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Preface

Over the last decades, energy minimization methods have become an established
paradigm to resolve a variety of challenges in the fields of computer vision and
pattern recognition. While traditional approaches to computer vision were often
based on a heuristic sequence of processing steps and merely allowed very lim-
ited theoretical understanding of the respective methods, most state-of-the-art
methods are nowadays based on the concept of computing solutions to a given
problem by minimizing respective energies.

This volume contains the papers presented at the 7th International Confer-
ence on Energy Minimization Methods in Computer Vision and Pattern Recog-
nition (EMMCVPR 2009), held at the University of Bonn, Germany, August
24–28, 2009. These papers demonstrate that energy minimization methods have
become a mature field of research spanning a broad range of areas from discrete
graph theoretic approaches and Markov random fields to variational methods
and partial differential equations. Application areas include image segmentation
and tracking, shape optimization and registration, inpainting and image denois-
ing, color and texture modeling, statistics and learning. Overall, we received 75
high-quality double-blind submissions. Based on the reviewer recommendations,
36 papers were selected for publication, 18 as oral and 18 as poster presentations.
Both oral and poster papers were attributed the same number of pages in the
conference proceedings.

Furthermore, we were delighted that three leading experts from the fields
of computer vision and energy minimization, namely, Richard Hartley (Can-
berra, Australia), Joachim Weickert (Saarbrücken, Germany) and Guillermo
Sapiro (Minneapolis, USA) agreed to further enrich the conference with inspiring
keynote lectures.

We would like to express our gratitute to those who made this event possi-
ble and contributed to its success, in particular to a strong international Pro-
gram Committee for providing excellent reviews and to the Hausdorff Center
for Mathematics for providing financial support and guidance. We are partic-
ularly grateful to Heidi Georges-Hecking, Mohamed Souiai and the staff of the
Hausdorff Center for administrative support.

It is our belief that this conference will help to advance the field of energy
minimization methods and to further establish the mathematical foundations of
computer vision.

August 2009 Daniel Cremers
Yuri Boykov

Andrew Blake
Frank R. Schmidt
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Multi-label Moves for MRFs with Truncated Convex
Priors

Olga Veksler

Computer Science Department
University of Western Ontario

London, Canada
olga@csd.uwo.ca

Abstract. Optimization with graph cuts became very popular in recent years.
As more applications rely on graph cuts, different energy functions are being
employed. Recent evaluation of optimization algorithms showed that the widely
used swap and expansion graph cut algorithms have an excellent performance for
energies where the underlying MRF has Potts prior. Potts prior corresponds to as-
suming that the true labeling is piecewise constant. While surprisingly useful in
practice, Potts prior is clearly not appropriate in many circumstances. However
for more general priors, the swap and expansion algorithms do not perform as
well. Both algorithms are based on moves that give each pixel a choice of only
two labels. Therefore such moves can be referred to as binary moves. Recently,
range moves that act on multiple labels simultaneously were introduced. As op-
posed to swap and expansion, each pixel has a choice of more than two labels
in a range move. Therefore we call them multi-label moves. Range moves were
shown to work better for problems with truncated convex priors, which imply
a piecewise smooth labeling. Inspired by range moves, we develop several dif-
ferent variants of multi-label moves. We evaluate them on the problem of stereo
correspondence and discuss their relative merits.

1 Introduction

Energy optimization with graph cuts [1,2,3] is increasingly used for different applica-
tions in computer vision and graphics. Some examples are image restoration [2], stereo
and multi-view reconstruction [4,5,2,6,7], motion segmentation [8,9,10], texture syn-
thesis [11], segmentation [12,13,14,15], digital photomontage [16]. Optimization with
graph cuts either results in an exact minimum or an approximate minimum with non-
trivial quality guarantees. This frequently translates into a result of high accuracy, given
that the energy function is appropriate for the application.

A typical energy function to be minimized is as follows:

E(f) =
∑
p∈P

Dp(fp) +
∑

(p,q)∈N
Vpq(fp, fq). (1)

In Eq. (1), L is a finite set of labels, representing the property needed to be estimated at
each pixel, such as intensity, color, etc.P is the set of sites that one needs to assign labels
to. Frequently P is set of image pixels. The label assigned to pixel p ∈ P is denoted

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 1–13, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 O. Veksler

by fp, and f is the collection of all pixel-label assignments. The first sum in Eq. (1) is
the data term. In the data term, Dp(fp) is the penalty for pixel p to be assigned label
fp. The data term usually comes from the observed data. The second sum in Eq. (1) is
the smoothness term, and it uses the prior knowledge about what the likely labelings f
should be like. The sum is over ordered pixel pairs (p, q) ∈ N . Often N is the 4 or 8
connected grid, however longer range interactions are also useful [5]. Without loss of
generality, we assume that if (p, q) ∈ N then p < q.

Any choice for Dp is easy to handle. The choice of Vpq determines whether the
energy function can be efficiently minimized. The Vpq’s often specify the smooth-
ness assumptions on the labeling f . Different choices of Vpq’s correspond to different
smoothness assumptions. A common choice is the Potts model, which is Vpq(fp, fq) =
wpq ·min {1, |fp − fq|}. The coefficients wpq’s can be different for each pair of neigh-
boring pixels. Potts model penalizes any difference between fp and fq by the same
amount. Intuitively, it corresponds to the prior knowledge that f should be piecewise
constant, that is it consists of several pieces where pixels inside the same piece share
the same label.

Another common choice is Vpq(fp, fq) = wpq · min {T, |fp − fq|a}. If a = 1 the
model is called a truncated linear, and if a = 2, it is called a truncated quadratic. These
Vpq’s correspond to the piecewise smooth assumption on f , that is the assumption that
f consists of several pieces, where the labels between neighboring pixels inside each
piece vary “smoothly”1. Parameter T is called a truncation constant. Without the trun-
cation, that is if Vpq is the absolute linear or quadratic difference, the energy in Eq. (1)
can be optimized exactly with a graph cut [17], but the corresponding energies are not
discontinuity preserving. Energy in Eq. (1) is NP-hard to optimize if discontinuity pre-
serving Potts, truncated linear or quadratic Vpq’s are used [2].

Recently, Szeliski et.al. [18] performed an experimental evaluation of several opti-
mization methods popular for minimizing energies in Eq. (1) : the graph cut based ex-
pansion and swap algorithms [2], sequential tree-reweighted message passing
(TRW-S) [19], and loopy belief propagation (LBP) [20]. They show that for Potts
model, both expansion and swap algorithms have an excellent performance, they find
an answer within a small percentage of the global minimum. TRW-S performs as well
as graph cuts, but takes significantly longer to converge. An additional benefit of graph
cuts over TRW-S is when longer range interactions are present. Szeliski et.al. [18] stud-
ied only the case when N is the 4-connected grid. Kolmogorov and Rother [21] per-
formed a comparison between graph cuts and TRW-S when longer range interactions
are present, and they concluded that graph cuts perform significantly better in terms of
energy than TRW-S in this case. For the truncated linear Vpq’s the expansion and swap
algorithms still perform relatively well, but for the truncated quadratic Vpq the energy
value is noticeably worse than that of TRW-S.

Recently [22] developed a new type of moves, called the range moves for optimizing
energies with truncated convex priors. A truncated quadratic and linear are examples of
truncated convex prior. Informally, truncated convex priors correspond to assuming that
f is piecewise smooth. The insight in [22] is that both expansion and swap algorithms
give a pixel a choice of only two labels, but for problems where piecewise smoothness

1 The term “smoothly” is used informally here.



Multi-label Moves for MRFs with Truncated Convex Priors 3

assumptions are appropriate, to obtain a good approximation, a pixel should have a
choice among more than two labels. The range moves that they develop act on a larger
set of labels than the expansion and swap moves. Because of this property, we call the
range moves multi-label moves. In [23] they use a similar idea to develop multi-label
moves for an energy function useful for single-view scene reconstruction. The energy
function in [23] is neither Potts nor truncated convex, and thus not directly related to
our work.

We further explore the idea of multi-label moves for truncated convex priors. One
can regard the range moves developed in [22] as a generalization of the swap move. In
this paper, we develop a multi-label move that is can be regarded as a generalization
of the expansion move. The optimal multi-label expansion move can be found only ap-
proximately. We explore an additional move that we call multi-label smooth swap. Note
that simultaneously but independently, [24] developed a move similar to our multi-label
expansion [25]. Their graph construction is very similar, with some minor differences
in edge weights. They also do not find an optimal multi-label expansion move, but
its approximation. The ideas that lay behind our multi-label moves (as, indeed, the
ideas behind any move-making optimization algorithm) are related to the framework of
majorization-minimization [26].

We evaluate our new multi-label moves on the energy functions arising in stereo
correspondence, and discuss their relative merits as well as compare them with the
range moves.

2 Prior Work

In this section, we briefly explain the prior work on optimization with graph cuts.

2.1 Assumptions on the Label Set

For the rest of the paper we assume that the labels can be represented as integers in the
range {0, 1, ...k− 1}, which is necessary since the construction is based on that in [17].

2.2 Convex Priors

Ishikawa [17] develops a method to find the exact minimum of the energy function in
Eq. (1) when Vpq are convex functions of the label differences. Specifically,Vpq(l1, l2) =
wpq · g(l1 − l2) is said to be convex if and only if for any integer x, g(x+ 1)− 2g(x)+
g(x − 1) ≥ 0. It is assumed that g(x) is symmetric2. In [27,28] they extend the results
in [17] to handle a more general definition of convexity.

We follow [22] to describe the work in [17]. Ishikawa’s method is based on comput-
ing a minimum cut in a particular graph. There are two special nodes in the graph, the
source s and the sink t. For each p ∈ P , we create a set of nodes p0, p1, ..., pk, see Fig. 1
Node p0 is connected with the source s with an edge of infinite capacity. Similarly, we
connect pk with the sink t with an edge of infinite capacity. This way p0 is essentially
identified with the source, and pk with the sink. We connect node pi to node pi+1 with a

2 A function is symmetric if g(x) = g(−x).



4 O. Veksler

Fig. 1. Graph construction for convex Vpq . Thick links indicate edges of infinite capacity.

directed edge ep
i for i = 0, 1, ..., k−1. In addition, for i = 1, ..., k, node pi is connected

to node pi−1 with a directed edge of infinite weight. This ensures that for each p, only
one of the edges of type ep

i will be in the minimum cut. If an edge ep
i is cut, then pixel

p is assigned label i, thus any cut C induces a labeling fC .
Furthermore, for any (p, q) ∈ N , an edge epq

ij which connects node pi to node qj is
created for i = 0, ..., k and j = 0, ..., k. The weight of this edge is

w(epq
ij ) =

wpq

2
[g(i − j + 1) − 2g(i − j) + g(i − j − 1)]. (2)

The edge weight defined by Eq. (2) is non-negative, since g(x) is convex.
The weights ep

i are defined as follows:

w(ep
i ) = Dp(i) −

∑
q∈Np

wpq · h(i),

where Np is the set of neighbors of pixel p, and h(i) = − 1
2 [g(k + 1 − i) + g(i + 1)]

Under this edge weights assignment, the cost of any finite cut C is exactly E(fC) plus
a constant, see [22]. Therefore the minimum cut gives the optimal labeling.

Note that [29] develops an algorithm for minimizing energy with convex Vpq which
is more memory and time efficient. However it can be used only when the Dp’s are
convex.

2.3 Expansion and Swap Algorithms

Boykov et.al. [2] develop the expansion and swap algorithms. These methods can be
applied when Vpq is Potts, truncated linear or quadratic, but the answer is only approx-
imate, since the energy is NP-hard to optimize in these cases [2].
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Both the expansion and the swap algorithms find a local minimum of the energy
function in the following sense. For each f , we define a set of “moves” M(f). We say
that f is a local minimum with respect to the set of moves, if E(f ′) ≥ E(f) for any
f ′ ∈ M(f).

Given a labeling f and a label pair (α, β), a move from f to f ′ is called an α-β swap
if fp �= f ′

p ⇒ fp, f
′
p ∈ {α, β}. M(f) is then defined as the collection of α-β swaps for

all pairs of labels α, β ∈ L.
Given a labeling f and a label α, a move f ′ is called an α-expansion if fp �= f ′

p ⇒
f ′

p = α. M(f) is then defined as the collection of α-expansions for all labels α ∈ L.
The optimal α-expansion and the optimal α-β swap can be found as a minimum

cut in a certain graph [2]. Thus the expansion and swap algorithms find a local mini-
mum with respect to expansion or swap moves, correspondingly. Starting with an initial
labeling f , optimal swap (or expansion) moves are found until convergence.

The energy with truncated linear Vpq can be optimized by both expansion and swap
algorithms, whereas for truncated quadratic Vpq , only the swap algorithm applies di-
rectly. In practice, however, it is possible to apply the expansion algorithm with a “trun-
cation trick” [30]. The resulting labeling is no longer guaranteed to be a local minimum
with the respect to expansion moves, but the energy is guaranteed to go down.

2.4 Range Moves for Truncated Convex Priors

In this section we review the range moves of [22]. Based on the notion of convexity
in [17], Vpq is truncated convex if there exists a symmetric function g(x) such that
g(x + 1) − 2g(x) + g(x − 1) ≥ 0 and

Vpq(l1, l2) = wpq · min{g(l1 − l2), T }. (3)

Throughout the rest of the paper, we assume truncated convex Vpq’s.
Recall that L = {0, 1, ..., k − 1}. Let Lαβ = {α, α + 1, ..., β}, where α < β ∈

L. Given a labeling f , we say that f ′ is an α-β range move from f , if fp �= f ′
p ⇒

{fp, f
′
p} ⊂ Lαβ . The α-β range moves can be viewed as a generalization of α-β swap

moves. An α-β swap move reassigns labels α, β among pixels that are currently labeled
α and β. An α-β range move reassigns the labels in the range {α, α + 1, .., β} among
the pixels that currently have labels in the range {α, α + 1, .., β}.

In [22], they show how to find an optimal α-β range move if |α−β| ≤ T 3. The basic
idea is as follows. Let T = {p|α ≤ fp ≤ β}. Notice that the truncated convex terms Vpq

become convex when p, q ∈ T , since for any p, q ∈ T , Vpq(fp, fq) = wpqg(fp − fq) ≤
wpq · T . Non-convex term arise only on the boundary of T , but they can be arranged in
a graph construction by adding appropriate constants to edges ep

i , see Section 2.2.
Just as with α-β swaps, the algorithm starts at some labeling f . Then it iterates over

a set of label ranges {α, .., β} with |α − β| = T , finding the best α-β range move f ′

and switching the current labeling to f ′.
The α-β range move can be slightly generalized. As previously, let |α−β| = T and,

as before, let T = {p|α ≤ fp ≤ β}. Let

Lαβt = {α − t, α − t + 1, ..., β + t − 1, β + t} ∩ L,

3 If |α − β| > T , α-β range move is NP-hard to find.
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that is Lαβt extends the range of Lαβ by t in each direction, making sure that the
resulting range is still a valid range of labels in L.

Let
Mαβt(f) = {f ′|f ′

p �= fp ⇒ fp ∈ Lαβ , f ′
p ∈ Lαβt}.

That is Mαβt(f) is a set of moves that change pixels labels from Lαβ to labels in
Lαβt. Notice that Mαβ(f) ⊂ Mαβt(f). It is not possible to find the optimal move in
Mαβt(f), but [22] shows how to find f̂ ∈ Mαβt(f) s.t. E(f̂) ≤ E(f∗), where f∗ is
the optimal move in Mαβ(f). Thus labeling f̂ is not worse than the optimal move in
Mαβ(f), and if one is lucky, E(f̂) could be significantly better than the optimal move
in Mαβ(f). In practice, t is set to a small constant. Let us call this generalized range
move as α-β-t-range move.

3 Multi-label Moves

The key idea of the range moves in [22] is to allow a pixel to choose among several
labels in a single move. This is in contrast to the swap and expansion moves, which
allow each pixel a choice between only two labels. We are going to refer to moves that
allow a choice of more than two labels as multi-label. Multi-label moves have already
proven successful in [22,23,24]. There is a multitude of such moves possible. In this
paper, we develop several different multi-label moves for truncated convex priors and
compare their performance. To have a clear terminology, we are going to rename to
the generalized α-β-t-range move with as multi-label α-β-t-swap. There is no need to
rename the α-β-range move since it is a special case of α-β-t-range move with t = 0.

In [22], the idea was to find a subset of pixels P ′ and a subset of labels L′ s.t. when
the Vpq terms are restricted to P ′ and L′, they are convex. The boundary terms are easy
to implement, as shown in [22]. Throughout the remainder of this section, we are going
to exploit different ways of selecting P ′ and L′. The two new moves that we develop
are called multi-label expansion and multi-label smooth swap.

In order to perform iterative energy optimization that reduces the energy of the cur-
rent labeling f , it seems necessary to ensure that the labels of pixels in P ′ under labeling
f are contained in L′. This ensures that the current labeling f is also within the set of al-
lowed moves, and the lowest energy move is not worse than the current labeling. For the
multi-label smooth swap, we are able to enforce this condition. For multi-label expan-
sion, we are not able to always enforce it. We will still guarantee though that the energy
goes down at each iteration by simply rejecting any move whose energy is higher than
that of the current labeling.

3.1 Multi-label Smooth Swap

Let f be a current labeling. Let P ′ be a subset of pixels ofP . We call P ′ a smooth subset
under labeling f , if for any (p, q) ∈ N , whenever {p, q} ⊂ P ′, then |fp − fq| ≤ T ,
where T is the truncation constant in Eq. (3). In words, if a subset P ′ is smooth under
f , then the label difference for any two pixels contained in P ′ is not larger than the
truncation constant.
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Let f be the current labeling and P ′ be a smooth subset under f . Let L(P ′, f) =
{fp|p ∈ P ′}, that is L(P ′) is the collection of labels that pixels in P ′ have under
labeling f .

Given a smooth subset P ′ under f , let Msmooth(f,P ′) = {f ′|f ′
p �= fp ⇒ p ∈

P ′ and f ′
p ∈ L(P ′, f)}. Msmooth(f,P ′) describes exactly the set of all multi-label

smooth swap moves. In words, a smooth swap move takes a smooth set of pixels under
f , collects their labels, and reassigns their labels among them.

Just as it was possible to generalize the multi-label swap move by extending the range
of labels, it is possible to generalize the multi-label smooth swap. Let t be a constant
for extending the range of labels L′(P ′, f). Let us define the extended range of labels
as

L′(P ′, f, t) = {l ∈ L|∃l′ ∈ L′(P ′, f) s.t. |l − l′| ≤ t} ∩ L.

In words, to get L′(P ′, f, t) we add to L′(P ′, f) labels that are at distance no more than
t from some label already in L′(P ′, f). The intersection with L is performed to make
sure that after the “padding”, the augmented set is still contained in L. Let the set of
smooth swap moves augmented by t be denoted by Msmooth(f,P ′, t).

A multi-label smooth swap is naturally related to a multi-label swap. In a multi-
label swap move, the pixels participating in a move have labels in a range limited by
truncation, i.e. all the labels are between some α and β with |α − β| < T . In a multi-
label smooth swap, the domain of pixels participating in a move can be larger than
that compared to the multi-label swap. That is the pixels participating in the move can
have labels between some α and β with |α−β| > T . The restriction is that in the pixels
participating in a smooth swap must form a “smooth” component in the current labeling
f , that is the labels of any two neighbors cannot differ by more than T .

There are two questions that remain to be answered: how to choose the smooth sub-
sets P ′ and how to optimize with smooth swap moves. Let us first consider the question
of optimization.

In general, it is not possible to find the optimal smooth swap move, given a smooth
subset P ′ and the current labeling f . However, we are able to find a good swap move,
the one that improves the current labeling f .

Let S be a subset of pixels in P and let us define:

ES(f) =
∑
p∈S

Dp(fp) +
∑

(p,q)∈N ,{p,q}∩S�=∅
Vpq(fp, fq).

In words, ES(f) is the sum all the terms of the energy function which depend on pixels
in S. Let us further define:

Eopen
S (f) =

∑
p∈S

Dp(fp) +
∑

(p,q)∈N ,{p,q}⊂S
Vpq(fp, fq).

In words, Eopen
S (f) is the sum of all the terms of the energy function which depend

only on pixels in S. It is clear that for any S ∈ P , E(f) = ES(f) + Eopen
P−S(f).

Let f be the current labeling, and let P ′ be a smooth subset under f . Let f ′ be a
smooth swap move from f , i.e. f ′ ∈ Msmooth(f,P ′, t).

We use basically the same construction as in Section 2.4. We construct a graph for
pixels in P ′. However, the label range is L′(P ′, f, t), and we identify it with label set



8 O. Veksler

{0, 1, ..., |L′(P ′, f, t)| − 1}. Otherwise, the graph construction is identical to that in
Section 2.4.

Let C be any finite cost cut in our graph. Notice that a cut of finite cost assigns labels
(as described in Section 2.2) only to pixels in P ′. Let fC be the labeling corresponding
to the cut C, which we define as follows: fC

p = fp for p �∈ P ′, and for p ∈ P ′, fC
p

is equal to the label assigned to pixel p by the cut C. Let w(C) be the cost of cut C.
By graph construction, w(C) = ẼP′(fC) + K , where K is a constant and Ẽ(f) is the
same energy as E(f), except there is no truncation in Vpq terms for p, q ∈ P ′. That is
for p, q ∈ P ′, Vpq(fp, fq) = wpq · g(fp − fq) in the energy Ẽ.

For any f , EP′(f) ≤ ẼP′(f), since the only difference between E and Ẽ is that
the Vpq terms are not truncated in Ẽ for p, q ∈ P ′. Recall that for any f , E(f) =
EP′(f) + Eopen

P−P′(f). Also, Eopen
P−P′(f) = Ẽopen

P−P′(f), since Ẽ is not different from E
outside of set P ′.

Let f be the current labeling. Notice that EP′(f) = ẼP′(f), since Vpq terms in f

do not need to be truncated on the set P ′. Let Ĉ be the minimum cost cut, and let f̂ be
its corresponding labeling, defined as above. Let f be the current labeling (notice that
f ∈ Msmooth(f,P ′, t)), and let C be the cut which corresponds to it in the graph. We
have that ẼP′(f̂) + K = w(Ĉ) ≤ w(C) = ẼP′(f) + K. Since EP′(f̂) ≤ ẼP′(f̂)
and EP′(f) = ẼP′(f), we get that EP′(f̂) ≤ EP′(f). Now, for any labeling f ′′,
E(f ′′) = EP′(f ′′)+Eopen

P−P′(f ′′). We have that Eopen
P−P′(f̂) = Eopen

P−P(f ′), and therefore

we get that E(f̂) ≤ E(f). This shows that the minimum cut gives a labeling f̂ with
energy not larger than the current labeling f . So if we cannot find the optimal smooth
swap move, we can at least guarantee smooth swap move does not increase energy.

The question remains of how to find smooth subsets P ′. In general, given a current
labeling f , we can partition it into a set of P1,P2...Pd, s.t.

⋂
i Pi = P and each Pi

is smooth. This partition can be performed by computing connected components. This
partition is not unique, however. To remove bias due to visitation order, we compute
connected components in random order. That is we pick a pixel p at random, compute a
maximal smooth subset P1 containing p, then choose another pixel q �∈ P1, compute a
maximal smooth subset P2 containing q, and so on, until all pixels are partitioned into
smooth subsets. Then we compute smooth swap moves for each Pi. This is not the only
way to proceed, but we found it to be effective. Computing all smooth swap moves for
a partition P1,P2...Pd constitutes one iteration of the algorithm. We perform iterations
until convergence.

The advantage of the multi-label smooth swap move over the multi-label swap is
that it converges faster. If we start from a good solution (typically we start from the
results of the binary expansion algorithm), the number of smooth subsets in a partition
of P is small, so the number of moves is smaller compared to the multi-label swap. The
disadvantage is that it gives energies that are slightly higher in practice.

3.2 Multi-label Expansion

We now develop a multi-label expansion move. Let α and β be two labels s.t. α < β.
The idea behind multi-label expansion move is similar to that of a binary expansion
move. We wish to construct a move in which each pixel can either stay with its old
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(a) (b)

Fig. 2. Graph construction for multi-label expansion

label, or switch to a label in the set {α, α + 1, ..., β}. The name “expansion”, as before,
reflects the fact that labels in the set {α, α + 1, ..., β} expand their territory.

Let Mαβ(f) = {f ′|f ′
p �= fp ⇒ f ′

p ∈ Lαβ}. That is Mαβ(f) is exactly the set of all
α-β multi-label expansion moves from labeling f . Unfortunately, the optimal expansion
move cannot be computed exactly, so we are forced to approximate it.

Suppose that we are given a labeling f and we wish to approximate the optimal α-β
expansion move, where |α − β| = T . The construction is similar to that in Section 2.2.
We identify label set {α, α + 1, ..., β} with set {0, 1, ..., T }. One of the differences is
that now all pixels participate in a move. First we build a graph exactly like in Sec. 2.4,
except the links between the source and p0 are not set to infinite, for all pixels p. We
create an auxiliary pixel apq between each pair of neighboring pixels (p, q)4. We con-
nect p0 to apq, q0 to apq, and s to apq , as illustrated in Fig. 2 (a). If the minimum cut
severs edge between s and p0, then p is assigned its old label in the move. Otherwise,
the label assignment is exactly like in Sec. 2.4.

For the construction in 2.4 if we sever links ep
i and eq

j , then the cost of all the links
epq

ij that have to be severed adds up to C + Vpq(i, j). The costs of the new links that we
create for the expansion algorithm are as in Fig. 3.

This construction insures that if a links between s and p0 and between q0 and q1
are broken, then the cost of all edges severed corresponds exactly to Vpq(fp, α) plus a
constant, which is exactly what is needed. Similarly the correct thing happens if links
between s and q0 and between p0 and p1 are broken, and if the link between s and apq

4 Note that auxiliary pixel is not necessary, see [3], but it clarifies the explanation.
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link weight
p0 to apq Vpq(fp, α) + C/2
q0 to apq Vpq(β, fq) + C/2
s to apq Vpq(fp, fq)+C
s to p0 Dp(fp)
s to q0 Dp(fq)

Fig. 3. Weights of the new links

is broken. Unfortunately in other cases, as long as the new links in Fig. 3 are involved,
the Vpq value can be underestimated or overestimated. The minimum graph cut is not
even guaranteed to reduce the energy from that of the current labeling f . Still in practice
we found that many minimum cuts correspond to an assignment with a lower energy.
Therefore, to make sure that the energy never goes up, if f ′ is the assignment returned
by our approximate multi-label expansion, we first test if E(f ′) < E(f), where f is
the current labeling. If yes, we accept f ′ as the new current labeling. If no, we reject it.

As with the multi-label swap, the range of labels involved in multi-label expansion
can be extended by some t. The construction changes appropriately, similar to what is
done when extending the range of multi-label swap moves see Sec. 2.4.

In practice, we found the following version of the multi-label expansions to work
better. Let T = {p ∈ P|fp ≤ β} and let B = {p ∈ P|fp ≥ α}. We perform the multi-
label expansion on pixels in set T using the graph like in Fig. 2(a), and an expansion on
pixel in set B using the graph like in Fig. 2(b), with symmetrically modified weights in
Fig. 3 for the second case. The weights also have to be corrected because there are pixels
not participating in the move, so the “border” conditions resulting from such pixels
have to be incorporated into edge weights ep

i , just like in Sec. 2.4. The improvement
is probably due to the fact that more Vpq’s are correctly represented by this split graph
construction. Another improvement is probably due to the fact that pixels on the border
not participating in the move pull the energy in the right direction by having their Vpq

terms correctly modeled through the edge weights ep
i .

4 Experimental Results

In this section, we present our results on stereo correspondence for the Middlebury
database stereo images5. We took four pairs of stereo images for evaluation, namely:
Venus,Sawtooth,Teddy,Cones. This database was constructed by D. Scharstein and R.
Szeliski, and these images are the top benchmark in evaluating the performance of
stereo algorithms [31,32].

For stereo correspondence, P is the set of all pixels in the left image, L is the set
of all possible stereo disparities. We take the disparity labels at sub-pixel precision,
in quarter of a pixel steps. That is if |fp − fq| = 1, then the disparities of pixels p
and q differ by 0.25 pixels. Let dl stand for the actual disparity corresponding to the

5 The images were obtained from www.middlebury.edu/stereo
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Venus Sawtooth Teddy Cones
Swap 7,871,677 9,742,107 16,376,181 21,330,284
Expansion 8,131,203 9,418,529 15,829,221 21,020,174
α-β-2 swap 7,188,393 9,371,745 15,421,437 20,490,753
Multi-Label Smooth Range 7,193,823 9,373,126 15,616,999 20,515,493
α-β-2 Expansion 7,188,404 9,377,494 15,408,234 20,626,809

Fig. 4. Energies on Middlebury database. The minimum in each column is highlighted.

integer label l, for example label 2 corresponds to disparity 0.75. The data costs are
Dp(l) =

∣∣IL(p) − [IR(p − dl) · (dl − dl) + IR(p − dl)(dl − dl)]
∣∣ , where x stands for

rounding down, x stands for rounding up, and p − x stands for the pixel that has the
coordinates of pixel p shifted to the left by x.

We use the truncated quadratic Vpq(fp, fq) = 100 · min{(fp − fq)2, 25}. Using
spatially varying weights wpq improves results of stereo correspondence, since it helps
to align disparity discontinuities with the intensity discontinuities. We set all wpq = 10,
since the main purpose of our paper is to evaluate and compare the multi-label moves,
and not to come up with the best stereo algorithm. Fig. 4 compares the energies obtained
with the expansion algorithm, swap algorithm, multi-label swap moves (or range moves
in terminology of [22]), multi-label expansion moves, and smooth swap moves.

From the Table 4, we can make the following conclusions. First let us consider the
“binary” swap and expansion moves. The swap and expansion algorithms are clearly
inferior when it comes to truncated convex priors. Even though the swap algorithm is
guaranteed to find a best swap move and the expansion algorithm is not guaranteed
to find the best move under the truncated quadratic model, expansion algorithm does
performs better for all scenes except “Venus”. This is probably explained by the fact
that expansion moves are more powerful than the swap moves. Even if we do not find
the optimal expansion, a good expansion may be better than the optimal swap.

Now let us discuss the multi-label moves. First of all, the running times for the multi-
label swap move was on the order of minutes (from 5 to 10 minutes). The smooth range
move achieved the energy very close to that of the multi-label swap, but its running
time is about 2 or 3 times faster. The multi-label expansion move is almost always
slightly worse that the multi-label swap, it is better only on the “Teddy sequence”. One
would expect a better performance from the expansion move, but since we cannot find
the optimal one, only an approximate one, these results are not entirely surprising. The
running time for the expansion move is much worse than for other multi-label moves,
since the graphs are much bigger. Multi-label expansion takes about 9-10 times longer
than multi-label swap.

We should mention that the running times of our algorithms can be significantly
improved using the ideas in [33]. They employ techniques such as good initialization,
reducing the number of unknown variables by computing partially optimal solutions,
and recycling flow. All of these are directly transferable to the implementation of our
multi-label moves. Their speed ups are around a factor of 10 or 15.
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4.1 Discussion

In this paper develop and compare two new multi-label moves for energies with trun-
cated convex prior, as well compare the new moves with the previously known multi-
label moves called range moves. Clearly, there are more interesting multi-label moves
that can be developed for multi-label energies. An interesting question is whether it is
possible to discover automatically new multi-label moves with good properties for a
given energy, rather than develop them by hand.
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Abstract. We present an approach for identifying and segmenting independently
moving objects from dense scene flow information, using a moving stereo camera
system. The detection and segmentation is challenging due to camera movement
and non-rigid object motion. The disparity, change in disparity, and the optical
flow are estimated in the image domain and the three-dimensional motion is in-
ferred from the binocular triangulation of the translation vector. Using error prop-
agation and scene flow reliability measures, we assign dense motion likelihoods
to every pixel of a reference frame. These likelihoods are then used for the seg-
mentation of independently moving objects in the reference image. In our results
we systematically demonstrate the improvement using reliability measures for
the scene flow variables. Furthermore, we compare the binocular segmentation of
independently moving objects with a monocular version, using solely the optical
flow component of the scene flow.

1 Introduction and Related Work

In this paper we present the segmentation of independently moving objects from stereo
camera sequences, obtained from a moving platform. Classically, moving objects are
separated from the stationary background by change detection (e. g. [1]). But if the
camera is also moving in a dynamic scene, motion fields become rather complex. Thus,
the classic change detection approach is not suitable as it can be seen in Fig. 1. Our goal
is to derive a segmentation of moving objects for this general dynamic setting.

Fig. 1. From left to right: input image, difference image between two consecutive frames, motion
likelihood, and segmentation result. With the motion likelihood derived from the scene flow, the
segmentation of the moving object becomes possible although the camera itself is moving.

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 14–27, 2009.
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Fig. 2. The segmentation pipeline. Firstly, disparity and scene flow are computed; secondly, mo-
tion likelihoods are derived, and thirdly the image is segmented using graph cut.

We do not constrain the motion of the camera itself nor imply assumptions on the
structure of the scene, such as rigid body motion. Rigid objects constrain the motion
onto sub-spaces which yield efficient means to segment dynamic scenes using two
views [2]. Another approach is used in [3], where the segmentation process is solved
efficiently by incorporating a shape prior. If nothing about object appearance is known,
the segmentation clearly becomes more challenging.

High-dynamic scenes with a variety of different conceivable motion patterns are es-
pecially challenging and reach the limits of many state-of-the-art motion segmentation
approaches (e. g. [4,5]). This is a pity because the detection of moving objects implies
certain scene dynamics. Although we do not constraint the camera motion, we assume
that it is approximately known. In particular, we compute the fundamental matrix to-
gether with the scene flow, as proposed for the optical flow setting in [6,7]. From this,
the motion of the camera is derived where the free scale parameter is fixed using the
velocity sensor of the moving platform.

In [8] the authors use dense optical flow fields over multiple frames and estimate
the camera motion and the segmentation of a moving object by bundle adjustment. The
necessity of rather long input sequences however limits its practicability; furthermore,
the moving object has to cover a large part of the image in order to detect its motion. The
closest work related to our work is the work presented in [9]. It presents a monocular
and a binocular approach to moving object detection and segmentation in high-dynamic
situations using sparsely tracked features over multiple frames. In this paper we focus
on moving object detection using only two consecutive stereo pairs, we use a dense
scene flow fiels, and we show how per-pixel motion confidences are derived.

Fig. 2 illustrates the segmentation pipeline. The segmentation is performed in the
image of a reference frame (left frame at time t) employing the graph cut segmenta-
tion algorithm [10]. The motion cues we use are derived from dense scene flow and
calculated from the two stereo image pairs at time t-1 and t. Furthermore, we consider
individual reliability measures for the variances of the flow vectors and the disparities
at each image pixel. To our knowledge, the direct use of dense scene flow estimates for
the detection and segmentation of moving objects is novel.

Paper Outline

In Section 2 we present the core graph cut segmentation algorithm. It minimizes an
energy consisting of a motion likelihood for every pixel and a length term, favoring
segmentation boundaries along intensity gradients.
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The employed motion likelihoods are derived from dense scene flow in Section 3.
Scene flow consists of the optical flow, the disparity, and the change of disparity over
time. In the monocular setting, only the optical flow component of the scene flow is
used. Compensating for the camera motion is a prerequisite step to detecting moving
objects; additionally, one has to deal with inaccuracies in the estimates. We show how
inaccuracies in the images can be modelled with reliability measures for the disparity
and scene flow variables, and use error propagation to derive the motion likelihoods.

In Section 4 we compare the monocular method and the binocular method for the
segmentation of independently moving objects in different scenarios. We systemati-
cally demonstrate that the consideration of inaccuracies, when computing the motion
likelihoods for every pixel, yields increased robustness for the segmentation. Further-
more, we demonstrate the limits of the monocular and binocular segmentation methods
and provide ideas for further research to overcome these limitations.

2 Segmentation Algorithm

The segmentation of the reference frame into moving and stationary parts can be ex-
pressed by a binary labelling of the pixels,

L(x) =

{
1 if the pixel x is part of a moving object

0 otherwise.
(1)

The goal is now to determine an optimal assignment of each pixel to moving or non
moving. There are two competing constraints. Firstly, a point should be labelled mov-
ing if it has a high motion likelihood ξmotion derived from the scene flow information
and vice versa. Secondly, points should favour a labelling which matches that of their
neighbors. Both constraints enter a joint energy of the form

E(L) = Edata(L) + λEreg(L) , (2)

where λ weighs the influence of the regularization force. The data term is given by

Edata = −
∑
Ω

{
L(x) ξmotion(x) +

(
1 − L(x)

)
ξstatic(x)

}
(3)

on the image plane Ω, where ξstatic is a fixed prior likelihood of a point to be static. The
regularity term favors labellings of neighboring pixels to be identical. This regularity is
imposed more strongly for pixels with similar brightness:

Ereg =
∑
Ω

⎧⎨⎩ ∑
x̂∈N4(x)

g (I(x) − I(x̂)) |L(x̂) − L(x)|

⎫⎬⎭ , (4)

where N4 is the 4 neighborhood (upper, lower, left, right) of a pixel and g(·) is a posi-
tive, monotonically decreasing function of the brightness difference between neighbor-
ing pixels. Here, we set g(z) = 1

z+α with a positive constant α.
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Fig. 3. Illustration of the graph mapping. Red connections illustrate graph edges from the source
node s to the nodes, green connections illustrate graph edges from nodes to the target node t.
Note, that the ξmotion likelihood may be sparse due to occlusion. In the illustration only pixels
with yellow spheres contribute to this motion likelihood. Black connections (indicated by the
arrow) illustrate edges between neighboring pixels.

Graph Mapping

Summarizing the above equations, this yields for the energy (Equation 2)

∑
Ω

{
−L(x) ξmotion(x) −

(
1 − L(x)

)
ξstatic(x) + λ

∑
x̂∈N4(x)

|L(x̂)−L(x)|
|I(x)−I(x̂)|+α

}
. (5)

Due to the combinatorial nature, finding the minimum of this energy is equivalent to
finding the s-t-separating cut with minimum costs of a particular graph G(v, s, t, e),
consisting of nodes v(x) for every pixel x in the reference image and two distinct
nodes: the source node s and the target node t [11]. The edges e in this graph con-
nect each node with the source, target, and its N4 neighbors. The individual edge costs
are defined as follows:

edge edge cost

source link: s → v(x) −ξmotion(x)

target link: v(x) → t −ξstatic(x)

N4 neighborhood: v(x̂) ↔ v(x) λ 1
|I(x)−I(x̂)|+α

The cost of a cut in the graph is computed by summing up the costs of the cut
(removed) edges. Removing the edges of an s-t-separating cut from the graph yields a
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graph where every node v is connected to exactly one terminal node, either the source
s or the target t. If we define nodes that are connected to the source as static and those
connected to the target as moving, it turns out that the cost of an s-t-separating cut is
equal to the energy in Equation (5) with the corresponding labelling, and vice versa.
Thus, the minimum s-t-separating cut yields the labeling that minimizes Equation (5).
The minimum cut is found using the graph cut algorithm in [10].

In the next Section, we will derive the likelihoods ξmotion(x) from the disparity and
scene flow estimates.

3 Motion Likelihoods

Independently moving objects can only be detected from an image sequences if at least
two consecutive images are evaluated. In this paper we constraint ourselves to the min-
imum case of only two consecutive images. If more images are available, the detection
task essentially becomes a tracking task because previously detected objects influence
the current segmentation.

We analyze a monocular and a binocular camera setting, and derive likelihoods that
pixels of a reference frame depict moving objects. In the monocular case, these con-
straints have been proposed in [12]. We will review the constraints and derive a Maha-
lanobis distance for every pixel in the image space which corresponds to the likelihood
that the depicted object is moving. In the binocular case, the three-dimensional position
for every pixel and its three-dimensional motion vector are reconstructed. Then the Ma-
halanobis distance of the three-dimensional translation vector yields a likelihood that
the depicted object is moving.

3.1 Scene Flow Computation

The input for the motion likelihood is given by dense disparity and scene flow estimates
[d, u, v, p] for every pixel in the reference frame. The image position, x = [x, y], and the
disparity, d, encode the three-dimensional position of a point. The optical flow (change
of image position in between two frames), [u, v], and the change in disparity, p, encode
the scene flow motion information. Note, that for the monocular setting only the optical
flow information, [u, v], is used.

A variational approach to estimating this flow field was first proposed in [13]. The
authors imposed regularity over all four variables and estimated all variables by mini-
mizing a resulting single functional. Here we use the approach proposed in [14], where
the authors split the position and motion estimation steps into two separate problems,

(A) Ω → R , [x, y] �→ d (6)

and (B) Ω × R → R
3 , [x, y] × d �→ [u, v, p] . (7)

While (A) is the well-known disparity estimation step, (B) implies minimizing a scene
flow energy, consisting of a data term and a smoothness term,

SF (u, v, p, d) = SFdata(u, v, p, d) + SFsmooth(u, v, p) . (8)
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stereo
(given)

Optical Flow Left
Equation (10)

Optical Flow Right
Equation (11)

Disparity
Eq. (12)

Fig. 4. Scene flow computation from two stereo image pairs. The stereo at the last time instance,
t-1, is given by the semi-global matching algorithm. The data terms and smoothness term are
described in the text in Equations (10 - 13).

The implicit dependancy of the variables u, v, p, and d on [x, y] (e.g. u(x, y)) is left out
in the notation to keep the notation uncluttered. Note, that the coupling between position
and motion in such an approach is taken care of implicitly as the motion estimation step
in (B) depends on the position estimation, which is the previously computed disparity
map in (A).

The data term evaluates the gray value constancy of the scene flow,

SFdata(u, v, p, d) =
∫

Ω

{
Esf-data-left + Esf-data-right + Esf-data-disp

}
dx dy . (9)

It evaluates the gray value constancy assumption for the optical flow field in the left
image pair (IL) and the right image pair (IR):

Esf-data-left = |IL(x, y, t − 1) − IL(x + u, y + v, t)| (10)

Esf-data-right = |IR(x + d, y, t − 1) − IR(x + d + u + p, y + v, t)| . (11)

Additionally, the gray value constancy assumption for the stereo disparity field at time
t is evaluated:

Esf-data-disp = |IL(x + u, y + v, t) − IR(x + d + u + p, y + v, t)| . (12)

The smoothness term minimizes the fluctuation in the scene flow field by penalyzing
the flow field derivatives,

SFsmooth(u, v, p) =
∫

Ω

Esf-reg dx dy with Esf-reg = |∇u| + |∇v| + |∇p| . (13)

The resulting energy can be solved by calculus of variation. For the numerical solu-
tion scheme we refer to [14].
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3.2 Variances for Disparity and Scene Flow

Computing the Mahalanobis distance implies that variances for the image position
(monocular setting) or three-dimensional translation vector (binocular setting) need to
be known. Although constant variances for the whole image may be used, our experi-
ments show that individual variances yield more reliable segmentation results. There-
fore, we derive such variances for the disparity and scene flow estimates for every pixel,
depending on the corresponding underlying energy functional.

Fig. 5. The slope of the disparity cost
function serves as a quality measure
for the disparity estimate

Disparity Reliability. The scene flow algorithm
in [14] uses the semi-global matching algorithm
[15] for the disparity estimation and a variational
framework for the scene flow estimates. The core
semi-global matching algorithm is pixel-accurate.

Let k be the disparity estimate of the core SGM
method for a certain pixel in the left image. The
SGM method in [15] is formulated as an energy
minimization problem. Hence, changing the dis-
parity by ±1 yields an increase in costs (yield-
ing an increased energy). The minimum, however,
may be located in between pixels, motivating a
subsequent sub-pixel estimation step. Sub-pixel accuracy is achieved by a subsequent
fit of a symmetric equiangular function (see [16]) in the cost volume. The basic idea of
this step is illustrated in Figure 5. The costs for the three disparity assumptions k-1 px,
k px, and k+1 px are taken and a symmetric first order function is fitted to the costs.
This fit is unique and yields a specific sub-pixel minimum, located at the minimum of
the function. Note, that this might not be the minimum of the underlying energy but is
a close approximation, evaluating the energy only at pixel position.

The slope of this fitting function (the larger of the two relative cost differences be-
tween the current estimate and neighboring costs, Δy) serves as a quality measure for
the goodness-of-fit. If the slope is low, the disparity estimate is not accurate in the sense
that other disparity values could also be valid. If on the other hand the slope is large,
the sub-pixel position of the disparity is expected to be quite accurate as deviation from
this position increases the energy. Hence, the larger the slope, the better is the expected
quality of the disparity estimate. Note that the costs mentioned here are accumulated
costs that also incorporate smoothness terms.

Based on this observation an uncertainty measure is derived for the expected variance
of the disparity estimate:

UD(x, y, d) =
1

Δy
. (14)

Scene Flow Reliability. For variational optic flow methods the idea of using the incline
of the cost function or energy function as uncertainty measure becomes more complex
than in the disparity setting. This is due to the higher dimensionality of the input and
solution space. An alternative, energy-based confidence measure was proposed in [17].
The novel idea is that the reliability is inversely proportional to the local energy contri-
bution in the energy functional, used to compute the optical flow. A large contribution
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Fig. 6. Plots of the proposed reliability measures and corresponding variances for the disparity
(VAR(d) vs. UD, left) and for the scene flow u-component (VAR(u) vs. USF , right). The plots
reveal that the proposed reliability measures are approx. proportional to the observed variances.

to the total energy implies low expected accuracy while the accuracy is expected to be
good if the energy contribution is small. The authors show that this energy-based mea-
sure yields a better approximation of the optimal confidence for optic flow estimates
than an image-gradient-based measure. The same idea is now applied to the scene flow
case, yielding an expected variance of the scene flow estimate:

USF (x, y, d, u, v, p) = Esf-data-left + Esf-data-right + Esf-data-disp + λEsf-reg . (15)

Comparing Variances and Reliability Measures. To evaluate the reliability measures
for the disparity and scene flow estimates, we plot the derived uncertainty measures
against the observed error in Fig. 6 (for the disparity d and the u-component of the
optical flow). To generate the plots a 400 frames long evaluation sequence, rendered
with Povray and available in [18] together with the ground truth flow, is used.

The plots illustrate, that the proposed reliability measures are correlated to the true
variances of the errors. Furthermore, the variance σz (for a scene flow component z ∈
{d, u, v, p}) can be approximated by a linear function of the reliability measure, denoted
by γz , with fixed parameters az and bz: σ2

z(x) = az + bzγz(x).

3.3 Monocular Motion Likelihood

For the monocular case we use the motion likelihood proposed for sparse data in [12].
There is a fundamental weakness of monocular three-dimensional reconstruction when
compared to stereo methods – moving points cannot be correctly reconstructed by
monocular vision. This is due to the camera movement between the two sequential
images. Thus, optical flow vectors are triangulated, assuming that every point belongs
to a static object. Such triangulation is only possible, if the displacement vector itself
does not violate the fundamental matrix constraint. Needless to say that every track vi-
olating the fundamental matrix constraint belongs to a moving object and the distance
to the fundamental rays directly serves as a motion likelihood.
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However, even if flow vectors are aligned with the epipolar lines, they may belong
to moving objects. This is due to the fact that the triangulated point may be located
behind one of the two cameras or below the ground surface (for this constraint we make
a planar road assumption). Certainly such constellations are only virtually possible,
assuming that the point is stationary. In reality such constellations are prohibited by the
law of physics. Therefore, such points must be located on moving objects.

In summary, a point is detected as moving if its 3D reconstruction is identified as er-
roneous. For calculating the distance dvalid(x) between the observed optical flow vector
and the closest optical flow vector fulfilling above constraints, we refer to [12] where
above verbal descriptions are expressed in mathematical formulations. We calculate the
Mahalanobis distance to this closest optical flow vector by weighing the distance with
the variance of the optical flow vector, yielding

ξmotion(x) =
√

dvalid (x)2 σu,v (x)2 . (16)

Note, that due to the coupling in the variational framework, the variances σu and σv are
assumed to be equal.

3.4 Binocular Motion Likelihood

In the stereo setting, the full disparity and scene flow information is available. A point
is transformed from the image coordinates (x, y, d) into world coordinates (X, Y, Z)
according to X = (x − x0) b

d , Y = (y − y0) b
d

fx

fy
, and Z = fx b

d , where b is the basis
length of the stereo camera system, fx fy are the focal lengths of the camera in pixels,
and (x0, y0) its principal point. As a simplification, we assume the focal lengths fx fy

to be equal. Transforming the points (x, y, d) and (x + u, y + v, d + p) into world
coordinates and compensating the camera rotation R and translation T yields the three-
dimensional residual translation (or motion) vector M with

M =
b

d
R

⎡⎣x − x0
y − y0

fx

⎤⎦− b

d + p

⎡⎣x + u − x0
y + v − y0

fx

⎤⎦+ T (17)

Using error propagation we calculate the Mahalanobis length of the translation vector.
Essentially, this incorporates the variances of the disparity, scene flow estimates, and the
camera rotation and translation. Here, we assume the variances of the camera rotation
to be negligible. Although this is certainly not true, such procedure is possible because
the estimation of the fundamental matrix from the complete optical flow field does yield
vanishing variances for the rotational parts. We do however use fixed variances in the
camera translation because the translation information from the velocity sensor of the
ego-vehicle is rather inaccurate. With the variances σ2

u, σ2
v , σ2

p , and σ2
d for the scene

flow and σ2
T for the translation this yields the Mahalanobis distance

ξmotion(x) =

√
M


(
J
diag(σu, σv, σp, σd, σT)J

)−1
M , (18)

where J is the Jacobian of Equation (17).
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4 Experimental Results and Discussion

In this section we present results which demonstrate the accurate segmentation of mov-
ing objects using scene flow. In the first part, we show that the presented reliability
measures greatly improve the segmentation results when compared to a fixed variance
for the disparity and scene flow variables. In the second part, we compare the segmen-
tation results using the monocular and binocular motion segmentation approaches.

4.1 Robust Segmentation

Figure 7 illustrates the importance of using the reliability measures to derive individual
variances for the scene flow variables. If the propagation of uncertainties is not used
at all, the segmentation of moving objects is not possible (top row). Using the same
variance for every image pixel the segmentation is more meaningful; but still outliers
are present in both, the motion likelihoods and the segmentation results (middle row).
Only when the reliability measures are used to derive individual variances for the pixels,
is the segmentation accurate and outlier influence is minimized (bottom row).

no error propagation

spatially fixed variances used in error propagation

variances from reliability measures used for error propagation

Fig. 7. Results for different error propagation methods. The left images show the motion likeli-
hoods and the right images the segmentation results.
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PreceedingCar HillSide

Optical Flow Result

Monocular Segmentation of Independently Moving Objects

Binocular Segmentation of Independently Moving Objects

Fig. 8. The figure shows the energy images and the segmentation results for objects moving paral-
lel to the camera movement. This movement cannot be detected monocularly without additional
constraints, such as a planar ground assumption. Moreover if this assumption is violated, this
yields errors (as in the HillSide sequence). In a stereo setting prior knowledge is not needed to
solve the segmentation task in these two scenes.
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Bushes Running

Optical Flow Result

Monocular Segmentation of Independently Moving Objects

Binocular Segmentation of Independently Moving Objects

Fig. 9. The figure shows the energy images and the segmentation results for objects which move
not parallel to the camera motion. In such constallations a monocular as well as a binocular
segmentation approach is successfull. However, one can see in the energy images and in the more
accurate segmentation results (the head of the person in the Running sequence) that stereo is more
discriminative. Note, that the also non-rigid independently moving objects are segmented.
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4.2 Monocular versus Binocular Segmentation of Independently Moving Object

A binocular camera system will always outperform a monocular system, simply be-
cause more information is available. However, in many situations a monocular system
is able to detect independent motion and segment the moving objects in the scene. In
this section we demonstrate the segmentation of independently moving objects using a
monocular and a binocular camera system and discuss the results.

In a monocular setting, motion which is aligned with the epipolar lines cannot be
detected without prior knowledge about the scene. Amongst other motion patterns, this
includes objects moving parallel to the camera motion. For a camera moving in depth
this includes all (directly) preceding objects and (directly) approaching objects. The
PreceedingCar and HillSide sequences in Figure 8 show such constellations.

Using the ground plane assumption in the monocular setting (no virtually triangu-
lated point is allowed to be located below the road surface) facilitates the detection
of preceding objects. This can be seen in the PreceedingCar experiment, where lower
parts of the car become visible. If compared to the stereo settings, which does not use
any information about scene structure, the motion likelihood for the lower part of the
preceding car is more discriminative. However, if parts of the scene are truly located
below the ground plane, as the landscape at the right in the HillSide experiment, these
will always be detected as moving, too. Additionally, this does not help to detect ap-
proaching objects. Both situations are solved using a binocular camera.

If objects do not move parallel to the camera motion, they are essentially detectable
in the monocular setting (Bushes and Running sequences in Figure 9). However, the
motion likelihood using a binocular system is more discriminative. This is due to the
fact that the three-dimensional position of an image point is known from the stereo
disparity. Thus, the complete viewing ray for a pixel does not need to be tested for
apparent motion in the images, as in the monocular setting. In the unconstrained setting
(not considering the ground plane assumption), the stereo motion likelihood therefore
is more restrictive than the monocular motion likelihood. Note, that non-rigid objects
(as in the Running sequence in Figure 9) are detected as well as rigid objects and do not
limit the detection and segmentation at any stage.

5 Conclusion

Building up on a recent variational approach to scene flow estimation, we proposed in
this paper an energy minimization method to detect and segment independently moving
objects filmed in two video cameras installed in a driving car. The central idea is to
assign, to each pixel in the image plane, a motion likelihood which specifies whether,
based on 3D structure and motion, the point is likely to be part of an independently mov-
ing object. Subsequently, these local likelihoods are fused in an MRF framework and
a globally optimal spatially coherent labelling is computed using the min cut max flow
duality. In challenging real world scenarios where traditional background subtraction
techniques would not work (because everything is moving), we are able to accurately
localize independently moving objects. The results of our algorithm could directly be
employed for automatic driver assistance.
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Abstract. The Mumford-Shah model is an important variational image
segmentation model. A popular multiphase level set approach, the Chan-
Vese model, was developed for this model by representing the phases
by several overlapping level set functions. Recently, exactly the same
model was also formulated by using binary level set functions. In both
approaches, the gradient descent equations had to be solved numerically,
a procedure which is slow and has the potential of getting stuck in a local
minima. In this work, we develop an efficient and global minimization
method for the binary level set representation of the multiphase Chan-
Vese model based on graph cuts. If the average intensity values of the
different phases are sufficiently evenly distributed, the discretized energy
function becomes submodular. Otherwise, a novel method for minimizing
nonsubmodular functions is proposed with particular emphasis on this
energy function.

1 Introduction

Multiphase image segmentation is a fundamental problem in image processing.
Variational models such as Mumford-Shah [1] are powerful for this task, but
efficient numerical computation of the global minimum is a big challenge. The
level set method [2,3] is a powerful tool which can used for numerical realization.
It was first proposed for the Mumford-Shah model in [4] for two phases and [5]
for multiple phases. This approach still has the disadvantage of slow convergence
and potential of getting stuck in a local minima.

Graph cuts from combinatorial optimization [6,7,8,9,10,11] is another tech-
nique which can perform image segmentation by minimizing certain discrete
energy functions. In the recent years, the relationship between graph cuts and
continuous variational problems have been much explored [12,13,14,15]. It turns
out graph cuts are very similar to the level set method, and can be used for
many variational problems with the advantage of a much higher efficiency and
ability to find global minima. It can be applied to the 2-phase Mumford-Shah
model [16,17], but for multiple phases it is probably not possible to find the
exact, global minimum in polynomial time as this is an NP-hard problem. The
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usual approach to minimization problems with several regions is some heuristic
method for finding an approximate, local minimum. Most popular in computer
vision are the α-expansion algorithms [7]. Recently, also convex formulations of
the continuous multiphase problem have been made in [18,19] by relaxing the in-
tegrality constraint. A suboptimal solution is found by converting the real valued
relaxed solution to an integral one (e.g. by thresholding).

In this paper we propose a method to globally and efficiently minimize the
Mumford-Shah model in the multiphase level set framework of Vese and Chan
[5] by using binary level set functions as in [20]. Since the length term is slightly
approximated in this framework, global minimization is no longer NP hard. We
will construct a graph such that the discrete variational problem can be mini-
mized exactly by finding the minimum cut on the graph. However, the energy
function may not be submodular if the average intensity values of the phases are
distributed very unevenly. To handle these cases, we have developed a method for
minimizing non-submodular functions with particular emphasis on our energy
function. The minimization is global if these values are fixed. A local minimiza-
tion approach for determining these values is also proposed.

Note that in contrast to α-expansion, the approximation is done in the model
rather than in the minimization method. Experimental comparison with alpha
expansion is out of the scope of this paper. What can be said is that our method
is certainly a lot faster. It is also straight forwardly generalizable to non-local
measurements of the curve lengths as was done for two phases in [21]. Such a
generalization is not obvious for alpha expansion.

In this work we focus on the case of 4 or less phases, but aim to generalize
the results to more phases later. Nevertheless, these are important cases since
by the four colour theorem, four phases in theory suffices to segment any 2D
image.

1.1 The Mumford-Shah Model and Its Level Set Representation

Image segmentation is the task of partitioning the image domain Ω into a set
of n meaningful disjoint regions {Ωi}n

i=1. The Mumford-Shah model [1] is an
established image segmentation model with a wide range of applications. An
energy functional to be minimized is defined over the regions {Ωi}n

i=1, and an
approximation image u of the input image u0. In an especially popular form, u
is assumed to be constant within each region Ωi, in which case the model reads

min
{ci},{Ωi}

E({ci}, {Ωi}) =
n∑

i=1

∫
Ωi

|u − ci|βdx +
n∑

i=1

ν

∫
∂Ωi

ds, (1)

where ∂Ωi is the boundary of Ωi. The power β is usually chosen as β = 2.
As a numerical realization, Chan and Vese [4,5] proposed to represent the above
functional with level set functions, and solve the resulting gradient descent equa-
tions numerically. By using m = log2(n) level set functions, denoted φ1, ..., φm,
n phases could be represented. An important special case is the representation
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of 4 phases by two level set functions φ1,φ2, as in Table 1. The energy function
can then be written

min
φ1,φ2,c1,...,c4

= ν

∫
Ω

|∇H(φ1)| + ν

∫
Ω

(|∇H(φ2)| (2)

+
∫

Ω

{H(φ1)H(φ2)|c2 − u0|β + H(φ1)(1 − H(φ2))|c1 − u0|β

+(1 − H(φ1))H(φ2)|c4 − u0|β + (1 − H(φ1))(1 − H(φ2))|c3 − u0|β}dx.

Note that the length term in (1) is slightly approximated, since some of the
boundaries are counted twice. Note also that we have made a small permutation
in the interpretation of the phases compared to [5]. The energy is still exactly
identical for all feasible solutions. This permutation is crucial for making the
corresponding discrete energy function submodular.

The functional in this variational problem is highly non-convex for fixed
constant values c1, ..., c4. The traditional minimization approach of solving the
gradient descent equations can therefore easily get stuck in a local minima.
Furthermore, the numerical solution of the gradient descent PDEs is expensive
computationally.

In [20], the same multiphase model was formulated using binary level set
functions φ1, φ2 ∈ D = {φ | φ : Ω �→ {0, 1}}, representing the phases as in
Table 1. This resulted in the energy functional

min
φ1,φ2∈D,c1,...,c4

E(φ1, φ2, c1, ..., c4) = ν

∫
Ω

|∇φ1|dx+ν

∫
Ω

|∇φ2|dx+Edata(φ1, φ2),

(3)
where

Edata(φ1, φ2) =
∫

Ω

{φ1φ2|c2 − u0|β + φ1(1 − φ2)|c1 − u0|β

+(1 − φ1)φ2|c4 − u0|β + (1 − φ1)(1 − φ2)|c3 − u0|β}dx.

The constraint D was represented by a polynomials in φ1 and φ2. Minimization
was carried out by the augmented lagrangian method. Since both the constraint
D and the energy functional is non-convex, global minimization could not be

Table 1. Representation of four phases by traditional and binary level set functions

Traditional level set functions Binary level set functions
x ∈ phase 1 iff φ1(x) > 0, φ2(x) < 0 φ1(x) = 1, φ2(x) = 0
x ∈ phase 2 iff φ1(x) > 0, φ2(x) > 0 φ1(x) = 1, φ2(x) = 1
x ∈ phase 3 iff φ1(x) < 0, φ2(x) < 0 φ1(x) = 0, φ2(x) = 0
x ∈ phase 4 iff φ1(x) < 0, φ2(x) > 0 φ1(x) = 0, φ2(x) = 1
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guaranteed. Also, convergence was slow just as in the traditional level set ap-
proach. A similar approach could also be used for finding a local minimum with
exact curve lengths [22].

Let us mention that a method often referred to as continuous graph cut can be
used to globally minimize the Mumford Shah model in case of two phases. The
idea, first presented in [23] is to relax the constraint D by the convex constraint
D′ = {φ | φ : Ω �→ [0, 1]}. It was shown that thresholding this solution at almost
any threshold in [0, 1] yields the optimal solution within D. The same idea could
also be used to minimize (3). The problem is that (3) is not convex, and hence
the algorithm may converge to a local minimum.

In general, discrete graph cuts has the disadvantage of some metrication ar-
tifacts over continuous graph cuts. However, discrete graph cuts is faster and
can elegantly be used for minimization problems with non-local operators. The
method we propose can very easily be generalized to minimize non-local mea-
surements of the curve lengths as was done for two phases in [21], by using
regularization term

ν

∫
Ω

|∇NLφ1|dx + ν

∫
Ω

|∇NLφ2|dx.

However, that is not the focus of this paper. We will propose a method which
globally minimizes (3) for fixed constant values c1, ..., c4. This new approach,
is also shown to be very superior in terms of efficiency compared to gradient
descent.

2 Graph Cut Minimization

We will discretize the problem (3) and show that this discrete problem can be
minimized globally by finding the minimum cut on a specially designed graph.
This is possible when the constant values c1, ..., c4 are sufficiently evenly dis-
tributed. We show that such a distribution makes the discrete energy function
sub-modular. The evenness criterion will soon be defined more clearly. We have
observed that this criterion makes sense for most practical images. Nevertheless,
we later develop an algorithm for minimizing non-submodular functions with
particular emphasize on functions of the form (3).

2.1 Brief Overview of Graph Cuts in Computer Vision

Graph cuts were first introduced as a computer vision tool by Greig et. al. [8] in
connection with markov random fields [6]

A graph G = (V , E) is a set of vertices V and a set of edges E . We let (a, b)
denote the directed edge going from vertex a to vertex b, and let c(a, b) de-
note the capacity/cost/weight on this edge. In the graph cut scenario there are
two distinguished vertices in V , called the source {s} and the sink {t}. A cut on G
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is a partitioning of the vertices V into two disjoint connected sets (Vs, Vt) such
that s ∈ Vs and t ∈ Vt. The cost of the cut is defined as

c(Vs,Vt) =
∑

(i,j)∈E s.t. i∈Vs,j∈Vt

c(i, j).

A flow f on G is a function f : E �→ R. For a given flow, the residual capacities are
defined as R(e) = c(e)−f(e) ∀e ∈ E . The max flow problem is to find maximum
amount of flow that can be pushed from {s} to {t}, under flow conservation
constraint at each vertex. A theorem of Ford and Fulkerson [24] says this is
the dual to the problem of finding the cut of minimum cost on G, the min-
cut problem. Therefore, efficient algorithms for finding max-flow, such as the
augmented paths method [24] can be used for finding minimum cuts in graphs.
An efficient implementation of this algorithm specialized for image processing
problems can be found in [9]. This algorithm, which is available on-line has been
used in our experiments.

In computer vision this has been exploited for minimizing energy functions of
the form

min
x∈{0,1}m

E(x) =
∑

i

Ei(xi) +
∑
i<j

Ei,j(xi, xj).

Typically, i = 1, ..., m denotes the grid points and x contains one binary variable
for each grid point. In order to be representable as a cut on a graph, it is required
that the energy function is submodular (or regular) [10,6], i.e.

Ei,j(0, 0) + Ei,j(1, 1) ≤ Ei,j(0, 1) + Ei,j(1, 0).

2.2 Discretization of Energy Functional

Instead of discretizing the Euler-Lagrange equations, we will discretize the vari-
ational problem (3). In the next section we show how to minimize the re-
sulting discrete energy function exactly. Let us first mention there are two
variants of the total variation term. The isotropic variant, by using 2-norm
TV2(φ) =

∫
Ω |∇φ|2 dx =

∫
Ω

√
|φx1 |2 + |φx2 |2 dx, and the anisotropic variant,

by using 1-norm TV1(φ) =
∫

Ω
|∇φ|1 dx =

∫
Ω
|φx1 | + |φx2 | dx. The anisotropic

variant is graph representable and will be considered here. More isotropic vari-
ants can be derived by splitting the calculation of TV1(φ) between several rotated
coordinate systems, see [25].

Let P = {(i, j) ⊂ Z2} denote the set of grid points. For each p = (i, j) ∈ P ,
the neighborhood system N k

p ⊂ P is defined as

N 4
p = {(i ± 1, j), (i, j ± 1)} ∩ P

N 8
p = {(i ± 1, j), (i, j ± 1), (i ± 1, j ± 1)} ∩ P .
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The discrete energy function can be written

min
φ1,φ2∈D,c1,...,c4

Ed(φ1, φ2, c1, ..., c4) = ν
∑
p∈P

∑
q∈Nk

p

wpq|φ1
p −φ1

q|+ν
∑
p∈P

∑
q∈Nk

p

wpq |φ2
p −φ2

q|

(4)

+
∑
p∈P

Edata
p (φ1

p, φ
2
p),

where
Edata

p (φ1
p, φ

2
p) = {φ1

pφ
2
p|c2 − u0|β + φ1

p(1 − φ2
p)|c1 − u0|β

+(1 − φ1
p)φ

2
p|c4 − u0|β + (1 − φ1

p)(1 − φ2
p)|c3 − u0|β}.

The weights wpq are used to approximate the curve lengths. They can be derived
from the continuous functional as in full version [25], or from the Cauchy-Crofton
formula as in [12].

2.3 Graph Construction

We will construct a graph G such that there is a one-to-one correspondence
between cuts on G and the level set functions φ1 and φ2. Furthermore, the
minimum cost cut will correspond to the level set functions φ1 and φ2 minimizing
the energy (4).

min
(Vs,Vt)

c(Vs,Vt) = min
φ1,φ2

Ed(φ1, φ2, c1, ..., c4) +
∑
p∈P

σp. (5)

where σp ∈ R for each p ∈ P . In the graph, two vertices are associated to each
grid point p ∈ P . They are denoted vp,1 and vp,2, and corresponds to each of the
level set functions φ1 and φ2. Hence the set of vertices is formally defined as

V = {vp,i | p ∈ P , i = 1, 2} ∪ {s} ∪ {t}. (6)

The edges are constructed such that the relationship (5) is satisfied. We begin
with the edges constituting the data term of (4). For each grid point p ∈ P they
are defined as

ED(p) = (s, vp,1) ∪ (s, vp,2) ∪ (vp,1, t) ∪ (vp,2, t) ∪ (vp,1, vp,2) ∪ (vp,2, vp,1). (7)

The set of all data edges are denoted ED and defined as ∪p∈PED(p). The edges
corresponding to the regularization term are defined as

ER = {(vp,1, vq,1), (vp,2, vq,2) ∀p, q ⊂ P s.t.q ∈ N k
p }. (8)

For any cut (Vs, Vt), the corresponding level set functions are defined by

φ1
p =

{
1 if vp,1 ∈ Vs,
0 if vp,1 ∈ Vt,

φ2
p =

{
1 if vp,2 ∈ Vs,
0 if vp,2 ∈ Vt.

(9)
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(a) (b)

Fig. 1. (a) The graph corresponding to the data term at one grid point p. (b) A sketch
of the graph corresponding to the energy function of a 1D signal of two grid points p
and q.

Weights are assigned to the edges such that the relationship (5) is satisfied.
Weights on the regularization edges are simply given by

c (vp,1, vq,1) = c (vq,1, vp,1) = c (vp,2, vq,2) = c (vq,2, vp,2) = νwpq, ∀(p, q) ∈ N .
(10)

We now concentrate on the weights on data edges ED. For grid point p ∈ P , let

A(p) = c(vp,1, t), B(p) = c(vp,2, t), C(p) = c(s, vp,1),

D(p) = c(s, vp,1), E(p) = c(vp,1, vp,2), F (p) = c(vp,2, vp,1).

It is clear that these weights must satisfy⎧⎪⎪⎨⎪⎪⎩
A(p) + B(p) = |c2 − u0

p|β + σp

C(p) + D(p) = |c3 − u0
p|β + σp

A(p) + E(p) + D(p) = |c1 − u0
p|β + σp

B(p) + F (p) + C(p) = |c4 − u0
p|β + σp

(11)

This is a non-singular linear system for the weights A(p), B(p), C(p), D(p),
E(p), F (p). Negative weights are not allowed. By choosing σp large enough there
will exist a solution with A(p), B(p), C(p), D(p) ≥ 0. However, the requirement
E(p), F (p) ≥ 0 implies that

|c1 − u0
p|β + |c4 − u0

p|β = A(p) + B(p) + C(p) + D(p) + E(p) + F (p)

≥ A(p) + B(p) + C(p) + D(p) = |c2 − u0
p|β + |c3 − u0

p|β.

This condition must hold for all grid points p ∈ P . Hence, the following condition
on the constant values c1, ..., c4 must be satisfied

|c2 − I|β + |c3 − I|β ≤ |c1 − I|β + |c4 − I|β , ∀ I ∈ [0, L], (12)

where L is the maximum intensity value. This condition can be seen in the light of
submodular energy functions [10,6]. In fact, the pairwise term

∑
p∈P Edata

p (φ1
p, φ

2
p)

is submodular if and only if the condition (12) is satisfied.
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(a) (b) (c)

Fig. 2. (a) and (b) distributions of c which makes energy function submodular for all
β. (c) distribution of c which may make energy function nonsubmodular for small β.

Let us analyze this condition further. We assume the constant values are
ordered increasingly 0 ≤ c1 < c2 < c3 < c4. The condition says something about
how evenly {ci}4

i=1 are distributed. Here is a first observation, the proof of this
and the following lemmas can be found in the full version of this work [25]

Lemma 1. Let 0 ≤ c1 < c2 < c3 < c4. There exists a B ∈ N such that (12) is
satisfied for any β ≥ B.

So (12) becomes less strict for larger β. In fact we have observed that for β = 2,
(12) is realistic for most practical images. Here is another observation

Lemma 2. Let 0 ≤ c1 < c2 < c3 < c4. (12) is satisfied for all I ∈ [c2, c3].

The possibility that (12) is not satisfied may happen in two situations: If c1, c2, c3
are very close compared to c4 and intensity I is close to c4, or if c2, c3, c4 are
very close compared to c1 and I is close to c1.

Let us go back to the linear system (11), with restriction E(p), F (p) ≥ 0.
Assuming (12) holds, this has infinitely many solutions.

It was shown in [10] that at most three edges are required for representing a gen-
eral submodular term of two binary variables. Therefore, it is possible to pick a
solution such that at least three of the weights A(p), B(p), C(p), D(p), E(p), F (p)
in ED(p) becomes zero for each p ∈ P . The exact construction of the solution
can be found in the full version [25]. Hence, at most three edges are required
to represent the data term at each grid point. Therefore, by analyzing the com-
plexity of our method in the augmenting paths framework, it is easily seen that
the cost of our method is equal to the cost of one single iteration of the alpha
expansion method.

2.4 Minimization of Non-submodular Energy Functions

In the last section, we have observed that the energy function (4) is submodular if
c1, ..., c4 satisfies (12). Although this is realistic for most images, we will develop
a method for minimizing nonsubmodular functions with particular emphasis
on nonsubmodular terms of the kind encountered here. Minimization of non-
submodular functions via graph cuts has been investigated previously, see [26]
for a review. The usual idea is to develop a method for determining most of the
variables, while leaving some of the variables undetermined. In our approach, we
instead aim to determine all the variables. Even when (12) does not hold, the
energy function is ”almost submodular”, which may explain why the following
very efficient algorithms works so well in practice.
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Consider now the situation

|c2 − u0
p|β + |c3 − u0

p|β > |c1 − u0
p|β + |c4 − u0

p|β ,

for some p ∈ P . In this case the linear system (11) has a solution only if either
E(p) < 0 or F (p) < 0, in which case one of the edges, (vp,1, vp,2) or (vp,2, vp,1),
will have negative weight. It can be easily seen that if E(p) < 0, there exists a
solution to the linear system with F (p) = 0. Vice versa, if F (p) < 0 there exists
a solution with E(p) = 0. See [25] for the exact construction.

It is difficult interpret physically what is meant by max flow on a graph with
negative edge weights. The concept of min-cut, on the other hand, certainly have
a meaning even if some of the edges have negative weight. In the extreme case of
negative weight on all edges, this becomes equivalent to the max-cut on a graph
with negated edge weights. The first step of our procedure finds a good feasible
solution, and therefore also a good upper bound on the objective function (4).
Very often this feasible solution is in fact the optimal solution. All edges of
negative weight will be removed, resulting in a new graph G. The motivation is
as follows. The previous section discussed the possibility of condition (12) not
being satisfied. In this case c1, c2, c3 are close to each other compared to c4 and
Ip at p ∈ P is close to c4. Measured by the data term, the worst assignment of p
is to phase 1, which has the cost |c1 −u0

p|β . By removing the negative edge with
E(p) < 0, the cost of this assignment becomes even higher |c1 −u0

p|2 −E(p). We
therefore expect the minimum cut on G to be almost identical to the minimum
cut on G. For easy of notation, we define the sets

P1 = {p ∈ P | E(p) < 0, F (p) ≥ 0}, P2 = {p ∈ P | F (p) < 0, E(p) ≥ 0}.

Assume the maximum flow has been computed on G, let RA(p), RB(p), RC(p),
RD(p) denote the residual capacities on the edges (vp,1, t), (vp,2, t), (s, vp,1),
(s, vp,2) respectively. The following theorem gives a criterion for when the mini-
mum cut on G yields the optimal solution of the original problem.

Theorem 1. Let G be a graph as defined in (6)-(8) and (10), with weights
A(p), B(p), C(p), D(p), E(p), F (p) satisfying (11). Let G be the graph with weights
as in G, with the exception c(vp,1, vp,2) = 0 ∀p ∈ P1 and c(vp,2, vp,1) = 0 ∀p ∈ P2.

Assume the maximum flow has been computed on the graph G. If

RA(p) + RD(p) ≥ −E(p), ∀p ∈ P1 and RB(p) + RC(p) ≥ −F (p), ∀p ∈ P2,
(13)

then min-cut (G) = min-cut (G).

Proof. We will create a graph G, such that the minimum cut problem on G is a
relaxation of the minimum cut problem on G. The graph G is constructed with
weights as in G with the following exceptions

c(vp,1, t) = A(p) − RA(p) and c(s, vp,2) = D(p) − RD(p), ∀p ∈ P1

c(vp,2, t) = B(p) − RB(p) and c(s, vp,1) = C(p) − RC(p), ∀p ∈ P2.
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Then min-cut(G) ≤ min-cut(G) ≤ min-cut(G). The max flow on G is feasible
on G and therefore also optimal. Therefore, by duality min-cut(G) = min-cut(G)
which implies min-cut(G) = min-cut(G).

We have observed that it is often possible to stop at this stage, since (13) is very
often satisfied. If not, one could either accept the solution as suboptimal, or
make use of the following algorithm, which is designed to handle such cases. The
idea is to create a succession of graphs {Gi}n

i=1 with only positive edge weights,
such that min-cut(Gi) ≤ min-cut(G) for all i, min-cut(G0) = min-cut(G) and
min-cut(Gn) = min-cut(G). For a given flow we define two new sets P1

0 ⊆ P1

and P2
0 ⊆ P2

P1
0 = {p ∈ P1 | RA(p) + RD(p) < −E(p)}, P2

0 = {p ∈ P2 | RB(p) + RC(p) < −F (p)}.
The graphs Gi are constructed such that the minimum cut problems on Gi are
relaxations of the minimum cut problem on G. Particularly, for each p ∈ P1

0 and
each p ∈ P2

0 , the cost of one of the 4 possible phase assignments is reduced, while
the rest of the assignment costs are correct (including the one that was set too
high in G). The cut on Gi is feasible if no p ∈ P1

0 ∪ P2
0 is assigned to a phase of

reduced cost. The algorithm is iterated until the cut on Gi becomes feasible.

Algorithm 1:

G0 = G, G−1 = ∅, i = 0. Find max flow on G0
while(Gi �= Gi−1 or i = 0){

1. Construct Gi+1 as in G except for the following weights

for all p ∈ P1
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt): set c(vp,1, t) = A(p) + E(p) in Gi+1
if(vp,1 ∈ Vs and vp,2 ∈ Vs): set c(s, vp,2) = D(p) + E(p) in Gi+1
if(vp,1 ∈ Vs and vp,2 ∈ Vt): set c(s, vp,1) = A(p) + E(p) in Gi+1
if(vp,1 ∈ Vt and vp,2 ∈ Vs): set c(s, vp,1) = D(p) + E(p) in Gi+1

for all p ∈ P2
0

if(vp,1 ∈ Vt and vp,2 ∈ Vt): set c(vp,2, t) = B(p) + F (p) in Gi+1
if(vp,1 ∈ Vs and vp,2 ∈ Vs): set c(s, vp,1) = C(p) + F (p) in Gi+1
if(vp,1 ∈ Vs and vp,2 ∈ Vt): set c(s, vp,2) = B(p) + F (p) in Gi+1
if(vp,1 ∈ Vt and vp,2 ∈ Vs): set c(s, vp,2) = C(p) + F (p) in Gi+1

2. Find max-flow on Gi+1
3. Update P1

0 and P2
0 by examining residual capacities in graph Gi+1

4. i ← i + 1
}

Theorem 2. Let Gn be the graph at termination of Algorithm 1. Then
min-cut(Gn) = min-cut(G).

Proof. The proof follows some of the same ideas as the proof of theorem 1.
We will use Gn to construct a graph G such that the minimum cut problem on
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G is a relaxation of the minimum cut problem on G. Observe first that since
Gn = Gn−1, the minimum cut on Gn is feasible, no edges in the cut have a
reduced cost. Therefore, min-cut(Gn) ≥ min-cut(G)

The graph G is constructed with weights as in Gn except (residuals R obtained
from flow on Gn)

c(vp,1, t) = A(p) − RA(p) and c(s, vp,2) = D(p) − RD(p), ∀p ∈ P1\P1
0

c(vp,2, t) = B(p) − RB(p) and c(s, vp,1) = C(p) − RC(p), ∀p ∈ P2\P2
0 .

Then min-cut(G) ≤ min-cut(G) ≤ min-cut(Gn). By construction, the max flow
on Gn is feasible on G, and therefore also optimal on G. Hence, by duality
min-cut(G) = min-cut(Gn) which implies min-cut(G) = min-cut(Gn).

Observe that there is a lot of redundancy in this algorithm. It is not necessary
to compute the max-flow from scratch in each iteration, especially in the aug-
menting paths framework. Rather, starting with the max flow in Gi, flow can
be pulled back in s − t paths passing through vertices vp,1, vp,2 for p ∈ P1

0 ∪ P2
0

until it becomes feasible in graph Gi+1. With such an initial flow, only a few
augmenting paths are required to find the max flow on Gi+1. Since P1 and P2

are small subsets of P , and P1
0 ∪ P2

0 are small subsets of P1 ∪ P2, the cost of
this algorithm is negligible.

We are trying to develop a convergence theory for this algorithm. Numerical
experiments indicate that convergence is fast and no oscillations occur. We have
so far investigated convergence experimentally by applying the algorithm to all
images from the segmentation database [27]. We have used both the L1 and L2

data fidelity term, and different values on the regularization parameter ν, always
resulting in convergence in an average of 3-4 iterations. Let us point out that
Algorithm 1 was very rarely needed. However, by setting ν unnaturally high,
pathological cases could be created. In order to verify the convergence of the
algorithm, we have also successfully tried these extreme choices of ν.

2.5 Local Minimization Algorithm for Estimating c

In order to minimize with respect to both φ1, φ2 and c, we alternate between op-
timization of φ1, φ2 for fixed c and optimizing c for fixed φ1, φ2, as explained in
more detail in [25]. This algorithm is shown to be robust and typically only require
a few iterations, but can of course not be proven to find a global minimum.

3 Numerical Results

Numerical experiments are made to demonstrate the new minimization meth-
ods. We also make comparisons between the PDE approach and combinatorial
approach for minimizing (2). In all results, the phases are depicted as bright
regions. The values c used in all experiments are generated from the algorithm
in Section 2.5.
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(a) Input image

(b) graph cut

(c) gradient descent

Fig. 3. Experiment 2: From left to right: phase 1 - phase 4

Fig. 4. Experiment 1: L2 data fidelity

In experiment 1 and 2, Figure (4) and (3), the L2 norm is used in the data
term. The constant values {ci}4

i=1 satisfy condition (12) initially and in all iter-
ations until convergence. We next try to use L1 data fidelity on these images. In
this case, condition (12) was not satisfied for all pixels. However, after finding
the max flow on G and examining the residual capacities, the criterion (13) was
satisfied, and hence the global minimum had been obtained. See Table 2 for
computation times.

For the next image, Figure (5), the L1 norm was used, and for some grid points
neither condition (12) nor the criterion (13) was satisfied. Therefore, Algorithm 1
had to be used. For each combination of {ci}4

i=1 generated by the algorithm in
Section 2.5, it converged in 5-8 iterations. As already mentioned, we have also
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Fig. 5. Experiment 3: from left to right: input image, phase 1 - phase 4. L1 norm

Table 2. Computation times in seconds for gradient descent vs graph cut optimization
with β = 2

Size Phases Gradient descent Graph Cut
Experiment1 100x100 4 25.3 0.10
Brain 933x736 4 3077 19.4

tested the convergence of Algorithm 1 experimentally by applying it to all images
from the database [27]. This includes pathological cases with ν set very high. The
different constant values in these experiments were generated by the algorithm
in Section 2.5. More experiments can be found in [25].
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Abstract. The Bipartite Graph Matching Problem is a well studied
topic in Graph Theory. Such matching relates pairs of nodes from two
distinct sets by selecting a subset of the graph edges connecting them.
Each edge selected has no common node as its end points to any other
edge within the subset. When the considered graph has huge sets of
nodes and edges the sequential approaches are impractical, specially for
applications demanding fast results. In this paper we investigate how to
compute such matching on Graphics Processing Units (GPUs) motivated
by its increasing processing power made available with decreasing costs.
We present a new data-parallel approach for computing bipartite graph
matching that is efficiently computed on today’s graphics hardware and
apply it to solve the correspondence between 3D samples taken over a
time interval.

1 Introduction

Graph Matching is one of the fundamental problems in Graph Theory, with a
intrinsic combinatorial nature. It can be defined as: given a graph G, its set of
edges E and its set of nodes V , a matching M is a set of edges, subset of E,
such that no two edges in M are incident to the same node.

Interesting problems in Computer Vision can be formulated as a Graph Match-
ing, specially when an objective function associates weights to the graph edges,
semantically related to some benefit or cost of the application. In that case, the
weighted graph matching optimization goal is to maximize (or minimize) the sum
of the weights of the matched edges.

There exist some parallel algorithms for approximating a graph matching
[1,2,3,4]. Usually, the graph is initially distributed over several processors of a par-
allel computer or a set of computers organized as clusters or distributed systems.

In this paper we are interested in a variant of the general matching proposition,
where the considered graph is a bipartite graph. A matching in a bipartite graph
is easier to compute than in a general (or non-bipartite) graphs, as the number
of possible combinations decreases considerably with the bipartite restriction and
that its result can be obtained in a non-approximation way. Such version is usually
named The Assignment Problem as it can be semantically proposed as: given a set
of employees, a set of jobs and some cost (or benefit) function that evaluates the

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 42–55, 2009.
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employee-job assignment, it is required to designate the people to accomplish the
tasks by assigning exactly one employee to each job in such a way that the total
cost of the assignment is minimized. Unbalanced versions of the same problem
consider that the number of employees and the number of jobs are not equal. In
that case, the one in greater number will have some elements unmatched at the
final association.

The need for a parallel formulation to The Assignment Problem arises from
cases considering huge graphs and from applications demanding fast results. At-
tending to such demand, we propose a GPU friendly formulation motivated by
the modern graphics hardware increasing processing power made available with
low costs (specially when compared with other high processing power solutions
like distributed systems). This paper presents a parallel algorithm developed us-
ing the stream processing paradigm. Our algorithm identifies elements that can
be arranged within a stream of data and processed independently. It attends to
GPU implementation requirements and scales in a transparent way as the number
of processors increases.

As an application to the GPU implementation developed, we propose a new for-
mulation for a Computer Vision classical problem: the correspondence problem,
here defined of over independent sets of 3D samples taken over a period of time.
The quality of the obtained matchings was tested using microscopy data, taken
during different time instants, against ground truth results manually obtained.
The time efficiency of our solution was tested comparing it against two sequential
implementations on CPU and also observing its answer time with a growing set
of artificially generated 3D moving points.

The source code containing an implementation of the bipartite graph matching
optimization proposed here, coded using CUDA programming language, is avail-
able for download from the author’s homepage [5].

This paper is organized as follows. The next section presents a formal definition
of the matching problem (section 2) and existing algorithms for computing it are
presented in section 3. A brief comparison between CPU and GPU computing is
presented in section 4. Our stream processing approach is presented in section 5,
while results and conclusions are presented in sections 6 and 7.

2 Bipartite Graph Matching Definitions

According to the formal definition, a graph G = (V, E) is bipartite if there exists
a partition of its vertexes (or nodes) into two distinct sets, X and Y , such as that
three properties are valid: the original set of vertexes V is formed by the union
of the generated sets (V = X ∪ Y ); each vertex of the original set of vertexes V
belongs exclusively to one of the created sets and not to both of them (X∩Y = ∅);
and, all the edges of the graph connect a vertex from one of the vertexes sets to
the other (E ⊆ X × Y ). A Matching is a subset of the edges set (M ⊆ E) such
that for every v ∈ V at most one edge in M is incident to v. A vertex v is said to
be matched in M if it is an endpoint of an edge in M , otherwise v is said free.
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In this paper we are specially interested in weighted bipartite graphs, in which
each edge (i, j) is associated to a weight w(i, j). The weight of a matching M is
defined as the sum of the weights of edges in M :

w(M) =
∑
e∈M

w(e). (1)

There are variants of the weighted bipartite graph matching formulation, includ-
ing: w(M) maximization or minimization (can be viewed as a maximization prob-
lem by just replacing the cost function c with −c), perfect matchings and maxi-
mum matchings [6].

3 Related Works and Background

In this section we present two approaches for computing a bipartite graph op-
timal matching in order to evaluate them for a GPU approach. The first one,
known as The Hungarian Algorithm, is the classical approach from Graphs The-
ory literature and it is described in Subsection 3.1. In subsection 3.2 we describe a
second approach, known as The Auction Algorithm, motivated by its distributed
formulation.

3.1 The Hungarian Algorithm

The Hungarian Algorithm is a sequential combinatorial optimization algorithm
published by Harold Kuhn [7] that solves The Bipartite Graph Matching Problem
in a polynomial time. It iterates between two phases: the first one is based on
the Graph Theory concept of augmenting paths while the second is based on the
concept of feasible labellings (dual variable) and equality graphs.

A path in a graph is a sequence of vertexes such that from each of its vertexes
there is an edge to the next vertex in the sequence. Both the first and the last
vertexes of the sequence are called end or terminal vertexes of the path. Given a
matching M and the set of edges E of the graph, a path is alternating if its edges
alternate between M and E − M and an alternating path is augmenting if both
endpoints are free (see Figure 1).

The property that assures the first phase of The Hungarian Algorithm is that
an augmenting path has one less edge in M than in E − M , thus, it is possible

Fig. 1. A matching M represented with red edges (left); an augmenting path formed
by the red (edges from M) and yellow edges (edges from the E − M set) (center); the
new path with size incremented by one (right)
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to increment size of the matching by replacing the M edges by the E − M ones.
The second phase of the algorithm is concerned about dealing with the weights.
Considering a vertex labeling as a function l : V → �, a feasible labeling is one
such that

l(x) + l(y) ≥ w(x, y), ∀ x ∈ X, y ∈ Y (2)

The labeling here works as a dual variable in order to solve the problem. Given
equation 2, the Equality Graph (with respect to the labeling l) is defined as G =
(V, El) where El is the set of edges satisfying the equation with equality, that is:

El = (x, y) : l(x) + l(y) = w(x, y) (3)

Figure 2 (left) illustrates an example of weights associated to the vertexes that
satisfies equation 2, thus, they compose a feasible labeling. Figure 2 (right) shows
an equality graph constructed using the same labeling.

Fig. 2. A feasible labeling (left) and an equality graph (right)

The Kuhn-Munkres Theorem [7] assures that: If l is feasible and M is a perfect
matching in El then M is a max-weight matching. This theorem transforms the
problem from an optimization problem of finding a max-weight matching into a
combinatorial one of finding a perfect matching. Its proof assures that for any
matching M and any feasible labeling l we have

w(M) ≤
∑
v∈V

L(v) (4)

ie., that the sum of the labels in a feasible labeling defines an upper-bound on the
cost of any perfect matching.

Finally, the Hungarian algorithm is described as: start with any feasible label-
ing l and some matching M in E; while M is not perfect repeat the following:

– find an augmenting path for M in El and increase the size of M ;
– if M is maximum, then, it has minimum cost among all maximum matchings

in G. Stop the search.
– otherwise, if no augmenting path exists, improve l to l′ such that El ⊂ El′

(adjust the labels in order to enlarge the Equality Graph). Go back to the
first step.



46 C.N. Vasconcelos and B. Rosenhahn

The iteration finishes as in each step of the loop we will either be increasing the
size of M or of the set El. When it finishes, M is a perfect matching in El (if it
exists), for some feasible labeling l and, by the Kuhn-Munkres theorem, M is a
max-weight matching.

The Hungarian Algorithm Computation. main input is the weights associ-
ated with the graph edges that are arranged into a matrix, whose elements (i, j)
represent the cost of a matching between the vertexes i and j, thus w(i, j). Its
computation is described as:

– Step 1:
• 1.1 For each row, subtract its smallest element from all its elements.
• 1.2 For each column, subtract its smallest element from all its elements.

– Step 2:
• 2.1 Locate a lone zero and assign it.
• 2.2 Cover the row or column associated with the lone zero depending on

where the other zeros are, if any.

Repeat these operations until there are no lone zeros in the matrix. Upon com-
pletion go to Step 3.

– Step 3:
• 3.1 If all the rows have been assigned, then stop.
• 3.2 If there are uncovered zeros, then go to Step 4.
• 3.3 Else (if there are no uncovered zeros), go to Step 5.

– Step 4: Assign any one of the uncovered zeros and cover both its row and its
column. Then go to Step 2.

– Step 5: The way this step is carried out depends on whether Step 3.2 had
been visited since the last time a new zero was created in Step 2. If this step
has not been executed since the last time a new zero was created, then new
zero(s) are generated by subtracting the smallest uncovered element of the
matrix from all the uncovered elements of the matrix. If this step has already
been executed, it is necessary first to cover all the zeros of the matrix with the
minimum number of lines (rows and/or columns) and then create a new zero.
Then go to Step 2.

Some of the presented steps can be easily computed concurrently, but others in-
trinsically demand the introduction of a non GPU-friendly message pass scheme
or of global synchronization points as they provoke ambiguities if computed con-
currently or locally. Thus, the definition of independent processing kernels for cod-
ing this algorithm as required for a pure GPU computation, is not straightforward.

3.2 The Auction Algorithm

This section presents The Auction Algorithm for The Assignment Problem. For
our purposes, this algorithm has a huge advantage over the Hungarian as it was
originally described as a distributed relaxation method [8], very well suited for
parallel computation.
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The Auction Algorithm is semantically described as a real auction where per-
sons compete for objects by raising their prices through competitive bidding. Sup-
pose that there are n persons and m objects (where (n ≤ m)). We want to match
them in a way that each person should be assigned to a single object and each ob-
ject should be assigned to at most a single person. The matching should respect
the restriction that each person i can only be assigned to object a j if the pair
(i, j) belongs to a given set A(i) of possible matching pairs. Analogously, for each
object j it is possible to define B(j) as the set of persons that can be matched
with j.

There is a benefit aij for matching a person i with an object j, such that the goal
of the auction is to assign persons to objects so as to maximize the total benefit,
defined as

n−1∑
i=0

aiji (5)

The auction algorithm introduces an economic equilibrium problem that can be
seen as a dual problem. It supposes that an object j has a price pj and that the
person who receives the object must pay the price pj . As each person associates
an benefit aij with each object, then the object j net value of for person i is re-
lated with the difference between the corresponding benefit the object price. Each
person i would logically want to be assigned to an object ji with maximal value,
that is, with

aiji − pji = max {aij − pj} . (6)

The Linear Programming Formulation for The Assignment Problem asso-
ciates an assignment A with the set of variables {xij |(i, j) ∈ A}, where xij = 1
if person i is assigned to object j and xij = 0 otherwise. Thus, the value of an
assignment is expressed as

n−1∑
i=0

m−1∑
j=0

aijixij (7)

and the restrictions that assure one-to-one mapping are then written as

m−1∑
j=0

xij = 1, for every i (8)

and
n−1∑
i=0

xij = 1, for every j (9)

As a consequence of the existent duality, it can be assured using Linear Pro-
gramming Theory that an equilibrium assignment offers the maximum total ben-
efit (and thus solves The Assignment Problem), while the corresponding set of
prices solves an associated dual problem.
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The Auction Algorithm Computation goal is to find an equilibrium assign-
ment and its corresponding price vector. The algorithm iterates between two
steps: a bidding phase and an assignment phase.

During the bidding phase, each unassigned person finds an object j which offers
maximal value (according to equation 6) and makes a bid for that object offering
a bidding increment γi calculated as:

γi = vi − wi + ε (10)

where (vi) and (wi) are respectively the maximal and second maximal net
values of objects that the person i is interested in. The inclusion of the positive
constant ε in equation 10 assures that the bidding increment is not zero, which
otherwise would happen in cases where a person has more that one object with
the maximum net value, ie., cases where (vi) is equal to (wi).

After the bidding phase, the algorithm turns into the assignment phase. Then,
each object j, if it was selected as a best object by any nonempty set of people
P (j), determines the highest bidder by:

ij = arg maxi∈P (j) γi (11)

Using the highest bidding increment the object raises its price and gets assigned to
the person i, considered as highest bidder ij. If the object was previously assigned
to other person, that person becomes unassigned.

