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Abstract. Complex diffusion was introduced in the image processing
literature as a means to achieve simultaneous denoising and enhance-
ment of scalar valued images. In this paper, we present a novel geomet-
ric framework to achieve complex diffusion for color images represented
by image graphs. In this framework, we develop a novel variational for-
mulation that involves a modified harmonic map functional and is quite
distinct from the Polyakov action described by Sochen et al. Our formu-
lation provides a novel framework for simultaneous feature preserving
denoising and enhancement. We also develop a quaternionic diffusion
that can be applied to color image data represented by a quaternion in
the image graph framework. In this framework, the real and imaginary
parts can be interpreted as low and high-pass filtered data respectively.
Finally, we suggest novel ways to use the imaginary part of complex
diffusion toward image reconstruction. We present results of comparison
between the complex diffusion, quaternionic diffusion and the well known
Beltrami flow in the image graph framework.

1 Introduction

Image denoising is a quintessential component of most image analysis tasks and
there are numerous denoising methods reported in the literature. In the past few
decades, methods based on partial differential equations (PDEs) have become
very popular. Some of the PDE-based methods are derived from minimization
principles while others are not. The general mathematical form of a feature
preserving anisotropic diffusion is given by

∂I

∂t
= Div(g(|∇u|)∇u)

Here, u(x, y; t)|t=0 = I(x, y) is the function being smoothed. The choice of
g(|∇u|) in the above leads to various types of diffusion flows.
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Alternatively, one may represent the 2D image as a graph by embedding it
in R3, as a surface Σ with local coordinates (σ1, σ2). The embedding map X
is given by, X : (σ1, σ2) → (x, y, I(x, y)). This provides a geometric interpreta-
tion to the PDEs as those that modify some geometric property such as area
of the 2D manifold representing the image surface. In the case of vector-valued
images, the embedding map X is given by, X : (σ1, σ2) → (x, y, Ii(σ1, σ2)),
where, Ii(x, y) are the channels of the given vector-valued image, and the 2+i
dimensional manifold, (x, y, Ii(σ1, σ2)) is refered to as the space-feature mani-
fold, M [2]. This graph representation also provides a geometric way to handle
the interaction between the components (channels) of the vector-valued images.
Kimmel et al., [1,2,3] pioneered the use of image graph representation to perform
image smoothing in scalar and vector-valued image data sets. They introduced
the Polyakov action [4] to derive various flows such as the Beltrami, mean cur-
vature, and the Perona-Malik flows. One of the benefits of this approach is
that the channels in multi-channel (vector-valued) images such as color images
can be correlated in a geometrical way. Diffusing the RGB channels in a color
image while retaining their correlation is essential. If we perform isotropic or
anisotropic diffusion of each channel independently, all correlations are ignored
and the solution would be erroneous.

Alternatively, one may simply extend the traditional diffusion to the complex-
domain, which was pioneered by Gilboa et al. [5,6,7]. In complex diffusion, an
image, I(x, y), which is a real-valued function in general, is extended to the
complex domain, i.e., I(x, y) = IR(x, y)+iIM (x, y). Then, the isotropic diffusion
equation is generalized to, I = C�I where, C is a complex number with unit
norm eiθ, and � is defined as usual by ∂2

∂x2 + ∂2

∂y2 .
More generally, diffusion equations are given by

∂I

∂t
= H(t)I (1)

where H(t) is a diffusion operator which can be either isotropic or anisotropic
and can produce linear or nonlinear scale-spaces respectively. In the case of
complex diffusion, H(t) is a complex operator and can be rewritten as follows:

H(t) = HR(t) + iHM (t) = eiθh(t) (2)

where h(t) is a real-valued operator. Then, the diffusion equations for the real
and imaginary parts are given by

∂IR

∂t
= cos(θ)h(t)IR − sin(θ)h(t)IM (3)

∂IM

∂t
= sin(θ)h(t)IR + cos(θ)h(t)IM . (4)

