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Abstract. The Mumford-Shah model is an important variational image
segmentation model. A popular multiphase level set approach, the Chan-
Vese model, was developed for this model by representing the phases
by several overlapping level set functions. Recently, exactly the same
model was also formulated by using binary level set functions. In both
approaches, the gradient descent equations had to be solved numerically,
a procedure which is slow and has the potential of getting stuck in a local
minima. In this work, we develop an efficient and global minimization
method for the binary level set representation of the multiphase Chan-
Vese model based on graph cuts. If the average intensity values of the
different phases are sufficiently evenly distributed, the discretized energy
function becomes submodular. Otherwise, a novel method for minimizing
nonsubmodular functions is proposed with particular emphasis on this
energy function.

1 Introduction

Multiphase image segmentation is a fundamental problem in image processing.
Variational models such as Mumford-Shah [1] are powerful for this task, but
efficient numerical computation of the global minimum is a big challenge. The
level set method [2,3] is a powerful tool which can used for numerical realization.
It was first proposed for the Mumford-Shah model in [4] for two phases and [5]
for multiple phases. This approach still has the disadvantage of slow convergence
and potential of getting stuck in a local minima.

Graph cuts from combinatorial optimization [6,7,8,9,10,11] is another tech-
nique which can perform image segmentation by minimizing certain discrete
energy functions. In the recent years, the relationship between graph cuts and
continuous variational problems have been much explored [12,13,14,15]. It turns
out graph cuts are very similar to the level set method, and can be used for
many variational problems with the advantage of a much higher efficiency and
ability to find global minima. It can be applied to the 2-phase Mumford-Shah
model [16,17], but for multiple phases it is probably not possible to find the
exact, global minimum in polynomial time as this is an NP-hard problem. The
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usual approach to minimization problems with several regions is some heuristic
method for finding an approximate, local minimum. Most popular in computer
vision are the α-expansion algorithms [7]. Recently, also convex formulations of
the continuous multiphase problem have been made in [18,19] by relaxing the in-
tegrality constraint. A suboptimal solution is found by converting the real valued
relaxed solution to an integral one (e.g. by thresholding).

In this paper we propose a method to globally and efficiently minimize the
Mumford-Shah model in the multiphase level set framework of Vese and Chan
[5] by using binary level set functions as in [20]. Since the length term is slightly
approximated in this framework, global minimization is no longer NP hard. We
will construct a graph such that the discrete variational problem can be mini-
mized exactly by finding the minimum cut on the graph. However, the energy
function may not be submodular if the average intensity values of the phases are
distributed very unevenly. To handle these cases, we have developed a method for
minimizing non-submodular functions with particular emphasis on our energy
function. The minimization is global if these values are fixed. A local minimiza-
tion approach for determining these values is also proposed.

Note that in contrast to α-expansion, the approximation is done in the model
rather than in the minimization method. Experimental comparison with alpha
expansion is out of the scope of this paper. What can be said is that our method
is certainly a lot faster. It is also straight forwardly generalizable to non-local
measurements of the curve lengths as was done for two phases in [21]. Such a
generalization is not obvious for alpha expansion.

In this work we focus on the case of 4 or less phases, but aim to generalize
the results to more phases later. Nevertheless, these are important cases since
by the four colour theorem, four phases in theory suffices to segment any 2D
image.

1.1 The Mumford-Shah Model and Its Level Set Representation

Image segmentation is the task of partitioning the image domain Ω into a set
of n meaningful disjoint regions {Ωi}ni=1. The Mumford-Shah model [1] is an
established image segmentation model with a wide range of applications. An
energy functional to be minimized is defined over the regions {Ωi}ni=1, and an
approximation image u of the input image u0. In an especially popular form, u
is assumed to be constant within each region Ωi, in which case the model reads

min
{ci},{Ωi}

E({ci}, {Ωi}) =
n∑

i=1

∫

Ωi

|u− ci|βdx +
n∑

i=1

ν

∫

∂Ωi

ds, (1)

where ∂Ωi is the boundary of Ωi. The power β is usually chosen as β = 2.
As a numerical realization, Chan and Vese [4,5] proposed to represent the above
functional with level set functions, and solve the resulting gradient descent equa-
tions numerically. By using m = log2(n) level set functions, denoted φ1, ..., φm,
n phases could be represented. An important special case is the representation
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of 4 phases by two level set functions φ1,φ2, as in Table 1. The energy function
can then be written

min
φ1,φ2,c1,...,c4

= ν

∫

Ω

|∇H(φ1)|+ ν

∫

Ω

(|∇H(φ2)| (2)