Iterating between those two phases, the algorithm continues until all persons
have an assigned object. The termination with a feasible assignment (if it exists)
is assured by noting that once an object is assigned to any person, it will never be
turned into an unassigned object again. Besides, if an object receives a bid in k
iterations, its price must exceed its initial price by at least kε, thus, at some point
of the iteration, an assigned object will become expensive enough to be judged less
valuable (according to equation 6) than some other object that has not received a
bid so far. It follows an object can receive a bid in a limited number of iterations
while some other object still has not yet received any bid. On the other hand, once
n objects (n ≤ m) receive at least one bid, the auction terminates.

4 Using CPU versus GPU for Computer Vision Tasks

Both microprocessors (CPUs) and graphics hardware (GPUs – Graphics Process-
ing Units) are composed in low level by the same components: the transistors.
This means that the CPU and GPU are equally benefited by transistors tech-
nology advances [9]. Their performance difference can be illustrated comparing
the processing power of models on market, like the NVIDIA GeForce 8800 GTX
graphic card (330 GFlops and 80 GB/s bandwidth) and the multi-core processor
Intel Core Duo (48 GFlops and 10 GB/s bandwidth).

What defines the main difference between CPUs and GPU being responsible
for their efficient disparity is their architecture. CPUs are developed to efficiently
attend to a variety class of applications, requiring the disposal of many transistors
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to offer complex control functionality in hardware (such as branch prediction).
The GPUs were originally developed aiming 3D graphics processing which allowed
their architecture to concentrate the transistors on computation power, rather
than on control chips. Nowadays, GPUs are low-cost stream processors specialized
on high arithmetic computation over independent elements of a stream.

Modern GPUs can be seen as fine-grained parallel computers. Its programming
model requires to formulate the desired algorithms as what is called data algo-
rithms, that means, to be executed with simultaneous operations across large sets
of data. Each set of data is organized in what is called a stream, containing similar
elements to be processed. Thus, the algorithm to be computed should be decom-
posed into similar operations to be applied to each element of a stream of data
independently. The computations are defined in a operator called kernel describ-
ing the algorithm tasks to be applied over a single element of the stream. In such
formulation, the parallelism occurs by processing in parallel the same kernel over
different elements of the stream. As the number of processors increases, more ele-
ments can be processed in parallel, scaling the algorithm in a transparent way to
its developers.

Computer vision tasks are well suited for Graphics Processing Unit (GPUs)
hardware as many of their tasks can be seen as similar arithmetically-intensive
operations over huge sets of data, exactly the nature of problem to which such
hardware is developed for.

Next section presents our formulation to solve the bipartite graph matching
problem using graphics hardware by decomposing The Auction Algorithm into a
data-parallel formulation proper to moderns GPU architectures.

5 The Bipartite Graph Matching on GPU

Our proposal reformulates the auction algorithm for a GPU computation using
one kernel for the bidding phase, one kernel for the assignment phase (both pro-
cessed on the device - GPU) and a loop that iterates between the phases triggering
the GPU threads until convergence (controlled by the host - CPU). The iteration
cycle is illustrated in Figure 3.

Fig. 3. Our GPU formulation iteration cycle

Before the matching computation begins, data streams have to be created rep-
resenting (or reserving storage space for) the input, the output and temporary
data used by the algorithm.



50 C.N. Vasconcelos and B. Rosenhahn

The initialization task includes the bipartite graph creation, that is, its disjoint
sets of nodes and its edges set representation into data streams. The two sets of
nodes (X and Y ) represent the elements to match. For clarity we will call them
here as the set of persons and the set of objects respectively. The Assignment Prob-
lem looks for a set of one-to-one associations represented as edges in this graph.
This means that one should include edges from a vertex xi ∈ X , to every vertexes
yj ∈ Y , that represents a possible matching in the final association. Consequently,
the number of edges created for each vertex is related to the number of possible
matchings for each node of the graph.

Any structure used by our algorithm is represented as a 1D or a 2D linear data
stream. In our model, the graph nodes, edges and weights are represented within
a single two-dimensional stream of constant elements (their values are set during
initialization and kept constant during the algorithm), containing the benefit for
matching a person i with an object j set as a matrix.

Both requirements that each person i can only be assigned to an object j, or
that each object j can only be assigned to a person i, if those pairs belongs to a
given set of possible matching pairs (existent edges) are imposed to the algorithm
computation in our proposal by setting negative infinity values for the correspond-
ing association of unwanted pairs within the benefit matrix during initialization
phase. Thus, the rows and columns of such matrix indirectly represent the exis-
tent nodes, while the existent edges are represented with positive values in their
corresponding matrix positions.

Other structures used by our algorithm are represented as unidimensional
streams. They are dynamic value streams created to represent: the objects prices
(initially set as zero); the objects index associated with each person (or a sentinel
value if not associated); the person index associated with each object (or a sentinel
value if not associated); the bids value suggested by each person in last iteration;
the bids target from each person in last iteration (an object index, if any).

Observe that we split a natural two-dimensional data representation for the
bids value of each person i to each object j, into two unidimensional streams,
by observing that each person can only bid for a single object in each iteration.
We create this organization in order to save graphics card memory and to induce
faster memory transfers while keeping independent access to stream elements dur-
ing the kernel computation. With such improvement each person can still write
its bidding concurrently to all the others in our unidimensional streams, with no
communication between them, but requiring much less storage space.

Once the iteration cycle starts, our algorithm turns what is considered as the in-
put stream that will drive the parallel computation, alternating between a stream
composed over the nodes of X and a stream composed over the nodes of Y . During
the bidding phase a kernel is coded driven to process a single element of X , while
during the assignment phase, a kernel is coded driven to process a single element
of Y (see figure 4).

The bidding kernel (bk) is executed by every person concurrently. During its
execution, the person decides if he is going to suggest a bid and to which object
to bid for, or if he is currently associated to an object (does not ask for another).
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Fig. 4. Independent Parallel Processing

During the next phase of the cycle, every object executes the assignment kernel
(ak), each one individually has the task of testing if it has received any bid recently.
In such case, the object is responsible for updating its own price, for changing
the current bidder (if it has one) and the bid value for the most recently ones.
The object is also responsible for setting previous bidder free to let him to start
bidding again.

5.1 The Convergence Test

Once that GPU can not trigger its own processes and threads, the convergence
decision has to involve the CPU at least to decide if the algorithm cycle stops or
if the CPU has to trigger the bidding kernel (bk) and the assignment kernel (ak)
once more.

The task of computing the convergence test itself in CPU would require to re-
trieve data from the GPU streams to CPU memory space. Data transfers are one
of the most expensive operations in CPU-GPU programming and such cost is di-
rectly proportional to the amount of data retrieved. Based on these facts, our goal
is to reduce the amount of data consulted on CPU for the convergence decision.

The convergence criteria evaluates if all persons have already been assigned to
an object. A first solution for its computation would involve the transfer of the
unidimensional stream containing the objects’ index associated with each person
and checking in CPU if there is any person associated with the sentinel value. If
not, the algorithm has converged.

In a better solution, we observe the algorithm cases when the total number
of assigned persons changes and track those cases from the algorithm processing
kernels. Supposing that the algorithm starts with no assignments, such number
increases only when a free object receives the first bid. In cases when and assigned
object changes its corresponding bidder, the total number of assigned persons re-
mains unchanged. This observation is assured by the property of the algorithm
that once an object is assigned for any person it never turns to unassigned again,
so our counter can never decrease.

With the presented assumption, our algorithm uses a transfer of a single value
between the GPU and CPU, representing a counter of the assigned persons
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total. Using such data, the convergence decision can be taken on CPU as it can be
compared with the number of people, which is known as an initial input for the
algorithm.

The task of updating the total number of assigned persons on GPU concur-
rently over several objects can be implemented using a single variable on global
space memory, but accessed using atomic operations. In architectures where
atomic operators are not available, the kernels can be implemented to write in
an unidimensional stream containing a boolean value indicating for each object
its status (assigned/unassigned). The total number of assigned objects can be re-
trieved reducting such boolean-valued stream to a single integer value (the reduc-
tion operator can be consulted in [10]).

6 Application and Results

A human being can normally solve visual correspondences quickly and easily, even
when the sets of samples observed contain significant amount of noise. Different
classes of Computer Vision tasks involve computing correspondences between sets
of samples taken from distinct cameras or in distinct time instants.

In this section we use the bipartite graph matching to model and compute the
search for the best one-to-one association (according to the metric adopted) that
correlates an input data composed by distinct sets of samples. The application
developed models a variant of the correspondence problem as a discrete optimiza-
tion over a bipartite graph. More specifically, we model a correspondence problem
between X = {x0, x1, ..., xn} and Y = {y0, y1, ..., ym} , that represent two inde-
pendent sets of 3D samples to be matched. To attend the algorithm description
and convergence criteria presented in section 5, in cases the samples sets have dif-
ferent size we associate X with the smaller one.

As a discrete optimization, we are interested in finding the minimum cost
matching between the samples in X and Y . The weights of our graph are defined
by a energy function indicating the cost of associating each 3D sample in X to
each sample in Y . As we are assuming that the input data does not contain any
feature that identifies the individual particles, but only their position in 3D space,
the cost function is defined as the Euclidean distance between the time-sampled
points.

As our first test set, we explore a data set taken with a microscopy collecting
positioning data samples from bacterias moving around 3D space over a certain
period of time. The problem is to find the correspondence between each bacteria
sampled in a instant of time to the same bacteria in the next set of samples taken in
a posteriori instant. The single feature taken as input is the sets of 3D positions
obtained from the microscopy data. For each pair of samples sets taken during
consecutive time instants, we initially consider that any bacteria in the first set
of samples can be matched to any bacteria in the second set.

The evaluation of the matching accuracy for those microscopy data reveled that
our model has found the right correspondences between all bacterias presented
in both samples sets. Wrong matchings appear caused by the fact that a moving
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bacteria could left the microscopy vision field, while others can enter. That is,
wrong cases happened when a particle leaves the vision field from one time in-
stance sampled to the other and at the same time a new particle enters in the
field. In those cases, our model do not identify that they are actually two differ-
ent moving particles and it matches them like if they were the same. The disad-
vantage of such data is that it does not offer a data set with continuous growing
size (neither many different data samples of each size) to evaluate correctly the
matching efficiency.

For measuring the timing results, we are interested in creating bipartite graphs
with increasing number of nodes and edges. Aiming to produce data sets contain-
ing several, increasing size, test samples (with ground truth) we simulated sets
of 3D moving points, moving inside a 3D bounding box in a random biased and
correlated movement and sampled them in different iteration times. The velocity
vector of our particles are composed by two vectors: the correlation vector, as a
persistence tendency to keep the particle moving in the same direction, resulting
in a correlation between successive steps of the simulation; and the bias vector,
a randomly generated vector to disturb regular movement at each time sample.
The persistence level in our model is a value between [0.0, 1.0] that indicates a

(a) Persistence level: 0.05 (b) Persistence level: 0.5

(c) Persistence level: 0.7 (d) Persistence level: 0.95

Fig. 5. Tracking 500 samples moving in 3D with varying persistence levels
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Fig. 6. Time comparison between CPU Hungarian, CPU Auction and GPU Auction

linear combination factor between the correlation vector and the bias vector in
the composition for the particles movement (Figure 5).

Figure 6 presents the timing results for sequential implementations of the Hun-
garian and Auction algorithms (presented in sections 3.1 and 3.2) and for our par-
allel proposal computed on GPU (presented in section 5). The timings represent
the mean answer time (in msec) for a hundred different data sets randomly gen-
erated given the total number of particles. The tests were performed using a Intel
Core 2 Duo processor E6550 2.33Ghz with 2GB of RAM memory processor and
a nVidia GeForce 9600 GT (512MB) graphics card. The GPU code was imple-
mented using CUDA [11].

7 Conclusion

This paper presented a GPU formulation for computing a bipartite graph match-
ing. In that sense, we described a data-parallel formulation proper to modern
graphics cards architectures. The processed features (nodes, edges, their weights
and intermediary data generated by the algorithm) used as the algorithm input
and output were reviewed as streams of data, while algorithms applied to them
are reformulated as “processing kernels” to be applied over several elements of
each stream independently and in parallel.

The results presented show that our approach considerably accelerates the bi-
partite graph matching computation, opening the possibility of considering such
graph and technique as a model in applications using huge sets of data and de-
manding fast results. In the future we are interested to compare our approach with
other algorithms, like the invisible hand algorithm presented in [12].

Aiming to let the scientific community to be able to analyze their own exper-
iments on bipartite graph matching applications, the source code is available for
download from the author’s homepage [5].
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Abstract. A pose-invariant face verification system based on an image
matching method is presented. The method uses the normalized energy
of the established match between images as a measure of goodness-of-
match. The method can tolerate moderate global spatial transformations
between the gallery and the test images and alleviates the need for ge-
ometric and photometric normalization of facial images. It requires no
training on non-frontal face images. A number of innovations, such as a
dynamic block size and block shape adaptation, as well as label prun-
ing and error prewhitening measures have been introduced to increase
the effectiveness of the approach. The experimental evaluation of the
method is performed on the rotation shots of the XM2VTS database
and promising results are obtained.

1 Introduction

In spite of the impressive progress in face recognition technology, many problems
still remain unsolved. The two most challenging requirements for a recognition
system to operate in real world conditions are invariance to facial image pose
and illumination [23]. A variety of methods have been proposed to deal with
the problem of pose changes. One of the earlier attempts to overcome the pose
variation problem is the work of Beymer [1] in which images of different views of
subjects were stored in a database and every input image was first aligned with
the relevant reference images from the database and then a similarity measure
was computed for recognition. There are also other works which take advantage
of multiple images corresponding to different poses in the gallery e.g. the method
by Singh et al. [17] which constructs composite images using semi-profile and
frontal views. Other work by Pentland et al. [13] and Wiskott et al. [21] can
be considered as relatively robust feature-based methods which could tolerate
moderate pose variations. There are also 2D learning-based algorithms that try
to synthesize a virtual frontal view in the 2D domain. The active appearance
model [3] is a well known example of this category. Other techniques which use
3D methods to construct a novel view of the face image form another category.
One of the most successful methods in this category is the 3D morphable model
proposed by Blanz and Vetter [2]. In parallel with the methods which try to
synthesize a novel view of the face, using either one or multiple images from the
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gallery, there are other methods which try to learn the most discriminant infor-
mation between classes across different poses. The work by Kim and Kittler [7]
and Kanade and Yamada [6] are some examples of this category. In another work
by Kim and Kittler [8] authors have tried to make use of different pose-invariant
face recognition experts in a multiple classifier fusion system framework.

In short, pose-invariant face recognition systems fall broadly into three cate-
gories. The first group are those which try to synthesize novel views, either in
2D or 3D. The methods, which try to infer the most discriminatory information
across different poses between distinct classes, constitute the second category.
There are also some methods which make use of multiple images of different poses
in the database. The algorithms in the last group fail when only one image per
subject is available in the database. The main drawback of the methods which
synthesize novel views is the imperfection of the synthesizing process in addi-
tion to the requirement for prior labeling of landmarks which is usually carried
out manually. An observation regarding the 3D methods is that although these
techniques perform slightly better than the 2D alternatives, they still suffer from
unresolved problems. The most important one is that in 3D-based geometric nor-
malization methods, the recovered shape and texture are completely determined
by the 3D morphable face model fitted to the query 2D face image which has the
capacity to reconstruct only the information captured during statistical learn-
ing. As a result, these approaches can not recover atypical features that have not
been available in the training set. Moreover, the high computational complexity
of 3D methods in comparison with 2D algorithms makes them unsuitable for
real-time applications.

In this work we propose a face recognition system which operates on 2D im-
ages. The images are first matched densely and then a similarity criterion defined
as the normalized energy of the match is used to judge the goodness-of-match.
The method excludes the need for geometric pre-processing of images by encap-
sulating a matching stage as part of the method. The underlying idea in this
work is not new. Similar approaches have been employed especially in general ob-
ject recognition systems. In a general object recognition setting, it is commonly
believed that in the presence of varying illumination, partial occlusion, change
of viewing angle, cluttered background, change of scale etc., graph-based tech-
niques perform better in comparison to other alternatives. In a graph matching
approach, the concepts of interest are assumed to be built up from simple neigh-
boring primitives. The primitives are coded as the nodes of a graph while the
edges convey the neighborhood structure and contextual dependencies. In the
area of face recognition and authentication, this approach has been previously
attempted by a number of researchers. In [11] the authors have used a dynamic
link architecture to construct model and scene graphs. In a later work [21], the
authors extended their previous work in [11] by performing the matching twice.
In the first stage, the location and size of the face are estimated. The second
matching is performed to find the exact location of fiducial points on the test
image. Measuring the similarity of the test image to the models of the database
was performed using only the node attributes without taking into account the
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structure (distortion) of the underlying graph explicitly. In [20] an extension to
the previous method in [21] was proposed to identify special characteristics of
the unknown facial image. In another similar work [10], a graph matching scheme
was proposed in which instead of Gabor wavelet filter outputs, multi-scale mor-
phological operators were employed as node attributes. In order to take into
account different discriminatory capabilities of nodes, a weighting scheme was
employed. The work presented in [18] is very similar to [10] but the authors here
have tried to estimate the node weights by reformulating Fisher’s discriminant
ratio as a quadratic optimization problem which is then solved by combining
statistical pattern recognition methods and support vector machines. There are
also some other approaches in the context of facial image analysis which use
graph theoretic methods to recognize expressions, e.g. in [19].

2 Contributions

In this work a method for verification of facial images under varying pose, based
upon the method in [15] is presented. The method takes advantage of an im-
age matching method [16] for establishing correspondences between images and
formulates the similarity criterion between objects as a combination of the nor-
malized distortion energy of the match as well as texture similarities.

The contributions of the present work and modifications to the matching
method in [16] can be outlined as below.

– In order to cope better with matching under different viewing angles, a dy-
namically deformable block matching method is proposed. In the new gen-
eralized block matching scheme, blocks are neither of the same size, nor the
same shape. Blocks are deformed according to a global projective transfor-
mation estimated between the two images. Accordingly, a square block on
the model image is matched to a patch of pixels in the scene image whose
shape and area are determined based on the global transformation. The new
matching scheme allows much denser sampling of the areas of the face which
have undergone contraction and coarser sampling in the areas of expansion
as a result of changes in head pose. It has been found that much better
matches can be established using the new method.

– In the case of a pan movement of the subject’s head, only a half of the face
is used for recognition. It is shown experimentally that the visible half of
the face contains much more useful shape information and is superior to the
whole face.

– The data term has been truncated to achieve more robustness against match-
ing of outliers or occlusions.

– Since the matching method should be able to match facial images of differ-
ent subjects under varying pose, in order to achieve more flexibility in the
deformation, the binary hard constraints are replaced by quadratic penalty
functions.

– In order to cope better with illumination changes, the data term has been
computed using edge maps. The data term is defined as a combination of
normalized vertical and horizontal edge magnitudes.
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– The method in [16] used distance transforms [4] to compute messages in
linear time. Here, additional speed gain is achieved by pruning unlikely labels
at the node level during optimization.

The paper is organized as follows: In Section 3, the image matching method
in [16] is overviewed. In Section 4, a new deformable block matching method is
introduced. The method incorporates a label-pruning heuristic to speed up the
matching process. A similarity criterion for assessing the quality of a match is
presented in Section 5. The results of an experimental evaluation of the method
on the rotation shots of XM2VTS database are presented and discussed in Sec-
tion 6. Section 7 concludes the paper.

3 Image Matching

There are different methods for image matching proposed in the literature. In
fact, for recognition purposes, the following properties are desirable in an image
matching method:

The method should support large displacements to allow the matching of im-
ages taken at different viewing angles and scales. It is also important to achieve
good solutions in a reasonable time, i.e. the method adopted should be efficient
enough so that it can be used for recognition purposes in a large database of im-
ages. Both objectives can be realized by taking advantage of recent optimization
techniques for MRFs [16].

The efficiency of the image matching technique in [16] is based on the fact that
disparities in two directions are modeled by two fields interacting together rather
than coding them in a single MRF. Additional efficiency was gained through the
application of a fast energy minimization technique [9] and updating messages
using distance transforms [4]. In the following we briefly review the method used
for image matching followed by an overview of the object recognition method
in [15].

3.1 Preliminaries

Many computer vision problems can be formulated in an energy minimization
framework where the objective function takes the following form:

E(X |θ) =
∑
s∈ν

θs(xs) +
∑

(s,t)∈ε

θst(xs, xt) (1)

ν corresponds to sites and ε to edges. xs denotes the label of site s ∈ ν. θ defines
the parameters of the energy: θs denotes unary data penalty functions whereas
θst denotes pairwise potentials. It is worth noting that in this formulation only
cliques of size up to two are considered.

The minimum energy in equation (1) corresponds to the maximum probability
of a Gibbs distribution. According to the Hammersley-Clifford theorem, the
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configuration of a set of sites with respect to the neighborhood system adopted,
is an MRF if and only if it is a Gibbs random field with respect to the same
neighborhood system. Thus, the solution on an MRF can be considered as the
configuration of a Gibbs distribution with maximum probability or inversely as
the configuration with minimum posterior energy.

3.2 Decomposed Model

The method proposed in [16] formulates the image matching as a labeling prob-
lem on MRFs with the label set Lreg = {(xs1 , xs2)|xs1 , xs2 ∈ L} where xs1

and xs2 denote displacements in horizontal and vertical directions. In fact this
technique models the deformation in horizontal and vertical directions by two
MRFs interacting together. The edge set of this model is comprised of two sepa-
rate edge sets(inter-layer and intra-layer edges). The edge potential functions on
each of these layers are assumed to be identical (intra-layer edges) while inter-
layer edges encode the data term. For the intra-layer edges the following crisp
continuity terms are adopted:

θst(xs, xt) =

⎧⎨⎩
0, xs = xt,
cr, |xs − xt| = 1,
∞, |xs − xt| > 1.

(2)

In order to achieve more flexibility in deformation, hard continuity terms are
replaced by quadratic penalty function:

θst(xs, xt) = c(xs − xt)2 (3)

where c is a normalizing constant. In our experiments, setting c to 5× 10−3 was
found to give good results. It should be noted that this value depends on the
range of input data (normalized to [-1,1] in our case) and also determines the
elasticity of the model. In [16], by restricting the neighboring blocks (blocks are
of size 4× 4) to have relative displacements of no more than one pixel, the scale
changes were limited to [.75,1.25] of the model image size whereas by replacing
the hard constraints by a quadratic term a much greater range of scales can be
accomodated.

The inter-layer edges encode the data term, i.e. the cost of assigning label xs1

in layer one and label xs2 in layer two to two isomorphic nodes of the graph.
The data term has been constructed using block model. In the block model, the
pixels are grouped into non-overlapping blocks which correspond to nodes of the
graph. The data term for the block model is defined as below:

θs1s2(xs1 , xs2) =
1
σ2 Dis(I1

s , I2
s+(xs1 ,xs2)), s

1 ∈ ν1, s2 ∈ ν2 (4)

where I1
s is a block on image I1 and the corresponding block on image I2 is

denoted by I2
s+(xs1 ,xs2), which is the block with the coordinates s + (xs1 , xs2),

where s is the vector pointing to the position of block I1
s . Dis(.,.) is a dissimilar-

ity measure which is defined as the sum of squared differences over the pixels of
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corresponding blocks. Since edge maps are less affected by unwanted illumina-
tions changes, in order to achieve robustness against changes in illumination, we
use horizontal and vertical edge maps instead of grey scale images. Horizontal
and vertical edges are normalized to the range [-1,1] and combined to form the
data term. The data term then becomes:

θs1s2(xs1 , xs2) =
1
σ2

[Dis(I1h
s , I2h

s+(x
s1 ,x

s2 )) + Dis(I1v
s , I2v

s+(x
s1 ,x

s2 ))], s
1 ∈ ν1, s2 ∈ ν2(5)

where I1h
s and I2h

s+(xs1 ,xs2) denote a block in the horizontal edge map of the first
image and its corresponding block in the horizontal edge map of the target image
respectively. I1v

s and I2v
s+(xs1 ,xs2) are defined in a similar way.

Since we are interested in comparing configurational arrangements of the en-
tities of the model and scene images, it is desirable to rely more on common
features of the two images and bypass the atypical features which appear only
in one image. This can be achieved by ignoring the weak edges and setting those
below a threshold to zero and also by truncating the data term. By truncating
the data term, the matching becomes more robust to outliers and occlusions.

4 Matching with Deformable Blocks

In [16] it has been assumed that for a block in the model image, there exists a
block with the same size which has undergone some translational motion. This
assumptions ignores any global geometric transformation between the template
and the target which is one of the omnipresent factors when matching objects
viewed from different angles. Obviously, those parts of the object closer to the
sensing device appear larger than the parts further away. In order to handle this
effect it seems appropriate to have much more dense sampling (smaller blocks) in
the areas of contraction while coarser sampling (larger blocks) would be sufficient
in areas of expansion.

In this work the variation in block sizes is controlled by a global projective
transformation. Although in order to estimate a global geometric transforma-
tion between two images dense matching is not required and transformation can
be estimated using a variety of techniques, we have used the same matching
scheme [16] and RANSAC to exclude mismatches and estimated a projective
transformation. In the second step of matching, each block on model image is
warped according to the estimated global transformation and then the corre-
sponding patch on the scene image is sought. The advantages of this method are
two fold. First, as mentioned previously, it supports a more realistic sampling of
signals subject to a global transformation. Second, as the global transformation
controls and predicts the relative placement of corresponding blocks, the size of
the neighborhood (search area) that has to be searched for correspondences can
significantly be reduced. This minimizes the computational cost of matching in
the second stage.
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Fig. 1. Left: blocks in [16], Right: blocks in the new deformable block scheme

Considering T :

T =

⎛⎝a b c
d e f
g h 1

⎞⎠ (6)

as the estimated projective transformation between the images, the 2D spatial
mapping of blocks then can be interpreted as a combination of projective map-
ping and translational motion:

xs1 = (
ax + by + c

gx + hy + 1
) + x̂s1 , xs2 = (

dx + ey + f

gx + hy + 1
) + x̂s2 (7)

where xs1 and xs2 stand for horizontal and vertical displacements and x and y
are coordinates of the block center. x̂s1 and x̂s2 are labels which are inferred in
the second stage of matching. Since the projective transformation captures the
dominant part of motion, the potential range of x̂s1 and x̂s2 can be reduced dur-
ing second matching, thus reducing the computational cost. Another advantage
of the deformable-block matching method is its enhanced robustness against
outliers in matching. In practice, the matching is not perfect and there might be
parts of the model image which are not matched correctly to the unknown im-
age. By reducing the search region in the second stage of matching and allowing
the estimated global spatial transformation to carry the dominant part of the
motion, this shortcoming is partly corrected in the new matching scheme.

4.1 Pruning Unlikely Labels

Inference on the constructed MRF is performed using the sequential tree-
reweighted message passing method [9] which is built upon the max-product
belief propagation of Pearl [12]. In an ideal case, if the algorithm finds the ex-
act solution, choosing the solution would be based on choosing the label which
minimizes the cost at each node. Although the label with the minimum cost at
each node might not correspond to the best solution when the number of itera-
tions is limited (because the inference is not exact and because of the existence
of multiple minima), it is unlikely for a label with a high cost at a node in an
intermediate iteration of the algorithm to correspond to the optimal solution at
the end of optimization. Based on this observation, one can prune out labels
which are unlikely to be optimal at each node (labels with larger costs) and
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meet only admissible labels at each node during optimization. Pruning unlikely
labels reduces the configurational search space, hence speeds up the method. In
practice the following heuristic pruning scheme is found to result in reasonable
solutions:

After n1 iterations, prune out up to n2 least probable labels at each node based
on their corresponding costs ensuring that there are at least n3 labels left at each
node.

The choice of n1, n2 and n3 depends on the difficulty of a specific problem. The
easier the problem the smaller n1 and n3 and larger n2. Although the pruning
might sometimes lead to better results compared to the original method, in a
limited number of iterations, it may sometimes introduce a trade off between
speed and accuracy.

Using the matching method described, a model image is matched to the test
image. Figure (2) shows an example of warping a gallery image (near frontal) to
the test image (non-frontal) using the deformable block matching scheme.

Fig. 2. Left: model image, Middle: scene image, Right: warped model image

Figure (3) shows an example in which the original method in [16] fails to find a
correct match especially around the mouth and nose region of the model image.
Using the new matching method one can get better matches in the problematic
areas. Figure (3) shows the improvement in matching around the mouth and
nose of the subject.

Fig. 3. Left to Right: template, target, result of warping the template using the method
in [16], result obtained using deformable-block method
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5 Classification

In order to measure the similarity, the two stages are cascaded: first matching the
model image image to the unknown image and then computing a similarity/cost
function invariant to unwanted global spatial transformation and illumination
variations. More explicitly the problem can be described as follows: let I be the
image of an ideal subject. Let J be the image of an unknown subject under anal-
ysis which depends on its geometrical parameters such as scale s, displacements
dx and dy, rotation φ and perspective effects p, so that J = J(s, dx, dy, φ, p).
Let Dis(I, J) be a dissimilarity function between the ideal image I and unknown
image J . The problem is then formulated as calculating:

d = min
s,dx,dy,φ,p

Dis(I, J(s, dx, dy, φ, p)) (8)

In a hypothesis verification (two class) problem the decision rule is:

Assign J to class ωr iff min
s,dx,dy,φ,p

Dis(Ir , J(s, dx, dy, φ, p)) < threshr

where Ir is the template for the rth class and threshr is the dissimilarity thresh-
old for the rth class. In the context of recognition using MRFs, a cost function
corresponding to the unary and pairwise terms is defined and optimized which
is then used in the decision rule. However, the energy obtained in this way has
been found not to have enough discriminatory capacity for classification. In [15]
factors which unfavorably affect the energy function are identified as pose, non-
rigidity of the pattern and last but not least statistical dependencies between
residual displacements of neighboring sites and the limited cardinality of the po-
tential functions. In order to remove the effect of the rigid motion, the distortion
associated with the global spatial transformation was subtracted from distortion
vectors thus achieving global spatial transformation invariance. In order to take
into account non-rigidity of patterns, a number of different exemplars of each
class were matched one to another and the average distortion was considered as
a class-specific model of deformations. The problems of inherent correlation be-
tween residual displacements of neighboring sites and of the limited cardinality
of the cliques defining the potential functions were partly compensated for by
modeling these interactions using covariance matrices which convey correlation
information between different sites even at a larger range. In this work we esti-
mate covariance matrices for the full face in the case of tilt movement of head
and for the half face in the case of pan movement of the head of the subject.

The structural differences between a pair of images is hence formulated in
terms of the Mahalanobis distance:

DMahalanobis(Ii, J) = (ēv − μ̄iv)t∑−1
v (ēv − μ̄iv) +

(ēh − μ̄ih)t∑−1
h (ēh − μ̄ih) (9)

where Ii is a template of class i, μ̄iv and μ̄ih are the average distortions for this
class in vertical and horizontal directions respectively pursued in a raster scan
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Fig. 4. Covariance matrices of distortions: up row left: full face covariance matrix for
vertical direction, up row right: full face covariance matrix for horizontal direction,
bottom row from left to right: half face covariance matrices for left half of face in
vertical direction, right half of face in vertical direction, left half of face in horizontal
direction, right half of face in horizontal direction

fashion. ēv and ēh are the local distortion vectors obtained after matching Ii to
J . In order to obtain the local distortions, after the second stage of matching,
another projective transformation is fitted to the set of corresponding points and
the effect of rigid motion is subtracted from the distortion field.

∑−1
v and

∑−1
h

represent inverse covariance matrices for distortions in vertical and horizontal
directions respectively.

5.1 Textural Content

The spatial distortion measure should be complemented by a measure of quality
of the match conveyed by the data to refine the cost of match. However, the data
term should not be sensitive to unwanted changes in lighting conditions during
image capture. Thus, it is essential to use illumination-invariant representation
of images for comparison. Local binary patterns have been found to be effective
texture descriptors as long as the intensity order of the pixels in a neighborhood
is preserved. The textural content of the two images represented as the output
of an LBP operator are compared using normalized correlation:

NC =

∑
i

∑
j

∑
h

∑
v(bI(i,j)(h, v)bJ(i,j)(h, v))√∑

i

∑
j

∑
h

∑
v(bI(i,j)(h, v)2bJ(i,j)(h, v)2)

(10)

where bI(i,j)(h, v) is the pixel with horizontal and vertical indices h and v re-
spectively in the block with horizontal and vertical indices i and j in image I.
bJ(i,j)(h, v) is defined in a similar way.

The final distance measure between a class model (Ii) and the unknown image
(J) can be interpreted as a weighted measure of shape and texture distances:

D(Ii, J) = w1(1 − NC) + (1 − w1)((1 − w2)DMahalH + w2DMahalV ) (11)

where DMahalH and DMahalV correspond to Mahalanobis distance between the
two shapes using horizontal and vertical distortions.
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6 Experimental Setup

To test our approach to pose-invariant face verification we performed experi-
ments on the XM2VTS data set. This is a multi-modal database which contains
color images plus video and sound sequences of 295 subjects. For these experi-
ments we make use of 8 near frontal images for training and 8 rotated head shots
per subject, as test images.

Fig. 5. Example images of frontal and rotated faces in XM2VTS corpus

Some examples of rotated and near frontal images used are shown in Figure 5.
The XM2VTS database is divided into a training set of 200 clients, an evaluation
set of the same 200 clients plus 25 impostors and a test set of the same 200
clients plus 70 different impostors. In our rotated head shot experiments we
used a modified form of the XM2VTS Lausanne test protocol. This retains the
same partitioning of subject identities into valid clients and impostors. It differs
in that for clients the 2 frontal test images are replaced by 8 rotated head shots
(down, left, right, up) and for impostors the 8 frontal images are replaced by 8
rotated head shots. Figure 5 illustrates the severity of the pose deviation from
the frontal.

6.1 Results

Two error measures adopted for assessing the performance of the verification
system are false acceptance and false rejection rates defined as:

FA = EI/I ∗ 100%, FR = EC/C ∗ 100% (12)

where I is the number of imposter claims, EI the number of imposter accep-
tances, C the number of client claims and EC the number of client rejections.

The performance of a verification system is often stated in Equal Error Rate
(EER) in which the FA and FR are equal and the threshold for the acceptance
or rejection of a claimant is set using the true identities of test subjects. In our
experiments we use all 8 near frontal images of clients as training images for
estimating the covariance matrices. The results of the verification test on images
under pan movement of the head using full face and half face shape information
are reported in Tables 1 and 2 and the results using texture in Table 4 in which
F.F., H.F and Tex. stand for full face, half face and texture respectively.
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Table 1. EER for Pan Using Full-Face Shape Information

Horizontal Distortions Vertical Distortions Horizontal and Vertical Distortions
Euc. dist. Mahal. dist. Euc. dist. Mahal. dist. Euc.n dist. Mahal. dist.

53.92 31.24 25.13 17.09 25.13 16.86

Table 2. EER for Pan Using Half-Face Shape Information

Horizontal Distortions Vertical Distortions Horizontal and Vertical Distortions
Euc. dist. Mahal. dist. Euc. dist. Mahal. dist. Euc.n dist. Mahal. dist.

34.44 31.49 17.44 13.86 17.27 13.77

Table 3. EER for Tilt Using Shape Information

Horizontal Distortions Vertical Distortions Horizontal and Vertical Distortions
Euc. dist. Mahal. dist. Euc. dist. Mahal. dist. Euc.n dist. Mahal. dist.

25.80 25.25 42.58 29.37 25.80 24.9

Table 4. EER Using Texture/ Shape and Texture

Pan Movement Tilt Movement
F.F. Tex. H.F. Tex. F.F. Tex. and H.F. Shape Tex. Tex. and Shape

13.25 17.14 9.62 26.5 24.37

The results using the fusion of texture and shape scores are also reported in
Table 4.

According to the results in Tables 1, 2 and 4 the following conclusions can
be drawn. First, the effect of modeling statistical dependencies in deformation
is evident by comparing the results obtained using Euclidean and Mahalanobis
distances. Second, in the case of pan movement, distortions in vertical direction
are much more discriminative than the distortions in the horizontal direction.
Third, using half face image, the configurational information of face images is
better represented. This is because the more distant part of the rotated face in
the image is partly self-occluded and does not contain useful shape information.
The second reason is the inability of a simple projective transformation to model
3D rigid motion of a non-planar object. The results of fusing texture and half
face shape are reported in Table 4.

Table 3 reports the results for the tilt movement using shape information. In
this case we have used full face matching in our experiments. The effectiveness of
the covariance information is again evident. As in the case of pan movement, the
distortions perpendicular to the direction of head movement are more discrimina-
tive. The result of fusing shape and texture scores is reported in Table 4. From the
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results it can be concluded that, the recognition of faces subject to pan movement
(EER = 9.62) is more accurate than that of tilt (EER = 24.37). In the case of
tilt motion, the self occlusion can not be compensated for by exploiting symme-
try. Inevitably this decreases the quality of the match. The results obtained, are
considerably better than the state-of-the-art results obtained on the XM2VTS
database using AAMs in [5]. In [5] only a subset of the same database was used
to test the method whereas here the obtained results are on the whole database.
Also the results are significantly better than those obtained in [8] reporting error
rates of 30% for the same session and 58% for different sessions on a subset con-
sisting of 125 subjects of the same database. Also, the results compares favorably
with the results in [14] which has used only 100 subjects out of 295 in the same
database and achieves an error of 23% in recognition.

7 Conclusion

A pose-invariant face recognition system based on an image matching method
was presented. The method uses the normalized energy of the established match
between images as a criterion for assessing goodness-of-match. The method can
tolerate moderate global spatial transformations between the model and the
scene object and alleviates the need for geometric normalization of facial images
which is commonly required in face recognition. The experimental evaluation of
the method was performed on the very challenging rotation shots of the XM2VTS
database and promising results were obtained.
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Abstract. In any problem involving images having scale-dependent
structures, a key issue is the modeling of these multi-scale character-
istics. Because multi-scale phenomena frequently possess nonstationary,
piece-wise multi-model behaviour, the classic hidden Markov method can
not perform well in modeling such complex images. In this paper we pro-
vide a new modeling approach to extend previous hierarchical methods,
with multiple hidden fields, to perform reconstruction in more complex,
nonstationary contexts.

1 Introduction

There are many problems in texture analysis, remote sensing and scientific imag-
ing where the observed image possesses highly scale-dependent structure. Al-
though such structures can, in principle, be represented with sufficiently complex
models, the development of such models is a difficult task, and leads to compu-
tationally intractable algorithms if executed on a single scale. In this paper, we
are interested in efficient hierarchical model structures to reconstruct complex
scientific imagery.

Certainly multi-scale image modeling and analysis is common in image pro-
cessing, given the widespread application of wavelet [1,2,3], Gaussian and Lapla-
cian pyramid methods [4,5], quad-tree based models in the continuous Gaussian
case [6, 7], and texture synthesis [8]. In addition, multi-fractal analysis is used
to characterize the self-similarity property of objects. This technique has been
used to study the statistics of natural images [9], been applied to synthesize
textures [9], and acted as a prior to regularize reconstruction problems [10].
However, these methods are all applied to continuous-state problems, whereas
our interest is in the hierarchical modeling of discrete-state fields, such as a label
field underlying an image.

In the discrete-state case, Markov / Gibbs Random Fields have been widely
used in image restoration, segmentation, reconstruction [11, 12]. However, local
Markov / Gibbs Random Fields are limited to describing phenomena at a single
scale, and are not naturally suited for multi-scale phenomena.

Instead, hierarchical MRF modeling [13] provides a more natural and efficient
way to deal with multi-scale structures. Kato et al [14] proposed a hierarchical
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(a) Single-scale example (b) Two-scale example (c) Complex, multi-
scale, multi-model

Fig. 1. Excerpts from microscopic images of physical porous media. A single-scale
structure (a) can be well described by a single hierarchical MRF [17], two-scale nonsta-
tionary behaviours in (b) may be described by adding a hidden hierarchical MRF [18],
however complex structures (c) with multi-model behaviours pose a modeling challenge.

MRF model with a 3D neighborhood system for modeling label fields, but with
considerable computational cost. A MRF model based on a quad-tree structure
was discussed by Laferté et al [15], but does not model the interactions within
scales. Later, Mignotte et al [16] proposed a model with an inter-scale Markov
chain and an intra-scale MRF. However, all of these used simple models at each
scale, too limited to capture complex structures, such as those in Fig. 1.

In order to precisely synthesize images of porous media, Alexander and
Fieguth [19] proposed a hierarchical model with local MRFs at each scale, but
ignoring interrelations between scales. Later, Campaigne [17] proposed a frozen-
state hierarchical annealing method, with attractive computational complexity
and scale-dependent modeling.

The goal of our research is the extension of [17] to allow hidden fields.
Generally, a single hierarchy with a scale-dependent model can capture a sta-
tionary structure (Fig. 1(a)), whereas many random fields have some sort of
nonstationary piece-wise multi-model behaviour which requires additional hid-
den fields [20, 21, 22, 23]. Although multiple hidden fields are routinely used in
Markov modeling, asserting a hierarchical context creates additional subtleties.
Recently, Scarpa et al [24] proposed a hierarchical texture model which repre-
sents texture at the region level with a superimposed finite-state hierarchical
model. Their approach has some similarities with ours, but focuses on unsuper-
vised model inference, whereas our approach requires more accurate, supervised
models, with an emphasis on computational tractability for large problems.

In this paper we build on previous work [18] to perform reconstruction for
complex, nonstationary problems. We have chosen to apply our methods to re-
construct scientific images from porous media, such as the one shown in Fig. 1(c),
since the images include multiple behaviours, with fractal-like scale dependent
structures. The problem reduces to an energy minimization across fields and
across scales, with promising results.
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2 Background

2.1 Classical Hidden Markov Framework

Based on the hidden Markov field (HMF) [25,26] framework, image reconstruc-
tion can be achieved by estimating a hidden random field X from an observed
field Y , where Y = {Ys : s ∈ SL} is defined on a Low Resolution (LR) grid space
SL, and X = {Xs : s ∈ SH} is defined on a High Resolution (HR) grid space
SH with a size of N × N . The relationship between X and Y is expressed by a
forward model Y = g(X) + ν, where ν denotes the measurement noise. If ν is
i.i.d, the classical HMF is written as

p(x|y) ∝
∏

s∈SL

p(ys|x)p(x) (1)

where X is assumed to be MRF. However, a single local MRF cannot perform
well in modeling a multi-scale nonstationary X ; for example Fig. 3(c) shows the
failure of the classical HMF method to reconstruct a piece-wise, two-scale image
(Fig. 3(a)).

2.2 Single Hierarchical Field

In modeling multi-scale phenomena, the dilemma of a single MRF is that local
models cannot strongly assert the presence of nonlocal structures, whereas learn-
ing a huge nonlocal model is prohibitive in practice. Very differently, hierarchical
modeling defines X via a sequence of fields {Xk, k ∈ K = (0, 1, · · · , M)}, where
k = 0 defines the finest scale. At each scale k, Xk is defined on site space Sk

and results from the downsampling of X0.
The advantage of hierarchical modeling is that nonlocal large-scale features

become local at a sufficiently coarse scale, therefore at each scale a single MRF
(Xk) can be used to capture the features local to that scale, inherently allow-
ing scale-dependent structure. In defining a hierarchical model, two issues need
emphasizing: the inter-scale context, and the computational complexity.

To model the spatial context, Mignotte et al [16] proposed a Markov chain
in scale p(xk|xK\k) = p(xk|xk+1), whereas the intra-scale relation is a MRF
p(xk

s |xk
S\s) = p(xk

s |xk+1
℘(s), x

k
Nk

s
), where ℘(s) denotes the parent site of s at the

parent scale, and N k
s defines a local neighborhood.

To achieve computational efficiency, a Frozen State Hierarchical Field (FSHF)
was presented in [17] to synthesize binary images. In their work, a given HR
field (x = x0) can be represented by a hierarchical field {xk} (Fig. 2) where
xk =⇓k(x0), and ⇓k(·) denotes a downsampling operator. The key idea of the
FSHF is that, at each scale, only those sites which are undetermined need to be
sampled, with those sites determined by the parent scale fixed (or frozen):

p(xk
s |xk

S\s) =

⎧⎪⎨⎪⎩
δxk

s ,xk+1
℘(s)

, if xk+1
℘(s) ∈ {0, 1}

p(xk
s |xk

Nk
s
), if xk+1

℘(s) = 1
2

(2)
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0x 1x =   (    ) 
1x 

2x = (    )0x

Fig. 2. An example of ternary hierarchical subsampling [17]: a given field x0 is coarsified
by repeated 2× 2 subsampling ⇓(·). All-white and all-black regions are preserved, with
mixtures labeled as uncertain (grey).

where 0, 1 (black, white) are determined states, and 1
2 (grey) is undetermined.

Since the “grey” interface between black and white regions represents only a
small fraction of most images, this approach offers a huge reduction in compu-
tational complexity relative to standard, full-sampling hierarchical techniques.
The site sampling strategy corresponding to (2) is

x̂k
s =

⎧⎪⎨⎪⎩
x̂k+1

℘(s) if x̂k+1
℘(s) ∈ {0, 1}

a sample from p(xk
s |xk

Nk
s
) if x̂k+1

℘(s) = 1
2

(3)

where x̂k is the sampled (estimated) random field at scale k.

2.3 Hidden Hierarchical Fields

A single FSHF works well in modeling stationary scale-dependent structures,
however such a model cannot handle X having nonstationary, piece-wise be-
haviour, because conditioned on Xk+1, Xk still has nonstationary features which
cannot be captured by a local model. For example, Fig. 3(d) shows that a single
hierarchy can not capture the piece-wise two-model behaviour in Fig. 3(a).

To model more general multi-scale cases, we proposed a Hidden Hierarchical
Markov Field (HHMF) in [18]. The HHMF has an hidden binary HR field U to
capture the model behavior in X . If the nonstationarity in X can be entirely
attributed to a single binary behaviour, then conditioned on U becomes X con-
ditional stationary. Assuming X, U to be Markov in scale, the joint relationship
p(X, U) = p(X |U)p(U) can be written as

p(x, u) ∝
[∏

p(xk|xk+1, uk)
] [∏

p(uk|uk+1)
]

(4)

We select some coarsest scale as the scale at which decidable state structure
appears, such that (4) becomes

p(x, u) ∝
[

Mx−1∏
k=0

p(xk|xk+1, uk)

]
p(xMx |uMx)

[
Mu−1∏
k=0

p(uk|uk+1)

]
p(uMu) (5)
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(a) Ground truth (b) LR, noisy y, (c) HR estimate x̂ based
∗
x, 512 × 512 32 × 32 on single MRF,512 × 512

(d) HR estimate x̂ based (e) HR estimate x̂ based (f) HR image with two
on FSMF, 512 × 512 on HHMF, 512 × 512 spatial variables

Fig. 3. In this example, we reconstruct a two-scale image (a) from a low resolution mea-
surement (b) with different Hidden Markov Field frameworks. The estimated results
are shown in (c)-(e). The clear scale separation of the result from the hidden hierar-
chy [18] (e) should be compared to the results from single flat MRF based model [27]
(c) and single hierarchy based model [17] (d). (f) shows an image with two spatial
variables, which creates a modeling challenge for existing models.

where k = Mx and k = Mu denote the coarsest scale of X and U respectively,
and where p(xk|xk+1, uk) and p(uk|uk+1) are modeled as frozen-state (2), based
on the joint, local ternary histogram of [19]. Since U is defined to describe large
scale features or model behaviour in X , the decidable state in X is expected to
vanish at a finer scale than in U (Mx < Mu).

The introduction of a hierarchical hidden field provides a more general, pow-
erful modeling ability, as illustrated in the comparison between Fig. 3(b) and (e),
however more complex problems (Fig. 3(f) or Fig. 1(c)) require a more general
approach, the subject of this paper.

3 Parallel Hidden Hierarchical Fields

In general, the behaviour of a random field X will be determined by more
than one spatial variable (Nv > 1), such that X remains nonstationary when
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Fig. 4. The proposed Parallel Hidden Hierarchical Markov Field modeling structure,
such that the hidden label field U is a joint field only at coarse scales. As the features of
different model behaviour become separable at some scale kd, U is decoupled as multiple
parallel hierarchical fields {U1, · · · , UNv}. At scales coarser than Mx the entire random
field X of interest is uncertain, and so only U is represented to scale Mu.

conditioned on a single binary field U . The obvious solution to this problem
is to define U as a multi-label field; for example the behaviour of Fig. 3(f) is
determined by two variables of scale and shade, with a corresponding quad-label
model.

Generalizing the frozen-state annealing algorithm [17] to the non-binary case
is a non-trivial task, yet the significant computational benefits of the frozen-
state approach motivate us to continue using it. Although multi-label models
(e.g., Potts) do exist, the complexity of modeling all pairwise, triplet-wise etc.
label interactions at coarser scales makes the problem rather complex.

Our proposed approach is to use multiple, parallel hierarchical hidden fields
(PHHF), as illustrated in Fig 4. At finer scales, having many state elements,
the hidden fields are decoupled, binary, and simply modeled. The complex, joint
hidden structure appears only at very coarse scales, where the small number of
state elements allows such a structure to be computationally tractable.

3.1 Parallel Hidden Hierarchical Field

The key idea of PHHF is as follows: instead of using a single hidden field U
to model complex multi-model behaviors directly, we introduce multiple binary
hidden label fields U = {Ui, i ∈ Nv}, such that each field Ui is used to capture
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(a)Label Field u (b) u7 (c) u6 (d) u6
1 (e) u6

2

Fig. 5. For a hidden label field U with nonlocal features (a), at some coarse scale the
features of different behaviours interact (b), however at some finer scale the U become
separable (c), and can be decoupled to multiple simple fields (d,e)

only a single binary structure or model behavior. With this assumption, the joint
field, conditioned on its parent, decouples into independent fields

p(uk
1 , · · · , uk

Nv
|uk+1) =

Nv∏
i=1

p(uk
i |uk+1) (6)

for all scales k ≤ kd. The entire PHHF model can then be extended from (5)
and written as

p(x, u) ∝
Mx−1∏
k=0

p(xk|xk+1, uk) · p(xMx |uk) ·
kd−1∏
k=0

Nv∏
i=1

p(uk
i |uk+1

i ) ·

Nv∏
i=1

p(ukd
i |ukd+1)

Mu−1∏
k=kd+1

p(uk|uk+1) · p(uMu) (7)

An example of the PHHF with two hidden variables (Nv = 2) is shown in Fig. 4.
The approach simplifies modeling in three significant ways.

First, the PHHF consists entirely of simple models, both local and stationary.
Specifically, although Xk and Uk may have complex, non-local behaviour, the
conditional residuals Uk|Uk+1, Xk|Xk+1, Uk are local, by virtue of the fact that
all non-local matters have been absorbed into the conditioned (coarser) scale.

Second, the hidden states are primarily decoupled and binary. At coarse scales,
where only few pixels exist, it is computationally tolerable to assert a joint model
for Uk, k > kd, where the joint model is need to allow the hidden models to
interact (Fig. 5(b)). In most problems, empirically, the hidden models become
separable at some scale k ≤ kd (Fig. 5(c)), leading to parallel independent fields
(Fig. 5(d)(e)).

Third, because {Xk} and {Uk
i } are modeled using simple, binary models,

{Xk} and {Uk
i } are easily defined as hierarchical frozen states, leading to the

computational cost of the PHHF being linear in the number of hidden fields Nv,
except at the small, coarse scales.

3.2 Reconstruction

To reconstruct a scale-dependent, near fractal, piece-wise nonstationary image
such as the porous medium in Fig. 1(c) is a major modeling challenge. The image
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in Fig. 1(c) displays three types of behaviour: large-scale pores, regions of high
density, and background areas of low density. We therefore propose the ternary
hidden field U to be decoupled as two parallel hierarchies, where {Uk

1 } identifies
large pores, and {Uk

2 } identifies regions of high density.
For image enhancement, the hidden fields are invisible to the measurements,

therefore p(y|xk, uk) = p(y|xk), and so the reconstruction model illustrated in
Fig. 4 can be written as

p(x, u|y) ∝
∏

s∈SL

p(ys|x)p(x, u) (8)

where p(x, u) is the prior PHHF, defined as in (7), and where the measurements
p(ys|x) are taken at some scale km.
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(g) u1s = 0 and u2s = 1 (h) u1s = 0.5 and u2s = 1 (i) u1s = 1 and u2s = 1

Fig. 6. The conditional target histograms of g(X) for decoupling a joint field Ukd into
two simple fields U

kd
1 and U

kd
2 ; that is, each panel shows the distribution of g(X) for

one of nine possibilities on U1, U2. Since the hidden fields are asserted to be decoupled,
those cases where both fields are asserted (shaded distributions) are never observed, and
so are assigned a uniform distribution with low marginal probability. To the extent that
the joint state configuration of (Ukd

1s
, Ukd

2s
) relates to distinguishable model behaviour

in g(X), we expect the hidden fields to be estimable.
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Given measurements Y contaminated by i.i.d. noise, the posterior distribution
of (X, U, Y ) can be represented as a Gibbs distribution

p(x, u|y) ∝ exp(− 1
T

E(x, u|y)) (9)

where T is the temperature, such that E is the energy function implying the prob-
ability density p. Finding a good estimate x̂ therefore corresponds to maximizing
p(x, u|y), correspondingly minimizing E, the sum of hidden joint Ek

u(uk|uk+1),
decoupled Ek

ui
(uk

i |uk+1
i ), visible Ek

x|u(xk|xk+1, uk), and measurement Em(y|x).
All of the prior models are learned using a nonparametric joint local dis-

tribution, the exhaustive joint distribution of a local 3 × 3 neighbourhood of
ternary state elements. The models are learned separately on each scale, based
on downsampled training data x̄k =⇓k (x̄0|ū0), ūi

k =⇓k (ūi
0). The resulting

energy function is the least-squares difference between the model and observed
joint histograms [19].

The measurement energy function is inferred from the given forward model
g(). A variety of measurements could be defined, depending on the measuring
instrument, however in this paper we focus on reconstruction from low-resolution
images, making g() a downsampling operator.

To minimize E(x, u|y), we need to anneal on each scale k in each field X, Ui,
with consequent open questions: whether to minimize hidden states separately
or jointly with the observable state, whether to minimize the scales in parallel or
sequentially, and whether to have scale-dependent annealing schedules. Defini-
tive answers to these questions are unknown, however empirical testing suggests
that a constant annealing schedule with sequential minimization over scales and
sequential minimization from hidden (U) to visible states (X) lead to a reliable
and robust reconstruction.

When estimating the hidden field U , in which case X is unknown, the distri-
bution p(y|u) is less obvious, and needs to be inferred empirically, as illustrated
in Fig. 6, from downsampled ground-truth of the hidden fields. Fig. 6 plots the
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(a) Toy problem (b) Real porous media image

Fig. 7. Correlation coefficients ρ between the estimates x̂ and ground truth
∗
x as a

function of structure scale. For a number of scales below the measured resolution km,
ρ(

∗
x, x̂) > 0 meaning that some trustable details are reconstructed.
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(a) Ground truth (b) LR, noisy y, (c) Hidden scale field
∗
x, 512 × 512 32 × 32

∗
u1, 512 × 512

(d) Hidden shade field (e) x̂4, 32 × 32 (f) x̂3, 64 × 64
∗
u2, 512 × 512

(g) x̂2, 128 × 128 (h) x̂1, 256 × 256 (i) HR estimate x̂ from
PHHF, 512 × 512

Fig. 8. A toy problem with two spatial variables. For the purpose of this example, we
assume the hidden fields for scale and shade to be given, in (c) and (d) respectively.
From the low resolution measurements of (b), our estimated results {x̂k, 0 ≤ k ≤ 4}
are shown in (e)-(i). A clear scale and shade separation are shown in the final result
(i), demonstrating the strength of modeling by paralleled hidden fields.

nonparametric histogram in Y as a function of the nine possible joint relation-
ships in U1 and U2. Because the hidden fields are decoupled, four of the nine
joint relationships are inadmissible (shown as shaded, in the figure), and are
modeled as uniform, with a low marginal probability.

The sequential estimation from U to X has the further benefit of determining
U in detail, at the pixel level, when estimating X , avoiding the ambiguity of an
“undecided” (state 1

2 ) hidden state with ambiguous assertions on X .
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(a) LR downsample, g(
∗
x), (b) Measurement, y = g(

∗
x) + ω,

64 × 96 64 × 96

(c) True label field of
∗
u1, (d) Estimated label field,û1

512 × 768 512 × 768

(e) True label field of
∗
u2, (f) Estimated label field,û2

512 × 768 512 × 768

(g) Ground truth,
∗
x, (h)HR estimate, x̂,

512 × 768 512 × 768

Fig. 9. Ground truth and reconstruction results for a real porous media image. Al-
though

∗
x is not able to fully reconstruct some subtle structures (eg., the connectivities

at the interface between the large pores), the improvement in relevant detail of (h) over
(b) is stunning. Here, km = 3, Mx = 3, kd = 5, and Mu = 6.
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(a) Ground truth,
∗
x, (b) Measurement, y = g(

∗
x) + ω,

512 × 768 64 × 96

(c) HR estimate x̂ from the (d) HR estimate x̂ with single
classical HMF [27], 512 × 768 FSMF [17], 512 × 768

(e) HR estimate x̂ with, (f) HR estimate, x̂ with the
HHMF [18], 512 × 768 proposed method, 512 × 768

Fig. 10. Reconstruct results for a real porous media image from different frameworks.
Compared to the results from other methods (c)-(e), the reconstruction result x̂ from
our proposed method (f) shows an impressive improvement in modeling multiple spatial
nonstationarities. In particular, observe closely the small-scale structures in the high
dense regions and the boundaries of large pores.

The computational cost of our proposed approach can be approximated as

CPHHA �
Mu∑
k=0

(Nν + 1) · αk · (4−kN2) (10)

where αk denotes the fraction of unfrozen pixels at each scale k. Experimentally,
CPHHA remains dominated by the cost of the finest scale O((Nν + 1) ·α0 ·N2).
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4 Results and Conclusions

Our results will be based on a synthetic four-label image (Fig. 3(f)) and a real
porous media image with multi-scale, complex structure (Fig. 1(c)).

In the synthetic example we have two hidden fields U1, U2, which respectively
describe the states of circle-size and shade. For the purpose of estimating X , we
will assume U1, U2 to be known (Fig. 8(c,d)). Given a LR noisy image (Fig. 8(b)),
our estimated results {x̂k, 0 ≤ k ≤ 4} are shown in (Fig. 8(e)-(i)). Clearly, in
the reconstruction process the structures of the two-scale circles are gradually
decided from coarse to fine with different label values. The impressive recon-
struction result (Fig. 8(i)) illustrates the positive effect of the two parallel fields
U1 and U2 to label the nonstationary behaviours.

In the porous media example, a much more difficult problem, we estimate first
U1, U2 and then X , as proposed. The final HR estimate (x̂) is shown in Fig. 9.
The performance of the proposed PHHF is clear from the comparison to other
methods (Fig. 10(c-e)).

Finally, to demonstrate the the reconstruction is actually correctly estimating
fine-scale details, Fig. 7 plots the correlation coefficient between ground truth
and the reconstruction x̂0 as a function of structure scale (defined as the average
number of decimations which leaves a pixel value unchanged). Clearly strongly
positive correlations exist well below the measured scale, meaning that the en-
hancement is adding relevant detail, and not just synthesizing random structure
from the prior model. Clearly very tiny structures fail to exert much influence
on the measurements, therefore the correlation ρ does decrease at finer scales.

Our research interest is the hierarchical representation of multi-label hidden
fields. Although here the proposed approach is applied only to porous media im-
ages, it can be extended to more general problems in modeling, analysis, and pro-
cessing. Our intention is to move this research towards hierarchical multi-label
synthesis, and the reconstruction of three-dimensional data from low-resolution
observations.
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General Search Algorithms for Energy Minimization
Problems

Dmitrij Schlesinger

Dresden University of Technology�

Abstract. We describe a scheme for solving Energy Minimization problems,
which is based on the A∗ algorithm accomplished with appropriately chosen
LP-relaxations as heuristic functions. The proposed scheme is quite general and
therefore can not be applied directly for real computer vision tasks. It is rather a
framework, which allows to study some properties of Energy Minimization tasks
and related LP-relaxations. However, it is possible to simplify it in such a way,
that it can be used as a stop criterion for LP based iterative algorithms. Its main
advantage is that it is exact – i.e. it never produces a discrete solution that is not
globally optimal. In practice it is often able to find the optimal discrete solution
even if the used LP-solver does not reach the global optimum of the correspond-
ing LP-relaxation. Consequently, for many Energy Minimization problems it is
not necessary to solve the corresponding LP-relaxations exactly.

1 Introduction

This work is motivated mainly by the following observations.
At the time there are many algorithms for approximate solutions of Energy Mini-

mization problems, based on LP-relaxation techniques [9,7,6,10,8,5]. However,
strongly polynomial algorithms for resulting LP problems are still unknown. There-
fore, in practice it is necessary to use approximations, i.e. the results of an iterative
procedure, which are reached after finite time. Even if it would be possible to solve
LP-relaxations exactly, it is not known in general, whether there is a gap between the
optimal relaxed solution and optimal discrete solution of the initial Energy Minimiza-
tion task. Even if it is known that there is no gap, it is in general not clear, how to obtain
the optimal discrete solution, given the optimal relaxed one. To answer the latter two
questions it is necessary to solve a Constraint Satisfaction Problem that is NP-complete
by itself. Despite of these theoretical drawbacks, the LP-relaxation methods became
extremely popular, because in practice it is almost always possible to extract good re-
sults from (possibly suboptimal) continuous solutions in an heuristic but reasonable
way. Unfortunately, much less papers study relationships between different relaxations
of underlying discrete optimization problems as well as relationships between discrete
problems and corresponding relaxations. Summarizing, there are many open questions
in the scope of LP-relaxation techniques, if they are applied to Energy Minimization
problems. Especially the question of strongly polynomial solvability of LP-relaxation is
in a certain sense not natural, because this question relates solely to linear programming

� Supported by Deutsche Forschungsgemeinschaft, Grant No. FL307/2-1.
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techniques – i.e. it has in principle nothing in common with the initial discrete
optimization problem.

On the other hand there are much less algorithms for Energy Minimization, which
have a “discrete nature”. A classical example is Dynamic Programming [1]. This algo-
rithm does not relate to any continuous optimization. It just performs a predefined num-
ber of operations and gives the solution. Unfortunately, this approach is not suitable for
many computer vision problems, because it is applicable only for simple graphs. An-
other group of algorithms can be characterized as an iterative search – they consider a
subset of labelings in each iteration. The simplest method of such kind is Iterated Condi-
tional Modes [2], more elaborated techniques are e.g. α-expansion, α/β-swap [3] and
their derivatives. It is noteworthy that these algorithms use MinCut based techniques
(which are again indirectly based on LP-relaxations) in order to perform an elemen-
tary search step. Unfortunately, here it is often difficult to state, for which tasks these
approaches give global optimal solution, what is the precision for general Energy Min-
imization tasks etc. Summarizing, the branch of research, which is formed by discrete
optimization techniques, seems to be neglected (at least in the scope of computer vision
problems).

We propose to consider Energy Minimization problems primarily as discrete opti-
mization problems and to apply general search techniques to them. In particular, we
describe in this paper a scheme, based on the A∗ algorithm [4]. Appropriately chosen
LP-relaxations are used thereby as heuristic functions. This idea by itself is not new
for discrete optimization in general. However, to our knowledge, it was not considered
before taking into account special properties of Energy Minimization problems, which
result from typical computer vision tasks (like e.g. segmentation, stereo-reconstruction
etc.). The main specific here is that it is not possible as a rule to solve the corresponding
LP-relaxations exactly due to a very large number of variables and constraints.

The proposed scheme is quite general and therefore can not be applied directly for
real computer vision tasks. It is rather a framework, which allows to study some prop-
erties of Energy Minimization tasks and related LP-relaxations. However, it is possible
to simplify it in such a way, that it can be used as a stop criterion for LP based iterative
algorithms (such as Message Passing, the Subgradient method etc.). Its main advantage
is that it is exact – i.e. it gives the globally optimal discrete solution for some tasks. For
other problems it never stops (e.g. if there is an essential gap between the values of the
best discrete solution and the global optimum of the corresponding LP-relaxation). In
other words, it never produces a solution that is not optimal. The other important prop-
erty is that it is often able to find the optimal discrete solution even if the used LP-solver
does not reach the global optimum of the corresponding LP-relaxation. To conclude, for
many Energy Minimization problems it is not necessary to solve the corresponding LP-
relaxations exactly in order to get the globally optimal discrete solution.

2 Notations and Definitions

Problem statement. For simplicity we consider Energy Minimization tasks (MinSum
problems) of second order. Let G = (R, E) be a graph (also called the problem graph)
with the node set R, a particular node is referred as r ∈ R, the edge set is E = {{r, r′}}.
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Let K be a finite label set and f : R → K be a labeling, i.e. f(r) denotes a label k ∈ K
chosen by the labeling f in a node r ∈ R. Let qr : K → R and grr′ : K × K → R

be quality functions, which assign real values to the labels in each node and to the label
pairs in each edge respectively. The quality of a labeling is the sum

Q(f) =
∑
r∈R

qr

(
f(r)

)
+

∑
{rr′}∈E

grr′
(
f(r), f(r′)

)
, (1)

the task is to find

(arg)min
f

Q(f) =

= (arg)min
f

⎡⎣∑
r∈R

qr

(
f(r)

)
+

∑
{rr′}∈E

grr′
(
f(r), f(r′)

)⎤⎦ . (2)

In addition we will need the following notations. Let us denote by G′ = (R′, E′) the
subgraph induced by a node subset R′ ⊂ R, i.e. E′ = {{r, r′} | {r, r′} ∈ E, r, r′ ∈
R′}. A partial labeling fi : R′ → K is a restriction of f into the subset R′. The index
will always depend on the context, determining in each particular case, what subset R′

is meant, which labeling on it is considered etc. For a partial labeling fi : R′ → K and
a node r ∈ R′ we will say, that the partial labeling covers this node. The quality Q(fi)
of a partial labeling is the same as (1) but summed over the corresponding subgraph G′

instead of the whole problem graph G. A subtask A(fi) induced by a partial labeling
fi is a MinSum problem, that is built from the original one (2) by fixation of the labels
in those nodes, which are covered by fi, that is

(arg)min
fj

⎡⎢⎢⎢⎣Q(fj) +
∑

{rr′}∈E
r∈R′,r′∈R/R′

grr′
(
fi(r), fj(r′)

)
⎤⎥⎥⎥⎦ , (3)

where fj : R/R′ → K are partial labelings, which cover the complement R/R′

(thereby we omit the constant part Q(fi)).

LP-relaxation. A common approach to cope with energy minimization tasks (2) is
based on LP-relaxation technique. The first step is to introduce integer weights λ(·) ∈
{0, 1} for each pair (r, k) as well as for each triple ({rr′}, k, k′) and to rewrite (2) in
the form1 ∑

r

∑
k

qr(k)λr(k) +
∑
rr′

∑
kk′

grr′(k, k′)λrr′(k, k′) → min
λ

s.t.∑
k

λr(k) = 1 ∀r∑
k′

λrr′(k, k′) = λr(k) ∀r, r′, k

λr(k), λrr′(k, k′) ∈ {0, 1}. (4)

1 Sometimes we omit brackets and “∈” relations for readability.
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Then the last condition is relaxed, i.e. substituted by λ(·) ∈ [0, 1], which gives a task of
linear programming.

We prefer to consider the task (4) using the notation of equivalent transformations.
They are defined as a superpositions of following operations:

q̂r(k) = qr(k) + δ, ĝrr′(k, k′) = grr′(k, k′) − δ ∀k′ (5)

with an arbitrary finite constant δ. The new functions q̂r and ĝrr′ represent an equivalent
task. The application of an equivalent transformation is also called reparametrization of
a task. The dual of (4) can be formulated using these notations as follows:∑

r

min
k

q̂r(k) +
∑
rr′

min
kk′

ĝrr′(k, k′) → max
q̂,ĝ

, (6)

where the functions q̂ and ĝ can be obtained by equivalent transformations from the
original functions q and g. For a subtask A(fi), we denote by LP (fi) the solution (the
value) of its LP-relaxation (6).

General search algorithms, A∗

· · ·

· · · r = 3

r = 2

Whole problem

· · · Complete labelings

· · ·

r = 1

· · · · · ·· · ·

Fig. 1. Search tree

General search algorithms are described very extensive in the literature. Therefore
we omit here formal definitions and just consider, how a MinSum task can be formu-
lated as a general search problem. The main idea is to decompose the whole task into
subtasks followed by recursive decompositions of these. Let the nodes of our MinSum
problem be enumerated. We may decompose the whole problem by fixation of labels
e.g. in the first node r = 1. In that way we obtain |K| subproblems, each one having
one node less than the initial task. Doing such decomposition recursively a search tree
is built, which is presented in Fig. 1. Each layer (a particular depth value) corresponds
to a node r of the problem graph. Each tree node in a layer r corresponds to a partial
labeling fi : R′ → K with R′ = {1, 2 . . . r}. According to this the subtree with the root
fi represents the subtask A(fi). The root of the tree represents the whole problem, the
leaves correspond to complete labelings. The quality of a node fi is the quality Q(fi)
of the corresponding partial labeling. The task is to find a leaf of minimal quality.
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We will also need the following notation. A partial labeling fj is called successor of
another partial labeling fi iff

fi : R′ → K, fj : R′ ∪ {r /∈ R′} → K, fj(r) = fi(r) ∀r ∈ R′. (7)

We will say that the partial labeling fj is obtained from fi by fixation of a label in a
node r /∈ R′. The set of all successors for a partial labeling fi, which can be obtained in
such a way, is denoted by succr(fi). At the same time it denotes the set of all children
of a tree node fi in the search tree.

queue before

queue after · · ·
· · · · · ·

· · ·

best scored node

Q(fi)

h(fi)

Put the root into the queue
Repeat {

Take the best scored node from the queue
if it is a leaf

return it as the solution
compute all successors
score them according to Q(fi) + h(fi)
put them into the queue

}

Fig. 2. A∗ algorithm

A common approach for general search problems is to use heuristic search tech-
niques to evaluate the search tree in order to reach a leaf of minimal quality. In partic-
ular we will use the A∗ algorithm. Its functionality is illustrated in Fig. 2. In each step
there is a subset of tree nodes (called queue), which are not evaluated so far. At the very
beginning it consists only of root of the tree. Each node in the queue is scored accord-
ing to the evaluation function, which is the sum of the node quality and an heuristic
function (denoted by h(fi)). The latter is an estimator for the difference between the
quality of the node and the best leaf in the corresponding subtree. In each step the al-
gorithm takes the node with the best score from the queue. If it is a leaf, the algorithm
finishes and returns this node as the solution. Otherwise, the node is expanded, i.e. all
successors (children of this node in the search tree) are computed. They are scored as
described above and put into the queue.

The properties of A∗ are determined primarily by the type of the used heuri-
stic function. An heuristic function is called admissible (optimistic), if it never
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overestimates the real difference between the qualities of the node and the best leaf in
the corresponding subtree:

h(fi) ≤ argmin
f∈subtree(fi)

Q(f) − Q(fi) = h∗(fi). (8)

An heuristic is called monotone if

Q(fi) + h(fi) ≤ Q(fj) + h(fj) fj ∈ succ(fi) (9)

holds, i.e. the heuristic is the more precisely (and therefore the less optimistic) the closer
to the leaves. The A∗ algorithm is exact (always finds a global solution) if the heuristic
function is admissible2.

For the complexity analysis of A∗ it is usually assumed that the complexity of com-
putation for Q(fi) and h(fi) is a constant. Let n be the maximal number of tree nodes
in the queue during the search. The time complexity of A∗ is then O(n log n). Alter-
natively, the number of expansions can be considered, which are necessary to solve the
problem. In this case it is assumed that the time complexity of one expansion step (one
loop iteration in Fig. 2) is a constant. In both variants the crucial question is, how the
considered numbers (n or the number of expansions) depend on the problem size, for
example on the number of nodes |R| in the problem graph. To be precise, we will use
the notation “time complexity” having in mind the number of expansions depending on
the problem graph size.

The time complexity of the A∗ algorithm is exponential in general. However, if the
heuristic function is admissible and monotone, then a complexity analysis is possible,
that takes into account the precision of the heuristic function. In particular, A∗ has linear
time complexity, if the heuristic function is exact (denoted by h∗(fi) in (8)). It means
that the A∗ algorithm behaves like the depth-first search, i.e. a tree node of maximal
depth is always chosen for expansion. In this case the maximal number of nodes in the
queue is O(|R||K|) and exactly |R| expansions should be performed in order to reach
an optimal leaf.

3 General Scheme

The main idea of our approach is to use LP-relaxation LP (fi) as the heuristic function
h(fi) for the A∗ search. First of all, is should be stated that this is an admissible heuris-
tic, since the LP-relaxation of a discrete optimization task represents a lower bound
for its solution. Therefore A∗ is exact. Secondly, it can be easily seen that this heuris-
tic is also monotone. The key point to show this is to note that for each pair fi and
fj ∈ succr(fi)

Q(fj) + LP (fj) = Q(fi) + LP ′(fi) ≥ Q(fi) + LP (fi) (10)

holds, where LP ′(fi) is the same as LP (fi) but with additional constraints for λ (see
(4)), which fix the label k = fj(r) in the node r – i.e. both LP-relaxations have the

2 In general, the heuristic must be both admissible and monotone to guarantee optimality. In our
case it is enough that it is admissible only, because the set of leaves is finite.
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same objective function but in LP ′(fi) the set of feasible solutions is a proper subset
of those in LP (fi).

We call a discrete task LP-solvable, if there is no gap between the values of its solu-
tion and its LP-relaxation. We call a task strictly LP-solvable, if the same holds for all
partial labelings, which may be needed during the evaluation of the search tree3. It is
obvious that in the latter case A∗ has linear time complexity, since the heuristic function
becomes exact. It is also clear that non strict LP-solvability does not guarantee linear
complexity in general.

On the other hand, it is easy to see that strict LP-solvability is only a sufficient con-
dition for linear complexity, but not a necessary one. Even if there is a gap (the task
is not LP-solvable), A∗ may have linear complexity, if this gap is relatively small –
i.e. if it is not big enough to prefer partial labelings of non maximal depth during the
search. A weaker sufficient condition can be formulated from A∗ itself as follows. The
A∗ algorithm has linear time complexity if there exist a sequence of partial labelings
f1, f2 . . . f , fi : {1 . . . i} → K , fi+1 ∈ succi+1(fi), so that

Q(fi) + LP (fi) < Q(fl) + LP (fl) ∀fl ∈ succ(fj)/fj+1, j < i (11)

holds for each fi in the sequence. But even this is not a necessary condition. If the above
inequality is satisfied non strictly, A∗ may behave as depth-first search as well, because
it may find the “right” sequence of partial labelings by chance.

4 A∗ Based Stop Criterion for LP-Solvers

Let us remember that it is not possible to solve the needed LP-relaxations exactly and
efficiently for real tasks. Known LP-solvers are iterative algorithms, that only approach
the global optimum. Consequently, the optimal solution is guaranteed only in infinite
time. Therefore we are constrained to use approximations, i.e. the results of these algo-
rithms after a finite time. Let us denote these approximations by L̃P (fi). In this case
we can not guarantee the monotonicity of the heuristic anymore. However, it remains
admissible, if methods based on maximization of the dual energy are used (in this case
L̃P (fi) ≤ LP (fi) holds, since these methods try to maximize the lower bound for op-
timal energy). Therefore A∗ remains exact. It makes in principle possible to use these
methods with A∗ to search for optimal discrete solution.

Let us consider again the behavior of A∗ but from a slightly other point of view,
taking into account that we use approximations L̃P (fi) instead of the exact values
LP (fi). Assume a task for which A∗ does not behave like depth-first search, i.e. at some
stage it chooses for expansion a tree node fi, that has non maximal depth – the condition
(11) is not satisfied. Obviously, it can not happen, if the task is strictly LP-solvable and
LP-relaxations are computed exactly. Consequently, there are only two possible reasons
for such a behavior: either the task is not strictly LP-solvable or the approximations
L̃P (fi) are too far from the corresponding LP (fi). Suppose, it is known that the task
is strictly LP-solvable. Then only the second possibility remains – i.e. for some fi used
during the search the corresponding approximation L̃P (fi) was computed too coarsely.

3 For example submodular tasks have this property.
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There are basically two ways to proceed further in this situation. The first one is to
allow the search to deviate from the depth-first like behavior, i.e. proceed A∗ further us-
ing current (coarse) approximations L̃P (fi). In this case however, the search procedure
often starts to massively expand tree nodes of non maximal depth (note that the heuris-
tics h(f) for leaves are zero, i.e. exact per definition). In short, we can not forecast the
further behavior of A∗ – i.e. it often turns into a complete search.

The second way is to attempt to improve the current approximations L̃P (fi) in order
to preserve the depth-first like behavior of the search. Unfortunately, this idea can not
be used directly, because we can detect the necessity to improve these approximations
only after the search was already performed (the approximations L̃P (fi) were already
computed). Nevertheless, we would like to discuss this idea in a little bit more detail.
Let us imagine, that we have a hypothetical algorithm at our disposition, which has the
following properties. First, it is an iterative procedure that maximizes the lower bound
of the energy – i.e. it is something like a usual LP-solver (e.g. Diffusion or Message
Passing etc.). Second, besides of the lower bound, it provides some kind of information,
that allows to easily compute approximations L̃P (fi) for all partial labelings which may
be needed during the A∗ search – i.e. without to solve the LP-relaxations for each partial
labeling separately. Furthermore, let us assume, that the algorithm improves during its
work this additional information in a similar way as it improves the lower bound for the
energy. In other words, the additional information allows to compute L̃P (fi) the more
precisely, the more time is spent. Then we could use the idea to detect the necessity
of an improvement for L̃P (fi) as follows. We run this hypothetical procedure and let
it compute all information, that may be needed for estimation of L̃P (fi) during the
search. Once a while we call the A∗ search and check, whether it behaves like the depth-
first search. If yes, then we have found the optimal discrete solution. Otherwise we let
this hypothetical procedure work further to improve the lower bound as well as the
additional information. Summarizing, the depth-first like behavior of the A∗ algorithm
can serve as a stop criterion for LP-solvers, which have the above mentioned properties.

Unfortunately, we have no such hypothetical LP-solver at our disposition. However,
it is possible to to adapt existing algorithms in order to compute the necessary additional
information approximately. Let us consider again the task of the maximization of the
dual energy (6). In particular, let q̂ and ĝ be quality functions obtained by an iterative
LP-solver from the original q and g at some stage of its work. Note, that we can omit
without loss of generality the node terms q̂r, because they can be always set to zero by
an equivalent transformation (5) with δ = −q̂r(k). Secondly, for a particular instance
of ĝ in (6) we can always subtract a constant from each ĝrr′ . In doing so we change
both the initial discrete task (qualities of all labelings) and the value of (6) by the same
number. When subtracting the minimal value from each ĝrr′ the following holds. The
current value of the LP-relaxation (the current lower bound) is zero. All functions ĝrr′

are nonnegative, all functions q̂r are zero, the value of the best labeling is therefore
nonnegative as well. After such a normalization the numbers

marg(r, k) =
∑

r′:{rr′}∈E

min
k′

ĝrr′(k, k′) (12)
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can serve as an approximation for min-marginals for a node r and a label k. The current
value of the heuristic h(fi) for a partial labeling fi : R′ → K can be approximated by

h(fi) =
∑

{rr′}∈E
r∈R′,r′∈R/R′

min
k

ĝrr′
(
fi(r), k

)
, (13)

i.e. it is the same as min-marginals (12) but accumulated only over those edges, which
connect nodes from the fixed part R′ with nodes from its complement. It is easy to
see that this heuristic does not represent the needed LP-relaxations for all partial label-
ings. However, the values computed by (13) are guaranteed not greater and therefore
represent an admissible heuristic. Moreover, it can be easily seen that this heuristic is
monotone as well.

f∗ is the current best partial labeling,
set it empty (no labels are fixed)

next_best is the value of the evaluation function for the
best tree node not expanded so far, despite of f∗,
set next_best = ∞

For each node r {
compute the set of successors S = {fi, fi ∈ succr(f∗)}
and their evaluation functions e(fi) = Q(fi) + h(fi);
extend f∗ to the best successor: f∗ = arg min

fi∈S
e(fi);

if e(f∗) > next_best
return “solution not found”

choose f ′ as the next best successor: f ′ = arg min
fi∈S,fi �=f∗

e(fi);

if e(f ′) < next_best
next_best = e(f ′)

}
return f∗ as the best solution

Fig. 3. A∗ based stop criterion

Summarized, the A∗ based stop criterion is presented in Fig. 3. Note, that it is not
necessary to store all partial labelings in the queue in order to detect the depth-first
like behavior. Only the value of the evaluation function for the best “second pretender”
is needed (denoted by next_best in Fig. 3). It reduces the time complexity of the A∗

search from O(n log n) (as in the general case) to O(n), where n is the number of
partial labelings needed during the search, i.e. the maximal number of nodes in the
search tree. If the values mink′ ĝrr′(k, k′) are precomputed in advance4 for each r < r′

and k, the computation of (13) for a node r can be done in a time, that is proportional to

4 In fact, the solvers compute these numbers in order to perform equivalent transformations.
Therefore, they should be only stored for further use by the stop criterion.
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the number of edges, which are incident to r. Summarizing, the overall time complexity
of the criterion is O(|E||K|).

We would like to stress that this stop criterion does not indicate the exact solution of
the corresponding LP-relaxation. It detects only the possibility “to extract” the global
optimal discrete solution from the current state of a continuous optimization procedure.
In the case the solution was found, it is not known in general, whether the task is strictly
LP-solvable or not, whether there is a gap (the task is not LP-solvable), whether the
used LP-solver reached the global optimum of the LP-relaxation. But in this case it
is not necessary to answer these questions, because the discrete solution was already
found. Summarizing, this approach gets rid (to some extent) of the necessity to look for
algorithms for exact solution of LP-relaxation.

The interpretation of the non depth-first like behavior of A∗ depends on the addi-
tional knowledge about the task and/or the used LP-solver. If it is known that the task is
strictly LP-solvable, then the non depth-first like behavior indicates that the LP-solver
has not reached the optimum so far or the coarsening (13) is too pure. If it is known
that the solver is already in optimum, then the task is not strictly LP-solvable or the
coarsening (13) is too pure again and so on.

In most practical cases we do not have such additional knowledge. It is then obvi-
ously possible that the whole loop (LP-solver with the A∗ based stop criterion) never
stops. If it is nevertheless necessary to find the exact solution of the initial discrete prob-
lem, it is necessary to perform the A∗ search in a more general form – i.e. to allow it to
have non depth-first like behavior.

5 Experiments

First of all, it is necessary to justify, what we would like to demonstrate by the exper-
iments. The main goal is to show that the A∗ based stop criterion gives (as a rule) the
exact global discrete solution in the situation that the used LP-solver does not reach the
global optimum of the corresponding LP-relaxation. It can be done e.g. by comparison
of the qualities for the found discrete solution and the lower bound, found by the used
LP-solver – in our case the latter is zero since the task is normalized as described above.
The second goal is to examine, whether our stop criterion allows to reduce the time com-
plexity of the used LP-solver compared with a “simple” stop criterion, which does not
relate to the best discrete solution, but only detects the optimum of the LP-relaxation
– i.e. whether it allows to stop LP-solver essentially earlier. We use the following pro-
cedure as such simple stop criterion. First, the approximations for min-marginals (12)
are computed. A “seemingly good” labeling is produced by fixation of labels with best
min-marginals in each node. If the quality of the labeling produced in such a way is
zero, then this labeling is optimal and the algorithm reached the global optimum of the
LP-relaxation for the whole task5.

In our experiments we used the Diffusion algorithm [9,10] and the Subgradient
method [7] for maximization of (6). In short, they both are iterative ones, that apply
equivalent transformations (each one in its own manner) in order to maximize (6).

5 Obviously, this is a sufficient but not necessary condition for the global optimum.
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First, we tested the approach for problems, generated as follows. The problem graph
corresponds to a grid with 4-connected neighborhood structure (128 × 128 for Dif-
fusion and 64 × 64 for the Subgradient method). The values of the functions qr are
generated uniformly in interval [0, 1]. The functions grr′ are chosen as Potts model,
i.e. grr′(k, k′) = α · 1I(k �=k′). One experiment is organized in the following way.
For a given task we call the LP-solver. After each iteration (some portion of work) we
check the A∗ based stop criterion. If a predefined number of iterations is done and the
stop criterion does not produce the solution, we cancel the experiment and state that
the solver does not converge for this task. If the criterion was successful (the optimal
discrete solution was found), we note the number of iterations made so far. After that
we let the solver work further until the simple stop criterion is satisfied. In doing so
we note the number of iterations, which was necessary for the solver to converge after
the best labeling was found by the A∗ based stop criterion. Then we compute ratio of
these two numbers of iterations. For certain combinations of the Potts parameter α and
the number of labels |K| we performed 10 experiments per combination and average
the computed ratio over the successful experiments (i.e. solver converges). These ratios
are summarized in Fig. 4. The values given after slash are the numbers of successful
experiments for each combination. Empty cells indicate combinations of |K| and α, for
which the solvers never converged (either the problems with these combinations have
as a rule an essential gap or the solvers were not able to narrow the global optimum of
the LP-relaxation good enough in acceptable time).

In addition we would like to note the following. In the majority of the experiments
(92.2% for Diffusion and 97.9% for the Subgradient method) the value of the best label-
ing found by our stop criterion was greater then zero. It confirms our main hypothesis
– the criterion finds as a rule the optimal discrete labeling in the situation, that the used
LP-solver does not reach the global optimum of the corresponding LP-relaxation. In
such cases some additional iterations (together with the normalization) were necessary

|K| \ α 0.3 0.4 0.5 0.6 0.7 0.8
2 .16/10 .04/10 .01/10 .06/10 .89/10 .94/10
3 .02/8 .03/10 .85/10 .71/10
4 .09/9 .20/9 .46/10
5 .07/8 .16/10 .34/10

(a) Diffusion (ratios are multiplied by 100)

|K| \ α 0.3 0.4 0.5 0.6 0.7 0.8
2 .42/10 .46/10 .21/10 .07/10 .10/10 .05/10
3 .07/1 .75/6 .16/9 .04/10 .03/9 .03/10
4 .49/3 .36/9 .07/9 .18/10 .03/10
5 .44/1 .27/5 .05/9 .02/10 .02/9

(b) Subgradient method

Fig. 4. Average ratios for generated problems
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(a) Input image (b) Diffusion (bad) (c) Diffusion (middle) (d) Diffusion (good)

(e) Ground truth (f) Solution (bad) (g) Solution (middle) (h) Solution (good)

Fig. 5. Results for an artificial image

for simple stop criterion to find the optimal discrete solution of zero quality. There were
also situation (6 times for Diffusion and 18 times for Subgradient), that the LP-solver
did not converge in acceptable time after the best labeling was already found by the A∗

based stop criterion. The typical situation for Diffusion was, that the value of the dual
energy did not change at all for a very long time6. For the Subgradient method it was
always the case that the dual energy changed, but so slowly that we were not able to
wait. Sometimes the dual energy even decreased after the solution was found7. Compar-
ing Diffusion and Subgradient, we observed that the A∗ stop criterion has much more
essential impact for Subgradient (sometimes more as 75% additional iterations were
necessary) as for Diffusion (about a fraction of a percent).

The next experiment was made for an artificial image shown in Fig. 5. The input
image in Fig. 5(a) was produced from the ground truth (Fig. 5(e)) by generation a gray-
value in each pixel independently according to segment specific probability distribu-
tions. The resulting MinSum problem was a Potts model with negated logarithms of
corresponding probability values for qr. We performed experiments with Diffusion as
the LP-solver for a “sequence” of models, starting from one with “bad” functions qr

(the corresponding probability distributions are almost the same and uniform for both

6 Note, that Diffusion does not converge in general to the global optimum of the LP-relaxation.
7 The Subgradient method converges to the global optimum of the LP-relaxation but not

monotonously.



96 D. Schlesinger

(a) Input image (b) Solution (bad) (c) Solution (good)

Fig. 6. Results for a real image

segments – Fig. 5(b,f)) and finishing with “good” one (the corresponding probability
distributions are the true ones – Fig. 5(d,h)). Figures 5(f,g,h) show the solutions, found
by the A∗ based stop criterion in each stage. The figures 5(b,c,d) show the results pro-
duced by the simple stop criterion (labels with the best approximation of min-marginals
(12) were chosen in each pixel independently) just after the exact solution is found by
A∗. Those edges for which the chosen state pair has non zero quality are marked white.
A more or less significant effect was observed mainly for bad models – the segmenta-
tions produced by the simple stop criterion and by A∗ differ essentially and a relatively
big number of additional iterations was necessary for Diffusion to find optimal segmen-
tation. This impact decreases as the model becomes better – in Fig. 5(d) there are almost
no edges with non zero qualities.

Finally, we tested our approach on real images. One example is presented in Fig. 6.
The experiment was organized in the same manner, as for the previous one. Mixtures
of multivariate Gaussians were chosen as the probability distributions of colors for seg-
ments. This example just demonstrates that the A∗ based stop criterion is able to work
with real images as well.

6 Conclusion

In this work we discussed, how general search techniques can be applied for Energy
Minimization problems. We presented a scheme, which is based on the A∗ algorithm
accomplished with appropriate chosen LP-relaxations as heuristic functions. Based on
it we derived a stop criterion for iterative LP-solvers, which is often able to find the
global optimal discrete solution even if the used LP-solver does not reach the global
optimum of the corresponding LP-relaxation. Summarizing, for many Energy Mini-
mization problems it is not necessary to solve the corresponding LP-relaxations exactly.

This work is a first trial at most. Consequently, there are many open questions. Here
we would like to mention only some of them. Obviously, the general search scheme
can be built in different ways. In this paper we used a simple enumeration of nodes –
i.e. the search tree is fixed in advance. Of course, other variants are possible as well. A
related topic is that our construction does not take into account the structure of the prob-
lem graph. Especially for computer vision tasks it would be profitable to account for it,
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because here graphs are often very sparse. In the paper we considered an “hypothetical
LP-solver” that has certain properties, which allow to use it with the A∗ based stop
criterion. As we do not really have such a solver, it was necessary to coarsen the needed
estimations. Even with this coarsening the algorithm performs well. However, a real
LP-solver with the necessary properties would obviously further improve it.
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Abstract. Complex diffusion was introduced in the image processing
literature as a means to achieve simultaneous denoising and enhance-
ment of scalar valued images. In this paper, we present a novel geomet-
ric framework to achieve complex diffusion for color images represented
by image graphs. In this framework, we develop a novel variational for-
mulation that involves a modified harmonic map functional and is quite
distinct from the Polyakov action described by Sochen et al. Our formu-
lation provides a novel framework for simultaneous feature preserving
denoising and enhancement. We also develop a quaternionic diffusion
that can be applied to color image data represented by a quaternion in
the image graph framework. In this framework, the real and imaginary
parts can be interpreted as low and high-pass filtered data respectively.
Finally, we suggest novel ways to use the imaginary part of complex
diffusion toward image reconstruction. We present results of comparison
between the complex diffusion, quaternionic diffusion and the well known
Beltrami flow in the image graph framework.

1 Introduction

Image denoising is a quintessential component of most image analysis tasks and
there are numerous denoising methods reported in the literature. In the past few
decades, methods based on partial differential equations (PDEs) have become
very popular. Some of the PDE-based methods are derived from minimization
principles while others are not. The general mathematical form of a feature
preserving anisotropic diffusion is given by

∂I

∂t
= Div(g(|∇u|)∇u)

Here, u(x, y; t)|t=0 = I(x, y) is the function being smoothed. The choice of
g(|∇u|) in the above leads to various types of diffusion flows.
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Alternatively, one may represent the 2D image as a graph by embedding it
in R3, as a surface Σ with local coordinates (σ1, σ2). The embedding map X
is given by, X : (σ1, σ2) → (x, y, I(x, y)). This provides a geometric interpreta-
tion to the PDEs as those that modify some geometric property such as area
of the 2D manifold representing the image surface. In the case of vector-valued
images, the embedding map X is given by, X : (σ1, σ2) → (x, y, Ii(σ1, σ2)),
where, Ii(x, y) are the channels of the given vector-valued image, and the 2+i
dimensional manifold, (x, y, Ii(σ1, σ2)) is refered to as the space-feature mani-
fold, M [2]. This graph representation also provides a geometric way to handle
the interaction between the components (channels) of the vector-valued images.
Kimmel et al., [1,2,3] pioneered the use of image graph representation to perform
image smoothing in scalar and vector-valued image data sets. They introduced
the Polyakov action [4] to derive various flows such as the Beltrami, mean cur-
vature, and the Perona-Malik flows. One of the benefits of this approach is
that the channels in multi-channel (vector-valued) images such as color images
can be correlated in a geometrical way. Diffusing the RGB channels in a color
image while retaining their correlation is essential. If we perform isotropic or
anisotropic diffusion of each channel independently, all correlations are ignored
and the solution would be erroneous.

Alternatively, one may simply extend the traditional diffusion to the complex-
domain, which was pioneered by Gilboa et al. [5,6,7]. In complex diffusion, an
image, I(x, y), which is a real-valued function in general, is extended to the
complex domain, i.e., I(x, y) = IR(x, y)+iIM (x, y). Then, the isotropic diffusion
equation is generalized to, I = C�I where, C is a complex number with unit
norm eiθ, and � is defined as usual by ∂2

∂x2 + ∂2

∂y2 .
More generally, diffusion equations are given by

∂I

∂t
= H(t)I (1)

where H(t) is a diffusion operator which can be either isotropic or anisotropic
and can produce linear or nonlinear scale-spaces respectively. In the case of
complex diffusion, H(t) is a complex operator and can be rewritten as follows:

H(t) = HR(t) + iHM (t) = eiθh(t) (2)

where h(t) is a real-valued operator. Then, the diffusion equations for the real
and imaginary parts are given by

∂IR

∂t
= cos(θ)h(t)IR − sin(θ)h(t)IM (3)

∂IM

∂t
= sin(θ)h(t)IR + cos(θ)h(t)IM . (4)

The processed input image is considered as a solution to Eq.(3). In the case
of isotropic diffusion, h(t) becomes the � operator. Gilboa et al. showed that
small positive values of θ lead to approximating the real part of I by the regular
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isotropic diffusion and the imaginary part by the smoothed second derivative
of the real part. This allows one to achieve denoising and enhancement simul-
taneously. Therefore, regular (non-complex) diffusions discussed in the previ-
ous paragraphs can be seen as special cases of complex diffusions. Because the
imaginary part represents the smoothed second derivative of the real part, the
imaginary part contains the edge information of the real part. They applied this
aspect of the imaginary part to denoise and enhance the images. For the task
of denoising, they introduced a new anisotropic diffusion by replacing |∇u| in
g(|∇u|) of Perona-Malik diffusion with that of the imaginary part as follows:

∂I

∂t
= ∇ ·

(
eiθ

1 +
(

IM

kθ

)2∇I

)
(5)

where IM is the imaginary part of the complex image I and k is a threshold
parameter. This allowed the diffusion flow to avoid the stair-casing effect. They
also introduced a shock filter which used the imaginary part as edge information.
However, they did not apply the complex diffusion model to multi-channel images
and did not suggest a method to account for the coupling of the channels. In this
paper, we present a novel model for simultaneous smoothing and enhancement
by mapping the real and complex channels to Cn, introducing an image-surface
metric and constructing an action functional distinct from the Polyakov action
in [1]. In our approach, the correlation between the color channels (R, G and
B) is introduced via the metric on the image graph manifold. Additionally, we
applied our action functional to the quaternion representation of a color image
in the graph representation. Liu et al.[8] have suggested a way to treat the color
channels as a quaternion assuming that the R,G, and B channels were correlated
through the quaternion algebra. In this approach, the R,G, and B were mapped
to the pure quaternion parts with one extra dimension, which was the real part
of the quaternion representation.

