in the hand compiled code increases to
18 (the actual code is omitted here).

5.4 Experiments

The sample input packets used in the present experiments were captured from
the network of our lab using tcpdump -w. The total number of packets is 10, 000.
In these experiments, 10, 000 packets are loaded onto a large buffer in main
memory (virtual network). Then, each packet is copied from the virtual network
buffer to a receiving buffer and processed repeatedly (10, 000 times). The total
execution time is then divided by 10, 000 to obtain the number of executions
per packet. The execution time of the function call action(packet,result) is
excluded. Five sample rules, which have 2, 9, 18, 35, and 71 filter patterns, are
prepared. Therefore, five pairs, consisting of a set of input packets and a rule,
are examined in the present experiments. The α coefficients in the right-hand
side of equation (1) are 2.00, 8.99, 17.68, 34.36, and 69.73 for the five pairs.

400 500 600300

10%

20%

0%
MC

TP = 6.0

TP = 6.8

TP = 8.3

TP = 5.5

TP = 4.7

Fig. 5. Probability histogram of the execution times of the massively generated codes
on an X86-64 Xeon (2.66 GHz, OSX 10.5.5) for α = 69.73

432 Y. Yamashita and M. Tsuru

Table 1. Execution times on various x86 processors

machine optimized code execution time t (MC) α = ... t = TO + αTP

2.00 8.99 17.68 34.36 69.73 TO TP

1 Xeon naive C code 47.4 124.5 168.0 411.8 699.2 30.0 9.8
(2.66 GHz, hand compiled... 33.8 73.2 176.0 303.4 577.8 17.5 8.1
OSX 10.5.5) EMS code 32.6 68.5 108.6 180.9 354.8 23.7 4.7

2 Core 2 Duo naive C code 28.4 81.4 115.8 339.8 771.4 −31.4 11.3
64 (1.83 GHz, hand compiled... 29.9 71.2 176.3 304.6 543.7 22.0 7.7

FedoraCore 9) EMS code 30.0 65.7 106.3 181.8 358.2 20.4 4.8
3 Core 2 Duo naive C code 48.1 123.9 167.2 409.5 696.1 30.2 9.8

(2.00 GHz, hand compiled... 31.5 68.6 178.5 317.6 605.9 12.0 8.6
OSX 10.5.5) EMS code 32.2 67.9 108.0 180.8 355.0 23.1 4.7

1 Xeon, naive C code 63.2 190.1 289.5 681.4 1203.0 31.8 17.1
same as above hand compiled... 42.0 92.7 206.1 321.4 685.3 18.0 9.5
machine #1 EMS code 45.1 97.8 158.3 267.0 542.3 28.4 7.3

2 Core 2 Duo, naive C code 38.0 113.1 228.7 598.0 1033.2 −1.6 15.2
32 same as above hand compiled... 39.2 96.7 212.3 356.5 645.8 32.2 9.0

machine #2 EMS code 39.2 90.4 149.1 262.2 527.5 22.9 7.2
3 Xeon naive C code 53.0 195.7 347.0 647.2 1502.3 −20.1 21.3

(2.13 GHZ, hand compiled... 38.8 89.5 201.0 334.6 629.8 26.5 8.8
Linux v.2.6) EMS code 40.4 90.0 150.2 263.7 523.3 24.5 7.1

x86-64 x86-32Itanium 2

10

15

0

MC

5

naive C code...

hand compiled code...

PE code...

EMS code...

Fig. 6. Comparisons of the average values of TP on three types of processors

The experimental results are summarized in Table 1. Several machines in the
our lab were used in the experiments. These machines are listed in Table 1 along
with the CPU clock cycles and type of operating system. The execution time
listed in each line of the “EMS code” is that of the fastest code among all of the
generated and tested codes.

The code generator tool developed by the authors can generate more than a
billion lines of software pipelined codes and requires more than several months
to examine all of them. Thus, a subset of codes sampled was examined so that
the experiments could be completed in one day or so.

Figure 5 is the probability histogram of the execution times of the codes mas-
sively generated on x86-64 machine #1 (Xeon, 2.66 GHz) when the coefficient α in
equation (1) is 69.73. The shortest time is 354.8 MC, as listed in Table 1, whereas

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 433

the longest time is 756.8 MC. The probability of obtaining a code for which the
execution time is less than 400.0, 445.0, 500.0, and 600.0 (or for which TP is less
than 5.5, 6.0, 6.8, and 8.3) is 2.4%, 50.0%, 75.8%, and 99.1%, respectively. Thus
approximately 75% of EMS codes are faster than the hand compiled code, and
1 ∼ 2% of EMS codes are semi-optimal.

6 Evaluation of the Experiments

The values of TP , a unit rule-pattern execution time in MC, on the x86-64 (or
x86-32) machines are approximately 10.0, 8.0, and 4.7 (or 18.0, 9.1, and 7.2) for
the naive, hand compiled, and EMS codes, respectively, despite the differences
in CPU type, clock cycles, and type of operating system. This is considered to
be because the processors have a common or very similar architecture on the
lineups of Intel CPU generations.

Next, we compare the Itanium 2, the x86-64, and the x86-32 processors with
respect to factors other than the differences of the individual machines. Table
2 shows the values of TP for the three types of processors, where the values for
the Itanium 2 are referred from our paper [13], and the values on the x86-64/32
are the averages of the results for three machines as calculated from Table 1.
The values of TP are also illustrated in Figure 6. Table 3 lists the acceleration
ratios of all of the codes to the execution times of the naive codes and the hand
compiled codes. These tables and graph reveal the followings.

The acceleration ratios of 2.2 and 1.8 of the EMS codes on the x86-64 and
x86-32 processors show that the EMS code is approximately two times faster
than the naive code and the hand compiled code, respectively. This means that
software pipelining techniques are generally effective for x86 processors.

Table 2. Average values of TP on three types of processors

optimized code Itanium 2† x86-64 x86-32

naive C code 15.7 10.3 17.9
hand compiled code 7.9 8.3 9.1
PE code 3.9 — —
EMS code 5.4 4.7 7.2

† The values are referred from [13].

Table 3. Acceleration ratios compared to naive codes and hand compiled codes

ratios to naive codes ratios to hand compiled...
optimized code Itanium 2 x86-64 x86-32 Itanium 2 x86-64 x86-32
naive C code 1.0 1.0 1.0 0.5 0.8 0.5
hand compiled... 2.0 1.2 2.0 1.0 1.0 1.0
PE code 4.0 — — 2.0 — —
EMS code 2.9 2.2 2.5 1.5 1.8 1.3

434 Y. Yamashita and M. Tsuru

Table 2 indicates that the execution times of 8.3 and 9.1 of the hand compiled
codes on both the x86-64 and x86-32 processors are similar, whereas the execu-
tion time of 4.7 of the EMS code on the x86-64 processor is considerably smaller
than the execution time of 7.2 of the EMS code on the x86-32 processor. Simply
speaking, this is considered to be because the 64-bit mode, but not the 32-bit
mode, can use a special hardware facility that is effective for software pipelined
codes. The authors, however, are unclear as to why the 64-bit mode is so much
faster than the 32-bit mode.

7 Future Research

Table 4 summarizes the authors’ past and present researches and future plans
to develop the code optimization techniques for fast packet filters.

The authors started the research [11,12] at the category I in the table, and
further applied the same code optimization techniques to the research at the cat-
egory II [13]. The present research state in this paper is at the category III. Here
we have shown that the proposed software pipelining technique is effective for
improving the execution speed of type B packet filters on x86 processors. Since
the x86 series of processors are the most widely deployed general-purpose proces-
sors, we are ready to embed this technique in existing packet filters. Surprisingly,
the obtained x86-64’s EMS code can achieve a considerably short execution time
close to the optimal Itanium 2’s PE code, which exploits the special function of
Itanium 2. Thus, one of our future researches is to verify the implementation of
high-speed packet filters based on the proposed technique in actual equipment.
The other future research is at the category IV, where we need to establish a
concrete code optimization algorithm to obtain an optimal x86 code, although
the generate-and-test method is useful to try unclear things. We have already
gained significant insight into such an algorithm, including the enormous number
of relations of number sequences, actually generated codes, and their execution
times. For example, the following number sequence generates the fastest code on
the x86-64 machine #1.

0,1,2,14,15,9,10,3,11,12,13,4,5,6,7,8

Analyzing this information, we expect to determine the common properties of
the faster software pipelined codes (EMS codes) on the x86 processor. Finally

Table 4. Research categories on fast packet filters and code optimization techniques

Type A Type B generalized
fast packet fast packet fast packet
filter filter filter

Itanium 2 I II V

x86 IV III V

Implementing Fast Packet Filters by Software Pipelining on x86 Processors 435

the studies at the categories I to IV will give us various code-level optimization
techniques to construct generalized fast packet filters categorized in V.

References

1. Appel, A.W.: Modern Compiler Implementation in C. Cambridge University Press,
Cambridge (1997)

2. Begel, A., McCanne, S., Graham, S.: BPF+: Exploiting Global Data-Flow Opti-
mization in a Generalized Packet Filter Architecture. In: ACM SIGCOMM 1999
(1999)

3. Cisco: Configuring IP Access Lists, Document ID: 23602,
http://www.cisco.com/warp/public/707/confaccesslists.html

4. Cristea, M.L., Bos, H.: A Compiler for Packet Filters. In: Proceedings of ASCI
2004 (2004)

5. Intel: Intel Itanium Architecture Software Developer’s Manual (2005),
http://www.intel.com/

6. Intel: Intel64 and IA-32 Architectures Optimization Reference Manual (2007),
http://www.intel.com/

7. Jacobson, V., et al.: tcpdump(1), bpf...., Unix Manual Page (1990)
8. Okumura, T., Mossé, D., et al.: Network QoS Management Framework for Server

Clusters An End-Host Retrofitting Event-Handler Approach using Netnice. In: 3rd
Int. Symp. on Cluster Computing and the Grid (2003)

9. Singh, S., Baboescu, F., Varghese, G., Wang, J.: Packet Classification Using Mul-
tidimensional Cutting. In: ACM SIGCOMM 2003 (2003)

10. Warter, N.J., Haab, G.E., Bockhaus, J.W.: Enhanced Modulo Scheduling for Loops
with Conditional Branches. In: IEEE MICRO-25 (1992)

11. Yamashita, Y., Tsuru, M.: Code Optimization for Packet Filters. In: SAINT 2007
Workshops CD-ROM (2007)

12. Yamashita, Y., Tsuru, M.: Software Pipelining for Packet Filters. In: Perrott, R.,
Chapman, B.M., Subhlok, J., de Mello, R.F., Yang, L.T. (eds.) HPCC 2007. LNCS,
vol. 4782, pp. 446–459. Springer, Heidelberg (2007)

13. Yamashita, Y., Tsuru, M.: Implementations of Fast packet Filters and their Eval-
uations. IPSJ Transactions on Advanced Computing System (TACS) 1(1), 1–11
(2008) (in Japanese)

14. Yusuf, S., Luk, W.: Bitwise Optimised CAM for Network Intrusion Detection Sys-
tems. In: Int. Conf. Field Programmable Logic Appl. (2005)

http://www.cisco.com/warp/public/707/confaccesslists.html
http://www.intel.com/
http://www.intel.com/

OSL: Optimized Bulk Synchronous Parallel
Skeletons on Distributed Arrays

Noman Javed and Frédéric Loulergue

Université d’Orléans – LIFO, France
{noman.javed,frederic.loulergue}@univ-orleans.fr

Abstract. The existing solutions to program parallel architectures ran-
ge from parallelizing compilers to distributed concurrent programming.
Intermediate approaches propose a more structured parallelism: Algo-
rithmic skeletons are higher-order functions that capture the patterns of
parallel algorithms. The user of the library has just to compose some of
the skeletons to write her parallel application. When one is designing a
parallel program, the parallel performance is important. It is thus very
interesting for the programmer to rely on a simple yet realistic parallel
performance model such as the Bulk Synchronous Parallel (BSP) model.
We present OSL, the Orléans Skeleton Library: it is a library of BSP
algorithmic skeletons in C++. It offers data-parallel skeletons on arrays
as well as communication oriented skeletons. The performance of OSL is
demonstrated with two applications: heat equation and FFT.

1 Introduction

The existing solutions to program parallel architectures range from parallelizing
compilers to distributed concurrent programming offered by libraries such as
MPI [46]. For shared-memory machines or multi-core machines, libraries based
on threads are widely in use [40,11,1]. Intermediate approaches propose a more
structured parallelism. The parallelism is exposed to the programmer to a less
extend, but still allows her to specify parallel aspects of the algorithm to be
implemented. These intermediate approaches thus give more control over paral-
lelism than automatic parallelization but are less complex than message passing
or thread-based libraries.

Algorithmic skeletons [13,18,41] are one of these approaches. An algorithmic
skeleton is a higher-order function that captures the pattern of a parallel algo-
rithm such as a pipeline, a parallel reduction, etc. Often the sequential semantics
of the skeleton is quite simple and corresponds to the usual semantics of simi-
lar higher-order functions in functional programming languages. The user of a
skeleton library has just to compose some the skeletons to write her parallel ap-
plication. In skeletal parallelism, data-structures are mostly considered globally
for the whole parallel machine, even in the case of distributed memory machine.
That eases the writing and reading of parallel programs compared to the Single
Program Multiple Data (SPMD) paradigm in which data structures can only be
described locally to a process. The development of SPMD or threaded programs

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 436–451, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

OSL: Optimized Bulk Synchronous Parallel Skeletons 437

for shared memory machines is also difficult because they may contain inde-
terminism and deadlocks. This is confirmed by the high complexity of related
verification problems [3,45,42].

When one is designing a parallel program, the parallel performance is of course
important. It is thus very interesting for the programmer to rely on a simple yet re-
alistic parallel cost model such as BSP [48,38,15] (Bulk Synchronous Parallelism)
or CGM [19] (Coarse Grained Model). The BSP model targets all general purpose
parallel architectures even if the abstract BSP computer is a distributed memory
machine. Its execution model separates synchronization and communication and
obliges both to be collective operations. It proposes a simple and accurate cost
model (in this context, cost means the estimate of parallel execution time) mak-
ing it possible to predict performances in a realistic and portable way. The theory
of the proof of BSP programs [31,24] is also close in complexity to the sequential
case. The BSP model was used successfully for a broad variety of problems: sci-
entific computation [7], genetic algorithms [9], genetic programming [20], neural
networks [44], parallel databases [4], constraints solvers [26], etc.

In this paper we present OSL the Orléans Skeleton Library. OSL provides a set
of data parallel skeletons which follow the BSP model of parallel computation.
OSL is a library for C++ currently implemented on top of MPI and it uses meta-
programming techniques to offer a good efficiency. Our goal is thus to provide
an easy to use library for a widely used programming language and that allows
simple reasoning about parallel performances based on a simple and portable
cost model. We first begin by giving some elements on the Bulk Synchronous
Parallel model (section 2). In section 3, we then give an overview of OSL. The
use of OSL is illustrated through two small applications (section 4): the Fast
Fourier Transform computation and a one dimension simulation of heat diffusion.
Experiments and comparisons of the programming and running times of these
applications with respect to SkeTo [37,21] and Muesli [33,35,12] are presented
in section 5. Sections 6 and 7 are devoted to related work, conclusion and
future work.