+
∫

Ω

{H(φ1)H(φ2)|c2 − u0|β + H(φ1)(1−H(φ2))|c1 − u0|β

+(1−H(φ1))H(φ2)|c4 − u0|β + (1 −H(φ1))(1 −H(φ2))|c3 − u0|β}dx.

Note that the length term in (1) is slightly approximated, since some of the
boundaries are counted twice. Note also that we have made a small permutation
in the interpretation of the phases compared to [5]. The energy is still exactly
identical for all feasible solutions. This permutation is crucial for making the
corresponding discrete energy function submodular.

The functional in this variational problem is highly non-convex for fixed
constant values c1, ..., c4. The traditional minimization approach of solving the
gradient descent equations can therefore easily get stuck in a local minima.
Furthermore, the numerical solution of the gradient descent PDEs is expensive
computationally.

In [20], the same multiphase model was formulated using binary level set
functions φ1, φ2 ∈ D = {φ | φ : Ω �→ {0, 1}}, representing the phases as in
Table 1. This resulted in the energy functional

min
φ1,φ2∈D,c1,...,c4

E(φ1, φ2, c1, ..., c4) = ν

∫

Ω

|∇φ1|dx+ν

∫

Ω

|∇φ2|dx+Edata(φ1, φ2),

(3)
where

Edata(φ1, φ2) =
∫

Ω

{φ1φ2|c2 − u0|β + φ1(1− φ2)|c1 − u0|β

+(1− φ1)φ2|c4 − u0|β + (1 − φ1)(1 − φ2)|c3 − u0|β}dx.

The constraint D was represented by a polynomials in φ1 and φ2. Minimization
was carried out by the augmented lagrangian method. Since both the constraint
D and the energy functional is non-convex, global minimization could not be

Table 1. Representation of four phases by traditional and binary level set functions

Traditional level set functions Binary level set functions

x ∈ phase 1 iff φ1(x) > 0, φ2(x) < 0 φ1(x) = 1, φ2(x) = 0

x ∈ phase 2 iff φ1(x) > 0, φ2(x) > 0 φ1(x) = 1, φ2(x) = 1

x ∈ phase 3 iff φ1(x) < 0, φ2(x) < 0 φ1(x) = 0, φ2(x) = 0

x ∈ phase 4 iff φ1(x) < 0, φ2(x) > 0 φ1(x) = 0, φ2(x) = 1
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guaranteed. Also, convergence was slow just as in the traditional level set ap-
proach. A similar approach could also be used for finding a local minimum with
exact curve lengths [22].

Let us mention that a method often referred to as continuous graph cut can be
used to globally minimize the Mumford Shah model in case of two phases. The
idea, first presented in [23] is to relax the constraint D by the convex constraint
D′ = {φ | φ : Ω �→ [0, 1]}. It was shown that thresholding this solution at almost
any threshold in [0, 1] yields the optimal solution within D. The same idea could
also be used to minimize (3). The problem is that (3) is not convex, and hence
the algorithm may converge to a local minimum.

In general, discrete graph cuts has the disadvantage of some metrication ar-
tifacts over continuous graph cuts. However, discrete graph cuts is faster and
can elegantly be used for minimization problems with non-local operators. The
method we propose can very easily be generalized to minimize non-local mea-
surements of the curve lengths as was done for two phases in [21], by using
regularization term

ν

∫

Ω

|∇NLφ1|dx + ν

∫

Ω

|∇NLφ2|dx.

However, that is not the focus of this paper. We will propose a method which
globally minimizes (3) for fixed constant values c1, ..., c4. This new approach,
is also shown to be very superior in terms of efficiency compared to gradient
descent.