The processed input image is considered as a solution to Eq.(3). In the case
of isotropic diffusion, h(t) becomes the � operator. Gilboa et al. showed that
small positive values of θ lead to approximating the real part of I by the regular
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isotropic diffusion and the imaginary part by the smoothed second derivative
of the real part. This allows one to achieve denoising and enhancement simul-
taneously. Therefore, regular (non-complex) diffusions discussed in the previ-
ous paragraphs can be seen as special cases of complex diffusions. Because the
imaginary part represents the smoothed second derivative of the real part, the
imaginary part contains the edge information of the real part. They applied this
aspect of the imaginary part to denoise and enhance the images. For the task
of denoising, they introduced a new anisotropic diffusion by replacing |∇u| in
g(|∇u|) of Perona-Malik diffusion with that of the imaginary part as follows:

∂I

∂t
= ∇ ·

(
eiθ

1 +
(

IM

kθ

)2∇I

)
(5)

where IM is the imaginary part of the complex image I and k is a threshold
parameter. This allowed the diffusion flow to avoid the stair-casing effect. They
also introduced a shock filter which used the imaginary part as edge information.
However, they did not apply the complex diffusion model to multi-channel images
and did not suggest a method to account for the coupling of the channels. In this
paper, we present a novel model for simultaneous smoothing and enhancement
by mapping the real and complex channels to Cn, introducing an image-surface
metric and constructing an action functional distinct from the Polyakov action
in [1]. In our approach, the correlation between the color channels (R, G and
B) is introduced via the metric on the image graph manifold. Additionally, we
applied our action functional to the quaternion representation of a color image
in the graph representation. Liu et al.[8] have suggested a way to treat the color
channels as a quaternion assuming that the R,G, and B channels were correlated
through the quaternion algebra. In this approach, the R,G, and B were mapped
to the pure quaternion parts with one extra dimension, which was the real part
of the quaternion representation.

We present several experimental results depicting the performance of our
model in comparison to the complex diffusion model of Gilboa et al. [5], for
the scalar image denoising and enhancement case as well as with the Beltrami
flow [2] for color image denoising. The rest of this paper is organized as follows.
In Section 2, we present a novel metric for the complex image manifold and a
novel functional whose minimization yields the desired flow equation. This is fol-
lowed by a description of the quaternion representation for color images, a novel
formulation of the functional and the accompanying flow equation for color im-
age denoising and enhancement. In Section 3, we present experimental results
for our model applied to color images along with comparisons to other models.
In Section 3.2, we describe techniques to reduce computational time by consid-
ering the diffusion of the real part as a low-pass filter and the imaginary part
as high-pass filter, and adding these two parts for the denoised reconstruction.
In Section 4, we demonstrate that this reconstruction method can be applied to
achieve high quality reconstruction. We draw conclusions in Section 5.
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2 Action Formalism for Complex Diffusion

In this section, we introduce a metric for the complex image manifold for multi-
channel images, and construct an action functional that is minimized to derive
the complex diffusion equation. In addition, we applied the metric and the action
functional to the quaternion representation of RGB images.

2.1 The Image Metric

The general idea of complex diffusion has been investigated in [5]. However,
their primary focus was on gray level images. There was no description of ex-
tensions to vector-valued data sets. Since we deal with processing of multi chan-
nel images here, the key challenges involve processing the vector-valued data
and capturing the correlation between the channels. In [1,2], a norm functional
called the Polyakov action [4] and an embedding map X : Σ → Rn were intro-
duced, where Σ is a 2-D manifold. They were used to capture the interaction
between the multiple channels, and minimize the norm functional to obtain spe-
cific flows that smooth images in different ways. In this paper, we suggest an
alternative to the Polyakov action, where the image manifold, Σ, is mapped
to an n-dimensional complex manifold by Z : Σ → Cn. Upon denoting the
local coordinates on the 2-D manifold Σ by (σ1, σ2), the map Z is given by
[Z1(σ1, σ2), Z2(σ1, σ2), ..., Zn(σ1, σ2)], where all the Z’s are complex-valued. For
example, a color (RGB) image can be mapped by Z as follows:

Z : (σ1, σ2) → [z1, z̄1, Zl = I l(σ1, σ2), Z̄ l] (6)

where z = σ1 + iσ2, z̄ is the complex conjugate of z, I l is a complex-valued
channel, I l

R(σ1, σ2) + iI l
M (σ1, σ2), Z̄ l is the complex conjugate of Zl and the

index l runs over R,G, and B.
Let M , the space-feature manifold denote the embedding manifold of the

complex image graph, with the map Z : Σ → M . Let gμν be the metric on the
image manifold, Σ, and hij be the metric on M . Here, hij is defined such that
hijdZ

idZj gives a length element on M , and this metric makes the manifold
M a Riemannian manifold with (n × 2) + 2 dimensions ,where n is the number
of channels and the local spatial coordinates are represented by two additional
dimensions. For a gray level image, hij becomes

h =

⎛
⎜⎜⎝

0 1
2 0 0

1
2 0 0 0
0 0 0 1

2
0 0 1

2 0

⎞
⎟⎟⎠ (7)

so that the length element is dzdz̄ + dIdĪ = (dσ1)2 +(dσ2)2 + dI2
R + dI2

M . Then,
the image metric, gμν is given explicitly as follow:

gμν(σ1, σ2) = hij(Z)∂μZi∂νZj (8)
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where, ∂μZi = ∂Zi/∂σμ. The image metric for the n-channel case is given ex-
plicitly by,

gμν =

⎛
⎜⎜⎜⎜⎝

1 +
n∑

l=1

I l
xĪ l

x
1
2

n∑
l=1

(I l
xĪ l

y + I l
y Ī l

x)

1
2

n∑
l=1

(I l
xĪ l

y + I l
y Ī l

x) 1 +
n∑

l=1

I l
y Ī l

y

⎞
⎟⎟⎟⎟⎠ (9)

where x and y are the spatial coordinates. We are now ready to present the
action formalism.

2.2 The Action Formalism

Images in computer vision are usually real-valued. Therefore, it is natural to pose
them as a real-valued graph with a real-valued metric. However, in this paper we
seek an action appropriate for complex-valued functions and one that is distinct
from the Polyakov action presented in [2]. We would like the gradient descent
(flow) equation of the new action to match the complex diffusion introduced in
[5] under a special geometry and depict edge-preserving flows on a graph. We
propose a specific action for n-channel images satisfying the conditions above,
given by:

S =
∫ ∫

F (z, z̄, I l
x, lly Ī l

x, Ī l
y)
√

gdxdy (10)

F =
1
2

n∑
l=1

(∇I l · ∇I lelθl + ∇Ī l · ∇Ī le−lθl). (11)

Here, x and y are local coordinates, and g is the determinant of the image metric
gμν , Eq.(9). In Eq.(10) and Eq.(11), I is complex image, IR + iIM and Ī is its
complex conjugate. In Eq.(11), generally, we can assign different phase θl to
each channel. Setting g equal to the identity matrix and minimizing Eq.(10) by
applying calculus of variation to Eq.(10), we can derive the isotropic complex
diffusion equation introduced in [5] and details are given in following paragraphs.

We derive the gradient descent of Eq. (10) by evaluating the Euler-Lagrange
equation with respect to the embedding. For this, we fix the x and y coordinates
or z and z̄, and vary the action with respect to I [2]. Then, the flow equation
for I l is given by:

∂I l

∂t
=

1
gβ

[
d

dx

(
P l

√
g

)
+

d

dy

(
Ql

√
g

)]
(12)

where, P l and Ql are defined as:

P l = g
∂F

∂I l
x

, Ql = g
∂F

∂I l
y

. (13)