2 The Bulk Synchronous Parallel Model

The Bulk Synchronous Parallel (BSP) model [48,38,15,7] describes: an abstract
parallel computer, a model of execution and a cost model.

The BSP architecture. A BSP computer has three components: (a) a set of
homogeneous processor-memory pairs, (b) a network allowing point-to-point in-
ter processor communications, (c) a global synchronization unit that performs
synchronization barriers.

Any general purpose parallel architecture can be seen as a BSP computer.
For example a shared memory machine could be used in such a way that each
processor only accesses a subpart of the shared memory (which is then “private”)
and communications could be performed using a dedicated part of the shared
memory. Furthermore in most cases the synchronization unit is not a hardware

438 N. Javed and F. Loulergue

unit but is rather emulated by software ([29] presents global synchronization
barrier algorithms).

The performance of the BSP computer is characterized by four parameters
(including the local processor speed) or three parameters (expressed as multi-
ples of the local processing speed): p the number of processor-memory pairs ;
L the time required for a global synchronization ; g the time required for col-
lectively delivering a 1-relation (communication phase where every processor
receives/sends at most one word), the network can deliver an h-relation (com-
munication phase where every processor receives/sends at most h words) in time
g × h. These parameters can easily be obtained using benchmarks [28].

The execution model
A BSP program is a sequence of super-
steps. The execution of a super-step is
divided into (at most) three successive
and logically disjointed phases:

1. Each processor uses its local data
(only) to perform sequential compu-
tations and to request data transfers
to/from other nodes ;

2. The network delivers the requested
data transfers ;

3. A global synchronization barrier oc-
curs, making the transferred data
available for the next super-step.

The cost model. The execution time of a super-step s is thus the sum of the maxi-
mal local processing time, the data delivery time, and the global synchronization
time. It is expressed by the following formula:

Time(s) = max
0≤i<p

w
(s)
i + max

0≤i<p
h

(s)
i × g + L

w
(s)
i = local processing time on processor i during super-step s

h
(s)
i = max{h(s)

i+ , h
(s)
i−}where h

(s)
i+ (resp. h

(s)
i−) is the number of words

transmitted (resp. received) by processor i during super-step s.
The execution time

∑
s Time(s) of a BSP program composed of S super-steps

is, therefore, a sum of 3 terms:

W + H × g + S × L where W =
S∑

s=1

max
0≤i<p

w
(s)
i and H =

S∑
s=1

max
0≤i<p

h
(s)
i .

In general, W, H and S depends on the number of processor-memory pairs,
on the size of data n, or on more complex parameters like data skew. The de-
sign of BSP algorithms is therefore a tradeoff in order to minimize execution

OSL: Optimized Bulk Synchronous Parallel Skeletons 439

time by jointly minimizing the number S of super-steps, the total volume H
and imbalance of communication, the total volume W and imbalance of local
computation.

3 OSL: An Overview

OSL is a library for BSP algorithmic skeletons. The library is implemented in
the C++ language using an MPI library for communications. At the moment
the library offers a distributed array data structure. Data parallel and communi-
cation skeletons are offered for computing with distributed arrays. OSL supports
both standard and oblivious [8] BSP synchronization. The library provides a set
of utility functions to help the programmer to write parallel applications.

3.1 Distributed Arrays

The idea behind using the distributed arrays is to avoid programmer being in-
dulged into the details of scattering and then gathering back the data. A dis-
tributed array is implemented in the form of a generic class. A handful set of
constructors are provided. Programmer can fix the global size, initialize the data
by some value or by applying some function, copy data from already existing
distributed array.

The Dist_Array class acts as a front end wrapper and controller for the orig-
inal data storage SArray class. As a wrapper class Dist_Array is used in the
engineering of the composition of data parallel skeletons. Programmer needs not
to worry about the SArray class. The signatures of basic public functionality of
the Dist_Array class are given below:

inline size_t size() const;

inline size_t get_local_size() const;

inline size_t get_local_start() const;

inline T operator[] (size_t idx) const;

inline T& operator[] (size_t idx);

inline T& get(int idx);

inline T& get(int idx) const;

inline Rep const& rep() const;

inline Rep& rep();

3.2 Operators

Algorithmic skeletons can be seen as higher-order functions. However thus func-
tions cannot be handled directly in most object oriented languages. To pass a
function as argument to another function, the common practice is to encapsulate
it in an object.

OSL provides operators that are used to save the input and output types of
the function object. Any function object should be inherited from one of the
two OSL operator classes in order to pass it as an argument to some skeleton

440 N. Javed and F. Loulergue

or distributed array. For the moment only two operator classes are provided in
compliance with the requirements of the available skeleton set: unary and binary
operators. Operator classes along with a simple function object are presented
below:

template<class I, class O>

struct unary_operator{

typedef I input_type;

typedef O output_type;

};

template<class I1, class I2, class O>

struct binary_operator{

typedef I1 input_type_1;

typedef I2 input_type_2;

typedef O output_type;

};

struct index: public unary_operator < int, int > {

double operator()(int idx) const {

return idx;

}

} index; // index function object inherited from unary_operator class

3.3 Data Parallel Skeletons

Classic data parallel skeletons map, map_index, zip, zip_index are implemented
in the library.

map takes a function object as the first argument and applies it to every element
of its second argument, a distributed array. Note that the input function object
should be inherited from one of the two operator classes as mentioned in the
previous section. The semantics of a map can be viewed as:

map(f, [x0; . . . ; xn−1]) = [f(x0); . . . ; f(xn−1)]

map_index applies the function object to the global index of every element of the
distributed array. The semantics of map_index can be represented as

map_index(f, [x0; . . . ; xn−1]) = [f(0, x0); f(1, x1); ...; f(n − 1, xn−1)]

zip applies the function object on every element of the two input distributed
array. Its semantics can be represented as:

zip(f, [x0; . . . ; xn−1], [y0; . . . ; yn−1]) = [f(x0, y0); . . . ; f(xn−1, yn−1)]

zip_index applies the function object to the global indexes of the two input
distributed arrays. The semantics of zip_index can be viewed as:

zip_index(f, [x0; . . . ; xn−1], [y0; . . . ; yn−1])=[f(0, x0, y0); . . . ; f(n−1, xn−1, yn−1)]

OSL: Optimized Bulk Synchronous Parallel Skeletons 441

The BSP cost associated with all the above mentioned data parallel skeletons
is O(n

p) where n is the global size of the distributed array and p is the number
of processes.

These data parallel skeletons are implemented in the form of function objects.
A corresponding calling function is provided to create the data parallel skeleton’s
function object with the arguments function object and distributed array. This
function object is then wrapped into the Dist_Array class wrapper to be used as
a resultant distributed array. This mechanism optimizes the composition of these
skeletons. The implementation of the map class along with its calling function is
presented below:

template <typename F, typename OP1>

class MAP {

private:

F& f;

typename A_Traits<OP1>::ExprRef op1;

public:

typename F::output_type inline operator[] (size_t idx) const {

return f(op1[idx]);

}

inline size_t get_local_size() const {

return op1.get_local_size();

}

};

template <typename T, typename F, typename R1>

Dist_Array<T,MAP<F,R1> >

inline map (F& f, Dist_Array<T,R1> const& a) {

return Dist_Array<T,MAP<F,R1> >

(MAP<F,R1>(f,a.rep()));

}

3.4 Communication Skeletons

OSL implements three communication skeletons shift_right, shift_left and
permute_partition. These communication skeletons request a BSP synchroniza-
tion barrier at the end of their call.

shift_right shifts the entire distributed array to one position on the right and
puts the given value as the first element of the first process. During the process
of shifting it communicates the last element of every process i to the process
i + 1. shift_right can be represented as:

shift_right(v, [x0; . . . ; xn−1]) = [v; x0; . . . ; xn−2]

shift_left does the same thing on the left.
The BSP cost of shift skeletons is O(n

p) + s × g + L where s is the size of a
single element.

permute_partition permutes the sub-arrays of a distributed array. It takes as
argument a bijection f from processor identifiers to processor identifiers. For all

442 N. Javed and F. Loulergue

processor i, the sub-array it contains after the call to permute_partition is the
sub-array that was contained by processor f−1(i). The function object f thus
determines the receivers of the sub-arrays. It is the most heavy skeleton in terms
of communication. The BSP cost of permute partition is O(p) + n

p × s × g + L.
These communication skeletons are also implemented as function objects.

However their composition is currently not optimized as is the composition of
communication-free data parallel skeletons.

3.5 Synchronization

In BSP model every communication step should be followed by synchronization.
As OSL is developed over MPI, MPI_Barrier is used as synchronization primitive.
However the oblivious synchronization introduced in the PUB library [8] could
be used: when the processors know in advance the number of messages they
should exchange during a super-step, they can proceed to a new super-step as
soon as they have exchanged all the expected messages. This saves a call to the
global synchronization unit. OSL supports BOTH standard synchronization and
oblivious synchronization. The selection of any of the two is done by setting the
appropriate flag during compilation.

3.6 Optimization Using Expression Templates

All the above mentioned data parallel skeletons can be simply composed in an
optimized fashion. This is based on the principle of expression template [49]. The
principle of expression templates is to encode abstract syntax trees using C++
template mechanism. By overloading the appropriate operator it is then possible
to produce actual code from an expression template. In this way by composing
the data parallel skeletons we can get rid of temporaries and the intermediate
loops.

The difference between non-optimized and optimized OSL code is show below:

// bar1 and bar2 are already created

Dist_Array bar_map = map(increment,bar1);

Dist_Array bar_zip = zip(add,bar2,bar_map);

Dist_Array result = zip(add,bar_map,bar_zip);

// Note: Above version is valid but not optimized

// Below is the optimized one

Dist_Array result = zip(add, map(increment,bar1),

zip(add, bar2,

map(increment, bar1)));

// Instead of three separate loops and two temporary Dist_Arrays the

//optimized version is doing the same thing within a single loop and

//without any temporary.

4 Applications in OSL

Programming with OSL is presented by developing the following two
applications.

OSL: Optimized Bulk Synchronous Parallel Skeletons 443

4.1 Heat Equation

The simulation of one dimensional heat diffusion could be performed by solving
the heat equation using a discretization approach:

u(x, t + 1) = diffuse × Δt

Δ2
x

× (
u(x + 1, t) + u(x − 1, t) − 2 × u(x, t)

)
+ u(x, t)

Here we represent the line of metal by a distributed array and we iterate over
time. We present the algorithm using skeletons from this formula:

1. u(x + 1, t): Left shifting the original array,
2. u(x − 1, t): Right shifting the original array,
3. u(x + 1, t) + u(x − 1, t): Zipping the above two arrays by adding them,
4. −2×u(x, t): Mapping original array by multiplying by -2 (given as an object

function instance of the Mult_by class),
5. u(x+1, t)+u(x−1, t)−2×u(x, t): Zipping resultant arrays of 3 and 4 using

the add object function,
6. diffuse × Δt

Δ2
x
: Initializing function object,

7. diffuse× Δt

Δ2
x
×(

u(x+1, t)+u(x−1, t)−2×u(x, t): Mapping function object
of step 6 on resultant array of step 5,

8. diffuse × Δt

Δ2
x
× (

u(x + 1, t) + u(x− 1, t)− 2 × u(x, t)
)
+ u(x, t): Zipping the

original array with result of step 7 by adding them.

We have used our skeleton functions to implement the above algorithm. This
implementation is presented in the following listing

int main (int argc, char *argv[])

{

osl::init(&argc,&argv);

Mult_by by_minus2(- 2);

Add add;

int count = 0;

for(double t = delta_t; count < time/delta_t; t += delta_t, count++){

Dist_Array< double > right = shift_left(boundary, bar);

Dist_Array< double > left = shift_right(boundary, bar);

Mult_by by_gamma((diffuse*delta_t)/(delta_x*delta_x));

bar = zip(add_fun, bar,

osl::map(by_gamma, zip(add, zip(add, left, right),

osl::map(by_minus2, bar))));

}

// Printing the result

osl::finalize();

}

The BSP cost of the heat equation program can be calculated from the costs
of the individual skeletons:

8 × (
n

p
) + 2 × s × g + L

444 N. Javed and F. Loulergue

4.2 Fast Fourier Transform

Fast Fourier Transform is implemented in OSL and compared with Muesli. We
borrow the implementation of FFT algorithm in terms of skeletons from Muesli.
First step in FFT is to decompose the original n size data in n discrete signals in
an interlaced fashion. In case of sequential algorithm it takes log2 n stages. But
in parallel as the original n is already distributed among p processors, it takes
log2 p stages. Next step is to find the frequency spectra of 1 dimensional time
domain signals. Frequency spectra of 1 point signal is equal to itself. Last step is
to combine n frequency spectra in exact reverse order that time decomposition
takes place. This process requires log2 n − log2 p iterations in parallel.

First step of this algorithm can be implemented by creating a copy of the
original array and then calling map_index, permute_partition, map_index. Second
step can be implemented by map_index and third step can be implemented by
zip_index. In our implementation we use the optimized OSL composition of
second and third step:

int main (int argc, char *argv[])

{

osl::init(&argc,&argv);

Dist_Array< double > bar(problemsize, 1.0);

init_complex initc(bar);

Dist_Array<complex > bar_comp(initc,problemsize);

Dist_Array<complex > bar_t(problemsize);

log2p = (int)log2(mysize);

log2size = (int)log2(problemsize);

for(int j = 0; j < log2p; j++){

bar_t = bar_comp;

bitcomplement bitcomp(log2p - 1 - j);

permute_partition(bitcomp,bar_t);

combine comb(j);

bar_comp = zip_index(comb,bar_comp,bar_t);

}

for(int j = log2p; j < log2size; j++){

fetch fch(bar_comp,j);

combine cmbin(j);

bar_comp = zip_index(cmbin,bar_comp,map_index(fch,bar_t));

}

// Outputting the result

osl::finalize();

}

cmbin and fch are function objects. In OSL we have not implemented currying
(which is implemented in Muesli). Thus in order to pass a curried function
in OSL, the programmer should create a function object encapsulating certain
parameters via the constructor. Then function object could act as a curried
function.

The BSP cost of FFT is

log2 p × (2n + O(p) × s × g + L)) + (log2 n − log2 p) × 2n

OSL: Optimized Bulk Synchronous Parallel Skeletons 445

5 Experiments and Comparisons

All the experiments were conducted on a cluster of PC built in two parts of 8
nodes each. Each of the first 8 nodes contains two Quad-Core AMD Opteron 2376
processors with a 2.3 GHz frequency. Each node has 16 Gb of memory. The other 8
nodes contain each two Dual-Core AMD Opteron 2216 with a 2.4 GHz frequency.
Each node has 4Gb of memory. These 16 nodes are linked by a Gigabit-Ethernet
network, each node having one network card. The operating system is Ubuntu
8.04. The MPI library used was Open MPI 1.3. The compiler was GCC 4.2.3. All
the examples were compiled using the second level of optimization.

In the experiments we used each core as a BSP processor. However the number
of processes by multi-core processor is balanced (separately on each part of the
cluster: for less than 64 BSP processors only the first half is used with a balanced
number of BSP processors on each physical processor. For more than 64 BSP
processors the second part of the cluster is also used. The BSP parameters are
thus worsened when p is increased since only one network card is used by several
processors.