2 Graph Cut Minimization

We will discretize the problem (3) and show that this discrete problem can be
minimized globally by finding the minimum cut on a specially designed graph.
This is possible when the constant values c1, ..., c4 are sufficiently evenly dis-
tributed. We show that such a distribution makes the discrete energy function
sub-modular. The evenness criterion will soon be defined more clearly. We have
observed that this criterion makes sense for most practical images. Nevertheless,
we later develop an algorithm for minimizing non-submodular functions with
particular emphasize on functions of the form (3).

2.1 Brief Overview of Graph Cuts in Computer Vision

Graph cuts were first introduced as a computer vision tool by Greig et. al. [8] in
connection with markov random fields [6]

A graph G = (V , E) is a set of vertices V and a set of edges E . We let (a, b)
denote the directed edge going from vertex a to vertex b, and let c(a, b) de-
note the capacity/cost/weight on this edge. In the graph cut scenario there are
two distinguished vertices in V , called the source {s} and the sink {t}. A cut on G
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is a partitioning of the vertices V into two disjoint connected sets (Vs, Vt) such
that s ∈ Vs and t ∈ Vt. The cost of the cut is defined as

c(Vs,Vt) =
∑

(i,j)∈E s.t. i∈Vs,j∈Vt

c(i, j).

A flow f on G is a function f : E �→ R. For a given flow, the residual capacities are
defined as R(e) = c(e)−f(e) ∀e ∈ E . The max flow problem is to find maximum
amount of flow that can be pushed from {s} to {t}, under flow conservation
constraint at each vertex. A theorem of Ford and Fulkerson [24] says this is
the dual to the problem of finding the cut of minimum cost on G, the min-
cut problem. Therefore, efficient algorithms for finding max-flow, such as the
augmented paths method [24] can be used for finding minimum cuts in graphs.
An efficient implementation of this algorithm specialized for image processing
problems can be found in [9]. This algorithm, which is available on-line has been
used in our experiments.

In computer vision this has been exploited for minimizing energy functions of
the form

min
x∈{0,1}m

E(x) =
∑

i

Ei(xi) +
∑

i<j

Ei,j(xi, xj).

Typically, i = 1, ..., m denotes the grid points and x contains one binary variable
for each grid point. In order to be representable as a cut on a graph, it is required
that the energy function is submodular (or regular) [10,6], i.e.

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0).

2.2 Discretization of Energy Functional

Instead of discretizing the Euler-Lagrange equations, we will discretize the vari-
ational problem (3). In the next section we show how to minimize the re-
sulting discrete energy function exactly. Let us first mention there are two
variants of the total variation term. The isotropic variant, by using 2-norm
TV2(φ) =

∫
Ω |∇φ|2 dx =

∫
Ω

√|φx1 |2 + |φx2 |2 dx, and the anisotropic variant,
by using 1-norm TV1(φ) =

∫
Ω
|∇φ|1 dx =

∫
Ω
|φx1 | + |φx2 | dx. The anisotropic

variant is graph representable and will be considered here. More isotropic vari-
ants can be derived by splitting the calculation of TV1(φ) between several rotated
coordinate systems, see [25].

Let P = {(i, j) ⊂ Z
2} denote the set of grid points. For each p = (i, j) ∈ P ,

the neighborhood system N k
p ⊂ P is defined as

N 4
p = {(i± 1, j), (i, j ± 1)} ∩ P

N 8
p = {(i± 1, j), (i, j ± 1), (i± 1, j ± 1)} ∩ P .
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The discrete energy function can be written

min
φ1,φ2∈D,c1,...,c4

Ed(φ1, φ2, c1, ..., c4) = ν
∑

p∈P

∑

q∈Nk
p

wpq|φ1
p −φ1

q|+ν
∑

p∈P

∑

q∈Nk
p

wpq |φ2
p −φ2

q|

(4)

+
∑

p∈P
Edata

p (φ1
p, φ

2
p),

where
Edata

p (φ1
p, φ

2
p) = {φ1

pφ
2
p|c2 − u0|β + φ1

p(1− φ2
p)|c1 − u0|β

+(1− φ1
p)φ

2
p|c4 − u0|β + (1− φ1

p)(1− φ2
p)|c3 − u0|β}.

The weights wpq are used to approximate the curve lengths. They can be derived
from the continuous functional as in full version [25], or from the Cauchy-Crofton
formula as in [12].