We present several experimental results depicting the performance of our
model in comparison to the complex diffusion model of Gilboa et al. [5], for
the scalar image denoising and enhancement case as well as with the Beltrami
flow [2] for color image denoising. The rest of this paper is organized as follows.
In Section 2, we present a novel metric for the complex image manifold and a
novel functional whose minimization yields the desired flow equation. This is fol-
lowed by a description of the quaternion representation for color images, a novel
formulation of the functional and the accompanying flow equation for color im-
age denoising and enhancement. In Section 3, we present experimental results
for our model applied to color images along with comparisons to other models.
In Section 3.2, we describe techniques to reduce computational time by consid-
ering the diffusion of the real part as a low-pass filter and the imaginary part
as high-pass filter, and adding these two parts for the denoised reconstruction.
In Section 4, we demonstrate that this reconstruction method can be applied to
achieve high quality reconstruction. We draw conclusions in Section 5.
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2 Action Formalism for Complex Diffusion

In this section, we introduce a metric for the complex image manifold for multi-
channel images, and construct an action functional that is minimized to derive
the complex diffusion equation. In addition, we applied the metric and the action
functional to the quaternion representation of RGB images.

2.1 The Image Metric

The general idea of complex diffusion has been investigated in [5]. However,
their primary focus was on gray level images. There was no description of ex-
tensions to vector-valued data sets. Since we deal with processing of multi chan-
nel images here, the key challenges involve processing the vector-valued data
and capturing the correlation between the channels. In [1,2], a norm functional
called the Polyakov action [4] and an embedding map X : Σ → Rn were intro-
duced, where Σ is a 2-D manifold. They were used to capture the interaction
between the multiple channels, and minimize the norm functional to obtain spe-
cific flows that smooth images in different ways. In this paper, we suggest an
alternative to the Polyakov action, where the image manifold, Σ, is mapped
to an n-dimensional complex manifold by Z : Σ → Cn. Upon denoting the
local coordinates on the 2-D manifold Σ by (σ1, σ2), the map Z is given by
[Z1(σ1, σ2), Z2(σ1, σ2), ..., Zn(σ1, σ2)], where all the Z’s are complex-valued. For
example, a color (RGB) image can be mapped by Z as follows:

Z : (σ1, σ2) → [z1, z̄1, Zl = I l(σ1, σ2), Z̄ l] (6)

where z = σ1 + iσ2, z̄ is the complex conjugate of z, I l is a complex-valued
channel, I l

R(σ1, σ2) + iI l
M (σ1, σ2), Z̄ l is the complex conjugate of Zl and the

index l runs over R,G, and B.
Let M , the space-feature manifold denote the embedding manifold of the

complex image graph, with the map Z : Σ → M . Let gμν be the metric on the
image manifold, Σ, and hij be the metric on M . Here, hij is defined such that
hijdZ

idZj gives a length element on M , and this metric makes the manifold
M a Riemannian manifold with (n × 2) + 2 dimensions ,where n is the number
of channels and the local spatial coordinates are represented by two additional
dimensions. For a gray level image, hij becomes

h =

⎛⎜⎜⎝
0 1

2 0 0
1
2 0 0 0
0 0 0 1

2
0 0 1

2 0

⎞⎟⎟⎠ (7)

so that the length element is dzdz̄ + dIdĪ = (dσ1)2 +(dσ2)2 + dI2
R + dI2

M . Then,
the image metric, gμν is given explicitly as follow:

gμν(σ1, σ2) = hij(Z)∂μZi∂νZj (8)
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where, ∂μZi = ∂Zi/∂σμ. The image metric for the n-channel case is given ex-
plicitly by,

gμν =

⎛⎜⎜⎜⎜⎝
1 +

n∑
l=1

I l
xĪ l

x
1
2

n∑
l=1

(I l
xĪ l

y + I l
y Ī l

x)

1
2

n∑
l=1

(I l
xĪ l

y + I l
y Ī l

x) 1 +
n∑

l=1

I l
y Ī l

y

⎞⎟⎟⎟⎟⎠ (9)

where x and y are the spatial coordinates. We are now ready to present the
action formalism.

2.2 The Action Formalism

Images in computer vision are usually real-valued. Therefore, it is natural to pose
them as a real-valued graph with a real-valued metric. However, in this paper we
seek an action appropriate for complex-valued functions and one that is distinct
from the Polyakov action presented in [2]. We would like the gradient descent
(flow) equation of the new action to match the complex diffusion introduced in
[5] under a special geometry and depict edge-preserving flows on a graph. We
propose a specific action for n-channel images satisfying the conditions above,
given by:

S =
∫ ∫

F (z, z̄, I l
x, lly Ī l

x, Ī l
y)
√

gdxdy (10)

F =
1
2

n∑
l=1

(∇I l · ∇I lelθl + ∇Ī l · ∇Ī le−lθl). (11)

Here, x and y are local coordinates, and g is the determinant of the image metric
gμν , Eq.(9). In Eq.(10) and Eq.(11), I is complex image, IR + iIM and Ī is its
complex conjugate. In Eq.(11), generally, we can assign different phase θl to
each channel. Setting g equal to the identity matrix and minimizing Eq.(10) by
applying calculus of variation to Eq.(10), we can derive the isotropic complex
diffusion equation introduced in [5] and details are given in following paragraphs.

We derive the gradient descent of Eq. (10) by evaluating the Euler-Lagrange
equation with respect to the embedding. For this, we fix the x and y coordinates
or z and z̄, and vary the action with respect to I [2]. Then, the flow equation
for I l is given by:

∂I l

∂t
=

1
gβ

[
d

dx

(
P l

√
g

)
+

d

dy

(
Ql

√
g

)]
(12)

where, P l and Ql are defined as:

P l = g
∂F

∂I l
x

, Ql = g
∂F

∂I l
y

. (13)

In Eq.(12), we multiply the right hand side of the equation by a positive function,
1/(gβ), that will produce nonlinear scale-space and keep the flow geometrical as
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suggested in [2]. The exponent β will be discussed subsequently. When β is
large, the flow becomes more sensitive to edges. Eq.(12) can now be rewritten
as follows:

∂I l

∂t
=

1
g(β+0.5)

[
P l

x + Ql
x − 1

2g
(gxP l + gyQl)

]
. (14)

Here, I l, P l and Ql are complex valued defined as: I l(x, y) = I l
R(x, y)+iI l

M (x, y),
P l(x, y) = P l

R(x, y) + iP l
M (x, y), and Ql(x, y) = Ql

R(x, y) + iQl
M (x, y), where l

is a channel index. As a special case, we can easily obtain the isotropic complex
diffusion equation introduced in [5], by applying Eq. (10) to gray scale images
and setting the metric gμν to be the identity matrix. Then, g is equal to 1,
I(x, y) = IR(x, y) + iIM (x, y), and the Eq. (11) becomes

F = cos θ(|∇IR|2 − |∇IM |2) − 2 sin θ(IRxIMx + IRyIMy) (15)

The gradient descent of Eq.(14) results in the following flow equations:

∂IR

∂t
= cos(θ)�IR − sin(θ)�IM (16)

∂IM

∂t
= sin(θ)�IR + cos(θ)�IM . (17)

Here, we recover the complex isotropic diffusion introduced in [5]. There is no
imaginary part in the initial condition of complex image I, and the target image
is assigned to the real part of the initial condition. However, we can create an
imaginary part from a non-zero theta via the time iteration of Eq.(14).

Another special case of Eq.(10) is obtained by setting θ equal to zero in
Eq.(15) with same g and initial conditions as before. In this case, F reduces
to |∇IR|2 and the gradient descent of Eq.(14) recovers the ordinary isotropic
diffusion equation: ∂I

∂t = �I, (I = IR).
In Fig.1, we have compared the results of anisotropic diffusion using Eq.(14)

with isotropic diffusion obtained using Eq.(16) and Eq.(17) and anisotropic dif-
fusion from Eq.(5) when applied to a gray-level image. Fig.1(a) is the given input
image and also the real part of the initial complex image. We can observe that
Fig.1(h) has no blurring across edges compared to Fig.1(f) and is smoother than
Fig.1(g). The real part of Eq.(5) is less smooth than others for θ larger than 5
degrees.

2.3 Quaternion Representation for Color Images

The geometric coupling of channels in the RGB image via the image metric
term is not the only way to achieve the coupling. Labunets [9] suggested apply-
ing hypercomplex techniques to multi-channel images. He considered R,G, and
B color channels as a triplet number. In his framework, color space is identi-
fied with the so-called triplet algebra. Instead of the triplet representation of
color, Liu et al. [8] employed quaternion to represent the color channels. They
considered the diffusion of quaternion images as an extension to the diffusion of
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(a) (b)

(c) (d) (e)

(f) (g) (h)

Fig. 1. (a) original image. (b) after one iteration of isotropic complex diffusion. (c) and
(f) real and imaginary parts of (a) obtained by isotropic complex diffusion. (d) and
(g) real and imaginary parts of (a) obtained using Eq.(5) with k = 2. (e) and (h) real
and imaginary parts of (a) using Eq.(14) with β = 5/6. 100 time iterations have been
processed with step size, 0.1 and θ = π/3. All imaginary parts have been rescaled to
8-bit images for display.

complex images, and discussed the isotropic and anisotropic diffusion of quater-
nion valued RGB image. One of the choices of mapping RGB channels to a
quaternion is to map R, G and B channels to pure quaternion parts, introduc-
ing an extra dimension which corresponds to real parts of quaternion, Then the
quaternion of RGB channels, Q is represented by Q = Q0 + iR+ jG+kB. Here,
we introduce a novel geometric approach to achieve smoothing and enhancement
of color images using the quaternions based representation of RGB, [q, q̄, Q, Q̄],
where q = σ1+iσ2+j0+k0. We emphasize that this representation has never been
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used earlier and is indeed novel. The second and third components of the pure
quaternion parts of q are fixed to zero. For the action formulation, Eq. (10),
we choose Eq. (9) as the image metric after replacing z and I with q and Q
respectively,

gμν =
(

1 + QxQ̄x
1
2 (QxQ̄y + QyQ̄x)

1
2 (QxQ̄y + QyQ̄x) 1 + QyQ̄y

)
, (18)

The functional F in Eq. (11) must now be rewritten using the quaternion algebra
as follows:

F =
1
2
((∇Q · ∇Q)C + C̄(∇Q̄ · ∇Q̄)) (19)

Here, C is a quaternion coefficient defined as eeφθφ = cosθφ + eφsinθφ, and
eφ = iCR + jCG +kCB, where C2

R + C2
G + C2

B = 1 [10], and C̄ is the quaternion
conjugate of C. Then, we can have the flow equation, Eq.(14) for quaternion
RGB by replacing Eq.(13) with

P i = g
∂F

∂Qi
x

, Qi = g
∂F

∂Qi
y

(20)

where Qi ∈ {I0, R, G, B}. The correlation between the channels are introduced
via a quaternion multiplication between Q(Q̄) and C(C̄) [8] as well as the metric
on the image (graph) manifold. When we set gμν to the identity metric as we have
done previously, and CR = CG = CB = 1/

√
3, we have the isotropic diffusion of

the color image in the quaternion framework presented in [8]:

dI0

dt
= cos θφ�I0 − sin θφ

1√
3
�(R + G + B), (21)

dQi

dt
= cos θφ�Qi + sin θφ

1√
3
�(I0 + Qj − Qk), (22)

where i,j and k follow the cyclic permutation of R,G and B. When θφ is nega-
tive, Eq.(21) will have a form similar to that of Eq.(17). This implies that the
scalar part of the quaternion diffusion will capture the smoothed second order
of (R+G+B)/

√
3 [8]. Additionally, recalling that correlation between channels

is introduced only by the image metric, Eq.(9) in the case of complex diffu-
sion, we can recognize that the quaternion algebra introduces alternative type
of correlation between channels in Eq.(22).

3 Denoising and Edge Enhancement Experiments

In this paper, we apply our method to noisy color images using an image graph
representation. There are two parameters in our model: the exponent β in
Eq.(14) and θ in Eq.(11). In [5], large values of phase, θ, made edges represented
by the imaginary part thicken with increasing iterations, and small θ less than 5
degrees was recommended for isotropic and anisotropic diffusion to retain sharp
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edges. In contrast, in our work here, large phase values increase the magnitude
of the imaginary part and slow down diffusion speed near edges, which prevent
thick edges due to large θ. The exponent, β of the non-linear scale multiplier
influences the diffusion flows geometrically. For example, the diffusion equations
from Polyakov action with different β values results in different flows like the
Beltrami flows, Panora-Malik flows, Mean curvature flows and others [2,11]. The
main purpose of this multiplicative factor is to achieve edge-preserving denoising.
In this paper, we choose β from the interval [0.5, 1]. These two free parameters
are chosen empirically based on the amount of noise in the data.

3.1 Denoising Experiments

The results of denoising depend on parameters, θ and β, similar to the earlier
approaches [2,5]. The optimal parameter values depend on the amount of noise.
The larger phase angles, θ and βs, lead to diffusions that are more sensitive to
edges. We have applied the complex RGB flow and the quaternion flow to color
images with added Gaussian noise, and compared the results with Beltrami flow.
Our test image had an additive Gaussian noise of 25.3dB. Fig.2(a) and Fig.2(b)
show original image and the noisy version respectively. We used the peak SNR
(PSNR) as the stopping criteria for iterations. We stopped the iterations when
the denoised images reached the maximum PSNR. Fig.2(c) and Fig.2(d) show
denoised images obtained using the complex (RGB) flow with θ = 7π/30 and
β = 5/6, and the quaternionic flow with θφ = −7π/30 ,β = 5/6 and CR = CG =
CB = 1/

√
3. All the experiments reported here were implemented in Matlab

2007a, on an Intel Core Duo 2.16GHz CPU. The step size of time iteration is 0.1.
We achieved the denoising using the complex (RGB) flow with a maximum PSNR
of 26.6 dB in 38.6 seconds. Similarly, for the quaternionic flow the maximum
PSNR is 26.5 dB and the processing time is 27.8 seconds. Fig.2(e) shows a
denoised image using Beltrami flow with maximum PSNR of 25.4 dB and a
processing time of 13.8 seconds (76 iterations). The result of the complex flow
depicts higher degree of smoothing than that due to the Beltrami flow. When the
noise is in the image detail, Beltrami flow tends to confuse the noise as detail, and
this effect slows down diffusion velocity locally. Fig.2(f) shows the denoised image
using Beltrami flow after a processing time of 89.8 secs. (500 iterations). The
result is still noisy even after several iterations compared with the results from
complex diffusion. The complex diffusion and quaternion diffusion yield results
comparable to each other in quality, and are better than the Beltrami flow.
However, the quaternion diffusion required less processing time compared to the
complex diffusion case. This is due to the fact that the quaternion representation
is 6-dimensional when using an RGB color image graph, where as the complex
diffusion of the RGB image graph is 8-dimensional. Fig.3 shows imaginary parts
of Figures 2(a)-2(d). Fig.3(a) and Fig.3(b) have been achieved after just one
iteration on Fig.2(a) and Fig.2(b) respectively. We can see that the imaginary
parts are also smoothed along with their corresponding real parts, which we
consider as the processed images of the target image.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. (a) and (b) an original image and the image with the Gaussian noise of peak
SNR 25.3dB respectively. (c) denoised image using complex RGB flows. (d) denoised
image using quaternionic flows. The parameters are θ = 7π/30 and β = 5/6 and
the three pure quaternion components are 1/

√
3. (e) and (f) images obtained using

Beltrami flows with different processing times.

(a) (b) (c) (d)

Fig. 3. (a) Imaginary part of Fig.2(a). (b) Imaginary part of Fig.2(b). (c) and (d)
imaginary parts corresponding to Fig.2(c) and Fig.2(d) respectively (a) and (b) have
been achieved after one iteration. All images are rescaled to 8-bit images for display.

3.2 Image Reconstruction

Recall that the imaginary part of complex diffusion corresponds to the smooth
second order derivative and the real part corresponds to smoothed image. Hence,
it is very natural to consider the imaginary part as a high-pass filter and the real
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Fig. 4. Gray dashed line: PSNR of a denoised image by Eq. (14) without the recon-
struction. Black solid line: PSNR with the reconstruction. The maxima of the black
and gray lines are 26.44 dB and 26.57 dB respectively.

part as a low-pass filter, and think of addition of these two parts to recover orig-
inal image which is an enhanced version of the original and contains smoothed
edges. This process is similar to the image reconstruction via wavelet transfor-
mation, in which we add the lowest resolution version of low-pass filtered image
with a sequence of high pass filtered images from the lowest resolution up to
the desired resolution. However, we add the real part (low pass-filtered version)
to the imaginary part (high pass-filtered version) so as to recover the smoothed
and enhanced original image. (θ must always be positive, the reason for which
will be explained in next section.) If we update the real parts by this addition
after every iteration, the image can be denoised by diffusion as well as achieve
reconstruction. To see this in detail, we discretize Eq.(3) and Eq.(4) in time, as
follows:

Ii+1
R = Ii

R + Δt(cos θhiIi
R − sin θhiIi

M ) (23)

Ii+1
M = Ii

M + Δt(sin θhiIi
R + cos θhiIi

M ) (24)

Here, Δt is the time-step size of the iteration. Then we can evaluate IR and IM

after i iterations, by a recursive relation :

Ii+1
R = I0

R + Δt

i∑
j=0

(cos θhjIj
R − sin θhjIj

M ), (25)

Ii+1
M = I0

M + Δt

i∑
j=0

(sin θhjIj
R + cos θhjIj

M ). (26)
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Here, IM0 is set to be zero. However, if we reset the real part to a sum of the
imaginary and real part so as to obtain a reconstruction (Ii+1

R → Ii+1
R + Ii+1

M )
after each iteration (and before next iteration), Eq.(23) can be rewritten as,

Ii+1
R = Ii

R + Ii
M + Δt((cos θ + sin θ)hiIi

R + (cos θ − sin θ)hiIi
M ), (27)

Rewriting Eq.(25) using Eq.(27) gives us the following recursive relationship:

Ii+1
R = I0

R +
i∑

j=0

Ij
M + Δt

i∑
j=0

((cos θ + sin θ)hjIj
R + (cos θ − sin θ)hjIj

M ). (28)

noise with 25.3dB PSNR. The gray dashed line in Fig.4 represents the PSNR
results obtained by applying Eq. (14) without the reconstruction, and the black
solid line in Fig.4 represents PSNR results with the reconstruction. The maxima
of the black and gray line are 26.44 dB and 26.57 dB respectively. We can see
that the reconstruction at each iteration is improves the smoothing process. This
test was done with the parameter values: β = 5

6 and θ = π
6 .

(a) (b) (c)

(d) (e) (f)

Fig. 5. (a) Original image. (b) and (c) Enhanced images with β = 1/2 , θ = −π/6 and
θ = −π/3 respectively after 16 iterations. (d) and (e) Enhanced images with β = 5/6,
θ = −π/6 and θ = −π/3 respectively after 20 iterations. (f) Enhanced image with
same parameters after 25 iterations.
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4 Image Enhancement

It has been shown in [5] that the imaginary part of the isotropic complex dif-
fusion can be applied to shock filter since the imaginary part contains the edge
information of the real part. We consider the real part as the processed image
of the target image. This characteristic of the imaginary part allows us to apply
the imaginary part to edge-preserving smoothing as well as image enhancement.
In the previous section, we have introduced the idea of image reconstruction.
In the case of smoothing, θ has been set to be positive. According to Eq.(26),
the diffusion of imaginary part behaves as edge smoothing due to the first term,
where sin θ is positive. On the other hand, negative θ makes Eq.(26) perform
edge enhancement. Therefore, in order to enhance images, we reconstruct the
image after every iteration with negative θ as was done in section 3.2.

Fig.5 shows the enhanced results with various parameters. Fig.5(a) is the
original image, and Fig.5(b) and Fig.5(c) are the enhanced images with the pa-
rameters vales: β = 1

2 , and θ = −π
6 and θ = −π

3 respectively after 16 iterations.
We can see that the edges are over-enhanced in Fig.5(c) due to the larger sin θ
of Eq.(26) than those in Fig.5(b). Also, the small value of β makes the diffusion
flow less sensitive to edges and produces thick edges. Images in the bottom row
of Fig.5 show enhancement results with β = 5

6 . The larger value of β results in
sharper edges and more details.

5 Conclusion and Discussion

In this paper, we presented a novel formulation of complex diffusion for simulta-
neous image smoothing and edge enhancement. The formulation involved the use
of an image graph representation as an embedded manifold, a novel image metric
and a novel action functional yielding a new complex diffusion. Additionally, we
developed a new quaternionic diffusion using this geometric framework for color
images and demonstrated improved performance over the Beltrami flow. Com-
parisons were reported on data with added noise, using PSNR as a quantitative
measure. Finally, we presented a “wavelet-like” interpretation of the complex
diffusion. We interpreted the real and imaginary part of the complex diffusion
as a low pass and high pass filter respectively and applied this concept to image
reconstruction and enhancement. When performing the image reconstruction it-
eratively, we achieved faster convergence to the PSNR with positive θ and image
enhancement with negative θ. Our future work will involve application of the
proposed model to the complex-valued MRI data.
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Abstract. The problem of recovering a high-resolution image from a
set of distorted (e.g., warped, blurred, noisy) and low-resolution images
is known as super-resolution. Accurate motion estimation among the
low-resolution measurements is a fundamental challenge of the super-
resolution problem. Some recent promising advances in this area have
been focused on coupling or combing the super-resolution reconstruction
and the motion estimation. However, the existing approach is limited to
parametric motion models, e.g., affine. In this paper, we shall address the
coupled super-resolution problem with a non-parametric motion model.
We address the problem in a variational formulation and propose a
PDE-approach to yield a numerical scheme. In this approach, we use
diffusion regularizations for both the motion and the super-resolved im-
age. However, the approach is flexible and other suitable regularization
schemes may be employed in the proposed formulation.

1 Introduction

Naturally, there is always a demand for higher quality and higher resolution
images. The level of image detail is crucial for the performance of many computer
vision algorithms [2,3,7,8,9,12,14,16,20].

Many of the current imaging devices typically consist of arrays of light detec-
tors. A detector determines pixel intensity values depending upon the amount
of light detected from its assigned area in the scene. The spatial resolution of
images produced is proportional to the density of the detector array: the greater
the number of pixels in the image, the higher the spatial resolution [16]. In many
applications, however, the imaging sensors have poor resolution output. When
resolution can not be improved by replacing sensors, either because of cost or
hardware physical limits, one can resort to resolution enhancement algorithms.
Even when superior equipment is available, such algorithms provide an inexpen-
sive alternative. The problem of recovering a high-resolution (HR) image from
a set of distorted (e.g., warped, blurred, noisy) and low-resolution (LR) images
is known as super-resolution [2,7,8,12,14,16,20].

Fusion of the information from the observations is a fundamental challenge
in the recovery process. With just one imaging device and under the same light-
ing conditions, we require some relative motions from frame to frame. Each LR

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 112–125, 2009.
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frame should provide a different look at the same scene. Motion and nonredun-
dant information obtained from different frames are what make super-resolution
feasible [16].

1.1 A Brief History

The super-resolution literature has significantly expanded in the past 20 years. A
rather recent and comprehensive survey of super-resolution techniques is given
in [8]. Historically, Irani and Peleg [14] proposed an iterative back-projection
method to address the super-resolution problem. Sauer and Allebach [18], and
Tekalp, Ozkan and Sezan [23] modelled super-resolution as an interpolation prob-
lem with nonuniformly sampled data and used a projection onto convex sets
algorithm to reconstruct the image. Ur and Gross [27] considered Papoulis’ gen-
eralized multichannel sampling theorem [17] for interpolating values on a higher
resolution grid. Shekarforoush and Chellappa [22] extended Papoulis’ theorem
for merging the nonuniform samples of multiple channels into HR data. Aizawa
et al. [1] also modelled super-resolution as an interpolation problem with nonuni-
form sampling and used a formula related to Shannon’s sampling theorem [21]
to estimate values on a HR grid. Tsai and Huang [26] were among the first to
superresolve a HR image from several sampled LR frames. Hardie et al. [12] pro-
posed a joint MAP registration and restoration algorithm using a Gibbs image
prior. Schultz and Stevenson [20] used a Markov random field model with Gibbs
prior to better represent image discontinuities, such as transitions across sharp
edges. More recently Farsiu et al. [9] proposed an alternative data fidelity, or
regularization term based on the �1 norm which has been shown to be robust
to data outliers. They proposed a novel regularization term called Bilateral-TV
which provides robust performance while preserving the edge content common
to real image sequences.

1.2 Coupled Motion Estimation

Accurate motion estimation has been a very important aspect of super-resolution
schemes. In many existing super-resolution approaches, the motion is computed
directly from the LR frames, while many other super-resolution algorithms unre-
alistically assume that motion parameters are precisely known. In general, how-
ever, accurate motion estimation of subpixel accuracy remains a fundamental
challenge in super-resolution reconstruction algorithms.

In a recent work [6], it has been suggested that the motion can be relaxed
from a strict grid mapping to a multi-pixel-pair intensity relation. In this view,
pixel-pairs in different frames may be relevant to each other with some measured
probability of confidence. In the method proposed in [6], instead of estimating
the motion vectors explicitly, a framework is provided in which such confidence
measures are evaluated and employed in the HR image reconstruction. However,
the algorithm is computationally intensive.

In general, it is believed that a combined super-resolution reconstruction and
motion estimation may be the key to address the super-resolution problem.
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A novel method towards this direction is proposed in [4]. Although the authors
of [4] appreciate the importance of considering non-parametric motion models,
their proposed method is restricted to the parametric affine motion model. The
fact that authors of [4] have preferred to work with a parametric motion model
rather than a non-parametric one can be associated to the complexity of formu-
lations of the non-parametric approaches as discussed in [4].

1.3 The Agenda

In this work, we propose the coupled multi-frame super-resolution problem with
a non-parametric motion model. In Section 2, we will introduce the problem
as a minimization and present its corresponding variational formulation. For
consistency, we adopt our notations from [15]. In Section 3, we derive a PDE
with a steady-state solution that corresponds to the solution of the described
problem. The discretization and derivation of a numerical scheme for the PDE is
followed in Section 4. Finally, we will present various computational experiments
and concluding remarks in Sections 5 and 6.

2 Mathematical Formulation

Throughout, images are d-dimensional and are assumed as compactly supported
elements of L2(Ω), Ω ⊂ Rd, unless otherwise stated.

Forward Model. Assume that m low-resolution measurement images y1,
y2, . . . ym of an ideal image f are given. For every i = 1, . . . , m, yi is a noisy,
low-resolution realization of deformed copies of f via a d-dimensional vector field
ui = (ui,1, . . . , ui,d). Namely,

yi := Hfui + ni, i = 1, . . . , m, (1)

where ni is the additive noise, and fui denotes the deformed image f via ui, i.e.,
fui(x) = f(x − ui(x)). Throughout, we may also use the alternative notation of

Sif := fui .

Note that the operator Si is linear with respect to f although fui is a nonlinear
expression with respect to ui. The operator H : L2(Ω) → L2(Ω) is assumed to
be a known linear degradation operator modeled as a composition of a spatially
invariant blur K followed by a down-sampling operator D, i.e., H := D ◦ K.
Here, D is an impulse train constructed using the sum of uniformly spaced
Dirac functions [16,8,9,3,7]. To proceed, we formulate the corresponding super-
resolution problem. As opposed to what is typically common in the literature, we
assume that both the deformations and the high-resolution image are unknown
and try to recover both simultaneously.
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Problem 1. Given a set of m low-resolution measured images represented by
y := {y1, y2, . . . ym} and a degradation operator H, find a corresponding set of
deformations u := {u1, u2, . . . , um} and a high-resolution image f that minimizes

J [u, f ] := C[y; (u, f)] + R[u, f ]

in which C measures the consistency of the measurements y with the high-
resolution image f , and R is a regularization expression on [u, f ]. Here, we
use the sum of squares of intensity differences for the consistency measure

C[y; (u, f)] :=
1
2

m∑
i=1

||yi −Hfui ||
2
L2(Ω) , (2)

and the regularization is defined by

R[u, f ] :=
m∑

i=1

αiP [ui] + βQ[f ], (3)

in which α1, . . . , αm, β ∈ R+ are positive regularizing parameters. Hence, the
objective is to minimize

J [u, f ] =
1
2

m∑
i=1

||yi −Hfui ||
2
L2(Ω) +

m∑
i=1

αiP [ui] + βQ[f ]. (4)

We shall present a mathematical formulation to solve Problem 1. Briefly speak-
ing, we seek necessary conditions for optimality of [u, f ] by finding the Gâteaux
derivatives of the components of J with respect to [u, f ]. This shall provide us
with the corresponding Euler-Lagrange equations that will be used to form a
PDE which will be solved numerically.

Theorem 1. Let d ∈ N, and f, y1, y2, . . . ym are d-dimensional real-valued im-
ages, i.e., functions from Ω ⊂ Rd → R, f ∈ C2(Rd), u1, . . . , um : Rd → Rd,
v : R

d → R
md+1, Ω :=]0, n[d. The Gâteaux derivative of C[y; (u, f)] is given by

dC[y; (u, f); v] = −
∫

Ω

〈Φ(x, u(x), f(x)), v(x)〉Rmd+1 dx,

in which Φ : Rd × Rmd × R → Rmd+1,

Φ(x, u(x), f(x)) = [p1(x), . . . , pm(x), q(x)],

where

pi(x) := H∗[HSif(x) − yi(x)]∇Sif(x), i = 1, . . . , m,

q(x) := −
m∑

i=1

S∗
i H∗[HSif(x) − yi(x)],

in which H∗ and S∗
i represent the adjoint of operators H and Si respectively.

[see the proof in Appendix 1. Cf. [15] pp. 80.]
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Here, we focus on the special case where P and Q are diffusion regularization
expressions [15,11,10,13,24,25].

Theorem 2. Assume P and Q are diffusion regularization expressions and the
functionals Pe

i and Qe are respectively trivial extensions of P and Q, i.e.,

Pe
i [(u, f)] := P [ui] :=

1
2

d∑
j=1

∫
Ω

〈∇ui,j ,∇ui,j〉 dx, i = 1, . . . , m, (5)

Qe[(u, f)] := Q[f ] :=
1
2

∫
Ω

〈∇f,∇f〉 dx. (6)

Also, assume that Neumann boundary conditions are imposed, i.e.,

〈∇f(x),−→n (x)〉Rd = 〈∇ui,j(x),−→n (x)〉Rd = 0 for x ∈ ∂Ω and j = 1, . . . , d,

in which −→n denotes the outer normal unit vector of ∂Ω (boundary of Ω). The
Gâteaux derivative of Pe

i [(u, f); v] and Qe[(u, f); v] are respectively

dPe
i [(u, f); v] = −

∫
Ω

〈Ai[u](x), v(x)〉Rd+1 dx, i = 1, . . . , m,

dQe[(u, f); v] = −
∫

Ω

〈B[f ](x), v(x)〉Rd+1 dx

where, Ai[u](x) = (0Rd , . . . , 0Rd︸ ︷︷ ︸
i−1 times

, Δui,1(x), . . . , Δui,d(x), 0Rd , . . . , 0Rd︸ ︷︷ ︸
m−i times

, 0)

= (0Rd , . . . , 0Rd︸ ︷︷ ︸
i−1 times

, Δui(x), 0Rd , . . . , 0Rd︸ ︷︷ ︸
m−i times

, 0),

B[f ](x) = (0Rd , . . . , 0Rd︸ ︷︷ ︸
m times

, Δf(x)) = (0Rmd , Δf(x)).

Proof. The result yields applying the Green’s formula similar to [15] pp. 138.

Theorem 3. The Euler-Lagrange equations corresponding to the objective ex-
pression J = C +

∑m
i=1 αiPe

i + βQe identical to Equation (4) where C is defined
by Equation (2) and Pe

i , Qe are defined by Equations (5,6) respectively are

Φ(x, u(x), f(x)) +
m∑

i=1

αiAi[u](x) + βB[f ](x) = 0, x ∈ Ω, (7)

with Neumann boundary conditions. These can also be written as

H∗[HSif(x) − yi(x)]∇Sif(x) + αiΔui(x) = 0Rd ,

i = 1, . . . , m, x ∈ Ω,
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−
m∑

i=1

S∗
i H∗[HSif(x)−yi(x)]+βΔf(x) = 0, x ∈ Ω,

〈∇f(x),−→n (x)〉Rd = 〈∇ui,j(x),−→n (x)〉Rd = 0,

j = 1, . . . , d, i = 1, . . . , m, x ∈ ∂Ω.

Proof. The result yields from Theorem 1 and substitution (Cf. [15] pp. 138.) .

3 A Corresponding PDE

There exist various ways to solve Equation (7). A possibility that we pursue here
is to formulate the solution as the steady-state solution of a corresponding PDE
similar to [15]. We propose

∂t(u(x, t), s f(x, t)) = Φ(x, u(x, t), f(x, t)) +
m∑

i=1

αiAi[u](x) + βB[f ](x) x ∈ Ω, t ≥ 0,

where s is a scale factor. Assuming Φ = (p1, . . . , pm, q) the PDE can be written as

∂tu
(i)(x, t) = pi(x, u(x, t), f(x, t)) + αiΔui(x, t), (8)

i = 1 . . . , m, x ∈ Ω, t ≥ 0,

s ∂tf(x, t) = q(x, u(x, t), f(x, t)) + βΔf(x, t), x ∈ Ω, t ≥ 0, (9)

where,

pi(x, u, f) := H∗[HSif(x)−yi(x)]∇Sif(x), i = 1 . . . , m,

q(x, u, f) := −
m∑

i=1

S∗
i H∗[HSif(x)− yi(x)].

4 Discretization and Numerical Scheme

To numerically solve the derived PDE in Equations (8,9), we evaluate expressions
at discrete time variable {tk+1}

∂tui(x, tk+1) = pi(x, u(x, tk), f(x, tk)) + αiΔui(x, tk+1), (10)

i = 1, . . . , m, x ∈ Ω,

s ∂tf(x, tk+1) = q(x, u(x, tk+1), f(x, tk+1)) + βΔf(x, tk+1), x ∈ Ω. (11)

Notice that due to the nonlinearity of pi with respect to ui, f is evaluated at
tk instead of tk+1 in Equation (10) [cf. [15] pp. 80] which translates to apply-
ing a fixed-point iteration scheme. However, q is linear with respect to f and
tk+1 is used consistently in Equation (11). Using a spatial discretization X of
Ω that includes nd voxels (pixels) corresponding to a unit space step in every
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dimension due to the definition of Ω :=]0, n[d, and a time step of τ1, we define
for j = 1, . . . , d, and k = 0, 1, 2, . . .

Uk
i,j(X) := ui,j(X, τ1k) := Discretized(uj(x, tk)),

F k(X) := f(X, τ1k) := Discretized(f(x, tk)),

Yi(X) := yi(X) := Discretized(yi(x)).

Furthermore, AUk
i,j := Δui,j(X, τ1k) := Discretized(Δui,j(x, tk)),

AF k := Δf(X, τ1k) := Discretized(Δf(x, tk)),

in which A ∈ Rnd×nd

is defined such that

AUk
i,j ≈

d∑
l=1

∂xl,xl
ui,j(X, τ1k) and AF k ≈

d∑
l=1

∂xl,xl
f(X, τ1k).

[See Appendix 2 for the precise definition of A.] Also, assume that H is a matrix
that represents H, and its transpose HT represents H∗ in the discretization.
Appendix 3 gives the precise definition of H, which is assumed as the matrix
product of the local averaging blur K by a zooming factor of z ∈ N in every
direction, multiplied by down-sampling matrix of factor z in every direction
represented by D. Furthermore, Sk

i is the sparse matrix constructed using Uk
i .

This matrix provides a discrete approximation of the operator Si for i = 1, . . . , m.
[See [4] Equations (3,4) for the precise construction of such matrix using linear
interpolation for 2-dimensional images i.e., d = 2.]

Substituting the discretization in the PDEs of Equations (10,11) leads that
for j = 1, . . . , d, k = 0, 1, 2, . . .

Uk+1
i,j − Uk

i,j

τ1
= HT [HSk

i F k − Yi] · ∂jSk
i F k + αiAUk+1

i,j ,

s
F k+1 − F k

τ1
= −

m∑
i=1

(Sk+1
i )T HT [HSk+1

i F k+1 − Yi] + βAF k+1.

Defining τ2 := τ1/s gives(
I− τ1αiA

)
Uk+1

i,j = Uk
i,j + τ1HT [HSk

i F k − Yi] · ∂j Sk
i F k,(

I−τ2βA+τ2

m∑
i=1

(Sk+1
i )T HT HSk+1

i

)
F k+1 = F k+τ2

m∑
i=1

(Sk+1
i )T HT Yi,

where I ∈ Rnd×nd

is the identity matrix.
This yields

Uk+1
i,j =

(
I − τ1αiA

)−1[
Uk

i,j + τ1HT [HSk
i F k − Yi] · ∂j Sk

i F k
]
,

F k+1 =
(
I−τ2βA+τ2

m∑
i=1

(Sk+1
i )T HT HSk+1

i

)−1[
F k+τ2

m∑
i=1

(Sk+1
i )T HT Yi

]
.

Finally, we use the initialization vectors F 0 = U0
i,j = 0

Rnd , for i = 1, . . . , m,
j = 1, . . . , d.
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5 Computational Experiments

In this Section we present a few computational examples to verify the derived
numerical scheme. Figures 1 and 2 show the results of evaluating the proposed
super-resolution algorithm on image sequences taken from the data-set library
of MDSP at U. California Santa Cruz
(http://www.soe.ucsc.edu/ milanfar/software/sr-datasets.html).

In Figure 1, the first m = 30 frames, of an 8-bits text sequence, of size 48×48 is
used and independent additive white Gaussian noise of standard deviation σ = 5
is added to the LR frames. The results are shown along with the parameters
described in the caption of the Figure.

In Figure 2, the same kind of experiment is performed over a total of m = 60
frames, of an 8-bits surveillance sequence, of size 32× 32 and again independent
additive white Gaussian noise of standard deviation σ = 5 is added to the
LR frames. The results are shown along with the parameters described in the
Figure’s caption.

(a) (b) (c) (d) (e)

Fig. 1. (a) LR frame #1. (b) Nearest neighbor interpolation on the LR frame #1. (c)
Bilinear interpolation on the LR frame #1. (d) Average of the bilinear interpolation of
all 30 LR frames. (e) Super resolution result of frame #1 in d = 2 dimensions of n = 48
pixels in every dimension, zooming factor z = 2, total number of LR frames m = 30,
regularization parameters αi=4000, i = 1, . . . , 30, β = 1, and time steps τ1 = 0.01,
τ2 = 1010, where 10 iterations are applied.

(a) (b) (c) (d) (e)

Fig. 2. (a) LR frame #1. (b) Nearest neighbor interpolation on the LR frame #1. (c)
Bilinear interpolation on the LR frame #1. (d) Average of the bilinear interpolation of
all 60 LR frames. (e) Super resolution result of frame #1 in d = 2 dimensions of n = 32
pixels in every dimension, zooming factor z = 2, total number of LR frames m = 60,
regularization parameters αi=4000, i = 1, . . . , 60, β = 1, and time steps τ1 = 0.01,
τ2 = 1010, where 10 iterations are applied.
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(a) (b) (c) (d) (e)

(f)

Fig. 3. (a) LR frame #1. (b) Nearest neighbor interpolation on the LR frame #1. (c)
Bilinear interpolation on the LR frame #1. (d) Average of the bilinear interpolation
of all 40 LR frames. (e) Super resolution result of frame #1 in d = 2 dimensions of
n = 32 pixels in every dimension, zooming factor z = 2, total number of LR frames
m = 40, regularization parameters αi=4000, i = 1, . . . , 40, β = 0.1, and time steps τ1 =
0.01, τ2 = 1010, where 10 iterations are applied. (f) The HR ground truth relating to
frame #1.

Finally, in Figure 3, we have performed the experiments over a portion of a
locally-averaged and down-sampled ultrasound sequence of m = 60 frames of
size 32 × 32, for which the original HR image relating to frame #1 is given in
Figure 3(f). The efficiency of the technique can be simply observed by comparing
the image (e) of each Figure to the other images in the figure.

Note that in all of the experiments, we have assumed τ2 = 1010. In general,
if we assume τ2 = ∞, [i.e., solving Equation (11) for f assuming s = 0] at each
iteration yields

Uk+1
i,j =

(
I − τ1αiA

)−1[
Uk

i,j + τ1HT [HSk
i F k − Yi] · ∂j Sk

i F k
]
,

F k+1 =
(
−βA+

m∑
i=1

(Sk+1
i )T HT HSk+1

i

)−1[ m∑
i=1

(Sk+1
i )T HT Yi

]
,

with initialization vectors F 0 = U0
i,j = 0

Rnd , for i = 1, . . . , m, j = 1, . . . , d.

6 Concluding Remarks

Accurate motion estimation is a fundamental challenge of the super-resolution
problem. Some recent promising advances in this area have been focused on
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coupling or combing the super-resolution reconstruction and the motion estima-
tion. However, the existing approach is limited to parametric motion models,
e.g., affine [4]. In this paper, we addressed the coupled super-resolution problem
with a non-parametric motion model. We addressed the problem in a variational
formulation and proposed a PDE-approach to yield a numerical scheme. In this
approach, we used diffusion regularizations for both the motion and the super-
resolved image. However, the approach is flexible and other suitable regulariza-
tion schemes (e.g., total variation) may be employed in the proposed formulation.
Furthermore, multi-scale implementations of the approach seem feasible and can
improve the convergence of the numerical scheme towards a global minimizer.
Finally, computational validation on other image sequences and addressing the
problem of automatic parameter selection are natural steps in extending the
presented theory.
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Appendix 1: Proof of Theorem 1

Proof. Split the variation v(x) as v(x) :=
(
v1(x), . . . , vm(x), g(x)

)
in which

vi(x) ∈ Rd, i = 1, . . . , m and g(x) ∈ R. Also define,

pi(x) := H∗[HSif(x) − yi(x)]∇Sif(x), i = 1, . . . , m,

q(x) := −
m∑

i=1

S∗
i H∗[HSif(x) − yi(x)].

Using the Taylor expansion of fui+hvi(x) and gui+hvi(x) with respect to h at
the point x − u(x),

fui+hvi(x) = f(x − ui(x) − hvi(x))) = fui(x) − h〈∇fui(x), vi(x)〉Rd + O(h2),

gui+hvi(x) = g(x − ui(x) − hvi(x))) = gui(x) − h〈∇gui(x), vi(x)〉Rd + O(h2),

for every i = 1, . . . , m. Directly using the definitions and the linearity of H

d C [y; (u, f); v]

= lim
h→0

1
h

(C[y; (u, f) + hv] − C[y; (u, f)])

= lim
h→0

1
h

(C[y; (u1 + hv1, . . . , um + hvm, f + hg)] − C[y; (u1, . . . , um, f)])

= lim
h→0

1
2h

m∑
i=1

∫
Ω

[yi(x) −H(f + hg)ui+hvi
(x)]2 − [yi(x) −Hfui

(x)]2 dx

= lim
h→0

1
2h

m∑
i=1

∫
Ω

[yi(x) −Hfui+hvi
(x) − hHgui+hvi

(x)]2 − [yi(x) −Hfui
(x)]2 dx

= lim
h→0

1
2h

m∑
i=1

∫
Ω

[yi(x) −H(fui
(x) − h〈∇fui

(x), p(x)〉Rd + O(h2)) − hHgui
(x) + O(h2)]2

− [yi(x) −Hfui
(x)]2 dx

= lim
h→0

1
2h

m∑
i=1

∫
Ω

2[yi(x) −Hfui
(x)][h]H(〈∇fui

(x), vi(x)〉Rd − gui
(x)) + O(h2)dx

= −

m∑
i=1

∫
Ω

[Hfui
(x) − yi(x)]H(〈∇fui

(x), vi(x)〉Rd − gui
(x))dx

= −

m∑
i=1

∫
Ω

[
[Hfui

(x) − yi(x)]H(〈∇fui
(x), vi(x)〉Rd)

]
dx +

m∑
i=1

∫
Ω

[Hfui
(x) − yi(x)]Hgui

(x)dx.
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Hence,

d C [y; (u, f); v]

= −
m∑

i=1

〈
[Hfui(x) − yi(x)],H(〈∇fui (x), vi(x)〉Rd)

〉
L2(Ω)

+
m∑

i=1

〈
[Hfui(x) − yi(x)],Hgui(x)

〉
L2(Ω)

= −
m∑

i=1

〈
H∗[Hfui(x) − yi(x)], (〈∇fui (x), vi(x)〉Rd )

〉
L2(Ω)

+
m∑

i=1

〈
H∗[Hfui(x) − yi(x)], gui(x)

〉
L2(Ω)

= −
m∑

i=1

〈
H∗[Hfui(x) − yi(x)], (〈∇fui (x), vi(x)〉Rd )

〉
L2(Ω)

+
m∑

i=1

〈
H∗[Hfui(x) − yi(x)],Sig(x)

〉
L2(Ω)

= −
m∑

i=1

〈
H∗[Hfui(x) − yi(x)], (〈∇fui (x), vi(x)〉Rd )

〉
L2(Ω)

+
m∑

i=1

〈
S∗

i H∗[Hfui(x) − yi(x)], g(x)

〉
L2(Ω)

= −
m∑

i=1

∫
Ω

〈pi(x), vi(x)〉Rd dx +
m∑

i=1

∫
Ω

S∗
i H∗[Hfui(x) − yi(x)]g(x) dx

= −
∫

Ω

[
m∑

i=1

〈pi(x), vi(x)〉Rd −
m∑

i=1

S∗
i H∗[Hfui(x) − yi(x)]g(x)

]
dx

= −
∫

Ω

[
m∑

i=1

〈pi(x), vi(x)〉Rd + q(x)g(x)

]
dx

= −
∫

Ω

〈p1(x), v1(x)〉Rd + · · · + 〈pm(x), vm(x)〉Rd + 〈q(x), g(x)〉R

]
dx

= −
∫

Ω

〈(
p1(x), . . . , pm(x), q(x)

)
,
(
v1(x), . . . , vm(x), g(x)

)〉
Rmd+1

dx

= −
∫

Ω

〈Φ(x, u(x), f(x)), v(x)〉Rmd+1 dx.
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Appendix 2: Definition of A

A ∈ Rnd×nd

is defined as A :=
∑d

l=1 Al where Al = I⊗ · · · ⊗ I︸ ︷︷ ︸
l−1 times

⊗B⊗I⊗ · · · ⊗ I︸ ︷︷ ︸
d−l times

,

in which I ∈ Rn×n is identity matrix and ⊗ denotes the Kronecker product of
matrices. The lth factor B ∈ Rn×n is an approximation of the second order
derivative in only one spatial direction. More precisely, it can be defined as the
tridiagonal matrix

B =

⎛⎜⎜⎜⎜⎜⎝
−2 1 0 . . . 0
1 −2 1 . . . 0
...

. . . . . . . . .
...

0 . . . 1 −2 1
0 . . . . . . 1 −2

⎞⎟⎟⎟⎟⎟⎠ .

Appendix 3: Construction of Matrices K, D, and H

Given the zooming factor z ∈ N, we define K ∈ R
(n−z+1)d×nd

as K := K1 ⊗ · · · ⊗ K1︸ ︷︷ ︸
d times

in which K1 ∈ R
(n−z+1)×n is

K1 =
1
z

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 . . . 1︸ ︷︷ ︸
z times

0 . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
n−z times

0 1 . . . 1︸ ︷︷ ︸
z times

0 . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
n−z−1 times

0 0 1 . . . 1︸ ︷︷ ︸
z times

0 . . . . . . . . . . . . 0︸ ︷︷ ︸
n−z−2 times

...
...

...
...

0 . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
n−z times

1 . . . 1︸ ︷︷ ︸
z times

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Also, D ∈ R
�n/z�d×(n−z+1)d

is defined as D := D1 ⊗ · · · ⊗ D1︸ ︷︷ ︸
d times

, where

D1 ∈ R�n/z�×(n−z+1) is

D1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .0︸ ︷︷ ︸
n−z times

0 . . . . . . 0︸ ︷︷ ︸
z times

1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . .0︸ ︷︷ ︸
n−2z times

0 . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
2z times

1 0 . . . . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
n−3z

...
...

...
...

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0︸ ︷︷ ︸
(�n/z�−1)z times

1 0 . . . . . . 0︸ ︷︷ ︸
n−(�n/z�)z times

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, H ∈ R�n/z�d×nd

is defined as the matrix multiplication of H := D×K.
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Abstract. In this paper we present a variational method for determin-
ing cartoon and texture components of the optical flow of a noisy image
sequence. The method is realized by reformulating the optical flow prob-
lem first as a variational denoising problem for multi-channel data and
then by applying decomposition methods. Thanks to the general formu-
lation, several norms can be used for the decomposition. We study a
decomposition for the optical flow into bounded variation and oscillat-
ing component in greater detail. Numerical examples demonstrate the
capabilities of the proposed approach.

1 Introduction

Let be given Ω ⊆ R2, a rectangular domain, and let the spatial-temporal function
f : Ω× [0,∞) → R be a representation of a continuous image sequence. The goal
of this work is to apply image decomposition methods to separate the optical
flow belonging to f in texture and cartoon parts.

For this purpose we first review on optical flow estimation and decomposition
methods.

Optical flow estimation
Optical flow estimation is used to determine the motion in an image sequence
by tracking pixels of constant intensity. For an excellent overview on optical
flow estimation we refer to [11]. The standard optical flow model is differential
and based on a Taylor series expansion, requiring that f ∈ C1(Ω × [0,∞); R2).
The optical flow is a characteristics w = (w1, w2)T , w1 = w1(x1, x2, t), w2 =
w2(x1, x2, t) of the differential equation

ft + fx1w1 + fx2w2 = 0 for (x1, x2) ∈ Ω, t ∈ [0,∞) . (1)

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 126–139, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In mathematical terms characteristics are the paths of constant intensity. Vari-
ational optical flow methods are based on least squares formulations, consisting
in minimization of the functional

w → S(w) :=
1
2
‖ft + fx1w1 + fx2w2‖2

L2(Ω) . (2)

The minimization problem is ill-posed, which is usually overcome by adding
a convex regularization term R to S. For λ > 0, the regularized optical flow
problem consists in minimization of

w → 1
λ
S(w) + R(w) . (3)

Optical flow methods have been pioneered in [12]. There, the squared L2-norm
of the gradient is used for regularization and therefore the method consists in
minimization of

w → 1
λ
S(w) +

1
2
‖∇w‖2

L2(Ω;R2) . (4)

This regularization approach has the drawback that the computed optical flow
field w is not aligned with edges in f1 and f2. To overcome this drawback gen-
eralized regularization functionals R have been considered in the literature. See
for instance [9,10,19,6], to name but a few. An extensive survey on variational
methods in optical flow estimation is given in [18]

Image decomposition models.
Recently, decomposition models of gray-value images into structural and textural
components have been studied [14,16,15]. Generally speaking, for an image I,
these models consist in minimizing the functional

(u, v) �→ 1
2λ

‖u + v − I‖2 + NU (u) + γNV (v) over u ∈ U , v ∈ V (5)

The minimizer (u, v) of (5) is considered the structural and textural component
of I. In [4], various spaces U (such as BV (Ω), the Sobolev spaces W 1,p

0 (Ω), and
the homogeneous Besov space U = Ḃ1

1,1) with associated seminorms NU and
duals V = U∗, NV = (NU )∗ have been examined. As it is reported there, the
choice U = BV (Ω) and NU the total variation seminorm is very interesting,
since the dual of the total variation seminorm approximates Meyer’s G-norm
[14]. The G-norm is suitable to model texture, because it takes small values on
oscillating functions.

Optical flow decomposition models
Quite recently, there have been established decomposition models for optical flow
models. In particular, for analyzing experimental fluid flow data, decomposition
into solenoidal components (div w) and vortices (curl w) of the flow w are
calculated (see [13,21,20]). There, minimizers of functionals of the form

S(w) + λd

∫
Ω

|∇div w|pddxdy + λc

∫
Ω

|∇curl w|pcdxdy + γ

∫
∂Ω

(∂nw)2ds (6)
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with pd, pc ∈ {1, 2} are used for optical flow decomposition.
A duality based model for optical flow estimation is proposed in [22]. Functionals
of the form

Eθ(u, v) =
∫

Ω

{∑
d

|∇ud| +
1
2θ

∑
d

v2
d + λ |ρ(u + v)|

}
dx (7)

are minimized. Here, u = (ud)d and v = (vd)d are flow fields, |ρ| is a data
fidelity function, being small if u+v solves the optical flow equation, and λ > 0,
θ > 0 are weighting parameters. The arising optical flow w = u+ v is implicitly
decomposed into a component u of small total variation and a component v of
small L2-norm.

Outline of the paper
In this paper we apply the variational decomposition models of [4] to optical flow
problems. To do so, we first reformulate the optical flow problem as an image
denoising problem for vector valued data (cf. Section 2). In section 3 we recall
recent methods for image decomposition of color data [5] and decomposition
models for gray valued data [3] and adopt them for optical flow decomposition.
We present a general formulation of variational optical flow decomposition which
allows for utilizing various spaces and seminorms. In section 4, we particularly
focus on the total variation seminorm and Meyer’s G-norm. Moreover, a variant
of Chambolle’s algorithm (originally used for total variation denoising) is used
to compute numerical examples in section 5, which demonstrate the feasibility
of the proposed method.

2 Reformulation as a Denoising Problem and Optical
Flow Decomposition

The matrix A0 := ∇f(∇f)T has rank one, is positive semi-definite with non-
trivial kernel, which consists of all vector valued functions, which are orthogonal
to ∇f . Moreover, 〈u, v〉A0

=
∫

Ω
uT A0v is an inner product and by |u|2A0

:=
〈u, u〉A0

=
∫

Ω uT A0u a seminorm is given. For further rewriting the optical
flow least-squares functional S, defined in (2), we use a full rank approximation
of A0, which is derived in two steps. We first regularize A0 by setting Ã :=
((A0)T A0 + εId)

1
2 . Here, Id denotes the identity matrix and ε > 0 is a small

regularization parameter. This way, Ã is positive definite. Second, we apply an
anisotropic evolution to the matrix Ã to enhance the structure of the underlying
image data. We solve

∂taij = div g(|∇A∇AT |)∇aij (8)

aij(0) = ãij (9)

It can be checked easily, that the matrix A is positive definite. Moreover, in
[7,17], it is reported that this preprocessing is very appropriate for optical flow
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estimation in noisy data. As a consequence, 〈u, v〉A =
∫

Ω
uT Av is a scalar

product (which we call A-scalar product) on the weighted L2-space

L2(Ω; A) =
{

u : ‖u‖A :=
√
〈u, u〉A < ∞

}
. (10)

The optical flow least squares functional S, defined in (2), can now be approxi-
mated by the squared of the A-norm of the optical flow residual. To see this let

f̂ :=
1

|∇f |(−ftfx,−ftfy)T (11)

Note that A
1/2
0 , defined by spectral decomposition, equals 1

|∇f |A0. Then,∥∥∥A1/2
0 · w − f̂

∥∥∥2
L2(Ω;R2)

=
∫

Ω

[(A1/2
0 · w)1 − f̂1]

2 + [(A1/2
0 · w)2 − f̂2]

2

=
∫

Ω

[
f2

xw1 + fxfyw2

|∇f | +
fxft

|∇f |

]2
+

[
fxfyw1 + f2

yw2

|∇f | +
fyft

|∇f |

]2

=
∫

Ω

f2
x + f2

y

|∇f |2
(fxw1 + fyw2 + ft)2

= ‖∇f · w + ft‖2
L2(Ω) ,

(12)

Using the notation
f̃ = A− 1

2 f̂ , (13)

we find that

‖∇f · w + ft‖L2(Ω) =
∥∥∥A1/2

0 · w − f̂
∥∥∥

L2(Ω;R2)
≈
∥∥∥w − f̃

∥∥∥
A

. (14)

This relation shows that the optical flow least squares functional S defined in (2)
can be approximated, and in fact replaced, by the squared norm of the weighted
L2-space defined in (10).

3 Decomposition Models for Optical Flow

From now on, taking into account (14), we regard the optical flow problem as
an imaging problem. The actual difference to standard image decomposition [3]
is that here the function to be filtered, f̃ , is vector valued and that weighted
norms are used in the fit-to-data functional.

Inspired by the work on variational decomposition of color data in [5] we
consider minimizing

L(u, v) :=
1
2λ

∥∥∥(u + v) − f̃
∥∥∥2

A
+ NU (u) + γNV (v) ; (15)



130 J. Abhau, Z. Belhachmi, and O. Scherzer

over u ∈ U and v ∈ V . Thus, optical flow w is decomposed into w = u+v. Sev-
eral spaces and seminorms can be considered for U, V, NU , NV to model structure
and texture component of optical flow, compare [4].

Total variation model
Here, we take U = BV(Ω, R2), which is defined as the space of functions f ∈
L∞(Ω, R2), with the property

J(f ) := sup
{∫

Ω

f · div(p) : p ∈ C1
c (Ω, R2 × R

2), ‖p‖L∞(Ω,R2×R2) ≤ 1
}

< ∞ ,

(16)

where C1
c (Ω, R2 ×R2) is the space of differentiable functions with compact sup-

port in Ω; moreover, ‖p‖L∞(Ω,R2×R2) is the L∞-norm of the Frobenius-norm of
p.

We take J(f ), which is called total variation seminorm of f , as NU . The space
V consists of R2- valued distributions g, which can be written as g = div(p),
with p ∈ L∞(Ω, R2 ×R

2). The divergence operator is a distributional derivative
here. On V we use for NV the G-norm [14], which is defined as

‖g‖G := inf{‖p‖L∞(Ω,R2×R2) : p ∈ L∞(Ω, R2 × R
2), g = div(p)} (17)

The G-norm is suitable to model texture, because it takes small values on oscil-
lating functions.

Sobolev space model
In this model, we choose U as the Sobolev space W 1,p

0 (Ω, R2) and NU as the
standard Sobolev seminorm (see [2] for a reference of general Sobolev spaces).
Moreover, we use for V the dual space of U , which is V = W−1,q(Ω, R2), where
q is the conjugate of p, and NV is the corresponding Sobolev-Norm.

Besov space model
Here U = Ḃ1

1,1(Ω, R2) is the homogenous Besov space with norm NU (see also
[2]) and V is its dual Ḃ∞−1,∞(Ω, R2)

For gray valued images, as stated in [4], the total variation model gives the
most meaningful decomposition results of the three mentioned above. This is
why we concentrate on this case in detail and apply it for the decomposition of
optical flow.

4 Numerical Implementation

In the following section, we discretize the total variation model and derive nu-
merical algorithms for its minimization. From now on we only consider a discrete
and finite-dimensional setting.
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Discrete one-channel images are matrices U = (ui,j) of size M × N , rep-
resenting continuous images on Ω. Analogously, multi-channel images are ma-
trices of size M × N with vectorial entries ui,j = (u1

i,j , u
2
i,j)

T . We denote by
X := (R2)M×N the space of multi-channel matrices.

For a discrete matrix H = (hij) we define the discrete gradient ∇H =
(∇xH,∇yH)T as

∇xhi,j :=
{

hi+1,j − hi,j if i < M
0 if i = M

(18)

and

∇yhi,j :=
{

hi,j+1 − hi,j if j < N
0 if j = N

. (19)

The discrete total variation of a vector field u is defined by

J(u) =
∑
i,j

√
(∇xu1

i,j)2 + (∇yu1
i,j)2 + (∇xu2

i,j)2 + (∇yu2
i,j)2. (20)

Moreover, the discrete divergence operator of the tensor u is defined by

[div(u)]i,j =

⎧⎨⎩
u1

i,j − u1
i−1,j if 1 < i < M

u1
i,j if i = 1

−u1
i−1,j if i = M

+

⎧⎨⎩
u2

i,j − u2
i,j−1 if 1 < j < N

u2
i,j if j = 1

−u2
i−1,j if j = N

.

The discrete divergence operator, as in the continuous setting again denoted by
div, of u is defined as the discrete divergences of the components. For definition of
the discrete time derivative, we fix a small constant δt > 0. Given two subsequent
frames Uk, Uk+1 ∈ RM×N of discrete one-channel images, we define

∇tU =
Uk+1 − Uk

δt
. (21)

The discrete formulas in (18), (19) and (21) give approximations of f̃ as defined
in (13) and hence also of A0 and its regularization A. The A-scalar product in
L2(Ω; A) as defined in (10) is then approximated by

〈u, v〉X =
∑
i,j

uT
i,jAi,jvi,j , (22)

where Ai,j ∈ R2×2.

Approximation of the discrete G-Norm by the dual J∗ of J .
For definition of the G-norm, we set

K = {v ∈ X : there exists p = (p1, p2) ∈ X × X such that v = div(p)} (23)
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For v ∈ K, the discrete G-norm ‖·‖ is then given by

‖v‖G = inf {‖p‖∞ : p ∈ X × X, v = div(p)}. (24)

Here ‖p‖∞ denotes the l∞-norm of the Frobenius-norm of the matrix p. This
definition of the discrete G-norm is difficult to implement numerically. For nu-
merical purposes it is convenient, as proposed in [4], to use the Fenchel dual

J∗(v) := sup{〈v, u〉 − J(u) : (u, v) ∈ X × X} (25)

of J . Since J is a seminorm, an elementary calculation shows that there exists a
convex, closed set K1 ⊆ X such that

J∗(v) =
{
∞ if v ∈ K1
0 otherwise . (26)

Similar to [4], one can show that K1 in (26) is given by

K1 = {div(p) : p ∈ X × X and ‖p‖∞ ≤ 1} (27)

Because of this characterization, J∗ is much easier to compute than the G-
norm. The close relationship between G-norm and J∗ is revealed by the following
theorem:

Theorem 1. Let α, λ, γ > 0. Consider the following minimization problems
over X × X:

(A) minu+v=f̃ J(u) + α ‖v‖G

(B) minu+v=f̃ J(u) + J∗(v
γ )

(C)

min
(u,v)

Hλ,γ(u, v) :=
1
2λ

∥∥∥u + v − f̃
∥∥∥2

X
+ J(u) + J∗(

v

γ
) (28)

Then minimizers for all three problems exist, and for (C) it is unique. Moreover,
there exists a relation between α and γ, such that a minimizer of (A) is a mini-
mizer of (B) and vice versa. Moreover, as λ ↓ 0, the minimizers of (C) converge
to a minimizer of (B).

Proof. Here, we only prove existence and uniqueness of a minimizer of (C),
following the proof in [3] for gray valued images. The other statements can then
be proven analogously and are therefore omitted.

Existence of a minimizer of Hλ,γ : The set X ×γK is closed in the finite dimen-
sional space X × X and the restriction of Hλ,γ to X × γK is continuous.
Therefore lower semicontinuity of Hγ,λ holds, that is, for every sequence
(uk, vk) ∈ X × X

Hγ,λ(u, v) ≤ lim inf
(uk,vk)→(u,v)

Hγ,λ(uk, vk).
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Next we show coercivity for Hλ,γ on X × X , i.e. we prove that

Hλ,γ(u, v) → ∞ if ‖(u, v)‖X×X → ∞ .

Let (u, v) ∈ X × γK. By the definition of γK there exists p ∈ X × X such
that div(p) = v and ‖p‖∞ ≤ γ. Therefore we have

‖v‖2
X =

∑
i,j

div(p)T
i,jAi,jdiv(p)i,j ,

Since p is uniformly bounded with respect to v, we see that ‖·‖X is bounded
on γK. Therefore, if ‖(u, v)‖X×X → ∞ with v ∈ γK, it follows that

‖u‖X → ∞, hence Hλ,γ(u, v) ≥
∥∥∥u + v − f̃

∥∥∥
X

→ ∞, which gives coerciv-
ity. In summary, since Hλ,γ is lower semi-continuous and coercive in X ×X ,
a minimizer for (15) exists.

Uniqueness of a minimizer of Hλ,γ : The functional Hλ,γ(u, v) is strictly convex
on X × γK up to direction (u,−u). So it might happen for some t > 0, that
both (u, v) and (u+tu, v−tu) are (global) minimizers of (15). We show that
in this case, u = 0, which means that the two minimizers coincide. Indeed,
from Hλ,γ(u + tu, v − tu) = Hλ,γ(u, v) + tJ(u) and the assumption that
both are global minimizers, we conclude that J(u) = 0. From the definition
of the discrete total variation it follows that u is a constant. Moreover, since
u ∈ γK, there exists p ∈ X × X such that u = div(p). Therefore∑

i,j

ui,j =
∑
i,j

div(p)i,j = 0.

The last equality holds, since each summand occurs exactly four times in∑
i,j div(p)i,j , twice with a plus, twice with a minus sign.

Theorem (1) enables us to discretize the G-norm in functional(15) by J∗ and
minimize Hλ,γ numerically. Using Equation (26), Hλ,γ(u, v) can be expressed in
the more convenient form

Hλ,γ(u, v) =

{
1
2λ

∥∥∥u + v − f̃
∥∥∥2

X
+ J(u) if v ∈ γK1

∞ otherwise
. (29)

In the following we investigate an alternating direction algorithm for minimiza-
tion of Hλ,γ . It consists of the following two steps:

1. Choose v(0) ∈ γK1
2. For k = 0, 1, 2, . . .

– Calculate a minimizer u(k) ∈ γK of

1
2λ

∥∥∥u + v(k) − f̃
∥∥∥2

X
+ J(u) . (30)
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– Calculate a minimizer v(k+1) of∥∥∥u(k) + v − f̃
∥∥∥2

X
. (31)

– Continue

We state convergence of the iteration process. The proof is omitted here, since
it is again along the lines in [3].

Theorem 2. The sequence (u(k), v(k)) converges to the unique solution (û, v̂)
of (28).

We stress that ṽ solves (31) if and only if w̃ = f̃ − u − ṽ is a minimizer of the
functional

w → 1
2γ

∥∥∥u + w − f̃
∥∥∥2

X
+ J(w) . (32)

This formulation actually shows that also minimization with respect to v can be
realized by total variation denoising. Therefore both iteration steps of the alter-
nating direction algorithm can be realized by total variation denoising, which can
be implemented with a variant of Chambolle’s projection algorithm [8]. There-
fore, in the sequel, we only consider total variation denoising for vector valued
data uδ, which consists in minimization of

1
2λ

∥∥u − uδ
∥∥2

X
+ J(u) . (33)

Following Chambolle’s algorithm [8], we derive an iterative procedure for mini-
mizing (33).

Let

p(0) := (p1(0), p2(0)) :=
(

p1,1(0) p1,2(0)
p2,1(0) p2,2(0)

)
= 0 .

For k = 0, 1, 2, . . . set
q(k) =

[
div(p(k)) − uδ/λ

]
Each entry Ai,j of the matrix A is a 2× 2-matrix, which is positive definite.
We set

Si,j := A
1/2
i,j ,

the root of A. Then componentwise

p1(k + 1) =
p1(k) + τ

[
∇
(
S1,1q

1(k) + S1,2q
2(k)

)]
1 + τ |∇ (S1,1q1(k) + S1,2q2(k) + S2,1q1(k) + S2,2q2(k))|

(34)

and

p2(k + 1) =
p2(k) + τ

[
∇
(
S2,1q

1(k) + S2,2q
2(k)

)]
1 + τ |∇ (S1,1q1(k) + S1,2q2(k) + S2,1q1(k) + S2,2q2(k))| .

(35)
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Fig. 1. (a) On top: Frame 10 of the rubber whale sequence (584 × 388 pixels). (b)
Top left: Cartoon part u of the flow between frame 10 and frame 11. (c) Top right:

Norm of cartoon part u. (d) Middle left: Texture part v. (e) Middle right: Norm
of texture part v. (f) Bottom left: The flow field w = u + v. (g) Bottom right:

Norm of the flow field w = u + v.
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Fig. 2. (a) On top: Frame 10 of the Mini Cooper sequence (640 × 480 pixels). (b)
Top left: Cartoon part u of the flow between frame 10 and frame 11. (c) Top right:

Norm of cartoon part u. (d) Middle left: Texture part v. (e) Middle right: Norm
of texture part v. (f) Bottom left: The flow field w = u + v. (g) Bottom right:

Norm of the flow field w = u + v.
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Fig. 3. (a) Top left: Frame 10 of the dimetrodon sequence (584 × 388 pixels). (b)
Top right: A detailed view of the head in the upper middle of (a). (c) Bottom left:

Detailed view of cartoon part u of the flow field between frame 10 and frame 11. (d)
Bottom right: Detailed view of texture part v.

Theorem 3. Let πλK the orthogonal projector onto λK, where K is as in (23).
If τ , as in (34) and (35), is chosen sufficiently small, then div p(k) converges
to πλK(uδ). The solution of (33) is given by

u = uδ − πλK(uδ) . (36)

Proof. The proof is along the lines of [8] and thus it is omitted here.

From Theorem 3 it follows that the minimizer uα of (33) satisfies

uα = uδ − λ lim
k→∞

div p(k) .

This theorem completes the numerical analysis of the functional Hλ,γ .

5 Results

We performed numerical experiments on several image sequences, which are pub-
licly available at [1]. We decomposed the optical flow in the rubber whale sequence
(see Figure 1). The curtain and the two round pieces at the bottom move to the
left, while the other pieces move to the right, see (a). The moving large structures,
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such as the fence and the two round objects, are captured in the cartoon compo-
nent (b), while for instance the curtain contains texture movement in (d). In order
to improve visibility, the (scaled) magnitude of the flow u and v is shown in (c)
and (e), respectively. The whole optical flow field is shown in (f) and (g). In the
Mini Cooper sequence shown in Figure 2, a man is closing the trunk of a car (a).
The cartoon part u of the optical flow consists of the moving tailgate and the man
(b). The magnitude of flow u is shown in (c). The slight motion of the trees in
the background is completely contained in the texture component v of the optical
flow, shown in (d). The (upscaled) magnitude of v is given in (e).

These two examples show the advantages of our method quite well, separating
different kinds of movements in an image sequence.

In the Dimetrodon sequence shown in Figure 3, we examine directions of the
computed flow field and its decomposition in greater detail. The main direction of
movement of the head can be seen in flow field u in (c), where neighboring flow vec-
tors are often parallel. Oscillating patterns are captured in v shown in (d), where
the directions of the flow vectors can differ very much between neighboring pixels.

6 Conclusion

We presented a general approach for decomposition of the optical flow of an im-
age sequence into structural and textural components. A variational framework
has been established, which allows to use various functionals for different kinds
of texture extraction. Numerical examples demonstrate the effectivity of total
variation norm, respectively G-norm, decomposition. In the future, we plan to
study other possible seminorms in (15) as well and plan to compare the outcome
of the different methods.
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Abstract. As Planck’s constant � (treated as a free parameter) tends
to zero, the solution to the eikonal equation |∇S(X)| = f(X) can be
increasingly closely approximated by the solution to the corresponding
Schrödinger equation. When the forcing function f(X) is set to one, we
get the Euclidean distance function problem. We show that the corre-
sponding Schrödinger equation has a closed form solution which can be
expressed as a discrete convolution and efficiently computed using a Fast
Fourier Transform (FFT). The eikonal equation has several applications
in image analysis, viz. signed distance functions for shape silhouettes,
surface reconstruction from point clouds and image segmentation be-
ing a few. We show that the sign of the distance function, its gradients
and curvature can all be written in closed form, expressed as discrete
convolutions and efficiently computed using FFTs. Of note here is that
the sign of the distance function in 2D is expressed as a winding number
computation. For the general eikonal problem, we present a perturbation
series approach which results in a sequence of discrete convolutions once
again efficiently computed using FFTs. We compare the results of our ap-
proach with those obtained using the fast sweeping method, closed-form
solutions (when available) and Dijkstra’s shortest path algorithm.

1 Introduction

While image analysis borrows liberally from classical mechanics—with varia-
tional principles [1], Euler-Lagrange equations, Hamiltonians [2] and Hamilton-
Jacobi theory [3] all in widespread use at the present time—other than a few
pioneering works [4,5], there isn’t a concomitant borrowing from quantum me-
chanics. Given the very close relationship between Hamilton-Jacobi theory and
Schrödinger wave mechanics, this is somewhat surprising. In this work, we begin
with a brief overview of the classical mechanics sequence of i) variational princi-
ples and Euler-Lagrange equations, ii) Legendre transformations leading to the
Hamiltonian [6], iii) canonical transformation of the Hamiltonian which yields
the Hamilton-Jacobi theory [6], and finally iv) first quantization to obtain the
Schrödinger wave equation [7]. This well known path of development needs an
image analysis payoff which we next describe.
� Corresponding author.
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It has been a decade since EMMCVPR 1999 at which event we saw [2] the
advent of Hamiltonian mechanics to solve the eikonal equation. More specifi-
cally, the Hamiltonian approach was also used to analyze the Euclidean distance
function problem—an important special case of the eikonal problem wherein
|∇S(X)| = 1 and X a regular grid. The Euclidean distance function problem in
its image analysis incarnation can be stated as follows: Given a set of shape sil-
houettes whose boundaries are parameterized as piecewise smooth curves, com-
pute the signed distance at every location on a grid w.r.t. the boundary points.
Furthermore, we often seek the gradient, divergence, curvature and medial axes
of the signed distance function which are not easy to obtain by other approaches
such as the fast marching [8] and fast sweeping methods [9] due to the lack of
differentiability of the signed distance function. In sharp contrast, we show—
using our previous work on this topic [10]—that the Schrödinger wave equation
approach to the eikonal results in a closed-form solution which can be expressed
as a discrete convolution and computed in O(N log N) time using a Fast Fourier
Transform (FFT) [11] where N is the number of grid points. While the fast
marching method is also O(N log N) (and even O(N) with cleverly chosen data
structures [8]), these methods are based on spatial discretizations of the deriva-
tive operator (in |∇S(X)| = 1) whereas the Schrödinger approach does not
require derivative discretization. A caveat is that our Euclidean distance func-
tion is an approximation since it is obtained for a small but non-zero value of
Planck’s constant �.

The Schrödinger equation approach to the eikonal gives us an unsigned dis-
tance function. We complement this by independently finding the sign of the
distance function in O(N log N) time on a regular grid in 2D. We achieve this
by efficiently computing the winding number for each location in the 2D grid.
The winding number is the number of times a closed curve winds around a point.
We show that just as in the case of the Schrödinger equation, the winding num-
ber can also be written in closed-form, expressed as a discrete convolution and
efficiently computed using an FFT. The fact that the winding number can be
expressed as a discrete convolution for every location in a 2D grid appears to be
a new contribution.

We also leverage the closed-form solution for the unsigned distance function
obtained from Schrödinger. Since our distance function is differentiable every-
where, we can once again write down closed-form expressions for the gradients
and curvature, express them as discrete convolutions and efficiently compute
these quantities in O(N log N) using FFTs. We visualize the gradients and the
maximum curvature using 2D shape silhouettes as the source. The maximum
curvature—despite its fundamental drawback of being extrinsic—has a haunt-
ing similarity to the medial axis. To our knowledge, the fast computation of the
derivatives of the distance function on a regular grid using discrete convolutions
is new.

Next, we present a general eikonal solver using a Born expansion-based per-
turbation method [12]. We cannot solve for S(X) in closed form here, and instead
we express the solution as a sequence of discrete convolutions, with each term
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efficiently computed using an FFT. We apply this method to image segmen-
tation by first seeding a set of points on the interior and the exterior of the
segmentation regions and then solving the eikonal using a forcing function f(X)
derived from the image gradients. These results are compared to those obtained
using fast sweeping and Dijkstra’s shortest path algorithm [13] (since the ground
truth is not available). Since all results are obtained for very low values of �,
some numerical instability issues arise in the FFT-based convolutions. Conse-
quently, higher precision numerical support for fast, discrete convolution is a
fundamental requirement and one that we plan to address in future work.

2 A Schrödinger Equation for the Eikonal Problem

In this section, we briefly review the Schrödinger equation approach to (un-
signed) Euclidean distance functions. We begin with a Lagrangian variational
principle, derive the Hamiltonian via a Legendre transformation, use a canoni-
cal transformation to obtain the Hamilton-Jacobi equation and finally quantize
Hamilton-Jacobi to obtain the Schrödinger equation.

The Lagrangian variational principle for Euclidean distance functions is an
objective function whose solution is the shortest distance between two points in
Rd—the Euclidean distance. While we use d = 2 for illustration purposes, the
approach is general and not restricted to a particular choice of dimension:

I[q] =
∫ t1

t0

L(q1, q2, q̇1, q̇2, t)dt (1)

where q(t) = {q1(t), q2(t)} is a C2 path between two points in time t0 and t1
with

L(q1, q2, q̇1, q̇2, t) =
1
2
(
q̇2
1 + q̇2

2
)
. (2)

The corresponding Euler-Lagrange equations are

q̈1(t) = 0, and q̈2(t) = 0 (3)

which are tantamount to a straight line in 2D. This choice of L actually yields
the squared Euclidean distance between two points q(t0) and q(t1). If we used the
square root of this quantity in the Lagrangian, it becomes homogeneous of degree
one in (q̇1, q̇2) [as in L(q1, q2, λq̇1, λq̇2, t) = λL(q1, q2, q̇1, q̇2, t)] and this creates
problems for the Legendre transform. Note that the Lagrangian is independent
of time t and this fact will later allow us to derive a static Schrödinger equation.

The Hamiltonian is obtained via a Legendre transform [6] applied to the
Lagrangian:

H(q1, q2, p1, p2, t) =
2∑

i=1

piq̇i(p1, p2, t) − L(q1, q2, q̇1(p1, p2), q̇2(p1, p2), t) (4)

where the momenta p1, p2 are defined as

pi ≡
∂L

∂q̇i
, i = 1, 2. (5)
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Equation (5) can be inverted to obtain q̇i = q̇i(p1, p2, t) [and this fails if the
Lagrangian is homogeneous of degree one in (q̇1, q̇2)].

The Hamilton-Jacobi equation is obtained via a canonical transformation [6]
of the Hamiltonian. In classical mechanics, a canonical transformation is defined
as a change of variables which leaves the form of the Hamilonian unchanged. For
a type 2 canonical transformation, we have

2∑
i=1

piq̇i − H(q1, q2, p1, p2, t) =
2∑

i=1

PiQ̇i − K(Q1, Q2, P1, P2, t) +
dF

dt
(6)

where F ≡ −
∑2

i=1 QiPi + F2(q, P, t) which gives

dF

dt
= −

2∑
i=1

(
Q̇iPi + QiṖi

)
+

∂F2

dt
+

2∑
i=1

(
∂F2

∂qi
q̇i +

∂F2

∂Pi
Ṗi

)
. (7)

When we pick a particular type 2 canonical transformation wherein Ṗi = 0, i =
1, 2 and K(Q1, Q2, P1, P2, t) = 0, we get

∂F2

∂t
+ H(q1, q2,

∂F2

∂q1
,
∂F2

∂q2
, t) = 0 (8)

where we are forced to make the identification pi = ∂F2
∂qi

, i = 1, 2. Note that the
new momenta Pi are constants of the motion (usually denoted by αi, i = 1, 2).
Changing F2 to S as in common practice, we have the standard Hamilton-Jacobi
equation for the function S(q1, q2, α1, α2, t). To complete the circle back to the
Lagrangian, we take the total time derivative of the Hamilton-Jacobi function S
to get

dS(q1, q2, α1, α2, t)
dt

=
2∑

i=1

∂S

∂qi
q̇i +

∂S

∂t

=
2∑

i=1

piq̇i − H(q1, q2,
∂S

∂q1
,

∂S

∂q2
, t) = L(q1, q2, q̇1, q̇2, t).(9)

Consequently S(q1, q2, α1, α2, t) =
∫ t

t0
Ldt and the constants {α1, α2} can now

be interpreted as integration constants.
For the Euclidean distance function problem, following (4) and (8), we get

H(q1, q2, p1, p2, t) = 1
2

(
p2
1 + p2

2
)

and the Hamilton-Jacobi equation is

∂S

∂t
+

1
2

[(
∂S

∂q1

)2

+
(

∂S

∂q2

)2
]

= 0. (10)

The Schrödinger equation can sometimes be “derived” using a Feynman path
integral approach. The more common approach—termed first quantization1—is
1 First quantization is still mysterious. For an informal but illuminating treatment,

please see http://math.ucr.edu/home/baez/categories.html
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to convert the relation pi = ∂S
∂qi

, i = 1, 2 into an operator relation pi = i� ∂
∂qi

,

i = 1, 2. In a similar fashion, the time operator is i� ∂
∂t . When we quantize the

Euclidean distance function problem, we get

i�
∂ψ

∂t
+

�2

2

(
∂2ψ

∂x2 +
∂2ψ

∂y2

)
= 0. (11)

At first glance, there appear to be some similarities between the Hamilton-Jacobi
equation in (10) and the Schrödinger equation in (11). Due to first quantization,
the squared first derivatives w.r.t. space in the former have morphed into second
derivative operators in the latter. Both equations have first derivatives w.r.t.
time.

We now show that the time independence of the Lagrangian in (2) allows us
to simplify the former into the static Hamilton-Jacobi equation and the latter
into the static Schrödinger equation.

If the Lagrangian is not an explicit function of time, we can seek solutions for
the Hamilton-Jacobi equation that are time independent. Setting S(q1, q2, α1,
α2, t) = S∗(q1, q2, α1, α2)−Et where E = 1

2 is the total energy for the Euclidean
distance function problem, we get(

∂S∗

∂q1

)2

+
(

∂S∗

∂q2

)2

= 1 (12)

which is the eikonal equation with the forcing term set to one—a nonlinear,
first-order differential equation. In a similar fashion, when we set ψ(x, t) =
φ(x) exp

(
it
2�

)
and use E = 1

2 , we see that φ(x) satisfies the screened Poisson
equation

�
2
(

∂2φ

∂x2 +
∂2φ

∂y2

)
= φ (13)

which is a linear, second-order differential equation. A close relationship between
φ and S∗ can be shown by setting φ(x) = exp

{
− Ŝ(x)

�

}
and rewriting (13) to

get (
∂Ŝ

∂x1

)2

+

(
∂Ŝ

∂x2

)2

− �

(
∂2Ŝ

∂x2
1

+
∂2Ŝ

∂x2
2

)
= 1 (14)

which is strikingly similar to the eikonal equation in (12) with the important
difference being a viscosity regularization term [14] modulated by the free pa-
rameter �. [Note that the viscosity term arises naturally from (13)—an intriguing
result.] As � → 0, Ŝ → S∗ which implies that we can solve the static Schrödinger
equation in (13) instead of the eikonal equation in (12). In the next section, we
describe fast algorithms for solving (14) and also present fast methods for com-
puting the signed distance function and the derivatives of the Euclidean distance
function.
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3 Fast Computation of the Signed Euclidean Distance
Function and Its Derivatives

In our previous work [10], we showed that the static Schrödinger equation in
(13) can be efficiently solved using a Fast Fourier Transform (FFT) approach
in arbitrary dimensions. The complexity of the FFT is O(N log N) where N is
the total number of grid points (in any dimension). We briefly summarize the
FFT-based Euclidean distance function algorithm.

3.1 Unsigned Euclidean Distance Functions

In the Euclidean distance function problem, we begin by considering the forced
version of (13) in 2D:

− �
2 �2 φ + φ =

K∑
k=1

δ(X − Yk). (15)

The points Yk, k ∈ {1, . . . , K} are a set of seed locations at which S∗(Yk) =
0, ∀Yk, k ∈ {1, . . . , K} with the set X being the locations at which we wish to
compute the Euclidean distance function. A Green’s function approach can be
pursued since the above differential equation is homogeneous except at the seed
locations Y . The Green’s functions [15] (for an unbounded domain with Dirichlet
boundary conditions) are

G1D(X − Y ) =
1
2�

exp
(
−|X − Y |

�

)
, (16)

G2D(X − Y ) = =
1

2π�2 K0

(
‖X − Y ‖

�

)
, (17)

and

G3D(X − Y ) =
1

4π�2

exp
(

−‖X−Y ‖
�

)
‖X − Y ‖ (18)

in 1D, 2D and 3D respectively where K0(r) is the modified Bessel function of the
second kind. We avoid the singularity at the origin in 2D and 3D by replacing
their Green’s functions with the exponential function (similar to the 1D Green’s
function). This is a very good approximation as � → 0 since the 2D and 3D
Green’s functions converge uniformly to the exponential function everywhere
away from the origin. With this in place, we write the solution for φ(X) as

φ(X) =
K∑

k=1

G(X) ∗ δ(X − Yk) =
K∑

k=1

G(X − Yk) (19)

and the corresponding approximate solution to the eikonal equation (after re-
moving terms independent of X) is

Ŝ(X) = −� log
K∑

k=1

exp
{
−‖X − Yk‖

�

}
(20)
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with the caveat being that we are using an approximate, unbounded domain
Green’s function G(X) here. We have shown that an approximate solution for
the eikonal (with the forcing term set to one) can be obtained in closed-form as
in (20) and efficiently computed using an FFT since equation (19) expresses a
discrete convolution [11] between the functions

G(X) = exp
{
−‖X‖

�

}
(21)

and

Ykron(X) ≡
K∑

k=1

δkron(X − Yk). (22)

(Here δkron(X) is a Kronecker delta function.) This is a significant result since
the time complexity of the discrete convolution is O(N log N) and the expression
Ŝ(X) in (20) for the Euclidean distance function is continuous and differentiable
everywhere (except in 1D at the seed locations).

3.2 Winding Numbers for the Signed Distance Function in 2D

The solution for the approximate Euclidean distance function in (20) is lacking
in one respect: there is no information on the sign of the distance. This is to
be expected since the distance function was obtained only from a set of points
Y and not a curve or surface. We now describe a new method for computing
the signed distance in 2D using winding numbers [16]. (The equivalent concept
in 3D and higher dimensions is the topological degree which appears to be a
straightforward extension but with possible unexpected pitfalls.)

Assume that we have a closed, parametric curve
{
x(1)(t), x(2)(t)

}
, t ∈ [0, 1].

We seek to determine if a grid location in the set
{
Xi ∈ R2, i ∈ {1, . . . , N}

}
is

inside the closed curve. The winding number is the number of times the curve
winds around the point Xi (if at all) and if the curve is oriented, counterclockwise
turns are counted as positive and clockwise turns as negative. If a point is inside
the curve, the winding number is a non-zero integer. If the point is outside the
curve, the winding number is zero. If we can efficiently compute the winding
number for all points on a grid w.r.t. to a curve, then we would have the sign
information (inside/outside) for all the points. We now describe a fast algorithm
to achieve this goal.

If the curve is C1, then the angle θ(t) of the curve is continuous and dif-

ferentiable and dθ(t) =
(

x(1)ẋ(2)−x(2)ẋ(1)

r2

)
dt where r(t) =

√[
x(1)
]2

+
[
x(2)
]2.

Since we need to determine whether the curve winds around each of the points
Xi, i ∈ {1, . . . , N}, define (x̂(1)

i , x̂
(2)
i ) ≡ (x(1) − X

(1)
i , x(2) − X

(2)
i ), ∀i. Then the

winding numbers for all grid points in the set X are

μi =
1
2π

∮
C

⎛⎜⎝ x̂
(1)
i

˙̂x
(2)
i − x̂

(2)
i

˙̂x
(2)
i[

x̂
(1)
i

]2
+
[
x̂

(2)
i

]2
⎞⎟⎠ dt, ∀i ∈ {1, . . . , N} . (23)
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As it stands, we cannot actually compute the winding numbers without per-
forming the integral in (23). To this end, we discretize the curve and produce a
sequence of points

{
Yk ∈ R2, k ∈ {1, . . . , K}

}
with the understanding that the

curve is closed and therefore the “next” point after YK is Y1. (The winding num-
ber property holds for piecewise continuous curves as well.) The integral in (23)
becomes a discrete summation and we get

μi =
1
2π

K∑
k=1

⎛⎜⎜⎝
[
Y

(1)
k − X

(1)
i

] [
Y

(2)
k⊕1 − Y

(2)
k

]
−
[
Y

(2)
k − X

(2)
i

] [
Y

(1)
k⊕1 − Y

(1)
k

]
[(

Y
(1)
k − X

(1)
i

)2
+
(
Y

(2)
k − X

(2)
i

)2
]

⎞⎟⎟⎠
(24)

∀i ∈ {1, . . . , N}, where the notation Y
(·)
k⊕1 denotes that Y

(·)
k⊕1 = Y

(·)
k+1 for k ∈

{1, . . . , K − 1} and Y
(·)
K⊕1 = Y

(·)
1 . We can simplify the notation in (24) (and

obtain a measure of conceptual clarity as well) by defining the “tangent” vector
{Zk, k = {1, . . . , K}} as Z

(·)
k = Y

(·)
k⊕1 − Y

(·)
k , k ∈ {1, . . . , K} with the (·) symbol

indicating either coordinate. Using the tangent vector Z, we rewrite (24) as

μi =
1
2π

K∑
k=1

⎛⎜⎜⎝
[
Y

(1)
k − X

(1)
i

]
Z

(2)
k −

[
Y

(2)
k − X

(2)
i

]
Z

(1)
k[(

Y
(1)
k − X

(1)
i

)2
+
(
Y

(2)
k − X

(2)
i

)2
]
⎞⎟⎟⎠ , ∀i ∈ {1, . . . , N}

(25)
We now make the somewhat surprising observation (to us at any rate) that μ in
(25) is a sum of two discrete convolutions. The first convolution is between two
functions fcr(X) ≡ fc(X)fr(X) and g2(X) =

∑K
k=1 Z

(2)
k δkron(X − Yk) where

the Kronecker delta function is a product of two Kronecker delta functions, one
for each coordinate. The second convolution is between two functions fsr(X) ≡
fs(X)fr(X) and g1(X) ≡

∑K
k=1 Z

(1)
k δkron(X − Yk). The functions fc(X), fs(X)

and fr(X) are defined as

fc(X) ≡ X(1)√[
X(1)

]2 +
[
X(2)

]2 , fs(X) ≡ X(2)√[
X(1)

]2 +
[
X(2)

]2 , and (26)

fr(X) ≡ 1√[
X(1)

]2 +
[
X(2)

]2 . (27)

where we have abused notation somewhat and let X(1) (X(2)) denote the x (y)-
coordinate of all the points in the grid set X . Armed with these relationships,
we rewrite (25) to get

μ(X) =
1
2π

[−fcr(X) ∗ g2(X) + fsr(X) ∗ g1(X)] (28)

which can be computed in O(N log N) time using two FFTs. We have shown
that the sign component of the Euclidean distance function can be separately
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computed (without knowledge of the distance) in parallel in O(N log N) on a
regular 2D grid.

3.3 Fast Computation of the Derivatives of the Distance Function

Just as the approximate Euclidean distance function Ŝ(X) can be efficiently
computed in O(N log N), so can the derivatives. This is important because fast
computation of the derivatives of Ŝ(X) on a regular grid can be very useful
in medial axes and curvature computations. Below, we detail how this can be
achieved. We begin with the gradients and for illustration purposes, the deriva-
tions are performed in 2D:

Ŝx(X) =

∑K
k=1

(
X(1)−Y

(1)
k

)
√(

X(1)−Y
(1)

k

)2
+
(

X(2)−Y
(2)

k

)2
exp
{
− ‖X−Yk‖

�

}
∑K

k=1 exp
{
− ‖X−Yk‖

�

} , (29)

A similar expression can be obtained for Ŝy(X). These first derivatives can be
rewritten as discrete convolutions:

Ŝx(X) =
fc(X) exp

{
−X

�

}
∗ Ykron(X)

Ŝ(X)
, Ŝy(X) =

fs(X) exp
{
−X

�

}
∗ Ykron(X)

Ŝ(X)
,

(30)
where fc(X) and fs(X) are as defined in (26) and Ykron(X) is as defined in (22).

The second derivative formulae are somewhat involved. Rather than hammer
out the algebra in a turgid manner, we merely present the final expressions—all
discrete convolutions—for the three second derivatives in 2D:

Ŝxx(X) = −(1 +
1
�
)
f2

c (X) exp
{
−X

�

}
∗ Ykron(X)

Ŝ(X)
+

1
�
Ŝ2

x(X)

+
fr(X) exp

{
−X

�

}
∗ Ykron(X)

Ŝ(X)
, (31)

Ŝyy(X) = −(1 +
1
�
)
f2

s (X) exp
{
−X

�

}
∗ Ykron(X)

Ŝ(X)
+

1
�
Ŝ2

y(X)

+
fr(X) exp

{
−X

�

}
∗ Ykron(X)

Ŝ(X)
, and (32)

Ŝxy(X) = −(1 +
1
�
)
fc(X)fs(X) exp

{
−X

�

}
∗ Ykron(X)

Ŝ(X)
+

1
�
Ŝx(X)Ŝy(X)(33)

where fr(X) is as defined in (27). We also see that

Ŝ2
x(X)+Ŝ2

y(X)−�

[
Ŝxx(X) + Ŝyy(X)

]
= (1+�)−2�

fr(X) exp
{
−X

�

}
∗ Ykron(X)

Ŝ(X)
(34)
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[since f2
c (X) + f2

s (X) = 1] with the right side going to one as � → 0 for points
in X away from points in the seed point-set Y . This is in accordance with (14)
and vindicates our choice of the replacement Green’s function in (21).

Since we can efficiently compute the first and second derivatives of the approx-
imate Euclidean distance function Ŝ(X) everywhere on a regular grid, we can
also compute derived quantities such as curvature (Gaussian, mean and princi-
pal curvatures for a two-dimensional surface). In the next section, we visualize
the derivatives and maximum curvature for shape silhouettes.

4 Euclidean Distance Function Experiments

We executed the Schrödinger Euclidean distance function algorithm on a set of
2D shape silhouettes2. The grid size is −20 ≤ x ≤ 20 and −20 ≤ y ≤ 20 with a
grid spacing of 0.25 and � = 0.3. The winding number discrete convolution algo-
rithm is used to mark points as either inside or outside each shape. We visualize
the vector fields (Ŝx, Ŝy) in Figure 1 for the 8 shapes and the maximum curvature
for a subset of the shapes in Figure 2. We chose the maximum curvature (defined
as H +

√
H2 − K where H and K are the mean and Gaussian curvatures respec-

tively of the Monge patch given by
{

x, y, Ŝ(x, y)
}

) as the vehicle to visualize
the medial axes of each shape after first considering the divergence of the unit
gradient

[
∇ · g = ∇ ·

(
∇Ŝ(X)
|∇Ŝ(X)|

)]
and the entropy

(
−∂Ŝ(X)

∂�

)
. The divergence is

a good choice for the medial axes provided we update an adaptive grid whereas
the entropy requires very high precision numerical computation (which we plan
to pursue in the future).