We also ran the examples written with two other libraries: SkeTo [37,21] and
Muesli [35,12]. For data-parallel operations on distributed arrays, OSL, SkeTo
and Muesli are very similar.

SkeTo offers data-parallel operations on other data structures: matrices and
trees. We used the latest public release1: 0.21. The SkeTo release contains the
heat equation example. It is not possible to program efficiently the FFT example
since there is no communication skeleton in SkeTo similar to permute_partition

(the only available communication skeletons are shift and gather skeletons).
Muesli offers data-parallel and task-parallel skeletons [34]. The set of skele-

tons operate on distributed arrays, distributed matrices and distributed sparse
matrices [12]. In Muesli the size of distributed arrays should be a multiple of
the number of processors. This constraint does not exist for OSL and SkeTo.
There is no shift skeleton in Muesli. The shift skeleton could be obtained by a
composition of map and permute. However the permute and fold skeletons and all
their variants could not be used if the number of processors is not a power of two.
Thus heat equation example could be executed with Muesli only for particular
cases. The experiments were only performed for the FFT example, included in
the latest Muesli release2: 1.79.

We have compared the performances of our heat equation programs with
SkeTo for heat diffusion in copper. The program takes as input the length of
the metal, Δx, the duration of the simulation, and Δt the time step. We exper-
imented on a 100mm bar of copper and fix the time of simulation to 1 second.
We have experimented with both the oblivious and non oblivious versions of our
program. The timings (average of 5 runs) are presented in figure 1 for some in-
put values. The oblivious version of OSL always attain better performances than
SkeTo. The non-oblivious version is closer to SkeTo in term of performances. For

1 http://www.ipl.t.u-tokyo.ac.jp/sketo
2 http://www.wi.uni-muenster.de/pi/forschung/Skeletons/index.html

446 N. Javed and F. Loulergue

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 8 16 24 32 40 48 56 64 72 80 88 96

T
im

e
(s

)

Processors

Num-dx: 100, dx: 0.00001, Num-dt: 1, dt: 1

OSL.Obl
SkeTo

OSL.Standard

 0

 100

 200

 300

 400

 500

 600

 0 8 16 24 32 40 48 56 64 72 80 88 96

T
im

e
(s

)

Processors

Num-dx: 100, dx: 0.00001, Num-dt: 1, dt: 0.001

OSL.Obl
SkeTo

OSL.Standard

Fig. 1. Heat Equation Timings

only one iteration, the non-oblivious OSL version is about 10 times faster than
SkeTo for a large number of processors: it is due to our optimized composition
of skeletons. For 1000 iterations, OSL is still more than 40% faster than SkeTo.

If for a given number of processors we examine the timings by varying the
sizes of distributed arrays, we could see that the performances follow the BSP
cost given in the previous section.

The FFT program takes as argument the size of the array. It should be a mul-
tiple of the number of processors. The number of processors should be a power
of 2. We measured the performances of OSL FFT with both type of synchroniza-
tions and also of the Muesli version of FFT. For small sizes, depending on the

OSL: Optimized Bulk Synchronous Parallel Skeletons 447

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 8 16 24 32 40 48 56 64

T
im

e
(s

)

Processors

Size: 8388608

OSL.Obl
Muesli

OSL.Standard

Fig. 2. FFT Timings

number of processors, Muesli and oblivious OSL have similar performances but
one may be slightly better than the other. For large sizes, oblivious OSL have
better performances than Muesli. In figure 2, for 64 processors, OSL is more
than 20% faster than Muesli.

6 Related Work

Skeletons and Object-Oriented Languages. There are many algorithmic skeleton
libraries or linguistic extensions for C and C++. We already discussed Muesli
and SkeTo. Quaff [23] does not have a distributed data structure: the scatter-
ing and gathering of data is done by the framework (but of course for specific
data-structure the user has to specify the scatter/gather methods). Quaff relies
heavily on meta-programming techniques for optimization, but no implementa-
tion is currently publicly available which explains why we did not perform a
comparison with it. Most of its proposed skeletons are task parallel skeletons.
eSkel [14,5] is an attempt to bridge the gap between skeletons libraries and MPI.
The programming style of eSkel is thus very close to MPI style but with skeleton
capabilities. The integration within MPI code is easy but the signatures of the
propose skeletons are much more complicated. OSL provides skeletons easier to
use but integration with MPI programs is not considered currently.

DatTel [6] is a partial parallel implementation of the STL library, which is
also partly the case for STAPL. Intel Threading Building Blocks [43] could be
seen as a skeleton library: it offers a kind of map, and also reduce and scan
parallel algorithms. BSFC++ [16] uses C++ templates in order to obtain a
functional bulk synchronous parallel language. However the code was difficult

448 N. Javed and F. Loulergue

to write for a C++ programmer and not very efficient. There are also several
skeleton libraries for the Java programming language. They are more dynamic
by nature and targets more heterogeneous and changing architectures such as
grids than the C/C++ libraries: Lithium [2], Muskel [17], Calcium [10].

Libraries for Bulk Synchronous Parallel Programming. BSPlib [28], PUB [8] and
BSPonMPI [47] are three libraries for C that support bulk synchronous parallel
programming. The proposed set of functions is quite small compared to MPI,
yet efficient. However the programming style of these libraries is not as high
level than skeleton libraries and OSL. JBSP [27] is a Java version of the BSP
libraries. BSML [36] is a functional language that support BSP programming.
It has a very small core of functions, nice semantical properties. The provided
operations are not so easy to handle for a beginner but its higher-order nature
allows to provide a standard library of functions implemented with the primi-
tives only but easier to use and close to more classical skeletons. However being
based on the Objective Caml functional language hinders its use by a large au-
dience. ScientificPython [30] contains a BSP module inspired by BSML. Both
NestStep [32] and Ct [25] provide a parallel programming model based on nested
data structures and a BSP-like execution model.

7 Conclusions and Future Work

OSL is a library for manipulating distributed arrays through bulk synchronous
parallel algorithmic skeletons in C++. Preliminary performance comparisons
show that our library is very efficient. OSL is currently limited to distributed
arrays. In the future, we plan to address other data structures, in particular
matrices and multidimensional arrays. We also plan to use OSL for implementing
various scientific computing applications.

The optimization technique used to improve the performance of composed
calls to data-parallel skeletons is in the current version limited to non-com-
municating skeletons. The next version of OSL will address the composition
of arbitrary skeletons. For this our expression templates will target a kind of
BSP algebra (such as [39] whose terms will be translated into C++ code with
MPI calls, in a similar way the QUAFF library uses expression templates to
translate skeleton compositions into a process algebra [22]. We also plan to have
an optimized implementation of OSL dedicated to multi-core architectures not
relying on MPI.

The verification of the correctness of the implementation of OSL with respect
to the functional semantics of skeletons is also a long term goal of our research.

References

1. OpenMP Application Program Interface version 3.0 (May 2008)
2. Aldinucci, M., Danelutto, M., Teti, P.: An Advanced Environment Supporting

Structured Parallel Programming in Java. Future Generation Computer Sys-
tems 19, 611–626 (2002)

OSL: Optimized Bulk Synchronous Parallel Skeletons 449

3. Apt, K.R., Olderog, E.-R.: Verification of sequential and concurrent programs, 2nd
edn. Springer, Heidelberg (1997)

4. Bamha, M., Exbrayat, M.: Pipelining a Skew-Insensitive Parallel Join Algorithm.
Parallel Processing Letters 13(3), 317–328 (2003)

5. Benoit, A., Murray, C., Gilmore, S., Hillston, J.: Flexible Skeletal Programming
with eSkel. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par 2005. LNCS, vol. 3648,
pp. 761–770. Springer, Heidelberg (2005)

6. Bischof, H., Gorlatch, S., Leschinskiy, R.: DatTeL: A Data-Parallel C++ Template
Library. Parallel Processing Letters 13(3), 461–472 (2003)

7. Bisseling, R.: Parallel Scientific Computation. A structured approach using BSP
and MPI. Oxford University Press, Oxford (2004)

8. Bonorden, O., Juurlink, B., von Otte, I., Rieping, I.: The Paderborn University
BSP (PUB) Library. Parallel Computing 29(2), 187–207 (2003)

9. Braud, A., Vrain, C.: A parallel genetic algorithm based on the BSP model. In:
Evolutionary Computation and Parallel Processing GECCO & AAAI Workshop,
Orlando (Florida), USA (1999)

10. Caromel, D., Leyton, M.: Fine tuning algorithmic skeletons. In: Kermarrec, A.-M.,
Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 72–81. Springer,
Heidelberg (2007)

11. Chapman, B., Jost, G., van Der Pas, R.: Using OpenMP. MIT Press, Cambridge
(2008); about OpenMP 2.5

12. Ciechanowicz, P., Poldner, M., Kuchen, H.: The Münster Skeleton Library Muesli
– A Comprenhensive Overview. Technical Report Working Paper No. 7, European
Research Center for Information Systems, University of Münster, Germany (2009)

13. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press, Cambridge (1989)

14. Cole, M.: Bringing Skeletons out of the Closet: A Pragmatic Manifesto for Skeletal
Parallel Programming. Parallel Computing 30(3), 389–406 (2004)

15. Skillicorn, D.B., Hill, J.M.D., McColl, W.F.: Questions and Answers about BSP.
Scientific Programming 6(3), 249–274 (1997)

16. Dabrowski, F., Loulergue, F.: Functional Bulk Synchronous Programming in C++.
In: 21st IASTED International Multi-conference, Applied Informatics (AI 2003),
Symposium on Parallel and Distributed Computing and Networks, February 2003,
pp. 462–467. ACTA Press (2003)

17. Danelutto, M., Dazzi, P.: Joint Structured/Unstructured Parallelism Exploitation
in Muskel. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J.
(eds.) ICCS 2006. LNCS, vol. 3992, pp. 937–944. Springer, Heidelberg (2006)

18. Darlington, J., Field, A.J., Harrison, P.G., Kelly, P., Sharp, D., Wu, Q., While, R.:
Parallel Programming Using Skeleton Functions. In: Reeve, M., Bode, A., Wolf, G.
(eds.) PARLE 1993. LNCS, vol. 694, pp. 146–160. Springer, Heidelberg (1993)

19. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel ceometric algorithms for
coarse grained multicomputer. In: 9th Symposium on Computational Geometry,
pp. 298–307 (1993)

20. Dracopoulos, D.C., Kent, S.: Speeding up genetic programming: A parallel BSP
implementation. In: First Annual Conference on Genetic Programming. MIT Press,
Cambridge (1996)

21. Emoto, K., Matsuzaki, K., Hu, Z., Takeichi, M.: Domain-Specific Optimization
Strategy for Skeleton Programs. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.)
Euro-Par 2007. LNCS, vol. 4641, pp. 705–714. Springer, Heidelberg (2007)

450 N. Javed and F. Loulergue

22. Falcou, J., Sérot, J.: Formal Semantics Applied to the Implementation of a
Skeleton-Based Parallel Programming Library. In: Bischof, C.H., Bücker, H.M.,
Gibbon, P., Joubert, G.R., Lippert, T., Mohr, B., Peters, F.J. (eds.) Parallel Com-
puting: Architectures, Algorithms and Applications, ParCo 2007. Advances in Par-
allel Computing, vol. 15, pp. 243–252. IOS Press, Amsterdam (2007)

23. Falcou, J., Sérot, J., Chateau, T., Lapresté, J.-T.: Quaff: Efficient C++ Design for
Parallel Skeletons. Parallel Computing 32, 604–615 (2006)

24. Gava, F.: Formal Proofs of Functional BSP Programs. Parallel Processing Let-
ters 13(3), 365–376 (2003)

25. Ghuloum, A., Smith, T., Gansha, W., Zhou, X., Fang, J., Guo, P., So, B., Ra-
jagopalan, M., Chen, Y., Chen, B.: Future-Proof Data Parallel Algorithms and
Software on Intel Multi-Core Architecture. Intel Technology Journal 11(4) (2007)

26. Granvilliers, L., Hains, G., Miller, Q., Romero, N.: A system for the high-level
parallelization and cooperation of constraint solvers. In: Pan, Y., Akl, S.G., Li, K.
(eds.) Proceedings of International Conference on Parallel and Distributed Com-
puting and Systems (PDCS), Las Vegas, USA, pp. 596–601. IASTED/ACTA Press
(1998)

27. Gu, Y., Lee, B.-S., Cai, W.: JBSP: A BSP Programming Library in Java. Journal
of Parallel and Distributed Computing 61(17), 1126–1142 (2001)

28. Hill, J.M.D., McColl, B., Stefanescu, D., Goudreau, M., et al.: BSPlib: The BSP
Programming Library. Parallel Computing 24, 1947–1980 (1998)

29. Hill, J.M.D., Skillicorn, D.B.: Practical Barrier Synchronisation. In: 6th EuroMicro
Workshop on Parallel and Distributed Processing (PDP 1998). IEEE Computer
Society Press, Los Alamitos (1998)

30. Hinsen, K., Langtangen, H.P., Skavhaug, O., Odeg̊ard, Å.: Using BSP and Python
to simplify parallel programming. Future Generation Computur Systems 22(1),
123–157 (2006)

31. Jifeng, H., Miller, Q., Chen, L.: Algebraic laws for BSP programming. In: Fraigni-
aud, P., Mignotte, A., Robert, Y., Bougé, L. (eds.) Euro-Par 1996. LNCS, vol. 1124,
pp. 1123–1124. Springer, Heidelberg (1996)

32. Kessler, C.W.: Managing Distributed Shared Arrays in a Bulk-Synchronous Par-
allel Environment. Concurrency and Computation: Practice and Experience 16,
133–153 (2004)

33. Kuchen, H.: A Skeleton Library. In: Monien, B., Feldmann, R.L. (eds.) Euro-Par
2002. LNCS, vol. 2400, pp. 620–629. Springer, Heidelberg (2002)

34. Kuchen, H., Cole, M.: The Integration of Task and Data Parallel Skeletons. Parallel
Processing Letters 12(2), 141–155 (2002)

35. Kuchen, H., Poldner, M.: On Implementing the Farm Skeleton. Parallel Processing
Letters 18(1), 204–219 (2008)

36. Loulergue, F., Gava, F., Billiet, D.: Bulk Synchronous Parallel ML: Modular Im-
plementation and Performance Prediction. In: Sunderam, V.S., van Albada, G.D.,
Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 1046–1054.
Springer, Heidelberg (2005)

37. Matsuzaki, K., Iwasaki, H., Emoto, K., Hu, Z.: A Library of Constructive Skeletons
for Sequential Style of Parallel Programming. In: InfoScale 2006: Proceedings of
the 1st international conference on Scalable information systems. ACM Press, New
York (2006)

38. McColl, W.F.: Scalability, portability and predictability: The BSP approach to
parallel programming. Future Generation Computer Systems 12, 265–272 (1996)

39. Merlin, A., Hains, G.: A bulk synchronous process algebra. Computer Languages,
Systems and Structures 33(3-4), 111–133 (2007)

OSL: Optimized Bulk Synchronous Parallel Skeletons 451

40. Nichols, B., Buttlar, D., Proulx Farrell, J.: Pthreads Programming: A POSIX Stan-
dard for Better Multiprocessing. O’Reilly, Sebastopol (1996)

41. Pelagatti, S.: Structured Development of Parallel Programs. Taylor & Francis,
Abington (1998)

42. Pervez, S., Gopalakrishnan, G., Kirby, R.M., Palmer, R., Thakur, R., Gropp, W.:
Practical Model-Checking Method for Verifying Correctness of MPI Programs. In:
Cappello, F., Herault, T., Dongarra, J. (eds.) PVM/MPI 2007. LNCS, vol. 4757,
pp. 344–353. Springer, Heidelberg (2007)

43. Reinders, J.: Intel Threading Building Blocks: Outfitting C++ for Multi-core Pro-
cessor Parallelism. O’Reilly, Sebastopol (2007)

44. Rogers, R.O., Skillicorn, D.B.: Using the BSP cost model to optimise parallel neural
network training. Future Generation Computer Systems 14(5-6), 409–424 (1998)

45. Siegel, S.F.: Model Checking Nonblocking MPI Programs. In: Cook, B., Podelski,
A. (eds.) VMCAI 2007. LNCS, vol. 4349, pp. 44–58. Springer, Heidelberg (2007)

46. Snir, M., Gropp, W.: MPI the Complete Reference. MIT Press, Cambridge (1998)
47. Suijlen, W.J.: BSPonMPI, http://bsponmpi.sourceforge.net
48. Valiant, L.G.: A bridging model for parallel computation. Comm. of the

ACM 33(8), 103 (1990)
49. Veldhuizen, T.: Techniques for Scientific C++. Computer science technical report

542, Indiana University (2000)

http://bsponmpi.sourceforge.net

Evaluating SPLASH-2 Applications Using MapReduce

Shengkai Zhu, Zhiwei Xiao, Haibo Chen, Rong Chen, Weihua Zhang, and Binyu Zang

Parallel Processing Institute, Fudan University

Abstract. MapReduce has been prevalent for running data-parallel applications.
By hiding other non-functionality parts such as parallelism, fault tolerance and
load balance from programmers, MapReduce significantly simplifies the pro-
gramming of large clusters. Due to the mentioned features of MapReduce above,
researchers have also explored the use of MapReduce on other application do-
mains, such as machine learning, textual retrieval and statistical translation,
among others.