2.3 Graph Construction

We will construct a graph G such that there is a one-to-one correspondence
between cuts on G and the level set functions φ1 and φ2. Furthermore, the
minimum cost cut will correspond to the level set functions φ1 and φ2 minimizing
the energy (4).

min
(Vs,Vt)

c(Vs,Vt) = min
φ1,φ2

Ed(φ1, φ2, c1, ..., c4) +
∑

p∈P
σp. (5)

where σp ∈ R for each p ∈ P . In the graph, two vertices are associated to each
grid point p ∈ P . They are denoted vp,1 and vp,2, and corresponds to each of the
level set functions φ1 and φ2. Hence the set of vertices is formally defined as

V = {vp,i | p ∈ P , i = 1, 2} ∪ {s} ∪ {t}. (6)

The edges are constructed such that the relationship (5) is satisfied. We begin
with the edges constituting the data term of (4). For each grid point p ∈ P they
are defined as

ED(p) = (s, vp,1) ∪ (s, vp,2) ∪ (vp,1, t) ∪ (vp,2, t) ∪ (vp,1, vp,2) ∪ (vp,2, vp,1). (7)

The set of all data edges are denoted ED and defined as ∪p∈PED(p). The edges
corresponding to the regularization term are defined as

ER = {(vp,1, vq,1), (vp,2, vq,2) ∀p, q ⊂ P s.t.q ∈ N k
p }. (8)

For any cut (Vs, Vt), the corresponding level set functions are defined by

φ1
p =

{
1 if vp,1 ∈ Vs,
0 if vp,1 ∈ Vt,

φ2
p =

{
1 if vp,2 ∈ Vs,
0 if vp,2 ∈ Vt.

(9)
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(a) (b)

Fig. 1. (a) The graph corresponding to the data term at one grid point p. (b) A sketch
of the graph corresponding to the energy function of a 1D signal of two grid points p
and q.

Weights are assigned to the edges such that the relationship (5) is satisfied.
Weights on the regularization edges are simply given by

c (vp,1, vq,1) = c (vq,1, vp,1) = c (vp,2, vq,2) = c (vq,2, vp,2) = νwpq, ∀(p, q) ∈ N .
(10)

We now concentrate on the weights on data edges ED. For grid point p ∈ P , let

A(p) = c(vp,1, t), B(p) = c(vp,2, t), C(p) = c(s, vp,1),

D(p) = c(s, vp,1), E(p) = c(vp,1, vp,2), F (p) = c(vp,2, vp,1).

It is clear that these weights must satisfy
⎧
⎪⎪⎨

⎪⎪⎩

A(p) + B(p) = |c2 − u0
p|β + σp

C(p) + D(p) = |c3 − u0
p|β + σp

A(p) + E(p) + D(p) = |c1 − u0
p|β + σp

B(p) + F (p) + C(p) = |c4 − u0
p|β + σp

(11)

This is a non-singular linear system for the weights A(p), B(p), C(p), D(p),
E(p), F (p). Negative weights are not allowed. By choosing σp large enough there
will exist a solution with A(p), B(p), C(p), D(p) ≥ 0. However, the requirement
E(p), F (p) ≥ 0 implies that

|c1 − u0
p|β + |c4 − u0

p|β = A(p) + B(p) + C(p) + D(p) + E(p) + F (p)

≥ A(p) + B(p) + C(p) + D(p) = |c2 − u0
p|β + |c3 − u0

p|β.

This condition must hold for all grid points p ∈ P . Hence, the following condition
on the constant values c1, ..., c4 must be satisfied

|c2 − I|β + |c3 − I|β ≤ |c1 − I|β + |c4 − I|β , ∀ I ∈ [0, L], (12)

where L is the maximum intensity value. This condition can be seen in the light of
submodular energy functions [10,6]. In fact, the pairwise term

∑
p∈P Edata

p (φ1
p, φ

2
p)

is submodular if and only if the condition (12) is satisfied.
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(a) (b) (c)

Fig. 2. (a) and (b) distributions of c which makes energy function submodular for all
β. (c) distribution of c which may make energy function nonsubmodular for small β.