Next, we ran a comparison of the Schrödinger Euclidean distance function
algorithm with the fast sweeping method [9] and the exact Euclidean distance.
We used a “Dragon” point-set obtained from the Stanford 3D Scanning Repos-
itory3 in 3D and executed the three approaches to construct isosurfaces which
are visualized in Figure 3. The common grid was −2 ≤ x ≤ 2, −2 ≤ y ≤ 2
and −2 ≤ z ≤ 2 with a grid spacing of 0.125. Numerical underflow errors in
the FFT forced us to run the Schrödinger Euclidean distance function algorithm
at four values of �, namely, 0.025, 0.045, 0.06, and 0.08. We used the following
decision criterion for Ŝ(X): Ŝ = Ŝ|�=0.08 if Ŝ ≥ 2, Ŝ = Ŝ|�=0.06 if 1.5 ≤ Ŝ < 2,
Ŝ = Ŝ|�=0.045 if 0.75 ≤ Ŝ < 1.5 and Ŝ = Ŝ|�=0.025 if Ŝ < 0.75. The initial condi-
tions Ŝ(Yk) = 0, ∀k ∈ {1, . . . , K} were used to translate the Ŝ values (upwards
or downwards) such that the minimum value was zero. The average percentage
error in the Schrödinger approach was 3.89% whereas the average percentage er-
ror in the fast sweeping method (where the Gauss-Seidel iterates were run until
convergence) was 6.35%. Our FFT-based approach does not begin by discretiz-
ing the spatial differential operator as is the case with the fast marching and
fast sweeping methods and this could help account for the increased accuracy.
2 We thank Kaleem Siddiqi for providing us the set of 2D shape silhouettes used in

this paper.
3 This dataset is available at http://graphics.stanford.edu/data/3Dscanrep/
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Fig. 1. A quiver plot of ∇Ŝ = (Ŝx, Ŝy) for a set of silhouette shapes

Fig. 2. Maximum curvature plots: i) Horse, ii) Hand, and iii) Bird

Fig. 3. Dragon surface reconstructed using i) Schrödinger, ii) Exact Euclidean distance
and iii) Fast sweeping
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5 A Perturbation Approach for the General Eikonal
Problem

In this section, we briefly summarize our perturbation approach (using the well
known Born expansion) [12,10] for the general eikonal equation (with forcing
functions f(X) bounded away from zero). We consider the static Schrödinger
equation (in 2D) with a forcing function f(X):

− �
2 �2 φ + f2φ =

K∑
k=1

δ(X − Yk). (35)

Equation (35) can be rewritten as

(−�
2 �2 +f̃2)

[
1 + (−�

2 �2 +f̃2)−1 ◦ (f2 − f̃2)
]
φ =

K∑
k=1

δ(X − Yk) (36)

with f̃(X) a constant forcing function. Now, defining the operator A as A ≡
(−�2 �2 +f̃2)−1 ◦ (f2 − f̃2) and φ0 as φ0 ≡ (1 + A)φ, we see that φ0 satisfies

(−�
2 �2 +f̃2)φ0 =

K∑
k=1

δ(X − Yk) (37)

and
φ = (1 + A)−1φ0. (38)

Using a geometric series approximation for (1+A)−1, we obtain the solution for
φ as

φ ≈ φ0 − φ1 + φ2 − φ3 + . . . + (−1)T φT (39)

where φi satisfies the recurrence relation

(−�
2 �2 +f̃2)φi = (f2 − f̃2)φi−1, ∀i ∈ {1, 2, . . . , T}. (40)

The solutions for φi can then be obtained by convolution

φ0(X) =
K∑

k=1

G(X) ∗ δ(X − Yk) =
K∑

k=1

G(X − Yk), (41)

φi(X) = G(X) ∗
[
(f2 − f̃2)φi−1

]
, ∀i ∈ {1, 2, . . . , T} (42)

and an approximate solution to the eikonal equation can be obtained from
Ŝ(X) = −� logφ(X). The discrete convolutions in (41) and in (42) can be ef-
ficiently computed via FFTs. The number of terms (T ) used in the geometric
series approximation of (1 + A)−1 is independent of the grid size N . We set

f̃ =
√

[minX f(X)]2+[maxX f(X)]2

2 which turns out to be the optimal value [10].
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6 Image Segmentation Results Using the Eikonal Solver
To test the eikonal solver, we obtained two images (3096 and 101085) from the
Berkeley Segmentation Dataset and Benchmark4. After first smoothing them us-
ing a 5× 5 Gaussian with standard deviation 0.25, we used the following sets of
parameters for the two images. For image 3096: we ran the perturbation method
for T = 5 iterations at � values of 0.05, 0.15, 0.25 and 0.35 with thresholds of
1.5, 2.5 and 4, grid size −8 ≤ x ≤ 8, −6 ≤ y ≤ 6 with grid spacing 0.0313
and the forcing function f(X) = |∇I(X)|

maxX |∇I(X)| + 0.5. For image 101085, the only
changes were: grid size −5 ≤ x ≤ 5, −8 ≤ y ≤ 8 with grid spacing 0.0313 and
the forcing function f(X) = |∇I(X)|

maxX |∇I(X)| + 0.01. Both images were seeded with
a set of interior/exterior points, the eikonal algorithms were run twice and we
displayed the boundaries in Figure 4 using the eikonal “winner”—the one with
the smaller distance. The same approach was used for the fast sweeping method
and Dijkstra’s shortest path algorithm [13] (since closed form solutions are not
available). The results are obviously anecdotal but serve to illustrate the corre-
spondence between the Schrödinger (quantum) and the fast sweeping (classical)
approaches. Note the larger scale boundaries in the Schrödinger segmentation of
image 101085 which we attribute to the viscosity term in (14).

Fig. 4. Image segmentation results. Top from left to right: i) Image 3096, ii)
Schrödinger, iii) Dijkstra, iv) Fast sweeping. Bottom from left to right: i) Image 101085,
ii) Schrödinger, iii) Dijkstra, iv) Fast sweeping.

7 Discussion
While energy minimization methods have permeated image analysis in the past
two decades, one overarching generalization we can make is that the formulations
4 This dataset is available at

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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are inspired by classical and not quantum mechanics. Despite the fact that a close
correspondence exists between Hamilton-Jacobi theory and Schrödinger wave
mechanics, we have not seen image analysis leverage this relationship. When
we solve the Schrödinger equation at small values of �, we obtain closed-form
solutions for the Euclidean distance function problem that can be efficiently
computed in O(N log N). This has immediate applications in image analysis as
the sign of the distance function, its gradients and curvature can all be writ-
ten in closed-form and efficiently computed via FFTs. When applied to shape
silhouettes, the gradients and curvature information can aid in medical axes
computation. We also show that a perturbation series approach leads to a fast
eikonal solver which can be used in image segmentation.
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Abstract. We introduce variational optical flow computation involving
priors with fractional order differentiations. Fractional order differen-
tiations are typical tools in signal processing and image analysis. The
zero-crossing of a fractional order Laplacian yields better performance
for edge detection than the zero-crossing of the usual Laplacian. The
order of the differentiation of the prior controls the continuity class of
the solution. Therefore, using the square norm of the fractional order
differentiation of optical flow field as the prior, we develop a method
to estimate the local continuity order of the optical flow field at each
point. The method detects the optimal continuity order of optical flow
and corresponding optical flow vector at each point. Numerical results
show that the Horn-Schunck type prior involving the n + ε order differ-
entiation for 0 < ε < 1 and an integer n is suitable for accurate optical
flow computation.

1 Introduction

In this paper, we introduce the prior involving fractional order differentiations
[3,9,10,11] for variational optical flow computation [1]. The order of the differ-
entiations in the prior controls the continuity class of the solution. Therefore,
using the fractional order differentiations, we can estimate the order of local
continuities of optical flow vectors. Furthermore, we can obtain the optical flow
flow vector with the optical continuity at each point.

Total variational (TV) regularisation [2] is a successful method of optical flow
computation of an image with a discontinuity of the gray values and the optical
flow field. TV regularisation uses the total variation of optical flow field as the
prior, although the classical Horn-Schunck method [12,13] uses the L2 norm of
the gradient of flow field. TV regularisation optical flow computation [1] derives
a nonlinear elliptic partial differential equation as the Euler-Lagrange equation
of the energy functional of the problem.

The generalisation of the order of differentiation in a Horn-Schunck type prior
is another modification of the original Horn-Schunck regularisation, since this

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 154–167, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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generalisation yields a linear Euler-Lagrange equation. There are two types of
generalisation of the differentiations in priors; the first one is to deal with higher-
order differentiations, and the second one is to deal with fractional order differ-
entiations. We focus on the second type of generalisation, that is, we deal with
the variational optical flow computation whose prior term involves a fractional
order differentiation of optical flow vectors.

Recently,fractional partial differential equations [9,10,11] has been widely used
in various areas in science and engineering, because fractional differential equa-
tions describe diffusion and wave propagations in inhomogeneous media and
fractal structures [19,20,21], and viscoelastic flow and deformation [9,10,11].
Fractional order differentiations are typical tools in signal and image processing
[5,6,7] and is applied to the edge detection of images [8]. In edge detection, a
zero-crossing set of a fractional order Laplacian derives good performance [8].
As a sequel of edge detection using fractional order differentiations, we propose
variational optical flow computation involving the prior with fractional order
differentiations on optical flow vectors.

Since fractional differentiations are linear operations [9,10,11], the fractional
order regularisation for optical flow computation [1] derives a linear fractional
order elliptic partial differential equation as the Euler-Lagrange equation of the
energy functional. Therefore, we can numerically solve the problem using the
same strategy that is used to solve the Horn-Schunck method. Furthermore,
since the order of the differentiation in the prior controls the continuity class
of the solution, by selecting the order of differentiations in the prior, we can
estimate an appropriate order of continuity of the optical flow vector at each
point. This is a mathematical advantage to use the fractional differentiations in
the priors.

The Riemann-Liouville fractional differentiation [16] involves the Cauchy in-
tegral formula, which is unstable to numerical implementation, since the for-
mula involves a singular integral. A numerically stable fractional differentiation
is computed using the Grünwald-Letnikow [16,17,18] definition, which describes
fractional differentiation as a finite series. The other definition of fractional dif-
ferentiation is based on the Fourier transform of differential operations, which is
easily implemented using FFT and the filter theory [5,6]. We solve the spatially
fractional partial differential equation using the Fourier transform method to
compute fractional derivatives.

The image-driven [14,15] and flow driven [1] diffusions are two modifications
of the Horn-Schunck method. We introduce the operator-driven method as the
third method. The operator-driven method selects the optimal differential oper-
ator involved in the prior of the variational energy for optical flow computation.
Using the fractional-order differentiations, we obtain a two-path algorithm. The
algorithm first estimates the continuity order of each point simultaneously solv-
ing a collection of variational problems whose priors involve various order differ-
entiations. Then, the algorithm detects the continuity order of the optical flow
field which establish the minimum of the residual. Secondly, using the estimated
local continuity order, the algorithm recomputes the optical flow vector of each
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point. This paper evaluates the performances of the first step, that is, we focus
on a local continuous-order estimation method using a variational optimisation
problem.

2 Variational Optical Flow Computation

For a spatiotemporal image f(x, t), x = (x, y)	, the optical flow vector u = ẋ =
(ẋ, ẏ)	, for ẋ = u = u(x, y) and ẏ = v = v(x, y), of each point x = (x, y)	 is the
solution of the singular equation

fxu + fyv + ft = ∇f	u + ∂tf = 0. (1)

To solve this equation, a regularisation method [12,13] which minimises the cri-
terion

J(u) =
∫
R2

{
∇f	u + ∂tf)2 + κtr∇u∇u	} dx (2)

is employed. The Euler-Lagrange equation of the energy function defined by eq.
(2) and the associated diffusion equation of the Euler-Lagrange equation are

Δu =
1
κ

(∇f	u + ft)∇f,
∂u

∂t
= Δu − 1

κ
(∇f	u + ft)∇f, (3)

with the boundary condition ∂u
∂n = 0 for the unit normal n on the boundary.

For the sampled function fmn = f(hm, hn) and vector field umn = (umn,
vmn)	, umn = u(hm, hn) and vmn = v(hm, hn), where h is the unit sample
interval, the diffusion equation of eq. (3) derives the discrete equation

u
(l+1
mn − u(i)

Δτ
= (Δu(l))mn − 1

κ
((∇f)	mnu(l+1)

mn + (∂tf)mn)(∇f)mn (4)

and the associated iteration equation

(I +
Δτ

κ
Smn)u(l+1)

mn = u(l)
mn + Δτ

∑
ij

liju
(l)
m−i n−j −

Δτ

κ
cmn, l ≥ 0, (5)

where Smn = (∇f)mn(∇f)	mn and cmn = (∂tf)mn(∇f)mn, and the discrete
Laplacian operation∑

ij

lijum−i n−j =
(

ui+1 j + ui−1 j + ui j+1 + ui j−1 − 4uij

vi+1 j + vi−1 j + vi j+1 + vi j−1 − 4vij

)
, (6)

using the operator splitting [4]. The eigenvalue analysis of the discrete Laplacian
implies the following proposition

Proposition 1. Equation (5) generates a sequence which converges to the so-
lution of the problem, if the relation |1 − Δτ2 22

h2 | < 1, where h is the sampling
interval, is satisfied.
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3 Fractional Order Variational Optical Flow Computation

3.1 Some Properties of the Fractional Order Differentiations

Using the Fourier transform pair

F (ξ, η) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i(xξ+yη)dxdy, (7)

f(x, y) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
F (ξ, η)ei(xξ+yη)dξdη, (8)

we define the operations

∂α
x f(x, y) =

1
2π

∫ ∞

−∞

∫ ∞

−∞
(iξ)αF (ξ, η)ei(xξ+yη)dξdη, (9)

∂α
y f(x, y) =

1
2π

∫ ∞

−∞

∫ ∞

−∞
(iη)αF (ξ, η)ei(xξ+yη)dξdη. (10)

Setting the operator Λ to be

Λf(x, y) =
1
2π

∫ ∞

−∞

∫ ∞

−∞
(
√

ξ2 + η2)F (ξ, η)ei(xξ+yη)dξdη (11)

from eqs. (9) and (10), we obtain the relation

Λ2α = (−Δ)n(Λ)2ε = (−Δ)n(−Δ)ε, (12)

for α = n + ε where n is an integer and 0 < 1 < ε. Furthermore, we have the
equality1 ∫ ∞

−∞

∫ ∞

−∞
|∇f |2dxdy =

∫ ∞

−∞

∫ ∞

−∞
|Λf |2dxdy, (13)

since ∫ ∞

−∞

∫ ∞

−∞
|f |2dxdy =

∫ ∞

−∞

∫ ∞

−∞
|F |2dξdη. (14)

3.2 α Optical Flow Computation

For the positive integer n ≥ 1, setting the operator Dn to be

Dn+1f =
(

∂xDnf
∂yDnf

)
, Df = ∇f =

(
∂xf
∂yf

)
, (15)

1 ∫ ∞

−∞

∫ ∞

−∞
(|fx|2 + |fy |2)dxdy =

∫ ∞

−∞

∫ ∞

−∞
(|iξF |2 + |iηF |2)dξdη

=
∫ ∞

−∞

∫ ∞

−∞
(ξ2 + η2)|F |2dξdη =

∫ ∞

−∞

∫ ∞

−∞
|Λf |2dxdy.



158 K. Kashu et al.

we define the operation

|T αf |2 =
{
|Dαf |2, if α is an integer,
|Λαf |2, otherwise. (16)

The mathematical properties of the operator Λ allow us to focus on variational
optical flow computation which minimises the functional

Jα(u) =
∫
R2

F (u; α, κ)dxdy, (17)

F (u; α, κ) = (∇f	u + ∂tf)2 + κ(|T αu|2 + |T αv|2), (18)

for α ≥ 0 and κ ≥ 0 as an extension of eq. (2), that is, we have the relation
J(u) = J1(u).

Definition 1. We call the solution of eq. (17) the alpha optical flow 2.

Since Λ = Λ∗, we obtain the Euler-Lagrange equation 3 from eq. (17) as

1
κ

Λ2αu + (∇f	u + ∂tf)∇f = 0. (19)

3.3 Numerical Computation for Fractional Differentiation

Equation (19) derives the iteration form

(I +
Δτ

κ
Smn)u(l+1)

mn = {(u(l)
mn + Δτ (−Λ2α)}u(l)

m n − Δτ

κ
cmn, l ≥ 0, (20)

for the numerical computation of α-optical flow, where the numerical Fourier
transform achieves the operation (−Λ2αu)(l)mn. To use the FFT (Fast Fourier
Transform) under the Neumann condition ∂u

∂n = 0, the function f(x, y) defined
in 0 ≤ x, y ≤ L is expanded using the relations f(L+x, L+ y) = f(L−x, L− y)
and f(x, y) = (x + 2mL, y + 2nL) for integers m and n.

2 Multiresolution image analysis using the diffusion equation fτ = Δf is called the
scale space method. The generalisation using the equation fτ = (−Δ)

α
2 f is called

the α-scale space method [22].
3 First,

δ

δu
Jα(u) = 2(∇f�u + ∂tf)∇f + κ

δ

δu
(|Λαu|2 + |Λαv|2).

Furthermore,

δ

δu

∫ ∞

−∞

∫ ∞

−∞
(|Λαu|2 + |Λαv|2)dxdy =

δ

δu

∫ ∞

−∞

∫ ∞

−∞
(Λαu)(Λαu)dxdy

=
δ

δu

∫ ∞

−∞

∫ ∞

−∞
((Λα)∗Λαu)udxdy =

δ

δu

∫ ∞

−∞

∫ ∞

−∞
(Λ2αu)udxdy = Λ2αu

since Λ∗ = Λ. Moreover, in the same manner, we have δ
δv

(|Λαu|2 + |Λαv|2) = 2Λ2αv,
Then, we have eq. (19), using the notation Λu = (Λu, Λv)�.
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For {fmn}N−1
m,n=0 such that N = 2k, setting

gmn =

⎧⎪⎪⎨⎪⎪⎩
fmn , m = 0, 1, · · · , N

2 − 1, n = 0, 1, · · · , N
2 − 1

fm N−1+n , m = 0, 1, · · · , N
2 − 1, , n = −1,−2, · · · ,−N

2
fN−1+m n , m = −1,−2, · · · ,−N

2 , n = 0, 1, · · · , N
2 − 1

fN−1+m N−1+n , m = −1,−2, · · · ,−N
2 , , n = −1,−2, · · · ,−N

2

, (21)

the DFT pair is expressed as

Gpq = F2gmn =
1
N

N
2 −1∑

m n=−N
2

gmn exp
(
−2πi

mp + nq

N

)
, (22)

gmn = F−1
2 Gpq =

1
N

N
2 −1∑

p q=− N
2

Gpq exp
(

2πi
mp + nq

N

)
. (23)

Then, we have

d

dx
g(x, y) ≈ gm+ 1

2 n − gm− 1
2 n = F−1

2 2i sin
(πp

N

)
Gpq (24)

d

dy
g(x, y) ≈ gm n+ 1

2 n − gn m− 1
2

= F−1
2 2i sin

(πq

N

)
Gpq (25)

The first term of the iteration of eq. (20) is computed using the following filtering
operation

Λ2αumn = (−Δ)αumn = F−1
2

{
4 sin2

(πp

N

)
+ 4 sin2

(πq

N

)}α

Upq (26)

where Upq = (Upa, Vpq)	 = F2umn = (F2umn, F2vmn)	.

3.4 Convergence Analysis

Using the vectorisation of the array

u = vec

⎛⎜⎜⎜⎝vec

⎛⎜⎜⎜⎝
u11 u12 · · · u1N

u21 u22 · · · u2N

...
...

. . .
...

uM1 uM2 · · · uMN

⎞⎟⎟⎟⎠ , vec

⎛⎜⎜⎜⎝
v11 v12 · · · v1N

v21 v22 · · · v2N

...
...

. . .
...

vM1 vM2 · · · vMN

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (27)

eq. (20) is expressed as

Au(l+1) = P	BPu(l) + c, (28)

for
B = I + Δτ(−L)α (29)
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where L is the Laplacian matrix for the vector u, that is,

L =
(

D ⊗ D O
O D ⊗ D

)
, D =

⎛⎜⎜⎜⎝
−1 1 0 · · · 0 0
1 −2 1 0 · · ·
...

...
. . .

...
0 0 · · · 0 1 −1

⎞⎟⎟⎟⎠ , (30)

and the permutation matrix P is

P =
(

Q O
O Q

)
, Q(vecU , vecV ) = (vecU	, vecV 	). (31)

Setting Φ and Σ to be the DCT matrix and its eigenmatrix, the matrix Lα for
is rewritten 4 as

Lα =
(

Φ ⊗ Φ O
O Φ ⊗ Φ

)(
Σα ⊗ Σα O

O Σα ⊗ Σα

)(
Φ ⊗ Φ O

O Φ ⊗ Φ

)∗
. (32)

Furthermore, since the matrix A is expressed as

A = Diag(I +
Δτ

κ
Smn), (33)

ρ(A) > 1. Therefore, if ρ(B) < 1, eq. (28) generates a sequence which converges
to the solution. Since the eigenvalues of the matrix D are λi = (2 − 2 cos 2iπ

N )
and ρ(D) = 2, the eigenvalues of Lα is σij = λα

i + λα
j . These mathematical

properties derive the following theorem.

Theorem 1. If |1 − Δτ2
( 2

h

)α | < 1, the spectrum of B is smaller than 1 and
eq. (20) satisfies the convergence condition.

3.5 Selection of Order of Prior

The solution involving the kth-order prior is

u(x, y) =

⎛⎝ k−1∑
i,j=0

aijx
iyj,

k−1∑
i,j=0

bijx
iyj

⎞⎠	

(34)

for nonnegative integers k, that is, the solution is locally a (k − 1)th-order poly-
nomial of x and y. This property implies that the priors involving the first- and
second- order differentiations derive a piecewise linear and affine optical flow,
respectively.

Let u(x, y, t; α) be the optical flow vector computed for a fixed α. For each
point x, we select

u(x, y, t; α∗) = arg min
α

F (u; α, κ), α∗(x, y, t) = arg min F (u; α, κ) (35)

4 For a positive definite matrix A and a real number α, the eigenvalues of Aα is λα

for Au = λu, where u is the eigenvector of A.
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for a predetermined positive parameter κ as the solution of the optical flow vec-
tor of the point x. Equation (35) estimates the local continuity order of the
optical flow vector, that is, the point x with the optical flow vector u(x, y, t; α)
is the class (α − 1) function of the x. We call α∗ = α(x, y, t), which estab-
lishes the minimum of eq. (35) , the α-map of the optical flow field (α-map in
abbreviation.).

4 Numerical Examples

4.1 Performance of Fractional Order Differentiations

Figure 1 shows the computational results of optical flow for κ = 1
4 max |∇f |max

and κ = max |∇f |max, for α = 1.5. In these results, optical flow vectors are
expressed using colour charts in the left rows, that is, a colour of a point in
optical flow field images represents the direction and length of the optical flow
vector at the point. These results show that if α = 1 + ε for 0 < ε < 1, we can
detect the motion boundary with motion discontinuity. Figure 1 shows that the
minimums of these measures are not established for α = 1 or α = 2.

We have evaluated the following measures.

– AE(u) = arccos û	
computerûgrandtruth for û = 1√

u2+v2+1
(u, v, 1)	, where u =

(u, v)	.
– OFCE(u) = |fxu + fy + ft|
– AAE(u) the average of AE(u) on an image.
– AOFCE(u) the average of OFCE(u) on an image.
– V AE(u) the variance of AE(u) on an image.
– V OFCE(u) the variance of V OFCE(u) on an image.

Figure 2 shows graph of these parameters for image sequences Yosemite, New
Marbled Block, and Rotating Sphere. The results suggest that the local
continuity order of the optical flow field is fractional. Furthermore, the order
depends on the point.

(a) Chart (b) Ground Truth (c) κ = 1
4
|∇f |max (d) κ = |∇f |max

Fig. 1. Computational results Form the left to right the colour charts for flow vectors,
The ground truth of the motion field, For κ = 1

4
|∇f |max and κ = |∇f |max with α = 1.5.

These results for α = 1.5 detects the motion boundary with motion discontinuity.
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(c) Sphere

Fig. 2. Computational results. Evaluation parameters of image sequences Yosemite,
New Marbled Block, and Rotating Sphere. These graph curves suggest that the
minimums of evaluation measures are established for α > 1.

4.2 Selection of Local Order

Next, we show the results on the selection of 0 ≤ α ≤ 3 for each point using eq.
(35).

Figure 3 shows the results of rotating sphere. In the first row from left to
right, figures show motion field, residual curve, α-map, and results. In the second
row, from left to right, figures shows the results for α = 1.0, 1.5, 2.0, and 2.5,
where κ = 0.1. In the third row, from left to right, figures shows the results
α = 1.0, 1.5, 2.0, and 2.5, where κ = 1.0. Figure 2(d) is the result by our
method using the α-map of Fig. 2(c). Fig. 2(c) shows that the boundary of
the sphere on the image is sharply extracted, since on the boundary both the
gray-value of the image and the optical flow process discontinuity in the gray-
value topography and motion filed, respectively. This discontinuity is extracted
by the fractional order optical flow. Figure 4 shows the results for the new-
marbled-block sequence. The proposed method clearly extracts the objects from
the background using the difference in motion continuity order on the boundaries
of the segments. Figure 5 shows the application of our method to the motion
analysis of a real image sequence. This result shows that the proposed method
extracts the moving cars using the difference of motion continuity order on the
boundaries of the segments. In these results the maximum and minimum values
of α-map are white and black, respectively.

These results show that by using the higher fractional order differentiation
in the prior, the algorithm extracts the sharp motion boundary with a sharp
optical flow field. On the other hand, in the background, the algorithm detects
null motion and stationary motion in the inner area of moving segments.

4.3 Discussion

For α = n + ε such that 0 < ε < 1, a fractional order Laplacian is decomposed
into a polyharmonic operation (−Δ)n and fractional Laplacian Λ2ε = (−Δ)ε

as eq. (12). This decomposition can be read that Λ2αf is achieved by applying
the polyharmonic operation (−Δ)n to g = (−Δ)εf . The numerical filtering of the
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(b) Residual of F (c) α-map, κ =
1.0

(d) Results

(e) α = 1.0, κ =
0.1

(f) α = 1.5, κ =
0.1

(g) α = 2.0, κ =
0.1

(h) α = 2.5, κ =
0.1

(i) α = 1.0, κ =
1.0

(j) α = 1.5, κ =
1.0

(k) α = 2.0, κ =
1.0

(l) α = 2.5, κ =
1.0

Fig. 3. Results 1: Rotating sphere. First row: from left to right, motion field, residual
curve, α-map, and the results, Second row: for κ = 0.1, from left to right α = 1.0,
α = 1.5, α = 2.0, and α = 2.5. Third row: for κ = 1.0, from left to right α = 1.0,
α = 1.5, α = 2.0, and α = 2.5.

operation (−Δ)ε derived in eq. (26) possesses a smoothing effect to the optical
flow field u(l) in each iteration step5. Therefore, our numerical scheme derived
in the previous section generates a smoothed optical flow before applying the
polyharmonic operation, which is the main part of the prior for the selection of
model in optical flow computation. This presmoothing property of the numerical
scheme yields better performance for α = n + ε such that 0 < ε < 1.

From the results, we observe the following properties on the boundary motion.

5 The operation Λ2εf is achieved by convolution between the image f and the Riesz
potential g2ε(x, y) = c

(
√

x2+y2)1+2ε
for a positive constant c.
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(a) Ground
Truth
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(c) α-map (d) Results

(e) α =
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(f) α =
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(g) α =
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(h) α =
2.5, κ = 1.0

Fig. 4. Results 2: New marbled-block First row: from left to right, motion field, residual
Curve, α-map, and the results. Second row: for κ = 1.0, from left to right α = 1.0,
α = 1.5, α = 2.0, and α = 2.5.

(a) α-map (b) Results (c) α = 1.0, κ =
1.0

(d) α = 1.5, κ =
1.0

(e) α = 2.0, κ =
1.0

(f) α = 2.5, κ =
1.0

Fig. 5. Results 3: Hamburg taxi. From left to right α-map, results, and results of
α = 1.0, 1.5, 2.0, 2.5 for κ = 1.0.

Observation 1. If the motion of points in the neighbourhood of the boundary
is locally stationary, for instance, the motion is pure translation in a region,
the projection of ridges boundary moves elastically on the image. Therefore, the
constraint
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E(u) =
∫ ∫

R2
(|D2u|2 + |D2v|2)dxdy, (36)

is suitable to detect moving boundaries.

Observation 2. If the motion of points in the neighbourhood of the boundary
on the image is nonstationary because of motion delay in the neighbourhood, for
instance, the delay in the global translation caused by local rotation, the projection
of ridges boundary moves viscoelastically on the image. Therefore, the constraint

V (u) =
∫ ∫

R2
(|Λ1+εu|2 + |Λ1+εv|2)dxdy (37)

for 0 < ε < 1 is suitable to detect moving boundary.

Our method estimates the continuity order of optical flow field at each point.
Furthermore, as shown in the results, our method also extracts the higher order
optical flow if the gray-value distribution of an image is discontinuous. The
results mathematically provides a method to estimate the local continuity order
of optical flow field, and theoretically shows that for motion boundary extraction
and tracking, the prior with higher order differentiation is preferable. For the
tracking of the image of an elastic boundary of a ridged object in space, the
order of the differentiation is two. If the optimal order of the points is between
1 and 2, the points are viscoelastically moving [16,17] on an image.

Although TV regularisation accurately and stably computes an optical flow
field and extracts moving segments from the background, the operation is non-
linear. The results leads to the conclusion that using the local continuity order,
it is possible to extract the motion boundary and separate moving segments
from the background. The first step of our method is achieved by a collection of
linear operation. This is the most important advantage of our method over TV
regularisation.

5 Concluding Remarks

We introduced a method to compute optical flow by selecting the optimal local
continuity order of the optical flow field using the variational principle. Our vari-
ational method derives a collection of linear partial differential equations. The
linear equations can be numerically solved using the same numerical scheme,
since the method is described by a differential operation with a parameter. The
detection of discontinuity part by our method is compatible with TV regulari-
sation, which derives a nonlinear iteration form as a numerical scheme.

The Nagel-Enkelmann [14,15] and TV regularisation [1] methods are image
and flow driven, respectively. On the other hand, our method is an operator
driven, since the order of the differentiation is selected at each point. In the
Nagel-Enkelmann method, the structure tensor, which is the local moment of
the gradient image, controls the local coordinate of optical flow computation,
although the numerical scheme is linear. In TV regularisation, the direction of
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the flow vector itself controls the direction to compute local average and the
numerical scheme is nonlinear. Although the local continuity order of an optical
flow field is shift-variant, our method first solves many shift-invariant operations
and select the optimal solution using the residual of the solution.

For accurate and stable numerical computation, the presmoothing of data is
a typical procedure. In our iterative method to solve numerically a fractional
partial differential equation, the DFT-based computation of the fractional part
of higher order derivative acts as intermediate smoothing in each step of the it-
eration. Usually, presmoothing operations are heuristically selected. However, in
the computation of fractional differentiations in our problem, the operations au-
tomatically defines a class of smoothing operations. This is the second advantage
of the method.

References

1. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic
flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)

2. Yin, W., Goldfarb, D., Osher, S.: A comparison of three total variation based
texture extraction models. J. Visual Communication and Image Representation 18,
240–252 (2007)

3. Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for
the two-dimensional fractional diffusion equation. J. of Computational Physics 220,
813–823 (2007)

4. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Pro-
gramming 55, 293–318 (1992)

5. Davis, J.A., Smith, D.A., McNamara, D.E., Cottrell, D.M., Campos, J.: Frac-
tional derivatives-analysis and experimental implementation. Applied Optics 32,
5943–5948 (2001)

6. Tseng, C.-C., Pei, S.-C., Hsia, S.-C.: Computation of fractional derivatives using
Fourier transform and digital FIR differentiator. Signal Processing 80, 151–159
(2000)

7. Zhang, J., Wei, Z.-H.: Fractional variational model and algorithm for image de-
noising. In: Proceedings of 4th International Conference on Natural Computation,
vol. 5, pp. 524–528 (2008)

8. Mathieu, B., Melchior, P., Oustaloup, A., Ceyral, Cn.: Fractional differentiation
for edge detection. Signal Processing 83, 2421–2432 (2003)

9. Sabatier, J., Agrawel, O.P., Tenreiro Machado, I.A.: Advances in Fractional Cal-
culus: Theoretical Development and Applications in Physics and Engineering.
Springer, Netherlands (2007)

10. Oldham, K.B., Spanier, J.: The Fractional Calculus: Theory And Applications of
Differentiation And Integration to Arbitrary Order (Dover Books on Mathematics).
Dover (2004)

11. Podlubny, I.: Fractional Differential Equations. An Introduction to Fractional
Derivatives, Fractional Differential Equations, Some Methods of Their Solution
and Some of Their Applications. Academic Press, London (1999)

12. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17,
185–204 (1981)



Computing the Local Continuity Order of Optical Flow 167

13. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer
Surveys 26, 433–467 (1995)

14. Nagel, H.-H., Enkelmann, W.: An investigation of smoothness constraint for the
estimation of displacement vector fields from image sequences. IEEE Trans. on
PAMI 8, 565–593 (1986)

15. Nagel, H.-H.: On the estimation of optical flow:Relations between different ap-
proaches and some new results. Artificial Intelligence 33, 299–324 (1987)

16. Momani, S., Odibat, Z.: Numerical comparison of methods for solving linear dif-
ferential equations of fractional order. Chaos, Solitons and Fractals 31, 1248–1255
(2007)

17. Murio, D.A.: Stable numerical evaluation of Grünwald-Letnikov fractional deriva-
tives applied to a fractional IHCP. Inverse Problems in Science and Engineering 17,
229–243 (2009)

18. Gorenfloa, R., Abdel-Rehimb, E.A.: Convergence of the Grünwald-Letnikov scheme
for time-fractional diffusion. J. of Computational and Applied Mathematics 205,
871–881 (2007)

19. Debbi. L., Explicit solutions of some fractional partial differential equations via
stable subordinators. J. of Applied Mathematics and Stochastic Analysis, Article
ID 93502, 1–18 (2006)

20. Debbi, L.: On some properties of a high order fractional differential operator which
is not in general selfadjoint. Applied Mathematical Sciences 1, 1325–1339 (2007)

21. Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Fractional diffusion in inhomogeneous
media. J. Phys. A: Math. Gen. 38, L679–L684 (2005)

22. Duits, R., Felsberg, M., Florack, L.M.J., Platel, B.: α scale spaces on a bounded
domain. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695,
pp. 502–518. Springer, Heidelberg (2003)



A Local Normal-Based Region Term for Active
Contours

Julien Mille and Laurent D. Cohen

CEREMADE, CNRS UMR 7534, Université Paris Dauphine
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Abstract. Global region-based active contours, like the Chan-Vese
model, often make strong assumptions on the intensity distributions
of the searched object and background, preventing their use in natu-
ral images. We introduce a more flexible local region energy achieving a
trade-off between local features of gradient-like terms and global region
features1. Relying on the theory of parallel curves, we define our region
term using constant length lines normal to the contour. Mathematical
derivations are performed on an explicit curve, leading to a form allow-
ing efficient implementation on a parametric snake. However, we provide
implementations on both explicit and implicit contours.

1 Introduction

Active contours, whether parametric [1] or level-set based [2], were initially at-
tached to data by means of edge-based terms. The increasing use of region terms
inspired by the Mumford-Shah functional [3][4] has proven to overcome limi-
tations of gradient-based only models, especially when dealing with data sets
suffering from noise and lack of contrast between neighboring structures. Early
work including the mixed model of Cohen et al [5] and the active region model
by Ivins and Porrill [6] introduced the use of region terms in the evolution of
parametric snakes. On the other hand, many papers have dealt with region-
based approaches using the level set framework, including the active contours
without edges by Chan and Vese [7], the deformable regions by Jehan-Besson et
al [8] and the geodesic active regions by Paragios and Deriche [9], benefiting of
adaptive topology at the expense of computational cost. Classical region-based
deformable models segment images according to statistical data computed over
the object of interest and the background. Image partitions should be uniform
in terms of pixel intensities or higher level features like texture descriptors [9].
Considering for instance the Chan-Vese model [7], the region term penalizes the
curve splitting the image into heterogeneous regions, using intensity variances. It
is devoted by essence to the segmentation of uniform objects and backgrounds.

Such an ideal case is rarely encountered in most of computer vision applica-
tions, as the background usually contains various structures, which differ in their
1 This work was partially supported by ANR grant MESANGE ANR-08-BLAN-0198.

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 168–181, 2009.
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overall intensities or textures. In this context, the multiphase approach [10] al-
lows to partition the image into more than two regions, provided that the number
of partitions is known. When one wishes to extract a particular object from the
background without any prior knowledge about the number of actual regions,
strict homogeneity is not desirable property for the background. In order to
account for spatially varying intensity, local statistics in region-based segmen-
tation have emerged recently [11][12][13][14]. Basically, these methods express
the data term as a sum of local region energies computed over neighborhoods of
pixels inside and outside the evolving curve. We believe these approaches have
the drawback of not formulating the region energy fully explicitly in terms of
the curve, which only leads to a level set implementation. However, many appli-
cations benefit from explicit implementations of active contours, including low
computational cost and topological control. This justifies the use of an explicit
mathematical framework.

We introduce a local normal-based region energy handling configurations in
which the outer neighborhood of the object is piecewise uniform. Unlike other
region terms, whether local or global, this new type of combination allows to
handle the common case where one seeks for a uniform object in a heterogeneous
background. We formulate it as the intensity variance over the inner region and
finite length lines along outward normals to the curve. The theory of parallel
curves [15][16] leads to an explicit formulation of our energy, which is suitable for
mathematical derivation and implementation on parametric contours. In order
to allow gradient descent afterwards, we determine the variational derivative of
the region energy thanks to calculus of variations. Then, we deal with numerical
implementation on both parametric snakes and level sets. Finally, experiments
are carried out on medical data and natural color images. The tests present the
advantages of our new data term over an edge term, a global region term as well
as a recent local region-based approach [12].

2 Local Normal-Based Region Energy

2.1 Active Contour Model

Given a simple closed curve Γ with position vector c(u) = [x(u) y(u)]T with u ∈
Ω = [0, 1], segmentation is performed by finding the curve minimizing a weighted
sum of smoothness term and our local normal-based region (LNBR) energy:

E[Γ ] = ωEsmooth[Γ ] + (1 − ω)ELNBR[Γ ] (1)

where the user-provided ω weights the significance of the smoothness term,
which can be classicaly written with squared magnitudes of first and second
order derivatives. Curve Γ splits the image domain D into an inner region RI
and an outer region RO. Instead of formulating our data term on RI and RO,
we use the narrow band principle, which has proven its efficiency in the evo-
lution of level sets [2]. Hence, in addition to the inner region RI, instead of dealing
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Γ

Γ[B]

BO

RI

Fig. 1. Inner region and outer band for LNBR energy

with the entire image domain, we consider an outer band BO in the vicinity of Γ ,
as depicted in fig. 1.

The purpose of the LNBR energy is to handle cases where the inner region is
homogeneous and the background is locally homogeneous in the outer band. For
now, we express the outer term using a local descriptor depending on current
position x:

ELNBR[Γ ] =
∫∫
RI

(I(x)−μI)2dx +
∫∫
BO

(I(x)−μ(BO,x))2dx (2)

In what follows, we explain how ELNBR can be explicitly formulated in terms of
curve Γ .

2.2 Parallel Curve

Let B be the band thickness, constant along Γ . The theoretical background of
our narrow band framework is based on parallel curves [15][16]. The curve Γ[B]
is called a parallel curve of Γ , as its position vector c[B] is defined by:

c[B](u) = c(u) − Bn(u) (3)

where n is the unit inward normal. Hereafter, we will use the index [B] to denote
all quantities related to the parallel curve. The definition in eq. (3) is suitable to
our narrow band formulation, in the sense that BO is bounded by Γ and Γ[B].
Afterwards, we denote RI[B] the dilated inner region bounded by Γ[B].

Given length element ‖cu‖ and curvature κ, an important property resulting
from the definition in eq. (3) is that the velocity vector of the parallel curve can
be expressed as a function of the velocity vector of Γ , as well as its curvature
and normal. Using the identity nu= − κcu, we have:

c[B]u = cu − Bnu = (1 + Bκ)cu (4)

and the corresponding length element is
∥∥c[B]u

∥∥ = |1+Bκ| ‖cu‖, which implies
a constraint on the maximal curvature of curve Γ . We should assume that Γ
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is smooth enough so that κ(u) > −1/B, ∀u ∈ Ω, so that curve Γ[B] does not
exhibit singularities. This has an impact on explicit numerical implementation,
which is discussed in section 3.1.

We rely on the principle of parallel curve to transform region integrals over BO.
Introducing a variable thickness b and using Green’s theorem to convert region
integrals into boundary integrals, it can be shown that:∫∫

BO

f(x)dx =
∫

Ω

∫ B

0
f(c− bn) ‖cu‖ (1 + bκ)dbdu (5)

2.3 Transformation and Derivation of LNBR Energy

We provide the final expression of the LNBR term as it is implemented, in
contrast with the temporary form of eq. (2). We now assume that piecewise uni-
formity over the outer band is verified if intensity is uniform along line segments
in the direction normal to the object boundary. We first calculate the average
intensity along the outward local normal line of length B at a given contour
point. We use the same curvature-dependent weighting than in eq. (5), leading
to:

μLN(u) =
2

B(2 + Bκ)

∫ B

0
I(c − bn)(1 + bκ)db (6)

where I(x)∈[0, 1] is the image intensity. The LNBR energy should penalize non-
uniformity over the whole inner region and over all normal lines. Thus, we write:

ELNBR[Γ ] =
∫∫
RI

(I(x)−μI)2dx+
∫

Ω

‖cu‖
∫ B

0
(I(c−bn)−μLN(u))2(1+bκ)dbdu (7)

where μI is the average intensity of inner region RI. To some extent, the
outer band BO is split into infinitesimal trapezoids with parallel sides ‖cu‖
and ‖cu‖ (1+Bκ). This principle is represented on the discretized curve in fig. 2.
The LNBR energy has the following first variation (details of derivation are
provided in the appendix):

δELNBR

δΓ
≈ ‖cu‖

[
−(I(c)−μI)2 − (1+Bκ)(I(c[B])−μLN)2 + (I(c)−μLN)2

]
n

(8)

The derivative holds the term (I(c)−μLN)2 − (I(c)−μI)2, which is clearly in
accordance with the region-based segmentation principle. Indeed, the sign of
the above quantity depends on the likeness of the current point’s intensity with
respect to μI or μLN. If I(c) is closer to μI than μLN, the contour will locally
expand, as it would be the case with a region growing approach. The deriva-
tive holds an additional curvature-dependent term which effect is discussed in
section 3.1.
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�i

�i(1+Bκi)

ni
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Fig. 2. Neighboring vertices with corresponding points on the discrete parallel curve

3 Numerical Implementation

3.1 Explicit Representation

Implementation on an explicit curve is pertinent when speed and topology preser-
vation is a major concern. The contour is discretized as a closed polygonal line
made up of a set of n vertices, denoted pi = [xi yi]T . Their coordinates are
iteratively modified using gradient descent of eq. (1):

p(t+1)
i = p(t)

i + Δtf(pi) (9)

where f(pi) is the force vector depending on the discretization of the energy
derivative at a given vertex pi. In addition to the squared differences be-
tween I(c) and the average intensities, the variational derivative in eq. (8) also
contains a curvature-based term depending on the intensity at point c[B]. Actu-
ally, this term turns out to go against the region growing or shrinking principle,
as it opposes the other terms depending on I(c). As stated in [17], the usual
energy gradient may not be systematically the best direction to take, which
justifies our choice to remove side effect terms. The region force is:

fLNBR(pi) =
[
(I(pi)−μI)2 − (I(pi)−μLN(pi))2

]
ni (10)

Given �i, ni and κi the finite differences discretizations of length element, nor-
mal and curvature at vertex pi, the average intensity along the normal line is
implemented as:

μLN(pi) = B

(
1 +

κi(B + 1)
2

) b=B∑
b=1

(1 + bκi)I(pi − bni)

Fig. 2 depicts two neighboring vertices on a locally convex polygon, with cor-
responding length elements and points on the parallel polygon. There are two
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complementary techniques to address the regularity condition κi > −1/B. The
first one is to prevent vertices from making sharp angles with their neighbors,
so that κi is well bounded. Moreover, the case of a negative length element can
be handled. Hence, �i(1+bκi) is actually computed as max(0, �i(1+bκi)).

In a particular case, the formulation of fLNBR presents a shortcoming. Indeed,
the magnitude of fLNBR is low when μI and μLN are similar. This situation
also arises in local region-based methods [12][13] when the curve, including the
outer neighborhood, is initialized inside a uniform area. However, we expect the
contour to grow if the intensity at the current vertex matches the inner region
features, whatever the value of μLN. Thus, we introduce a bias acting like a
balloon force [18] which expands the boundary in the normal direction:

fbias(pi) = −α(1 − (μI − μLN(pi))2)ni (11)

with α∈ [0, 1]. Forces fLNBR and fbias are summed up, so that the bias is pre-
dominant when mean intensities are close. Consequently, we do not loose the
convergence ability of global region-based active contours. The region bias guar-
antees the contour has a similar capture range as global region-based contours.

Let us give a note on the implementation of Green’s theorem. Our experiments
include a comparison between the LNBR energy and a global region energy,
similar to the data term of the Chan-Vese model. The implementation of the
latter on the explicit polygon raises the difficulty of computing region integrals.
A naive solution consists in using region filling algorithms to determine inner
pixels [6] which would be computationally expensive if performed after each
deformation step. Another solution, which we chose, is based on a discretization
of Green-Riemann theorem. We compute and store the summed intensities P
and Q in the respective directions x and y only once, before deformation is
performed. This reduces the algorithmic complexity to O(n), whereas the LNBR
term induces a O(nB) complexity.

3.2 Implicit Representation

On the other hand, we provide an implicit implementation of the LNBR energy.
In this case, the contour is the zero level set of ψ : R2 → R. We define the region
enclosed by the contour as RI = {x|ψ(x) ≤ 0}. Function ψ evolves according to
the following PDE:

∂ψ

∂t
= F (x) ‖∇ψ(x)‖ ∀x ∈ R

2

where speed function F is to some extent the level set-equivalent of the explicit
energy in eq. (1), i.e. a weighted sum of smoothness and region terms:

F (x) = ωFsmooth(x) + (1 − ω)FLNBR(x)

where the smoothness term is expressed as usual using curvature. Areas and
average intensities on the outer band are easily computed on the level set imple-
mentation, since a circular window of radius B may be considered around each
pixel located on the front.

BO = {x|ψ(x) ≥ 0 and ∃y∈WB(x) s.t. ψ(y) = 0}
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Considering the sign of ψ, pixels belonging to BO are easily determined by dilat-
ing the front with circular window WB. As regards the average intensity along
outward normal lines, we rely on the curvature-based formulation of the explicit
curve. In the level set framework, it gives:

μLN(x) =
2

B(2 + Bκψ(x))

∫ B

0
I(x + bnψ(x))(1 + bκψ(x))db

with unit outward normal nψ and curvature κψ:

nψ(x) =
∇ψ(x)
‖∇ψ(x)‖ κψ(x) = div

(
∇ψ(x)
‖∇ψ(x)‖

)
Computed as is, in order for nψ to be actually normal to the front, ψ should
remain a distance function. This implies to update ψ as a signed Euclidean
distance in the neighborhood of the front before estimating normal vectors. From
eq. (7), we write the level set formulation of the LNBR term:

ELNBR[ψ] =
∫∫
D

(1−H(ψ(x)))(I(x)−μI)2dx

+
∫∫
D

δ(ψ(x))
∫ B

0
(I(x+bnψ(x))−μLN(x))2 (1+bκψ(x))dbdx

where H and δ are the Heaviside step and Dirac impulse functions. For a point x
located on the front, the corresponding speed is approximated from eq. (10):

FLNBR(x) = (I(x)−μLN(x))2 − (I(x)−μI)2

Eventually, the reader may note that an equivalent bias technique as the one used
in the explicit implementation (see eq. (11)) is applied in the level set model.
The level set function ψ evolves according to the narrow band technique [2], so
that only pixels located on the front are updated.

4 Results and Discussion

4.1 Concurrent Methods

We compare the behavior of explicit and implicit active contours endowed
with different data terms: an edge term [19], a global region term similar to
one of the Chan-Vese model [7] and the uniform modeling energy of Lankton-
Tannenbaum [12]. The goal of our experiments is not to compare explicit and
implicit implementations, since it is well accepted that both exhibit their own
advantages. We intend to show the interest of the LNBR energy whatever im-
plementation is used. In the edge-based model, the region force is replaced by an
edge force resulting from the differentiation of the image gradient magnitude:

fedge(pi) = ∇‖∇Gσ ∗ I(pi)‖ − αni
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where α weights an additional balloon force [18] increasing the capture range
and consequently allowing the snake to be initialized far from the target bound-
aries. The gradient magnitude is computed on data convolved with first-order
derivative of gaussian Gσ, where scale σ is empirically chosen to yield the most
significant edges. A similar speed term Fedge is implemented in the level set con-
tour. As stated by their authors, the Chan-Vese (CV) and Lankton-Tannenbaum
(LT) models directly rely on an implicit formulation of the curve. We give their
corresponding region speed terms:

Fglobal(x) = (I(x)−μI)2 − (I(x)−μO)2

FLT(x) =
∫∫

WB(x)

δ(ψ(y))(I(y)−μI(x))2 − (I(y)−μO(x))2dy

where μI(x) is the local inner average intensity over the ball of radius B cen-
tered at x, and similarly for the local outer average intensity μO(x). One may
note that in the initial paper by Chan and Vese, the region term is asymmet-
ric, as inner and outer terms are independently weighted, so that the variance
minimization may be favoured inside or outside. However, we chose to use a
symmetric term, as it is commonly the case with region-based active contours.
Incidentally, future experiments could be done using asymmetry on all compared
region terms. Moreover, the localized term of Lankton-Tannenbaum suffers from
a weak capture range, since the front cannot evolve if inner and outer local
means are similar. Thus, we also embedded into this energy the bias force of
eq. (11). We used the same curvature-based regularization term for all tested
approaches.

For all datasets, the model was initialized as a small circle fully or partially
inside the area of interest, far from the target boundaries. Results are shown in
fig. 3. Explicit contours are drawn in red whereas implicit ones appear in blue.
For all experiments, the regularization weight ω was set to 0.5. On noisy data,
we found that contours with lower ω were prone to boundary leaking. In addi-
tion, insufficient regularization makes level set implementations leave spurious
isolated pixels inside and outside the inner region. Conversely, values above 0.8
turn out to prevent the surface from propagating into narrow structures. Exper-
iments are carried on grayscale and color images as well. For the latter ones, we
should point out that the minimal variance principle is easily extended to vector
quantities. Let us consider the vector-valued image I and average intensities mI
and mLN. In the inner term, the integrand becomes ‖I−mI‖2 and similarly for
the outer term. The synthetic image in row 3, made up of color ellipses corrupted
with gaussian noise, was segmented using RGB values. The natural images de-
picted in rows 4 to 7 hold nearly color-uniform objects. They were segmented
using the ab components of the perceptually uniform CIE Lab color space.
Neglecting the brightness L makes color statistics insensitive to illumination
changes in visually uniform regions, allowing to handle highlights and shadows
properly.
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4.2 A Note on the Choice of the Band Thickness

The band thickness B is an important parameter of our method and should be
discussed. Apart from its impact on the algorithmic complexity - computing av-
erage intensities along normal lines takes at least O(nB) operations - it controls
the trade-off between local and global features around the object. If B = 1,
the region energy is as local as an edge term. The main image property having
an effect on the minimal band thickness is the edges sharpness. Indeed, the de-
formable curve needs a larger band as the boundaries of the target object are
fuzzy. To put this phenomenon into evidence, we applied the active contour on
an increasingly blurred image. Bands thinner than the minimal one caused the
contour to flow into neighboring structures. The original image was segmented
with B = 2. For subsequent images, increasing the band turned out to be nec-
essary. As the blur level of the last image in the sequence is rarely encountered
in the applications we aim at, B = 10 was a suitable value in our experiments.

4.3 Segmentation Results

Since we are looking for perceptually homogeneous objects, segmentation qual-
ity can be assessed visually. One can reasonably admit that the target object
corresponds to the area containing the major part of the initial region. Gradient-
based deformable models fail on images where noise and low contrast between
neighboring objects prevent the extraction of reliable edges. Except for the last
image in fig. 3, we could not find a suitable balloon weight preventing the con-
tour from being trapped in spurious noisy edges inside the shape while stopping
on the actual boundaries. Indeed, the edge-based energy is inefficient when the
sharpness of boundaries decreases, as the contour may pass through the actual
edges and stop on false ones simultaneously. In order to keep a critical eye on
our approach, we draw the attention on the equivalence between the global and
local region energies in particular images.

Row 2 and 4 depict typical configurations where there is no particular benefit
in using localized region energies. In the MRI short-axis view of the human heart,
the background is not uniform but still significantly darker than the bright left
ventricle. Thus, the global region speed manages to make the front stabilize on
the actual boundaries. The background of image 4 is obviously color-uniform
as well. However, in other images containing various objects surrounding the
structure of interest, the global region term captures all areas considered as
different from the background. By definition, any two-phase segmentation model
may fail at recovering a particular object when it is surrounded by many different
objects, except in very particular cases such as a bright object surrounded by
several dark objects. This phenomenon is well illustrated in row 3. Due to the
averaging performed over the outer region, the global region approach turns out
to split the image with respect to the blue component, since it is the dominant
color in the background and it is absent of all areas in the inner region. Row 1
is a particular case in which the contour endowed with the global region-based
active contour does not manage to grow, as inner and outer average intensities
are not sufficiently different.
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Fig. 3. Segmentation results on medical and natural color images. Starting from com-
mon initializations shown in column 1, the LNBR term is compared with three other
energies (edge energy, global region energy and local uniform modeling energy of
Lankton-Tannenbaum). The image in row 4 was taken from the Berkeley Segmentation
Dataset [20].

In the extent of our experiments, the Lankton-Tannenbaum method turns out
to somewhat more sensitive to initialization than the LNBR active contour. In
row 2, an inner dark papillary muscle is partially included in the initial region,
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which results in its incorporation into the final inner region. Since the Lankton-
Tannenbaum energy only implies uniformity over balls centered at boundary
pixels, it tends to flow into outer parts and leave some inner parts, as shown
in rows 4, 5 and 6. The LNBR energy performs better at segmenting uniform
objects. As a final remark, computational times imputed to the explicit contour
fall between 0.5s and 1s on images of average size 512 × 512, with a C++
implementation running on an Intel Core 2 Duo 2GHz with 1Gb RAM. On the
same images, we found the level-set implementations 3 to 4 times slower.

5 Conclusion

We have presented in this paper a local region-based method for deformable
contours, relying on the assumption of a piecewise uniform background in the
vicinity of the target object. The approach is based on a novel region term im-
plying average intensities along lines in the outward direction normal to the
curve. Based on the theory of parallel curves, a mathematical development was
carried out in order to express the region energy in a form allowing natural imple-
mentation on explicit models. The local normal-based region energy managed
to overcome the drawbacks of deformable models relying exclusively on edge
terms or global region terms. We provided explicit and level-set based imple-
mentations. Very promising results were obtained in grayscale and color images.
Further investigations will be performed in embedding local region terms into
more geometrically constrained models. We also plan to extend the model to
temporal segmentation, in order to track evolving objects in videos, and to tex-
tured images.
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A Calculus of Variations

A.1 Derivative of Parallel Curve-Based Term

In classical active contours, curve Γ is a local minimizer of the functional

E [Γ ] =
∫

Ω

L(c, cu, cuu) du

when the following variational derivative vanishes:

δE [Γ ]
δΓ

=
∂L
∂c

− d

du

{
∂L
∂cu

}
+

d2

du2

{
∂L

∂cuu

}
(12)
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Considering now a functional expressed on the parallel curve,

E ′[Γ[B]] =
∫

Ω

L′(c[B], c[B]u)du,

determining directly the derivative of E ′[Γ[B]] with respect to Γ leads to tedious
calculations. Instead, we find more practical to determine δE ′[Γ[B]]/δΓ[B] first,
and then relate it to δE ′[Γ[B]]/δΓ using the following general expression:

δE ′

δΓ
= (1+Bκ)

〈
δE ′

δΓ[B]
, t
〉

t + (1−Bκ)
〈

δE ′

δΓ[B]
,n
〉

n

+
B‖cu‖u

‖cu‖2

〈
δE ′

δΓ[B]
, t
〉

n − B

‖cu‖

〈
d

du

{
δE ′

δΓ[B]

}
, t
〉

n
(13)

where 〈, 〉 is the L2 inner product and t is the unit tangent vector. To some extent,
we designed the expression in eq. (13) as a chain rule for parallel curve-based en-
ergies. Hereafter, we use it to determine the derivative of the LNBR term.

A.2 Derivative of Region Terms

We now need to express derivatives of general region terms over RI and BO.
Region terms are transformed into boundary integrals using Green’s theorem.
In this way, inners terms are differentiated according to the following template
formula (the detailed derivation may be found for example in the appendix
of [21]):

δ

δΓ

{∫∫
RI

f(x)dx
}

= −‖cu‖ f(c)n (14)

Integrals over BO are more conveniently differentiated when expressed with in-
tegrals over RI and its dilated counterpart RI[B]. Since BO = RI[B]\RI, we have:

δ

δΓ

{∫∫
BO

f(x)dx
}

=
δ

δΓ

{∫∫
RI[B]

f(x)dx
}
− δ

δΓ

{∫∫
RI

f(x)dx
}

(15)

From eq. (14), we have:

δ

δΓ[B]

{∫∫
RI[B]

f(x)dx
}

= −‖cu‖ (1 + Bκ)f(c[B])n

which is intuitively obtained by substituting Γ with Γ[B]. In eq. (13), we re-
place δE[B]/δΓ[B] with the previous result. Since 〈n, t〉 = 0, the derivative even-
tually reduces to:

δ

δΓ

{∫∫
RI[B]

f(x)dx
}

= −‖cu‖ (1 + Bκ)f(c[B])n (16)
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A.3 Derivative of LNBR Energy

To determine the derivative of ELNBR, we consider eqs (14), (15) and (16) and
instantiate f with (I − μI)2 or (I − μLN)2 where appropriate. We approximate
the derivative of the outer term of the LNBR energy from the derivative of the
general integral J(f,BO). Doing this, average intensities μI and μLN are assumed
to be curve-independent. This is actually a shortcut since they do obviously
depend on Γ (see eq. (6)). However, one may note that a similar derivation is
made in the work by Chan-Vese [7], where average intensities μI and μO are
initially formulated as variables and, by means of gradient descent, are actually
assigned to average intensities. Finally, we have:

δELNBR

δΓ
≈ ‖cu‖

[
−(I(c)−μI)2 − (1+Bκ)(I(c[B])−μLN)2 + (I(c)−μLN)2

]
n

(17)
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Abstract. Pairwise data clustering techniques are gaining increasing
popularity over traditional, feature-based central grouping techniques.
These approaches have proved very powerful when applied to image-
segmentation problems. However, they are mainly focused on extracting
flat partitions of the data, thus missing out on the advantages of the
inclusion constraints typical of hierarchical coarse-to-fine segmentations
approaches very common when working directly on the image lattice.
In this paper we present a pairwise hierarchical segmentation approach
based on dominant sets [12] where an anisotropic diffusion kernel allows
for a scale variation for the extraction of the segments, thus enforcing
separations on strong boundaries at a high level of the hierarchy. Exper-
imental results on the standard Berkeley database [9] show the effective-
ness of the approach.

1 Introduction

Proximity-based, or pairwise, data clustering techniques are gaining increas-
ing popularity over traditional central grouping techniques, which are centered
around the notion of “feature” (see, e.g., [5,14,15,13]). In many application do-
mains, in fact, the objects to be clustered are not naturally representable in terms
of a vector of features. On the other hand, quite often it is possible to obtain
a measure of the similarity/dissimilarity between objects. Although such a rep-
resentation lacks geometric notions such as scatter and centroid, it is attractive
as similarity information arising from sources of very different nature can be in-
corporated very easily, often not requiring more than adding together distances
or multiplying similarities calculated from different sources. In contrast, inte-
grating information of different nature within the central clustering framework
requires an integrated feature model capable of simultaneously characterizing all
information at the feature level.

These approaches have proven very powerful when applied to image segmen-
tation problems [15,8,5,2]. Here, the possibility of easily integrating different
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sources of information has been used to incorporate color, texture, and proxim-
ity information between pair of pixels. Conversely, feature based segmentation
algorithms must explicitly integrate all types of information into a single geo-
metrical model which requires a stronger characterization of the geometry of the
image.

Despite the promise of ease of integration of inhomogeneous information, most
actual implementations of pairwise segmentation only integrate local appearance
based information, with color- and texture-based similarities taking the lion’s
share over all pairwise measures found in the literature. With few exceptions,
little work has been done to integrate locality and boundary information in a
pairwise setting. Among these we note Malik and coworkers’ proposal to incor-
porate boundary information in the normalized-cut framework by looking for an
intervening contour [8]. However, their approach only looks for detected edges
in the straight line joining two pixels; hence, it is strongly dependant on the
quality of the edge extractor and tends to separate pixels belonging to a single
region if this is not convex. The normalized cut framework is relatively forgiving
about this problem, but it is particularly severe when using pairwise clustering
algorithms that favor “compact” globular clusters such as the dominant sets
framework [12]. Furthermore, intervening contour information alone is not able
to separate regions with fuzzy or unclear boundaries such as regions delimited by
relatively smooth gradients. An alternative is to use the minimal boundary sep-
aration along all possible paths [16], however the selection of the optimal path
renders this approach not robust with respect to the misdetection of a single
boundary point. A more robust path-based segmentation can be achieved using
random walks on the image lattice. For example, Grady uses random walks to
extract a semi-supervised segmentation [4] where a pixel belongs to the class of
whose label is expected to find first on a random walk.

Further, pairwise segmentation algorithms are generally concerned with flat
partitions, thus missing out on the advantages of the inclusion constraints typ-
ical of hierarchical coarse-to-fine segmentations approaches very common when
working directly on the image lattice.

In this paper, we propose a coarse-to-fine segmentation algorithm based on
a hierarchical variant of the dominant sets framework [10]. Here, however, the
regularizer term is substituted with a heat diffusion kernel [7], which enforces
locality and boundary separation based on a limited time random walk on the
image lattice. At the beginning of the diffusion process the effects are local and
hence the long-range similarity is dominated by the color and texture appear-
ance, while as the time increases the range of the kernel expands thus enforcing
a coarser segmentation. To this end we start by segmenting at a high time value,
and then we iteratively reduce the time to obtain finer-grain separations. The
anisotropic diffusion properties of the heat kernel have been used in the com-
puter graphics and vision communities to perform controlled smoothing [6,1].
Here, however, we are using it to define an explicit scale space on which to base
a recursive hierarchical partitioning scheme.
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2 Hierarchical Dominant Sets

The dominant set framework [12] is a pairwise clustering approach based on a
recursive characterization of the weight wS (i) of element i with respect to a
set S of elements, and characterizes a group as a dominant set, i.e., a set that
satisfies:

1. wS (i) > 0, for all i ∈ S
2. wS∪{i} (i) < 0, for all i /∈ S.

These conditions correspond to the two main properties of a cluster: the first re-
gards internal homogeneity, whereas the second regards external inhomogeneity.

The main result presented in [12] provides a one-to-one relation between dom-
inant sets and strict local maximizers of the following quadratic program

maximize x′Ax
subject to x ∈ Δ

(1)

where A = (aij) is the matrix of similarities of the n elements to be grouped,

Δ = {x ∈ IRn : xi ≥ 0 for all i = 1, . . . , n and 1′x = 1}

is the standard simplex of IRn, and 1 is a vector of appropriate length consisting
of unit entries.

Specifically, in [12] it is proven that if x is a strict local solution of program (1)
then its support S = σ(x) is a dominant set. Here, the support of a vector x ∈ Δ
is the set of indices corresponding to its positive components. The local maxima
of (1) is found using the replicator equations, a dynamical systems mutuated
from game-theory. The approach has proven to be a very effective and robust
pairwise clustering approach that has in its speed one of its major selling points.

In [10] a hierarchical approach was presented by taking into consideration the
regularized quadratic program

maximize x′(A − αI)x
subject to x ∈ Δ

(2)

where α is a scale parameter that defines the hierarchy. In [10] was shown that
for sufficiently large values of α all elements where clustered into a single group
and a recursive divisive algorithm was applied to the data as α was reduced.
However, no indication of how to select the relevant values of α was provided.

3 Anisotropic Diffusion Kernel

Let M = (VM , EM ) be the regular mesh defined over the image by connecting
each pixel to its 4-neighbors. Further, let γ : VM ×VM → IR+ be an edge weight
function which reflects how similar two neighboring pixels are. In our boundary-
based segmentation approach we set

γ(i, j) =

{
e−k

∇Ii+∇Ij
2 if (i, j) ∈ EM

0 otherwise,
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original t=1 t=125 t=250 t=375 t=500 t=625 t=750

original t=1 t=500 t=1000 t=1500 t=2000 t=2500 t=3000

Fig. 1. Location distribution of a walker at time t. the black dot marks the starting
position.

where ∇Ii is the image gradient at pixel i. We define M = (mij) as the weighted
adjacency matrix of M, where we set mij = γ(i, j).

An anisotropic diffusion on M is a lazy random walk from a pixel in the
image lattice to other pixels along the mesh connections, where the transition
probabilities are proportional to the value of the edge weight function γ. The
walk is lazy as at each time step the walker has a non-null probability 1/Zi of
remaining at location i and a probability mij/Zi of moving to location j, where
Zi = 1+

∑
j mij is a normalizing factor. The use of a lazy walk forces the walker

to diffuse rapidly on flat image regions, when Zi is high, while slowing down
when there is a complex edge structure around i, i.e., when Zi is close to 1.

The expected position at time t of a random walker starting from position i
is governed by the heat diffusion kernel e−Lt, where L is the Laplacian of M,
with L = D − M where D is the diagonal matrix with elements dii =

∑
j mij .

At t = 0, the diffusion kernel is an identity matrix; as t increases the kernel
assigns non-zero values to elements in the vicinity of position i spreading more
rapidly along flat locations and stopping on boundaries, while as t becomes very
large the support of the kernel is very diffused and far-reaching. Figure 1 shows
two images and the location probability of a walker starting on the pixel marked
with the black dot. As it can be seen, for small times the support is mostly
restricted to a local segment, bound by strong boundaries in the image, while as
time increases the support becomes more diffused.

4 Diffusion Regularizers

In the definition of our hierarchical coarse-to-fine segmentation approach we
substitute the identity matrix I in the regularizer term of program (2) with the
kernel I − e−Lt, obtaining the following regularized quadratic program

maximize ft(x) = x′ [A − αt

(
I − e−Lt

)]
x

subject to x ∈ Δ
(3)
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where for all t > 0 αt ≥ 0 is a monotonically increasing function with α0 = 0.
Note that in the large time limit this regularizer term becomes equivalent to
the one used in [10]. In fact, as program (2) is invariant to constant shifts in
the matrix A, subtracting the regularizing term αI is equivalent to subtracting
α(I − 11′). Moreover, we have

lim
t→∞

(
I − e−Lt

)
= I − 11′

as L is positive semidefinite with the only null eigenvalue corresponding to the
eigenvector 1. Further, for times close to 0, the effect of the kernel vanishes as

lim
t→∞

(
I − e−Lt

)
= 0 .

Intuitively we are substituting a regularizing term that increases the support
equivalently to all elements, with one that increases the support to neighboring
pixels first.

We can now prove that the time parameter indeed produces a scale-space as
cluster hierarchy collapses to the full image for sufficiently large times.

Proposition 1. Let λ1(A), λ2(A), . . . , λn(A) represent the largest, second
largest,. . ., smallest eigenvalue of matrix A. If αt > λ1(A)

1−e−λn−1(L)t , then ft is

a strictly concave function in Δ. Further, if αt > nλ1(A)
1−e−λn−1(L)t the only solution

of (2) belongs to the interior of Δ.

Proof. Note that L1 = 0, which implies for all t e−Lt1 = 1. Further, all other
eigenvalues are in the open interval (0, 1). The function ft is strictly concave in Δ
if for all y ∈ IRn with y′1 = 0, we have y′ [A − αt

(
I − e−Lt

)]
y < 0. However,

y′
(
A − αt

(
I − e−Lt

))
y ≤ λ1(A)y′y − αt

(
y′y − y′e−Lty

)
≤

λ1(A)y′y − αt

(
y′y − λ2

(
e−Lt

)
y′y
)

= y′y
(
λ1(A) − αt

(
1 − e−λn−1(L)t

))
< 0 .

(4)

Since ft is strictly concave in Δ, program (2), which is a concave with convex
constraints, has a unique solution. To prove the second result, suppose by con-
traddiction that this solution x lies on the boundary of Δ, then we have xi = 0
for some index i. There is a unique y ∈ IRn with y′1 = 0 such that x = 1

n1 + y.
Further, since by hypothesis we have xi = 0, then y′y ≥ 1

n(n−1) . With this we
have

x′Ax − αt

(
x′x− x′e−Ltx

)
≤ λ1(A)(y′y +

1
n

) − y′yαt

(
1 − e−λn−1(L)t

)
=

y′y
(

λ1(A)
(

1 +
1

ny′y

)
− αt

(
1 − e−λn−1(L)t

))
≤

y′y
(
λ1(A)n − αt

(
1 − e−λn−1(L)t

))
< 0 .
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Recall that a point x ∈ Δ satisfies the Karush-Kuhn-Tucker (KKT) conditions
for problem (2) if

(Ax)i − αt

(
xi − e−Ltx

)
i

= x′Ax − αt

(
x′x − x′e−Ltx

)
if i ∈ σ(x)

(Ax)i + αt

(
e−Ltx

)
i

≤ x′Ax − αt

(
x′x − x′e−Ltx

)
otherwise.

(5)

Then, we have

(Ax)i + αt

(
e−Ltx

)
i
≤ x′Ax − αt

(
x′x − x′e−Ltx

)
.

However, this is impossible since (Ax)i + αt

(
e−Ltx

)
i
> 0 and

x′Ax − αt

(
x′x− x′e−Ltx

)
< 0, thus proving the proposition.

4.1 Selecting Relevant Levels

One of the questions left open in [10] is how to select the values of the regular-
izer parameter that induce relevant partitions. Indeed, as the scale parameter α
varies continuously from its maximum value down to 0, we expect the size of the
extracted segments to vary almost as smoothly. Here we adopt an entropy shed-
ding approach to the selection of the relevant levels of the hierarchy: the value
of x ∈ Δ that maximizes (2) can be considered as a probability distribution
whose entropy is a measure of the size and cohesiveness of the cluster. As the
parameter α is decreased we expect the first extracted cluster to steadily become
less cohesive, eventually losing a few peripheral elements, until we reach a point
where there is a substantial modification in the cluster structure as the current
group gets split into multiple parts, thus producing a jump in the entropy value.

Figure 2 shows an example where a set of points generated from three bi-
variate Gaussian distribution are clustered using the original hierarchical formu-
lation (2). The left image shows the point distribution, while the plot on the right

20 40 60 80 100 120 140

4.0

4.5

5.0

5.5

Fig. 2. Entropy value of the distribution associated with first cluster as a function of
the regularizing parameter α
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show the entropy for different values of α. there are three well defined plateaus
corresponding to a single cluster encompassing all the data (α > 115), a cluster
without the points in the rightmost distribution which is furthest apart from the
other (75 < α < 100), and cluster encompassing only one of the three point sets
(20 < α < 55). after that even smaller subsets are extracted.

Accordingly, we start the clustering procedure at a sufficiently high time to
obtain a single cluster and we reduce the time until we reach the next entropy
plateau. In our implementation we use an exponential schedule for the reduction
of the time parameter t, i.e., we multiply t by a constant factor tmult = 0.8. once
a new plateau is reached, we partition the data and continue recursively on each
cluster, until we reach the final partition at t = 0.

4.2 Subsampling

Despite their many advantages, pairwise clustering approaches are computation-
ally very demanding due to their scaling behavior with the quantity of data. On
a dataset containing N examples, the number of potential comparisons scales
with O(N2), thereby rendering the approaches unfeasible for problems involving
very large data sets as is the case of pixel based segmentation of even moderately
large images. It is therefore of primary importance to develop strategies to reduce
the number of comparisons required by subsampling the data and extending the
grouping to out-of-sample points after the clustering process has taken place.

In [11] was proposed a subsampling approach for the dominant sets framework
and a more efficient extension scheme was proposed in [17] in order to adapt
the famework to spatio-temporal segmentation. The approach takes an element
of a cluster S to act as a cluster centroid, namely it takes the element i which
maximizes the weight wS(i) with respect to the cluster S. This way, the similarity
of an out-of-sample point j to a cluster S is simply the similarity to its centroid
cS . The first step of the out-of-sample segmentation is to extract the clusters
from the sampled points. With the initial segmentation to hand, each pixel is
then assigned to the closest cluster.

While the out of sampling approach certainly helps with the computation of
the cluster structure at the various levels, it cannot be used to reduce the com-
plexity of the kernel computation, which requires the computation of the full set
of eigenvalues and eigenvectors of the Laplacian matrix L. Further, note that
subsampling techniques require a connection to all the other nodes and while this
is not a problem for the matrix A which has connection at all ranges, is unusable
with the Laplacian, which has only local connections and subsampling it would
break the mesh connectivity structure and severely modify the eigenspaces. How-
ever, we can use the locality of the heat kernel to our advantage, as we can
down-sample he original boundary information to obtain a smaller mesh from
which we can compute the eigenvectors which can then just be up-scaled to the
original size with minimal loss of information. Hence, in this work we adopted
a mixed strategy for data reduction: we down-sampled the mesh by a factor of
8 in each direction and computed the 10 smallest eigenvectors of L, which are
then up-scaled to reconstruct a least-squares approximation of the heat kernel.
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With the full up-scaled kernel to hand, we can use the subsampling procedure
described in [17] both on the similarity matrix A and on the kernel I − e−Lt.

5 Experimental Results

In order to assess the performance of the proposed kernel-based coarse-to-fine
hierarchical segmentation approach, we tested it on the Berkeley database [9]
using only color information for the similarity matrix A. Clearly, the final goal
is to incorporate more descriptive pairwise similarities, but it would be hard
to separate the effect of the diffusion kernel from that of other boundary-based
information. In all the experiments the similarity between two pixels i and j is
taken to be aij = e−

1
2 d(i,j)2/σ2

, where d(i, j) is the perceptual distance between
the colors of pixels i and j computed as the Euclidean distance on the CIE Luv
color space.

Figures 3 and 4 show two images and the computed segment hierarchies. On
the top left corner of each group we see the original images, while the other im-
ages display the segmentation hierarchy. For each segmented image we show the
clusters extracted at the next level, where all pixels belonging to the same clus-
ter are drawn using the average color of the cluster and pixels that have already
being eliminated are drawn in black. the segmented image is then linked to the
images showing the lower level segmentations. Note how the first separation in
the image in Figure 3 is a major figure ground separation with all the details on
the camel clustered together. It is only at lower levels of the hierarchy that the
details form separate clusters. Further, note how in the image in Figure 4, the

Fig. 3. Segmentation hierarchies extracted from the camel image
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Fig. 4. Segmentation hierarchies extracted from the fireman image
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Fig. 5. Precision/Recall on the Berkeley database for our hierarchical method (HDS),
the flat dominant set framework (DS) and the Nyström extension (Nystrom)

first partition separates the major image components, while at a lower scale the
highlights get separated from the fireman’s suit and helmet.
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Next, for a more quantitative analysis, we computed the Precision and Recall
for boundary detection on the full Berkeley database. The analysis was per-
formed for our hierarchical approach, the original dominant sets framework with
out-of-sample extension, and the Nyström extension [3], an out-of-sample gen-
eralization of normalized cut [15]. All pairwise segmentation approaches were
based on the same color similarity matrix.

Figure 5 shows the resulting Precision/Recall curves. We can see that the
original dominant sets and the Nyström extension performed almost identically,
while our proposed approach shows a marginal but very clear advantage. It
is worth noting that the standard precision recall curve does not evaluate the
quality of the segment hierarchies, but is only concerned with a single flat seg-
mentation. For this reason on our algorithm only the final partition, the one
at t = 0, was used for the boundary extraction. Hence, the advantage over the
standard dominant sets framework is due to the coarse-to-fine nature of the hier-
archical divisive algorithm used, which extracts stronger and clearer boundaries
first, thus reducing noise and detection errors around clear separations.

6 Conclusions

In this paper we have presented a coarse-to-fine hierarchical segmentation ap-
proach which uses an anisotropic diffusion kernel to generate the levels of the
hierarchy. The approach is a generalization of the hierarchical dominant sets
framework presented in [10] with the addition of a heat kernel-based regularizer
term that enforces locality and boundary separation. We have proven that the
term does indeed generate a scale-space and proposed an entropy measure to
select the relevant scales. Further, we have proposed a mixed strategy for out-
of-sample extension in the presence of the diffusion kernels. We compared the
performance of the approach to the original flat dominant sets framework and to
the Nyström extension applied to normalized cut, showing that our coarse-to-fine
approach outperforms both on the standard Berkeley database.
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Abstract. Tracking is usually interpreted as finding an object in sin-
gle consecutive frames. Regularization is done by enforcing temporal
smoothness of appearance, shape and motion. We propose a tracker,
by interpreting the task of tracking as segmentation of a volume in 3D.
Inherently temporal and spatial regularization is unified in a single reg-
ularization term. Segmentation is done by a variational approach using
anisotropic weighted Total Variation (TV) regularization. The proposed
convex energy is solved globally optimal by a fast primal-dual algorithm.
Any image feature can be used in the segmentation cue of the proposed
Mumford-Shah like data term. As a proof of concept we show experi-
ments using a simple color-based appearance model. As demonstrated in
the experiments, our tracking approach is able to handle large variations
in shape and size, as well as partial and complete occlusions.

1 Introduction

Although frequently tackled over the last decades, robust visual object track-
ing is still a vital topic in computer vision. The need for handling variations of
the objects appearance, changes in shape and occlusions makes it a challeng-
ing task. Additionally, robust tracking algorithms should be able to deal with
cluttered and varying background and illumination variations. We formulate the
tracking problem as globally optimal segmentation of an object in the spatial-
temporal volume. Under the assumption that an object undergoes only small
geometric and appearance changes between two consecutive frames, the object
is represented as a connected volume containing similar content. Applying the
segmentation on a volume instead of single frames, enhances robustness in the
case of partial occlusions and similar background. Furthermore, no explicit shape
model has to be learned in advance. Instead spatial and temporal consistency is
enforced by a single regularization term.

1.1 Related Work

Numerous different approaches have been applied to the visual tracking prob-
lem. For a detailed review we refer to [1]. Superior results have been achieved by
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patch-based [2] or simple kernel-based methods such as [3]. Avidan [3] consid-
ered tracking as a binary classification problem on the pixel level. An ensemble of
weak classifier is trained on-line to distinguish between object and current back-
ground, while a subsequent mean-shift procedure [4] obtains the exact object
localization. Grabner et al. [2] proposed on-line AdaBoost for feature selection,
where the object representation is trained on-line with respect to the current
background. Although those methods have shown their robust tracking behavior
in several applications, they lack an explicit representation of the objects shape,
due to their representation by a simple rectangular or elliptical region. Under the
assumption of affine object transformation interest point based trackers, like the
work of Ozuysal et al. [5], perform excellent with fast runtimes. The drawback of
such approaches is the enormous amount of needed pre-calculated training sam-
ples, and the limitation that no update is done during tracking. Shape-based
[6] or contour based [7] tracking methods deliver additional information about
the object state or enhance the tracking performance on cluttered background.
While Donoser and Bischof [6] used MSER [8] segmentation results for tracking,
Isard and Blake [7] applied the CONDENSATION algorithm on edge informa-
tion. Therefore feature extraction or segmentation were independent from the
tracking framework. In contrast, especially level-set methods support the unified
approach of tracking and segmentation in one system [9], [10], [11], [12], [13].
[10] modeled object appearance using color and texture information while a
shape prior is given by level sets. [11] incorporated Active Shape Model based
on incremental PCA, which allowed the online adoption of the shape models. [9]
extended the mean-shift procedure by [4], by applying fixed asymmetric kernels
to estimate translation, scale and rotation. For a more detailed review on the
use of level set segmentation we refer to [12]. Recently, Bibby et al. [13] pro-
posed an approach, where they used pixel-wise posterior instead of likelihoods in
a narrow band level set framework for robust visual tracking. The use of pixel-
wise posterior led to sharper extrema of the cost function, while the GPU based
narrow band level set implementation achieved real-time performance. All of the
above approaches work on single frames. In [14], Mansouri et al. proposed a
joint space-time segmentation algorithm based on level sets. The main idea of
interpreting tracking as segmentation in a spatial-temporal volume is closely re-
lated to the approach presented in this paper. In contrary to our approach level
set methods are used, that can easily get stuck in local minima.

A lot of work has been done on image segmentation. For contour-based image
segmentation the Geodesic Active Contour (GAC) model [15] has received much
attention. In the following we will shortly review some energy minimization based
approaches. Graph cuts are currently widely used for computer vision applica-
tions. Boykov et al. [16], [17] used a minimum cut algorithm to solve a graph
based segmentation energy. Other graph based segmentation approaches were
proposed by Grady with the random walker algorithm [18], which was extended
in [19]. In [20], a TV based energy was used for segmentation of moving objects.
While graph cuts allow simple and fast implementations, it is well-known that
the quality of the segmentation depends on the connectivity of the underlying
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graph, and can cause systematic metrication errors [21]. Furthermore memory
consumption is usually very high. Continuous maximal flows were presented by
Appleton et al. [22]. In [23], Zach et al. extended continuous maximal flows to
the anisotropic setting.

Variational approaches try to obtain a segmentation based on a continuous
energy formulation. Therefore the weighted Total Variation (TV) as used by
Bresson et al. [24], [25], Leung and Osher [26] and Unger et al. [27], [28], has
become quite popular. Continuous formulations do not suffer from metrication
errors, and have become reasonable fast by implementing them on the GPU [28].
Another well known variational segmentation framework is the Mumford-Shah
image segmentation model [29]. Bresson et. al. [30] showed how non-local im-
age information can be incorporated into a variational segmentation framework.
In [31], Werlberger et al. showed how shape prior information can be incorpo-
rated using a Mumford-Shah like data term.

2 Tracking as Segmentation in a Spatial-Temporal
Volume

In the following we will provide some details on the concept of interpreting track-
ing as the segmentation of a 3D volume similar to [14]. A color image I is defined
in the 2D image domain Ω as I : Ω → IR3. The 2D frames of a video sequence
can be viewed as a volume by interpreting the temporal domain T as the third
dimension. Thus the volume is defined as V : (Ω×T ) → IR3. This makes it pos-
sible to incorporate spatial and temporal regularization in an unified framework.
If we assume a high enough sampling rate, adjoining frames will contain similar
content. The 2D objects of a single frame I correspond to cuts of planes with the

2 25 33

Fig. 1. Tracking of an artificial object. The first row depicts frames of the input video
with frame numbers at the top. The second row shows the segmentation result using
the volumetric approach. The third row shows the result of an MSER tracker imple-
mentation [6].
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3D object defined in the volume V . Inherently this approach extends the forward
propagation of information through time by additional backward propagation.
Objects that are represented as disjoint regions in a single frame, correspond to
a single volume, and are therefore tracked robustly. This concept is illustrated
with an artificial example in Figure 1. Our tracking approach is compared to an
MSER tracker [6], that cannot handle multiple disjoint regions. The volumetric
approach does not suffer from such a shortcoming, as the regions are connected
in the volume.

3 Algorithm

3.1 The Segmentation Model

We propose to use the following variational minimization problem for the task
of image segmentation:

min
u

{
Ep =

∫
Ω×T

(gx|∇xu| + gt|∇tu|)dxdt + λ

∫
Ω×T

fudxdt

}
. (1)

The first term is a regularization term using anisotropic TV. The segmentation
is represented by u : (Ω × T ) → [0, 1]. A binary labeling into foreground F
(u = 1) and background B (u = 0) would force u ∈ {0, 1}. As this would make
the energy non-convex, we can make use of convex relaxation [32]. For the g-
weighted TV, Bresson already showed [33] that by letting u vary continuously,
the regularization term becomes convex. To obtain a binary segmentation, any
levelset of u can be selected using thresholding [23]. The segmentation cue f :
(Ω × T ) → IR gives hints whether the pixel belongs to the foreground or the
background. The gradient operators in the regularization term are defined as

|∇xu| =

√(
∂u
∂x

)2
+
(

∂u
∂y

)2
in the spatial domain Ω, and |∇tu| =

∣∣∂u
∂z

∣∣ in the

temporal domain T . Edge information is incorporated by gx : (Ω ×T ) → IR and
gt : (Ω × T ) → IR that subsequently represent edges in the current frame and
edges from one to the next frame. The edge potential gx is computed as gx =
exp
(
−a |∇xV |b

)
. Likewise one can compute gt = exp

(
−a |∇tV |b

)
. The edge

detection function maps strong edges to low values. Consequently discontinuities
in u that correspond to the image region, are likely to be located at low values of
gx and gt during the minimization process. This ensures that the segmentation
boundary snaps to strong edges in the image.

The Mumford-Shah [29] like data term was already used in [31] for shape prior
segmentation. For the segmentation cue f we distinguish the following cases: If
f = 0 the data term is eliminated and segmentation is done solely based on
edges. If f > 0 the segmentation cue gives a background hint. The bigger the
value of f , the more likely it will be classified as background. In a similar manner
f < 0 gives foreground hints. We use color features as described in Section 4.2
to compute f . Of course any other features or information can be incorporated
through the segmentation cue.
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84 308 311

Fig. 2. Comparison of anisotropic TV and standard TV regularization. The first row
shows frames of the original video where the left player is tracked. In the second row
the anisotropic regularization term shows a better segmentation of fast moving details
than the standard weighted TV regularization in the third row.

The usage of an anisotropic weighted TV norm for regularization has the
advantage that discontinuities in the spatial domain V and in the time domain T
are separated. This allows a more accurate segmentation of small and fast moving
objects. To illustrate this, Figure 2 shows a comparison of the regularization
term as used in (1), and the standard weighted TV as used in [33] and [28].
Therefore we simply replaced the regularization term by

∫
Ω×T g|∇u| dxdt with

g = exp
(
−a |∇V |b

)
. It shows that the anisotropic regularization delivers finer

details during fast moving parts of the video.

3.2 Solving the Minimization Problem

In the following we derive an adaption of the primal-dual algorithm of Zhu et al.
[34]. To solve the energy defined in (1), we use duality by introducing the dual
variable p : Ω × T → IR3. The dual variable can be separated into a spatial and
a temporal component p = (px, pt)

T . Thus we get the following constrainted
primal-dual formulation of the segmentation model:

min
u

{
sup

p

{
Epd = −

∫
Ω×T

u∇ · pdxdt + λ

∫
Ω×T

fu dxdt

}}
(2)

s.t. |px(x, t)| ≤ gx(x, t), |pt(x, t)| ≤ gt(x, t) . (3)

The dependence on ∇u in the primal energy Ep (x, t, u,∇u) is removed in the
primal dual energy Epd (x, t, u, p), but the problem is now an optimization
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problem in two variables. This energy can be solved using alternating minimiza-
tion with respect to u and maximization with respect to p.

When updating the primal variable u (primal update) we derive (2) according
to u and arrive at the following Euler-Lagrange equation:

−∇ · p + λf = 0 . (4)

Performing a gradient descent update scheme this leads to

un+1 = Π[0,1]
(
un − τp (−∇ · p + λf)

)
, (5)

with τp denoting the timestep. The projection Π towards the binary set [0, 1]
can be done with a simple thresholding step.

In a second step we have to update the dual variable p (dual update). Deriving
(2) according to p one gets the following Euler-Lagrange equation:

∇u = 0 (6)

with the additional constraints on px and pt as defined in (3). This results into
a gradient ascent method with a trailed re-projection to restrict the length of p:

pn+1 = ΠC

(
pn + τd∇u

)
(7)

Here the convex set C =
{

q = (qx, qt)
T : |qx| ≤ gx, |qt| ≤ gt

}
denotes a cylinder

centered at the origin with the radius gx and height gt. The re-projection onto
C can be formulated as

ΠC

(
q
)

=

(
qx

max
{
1, |qx|

gx

} , max {−gt, min {qt, gt}}
)T

(8)

Primal (5) and dual (7) updates are iterated until convergence. As u is a con-
tinuous variable, and the energy in (1) is not strictly convex, u may not be a
binary image. Any level set of u can be selected as a binary segmentation by
applying a threshold θ ∈ [0, 1]. We left θ = 0.5 throughout this paper. An upper
boundary for the timesteps can be stated as τdτp ≤ 1

6 . In conjunction with [34],
an iterative timesteps schema was chosen as:

τd(n) = 0.3 + 0.02n , (9)

τp(n) =
1

τd(n)

(
1
6
− 5

15 + n

)
, (10)

where n is the current iteration.
As a convergence criterion the primal-dual gap is taken into account [34]. The

primal energy Ep was already defined in (1). For the dual energy Ed we have to
reformulate the primal-dual energy (2). For a fixed p, the minimization problem
of u can be determined as:

u(x, t) =
{

1 for −∇ · p(x, t) + λf(x, t) < 0
0 else (11)
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Thus the dual energy can be written as

Ed =
∫

Ω×T

min {−∇ · p + λf, 0} dxdt . (12)

As the optimization scheme consists of a minimization and a maximization prob-
lem, Ep presents an upper boundary of the true minimizer of the energy, and
Ed presents a lower boundary. The primal-dual gap is defined as

G (u, p) = Ep (u) − Ed (p) . (13)

An automatic convergence criterion can be defined based on the normalized
primal-dual gap, as

λ

∣∣∣∣G (u, p)
Ep (u)

∣∣∣∣ < ζ , (14)

with ζ the convergence threshold. It showed throughout the experiments, that
ζ = 0.06 is a good choice for the convergence threshold.

4 Implementation

4.1 The Segmentation Framework

Due to limitations in computer hardware such as memory, the size of volumes
that can be computed at once is limited. Although modern computing hardware
can handle volumes with several thousand frames, the necessity of working on
the complete sequence at once restricts tracking to offline data. Multiple similar
objects, or disjoint regions belonging to the same object (e.g. by occlusions)
make additional information necessary. When attempting a general framework
with objects of arbitrary size and shape, this becomes a difficult task.

To tackle these problems, we propose to use an incremental approach. Only n
frames are segmented at once. The algorithm is initialized on the first n frames,
e.g. by drawing a rectangle around the desired object. See Section 4.2 for details
of the feature based segmentation approach. If multiple objects are segmented,
the user can select the desired object manually. After convergence of the segmen-
tation algorithm (Section 3.2) foreground and background models are updated.
Next, the oldest m < n frames are discarded, and m new frames are added to
the volume V . To speed up the tracking process we compute the segmentation
only on small areas around the current object. To prevent the algorithm from
segmenting similar nearby objects, only regions that overlap with the segmen-
tation mask of the last step are selected. In case of occlusions the volumetric
representation of an object might be separated into several disjoint regions. Our
overlap constraint causes the tracker to discard the new region. To handle oc-
clusions in general we therefore use the following strategy: We keep track of the
average region size. If the segmentation gets smaller than a certain percentage
of this average region size, the object is assumed to be occluded. In case of an
occlusion the region we are working on starts to grow slowly, and no updates of
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the foreground and background model are done. If a region is segmented that is
big enough to be considered as the object, tracking is continued on this region.
Any slice k ∈ [1, n] of the volume V can be selected as the tracking result. The
number of frames the tracker looks into the future is defined by n− k. Thus the
smaller k and the bigger n, the more robust disjoint regions are tracked.

Implementation of the tracker was done mainly on the GPU using the CUDA
framework [35]. The volume depth was fixed for all experiments to n = 8, while
slice k = 4 was used for the segmentation result.

4.2 Color Tracking

Object appearance is represented in RGB color space using a foreground his-
togram HF : IR3 → [0, 1], and a background histogram HB : IR3 → [0, 1]. Fol-
lowing the ideas presented in [13], we are using the pixel-wise posterior instead
of modeling the color appearance using the likelihood like e.g. [36]. We define
M = MF , MB as the model parameter that is either foreground F or back-
ground B. From the initialization, we obtain the foreground and background
likelihoods P (HF |MF ) and P (HB |MB). Applying Bayesian rule we can esti-
mate the posterior P (MF |HF ) of a pixel being foreground in the context of the
actual background given by P (HB |MB) and a region-prior P (Mj) with j ∈ F, B
by:

P (MF |HF ) =
P (HF |MF )P (MF )∑

j=F,B P (Hj |Mj)P (Mj)
(15)

We keep track of foreground and background models by updating them online
using an adaption rate α with likelihoods estimated from the current frame
Pnew(Hj |Mj) as:

P (Hj |Mj) = (1 − α)Pold(Hj |Mj) + αPnew(Hj |Mj) with j ∈ F, B (16)

In contrast to [13] we do not apply marginalization. Instead we simply set the
segmentation cue f(x, t) = 0.5 − P (MF |HF (V ((x, t)))).

5 Experimental Results

The videos presented in this Section and the software binaries are available online
at http://www.gpu4vision.org.

In Figure 3, a white cat is successfully tracked and segmented. The first row
shows the input video with different overlays. The rectangle is indicating the
current working region. The blue color of the rectangle indicates that the tracker
is working normally. If the object is believed to be occluded in some slice, the
rectangle becomes orange. The current object is indicated by an orange overlay.
If parts of the image get segmented, but do not belong to the object, these
areas are indicated in red. Note that some regions are segmented that do not

http://www.gpu4vision.org
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216 403 409 418 589

Fig. 3. Tracking example of a cat. The first row depicts the tracked object with the
current segmentation and the working region as overlays to the original input image.
In the second row the segmentation cue f is depicted in the range [−0.5, 0.5].

belong to the object, but most of the incorrect regions are removed. The second
row shows the segmentation cue f where the value −0.5 is mapped to black and
indicates foreground, the value 0.5 is mapped to white and indicates background.
Frame 409 shows a segment where a cross-fade occurs. The tracker detects the
loss of the object, starts growing the search region and begins to search for the
object. Frame 418 shows that the object was found correctly. Also note that the
algorithm always correctly tracks the object despite large scale changes, as our
tracking approach makes no restrictions on the region size.