In this paper, we study the feasibility of running typical supercomputing ap-
plications using the MapReduce framework. We port two applications (Water
Spatial and Radix Sort) from the Stanford SPLASH-2 suite to MapReduce. By
completely evaluating them in Hadoop, an open-source MapReduce framework
for clusters, we analyze the major performance bottleneck of them in the MapRe-
duce framework. Based on this, we also provide several suggestions in enhancing
the MapReduce framework to suite these applications.

1 Introduction

MapReduce [1], advocated and popularized by Google, has been prevalent for data-
parallel applications due to its simplicity yet still powerful processing capability. It has
been widely deployed in Google’s own clusters and used for various applications such
as web-search, indexing and log analysis.

Though Google’s implementation detail is fairly secretive for the public domain,
Apache has provided Hadoop [2], an open-source implementation of the MapReduce
framework. It has gained significant popularity recently due to its practicality, cost-
effectiveness and openness. Thus, it has been widely adopted in various application
domains such as statistical machine translation [3], textual retrieval [4] and machine
learning [5].

The elegance of MapReduce, the readily availability of the cost-effective Hadoop
implementation would also open opportunities to run many parallel or supercomputing
applications on commodity clusters. Running parallel or supercomputing applications
on MapReduce, if applicable, would make the power of solving many difficult scientific
problems ubiquitously accessible at a very low cost. Bryant [6] has recently discussed
the possibility of running some data-intensive supercomputing applications such as ge-
nomic sequences and earthquake modeling on commodity clusters. Unfortunately, there
are currently few studies on the performance characteristics of parallel applications on
commodity clusters with multi-core.

In this paper, we port and evaluate two parallel applications from the SPLASH-2 [7]
benchmark suite which originally run in large shared-memory multiprocessors to a

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 452–464, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Evaluating SPLASH-2 Applications Using MapReduce 453

small-scale commodity clusters with multi-core, aiming at studying the performance
characteristics of these applications on commodity clusters.

We have conducted a detailed evaluation on the performance characteristics of these
applications. Our evaluation results in a 17 dual-core cluster (1 master node, 16 slave
nodes) show there are some performance bottlenecks and we further summarize the key
causes of the slowdown. With a detailed and complete analysis, we also present several
potential optimization opportunities.

The rest of the paper is organized as follows. The next section presents the necessary
background knowledge on MapReduce and Hadoop. In section 3, we port two typical
scientific applications from SPLASH-2 suite to run on Hadoop and illustrate the major
issues associated with the porting. Section 4 presents a detailed performance evaluation
of Hadoop on a commodity cluster. Section 5 discusses several optimization opportu-
nities to improve the performance of MapReduce for supercomputing applications on
commodity clusters. Section 6 discusses the related work and section 7 concludes this
paper.

2 Background

This section presents the necessary background information on the general MapReduce
programming model and the design and implementation of Hadoop.

2.1 MapReduce Programming Model

The programming model of MapReduce is inspired by the functional programming
primitives such as Map and Reduce. MapReduce processes the input and intermedi-
ate data in a Single Program Multiple Data (SPMD) fashion. The Map processes the
input data and generated a set of 〈key, value〉 pairs, while the Reduce aggregates all
〈key, value〉 pairs according to the key.

The following pseudo-code in Figure 1 shows the Word Count application written
using the MapReduce programming model, which counts the number of occurrences of
each word in a document. The Mapper function emits a 〈word, 1〉 pair for each word
in document, and the Reducer function counts all occurrences of a word as the output.

��������	�
��������
���
���������	��������
����	��
�
�������������
��������
����������������
���������� ����������������!
"�������������� ���������������

������	�����
���
�����	�
���������
���
#�������������
������
�����������	�$!�
��������
���
��������
�����
�����������%	��
���!
�������������������!��
"�������������� ���������������

Fig. 1. Mapper and Reducer of Word Count in MapReduce

454 S. Zhu et al.

I
n

p
u

t
D

a
ta

Local

Disk

Local

Disk

Output

Data

Output

Data

W
o

r
k

e
r Data

Node

Task

Tracker

W
o

r
k

e
r Data

Node

Task

Tracker

W
o

r
k

e
r

Data

Node

Task

Tracker

W
o

r
k

e
r

Data

Node

Task

Tracker

MR

Code Ma s t e r

Nam e

Node

Job

Tracker

Fig. 2. MapReduce Execution Flow

2.2 The Hadoop Design and Implementation

Hadoop is an open-source implementation of the MapReduce framework. Hadoop uses
a distributed file system, namely Hadoop Distributed File System (HDFS) to store the
input and the final results. HDFS manages a number of local disks owned by the nodes
in a cluster and maps them to a single file system. The HDFS resembles the Google File
System in the fashion of handling storage failures using several replicas of the same
data. One of the key principles in Hadoop is that “moving computation is much cheaper
than moving data”. Thus, Hadoop schedules the MapReduce tasks to the node near the
data storage to minimize the data transfers.

An overview of the architecture and the execution flow of Hadoop are shown in
Figure 2, which uses a master-slave mode. There is a master node that runs the Job
Tracker for task allocation and scheduling, and Name Node for HDFS metadata man-
agement. To run a MapReduce task, the Job Tracker allocates the Task Trackers on the
slave nodes to run the map or reduce tasks. Each slave node may also be the data node,
which stores the data blocks of file in HDFS. The task tracker consults the Name Node
to get the specific Data Node to get the data for a file.

3 Implementing SPLASH-2 Applications with Hadoop
MapReduce

This section introduces the SPLASH-2 benchmark suite and how two of them are ported
to the MapReduce framework.

3.1 SPLASH-2 Suite

The SPLASH-2 suite consists of a set of complete applications and computational ker-
nels. The programs represent a variety of computation workloads in scientific, graphics

Evaluating SPLASH-2 Applications Using MapReduce 455

computing and engineering. The suite is designed to facilitate the study of centralized
and distributed shared address-space multiprocessors. We choose Water Spatial, a water
molecule simulation system and Radix Sort, an integer radix sort kernel for porting and
evaluation. We believe that these two typical scientific and engineering programs cover
the major characteristics of supercomputing with MapReduce.

Water Spatial is an N-body molecules dynamics application that evaluates the forces
and potentials which occur over time in a cluster of water molecules in a liquid state.
It is improved from the program water in SPLASH [8]. In an initial state, configurable
number of water molecules are scattered in a cubical space. They are generated globally
with random coordinate and velocity. Also many other physical and system parameters
are carried by each molecule. Most of them will be updated several times during the
whole life time of the application. Further documentation and details of the Water Spa-
tial models can be found in [9, 10, 11].

Radix Sort is a small computational kernel performing sorting on integers using an
iterative algorithm. Its implementation is based on [12].

3.2 Implementing Water Spatial(WS) and Radix Sort(RS) in MapReduce

Data Structures. In typical supercomputing applications, lots of mathematical, phys-
ical and system parameters are involved during the whole computation. Arrays and
matrices are the most commonly adopted data structures. And in a system with large
amounts of elements, the items are also kept in a list-based structure.

Due to well-defined partition methods and synchronization mechanisms, access to
shared data is not difficult in a shared address-space environment. However, in a cluster
environment, data structures need to be serialized into the distributed storage system for
remote access. In Hadoop, the HDFS (Hadoop Distributed File System) is deployed to
hold the data.

As a result of heavy network communications, access to shared data turns to be a sig-
nificant source of overhead. Hence, the data partition policy in MapReduce determines
the efficiency of the parallel algorithm implemented. A well-designed data structure
and partition method could avoid a lot of unnecessary network communications, which
could be the bottleneck in many cases.

Data updates in MapReduce can be done in different approaches. For fields owned
by each basic element, its information can be refreshed through a direct update in the
map/reduce phase. A global aggregative variable is usually updated in a synchronization
point, accomplished by a MapReduce job with single reduce task. Data movements
are the most complicated and common cases in typical supercomputing applications,
resulting from changes of inter-data relation, which in turn forces a reconstruction of
data partitions.

Computation Steps. Many supercomputing applications can be divided into several
computation steps, often with a number of iterations doing a series of calculation. Be-
tween two consecutive steps, global data synchronization is performed to ensure the
correctness of succeeding computing.

In MapReduce, unlike the shared-memory environment, data synchronization can
only be performed after completion of a job and is costly. Usually, the number of global
barriers defines a lower bound of the number of MapReduce jobs.

456 S. Zhu et al.

According to different behaviors of MapReduce jobs, jobs composing a typical su-
percomputing can be classified into three categories: element-update jobs, global-
variable aggregation jobs and mixed jobs. The mixed job performs the element-update
and does aggregation for a global variable in the same phase.

During a MapReduce computation, each map/reduce task works on their local copy
of data. Data updates on global storage have to be performed after each MapReduce
job. The distributed file system significantly affects the efficiency of the data-sharing.
There is also consistency problem associated with it. The computation in each phase is
thus required to dump the updated data into distributed storage with a specific format,
which can be recognized and read effectively by the next worker. Usually the formats
are designed specifically for each situation.

A Walkthrough for Water Spatial. At the beginning of a Water Spatial instance, ran-
dom input data is generated and stored in HDFS, with only append operation allowed.
Thus, the data file has to be reconstructed after each update.

The storage format of the basic element, water molecule, is shown in Figure 3. It
consists of coordinates and other parameters holding the force and energy information.
However, these two parts of parameters are rarely modified simultaneously in the same
phase. This makes it unnecessary to hold these two parts in the same chunk of storage.
During the data reconstruction, accesses to the part not involved in computation would
unnecessarily increase the network load. Taking this into consideration, we store the
coordinates of molecule and other physical information in two separated chunks. Each
molecule will be assigned a unique identifier used as an index to refer to the both parts.

Water Spatial consists of a series of complex computations, with all three kinds of
MapReduce jobs involved. The detail computation flow is shown in the Figure 4. Three
phases can be transformed as mixed jobs, while the rest perform only element update.

Input data in Water Spatial is partitioned on the molecules according to their coordi-
nates. In the shared-memory version of SPLASH-2, molecules with the same

�������������	��
��
����������	�

�������������	��
�������������	��
��������

������������������
��
���������������
������������������
������������������
��������

Fig. 3. Data Format of Molecules

���������	�
���	��������������

����	����	���
�
��������

������������	�������������
������
�����	������

�������������		������������

�����������	�����������

��
����������������	�����������

�����������������������	��

�����

Fig. 4. Execution Flow of Water Spatial

Evaluating SPLASH-2 Applications Using MapReduce 457

��������	
����
��������������������	
�	
����
����������������������������������
������	��	
�����	��������������
������
��������������� ���������������

����������� ��!������
��"��#���������$��
�����������!�����	
�!������
����"��#�������%��!�����
������	����� ��"��#����������

��������������� ���������������

Fig. 5. Mapper and Reducer for Aggregation Job

��������	
����
��������������������	
�	
������������������

������������������
��	��	
����������������������

��������������� ���������������

Fig. 6. Mapper for Update-Only Job

��������	
����
���������������������	
�	
����
���� 	����	����������������
����������������������������������
���������

����������������� ����������������������������
��	��	
�����!�""#�����������

$�������������� ���������������

Fig. 7. Mapper for Mix Job

coordinates are processed in a single thread together. We keep such a design here but
hold their coordinates and other parameters in different chunks.

An aggregation-only job can be performed intuitively by MapReduce. The Mapper
in Figure 5 collects information from all molecules. The Mapper calculates concerned
value from some fields and emits it to the intermediate key-value pair. Each key in these
pairs represents the different global variables aggregated.

Most update-only jobs can also be processed easily in MapReduce. The fields of
each element are modified through the computation. The Mapper described in Figure 6
needs only to update the molecule passed in and then bounces it to the Reducer.

Since the output key-value pair should always be the same type during a computation
phase, the Mapper designed for a mixed job in Figure 7 is much more complicated. In
our implementation, the Molecule is taken as our output key-value pair type. Besides,
we use fake molecules to carry the aggregation values.

The Reducer for all kinds of job can be easily set to the IdentityReducer, which is
built in the Hadoop framework, simply doing sorting on the map outputs. In some ag-
gregation jobs, the number of reduce workers has to be set to one. Otherwise, a routine
out of the framework should do the aggregation for Reducer.

There are two special phases in Water Spatial which compute inter-water forces and
their potential energy. The computation needs to calculate the molecules with all their
neighbors within effective radius. While the radius is larger than a single data partition
block, this Mapper would process much more molecules than regular cases. Further,
the inter-neighbor communication in a 3D space significantly increases the network
load for these redundant transmissions.

458 S. Zhu et al.

A Walkthrough for Radix Sort. Data involved in Radix Sort is a list of integers to be
sorted. The input set can be partitioned intuitively and will not be modified during the
computation. This makes its storage format much simpler than that of Water Spatial.