In Eq.(12), we multiply the right hand side of the equation by a positive function,
1/(gβ), that will produce nonlinear scale-space and keep the flow geometrical as
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suggested in [2]. The exponent β will be discussed subsequently. When β is
large, the flow becomes more sensitive to edges. Eq.(12) can now be rewritten
as follows:

∂I l

∂t
=

1
g(β+0.5)

[
P l

x + Ql
x − 1

2g
(gxP l + gyQl)

]
. (14)

Here, I l, P l and Ql are complex valued defined as: I l(x, y) = I l
R(x, y)+iI l

M (x, y),
P l(x, y) = P l

R(x, y) + iP l
M (x, y), and Ql(x, y) = Ql

R(x, y) + iQl
M (x, y), where l

is a channel index. As a special case, we can easily obtain the isotropic complex
diffusion equation introduced in [5], by applying Eq. (10) to gray scale images
and setting the metric gμν to be the identity matrix. Then, g is equal to 1,
I(x, y) = IR(x, y) + iIM (x, y), and the Eq. (11) becomes

F = cos θ(|∇IR|2 − |∇IM |2) − 2 sin θ(IRxIMx + IRyIMy) (15)

The gradient descent of Eq.(14) results in the following flow equations:

∂IR

∂t
= cos(θ)�IR − sin(θ)�IM (16)

∂IM

∂t
= sin(θ)�IR + cos(θ)�IM . (17)

Here, we recover the complex isotropic diffusion introduced in [5]. There is no
imaginary part in the initial condition of complex image I, and the target image
is assigned to the real part of the initial condition. However, we can create an
imaginary part from a non-zero theta via the time iteration of Eq.(14).

Another special case of Eq.(10) is obtained by setting θ equal to zero in
Eq.(15) with same g and initial conditions as before. In this case, F reduces
to |∇IR|2 and the gradient descent of Eq.(14) recovers the ordinary isotropic
diffusion equation: ∂I

∂t = �I, (I = IR).
In Fig.1, we have compared the results of anisotropic diffusion using Eq.(14)

with isotropic diffusion obtained using Eq.(16) and Eq.(17) and anisotropic dif-
fusion from Eq.(5) when applied to a gray-level image. Fig.1(a) is the given input
image and also the real part of the initial complex image. We can observe that
Fig.1(h) has no blurring across edges compared to Fig.1(f) and is smoother than
Fig.1(g). The real part of Eq.(5) is less smooth than others for θ larger than 5
degrees.

2.3 Quaternion Representation for Color Images

The geometric coupling of channels in the RGB image via the image metric
term is not the only way to achieve the coupling. Labunets [9] suggested apply-
ing hypercomplex techniques to multi-channel images. He considered R,G, and
B color channels as a triplet number. In his framework, color space is identi-
fied with the so-called triplet algebra. Instead of the triplet representation of
color, Liu et al. [8] employed quaternion to represent the color channels. They
considered the diffusion of quaternion images as an extension to the diffusion of
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 1. (a) original image. (b) after one iteration of isotropic complex diffusion. (c) and
(f) real and imaginary parts of (a) obtained by isotropic complex diffusion. (d) and
(g) real and imaginary parts of (a) obtained using Eq.(5) with k = 2. (e) and (h) real
and imaginary parts of (a) using Eq.(14) with β = 5/6. 100 time iterations have been
processed with step size, 0.1 and θ = π/3. All imaginary parts have been rescaled to
8-bit images for display.

complex images, and discussed the isotropic and anisotropic diffusion of quater-
nion valued RGB image. One of the choices of mapping RGB channels to a
quaternion is to map R, G and B channels to pure quaternion parts, introduc-
ing an extra dimension which corresponds to real parts of quaternion, Then the
quaternion of RGB channels, Q is represented by Q = Q0 + iR+ jG+kB. Here,
we introduce a novel geometric approach to achieve smoothing and enhancement
of color images using the quaternions based representation of RGB, [q, q̄, Q, Q̄],
where q = σ1+iσ2+j0+k0. We emphasize that this representation has never been