The second example presented here shows the tracking of a fish in an aquar-
ium. In the top row of Figure 4, the input video is shown, while the bottom
row shows the extracted fish. Note that although several partially and complete
occlusions occur, the tracker does not loose the object throughout the video.
In case of partial occlusions the fish is still correctly segmented, as can be seen
in frames 438 and 487. Also note that large shape changes do cause tracking
failures, as we make no assumption on shape. In Figure 5, the video is displayed
as a volume. The region corresponding to the fish is rendered using iso-surface
rendering based on the segmentation mask as obtained by the tracker.

Naturally a color based tracker without any restrictions on shape and scale
has its limitations. In Figure 6 a player in a volleyball game is tracked. In the
beginning the tracker starts very promising by separating skin tones from the
very similar sand. Around frame 337 the skin tones of other players appear in
the working region, and are learned as background. As one can see in frame 377
the tracker looses the legs and arms, but still tracks the very characteristic green
shirt. In frame 551 the player gets occluded by his team member, with a very
similar appearance. As no additional high level information is available, both
players are tracked.

In Figure 7, another video sequence is shown where the tracker fails. We tried
to track the skin of the person. Due to the many occlusions the volume corre-
sponding to skin is separated into several disjoint regions, causing problems for
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64 158 168 200

298 438 487 940

Fig. 4. Tracking sequence of a fish in an aquarium, showing the ability of the tracker
to handle large changes in shape, and various kinds of occlusions. The first row depicts
the input video and the second row the extracted object.

the tracker. Though the tracker can recover several times, the object is perma-
nently lost in frame 276. Other reasons for the failure in this video is the bad
discrimination of foreground and background by using solely color.

Experimental results showed that a simple color tracker benefits form inter-
preting tracking as segmentation in 3D. The tracker successfully handled large
variations in scale and shape. The examples show, that the tracker can deal with
partial occlusions. Due to the incremental approach also long complete occlu-
sions do not oppose any problem to the tracker. Figure 6 shows an improtant
characteristic of the tracker to adapt foreground and background models to the
most characteristic color values. This has the advantage of making the track-
ing of the object more robust, but also decreases segmentation performance.
It also showed that multiple objects with similar appearance cannot be kept
apart if occlusions occur. Here clearly high level information could help, e.g. in
the volleyball example restrictions on the region size could be made, and shape
information would definitely improve results.
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Fig. 5. A schematic 3D rendering of the fish tracking sequence from Figure 4. The
tracking result is rendered in yellow.

270 320 337 377

419 551 592 1344

Fig. 6. Tracking of volleyball sequence, where tracker fails due to highly similar object
and colors in the background. The first row shows the input video and the bottom row
shows the extracted player.



204 M. Unger et al.

8 55 73

104 207 276

Fig. 7. Video example where tracking and segmentation fail, due to too many occlu-
sions, and bad discrimination of the color histograms

6 Conclusion and Future Work

We presented a tracking approach that tracks objects by segmenting them in
a spatial-temporal volume. By using the segmentation result a pixel wise clas-
sification into foreground and background is achieved. The volumetric tracker
presented in this paper, shows promising results for the examples provided in
Section 5. An incremental tracking approach was presented and implemented,
that works only on a small volume at a time, eliminating memory problems
and allowing tracking of videos of arbitrary length. Due to the segmentation
in a 3D volume, information is also propagated back through time if the re-
gions are connected in 3D, showing improvements for tracking disjoint regions.
As we make no assumptions on shape or scale even large variations cause no
problems to the tracker. The tracker is able to handle partial as well as com-
plete occlusions. It was shown that a pure color based foreground and back-
ground description is sometimes not sufficient, and leaves room for further
improvement.

Future work will focus on more robust modeling of foreground and back-
ground regions. Texture features or patches would certainly improve segmenta-
tion and tracking results. Furthermore more complex appearance models with
spatial modeling could improve the tracker significantly. Moreover we will focus
on a more efficient implementation to achieve near realtime performance.
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Abstract. We introduce the concept of complementarity between data
and smoothness term in modern variational optic flow methods. First
we design a sophisticated data term that incorporates HSV colour rep-
resentation with higher order constancy assumptions, completely sepa-
rate robust penalisation, and constraint normalisation. Our anisotropic
smoothness term reduces smoothing in the data constraint direction in-
stead of the image edge direction, while enforcing a strong filling-in ef-
fect orthogonal to it. This allows optimal complementarity between both
terms and avoids undesirable interference. The high quality of our com-
plementary optic flow (COF) approach is demonstrated by the current
top ranking result at the Middlebury benchmark.

1 Introduction

In spite of the fact that variational optic flow methods are around for almost
three decades and that they mark the state-of-the-art in terms of accuracy, there
has been remarkably little reseach on the compatibility of their two ingredients:
the data term and the smoothness term. The data term models constancy as-
sumptions on certain image properties, e.g. grey value constancy in the semi-
nal Horn and Schunck model [1]. The smoothness term penalises fluctuations
in the flow field. However, these terms may contradict each other: While the
brightness constancy assumption constrains the flow only along the image gra-
dient but not across it (aperture problem), most smoothness terms enforce their
constraints also along the image gradient. One notable exception is the Nagel-
Enkelmann model [2] where the homogeneous Horn and Schunck smoothness
term is replaced by an anisotropic one. For large image gradients the latter one
works solely orthogonal to the image gradient. Thus, both terms complement
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each other without undesirable interference. The fact that the Nagel-Enkelmann
model outperforms the Horn and Schunck approach demonstrates the high po-
tential of such a complementarity.

Unfortunately, this paradigm of complementary behaviour has not been ex-
plored further after 1986. Instead of this, research has focussed on improving the
data or smoothness constraints independently. The goal of our paper is to pro-
pose a synergistic model for variational optic flow computation that integrates
state-of-the-art data and smoothness assumptions in such a way that both terms
work complementary. We will see that this can still lead to a very substantial
gain in accuracy. This is demonstrated by the fact that our so-called complemen-
tary optic flow (COF) method ranks number one in the widely-used Middlebury
benchmark.

Our paper is organised as follows: In Sec. 2 we review variational optic flow.
Our data term is derived in Sec. 3 and is then used to complement the smooth-
ness term in Sec. 4. After discussing implementation issues in Sec. 5, we show
experiments proving the favourable performance of our method in Sec. 6. We
then conclude with a summary and an outlook on future work in Sec. 7.

Related Work. Our model naturally incorporates many concepts that have
demonstrated their usefulness over the years. Therefore let us briefly sketch the
advances in data and smoothness terms that have been most influential for us.

For the data term, Black and Anandan [3] replaced the quadratic penali-
sation from [1] by a robust one which helps to cope with outliers caused by
noise or occlusions. More recently, in order to make the data term robust under
additive illumination changes, Brox et al. [4] successfully combined the classical
brightness constancy assumption (BCA) with the gradient constancy assumption
(GCA) [4,5,6]. Bruhn and Weickert [7] later improved this idea by introducing
a separate robust penalisation of the BCA and the GCA. This gives advantages
in those situations where one of the two constraints produces an outlier. More-
over, in realistic scenarios, one also has to deal with multiplicative illumination
changes [8]. If colour image sequences are available, one solution to this issue
can be the use of alternative colour spaces with photometric invariances, see [9]
and the references therein. Besides the discussed robustification efforts, success-
ful modifications of the data term have been reported by normalising the data
term [10,11]. It prevents an undesirable overweighting of the data term at large
image gradient locations.

Regarding the smoothness term, first ideas go back to Horn and Schunck [1]
who used a homogeneous regulariser that does not respect any flow discontinu-
ities. However, since different image objects may move in different directions,
it is desirable to also permit discontinuities. This can for example be achieved
by using image-driven regularisers that take into account image discontinuities.
Alvarez et al. [12] proposed an isotropic model with a scalar-valued weight func-
tion that reduces the regularisation at image edges. An anisotropic counterpart
that also exploits the directional information of image discontinuities was in-
troduced by Nagel and Enkelmann [2]. Their method regularises the flow field
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along image edges but not across them. However, as not every image edge co-
incides with a flow edge, image-driven methods are prone to oversegmentation
artifacts in textured image regions. To avoid this, flow-driven regularisers have
been proposed that respect discontinuities of the evolving flow and are thus not
misled by image textures. In the isotropic setting this comes down to the use of
robust, nonquadratic penalisers, which for discrete energy functions have been
proposed by Black and Anandan [3]. In the context of rotationally invariant
variational methods they go back to Schnörr [5], and Weickert and Schnörr [13]
later presented an anisotropic extension. Nevertheless, the problem of flow-driven
regularisers lies in less sharp and badly localised flow edges compared to image-
driven approaches. The recent discrete method of Sun et al. [14] incorporates an
anisotropic regulariser based on a Steerable Random Field [15] that uses direc-
tional flow derivatives steered by image structures. It can thus be classified as
joint image- and flow-driven (JIF), allowing to obtain sharp flow edges without
oversegmentation problems.

2 Variational Optic Flow

Let f(x) be an image sequence with x := (x, y, t)	, where (x, y)	 ∈ Ω denotes
the location within a rectangular image domain Ω ⊂ IR2 and t ≥ 0 denotes time.
We further assume that f is presmoothed by a Gaussian convolution of standard
deviation σ. The optic flow field w := (u, v, 1)	 describes the displacement vector
field between two frames at time t and t + 1. It is found by minimising a global
energy functional of the general form

E(u, v) =
∫

Ω

[M(u, v) + α V (∇2u,∇2v)] dxdy , (1)

where ∇2 := (∂x, ∂y)	 denotes the spatial gradient operator. The term M(u, v)
denotes the data term, V (∇2u,∇2v) the smoothness term, and α > 0 is a
smoothness weight. According to the calculus of variations, a minimiser (u, v) of
the energy (1) necessarily has to fulfil the associated Euler-Lagrange equations

∂uM − α
(
∂x (∂uxV ) + ∂y

(
∂uy V

))
= 0 , (2)

∂vM − α
(
∂x (∂vxV ) + ∂y

(
∂vy V

))
= 0 , (3)

with homogeneous Neumann boundary conditions.

3 Data Term

Let us now derive our data term in a systematic way. The classical starting
point is the brightness constancy assumption (BCA) used by Horn and
Schunck [1]. It states that image intensities remain constant under their
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displacement, i.e., f(x + w) = f(x). Assuming that the displacement is suffi-
ciently small, we can perform a first-order Taylor linearisation that yields the
optic flow constraint (OFC)

0 = fx u + fy v + ft = ∇3f
	 w , (4)

where the subscripts denote partial derivatives and ∇3 := (∂x, ∂y, ∂t)	 denotes
the spatio-temporal gradient operator. For a quadratic penalisation the corre-
sponding data term is given by

M1(u, v) =
(
∇3f

	 w
)2

= w	 J0 w , (5)

with the tensor J0 := ∇3f ∇3f
	.

The OFC is not sufficient to compute a unique solution (aperture problem),
but only allows to compute the flow component orthogonal to the image edges,
the so-called normal flow. It is defined as

wn :=
(
u	

n , 1
)	

:=
(
− ft

|∇2f |
∇2f

	

|∇2f |
, 1
)	

. (6)

Normalisation. Our experiments will show that normalising the data term
can be beneficial. Following [10,11] and using the abbreviation u := (u, v)	, we
rewrite the data term M1 as

M1(u, v) =
(
∇2f

	u + ft

)2
= |∇2f |2

((
∇2f

|∇2f |

)	
(u−un)

)2

=: |∇2f |2 d 2 . (7)

The term d constitutes a projection of the difference between the estimated
flow u and the normal flow un in the direction of the image gradient ∇2f .
Hence, this rewriting allows a geometric interpretation of the data constraint in
terms of the distance from u to the line described by the OFC (4). Ideally, we
would like to penalise this distance d, but in the data term M1 it is weighted
by the squared spatial image gradient. This results in a stronger enforcement of
the data constraint at high gradient locations. Such an overweighting may be
inappropriate as large gradients can be caused by unreliable structures, such as
noise or occlusions.

As a remedy, we normalise the data term M1 by multiplying it with a fac-
tor [10,11]

θ0 :=
1

|∇2f |2 + ζ2 , (8)

where the regularisation parameter ζ > 0 avoids division by zero. The normalised
version of M1 can be written as

M2(u, v) = w	 J0 w, with J0 := θ0J0 . (9)

Gradient Constancy Assumption. To cope with the problem of additive
illumination changes, the gradient constancy assumption (GCA) has been pro-
posed [4,5,6]. It states that image gradients remain constant under their
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displacement, i.e., ∇2f(x+w) = ∇2f(x). A data term that combines both BCA
and GCA is

M3(u, v) = w	 J w , (10)

where we use the motion tensor notation [16]

J := ∇3f ∇3f
	 + γ

(
∇3fx ∇3f

	
x + ∇3fy ∇3f

	
y

)
. (11)

Here, the parameter γ > 0 steers the contribution of the GCA.
To normalise M3, we replace the motion tensor J by

J̄ := θ0 ∇3f ∇3f
	 + γ

(
θx ∇3fx ∇3f

	
x + θy ∇3fy ∇3f

	
y

)
, (12)

and obtain the data term M4(u, v) = w	 J̄ w. The two additional normalisation
factors are defined as

θx :=
1

|∇2fx|2 + ζ2 , and θy :=
1

|∇2fy|2 + ζ2 . (13)

Postponing the Linearisation. Linearisation of the data term with respect
to u and v is only valid for small displacements. In order to handle large dis-
placements correctly, Brox et al. [4] postpone any linearisation to the numerical
scheme. Applying this strategy within the data term M4 yields

M5(u, v) =
∣∣∣√θ0 (f(x + w) − f(x))

∣∣∣2 (14)

+ γ

( ∣∣∣diag
(√

θx,
√

θy

)
(∇2f(x + w) −∇2f(x))

∣∣∣2) ,

where diag(a, b) denotes the 2 × 2 the diagonal matrix with the entries a and b.
We wish to emphasise that the numerical solution for large displacement optic

flow proceeds by computing flow increments in a multiresolution framework. The
linearisation of the data term M5 w.r.t. these small increments will give rise to
the motion tensor (12) on every image scale.

Colour Image Sequences. In a next step we extend the data term M5 to
multi-channel sequences by coupling three colour channels

(
f1(x), f2(x), f3(x)

)
.

A natural formulation for this is

M6(u, v) =
3∑

i=1

( ∣∣∣∣√θi
0

(
f i(x + w) − f i(x)

)∣∣∣∣2 (15)

+ γ
∣∣∣ diag

(√
θi

x ,
√

θi
y

) (
∇2f

i(x + w) −∇2f
i(x)
)∣∣∣2) .

Photometric Invariant Colour Spaces. Realistic illumination models en-
compass a multiplicative influence [8], which cannot be captured by the GCA.
This problem can be tackled by replacing the RGB colour space by the Hue
Saturation Value (HSV) colour space [17] instead. The hue channel is invariant
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under multiplicative illumination changes and in particular under shadow, shad-
ing, highlights and specularities. The saturation channel is only invariant w.r.t.
shadow and shading and the value channel exhibits none of these invariances.
In [9], only the hue channel was used for optic flow computation. We will addi-
tionally use the saturation and value channel, because they contain information
that is not encoded in the hue channel.

Robust Penalisers. To provide robustness of the data term against outliers
caused by noise and occlusions, Black and Anandan [3] proposed to refrain from
a quadratic penalisation. Instead they use a non-quadratic penalisation function
ΨM (s2), where s denotes the data constraint. Good results are reported in [4]
for the regularised L1-norm, ΨM (s2) :=

√
s2 + ε2, with a small regularisation

parameter ε > 0. Bruhn et al. [7] use a separate L1 penalisation of the BCA and
the GCA, which is advantageous if one assumption produces an outlier. In our
variational framework we will go further by proposing a separate robustification
of each HSV channel. It can be justified by the distinct information content of
each of the three channels that drives the optic flow estimation in different ways.

Final Data Term. Incorporating our separate robustification idea into M6
brings us to our final data term

M(u, v) =
3∑

i=1

ΨM

(∣∣∣∣√θi
0

(
f i(x + w) − f i(x)

)∣∣∣∣2
)

(16)

+ γ

( 3∑
i=1

ΨM

(∣∣∣diag
(√

θi
x ,
√

θi
y

) (
∇2f

i(x + w) −∇2f
i(x)
)∣∣∣2)) .

This data term is (i) normalised, it (ii) combines the BCA and GCA, (iii) does
not linearise the constancy assumptions and (iv) uses the HSV colour space with
(v) a separate robustification of all colour channels.

To derive the contributions of the data term (16) to the Euler-Lagrange equa-
tions (2) and (3), we use the abbreviations from [4]:

f∗∗ := ∂∗∗f(x+w) , fz := f(x+w)−f(x) , f∗z := ∂∗f(x+w)−∂∗f(x) , (17)

where ∗∗ ∈ {x, y, xx, xy, yy} and ∗ ∈ {x, y}. Then we can write the contributions
∂uM and ∂vM as

∂uM =
3∑

i=1

Ψ ′
M

(
θi
0
(
f i

z

)2) · θi
0 f i

z f i
x (18)

+ γ

(
3∑

i=1

Ψ ′
M

(
θi

x

(
f i

xz

)2
+ θi

y

(
f i

yz

)2) · (θi
x f i

xz f i
xx + θi

y f i
yz f i

xy

))
,

∂vM =
3∑

i=1

Ψ ′
M

(
θi
0
(
f i

z

)2) · θi
0 f i

z f i
y (19)

+ γ

(
3∑

i=1

Ψ ′
M

(
θi

x

(
f i

xz

)2
+ θi

y

(
f i

yz

)2) · (θi
x f i

xz f i
xy + θi

y f i
yz f i

yy

))
,
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where Ψ ′
M (s2) denotes the derivative of ΨM (s2) w.r.t. its argument. Here we see

that the separate robustification of the HSV channels makes sense: If a specific
channel violates the imposed constancy assumption at a certain location, the
corresponding argument of the decreasing function Ψ ′

M will be large, yielding a
downweighting of this channel. The other channels that satisfy the constancy
assumption will then have a dominating influence on the solution.

4 Smoothness Term

4.1 Previous Smoothness Terms

For overcoming the aperture problem and for regularising the estimated flow
field, energy-based methods include a smoothness term (regulariser). It models
the assumption of a smooth flow field. A quadratic smoothness term as proposed
by Horn and Schunck [1] penalises the squared magnitude of the flow gradients:

V1(∇2u,∇2v) = |∇2u|2 + |∇2v|2 . (20)

In the corresponding Euler-Lagrange equations, this leads to a homogeneous
diffusion term that tends to blur important flow edges. Since it is desirable
that regularisers permit flow discontinuities, numerous discontinuity perserv-
ing smoothness terms have been proposed. They are classified as either image-
or flow-driven, depending on whether the smoothing process is adapted to im-
age edges or evolving flow edges. In addition, one can distinguish isotropic and
anisotropic strategies. Whereas the first type makes use of a scalar valued dif-
fusivity to reduce the smoothing at edges, the latter also takes into account
the directional information by means of a diffusion tensor. For an extensive and
in-depth survey on classical discontinuity preserving regularisers, we refer to [13].

Joint Image- and Flow-driven Regularisation (JIF). Recently, Sun et
al. [14] presented an anisotropic smoothness term in a discrete setting. It is
modelled by a Steerable Random Field [15] that uses directional flow deriva-
tives steered by image structures. It thus combines the advantages of image-
and flow-driven regularisers, a strategy that we will name joint image- and
flow-driven (JIF) regularisation. To obtain directional information of image
structures, the authors analyse the eigenvectors of the structure tensor [18]
Sρ := Kρ ∗

[
∇2f ∇2f

	], where Kρ is a Gaussian of standard deviation ρ and ∗
denotes the convolution operator. The structure tensor is a symmetric, positive
semidefinite 2× 2 matrix that possesses two orthonormal eigenvectors s1 and s2
with corresponding eigenvalues μ1 ≥ μ2 ≥ 0. The vector s1 points across image
structures, whereas the vector s2 points along them. With these notations, the
regulariser from [14] can be written as

V2(∇2u,∇2v) = ΨV

((
s	1 ∇2u

)2)
+ ΨV

((
s	1 ∇2v

)2)
(21)

+ ΨV

((
s	2 ∇2u

)2)
+ ΨV

((
s	2 ∇2v

)2)
.
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The corresponding Euler-Lagrange equations are

∂uM − α div
(
Du (s1, s2,∇2u) ∇2u

)
= 0 , (22)

∂vM − α div
(
Dv (s1, s2,∇2v) ∇2v

)
= 0 , (23)

with the diffusion tensors

Dp (s1, s2,∇2p) :=
(
s1|s2

)⎛⎝Ψ ′
V

((
s	1 ∇2p

)2) 0

0 Ψ ′
V

((
s	2 ∇2p

)2)
⎞⎠(s	1

s	2

)
, (24)

for p ∈ {u, v}. We observe that this regulariser indeed exhibits the desired image-
and flow-driven behaviour: The regularisation direction is adapted to the image
structure directions s1 and s2, whereas the magnitude of the regularisation de-
pends on the flow contrast encoded in ∇2p. As a result, this regulariser yields
the same sharp flow edges as image-driven methods but does not suffer from
oversegmentation problems.

4.2 Our Novel Constraint Adaptive Regulariser (CAR)

In spite of its sophistication, the JIF model still suffers from a few shortcomings.
As a remedy we will introduce three amendments that will be discussed now.

Regularisation Tensor. A first remark w.r.t. JIF regularisation is that the
directional information from the structure tensor Sρ is not consistent with the
imposed constraints of our data term (16). It is more natural to take into account
the directional information provided by the motion tensor (12) and to steer
the anisotropic regularisation process w.r.t. “constraint edges” instead of image
edges. We propose to analyse the eigenvectors r1 and r2 of the regularisation
tensor

Rρ :=
3∑

i=1

Kρ ∗
[
θi
0∇2f

i
(
∇2f

i
)	

+γ
(
θi

x∇2f
i
x

(
∇2f

i
x

)	
+θi

y∇2f
i
y

(
∇2f

i
y

)	)]
. (25)

The regularisation tensor integrates neighbourhood information of the motion
tensor entries for every colour channel. By exploiting the invariances of the HSV
colour space, it is not prone to be misled by “phantom” edges, like shadow edges.

Rotational Invariance. Unfortunately the smoothness term V2 lacks the de-
sirable property of rotational invariance, because the projections of ∇2u and
∇2v onto the eigenvector directions are penalised separately. As a remedy we
propose to jointly penalise the projections on the eigenvector directions of the
regularisation tensor, yielding

V3(∇2u,∇2v) = ΨV

((
r	1 ∇2u

)2+
(
r	1 ∇2v

)2) (26)

+ ΨV

((
r	2 ∇2u

)2+
(
r	2 ∇2v

)2)
.
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Single Robust Penalisation. The regulariser V3 performs a twofold robust
penalisation in both eigenvector directions. Because the data term mainly con-
straints the flow in the direction of the largest eigenvalue of the spatial motion
tensor, we propose a single robust penalisation solely in r1-direction. In the or-
thogonal r2-direction, we opt for a strong quadratic penalisation. The advantages
of this strong filling-in effect along constraint edges will be confirmed by our ex-
periments in Sec. 6. Also incorporating the single robust penalisation yields the
regulariser

V (∇2u,∇2v) = ΨV

((
r	1 ∇2u

)2+
(
r	1 ∇2v

)2)+
(
r	2 ∇2u

)2+
(
r	2 ∇2v

)2
, (27)

where we use the Perona-Malik regulariser (Lorentzian) [19,20] given by
ΨV (s2) := λ2 log(1 + (s2/λ2)) with a contrast parameter λ > 0. We call the
regulariser V the constraint adaptive regulariser (CAR). It complements the
proposed robust data term M from (16) in an optimal fashion.

The corresponding Euler-Lagrange equations for are

∂uM − α div
(
D (r1, r2,∇2u,∇2v) ∇2u

)
= 0 , (28)

∂vM − α div
(
D (r1, r2,∇2u,∇2v) ∇2v

)
= 0 , (29)

where the joint diffusion tensor is given by

D (r1, r2,∇2u,∇2v) :=
(
r1|r2

)(Ψ ′
V

((
r	1 ∇2u

)2+
(
r	1 ∇2v

)2) 0

0 1

)(
r	1

r	2

)
. (30)

Comparing our joint diffusion tensor (30) to its JIF counterparts (24), the fol-
lowing innovations become apparent: (i) The smoothing direction is adapted to
constraint edges instead of image edges. (ii) We achieve rotational invariance by
coupling the two flow components in the argument of Ψ ′

V . (iii) We only reduce the
smoothing across constraint edges. Along them, always a strong diffusion with
strength 1 is performed, resembling edge-enhancing anisotropic diffusion [21].

When using ∂uM and ∂vM as given in (18) and (19) in the Euler-Lagrange
equations (28) and (29), we obtain the Euler-Lagrange equations for our pro-
posed complementarity optic flow (COF) method.

5 Implementation

To solve the Euler-Lagrange equations we use a coarse-to-fine multiscale warp-
ing approach [4]. On each warping level, small flow increments are computed
via a linearised approach, allowing to handle large displacements correctly. The
computations are speeded up by a nonlinear multigrid scheme [16] that solves
the problem at each warping level based on a Gauß-Seidel type solver with al-
ternating line relaxation [16].

Spatial image and flow derivatives are discretised via central finite differences
of fourth and second order, respectively [16]. For the motion tensor, these deriva-
tives are averaged from the two frames f(x, y, t) and f(x, y, t + 1), whereas for
the regularisation tensor, they are solely computed at the first frame.
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6 Experiments

Our first experiment shows the importance of different constituents of our model.
We compare our method to four modified versions of it where we have changed
one distinct feature: (i) No data term normalisation. (ii) Using a regulariser with
twofold instead of single robust penalisation as in V3. (iii) Using a regulariser with
single robust penalisation as in V , but based on the structure tensor instead of
the regularisation tensor. (iv) Using the RGB colour space. For the latter version,
we only separately robustify the BCA and the GCA, as a separate robustification
of the RGB channels makes no sense. In Fig. 1, we show results for the Urban3
sequence from the recent optic flow database [22] of the Middlebury University1.
To visualise flow fields, we plot the magnitude of the flow vectors. Throughout
our experiments we use the parameters ζ = 0.1, ε = 0.001, λ = 0.1. Specifically
for the Urban3 sequence, we fixed the parameters σ = 0.7, γ = 1.0, ρ = 1.5 and
only tuned the value of α, as is given in the caption of Fig. 1. There, we also
state the corresponding average angular error (AAE) measures [23] in order to
compare the quality of estimated flow fields to the ground truth. Note that the
errors were computed for the whole image, whereas for visualisation purposes,
the flow fields in Fig. 1 (c)–(h) show details. We notice a lot of artifacts for the
method without data term normalisation (Fig. 1 (d)) that severely deteriorate
the flow estimate. With a twofold robust penalisation (Fig. 1 (e)), artifacts at
flow edges emerge due to the inhibited smoothing along edges. The results for
the RGB version (Fig. 1 (f)) and our approach (Fig. 1 (h)) look rather similar
due to the uncritical illumination conditions in this synthetic sequence. How-
ever, at the connection between the two buildings in the middle of the image,
our approach performs better. When using the directional information from the
structure tensor (Fig. 1 (g)), the results look promising, but artifacts at flow
corners appear.

For a second experiment we created a real world test sequence with difficult
illumination conditions caused by pronounced shadows, see Fig. 2 (a)–(b). Using
this test sequence, we compare our method to the RGB version, the method of
Brox et al. [4] and a version of our approach with a rotationally invariant JIF
regulariser. This regulariser is similar to V3 but uses the eigenvectors s1 and s2
instead of r1 and r2. As fixed parameters we set σ = 0.5, γ = 20.0 and ρ = 2.5.
We see that the RGB method (Fig. 2 (c)) suffers from artifacts due to the shad-
ows in the marked regions. When using the JIF regulariser (Fig. 2 (d)), the flow
edges are dislocated and the shadow edges in the marked regions yield unpleas-
ant artifacts. This demonstrates the drawbacks of the use of the structure tensor
instead of the regularisation tensor, and of the twofold robust penalisation. Be-
cause of the latter, perturbing staircasing artifacts arise. The method of Brox et
al. [4] (Fig. 2 (e)), that is considered to be accurate and robust, gives poor re-
sults for this sequence. Solely our method (Fig. 2 (f)) produces an agreeable flow
field in spite of the difficult illumination conditions and the large displacements
(up to 25 pixels) in this sequence.

1 available under http://vision.middlebury.edu/flow/data/



Complementary Optic Flow 217

Fig. 1. The Urban3 sequence. First row: (a) Frame 10. (b) Zoom in marked region.
Second row: (c) Ground truth flow magnitude plot in marked region. (d) Corre-
sponding flow magnitude plot without normalisation (α = 300.0, AAE=4.57). (e)
Twofold robust penalisation (α = 50.0, AAE=3.56). Third row: (f) RGB colour
space (α = 100.0, AAE=3.09). (g) Structure tensor (α = 50.0, AAE=2.99). (h) Our
approach (α = 75.0, AAE=2.95).

For a final comparison of our method to state-of-the-art approaches, we sub-
mitted our results to the Middlebury benchmark page2. In accordance to their
guidelines, we used a fixed set of parameters for all sequences: α = 600.0, σ =
0.5, γ = 20.0 and ρ = 2.5. In Tab. 1, we show the average rank of the Top 8 meth-
ods for the AAE. With the proposed method we are able to achieve the first rank.
This shows that a sophisticated and transparent modelling allows to outperform
other well-engineered methods that incorporate many more processing steps.

2 available under http://vision.middlebury.edu/flow/eval/results/



218 H. Zimmer et al.

Table 1. The Top 8 of the Middlebury ranking for the AAE (as of June 12, 2009)

Method Our Adaptive Aniso. Spatially TV-L1- Occlusion Brox Multicue
Method Huber-L1 variant improved bounds et al. MRF

Avg. rank 4.8 5.0 6.5 7.1 7.9 8.6 9.2 9.2

Fig. 2. The Snail sequence. First row: (a) Frame 1. (b) Frame 2. (c) Flow magnitude
plot with RGB colour space (α = 800.0). Second row: (d) JIF (α = 1500.0) (e) Brox
et al. [4] (α = 75.0). (f) Our approach (α = 1500.0).

The running time for the Urban sequence was 44.3 s on a standard PC (3.2 GHz
Intel Pentium 4, 256 MB RAM). This proves that the used multigrid scheme [16]
allows to obtain moderate runtimes for standard test sequences.

7 Conclusions and Outlook

We have presented a novel variational optic flow technique based on the concept
of complementarity between data and smoothness term. By refraining from the
traditional viewpoint that such terms are natural competitors within a joint
energy-based framework, we succeeded to unify their advantages and achieve
the currently most accurate results in the Middlebury benchmark.

Our data term integrates sophisticated components such as embedding higher
order constancy assumptions in an HSV colour representation with a separate
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robust penalisation of each channel, renouncement of linearisations, and con-
straint normalisation. The directional information that results from these
constraints is used in our complementary anisotropic smoothness term. This
smoothness term combines the advantages of image- and flow-driven regulari-
sation. However, compared to the approach of Sun et al. [14], it is rotationally
invariant, respects constraint edges instead of image edges, and it restricts ro-
bust penalisation to the constraint direction. We have given detailed motivations
showing that these model refinements arise in a natural and systematic way.
Moreover, in the experiments we have proven that each of our amendments in
the data and smoothness term is beneficial and contributes to the favourable
accuracy of our complementary optic flow (COF) approach.

We hope that our research triggers further investigations on incorporating
complementarity concepts in image processing and computer vision. This may
allow to exploit similar synergies also in the context of other tasks that are
currently dominated by energy-based strategies.
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Planck Research School (IMPRS), the Deutsche Forschungsgemeinschaft (DFG)
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Abstract. This communication addresses the problem of estimating the
parameters of a family of marked point processes. These processes are
of interest in extraction of object networks from remote sensing images.
They are defined from a combination of several energy terms. First, a
data energy term controls the localization of the objects with respect to
the data. Second, prior information is given by intern energy terms corre-
sponding to geometrical constraints on the configuration to be detected.
An estimation procedure of the weight associated with these energies is
studied. The application to unsupervised detection of objects is finally
discussed.

1 Introduction

Marked point processes have been recently studied for object extraction from re-
motely sensed images [1]. These processes enable one to model the configuration
of an unknown number of objects in an image, within a stochastic framework.
They can manage to deal with some geometrical prior information about both
the objects to be extracted and the interactions such as alignments or overlap-
pings between them. Typical applications that have been investigated include
road network [2], building [3], tree crown [4] or flamingo [5] extraction.

In the considered applications, a marked point process is defined by a density
function with respect to the Poisson measure. Within the framework of Gibbs
point process, this density can be expressed from the combination of several
energy terms: first, a data energy term, which controls the localization of the
objects with respect to the data, and second, prior information about the objects
is given by internal energy terms corresponding to geometrical constraints on the
objects. The parameters that govern these energies are the so-called “hyperpa-
rameters” of the model. These “hyperparameters” used to be calibrated by hand.
As their values depend on both the model and the image to be processed, the
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calibration step is often long. In order to develop fully unsupervised detection
procedures, an estimation of these hyperparameters has to be performed.

The problem of estimating the parameters of a marked point process have re-
ceived a great attention in the literature in the case of “complete data”, for which
the configuration, i.e. the set of marked points corresponding to the objects, is
known. The main difficulty lies in the fact that the normalizing constant of the
process density is not tractable. Thus, maximum likelihood estimators cannot
be directly derived. To tackle this problem, several estimators have been pro-
posed. A first class of methods consists of approximating the likelihood thanks
to Markov Chain Monte Carlo (MCMC) methods. Corresponding estimators
are then numerically obtained by maximizing the resulting estimated likelihood
( see, for instance, [6,7,8]). These methods can be extended to the “missing
data” case, where the process is known on a partial observation window, but is
defined on a larger region [7]. Another class of estimation methods is based on
the pseudolikelihood concept. This pseudolikelihood is an inference function de-
rived from a combination of valid likelihoods associated with conditional events.
Pseudolikelihood estimators are then obtained by maximizing the correspond-
ing pseudolikelihood (see, for instance, [9,10,11,12,13,14]). The interest of these
methods is that one avoids the simulation step, since the density normalizing
constant does not appear in the pseudolikelihood.

Our applications rely on the framework of “incomplete data”, where the con-
figuration of the objects to be extracted is unknown. It is important to note
that this framework is more general than the “missing data” case introduced
above, since only the radiometry of the remote sensing image is available. There-
fore, appropriate estimation methods must be derived. The main contribution
of this work consists of studying an estimation method based on a Expectation-
Maximization (EM) procedure. Finally, the resulting estimates are used in order
to extract the objects by minimizing the energy of the process.

This paper is outlined as follows. Section 2 recalls some definitions and ba-
sic properties about spatial marked point processes. The families of marked
point processes studied in this work are presented in Section 3. In Section 4,
the proposed estimation method is introduced. Some numerical experiments are
presented and discussed in Section 5. Section 6 looks finally at the conclusions
that can be drawn from this work.

2 Marked Point Processes

In this section, the statistical background of marked point processes is briefly
presented in the context of object network modeling. For a more detailed presen-
tation of marked point processes, the interested reader is invited to consult [15].

2.1 Definitions

Let W be a compact set of R2 that corresponds to the definition domain of the
observed image. The data, i.e. the radiometry associated with each pixel of the
observed image, is denoted as y.
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Point process. A configuration of points p that belong to W is an unordered
set of points p = {p1, . . . , pn(p)} where n(p) denotes the number of points in
the configuration p and where pi ∈ W for all 1 ≤ i ≤ n(p). A point process
P of points in W is a measurable mapping from a given probability space to
configurations of points in W . Thus, a point process is a random variable P
whose realizations are random configurations of points.

The Poisson point process is a famous example of point process. In a Poisson
process realization, the points are independently distributed. These processes are
interesting since they play an analog role on the configuration of points space to
Lebesgue measure on Rd. As it is explained later in Sec. 2.2, point processes can
be defined by their density with respect to the probability measure of a reference
Poisson point process.

Marked point process for object modeling. A marked point process living
in S = W ×M is a point process where some marks belonging to the set M are
added to the position of the points in W . The marks represent a collection of
parameters that fully describe the objects of interest. For instance, the marks re-
duce to the radius parameter in the case of circular objects. A configuration of ob-
jects in S is then an unordered set of objects x = {(p1, m1), . . . , (pn(x), mn(x))}.
Therefore, a marked point process of objects in S is a random variable X whose
realizations are random configurations of objects, i.e. marked points. These con-
figurations belong to:

Ω =
⋃
n≥0

Ωn, (1)

where Ωn is the set of all the configurations x with a finite number n(x) = n
of objects, and Ω is the set of all the configurations with a finite number of
objects. Finally, it is interesting to note that, if M is a bounded set, a marked
point process can be viewed as a point process defined on the space S = W ×M .

2.2 Density of a Marked Point Process

Let μ(·) be the probability measure of a Poisson point process defined by its
intensity measure ν(·) on the space of configurations Ω and let hθ(·) be a map-
ping from Ω to [0, +∞) parameterized by θ ∈ Θ. Consider now the following
normalizing function:

c(θ) =
∫

Ω

hθ(x)μ(dx). (2)

When c(θ) < +∞ for all θ ∈ Θ, then the following functions:

fθ(x) =
hθ(x)
c(θ)

, (3)

define a family (fθ)θ∈Θ of probability density functions of a point process on
Ω with respect to the reference Poisson process. It is important to note that
the computation of the normalizing constant c(·) expressed in (2) requires an
integration over the set Ω of all the configurations with a finite number of objects,
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which is a huge space. As a consequence, except for the Poisson case, it is not
possible to obtain a tractable expression of this constant from an analytical or
numerical point of view.

Within the Gibbs framework, this density can finally be expressed in an en-
ergetic form:

fθ(x) =
1

c(θ)
exp (−w U(x)), (4)

where U(x) is the energy of the process and w > 0 is the weight parameter
associated with this energy. Note that the parameter w is homogeneous to the
inverse of a temperature.

3 Proposed Models for Object Extraction

This section introduces the family of marked point processes which is studied in
order to extract object networks. This family is defined from its Gibbs density
(4). For sake of simplicity, the dependences with respect to the parameter vector
θ and to the data y are omitted in the energy notations. The model energy is
divided into two parts U(x) = Ud(x) + Up(x) corresponding to:

– an external energy, Ud(x), which quantifies the adequacy of the configuration
x with respect to the data y,

– an intern energy, Up(x), which favors or penalizes some specific geometrical
patterns in the configuration x.

3.1 Intern Energy: Prior Term

In this work, the intern energy corresponds to the penalization of object over-
lappings. This is done by introducing a “hard core” constraint. Let R(u1, u2) be
the following ratio:

R(u1, u2) =
|u1 ∩ u2|

min (|u1|, |u2|)
, (5)

where |u| denotes the area of a given geometric shape u. Then, the intern energy
is defined as a pairwise interaction process:

Up(x) =
∑

1≤i<j≤n(x)

Up(xi, xj), (6)

where

Up(xi, xj) =

{
+∞ if xi �= xj and R(xi, xj) > s,

0 otherwise.
(7)

Here s ∈ [0, 1] is a given threshold parameter (included in θ) that characterizes
the maximal overlapping ratio between the objects of the configuration. As a
consequence, this intern energy allows one to avoid multiple detections of the
same object.
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3.2 External Energy: Data Term

Two main approaches can be adopted in order to define the data energy term.
The first one consists of considering the likelihood function describing the data
y for a fixed configuration x of objects. The second one is based on the definition
of local energies associated with each object. These local energies can be derived
from any contrast measure between the distribution of the pixels belonging to
an object and the distribution of the pixel belonging to a neighborhood of this
object.

Bayesian model. When a tractable expression of the likelihood L(y|x) of the
data given an object configuration x is available, the external energy can be
derived as:

Ud(x) = − logL(y|x). (8)

For a given configuration x, the data energy associated with one object u is thus
expressed as:

Ud(u|x) =

{
Ud(x) − Ud(x\{u}) if u ∈ x,

Ud(x ∪ {u})− Ud(x) otherwise.
(9)

To define the likelihood, a Gaussian mixture is considered:

L(y|x) =
∏

y∈Co

f(y; mo, σ
2
o)
∏

y∈Cb

f(y; mb, σ
2
b), (10)

where Co and Cb are the subsets of pixels belonging respectively to the objects
of the configuration x and to the background, f(·; m, σ2) being the probability
density function of the Gaussian distribution with mean m and variance σ2.
Note that the parameters of the Gaussian distributions are directly estimated
from a k-means classification of the image.

Using the Bayes rule, one can see from eq. (8) and (4) that when w = 1, the
density of the process reduces to the following posterior distribution:

f(x|y) =
fp(x)L(y|x)∫

Ω
fp(x)L(y|x)dx

∝ fp(x)L(y|x), (11)

where fp(x) ∝ − log(Up(x)) is the density of the marked point process associated
with the prior term. This remark emphasizes that such a choice of the data term
corresponds to a Bayesian framework when the energy weight equals one. By
abuse of language, this data energy is also referred as Bayesian in the general
case w > 0.

Detector framework. The previous approach requires to exhibit a likelihood
function describing the distribution of the considered image given a configura-
tion of objects. However, describing accurately the image distribution can be a



226 F. Chatelain, X. Descombes, and J. Zerubia

difficult problem. Moreover, a not enough accurate likelihood may yield a data
term not enough robust to provide reliable information (see [16] for a discussion
on this issue).

In this “detector” model, the data energy is computed at the object level as
a sum over the objects of the configuration:

Ud(x) =
∑
x∈x

Ud(x), (12)

where Ud(x) ∈ [−1, 1]. An object x will be attractive and therefore favored if its
data energy Ud(x) is negative. Conversely, a positive data energy will penalize
its presence.

The data term relies on the choice of a statistical contrast measure, denoted
as J(O(x),N (x)), between the distribution of set of pixels O(x) belonging to
the object x, and the distribution of the pixels belonging to its boundary N (x).
Finally, the data energy Ud(x) is obtained as:

Ud(x) = Q (J(T (x),N (x))) , (13)

where Q(·) : R+ �→ [−1, 1) is a quality function. The following quality function,
proposed in [16], is considered:

Q(J) =

⎧⎨⎩1 −
(

J
J0

) 1
3

if J < J0,

exp
(
−J−J0

3J0

)
− 1 otherwise,

(14)

where J0 > 0 is a given threshold. This function is depicted in Fig. 1 for J0 = 5.
One can see that the role of J0 is crucial. Indeed, it gives a positive value of the
data energy to contrast measure lower than J0, and a negative one otherwise.
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Fig. 1. Quality function QJ0 (J0 = 5)

The threshold J0 controls therefore the way the objects are penalized or fa-
vored. In our applications, the radiometry of the objects to be detected is greater
than the background of the image. In [16], a statistical distance J(·, ·) adapted
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from a Bhattacharya distance is proposed. In this work, we consider a contrast
measure derived from statistics associated with the following binary hypothesis
test:

H0 : J(O(x),N (x)) ≤ J0 ← “absence of object” hypothesis,
H1 : J(O(x),N (x)) > J0 ← “presence of the object x” hypothesis.

Under the assumption that the samples belonging respectively to O(x) and N (x)
are independent and Gaussian distributed, the so-called Welch’s t-test, is based
on the following statistics [17]:

t =
mO − mN√

s2
O

nO
+ s2

N
nN

(15)

where mO and mN are the empirical means of O(x) and N (x) respectively, s2
O

and s2
N their empirical variances, nO and nO denoting their sample size. Under

the null hypothesis H0, the distribution of the statistics t can be approximated
by a Student’s T distribution whose degree of freedom d is:

d =

(
s2
O

nO
+ s2

N
nN

)2

s4
O

n2
O(nO−1) + s4

N
n2
N (nN−1)

.

Finally, the contrast measure used to construct the energy data term is:

J(O(x),N (x)) = t. (16)

Moreover, the threshold J0 involved in the quality function corresponds to the
p-value associated with a given probability of false alarm α:

J0 = F−1
t (1 − α), (17)

where F−1
t is the inverse cumulative distribution function of the Student’s T

distribution with d degrees of freedom. The advantages of this modeling are
multiple:

– this contrast measure is not sensitive to a location-scale factor. Consequently,
any linear transform of the image will not change the energy of the process,

– for each object, the adaptive threshold J0 is deduced from the probability
of false alarm α,

– the probability of over-detection (i.e. of false alarm) α can be controlled.

An aerial image of a flamingo colony in Camargue, France, is depicted in
Fig. 2(a). The data map corresponding to the Bayesian external energy is de-
picted in Fig. 2(b) in case of circular objects of fixed radius. The detector data
map, computed for a false alarm rate α = 10−6 is displayed in Fig. 2(c). The
comparison of these two maps shows large differences of energy levels. This re-
mark emphasizes the importance of the energy weight w in the model.
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(a) Flamingo colony
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(c) Detector (α = 10−6)

Fig. 2. Remote sensing image of a flamingo colony in Camargue, France ( c©La Tour
du Valat), and associated data maps for the two models of external energy

3.3 Extraction Algorithm

The investigated estimator, denoted as x̂ ∈ Ω, of the object configuration is the
maximum likelihood estimator, which is obtained by maximizing the density of
the marked point process for an appropriate value of the parameters θ0 ∈ Θ.
From (4), one can see that it is equivalent to the Gibbs energy minimization
problem:

x̂ = arg max
x∈Ω

fθ0(x) = arg min
x∈Ω

U(x). (18)

When the data term corresponds to the likelihood of the observation given an
object configuration, then x̂ turns out to be a classical MAP estimator within
the Bayesian framework.

Finding the minimum of the energy on Ω is not straightforward. In the gen-
eral case, it is not possible to derive an analytical expression of x̂. As stated in
the previous section, the density of the marked point process is defined up to
an unknown normalizing constant. However, it is possible to sample some real-
izations of the process thanks to a Reversible Jump Monte Carlo Markov Chain
(RJMCMC) algorithm [18], even if the density normalizing constant is unknown.
Density optimization is then achieved by a RJMCMC sampler embedded in a
Simulated Annealing (SA) scheme (see [19] for more details).

4 Parameter Estimation

In the proposed models, this unknown parameter vector θ is composed of the
weight parameter w > 0 introduced in (4), and of the maximal overlapping ratio
s ∈ [0, 1] introduced in (6). This section addresses the problem of estimating
θ from the radiometry y of a given image. In the simulations presented in the
next section, the parameter s is fixed to a deterministic value. Therefore, the
estimation problem reduces to the estimation of the energy weight w. In [19],
it is shown that the best extraction performances are obtained with a cooling
schedule concentrated around a critical temperature Tc. Since the parameter w
is homogeneous to the inverse of a temperature, its estimation aims at providing
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an estimate of the inverse of the critical temperature. Therefore, estimating
this parameter w allows one to used a cooling schedule based on normalized
temperatures, which does not depend anymore on the processed image and the
external energy model.

The main difficulty arising in this estimation problem is that the object con-
figuration x, and the marginal density of the observation fθ(y) are unknown. In
such a situation, Expectation-Maximization (EM) algorithms offer an appropri-
ate framework for parameter estimation. The EM algorithm, introduced in [20],
is an iterative method that is used to determine the Maximum Likelihood Esti-
mators (MLE) in the case of incomplete data. Each iteration can be divided into
two steps. First, an expectation step, which consists of computing the expecta-
tion of the process density denoted as fθ(x) ≡ fθ(x|y). Second, a maximization
step with respect to parameter vector θ is performed. However, it is not possible
to obtain a tractable expression of the expectation since the density normalizing
constant is intractable. To tackle this problem, an approximated version of the
Stochastic EM (SEM) procedure described in [21] is used.

Pseudo-Likelihood approximation. The concept of Pseudo-Likelihood (PL)
has been widely studied in the literature since the seminal paper of Besag [22].
Moreover, this concept has been generalized to spatial marked point process
[23,9]. For a given object configuration x, the PL is defined as:

PLS(θ; x, y) =

[∏
xi∈x

λθ(xi; x, y)

]
exp
{
−
∫

S

λθ(u; x, y)ν(du)
}

, (19)

where u ∈ S is an object, ν(·) is the intensity of the reference Poisson process
and λθ(·; x, y) : S → [0, +∞) denotes the conditional Papangelou intensity of
the process. In our models, this intensity can be expressed as:

λθ(u; x, y) = exp

⎡⎣−w

⎛⎝Ud(u|x) +
∑

xi∈x| xi �=u

Up(xi, u)

⎞⎠⎤⎦ , (20)

where Up(·, ·) is the pairwise intern energy defined in (7). From eq. (19), one can
see that the PL depends on the following normalizing constant:

z(θ; x, y) = exp
{
−
∫

S

λθ(u; x, y)ν(du)
}

. (21)

Since this normalizing constant expresses as a summation over the state space
S, efficient numerical quadrature scheme can be used to calculate it [13]. Thus,
numerical values of the PL can be easily computed.

In order to estimate the parameters, it is finally proposed to approximate the
process density, i.e. its likelihood, by its PL. Such an approximation is motivated
by the following two points:
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1) For a given configuration x, the PL is an inference function which is close
to the likelihood (for instance, the PL of a Poisson process reduces to its
likelihood).

2) In the context of complete data, the MLEs and the Maximum PL Estimators
(MPLEs) exhibit quite similar properties and performances for some classical
examples of processes [24].

Proposed SEM algorithm. The approximation of the process likelihood by
its PL leads to the following approximate version of the SEM algorithm:

(S) Stochastic step: Simulation of xk ∼ fθk(x|y),
(E) Expectation step: Computation of Q(θ, θk; y) = log PL (θ; xk, y),
(M) Maximization step: θk+1 = arg max

θ
Q(θ, θk; y),

(22)
where θk denotes the current estimate of the parameter vector θ in the k-th
iteration.

5 Simulation Results

Many simulations have been conducted in order to validate the estimation
method of the energy weight parameter w. In these simulations, the modeled
shapes correspond to circular object. The intensity of the reference Poisson pro-
cess is normalized: ν(S) = 1. In addition, the maximal overlapping ratio param-
eter s is set to s = 1/2. This value is justified by a simple geometrical reasoning:
two objects of the configuration fit the same object on the data if the intersection
area is greater than the half of their respective areas. Finally, the probability of
false alarm is set to α = 1e − 6 in the detector data term.

5.1 Initialization of the SEM Algorithm

To avoid converging to a local maximum of the likelihood, it is crucial to initialize
the algorithm with a value w0 close enough to the MLE of w. This can be done
by considering the following function:

I(w) =
∫

S

λθ(u; ∅, y)ν(du),

where λθ(u; ∅, y) is the Papangelou intensity associated with the null configura-
tion. Then, the function I(w) represents the mean number of objects in absence
of interaction. Let β > 1 be the exact number of objects to be extracted. The
idea consists of considering the initial value w0 defined such that Iβ(w0) = β

Theorem 1. Let β be a real strictly greater than 1. The function

w �→ I(w) − β (23)

has an unique root in (0, +∞).
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Proof. By construction I(·) is a strictly convex function (as the limit of the
sum of strictly convex functions). To prove the theorem, it remains to study
the function on the boundary of its definition domain. It is straightforward to
obtain that I(0) =

∫
S

ν(du) = ν(S) = 1. Moreover, when w goes to infinity, the
term e−wUd(u) converges toward 0 if Ud(u) > 0 or toward the Dirac distribution
δu(·) if Ud(u) < 0. As a consequence, I(w) →

∑
u∈x∞ ν′(u), where ν′(·) : S →

[0, +∞) is the reference Poisson process intensity function, and x∞ denotes the
configuration of all the objects possessing a strictly negative data energy. Since
the data energy is a regular and continuous function, x∞ is composed of an
infinity of objects. Thus, I(w) → +∞ when w → +∞. This concludes the proof.

A realization of the logarithm of the function I(·) is depicted in Fig. 3. It shows
that the function I(·) exponentially increases for large values of w. Therefore,
even for larger values β′ >> β than the real number of objects, the unique root
of the function I(·) − β′ is quite close to the root of I(·) − β. It leads to the
following scheme in order to choose an initial value for the parameter w:

1) Coarse over-estimation of the number of objects β0 ≥ 1.
2) Computation of the root w0 of the function w �→ I(w) − β0.

The second step is performed thanks to a Newton-Raphson procedure.
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Fig. 3. log10(I(w)) versus w for the detector energy term applied to the flamingo colony
image depicted in Fig. 2(a)

5.2 Numerical Results

Fig. 4 displays some estimation results obtained from a 640× 480 synthetic im-
age. This synthetic image has been generated according to a mixture of Gaussian
distributions. The parameters of the object and background classes are respec-
tively (μ0, σ

2
o) = (130, 400) and (μf , σ2

f ) = (100, 400). The image is composed
of 60 quasi-circular objects. In order to initialize the estimation algorithm, the
over-estimated number of object is set to β0 = 1000. The estimates of the weight
w are ŵ = 7.19 × 10−4 and ŵ = 37.9345 for the respective Bayesian and de-
tector external energy models. Note that the number of iterations done in order
to satisfy the convergence criterion is k = 3 in the Bayesian case, and k = 9
for the detector model. The configurations for which the estimation method has
converged are depicted (red circles) in 5(a) and 5(b). One can see that these
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(a) Bayesian: ŵ = 7.19 × 10−4 (42
objects)

(b) Detector: ŵ = 14.23 (40 objects)

Fig. 4. Estimation results on an synthetic image for the Bayesian and the detector
data energy models

(a) Bayesian: 58 detected objects (b) Detector: 57 detected objects

Fig. 5. Extraction results

(a) Estimation: ŵ = 5.385
(279 objects)

(b) Extraction: 353 de-
tected objects

Fig. 6. Estimation and extraction results for the detector data energy model applied
to the flamingo colony image
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configurations are already quite close to the real one. Based on the estimated
value of the parameter w, the extraction of the object configuration is achieved
by a simulated annealing scheme. The normalized initial and final temperature
of the cooling schedule are set to Ti = 2 and Tf = 0.05 respectively. The extrac-
tion results are depicted in Fig. 5. These results match very well the data, the
misdetections corresponding to objects that are located in the border of image.
Finally, the same experimental setup is applied to the real 274 × 269 image of
the flamingo colony presented in Fig. 2(a) in the case of the detector data energy
model. The estimate of the weight, obtained after 12 iterations, is ŵ = 5.385.
The obtained configurations are depicted in Fig. 6. The extraction result, based
on the estimated weight, appears to be in good agreement with the data. As
a consequence, these simulations show the interest and the performance of the
proposed estimation method.

6 Conclusions

This paper studied an estimation method of the energy weight parameter of a
Gibbs marked point process. A method based on a SEM algorithm is proposed,
the process likelihood being approximated by the pseudo-likelihood. This method
has shown good performances on both synthetic and real images for different
external energy models. It allows one to perform a quasi-automatic extraction
of surface objects, such as tree crowns or flamingos. The application to the
estimation of some interaction parameters and the extension to more complex
geometrical shape models are currently under investigation.
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Abstract. In this paper, we present a novel approach to three dimen-
sional human motion estimation from monocular video data. We employ
a particle filter to perform the motion estimation. The novelty of the
method lies in the choice of state space for the particle filter. Using a
non-linear inverse kinematics solver allows us to perform the filtering
in end-effector space. This effectively reduces the dimensionality of the
state space while still allowing for the estimation of a large set of motions.
Preliminary experiments with the strategy show good results compared
to a full-pose tracker.

1 Introduction

Three dimensional human motion analysis is the process of estimating the con-
figuration of body parts over time from sensor input [1]. One approach to this
estimation is to use motion capture equipment where electromagnetic mark-
ers are attached to the body and then tracked in three dimensions. While this
approach gives accurate results, it is intrusive and cannot be used outside labo-
ratory settings.

Our long-term goal is to use human motion analysis as part of a physio-
therapeutic rehabilitation system where the motion of a patient is tracked and
analysed during exercise sessions performed both at the hospital and at the pa-
tient’s home. The motion information will then be used to provide real-time
feedback to the patient and to collect statistics on the patient’s progress. The
system should serve as an aid to the patient while performing a self-training
programme at home, in that the patient will get instant response on whether
or not the exercise is performed optimally. Furthermore, the system may act as
a progress measurement tool for the physiotherapist. It is essential to develop
systems that can be used by the patient at home, which rules out marker-based
systems and hard-to-calibrate multi-camera solutions. Thus, the focus is on de-
veloping monocular vision-based systems.

In this paper, we present a novel approach to three dimensional monocular
human motion estimation. The novelty of the system lies in the choice of state
space. Monocular motion estimation in three dimensions is an inherently ill-
posed problem since the observed images are two dimensional. This manifests

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 235–248, 2009.
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itself in that the distribution of the human pose is multi-modal with an unknown
number of modes. To reliably estimate this distribution we need methods that
cope well with multi-modal distributions. Currently, the best method for such
problems is the particle filter [2], which represents the distribution as a set of
weighted samples. Unfortunately, the particle filter is smitten by the curse of
dimensionality in that the necessary number of samples grow exponentially with
the dimensionality of state space. The consequence is that the particle filter is
only applicable to low dimensional state spaces. This is in direct conflict with
the fact that the human body has a great number of degrees of freedom.

Our approach is inspired by recent results from the world of animation [3].
Here animators are faced with the task of posing human figures on a frame by
frame basis. This time-consuming task has created the need for models that
allow animators to create realistic looking figures using few parameters. Inverse
kinematic models allow the animator to pose only a few selected parts of the
human figure, called end-effectors, while the remaining parts can be positioned
by solving a non-linear least-squares optimisation problem. The end-effectors are
most often the head, the hands and the feet of the figure. Although the underlying
optimisation problem is hard to solve, recent work [3] has shown that realistic
looking animations can be created in real-time using inverse kinematics. In this
paper, we investigate the usefulness of estimating human motion in end-effector
space rather than full-pose space. This is done using inverse kinematics to infer
the full pose from end-effector positions.

To simplify the measurement model of the particle filter, our measurement
model is based on a simple Markov random field texture model for each limb of
the current pose model. We do not attempt to handle self-occlusions in this paper
as focus is on the choice of state space. When necessary, this can be introduced
later by appropriately changing the measurement model.

Our main point in this paper is to show the feasibility of tracking in end-
effector space compared to tracking in full-pose space and argue that the former
approach allows for real-time implementations with reasonable accuracy.

1.1 Related Work

Much work has gone into human motion analysis. The bulk of the work is in
locating the position of moving humans in image sequences and classifying their
actions. It is, however, beyond the scope of this paper to give a review of this
work. The interested reader can consult review papers such as [4].

In recent years, much work has gone into more detailed visual human mo-
tion analysis in three dimensions [1]. The main difficulty in this area is the high
number of degrees of freedom in the human body, which gives rise to high di-
mensional state spaces. To overcome this problem, many researchers reduce the
dimensionality of state space using manifold learning [5,6,7]. The basic idea is
to learn a manifold from motion capture data and then perform the motion
analysis on this manifold. It seems that most researchers taking this route fo-
cus on simple low-dimensional motions, such as walking [7,8,9,10], golf swings
[9,10], tennis playing [11] etc. In this context, end-effector tracking using inverse
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kinematics can be interpreted as a dimensionality reduction technique that is
based on domain specific knowledge about general human motion.

While kinematic skeleton models have been used a lot in motion analysis it
seems that inverse kinematics have been given little attention. The approach
closest to ours is that of Sminchisescu and Triggs [12] who use inverse kinemat-
ics to enumerate possible interpretations of the input, which results in a more
efficient sampling scheme for their particle filter. They, however, still perform
the motion analysis in full-pose space, whereas we work in end-effector space.
This provides a very efficient way of reducing the dimensionality of the state
space that still allows us to work with a large class of motions.

1.2 Organisation of the Paper

This paper is organised as follows. In the next two sections the theoretical back-
ground is presented. First an introduction to inverse kinematics is given in Sec. 2.
A brief introduction to particle filtering is then given in Sec. 3. In Sec. 4 we dis-
cuss two choices of the state space for the motion analysis system and in Sec. 5
we describe the measurement system used in our implementation. Preliminary
results and a discussion of the pros and cons of the method are presented in
Sec. 6 and the paper is concluded in Sec. 7.

2 Posing with Inverse Kinematics

Inverse kinematics is the problem of manipulating the pose of a skeleton in order
to achieve a desired pose disregarding inertia and forces. The problem can be
posed as a non-linear optimisation problem.

In the context of human modeling a skeleton is often modeled as a collection of
rigid bodies connected by rotational joints of 1–3 degrees of freedom such as the
one shown in Fig. 1. All joints are constrained in their rotation, as exemplified
by joint i in Fig. 1 with li and ui showing the limits of the angle θi. To compute
the position and orientation of a joint in space we perform a transformation
of the bone relative to its parent joint. The transformation consist of a rotation
and a translation corresponding to the shape and orientation of the joint relative
to its parent. These transformations are then nested to create chains of joints.
Each chain ends in an end-effector, which can be regarded as the handle for
controlling the chain. Thus, the full transformation of a joint from local space
to global space can be performed.

The problem can be formally stated as follows. Given the set of joint parame-
ters θ we can change the values of θ and gain explicit control over all joint angles.
This in turn controls the position and orientation of the end-effector a = F (θ).
This is commonly known as forward kinematics. Given a desired end-effector
goal position, g, one seeks the value of θ such that

θ = F−1(g) . (1)

This is known as inverse kinematics. Closed form solutions exist for models with
less than 7 degrees of freedom. However, the human body has a lot more than
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Fig. 1. An illustration of the kinematic model. End-effector positions are shown as
green dots, while the desired positions (goals) are shown as red dots.

7 degrees of freedom and has a large degree of interdependency between joints.
Thus, it makes sense to solve the problem globally for the entire skeleton. High
performance implies the need for iterative numerical methods. By posing the
problem as a constrained least-squares fitting problem we are given a number of
possible methods to solve the problem. Given a skeleton containing K kinematic
chains, each with exactly one end-effector, we agglomerate the K end-effector
functions into one function

a =
[
aT

1 . . .aT
K

]T =
[
F 1(θ)T . . .F K(θ)T

]T = F (θ) , (2)

where aj is the world coordinate position of the jth end-effector and F j(θ) is
the end-effector function corresponding to the jth kinematic chain. Using the
agglomerated end-effector function, we create the objective function

f(θ) = (g − F (θ))T (g − F (θ)) , (3)

where g =
[
gT

1 . . . gT
K

]T is the agglomerated vector of end-effector goals. The
optimisation problem is then

θ∗ = arg min
θ

f(θ) s.t. l ≤ θ ≤ u . (4)

Here l is a vector containing the minimum joint limits and u is a vector of the
maximum joints limits. For a more thorough description of the inverse kine-
matics problem and the constraint model see [13,3]. Any constrained non-linear
optimisation method may be used to solve the problem. In this paper we use a
simple, yet effective, gradient projection method with line search [14]. To com-
pute the gradient we need the Jacobian matrix of f(θ) denoted J . For rotational
joints this can be easily computed. For each chain, the Jacobian matrix contains
a 3 × 1 entry for each rotational degree of freedom. This entry is computed as
the cross product of the rotational axis and the vector from the joint to the
end-effector as shown in Fig. 2. Given this Jacobian matrix the gradient can be
computed as (g − a)JT . A more thorough description of the calculation of the
Jacobian can be found in [15].
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Fig. 2. Finding the rotational derivative of a joint. The derivative is found as the cross
product of the rotational axis (red) and the vector from joint to end-effector (green)
the resulting tangent vector is shown in blue.

3 Bayesian Filtering

Bayesian filtering is concerned with estimating the unobserved state of a system
from observations. In terms of human motion analysis, it is concerned with
estimating a sequence of human poses given a sequence of images. This section
provides a brief overview of the topic. For more details, the interested reader
should consult papers such as [2] and the references therein.

In Bayesian filtering it is assumed that the observation It at time t is solely
governed by a hidden variable st. The distribution of this variable is in turn
assumed to form a Markov chain, such that

p(s1:T , I1:T ) = p(s1)p(I1|s1)
T−1∏
t=1

p(st+1|st)p(It+1|st+1) . (5)

Here s1:T = {s1, . . . , sT } denotes a sequence of state variables and likewise for
I1:T .

The objective of estimating the current state given all observations is ex-
pressed as estimating the filtering distribution p(st|I1:t). This can be estimated
recursively as [2]

p(st|I1:t) ∝
∫

p(st−1|I1:t−1)p(st|st−1)p(It|st)dst−1 . (6)

Unfortunately, this integral can only be computed exactly in simple cases. For
instance, if the state is finite valued the corresponding algorithm is called Baum-
Welsh filtering [16] and if the model is linear and Gaussian, it can be computed
by the Kalman filter [17]. In more general cases approximations are necessary. In
recent years the particle filter [2] has seen growing popularity. It represents the
filtering distribution as a set of weighted samples, which allows for multi-modal
distributions and non-linear processes.

In general the filtering objective is to estimate moments of the filtering distri-
bution instead of estimating the distribution itself. In particle filtering the basic
idea is to draw samples, also called particles, from the distribution and estimate
the moments using these, i.e.∫

h(st)p(st|I1:t)dst ≈
1
N

N∑
j=1

h(s(j)
t ) , (7)
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where s
(j)
t are the samples, and h(·) is any function of interest. In practice,

we cannot draw samples from the filtering distribution as it is unknown. We
therefore draw samples from an instrumental distribution q(st|It, st−1). These
samples are then weighted such that the weighted sum of the samples provides
an unbiased estimate of the moments. It can be proved [2] that these weights
can be recursively updated as

ω
(j)
t ∝ ω

(j)
t−1 ·

p(It|s(j)
t )p(s(j)

t |s(j)
t−1)

q(s(j)
t |It, s

(j)
t−1)

. (8)

Most often the instrumental distribution is chosen to be the predictive distri-
bution p(st|st−1) as this simplifies the weight update. The resulting algorithm
is known as the Bootstrap filter, which we are employing in this paper. This
algorithm performs the following iterative steps for all particles

– Draw new samples s
(j)
t from p(st|s(j)

t−1);
– Compute normalised weights ω

(j)
t ∝ ω

(j)
t−1p(It|s(j)

t ) .

From a practical point of view this approach is not numerically stable as all but
one of the weights tends towards zero. To overcome this issue it is common to
only keep samples with large weights, which is done by resampling the samples.
In the Bootstrap filter a sample is kept in the next iteration with a probability
equal to its weight. This can result in the same sample appearing several times
after resampling.

To model the dynamics of the state process it is necessary to include either
second order information or velocity. This can be done by either extending the
state with a velocity vector or by changing the state distribution from a first to a
second order Markov chain. The latter approach keeps the dimensionality of the
state space at a minimum allowing for a computationally efficient filter, while
the former approach allow us to estimate velocities. Since this is not needed
in the current application we choose the latter approach. This corresponds to
drawing new samples from p(st|s(j)

t−1, s
(j)
t−2) instead of p(st|s(j)

t−1), while the weight
update remains unchanged.

Although the particle filter in general is able to cope with multi-modal distri-
butions and non-linear state changes it is not without flaws. Unless very good
predictive models are available the filter generally needs O(ND) samples to reli-
ably estimate the moments [2], where D is the dimensionality of the state space.

4 Human Motion Analysis

As mentioned in the introduction, we wish to infer the full pose of the human in
the scene from the image sequence. To simplify matters, we will restrict ourselves
to working on the upper body, i.e. torso, head and hands. We will also assume
known limb-sizes. This effectively reduces the full-pose space to being the space
of joint angles. The most straight-forward choice of state space is then the space
of angles, which will be discussed in Sec. 4.1. An alternative low dimensional
state space will be discussed in Sec. 4.2.
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4.1 Full-Pose Motion Analysis

We have seen in Sec. 3 that Bayesian motion analysis can be performed using a
particle filter. The obvious way of realising such a filter is to perform the filtering
in the space of all poses θ. This only requires that we provide a predictive
distribution p(θt|θt−1, θt−2) and a likelihood function p(It|θt).

The likelihood function will be described in detail in Sec. 5, so here we focus
on prediction. This can simply be performed by extrapolating the two previous
states and adding noise. In more detail we define

p(θt|θt−1, θt−2) = N (θt|θt−1 + Δt−1, Σ) , (9)

where Δt−1 = θt−1 − θt−2 represents the current displacement and Σ is the
covariance matrix of the prediction noise. In absence of additional knowledge
about the motion, we choose the least committed model and define Σ = σ2I,
with σ being a parameter and I being the identity matrix.

This simple setup provides a full system for Bayesian motion analysis. The
problem with this approach is the high dimensionality of the state space. In
this paper we restrict ourselves to studying an upper body model that has 47
degrees of freedom. Since the necessary number of particles grows exponentially
with the dimensionality of the state space, we cannot expect to reliably use a
particle filter in this state space. We therefore seek a more low dimensional state
space with a similar amount of expressive power.

4.2 End-Effector Motion Analysis

As an alternative to the full-pose state space, we propose to use inverse kinemat-
ics to reduce the dimensionality of the state space. This is essentially done by
performing the tracking in end-effector space. Here we define the end-effectors
as the head and the hands. The end-effector space is thus the three dimensional
positions of the three end-effectors, i.e. R9. The strategy is then to use inverse
kinematics to infer the full pose. Once the full pose has been infered it can be
measured just like the system working in full-pose space (see Sec. 5). This allows
us to compare results from both systems.

In more details we define xhead, xhand0 and xhand1 as the three dimensional
positions of the end-effectors. To simplify matters, we will assume that the hands
are conditionally independent given the position of the head. That is,

p(xhead, xhand0 , xhand1) = p(xhead)p(xhand0 |xhead)p(xhand1 |xhead) . (10)

This simply means we represent the hands relative to the position of the head.
Thus we define the state as s = (xhead, xhand0 − xhead, xhand1 − xhead). This
factorisation has the consequence that we can treat the end-effectors separately
in the filtering.

To be able to make measurements we need to be able to compute p(It|st). As
described in Sec. 2 we can compute the full pose θt from the state st. This allows
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us to perform the measurement in full-pose space rather than simply measuring
the position of the head and the hands. So we define p(It|st) ≡ p(It|θt).

The prediction can be performed much like the full-pose system (9). This
boils down to linear extrapolation of the end-effectors followed by addition of
Gaussian noise. In more detail

p(st|st−1, st−2) = N
(
st|st−1 + Δt−1, σ

2I
)

, (11)

where Δt−1 = st−1 − st−2 represents the current displacement.

5 Visual Measurements

In this section we present a method for computing the likelihood of a full pose, i.e.
p(It|θt). To avoid notational clutter we will drop the t subscript in the following.

The basic idea is to assume that the individual limbs are independent, i.e.

p(θ) =
N∏

n=1

p(θ(n)) and p(θ|I) =
N∏

n=1

p(θ(n)|I) , (12)

where θ(n) are the parameters of the nth limb. From this assumption we see that

p(I|θ) =
p(I)p(θ|I)

p(θ)
(13)

= p(I)−(N−1)
N∏

n=1

p(I)p(θ(n)|I)
p(θ(n))

(14)

∝
N∏

n=1

p(I|θ(n)) . (15)

That is, we only need to be able to evaluate the likelihood p(I|θ(n)) of individual
limbs.

The basic assumption in the measurement model is that limbs can be treated
independently. However, if one limb occludes another this assumption no longer
holds. In this paper we do not attempt to model this situation as we are con-
cerned with the choice of state space rather than the visual measurements.

5.1 Modeling the Likelihood of a Limb

We use a simple Markov random field (MRF) model to describe the appearance
of a limb, in which the limb appearance statistics is described by histograms
of a set of descriptive features capturing texture and colour information. The
likelihood function p(I|θ(n)) thus takes the form of a Gibbs distribution with an
energy functional consisting of terms for texture, colour and background. Each
of these are considered independent and we thus define the likelihood as

− log p(I|θ(n)) = αT d2
T (HTm , HT |θ(n)) + αCd2

C(HCm , HC |θ(n))

+ αBd2
B(HBm , HB|θ(n)) + constant ,

(16)
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where d2
T (HTm , HT |θ(n)) is the distance between a texture model HTm and the

observed texture HT . d2
C(·) and d2

B(·) are the similar counterparts of the colour
and background models. The α parameters control the relative importance of
the individual terms.

The texture and colour models are based on the same principle, which boils
down to computing a normalised histogram of a descriptive feature within the
limb and comparing that with a normalised model histogram. When construct-
ing these histograms we use a Gaussian aperture to weigh the individual pixel
contributions. This aperture will be described in the next section. When com-
paring the histograms we are using the earth mover’s distance [18], which takes
into account small perturbations and shifts of the histograms.

The background model is based on a simple thresholding of the absolute
difference between a background image and the current image. This binary image
B is then compared to a simple rendering R of the pose. The rendered pose is
created by thresholding the Gaussian apertures used in the histogram creation.
We thus define d2

B(HBm , HB|θ(n)) as the number of pixels where the two binary
images do not agree.

The final objective of tracking is to provide an estimate of the current pose.
When using Bayesian filtering, one such estimate is the maximum a posterior
solution (MAP), which corresponds to finding the maximum of the filtering
distribution. With our specific choice of MRF measurement model, the MAP
solution will correspond to minimising the energy functional (16) with respect
to the pose. Hence, the objective is to find the pose for which the earth mover’s
distance between the model histograms and the actual observation histograms
is minimised.

5.2 Gaussian Limb Aperture

In the kinematic model each limb correspond to a line segment as was illustrated
in Fig. 1. Hence, in order to create texture and colour histograms we need to
define a spatial extend of each limb. This is done by forming a Gaussian aperture
around each limb line segment. This aperture is used to weight individual pixel
contributions in the histograms.

To compute the aperture, the line segment is projected onto the image plane
and its mean point μn is computed. From the orientation vector v1 along the
projected line segment and its perpendicular counter-part v2 a covariance matrix

Σn = λ1v1v
T
1 + λ2v2v

T
2 (17)

is formed. The Gaussian aperture can then be defined as

Ln(x|θ(n)) = exp
(
−1

2
(x − μn)T Σ−1

n (x − μn)
)

. (18)

The first eigenvalue λ1 is chosen such that 2.5
√

λ1 = d/2, where d is the length
of the projected line segment. The second eigenvalue is computed as λ2 = wnλ1,
where wn controls the width of the nth limb. The entire process is illustrated in
Fig. 3.
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(a) (b) (c)

Fig. 3. An illustration of the Gaussian apertures. (a) The kinematic skeleton with one
high-lighted limb. (b) The direction of the limb is computed and a Gaussian aperture
stretching in this direction is formed. (c) All Gaussian apertures of the same pose.
Notice that the apertures of different limbs can have different widths.

5.3 Texture and Colour Features

In each pixel we compute both colour and texture features. Specifically, we com-
pute colour saturations and gradient orientations. The colour saturation is com-
puted as the S-channel of the HSV representation of the image. Each pixel entry
in the histograms are weighted with the value of the Gaussian limb aperture in
the pixel. In more detail, we collect the colour saturation histogram as

HC
k (C{I}|θ(n)) =

M∑
x=1

Ln(x|θ(n))1Δk
[C{I}(x)], k = 1, . . . , K , (19)

where k is the index of the histogram bin, 1Δk
is the indicator function of the

bin interval Δk and C{I} is the colour saturation of the image I.
The texture model is computed in much the same manner, except the gra-

dient orientations are also weighted with the gradient lengths. Specifically, the
histogram is computed as

HT
k (ψ{I}|θ(n)) =

M∑
x=1

β(x)Ln(x|θ(n))1Δk
[ψ{I}(x)], k = 1, . . . , K , (20)

where β is the gradient length and ψ is its orientation. To make the features
independent of the orientation of the limb, we compute the gradient in the
principal coordinate system of the Gaussian aperture.

To control the relative importance of the features we compute the parameters
αT and αC in an ad-hoc manner as

αT =
H(HCm)

H(HTm) + H(HCm)
and αC =

H(HTm)
H(HTm) + H(HCm)

, (21)

where H(·) is the entropy of a histogram. The intuition behind this choice is that
more peaked model histograms should have a greater influence on the likelihood.
The importance αB of the background model has been selected manually.

The training of the model requires collecting texture and colour histograms
for each limb. This is done by letting the human in front of the camera take
a known pose, which allows us to collect the histograms from the first frame.
The known starting pose also provides us with an initial state for the motion
analysis.
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6 Discussion

In the previous sections two different motion analysis systems have been de-
scribed: one working on full-pose space and one working in end-effector space.
Both use the same measurement system and their prediction systems are as
similar as possible. This enables a comparison of the two trackers. It should be
noted that the visual measurements are by far the computationally most expen-
sive part of the tracking. Since each particle requires one visual measurement,
the number of particles is proportional to the final computational time.

Fig. 4 shows selected frames from an image sequence with tracking results
superimposed.1 The result is computed as the mean of all particles, as this seems
to stabilise the estimate when only few particles are used. First, we tracked the
motion in full-pose space using 100 particles. Here the system quickly looses track
of one arm and produces a large amount of “jitter” in the motion estimation.
The computations took approximately five minutes on standard PC hardware.
We then increased the number of particles to 5000, which resulted in a successful
tracking with only little jitter. Unfortunately, this required more than 10 hours
of computation time. As a final experiment we ran the tracking in end-effector
space using 25 particles. The result of this experiment is a successful tracking
that is comparable in quality with the previous experiment, but with somewhat
more jitter. This jitter is a direct consequence of the small amount of particles.
If this is increased the jittering decreases. The computations took approximately
five minutes.

The results show that tracking in end-effector space is possible and that large
speed-ups can be achieved using this approach. When creating a tracker for use
in a physiotherapeutic rehabilitation programme it is essential to have real-time
performance in order to provide feedback to the patient. Tracking in end-effector
space makes this requirement more plausible compared to tracking in full-pose
space.

Tracking in end-effector space does provide speed-ups while it still allows for
a large set of motions. The resulting tracker is thus more versatile than low
dimensional trackers that are tuned towards very specific motion types, such as
walking, golf or tennis playing and so forth. However, the tracking will most
often be less precise when it is performed in end-effector space. When infering
the full pose from the end-effectors, the inverse kinematics solver finds one out
of several minima. Hence, a particle can get a low weight even if it is in the
correct part of end-effector space due to limitations of the inverse kinematics
solver. This problem will result in a loss of accuracy.

The choice of state space basically boils down to a choice between accuracy, ver-
satility and speed. Tracking in full-pose space allows for a high accuracy and ver-
satility, but sacrifices speed. By learning manifolds in full-pose space it is possible
to track on these. This allows for high accuracy and speed, but sacrifices versatility
as the manifolds can only describe single types of motion. Tracking in end-effector
space allows for great versatility and speed, but comes with a loss of accuracy.

1 The sequences are available on-line at http://humim.org/emmcvpr2009/
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Full-Pose Full-Pose End-Effector
100 particles 5000 particles 25 particles

Fig. 4. Images from tracking sessions. The first column corresponds to tracking using
100 particles in full-pose space and the second column corresponds to 5000 particles
in the same space. The third column corresponds to 25 particles in end-effector space.
The rows correspond to the 32nd, 94th, 126th and the 196th frame of the sequence.

7 Conclusion and Future Work

In this paper we presented a low dimensional state space — the end-effector
space — suitable for fast and versatile human motion estimation. Experiments
with tracking in this space shows that good results can be achieved using only
few particles. Due to the use of an inverse kinematics solver the approach can be
expected to have less accuracy than when working in full-pose space, but makes
real-time tracking of humans feasible.
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In the immediate future we plan on improving the measurement model such
that it can handle self-occlusions. The work of Sidenbladh and Black [19] and
Roth et. al. [20] seems like good sources of inspiration. Also, a more detailed ex-
perimental validation will be performed. Specifically, we will validate our method
on the ground truth data set of Knossow et.al. [21] and compare with their
method, which should allow us to quantitatively evaluate the accuracy of our
approach.
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Abstract. Medical image segmentation appears to be governed by the
global intensity level and should be robust to local intensity fluctua-
tion. We develop an efficient spectral graph method which seeks the best
segmentation on a stack of gamma transformed versions of the original
image. Each gamma image produces two types of grouping cues oper-
ating at different ranges: Short-range attraction pulls pixels towards re-
gion centers, while long-range repulsion pushes pixels away from region
boundaries. With rough pixel correspondence between gamma images,
we obtain an aligned cue stack for the original image. Our experimental
results demonstrate that cutting across the entire gamma stack delivers
more accurate segmentations than commonly used watershed algorithms.

1 Introduction

Hair cells of the inner ear transduce mechanical signals into electrical signals [1].
Each hair bundle is composed of tens of stereocilia organized in an organ-pipe-
like formation of increasing height (Fig. 1). Automatic segmentation of these
stereocilia in their fluorescent images is vital for medical research on hearing.

Segmentation of such medical images often appears to be governed by global
intensity levels, yet imaging noise and local intensity fluctuation presents con-
siderable challenges. Two scenarios are illustrated in Fig. 2.

Morphological methods and energy-driven methods are widely used in medical
image segmentation. While the former prescribes a local computational proce-
dure, e.g. watershed algorithms [2,3], the latter involves the minimization of a
global energy function formulated based on either regions [4,5] or contours, e.g.
active contours [6] and level set methods [7].

While morphological methods are computationally efficient but prone to local
noise, energy-driven approaches are computationally costly and critically depen-
dent on initial seed solutions. Various techniques have been proposed to combine
their benefits, e.g. watersnakes [8] and level sets for watershed [3].

Graph cuts methods have also been employed to overcome the limitations of
watershed algorithms, which are essentially local segmentation methods. These
include segmenting a single connected component with isoperimetric graph par-
titioning [9] and thin structures with augmented banded graph cuts [10].

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 249–260, 2009.
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a: 3D view of hair cells b: 2D fluorescent slices & their segmentations

Fig. 1. Stereocilia segmentation. a) Hair cells are composed of tens of stereocilia or-
ganized in an organ-pipe-like formation of increasing height.b) Fluorescent images
(Row 1) and their segmentations (our results, Row 2) at multiple heights show the
cross sections (e.g. A,B,C in a) of individual stereocilia (marked by colored dots).

We present a graph cuts approach that is robust to local intensity fluctuation
and can extract several regions of interest without any user initialization. We
encode the impact of high and low intensities, which we will refer to as peaks and
valleys, in pairwise grouping cues that encourage peak regions to stay together
and valley regions to divide apart. It is the job of global integration to decide
where region boundaries should be.

Our key idea is that regions of an image appear stable with respect to the
gamma transformation of the image, while cues in each gamma transformed
version reflect an ever changing balance between peaks and valleys, as peaks
shrink and valleys expand with an increasing gamma. The desired segmentation
must be the global consensus of local cues from a stack of these gamma images.

Illustrated in Fig. 3, given an image I, we first create several gamma trans-
formed versions: In = Iγn . For each In, we define two complementary local
grouping cues: a short-range attraction between nearby pixels with similar inten-
sities and a long-range repulsion between distant pixels with similar intensities
but separated by valleys. The former occurs most likely for pixels belonging to
the same stereocilium and the latter for pixels belonging to adjacent stereocilia.
Large repulsion demands single boundaries to occur somewhere between two
distant pixels, whereas large attraction discourages the formation of boundaries
between two nearby pixels, preventing the oversegmentation problems in Fig.
2. We establish rough local alignment between gamma images and project cues
derived from each In to the original image I through pixel correspondences. We
seek the optimal graph cuts across the cue stack of attraction and repulsion,
producing segmentation Xk for the original image I at a granularity determined
by the number of eigenvectors k.

We will address the integration of multiple cues in Section 2, formulate our
pairwise grouping cues for stereocillia images in Section 3, present experimental
results in Section 4, and conclude the paper in Section 5.
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Fig. 2. Local intensity fluctuation presents considerable challenges in medical image
segmentation. A) Fluctuation at boundaries weakens the separation between two in-
tensity peaks. B) Fluctuation inside regions tends to break up an otherwise well defined
intensity peak. Both cases cause oversegmentations in watershed approaches. The solid
black line plots the 1D intensity profile along the line connecting the two pixels in the
inset, which shows the image in a labeled window on the left. The dotted green lines
mark the desired boundaries between intensity peaks.

In RnAn An →1 Xk

Cn

Rn →1

correspondence

gamma stack cue stack projected cue stack

coarse to fine 

segmentation

input image 

Fig. 3. Method Overview. Given an image, we build a stack of its gamma transformed
versions, i.e., In = Iγn . For each gamma image In, we derive pairwise attraction An and
repulsion Rn between pixels. We compute pixel correspondences Cn between adjacent
gamma layers, and project cues at each layer to the reference layer I1: An→1 and Rn→1.
Cutting across the aligned cue stack produces segmentation Xk that is invariant to
gamma transformations, k indicating the granularity of segmentation.
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2 Constrained Cuts with Attraction and Repulsion

We formulate the segmentation in a spectral graph-theoretic framework. We
collect pairwise cues and seek the solution that optimizes a global criterion. We
consider pairwise cues of three kinds: attraction A, repulsion R, and constraints
U . These cues have been studied separately in [11,12,13]. We combine them for
the first time in a single framework.

2.1 Graph Representation

In spectral graph methods, an image I is represented by a weighted graph
G(V, E, W ), where V denotes the set of nodes, E the set of edges connecting
the nodes, and W the weights attached to edges. A pixel then becomes a node
in the graph, each pairwise grouping cue becomes a weight between two nodes,
and image segmentation becomes a graph node partitioning problem: We seek k
partitions of node set V such that V = ∪k

l=1Vl and Vi ∩ Vj = ∅, ∀i �= j.

2.2 Criterion with Attraction and Repulsion

A good segmentation should have strong within-group attraction and between-
group repulsion, and weak between-group attraction and within-group repulsion.

Characterizing this intuition with linkratio allows us to achieve both objectives
simultaneously [14]. linkratio L of two node sets (P, Q) measures the fraction of
connections from P to Q among all the connections that P has:

linkratio L(P, Q; W ) =
C(P, Q; W )
C(P, V ; W )

(1)

connections C(P, Q; W ) =
∑

i∈P,j∈Q

W (i, j) (2)

In particular, we have L(P, P ; W )+L(P, V \P ; W ) = 1, i.e. maximizing a within-
group linkratio is equivalent to minimizing its between-group linkratio.

We seek to maximize linkratios from within-group attraction and between-
group repulsion, combined linearly according to their total degree of connections:

max ε =
k∑

l=1

α L(Vl, Vl; A) + (1 − α)L(Vl, V \Vl; R) (3)

where α =
C(Vl, V ; A)

C(Vl, V ; A) + C(Vl, V ; R)
(4)

α is a number between 0 and 1, indicating the total degree of attraction. 1 − α
indicates the total degree of repulsion.
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2.3 Partial Grouping Constraints

We represent the partitioning by partition indicator X = [X1, . . . , Xk], where
Xl is an N × 1 binary indicator for partition Vl, Xl(i) = 1 if pixel i ∈ Vl, and 0
otherwise, l = 1, . . . , k. N is the number of pixels in the image.

We consider partial grouping constraints which require pixels a and b to belong
in the same region, i.e. X(a) = X(b). The collection of c such constraints can
be written as UT X = 0, where U is an N × c matrix, and each column of U has
only two non-zero numbers, +1 and −1.

2.4 Optimal Solution

Our criterion ε with pairwise attraction A and pairwise repulsion R, subject to
grouping constraints U can be written in a compact matrix form:

maximize ε(X) =
k∑

l=1

XT
l WXl

XT DXl
(5)

subject to X ∈ {0, 1}N×k, X1k = 1N (6)

UT X = 0 (7)
where W = A − R + DR (8)

D = DA + DR (9)

1n denotes the n × 1 vector of all 1’s. DW = Diag(W1N) is an N × N diagonal
matrix, and its diagonal contain the total degree of W connections for each node.

Relaxing the binary constraints, we can solve this optimization problem [11]
with the eigenvectors of HD−1WH , where H = I −D−1U(UT D−1U)−1UT . We
then discretize the eigenvectors to obtain the final segmentation [14].

3 Pairwise Grouping Cues from Image Intensities

The success of global integration depends on the local cues that feed into it. We
define a short-range attraction that pulls pixels towards region centers, a long-
range repulsion that pushes pixels away from region boundaries, and partial
grouping constraints that force peripheral background pixels to belong together.
With pixel correspondence between gamma images, we obtain a cue stack for
the original image.

3.1 Short-Range Attraction within Individual Peaks

Attraction A(i, j) between pixels i and j encodes local intensity similarity. The
straightforward definition

A(i, j) = e
− |Ii−Ij |2

2σ2
a (10)
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Fig. 4. Pairwise attraction and repulsion. a) Our attraction is adaptive to the local
intensity range within each neighborhood N (i), so that A(i′, j′) ≈ A(i, j), enhancing
the discrimination of two nearby similar peaks. b) Our repulsion is strongest for nearby
peaks and gets reduced as two pixels approach the inbetween valley: R(i, j′′) > R(i, j′).
mij is the minimal intensity level between pixels i and j.

requires fine parameter tuning and tends to merge nearby peaks of similar in-
tensities. We introduce a new definition that is asymmetrical between two pixels
and acts to pull pixels towards intensity peaks.

For pixels i and j, A(i, j) is inversely proportional to the the maximal intensity
difference between i and any pixel on the line ij, with sensitivity regulated by
local intensity range δi in i’s neighborhood N (i):

A(i, j) = e
−maxt∈line(i,j) |Ii−It|2

2δ2
i
·σ2

a (11)
δi = max

t∈N (i)
It − min

t∈N (i)
It (12)

We choose N (i) to be slightly larger than a stereocilium so that δi is estimated
between the peak and surrounding valleys (Fig. 4a). With adaptive scaling by
local intensity range δi, A(i, j) effectively enhances attraction within weak peaks
and allows a single parameter setting for σa to work on a variety of images.

3.2 Long-Range Repulsion between Peaks

Adjacent peaks provide a strong cue as to where the boundaries should lie.
This cue is encoded by long-range repulsion. Intuitively, two pixels of similar
intensity should belong to different peaks if they are separated by a valley. We
define repulsion R(i, j) between pixels i and j to be proportional to the difference
with the minimal intensity mij encountered on the line ij:

R(i, j) = 1 − e−
min(|Ii−mij |,|Ij−mij |)

σr (13)
mij = min

t∈line(i,j)
It. (14)

The farther away the pixels are from the valley, the larger the intensity difference
with the minimum, and the larger the repulsion (Fig. 4b).



Robust Segmentation 255

3.3 Pixel Correspondence and Cue Projection

With each gamma transformation, while peaks remain peaks and valleys remain
valleys, their regions of influence change: Peaks shrink and valleys expand; pix-
els belonging to one peak region could become part of the background. Local
grouping cues derived from gamma images consequently do not completely agree
with each other. We establish rough pixel correspondence and project cues on
individual gamma image back to the original image.

Let An(i, j) be the affinity (i.e. attraction) between pixels i and j at gamma
image In. We follow the approach in [15] by computing the corresponding pixel
location Cn(i) as the center of mass of i’s affinity field and composing them
recursively to obtained the cue stack for the original image I = I1:

An→1(i, j) = An(Cn(i), Cn(j)) (15)
Rn→1(i, j) = Rn(Cn(i), Cn(j)) (16)

Cn(i) =
∑

j∈N(i)

An(i, j)Cn−1(i) (17)

where C1(i) is pixel i’s location in the original image I.
Cutting across the cue stack is equivalent to cutting a single graph with the

following total attraction A and total repulsion R:

A =
∑

n

D−1
A,nAn→1 + An→1D

−1
A,n (18)

R =
∑

n

D−1
R,nRn→1 + Rn→1D

−1
R,n. (19)

where DA,n and DR,n are the degree matrices for An and Rn respectively.

3.4 Partial Grouping Constraints

We obtain a crude background mask by intensity thresholding on the original
image. This mask is translated into our graph cuts framework as partial grouping
constraints where two pixels in the peripheral background must belong together
in the final segmentation. We form the constraint matrix U from the collections
of these pairwise grouping constraints.

3.5 Algorithm

Given image I, we compute a segmentation using the following procedure:

1. Build a gamma image stack where In = Iγn and I1 = I;
2. For each gamma image In,

(2.1) compute attraction An and repulsion Rn,
(2.2) compute pixel correspondence Cn,
(2.3) compute An→1, Rn→1 by projecting An, Rn to the original image I;



256 E. Bernardis and S.X. Yu

3. Compute total attraction A and repulsion R by collapsing the stack;
4. Form partial grouping constraints U from a background mask;
5. Solve the eigenvectors of weights W = A − R + DR with constraints U ;
6. Obtain a discrete segmentation from the eigenvectors.

4 Experiments

We implement our algorithm in MATLAB. The same set of parameters are used
for all our images (∼300×300): γ = {1, 2, 4}, σa = 0.3, σr = 2σa, neighbourhood
radius 8 and 16 for attraction and repulsion respectively. We choose the number
of eigenvectors k according to the expected number of stereocilia in the image.

γ0 γ1 γ2 γ0,γ1,γ2

Fig. 5. Better segmentation is obtained by cutting across the gamma stack instead of
a single gamma image. Left shows 3 individual gamma images and their segmentations
in 4 labeled windows. Right shows the segmentations based on all 3 γ images.

Fig. 5 shows that better segmentation is achieved by integrating cues over
the entire gamma stack instead of an individual gamma image. Single peaks
originally faint or without clear boundaries are enhanced in gamma transformed
images. However, with an increasing gamma, valleys are widened and boundaries
become less precise. Cutting across the gamma image stack allows segmenting
out weak peaks while retaining precise boundaries throughout the image.

Fig. 6 shows our coarse to fine segmentations. When the number of eigen-
vectors k is small, our segmentations resemble the watershed results. However,
our segmentations are not disrupted by local intensity fluctuation and do not
break up salient peaks. When k increases, our segmentions locate each peak with
tighter delineation. Our method successfully segments out weak peaks without
utilizing the near regularity of the spatial layout of stereocilia.

Fig. 7 shows additional results on images of poor imaging quality.
We measure the goodness of segmentation by scoring it with respect to the

ground-truth center locations of stereocilia. Let disk(i) denote a disk of some
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a: image b: watershed c: k = 80 d: k = 100 e: k = 120 f: cells only

Fig. 6. Coarse-to-fine stereocilia segmentations. For each image (Column a), we show
watershed segmentations (Column b) and our results (Columns c-e) as the number
of eigenvectors k increases. Extracted stereocilia (Column f) show that our method is
robust to local intensity fluctuation, can discover weak peaks and precise boundaries.