Radix Sort consists of iterative histogram computing. The computation involved in
the program is a simple histogram performing for each radix r digits. The number of the
MapReduce jobs is determined by the iteration number, which is in turn determined by
the max integer provided by users. The Mapper for Radix Sort simply ranks the entire
integer passed in on the specific r digits for each iteration, forming a histogram with 2r

buckets, whose indices range from 0 to 2r-1. Each integer is processed from the least
significant r digits to the most significant r digits through the loop.

All the local histograms constructed in the map tasks will be merged into a single
global histogram. Thus, the number of reduce tasks is required to be set to one. Ac-
cording to the global histogram, a partial sorting on those r digits can be performed
correctly. After the last iteration, these integers come to an ordered state.

Instead of only ranking the 2r buckets of each iteration, our implementation of Radix
Sort takes the whole integer as the element for histogram in computation and collects
those integers with the same r digits value in the corresponding bucket. This implemen-
tation ensures that an ordered sequence can be reached just in the time of processing
each reduce phase. No more efforts for permutation are needed in the client end that
starts the job, which is necessary if Reducer only ranks the buckets. In that case, a
large amount of data transmission would occur on this single node to copy all integers
required at each permutation computing.

Table 1. Line of Code in MapReduce version

Application Components Line of Code

Water Spatial
Original code 1984
Append code 2002

Interface and Framework 1226
Data storage and communication 776

Radix Sort
Original code 705
Append code 318

Interface and Framework 301
Data storage and communication 17

Porting Effort. Table 1 shows the porting effort to translate these two programs onto
the Hadoop framework. The original amount of code in MapReduce is 1984 lines. By
reusing most of the computation code, we still need to append other 2002 lines of code.
The major part of the extra code for Water Spatial is for the interface and framework
supports required by Hadoop-0.19.1. Data partition and distributed file system opera-
tions code also result in some extra code. The large number of code for framework is
caused by many similar routines to setup MapReduce jobs with different configurations.

Data sharing in memory are replaced with network communication on the MapRe-
duce cluster, which is also a source of extra code. As much more inevitable data dump-
ing and loading occur in this condition, the code for defining formats to store the data

Evaluating SPLASH-2 Applications Using MapReduce 459

structure is also needed in this non-sharing address-space environment. However, the
data format code for Water Spatial can be well reused by other scientific applications.
In contrast, Radix Sort needs almost no data communication between the consecutive
permutation steps. Most of its code is for Mapper and Reducer, making its porting quite
easy. By using a same algorithm design but different coding in Java, Radix Sort does
not reuse many original code, which are programmed mostly on dealing with memory
in C.

4 Evaluation

In this section, we present and analyze the experimental results of Water Spatial and
Radix Sort.

4.1 Experiment Setup

We conduct our experiments on a cluster consisting of 1 master node and 16 slave
nodes. We have single master node running Job Tracker and Name Node. All slavers
run as both Task Trackers and Data Nodes. Each slave machine has a dual-processor,
2GB main memory and a SATA disk. Network connectivity is by 100M/sec Ethernet
links connecting into the campus local network.

In our experiments for Water Spatial and Radix Sort, we evaluate the performance
characteristics of our MapReduce implementation. Its core computation algorithms are
the same as the original ones in SPLASH-2. We use Hadoop-0.19.1, the most recent ver-
sion of Hadoop and Java SE Runtime Environment 1.6 as our experiment platform. The
input size of Water Spatial experiments varies from 183 to 573, indicating the number
of molecules. The size of input data file for Radix Sort varies from 12.5MB to 100MB.

4.2 Overall Performance

Figure 8 and Figure 9 show the overall performance of these two applications. In both
applications, the scalability with input size demonstrated on cluster is poor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

Water Spatial

Fig. 8. The overall execution time of WS on
a commodity cluster

 0

 200

 400

 600

 800

 1000

 1200

12.5 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data (MB)

Radix Sort

Fig. 9. The overall execution time of RS on
a commodity cluster

460 S. Zhu et al.

 0

 200

 400

 600

 800

 1000

 1200

12.5 25 50 100

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data (MB)

Input

MapReduce

Output

Transform

Framework

Fig. 10. The execution time breakdown of RS
on a commodity cluster

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

Input

MapReduce

Output

Transform

Framework

Fig. 11. The execution time breakdown of WS
on a commodity cluster

4.3 Performance Breakdown

The time breakdown of Water Spatial in Figure 11 presents the execution time spent in
different components of Hadoop. The overall time is divided into five parts. The Input
and Output parts count for the time spent for data reading/writing from/to HDFS for
Mapper/Reducer. The MapReduce part here stands for the time spent in the compu-
tation inside Mapper and Reducer, which execute as the core computation algorithms.
The Transform part denotes the data transformation time from the output of a MapRe-
duce job to the required format in the next step. The last part, Framework time, is the
time spent in MapReduce job creation, Hadoop scheduling and the map/reduce task ini-
tialization. The intermediate data transmissions are also accounted for the Framework
part.

From the time breakdown, we notice that time for computation in Mapper and Re-
ducer is negligible. This part does the major computation for the Water Spatial simu-
lation. And compared with the overall execution time in shared-memory environment,
time in this part has a speedup more than 2x. And this speedup shows the advantage
of parallel-computing in MapReduce for the general application without heavy loads of
data communication. On the other hand, the MapReduce framework causes much more
negative side-effects for the scientific application. From the figure, we notice the time
in Input part increases rapidly with the data input size. This is because our implemen-
tation has to scan through some data files more than one time in certain phases, such
as the inter-molecule phase and potential energy phase. Thus the network loads for this
part can increase much more quickly than that of the Output and Transform parts. The
molecule layout at the input size 293 is a little irregular. It can not be scanned sequen-
tially well and thus suffers a significant amount of HDFS cache miss. We can see that
the execution time at 293 is only sightly shorter than that at 363. The Framework time
grows with input size because of the increased transmission of intermediate data. As
Figure 10 illustrates, Radix Sort also spends most of its execution time on data commu-
nication. Because of its less data synchronization and simpler storage format, the Input
and Output time of Radix Sort is insignificant compared with the Framework time.

Evaluating SPLASH-2 Applications Using MapReduce 461

 0

 20

 40

 60

 80

 100

 120

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

boundary
corrector
init
inter molecule
intra molecule
kineti
potential energy
predictor

Fig. 12. The execution time breakdown of WS
on a single machine

 0

 1000

 2000

 3000

 4000

 5000

 6000

183 233 293 363 453 573

E
xe

cu
tio

n
T

im
e

(S
ec

)

Size of Input Data

boundary
corrector
init
inter molecule
intra molecule
kineti
potential energy
predictor

Fig. 13. The execution time breakdown of WS
on a commodity cluster

4.4 Affects with Application Characteristics

With the breakdown time in Figure 12 and Figure 13, we further investigate the distri-
bution of time spent in different computation phase of Water Spatial. The computation
phases here are divided according to the program flow described in Figure 4. The time
of Water Spatial is mainly spent in inter-water force computing and potential energy
calculating. These are the only two phases involving the neighbor partitions of data.
Thus they are dominant in a whole run since their greater computation loads. The inter-
water force computing time is longer since it works as a mixed job in MapReduce while
potential energy calculating is an update-only job. And in the MapReduce version with
a large input size, time of other phases start to become obvious. This happens because
a large number of data communications is raised.

5 Optimization Opportunities

Storage System. The HDFS used in Hadoop framework is designed to work with reg-
ular data-intensive applications. Files in the HDFS can only be appended at the tail.
The in-place data updating cannot be supported or worked out with a simple alterna-
tive using existing approaches. By studying Water Spatial and Radix Sort, we found the
matrices and multi- or many-dimension arrays are the most common structure used to
hold data. Frequent update operations on these kinds of structures result in quiet a lot
of overhead in reconstruction. The dumping and loading from arrays or matrices force
other extra efforts to be done. The large proportion of HDFS time showed in our exper-
imental results of Water Spatial just verifies that. Considering the native characteristics
of supercomputing applications, a specific lower-level storage system is necessary. And
good support to distributed arrays and matrices access will lead to a great improvement
on data communication. The general-purpose distributed storage system or sequential
file system cannot work well with those structures.

Output Directing. In supercomputing applications, work completion by multiple
MapReduce jobs causes another performance problem. The output from previous job

462 S. Zhu et al.

needs to be dumped onto HDFS. Such data is then read by tasks from the next job.
The indirect data transmission costs a large fraction of execution time. Actually, before
dumping the output, tasks for the coming jobs have already been scheduled. Allowing
output written directly to its destination can save the time writing to HDFS. This avoids
a great waste of network resource and also saves the time significantly.

Simple Aggregation Function. Simple aggregation operation in a supercomputing ap-
plication, like sum of variables, is also a common kind of computation. For a global ag-
gregation function computed, the number of reduce worker has to be one, which forms
a bottleneck during the processing. However, the overhead from passing a variable to
sum is negligible compared to the creation time of a heavy reduce worker. Note that,
a functional enhancement should be augmented. It should allow pass the variables for
simple aggregation directly to the application submission end and skip the unnecessary
reduce phase. Thus quite a lot of time caused by framework during the reduce phase
and its corresponding HDFS operations could be saved.

Multi-Phase in Single Pass. The mixed job we introduced often leads to a difficult
situation for programming. Thinking of the element update and variable sum in the same
pass in Water Spatial, fake elements are created for carrying aggregated variable. In
most cases, several operations on the same partition of data are independent during the
same pass. Due to lack of support from the MapReduce framework, the operations have
to be separated apart or programmed with a bad understandability. A multi-functional
mapper for MapReduce can improve the working efficiency greatly. Furthermore, since
MapReduce cannot ensure the tasks processing the same partition to be assigned to the
same nodes, which causes many avoidable data communication.

6 Related Work

The evolvement of the MapReduce programming model, MapReduce, invented and
popularized by Google, has been widely deployed into the production systems inside
Google. Outside Google, Apache has designed and implemented Hadoop, an open-
source alternative of Google’s MapReduce, which is implemented using Java and built
upon the Hadoop Distributed File System (HDFS). Due to the simplicity of MapReduce,
the database community also extends the MapReduce programming model by adding
an additional stage, called Merge, to support the joint of two tables [13].

There have been a lot of efforts in trying MapReduce to other domains other than the
web-search domain. Chu et al. [14] proposed using MapReduce to run machine learning
algorithms on multi-core. Dyer et al. [3] also built the statistical machine translation
using MapReduce. Besides, Ekanayake et al. [15] applied MapReduce for scientific
data analysis. Specifically, they evaluated MapReduce with High Energy Physics data
analysis and K-Means clustering. Our work differs from the above ones in that we
studied in another domain of applications , supercomputing, on commodity clusters
and provided a more detailed study on their performance characteristics.

The prevalent of heterogeneous multi-core systems open opportunities to run
MapReduce originally for clusters in a signal machine. Ranger et al. [16] recently pro-
vide a MapReduce implementation, namely Phoenix, which runs on multi-core plat-
forms. Their implementation indicates that applications written using MapReduce, are

Evaluating SPLASH-2 Applications Using MapReduce 463

comparable in performance and scalability to their pthread counterparts. The popularity
of MapReduce is also embodied in running MapReduce on other heterogeneous envi-
ronments, such as on GPUs [17] and Cell [18].

7 Conclusion

MapReduce has been prevalent for running data-parallel applications without effort for
non-functionality parts. The features mentioned make the programming model popu-
lar in various domains like textual retrieval and machine learning. In this paper, we
ported and evaluated two typical scientific applications from the SPLASH-2 suite using
MapReduce. Based on a detailed study and analysis, we identified that the requirement
of frequent data communication in the kind of application results in a huge overhead on
network. Based on our experience, we also proposed several potential enhancements on
the MapReduce framework to make the model much more suitable for supercomputing
applications.

References

1. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commu-
nications of the ACM 51(1), 107–113 (2008)

2. Bialecki, A., Cafarella, M., Cutting, D., O’Malley, O.: Hadoop: a framework for running
applications on large clusters built of commodity hardware (2005),
http://lucene.apache.org/hadoop

3. Dyer, C., Cordova, A., Mont, A., Lin, J.: Fast, easy, and cheap: Construction of statistical
machine translation models with MapReduce. In: Proceedings of the Third Workshop on
Statistical Machine Translation at ACL, pp. 199–207 (2008)

4. Elsayed, T., Lin, J., Oard, D.W.: Pairwise document similarity in large collections with
mapreduce. In: Proceedings of the 46th Annual Meeting of the Association for Computa-
tional Linguistics, pp. 265–268 (2008)

5. Wolfe, J., Haghighi, A., Klein, D.: Fully distributed EM for very large datasets. In: Proceed-
ings of the 25th international conference on Machine learning, pp. 1184–1191. ACM, New
York (2008)

6. Bryant, R.: Data-intensive supercomputing: The case for DISC (2007)
7. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The SPLASH-2 Programs: Charac-

terization and Methodological Considerations. In: Proc. ISCA (1995)
8. Singh, J.P., Gupta, A., Levoy, M.: SPLASH: Stanford parallel applications for shared mem-

ory. Computer Architecture News 20(1), 5–44 (1994)
9. Lie, G., Clementi, E.: Moleculear-dynamics simulation of liquid water with an ab initio flex-

ible water-water interaction potential. Physical Review A33, 2679–2693 (1986)
10. Matsuoka, O., Clementi, E., Yoshimine, M.: CI study of the water dimer potential suface.

Journal of Chemical Physics 64(4), 1351–1361 (1976)
11. Barlett, R., Shavitt, I., Purvis, G.: The quartic force field of H2O determined by many-body

methods that include quadruple excitation effects. Journal of Chemical Physics 71(1), 281–
291 (1979)

12. Blelloch, G.E., Leiserson, C.E., Maggs, B.M., Plaxton, C.G., Smith, S.J., Zagha, M.: A com-
parison of sorting algorithm for the connection machine CM-2. In: Proc. SPAA (1991)

13. Yang, H., Dasdan, A., Hsiao, R., Parker, D.: Map-reduce-merge: simplified relational data
processing on large clusters. In: Proc. SIGMOD (2007)

http://lucene.apache.org/hadoop

464 S. Zhu et al.

14. Chu, C., Kim, S., Lin, Y., Yu, Y., Bradski, G., Ng, A., Olukotun, K.: Map-reduce for machine
learning on multicore. In: Advances in Neural Information Processing Systems: Proceedings
of the 2006 Conference, p. 281. MIT Press, Cambridge (2007)

15. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analyses.
In: IEEE Fourth International Conference on eScience, 2008. eScience 2008, pp. 277–284
(2008)

16. Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G., Kozyrakis, C.: Evaluating mapre-
duce for multi-core and multiprocessor systems. In: Proc. HPCA (2007)

17. He, B., Fang, W., Luo, Q., Govindaraju, N., Wang, T.: Mars: a MapReduce framework on
graphics processors. In: Proc. PACT (2008)

18. de Kruijf, M., Sankaralingam, K.: MapReduce for the Cell BE Architecture. University of
Wisconsin Computer Sciences Technical Report CS-TR-2007

MPTD: A Scalable and Flexible Performance
Prediction Framework for Parallel Systems

Chuanfu Xu, Yonggang Che, and Zhenghua Wang

National Laboratory for Parallel and Distributed Processing,
School of Computer, National University of Defense Technology,

Changsha 410073, China
xuchuanfu@nudt.edu.cn

Abstract. The increasing complexities of today’s parallel systems pose
new challenges for performance prediction. Effective performance predic-
tion can provide insight, deepen understanding and further identify po-
tential performance bottlenecks of system/application combinations. In
this paper, we present and evaluate a multi-phase trace-driven (MPTD)
performance prediction framework for parallel systems. In the trace gen-
eration phase, based on a relatively simple performance model, MPTD
performs parallel performance simulation to generate primary predic-
tion results and traces rapidly. In the trace adjustment phase, traces are
transformed or re-simulated based on performance models of new com-
ponent architecture or more detailed performance models. This phase is
self-repeatable (it can be performed more than once and need not go back
to the former phase) to enable more flexible reuse of traces. We imple-
mented an instantiation of MPTD to predict the performance of popular
multi-core cluster systems. Analysis and tests show that MPTD is scal-
able, flexible, and can help researchers for better balancing accuracy and
efficiency of performance prediction.