Let us analyze this condition further. We assume the constant values are
ordered increasingly 0 ≤ c1 < c2 < c3 < c4. The condition says something about
how evenly {ci}4i=1 are distributed. Here is a first observation, the proof of this
and the following lemmas can be found in the full version of this work [25]

Lemma 1. Let 0 ≤ c1 < c2 < c3 < c4. There exists a B ∈ N such that (12) is
satisfied for any β ≥ B.

So (12) becomes less strict for larger β. In fact we have observed that for β = 2,
(12) is realistic for most practical images. Here is another observation

Lemma 2. Let 0 ≤ c1 < c2 < c3 < c4. (12) is satisfied for all I ∈ [c2, c3].

The possibility that (12) is not satisfied may happen in two situations: If c1, c2, c3

are very close compared to c4 and intensity I is close to c4, or if c2, c3, c4 are
very close compared to c1 and I is close to c1.

Let us go back to the linear system (11), with restriction E(p), F (p) ≥ 0.
Assuming (12) holds, this has infinitely many solutions.

It was shown in [10] that at most three edges are required for representing a gen-
eral submodular term of two binary variables. Therefore, it is possible to pick a
solution such that at least three of the weights A(p), B(p), C(p), D(p), E(p), F (p)
in ED(p) becomes zero for each p ∈ P . The exact construction of the solution
can be found in the full version [25]. Hence, at most three edges are required
to represent the data term at each grid point. Therefore, by analyzing the com-
plexity of our method in the augmenting paths framework, it is easily seen that
the cost of our method is equal to the cost of one single iteration of the alpha
expansion method.

2.4 Minimization of Non-submodular Energy Functions

In the last section, we have observed that the energy function (4) is submodular if
c1, ..., c4 satisfies (12). Although this is realistic for most images, we will develop
a method for minimizing nonsubmodular functions with particular emphasis
on nonsubmodular terms of the kind encountered here. Minimization of non-
submodular functions via graph cuts has been investigated previously, see [26]
for a review. The usual idea is to develop a method for determining most of the
variables, while leaving some of the variables undetermined. In our approach, we
instead aim to determine all the variables. Even when (12) does not hold, the
energy function is ”almost submodular”, which may explain why the following
very efficient algorithms works so well in practice.
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Consider now the situation

|c2 − u0
p|β + |c3 − u0

p|β > |c1 − u0
p|β + |c4 − u0

p|β ,

for some p ∈ P . In this case the linear system (11) has a solution only if either
E(p) < 0 or F (p) < 0, in which case one of the edges, (vp,1, vp,2) or (vp,2, vp,1),
will have negative weight. It can be easily seen that if E(p) < 0, there exists a
solution to the linear system with F (p) = 0. Vice versa, if F (p) < 0 there exists
a solution with E(p) = 0. See [25] for the exact construction.

It is difficult interpret physically what is meant by max flow on a graph with
negative edge weights. The concept of min-cut, on the other hand, certainly have
a meaning even if some of the edges have negative weight. In the extreme case of
negative weight on all edges, this becomes equivalent to the max-cut on a graph
with negated edge weights. The first step of our procedure finds a good feasible
solution, and therefore also a good upper bound on the objective function (4).
Very often this feasible solution is in fact the optimal solution. All edges of
negative weight will be removed, resulting in a new graph G. The motivation is
as follows. The previous section discussed the possibility of condition (12) not
being satisfied. In this case c1, c2, c3 are close to each other compared to c4 and
Ip at p ∈ P is close to c4. Measured by the data term, the worst assignment of p
is to phase 1, which has the cost |c1−u0

p|β . By removing the negative edge with
E(p) < 0, the cost of this assignment becomes even higher |c1−u0

p|2−E(p). We
therefore expect the minimum cut on G to be almost identical to the minimum
cut on G. For easy of notation, we define the sets

P1 = {p ∈ P | E(p) < 0, F (p) ≥ 0}, P2 = {p ∈ P | F (p) < 0, E(p) ≥ 0}.
Assume the maximum flow has been computed on G, let RA(p), RB(p), RC(p),
RD(p) denote the residual capacities on the edges (vp,1, t), (vp,2, t), (s, vp,1),
(s, vp,2) respectively. The following theorem gives a criterion for when the mini-
mum cut on G yields the optimal solution of the original problem.