Fig. 7. Our method works equally well on noisy and low-contrast images. k = 40. Rows
1-3 show images, watershed results and our results respectively.
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a: watershed b: our method at k = 120

c: distribution of scores

Fig. 8. Segmentation scores with respect to ground-truth stereocilia centers. These
center locations are marked by colored dots. Each number indicates the score of a
particular segment that contains a stereocilium center. a and b show a score example
for watershed and our method. c shows the distribution of scores from all the images.
Our method has a higher score than watershed overall.

fixed radius throughout the haircell bundles, located at stereocilium center i.
Let segment(i) denote the segment of maximal overlap with disk(i). Our score
is a number between 0 and 1, measuring the extent of overlap between disk(i)
and segment(i):

score(i) =
disk(i) ∩ segment(i)
disk(i) ∪ segment(i)

. (20)

The higher the score, the more precise the segmentation. As the number of
eigenvectors increases, our segmentation captures a more precise shape of indi-
vidual stereocilia. Fig. 8 shows with both image examples and statistics that our
method overall scores higher than watershed.
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Our method segments the background into multiple valley regions, which are
of little interest to medical researchers. By requiring the mean intensity in the
region center to be higher than the periphery, we get rid of valleys and automat-
ically extract the stereocilia, as shown in Fig. 6f.

5 Conclusions

The segmentation of medical images appears to be governed by the global inten-
sity level, yet local intensity fluctuation poses considerable challenges to both
local methods such as watershed and global methods such as level sets.

We develop a spectral graph-theoretic method which finds the best segmen-
tation on a stack of gamma transformed versions of the original image. Each
gamma image produces two kinds of local grouping cues: short-range intensity
similarity cues that pull pixels towards stereocilia centers, and long-range inten-
sity difference cues that push pixels away from stereocilia boundaries. We obtain
a cue stack for the original image using pixel correpondences between gamma
images. We then seek the optimal graph cuts across the aligned cue stack which
maximize within-group attraction and between-group repulsion. The near-global
optimal solution can be found efficiently using eigendecomposition.

Our method has only a few parameters and requires little tuning. We obtain
accurate and robust results on a variety of images with the same set of param-
eters, demonstrating the advantage of cutting across the entire gamma stack
instead of the original image or any gamma image alone, and achieving better
performance than watershed algorithms.

The segmentation issues we investigate in this paper are not restricted to
stereocilia images. Our approach of making a global decision based on two types
of local cues operating at different spatial ranges and from multiple gamma im-
ages provides a robust and efficient alternative to watershed or level set methods
in many medical image applications.
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Abstract. We show how to integrate the normal field of a surface in
the presence of discontinuities by three different ways. We obtain very
satisfactory 3D-reconstructions, from the point of view of the accuracy of
the reconstructions. As an important consequence, no prior segmentation
of the scene into parts without discontinuity is required anymore. Finally,
we test the three proposed methods of integration in the framework of
photometric stereo, a technique which aims at computing the normal
field of a scene surface from several images of this scene lighted under
different directions.

1 Introduction

Computing the 3D-shape of a surface from a collection of normals is not so
straightforward as it could appear, even in the case of a dense normal field i.e.,
when the normal to the surface is known at each pixel of an image. This classical
problem of 3D-reconstruction, which is usually called normal field integration,
has been solved using either the calculus of variations [1], direct integration [2] or
frequency-domain methods [3,4]. In a previous work [5], we improved the original
algorithm by Horn and Brooks [1] in two ways: we showed that the knowledge
of the height on the boundary, a knowledge which is usually not available, is not
required; we also showed how to take perspective into account. In the present
paper, we propose a novel improvement of this algorithm which is compatible
with the previous ones: we show how to deal with discontinuous surfaces, a situ-
ation which occurs in practice as soon as there are occlusions. This improvement
allows us to integrate the normal field on a whole dense normal field, without
need for prior segmentation into several parts without discontinuity.

In Section 2, we recall the basic equations of normal integration. In Section
3, Horn and Brooks’ algorithm and our previous improvements are presented.
In Section 4, three new methods of integration of a normal field are exhibited,
compared and tested on a normal field computed by photometric stereo from
real images. Section 5 summarizes the main contributions of the paper.

2 Basic Equations of Normal Integration

Suppose that, in each point Q = (x, y) in the image of a surface S, we know the
unit outgoing normal n(x, y) = [nX(x, y), nY (x, y), nZ(x, y)]t. Then, the function

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 261–273, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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n is a dense normal field. Integrating a normal field n consists in searching for
the shape S i.e., for three functions X , Y and Z such that the normal to S
at the point P = [X(x, y), Y (x, y), Z(x, y)]t conjugated with Q is n(x, y). Due to
the lack of space, no rigorous state-of-the-art on the integration of a normal field
is done (see e.g. [6,7,8]). Let us also cite [9], in which the problem of integrating
a sparse normal field is addressed.

Let us first recall the fundamental equations of normal integration. For the
sake of simplicity, we will omit the dependences in (x, y). Either for orthographic
or for perspective projection, it is easy to show that X and Y can be deduced
from Z. Under the assumption of orthographic projection, the depth Z can be
computed thanks to the following elementary PDE:

∇Z =
1
g

[p, q]t, (1)

where p = −nX/nZ and q = −nY /nZ , and g denotes the image magnification.
Thus, the problem of integrating a normal field is that of integrating the gradient
of Z. It has been shown in [5] that a strict analogy exists between the perspective
case and the orthographic case, provided that a change in the unknown is done:

Z = ln |Z|. (2)

The new unknown Z satisfies the following PDE, which is similar to (1):

∇Z = [r, s]t, (3)

with the following definitions of r and s:

r = − nX

xnX + y nY + f nZ
,

s = − nY

xnX + y nY + f nZ
,

(4)

where f denotes the focal length of the camera. Here again, the problem of
integrating a normal field is that of integrating the gradient of Z.

In order to ensure that the normal field is integrable i.e., that Eqs. (1) or (3)
can be integrated whatever the integration path, it is necessary and sufficient
that p and q (in the orthographic case) or r and s (in the perspective case) satisfy
the Schwartz equations ∂p/∂y = ∂q/∂x or ∂r/∂y = ∂s/∂x. In practice, a normal
field is never rigorously integrable. There are two classical ways of dealing with
this problem. The first one consists in using several integration paths, and then
to mean the different integrals [2]. The second solution consists in considering
Eqs. (1) or (3) as optimization problems [1]. Apart from their slowness, these
last methods of integration have two main advantages: on the one hand, they are
more robust to noise; on the other hand, in the case where the Schwartz equation
is not satisfied, they provide however an acceptable shape. In the following of the
paper, we will focus on this second solution. It is noteworthy that considering
the orthographic case is enough, since Eqs. (1) and (3) are similar. The only
difference is that Eq. (3) requires the knowledge of the focal distance f , as well
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as the location of the principal point, because these parameters occur in the
definitions (4) of r and s: explicitly for f ; implicitly for the location of the
principal point, since the coordinates x and y of a pixel depend on it.

3 Integration Using Quadratic Regularization

3.1 Continuous Formulation

For the sake of simplicity, let us suppose that g = 1. The resolution of Eq. (1)
using quadratic regularization amounts to minimizing the following functional:

Q(Z) =
∫∫

(x,y)∈Ω

‖∇Z(x, y) − v(x, y)‖2 dx dy, (5)

where Ω is the “domain of reconstruction”, ∇Z = [Zx, Zy]t stands for the gradi-
ent of Z, and v = [p, q]t is the “reduced normal field” i.e., the datum. Quadratic
regularization is known to work well in the case of smooth surfaces. A straight-
forward computation gives:

∇Q(Z) = −2 div (∇Z − v). (6)

It follows that the Euler-Lagrange equation associated to Q(Z) is:

div∇Z = divv. (7)

This is a Poisson equation, which is easy to solve, even analytically [10]. Nev-
ertheless, solving Eq. (7) is equivalent to searching for an extremum of Q(Z)
only if Z is constrained on the boundary ∂Ω of Ω. Otherwise, this equation has
to be complemented with the “natural boundary equation” at each point of the
boundary ∂Ω, which is here the Neumann boundary condition (∇Z−v) ·N = 0,
where the vector N is normal to ∂Ω in the image plane.

3.2 Improved Horn and Brooks’ Scheme

Horn and Brooks propose in [1] a resolution of Eq. (7) that comes from the
following approximation of the expression (5) of Q(Z):

E(Z) =
∑∑
(i,j)∈Ω′

[
Zi+1,j − Zi,j

δ
− pi+1,j + pi,j

2

]2
+
[

Zi,j+1 − Zi,j

δ
− qi,j+1 + qi,j

2

]2
.

(8)
In this expression, δ denotes the distance between neighbouring pixels, Ω′ the

set of pixels (i, j) ∈ Ω such that (i+1, j) ∈ Ω and (i, j+1) ∈ Ω, and Z the vector
[Zi,j ](i,j)∈Ω̊ , where Ω̊ = Ω\∂Ω is the set of pixels (i, j) ∈ Ω whose four nearest
neighbours are in Ω. The values Zi,j of the pixels lying on ∂Ω are not considered
as unknowns, since Horn and Brooks use a Dirichlet boundary condition. For
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the sake of simplicity, let us suppose that δ = 1. For a pixel (i, j) ∈ Ω̊, one gets
from the characterization ∇E = 0 of an extremum and from (8):

4 Zi,j − (Zi+1,j +Zi,j+1 +Zi−1,j +Zi,j−1)+
pi+1,j − pi−1,j + qi,j+1 − qi,j−1

2
= 0.

(9)
This equation is a discrete approximation of Eq. (7). Horn and Brooks solve Eq.
(9) using the following iteration [1]:

Zk+1
i,j =

Zk
i+1,j + Zk

i,j+1 + Zk
i−1,j + Zk

i,j−1

4
− pi+1,j − pi−1,j + qi,j+1 − qi,j−1

8
.

(10)
The initialization is not a cause for concern, since the functional Q(Z) is convex.
In our experiments, we use Z0 = 0.

In order to avoid the need for Z on the boundary, it suffices to consider that
all the values Zi,j , for (i, j) ∈ Ω, are unknowns. This implies that the equations
∂E/∂Zi,j = 0, for (i, j) ∈ ∂Ω, are not written under the form (9). For example,
if (i, j) ∈ Ω′ ∩ ∂Ω, then (10) has to be replaced with:

Zk+1
i,j =

Zk
i+1,j + Zk

i,j+1

2
− pi+1,j + pi,j + qi,j+1 + qi,j

4
. (11)

In fact, equations such as (11) are nothing else than a discrete version of the
natural boundary condition. This improvement of Horn and Brooks’ scheme [5]
is denoted ISL2 .

3.3 Limits of the Improved Horn and Brooks’ Scheme

Some of the computer vision techniques for 3D-reconstruction, as shape-from-
shading, photometric stereo or shape-from-texture, first compute a normal field,
and then need to integrate this normal field. Among them, photometric stereo
is particularly interesting, since the computation of the normals is well-posed as
soon as at least three images, taken using the same camera pose but different
lightings, are available. Therefore, photometric stereo, a technique which has
known a renewal in the last years [8,11,12], is well indicated to evaluate the
methods of integration.

In [5], ISL2 was tested on three photographs of a Beethoven’s bustle (see Fig.
1-left) which are available on the web1. Moreover, estimates of the three lightings
are provided as well. The computed shape is qualitatively very good (see Fig.
1-right). Nevertheless, the goal of this paper is to propose some improvements
for scheme ISL2 . In fact, it is well-known that quadratic regularization is not
well adapted to discontinuities. Let us now test ISL2 on the reduced normal
field vb of the benchmark surface Sb shown in Fig.2-left. The 3D-reconstruction
which is obtained after 100 × 128 iterations of ISL2 is qualitatively very bad
(see Fig. 2-right). Nevertheless, we will see further the usefulness of this final

1 http://www.ece.ncsu.edu/imaging/Archives/ImageDataBase/Industrial/
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Fig. 1. Left: one of the three photographs of a Beethoven’s bustle lighted under differ-
ent directions. Right: 3D-reconstruction obtained from these three photographs using
photometric stereo at each pixel on the bustle, then integrating the computed normal
field using ISL2 (the depth Z of the background is arbitrarily put to 0).
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Fig. 2. Left: benchmark surface Sb with discontinuous depth Zb and discontinuous
reduced normal field vb.Right: 3D-reconstruction obtained using ISL2 : ‖ΔZ‖2 = 2.48.
The integration is performed on the whole domain [1, 128]×[1, 128]. This depth function
is denoted ZL2 .

configuration ZL2 . More precisely, let us introduce, as a quantitative evaluation
of the reconstructions, the minimal root mean square error ‖ΔZ‖2 between a
3D-reconstruction and the ground truth i.e., the root mean square error which
corresponds to their best matching. Between ZL2 and the ground truth Zb of Sb,
we find ‖ΔZ‖2 = 2.48. In the following of the paper, the use of other regularizers
will allow us to reach much lower values for ‖ΔZ‖2.

4 Integration Using Non-quadratic Regularization

4.1 Introduction

By analogy with regularizationmethods in image processing, it is tempting to con-
sider other regularization choices. In image restoration, quadratic regularization
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is indeed famous for its ease of use, but notorious for its lack of ability to re-
cover sharp edges. It has been proposed to use regularization functions φ which
both smooth the data in homogeneous regions but keep sharp edges by avoiding
smoothing in non-homogeneous regions (see e.g. [13] and references therein for
a detailed review of such methods in image restoration).

Let us now consider the following functional:

Fφ(Z) =
∫∫

(x,y)∈Ω

φ(‖∇Z(x, y) − v(x, y)‖) dx dy. (12)

Of course, this general form includes the quadratic regularization case (5) when
φ(s) = s2.

A straightforward computation gives, from (12):

∇Fφ(Z) = −div
(

φ′(‖∇Z − v‖)
‖∇Z − v‖ (∇Z − v)

)
. (13)

The optimality condition (Euler-Lagrange equation) ∇Fφ(Z) = 0 can then be
used to compute a numerical solution, as explained in the following subsections.

4.2 Linear Growth Regularization

For the sake of clarity, we detail here a first example of non-quadratic regular-
ization. Let us consider the case of a linear growth functional [14], that is let us
choose φ(s) =

√
s2 + α2 in functional (12) which then reads:

L(Z) =
∫∫

(x,y)∈Ω

√
‖∇Z(x, y) − v(x, y)‖2 + α2 dx dy. (14)

Ideally, we would choose α = 0. For image restoration, α = 1 is a good choice
when the greylevel values are in [0, 255]. The gradient (13) of the functional in
this particular case becomes:

∇L(Z) = −div

(
∇Z − v√

‖∇Z − v‖2 + α2

)
. (15)

Therefore, the Euler-Lagrange equation associated with the functional L(Z) is:

div

(
∇Z√

‖∇Z − v‖2 + α2

)
= div

(
v√

‖∇Z − v‖2 + α2

)
, (16)

with Neumann boundary condition on ∂Ω. Eq. (16) is much less tractable than
Eq. (7). A way of computing its solution consists in using a semi-implicit scheme:
we implicit the linear part of the equation, but its non-linear parts remain ex-
plicit. This gives:

div

(
∇Zk+1√

‖∇Zk − v‖2 + α2

)
= div

(
v√

‖∇Zk − v‖2 + α2

)
. (17)
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Our first new scheme of integration, denoted ISL1 , is as follows for (i, j) ∈ Ω̊:

Zk+1
i,j =

1
2dk

i,j + dk
i−1,j + dk

i,j−1

[dk
i,j(Z

k
i+1,j + Zk

i,j+1) + dk
i−1,jZ

k
i−1,j + dk

i,j−1Z
k
i,j−1

−dk
i,j

pi,j + pi+1,j + qi,j + qi,j+1

2
+ dk

i−1,j
pi,j + pi−1,j

2
+ dk

i,j−1
qi,j + qi,j−1

2
],

(18)
where the factors dk

i,j denote the following discrete approximations of the de-
nominators of Eq. (17):

dk
i,j =

1√
(Zk

i+1,j − Zk
i,j −

pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j −

qi,j + pi,j+1

2
)2 + α2

.

(19)
For the same reasons as in the case of quadratic regularization, Z0 = 0 is used
as initial configuration, and Eq. (18) has to be modified for pixels (i, j) lying on
the boundary ∂Ω.

4.3 Non-convex Regularization

Let us now consider functional (12) in general. In image restoration [13], the
regularization functions φ are usually called “φ-functions”. Such functions are
required to have a linear growth around zero (to preserve edges), and a sublinear
growth at infinity (so that high values of the argument are not penalized too
much). We will consider both following classical φ-functions:

φ1(s) = ln(s2 + β2) ⇒ φ′
1(s) =

2s

s2 + β2 ,

φ2(s) =
s2

s2 + γ2 ⇒ φ′
2(s) =

2γ2s

(s2 + γ2)2
.

(20)

We a priori prefer this last choice, since φ2(s) remains less than 1 when s tends
towards +∞. Moreover, with this last choice:

φ2(s) =
(s/γ)2

1 + (s/γ)2
. (21)

This means that the parameter γ controls the large values of s. In the case of
noisy data, we will use a greater value for γ than in the case of non-noisy data.

Notice that with the choices of either φ1 or φ2, functional (12) is no longer
convex (contrary to both functionals (5) and (14)). There may then be several
minimizers. In our numerical experiments, we will have to face this problem.

The Euler-Lagrange equations associated to the functionals Fφ1(Z) and
Fφ2(Z) are, respectively:

div
[

∇Z

‖∇Z − v‖2 + β2

]
= div

[
v

‖∇Z − v‖2 + β2

]
,

div

[
∇Z

(‖∇Z − v‖2 + γ2)2

]
= div

[
v

(‖∇Z − v‖2 + γ2)2

]
,

(22)
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with Neumann boundary conditions on ∂Ω. There are strong similarities be-
tween both these equations and Eq. (16). The numerical schemes that we use to
solve them are the same as (18), except that the factors dk

i,j must be replaced,
respectively, with ek

i,j and fk
i,j :

ek
i,j =

1

(Zk
i+1,j − Zk

i,j −
pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j − qi,j + pi,j+1

2
)2 + β2

,

fk
i,j =

1[
(Zk

i+1,j − Zk
i,j −

pi,j + pi+1,j

2
)2 + (Zk

i,j+1 − Zk
i,j − qi,j + pi,j+1

2
)2 + γ2

]2 .

(23)
These schemes will be denoted, respectively, by ISφ1 and ISφ2 .

4.4 Numerical Evaluation of the New Algorithms

In this subsection, we are going to test the three new schemes ISL1 , ISφ1 and
ISφ2 on the reduced normal field vb of the benchmark surface Sb (see Fig. 2-
left). As each of these schemes depends on one parameter, respectively α, β and
γ, we must first study the influence of this parameter on the accuracy of the
reconstruction.

The accuracy ‖ΔZ‖2 of the 3D-reconstruction obtained using the scheme
ISL1 , in function of α, is plotted on the left of Fig. 3. The best reconstruction,
which is represented in Fig. 4, corresponds to ‖ΔZ‖2 = 1.66 and is reached when
α = 0.055. It looks indeed a little more similar to Sb than the surface represented
in Fig. 2-right, with a lower value of ‖ΔZ‖2. However, this result is not fully
satisfactory. The evolution of ‖ΔZ‖2 in function of the number of iterations,
which is represented on the right of Fig. 3, shows the convergent behaviour of
ISL1 (we proved that ISL1 is a convergent scheme, but due to lack of space, the
proof is not included in the paper; see [15] for further details). This curve also
tells us that a fixed number of 100 × 128 iterations gives a good approximation
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Fig. 3. Left: ‖ΔZ‖2 in function of α, after 100× 128 iterations of ISL1 . Right: ‖ΔZ‖2

in function of the number of iterations of ISL1 , for the optimal value α∗ = 0.055. In
these tests, the initialization Z0 = 0 is used.
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Fig. 4. 3D-reconstruction obtained using ISL1 , for the optimal value α∗ = 0.055 and
Z0 = 0: ‖ΔZ‖2 = 1.66
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Fig. 5. Left: ‖ΔZ‖2 in function of β, after 100× 128 iterations of ISφ1 . Right: ‖ΔZ‖2

in function of γ, after 100 × 128 iterations of ISφ2 . In these tests, the initialization
Z0 = ZL2 is used.

of the limit. Since similar curves are obtained for both other schemes, we decide
to fix the number of iterations at 100 × 128 for all the tests. Of course, better
stopping criteria could have been used, but this was not our main concern.
Moreover, this first scheme is quite slow, due to the complexity of the formula
(18) and (19): the CPU time of 100 × 128 iterations is equal to 17s on a P4
2.4 GHz, for a domain of reconstruction Ω which contains 128× 128 points (the
CPU times of both other new schemes is approximately the same). The resort
to classical acceleration techniques, as for instance multi-grid methods, would
probably be welcome.

The accuracy ‖ΔZ‖2 of the 3D-reconstruction which is obtained after 100 ×
128 iterations of the schemes ISφ1 , in function of β, is plotted on the left of
Fig. 5. The best reconstruction, which is represented in Fig. 6, corresponds
to ‖ΔZ‖2 = 0.23 and is reached when β = 0.55 and Z0 = ZL2 (see Fig. 2-
right). It is qualitatively and quantitatively much better than the previous ones.
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Fig. 6. 3D-reconstruction obtained using ISφ1 , for the optimal value β∗ = 0.55 and
Z0 = ZL2 : ‖ΔZ‖2 = 0.23
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Fig. 7. 3D-reconstruction obtained using ISφ1 , for the optimal value β∗ = 0.55 and
Z0 = 0: ‖ΔZ‖2 = 4.02
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Fig. 8. 3D-reconstruction obtained using ISφ2 , for the optimal value γ∗ = 0.21 and
Z0 = ZL2 : ‖ΔZ‖2 = 0.36

An important feature of the scheme ISφ1 is its high sensitivity to the initial
configuration Z0. A second reconstruction, which is obtained with the same
value of β but Z0 = 0, is represented in Fig. 7. It illustrates the existence of
local minima for Fφ1(Z), as claimed in Section 4.3.
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Fig. 9. 3D-reconstruction obtained using ISφ2 , for the optimal value γ∗ = 0.21 and
Z0 = 0: ‖ΔZ‖2 = 3.39

Fig. 10. 3D-reconstructions from the three photographs of the Beethoven’s bustle,
integrating the normal field using ISL2 (left) and ISL1 with α = 0.1 (right) on [1, 256]×
[1, 256]

Finally, the accuracy ‖ΔZ‖2 of the 3D-reconstruction which is obtained after
100× 128 iterations of the scheme ISφ2 , in function of γ, is plotted on the right
of Fig. 5. The best reconstruction, which is represented in Fig. 8, corresponds to
‖ΔZ‖2 = 0.36 and is reached when γ = 0.21 and Z0 = ZL2 . It is approximately
as satisfactory as the previous one. Nevertheless, a qualitative comparison be-
tween both curves in Figs. 5-left and 5-right tells us that ISφ2 is more sensitive to
γ than ISφ1 to β. A second reconstruction, which is a local minimum of Fφ2(Z),
is represented in Fig. 9.

4.5 Application to Photometric Stereo

The part of the Beethoven’s bustle which is visible in the photograph of Fig.
1-left does not contain self-occlusion. On the other hand, there is a discontinu-
ity between the silhouette of the bustle and the background. Unfortunately, the
background looks black in all these images, so that photometric stereo cannot be
used at such pixels. In order to test the schemes ISL1 , ISφ1 and ISφ2 on real data,
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Fig. 11. 3D-reconstructions from the three photographs of the Beethoven’s bustle,
integrating the normal field using ISφ1 with β = 2 (left) and ISφ2 with γ = 1 (right)
on [1, 256] × [1, 256]

we consider the background as a plane with uniform normal n = [0, 0, 1]t. The
reconstruction on the left of Fig. 10 is obtained using ISL2 on the whole domain
[1, 256]× [1, 256], without prior segmentation. Obviously, the discontinuity is not
well handled. On the other hand, the three reconstructions on the right of Fig.
10 and in Fig. 11 are obtained using ISL1 , ISφ1 and ISφ2 . The big gaps along
the silhouette are rather well reconstructed, without any prior segmentation, as
this was the case for the reconstruction of Fig. 1-right.

5 Conclusion and Perspectives

In this paper, after a theoretical study, we improve an existing method of nor-
mal integration. We show how to avoid prior segmentation, and consequently
how to deal with possible discontinuities along silhouettes. More specifically, we
prove the efficiency of non-convex regularization using φ-functions. As an appli-
cation, we successfully use two new methods of integration in the framework of
photometric stereo. A first perspective of this work is to avoid the empirical esti-
mation of the optimal value of the parameters, since all of the proposed methods
of integration are parametric. Another perspective is to test other φ-functions.
As third perspective, we must question the way how the proposed methods face
noisy normal fields (as this is done in [16]).

A last, but not least, perspective is to deal with multiview photometric stereo
techniques, in order to produce complete 3D-reconstructions, and not only 2.5D-
reconstructions (as, for instance, the surfaces shown in Figs. 1-right, 10 or 11).
In [17], an interesting method of integration of a multiview normal field using
a level set method is proposed, but the use of quadratic regularization makes it
clearly impossible to retrieve the fine details of the 3D-shapes. In that work, as
in [18], the silhouettes of the objects have to be segmented. Our new methods
of integration could help avoiding this prior processing.
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Abstract. Determining Euclidean transformations for the robust registration of
noisy unstructured point sets is a key problem of model-based computer vision
and numerous industrial applications. Key issues include accuracy of the regis-
tration, robustness with respect to outliers and initialization, and computational
speed.

In this paper, we consider objective functions for robust point registration
without correspondence. We devise a numerical algorithm that fully exploits the
intrinsic manifold geometry of the underlying Special Euclidean Group SE (3)
in order to efficiently determine a local optimum. This leads to a quadratic con-
vergence rate that compensates the moderately increased computational costs per
iteration. Exhaustive numerical experiments demonstrate that our approach ex-
hibits significantly enlarged domains of attraction to the correct registration. Ac-
cordingly, our approach outperforms a range of state-of-the-art methods in terms
of robustness against initialization while being comparable with respect to regis-
tration accuracy and speed.

1 Introduction

1.1 Overview and Motivation

Registration of point sets is an important task in many 3D vision applications includ-
ing quality inspection [1,2], reverse engineering [3], object recognition and detection
[4,5,6,7]. In each case, robustness against noise, imprecise initialization and accuracy
of registration are important as well as sufficiently short runtimes. Additionally, large
pose variations between model and shape together with outliers and unstructured point
measurements often render this problem quite challenging.

Each approach amounts to the design of an objective function and a numerical algo-
rithm for computing an optimal registration. We review related work in Sec. 1.2. Gener-
ally speaking, since the correspondence between model and measurements is assumed
to be unknown, the overall optimization problem is inherently nonconvex. Hence, ro-
bustness against poor initializations is a crucial issue.

In this context, we focus on an objective criterion that does not require to determine
point correspondences explicitly. The domain of definition is therefore just the entire
set of Euclidean transformations of 3D space, i.e. the Special Euclidean Group SE (3).

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 274–287, 2009.
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Fig. 1. Left: State-of-the-art methods that do not sufficiently take into account the manifold struc-
ture of Euclidean transformations are susceptible to imprecise initializations of the model (blue)
and the scene (red) to be registered, and may reach a poor local optimum. Right: Taking the in-
trinsic geometry of the underlying manifold into account significantly increases robustness with
respect to poor initialization.

Regarded as a matrix group, this set is a smooth manifold embedded in the correspond-
ing ambient matrix space. We devise a Newton-like optimization algorithm that fully
exploits the intrinsic manifold geometry (up to second order) to efficiently determine a
locally optimal transform representing the registration.

Comparison with a range of state-of-the-art methods (see next section) reveals a sig-
nificantly enlarged domain of attraction to the correct registration, thus alleviating the
problem of poor initializations. Figure 1 illustrates this point, confirmed by exhaustive
numerical experiments reported in section 5.

1.2 Related Work

Registration with Point Correspondence. The problem to register two point sets amounts
to the chicken-and-egg problem of determining simultaneously both point correspon-
dences and a rigid transformation. Having solved either problem, the other one becomes
trivial. Consequently, most approaches proceed in an alternating fashion: given an esti-
mate of the transformation, correspondence can be determined followed by improving
the estimated transformation, and so forth. The prototypical representant is the Itera-
tive Closest Point (ICP) algorithm [8] that due to its simplicity still is a state-of-the-art
algorithm [1,2].

It is well known that this two-step iteration is susceptible to noise and poor initial-
ization. While numerous robust variants including [9,10] have been suggested, a major
drawback concerning the representation of the problem remains, in particular when
dealing with unstructured point sets: explicit correspondences increase both the non-
convexity and nonsmoothness of the objective function, and gaining insight into the
optimization problem is hampered by complicated structure of the domain of optimiza-
tion comprising both Euclidean transformations and correspondence variables.

Registration without Explicit Correspondence. In order to obtain an optimization crite-
ria that avoids computing corresponding points in each iterate, Mitra et al. [11] as well
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as Pottmann et al. [6] approximate the objective distance by local quadratic functions
that represent the distance of certain points to the scene.

Another way to avoid the explicit determination of correspondence has been
suggested by Tsin and Kanade [12], Jian and Vemuri [13] and Wang et al. [14]. By
representing point clouds of both the scene and the model by mixture distributions, reg-
istration can be achieved by minimizing the squared L2 distance [12,13] or the Jensen-
Shannon divergence [14] between two distributions. Compared to [11,6] this avoids
exhaustive pre-computation of the local distance approximation at the cost of more ex-
pensive function evaluations.

Because we consider this class of approaches as advantageous in connection with
unstructured noisy point sets, we adopt mixture models of model and scene points in
this paper.

Geometric Optimization. However, in this case, the optimal rigid body transformation
cannot be determined in closed form. In order to minimize distance measures between
mixture distributions representing unstructured point sets, methods of continuous op-
timization like gradient descent or Newton-like schemes have to be applied. This task
differs from standard applications because the underlying domain where an optimum
has to be computed is a curved space (manifold).

Concerning manifolds related to the orthogonal group (Grassmann and Stiefel man-
ifolds) continuous optimization methods are considered in [15]. Adler et al. [4], for
instance, proposed a corresponding Newton-like algorithm for human spine alignment.
Concerning Euclidean transformations, Li and Hartley [16] presented a Branch and
Bound algorithm that determines the optimal registration of two 3D point sets together
with the correspondence in terms of a permutation matrix.

A decisive advantage of this approach is its independence from initialization be-
cause the global optimum is always found. On the other hand, the runtime scales badly,
e.g. nearly 20 min for 200 points, which excludes industrial applications with hundreds
of points. Furthermore, point sets of equal cardinality are required as input which is not
the case in the standard scenario of matching a model (small point set) with a scene
(large point set).

Pottmann et al. [6] as well as Taylor and Kriegman [17] suggested an iterative regis-
tration algorithm based on successive local approximations of the manifold Euclidean
transformations in terms of the tangent space at the current iterate.

In a similar way, Krishnan et al. [3] proposed an algorithm for multiple point set
alignment. We consider this approximation in more detail below (Section 4) and work
out differences to our approach (Sections 4, 5).

1.3 Contribution

In this paper we devise and study a second-order optimization method that fully exploits
the geometry of the manifold SE (3) of Euclidean transformations in order to minimize
a distance measure between two mixture distributions representing two unstructured
point sets. Additionally, we show that our novel algorithm

– outperforms state of the art algorithms including ICP and Softassign [8,9,1,2] in
terms of speed of convergence,
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– and has a significantly larger basin of quadratic convergence to the correct registra-
tion than previous work based on local approximations of SE (3) [6].

1.4 Organization

In Sect. 2 we recall objective criteria used for point set registration with and without
explicit representation of point correspondences. Section 3 collects elements of differ-
ential geometry needed to detail our optimization approach in Sect. 4, and to point out
differences to related work based on approximate Newton methods.

In Sect. 5, we compare our approach to state-of-the-art point set registration algo-
rithms with respect to runtime and robustness against poor initializations, i.e. the size
of the region of convergence to the correct registration. We conclude and point out fur-
ther work in Sect. 6.

2 Objective Functions

Let {ui, i = 1, . . . , N} ⊂ R3 denote a set of scene points obtained by a scanning
device and, let {vj, j = 1, . . . , M} ⊂ R3 be a point set specified by a given model
description, i.e. a CAD file or a sample scan.

The objective of registration is to find a rigid body transformation Y ∈ SE (3) such
that model and scene points are aligned best. Here, SE (3) denotes the special Euclidean
group parametrized by a proper rotation matrix R ∈ SO (3) and a translation vector
t ∈ R3. There are multiple ways to parametrize rotations R like Euler angles, quater-
nions etc. For optimization and numerical algorithm design, however, working with the
matrix representation of the group SE (3) Euclidean transforms is most appropriate.

2.1 Explicit Point Correspondences

The most common criterion for point registration is the sum of squared Euclidean dis-
tances of corresponding points given by

min
Y ={R,t}∈SE(3)

N∑
i=1

‖ui − Rvη(i) − t‖2
2 , (1)

where η(i) : {1, . . . , N} → {1, . . .M} denotes a correspondence function that assigns
a scene point to its model counterparts. As this function is assumed to be unknown,
apart from the optimization with respect to Y , we have to determine the optimal η as
well. To do so, the correspondence function is replaced by weights wij assigning closest
point pairs to each other, that is

min
Y ∈SE(3)

N∑
i=1

M∑
j=1

wij‖ui − Rvj − t‖2
2 , (2)

where wij = 1 if j = argmink‖ui − Rvk − t‖2
2 and 0 otherwise. Note, that wij =

wij(Y ) depends on the current estimate of the transformation which complicates the
optimization of (2) considerably.
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The common approach is to solve alternately for the transformation parameters R, t
and correspondences wij . Drawbacks of related work in connection with unstructured
point sets are discussed in Sect. 1.2.

2.2 Implicit Point Correspondences

An alternative class of approaches [13,12] for registration utilizes kernel estimates of
functions in terms of given points sets,

s(x) :=
N∑

i=1

μiK
( 1
2σ2

s

‖x − ui‖2
2
)

, (3a)

m(x) :=
M∑

j=1

νjK
( 1
2σ2

m

‖x − Rvj − t‖2
2
)

, (3b)

where K(·) denotes a smoothing kernel integrating to 1, and σs, σm are parameters
related to the noise levels. The values μi, νj ≥ 0,

∑
i μi =

∑
j νj = 1 signal the im-

portance of related samples if such information is available and otherwise are set to be
constant, 1/N, 1/M , as in this paper. Thus, s(x), m(x) can be regarded as probability
density estimates with respect to the assignment of points x to the scene and the model,
respectively. We henceforth assume that all user parameters have been fixed beforehand.

Following [12], registrations of model and scene can now be evaluated by probabilis-
tic distance measures of the respective distributions (3) including the Kullback-Leibler
divergence

D(s‖m) =
∫

x

s(x) log
s(x)
m(x)

=
∫

x

s(x) log s(x) −
∫

x

s(x) log m(x) . (4)

We ignore the first term of (4) in the following because it does not depend on the trans-
formation to be determined.

A further and reasonable simplification results from taking into account the noise
level only in terms of a single smoothing parameter σm in (3). Correspondingly, choos-
ing the Gaussian kernel for K in (3) and considering σs → 0, function s(x) becomes a
sum of Dirac distributions. Insertion into the second term of (4) yields

N∑
i=1

log
( 1

M

M∑
j=1

exp
(
− 1

2σ2
m

‖ui − Rvj − t‖2
2
))

, (5)

where we dropped the constant 1/N and the factor normalizing the Gaussian because
it does not depend on the transformation to be determined.

We point out that in contrast to the objective function (2), (5) only depends
on the rigid body transformation and not on further variables representing point
correspondences.
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Furthermore, (5) parallels smoothed objective functions for prototypical clustering
[18] in terms of the log of a sum of Gaussians. A corresponding optimization scheme,
therefore, is given by the fixed point iteration

argmin
Y ∈SE(3)

N∑
i=1

M∑
j=1

ρij

(
Y (k)

)
‖ui − Rvj − t‖2

2 , (6)

where

ρij (Y ) =
exp
(
− 1

2σ2
m
‖ui − Rvj − t‖2

2
)

∑M
l=1 exp

(
− 1

2σ2
m
‖ui − Rvl − t‖2

2

) . (7)

This procedure is a variant of the Softassign procedure [9] (without annealing) that is
significantly more robust than procedures based on hard assignments as in (2).

On the other hand, due to the structure of (6) only a linear convergence rate is
achieved as will be confirmed in Sect. 5. This motivates the study of Newton algo-
rithms that exhibit quadratic convergence rates in general. Furthermore, by fully ex-
ploiting the geometry of the underlying manifold, we increase robustness against poor
initializations.

3 The Manifold of Euclidean Transformations

We collect in this section few basic concepts needed to specify and discuss our opti-
mization approach in Sect. 4. For the mathematical background, we refer to e.g. [19,20].

3.1 The Lie Group SE (3)

Euclidean transformations Y = {R, t} ∈ SE (3) map a point x to Y x = Rx + t and
form a group via concatenation: Y1Y2 = {R1, t1}{R2, t2} = {R1R2, t1 + R1t2}.
The inverse element is Y −1 = {R−1,−R−1t}.

For the purpose of optimization and numerical analysis, it is convenient to identify
SE (3) ⊂ GL(4) with a subgroup of all 4 × 4 regular matrices with respect to matrix
multiplication. Keeping symbols for simplicity, this representation reads

Y =
(

R t
0	 1

)
, Y −1 =

(
R	 −R	t
0	 1

)
. (8)

In this way SE (3) becomes a differentiable manifold embedded into GL(4), hence a
Lie group.

3.2 Tangents

With each Lie group is associated its Lie algebra, the vector space tangent to the mani-
fold at I. In case of SE (3) it reads

se (3) =
{(

ΦR Φt

0	 0

) ∣∣∣∣ ΦR
	 = −ΦR , Φt ∈ R

3
}

, (9)
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which is easily deduced from the fact that se (3) contains all matrices Φ such that for
all t ∈ R, the matrix exponential exp(tΦ) ∈ SE (3) is a Euclidean transformation, and
R = exp(ΦR) for some skew-symmetric ΦR. The latter is just Rodrigues’ formula for
rotations in 3D.

In the following, we denote the vector space (9) equipped with the canonical inner
product 〈Φ1, Φ2〉 = tr(Φ1

	Φ2) with T := se (3). Furthermore, functions F and its
derivatives defined on SE (3) are evaluated at Y = I without loss of generality, because
during iterative optimization the current iterate Y can be regarded as offset redefining
the model’s original pose.

3.3 Gradients

The gradient ∇F of a function F : SE (3) → R is defined by the relation [19]

〈∇F, Φ〉 = 〈∂F, Φ〉 , ∀Φ ∈ T , (10)

where ∂F is the usual matrix derivative of F given by (∂F )ij = ∂
∂Yij

F . Because

SE (3) is embedded into GL(4), eqn. (10) shows that ∇F − ∂F is orthogonal to all
Φ ∈ T . Thus, ∇F ∈ T is the orthogonal projection π mapping ∂F to T . Using the
same block-factorization as in (9),

∂F =
(

∂F11 ∂F12
∂F21 ∂F22

)
, (11)

this projection can be computed in closed form:

∇F = π(∂F ) =

(
1
2

(
∂F11 − ∂F11

	
)

∂F1,2

0	 0

)
. (12)

3.4 Hessians

In addition to the gradient, optimization with the Newton method requires to compute
the Hessian of a given objective function F (Y ) defined on SE (3). Similar to determin-
ing the gradient in the previous section, the usual definition valid for Euclidean spaces
has to be adapted to the manifold SE (3).

The Hessian of a function F : SE (3) → R, evaluated at Y = I, is a linear mapping
from T onto itself [20] given by ∇Φ(∇F ) , ∀Φ ∈ T , where the gradient ∇F is given
by (12) and ∇ is the Levi-Civita connection defining the covariant derivative ∇Φ of the
vector field ∇F .

To obtain a more explicit expression in terms of the ordinary first- and second-order
derivatives, we denote by {Lk}k=1,...,6 the canonical basis spanning the translational
and skew-symmetric components of tangents Φ =

∑
k φkLk ∈ T defined by eqn. (9).

Then the quadratic form of the Hessian with respect to any Φ is given by [15]

〈∇Φ(∇F ), Φ〉 = ∂2F (Φ, Φ) − 〈∂F, Γ (Φ, Φ)〉 (13)
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with ∂2F (Φ, Φ) denoting the bilinear form
∑

ij,kl
∂2F

∂Yij∂Ykl
ΦijΨkl and

Γ (Ψ , Φ) =
∑
i,j,k

ψiφjΓ
k
ijLk . (14)

We list the so-called Christoffel symbols Γ k
ij defining the connection∇ in the Appendix.

4 Second Order Optimization on SE (3)

In the usual Euclidean space Rn, second-order optimization of some objective function
F : Rn → R using the Newton method is based on the local quadratic model

F (xk + x) ≈ F (xk) + x	∂F +
1
2
x	Hx, (15)

where ∂F, H denote the (ordinary) gradient and Hessian of F evaluated at xk, respec-
tively. The gradient of (15) vanishes if x solves the linear system

Hx = −∂F , (16)

leading to the update xk+1 = xk + x.
In this section, we discuss two ways to generalize this iteration to the case of objec-

tive functions F (Y ) : SE (3) → R.

4.1 Truncating the Exponential Map

It is well known that a geodesic path Y (t) ∈ SE (3) with Y (0) = I and tangent
Ẏ (0) = Φ is locally given by the exponential mapping exp : T → SE (3),

exp(tΦ) =
∞∑

k=0

(tΦ)k

k!
. (17)

Accordingly, it makes sense to consider local approximations

Ylin(t) ≈ I + t Φ (18a)

Yquad(t) ≈ I + t Φ +
t2

2
Φ2 , (18b)

respectively, as suggested by Pottmann et al. [6], and to determine the optimal tangent
vector t Φ. By inserting the approximations (18a) and (18b) into F (Y ), and by expand-
ing Φ with respect to the basis {Lk}k=1,...,6 introduced above, the objective function
F (Y ) is restricted to the 6-dimensional vector space T in terms of the coefficients
tφ = t(φ1, . . . , φ6)

	 as variables.
As a result, the linear system (16) defining the Newton iteration is replaced by (we

keep the symbols H and ∂F for simplicity)

H(t φ) = −∂F , (19)

where (∂F )i = ∂
∂φi

F and Hij = ∂2

∂φi∂φj
F evaluated at φ = 0.
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However, because (18a) and (18b) are only local approximations of the Euclidean
group, inserting the solution t Φ =

∑
k(t φk)Lk of the linear system (19) does not give

an element of SE (3) in general. Rather, the Newton update Y ∈ SE (3) is determined
by inserting t Φ into the exponential map (17).

4.2 Intrinsic Newton Updates

Instead of restricting the objective function F to the tangent space T through the local
manifold approximations (18) first, and then computing Newton updates by solving
(19), we may base the Newton iteration directly on the intrinsic gradient and Hessian of
the manifold SE (3).

This means that the linear system (16) in the Euclidean case is replaced by the linear
system defined by the variational equation

〈∇Φ(∇F ), Ψ 〉 = −〈∇F, Ψ 〉 , ∀Ψ ∈ T , (20)

with the gradient ∇F given by (12) and the Hessian defined in (13).
As in the previous section, the tangent vector Φ solving (20) does not directly result

in a Euclidean transformation Y as Newton update. Rather, here we use the exponential
mapping

Y = exp(Φ) (21)

defined by (17).

4.3 Local vs. Intrinsic Approximation

While both schemes require to solve linear systems (19) and (20) in each iteration,
respectively, there are major differences in terms of convergence properties. We address
this issue in this section and take it up again in connection with discussing experimental
results in Sect. 5.

Recall that the objective function to be studied in this paper reads

F (Y ) = −
N∑

i=1

log
( 1

M

M∑
j=1

exp
(
− hij(Y )

))
, (22)

where hij(Y ) = 1
σ2 ‖ui − Rvj − t‖2

2 and Y ∈ SE (3).
Approximating the rigid body transformation by truncating (17) after the linear term

(18a) yields a redefinition of hij such that optimization of F is restricted to the tan-
gent space T . Because this approach provides an accurate approximation only within
a small neighborhood around the current iterate, however, convergence to the correct
local optimum is unlikely if it lies outside this neighborhood [6].

In contrast, second order truncation (18b) provides a more accurate approximation
of the manifold SE (3) locally. On the other hand, inserting the quadratic approximation
into hij maps Rvj + t to(

vj + Φt + ΦRvj +
1
2
ΦR

(
Φt + ΦRvj

))
. (23)
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Using the fact that ΦR is skew symmetric, the latter part rewrites as

1
2
(
ΦRΦt + (φ	vj)φ − (φ	φ)vj

)
, (24)

where φ are the coefficients of the expansion ΦR =
∑

k φkLk.
As a consequence, when the rotation components of Newton updates happen to be-

come large in magnitude, the nonconvexity of the objective function due to the quadratic
terms in (24) may cause Newton updates to step into wrong directions. This will be con-
firmed by numerical experiments in the following section.

Finally, the intrinsic second-order approximation (20) computes update directions
within the tangent space, as do the approaches discussed above based on (18). A no-
table difference, however, is that in this case the Hessian and the gradient utilize infor-
mation of the embedding of SE (3) into the ambient space in terms of the connection
and covariant derivatives, respectively, moving nearby tangents along the manifold.

We will show in the next section that this difference is relevant in practice, too.

5 Numerical Evaluation and Comparison

In 3D vision computer vision applications both robustness against poor initializations
and sufficiently short processing times are of utmost importance. In this section, we
apply the proposed Newton algorithm to rigid point set registration and experimen-
tally demonstrate the major benefits and drawbacks of our scheme: fast convergence
in a large region of quadratic attraction at the cost of slightly more expensive function
evaluations.

Moreover, we compare the proposed scheme to a range of state-of-the-art algorithms
including Iterative Closest Point [8], the fix-point iteration (6) as a special case of Sof-
tassign [9], and the Newton procedure based on local approximation of the Euclidean
group [6].

In our experiments we only considered the case of perfect 3D point measurements
in this paper, i.e. no noise or occlusion, in order to clearly separate for each scheme
the effect of poor initializations from noise sensitivity. We point out, however, that by
adjusting the kernel parameters of (5) or introducing background kernels to handle oc-
clusion, extensions to noisy scenarios are straightforward.

5.1 Speed of Convergence

Algorithms like ICP [8] or Softassign [9] return less accurate registrations in cases
where the underlying point set has no salient regions. This often occurs in industrial
applications where smooth surfaces have to be registered accurately. To compare the
ability of the approaches to cope with such scenarios, we generated 2500 data points by
randomly sampling points from the smooth function 3(x − 1)2 + 3 sin(2y) on the unit
interval.

Next, we transformed a copy of the model slightly according to a rigid body trans-
formation (about 4 degree in each rotation and by a total of 0.12 in translation), such
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Fig. 2. Evaluation of the performance of Newton algorithms based on linear and quadratic motion
approximation [6], and based on manifold structure (this paper) as well as ICP [8] and Softassign
[9] for different values of σ (left: 0.3, right: 0.15). Each plot visualizes the value of the cost func-
tion (2) in the corresponding iterate. ICP and Softassign converge linearly while the remaining
approaches converge quadratically.

that all approaches ICP [8], Softassign [9], the Newton schemes based on local approx-
imation [6] and the approach proposed in this paper always converge. Figure 2 reveals
that the convergence rates differ significantly.

While for varying σ, the Newton procedures based on approximation of the Eu-
clidean group converge slightly faster than the approach presented in this paper, all of
them exhibit quadratic convergence properties. In contrast, ICP and Softassign only
converge linearly to the optimal configuration. As a result, they return less accurate
registrations under tight runtime constraints (fixed number of iterations).

This superior performance of the Newton schemes require more expensive compu-
tations of the Hessians in each iteration. While ICP requires O(M log N) computa-
tions in each iteration using K-D trees, the evaluation of the gradient and the Hessian
of (5) causes costs of O(MN). Putting this into numbers, one round of ICP requires
about 1 second. In contrast, the computation of the derivatives, using MatLab research
code, needs between 8 (linear and quadratic approximation [6]) and 12 seconds (our ap-
proach). This difference is primarily due to the higher dimension of the space in which
the gradient and the Hessian are computed. We expect that using a more careful C-tuned
implementation will return more accurate registrations if the maximum runtime is fixed
beforehand, as is required in industrial applications.

5.2 Basin of Convergence

Additionally to fast convergence, robustness to poor initializations is important in many
applications. The region of attraction for ICP [8] has already been analyzed in [11].
Thus we only consider Newton procedures here.

For comparison, we used the same initial setup as [11], i.e. a model of the Stanford
Bunny, visualized in Fig. 1, rotated around the z-axis and shifted in the x-y plane by the
size of the model. As scene we used a copy of the model placed in the origin. Moreover,
since we are primarily interested in quadratic and fast convergence and the resulting
accuracy after a fixed runtime, we terminated the algorithms after 25 iterations.

We observe that especially for transformations with rotational initialization error, the
Newton approach proposed in this work has a significantly larger domain of attraction to
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Fig. 3. Evaluation of the region of quadratic convergence for Newton algorithms based on linear
(left) and quadratic (middle) local approximation [6], and based on the intrinsic local approxima-
tion (right) (this paper) for fixed σ = 0.1. Each circle center corresponds to the initial translation
offset in the x-y plane, where the middle circle center is the origin. The slices in each circle refer
to the initial rotation around the z-axis. These slices are colored black if the model converges to
the scene within the first few iterations and otherwise remains white. The results illustrate that
the approach proposed in this paper is significantly more robust against poor initializations.
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Fig. 4. Visualization of the angular error of the translational update computed with the linear (left)
and quadratic (middle) local approximation approach [6], and with the intrinsic local approxima-
tion (right) (this paper), as a function of the translational offset (ground truth) model ↔ scene in
3D-space. No rotation was applied. Each graphics depicts slices through the three-dimensional
“error fields”. While the linear local approximation fails again in this simpler scenario, both
quadratic approximations are more robust against this type of initialization error. Figure 3 shows
however that only the intrinsic approximation (this paper) remains stable if rotational initializa-
tion errors additionally occur.

the correct solution than the procedures based on local approximations of the
Euclidean group, as visualized in Fig. 3 and explained in more detail in the correspond-
ing caption.

In a related experiment we examined the update direction of a single iterate of each
scheme, cf. Fig. 4. By only translating the Stanford Bunny in R3 we found that quadratic
local motion approximation as well as our approach exhibit a lower angular error then
the scheme based on linear local approximation. We point out that the angular error
of all approaches near the origin is primarily due the nature of the objective function
(5), that is a slight detrimental effect of the smoothed objective function discussed in
Sect. 2.2. Decreasing the value of σ after few iteration steps would fix this minor issue.



286 D. Breitenreicher and C. Schnörr

6 Conclusion and Discussion

We presented a second-order optimization method that fully exploits the geometry of
the manifold SE (3) of Euclidean transformations in order to minimize a distance mea-
sure between two mixture distributions representing two unstructured point sets. We
experimentally compared this approach to state-of-the-art algorithms including ICP and
Softassign [8,9] and showed that it has a significantly larger basin of convergence to the
correct registration than recent work based on local approximations of SE (3) [6].

This better performance comes at the cost of slightly more expensive computations
required in each iteration. Thus, in further work we want to address this issue by con-
sidering approximating schemes of the objective that allow faster evaluation of the ob-
jective function.

Additionally we want to analyze the region of quadratic attraction more carefully in
order to derive bounds that guarantee convergence to the desired local optimum.

Acknowledgements. The authors would like to thank the VMT Vision Machine Technic
Bildverarbeitungssysteme GmbH, a company of the Pepperl+Fuchs Group, for support-
ing this reseach work.
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A Christoffel Symbols Defining the Connection ∇
The non-zero Christoffel symbols of (14) are

Γ 3
12 = Γ 1

23 = Γ 2
31 =

1
2
, (25a)

Γ 2
13 = Γ 3

21 = Γ 1
32 = −1

2
, (25b)

Γ 6
15 = Γ 4

26 = Γ 5
34 = 1, (25c)

Γ 5
16 = Γ 6

24 = Γ 4
35 = −1. (25d)
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Abstract. A variational approach to defining geodesics in the space of
implicitly described shapes is introduced in this paper. The proposed
framework is based on the time discretization of a geodesic path as a
sequence of pairwise matching problems, which is strictly invariant with
respect to rigid body motions and ensures a 1-1 property of the induced
flow in shape space. For decreasing time step size, the proposed model
leads to the minimization of the actual geodesic length, where the Hessian
of the pairwise matching energy reflects the chosen Riemannian metric
on the shape space. Considering shapes as boundary contours, the pro-
posed shape metric is identical to a physical dissipation in a viscous fluid
model of optimal transportation. If the pairwise shape correspondence is
replaced by the volume of the shape mismatch as a penalty functional,
for decreasing time step size one obtains an additional optical flow term
controlling the transport of the shape by the underlying motion field.
The implementation of the proposed approach is based on a level set
representation of shapes, which allows topological transitions along the
geodesic path. For the spatial discretization a finite element approxima-
tion is employed both for the pairwise deformations and for the level set
representation. The numerical relaxation of the energy is performed via
an efficient multi–scale procedure in space and time. Examples for 2D
and 3D shapes underline the effectiveness and robustness of the proposed
approach.

1 Introduction

This paper deals with the computation of geodesic paths and distances between
(possibly non-rigid) shapes represented via level sets in 2D and 3D. Such com-
putations are fundamental for problems ranging from computational anatomy to
object recognition, warping, and matching. The aim is to reliably and effectively
evaluate distances between non-parametrized geometric shapes of possibly dif-
ferent topology. We investigate the close link between abstract geometry on the
infinite-dimensional space of shapes and the continuum mechanical viewpoint
of shapes as being boundary contours of physical objects, e. g. identifying the
Riemannian metric on shape space with the physical dissipation — the loss of
energy due to friction. Thereby, we simultaneously address the following major
challenges:
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Fig. 1. Time-discrete geodesics between a cat and a lion and the letters A and B.
Geodesic distance is measured on the basis of viscous dissipation inside the objects
(color-coded in the middle row from blue, low dissipation, to red, high dissipation),
which is induced by a pairwise 1-1 deformation map between consecutive shapes along
the discrete geodesic path. Shapes are represented via level set functions, whose level
lines are texture-coded in the bottom row for the 2D example.

• a physically sound modeling of the geodesic flow of shapes given as boundary
contours of objects on a void background,
• the need for a coarse time discretization which is nevertheless invariant with
respect to rigid body motions, ensures a 1-1 object correspondence, and relates
to the corresponding continuous geodesic path,
• a numerically effective multi–scale treatment of the resulting time and space
discrete energy.

Our approach is closely linked to the concept of optimal transportation [1]. The
motion field v governing the flow in shape space vanishes outside the object
bounded by the corresponding shape contour. The field is optimal in the sense
that it minimizes an accumulated physical dissipation — a quadratic functional
depending on the first order local variation of a flow field, representing the rate at
which mechanical energy is converted into heat in a viscous fluid per unit volume.
Thus, the Riemannian metric on the shape space is defined to coincide with
this rate of dissipation. If we assume frame indifference as first principle (rigid
body motion invariance), then the dissipation depends only on the symmetric
part ε[v] = 1

2 (DvT + Dv) of the Jacobian Dv of the underlying motion field v.
Under the additional assumption of isotropy, a typical model for the local rate
of dissipation is given by Diss[v] =

∫ 1
0

∫
O g(v, v)dx dt with

g(v, v) =
λ

2
(trε[v])2 + μ tr(ε[v]2) (1)

(cf. Fuchs et al. [2]), where O describes the deformed object. Here tr(ε[v]2) mea-
sures the averaged local change of length and (trε[v])2 the local change of volume
(obviously div v = tr(ε[v]) = 0 represents an incompressible flow), induced by
the transport by v. In their pioneering paper Miller et al. [3] exploited the fact



290 B. Wirth et al.

that in case of sufficient Sobelev regularity for the motion field v on the whole
surrounding domain, the induced flow consists of a family of diffeomorphisms.
A straightforward time discretization of a geodesic flow would neither guaran-
tee local rigid body motion invariance for the time discrete problem nor a 1-1
mapping property between objects at consecutive time steps.

In this paper, we present a time discretization of the squared path length in
shape space which is based on a pairwise matching of intermediate shapes cor-
responding to subsequent time steps. In fact, such a discretization of a path as
concatenation of short connecting lines between consecutive points on the path
is most natural with regard to the variational definition of a geodesic and for
instance underlies the algorithm by Schmidt et al. [4]. Our approach is inspired
both by work in mechanics [5] and in geometry [6]. Here, a suitable deforma-
tion energy will measure the deformation between subsequent shapes. This can
be regarded as the infinite-dimensional counterpart of the following time dis-
cretization for a geodesic between two points sA and sB on a finite-dimensional
Riemannian manifold: Consider a sequence of points sA = s0, s1, . . . , sK = sB

connecting two fixed points sA and sB and minimize
∑K

k=1 dist2(sk−1, sk), where
dist(·, ·) is a suitable approximation of the Riemannian distance. In our case, the
squared approximate distance is replaced by the deformation energy, for which
we will employ a particular class of so-called polyconvex energies [7] to ensure
both exact frame indifference (observer independence and thus rigid body mo-
tion invariance) and a global 1-1 property. We will also discuss the corresponding
continuous problem when the time discretization step vanishes.

Even though the functionals are borrowed from nonlinear elasticity, the under-
lying physics is only related to elasticity in the sense that a viscous deformation
can be regarded as the limit of infinitely small elastic deformations with sub-
sequent stress relaxation. Indeed, different from elasticity, none of the shapes
is in a stressed configuration since local stresses are immediately absorbed via
dissipation, which in a physical context reflects a local heating.

Both the built-in exact frame indifference and the 1-1 mapping property en-
sure that fairly coarse time discretizations already lead to an accurate approxi-
mation of geodesic paths (cf. Fig. 2). The actual convergence is dealt with later
in this paper. Careful consideration is required with respect to the effective mini-
mization of the time discrete path length. Already in the case of low dimensional
Riemannian manifolds the need for efficient minimization strategies is apparent.
To give a conceptual sketch of the proposed algorithm on the actual shape space,
Fig. 3 depicts the proposed procedure in the case of R2 considered as the stere-
ographic projection of the two-dimensional sphere and outlines the advantage of
our proposed optimization framework.

1.1 Related Work

Conceptually, in the last decade, the distance between shapes has been been
studied on the basis of a general framework of a space of shapes and its intrinsic
structure. The notion of shape space has been introduced already in 1984 by
Kendall [8].
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Fig. 2. Discrete geodesics between a straight and a rolled up bar, from first row to
fourth row based on 1, 2, 4, and 8 time steps. The light gray shapes in the first row
show the linear interpolation of the deformations connecting the dark gray shapes. The
shapes from the finest time discretization are overlayed over the others as thin black
lines. In the last row the rate of viscous dissipation is rendered on the shape domains
O1, . . . ,OK−1 from the previous row, color-coded as .

Fig. 3. Different refinement levels of discrete geodesics (K = 1, 2, 4, . . . , 256) from
Johannisburg to Kyoto in the steoreographic projection (right) and backprojected on
the globe (left). A single-level nonlinear Gauss-Seidel on the finest resolution with
successive relaxation of the different vertices requires 917235 elementary relaxation
steps, whereas in a cascadic relaxation from coarse to fine resolution in time, only 2593
of these elementary minimization steps are needed.

An isometrically invariant distance measure between two objects SA and SB in
(different) metric spaces is the Gromov–Hausdorff distance, which is (in a simpli-
fied form) defined as the minimizer of 1

2 supyi=φ(xi),ψ(yi)=xi
|d(x1, x2)−d(y1, y2)|

over all maps φ : SA → SB and ψ : SB → SA, matching point pairs (x1, x2)
in SA with pairs (y1, y2) in SB. It evaluates — globally and based on an L∞

type functional — the lack of isometry between two different shapes. Mémoli
and Sapiro [9] introduced this concept into the shape analysis community and
discussed efficient numerical algorithms based on a robust notion of intrinsic
distances d(·, ·) on the shapes given by point clouds. Bronstein et al. incorporate
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the Gromov–Hausdorff distance concept in various classification and modeling
approaches in geometry processing [10].

Charpiat et al. [11] discuss shape averaging and shape statistics based on the
notion of the Hausdorff distance of sets. They propose to use smooth approxi-
mations of the Hausdorff distance based on a comparison of the signed distance
functions of shapes. The approach by Eckstein et al. [12] is conceptually related.
They consider regularized geometric gradient flow for the warping of surfaces.

There are a variety of approaches which consider shape space as an infinite-
dimensional Riemannian manifold. Michor and Mumford [13] gave a correspond-
ing definition exemplified in the case of curves. Younes [14] considered a left
invariant Riemannian distance between planar curves. Miller and Younes gener-
alized this concept to the space of images [15]. Klassen and Srivastava [16] pro-
posed a framework for geodesics in the space of arclength parametrized curves
and suggested a shooting type algorithm for the computation, whereas Schmidt
et al. [4] presented an alternative variational approach.

Dupuis et al. [17] and Miller et al. [18] defined the distance between shapes
based on a flow formulation in the embedding space. The underlying motion fields
v are globally defined, and as Riemannian metric they considered

∫
Ω

Lv · v dx,
where L was chosen as a higher order elliptic operator [19,14]. This operator
ensures sufficient regularity along paths of finite length and thus implies a dif-
feomorphic property for the flow map φ generated via integration of the motion
fields v.

Fuchs et al. [2] proposed a Riemannian metric on shape space motivated by
linearized elasticity, leading to the same quadratic form (1), which is in their
approach evaluated on a displacement field. They used a B-spline parametriza-
tion of the shape contour together with a finite element approximation for the
displacements on an accompanying triangulation of one of the two objects. Due
to the linearization this approach is not rigid body motion invariant, and they
do not consider a hierarchical treatment. The explicitly parametrized shapes on
a geodesic path share the same topology. A Riemannian metric in the space of
surface triangulation in 3D of fixed mesh topology has been investigated by Kil-
ian et al. [20], where an inner product of deformations fields as the underlying
metric measures the local distance from a rigid body motion.

1.2 Key Contributions

Key contributions of our approach are: • The presented time discretization
strictly ensures rigid body motion invariance and a 1-1 mapping property. •
The implicit treatment of shapes via level sets allows for topological transitions
and enables to compute geodesics in the context of partial occlusion. • Robust-
ness and effectiveness of the algorithm is ensured via a cascadic multi–scale
relaxation strategy. • The approach mathematically rigorously links consecutive
pairwise shape matching and a flow perspective on a Riemannian shape space. •
A formal connection between physics-motivated and geometry-motivated shape
spaces is provided, with an intuitive physical interpretation of the framework.
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2 Variational Time Discretization: Preamble and the
Discrete Geodesic Model

In this section, we present the time discretization of a geodesic path in shape
space, whereas the induced Riemannian distance will be investigated in Sec. 3.
We do not consider a purely geometric notion of shapes as curves in 2D or
surfaces in 3D. In fact, motivated by physics, we consider shapes S as boundaries
∂O of sufficiently regular, open object domains O ⊂ Rd for d = 2, 3.

Discrete path in shape space. Given two shapes SA, SB , we define a discrete path
of shapes as a sequence of shapes S0, S1, . . . , SK with S0 = SA and SK = SB.
For the time step τ = 1

K the shape Sk is supposed to be an approximation of
S(tk) (tk = kτ), where S(t), t ∈ [0, 1], is a continuous path connecting SA = S(0)
and SB = S(1), e. g. a geodesic between these two shapes (continuous results
will be presented in the next section).

Pairwise deformations between consecutive shapes. Now, we introduce a match-
ing deformation φk for each pair of consecutive shapes Sk−1 and Sk such that
φk(Sk−1) = Sk, and a corresponding deformation energy

Edeform[φk,Sk−1] =
∫
Ok−1

W (Dφk)dx , (2)

where W is an energy density (cf. [21]). As in the axiom of elasticity, the energy
is assumed to depend only on the local deformation, reflected by the Jacobian
Dφ. But different from elasticity, we suppose the material to relax immediately
so that the object at the next time step is again in a stress-free configuration.
Let us emphasize that the stored energy does not depend on the deformation
history as in most plasticity models in engineering. If we postulate as funda-
mental assumption on the time discretization the invariance of the deformation
energy with respect to rigid body motions,1 i. e.

Edeform[Q ◦ φk + b,Sk−1] = Edeform[φk,Sk−1] (3)

for Q ∈ SO(d) and b ∈ Rd (the axiom of frame indifference in continuum
mechanics), one deduces that the energy density only depends on the first
Cauchy–Green deformation tensor DφTDφ (which geometrically represents the
metric measuring the deformed length in the reference configuration),
i. e. W (A) = W̄ (ATA) for some W̄ . Now, we assume that the deformation is
chosen such that the Hessian at the identity coincides with the desired local
dissipation rate or metric tensor (1) (cf. Sec. 3). For an isotropic material the
energy can be rewritten as a function solely depending on the principal invari-
ants of the Cauchy–Green tensor, namely I1 = tr(DφTDφ), controlling the local
average change of length, I2 = tr(cof(DφTDφ)) (cofA := detAA−T ), reflecting
the local average change of area, and I3 = det (DφTDφ), which controls the

1 Our general framework can be extended to other invariances as well.
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Fig. 4. Discrete geodesic for two different examples from [2] and [23] where the local
rate of dissipation is color-coded as . In the right example the local preservation
of isometries is clearly visible, whereas in the left example stretching is the major effect.

local change of volume. Furthermore let us assume that the energy is a con-
vex function of Dφ, cofDφ, and detDφ and that isometries, i. e. deformations
with DφT(x)Dφ(x) = �, are local minimizers [7] (Fig. 4 provides an example of
good local isometry preservation). A template in this class of energy densities is
W̄ = α1I

p
2
1 +α2I

q
2
2 +Γ (I3) with p > 0, q ≥ 0, α1, α2 > 0, and Γ convex. Indeed,

by straightforward computation one verifies that for any dissipation rate (1),
there is a nonlinear energy density of the above type such that the dissipation
rate is the corresponding Hessian. In our computations this energy was chosen
so that λ

μ = 3. A built-in penalization of volume shrinkage, i. e. Γ
I3→0−→ ∞,

ensures local injectivity [22], and thus the sequence of deformations φk linking
objects Ok−1 and Ok actually represents homeomorphisms (rigorously proved
for deformations with finite energy under mild assumptions for sufficiently large
p, q, certain growth conditions on Γ , and very soft instead of void material on
Ω\O with Dirichlet boundary conditions on ∂Ω). Let us remark that self-contact
at the boundary is still possible, so that the mapping from Sk−1 = ∂Ok−1 to
Sk = ∂Ok does not have to be homeomorphic. By interpreting such self-contact
as a closing of the gap between two object edges in the sense that the viscous
material flows together, this will indeed allow for certain topological transitions
along a discrete path in shape space [7] (cf. Fig. 1 for an example). Based on
these mechanical preliminaries we can now define a time discrete geodesic path.

Definition (Discrete Geodesic). A discrete path S0, S1, . . . , SK connecting two
shapes SA and SB is a discrete geodesic, if there exists an associated fam-
ily of deformations φk with φk(Sk−1) = Sk which minimizes the total energy∑K

k=1 Edeform[φk,Sk−1].

Relaxed formulation of the consecutive matching. Computationally, the con-
straint φk(Sk−1) = Sk for a 1-1 matching of consecutive shapes is difficult to
treat and non-robust (e. g. , not allowing for the handling of noise). Hence, we
utilize a relaxed formulation adding a mismatch penalty

Ematch[φk,Sk−1,Sk] = vol(Ok−1�φ−1
k (Ok)) , (4)

where A�B = A \B ∪B \A defines the symmetric difference between two sets.
One might want to further restrict the set of possible shapes Sk along a discrete
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geodesic adding an additional surface energy term Earea[S] =
∫
S da. Finally, we

end up with the total discrete energy

Eτ [(φk,Sk−1,Sk)k=1,...,K ]

=
K∑

i=1

(1
τ
Edeform[φk,Sk−1] + ηEmatch[φk,Sk−1,Sk] + ντEarea[Sk]

)
, (5)

where η, ν are parameters, and a minimizer of this energy describes a relaxed
discrete geodesic path between two shapes SA and SB.

3 Viscous Fluid Model in the Limit for τ → 0

We now investigate the relation of the above-introduced relaxed discrete geodesic
paths and a time continuous model for geodesics in shape space.

At first, let us derive from a time discrete sequence of deformations (φk)k=1,...,K

and shapes (Sk)k=0,...,K a time continuous deformation field φτ , a corresponding
motion field vτ , and a continuous path Sτ in shape space:

vτ (t) :=
1
τ

(φk − �) , (6)

φτ (t) := (�+ (t − tk−1)vτ ) ◦ φk−1 ◦ . . . φ1 , (7)
Sτ (t) := (�+ (t − tk−1)vτ )(Sk−1) , (8)

for t ∈ [tk−1, tk). If we now let τ → 0 and assume that Sτ (t) → S(t) for a regular
family of shapes (S(t))0≤t≤1 and that vτ (t) → v(t) with an induced sufficiently
regular flow (φ(t))0≤t≤1 with φ̇ = v, the following limit behavior can be observed:
The first term in the global discrete energy representing the deformation energy
(2) turns into a time continuous dissipation functional,

Diss[v] =
∫ 1

0

∫
O(t)

Cε[v] : ε[v] dxdt , (9)

where C=2 Hess W̄ , ε[v]= 1
2 (DvT +Dv), and A :B = tr(ATB) for A, B ∈ Rd×d.

To see this, we observe that Dφτ (t)TDφτ (t) = � + 2(t − tk) ε[vτ (t)] + O(τ2)
for t ∈ [tk, tk+1), and by second order Taylor expansion of W̄ at the identity,
W̄ (DφTDφ) = τ2Cε[v] : ε[v]+O(τ3). Here, we have used the fact that W̄ attains
its minimum 0 at the identity. Thus, the resulting Riemannian structure given
by the rate of dissipation is indeed associated with the Hessian of our in gen-
eral nonlinear deformation energy at the identity. For the well-known exemplary
metric (1), the length control based on the first invariant I1 of Dφτ turns into
the infinitesimal length control via tr(ε[v]2), and the volume control based on
the third invariant I3 of Dφτ turns into the control of compression via tr(ε[v])2

(cf. Fig. 5 for the impact of these two terms on the shapes along a geodesic path).
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Fig. 5. Two geodesic paths between dumb bell shapes varying in the size of the ends. In
the left example the ratio λ/μ between the parameters of the dissipation is 0.01 (leading
to rather independent compression and expansion of the ends since the associated
change of volume implies relatively low dissipation), and 100 in the right example
(now mass is actually transported from one end to the other). The underlying texture
on the shape domains O0, . . . ,OK−1 is aligned to the transport direction, and the
absolute value of the velocity v is color-coded as .

In the limit the term for the mismatch energy (4) converges to an optical flow
type energy

EOF =
∫ 1

0

∫
S(t)

∣∣(1, v(t))T · nS(t)
∣∣ dadt , (10)

where nS(t) denotes the normal on the shape tube ∪t∈[0,1]S(t) in space time
and (1, v(t)) is the underlying space time motion field (cf. L1 type optimal flow
functionals like in [24,25]). To see this, we have to consider vol(Ok−1�φ−1

k (Ok))
as the time discrete mismatch induced by a motion field vτ which is not consistent
with the actual time discrete flow of the shape Sτ . Indeed, (1, vτ )T · nSτ is the
local rate with which (�+(t−tk−1)vτ )(Sk−1) and the tube of shapes ∪t∈[0,1]S(t)
diverge on the time interval [tk−1, tk).

The third term of the global energy measuring the shape perimeter turns into
the time integral over the perimeter. Finally, as Sτ (t) → S(t) and vτ (t) → v(t),
the energy converges against

E [v,S] = Diss[v] + η EOF[v, S] + ν

∫ 1

0
Earea[S(t)] dt . (11)

The convergence of the time-discrete energy functional (5) for τ → 0 in the sense
of Γ -convergence involves further considerations and is not treated here. In the
limit η → ∞, the optical flow term will act as a mere penalty which ensures that
the family of shapes S(t) is exactly generated by the flow associated with v(t).
In this case and if we set ν = 0, Diss[v] indeed represents the first fundamental
form for the desired Riemannian metric. Thus, the notion of our time discrete
geodesics is consistent with this both geometrically and physically sound time
continuous geodesic path model in a Riemannian shape space.

4 Regularized Level Set Approximation

To numerically solve the minimization problem for the energy (5), we assume the
object domains O to be represented by zero super level sets {x ∈ Ω : u(x) > 0}
of a scalar function u. Similar representations of shapes have been used for
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shape matching and warping in [26,11]. We follow the approximation proposed
by Chan and Vese [27] and encode the partition of the domain into object and
background in the different energy terms via a regularized Heaviside function
Hε(uk). As in [27] we consider the function Hε(x) := 1

2 + 1
π arctan

(
x
ε

)
, where ε

is a scale parameter representing the width of the smeared-out shape contour.
Hence, the mismatch energy is replaced by the approximation

Eε
match[φk, uk−1, uk]=

∫
Ω

(Hε(uk(φk))−Hε(uk−1))
2dx, (12)

and the area of the kth shape Sk is replaced by the total variation Eε
area[uk] =∫

Ω
|∇Hε(uk)| dx of Hε ◦ uk. With respect to the deformation energy we assume

that the whole computational domain is deformed, but with a material which
is several orders of magnitude softer on the complement set Ω \ Ok than inside
Ok. Hence, the elastic energy (2) is replaced by the energy

Eε,δ
deform[φk, uk−1]=

∫
Ω

((1−δ)Hε(uk−1)+δ)W (Dφk)dx, (13)

where δ = 10−4 in our implementation. Let us emphasize that in the energy
minimization algorithm, the guidance of the initial zero level lines towards the
final shapes relies on the nonlocal support of the regularized Heaviside function
(cf. [28]). Finally, we end up with the approximation of the total energy,

Eε,δ
τ [(φk, uk)k]=

K∑
k=1

(1
τ
Eε,δ

deform[φk, uk−1]+ηEε
match[φk, uk−1, uk]+ντEε

area[uk]
)
.(14)

In our applications we have chosen η = 200 and ν = 0 except for Fig. 7, where
ν = 0.005. The essential formulas for the variation of the energy can be found
in the appendix.

5 Finite Element Discretization in Space

For the spatial discretization of the energy Eε,δ
τ in (14) the finite element method

has been applied. The level set functions uk and the different components of the
deformations φk are represented by continuous, piecewise multilinear (trilinear
in 3D and bilinear in 2D) finite element functions Uk and Φk on a regular grid
superimposed on the domain Ω = [0, 1]d. For the ease of implementation we
consider dyadic grid resolutions with 2L +1 vertices in each direction and a grid
size h = 2−L. In 2D we considered L = 7, . . . , 10 and in 3D L = 7.

Single level minimization algorithm. For fixed time step τ and fixed spatial grid
size h, let us denote by Eε,δ

τ,h[(Φk, Uk)k] the discrete total energy depending on
the set of K discrete deformations Φ1, . . . , ΦK and K + 1 discrete level set
functions U0, . . . , UK , where U0 and UK describe the shapes SA and SB and
are fixed. This is a nonlinear functional both in the discrete deformations Φk
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(due to the concatenation Uk ◦Φk with the discrete level set function Uk and the
nonlinear integrand W (·) of the deformation energy Eε,δ

deform) and in the discrete
level set functions Uk (due to the concatenation with the regularized Heaviside
function Hε(·)). In our energy relaxation algorithm for fixed time step and grid
size, we consider a gradient descent approach. We constantly alternate between
performing a single gradient descent step for all deformations and one for all
level set functions. The step sizes are chosen according to Armijo’s rule. This
simultaneous relaxation with respect to the whole set of discrete deformations
and discrete level set functions, respectively, already outperforms a simple non-
linear Gauss-Seidel type relaxation (cf. Fig. 3). Nevertheless, the capability to
identify a globally optimal shortest path between complicated shapes depends
on an effective multi–scale relaxation strategy (see below).

Numerical quadrature. Integral evaluations in the energy descent algorithm are
performed by Gaussian quadrature of third order on each grid cell. For various
terms we have to evaluate pushforwards U ◦Φ of a discretized level set function
U or a test function under a discretized deformation Φ. In our algorithm, this
evaluation is performed exactly at the quadrature points.

Cascadic multi–scale algorithm. The variational problem considered here is highly
nonlinear, and for fixed time step size the proposed scheme is expected to have
very slow convergence; also it might end up in some nearby local minimum.
Here, a multi-level approach (initial optimization on a coarse scale and successive
refinement) turns out to be indispensable in order to accelerate convergence and
not to be trapped in local minima far from the global minimum. Due to our
assumption of a dyadic resolution 2L + 1 in each grid direction, we are able to
build a hierarchy of grids with 2l +1 nodes in each direction for l = L, . . . , 0. Via
a simple restriction operation we restrict every finite element function to any of
these coarse grid spaces. Starting the optimization on a coarse grid, the results
from coarse scales are successively prolongated onto the next grid level for a
refinement of the solution [29]. Hence, the construction of a multigrid hierarchy
allows to solve coarse scale problems in our multi-scale approach on coarse grids.
Since the width ε of the diffusive shape representation Hε ◦ uk should naturally
scale with the grid width h, we choose ε = h.

On a 3GHz Pentium 4, still without runtime optimization, 2D computations
for L = 8 and K = 8 require ∼ 1h. Based on a parallelized implementation we
observed almost linear scaling.

6 Further Results and Generalizations

We have computed discrete geodesic paths for 2D and 3D shape contours. The
method is both robust and flexible due to the underlying implicit shape de-
scription via level sets (cf. Fig. 1 and Fig. 6). Indeed, neither topologically
equivalent meshes on the initial shapes are required, nor need the shapes them-
selves be topologically equivalent. In addition, we can easily restrict the approach
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Fig. 6. Geodesic path between the cat and the lion, with the local rate of dissipation
on the shapes S0, . . . ,SK−1 color-coded as (top) and a transparent slicing plane
with texture-coded level lines (bottom)

Fig. 7. Geodesic paths between an X and an M, without a contour length term (ν = 0),
allowing for crack formation, (top rows) and with this term damping down cracks and
rounding corners (bottom rows). In the bottom rows we additionally enforced area
preservation along the geodesic.

Fig. 8. A discrete geodesic connecting different poses of a matchstick man can be
computed (from left to right starting with the second), even though part of one arm
and one leg of S0 (left) are occluded.

to the submanifold of 2D area or 3D volume preserving objects based on a predic-
tor corrector scheme. Fig. 7 shows an example of two different geodesics between
the letters X and M, demonstrating the impact of the term Earea controlling the
d − 1 dimensional area of the shapes.

In many shape classification applications, one would like to evaluate the dis-
tance of a partially occluded shape from a given template shape. As a proof of
concept, Fig. 8 depicts a corresponding discrete geodesic path. This requires a
minor modification of our model, i. e. solely for k = 0 in Eε

match we insert a smooth
function as a mask for S0.

Furthermore, we evaluated distances between different 2D letters based on the
discrete geodesic path length. The resulting clustering is shown in Fig. 9 left.
Finally, in Fig. 9 right we studied distances between four different foot level sets
converted from 3D scans. Surprisingly, the observed clustering is different from
the criterion based on the enclosed volume.
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Fig. 9. Left: Pairwise geodesic distances between (also topologically) different letter
shapes. Obviously, the Bs and Xs form clusters, and these two clusters are closer to
each other than the significantly distant M. Right: Pairwise geodesic distances between
different scanned 3D feet (data courtesy of adidas). Despite being geometrically fairly
close, the computed geodesic distance allows to single out the fourth foot as being
significantly farther away from the other three, which are almost at equal distance,
even though feet 1 and 4 are of equal volume and feet 2 and 3 have 13 % less volume.

7 Conclusions and Future Work

We have proposed a novel variational time discretization of geodesics in shape
space. The key ingredients are the 1-1 mapping property between consecutive
time steps and the rigid body motion invariance. The approach is physically mo-
tivated and based on measuring flow-induced dissipation in the interior of shape
contours. The proposed formulation allows to weight the effect of the local change
of length and volume separately, leading to significantly different geodesic paths.
Both physically and with respect to the shape description, geodesic paths can un-
dergo certain topological transitions. A cascadic multi–scale relaxation strategy
renders the computation robust and effective. Future generalization of the model
might deal with the incorporation of prior statistical knowledge and the space
of general image morphologies. Furthermore, we would like to rigorously investi-
gate the time discrete to time continuous limit via the concept of Γ convergence.
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Appendix. Here, we give explicit formulas for the variation of the different
energy contributions in directions of the unknown functions uk (k = 1, . . . , K−1)
and φk (k = 1, . . . , K), required in the numerical implementation. Let us denote
by 〈δwE , ϑ〉 a variation of an energy E with respect to a parameter function w
in a direction ϑ. Using straightforward differentiation, for sufficiently smooth uk

and φk we obtain

〈δφk
Eε

match[φk, uk−1, uk], ψ〉 = 2
∫

Ω

(Hε(uk◦φk)−Hε(uk−1)) δε(uk◦φk)∇uk◦φk ·ψ dx ,

〈δuk−1Eε
match[φk, uk−1, uk], ϑ〉 = −2

∫
Ω

(Hε(uk ◦ φk) − Hε(uk−1)) δε(uk−1)ϑdx ,

〈δukEε
match[φk, uk−1, uk], ϑ〉 = 2

∫
Ω

(Hε(uk ◦ φk) − Hε(uk−1)) δε(uk ◦ φk)ϑ ◦ φk dx ,

〈δφk
Eε,δ

deform[φk, uk−1], ψ〉 =
∫

Ω

((1 − δ)Hε(uk−1) + δ) W,A(Dφk) : Dψ dx

for test functions ϑ and test displacements ψ, where W,A denotes the derivative
of W with respect to its matrix argument. For the variation of Eε

area[uk] we refer
to [27].



Image Registration under Varying Illumination:
Hyper-Demons Algorithm

Mehran Ebrahimi and Anne L. Martel

Department of Medical Biophysics, University of Toronto
Imaging Research, Sunnybrook Health Sciences Centre

Toronto, Ontario, Canada
mehran.ebrahimi@sri.utoronto.ca, anne.martel@sri.utoronto.ca

Abstract. The goal of this paper is to present a novel recipe for de-
formable image registration under varying illumination, as a natural ex-
tension of the demons algorithm. This generalization is derived directly
from the optical-flow constraints in a variational formulation. Further-
more, our approach provides a new mathematical interpretation of the
demons algorithm via fixed-point iterations in a consistent framework.

1 Introduction

Since the appearance of Thirion’s work [13,14], the so-called demons method has
become a popular deformable registration technique in medical imaging. A rea-
son for this success may be attributed to the simplicity, speed, and performance
of Thirion’s proposed technique. Over the years, the demons method has been
extended by several authors [6,2,15,16] who have proposed different variations.

Although Thirion’s seminal work [13,14] intuitively borrows physical ideas of
thermodynamics, deeper mathematical insight of these ideas has been introduced
in [10,11] which focuses on understanding the algorithm.

In this paper, we shall provide a novel mathematical interpretation of the
demons algorithm, originating directly from the optical flow constraints [7,5,17].
The optical flow equations [7] inspired Thirion to introduce his so-called forces
in his proposed scheme. Furthermore, to the best of our knowledge, none of
these existing extensions of the demons algorithm focuses directly on the varying
illumination problems introduced by changes in image intensity such as those
due to contrast enhancement or to changes in coil sensitivity between images.
Our formulation shall address this varying illumination problem.

To proceed, we need to rigorously introduce the required background material
which we will be employed in our formulation.

In Section 2, we will introduce an intensity-based deformation model. For
consistency, we adapt our notation from [10] and shall mention our distinctive
differences when necessary. In Section 3, we briefly cover the background on
optical flow constraints and associated methods, including the demons algorithm.
Section 4 is dedicated to developing our extension. Finally, we will present various
computational experiments and concluding remarks in Section 5.
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2 An Intensity-Based Deformation Model

An intensity-based deformation process is modeled via a real-valued multivariate
intensity function E

(
X(x, t), t

)
in which t ∈ [0, 1] is an artificial time-step, x =

(x1, x2, . . . , xd) represents the initial coordinate of a particle in the image domain
Ω ⊂ Rd, and the function

X : Ω × [0, 1] → R
d, X = (X1, X2, . . . , Xd)

defines the path of the particle [10]. Based on the fact that the coordinate of
the particle at time t = 0 is x, we write X(x, 0) = x. We also assume that the
coordinate of the particle at time t = 1 is defined by the transformation φ(x)
meaning that X(x, 1) = φ(x). The known measurements of such deformation
process are the target image f(x) and the source image g(x) defined in L2(Ω),
under the two main assumptions

E |t=0= f(X(x, 0)) = f(x),

E |t=1= g(X(x, 1)) = g ◦ φ(x).

[We have slightly modified the model presented in [10] (pp. 159) that assumes
E |t=1= g(x).] We are now able to define deformations both at a time instance
and over a time interval. More formally, we define a time dependent instanta-
neous deformation vector

dX

dt
= (u1, u2, . . . , ud) = u

and the total displacement vector by

U(x) = X(x, 1) − X(x, 0) = φ(x) − x. (1)

Equation (1) yields φ(x) = U(x)+x. Furthermore, by the fundamental theorem
of calculus we can write∫ 1

0
[
dE

dt
]dt = E |t=1 −E |t=0= g ◦ φ − f, (2)

∫ 1

0
u dt =

∫ 1

0
[
dX

dt
]dt = X(x, 1) − X(x, 0) = U(x). (3)

These equations will be used in the following sections.

3 Optical Flow Constraints and Associated Methods

3.1 Conserved Intensity

In the simplest case, the optical flow equation (see for example Horn-Schunck
[7]) relies on the conservation (or constancy) of intensity at a time instance t
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and a spatial location x, i.e., dE
dt = 0. Hence,

dE

dt
=

dE(X(x, t), t)
dt

= Et +
d∑

i=1

EXi

dXi

dt

= Et +
d∑

i=1

uiEXi = 0.

This equation contains d unknowns {ui}1≤i≤d and does not possess a unique
solution. A possibility to overcome this ill-posed problem is to regularize the
solution by exploiting spatial correspondence in the image domain Ω at any
time instance t. Horn and Schunck [7] use a uniform smoothness constraint in
the regularization expression and form

arg min
{ui}

∫
x∈Ω

[
λ2

d∑
i=1

d∑
j=1

(
∂ui

∂xj
)2
]

+
[
Et +

d∑
i=1

uiEXi

]2
dx.

To compute the d unknown instantaneous deformation vectors {ui}1≤i≤d,
the corresponding Euler-Lagrange equations are computed, a discretization of
time with Δt = 1 is used and the solution is estimated iteratively. It is worth
mentioning that the original model of [7] does not distinguish between
x and X .

3.2 Non-conserved Intensity

Gennert-Negahdaripour [5] propose a non-conserved intensity model in which
the rate of change of intensity is modeled as a linear (polynomial of degree
m = 1) expression of intensity with spatially-varying coefficients ck as

dE

dt
=

m∑
k=0

ckEk.

The corresponding minimization is

min
{ui}{ck}

∫
Ω

[
λ2

d∑
i=1

d∑
j=1

(
∂ui

∂xj
)2 +

m∑
k=0

λ2
k

d∑
j=1

(
∂ck

∂xj
)2
]

+

[
Et +

d∑
i=1

uiEXi −
m∑

k=0

ckEk
]2

dx, (4)

which contains d + m + 1 unknowns that are the instantaneous deformation
vectors {ui}1≤i≤d and the coefficients of the intensity shift {ck}0≤k≤m. The
approach in [5] is very similar to Horn-Schunck’s. However, the original model
in [5] only addresses a linear intensity shift, i.e., m = 1, and does not consider
the case where d > 2 which involves larger matrix inversions.
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A series of methods introduced in [1,4,9] propose constructing a very large sys-
tem of equations directly based on the expression (4). Iterative solvers
(e.g., conjugate gradient method) are used to minimize the objective functional
and estimate the deformation vectors. However, these methods require enormous
memory and their hierarchical extensions are not obvious in general.

3.3 Demons Method

The demons method proposed by Thirion [13,14] introduces a notation adapted
from Maxwell’s demons in thermodynamics. As a special type of demon-type
Thirion introduces “a complete grid of demons” in which the “pushing forces”
are computed for demons placed at every pixel of the image and computed
based on the minimum-norm solution of dE

dt = Et +
∑d

i=1 uiEXi = 0. Thirion

approximates such force expressions as ui = −fxi
(g−f)

ε2+
∑d

i=1 f2
xi

that leads to Alg. 1 for

a fixed number of iterations. It is worth mentioning that no distinction between
instantaneous and total deformations (u and U) is made in the original approach
[13,14]. Also, ε is replaced by f − g which may cause instabilities. Some of these
issues have been clarified in [10].

Alg. 1. Demons algorithm, complete grid of demons
read target image f(x) and source image g(x).
choose a linear smoothing operator G, a number ε, and some large N .
set Ui

(1)(x) = 0, for 1 ≤ i ≤ d and x ∈ Ω.
for n = 1 : N do // Iterations

φ(x) = U (n)(x) + x

Ui
(n+1) = G

[
Ui

(n) − fxi

[
g◦φ−f

]
ε2+‖∇f‖2

]
, 1 ≤ i ≤ d

end

return the displacement U (n+1), and the registered source image g ◦ φ.

4 Building a General Model

4.1 The Problem Set-Up

We plan to derive Alg. 1 and include the intensity correction terms in the demons
algorithm. To do so, we revisit the Gennert-Negahdaripour model [5]

min
{ui}{ck}

∫
Ω

[
λ2

d∑
i=1

d∑
j=1

(
∂ui

∂xj
)2 +

m∑
k=0

λ2
k

d∑
j=1

(
∂ck

∂xj
)2
]

+

[
Et +

d∑
i=1

uiEXi −
m∑

k=0

ckEk
]2

dx.
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Due to an anticipated improved representation, we change the scale of the coef-
ficients defining αk = λ/λk, wk = −ck/αk and obtain the new functional

L =
∫

Ω

λ2
[ d∑

i=1

d∑
j=1

(
∂ui

∂xj
)2 +

m∑
k=0

d∑
j=1

(
∂wk

∂xj
)2
]

+

[
Et +

d∑
i=1

uiEXi +
m∑

k=0

αkwkEk
]2

dx.

This change of variable, will enable us to use a simplified version of Sherman-
Morrison-Woodbury matrix inversion lemma [18,12] in deriving the solution in
the next section. The new objective is to minimize L with respect to {ui}1≤i≤d

and {wk}0≤k≤m. The corresponding Euler-Lagrange equations of this minimiza-
tion yields

∀ 1 ≤ i ≤ d,

λ2(
d∑

j=1

∂2ui

∂xj
2 ) = EXi

[
Et +

d∑
i=1

uiEXi +
m∑

k=0

αkwkEk
]
, (5)

∀ 0 ≤ k ≤ m,

λ2(
d∑

j=1

∂2wk

∂xj
2 ) = αkEk

[
Et +

d∑
i=1

uiEXi +
m∑

k=0

αkwkEk
]
. (6)

Similar to [7], assume that for any v we approximate the Laplacian of v with

∇2v =
d∑

j=1

∂2v

∂xj
2 ≈ κ2(Gv − v)

in which G is some linear smoothing operator and κ is a constant real number.
One can verify that assuming G to be a Gaussian with zero mean and standard
deviation 1√

ln 4
and κ = 2 leads to the corresponding approximations presented

in [7]. We also define the set of vectors

M = (EX1 , EX2 , . . . , EXd
, α0, α1E

1, . . . , αmEm)

V = (u1, u2, . . . , ud, w0, w1, . . . , wm)T

V̄ = G
[
V
]

= (Gu1, Gu2, . . . , Gud, Gw0, Gw1, . . . , Gwm)T

which will be used in finding the solution.
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4.2 Deriving the Solution

The set of Euler-Lagrange Equations (5) and (6) can be summarized as

(λκ)2(V̄ − V) = MT (Et + MV).

Arranging the terms to form a linear equation of V yields[
MT M + (λκ)2I

]
V = (λκ)2V̄ − EtMT . (7)

Solving Equation (7) for V using Lemma 1 (simplified Sherman-Morrison-
Woodbury matrix inversion formula [18,12]), for ε = λκ yields [See the proofs in
the Appendix]

V = V̄ − MT (Et + MV̄)
(λκ)2 + MMT

. (8)

Lemma 1. If M is a row-vector, then for any nonzero ε

[MT M + ε2I]−1 =
1
ε2

[I − MT M
ε2 + MMT

].

Finally, taking G from both sides of Equation (8) yields

V̄ = G

[
V
]

= G

[
V̄ − MT (Et + MV̄)

(λκ)2 + MMT

]
.

Hence, we wish to approximate V̄ that satisfies

V̄ = G

[
V̄ − MT (Et + MV̄)

(λκ)2 + MMT

]
.

Momentarily, renaming V̄ as V we find an estimate of V that instead satisfies

V = G

[
V − MT (Et + MV)

(λκ)2 + MMT

]
. (9)

From now on, we remember that any approximation of V requires a deconvolu-
tion step with respect to G (if G is a convolution operator) due to this change
of variable. Such deconvolution is not performed assuming V is smooth enough.
To estimate V that satisfies Equation (9) converting to the original notation we
would like to find {ui}1≤i≤d, {wk}0≤k≤m that

∀ 1 ≤ i ≤ d,

ui = G

[
ui −

EXi

[
Et +

∑d
i=1 uiEXi +

∑m
k=0 αkwkEk

]
(λκ)2 +

∑d
i=1(EXi )2 +

∑m
k=0(αkEk)2

]
, (10)

∀ 0 ≤ k ≤ m,
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wk = G

[
wk −

αkEk
[
Et +

∑d
i=1 uiEXi +

∑m
k=0 αkwkEk

]
(λκ)2 +

∑d
i=1(EXi )2 +

∑m
k=0(αkEk)2

]
. (11)

Now we are ready to move from instantaneous deformation vectors to total
displacements. Integrating Equation (10) with respect to time t over [0, 1] yields∫ 1

0
ui dt = G

[ ∫ 1

0
ui dt−

∫ 1

0

EXi

[
Et +

∑d
i=1 uiEXi +

∑m
k=0 αkwkEk

]
(λκ)2 +

∑d
i=1(EXi)2 +

∑m
k=0(αkEk)2

dt

]
,

for any 1 ≤ i ≤ d. Hence, from Equation (3), dE
dt = Et +

∑d
i=1 uiEXi , and we

obtain

Ui = G

[
Ui −

∫ 1

0

EXi

[
dE
dt +

∑m
k=0 αkwkEk

]
(λκ)2 +

∑d
i=1(EXi)2 +

∑m
k=0(αkEk)2

dt

]
. (12)

Choosing Δt = 1 and approximating the integrals using left Riemann sum eval-
uating E and its partial derivatives yields for any 1 ≤ i ≤ d

Ui = G

[
Ui −

fxi

[∫ 1
0

dE
dt dt +

∑m
k=0 αkfk

∫ 1
0 wkdt

]
(λκ)2 +

∑d
i=1(fxi)2 +

∑m
k=0(αkfk)2

]
.