1 Introduction

Performance prediction of applications on parallel systems is very important and
can be used throughout the life-cycle of systems including design, implementa-
tion, optimization, procurement, installation, upgrade, etc [1]. Performance of
parallel systems is often determined by many interacting factors and involves
architecture of node and processor, interconnection, algorithm, implementation,
compiler, operating system, etc. Consequently, efficient and accurate perfor-
mance prediction is very difficult. With the development of technology, cur-
rent parallel systems are becoming increasingly complex and huge. For example,
IBM Roadrunner, the No.1 machine of TOP500 [2] supercomputer list issued
in November 2008, consists of 122400 computation cores. It is undoubtedly a
challenging problem to predict the performance of parallel applications on such
a complex and huge high performance computer system.

Performance simulation and analytical model are two well-known performance
prediction approaches. Accuracy and efficiency are the main tradeoffs for both

Y. Dou, R. Gruber, and J. Joller (Eds.): APPT 2009, LNCS 5737, pp. 465–476, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

466 C. Xu, Y. Che, and Z. Wang

techniques. The main disadvantage of simulation is its high costs and low ef-
ficiency. Cycle-accurate simulation of applications is often more than 3 magni-
tude’s slower than realistic execution [3]. Therefore, it is infeasible to carry out
cycle-accurate simulation of large-scale parallel systems as far as cost is con-
cerned. Although researchers have recently proposed some techniques such as
sampling simulation and parallel simulation [3] to speed up simulation, most
simulators still have limited scalability of capability. For example, it is hard to
extend a simulator to support new component architecture such as new accel-
eration processing units. An analytical model is generally tailored to particular
kind of applications. To construct it, researches often need to analyze the appli-
cation’s control workflows and data structures; therefore, the analytical model
is usually limited in scope and fails to capture subtle interactions between archi-
tecture and software. Moreover, researches usually select one performance tool
and apply it continually; it is hardly possible for them to combine different pre-
diction results from various performance tools or models to efficiently balance
the speed and accuracy of performance prediction.

We think performance prediction should mirror the development of the ap-
plication and/or system dynamically. As details are refined through implemen-
tations, the performance model adopted by performance prediction should also
be refined. Based on this idea, we present a multi-phase trace-driven (MPTD)
performance prediction framework for parallel systems. In the trace generation
phase, prediction results and traces are obtained via parallel performance simu-
lation implementing relatively simple performance model. This phase only needs
to carry out once for a combination of system and application under given exe-
cution configuration. It can be used as a rapid, primary performance evaluation
at early stage of system design. In the trace adjustment phase, traces are trans-
formed or re-simulated based on performance models of new component archi-
tecture or more detailed performance models. This phase is self-repeatable (it
can be performed more than once and need not go back to the former phase) to
enable more flexible reuse of traces. MPTD efficiently combines various predic-
tion results from performance tools in different phases via trace transformation.
We design a trace model for parallel performance simulation of message passing
parallel applications in MPTD. We implement an instantiation of MPTD to pre-
dict performance of popular multi-core cluster systems. Analysis and tests show
that MPTD is scalable, flexible and can help researchers for better balancing
accuracy and efficiency of performance prediction.

The paper is organized as follows. In Section 2, we describe MPTD frame-
work in details, including its components, workflows, and trace transformation
model. Then we demonstrate an instantiation of MPTD and present the results
in Section 3. Section 4 gives a review of related work. Finally, in Section 5, we
conclude and discuss some future works of this paper.

2 MPTD Framework

MPTD aims to predict an application’s performance on parallel systems under
a given execution configuration. In consideration of clear expression, we assume

MPTD: A Scalable and Flexible Performance Prediction Framework 467

that target applications are standard message passing interface (MPI) applica-
tions; furthermore, we have a simplifying hypothesis similar to [4] that a mes-
sage passing parallel application’s performance is often dominated by two major
factors: 1) local computation component performance and 2) interconnection
network performance. Accordingly, performance prediction needs to take local
execution code block (LECB) and MPI message communication statements into
account. A LECB is the sequence of local statements executed between two mes-
sage passing statements. As we will see in section 2.4, our approach and idea are
easy to expand beyond the above assumptions.

2.1 Components of MPTD

In MPTD, there are generally 3 kinds of performance tools which can be used
in different phases of performance prediction.

– Parallel simulator. Compared to sequential cycle-accurate simulation, par-
allel simulator [5,6,7] can improve its efficiency by parallelizing simulation
task. A parallel simulator used in MPTD must support tracing to generate
trace files along with prediction results.

– Trace transformation tool. Taking trace files as input, trace transformation
tool can adjust timing information in traces by simply modifying parameters
about CPU or interconnection network. Further, trace transformation can
combine new predictions results from third-party performance tools reflect-
ing new component architecture or performance models.

– Third-party performance tools. These tools implement a certain degree of de-
tails of performance models for architecture components of parallel systems
(cycle-accurate processor simulator, detailed contention-based interconnec-
tion network simulator, for example). They are often very slow and hard to
integrate with fast performance tools such as parallel simulator directly.

2.2 A Typical Workflow for MPTD

Fig. 1 illustrates a typical workflow for MPTD framework. It involves all three
kinds of tools mentioned above. In the trace generation phase (denoted by rect-
angle with red dashed line), target application is executed on the parallel per-
formance simulator and primary prediction results and trace files are produced.
In the trace adjustment phase (denoted by rectangle with blue dashed line),
cycle-accurate predictions of some key LECBs are obtained by performing cycle-
accurate simulating of these LECBs. New predictions along with original traces
are taken as inputs to the trace transformation tool which will output adjusted
traces. The new traces are again simulated by a detailed network simulator for
message passing among target processes to generate final prediction result based
on more detailed network performance model. The workflow only includes two
phases, but the trace adjustment phase is slef-repeatable: Users may reuse the
same original traces to perform prediction without need to go back to the former
phase.

468 C. Xu, Y. Che, and Z. Wang

Fig. 1. A typical performance prediction workflow for MPTD. Grey rectangles denote
programs, and white rectangles with the upper right corner turned down denote files.
Stacked symbols indicate multiple instances of programs or files running or being pro-
cessed in parallel, while stacked symbols with dashed lines indicate programs may be
optionally implemented as a parallel one.

In MPTD, workflows, particularly in the trace adjustment phase, will be
slightly different due to specific implementations of performance tools. For ex-
ample, traces can be fed to detailed network simulator directly without trans-
formation (denoted by blue dashed line in Fig. 1). Users usually need to take
following issues into account while implementing prediction workflows in MPTD
framework:

– Combination with third-party performance tools. For example, to combine
with cycle-accurate prediction results of some key LECBs, users may in-
sert a pair of functions at the start and the end of these LECBs to mark
them. Firstly, a parameter file containing primary predictions of the marked
LECBs’ durations will be generated by parallel simulation. Then, the cycle-
accurate processor simulator can update durations of the LECBs in the pa-
rameter file according to new estimations. At last, the trace tools will adjust
affected parts of the original traces according to the rewritten parameter file.
Besides, users may implement a trace-driven detailed network simulator to
re-simulate message communication behavior in the original traces.

– Implementation of trace tool. Trace tool can be implemented independently
and provides standard interfaces for other performance tools. Moreover, it
can also be parallelized like in [8] to improve efficiency.

2.3 Design of Trace Model

In MPTD, trace files produced in the trace generation phase contains an abstract
representation of execution behaviors and corresponding timing

MPTD: A Scalable and Flexible Performance Prediction Framework 469

information about parallel performance simulation of target application on tar-
get machine. Therefore, our trace model is directly relevant to the principle of
parallel simulation.

Firstly, each simulating process will be allocated a number of target processes
in parallel simulation. Traces generated by a simulating process must contain
information about all traversed code regions (CR) of the target processes running
on it. According to assumptions in Section 2, two kinds of CR must be included:
LECB and MPI statement.

Secondly, every target process maintains a virtual clock T in parallel simu-
lation. T will be advanced according to the simulation of application code and
synchronized via message communication among the target processes. For ex-
ample, suppose current timestamps of target process A and B are T A

current and
T B

current respectively; A sends a message msg to B and predicts that it will
take �T seconds for msg to arrive its destination, then the predicted receive
timestamp of msg is set to T A

current + �T (i.e. T msg
predicted = T A

current + �T

); B will set its timestamp to be the maximum of T msg
predicted and T B

current (i.e.
T B

current = max{T B
current, T

msg
predicted}) while scheduling msg according to syn-

chronization strategy. Consequently, Traces in MPTD also need to include in-
formation about message communications across target processes.

Thus, our trace model consists of two types of traces as described below:

– Summary trace. Summary trace contains information about target system,
target application and execution configuration of parallel simulation. Given
the summary trace, Trace transformation tools can determine which perfor-
mance trace a target process is belonged to.

– Performance trace. Each simulating process will generate a performance
trace containing all CRs and related timing information (start time, end
time, etc.) of target processes. More importantly, following timestamps are
needed to preserve timestamp dependency in trace transformation: for send-
ing a message, send timestamp and predicted receive timestamp are needed;
for receiving a message, received timestamp (timestamp after update while
receiving a message) and receive timestamp (timestamp before synchroniza-
tion) are both needed. Besides, messages sent by a target process and at-
tributes such as message communicator, destination tag, size will also being
included to support re-simulation of message transferring by a detailed net-
work simulator.

Timing information in performance trace records each target process’s progr-
ess of virtual clock in parallel simulation and we use timeline to denote it. In
trace transformation, the earliest timestamp in a timeline is firstly adjusted, and
then all subsequent timestamps in the same timeline will be adjusted accordingly.
At last, other affected timelines which may be in different performance traces
will be checked to maintain timestamp dependency across target processes.

Fig. 2 shows a simple example about trace transformation. In Fig. 2(a), there
are two target processes A and B in the original trace. Firstly, A executed a
LECB and then called a MPI Send to send a message to B (denoted as e1 in

470 C. Xu, Y. Che, and Z. Wang

Ta
rg

et
 P

ro
ce

ss
es A

B

Timeline

MPI_Send

Ta
rg

et
 P

ro
ce

ss
es

Ta
rg

et
 P

ro
ce

ss
es

Ta
rg

et
 P

ro
ce

ss
es

(a)

(d)

(b)

(c)

A

A

A

BB

B

Duration of LECB

e1

e3

Timestamp of MPI messageDuration of MPI Statement

MPI_Recv MPI_Send

MPI_Recv

e4

e2

∆t ∆t

MPI_Send

MPI_Send

MPI_Send

MPI_Send

MPI_SendMPI_Recv

MPI_Recv

MPI_Recv

MPI_RecvMPI_Recv

MPI_Send

MPI_Recv

Timeline

Timeline Timeline

∆t
∆t

Original trace of two target processes A and B Trace transformation only modifies all subsequent
code regions in the same target process

Trace transformation preserves message timestamp
dependency across target processes

Trace transformation with a hypothetical network
of different performance

e1

e1 e1

e2

Timestamp dependency violation

e2e2

e3

e3

e3 e4

e4

e4

Fig. 2. Trace transformation process

A’s timeline). B called MPI Recv to receive the message from A (denoted as e3
in B’s timeline) and then executed a LECB before calling another MPI Send
(denoted as e4 in B’s timeline) to send a message back to A (denoted as e2
in A’s timeline). In this example, e3 depends on e1 and e2 depends on e4; we
use directed lines with arrow to represent this kind of dependency. We show an
illegal trace transformation in Fig. 2(b) while only subsequent timestamps in
the same timeline are adjusted. Although the timestamp of e3 is still late than
e1, one of its attributes (predicted receive time) is actually changed from �t to
�t

′
; Even more serious is the fact that now the timestamp of e2 is earlier than

the timestamp of e4. Such kind of situations is known as timestamp dependency
violation (TDV) in MPTD. In Fig. 2(b), we use a red cross to represent TDV.
Trace transformation must assure that no TDVs exist in the modified trace. Fig.
2(c) shows the timelines for A and B after final trace transformation. Compared
to Fig. 2(a), durations of LECBs are altered and TDVs in Fig. 2(b) are elimi-
nated. We also show a hypothetical adjustment of network performance in Fig.
2(d): predicted receive time of e1 has changed from �t to �t”.

2.4 Advantage Analysis

Here we discuss and analyze some underlying advantages of MPTD. As compared
to traditional performance prediction approaches, we think MPTD is much more
scalable, efficient and flexible.

– Scalability. In MPTD, users can choose available tools in different phases
to improve prediction speed. For example, although performance models
adopted by parallel simulator in the trace generation phase are relatively
simple, it can produce prediction results in a timely manner. This is espe-
cially useful in early stage of system design. In the trace adjustment phase,

MPTD: A Scalable and Flexible Performance Prediction Framework 471

performance measurement is much faster than cycle-accurate simulation if
target processor is available. By extending trace model appropriately, MPTD
also provides feasible approach to support performance prediction of sys-
tems with up-to-date architecture. This is very important for performance
prediction of current supercomputers with popular acceleration computation
components and multi-tier parallelism.

– Efficiency and flexibility. MPTD offers users more flexible options of tools
and phases to better balance between efficiency and accuracy. Usually pre-
diction results of trace generation phase are enough in the case of relative
accuracy is considered when users often compare enhanced systems with
baseline system. Efficiency and flexibility of MPTD is helpful for researchers
to identify potential performance bottleneck and investigate scalability of
applications or systems: Users may change their system sizes, try new-type
processors or network in MPTD to yield insight into achievable performance.

3 An Instantiation of MPTD

We have implemented an instantiation of MPTD framework and it includes the
following prototype systems:

– MCPSim. It is a parallel simulator for multi-core SMP cluster systems. Mes-
sage transfer time was estimated by simple Latency/Bandwidth [9] network
performance model. LECB execution time was predicted by host machine’s
wall-clock time multiplying a scalefactor.

– EPSim. It is a detailed contention-based Gigabit Ethernet parallel simula-
tor implemented based on [10]. Message transferring was simulated among
entities such as network interface cards, switches and etc. EPSim contains
a built-in trace transformation module to adjust message transfer latency
according to realistic simulation.

– Trace tool. It provides trace generation and parsing interfaces for MCP-
Sim and EPSim. Besides, it implemented our trace transformation model
described in Section 2.3.