Theorem 1. Let G be a graph as defined in (6)-(8) and (10), with weights
A(p), B(p), C(p), D(p), E(p), F (p) satisfying (11). Let G be the graph with weights
as in G, with the exception c(vp,1, vp,2) = 0 ∀p ∈ P1 and c(vp,2, vp,1) = 0 ∀p ∈ P2.

Assume the maximum flow has been computed on the graph G. If

RA(p) + RD(p) ≥ −E(p), ∀p ∈ P1 and RB(p) + RC(p) ≥ −F (p), ∀p ∈ P2,
(13)

then min-cut (G) = min-cut (G).
Proof. We will create a graph G, such that the minimum cut problem on G is a
relaxation of the minimum cut problem on G. The graph G is constructed with
weights as in G with the following exceptions

c(vp,1, t) = A(p)−RA(p) and c(s, vp,2) = D(p)−RD(p), ∀p ∈ P1

c(vp,2, t) = B(p)−RB(p) and c(s, vp,1) = C(p)−RC(p), ∀p ∈ P2.
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Then min-cut(G) ≤ min-cut(G) ≤ min-cut(G). The max flow on G is feasible
on G and therefore also optimal. Therefore, by duality min-cut(G) = min-cut(G)
which implies min-cut(G) = min-cut(G).
We have observed that it is often possible to stop at this stage, since (13) is very
often satisfied. If not, one could either accept the solution as suboptimal, or
make use of the following algorithm, which is designed to handle such cases. The
idea is to create a succession of graphs {Gi}ni=1 with only positive edge weights,
such that min-cut(Gi) ≤ min-cut(G) for all i, min-cut(G0) = min-cut(G) and
min-cut(Gn) = min-cut(G). For a given flow we define two new sets P1

0 ⊆ P1

and P2
0 ⊆ P2

P1
0 = {p ∈ P1 | RA(p) + RD(p) < −E(p)}, P2

0 = {p ∈ P2 | RB(p) + RC(p) < −F (p)}.
The graphs Gi are constructed such that the minimum cut problems on Gi are
relaxations of the minimum cut problem on G. Particularly, for each p ∈ P1

0 and
each p ∈ P2

0 , the cost of one of the 4 possible phase assignments is reduced, while
the rest of the assignment costs are correct (including the one that was set too
high in G). The cut on Gi is feasible if no p ∈ P1

0 ∪ P2
0 is assigned to a phase of

reduced cost. The algorithm is iterated until the cut on Gi becomes feasible.

Algorithm 1:

G0 = G, G−1 = ∅, i = 0. Find max flow on G0

while(Gi �= Gi−1 or i = 0){
1. Construct Gi+1 as in G except for the following weights

for all p ∈ P1
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt): set c(vp,1, t) = A(p) + E(p) in Gi+1

if(vp,1 ∈ Vs and vp,2 ∈ Vs): set c(s, vp,2) = D(p) + E(p) in Gi+1

if(vp,1 ∈ Vs and vp,2 ∈ Vt): set c(s, vp,1) = A(p) + E(p) in Gi+1

if(vp,1 ∈ Vt and vp,2 ∈ Vs): set c(s, vp,1) = D(p) + E(p) in Gi+1

for all p ∈ P2
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt): set c(vp,2, t) = B(p) + F (p) in Gi+1

if(vp,1 ∈ Vs and vp,2 ∈ Vs): set c(s, vp,1) = C(p) + F (p) in Gi+1

if(vp,1 ∈ Vs and vp,2 ∈ Vt): set c(s, vp,2) = B(p) + F (p) in Gi+1

if(vp,1 ∈ Vt and vp,2 ∈ Vs): set c(s, vp,2) = C(p) + F (p) in Gi+1

2. Find max-flow on Gi+1

3. Update P1
0 and P2

0 by examining residual capacities in graph Gi+1

4. i← i + 1
}

Theorem 2. Let Gn be the graph at termination of Algorithm 1. Then
min-cut(Gn) = min-cut(G).
Proof. The proof follows some of the same ideas as the proof of theorem 1.
We will use Gn to construct a graph G such that the minimum cut problem on
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G is a relaxation of the minimum cut problem on G. Observe first that since
Gn = Gn−1, the minimum cut on Gn is feasible, no edges in the cut have a
reduced cost. Therefore, min-cut(Gn) ≥ min-cut(G)

The graph G is constructed with weights as in Gn except (residuals R obtained
from flow on Gn)

c(vp,1, t) = A(p)−RA(p) and c(s, vp,2) = D(p)−RD(p), ∀p ∈ P1\P1
0

c(vp,2, t) = B(p)−RB(p) and c(s, vp,1) = C(p)−RC(p), ∀p ∈ P2\P2
0 .