[Note that the choice of Δt = 1 is the extreme case of Riemann sum where the
interval is partitioned to only one element. The authors do not claim that this
provides a superior approximation. This approximation is employed for consis-
tency with [7].] Hence, using Equation (2) yields for any 1 ≤ i ≤ d

Ui = G

[
Ui −

fxi

[
g ◦ φ − f +

∑m
k=0 αkfkWk

]
(λκ)2 +

∑d
i=1(fxi)2 +

∑m
k=0(αkfk)2

]
,

in which Wk =
∫ 1
0 wkdt. Similarly, if we proceed the same approach for wk,

0 ≤ k ≤ m, starting from Equation (11) we obtain the following pair of equations.

∀ 1 ≤ i ≤ d,

Ui = G

[
Ui −

fxi

[
g ◦ φ − f +

∑m
k=0 αkfkWk

]
(λκ)2 + ‖∇f‖2 +

∑m
k=0(αkfk)2

]
, (13)

∀ 0 ≤ k ≤ m,

Wk = G

[
Wk −

αkfk
[
g ◦ φ − f +

∑m
k=0 αkfkWk

]
(λκ)2 + ‖∇f‖2 +

∑m
k=0(αkfk)2

]
, (14)
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in which φ(x) = U(x) + x. The solution of these two equations will be approxi-
mated numerically using the fixed-point iterations.

4.3 Hyper-Demons Algorithm

Approximating the solution of Equations (13) and (14) using fixed-point itera-
tions, we obtain the Hyper-Demons Alg. 2. Assuming the normalization factors
[α0, . . . , αm] to be all zero makes Alg. 2 equivalent to the demons Alg. 1. Hence,
the demons algorithm is a special case of our proposed hyper-demons algorithm.
A simple case of the algorithm with 0-degree polynomial is given in Alg. 3.

Alg. 2. Hyper-Demons Algorithm
read target image f(x) and source image g(x).
choose a linear smoothing operator G, a number ε, polynomial degree m,

normalizing factors [α0, . . . , αm], and some large N .
set Ui

(1)(x) = Wk
(1)(x) = 0, for any 1 ≤ i ≤ d, 0 ≤ k ≤ m, x ∈ Ω.

for n = 1 : N do // Fixed point iterations

φ(x) = U (n)(x) + x

Ui
(n+1) = G

[
Ui

(n) −
fxi

[
g◦φ−f+

∑m
k=0 αkfkWk

(n)
]

ε2+‖∇f‖2+
∑m

k=0(αkfk)2

]
, 1 ≤ i ≤ d

Wk
(n+1) = G

[
Wk

(n) −
αkfk

[
g◦φ−f+

∑m
k=0 αkfkWk

(n)
]

ε2+‖∇f‖2+
∑m

k=0(αkfk)2

]
, 0 ≤ k ≤ m.

end

return the displacement U (n+1), and the registered source image g ◦ φ.

Alg. 3. Hyper-Demons Algorithm: 0-Degree Contrast Polynomial
read target image f(x) and source image g(x).
choose a linear smoothing operator G, a number ε, a normalizing factor α,

and some large number N .
set Ui

(1)(x) = W (1)(x) = 0, for any 1 ≤ i ≤ d, x ∈ Ω.
for n = 1 : N do // Fixed point iterations

φ(x) = U (n)(x) + x

Ui
(n+1) = G

[
Ui

(n) −
fxi

[
g◦φ−f+αW (n)

]
ε2+‖∇f‖2+α2

]
, 1 ≤ i ≤ d

W (n+1) = G

[
W (n) −

α

[
g◦φ−f+αW (n)

]
ε2+‖∇f‖2+α2

]
.

end

return the displacement U (n+1), and the registered source image g ◦ φ.
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Hyper-Demons algorithm with right or central approximation: The
terms fxi , ∇f , and fk in the hyper-demons algorithm is a consequence of a
left approximation of EXi , ∇E, and Ek in Equation (12) for t over [0, 1]. If
we wish to use the right approximation, we need to replace the terms fxi , ∇f ,
and fk in the Hyper-Demons algorithm respectively by gxi ◦ φ, (∇g) ◦ φ, and
(g ◦ φ)k. Similarly, the terms fxi , ∇f , and fk in the Hyper-Demons algorithm
are respectively replaced by fxi

+gxi
◦φ

2 , ∇f+(∇g)◦φ
2 , and (f+g◦φ

2 )k starting from
a central approximation.

5 Results and Conclusions

5.1 Theoretical Results

Our approach presents a novel and distinct interpretation of the demons algo-
rithm compared to previous works [11,10] in this direction. Furthermore, our
approach presents a generalization of the Gennert-Negahdaripour formulation
[5] in a natural fashion, because we based our approach on their model yet in-
cluded arbitrary image dimensions and arbitrary degrees of the polynomial. Our
approach generalizes the demons algorithm to include the intensity shift, be-
cause assuming αk → 0, 0 ≤ k ≤ m, corresponds to λk = ∞, 0 ≤ k ≤ m in the
Gennert-Negahdaripour formulation [5] and yields the original demons algorithm
[13,14]. Furthermore, the algorithm resulting from the “right” and “central” ap-
proximations corresponds to similar ones in the literature [11,2,15,16] obtained
from different point of views.

5.2 Computational Results

To better understand the introduced algorithm, we start from two 8-bit, 256×256
images shown in Fig. 1(a1-a2). The target image is generated by adding con-
trast enhancement to the source image and the source image is then deformed
using a finite element model (FEM) [9]. The magnitude of this deformation is
shown is Fig. 1(b1) and the intensity change is shown in Fig. 1(b3). If we use
the central-scheme demons algorithm over various integer values of the param-
eter ε and compute the euclidean distance between the computed and the real
deformation we yield the dashed curve shown in Fig. 1(e). It turns out that
the minimum of such deformation distance occurs at ε = 13 marked by “d” on
Fig. 1(e). The magnitude of the corresponding deformation, the registered source,
the difference between the registered source and the target, and the distance be-
tween the computed deformation and the real deformation are shown in
Fig. 1(d1-d4) respectively. In all of our experiments in this section, N = 100
iterations were performed, G is chosen as a Gaussian of size 15× 15 and of stan-
dard deviation σ = 5, and cubic interpolation is used in the algorithms when
necessary.

Now if we use the central-scheme hyper-demons algorithm with zero-degree
intensity shift, i.e. m = 0, and choose ε = 0 varying α with the same param-
eters as the previous experiment we yield the solid curve plotted in Fig. 1(e).
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(a1) source (a2) target (a3) source-target

(b1) real deform. (b2) reg. source (b3) reg. source-target

(c1) computed deform. (c2) reg. source (c3) reg. source-target (c4) deform. dist.
hyper-demons, α = 2 , ε = 0

(d1) computed deform. (d2) reg. source (d3) reg. source-target (d4) deform. dist.
demons, ε = 13, α = 0
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Fig. 1. Comparison of the demons and hyper-demons algorithms for simulated data

The minimum deformation distance occurs at α = 2 marked as “c” on the plot.
The corresponding deformation related images in this case are shown Fig. 1(c1-
c4). It can be observed that the “best” deformation computed via changing α
(i.e., a special case of hyper-demons) is slightly more precise that the “best”
deformation vector computed varying ε (i.e., the demons algorithm).
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(a1) source (a2) target (a3) source-target

(b1) real deform. (b2) reg. source (b3) reg. source-target

(c1) computed deform. (c2) reg. source (c3) reg. source-target (c4) deform. dist.
hyper-demons, α = 6 , ε = 0

(d1) computed deform. (d2) reg. source (d3) reg. source-target (d4) deform. dist.
demons, ε = 6, α = 0

(e1) computed deform. (e2) reg. source (e3) reg. source-target (e4) deform. dist.
demons, ε = 31, α = 0

(f1) computed deform. (f2) reg. source (f3) reg. source-target (f4) deform. dist.
demons, ε = 150, α = 0
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Fig. 2. Comparison of the demons and hyper-demons algorithms for simulated data
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To further observe the role of α in the algorithm we add a ramp-shaped in-
tensity shift of value 160 to the source image denoted in Fig. 2(a1) and perform
similar experiments. It can be observed that the central-scheme demons algo-
rithm is not capable of estimating the motion in this case due to this rather
large intensity shift. The corresponding curve in plotted via dashed line in
Fig. 2(g). It can be seen that curve does not attain a minimum. Three cor-
responding nominal values of ε = 6, 31, and 150 are simply picked and their
corresponding deformation-related images are displayed in Fig. 2 (d1-d4, e1-
e4,f1-f4). These three locations are labeled as “d”,“e”, and “f” on the plot of
Fig. 2(g). Now if we repeat the experiment for the central-scheme hyper-demons
algorithm with zero-degree intensity shift and choose ε = 0 varying α we obtain
the solid curve on the plot of Fig. 2(g). The minimum of this curve is attained
at α = 6 which is labeled as “c” on the plot. The corresponding deformation-
related figures of this α = 6, ε = 0 case is given in Fig. 2(c1-c4). Note that the
deformation difference plotted in Fig. 2(c4) is much smaller compared to the cor-
responding differences displayed in Fig. 2(d4,e4,f4). It can be deduced that for no
value of ε the correct motion can be estimated in this case using the traditional
demons algorithm due to the large intensity change (or varying illumination).
However, the hyper-demons algorithm is effectively capable of estimating the
motion.

5.3 Concluding Remarks

We mathematically derived the demons algorithm [13,14] from the past methods
[5,7] in a consistent framework. This provided a new interpretation and a novel
extension of the demons algorithm. It is worth mentioning that our approach
does not separate the intensity correction stage from the registration as opposed
to some of the existing works in the literature (e.g., [6]). A focus of our work
was to address image registration problem under varying illuminations. This is
particularly relevant for the registration of dynamic contrast enhanced images.
A recent, general, and related work to this manuscript will appear in [3].
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Appendix

Proof of Lemma 1

Proof. Note that MMT is a scalar if M is a row-vector. Multiply [MT M + ε2I]
with its “potential” inverse 1

ε2 [I− MT M
ε2+MMT ] from left (and then right) and obtain

the identity matrix I. The left-hand-side calculations are given below. The right-
hand-side case is shown similarly.

1
ε2

[I − MT M
ε2 + MMT

] × [MT M + ε2I]

=
1
ε2

[
MT M − MT MMT M

ε2 + MMT
+ ε2I− ε2MT M

ε2 + MMT

]
=

1
ε2

[ (ε2 + MMT )MT M − MMTMT M − ε2MT M
ε2 + MMT

+ ε2I
]

=
1
ε2

[
0 + ε2I

]
= I.

Proof of Equation (8)

Choosing ε = λκ, Equation (7) gives[
MT M + ε2I

]
V = ε2V̄ − EtMT .

Hence, using Lemma 1

V =
[
MT M + ε2I

]−1[
ε2V̄ − EtMT

]
=

1
ε2

[I − MT M
ε2 + MMT

]
[
ε2V̄ − EtMT

]
=

1
ε2
[
ε2V̄ − ε2MTMV̄

ε2 + MMT
− EtMT +

EtMT MMT

ε2 + MMT

]
=

1
ε2
[
ε2V̄ − ε2MTMV̄

ε2 + MMT
− Et(ε2 + MMT )MT

ε2 + MMT
+

EtMMTMT

ε2 + MMT

]
=

1
ε2
[
ε2V̄ − ε2MTMV̄

ε2 + MMT
− ε2MT Et

ε2 + MMT

]
= V̄ − MT (Et + MV̄)

ε2 + MMT
.

[Note that MMT is a scalar and has commuted its order in the above compu-
tation. ]
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Abstract. We present results demonstrating that using a hierarchy of fi-
nite element vibration modes in an evolutionary deformable shape search
provides a new interesting approach for the localization and segmentation
of specific objects in 2D images. The design and coupling of the different
levels of the shape hierarchy results in a multi–resolution shape space,
which can be exploited in top–down part–based shape matching. The
proposed strategy allows for segmenting complex objects from images,
classification, as well as localization of the desired object under occlu-
sions. It avoids misregistration by resolving several drawbacks inherent
to standard shape–based approaches, which either cannot adequately
represent non–linear variations, or rely on exhaustive prior training.

1 Introduction

Modeling global and local aspects of shape is useful for many image processing
tasks including object detection, recognition and segmentation, pose estimation
and motion tracking, as indicated by [1–19], among others. Studies on the human
visual perception also provide evidence that a representation suitable for object
detection and recognition should include a structural decomposition of the object
into parts and a description of parts and relations between them [1, 20]. Such
representation should cover variations and irregularities in shape and structure
due to image noise, object deformation and possibly change of view point, and
should allow the representation of objects under occlusion.

The main contribution of this work is a representation of complex variable
objects that contain multiple parts for localizing and segmenting specific objects
in an image. It is inspired by [1], but uses the structural decomposition into
specific shapes in a top–down manner to overcome both, the instability inherent
to structural approaches and the difficulty to extract generic parts (e.g. geons)
from images in a robust way. Our model is conceptually similar to hierarchical
probabilistic models, e.g. [3, 9, 10], with the main difference that it employs
the finite element structural decomposition of specific shapes. As a result it
combines noise robustness from energy–minimizing deformable shape models and
validation of structure from structural models. This reduces the complexity of the
distribution function–which would be needed to model non–linear dependencies
between the shape parameters statistically–while modeling valid variation under
the following assumptions. First, the desired object is (at least partially) visible

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 317–330, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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in the image. Second, variation due to change of view point is negligible if the
set of poses is limited. Finally, shape classes can be differentiated based on their
structural configuration and/or morphology of the shape parts.

2 Structural Image Analysis: Related Work

Some methods construct complex shapes in a bottom–up fashion from segmented
images. For example, in [18] the shape of the human body is parsed in a bottom–
up process that employs a rigid shape–based comparison with exemplars of in-
creasingly more complete body parts for evaluating the proposed segmentations.
Other approaches to object detection start with the detection of salient fea-
tures, such as edges, which are grouped, e.g. to obtain the silhouettes of regions,
and evaluated using a prior model (e.g., a compositional model[21–23]) of the
object. A majority of top–down structural approaches uses pre–defined combina-
torial constraints between simplified object parts to encode compound shapes,
e.g. in a structural description graph[4–6, 10, 13, 22, 23], using coupled/split
shapes [8, 13, 14, 16], or an expert model [24]. These approaches either can-
not describe structurally variable shapes, or they capture only relatively weak
structural properties of shape in their tree–structured models. This may not al-
ways be appropriate, since structural variations might influence the morphology
of the shape parts. Several approaches use a trained model of shape locations
[19, 25], or probabilistic constraints between prototypical sub–shapes for gener-
ating expectation maps in a sequential recognition process [12]. Other popular
methods employ Bayesian inference to compute the most probable interpretation
of the image over a hypothesis space defined using joint/mixtures of probabilis-
tic distributions [7, 9, 13, 14, 17]. Representing shape and structure by different
models can be a drawback of some of these methods, as it does not allow struc-
tural deformations to directly influence morphological variation, and vice versa.
This, however, may be required because often the structural aspect of shape is
not independent from local shape variations. Probabilistic models, on the other
hand, require training with representative example data for separating valid from
invalid variation.

We address these issues through specific properties of the proposed method
for representing and segmenting complex objects of specific classes from im-
ages. A major issue here is to abstract objects into a simplified representation
which alleviates comparison between shapes based on qualitative and discrim-
inative features. We therefore adopted the hierarchical ASM approach [7, 9],
and propose a hierarchical Finite Element Model (FEM) that provides a natu-
ral framework for the multi–scale decomposition of non–linear deformation into
variation of specific parts and sub–parts, etc. Shape information is represented
using a combination of a set of basis functions, where the basis is defined in
an a-priori manner[26, 27] (cf. section 3.1). Such prototypical parametric mod-
els are specifically suitable because they can represent variation of the desired
objects in terms of physically plausible deformations at multiple scales of res-
olution (similar to, e.g. [7, 21, 23]). Moreover, adding statistical information is
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straightforward [28]. Finally, the quality of matched shapes can be evaluated
and provides information for eliminating false interpretations of the image, as
described in sections 3.2 and 3.3. For demonstrating its utility in structural im-
age analysis we present in section 4 two case studies for applying our method to
object localization, detection and classification tasks.

3 Method

Our method builds on the assumption that valid instances of the desired com-
pound object can be reconstructed from a set of a-priori constrained model
parameters. We therefore employ the hierarchical finite element decomposition
of shape, which supports an efficient simulation of deformation. To account for
variability in the relationships between shape parts and local shape deformation,
the decomposition is applied in a hierarchical manner, i.e. a class–specific proto-
type is represented as a hierarchy of FEM. The quality of such a model instance
projected into the image domain and deformed according to external (image–
based) model forces can be evaluated and provides contextual shape information
for eliminating false interpretations of the data in a top–down manner.

3.1 Hierarchical Decomposition–Based Shape Modelling

A parametric deformable template T (p) represents the objects undeformed shape
and a set of parameters p = (θ,q) that define how it deforms under applied
forces. Model matching can be viewed as a local search for the optimum values
pt of the deformed model, which is commonly implemented as an optimization
problem based on internal and external energies of the model (cf. sect. 3.2).

In our case, the rest shape a n–dimensional object is modeled as a continuous
domain Ω ⊂ R

n, and its deformation is described by a boundary value partial
differential equation that is solved for the unknown displacement field u(x),
x ∈ Ω using the Finite Element Method. The dynamic equilibrium equation has
the form

∂2u
∂t2

|t>0 = M−1(−C
∂u
∂t

|t>0 − Ku(t) + f(t)), (1)

where K(E, ν) encapsulates the stiffness properties as well as the type of mesh
and discretization used, C approximates a velocity–dependent damping force,
and M may represent a constant function of material density [26]. The deformed
positions x(t) = x0+u(t) at time t ≥ 0 are expressed in terms of a linear mixture
of m = m2 −m1 displacement fields,

x(t) = x0 +
m2∑

k=m1

φkqk(t), (2)

where m1 ≥ 1,m2 ≤ nN , for nN degrees of freedom (DOF) of the system, and
x0 denotes the rest positions of the N nodes. The modal vectors φk are solutions
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Fig. 1. Algorithm overview. In the bottom–up flow of information specific features are
extracted from the underlying image. These are combined to a more complex object
using a hierarchy of deformable shape models. An example of such model is depicted on
the left. Here, the shapes T (1)

1 , T (1)
2 of level l = 1 (solid lines) and the top–level model

T (2)
3 (dotted lines) contribute to a shape–structure hierarchy. The shapes are coupled

across different levels l using virtual springs between specific link nodes allowing for
the top–down propagation of deformations.

to the eigenproblem (K − ω2
kM)φk = 0 and qk contains the nodal coordinates

in embedded space (cf. [27]).
In contrast to, e.g. Ullman et al.[3] and Yuille et al. [24], we employ a hier-

archical mixing process to model elastic co–variations in shape. In our case, a
hierarchical shape model T (p) represents the decomposition of a complex shape
into V discrete, linear shapes,

T (p) =
⋃
v

T (l)
v (pv), (3)

which contribute to different hierarchy levels l. The shape parts (which also
refer to morphological components or sub–shapes) at each level l−1 are coupled
to form a higher level l of the hierarchical shape model (figure 1), while any
sub–shape may represent a compound shape on its own (see sect. 4).

As the spatial configuration of such system is described by its DOF, the desired
structural constraints on the displacement fields are introduced hierarchically by
across–level spring forces subject to pairs of specific link nodes at the consecutive
levels. These forces allow propagating the displacement of top–level link nodes to
the lower level link nodes, such that local displacements will cause deformation
of the top–level shape, and vice versa. Thus it is possible to separately analyze
the deformation behavior of the sub–shapes and their structural relations. In
contrast to [8], this yields a hierarchy of FEM, whose nodes are subject to ex-
ternal model forces, which are derived from the image in a bottom–up fashion
(sect. 3.2). Thereby, the model is capable of representing local and structural
variability of shapes within a uniform framework.

As a result, instances of the hierarchical shape T (p) can be compared based
on their coordinates in the shape space S(T (p))[29]. The valid shape region
SV ⊂ S(T (p)) is characterized by a mixture of parameter vectors pv that span
linear sub–spaces, which hierarchically depend from each other.
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3.2 Hierarchical Shape Matching

Such a hierarchical model deforms into an object instance supported by image
features. It should be able to localize instances of an object class based on
the amount of structural (at level l) and morphological (at levels l − 1, . . . , 1)
deformation necessary to fit the features. External model forces f(t) shall attract
the finite element nodes to characteristic object features in the image. Such
dynamic loads are created by a sensor–based sparse sampling of a scalar potential
field P , whose local minima coincide with features of interest, i.e. f(t) = −∇P(x).

In our case parametrization of the shape parts is constrained by the top level
model, which defines the (initial) placement of the FEM on the lower levels,
whose deformation will cause the sub–shapes to fit local image features. In the
bottom–up flow of information, the input for the finite element nodes of level
l > 1 does not stem directly from the underlying image, but from the output of
the lower hierarchy levels, i.e. only sub–shapes of level l = 1 have direct access
to the image I. Here, external model forces subject to the nodes may be defined
based on normalized1 feature maps IN ∈ [0, 1], computed by linear filtering,
such that the Gaussian potential forces are

f(1)(t) = κ∇IN (x(1)(t)), (4)

where κ > 0 is a constant weight. For image segmentation the sensors usually
sample either a Gaussian low pass filtered version IN = Gσ ∗ I of the image,
or a gradient magnitude map IN = |∇(Gσ ∗ I)|2, where σ denotes the standard
deviation of the low pass filter.

The input for the higher level sensors x(l)
w,j, l > 1, of the structural FEM

with index w ∈ {1, . . . ,V} (cf. Eq. 3) depends on the behavior of the underlying
morphological FEM. More specifically, their deformation is used to define across–
level spring forces,

f(l)w,j(t) = κs(x
(l−1)
v,i (t) − x(l)

w,j(t− 1)), (5)

where x(l−1)
v,i (t) denotes the position of the link node of the associated sub–shape

model T (l−1)
v , v ∈ {1, . . . ,V}, and κs = κf(ΔQ(pt

v, l − 1)), κ > 0. f maps the
high–level feature gradient ΔQ(pt

v, l−1) = Q(pt
v, l−1)−Q(pt−1

v , l−1) to values
from the interval [−1, 1], e.g. using the identity.

The high–level features are computed based on a combined objective function
for estimating the energy of a model instance,

Q(pt
v, l) = ζQd(pt

v, l) + (1 − ζ)Qs(pt
v, l), ζ ∈ [0, 1], (6)

based on a deformation criterion Qd and a measure Qs of correlation with the
expected image data. Using the mean value of the sensor input at the node
positions x(l)

v (t) to estimate Qs (as in [12, 30]) may not always be appropriate
1 By normalization into the interval [0, 1], e.g. using Gaussian normalization, the in-

fluence of different features are rendered independent from the specific filters used.
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(for example if the sensor inputs do not stem from a deterministic potential
field). We therefore directly employ the force formulation, and let

Qs(pt
v, l) = F

(
μ(|f(l)v (t)|2)

)
(7)

indicate the correspondence of the v–th model with the data. The function μ
computes the mean value, and F(x) = exp(−αx2), 0 < α ≤ 1, normalizes the
resulting values to the interval [0, 1], where values close to 1 indicate high quality.

The model deformation criterion Qd measures the degree of discrepancy bet-
ween T (l)

v (p0
v) and T (l)

v (pt
v), i.e. the non–rigid deformation of the shape model in-

stance in its un–rotated reference frame. In our case the strain energy is adapted
from [27], i.e.

Qd(pt
v, l) = F

(
μ
(
(q(l)

v,k(t))2(ω(l)
v,k)−2)). (8)

Since the low–order modes represent global variations, including rigid body
modes, while the high–frequency modes are sensitive to noise, we only consider
the modal amplitudes corresponding to the m intermediate vibration modes,
which explain a proportion, e.g. β = 0.25, of the total variation (cf. sect. 3.1).

The hierarchical constraints facilitate initialization and deformable shape fit
such that contextual shape information can be used for eliminating false interpre-
tations of the data as follows: Each shape fit is achieved by deformations which
are determined by a set of constraints corresponding to finite element vibration
modes (equations 1 and 2). This concept for local optimization is extended such
that our matching algorithm fits the structural model instances to the data in a
hierarchical manner.

Each global shape model T (l)
w , l > 1, restricts the parametrization of the

associated morphological FEM T (l−1)
v according to the displacements of the j =

1, ..., Nw top–level nodes. After initializing an instance of the global model, the
instances of the local models are aligned to it by propagating the displacements
of the link nodes x(l)

w,j in the global model to the linked low–level nodes x(l−1)
v,i

(figure 2a). In this case, the displacement of the j–th top–level link node directly
affects the DOF associated with a specific low–level link node, and is imposed as
displacement boundary condition (BC) on the particular finite element equations
of motion (static case). More specifically, this results in a transform θvw(x) that
maps a point x defined in the v–th local coordinate frame to a point defined in
the global coordinate frame by the position of link node x(l)

w,j(t) at time t = 0,
such that

x(l−1)
v,i (t) = θ−1

vw(x(l)
w,j(t)). (9)

The first steps of the iterative hierarchical shape matching algorithm then
account for the bottom–up flow of information between the l levels of the model.
It is implemented using the hierarchy of forces derived from the particular feature
maps (equations 4 and 5, figs. 2b-2c). Deformation of a FEM at level l = 1 uses
external model forces computed by spatial filtering the underlying image, and for
l > 1 it uses across–level spring forces between pairs of link nodes of levels l− 1
and l. The final step defines the top–down flow of information, which is–similar
to the initialization step–realized through displacement BC (figure 2d).
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(a) (b) (c) (d) (e)

Fig. 2. Shape interactions during the hierarchical shape fit according to sect. 3.2 are ex-
emplarily depicted for a detail of a shape (solid lines)–structure (dotted lines) hierarchy
of two levels (a). (b) Result of the morphological shape fit of T (1)

v (initial configurations
in light gray). (c) The resulting across–level spring force subject to top–level node x

(2)
w,j

(equation 5) is depicted by the red arrow. The respective top–level nodal displacement
determines a displacement boundary condition (black arrow) subject to the particular
first–level link node x

(1)
v,i (d), which causes a deformation of the sub–shape (e).

Thereby, characteristic features are hierarchically derived from the image.
Their significance and semantics increase from the bottom to the top level. A
computationally efficient coarse–to–fine implementation of this matching algo-
rithm uses feature maps of different scales of resolution. On the lowest level,
Gaussian potential fields are computed with dynamically decreasing values for
the standard deviation σ. The high–level features are extracted using a dynam-
ically increasing number of m ≤ n vibration modes, e.g. starting with the rigid–
body modes. Values for σ and m are updated after each step of the matching.

3.3 Hierarchical Shape Search

As suggested in the work of Yuille et al.[24] and in [20], our method aims at
computing the most plausible explanation of the image content given a (set of)
prior model(s) in terms of segmentation with maximum quality. This process uses
an evolutionary deformable shape search for the desired object that is inspired
by [12, 30]. It initializes and optimizes several model instances (with different
parametrisation) in parallel by employing the criterion function defined in equa-
tion 6 for evaluating the quality of matched model instances.

Part–based Localization and Segmentation. Model instances are initiali-
zed by transformation θ of the prototype T from the model coordinate frame
to the image coordinate frame, i.e. T (pt) = x(t) = θ(x0 +

∑m2
k=m1

φkqk(t)), t =
0. For a hierarchical model (as defined in equation 3), θ includes dependent
transformations according to equation 9, i.e. θ = {θv, θvw}, v, w ∈ {1, . . . ,V}.

Although it is straightforward to use other sets of transformations θv, we only
consider translation, rotation and scaling, characterized by the set of geometric
parameters position cv, orientation ψv w.r.t. a predefined axis, and scaling sv of
the model instance T (l)

v in the image. The parameters ξv = {cv, sv, ψv} might
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be considered as variates with a presumed Gaussian2 distribution ξv ∼ N(μ, ς),
such that random samples

xv = μ̂(ξv) + z
√

ς̂(ξv), z ∼ N(0, 1). (10)

Compared with the sequential search in [12, 31], each model instance is random-
ized w.r.t. all its levels, and then fitted to the data in a hierarchical manner. This
will reduce the risk that false negatives in the feature detection step prevent parts
from being properly localized. As the proposed model naturally considers the re-
lationships between the different object features in the image, we only need a
prior of the parameter values for the top–level model as well as for all sub–shapes,
whose parametrization is only partially constrained by it (according to equation
9). Since samples for estimating the parameters μ̂ and ς̂ of the (conditional)
probability density functions (PDF) are in our case not available, we specify an
initial region of parameter values we are interested in. More specifically, we use
pre–set tolerances ς̂ from the parameter values x′

v of the set of model instances
T (l)

v , v ∈ {1, ...,V}, generated from a representative manual segmentation, which
serve as estimates for μ̂ (see sect. 4 for settings we used in our experiments).
Dependent relations between pairs of shapes v and w can be characterized by
means of the parametric transforms, sw→v = s−1

w sv, ψw→v = ψw − ψv, which
are–for sake of simplicity–likewise considered to have a Gaussian PDF.

Each of the multiple model instances initiates an optimization process in order
to adapt to the local conditions in the data (sect. 3.2). We organize the search
by employing a priority queue of regions within the search space, where we use
the quality–of–fit–values Q(pt, l) for the top–level model according to equation 6
of the current model instances as the priority. Solutions with high QOF–values
are selected by applying a threshold τQ, and further evolved until the overall
quality of the current model instances, q, converges. New shape generations
are generated based on the parametrization of the regionally best fitting shapes.
More specifically, each selected shape is randomized in a top–down manner, such
that we use in equation 10 for its v–th shape part, μ̂(ξv) = x′

v and ς̂(ξv) ∈ [0, 1].
Here x′

v is estimated based on the parameters pt
v.

Shape model instances T (l)
v with low quality are replaced by new instances

based on the initial settings accordingly. Misleading shape searches due to an
insufficient parametrization as well as an exponential increase in the number of
shape instances can thus be avoided, while the additional “new” trials keep the
search independent of known solutions. For determining q = μT ∈b(maxQ(pt, l))
and τQ = q− τ , where e.g. τ = 0.1, clusters of model instances with high energy
are built using a regular grid of bins b over the image. The multi–resolution
shape search continues until q converges, such that the desired shape is finally
represented as the best rated structural configuration of shapes in the image.
Our algorithm can determine the M > 1 best matches. If, however, the QOF–
values of the best matches are below a pre–defined threshold τ ′Q, it is highly
possible that no instance of the desired object could be detected in the image.
2 Alternatively, a uniform distribution may be initially assumed. Later this information

can be refined by employing a match list of known solutions (importance sampling).
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Classification. Model–based approaches that use prior knowledge about spe-
cific shapes offer a complete characterization of the fitted shapes and imply clas-
sification. Each object is identified under a given model TX = {TA, ..., TZ} with
a probability depending on a discriminant measure D associated with each TX .
If matching and classification share the same criterion, i.e. D = Q, then pattern
matching and classification may simply be implemented as one single integrated
step. Hence, the competitive use of different class–specific shape models allows
for classification of objects within the image by comparing the Q(pt

X , l)–values
for the best fitting instances of each prototype.

4 Experimental Results

We selected two example applications in order to explore the ability of the
proposed a-priori constrained hierarchical models of shape variation to localize
complex objects in images. In the first example application, a shape–structure
hierarchy of two levels is applied to the segmentation and classification of ants
from specific species in 2D color images from a database. This particular appli-
cation is well–suited for analyzing insensitivity w.r.t. hidden object parts, and
allows us to compare our results with the results presented in [12], who used a
statistical model to recognize specimen from the same database. In the second
case study we demonstrate the versatility of our approach by using a 3–level FEM
for the part–based detection and localization of facial features in 2D images.

4.1 Segmentation and Classification of Ants in 2D–Color Images

Our particular database of 260 images was obtained from MCZ database of
the Museum of Comparative Zoology at Harvard University3 and AntWeb by
the Californian Academy of Sciences4. We used the lateral views that allow for
segmentation using a (single-view) 2D–shape model. Furthermore, exactly one
ant was displayed in each image, although parts of it may be missing.

For each of the different classes Anochetus, Cerapachys and Pheidole, a proto-
typical template TX , X = A, C,P, was generated based on a manually segmented
example image of the database. Each ant shape was therefore subdivided into
multiple sub–shapes of level l = 1, such as head, thorax, back, et cetera. The
top–level models T (2)

X constrain structural variation for anatomical reasons. Be-
sides from the class–specific kind and number of ant body parts, the standardized
positioning of the ants, e.g. on wooden sticks, causes a curved organization of
the parts, which determines the specific subdivision of the shape domain, as
depicted in figure 3. In contrast to [12], a statistical model of the ant color dis-
tribution was not available. We assumed that each ant can be extracted from the
background by exploiting the fact that due to the standardized acquisition most
background in the images will be homogeneously gray. The internal low–level

3 http://mcz-28168.oeb.harvard.edu/mcztypedb.htm
4 http://www.antweb.org/
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(a) TA (b) TC (c) TP

Fig. 3. Class–specific 2–level FEM for three different ant genera. The number and
kind of morphological components (solid lines) differ between the three prototypical
structural FEM (dotted lines).

(a) (b) (c) (d) QA = 0.83

(e) (f) (g) (h) QC = 0.76

Fig. 4. The “ant color” image (b) estimates the difference in color from homogeneously
gray background. Typical segmentation results are shown in (d)–(h). Our algorithm
utilizes shape information in a hierarchical manner. This increases its robustness to
partial occlusion, such as depicted in (f). A. madagascarensis was classified correctly
with a probability of 83% in fig. 4d, which is higher than the QOF–value for the best
match with the Cerapachys–model (h).

sensors were therefore mapped to “ant color” intensity images, which were com-
puted by suppressing homogeneous regions. The contour sensors were mapped to
gradient magnitude maps (figs. 4a–4c). We used as initial settings m = 4, σ = 10
(sect. 3.2), ς̂(ξw) = ς̂(ξw→v) = 10%, and 10◦, ∀v, w, based on the parameterized
example segmentation (sect. 3.3). According to our working assumptions, we
used the image center to set up μ̂(c) for T (2)

X , while ς̂(c) is set to 20% of the
image width. We further set the elastic moduli to E = 2, ν = 0.4, let λ = 100,
α = 0.1 and ζ = 0.5 (sect. 3.2).

Under the appropriate (manually selected) prototype TX the ant was success-
fully segmented in all test images (figure 4). Localization and segmentation was
successful under occlusions of either part of the ant and up to 30% of the ant
shape (i.e. in some cases more than one part was missing, cf. fig. 4f). This makes
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our method superior to the approach of Bergner et al. [12], as their sequential
shape search required the “head” sub–shapes to be found, and failed otherwise.

For classification we first performed the multi–resolution shape search with
all three class-specific models TX , X = A, C,P , using a subset of 75 images
that were selected for clear appearance of exemplars from one specific genus
(Pheidole), and merged the ordered lists of solutions resulting from the parallel
shape searches using the different models. We found a positive classification rate
of 95%, i.e. only 4 images were misinterpreted. Bergner et al. [12] reported 84%
correct classifications on the same set of test images. This shows that in direct
comparison restricting shape variation to local vibration modes was superior to
their statistical approach to structural image interpretation.

Next, we randomly selected a subset of 20 images per class from our data base.
In 93.3% of all cases the correct model exhibited a higher QOF–value (figure 4d).
The difference in the QOF–values w.r.t. the correct class was significant (p <
0.01, one–sided t–test), indicating that ants can be classified using our model–
based segmentation given that kind, number and spatial configuration of the
morphological components differ between classes. Classification might improve
by training a color–classifier. However, our assumption of gray background was
sufficient for reducing irrelevant input for the low–level sensors, while avoiding
misclassification due to poor response to feature detectors, as reported in [12].

In another classification experiment we used all test images and applied only
the Pheidole–model TP in order to select all images of ants from this genus. We
computed 16.7% false positive solutions and 92.2% true positives.

4.2 Localization and Segmentation of Facial Features

We used a prototypical hierarchy of sub–shapes to represent the iris, eye contour,
nostrils, bridge of the nose, upper and lower lips at level l = 1, the eyes, nose and
mouth at level l = 2, and their structural arrangement in a face at level l = 3
(figure 5). To consider a large number of factors including pose, illumination,
facial expression and background variation, 100 example images were collected,
among others, from The Yale Face Database5, BioID Face Database6, Calltech
Face Database7 and MIT–CBCL Face Recognition Database8. In our experiment
we used the same initial settings as in sect. 4.1, with the exception that the
scaling of T (3)

F was varied between 10 − 80% of the image width.
The facial features were in all cases properly localized and in 89% also accu-

rately segmented. In the remaining cases, segmentation was inaccurate due to
variations, e.g. in size and pose, which were not covered with the single view
deformable model. In 10 additional images that contained the faces of a group
of people (38 faces in total), 74% of the faces were correctly detected based on
the facial features (fig. 6h). We therefore used a user–specified value for M for
selecting the desired number of segmentations from the priority queue (sect. 3.3).
5 http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
6 http://www.bioid.com/
7 http://www.vision.caltech.edu/Image-Datasets/faces/
8 http://cbcl.mit.edu/software-datasets/heisele/
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(a) l = 1 (b) l = 2 (c) l = 3

(d) (e) (f)

Fig. 5. The top row provides a visual display of the 3–level FEM TF used for face
localization. To demonstrate its ability to locate and segment facial features, the best
fitting model instance is depicted in the bottom row at different stages of the deformable
shape search described in sect. 3.3, i.e. after initialization (d), first iteration (e) and at
its equilibrium configuration (f).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Typical results of our algorithm for face localization. The boxes are used for
reasons of simplicity and indicate M ≥ 1 proposed solutions with high quality. Note
that the faces in the background of figure (f) were too small to be detected.

Our shape search cannot guarantee to find the globally optimal parameter set.
This would require a recursive subdivision of the parameter space and analy-
sis of all possible matchings for transformations with parameters contained in
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a sufficiently large region. At present, however, there is a real possibility for an
increase in the number false positive solutions with high priority.

5 Conclusion

We proposed a template–based approach to the localization and segmentation
of complex objects from 2D images. Our method extends the ability of finite ele-
ment models of shape to capture structural variability based on the superposition
principle. Using specific energy–minimizing deformable shapes that span several
levels of a shape hierarchy helps to avoid reconstruction of invalid shapes, which
may result when the model parameters are chosen independently. In contrast to
many existing approaches no pre–segmentation, e.g. in terms of edge detection
[22, 23] or color classification [12], is employed by our algorithm. The proposed
shape matching instead extracts image features with increasing semantics by
introducing hierarchical constraints to the segmentation result. The constraints,
which control the preference of the template to deform into similar compound
shapes, are in our case derived from a single example segmentation per class.
Experimental results indicate that prior estimates on the variation parameters
can sufficiently separate information about variation within an object class and
between classes. We can conclude from our results that the former is mainly de-
termined by sub–shape deformation, while the latter is given structural variation
parameters.

Currently, our method needs more detailed evaluation, e.g. in comparison with
existing face detection methods (such as [32]). In order to improve its utility for
part–based image analysis, future work will focus on the analysis of the influence
of the parameters on the resulting segmentations and their evaluation.
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Abstract. A nonlocal variational formulation for interpolating a
sparsely sampled image is introduced in this paper. The proposed vari-
ational formulation, originally motivated by image inpainting problems,
encourages the transfer of information between similar image patches,
following the paradigm of exemplar-based methods. Contrary to the clas-
sical inpainting problem, no complete patches are available from the
sparse image samples, and the patch similarity criterion has to be re-
defined as here proposed. Initial experimental results with the proposed
framework, at very low sampling densities, are very encouraging. We also
explore some departures from the variational setting, showing a remark-
able ability to recover textures at low sampling densities.

1 Introduction

The terms image inpainting and interpolation refer to the problem of recovering
missing information in an image, in a visually plausible manner exploiting avail-
able image information. This is an ill-posed inverse problem, and as such, some
sort of prior knowledge is needed for its solution. The literature on this topic is
vast, since it lies in the heart of many relevant applications, such as zooming,
demosaicing, super-resolution and image editing, among others.

For the purpose of this paper we distinguish two interpolation cases: when
the available data consists of a set of isolated samples (be regular or irregular)
and when it is given on a (not necessarily connected) region of the image. For
the former we will use the term interpolation, reserving inpainting to denote the
dense case.

In the case of inpaiting the available information usually allows to determine
the image derivatives on the region with known data. First approaches to in-
painting took advantage of this, completing the image by means of PDEs [1,2]
or variational methods [3] that continued the image gradients or the level lines
inside the inpainting domain. These schemes involving only interactions between
local pixels, fail with textured images or large inpainting domains. Advances in
the field of texture synthesis [4] served as inspiration for new inpainting strate-
gies, based on the hypothesis that natural images are redundant, and self similar:
The value of a pixel is synthesized from known pixels with similar neighborhoods
(patches). These methods are often refereed to as non-local or exemplar-based
(see for instance [5,6,7] and references therein). A current trend in research is

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 331–344, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the combination of both, local and non-local strategies e.g. [8,9]. We refer to [9]
for an account of this active area of research.

If the only available data consists of a nonuniform and sparse (as opposed to
dense) set of samples then: 1. The gradients as well as the directions of the level
lines are unknown, 2. There are no complete patches available on the image. In
this setting PDE based methods cannot be directly applied and exemplar-based
inpainting methods need to be adapted. This scenario appears in image super
resolution, since after registering the low resolution images the overlapped grids
may be seen as a non regular one.

Existing interpolation approaches consider priors based on smoothness or reg-
ularity assumptions, which can be imposed by restricting the solution to be, for
instance, band limited [10], of bounded variation [11], expanded over a base of
functions (e.g. splines [12], radial basis functions [13]), among others.

A recent front of activity is given by the techniques based on the sparseland
model [14,15], in which the image is restricted to have a sparse representation
over an overcomplete basis or dictionary [16,15,17]. The main difference between
dictionary-based and exemplar-based methods lies in where the missing infor-
mation is obtained from. Dictionary based methods look for the missing data in
the dictionary (as a linear combination of a few atoms), whereas exemplar-based
methods assume that the information needed lies elsewhere in the image itself
(or in a database of images [18]).

A non-local prior is used in [19]. In this work the set of image patches with their
similarity relations is modeled as a weighted graph and the interpolation is done
by imposing regularity in this graph [20,21]. This corresponds to a non-local
regularization on the image. A successful PDE approach using an anisotropic
diffusion process was proposed in [22].

Our contribution. We address the problem of image interpolation from non-
uniformly sparsely sampled data via a non-local exemplar-based variational ap-
proach that exploits the self-similarity of the image. In this approach, and just
to prove the applicability of the self-similarity principle, we consider the simple
case where the samples are arranged on a discrete (but non regular) grid, and
leave the sub-pixel case for future development. The proposed variational for-
mulation is a generalization of the inpainting framework presented in [23], which
exhibits a good performance, but only for dense inpainting domains. As in [23],
we set up a functional to model the nonlocal means iterations both for the image
and the weights. Thus, besides the data attachment term, we include a regular-
ization term for the weights given in terms of its entropy. The functional is then
minimized with respect to both variables, the unknown image and the weights.
The data attachment term is tailored to compare only the known pixel positions
in one or both patches under comparison. Finally, both terms are balanced by a
temperature parameter h and letting h → 0+ (as in [24]) permits to iteratively
improve the results. Let us mention that we have also explored a non variational
model suggested by our approach that exhibits a faster convergence. The pre-
liminary experiments suggest that exemplar-based methods can be successfully
applied to sparse data interpolation.
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Related work. Our work is related to the nonlocal techniques applied to de-
mosaicing in [24,25] and super-resolution in [26], problems that can be cast as
image interpolation from a regular sampling set. These methods work by av-
eraging known pixels according to the similarity of their neighborhoods, and
are closely related with our approach. More detailed comments on them will be
given in subsequent Sections. Similar ideas can be also found in the field of 3D
tomographic imaging [27], where incomplete 3D volumes are reconstructed via
grouping them by similarity and averaging the exemplars in each cluster.

Let us mention that the problem of interpolation from a set of sparsely sampled
images could be approached with the techniques of compressed sensing [14,28].
Even if the standard approach uses a set of random measurements (e.g. projec-
tions on a random basis, or noiselets) one could apply the corresponding recon-
struction schemes with a random sampling of the image, as in our case. As far as
we know, there is no detailed comparison between exemplar-based methods and
compressed sensing in the context of image interpolation. On the other hand, as
shown in this paper, exemplar-based methods can address the problem of inter-
polating non uniformly sampled images with large unsampled regions.

Finally, the work [25] combines sparsity and non-local techniques. There, the
image self-similarity is used to obtain more robust sparse representations over a
given dictionary, by assigning a common representation to similar patches.

Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in R2. Pixel positions are denoted by x, x′, z,
z′ or y, the latter for positions inside the patch. A patch of u centered at x, is
denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a disk (or a square) centered
at (0, 0). The patch is defined by pu(x, y) = u(x+ y), with y ∈ Ωp. O ⊂ Ω is the
set of unknown image pixels or the domain to be interpolated, and Oc = Ω \O is
the known portion of the domain. For simplicity we will assume that the image
is defined on an extended domain Ω̃ = Ω + Ωp (i.e.widetildeΩ is a dilation of
Ω) and we work in Ω, hence a patch can be centered at any pixel in Ω without
escaping the image domain. Additional notation will be introduced in the text.

2 From Inpainting to Interpolation

The framework we present here is an adaptation of the non-local inpainting
functional recently introduced in [23]. In this section we briefly review this work
and discuss the modifications that have to be done to allow its application to
the problem of image interpolation from sparse samples addressed in this paper.

2.1 Review: Non-local Functional for Image Inpainting

In [23] we proposed the functional

Ẽ(u,w) =
1
h
F̃w(u) −

∑
x∈Õ

H̃w(x) (1)
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whose minimization yields a non-local exemplar-based inpainting method. The
first term is given by

F̃w(u) =
∑
x∈Õ

∑
x′∈Õc

w(x, x′)‖pu(x) − pu(x′)‖Ωp , (2)

and it is inspired by a functional presented in [21] in the context of non-local
image denoising/regularization. F̃w measures the coherence between the patches
in Õ and those in Õc, given the similarity weight function w and a patch norm-
like function ‖ · ‖Ωp . Õ is an extension of O containing the centers of all patches
intersecting O. In doing so, patches pu(x′) centered in x′ ∈ Õc consist entirely of
known pixels. The term (2) promotes the similarity between the image patches
centered at x ∈ Õ and x′ ∈ Õc. Indeed, minimizing F̃w w.r.t. the image u, for a
given fixed weight function w, forces pairs of patches for which w(x, x′) is high
to be similar. Since pu(x′) lies outside the inpainting domain, it is fixed and the
similarity can only be enforced by modifying pu(x). Thus, incomplete patches
receive information from outside the inpainting domain.

The weight function w : Õ × Õc → R+ measures the similarity between
patches centered in the inpainting domain and in its complement. Gaussian
weights are commonly used, i.e. w(x, x′) = exp

(
− 1

h‖pu(x) − pu(x′)‖2
)
, where

‖ · ‖ is a weighted L2 norm in the space of patches and h is the scale. In the
frameworks described in [21] the weights are known and remain fixed through all
the iterations. While this might be appropriate in case of denoising applications,
where the weights can be estimated from the noisy image, in the image inpaint-
ing/interpolation scenario, weights are not available and have to be inferred
together with the image. This idea has been applied before for super-resolution
[26], denoising [29] and in a more general regularization framework [19]. None of
these works present a variational justification for the weight update.

This issue was addressed in [30,23]. In [23] we consider the weight function w as
an additional unknown. Instead of prescribing explicitly the Gaussian functional
dependence of w w.r.t. u we do it implicitly, as a component of the optimization
process. This results in a simpler functional, avoiding to deal with the complex,
non-linear dependence between w and u. To this end, w(x, ·) is constrained to
be a probability density function,

∑
x′∈Oc w(x, x′) = 1, and a second term given

by
∑

x∈Õ H̃w(x) is added (the second term in (1)), where

H̃w(x) = −
∑

x′∈Õc

w(x, x′) logw(x, x′), (3)

is the entropy of the probability w(x, ·) for x ∈ Õ. Summarizing, the first term
of (1) permits the estimation of the image u from the weights w, whereas the
second one allows us to compute the weights given the image.

2.2 Generalization to Interpolation

We will discuss in this section the modifications needed to adapt the inpainting
formalism to the problem of image interpolation. The mechanism for adapting
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the similarity weight function remains unchanged, thus we will focus our atten-
tion on the image energy term. Let us assume for the moment that we know
a weight function w which measures the similarity of the pairs of incomplete
patches. We will detail later the issues related with the computation of these
weights.

The main difference between inpainting and interpolation is the available data
and its geometric organization in the image. In a typical inpainting problem,
large regions of the image are known, and transfer occurs between the available
information and the patches inside the interpolation domain. In the interpolation
application here addressed the image is known only at some isolated positions
distributed through all the image. We can still have entire continuous regions
of missing information (in contrast with typical approaches addressed in com-
pressed sensing), but we do not have at all entire patches of available information.
This does not allow the direct application of the inpainting energy (1) to the
interpolation problem, since every image patch contains unknown pixels, and
thus needs information from other patches. At the same time any patch may
have information to transfer to potentially all other patches. This suggests that
the summation domains in Eq. (2), as well as the patch comparison metric, have
to be modified. We address this next.

For the sake of generality we will use generic summation domains and denote
them by D1 and D2. For instance, the corresponding definitions for the inpainting
functional (2) are D1 = Õ and D2 = Õc, while for all methods implemented
below we used D1 = Ω and D2 = Oc, i.e. D2 the set of known pixels. The
weight function is thus defined over D1 ×D2 such that for each x ∈ D1, w(x, ·)
is a probability over D2.

A general description of the image term in the interpolation functional is the
following:

F (u,w) =
∑

x∈D1

∑
x′∈D2

w(x, x′)Vϕ(pu(x), pu(x′)). (4)

We have introduced a general pair-wise patch similarity potential Vϕ, substitut-
ing the patch norm-like function ‖ · ‖Ωp . Since we deal with sparsely sampled
patches, the pair-wise patch potential Vϕ is based only on the known pixels
around x and x′:

Vϕ(pu(x), pu(x′))=
∑

y∈Ωp

gσ(y)
ρ(x, x′)

(αXOc (x+y)+βXOc (x′+y))ϕ(u(x+y)−u(x′+y))

(5)
where gσ is a Gaussian centered at the origin with standard deviation σ, XS

denotes the characteristic function of the set S and ϕ(r) = |r|p, r ∈ R, 1 ≤ p < ∞
(a more general function could be considered). For instance, taking p = 1 leads
to an algorithm based on medians (see [23]), here due to space limitations we
will restrict us to the case p = 2. The constant parameters α, β ∈ {0, 1} are set
by the user. They control whether known positions around x or x′ are used in
the computation of the similarity potentials (at least one of them has to be 1).

If α = 1 the positions with known data around x are used for the computation
of the similarity potential (5). This happens whether the corresponding locations
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(a) α = 1, β = 0: Transmit

x
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unknown pixel
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x’y

z’

(b) α = 0, β = 1: Receive

Fig. 1. Visualization of transmission and reception processes due respectively to terms
V α

ϕ and V β
ϕ in the patch similarity potential (see Eq. (6))

around x′ belong to the data set or not. If β = 1 the similarity potential accounts
for the known pixels around x′. If both of them are 1, in which case Vϕ is
computed from the locations known in both patches. This last case coincides
with the patch comparison criterion defined in [24] in the context of demosaicing.

The normalization factor ρ(x, x′) is such that
∑

y∈Ωp

gσ(y)
ρ(x,x′)(αXOc (x + y) +

βXOc(x′ + y)) = 1 for all x ∈ D1, x′ ∈ D2. Considering the overlap between
known positions in both patches (see for instance [27]) would also make sense
for the comparing patches with missing data. However, this cannot be applied
to the current formulation since this eliminates the dependency of the energy
on the unknown image (recall that the energy depends on the image though the
similarity potential Vϕ).

The proposed functional can be easily understood by splitting the pairwise
patch potential into two terms Vϕ = V α

ϕ + V β
ϕ , with

V α
ϕ (pu(x), pu(x′)) = α

∑
y∈Ωp

gσ(y)
ρ(x, x′)

XOc(x + y)ϕ(u(x + y) − u(x′ + y)), (6)

and analogously for V β
ϕ . The energy F can be split accordingly in two terms.

The first potential measures differences between known pixels in pu(x), with
x ∈ D1, and the corresponding pixels in pu(x′), with x′ ∈ D2. Since known
pixels are fixed, its minimization implies the modification of unknown pixels
around x′, thus transferring information from pu(x) to pu(x′). On the other hand,
V β

ϕ considers differences between known pixels in pu(x′) and the corresponding
locations in pu(x). In this case known information flows from pu(x′) centered at
D2 to pu(x) centered at D1.

Since the weights w(x, ·) are a probability over D2 for each x ∈ D1, we will
adopt subsequently the point of view of the patch pu(x) centered at x ∈ D1.
We refer to these patches as central patches, and to patches centered in D2 as
peripheral patches. From this perspective, the minimization of the term with V α

ϕ

implies the transmission of the information (the pixel values) of known positions
in the central patch pu(x) towards the unknown positions in peripheral patches
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pu(x′) ∈ D2 (see Figure 1(b)). Whereas the minimization of the term with
V β

ϕ implies receiving known pixel values from peripheral patches at D2 (see
Figure 1(b)). We refer to these processes as transmission and reception.

The complete functional for the interpolation problem becomes:

E(u,w) =
1
h
F (u,w) −

∑
x∈D1

Hw(x), (7)

where as before Hw(x) = −
∑

x′∈D2
w(x, x′) logw(x, x′) is again the entropy of

the probability w(x, ·) for x ∈ D2. As in the case of inpainting, this term allows
to model the estimation of the weights together with the image.

A similar functional for image super-resolution was considered in [26] without
explicitly modeling the weight updating step. The functional in [26] is related to
the case where α = 0 and β = 1 (or to the case of a full patch comparison).

2.3 Reinterpretation of the Image Term F

Let us rewrite the energy term (4) in a different way, in which the image values
appear directly, and not as part of patches. This formulation will be useful for
posterior analysis. After the change of variables z = x+y, z′ = x+y′, the energy
can be rewritten by adding up the pair-wise pixels differences as

F (u,w) =
∑
z∈Ω̃

∑
z′∈Ω̃

m(z, z′)(αXOc (z) + βXOc(z′))ϕ(u(z) − u(z′)), (8)

where Ω̃ = Ω + Ωp (since D1, D2 ⊆ Ω, we have that D1 + y,D2 + y ⊆ Ω̃ for all
y ∈ Ωp), and we have defined the pixel-wise influence weights m(z, z′) as

m(z, z′) =
∑

y∈Ωp

XD1(z − y)XD2(z
′ − y)w(z − y, z′ − y)

gσ(y)
ρ(z − y, z′ − y)

. (9)

These weights integrate the similarities of patches centered at z − y ∈ D1 con-
taining z and those centered at z′ − y ∈ D2 containing z′ for y ∈ Ωp.

The formulation given by Eq. (4) accumulates the pair-wise potentials for
each pair of patches centered in D1 and D2. The potentials are given by the
addition of pixel value differences. In (8), the energy is rewritten by explicitly
computing the contribution of each pixel value difference. The characteristic
functions XD1(z−y) and XD2(z′−y) in (8) are zero if neither z nor z′ are known.
Only those differences involving at least one known pixel are taken into account.
It becomes clear that pixel differences for which we have a large value of m(z, z′)
are penalized. This implies the modification of u(z) or u(z′), depending on which
of them is given and which is unknown. This shows again the difference with
more frequently used patch distances, where only pixels available in both patches
are considered for the computation. Certainly if such approaches are iterated,
as sometimes done [27,6], pixels with originally only “one side” available start
to influence the computation as well after the first iteration or the first time yet
are “filled”.
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3 Minimization of E

We have formulated the interpolation problem as the constrained optimization

(u∗, w∗) = arg min
u,w

E(u,w) subject to (10)∑
x′∈D2

w(x, x′) = 1 for all x ∈ D1. (11)

To minimize the energy E, we use an alternate coordinate descent algorithm.
At each iteration, two optimization steps are solved: The constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of E
with respect to u with w fixed. This procedure yields the following iteration

1. [Initial Condition] Given u0(x) with x ∈ O.
2. [Weights Update Step] wk = argminw E(uk, w), subject to (11).
3. [Image Update Step] uk+1 = arg minu E(u,wk).
4. [Stopping Criterion] If ‖uk+1 − uk‖ > τ , go back to step 2.

In the weights updating step, the minimization of E w.r.t. w yields wk(x, x′) =
1

q(x) exp
[
− 1

hVϕ(puk
(x), pu(x′))

]
, where q(x) is a normalization factor such that∑

x′∈D2
w(x, x′) = 1 for each patch puk

(x). The parameter h determines the
selectivity of the similarity. If h is large, maximizing the entropy becomes more
relevant, yielding weights which are less selective. In the limit, when h → ∞,
wk(x, ·) becomes a uniform distribution over D2. On the other hand, a small h
yields weights more concentrated on the patches that are similar to pu(x). In
fact, when h → 0 the weights are given by limh→0 w(x, x′) = 1

#n(x)Xn(x)(x′),
where n(x) ⊆ Oc is the set of minimizers of Vϕ(pu(x), ·), i.e.n(x) = {x′ ∈
Oc : Vϕ(pu(x), pu(x′)) = Vmin(x)}, where Vmin(x) is the minimum potential
w.r.t. pu(x). In other words, when h → 0+ the weights encode a multivalued
assignment of patches with centers in D2 for each x ∈ D1.

The image updating step deserves more attention and is described next.

3.1 Image Updating Step

The equilibrium equation for E results in∑
z′∈Oc

(αm(z′, z) + βm(z, z′))ϕ′(u(z) − u(z′)) = 0 for all z ∈ O. (12)

This equation specifies the information transferred from the datum u(z′) to the
unknown u(z). This information can be transferred in any of the two modes
discussed previously, i.e. reception, by a patch in D1 covering z, of data com-
ing from a patch in D2 covering z′, and/or transmission, of data from a patch
in D1 covering z′, to a patch in D2 covering z. The term m(z, z′) gathers all
contributions by reception, whereas the term m(z′, z) considers all transmissions.
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When ϕ(t) = t2 we call the resulting method patch-wise non-local means. In
this case Eq. (12) can be written as

u(z) =
1

C(z)

∑
z′∈Oc

(αm(z′, z) + βm(z, z′))u(z′), (13)

for each z ∈ O, where the normalization constant C(z) is given by C(z) =∑
z′∈Oc(αm(z′, z)+βm(z, z′)). Let us say in passing that due to our variational

formulation, the image updating step is different from [24], since only the central
pixel of the patch is updated in [24]. Taking ϕ(t) = |t|, we get the patch-wise
non-local medians. In this case, the Euler equation (12) for u, given w, becomes∑

z′∈Oc(αm(z′, z) + βm(z, z′))sign(u(z) − u(z′)) = 0, and its solution u(z) is
obtained as a weighted median of the known values u(z′).

4 A Departure from Variational Model

We have seen that three different schemes can be derived from the proposed
variational model, by changing the values of α and β. We have interpreted them,
by observing the effect over the unknown pixels of u, as transmission (α = 1,
β=0), reception (α=0, β=1) and combined (α=1, β=1). But each scheme also
forces the manner to compute w. Now, if we abandon the variational framework,
we can combine different update schemes of w and u.

We now propose a new scheme by updating the weights w according to the
transmission scheme (α=1, β=0), and the image u using the combined scheme
(α = 1, β = 1). The resulting algorithm was experimentally found to be nu-
merically stable, and for relatively high sampling densities to behave like the
combined scheme (α=1, β=1). However for low sampling densities it exhibits a
remarkable ability to speed up the convergence. An intuitive reason that may ex-
plain this scheme relies on the fact that using the transmission potential (α=1,
β=0), the weights w(x, ·) are always computed using coordinates around x, with
known values. Adding known positions around x′ may provide a poorer estimate
of the weights, specially if the current interpolation around x is bad.

5 Experimental Results

We now present experimental results with both synthetic and natural images
randomly sampled with densities from 20% to 5% of the image points. The four
schemes derived from the potential (5) in Section 2, are referred here as A (for
α=1, β=0), B (α=0, β=1), AB (α=1, β=1), and O for the departure from the
variational model (which is a variant of AB). All of them have a computational
cost proportional to A(D1)×A(D2) (where A(Di) is the number of pixels of Di).
Since D2 is a fraction of D1 (the density of the sampling) then the algorithm is
O(T ×A(D1)2), where T is the number of iterations (usually T < 200). A single
iteration for a 256×256 pixels image takes about 3 min on a 3GHz processor.
However, with the coarse to fine scheme described below, the convergence is
generally attained with less than 40 iterations. This amounts to a computational
time of 120 minutes.
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h → 0

h = 500

Fig. 2. Synthetic. The first column shows the original image, and the random samples
(5% of the image) with the window gσ (see (5)) depicted in the upper left corner. The
second column from left shows a linear interpolation over the Delaunay triangulation
of the samples. Remaining columns (from left to right) correspond to results of the
schemes A, B, AB and O; The rows correspond to two different values of h.

Role of locality in the non-local algorithms. A common strategy to improve the
computational performance of nonlocal methods is to reduce the size of the
search window (subset of D2 around the central pixel x), thereby reducing
the number of comparisons performed for each pixel. As a desirable side ef-
fect, this enforces the ergodicity assumption over the data. In other words, the
patches needed to estimate the current point are assumed to be found in the
vicinity of it, not far away. As a consequence, the size of the search window is
a very important parameter, and it may be itself subject of optimization as in
[31]. In our experiments we choose the search windows to have a reasonable size
(containing 100 to 500 samples) with respect to the density of the image.
Choice of Vϕ. The experiments shown in Figure 2 are aimed to compare the
performance of the different schemes. The best results for this data are obtained
with the scheme AB. Therefore, since the experiments are also consistent with
these results, from now on we will mainly show AB and O. Also notice that the
textures are recovered in great detail, while the interface between them, is very
imprecise. This evidences the exemplar-based nature of the algorithms, since
there are plenty of examples of textures, but only few of the interface.
Initial condition and h. If the initial condition has artifacts, then for small h
these methods tend to reinforce them. To reduce the dependence on the initial
condition we adopt the coarse to fine scheme proposed in [24], where a decreasing
sequence of h is used to recover first large scale structures and later refine them
(as h decreases). Figures 3 and 4(b) show the results of applying the algorithms
O and AB to natural images with sampling densities from 20% to 5%. For high
densities the performances of both schemes is similar. For lower densities (5%
for instance) O exhibits less dependence on the initial condition than AB. In
particular, we can obtain with O results similar to those obtained with AB even
without the coarse to fine scheme. Using h > 0 produces smooth results with
blurred details, while using h → 0 introduces a staircase effect; we expect to
improve these results by using h > 0 in the median case (which corresponds
to p = 1 in ϕ (5)). In the first two columns of Figure 3 we display: a set of
random samples, and an optimal dithered set of the same image (optimal for
the Laplacian-based interpolation as described in [22]). Both sets contain 10%
of the image points. The Laplacian interpolation from dithered samples takes
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Fig. 3. Sparse sampling interpolation. 1st row: original images. 2nd row: input data
with sample densities of 10%, 10% dithered [22], 20% and 9%. 3rd row: linear interpola-
tion over the Delaunay triangulation of the samples; PSNRs: 25.8, 30.6 (not considering
the black frame), 25.0 and 22.74. 4rt row: results of method AB with h = 100; PSNRs:
22.5 ,22.7, 25.5 and 22.79. 5th row: results of AB with h → 0; PSNRs: 22.6, 23.0, 25.5
and 22.56. 6th row: results of the method O with h → 0; PSNRs: 22.6,21.7,25.1 and
22.69. (Details can be better appreciated by zooming on a computer screen)
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(a) Cylinders, 200×113. Inpainting a hole in a subsampled image with algorithm
B. The algorithm makes no distinction between the hole and the sampled regions.
The sampling density is 20% yielding a global sampling density of 14%.

(b) Barbara, 512×512 with 5% of the samples. 2nd line are results of: linear inter-
polation (PSNR 20.1), Laplacian interpolation (PSNR 19.9) and algorithm O with
h=100 (PSNR 22.8).

Fig. 4. Experiments with lower sampling densities. Each figure shows the original image
(top left), the available samples (top right), the result of linear interpolation over the
Delaunay triangulation (bottom left) and the output the algorithm specified in each
figure (bottom right).
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advantage of the distribution of the samples along the edges and permits to
recover a visually pleasant smooth image with clear edges (see [22]), while our
method is less fitted for this task (second column of Figure 3). However, for
random samplings the results of the Laplacian interpolation are less convincing,
while our method recovers most edges and textures of the image (see Figure 4).

Interpolation of large holes. In Figure 4(a) we show a preliminary result using
method B (only reception process) applied to the interpolation of a hole in a
sampled image, this choice of the potential leads to a functional similar to the
inpainting one shown in [23]. Let us remark that the method was applied “as
it is” to the problem, without making any distinction between the hole and the
sampled areas. Other methods that involve the transmission process (AB or O)
fail to fill the large holes, although all manage to recover the sparsely sampled
area. We attribute the non regularity of the solution to the low frequency of the
texture, which implies less exemplars to copy from, showing the main limitation
of exemplar-based methods. A local regularization term can be used to impose
smoothness on the result [26]. The results shown here are also available at:
http://gpi.upf.edu/static/vnli

6 Conclusions and Future Work

A variational formulation for non-local example-based image interpolation was
introduced in this paper. The obtained results show a promising performance. In
subsequent work we will extend the present model to cover the case of samples
located at non-entire positions and we will explore some variants of it.
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Abstract. Non-local methods for image denoising and inpainting have
gained considerable attention in recent years. This is in part due to their
superior performance in textured images, a known weakness of purely lo-
cal methods. Local methods on the other hand have demonstrated to be
very appropriate for the recovering of geometric structure such as image
edges. The synthesis of both types of methods is a trend in current re-
search. Variational analysis in particular is an appropriate tool for a uni-
fied treatment of local and non-local methods. In this work we propose a
general variational framework for the problem of non-local image inpaint-
ing, from which several previous inpainting schemes can be derived, in ad-
dition to leading to novel ones. We explicitly study some of these, relating
them to previous work and showing results on synthetic and real images.

1 Introduction

Image inpainting, also known as image completion or disocclusion, is an active
research area in image processing. The purpose of inpainting is to obtain a
visually plausible image interpolation in a region in which data are missing due
to damage or occlusion. Usually, to solve this problem, the only available data
is the image outside of the region to be inpainted. In addition to its theoretical
importance, image inpainting is a very important problem due to its applications
to image and video editing and restoration.

Inpainting methods found in the literature can be classified into two groups:
geometry- and texture-oriented methods.

Geometry-oriented methods. Images are modeled as functions with some
degree of smoothness (expressed for instance in terms of the curvature of the
level lines or the total variation of the image), and the interpolation is per-
formed by continuing and imposing this model inside the inpainting domain.
This has been performed either using variational techniques, as for instance in
[3,11,12,19,28,29], or with PDEs [4,7,36]. These methods show a good perfor-
mance in propagating smooth level lines or gradients. However they fail in the
presence of texture. This is often referred to as structure or cartoon inpainting.

Texture-oriented methods. Texture-oriented inpainting was born as an ap-
plication of texture synthesis, e.g., [18,21]. Its recent development was triggered
in part by [18,37] using non-parametric sampling techniques. In these works tex-
ture is modeled as a two dimensional probabilistic graphical model , in which the
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value of each pixel is conditioned by its neighborhood. These approaches rely
directly on a sample of the desired texture to perform the synthesis.

In practice these methods work progressively by expanding a region of synthe-
sized texture. The value for a target pixel x is copied from the center of a square
patch in the sample image, chosen among those that best match the available
portion of the patch centered at x. Levina and Bickel [26] recently provided a
probabilistic theoretical justification for this strategy.

This method (as explained above or with some modifications) has been exten-
sively used for inpainting [5,6,14,17,18,31]. As opposed to geometry-oriented in-
painting, these so-called exemplar-based approaches, are non-local : To determine
the value at x, the whole image may be scanned in the search of a matching patch.

Since these texture approaches are greedy procedures (each hole pixel is visited
only once), the results are very sensitive to the order in which pixels are processed
[14]. This issue was addressed in [24,38] where the inpainting problem is stated
as the optimization of an energy derived from probabilistic graphical models (see
also [25]).

A variational justification for texture-based methods was presented in [16],
where the inpainting problem is reformulated as that of finding a correspondence
map Γ : O → Oc, O being the inpainting domain and Oc its complement w.r.t.
the image domain. Denoting the image by u, the inpainted value at position
x ∈ O is then given by u(x) = u(Γ (x)), Γ (·) being the correspondence map. The
authors proposed a continuous energy functional in which the unknown is the
correspondence map itself:

E(Γ ) =
∫

O

∫
Ωp

(u(Γ (x− y)) − u(Γ (x) − y))2dydx,

where Ωp is the patch domain (centered at (0, 0)). Thus Γ should map a pixel x
and its neighbors in such a way that the resulting patch is close to the one cen-
tered at Γ (x). This model has been the subject of further (theoretical) analysis
by Aujol et al.[1].

A different variational model was presented in [32]. Images are modeled as en-
sembles of patches on a given patch manifold. For inpainting, the patch manifold
can be learned from the set of patches in the hole’s complement. The method is
iterative, with each iteration having two steps. First, the patches in the hole are
projected onto the manifold. Since this is done for each patch independently, the
projected patches are not necessarily coherent with each other, i.e.overlapping
patches may have different values in the overlap region. Therefore, in the second
step, an image is computed by averaging the patches in the ensemble.

Exemplar-based methods provide impressive results in recovering textures and
repetitive structures. However, their ability to recreate the geometry without
any example is limited and not well understood. Therefore, different strategies
have been proposed which combine geometry and texture inpainting [5,10,17,23].
These methods usually decompose the image in some sort of structure and
texture components. Structure is reconstructed using some geometry-oriented
scheme, and this is used to guide the texture inpainting.

Contributions of this work. Despite these combined methods, geometry
and texture inpainting are still quite separate fields, each one with its own
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analysis and implementation tools. Variational models as the one introduced in
this paper can provide common tools allowing a unified treatment of both trends.
We therefore propose a variational framework for non-local image inpainting as
a contribution to the modeling and analysis of texture-oriented methods. Our
formulation is rather general and different inpainting schemes can be derived
naturally from it, via the selection of the appropriate patch metric.

In the present work we study three of them, patch NL-means, -medians, and
-Poisson. The former is related to the method of [38] and can be interpreted
in terms of the mean shift [13] and the manifold models of [32]. The other
schemes are, to the best of our knowledge novel. The latter imposes coherence
of the gradients, in addition to that of the gray levels, which implies a smoother
continuation of the information across the boundary and inside the inpainting
domain, thus acting as a basic local regularization.

Our work is related to recent variational formulations of non-local denois-
ing ([2,9]) by Gilboa and Osher [20]. The image redundancy and self-similarity
(measured as patch similarity) is encoded by a non-local weight function w :
O × Oc → R. This function serves as a fuzzy correspondence, and differs from
the works [1,16], although a (eventually multivalued) correspondence map can
be approximated as a limit of our model.

Notation. Images are denoted as functions u : Ω → R, where Ω denotes the
image domain, usually a rectangle in R2. Pixel positions are denoted by x, x′,
z, z′ or y, the latter for positions inside the patch. A patch of u centered at x is
denoted by pu(x) = pu(x, ·) : Ωp → R, where Ωp is a rectangle centered at (0, 0).
The patch is defined by pu(x, y) = u(x + y), with y ∈ Ωp. O ⊂ Ω is the hole or
inpainting domain, and Oc = Ω \O. We still denote by u the part of the image
u inside the hole, while û is the part of u in Oc: û = u|Oc . Additional notation
will be introduced in the text.

2 Variational Framework

Our variational framework is inspired by the following non-local functional

Fw(u) =
∫

O

∫
Oc

w(x, x′)(u(x) − û(x′))2dx′dx. (1)

The weight function w : O ×Oc → R+ measures the similarity between patches
centered in the inpainting domain and in its complement. Gaussian weights are
commonly used, given by w(x, x′) = exp

(
− 1

h‖pu(x) − pû(x′)‖2
)
, where ‖ · ‖ is a

weighted L2 norm in the space of patches and h is the scale. A similar functional
was proposed in [20] as a non-local regularization energy in the context of image
denoising which models the non-local means filter [2,9] (see [8,35] for a different
model of non-local means). An extension to super-resolution is presented in [34].

In [20] the weights are considered known and remain fixed through all the
iterations. While this might be appropriate in applications where the weights
can be estimated from the noisy image, in the image inpainting scenario here
addressed, weights are not available and have to be inferred together with the
image ([33,34]). One of the novelties of the proposed framework is the inclusion
of adaptive weights in a variational setting.
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For this reason, we will consider the weight function w as an additional un-
kown. Instead of prescribing explicitly the Gaussian functional dependence of w
w.r.t. u, we will do it implicitly, as a component of the optimization process.
In doing so, we obtain a simpler functional, avoiding to deal with the complex,
non-linear dependence between w and u. In our formulation, w(x, ·) is a proba-
bility density function,

∫
Oc w(x, x′)dx′ = 1, and can be seen as a relaxation of

the one-to-one correspondence map of [1,16], providing a fuzzy correspondence
between each x ∈ O and the complement of the inpainting domain.

In this setting, we propose an energy which contains two terms, one of them is
inspired by (1) and measures the coherence between the pixels in O and those in
Oc, for a given similarity weight function w. This permits the estimation of the
image u from the weights w. The second term allows us to compute the weights
given the image. The complete proposed functional is

E(u,w) =
1
h
F̃w(u) −

∫
Õ

Hw(x)dx, (2)

where
F̃w(u) =

∫
Õ

∫
Õc

w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′dx, (3)

for a given norm-like function ‖ · ‖a,ϕ between patches, and

Hw(x) = −
∫

Õc

w(x, x′) logw(x, x′)dx′,

is the entropy of the probability w(x, ·).
We take Õ, the extended inpainting domain, as the set of centers of patches

that intersect the hole, i.e.Õ = O + Ωp = {x ∈ Ω : (x + Ωp) ∩ O �= ∅}. Thus,
patches pû(x′) centered in x′ ∈ Õc are entirely outside O (Figure 1), simplifying
the Euler-Lagrange equation for the minimizer. Accordingly, we consider that
the weight function w is defined over Õ × Õc and

∫
Õc w(x, x′)dx′ = 1.

For a simplified presentation, we assume that Õ + Ωp ⊆ Ω, i.e.every pixel
in Õ supports a patch centered on it and contained in Ω. This is not true if
the inpainting domain reaches the boundary of the image, and details on the
treatment of this situation are given in Section 5. Analogously, we also shrink
Õc to have Õc + Ωp ⊆ Ω.

Let us now make some additional comments on the functional. The term
(u(x) − û(x′))2 in Fw , penalizing differences between pixels, is substituted by
‖pu(x) − pû(x′)‖a,ϕ. This has to be understood together with the inclusion of
the second term, which integrates the entropy of each probability w(x, ·) over Õ.
For a given completion u, and for each x ∈ Õ, the optimum weights minimize
the mean patch error for pu(x), given by

∫
Õc w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′,

while maximizing the entropy. The resulting weights are Gaussian, as can be
confirmed easily by derivating the energy. This can be related to the principle
of maximum entropy [22], widely used for inference of probability distributions.
The parameter h controls the trade-off between both terms and is also the scale
parameter of the Gaussian weights. Since w(x, ·) is a probability, we discard
trivial minima of E with w(x, x′) = 0 everywhere.



A Variational Framework for Non-local Image Inpainting 349

The patch norm-like function. Patches are functions defined on Ωp, and
are compared using ‖ · ‖a,ϕ. We consider a non-decreasing and continuously
differentiable function ϕ : R+ → R+ with ϕ(0) = 0 and define ‖ · ‖a,ϕ by

‖p‖a,ϕ =
∫

Ωp

ga(y)ϕ(|p(y)|)dy,

where ga is an intra-patch weight function, a Gaussian centered at the origin
with standard deviation a. The L1 and the squared L2 norms are particular
cases of ‖ · ‖a,ϕ when ϕ(t) = t and ϕ(t) = t2, respectively. In Section 3 we
consider another norm involving derivatives of the patch. As will be described
below, the patch norm determines not only the similarity criterion but also the
image synthesis, and thus is a key element in the framework.

2.1 Probabilistic-Geometric Model Interpretation

The proposed model can be written in terms of the generalized Kullback-Leibler
divergence [15]. Given two positive and integrable functions p, q defined over a
certain measure space X , the generalized Kullback-Leibler divergence is given by:
KL(p, q) =

∫
Xp(s) log

(
p(s)
q(s)

)
ds−
∫
Xp(s)ds+

∫
X q(s)ds, assuming that the integrals

exist. With this notation (and taking into account that w(x, ·) is a probability)
the functional E can be written as

E(u,w) =
∫

Õ

KL (w(x, ·), r(x, ·)) dx−
∫

Õ

∫
Õc

r(x, x′)dx′dx,

where r is the Gaussian weight function r(x, x′) = exp
(
− 1

h‖pu(x) − pû(x′)‖a,ϕ

)
.

The first term integrates the divergence between the functions w(x, ·) and r(x, ·),
for each x ∈ Õ. The second term can be interpreted by noticing that

q̃(x) =
∫

Õc

r(x, x′)dx′ (4)

is a density estimate (in the patch space) of the set of patches in Oc: The higher
the amount of patches in Õc close to pu(x) (according to the scale parameter h),
the higher the value of q̃.

The minimizers (u∗, w∗) are obtained when w∗(x, x′) = r∗(x, x′)/q̃∗(x),
(Gaussian weights normalized by (4)), and the patches of the inpainted im-
age are in regions of high density in the patch space. This provides a geometric
intuitive interpretation of our variational formulation. The image is considered
as an ensemble of overlapping patches. Known patches in Õc are fixed, forming
a patch density model used to estimate the patches in Õ. The richness of the
framework is given in part by the fact that different norms in the patch space
induce inpainting schemes of different nature, as we are going to see next.

2.2 Minimization of E

We have formulated the inpainting problem as the constrained optimization

(u∗, w∗) = arg min
u,w

E(u,w) subject to
∫

Õc

w(x, x′)dx′ = 1 ∀x ∈ Õ. (5)
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To minimize the energy E, we use an alternate coordinate descent algorithm.
At each iteration, two optimization steps are solved: The constrained minimiza-
tion of E with respect to w while keeping u fixed; and the minimization of E with
respect to u with w fixed. This procedure yields the following iterative scheme

1. [Initial Condition] Given u0(x) with x ∈ O.

2. [Weights Update] wk = arg minw E(uk, w), subject to
∫

Õ
w(x, x′)dx′ = 1.

3. [Image Update] uk+1 = argminu E(u,wk).

4. [Stopping Criterion] If ‖uk+1 − uk‖ > τ , go back to step 2.

In the weights update step, the minimization of E w.r.t. w yields:

wk(x, x′) =
1

q̃(x)
exp
(
− 1
h
‖puk

(x) − pû(x′)‖a,ϕ

)
.

The normalizing factor q̃(x) is the density estimate given by (4), for patch puk
(x).

The parameter h determines the selectivity of the similarity. If h is large,
maximizing the entropy becomes more relevant, yielding weights which are less
selective. In the limit, when h → ∞, w(x, ·) becomes a uniform distribution
over Õc. On the other hand, a small h yields weights which concentrate on the
patches close to pu(x). In fact, as we will mention later on, in the limit as h → 0,
w(x.·) can be considered as an approximation to an (eventually multivalued)
correspondence.

The image update step deserves more attention and is described next.

Image update step. We now detail the derivation of the image update step for
the cases ϕ(t) = t2 and ϕ(t) = t. We refer to the resulting algorithms as patch-
wise non-local means (patch NL-means), and medians (patch NL-medians), re-
spectively.
Patch-wise non-local means. If ϕ(t) = t2 the image energy term is quadratic on
u, and its minimum for fixed weights w can be computed explicitly leading to a
non-local average:

u(x) =
1

C(x)

∫
Ωp

ga(y)
∫

Õc

w(x − y, z′)û(z′ + y)dz′dy, (6)

for each x ∈ O, where the normalization constant C(x) is given by C(x) =∫
Ωp

ga(y)dy = A(Ωp), the area of the patch (measured according to ga).
Figure 1 explains this equation. The value at x considers all patches containing

x. For instance the patch pu(x− y) covers x, pu(x − y, y) = u(x). This patch is
compared to all patches in the complement, pû(z′), yielding the weights w(x −
y, z′). Each of these patches contributes the term w(x − y, z′)û(z′ + y) to the
average, i.e.its value at position y weighted by w(x− y, z′).
Patch-wise non-local medians. We now consider the L1 norm in the energy E,
corresponding to ϕ(t) = t. The Euler equation for u, given the weights w, is

δuE(u,w)(z) =
∫

Ωp

ga(y)
∫

Õc

w(z − y, x′)sign[u(z) − û(x′ + y)]dx′dy = 0. (7)
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Fig. 1. Patch-wise non-local means inpainting. The value at x ∈ O is computed using
all the patches that overlap x. The patch centered at x − y contributes with the term
w(x − y, z′)û(z′ + y) to the average for each z′ ∈ Õc.

The solution of this equation is given by a weighted median of the values outside
the hole. We can see this easily by defining z′ = x′ + y and rewriting Eq. (7) as

δuE(u,w)(z) =
∫

Oc

sign[u(z) − û(z′)]ρz(z′)dz′,

where
ρz(z′) :=

∫
Ωp

χÕc(z′ − y)ga(y)w(z − y, z′ − y)dy. (8)

For a given z ∈ O, the function ρz : Oc → R+ weights the contribution of each
location z′ to the median. The quantity ρz(z′) is computed by integrating the
similarity w(z − y, z′ − y) between all patches that overlap z′ and those that
overlap z in the same relative position. It tells us how much evidence there is
supporting u(z′) as the intensity value for z. The function χÕc takes the value
1 on Õc and 0 on Õ.

2.3 Revisiting Related Work

We conclude this section by further connecting our work with previous art. The
method in [38] is closely related to the patch NL-means scheme of Eq. (6). The
key difference lies in the underlying theoretical model. The problem is addressed
as a MRF, where pixels outside the hole are observable variables, missing pixels
in the hole are the parameters, and the hidden variables are given by the cor-
respondence Γ : O → Oc, which assigns a patch outside the hole to each x in
O. The method can be seen as an approximate EM algorithm for maximizing
the log-likelihood w.r.t. the pixels in O, and some approximations have to be
taken to make the optimization tractable. Based on heuristics, the authors also
propose to use more robust estimators than the mean for the synthesis of pixels.
With the framework here proposed, robust estimators (as the median) naturally
result from particular choices of the patch norm ‖ · ‖a,ϕ.

The patch NL-means algorithm is also related to the interesting manifold im-
age models of [32]. Eq. (6) can be split into two steps which are analog to Peyré’s
manifold and image projection steps. First, for each patch centered in Õ we com-
pute a new patch as a weighted average of all patches in the complement, accord-
ing to the patch similarity weights pMS

u (z) :=
∫

Õc w(z, z′)pû(z′)dz′ with z ∈ Õ.
Doing this for each hole position yields an incoherent ensemble of patches. The
image is obtained by averaging these patches: u(z) = 1

A(Ωp)

∫
Ωp

pMS
u (z−y, y)dy.
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We use a density model, instead of the manifold model of [32]. Indeed, pMS
u (x)

is the mean shift operator applied to pu(x). It is known that the iteration of this
operator corresponds to an adaptive gradient ascent of the Parzen estimate of a
PDF [13], which in this case is generated by the set of patches in the complement
of the hole. The use of a density model entails some advantages, mainly from
the computational point of view, learning a manifold model is computationally
costly. Furthermore, the assumption that patches lie on a manifold is question-
able (one could think for instance in a stratification as a more realistic model),
and its dimension is hard to determine for real images.

3 Higher Order Variational Models

The proposed variational framework allows the introduction of derivatives of the
image, by considering them in the patch norm used in (3). In this section we
study a functional using the L2 norm of the gradients of the patches,

‖p(y)‖2
a,∇ =

∫
Ωp

ga(y)‖∇p(y)‖2
2dy,

where ‖ · ‖2 is the Euclidean norm in R2. Firstly, the similarity weights are
now based on patch gradients, and secondly, the image update step is given by
a non-local Poisson equation, i.e.a Poisson equation with non-local coefficients.
The functional is obtained by substituting in (2) the image energy term F̃w(u) =∫

Õ

∫
Õc w(x, x′)‖pu(x) − pû(x′)‖2

a,∇dx′dx (we assume that u|Oc = û).
The Euler equation w.r.t. u of the resulting functional is

∇ · [C(z)∇u(z)] = ∇ · v(z), (9)

for all z ∈ O, where u|Oc = û and the field v : O → R2 is given by

v(z) =
∫

Ωp

ga(y)
∫

Õc

w(z − y, x′)∇û(x′ + y)dx′dy.

The solutions are minimizers of
∫

Õ
C(z)‖∇u(z) − v(z)‖2

2dz (as before, C(z) =
A(Ωp)). Therefore, u is computed as the image with the closest gradient (in the
L2 sense) to the guiding vector field v, which corresponds to a non-local weighted
average of the gradients in the complement. The coefficients in the average have
exactly the same form as in (6). The only difference is that the patch similarity
weights used here are Gaussian weights of the L2 norm of the gradients. See [30]
for further uses of the Poisson equation in image editing.

This energy can be combined with the patch NL-means energy by considering
a linear combination of the corresponding image energy terms. The resulting
scheme computes the weights based on the image together with its gradient, and
updates the image by solving a linear combination of Eqs. (6) and (9).

4 Confidence Mask

For large inpainting domains, it is useful to introduce a mask κ : Ω → (0, 1]
which assigns a confidence value to each pixel, depending on the certainty of its
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information (see also [14,24]). This will help in guiding the flow of information
from the boundary towards the interior of the hole, eliminating some local min-
ima and reducing the effect of the initial condition. The resulting image energy
term takes the form

F̃w(u) =
∫

Õ

∫
Õc

κ(x)w(x, x′)‖pu(x) − pû(x′)‖a,ϕdx′dx,

where κ modulates the penalization of the incoherences between w and the ϕ-
norm between patches.

The effect of κ on the image update step is easier to visualize on the evi-
dence function ρz, Eq. (8). Recall that this function gathers all evidence sup-
porting u(z′) as a value for u(z), for each z′ ∈ Oc. As in Eq. (8), now tak-
ing κ into account, we obtain ρκ,z(z′) =

∫
Ωp

χÕc(z′ − y)ga(y)κ(z − y)w(z −
y, z′ − y)dy. Thus, the contribution of the patch pu(z − y) to the evidence
function is now weighted by its confidence. Patches with higher confidence will
support stronger evidence. In this case the weights are given by w(x, x′) =

1
q̃(x) exp

(
−κ(x)

h ‖pu(x) − pû(x′)‖a,ϕ

)
.

The inclusion of the confidence mask modifies the patch space scale parameter
h. If the confidence is high, the effective scale h/κ(x) will be lower, thus increasing
the selectivity of the similarity measure. If the information at x is uncertain,
more patches are considered similar. The same reasoning applies to the patch
NL-Poisson energy, with similar modifications to Eq. (9).

5 Experimental Results

We tested the proposed methods with gray scale and color images. The energy
for the latter can be obtained by considering a norm for color patches that
adds the norms of the three scalar components: ‖p−→u (x)‖a,ϕ =

∑3
i=1 ‖pui(x)‖a,ϕ,

where −→u : Ω → R3 is the color image, and ui, with i = 1, 2, 3, its components
(analogously for ‖ · ‖a,∇). Thus, the weights will take into account the three
channels. Given the weights, each channel is updated using the corresponding
scheme for scalar images. All channels are updated using the same weights. This
scheme can be applied to any Euclidean color space. We show results with RGB
and CIE La*b* color spaces.

In our implementation we use a square patch domain Ωp of side s ∈ N, with the
Gaussian intra-patch weights ga centered on it. For all experiments we set s = 3a
(s should be chosen such that most of the effective support of the Gaussian fits
in the patch, we used a smaller s to lower the computational cost). This leaves
only two independent parameters, namely, the intra-patch Gaussian width a,
and the patch similarity scale h. The former determines the size of the patch, a
parameter inherent to all patch-based techniques. It should be large enough so
as to allow the identification of the image patterns.

In the limit when h → 0, we compute the weights as limh→0 wh(x, x′) =
1

#n(x)δ(x
′−n(x)), where n(x) ⊆ Oc is the set of nearest neighbors of x, i.e.n(x) =

{x′ ∈ Oc : ‖pu(x) − pû(x′)‖a,ϕ = δn}, where δn represents the nearest neighbor
distance. In practice, we assume that #n(x) = 1, i.e.the nearest neighbor is
unique. The choice of this parameter will be addressed later.
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Fig. 2. Results with s = 15 and a = 5. The first four columns correspond to the initial
condition, result of path NL-medians, -means and -Poisson. Top row, h = 0, bottom
row h = 0.01, h = 0.05 and h = 0.04, respectively. The used intra-patch weight kernel
ga is shown in each figure on the bottom right. The fifth column shows the value of
the images for a horizontal line going between the circles.

The confidence mask, when used, adds another parameter. We found good
results using the following function:

κ(x) =
{

(1 − κ0)e−
d(x,∂O)

τκ + κ0 if x ∈ O,
1 if x ∈ Oc,

which shows an exponential decay w.r.t. the distance to the boundary inside
the hole d(·, ∂O), where τκ > 0 is the decay time and κ0 > 0 determines the
asymptotic value reached far away from the boundary.

If a patch centered in the inpainting domain does not fit in the image, we
mirror the image w.r.t. the boundary to complete the patch. Whenever the hole
reaches ∂Ω, the Poisson equation requires a different boundary condition. We
have considered Neuman boundary conditions, i.e.∇u ·n(x) = 0, for x ∈ O∩∂Ω,
where n(x) is the normal direction at the boundary. This amounts again to a
reflection of u w.r.t. ∂Ω.

The computational cost of each iteration is O(A(O) × A(Oc) × s2). This is
typical of non-local methods, and several strategies can be used for speed-up
[8,27].

Figure 2 compares the results of the three methods on a texture with two
different mean intensities, darker on the right half of the image. The inpainting
domain hides all patches on the boundary between the dark and bright textures.
With this we can test the ability of each method to create an interface between
both regions. Situations like these are common in real inpainting problems due
for instance to shadows. Moreover, when inpainting non-regular textures, a good
completion may not be possible just by copying, and creating new patterns
becomes necessary (see Figure 3).

We have also added Gaussian noise with standard deviation σ = 10 to show
the influence of the patch space scale parameter h. Figure 2 shows two results for
each scheme, one with h = 0, and the other with a higher h, chosen empirically
for each method.

The rightmost column in Figure 2 plots the image values for a horizontal line
between the circles. The interpolation done by the patch NL-Poisson method is
linear, since this is a solution of the homogeneous Poisson equation. The profile
shown by patch NL-means shows a smooth transition when both regions meet,
whereas the use of the L1 norm yields a sharp edge. The results using a higher
h show some denoising, since for larger h, more patches are regarded as similar
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Fig. 3. From left to right: Initial condition, result of path NL-medians, -means and
-Poisson. Top: Results with s = 15, a = 5 and h = 0, using the CIE La*b* color space.
Bottom: Results with s = 25, a = 8 and h = 0. Gray scale image.

Fig. 4. From left to right, inpainting domain with confidence mask, result of path NL-
medians, -means and -Poisson (the latter only for the first row). Top: cylinders- Results
with s = 27, a = 9 and h = 0 for patch NL-medians and -means and s = 33, a = 1
and h = 0 patch NL-Poisson. Bottom: elepahnt- Results with s = 19, a = 6 and h = 0.
The parameters of the confidence mask are τ0 = 5 and κ0 = 0.4 in all cases except for
the patch NL-medians with the bottom image, in which we set κ0 = 0.1. Results using
RGB. Please refer to [17,24] for other results on the same images.

to each patch in Õ and each pixel value is synthesized from more complement
pixels. For inpainting of noiseless images, we use h = 0.

The top row of Figure 3 shows results with the three schemes for a non-regular
texture. The result with patch NL-medians shows image regions copied without
any modification. The boundaries between these regions are determined so that
each patch on the boundary is close to some patch outside the hole. This does not
always yields a smooth transition. Copied patterns can also be seen in the result
of the patch NL-means, but the copies are less sharp, and the discontinuities less
noticeable. The patch NL-Poisson shows a better continuation of the color at the
boundary of the hole. However the inpainted structure looks too blurry (zoom
on the pdf file for details).

The bottom row of Figure 3 depicts results on a regular texture. The regularity
of the texture hides the blurring effects of the L2 metrics (both on the image and
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gradients). At a stable state, all patches overlapping on a pixel will agree on its
value. Notice that in this case, the patch NL-Poisson is able to reconstruct the
illumination gradient of the image. This is imposed to the solution of the Poisson
equation by the boundary conditions. In addition to the non-local inpainting,
this scheme performs also a local interpolation based on the hole’s boundary.
Instead, the other methods copied the information from the bottom of the image,
generating a discontinuity at the top.

The results shown in Figure 4, were computed using a confidence mask shown
at the leftmost column. In both cases the patch NL-medians scheme yields the
best results, comparable to state of the art (see results in [17,24] for results on
the same images). The images look as a composition of copied regions (although
some parts in the elephant image seem new). Again the patch NL-means shows
blurred results, most noticeable for elephant due to the non-regularity of the
textures. The patch NL-Poisson fails with this image. In this case the gradient
is not a good feature for computing the weights. However, the results for Figure
4 are still reasonable, it did recover the structure of the image. Due to the
averaging of gradients, when overlapping patches do not agree on the value of a
pixel, lower gradients may appear. These generate phantom edges surrounding
the cylinders. Presumably a more robust estimation of the gradient would not
have this problem. We are currently developing a scheme using the L1 norm
between the gradients of patches.

The initial condition for elephant is the original image, whereas for cylinders
the hole was filled with 128 as constant gray level. A confidence mask κ with low
confidence inside the hole helps in diminishing the influence of the initialization.
Further results are available at: http://gpi.upf.edu/static/vnli.

6 Conclusions and Future Work

In this work we present a variational framework for non-local image inpaint-
ing. The proposed energy lends itself to intuitive interpretations, and contrary
to previous variational models, allows a straightforward minimization using a
coordinate descent scheme. Beyond the specific application of inpainting, this
framework provides also a sound variational modelling of non-local regulariz-
ers with adaptive weights, extending previous work in which the weights are
considered known and fixed.

Starting from this model, we derived three different inpainting schemes, each
one corresponding to a different norm measuring the distance between patches.
We showed results on synthetic and natural images comparing their properties.

The derived patch NL-means provides a variational interpretation of the meth-
ods proposed by [32,38]. The patch NL-medians is the one that showed the best
overall performance, comparable with the state of the art. The results obtained
suggest a possible relation with the piece-wise traslation models of [1,16]. The
patch NL-Poisson presents two interesting features. First, the similarity weights
are computed based on the gradients, allowing the transference of information
from areas with different intensity level. Second, the image completion is the
result of a Poisson equation, thus incorporating some basic local regularization,
meaning the completion must be differentiable and its gradient squared inte-
grable. This traduces in a local interpolation based on the image values at the
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boundary of the inpainting domain. This method performs well for structured
textures, but fails for non-regular textures.