3.1 Experiment Setup

We use 2 typical MPI programs to validate prediction accuracy of MPTD:
GAUSS and Jacobi3D. GAUSS is a program that solves the matrix system of
linear equations (i.e. Ax = b) using Gaussian Elimination. Jacobi3D is a 7-
point stencil program with 3-D decomposition [5]. Further, we have written a
MPI synthetic application (MPISA) to support precisely changing computation
to communication ratio. MPISA includes a computation loop and a communi-
cation loop: duration of the computation loop can be varied by adjusting the
number of floating point operations executed, while the communication loop im-
plemented multiple communication patterns and message distribution patterns.
We use MPISA to demonstrate MPTD’s capability of performance bottleneck

472 C. Xu, Y. Che, and Z. Wang

analysis. Parallel system used in our tests is a 64 nodes multi-core SMP clus-
ter system connected by Gigabit Ethernet. Each node consists of two 2.33 GHz
quad-core Xeon with 8GB DDRII ECC memory. We use the parallel system
as our host machine and target machine while running MCPSim in the trace
generation phase.

Accuracy validation of MPTD was shown in Fig. 3 and Fig. 4 for GAUSS
and Jacobi3D respectively. In each figure, the program’s observed runtime by ac-
tual execution, predicted runtime by MCPSim in the trace generation phase and

Fig. 3. Validation of MPTD for GAUSS

Fig. 4. Validation of MPTD for Jacobi3D

MPTD: A Scalable and Flexible Performance Prediction Framework 473

predicted runtime by EPSim using MCPSim-generated traces in the trace adjust-
ment phase were presented. Error% is defined as (observed runtime - predicted
runtime) / (observed runtime*100). For the two programs, average errors% are
both decreased from EPSim to MCPSim+EPSim: from about 7.2% to about
2.1% for GAUSS and from about 9.0% to 2.2% for Jacobi3D. We can see that
a detailed contention-based network simulation in trace adjustment phase has
effectively decreased error% resulted from relatively simple performance model
in the trace generation phase. This is especially true for programs like Jacobi3D
whose message passing performance is critical.

Users can also use MPTD to identify performance bottlenecks of an applica-
tion. Fig. 5 shows a case study of this kind of analysis for MPISA. MPISA 1 and
MPISA 2 represent computation-intensive and communication-intensive versions
of MPISA respectively. The target machine size is fixed to 32 computation cores.
The results are obtained by separately modify the network parameters (e.g.,
bandwidth) and CPU speed (e.g., cpuscalefactor) in trace transformation tool.
If significantly improving network or CPU has little or no effect on the perfor-
mance of the application, then it is clear that the limiting factor or bottleneck
for the application is not the corresponding hardware, but something inherent
in the application or some other aspects. For MPISA 1, when we improved the
network without improving the CPU, almost no performance gains resulted.
But when we improved the CPU without improving the network, we can obtain
about 40% speedup, confirming that the bottleneck of this application is not
interconnection network but CPU. Likewise, we can see that network upgrade

Fig. 5. A case study of performance bottleneck analysis in MPTD using MPISA

474 C. Xu, Y. Che, and Z. Wang

will benefit MPISA 2 the most (about 42%). In MPTD, this kind of analysis can
be performed efficiently by reuse of traces.

4 Related Work

The principle of performance prediction for parallel systems has already been
intensively studied and various performance tools existed. Here we only present
a review of some trace-based performance prediction approaches that are most
relevant to this paper.

Two early trace performance prediction tools are introduced in [9] and [11].
Both of them use traces previously generated to perform transformation accord-
ing to a prediction model. The prediction model describes relative process speed,
optionally differentiated by code section, and message transfer times as a func-
tion of message size. AIMS [12] is another performance-analysis toolkit offering
trace-based simulation capabilities. It can estimate the scalability of parallel
applications by extrapolating previously generated execution traces to higher
numbers of processors and larger problem sizes. SCALASCA [8] is a trace anal-
ysis toolset for large-scale message passing applications. One of its distinctive
features is the ability to identify wait states in MPI message communication by
searching characteristic patterns in traces. Although the focuses of the above
tools are different, they all collected traces by application instrumentation and
execution which limit their scopes to the existed systems. MPTD focuses on
the integration of different predictions tools, especially performance simulation
tools, through multi-phase and traces from parallel simulation.

PERC (Performance Evaluation Research Center) presented a performance
prediction framework [4,13] for HPC applications. To carry out the framework,
firstly users need to obtain system profiles (e.g., memory performance and
communication performance) and application signatures (e.g., memory access
pattern, communication pattern), then convolution method is adopted to map
signatures to profiles to get the predicted performance results. Different applica-
tion tracers and convolution methods may be adopted in PERC, but it did not
take some complex characteristics like dynamic overlap (for example, overlap of
computation and communication) into account because of its separate prediction
of CPU and network related performance. Similarly, the application signatures
are also determined by executing the application in the framework, which require
that the application scale is sufficiently small for framework user’s system.

Most of parallel simulators (MPI-SIM [7], LAPSE[6], etc.) don’t support trac-
ing and are difficult to extend capability for new models or architectures. BigSim
[5] also adopts a trace-driven two step method. At first step, it uses an emulator
to run application with larger numbers of virtual processes on a smaller number
of physical processors to generate trace logs, then at second step, a postmortem
simulator uses generated traces accounts for network contention and topological
characteristics to predict network performance. In BigSim, users must finish the
two steps to reach a prediction result. However, in MPTD, prediction workflow
is more flexible: trace adjustment phase is optional and trace transformation tool

MPTD: A Scalable and Flexible Performance Prediction Framework 475

may be independent. Moreover, tracing in BigSim is designed for its implemen-
tation language Charm++, our trace model is designed for standard message
passing application which makes it much more general for tracing in parallel
performance simulator.

5 Conclusion and Future Works

In this paper, we present a multi-phase trace-driven framework MPTD for per-
formance prediction of parallel computer systems. MPTD enables users to choose
performance tools of various complexities in different phases and combine pre-
diction results from them via trace transformation. Analysis and tests show that
MPTD can obtain better tradeoff between accuracy and efficiency of performance
prediction; it is also scalable, efficient and flexible. As for future works, we will
further validate MPTD using more MPI programs and optimize implementation
of performance tools used in MPTD.

Acknowledgement

This paper was supported by the National Science Foundation of China (NSFC)
under Grant No.60603055, and the National High-Tech Research and Develop-
ment Plan of China under Grant No.2007AA01Z116.

References

1. Nudd, G., Kerbyson, D., Papaefstathiou, E., Perry, S., Harper, J.S., Wilcox, D.:
Pace: A toolset for the performance prediction of parallel and distributed systems.
Int. J. of High Performance Computing Applications 14, 228–251 (2000)

2. Top500supercomputersite (2008), http://www.top500.org/
3. Yi, J.J., Lilja, D.J.: Simulation of computer architectures: Simulators, benchmarks,

methodologies, and recommendations. IEEE Transactions on computers 55(3),
268–280 (2006)

4. Carrington, L., Snavely, A., Wolter, N., Gao, X.: A performance prediction frame-
work for scientific applications. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V.,
Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2659.
Springer, Heidelberg (2003)

5. Zheng, G., Wilmarth, T., Jagadishprasad, P., KaÍe, L.V.: Simulation-based per-
formance prediction for large parallel machines. International Journal of Parallel
Programming 33, 183–207 (2005)

6. Dickens, P.M., Heidelberger, P., Nicol, D.M.: A distributed memory lapse: parallel
simulation of message-passing programs. SIGSIM Simul. Dig. 24(1), 32–38 (1994)

7. Bagrodia, R., Deelman, E., Docy, S., Phan, T.: Performance prediction of large
parallel applications using parallel simulations. In: ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP) (May 1999)

8. Geimer, M., Wolf, F., Wylie, B., Mohr., B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
PVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006)

http://www.top500.org/

476 C. Xu, Y. Che, and Z. Wang

9. Mendes, C.: Performance prediction by trace transformation. In: Proc. of the 5th
Brazilian Symposium on Computer Architecture, Florianopolis (September 1993)

10. Jagadishprasad, P.K.: Parallel simulation of large scale interconnection networks
used in high performance computing. Master’s thesis, University of Illinois at
Urbana-Champaign (2004)

11. Labarta, J., Girona, S., Pillet, V., Cortes, T., Gregoris, L.: Dip: A parallel program
development environment. In: Fraigniaud, P., Mignotte, A., Robert, Y., Bougé, L.
(eds.) Euro-Par 1996. LNCS, vol. 1124, pp. 665–674. Springer, Heidelberg (1996)

12. Yan, J., Sarukkai, S., Mehra, P.: Performance measurement, visualization and mod-
eling of parallel and distributed programs using the aims toolkit. Software Practice
and Experience 25(4), 429–461 (1995)

13. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.: A
framework for application performance modeling and prediction. In: Proceedings
of SC 2002, Baltimore (November 2002)

Author Index

Acacio, Manuel E. 11
Assel, Matthias 230

Bosshard, Christoph 323
Bouffanais, Roland 323
Brocco, Amos 273
Bubak, Marian 230

Cai, Jing 150
Cai, Zhiping 191
Cao, Mingteng 67
Che, Yonggang 465
Chen, Du 54
Chen, Haibo 452
Chen, Jian 54
Chen, Jieren 191
Chen, Rong 452
Chen, Tianzhou 54, 67, 123
Chen, Huajun 341
Cheng, Yu 150
Chi, Wanqing 205
Chu, Wanming 363
Ciepiela, Eryk 230
Clémençon, Christian 323
Cooper, W.A. 356
Courant, Michele 273

Deville, Michel O. 323
Dong, Mianxiong 95
Dou, Yong 82, 110

Emeliyanenko, Pavel 134

Fen, Degui 123
Feng, Degui 67
Fiétier, Nicolas 323
Funika, W�lodzimierz 230

Gao, Xiaopeng 177
Garćıa, José M. 11
Gong, Zhenghu 246
Gruber, Ralf 323
Guba�la, Tomasz 230
Guo, Lei 302
Guo, Minyi 95

Guo, Song 95
Guo, Yufeng 220

Hakem, Mourad 259
Harezlak, Daniel 230
He, Junfeng 246
He, Liqiang 1
He, Ningwu 246
Hirsbrunner, Beat 273
Hu, Wei 67
Huang, Ye 273
Huser, Hansjörg 288

Javed, Noman 436
Ji, Zhenzhou 330
Jiang, Guanjun 67, 123
Jiang, Xiaohong 341
Jin, Hai 95
Juurlink, Ben 389

Kasztelnik, Marek 230
Kehtari, Sohrab 323
Keller, Vincent 323
Król, Dariusz 230
Kuonen, Pierre 273

Latt, Jonas 323
Lei, Yuanwu 110
Li, Chuang 165
Li, Kang 165
Li, Qiong 220
Li, Yamin 363
Liu, Dake 408
Liu, Lu 220
Liu, Tao 330
Liu, Yang 341
Liu, Yongpeng 205
Long, Xiang 177
Loulergue, Frédéric 436
Lu, Kai 205
Luo, Li 220

Ma, Anguo 150
Ma, Jianliang 54
Ma, Jun 341

478 Author Index

Malawski, Maciej 230
Meizner, Jan 230
Mellet, N. 356
Miko�lajczyk, Tomasz 230

Narisu, Cha 1
Ni, Xiaoqiang 150
Nowakowski, Piotr 230

Peng, Shietung 363
P�laszczak, Pawe�l 230

Ros, Alberto 11
Rünger, Gudula 375

Schneble, Christophe 288
Schwind, Michael 375
Seidmann, Thomas 288
Shahbahrami, Asadollah 389
Shi, Xiaohua 165
Sohl, Joar 408
Song, Qingyang 302
Sun, Zhigang 246

Tang, Hongwei 205
Tang, Yuxing 82, 110, 150
Tong, Liangliang 123
Tsuru, Masato 420

Wan, Han 177
Wang, Chao 123
Wang, Dongsheng 28, 41
Wang, Gang 54
Wang, Haixia 28, 41
Wang, Hui 246
Wang, Jian 408
Wang, Jinglei 28, 41

Wang, Qing 330
Wang, Xiaodong 82
Wang, Xingwei 302
Wang, Xu 165
Wang, Xuehui 313
Wang, Zhenghua 465
Wang, Zhiqiang 177
Wen, Zhongfeng 302
Wilk, Krzysztof 230
Wu, Chengkun 191

Xia, Fei 110
Xiang, Lingxiang 123
Xiao, Dali 330
Xiao, Zhiwei 452
Xing, Zuocheng 150
Xu, Chuanfu 465
Xu, Jinbo 82
Xue, Yibo 28, 41

Yamashita, Yoshiyuki 420
Yang, Xuejun 220
Yin, Jianping 191
Yu, Ruiyun 302

Zang, Binyu 452
Zeng, Deze 95
Zhang, Lei 313
Zhang, Shuyan 330
Zhang, Tiefei 67
Zhang, Weihua 452
Zhang, Xi 41
Zhang, Xiangyu 341
Zhao, Jianxun 110
Zhou, Jie 110
Zhu, En 191
Zhu, Shengkai 452

	Advanced Parallel Processing Technologies
	Preface
	Organization
	Table of Contents
	Architecture
	A Fast Scheme to Investigate Thermal-Aware Scheduling Policy for Multicore Processors
	Introduction
	Thermal Model for a Multicore Processor
	Thermal Model for Single Core Processor
	Extended Model for Multicore Processor
	Scheme to Fast Searching Space Exploring

	Methodology
	Experiment Result
	Related Works
	Conclusion

	Dealing with Traffic-Area Trade-Off in Direct Coherence Protocols for Many-Core CMPs
	Introduction
	Background on Cache Coherence Protocols
	Traditional Protocols
	Indirection-Aware Protocols
	Summary

	Traffic-Area Trade-Off in Direct Coherence Protocols
	DiCo-CMP Basis and Storage Requirements
	DiCo-CMP Cache Coherence Protocol
	Reducing Storage Requirements for DiCo-CMP

	Simulation Environment
	Evaluation Results
	Impact on Area Overhead
	Impact on Network Traffic
	Traffic-Area Trade-Off
	Impact on Execution Time

	Related Work
	Conclusions

	An Efficient Lightweight Shared Cache Design for Chip Multiprocessors
	Introduction
	Related Work
	Characterizing CMP Directory
	The Lightweight Shared Cache Design
	Structure of the Lightweight Shared Cache
	Cache Coherence Protocol for Lightweight Shared Cache
	Read and Write Requests:
	Lightweight Shared Cache Replacement:
	L2 Requests from Lightweight Shared Cache:

	Evaluation Results and Analysis
	Simulation Environment
	Impact on L1 Cache Miss Latencies
	Impact on Off-Chip Memory Requests
	Impact on L1 Cache Miss Ratio
	Impact on Execution Time
	Storage Overhead

	Conclusions and Future Work

	A Novel Cache Organization for Tiled Chip Multiprocessor
	Introduction
	Background and Related Work
	Two-Level Directory Cache Organization
	Overview
	Structure
	Two-Level Cache Coherence
	Memory Access Walkthrough

	Evaluation
	Experiment Setup
	Memory Access Latency
	Hit Ratio of Fast Directory
	Execution Time
	Overhead
	Impact of Associativity

	Conclusions and Future Work

	A Performance Model for Run-Time Reconfigurable Hardware Accelerator
	Introduction
	Related Work
	Key Features of RTR Platform
	Factors Affecting the Performance and Modeling
	Hardware Speedup Ratio
	Communication Overhead
	Reconfiguration Overhead
	Performance Modeling