Complex Diffusion on Scalar and Vector Valued Image Graphs 105

used earlier and is indeed novel. The second and third components of the pure
quaternion parts of q are fixed to zero. For the action formulation, Eq. (10),
we choose Eq. (9) as the image metric after replacing z and I with q and Q
respectively,

gμν =
(

1 + QxQ̄x
1
2 (QxQ̄y + QyQ̄x)

1
2 (QxQ̄y + QyQ̄x) 1 + QyQ̄y

)
, (18)

The functional F in Eq. (11) must now be rewritten using the quaternion algebra
as follows:

F =
1
2
((∇Q · ∇Q)C + C̄(∇Q̄ · ∇Q̄)) (19)

Here, C is a quaternion coefficient defined as eeφθφ = cosθφ + eφsinθφ, and
eφ = iCR + jCG +kCB, where C2

R + C2
G + C2

B = 1 [10], and C̄ is the quaternion
conjugate of C. Then, we can have the flow equation, Eq.(14) for quaternion
RGB by replacing Eq.(13) with

P i = g
∂F

∂Qi
x

, Qi = g
∂F

∂Qi
y

(20)

where Qi ∈ {I0, R, G, B}. The correlation between the channels are introduced
via a quaternion multiplication between Q(Q̄) and C(C̄) [8] as well as the metric
on the image (graph) manifold. When we set gμν to the identity metric as we have
done previously, and CR = CG = CB = 1/

√
3, we have the isotropic diffusion of

the color image in the quaternion framework presented in [8]:

dI0

dt
= cos θφ�I0 − sin θφ

1√
3
�(R + G + B), (21)

dQi

dt
= cos θφ�Qi + sin θφ

1√
3
�(I0 + Qj − Qk), (22)

where i,j and k follow the cyclic permutation of R,G and B. When θφ is nega-
tive, Eq.(21) will have a form similar to that of Eq.(17). This implies that the
scalar part of the quaternion diffusion will capture the smoothed second order
of (R+G+B)/

√
3 [8]. Additionally, recalling that correlation between channels

is introduced only by the image metric, Eq.(9) in the case of complex diffu-
sion, we can recognize that the quaternion algebra introduces alternative type
of correlation between channels in Eq.(22).

3 Denoising and Edge Enhancement Experiments

In this paper, we apply our method to noisy color images using an image graph
representation. There are two parameters in our model: the exponent β in
Eq.(14) and θ in Eq.(11). In [5], large values of phase, θ, made edges represented
by the imaginary part thicken with increasing iterations, and small θ less than 5
degrees was recommended for isotropic and anisotropic diffusion to retain sharp
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edges. In contrast, in our work here, large phase values increase the magnitude
of the imaginary part and slow down diffusion speed near edges, which prevent
thick edges due to large θ. The exponent, β of the non-linear scale multiplier
influences the diffusion flows geometrically. For example, the diffusion equations
from Polyakov action with different β values results in different flows like the
Beltrami flows, Panora-Malik flows, Mean curvature flows and others [2,11]. The
main purpose of this multiplicative factor is to achieve edge-preserving denoising.
In this paper, we choose β from the interval [0.5, 1]. These two free parameters
are chosen empirically based on the amount of noise in the data.

3.1 Denoising Experiments

The results of denoising depend on parameters, θ and β, similar to the earlier
approaches [2,5]. The optimal parameter values depend on the amount of noise.
The larger phase angles, θ and βs, lead to diffusions that are more sensitive to
edges. We have applied the complex RGB flow and the quaternion flow to color
images with added Gaussian noise, and compared the results with Beltrami flow.
Our test image had an additive Gaussian noise of 25.3dB. Fig.2(a) and Fig.2(b)
show original image and the noisy version respectively. We used the peak SNR
(PSNR) as the stopping criteria for iterations. We stopped the iterations when
the denoised images reached the maximum PSNR. Fig.2(c) and Fig.2(d) show
denoised images obtained using the complex (RGB) flow with θ = 7π/30 and
β = 5/6, and the quaternionic flow with θφ = −7π/30 ,β = 5/6 and CR = CG =
CB = 1/