Then min-cut(G) ≤ min-cut(G) ≤ min-cut(Gn). By construction, the max flow
on Gn is feasible on G, and therefore also optimal on G. Hence, by duality
min-cut(G) = min-cut(Gn) which implies min-cut(G) = min-cut(Gn).

Observe that there is a lot of redundancy in this algorithm. It is not necessary
to compute the max-flow from scratch in each iteration, especially in the aug-
menting paths framework. Rather, starting with the max flow in Gi, flow can
be pulled back in s− t paths passing through vertices vp,1, vp,2 for p ∈ P1

0 ∪ P2
0

until it becomes feasible in graph Gi+1. With such an initial flow, only a few
augmenting paths are required to find the max flow on Gi+1. Since P1 and P2

are small subsets of P , and P1
0 ∪ P2

0 are small subsets of P1 ∪ P2, the cost of
this algorithm is negligible.

We are trying to develop a convergence theory for this algorithm. Numerical
experiments indicate that convergence is fast and no oscillations occur. We have
so far investigated convergence experimentally by applying the algorithm to all
images from the segmentation database [27]. We have used both the L1 and L2

data fidelity term, and different values on the regularization parameter ν, always
resulting in convergence in an average of 3-4 iterations. Let us point out that
Algorithm 1 was very rarely needed. However, by setting ν unnaturally high,
pathological cases could be created. In order to verify the convergence of the
algorithm, we have also successfully tried these extreme choices of ν.

2.5 Local Minimization Algorithm for Estimating c

In order to minimize with respect to both φ1, φ2 and c, we alternate between op-
timization of φ1, φ2 for fixed c and optimizing c for fixed φ1, φ2, as explained in
more detail in [25]. This algorithm is shown to be robust and typically only require
a few iterations, but can of course not be proven to find a global minimum.

3 Numerical Results

Numerical experiments are made to demonstrate the new minimization meth-
ods. We also make comparisons between the PDE approach and combinatorial
approach for minimizing (2). In all results, the phases are depicted as bright
regions. The values c used in all experiments are generated from the algorithm
in Section 2.5.
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(a) Input image

(b) graph cut

(c) gradient descent

Fig. 3. Experiment 2: From left to right: phase 1 - phase 4

Fig. 4. Experiment 1: L2 data fidelity

In experiment 1 and 2, Figure (4) and (3), the L2 norm is used in the data
term. The constant values {ci}4i=1 satisfy condition (12) initially and in all iter-
ations until convergence. We next try to use L1 data fidelity on these images. In
this case, condition (12) was not satisfied for all pixels. However, after finding
the max flow on G and examining the residual capacities, the criterion (13) was
satisfied, and hence the global minimum had been obtained. See Table 2 for
computation times.

For the next image, Figure (5), the L1 norm was used, and for some grid points
neither condition (12) nor the criterion (13) was satisfied. Therefore, Algorithm 1
had to be used. For each combination of {ci}4i=1 generated by the algorithm in
Section 2.5, it converged in 5-8 iterations. As already mentioned, we have also



40 E. Bae and X.-C. Tai

Fig. 5. Experiment 3: from left to right: input image, phase 1 - phase 4. L1 norm

Table 2. Computation times in seconds for gradient descent vs graph cut optimization
with β = 2

Size Phases Gradient descent Graph Cut

Experiment1 100x100 4 25.3 0.10

Brain 933x736 4 3077 19.4

tested the convergence of Algorithm 1 experimentally by applying it to all images
from the database [27]. This includes pathological cases with ν set very high. The
different constant values in these experiments were generated by the algorithm
in Section 2.5. More experiments can be found in [25].
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