	Performance Model Evaluation
	Experiment Platform
	Experiment Result and Analysis

	Conclusion

	SPMTM: a Novel SPM Based Hybrid Nested TM Framework
	Introduction
	Related Work
	SPMTM Hardware
	Architecture
	Transactions on SPM

	Nested Transactions in SPMTM
	Basic Transaction Model
	Conflict Arbitration Policy
	Nested Transactions

	Experiments
	Experiment Setup
	Experimental Results

	Conclusions and Future Work

	Implementation of Rotation Invariant Multi-View Face Detection on FPGA
	Introduction
	Design of Our RIMVFD Method
	Framework of AdaBoost-Based Face Detection
	Tree-Structured Detector Hierarchy
	Fine-Classified Boosting

	Proposed Hardware Architecture for RIMVFD
	The Global Structure
	Design and Implementation of the Detector Hierarchy

	Experimental Results
	Resource Utilization
	Speed Comparison with Software Solution and Related Works
	Accuracy Comparison with Related Works

	Conclusions

	The Design and Evaluation of a Selective Way Based Trace Cache
	Introduction
	Related Work
	Selective Way Cache
	Energy Efficient Trace Cache

	Selective Way Based Trace Cache
	Fundamentals of Trace Cache
	Principle of SWTC
	Microarchitecture of a SWTC Model

	Experiment and Analysis
	Experimental Methodology
	Experimental Results

	Conclusion

	A Fine-Grained Pipelined Implementation for Large-Scale Matrix Inversion on FPGA
	Introduction
	Fine-Grained Parallel Algorithm and Performance Model
	Fast Givens Rotation
	Data Dependency of QRD-Based Matrix Inversion
	Fine-Grained Parallel Algorithm
	Performance Model

	Hardware Implementation on FPGA
	Hardware Structure
	Storage Method of Matrix R and Q

	Experimental Results
	FPGA Resources Usage
	Performance

	Conclusion

	L1 Collective Cache: Managing Shared Data for Chip Multiprocessors
	Introduction
	Characterizing CMP Data Access
	Collective Cache
	Frameworks
	Operations
	Methodology
	Evaluation
	Platform Setup
	Experiment Result
	Mechanism Analysis

	Related Works
	Chip Multiprocessors
	CMPs On-Chip Storage System

	Conclusions

	Graphical Processing Unit
	Efficient Multiplication of Polynomials on Graphics Hardware
	Introduction
	Related Work
	Overview of the GPU Architecture and CUDA Framework
	Mathematical Preliminaries
	Number Theoretic Transforms and Fast Convolutions
	Chinese Remainder Theorem

	Mapping Multiplication Algorithm to Graphics Processor
	Algorithm Overview
	The FFT Algorithm
	Multiplication and Modular Reduction
	FMA-Optimized FFT Kernels and Exploiting Redundancy in Residue Representation
	CRT Reconstruction on the GPU

	Experimental Results and Comparison
	Summary and Outlook

	Performance Optimization Strategies of High Performance Computing on GPU
	Introduction
	Background and Overview
	GPGPU Trend
	GPU Architecture and Programming Model
	GPGPU in High Performance Computing

	GPUFeatures
	Transfer Bandwidth between CPU and GPU
	Layout of Shared Memory
	Optimization Methodology and Performance Analysis
	Prefetching
	Stream Computing
	Task Division for CPU and GPU
	Streamlizing the Divided Task on Device

	Accelerating HPL Benchmark in Heterogeneous System
	Key Parameters
	Acceleration Results

	Conclusions and Future Work
	References

	A Practical Approach of Curved Ray PrestackKirchhoff Time Migration on GPGPU
	Introduction
	Implement Curved Ray Prestack Kirchhoff Time Migration on GPGPU
	Prototype I
	Prototype II
	Prototype III
	Prototype IV

	Floating Point Errors
	Performance Evaluation
	Conclusion

	GCSim: A GPU-Based Trace-Driven Simulator for Multi-level Cache
	Introduction
	Preliminaries
	Traditional Trace-Driven Cache Simulator
	General-Purpose Computation on GPUs
	Parallel Processing Model

	Parallel Simulation Scheme on CUDA
	CUDA
	Parallel Simulation Algorithm Based on CUDA
	Key Techniques
	Bucket Sort.
	Ping-pong Buffer.
	Memory Model on the GPU.
	Stream Management.

	The General Algorithm
	Parallel Simulation Algorithms for a Single-Level Cache Simulation
	Parallel Simulation Algorithm 1.
	Parallel Simulation Algorithm 2.
	Parallel Simulation Algorithm 3.
	Parallel Simulation Algorithm 4.
	Parallel Simulation Algorithm 5.

	Algorithm for Multi-level Cache Simulator
	Single-Configuration.
	Multi-configuration parallel simulation in a single pass.

	Performance
	Time Measurement
	Single Configuration Simulation for Single Level Cache
	Increasing the Associativity.
	Increasing Set Number.
	Single Configuration Simulation Summary.
	Using Radix Sort Algorithm to Speedup Sort Process.

	Multi-configuration Simulation in Single Pass for Single-Level Cache
	Multi-configuration Simulation in Single Pass for Two-Level Cache

	Conclusion and Future Work

	A Hybrid Parallel Signature Matching Model for Network Security Applications Using SIMD GPU
	Introduction
	Related Work
	Overview of a Typical SIMD GPU
	A Brief Survey of Signature Matching Using SIMD GPU

	A Hybrid Parallel Signature Matching Model Using SIMD GPU
	Data Parallelism Analysis
	The Hybrid Parallel Signature Matching Model
	Analysis of HPSMM

	Load Balancing Inside the GPU
	Load Balancing When Using Input Text Partition
	BPSPM: The Balanced Pattern Set Partition Method

	Experiments and Results
	Experiments on Pattern Set Partition and Input Text Partition
	Effects of Load Balancing
	Comparison with Hardware Based Methods

	Conclusions

	Grid
	HPVZ: A High Performance Virtual Computing Environment for Super Computers
	Introduction
	Motivation
	HPVZ
	Overview
	System Structure of HPVZ
	File System Structure
	Resource Isolation
	HPVZ's Tool Suite

	Evaluation
	Experimental Environment
	Server Node Performance Evaluation
	Parallel Application Performance Evaluation
	QoS Performance Evaluation
	Isolation and Security Analysis

	Related Works
	Conclusion

	High Performance Support of Lustre over Customized HSNI for HPC
	Introduction
	Overview of Lustre
	Customized High Performance Interconnect-HSNI
	Architecture of HSNI
	Characteristics of HSNI

	High Performance Communication Features
	User Level Communication
	Zero-Copy Non-contiguous I/O
	Non-align RDMA

	Performance Evaluations
	Experimental Setup
	Experimental Results

	Conclusions

	ViroLab Security and Virtual Organization Infrastructure
	Introduction
	Related Work
	Basic Threat Model for the ViroLab Infrastructure
	Used Technology
	Security Architecture of ViroLab
	Security Features, Tools and Services within ViroLab
	ShibIdPClient
	ShibAuthAPI
	ShibRPC
	Portal
	Experiment Planning Environment
	Experiment Management Interface
	ShibSVN
	GSEngine
	Grid Resource Registry
	Data Access Services
	Data Source Registry
	MOCCA Component Framework
	VO Management GUI

	Usage Examples
	Conclusions and Future Work

	E2EDSM: An Edge-to-Edge Data Service Model for Mass Streaming Media Transmission
	Introduction
	Related Work
	Edge-to-Edge Data Service Model
	Definitions
	Architecture
	Content Distribution under the E2E Network Architecture

	Simulation and Preliminary Result Analysis
	Discussion
	Conclusions and Future work

	Grid Scheduling
	Iso-Level CAFT: How to Tackle the Combination of Communication Overhead Reduction and Fault Tolerance Scheduling
	Introduction
	Framework
	The Iso-Level CAFT Scheduling Algorithm
	Reducing Communication Overhead

	Experimental Results
	Conclusion

	MaGate Simulator: A Simulation Environment for a Decentralized Grid Scheduler
	Introduction
	Related Work
	Grid Simulator
	Overlay Simulator

	MaGate Simulator
	Design Goals
	MaGate Simulator Modules

	Overlay Simulator
	Case Study
	Interaction Scenarios
	Resource Discovery Policies
	Job Delegation (Re)Negotiation and Acceptance Rules
	Simulation Configuration
	Results and Discussion

	Conclusion and Future Work

	Mobile Applications
	A Distributed Shared Memory Architecture for Occasionally Connected Mobile Environments
	Introduction
	Related Work
	General Considerations
	P2P-Systems
	DSM Systems
	The Basic Gossip Protocol

	A Novel DSM-Approach for Occasionally Connected Systems
	Application Example
	Activity Recording
	Benchmarking
	GetPatientData

	Architectural Implementation
	System Overview
	Cacheable Objects
	Consistency and Coherence Protocol
	Change Tracking and Notification
	Message Handling
	Conflict-Handling Mechanism
	Finite State Machine of Cached Objects

	API
	Conclusion and Future Work

	Time-Adaptive Vertical Handoff Triggering Methods for Heterogeneous Systems
	Introduction
	Time-Adaptive Vertical Handoff Triggering Methods
	HZ
	HZ Residence Time
	SPDRT
	SPDFL
	Delaying Handoff Scheme in HZ

	Performance Evaluation
	Conclusion

	Energy-Saving Topology Control for Heterogeneous Ad Hoc Networks
	Introduction
	Network Model
	The MINS Topology Control Algorithm
	Topology Information Collection
	Local Topology Construction
	Transmission Power Adjustment
	Mobility Manipulation

	Properties of MINS Algorithm
	Scalability
	Connectivity
	Bi-directionality

	Performance Simulation
	Conclusion

	Parallel Applications
	Computational Performance of a ParallelizedThree-Dimensional High-Order Spectral Element Toolbox
	Introduction
	Complexity on One Node
	Wrong Complexity on the BlueGene/L
	Fine Results on the BlueGene/L
	Conclusions

	Research on Evaluation of Parallelization on an Embedded Multicore Platform
	Introduction
	The Embedded Multicore Processor Platform
	The Implementation of Evaluation Algorithms for Embedded Multicore Platform
	The Parallelization of Cannon Algorithm on Embedded Platform
	The Parallelization of FFT Algorithm on Embedded Platform
	The Parallelization of DWT Algorithm on Embedded Platform
	The Parallelization of SUSAN Algorithm by Blocks
	The Parallelization of 2-D Non-steady-state HCE

	Embedded Multicore Parallel Model Evaluation
	Evaluation Algorithm Parameters
	Test Data Analysis

	Conclusions and Future Work

	MapReduce-Based Pattern Finding Algorithm Applied in Motif Detection for Prescription Compatibility Network
	Introduction
	Relate Works
	MRPF: MapReduce-Based Pattern Finding
	MRPF Framework
	Neighbor Vertices Finding and Pattern Initialization
	Pattern Extension
	Frequency Computing

	Application to Prescription Compatibility Structure Detection
	Motifs Detection Results
	Performance Analysis

	Conclusion
	References

	Parallelization of the LEMan Code with MPI and OpenMP
	Introduction
	Parallelization
	CPU Time Results
	Warm Model
	Cold Model

	Conclusions

	The Recursive Dual-Net and Its Applications
	Introduction
	Recursive Dual-Net
	Topological Properties of RDN
	Comparison to Other Interconnection Networks
	Samples of RDN for Massively Parallel Computers
	An Efficient Routing Algorithm in RDN
	Conclusion

	Parallelization Strategies for Mixed Regular-Irregular Applications on Multicore-Systems
	Introduction
	Mixed Regular-Irregular Simulation Program
	Parallel Implementation on Multicore Systems
	Parallelization with Respect to Data Blocks
	Parallelization with Respect to Data Blocks Variation
	Parallelization with Respect to Particle Interactions Using Barriers
	Parallelization with Respect to Particle Interactions Using Locks
	Combined Parallelization with Barriers
	Combined Parallelization with Locks
	Array Privatization

	Experiments
	Related Work
	Conclusion

	Performance Improvement of Multimedia Kernels by Alleviating Overhead Instructions on SIMD Devices
	Introduction
	Background
	GPPs Enhanced with Multimedia Extension
	Performance Bottlenecks

	MMMX Architecture
	Extended Subwords
	The Matrix Register File
	MMMX Instruction Set Architecture

	Multimedia Kernels
	Performance Evaluation
	Evaluation Environment
	Performance Evaluation Results

	Analysis of Each Proposed Technique Separately
	LLM Algorithm to Implement Discrete Cosine Transform
	Four Different SIMD Implementations for Horizontal DCT
	Experimental Results

	Conclusions

	Large Matrix Multiplication on a Novel Heterogeneous Parallel DSP Architecture
	Introduction
	Overview of the ePUMA Architecture
	Memory Subsystem
	Interconnection Buses
	VectorMemory and Data Permutation
	Multi-task DMA Controller

	Matrix Multiplication Implementations
	Architecture 1 - 8-Way SIMD Extension
	Architecture 2 - SIMD Co-processor with VectorMemory
	Architecture 2 - Overlapping DMA

	Experimental Results
	ePUMA Scalability
	Permutation Tables vs Parallel Transpose

	Conclusion
	References

	Implementing Fast Packet Filters by Software Pipelining on x86 Processors
	Introduction
	Framework
	Type A Optimization
	Type B Optimization

	Filter Rule and Execution Model
	Filter Rule
	Model of Execution Time

	Code Optimization Techniques
	Compiling a Naive C Program
	Compiling by Hand
	Software Pipelining
	Two Approaches to Fast Type B Packet Filters

	Optimizations on x86 Processors
	Generate-and-Test Procedure
	Codes for x86-64 Processors
	Codes for x86-32 Processors
	Experiments

	Evaluation of the Experiments
	Future Research

	Parallel Libraries
	OSL: Optimized Bulk Synchronous Parallel Skeletons on Distributed Arrays
	Introduction
	The Bulk Synchronous Parallel Model
	OSL: An Overview
	Distributed Arrays
	Operators
	Data Parallel Skeletons
	Communication Skeletons
	Synchronization
	Optimization Using Expression Templates

	Applications in OSL
	Heat Equation
	Fast Fourier Transform

	Experiments and Comparisons
	Related Work
	Conclusions and Future Work

	Performance
	Evaluating SPLASH-2 Applications Using MapReduce
	Introduction
	Background
	MapReduce Programming Model
	The Hadoop Design and Implementation

	Implementing SPLASH-2 Applications with Hadoop MapReduce
	SPLASH-2 Suite
	Implementing Water Spatial(WS) and Radix Sort(RS) in MapReduce

	Evaluation
	Experiment Setup
	Overall Performance
	Performance Breakdown
	Affects with Application Characteristics

	Optimization Opportunities
	Related Work
	Conclusion

	MPTD: A Scalable and Flexible Performance Prediction Framework for Parallel Systems
	Introduction
	MPTD Framework
	Components of MPTD
	A Typical Workflow for MPTD
	Design of Trace Model
	Advantage Analysis

	An Instantiation of MPTD
	Experiment Setup

	Related Work
	Conclusion and Future Works

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