√
3. All the experiments reported here were implemented in Matlab

2007a, on an Intel Core Duo 2.16GHz CPU. The step size of time iteration is 0.1.
We achieved the denoising using the complex (RGB) flow with a maximum PSNR
of 26.6 dB in 38.6 seconds. Similarly, for the quaternionic flow the maximum
PSNR is 26.5 dB and the processing time is 27.8 seconds. Fig.2(e) shows a
denoised image using Beltrami flow with maximum PSNR of 25.4 dB and a
processing time of 13.8 seconds (76 iterations). The result of the complex flow
depicts higher degree of smoothing than that due to the Beltrami flow. When the
noise is in the image detail, Beltrami flow tends to confuse the noise as detail, and
this effect slows down diffusion velocity locally. Fig.2(f) shows the denoised image
using Beltrami flow after a processing time of 89.8 secs. (500 iterations). The
result is still noisy even after several iterations compared with the results from
complex diffusion. The complex diffusion and quaternion diffusion yield results
comparable to each other in quality, and are better than the Beltrami flow.
However, the quaternion diffusion required less processing time compared to the
complex diffusion case. This is due to the fact that the quaternion representation
is 6-dimensional when using an RGB color image graph, where as the complex
diffusion of the RGB image graph is 8-dimensional. Fig.3 shows imaginary parts
of Figures 2(a)-2(d). Fig.3(a) and Fig.3(b) have been achieved after just one
iteration on Fig.2(a) and Fig.2(b) respectively. We can see that the imaginary
parts are also smoothed along with their corresponding real parts, which we
consider as the processed images of the target image.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) and (b) an original image and the image with the Gaussian noise of peak
SNR 25.3dB respectively. (c) denoised image using complex RGB flows. (d) denoised
image using quaternionic flows. The parameters are θ = 7π/30 and β = 5/6 and
the three pure quaternion components are 1/

√
3. (e) and (f) images obtained using

Beltrami flows with different processing times.

(a) (b) (c) (d)

Fig. 3. (a) Imaginary part of Fig.2(a). (b) Imaginary part of Fig.2(b). (c) and (d)
imaginary parts corresponding to Fig.2(c) and Fig.2(d) respectively (a) and (b) have
been achieved after one iteration. All images are rescaled to 8-bit images for display.

3.2 Image Reconstruction

Recall that the imaginary part of complex diffusion corresponds to the smooth
second order derivative and the real part corresponds to smoothed image. Hence,
it is very natural to consider the imaginary part as a high-pass filter and the real
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Fig. 4. Gray dashed line: PSNR of a denoised image by Eq. (14) without the recon-
struction. Black solid line: PSNR with the reconstruction. The maxima of the black
and gray lines are 26.44 dB and 26.57 dB respectively.

part as a low-pass filter, and think of addition of these two parts to recover orig-
inal image which is an enhanced version of the original and contains smoothed
edges. This process is similar to the image reconstruction via wavelet transfor-
mation, in which we add the lowest resolution version of low-pass filtered image
with a sequence of high pass filtered images from the lowest resolution up to
the desired resolution. However, we add the real part (low pass-filtered version)
to the imaginary part (high pass-filtered version) so as to recover the smoothed
and enhanced original image. (θ must always be positive, the reason for which
will be explained in next section.) If we update the real parts by this addition
after every iteration, the image can be denoised by diffusion as well as achieve
reconstruction. To see this in detail, we discretize Eq.(3) and Eq.(4) in time, as
follows:

Ii+1
R = Ii

R + Δt(cos θhiIi
R − sin θhiIi

M ) (23)

Ii+1
M = Ii

M + Δt(sin θhiIi
R + cos θhiIi

M ) (24)

Here, Δt is the time-step size of the iteration. Then we can evaluate IR and IM

after i iterations, by a recursive relation :

Ii+1
R = I0

R + Δt

i∑
j=0

(cos θhjIj
R − sin θhjIj

M ), (25)

Ii+1
M = I0

M + Δt

i∑
j=0

(sin θhjIj
R + cos θhjIj

M ). (26)
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Here, IM0 is set to be zero. However, if we reset the real part to a sum of the
imaginary and real part so as to obtain a reconstruction (Ii+1

R → Ii+1
R + Ii+1

M )
after each iteration (and before next iteration), Eq.(23) can be rewritten as,

Ii+1
R = Ii

R + Ii
M + Δt((cos θ + sin θ)hiIi

R + (cos θ − sin θ)hiIi
M ), (27)

Rewriting Eq.(25) using Eq.(27) gives us the following recursive relationship:

Ii+1
R = I0

R +
i∑

j=0

Ij
M + Δt

i∑
j=0

((cos θ + sin θ)hjIj
R + (cos θ − sin θ)hjIj

M ). (28)

noise with 25.3dB PSNR. The gray dashed line in Fig.4 represents the PSNR
results obtained by applying Eq. (14) without the reconstruction, and the black
solid line in Fig.4 represents PSNR results with the reconstruction. The maxima
of the black and gray line are 26.44 dB and 26.57 dB respectively. We can see
that the reconstruction at each iteration is improves the smoothing process. This
test was done with the parameter values: β = 5

6 and θ = π
6 .

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Original image. (b) and (c) Enhanced images with β = 1/2 , θ = −π/6 and
θ = −π/3 respectively after 16 iterations. (d) and (e) Enhanced images with β = 5/6,
θ = −π/6 and θ = −π/3 respectively after 20 iterations. (f) Enhanced image with
same parameters after 25 iterations.
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4 Image Enhancement

It has been shown in [5] that the imaginary part of the isotropic complex dif-
fusion can be applied to shock filter since the imaginary part contains the edge
information of the real part. We consider the real part as the processed image
of the target image. This characteristic of the imaginary part allows us to apply
the imaginary part to edge-preserving smoothing as well as image enhancement.
In the previous section, we have introduced the idea of image reconstruction.
In the case of smoothing, θ has been set to be positive. According to Eq.(26),
the diffusion of imaginary part behaves as edge smoothing due to the first term,
where sin θ is positive. On the other hand, negative θ makes Eq.(26) perform
edge enhancement. Therefore, in order to enhance images, we reconstruct the
image after every iteration with negative θ as was done in section 3.2.

Fig.5 shows the enhanced results with various parameters. Fig.5(a) is the
original image, and Fig.5(b) and Fig.5(c) are the enhanced images with the pa-
rameters vales: β = 1

2 , and θ = −π
6 and θ = −π

3 respectively after 16 iterations.
We can see that the edges are over-enhanced in Fig.5(c) due to the larger sin θ
of Eq.(26) than those in Fig.5(b). Also, the small value of β makes the diffusion
flow less sensitive to edges and produces thick edges. Images in the bottom row
of Fig.5 show enhancement results with β = 5

6 . The larger value of β results in
sharper edges and more details.

5 Conclusion and Discussion

In this paper, we presented a novel formulation of complex diffusion for simulta-
neous image smoothing and edge enhancement. The formulation involved the use
of an image graph representation as an embedded manifold, a novel image metric
and a novel action functional yielding a new complex diffusion. Additionally, we
developed a new quaternionic diffusion using this geometric framework for color
images and demonstrated improved performance over the Beltrami flow. Com-
parisons were reported on data with added noise, using PSNR as a quantitative
measure. Finally, we presented a “wavelet-like” interpretation of the complex
diffusion. We interpreted the real and imaginary part of the complex diffusion
as a low pass and high pass filter respectively and applied this concept to image
reconstruction and enhancement. When performing the image reconstruction it-
eratively, we achieved faster convergence to the PSNR with positive θ and image
enhancement with negative θ. Our future work will involve application of the
proposed model to the complex-valued MRI data.
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