We are currently exploring several additional aspects of this framework, in-
cluding the use of robust norms in the general ϕ setting and the L1 norm between
patch gradients.
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Abstract. This paper presents an approach to image filtering that is
driven by the properties of the iso-valued level curves of the image and
their relationship with one another. We explore the relationship of our
algorithm to existing probabilistically driven filtering methods such as
those based on kernel density estimation, local-mode finding and mean-
shift. Extensive experimental results on filtering gray-scale images, color
images, gray-scale video and chromaticity fields are presented. In con-
trast to existing probabilistic methods, in our approach, the selection of
the parameter that prevents diffusion across the edge is robustly decou-
pled from the smoothing of the density itself. Furthermore, our method
is observed to produce better filtering results for the same settings of
parameters for the filter window size and the edge definition.

1 Introduction

Filtering of images has been one of the most fundamental problems studied in
low-level vision and signal processing. Over the past decades, several techniques
for data filtering have been proposed with impressive results on practical appli-
cations in image processing. As straightforward image smoothing is known to
blur across significant image structures, several anisotropic approaches to im-
age smoothing have been developed using partial differential equations (PDEs)
with stopping terms to control image diffusion in different directions [1]. The
PDE-based approaches have been extended to filtering of color images [2] and
chromaticity vector fields [3]. Other popular approaches to image filtering in-
clude adaptive smoothing [4] and kernel density estimation based algorithms [5].
All these methods produce some sort of weighted average over an image neigh-
borhood for the purpose of data smoothing, where the weights are obtained from
the difference between the intensity values of the central pixel and the pixels in
the neighborhood, or from the pixel gradient magnitudes. Beyond this, tech-
niques such as bilateral filtering [6] produce a weighted combination that is also
influenced by the relative location of the central pixel and the neighborhood
pixels. The highly popular mean-shift procedure [7], [8] is grounded in similar
ideas as bilateral filtering, with the addition that the neighborhood around a
pixel is allowed to change dynamically until a convergence criterion is met. The
authors prove that this convergence criterion is equivalent to finding the mode
of a local density built jointly on the spatial parameters (image domain) and
the intensity parameters (image range).

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 359–372, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper, we present a new approach to data filtering that is rooted in
simple yet elegant geometric intuitions. At the core of our theory is the repre-
sentation of an image as a function that is at least C0 continuous everywhere. A
key property of the image level sets is used to drive the diffusion process, which
we then incorporate in a framework of dynamic neighborhoods à la mean-shift.
We demonstrate the relationship of our method to many of the existing filtering
techniques such as those driven by kernel density estimation. The efficacy of our
approach is supported with extensive experimental results. To the best of our
knowledge, ours is the first attempt to explicitly utilize image geometry (in terms
of its level curves) for this particular application.

This paper is organized as follows. Section 2 presents the key theoretical frame-
work. Section 3 presents extensions to our theory. In section 4, we present the
relationship between our method and mean-shift. Extensive experimental results
are presented in section 5, and we present further discussions and conclusions in
section 6.

2 Theory

Consider an image over a discrete domain Ω = {1, ..., H} × {1, ...,W} where
the intensity of each discrete location (x, y) is given by I(x, y). Moreover con-
sider a neighborhood N (xi, yi) around the pixel (xi, yi). It is well-known that
a simple averaging of all intensity values in N (xi, yi) will blur edges, so a
weighted combination is calculated, where the weight of the jth pixel is given
by w(1)(xj , yj) = g(|I(xi, yi) − I(xj , yj)|) for a non-increasing function g(.) to

facilitate anisotropic diffusion, with common examples being g(z) = e−
z2

σ2 or
g(z) = σ2

σ2+z2 , or their truncated versions. This approach is akin to the kernel
density estimation (KDE) approach proposed in [5], where the filtered value of
the central pixel is calculated as:

Î(xi, yi) =

∑
(xj,yj)∈N (xi,yi)

I(xj , yj)K(I(xj , yj) − I(xi, yi);Wr)∑
(xj ,yj)∈N (xi,yi)

K(I(xj , yj) − I(xi, yi);Wr)
. (1)

Here the kernel K centered at I(xi, yi) (and parameterized by Wr) is related to
the function g and determines the weights. The major limitations of the kernel
based approach to anisotropic diffusion are that the entire procedure is sensitive
to the parameter Wr and the size of the neighborhood, and might suffer from a
small-sample size problem. Furthermore, in a discrete implementation, for any
neighborhood size larger than 3 × 3, the procedure depends only on the actual
pixel values and does not account for any gradient information, whereas in a
filtering application, it is desirable to place greater importance on those regions
of the neighborhood where the gradient values are lower.
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Now consider that the image is treated as a continuous function I(x, y) of
the spatial variables, by interpolating in between the pixel values. The earlier
discrete average is replaced by the following continuous average to update the
value at (xi, yi):

Î(xi, yi) =

∫ ∫
N (xi,yi)

I(x, y)g(|I(x, y) − I(xi, yi)|)dxdy∫ ∫
N (xi,yi)

g(|I(x, y) − I(xi, yi)|)dxdy
. (2)

The above formula is usually not available in closed form. We now show a
principled approximation to this formula, by resorting to geometric intuition.
Imagine a contour map of this image, with multiple iso-intensity level curves
Cm = {(x, y)|I(x, y) = αm} (referred to henceforth as ‘level curves’) separated
by an intensity spacing of Δ. Consider a portion of this contour map in a small
neighborhood centered around the point (xi, yi) (see Figure 1(a)). Those regions
where the level curves (separated by a fixed intensity spacing) are closely packed
together correspond to the higher-gradient regions of the neighborhood, whereas
in lower-gradient regions of the image, the level curves lie far away from one an-
other. Now as seen in Figure 1(a), this contour map induces a tessellation of
the neighborhood into some K facets, where each facet corresponds to a region
in between two level curves of intensity αm and αm + Δ, bounded by the rim
of the neighborhood. Let the area ak of the kth facet of this tessellation be de-
noted as ak. Now, if we make Δ sufficiently small, we can regard even the facets
from high-gradient regions as having constant intensity value Ik = αm. This now
leads to the following weighted average in which the weighting function has a
very clean geometric interpretation, unlike the arbitrary choice for w(1) in the
previous technique:

Î(xi, yi) =

K∑
k=1

akIkg(|Ik − I(xi, yi)|)

K∑
k=1

akg(|Ik − I(xi, yi)|)
. (3)

As the number of facets is typically much larger than the number of pixels, and
given the fact that the facets have arisen from a locally smooth interpolation
method to obtain a continuous function from the original digital pixel values,
we now have a more robust average than that provided by Equation 1. To intro-
duce anisotropy, we still require the stopping term g(|Ik − I(xi, yi)|) to prevent
smearing across the edge, just as in Equation 1.

Equation 2 essentially performs an integration of the intensity function over
the domain N (xi, yi). If we now perform a change of variables transforming
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the integral on (x, y) to an integral over the range of the image, we obtain the
expression

Î(xi, yi) =

∫ ∫
N (xi,yi)

I(x, y)w(1)(x, y)dxdy∫ ∫
N (xi,yi)

w(1)(x, y)dxdy

=

∫ q=q2

q=q1

∫
C(q)

qg(|q − I(xi, yi)|)
|∇I | dldq∫ q=q2

q=q1

∫
C(q)

g(|q − I(xi, yi)|)
|∇I | dldq

=

lim
Δ→0

q2∑
α=q1

∫ α+Δ

q=α

∫
C(q)

qg(|q − I(xi, yi)|)
|∇I | dldq

lim
Δ→0

q2∑
α=q1

∫ q=α+Δ

q=α

∫
C(q)

g(|q − I(xi, yi)|)
|∇I | dldq

(4)

where C(q) = N (xi, yi) ∩ f−1(q), q1 = inf{I(x, y)|(x, y) ∈ N (xi, yi)}, q2 =
sup{I(x, y)|(x, y) ∈ N (xi, yi)} and l stands for a tangent along the curve f−1(q).
This approach is inspired by the smooth co-area formula for regular functions
[9] which is given as∫

Ω

φ(u)|∇u|dxdy =
∫ +∞

−∞
Length(γq)φ(q)dq (5)

where γq is the level set of u at the intensity q and φ(u) represents a function of u.
Note that the term

∫ q=α+Δ

q=α

∫
C(q)

dldq
|∇I| in Equation 4 actually represents the area

in N (xi, yi) that is trapped between two contours whose intensity value differs
by Δ. Previous work from [10] and [11] considers this quantity when normalized
by |Ω| to be actually equal to the probability that the intensity value lies in the
range [α, α + Δ]. Bearing this in mind, Equation 3 now acquires the following
probabilistic interpretation:

Î(xi, yi) =

q2∑
α=q1

Pr(α < I < α + Δ|N )αg(|α − I(xi, yi)|)

q2∑
α=q1

Pr(α < I < α + Δ|N )g(|α− I(xi, yi)|)
. (6)

As Δ → 0, this produces an increasingly better approximation to Equation 2.
It should be pointed out that there exist methods such as adaptive filter-

ing [4], [12] in which the weights in Equation 1 are obtained as w(2)(xj , yj) =
g(|∇I(xj , yj)|). These methods place more importance on the lower-gradient pix-
els of the neighborhood, but do not exploit level curve relationships in the way
we do, and the choice of the weighting function does not have the geometric
interpretation that exists in our technique. There also exists an extension to the
standard neighborhood filter in Equation 1 reported in [13], which performs a
weighted least squares polynomial fit to the intensity values (of the pixels) in
the neighborhood of a location (x, y). The value of this polynomial at (x, y) is
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CENTRAL PIXEL

(a) (b)

FACETS INDUCED 
BY LEVEL CURVES 
AND PIXEL GRID

(c)

Fig. 1. (a) An image contour map with high and low gradient regions in a neighborhood
around a pixel (dark dot). (b) A contour map of an RGB image in a neighborhood.
The red, green and blue contours correspond to contours of the R,G,B channels re-
spectively. The tessellation induced by the above level-curve pairs contains 19 facets.
(c) A tessellation induced by RGB level curve pairs and the square pixel grid.

then considered to be the smoothed intensity value. This technique differs from
the one we present here in two fundamental ways. Unlike our method, it does
not use areas between level sets as weights to explicitly perform a weighted
averaging. Secondly as proved in [13], its limiting behavior when Wr → 0 and
|N (x, y)| → 0 resembles the geometric heat equation with a linear polynomial,
and resembles higher order PDEs when the degree of the polynomial is increased.
Our method is the true continuous form of the KDE-based filter from Equation
1. This KDE-based filter limits to the Perona-Malik equation, as proved in [13].

3 Extensions of Our Theory

3.1 Color Images

We now extend our technique to color (RGB) images. Consider a color image
defined as I(x, y) = (R(x, y), G(x, y), B(x, y)) : Ω → R3 where Ω ⊂ R2. In
color images, there is no concept of a single iso-contour with constant values
of all three channels. Hence it is more sensible to consider an overlay of the
individual iso-contours of the R, G and B channels. The facets are now induced
by a tessellation involving the intersection of three iso-contour sets within a
neighborhood, as shown in Figure 1(b). Each facet represents those portions
of the neighborhood for which αR < R(x, y) < αR + ΔR, αG < G(x, y) <
αG + ΔG, αB < B(x, y) < αB + ΔB . The probabilistic interpretation for the
update on the R,G,B values is as follows

R̂(xi, yi), Ĝ(xi, yi), B̂(xi, yi) =

∑
β

Pr[β < (R,G,B) < β + Δ|N )βg(R,G,B)∑
β

Pr[β < (R,G,B) < β + Δ|N )g(R,G,B)
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whereβ = (αR, αG, αB),Δ = (ΔR, ΔG, ΔB) and g(R,G,B) = g(|R−R(xi, yi)|+
|G−G(xi, yi)|+ |B−B(xi, yi)|). Note that in this case, I(x, y) is a function from
a subset of R2 to R3, and hence the three-dimensional joint density is ill-defined
in the sense that it is defined strictly on a 2D subspace of R3. However given
that the implementation considers joint cumulative interval measures, this does
not pose any problem in a practical implementation. We wish to emphasize that
the averaging of the R,G,B values is performed in a strictly coupled manner, all
affected by the joint cumulative interval measure.

3.2 Chromaticity Fields

Previous research on filtering chromaticity noise (which affects only the direction
and not the magnitude of the RGB values at image pixels) includes the work in
[3] using PDEs specially tuned for unit-vector data, and the work in [5] (page
142) using kernel density estimation for directional data. The more recent work
on chromaticity filtering in [14] actually treats chromaticity vectors as points on
a Grassmann manifold G1,3 as opposed to treating them as points on S2, which
is the approach presented here and in [5] and [3].

We extend our theory from the previous section to unit vector data and in-
corporate it in a mean-shift framework for smoothing. Let I(x, y) : Ω → R3 be
the original RGB image, and let J(x, y) : Ω → S2 be the corresponding field of
chromaticity vectors. A possible approach would involve interpolating the chro-
maticity vectors by means of commonly used spherical interpolants to create a
continuous function, followed by tracing the level curves of the individual unit-
vector components v(x, y) = (v1(x, y), v2(x, y), v3(x, y)) and computing their
intersection. However for ease of implementation for this particular application,
we resorted to a different strategy. If the intensity intervals Δ = (ΔR, ΔG, ΔB)
are chosen to be fine enough, then each facet induced by a tessellation that uses
the level curves of the R, G and B channel values, can be regarded as having a
constant color value, and hence the chromaticity vector values within that facet
can be regarded as (almost) constant. Therefore it is possible to use just the
R,G,B level curves for the task of chromaticity smoothing as well. The update
equation is very similar to Equation 7 with the R,G,B vectors replaced by their
unit normalized versions. However as the averaging process does not preserve
the unit norm, the averaged vector needs to be renormalized to produce the
spherical weighted mean.

3.3 Gray-Scale Video

For the purpose of this application, the video is treated as a single 3D signal
(volume). The extension in this case is quite straightforward, with the areas
between level curves being replaced by volumes between the level surfaces at
nearby intensities. However we take into account the causality factor in defining
the temporal component of the neighborhood around a pixel, by performing the
averaging at each pixel over frames only from the past.
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4 Level Curve Based Filtering in a Mean-shift Framework

All the above techniques are based on an averaging operation over only the
image intensities (i.e. in the range domain). On the other hand, techniques
such as bilateral filtering [6] or local mode-finding [15] combine both range and
spatial domain, thus using weights of the form wj = g(s)((xi − xj)2 + (yi −
yj)2)g(r)(|(I(xi, yi) − I(xj , yj)|) in Equation 1, where g(s) and g(r) affect the
spatial and range kernels respectively. The mean-shift framework [8] is based on
similar principles, but changes the filter window dynamically for several itera-
tions until it finds a local mode of the joint density of the spatial and range
parameters, estimated using kernels based on the functions g(r) and g(s). Our
level curve based approach fits easily into this framework with the addition of a
spatial kernel. One way to do this would be to consider the image as a surface
embedded in 3D (a Monge patch), as done in [16], and compute areas of patches
in 3D for the probability values. However such an approach may not necessarily
favor the lower gradient areas of the image. Instead we adopt another method
wherein we assume two additional functions of x and y, namely X(x, y) = x
and Y (x, y) = y. We compute the joint probabilities for a range of values of the
joint variable (X,Y, I) by drawing local level sets and computing areas in 2D.
Assuming a uniform spatial kernel for g(s) within a radius Ws and a rectangular
kernel on the intensity for g(r) with threshold value Wr (though our core theory
is unaffected by other choices), we now perform the averaging update on the
vector (X(x, y), Y (x, y), I(x, y)), as opposed to merely on I(x, y) as was done in
Equation 6. This is given as:

(X(xi, yi), Y (xi, yi), Î(xi, yi)) =

K∑
k=1

(xk, yk, Ik)akg
(r)(|Ik − I(xi, yi)|)

K∑
k=1

akg
(r)(|Ik − I(xi, yi)|)

. (7)

In the above equation (xk, yk) stands for a representative point (say, the centroid)
of the kth facet of the induced tessellation1, and K is the total number of facets
within the specified spatial radius. Note that the area of the kth facet, i.e. ak,
can also be interpreted as the joint probability for the event x̃ < X(x, y) <
x̃ + Δx, ỹ < Y (x, y) < ỹ + Δy, α < I(x, y) < α + Δ, if we assume a uniform
distribution over the spatial variables x and y. Here Δ is the usual intensity
binwidth, (Δx, Δy) are the pixel dimensions, and (x̃, ỹ) is a pixel grid-point.
The main difference between our approach and all the aforementioned range-
spatial domain approaches is the fact that we naturally incorporate a weight in
favor of the lower-gradient areas of the filter neighborhood. Hence the mean-shift
vector in our case will have a stronger tendency to move towards the region of
the neighborhood where the local intensity change is as low as possible (even
if a uniform spatial kernel is used). Moreover just like conventional mean shift,

1 The notion of the centroid will become clearer in Section 5.
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our iterative procedure is guaranteed to converge to a mode of the local density
in a finite number of steps, by exploiting the fact that the weights at each
point (i.e. the areas of the facets) are positive. Hence Theorem 5 of [7] can be
readily invoked. This is because in Equation 7, the threshold function g(r) for the
intensity is the rectangular kernel, and hence the corresponding update formula
is equivalent to one with a weighted rectangular kernel, with the weights being
determined by the areas of the facets.

A major advantage of our technique is that the parameter Δ can be set to as
small a value as desired (as it just means that more and more level curves are be-
ing used), and the interpolation gives rise to a robust average. This is especially
useful in the case of small neighborhood sizes, as the intensity quantization is now
no more limited by the number of available pixels. In conventional mean-shift,
the proper choice of bandwidth is a highly critical issue, as very few samples are
available for the local density estimate. Though variable bandwidth procedures
for mean-shift algorithms have been developed extensively, they themselves re-
quire either the tuning of other parameters using rules of thumb, or else some
expensive exhaustive searches for the automatic determination of the bandwidth
[17], [18]. Although our method does require the selection of Ws and Wr , the
filtering results are less sensitive to the choice of these parameters in our method
than in standard mean shift.

5 Experimental Results

In this section we present experimental results to compare the performance of our
algorithm in a mean shift framework w.r.t. conventional kernel-based mean shift,
as well as to two recent algorithms that are closely related to mean-shift: UINTA
[19] and NL-Means [20]. For our algorithm, we obtain a continuous function
approximation to the digital image, by means of piecewise linear interpolants
fit to a triple of intensity values in half-pixels of the image (in principle, we
could have used any other smooth interpolant). The corresponding level sets for
such a function are also very easy to trace, as they are just segments within
each half-pixel. The level sets induce a polygonal tessellation. We choose to split
the polygons by the square pixel boundaries as well as the pixel diagonals that
delineate the half-pixel boundaries, thereby convexifying all the polygons that
were initially non-convex (see Figure 1(c)). Each polygon in the tessellation can
now be characterized by the x, y coordinates of its centroid, the intensity value of
the image at the centroid, and the area of the polygon. Thus, if the intensity value
at grid location xi, yi is to be smoothed, we choose a window of spatial radius
Ws and intensity radius Wr around (xi, yi, I(xi, yi)), over which the averaging is
performed. In other words, the averaging is performed only over those locations
x, y for which (x−xi)2 +(y−yi)2 < W 2

s and |I(x, y)−I(xi, yi)| < Wr. We would
like to point out that though the interpolant used for creating the continuous
image representation is indeed isotropic in nature, this still does not make our
filtering algorithm isotropic. This is because polygonal regions, whose intensity
value does not satisfy the constraint |I(x, y)− I(xi, yi)| < Wr, do not contribute
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Fig. 2. Leftmost column: original images, Second from left: degraded images with zero
mean Gaussian noise of std. dev. 0.003, Second from right: results obtained by our
algorithm, and rightmost column: mean shift with Gaussian kernel (right column).
Both both methods, Ws = Wr = 3. VIEWED BEST when ZOOMED in the pdf file.

to the averaging process (see the stopping term in Equation 3), and hence the
contribution from pixels with very different intensity values will be nullified.

5.1 Gray-Scale Images

We ran our filtering algorithm over four arbitrarily chosen images from the popu-
lar Berkeley image dataset2, and the Lena image. To all these images, zero mean
Gaussian noise of variance 0.003 (per unit gray-scale range) was added. The fil-
tering was performed using Ws = Wr = 3 for our algorithm and compared to
mean-shift using Gaussian and Epanechnikov kernels with the same parameter.
Our method produced superior filtering results to conventional mean shift with
both Gaussian and Epanechnikov kernels. The results for our method, for Gaus-
sian kernel mean shift and for UINTA are displayed in Figure 2. The visually
superior appearance was confirmed objectively with mean squared error (MSE)
values in Table 1. It should be noted that the aim was to compare our method to
standard mean shift for the exact same setting of the parameters Wr and Ws, as
2 http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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Table 1. MSE for filtered images using (M1) = Our method with Ws = Wr = 3, using
(M2) = Mean shift with Gaussian kernels with Ws = Wr = 3 and (M3) = Mean shift
with Gaussian kernels with Ws = Wr = 5, MUINTA = MSE with UINTA method with
neighborhood radius 9, smoothing parameter h = 10 (similar to Wr), 1000 samples for
density estimate and 30 iterations per pixel, and MNL = MSE with NL-means with
search window size 18 × 18, neighborhood size 5 × 5, and smoothing parameter h = 5
(similar to Wr). MSE = mean-squared error in the corrupted image. Intensity scale is
from 0 to 255.

Image M1 M2 M3 MUINTA MNL MSE
1 110.95 176.57 151.27 280.7 130.7 181.27
2 53.85 170.18 106.32 95.43 127.48 193.5
3 106.64 185.15 148.379 121.3 147.41 191.76
4 113.8 184.77 153.577 127.4 147.98 190

Lena 78.42 184.16 128.04 101.5 125.38 194.82

they have the same meaning in all these algorithms. Although increasing the value
of Wr will provide more samples for averaging, this will allow more and more
intensity values to leak across edges. Moreover, in Table 1, we also compare our
method to NL-means [20] and UINTA [19], again for similar parameter settings.
Further empirical results with our algorithm (using WS = Wr = 5) were ob-
tained on Lansel’s benchmark dataset [21]. The dataset contains noisy versions
of 13 different images. Each noisy image is obtained from one of three noise
models: additive Gaussian, Poisson, and multiplicative noise model, for one of
five different values of the noise standard deviation σ ∈ { 5

255 ,
10
255 ,

15
255 ,

20
255 ,

25
255},

leading to a total of 195 images. Despite the fact that we did not tweak any pa-
rameters depending on the noise model (we chose Wr = Ws = 5), we produced
excellent denoising results. The average MSE and MSSIM (an image quality met-
ric defined in [21]) are shown in the plots in Figure 3. We have also displayed the
denoised versions of a fingerprint image from this dataset under three different
values of σ for additive noise in Figure 3.

5.2 Color Images

Similar experiments were run on colored versions of the same four images from
the Berkeley dataset. The original images were degraded by zero mean Gaussian
noise of variance 0.003 (per unit intensity range), added independently to the
R,G,B channels. For our method, independent interpolation was performed on
each channel and the joint densities were computed as described in the previous
sections. Level sets at intensity gaps of ΔR = ΔG = ΔB = 1 were traced in
every half pixel. Experimental results were compared with conventional mean
shift using a Gaussian kernel. The parameters chosen for both algorithms were
Ws = Wr = 6. Despite the documented advantages of color spaces such as Lab
[5], all experiments were performed in the R,G,B space for the sake of simplic-
ity, and also because many well-known color de-noising techniques operate in this
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Fig. 3. First row: (a), (c) and (e): Fingerprint image subjected to additive Gaussian
noise of std. dev. σ = 5

255
, 10

255
and 15

255
respectively. (b), (d) and (f): Denoised versions of

(a), (c) and (e) respectively. Second row: A plot of the performance of our algorithm on
the Lansel dataset, averaged over all images from each noise model (Additive Gaussian
(AWGN), multiplicative Gaussian (MWGN) and Poisson) and over all five σ values,
using MSE (left) and MSSIM (right) as the metric. VIEWED BEST when ZOOMED
in the pdf file (in color).

Fig. 4. Left column: original images, second from left: Degraded images with zero
mean Gaussian noise of std. dev. 0.003, second from right: results by our algorithm
(left column) and Rightmost: mean shift with Gaussian kernel (right column). Both
both methods, Ws = Wr = 6. Viewed best when ZOOMED in the pdf file (in color).

space [2]. As seen in Figure 4 and Table 2, our method produced better results
than Gaussian kernel mean shift for the chosen parameter values.



370 A. Rajwade, A. Banerjee, and A. Rangarajan

Table 2. MSE for filtered images using (M1) = Our method with Ws = Wr = 6, using
(M2) = Mean shift with Gaussian kernels with Ws = Wr = 6 and (M3) = Mean shift
with Epanechnikov kernels with Ws = Wr = 6. MSE = mean-squared error in the
corrupted image. Intensity scale is from 0 to 255 for each channel.

Image M1 M2 M3 MSE
1 319.88 496.7 547.9 572.54
2 354.76 488.7 543.4 568.69
3 129.12 422.79 525.48 584.24
4 306.14 477.25 526.8 547.9

Fig. 5. Two images and their corrupted versions obtained by adding chromaticity
noise (first and second columns respectively). Results obtained by filtering with our
method (third column), and with Gaussian mean shift (fourth column). Viewed best
when ZOOMED in the pdf file (in color).

Fig. 6. First two images: frames from the corrupted sequence. Third and fourth: images
filtered by our algorithm. Fifth and sixth images: a slice through the tenth row of the
corrupted and filtered video sequences. The images are numbered left to right, top to
bottom.
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5.3 Experiments with Chromaticity Vectors and Video

Two color images were synthetically corrupted with chromaticity noise altering
just the direction of the color-triple vector. These images are shown in Figure
5. These images were filtered using our method and Gaussian kernel mean shift
with a spatial window of size Ws = 4 and a chromaticity threshold of Wr = 0.1
radians. Note that in this case, the distance between two chromaticity vectors v1
and v2 is defined to be the length of the arc between the two vectors along the
great circle joining them, which turns out to be θ = cos−1 v1

T v2. The specific
expression for the joint spatial-chromaticity density using the Gaussian kernel

was e
− (x−xi)

2+(y−yi)2

2W2
s e

− θ2

2W2
i . The filtered images using both methods are shown

in Figure 5. Despite the visual similarity of the output, our method produced
a mean-squared error of 378 and 980.8, as opposed to 534.9 and 1030.7 for
Gaussian kernel mean shift.

We also performed an experiment on video de-noising using the David se-
quence3. The first 100 frames from the sequence were extracted and artificially
degraded with zero mean Gaussian noise of variance 0.006. Two frames of the
corrupted and de-noised (using our method) sequence are shown in Figure 6, as
also a temporal slice through the entire video sequence (for the tenth row of each
frame). For this experiment, the value of Δ was set to 8 in our method.

6 Discussion

We have presented a new method for image denoising, whose principle is rooted
in the notion that the lower-gradient portions of an image inside a neighborhood
around a pixel should contribute more to the smoothing process. The geometry
of the image level sets (and the fact that the spatial distance between level sets
is inversely proportional to the gradient magnitudes) is the driving force be-
hind our algorithm. We have linked our approach to existing probability-density
based approaches, and our method has the advantage of robust decoupling of the
edge definition parameter from the density estimate. In some sense, our method
can be viewed as a continuous version of mean-shift. It should be noted that
a modification to standard mean-shift based on simple image up-sampling us-
ing interpolation will be an approximation to our area-based method (given the
same interpolant). We have performed extensive experiments on gray-scale and
color images, chromaticity fields and video sequences. To the best of our knowl-
edge, ours is the first piece of work on denoising which explicitly incorporates
the relationship between image level curves and uses local interpolation between
pixel values in order to perform filtering. Future work will involve a more de-
tailed investigation into the relationship between our work and that in [16], by
computing the areas of the contributing regions with explicit treatment of the
image I(x, y) as a surface embedded in 3D. Secondly, we also plan to develop
topologically inspired criteria to automate the choice of the spatial neighborhood
and the parameter Wr for controlling the anisotropic smoothing.
3 Obtained from http://www.cs.utoronto.ca/~dross/ivt/

http://www.cs.utoronto.ca/~dross/ivt/
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Abstract. We introduce several color image restoration algorithms
based on the Mumford-Shah model and nonlocal image information. The
standard Ambrosio-Tortorelli and Shah models are defined to work in a
small local neighborhood, which are sufficient to denoise smooth regions
with sharp boundaries. However, textures are not local in nature and
require semi-local/non-local information to be denoised efficiently. In-
spired from recent work (NL-means of Buades, Coll, Morel and NL-TV
of Gilboa, Osher), we extend the standard models of Ambrosio-Tortorelli
and Shah approximations to Mumford-Shah functionals to work with
nonlocal information, for better restoration of fine structures and tex-
tures. We present several applications of the proposed nonlocal MS reg-
ularizers in image processing such as color image denoising, color image
deblurring in the presence of Gaussian or impulse noise, color image
inpainting, and color image super-resolution. In the formulation of non-
local variational models for the image deblurring with impulse noise, we
propose an efficient preprocessing step for the computation of the weight
function w. In all the applications, the proposed nonlocal regularizers
produce superior results over the local ones, especially in image inpaint-
ing with large missing regions. Experimental results and comparisons
between the proposed nonlocal methods and the local ones are shown.

1 Introduction

We consider the restoration problem of a color image formalized as

f = Hu + n, (f i = Hiui + ni, i = r, g, b) (1)

where H is a linear operator accounting for some blurring, sub-sampling or
missing pixels so that the observed data f : Ω → IR loses some portion of the
original image u we wish to recover, and n is an additive noise. We approach
the restoration problem within the variational framework: infu{Φ(f − Hu) +
Ψ(|∇u|)}, where Φ defines a data-fidelity term, and Ψ defines the regularization
that enforces a smoothness constraint on u, depending on its gradient ∇u.

Problem (1) is ill-posed, but the regularization term Ψ alleviates this diffi-
culty by reflecting some a priori properties. Several edge-preserving regulariza-
tion terms were suggested in the literature, including [9], [20], [2], [21], [5], [4].
These traditional regularization terms are based on local image operators, which

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 373–387, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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denoise and preserve edges and smooth regions very well, but may not deal well
with fine structures like texture during the restoration process because textures
are not local in nature.

Recently, new image denoising models have been developed, based on non-
local image operators, to better deal with textures. Buades et al [8] introduced
the nonlocal means filter, which produces excellent denoising results. Kinder-
mann et al [13], and Gilboa-Osher [10,11] formulated the variational framework
of NL-means by proposing nonlocal regularizing functionals. Lou et al [14] used
the nonlocal total variation of Gilboa-Osher (NL/TV) in grey-scale image deblur-
ring in the presence of Gaussian noise. Moreover, Peyré et al [18] used NL/TV for
grey-scale image inpainting, super-resolution of a single image, and compressive
sensing. Protter et al. [19] generalized the NL-means filter to super-resolution.

The previous works on nonlocal methods have been done on the Gaussian
noise model, but no study has been developed on the impulse noise model us-
ing non-local information. However, the impulsive noise model was studied in
the local case. Bar et al [4] used the Ambrosio-Tortorelli and Shah approxi-
mations to Mumford-Shah regularizing functional for color image deblurring in
the presence of impulse noise, producing better restorations than total variation
(TV) regularizer, and moreover providing the edge set detected concurrently
with the restoration process. We propose in this paper the nonlocal versions
of Ambrosio-Tortorelli [2] and Shah [21] approximations to the Mumford-Shah
regularizer for the multichannel case. We also propose (a) several applications of
the NL/MS for color image denoising, deblurring in the presence of Gaussian or
impulse noise, inpainting with large missing portion, super-resolution of a single
image, and (b) an efficient preprocessing step to compute the weights w in the
deblurring-denoising model in the presence of impulse noise.

2 Background

Local regularizer. We recall two approximations of the Mumford-Shah-like
regularizing functionals [16] that have been used in several algorithms. The MS
regularizer, depending on the image u and on its edge set K ⊂ Ω, gives pref-
erence to piecewise smooth images: ΨMS(u,K) = β

∫
Ω\K |∇u|2dx + α

∫
K dH1,

where H1 is the 1D Hausdorff measure. The first term enforces smoothness of u
everywhere except on the edge set K, and the second one minimizes the total
length of edges. It is difficult to minimize in practice the non-convex MS func-
tional. One approach is using phase field by Γ -convergence with applications
to image deblurring and denoising [3], and inpainting [22]. More specifically,
Ambrosio-Tortorelli [2] approximated the MS regularizer by a sequence of reg-
ular functionals Ψε using the Γ -convergence (we call MSAT, the Ambrosio and
Tortorelli approximation of MS regularizer). The edge set K is represented by
a smooth auxiliary function v. Shah [21] suggested a modified version of the
AT approximation to the MS functional by replacing |∇u|2 by |∇u| (we call it
MSTV). Furthermore, Bar et al [4] used the color versions of these functionals
for color image deblurring-denoising by replacing the magnitude of the gradient
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|∇u| by the Frobenius norm of the matrix ∇u, ‖∇u‖ =
√∑

i[(ui
x)2 + (ui

y)2]
with i ∈ {r, g, b} in the RGB color space, suggested by Brook et al [7]:

ΨMSAT
ε (u, v) = β

∫
Ω

v2‖∇u‖2dx + α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx,

ΨMSTV
ε (u, v) = β

∫
Ω

v2‖∇u‖dx + α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

where 0 ≤ v(x) ≤ 1 represents the edges: v(x) ≈ 0 if x ∈ K and v(x) ≈ 1
otherwise, and α, β > 0, ε → 0 are parameters. Note that, in both regularizers,
the edge map v is common for the three channels and provides the necessary
coupling between colors.

Nonlocal regularizer. Nonlocal methods in image processing have been ex-
plored in many papers because they are well adapted to texture denoising while
the standard denoising models working with local image information seem to
consider texture as noise, which results in losing details. Nonlocal methods are
generalized from neighborhood filters and patch based methods. The idea of
neighborhood filter is to restore a pixel by averaging the values of neighboring
pixels with a similar color value. Buades et al. [8] generalized this idea by ap-
plying the patch-based method, and proposed the famous nonlocal-means (or

NL-means) filter for denoising, given by NLu(x) = 1
C(x)

∫
Ω
e−

da(u(x),u(y))
h2 u(y)dy,

where u(y) is the color at y, da(u(x), u(y)) =
∫
Ga(t)‖u(x + t) − u(y + t)‖2dt is

the patch distance, Ga is the Gaussian kernel with standard deviation a deter-
mining the patch size, C(x) =

∫
Ω
e−

da(u(x),u(y))
h2 dy is a normalization factor, and

h is the filtering parameter corresponding to the noise level (usually the standard
deviation of the noise). The NL-means not only compares the color value at a
single point but the geometrical configuration in a whole neighborhood (patch).

In the variational framework, Kindermann et al [13] formulated the neigh-
borhood filters and NL-means filters as nonlocal regularizing functionals which
generally are not convex. Then, Gilboa-Osher [10], [11] formalized the convex
nonlocal functional inspired from graph theory, based on the gradient and diver-
gence definitions on graphs in the context of machine learning. Let u : Ω → IR
be a function, and w : Ω × Ω → IR be a nonnegative and symmetric weight
function. The nonlocal gradient vector ∇wu : Ω × Ω → IR is (∇wu)(x, y) :=
(u(y) − u(x))

√
w(x, y). Hence, the nonlocal divergence divw

−→v : Ω → IR of the
vector −→v : Ω × Ω → IR is defined as the adjoint of the nonlocal gradient,
(divw

−→v )(x) :=
∫

Ω
(v(x, y) − v(y, x))

√
w(x, y)dy, and the norm of the nonlocal

gradient of u at x ∈ Ω is given by |∇wu|(x) =
√∫

Ω (u(y) − u(x))2w(x, y)dy.
Based on these nonlocal operators, they introduced nonlocal regularizing func-
tionals of the general form Ψ(u) =

∫
Ω φ(|∇wu|2)dx, where s �→ φ(s) is a positive

function, convex in
√
s, and φ(0) = 0. By taking φ(s) =

√
s, they proposed

the nonlocal TV regularizer (NL/TV) which corresponds in the local case to
ΨTV (u) =

∫
Ω |∇u|dx. Inspired by these ideas, we propose in the next section
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nonlocal versions of Ambrosio-Tortorelli and Shah approximations to the MS
regularizer for color image restoration. This is also continuation or nonlocal ex-
tension of the work by Bar et al. [4], first to propose the use of local Mumford-
Shah-like approximations to color image restoration. Part of this work is a gen-
eralization of [12].

3 Description of the Proposed Models

We propose the following nonlocal Mumford-Shah regularizers (NL/MS) by ap-
plying the nonlocal operators to the multichannel approximations of the MS
regularizer

ΨNL/MS(u, v) = β

∫
Ω

v2φ(‖∇wu‖2)dx + α

∫
Ω

(
ε|∇v|2 +

(v − 1)2

4ε

)
dx

where u : Ω → IR3, v : Ω → [0, 1], φ(s) = s or φ(s) =
√
s correspond to the

nonlocal versions of MSAT and MSTV regularizers, so called NL/MSAT and
NL/MSTV, respectively. In addition, we apply these nonlocal MS regularizers
to color image denoising, color image deblurring in the presence of Gaussian
or impulse noise, color image inpainting, and moreover, to color image super-
resolution, by incorporating proper fidelity terms. We define the weight function
w using the noisy-blurry data f as w(x, y) = e−

da(f(x),f(y))
h2 , but we will see that

this definition must be modified sometimes. Also, note that the nonlocal and
nonconvex continuous models proposed in the following sections have not been
analyzed theoretically; however, these formulations become well-defined in the
discrete, finite differences case, but we prefer to present them in the continuous
setting for simplicity.

3.1 Color Image Deblurring and Denoising

The degradation model for deblurring-denoising (or denoising) is given by fi =
k ∗ ui + ni, with a (known) space-invariant blurring kernel k. First, in the case
of Gaussian noise model, the L2-fidelity term led by the maximum likelihood
estimation is commonly used: Φ(f −k ∗u) =

∫
Ω

∑
i |f i−k ∗ui|2dx. However, the

quadratic data fidelity term considers the impulse noise, which might be caused
by bit errors in transmissions or wrong pixels, as an outlier. So, for the impulse
noise model, the L1-fidelity term is more appropriate, due to its robustness of
removing outlier effects [1], [17]; moreover, we consider the case of independent
channels noise [4]: Φ(f−k∗u) =

∫
Ω

∑
i |f i−k∗ui|dx. Thus, we design two types

of total energies for color image deblurring-denoising, depending on the type of
noise as follows:

Gaussian noise: EG(u, v) =
1
2

∫
Ω

∑
i

|f i − k ∗ ui|2dx + ΨNL/MSTV (u, v)(2)

Impulse noise: EIm(u, v) =
∫

Ω

∑
i

|f i − k ∗ ui|dx + ΨNL/MSAT (u, v). (3)
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Note that, for the impulse noise model, MSAT regularizer produces better results
(especially in the presence of high density of noise), while for the Gaussian noise
model, MSTV regularizer produces better results.

To extend the nonlocal methods to the impulse noise case, we need a prepro-
cessing step for the weight function w since we cannot directly use the data f
to compute w. In other words, in the presence of impulse noise, the noisy pixels
tend to have larger weights than the other neighboring points, so it’s likely to
keep the noise value at such pixel. Thus, we propose a simple algorithm to obtain
a preprocessed image g, which removes the impulse noise (outliers) as well as
preserves the textures as much as we can. Basically, we use the median filter,
well-known for removing impulse noise. However, for the deblurring-denoising
model, if we apply one-step of the median filter, then the output may be too
smoothed out. In order to preserve fine structures as well as to remove noise
properly, we define a preprocessing method for the deblurring-denoising model
inspired by the idea of Bregman iteration [6]. Thus, we propose the following
algorithm to obtain a preprocessed image g that will be used only in the com-
putation of the weight function w:

Initialize : ri
0 = 0, gi

0 = 0, i = r, g, b.
do (iterate n = 0, 1, 2, . . .)

gn+1 = median(f + rn, [a a])
rn+1 = rn + f − k ∗ gn+1

while
∑

i ‖f i − k ∗ gi
n‖1 >

∑
i ‖f i − k ∗ gi

n+1‖1
[Optional] gm = median(gm, [b b])

where f is the given noisy-blurry data, and median(f, [a a]) is the median filter
of size a× a with input f . The optional step is needed in the case when the final
gm still has some salt-and-pepper-like noise left. The preprocessed image gm is
a deblurred and denoised version of f ; it will be used only in the computation of
the weights w, while keeping f in the data fidelity term, thus artifacts are not
introduced by the median filter. Note that for denoising only (no blurring), we
apply the adaptive median filter or the median filter to the noisy image f , to
produce a preprocessed image g.

3.2 Color Image Inpainting

Inpainting corresponds to the operation H of losing pixels from an image, i.e. the
observed data f is given by f = u on Ω −D with the region D = D0 where the
input data u has been damaged. Thus, we formulate the total energy functional
for color image inpainting as

EInp(u, v) =
1
2

∫
Ω

λD(x)
∑

i

|f i − ui|2dx + ΨNL/MS(u, v), (4)

where λD(x) = 0 at x ∈ D and λD(x) > 0 on x ∈ Ω−D. In addition, we update
the weights w only in the damaged region D0 in every mth iteration for u using
the patch distance: dR

a (u(x), u(y)) =
∫

Ω−R Ga(t)‖u(x + t) − u(y + t)‖2dt, where
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R ⊂ D0 is an un-recovered region (still missing region). Therefore, the missing
region D0 is recovered by the following iterative algorithm, producing the un-
recovered regions Di, i = 0, 1, 2, ..., with D0 ⊃ D1 ⊃ D2 ⊃ · · ·:

1. Compute weightsw for x ∈ Ω s.t.P (x)
⋂

(Ω−D0) �= 0 with dD0

a (u0(x), u0(y)),
u0 = f , and a patch P (x) centered at x.

2. Iterate n = 1, 2, ... to get a minimizer (u, v) starting with u = u0:
a. For fixed u, update v in Ω to get vn.
b. For fixed v, update u in Ω to get un with a recovered region Ω −Dn ⊃

Ω − D0: at every mth iteration, update weights w only in x ∈ D0 s.t.
P (x)

⋂
(Ω − Dn,m) �= 0 with dDn,m

a (u(x), u(y)) where Dn,m is an un-
recovered region in D0 until mth iteration with Dn,m ⊃ Dn,2m ⊃ · · · ⊃
Dn,n = Dn.

3.3 Color Image Super-Resolution

Super-resolution of a single still image corresponds to the recovery of a high
resolution image from a filtered and down-sampled image, i.e., the observed
data f is given by f i = Dk(h ∗ ui), i ∈ r, g, b where h is a low-pass filter,
Dk : IRn → IRp, p = n

k2 , is the down-sampling operator by a factor k along each
axis. We want to recover a high resolution image u ∈ (IRn)3 by minimizing

ESup(u, v) =
1
2

∫
Ω

∑
i

|f i −Dk(h ∗ ui)|2dx + ΨNL/MS(u, v). (5)

In addition, we use a super-resolved image g ∈ (IRn)3 obtained by a bicubic
interpolation of f ∈ (IRp)3 only for the computation of the weights w. We refer
to [15,19] for prior relevant work.

3.4 Optimality Condition for (2)-(5)

Finally, minimizing the proposed functionals (2)-(5): EG, EIm, EInp, ESup in u
and v, we obtain the Euler-Lagrange equations

∂EG,Im,Inp,Sup

∂v
= 2βvφ(‖∇wu‖2) − 2εα�v + α

(
v − 1
2ε

)
= 0,

∂EG

∂u
= k̃ ∗ (k ∗ u− f) + LNL/MSTV u = 0,

∂EIm

∂u
= k̃ ∗ sign(k ∗ u− f) + LNL/MSATu = 0,

∂EInp

∂u
= λD(u− f) + LNL/MSu = 0,

∂ESup

∂u
= h̃ ∗ (DT

k (Dk(h ∗ u) − f)) + LNL/MSu = 0,
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where k̃(x) = k(−x), h̃(x) = h(−x), DT
k : (IRp)3 → (IRn)3 is the transpose of

Dk i.e. the up-sampling operator, and

LNL/MSu = − 2
∫

Ω

{
(u(y) − u(x))w(x, y)

·
[
(v2(y)φ′(‖∇wu‖2(y)) + v2(x)φ′(‖∇wu‖2(x))

] }
dy.

To solve two Euler-Lagrange equations simultaneously, the alternate minimiza-
tion approach is applied. Note that since the energy functionals are not convex
in the joint variable (u, v), we may compute only a local minimizer. However,
this is not a drawback in practice, since the initial guess for u in our algorithm
is the data f (except for the super-resolution problem). Due to its simplicity,
we use Gauss-Seidel scheme for v, and an explicit scheme for u using gradient
descent method.

4 Experimental Results and Comparisons

The nonlocal MS regularizers proposed here, NL/MSTV and NL/MSAT, are
tested on several color images corrupted by different blur kernels or different
noise types, on color images with some missing parts, as well as on a sub-sampled
color image. We compare them with their local versions. For comparisons with
TV and NL/TV models of Rudin-Osher and Gilboa-Osher, we refer the reader
to [12] for the case of gray-scale images.

First, we use noisy Lena images only corrupted by Gaussian noise or salt-and-
pepper noise in Fig. 1. As expected, NL/MSTV and NL/MSAT perform better
than MSTV and MSAT respectively in the sense that not only they preserve
fine scales such as textures, but also in the case of NL/MSTV, the model does
not produce any staircase effect (appeared in MSTV). For the restoration of the
image (c) with salt-and-pepper noise, we apply one-step adaptive median filter
with the maximum size 7× 7 and then 5× 5 median filter to the noisy image f ,
to produce a preprocessed image (PSNR=26.8145) only for the computation of
w, and moreover the edges v detected concurrently with the restoration process
are presented for the nonlocal methods.

Next, we recover a blurred image contaminated by Gaussian noise or random-
valued impulse noise in Figures 2, 3, 5-7. First, we test the local and nonlocal
MSTV on the Barbara image in Fig. 2 with Gaussian blur and noise, and then
we test the local and nonlocal MSAT on the Lena images in Fig. 5 and the
Girl images in Fig. 6 with different blur kernels and random-valued impulse
noise with different noise levels. More precisely, in Fig. 3 in the presence of blur
and Gaussian noise, NL/MSTV recovers well the fine scales such as textures
leading to cleaner image and higher PSNR, while with MSTV, the textures
are more smoothed out during the denoising process. In Fig. 5, we restore the
Lena images blurred with motion blur and then contaminated by random-valued
impulse noise with different noise densities d = 0.2, 0.4, 0.5 using MSAT and
NL/MSAT. By using a preprocessed image for the weights, NL/MSAT provides
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(a) original (b) Gaussian noise (c) salt-and-pepper noise

MSTV: 26.1951 NL/MSTV: 27.1599 with edge v

MSAT: 26.1419 NL/MSAT: 27.0408 with edge v

Fig. 1. Recovery of noisy image f = u+n and PSNR values. Top row: (a) original, (b)
noisy image with Gaussian noise with σn = 0.02, (c) noisy image with salt-and-pepper
noise with noise density d = 0.3. Middle row: recovered images of (b) and edge set v
using MSTV: β = 0.17, NL/MSTV: β = 0.07. Bottom row: recovered images of (c)
and edge set v using MSAT: β = 6, NL/MSAT: β = 1.8.

better results visually and according to PSNR. Moreover, in Fig. 6, we test
MSAT and NL/MSAT on the Girl images with either (b) high blur and low
noise or (d) low blur and high noise. The restorations of (b) are shown in the
first row in Fig. 7. Both local and nonlocal MSAT provide reasonable results,
but NL/MSAT produces less ringing effects especially appeared on the cloth
part. With the data (c), NL/MSAT gives cleaner result and higher PSNR while
MSAT still has some noise, which are shown in the second row in Fig. 7.
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Fig. 2. Left to right: original image, blurry image with Gaussian blur with σb = 1,
noisy-blurry image corrupted by Gaussian noise with σn = 0.004

MSTV: 23.7266 NL/MSTV: 24.6396

Fig. 3. Recovery of the noisy-blurry image in Fig. 2 using (left) MSTV: β = 0.04,
(right) NL/MSTV: β = 0.012

In Figures 8-9 we use the NL/MS regularizers to recover images with textures
and large missing portions. In Fig. 8, we observe that both nonlocal regularizers
recover the missing parts very well, and moreover NL/MSTV gives slightly better
result than NL/MSAT according to PSNR even though they visually seem to
produce very similar results. However, in Fig. 9 with a real image, we only present
the result of NL/MSAT since it provides slightly better result than NL/MSTV
(PSNR=34.2406), especially better recovering the part damaged by the circle.

In Fig. 4, we recover an image filtered with a low-pass filter and then sub-
sampled. The nonlocal regularizers provide higher PSNRs and better visual
qualities providing cleaner edges, while the local ones produce some artifacts
especially on the edges. In addition, NL/MSTV gives the best result providing
visually sharper and cleaner image, and highest PSNR.

Finally, we note that the parameters α, β and ε were selected manually to
provide the best PSNR results. The smoothness parameter β increases with the
noise level, while the other parameters α, ε are approximately fixed such as
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(a) data f (b) MSAT: 19.8322 (c) MSTV: 20.0575

(d) preprocessed image (e) NL/MSAT: 20.2015 (f) NL/MSTV: 20.4273

MSAT NL/MSAT MSTV NL/MSTV

Fig. 4. Super-resolution of a low resolution image. (a) Data f = Dk(h∗u) of size 64×64
with uniform blur h of size 3×3 and sub-sampling factor k = 4, (d) a preprocessed im-
age using bicubic interpolation (PSNR=18.0711), (b),(c),(e),(f): super-resolved images.
Bottom: edge set v.

α = 0.1, ε = 0.00000001 for deblurring-denoising and inpainting model, and
α = 0.1, ε = 0.001 for denoising and super-resolution (although in theory ε → 0,
it is common in practice to work with a small fixed ε). For the weight function
w, we use the search window Ωw = {y ∈ Ω : |y − x| ≤ r} instead of Ω (semi-
local) and the weight function w at (x, y) ∈ Ω × Ω depending on a function
g : Ω → IR3, w(x, y) = exp

(
− da(g(x),g(y))

h2

)
. We use 11× 11 search window with

5 × 5 patch for deblurring-denoising model (or denoising), and 21 × 21 search
window with 9 × 9 patch for super-resolution, while larger search windows are
needed for inpainting. For the computational time, it takes about 5 minutes for
constructing the weight function of a 256 × 256 image with the 11 × 11 search
window and 5×5 patch in MATLAB on a dual core laptop with 2GHz processor
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original blurry a preprocessed image

(a) noisy-blurry (b) MSAT (c) NL/MSAT

d = 0.2: (a) 14.9521 (b) 24.0460 (c) 24.9363

d = 0.4: (a) 12.2805 (b) 22.6101 (c) 23.2357

d = 0.5: (a) 11.3959 (b) 21.7600 (c) 22.3490

Fig. 5. Recovery of blurry Lena image with several random-valued impulse noise levels,
and PSNR values. Top row: original image, blurry image with motion blur kernel of
length=10, oriented at angle θ = 25◦ w.r.t. the horizon, a preprocessed image when
d = 0.2 (PSNR=22.0317.) 1st column: (2nd to 4th row) noisy blurry data f with noise
density d = 0.2, 0.4, 0.5. 2nd and 3rd columns: recovered images using (2nd) MSAT
and (3rd) NL/MSAT. β (2nd to 4th row): 2, 4, 5 (MSAT), 0.3, 0.9, 1.2 (NL/MSAT).
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(a) (b) (c) (d)

Fig. 6. Blurry image (a), noisy blurry image (b) with out-of-focus blur of radius 5 and
radom-valued impulse noise of noise density d = 0.2. Blurry image (c), noisy blurry
image (d) with out-of-focus blur of radius 3 and radom-valued impulse noise of noise
density d = 0.4

Recovery of (b) using MSAT: 29.0399 vs NL/MSAT: 29.4242

Recovery of (d) using MSAT: 28.2293 vs NL/MSAT: 28.8418

Fig. 7. Recovery of the noisy-blurry image (b) and (d) in Fig. 5 using MSAT (left),
NL/MSAT (right) and PSNR values. Top: (MSAT) β = 1, (NL/MSAT) β = 0.2.
Bottom: (MSAT) β = 5, (NL/MSAT) β = 1.8.
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Fig. 8. Inpainting of 100×100 size image with 40×40 missing part. (left) data f , recov-
ered using (middle) NL/MSAT: PSNR=35.6704, (right) NL/MSTV: PSNR=35.8024
(41 × 41 search window, 9 × 9 patch).

original data f

(a) MSAT: 29.2797 (b) NL/MSAT: 34.4953

Fig. 9. Inpainting of 150× 150 size image. Top: (left) original, (right) data f . (a), (b):
recovered images with (a) MSAT, (b) NL/MSAT (51×51 search window, 9×9 patch).
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and 2GB memory. The minimization for the (local or nonlocal) MS regularizers
in the deblurring-denoising model takes about 150 seconds for the computations
of both u using an explicit scheme based on the gradient descent method and
v using a semi-implicit scheme with the total iterations 5 × (2 + 100) (without
including the computation of the weight function w(x, y)). For inpainting model
with 150×150 size image, it takes about 20 minutes with total iteration numbers
7×(2+100) since we update the weight function at every 50th iteration for u. For
super-resolution, 10× (2+200) iteration numbers are needed for all regularizers.

5 Summary and Conclusions

The proposed nonlocal MS regularizers, NL/MSAT and NL/MSTV, outperform
the local ones; in the image denoising or deblurring models in the presence of
noise, NL/MSAT incorporating an efficient preprocessing step performs best
for impulse noise, while NL/MSTV works best for Gaussian noise. Moreover,
for super-resolution, NL/MSTV produces the best result with the sharpest and
cleanest edges, while both NL/MSAT and NL/MSTV provide superior results
in inpainting by recovering textures and large missing regions.
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dation Grants DMS- 0714945 and DMS-0312222.

References

1. Alliney, S.: Digital Filters as Absolute Norm Regularizers. IEEE TSP 40(6),
1548–1562 (1992)

2. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity prob-
lems. BUMI 6-B, 105–123 (1992)

3. Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of impulsive
noise. IJCV 70, 279–298 (2006)

4. Bar, L., Brook, A., Sochen, N., Kiryati, N.: Deblurring of Color Images Corrupted
by Impulsive Noise. IEEE TIP 16(4), 1101–1111 (2007)

5. Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of
vector-valued images. IEEE TIP 7(3), 304–309 (1998)

6. Bregman, L.M.: The relaxation method for finding common points of convex sets
and its application to the solution of problems in convex programming. USSR
Computational Mathematics and Mathematical Physics 7, 200–217 (1967)

7. Brook, A., Kimmel, R., Sochen, N.: Variational restoration and edge detection for
color images. JMIV 18, 247–268 (2003)

8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a
new one. SIAM MMS 4(2), 490–530 (2005)

9. Geman, D., Reynolds, G.: Constrained Restoration and the Recovery of Disconti-
nuities. IEEE TPAMI 14(3), 367–383 (1992)

10. Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmen-
tation. SIAM MMS 6(2), 595–630 (2007)

11. Gilboa, G., Osher, S.: Nonlocal operators with applications to image processing.
SIAM MMS 7(3), 1005–1028 (2008)



Color Image Restoration Using Nonlocal Mumford-Shah Regularizers 387

12. Jung, M., Vese, L.A.: Nonlocal variational image deblurring models in the presence
of Gaussian or impulse noise. LNCS, vol. 5567, pp. 402–413. Springer, Heidelberg
(2009)

13. Kindermann, S., Osher, S., Jones, P.W.: Deblurring and denoising of images by
nonlocal functionals. SIAM MMS 4(4), 1091–1115 (2005)

14. Lou, Y., Zhang, X., Osher, S., Bertozzi, A.: Image recovery via nonlocal operators.
UCLA C.A.M. Report 08-35 (2008)

15. Malgouyres, F., Guichard, F.: Edge direction preserving image zooming: a mathe-
matical and numerical analysis. SIAM NA 39(1), 1–37 (2001)

16. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. CPAM 42, 577–685 (1989)

17. Nikolova, M.: Minimizers of cost-functions involving non-smooth data-fidelity
terms. Application to the processing of outliers. SIAM NA 40(3), 965–994 (2002)

18. Peyré, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304,
pp. 57–68. Springer, Heidelberg (2008)

19. Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the Non-Local-Means
to super-resolution reconstruction. IEEE TIP 18(1), 36–51 (2009)

20. Rudin, L., Osher, S.: Total variation based image restoration with free local con-
straints. IEEE ICIP 1, 31–35 (1994)

21. Shah, J.: A common framework for curve evolution, segmentation and anisotropic
diffusion. In: IEEE CVPR, pp. 136–142 (1996)

22. Shen, J., Chan, T.F.: Variational image inpainting. CPAM 58(5), 579–619 (2005)



Reconstructing Optical Flow Fields by
Motion Inpainting

Benjamin Berkels1, Claudia Kondermann2,
Christoph Garbe2, and Martin Rumpf1

1 Institute for Numerical Simulation, Universität Bonn,
Endenicher Allee 60, 53115 Bonn, Germany

{benjamin.berkels,matrin.rumpf}@ins.uni-bonn.de
http://numod.ins.uni-bonn.de/
2 IWR, Universität Heidelberg,

Im Neuenheimer Feld 368, 69120 Heidelberg
{Claudia.Kondermann,Christoph.Garbe}@iwr.uni-heidelberg.de

http://hci.iwr.uni-heidelberg.de/

Abstract. An edge-sensitive variational approach for the restoration of
optical flow fields is presented. Real world optical flow fields are fre-
quently corrupted by noise, reflection artifacts or missing local informa-
tion. Still, applications may require dense motion fields. In this paper,
we pick up image inpainting methodology to restore motion fields, which
have been extracted from image sequences based on a statistical hypoth-
esis test on neighboring flow vectors. A motion field inpainting model
is presented, which takes into account additional information from the
image sequence to improve the reconstruction result. The underlying
functional directly combines motion and image information and allows
to control the impact of image edges on the motion field reconstruction.
In fact, in case of jumps of the motion field, where the jump set coin-
cides with an edge set of the underlying image intensity, an anisotropic
TV-type functional acts as a prior in the inpainting model. We compare
the resulting image guided motion inpainting algorithm to diffusion and
standard TV inpainting methods.

1 Introduction

Many methods have been proposed to estimate motion in image sequences. Yet,
in difficult situations such as multiple motions, aperture problems or occlusion
boundaries optical flow estimates are often incorrect. These incorrect flow pat-
terns can be detected and removed from the flow field e.g. by means of confidence
measures [1,2,3]. But since many applications demand a dense flow field, it would
be beneficial to reconstruct a reliable dense vector field based on information
from the surrounding flow field. A similar task has been addressed in the field of
image reconstruction and is called inpainting, picking up a classical term from
the restoration of old and damaged paintings. The digital reconstruction of cor-
rupted images was first proposed by Masnou and Morel [4]. Over the last decade

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 388–400, 2009.
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a wide range of methods has been developed for the inpainting of grayscale or
color images. Edge preserving TV inpainting and curvature-driven diffusion in-
painting was suggested by Chan and Shen [5,6]. Transport based methods with
a fast marching type inpainting algorithm were proposed by Telea [7] and im-
proved by Bornemann and März [8]. The relation to fluid dynamics was studied
by Bertalmio et al. [9] and Chan and Shen [10] investigated texture inpainting.
Already in 1993, Mumford et al. [11] proposed to study a variational approach
which treats contour lines as elastic curves. In [12], Ballester et al. introduced
a variational approach based on the smooth continuation of isophote lines. A
variational approach based on level sets and a Perimeter and Willmore energy
was presented by Ambrosio and Masnou in [13]. A combination of TV inpainting
and wavelet representation was proposed in [14].

The inpainting methodology has been generalized to video sequences with
occluding objects by Patwardhan [15]. The reconstruction of motion fields has
lately been proposed in the field of video completion. In case of large holes with
complicated texture, previously used methods are often not suitable to obtain
good results. Instead of reconstructing the frame itself by means of inpaint-
ing, the reconstruction of the underlying motion field allows for the subsequent
restoration of the corrupted region even in difficult cases. This type of motion
field reconstruction called “motion inpainting” was first introduced for video sta-
bilization by Matsushita et al. in [16]. The idea is to continue the central motion
field to the edges of the image sequence, where the field is lost due to camera
shaking. This is done by a basic interpolation scheme between four neighboring
vectors and a fast marching method. Chen et al. [17] refined the approach of
Matsushita et al. to obtain a robust motion inpainting approach, which can deal
with sudden scene changes by means of Markov Random Field based diffusion
and applied it to spatio-temporal error concealment in video coding. In [18],
Kondermann et al. proposed to improve motion fields by only computing a few
reliable flow vectors and filling in the missing vectors by means of a diffusion
based motion inpainting approach.

In general, the variational reconstruction of optical flow fields can be ac-
complished by straightforward extension of inpainting functionals for images to
two dimensional vector fields. However, these methods usually fail in situations
where the course of motion discontinuity lines is unclear, e.g. if objects with
curved boundary move or junctions occur in overlapping motion. Since image
edges often correspond to motion edges the information drawn from the image
sequence can be important for the reconstruction, especially in such cases where
the damaged vector field does not contain enough information to determine the
shape of the motion discontinuity.

In the special case of optical flow extracted from an image sequence, the
underlying image sequence itself provides additional information, which can be
used to guide the reconstruction process in ambiguous cases. So far, optical
flow fields have already been used for the reconstruction of images in video
restoration, e.g. in [15]. Here, we use the underlying image data to improve the
reconstruction of the optical flow field. The resulting functional is nonlinear and
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can be minimized by means of the finite element method. We compare our results
to diffusion based and TV inpainting methods.

To prepare the discussion of the proposed new motion field inpainting model,
let us briefly review some basic image inpainting methodology. Given an image
u0 : Ω → R and an inpainting domain D ⊂ Ω, one asks for a restored image
intensity u : Ω → R, such that u|Ω\D = u0 and u|D is a suitable and regular
extension of the image intensity u0 outside D. The simplest inpainting model is
based on the construction of a harmonic function u on D with boundary data
u = u0 on ∂D. Based on the Dirichlet principle, this model is equivalent to the
minimization of the Dirichlet functional Eharmon[u] = 1

2

∫
D
|∇u|2 dx for given

boundary data. Due to standard elliptic regularity the resulting intensity func-
tion u is smooth – even analytic – inside D but does not continue any edge type
singularity of u0 prominent at the boundary ∂D. To resolve this shortcoming
the above mentioned TV-type inpainting models have been proposed. They are
based on the functional ETV[u] = 1

2

∫
D
|∇u| dx. Then the minimizing image in-

tensity is a function of bounded variation; hence characterized by jumps along
rectifiable edge contours. It solves - in a weak sense - the geometric PDE h = 0
where h = div (|∇u|−1 ∇u) is the mean curvature on level sets or edge contours.
Making use of the coarea formula (cf. [19]) one sees that minimizing ETV cor-
responds to minimizing the lengths of the level lines of u. Thus, the resulting
edges will be straight lines.

In many applications the assumption of a sharp boundary ∂D turns out to
be a significant restriction. In fact, the reliability of the given image intensity
gradually deteriorates from the outside to the inside of the inpainting region.
This can be reflected by a relaxed formulation of the variational problem. In
fact, one considers the functional

Eε[u] =
∫

Ω

|u− u0|2 Hε + λ(1 −Hε) |∇u|p dx ,

where λ > 0, p = 1 or 2, and Hε is a convoluted characteristic function χD

and ε indicates the width of the convolution kernel [5]. In our case this blending
function will depend on a confidence measure.

Contribution. In this paper, we address the restoration problem for locally cor-
rupted optical flow fields. The underlying image information has not been ex-
ploited previously for optical flow restoration. We propose a novel anisotropic
TV-type variational approach, where the anisotropy takes into account edge in-
formation of the underlying image sequence. To identify unreliable flow vectors,
a confidence measure is used. This non binary measure can be taken into account
as a weight in the functional. We validate our method on test data and on real
world motion sequences with given ground truth.

2 The Variational Model

In this section we derive our restoration approach for optical flow fields. Given an
image sequence, we denote by u0 the image intensity and by v0 the corresponding
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estimated motion field at a fixed time t. Let us suppose that a confidence measure
ζ is given together with a user selected threshold θ, such that the set

[ζ < θ] := {x ∈ Ω : ζ(x) < θ}

is the region of low confidence on the estimated optical flow field v0. Hence, we
aim at inpainting v in the region [ζ < θ].

Design of an anisotropic prior. Let us first construct the regularizing prior that
is supposed to fill in the missing parts of the vector field. We choose the function
g(s) = (1 + s2

μ2 )−1 (first proposed by Perona and Malik [20]) evaluated on the
slope

∣∣∇uδ
0

∣∣ of the image intensity as an edge-sensitive weight. To ensure robust-
ness, the intensity gradient is regularized via convolution with a Gaussian-type
kernel Gδ(y) = 1

2πδ exp(− y2

2δ2 ), i. e. ∇uδ
0 = Gδ ∗ u0. In the spatially discrete

model, we will realize this convolution via a single time step of the discrete heat
equation (cf. Section 4). Thus, the weight g(|∇uδ

0|) masks out edges of u0.
In the vicinity of edges, we use a strongly anisotropic norm γ(∇uδ

0,Dv) of the
Jacobian Dv of the motion field v depending on the regularized gradient of the
image intensity and defined as follows

γ(∇uδ
0,Dv) =

√
ν2 |Dv nδ|2 + |Dv (11 − nδ ⊗ nδ)|2. (1)

Here, nδ = ∇uδ
0

|∇uδ
0| is the regularized edge normal on the underlying image and

11 denotes the identity matrix of size 2. Furthermore, x⊗ y:=(xiyj)i,j=1,2 is the
usual definition of a rank one matrix which renders 11−nδ⊗nδ as the orthogonal
projection on the direction orthogonal to the normal nδ. Hence, for a small
parameter ν > 0 and a point x near a motion edge the value γ(∇uδ

0(x),Dv(x))
will be small if the motion edge is locally aligned with the underlying image edge
and vice versa. In two space dimensions, one obtains

∣∣Dv
(
11 − nδ ⊗ nδ

)∣∣2 =
2∑

i=1

(
(nδ)⊥ · ∇vi

)2
,

where (nδ)⊥ = (nδ
2,−nδ

1). This easily follows for the unit length property (nδ
1)

2+
(nδ

2)2 = 1 of the normal field nδ. Hence, the anisotropy γ(∇uδ
0(x),Dv(x)) sim-

plifies to

γ(∇uδ
0,Dv) =

√√√√ 2∑
i=1

(
ν2 (nδ · ∇vi)

2 + ((nδ)⊥ · ∇vi)
2
)
.

Finally, we obtain the following prior

β(∇uδ
0,Dv) = g(|∇uδ

0|)|Dv| + (1 − g(|∇uδ
0|))γ(∇uδ

0,Dv) . (2)

Locally minimizing this prior will favor sharp motion edges aligned with edges
in the underlying image. Apart from edges, a usual TV prior is applied to the
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motion field. In particular, for larger destroyed regions this leads to an effective
image based guidance in the reconstruction of motion edges. For ν values close
to 1 there is no preference for any orientation of a motion edge and we obtain
the classical TV-type inpainting model on motion fields.

Note that Nagel and Enkelmann [21] pioneered the idea of anisotropic image-
driven smoothing in the context of optical flows and proposed an anisotropic
prior that is closely related to the anisotropic part of β (second part of (2)),
while the isotropic part of β (first part of (2)) was already proposed by Alvarez
et al. [22]. In this regard, β can be seen as an interpolation between existing
isotropic and anisotropic priors. However, both [21] and [22] used their corre-
sponding priors in the context of optical flow estimation, whereas we use the
combined prior to inpaint the flow field in low confidence regions of the optical
flow estimation.

Dirichlet boundary conditions. Based on the prior β, we can define the energy

ED[v] =
∫

[ζ<θ]
β(∇uδ

0(x),Dv(x))dx (3)

that has to be minimized on the set of functions A := {v|v = v0 on ∂[ζ < θ]}.
Note that with this model, it is crucial to choose the threshold θ conservatively
to ensure the validity of the values of v0 on ∂[ζ < θ]. If the chosen threshold
is too low, the values used for the Dirichlet boundary conditions are possibly
corrupted and may lead to undesirable inpainting results.

Smooth overlapping blending. Surely, the criterium to identify the inpainting
domain, i.e. [ζ < θ], is not sharp. Thus, we may select a parameter ε > 0 for
the width of the transition interval between full confidence and no confidence
and define the blending function x → Hε(sdf[ζ − θ](x)), where Hε(x) := 1

2 +
1
π arctan

(
x
ε

)
(cf. the active contour approach by Chan and Vese [23]) and sdf[f ]

denotes the signed distance function of the set [f < 0]. Given this diffusive weight
function, we can define the total energy

E [v] =
∫

Ω

1
2
(v(x) − v0(x))2Hε(sdf[ζ − θ](x)) (4)

+ λβ(∇uδ
0(x),Dv(x))(1 −Hε(sdf[ζ − θ](x) − ρ))dx ,

which consists of two terms. The first term measures the distance from the
precomputed motion field v0 and acts as a relaxed penalty to ensure that v ≈ v0
in the region of confidence. The second term is a spatially inhomogeneous and
anisotropic prior, primarily active on the complement of the confidence set. The
parameter ρ > 0 leads to an overlap of the regions where the first and second
term are active. If omitted, there are artifacts in the inpainting, cf. Figure 1.

3 First Variation of the Energy

As a core ingredient of the minimization algorithm we have to compute descent
directions of the energy functional E [·]. Thus, let us derive explicit formulas
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a) b) c) d)

Fig. 1. Effect of the overlapping of the fidelity and the regularity energy term (4), con-
trolled by the parameter ρ. a) Corrupted flow field, b) Underlying image and corruption
indicated by the red shape, c) Reconstructed flow field with ρ = 0, d) Reconstructed
flow field with ρ = 9h.

for the variation of the different terms in the integrant of E with respect to v.
We denote by 〈∂wf, ϑ〉 a variation of a function f with respect to a parameter
function w in a direction ϑ. Using straightforward differentiation, for sufficiently
smooth v, we obtain for i ∈ {1, 2}

〈∂viγ(∇uδ
0,Dv), ϑ〉 =

(
ν2(nδ · ∇vi)nδ +

(
(nδ)⊥ · ∇vi

)
(nδ)⊥

)
∇ϑ

γ(∇uδ
0,Dv)

,

〈∂viβ(∇uδ
0,Dv), ϑ〉 = g(|∇uδ

0|)
∇vi

|Dv| · ∇ϑ +

1 − g(|∇uδ
0|)

γ(∇uδ
0,Dv)

(
ν2(nδ · ∇vi)nδ + ((nδ)⊥ · ∇vi)(nδ)⊥

)
· ∇ϑ .

Finally, we derive the following variation 〈∂viE [v], ϑ〉 of the energy E [·] with
respect to the i-th component of the motion field v:

〈∂viE [v], ϑ〉 =
∫

Ω

Hε(sdf[ζ − θ])(vi − vi,0)ϑ

+λ(1 −Hε(sdf[ζ − θ]))
[
g(|∇uδ

0|)
∇vi

|Dv| · ∇ϑ + (5)

1 − g(|∇uδ
0|)

γ(∇uδ
0,Dv)

(
ν2(nδ · ∇vi)nδ + ((nδ)⊥ · ∇vi)(nδ)⊥

)
· ∇ϑ

]
dx .

The variation 〈∂viED[v], ϑ〉 is computed analogously.

4 The Algorithm

For the spatial discretization, we use the finite element (FE) method (cf. [24]):
The whole domain Ω = [0, 1]2 is covered by a uniform quadrilateral mesh C, on
which a standard bilinear Lagrange finite element space is defined. We consider
the image u0 and the components of the vector fields as sets of pixels, where each
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pixel corresponds to a node of the finite element mesh C. Let N = {x1, ..., xn}
denote the nodes of C. The FE basis function of the node xi is defined as the
continuous, piecewise bilinear function determined by ϕi(xi) = 1 and ϕi(xj) = 0
for i �= j. To compute the integrals necessary to evaluate the energy E and its
variations we employ a numerical Gauss quadrature scheme of order three (cf.
[25]). All numerical calculations are done with double precision arithmetic.

As minimization method we use the following explicit gradient flow scheme
with respect to a metric g. Initialize v0 with the input vector field v0 and iterate

vk+1
j = vk

j − τ [E , vk, F [vk]]G−1Fj [vk].

Here, G denotes the matrix representation of the metric g and the timestep width
τ [E , vk, F [vk]] is determined by the Armijo step size control [26] and depends by
construction on the target functional E , the current iterate of the solution vk

and the descent direction F [vk]. Let us emphasize that the choice of g does not
affect the energy landscape itself, but solely the descent path towards the set of
minimizers.

The choice of the metric depends on the model used. In case of the smooth
overlapping blending model (4), we chose g, inspired by the Sobolev active con-
tour approach [27], to be a scaled version of the H1 metric, i.e.

g(ϑ1, ϑ2) =
∫

Ω

ϑ1 · ϑ2 +
σ2

2
Dϑ1 : Dϑ2 dx

on variations ϑ1, ϑ2 of v and where σ represents a filter width of the correspond-
ing time discrete and implicit heat equation filter kernel and A : B = tr(ATB).
The i-th component of the descent direction Fj [vk] is given by (Fj [vk])i =〈
∂vjE [v], ϕi

〉
.

In case of the Dirichlet boundary model (3), we choose g as the Euclidean
metric, i.e. G = 11 and the i-th component of the descent direction Fj [vk] is
given by

(Fj [vk])i =

{
0 ; xi Dirichlet node or xi �∈ D,〈
∂vjED[v], ϕi

〉
; else.

Let us remark, that by construction of F in the energy descent the Dirichlet
boundary values are preserved. The step size control significantly speeds up the
descent and at least experimentally ensures convergence.

The absolute value function is regularized by |z|η =
√

z2 + η2 (here η = 0.1 is
used). Alternatively to the gradient descent scheme the nonlinear Euler Lagrange
equation could be solved iteratively by a freezing-coefficient technique [28]. The
more sophisticated and very efficient method for Total Variation Minimization
based on the dual formulation of the BV norm proposed by Chambolle [29]
unfortunately cannot be applied to TV inpainting directly, because the weight
of the fidelity term can vanish inside the inpainting domain.
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5 Numerical Experiments and Applications

As already explained in the introduction, for applications such as motion com-
pensation, motion segmentation or the computation of divergences in fluid dy-
namical flows, dense motion fields are required. To demonstrate the applicability
of the presented approach for the inpainting of motion fields in regions indicated
by a confidence measure we apply our method to artificial and real world data.

Reconstruction of artificial motion fields. As a first test case we consider the
reconstruction of a corrupted rectangular and circular motion field. Figure 2
shows the color coded ground truth flow field on the left hand side (a), the red
shape indicating the region to be reconstructed in the second image column (b),
the corrupted input flow field that is also used as the initialization of the image
guided motion inpainting algorithm in the third column (c), and the result of
the algorithm on the right hand side (d). Obviously the method successfully
retrieves the motion edge along the boundary of the square (first row) and the
circle (second row). We used the following set of parameters: μ = 50 and ν = 0.1.

a) b) c) d)

Fig. 2. a) Ground truth flow field, b) Underlying image and corruption indicated by
the red shape, c) Corrupted flow field which is the initialization of the image guided
inpainting algorithm, d) Reconstruction result

If the flow field to be inpainted not only contains destroyed regions, but is
also corrupted by noise, enforcing Dirichlet boundary values on the boundary
of the inpainting domain is not feasible. The blending model (4) on the other
hand is well suited to handle such cases. In Figure 3 the motion edge is recon-
structed along the boundary of the square present in the underlying image. Due
to the nature of the regularization term, the reconstructed region does not con-
tain any noise, while the noise is preserved in the complement of the inpainting
domain. In between there is a smooth transition whose size is controlled by the
regularization parameter of Hε. Note that the regularized region is bigger than
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a) b) c)

Fig. 3. Results of the blending model (4) on noisy input data. a) Corrupted flow field,
b) Underlying image and corruption indicated by the red shape, c) Reconstructed flow
field with ρ = 3h.

the inpainting domain because of the overlap induced by ρ. We used the following
set of parameters: λ = 0.01, μ = 1, ν = 0.1.

Reconstruction of real world motion fields. Let us now consider real world exam-
ples and reconstruct the motion field of a sequence taken from the Middlebury
dataset [30]. Special attention should be on the effect of the parameters μ and
ν on the reconstruction result. Figure 4 shows the Rubber Whale sequence with
corrupted regions indicated by a confidence measure and marked by red outlines
(a), the ground truth flow field (b), the result of the image guided reconstruction
algorithm (c) and the angular error (d). We used the following set of parameters:
μ = 1 and ν = 0.1.

To investigate the effect of the parameter ν we take a closer look at two
different regions in the scene: the upper left corner of the turning wheel on
the left hand side and the flap of the box on the right hand side. At the upper
boundary of the wheel the image contrast is low which renders the reconstruction
along image edges difficult. Hence, the sensitivity of the method concerning the
image gradient should be high and the method’s inclination to follow image edges
should be large as well, which would lead to a preference for small values μ, ν.

At the flap of the box the configuration is converse. The image contrast is
large, but the motion edge does, in fact, not follow the stronger but the upper
weaker edge. Hence the inclination of the method to follow image edges should
be reduced, which would result in a higher value for ν.

The effect of different parameter constellations for both regions is shown in
Figure 5. The results demonstrate that for low ν values the wheel can be re-
constructed quite well, but the motion field also follows the sharp edge of the
box flap and yields errors in that part of the sequence. In contrast, for high ν
values the box flap can be reconstructed well, but the wheel is reconstructed by
a straight edge which does not follow its original contour.

Comparison to diffusion and TV inpainting. We compare the image guided mo-
tion inpainting algorithm to a linear diffusion and a TV inpainting method in
case of the corrupted Marble sequence. Note that we confine the comparison to
these relatively simple priors, because more sophisticated image driven priors like
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a) b)

c) d)

Fig. 4. a) Original Rubber Whale frame, b) Ground truth flow field, c) Reconstructed
flow field, d) Resulting angular error

ν = 0.01 ν = 0.1 ν = 0.5 ν = 1.0

μ = 1 μ = 10 μ = 50 μ = 100

Fig. 5. Upper row: results for different values of ν for μ = 50, lower row: results for
different values of μ for ν = 0.1

the one proposed by Nagel and Enkelmann [21] so far only have been used in the
context of optical flow estimation but not for motion inpainting. Figure 6 shows
the original corrupted sequence and the results of the diffusion based, the TV-
based and the image guided motion inpainting methods. Not surprisingly, the
diffusion based motion inpainting fails to reconstruct motion edges. In contrast,
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a) original b) 2.00 ± 3.87 c) 0.93 ± 3.75 d) 0.39 ± 1.38

Fig. 6. Comparison of the proposed inpainting algorithm to diffusion and TV inpaint-
ing; the numbers indicate the average angular error within the corrupted regions after
reconstruction; a) Original corrupted Marble sequence, b) Reconstruction result of
diffusion based motion inpainting, c) Reconstruction result of TV based motion in-
painting, d) Reconstruction result of image guided motion inpainting

a) b) c)

Fig. 7. Results of the blending model (4) on noisy input data. a) Corrupted flow field,
b) Underlying image and region of corrupted motion field indicated by the red shape,
c) Reconstructed flow field with ρ = 6h.

by means of TV motion inpainting flow edges can be reconstructed. However, the
lower right corner of the central marble block cannot be reconstructed properly,
because the exact course of the edges near the junction is unclear. Our image
guided motion inpainting uses the image gradient information to correctly re-
construct the motion boundary of the central marble block as well. Here we used
the following set of parameters: μ = 50 and ν = 0.1.

Finally, we consider a part of the Marble sequence that shows the junction
mentioned before and apply artificial noise to the corrupted input. As noted ear-
lier, using the Dirichlet boundary model is not feasible in such a case. Hence, the
blending model (4) is used for the reconstruction. In Figure 7, the motion edge
junction is properly reconstructed based on the information from the underlying
image. We used the following set of parameters: λ = 0.01, μ = 1, ν = 0.1.
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6 Conclusion and Outlook

Given an image sequence and an extracted underlying motion field together
with a local measure of confidence for the motion estimation, we have proposed
a variational approach for the restoration of the motion field. This restoration
is vital for a number of applications requiring dense motion fields. Based on a
confidence measure, regions of corrupted motion can be detected. The underly-
ing image data is still available and reliable. We make use of this information
to improve the restoration of the motion field. The approach is based on an
anisotropic TV-type functional, where the anisotropy takes into account edge
information extracted from the underlying image data. The approach has been
applied to test data and to two different real world optical flow problems. The re-
sults are compared to harmonic vector field inpainting and TV-type inpainting.
We demonstrate that inpainting guided by the underlying intensity data outper-
forms purely flow driven approaches. We consider this as a feasibility study for
the coupling of motion field and image sequence data in variational inpainting
approaches. Robustness and reliability might be improved based on a fully joint
approach, where the motion field and the image sequence are jointly restored.
Furthermore, a restoration in space time would be promising as well.

Finally, a weakness of the proposed method is that for some motion fields the
optimal performance is obtained in different locations for different parameter
values (cf. Figure 5). To obtain the optimal performance in all locations, one
should develop a methodology to locally adapt the parameters automatically
after specifying a global set of parameters for the entire image.

References

1. Bruhn, A., Weickert, J.: In: A Confidence Measure for Variational Optic Flow
Methods, pp. 283–298. Springer, Heidelberg (2006)

2. Kondermann, C., Kondermann, D., Jähne, B., Garbe, C.S.: An adaptive confidence
measure for optical flows based on linear subspace projections. In: Hamprecht, F.A.,
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Abstract. In this paper, we present a feature/detail preserving color image seg-
mentation framework using Hamiltonian quaternions. First, we introduce a novel
Quaternionic Gabor Filter (QGF) which can combine the color channels and the
orientations in the image plane. Using the QGFs, we extract the local orientation
information in the color images. Second, in order to model this derived orienta-
tion information, we propose a continuous mixture of appropriate hypercomplex
exponential basis functions. We derive a closed form solution for this continuous
mixture model. This analytic solution is in the form of a spatially varying kernel
which, when convolved with the signed distance function of an evolving contour
(placed in the color image), yields a detail preserving segmentation.

1 Introduction

A major turning point in the field of mathematics, specifically, in algebra, was the birth
of noncommutative algebra via Hamilton’s discovery of quaternions. This discovery
was the precursor to new kinds of algebraic structures and has had an impact in various
areas of mathematics and physics, including group theory, topology, quantum mechan-
ics etc. More recently, quaternions have found use in computer graphics [1], navigation
systems [2] and coding theory [3]. In computer graphics, quaternion representation of
orientations facilitated computationally efficient and mathematically robust (such as
avoiding the gimbal lock in Euler angle representation) applications. In image process-
ing, quaternions have been used to represent color images [4,5]. This representation,
together with the extension of the Fourier transform to hypercomplex numbers, has led
to applications in color sensitive filtering [6], edge detection in color images [7,8] and
cross correlation of color images [9]. The first definition of a hypercomplex Fourier
transform was reported by Delsuc [10] in nuclear magnetic resonance. Later, different
definitions for the quaternionic Fourier transform (QFT) have been introduced in [11]
and [12] independently. Based on their definition of QFT, Bülow and Sommer gener-
alized the concept of analytic signal to two dimensions and introduced quaternionic
Gabor filters for use with scalar images [13]. They extended the Gabor filter by using
two quaternion basis i and j to replace the single complex number i in the definition
of the complex Gabor filter. However, they did not apply it to color images since their
definition of QFT associates the imaginary units i and j to the local orientations in the
image plane, which has no relationship to the color channels in a color image. There-
fore, we follow an alternative definition for QFT proposed in [14] that utilizes simple
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402 Ö.N. Subakan and B.C. Vemuri

formulae for the Fourier transform of complex-valued signals that can be computed ef-
ficiently. The use of this alternative QFT allows us to introduce a novel definition for
the Quaternionic Gabor Filters that can be used to extract features from color images
without conflicting interpretations being assigned to the hypercomplex units. An addi-
tional key contribution of the work presented here is that – we propose to model the
derived orientation information (at a pixel) using a continuous mixture of exponential
basis functions. Continuous mixture models have been presented in various contexts
[15,16,17,18,19]. In this paper, we propose a continuous mixture model, where the
mixing density is a Bingham density on the 3-dimensional sphere S3 ⊂ R4. To solve
the continuous mixture integral in a closed form, we rewrite it using the matrix Fisher
distribution on the manifold of special-orthogonal group. We use this closed form solu-
tion to construct a spatially-varying kernel for feature preserving segmentation of color
images.

Color image segmentation is a relatively nascent area in computer vision. The lit-
erature on color image segmentation is not as extensive as that on gray-valued image
segmentation. The key issue in color image segmentation is how to couple the infor-
mation contained in the given color (red, green and blue) channels. Some published
methods directly apply the existing gray level segmentation methods to each channel
of a color image and then combine them in some way to obtain a final segmentation
result. Chan et al. extend the Chan-Vese algorithm for scalar valued images to the vec-
tor valued case ([20]). In their work, in addition to the Mumford-Shah functional over
the length of the contour, the minimization involves the sum of the fitting error over
each color component. In the color snakes model, Sapiro extends the geodesic active
contour model to the color images based on the idea of evolving the contour with a
coupling term based on the eigenvalues of the Riemannian metric of the underlying
manifold ([21]).

In this paper, we adopt the quaternion framework for representing color images since
it offers scope to process color images holistically, rather than as separate color space
components, and thereby handles the coupling between the color channels. Moreover,
trichromatic theory of human color vision suggests vector mathematics as a natural tool
to analyze color images. For a detailed discussion and motivation on quaternion repre-
sentation of color images, we refer the reader to [7,9]. The key innovation of our work
here is a holistic approach to color image segmentation using a quaternion framework
to extract the local orientation and to model the derived information using a continuous
mixture in the unit quaternion space. The proposed segmentation kernel does not use
any prior information, and yet yields high quality results. Another contribution of this
paper is a quaternion Gabor filter for the use with color images. We present our exper-
imental results on some images drawn from the Berkeley Segmentation Data Set [22]
along with F-measure plots for quantitative validation. We also compare our method
with the mean shift algorithm in [23].

The remainder of this paper is structured as follows: We briefly describe the quater-
nion algebra and quaternion Fourier transform – needed for defining the QGF – in
Section 2. We also develop a novel definition for QGFs in this section. In Section 3,
we introduce the continuous mixture model for quantifying the derived orientation
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information. Then, in Section 4, we present the experimental results along with the
quantitative evaluation depicting the merits of the proposed approach. Lastly, in
Section 5 we summarize our contributions.

2 Local Orientation Analysis Using QGFs

2.1 Quaternions

In this section, we present background material on quaternions and the associated alge-
bra which will be used in developing the local orientation analysis using QGFs.

Higher dimensional complex numbers are called hypercomplex and defined as

q = q0 +
N∑

k=1

ikqk , qk ∈ R , (1)

where ik is orthonormal to il for k �= l in an N+1 dimensional space. The Hamiltonian
quaternions are unitary R-algebra; the basic algebraic form for a quaternion q ∈ H is:

q0 + q1i + q2j + q3k , (2)

where q0, q1, q2, q3 ∈ R, the field of real numbers, and i, j, k are three imaginary
numbers. H can be regarded as a 4-dimensional vector space over R with the natural
definition of addition and scalar multiplication. The set {1, i, j, k} is a natural basis for
this vector space. H is made into a ring by the usual distributive law together with the
following multiplication rules:

i2 = j2 = −1 , ij = −ji = k . (3)

If we denote the scalar and vector parts of a quaternion q by Sq and V q respectively,
the product of two quaternions q and p can be written as

qp = SqSp− V q · V p + SqV p + SpV q + V q × V p , (4)

where the · and × indicate the vector dot and cross products respectively. The conjugate
of a quaternion, denoted by ∗, simply negates the vector part, q∗ = q0 − q1i − q2j −
q3k. The norm of a quaternion q is ‖q‖ =

√
qq∗ =

√
q∗q =

√
q2
0 + q2

1 + q2
2 + q2

3 . A
quaternion with unit norm is called unit quaternion. Hamilton called a quaternion with
zero scalar part a pure quaternion. We can give an inner product structure to H if we
define:

〈q, p〉 = Sqp∗ . (5)

Using the inner product, the angle α between two quaternions can be defined as:

cosα =
Sqp∗

‖q‖‖p‖ . (6)

Any quaternion can be written in polar form

q = ‖q‖eθμ = ‖q‖(cos θ + μ sin θ) , (7)
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where μ is a unit pure quaternion.
Quaternion representation of color image pixels has been proposed independently in

[4,5]. They encode the color value of each pixel in a pure quaternion. For example, a
pixel value at location (n,m) in an RGB image can be given as a quaternion-valued
function f(n,m) = R(n,m)i + G(n,m)j + B(n,m)k where R,G and B denote the
red, green and blue components of each pixel respectively. This 3-component vector
representation yields a system which has well-defined and well-behaved mathematical
operations to apply on color images holistically.

2.2 Quaternionic Gabor Filters

In order to develop complex Gabor filters in higher-dimensional algebras, we first need
to analyze corresponding generalization of the Fourier transform. The very first defini-
tion of a hypercomplex Fourier transform was due to Delsuc [10]. Later, Ell [11] and
Bülow [12] independently introduced the quaternion Fourier transform, respectively as
follows:

H(jw, kv) =
∫ ∞

−∞

∫ ∞

−∞
e−jwth(t, τ)e−kvτ dtdτ . (8)

F (u, v) =
∫

R2
e−i2πuxf(x, y)e−j2πvydxdy . (9)

In [14], another definition for QFT was proposed with the motivation of using a
simple generalization of the standard complex operational formulae for convolution in
color images:

F [u, v] =
1√
MN

M−1∑
m=0

N−1∑
n=0

e−μ2π(mv/M+nu/N)f(n,m) , (10)

where μ is a unit pure quaternion. For color images in RGB space, μ is chosen as
1√
3
(i + j + k) (note that both the luminance and the chromaticity information is still

preserved; this is still a full color image processing, not a grayscale image processing.).
Following the QFT definition above, we introduce a novel Quaternionic Gabor Filter.

Definition 1 (Quaternionic Gabor Filter). The impulse response of a quaternionic
Gabor filter is a Gaussian modulated with the basis functions of the QFT:

GH(x;u, σ, λ, θ) = g(x′, y′) exp(μ2π(u0x + v0y)) , (11)

where g(x, y) = N exp
(
−x2+λy2

2σ2

)
with N being the normalization constant, λ being

the aspect ratio. [
x′

y′

]
=
[

cos θ sin θ
− sin θ cos θ

] [
x
y

]
The center frequency of the QGF is given by

√
u2

0 + v2
0 and its orientation is θ =

arctan(v0/u0).
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Fig. 1. Quaternion convolution of a QGF (with an orientation of π) with a color image from
Berkeley Data Set ([22])

For an application of QGFs, consider the Fig. 1. If we apply a horizontally oriented
QGF to an image, then we obtain high responses wherever there are horizontally ori-
ented features. Fig. 1 illustrates the magnitude response of such a horizontally oriented
QGF convolved with an image in quaternion form. Quaternion convolution is equiva-
lently performed by using QFT. Note that all the calculations follow the rules of the
quaternion algebra.

In an image, it is possible to have a color contrast without having a luminance con-
trast. In a black-and-white version of such an image, the two different colored objects
appear blended into a single one. In Fig. 2, we demonstrate that the proposed Quater-
nionic Gabor Filters can extract the local orientation information from a constant lumi-
nance image as well. Fig. 2a shows a synthetic color image where all pixels have the
same luminance value, but the chromaticity inside the object differs from the chro-
maticity outside. The luminance channel shows that all pixels have the same value
(see Fig. 2b). We applied 10 QGFs to the quaternion representation of this color im-
age. The sum of the magnitude responses of 10 QGFs is shown in Fig. 2d. Although
a black-and-white version (Fig. 2c) of the input image is a uniform gray without any
changes in orientation, the proposed QGFs successfully derive the orientation informa-
tion in the color version, showing that they are well suited for analyzing color images
and the result is not a grayscale image processing.

We have chosen the unit pure quaternion direction μ in QGF as 1√
3
(i + j + k).

However, this choice does not mean that the proposed quaternion framework is pro-
cessing the sum of the RGB values. Also note that the convolution between a QGF and
a quaternion representation of a color image is performed following the rules of quater-
nion algebra. At each pixel, the quaternion-valued filter is multiplied with the color
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(a) (b) (c) (d)

Fig. 2. Application of Quaternionic Gabor Filters across equal luminance: (a) a synthetic color
image where the object and the background are of equal luminance, (b) luminance channel, (c)
a grayscale version of (a), (d) the sum of the magnitude responses of QGFs applied to the color
image in (a)

(a) (b) (c)

Fig. 3. (a) A synthetic color image where (R + G + B)/3 is the same everywhere. (b) Grayscale
image which shows (R + G + B)/3 values. (c) The sum of the magnitude responses of QGFs
applied to the color image in (a).

direction of that pixel through a quaternion product. Hence, QGF handles the coupling
between the channels while, at the same time, processing all information in a color
image. Fig. 3a shows a color image where (R + G + B)/3 is the same for all pixels.
As shown in Fig. 3c, the proposed framework can accurately extract the orientation
information.

In the next section, the magnitudes of the quaternion-valued filter responses are mod-
eled using a continuous mixture of quaternionic exponential basis functions. We derive
a closed form solution for this integral and use it to construct a spatially varying convo-
lution kernel for detail preserving color image segmentation.

3 A Continuous Mixture Model on the Unit Quaternion Space

In the previous section, we introduced the QGFs to extract the local orientation informa-
tion in a color image. The resulting responses over a sphere of directions are modeled
in this section in a probabilistic framework. This framework is powerful and allows
one to capture the complicated local geometries present in the image data and incorpo-
rate them into spatially varying segmentation kernels. We postulate that at each lattice
point there is an underlying probability measure induced on the manifold of the unit
quaternions.
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The space of unit quaternions

S
3 = {q ∈ H | ‖q‖ = 1} (12)

is the 3-sphere in H , it forms a group under multiplication and preserves the hermitian
inner product. An appropriate choice for the kernel functions is exp(− cos(d(q, p))),
where d(q, p) = 2 cos−1(Sq∗p) is the length of the shortest geodesic between quater-
nions q and p. It can also be called the angle of rotation metric for quaternions. Thus
the proposed model is given by,

‖GH(x; ·, θ)‖/Gmax
H =

∫
S3

f(q)e− cos(d(q,pθ))dq , (13)

where dF := f(q)dq denotes the underlying probability measure with respect to the
uniform distribution dq on S3. Gmax

H
is the maximal value among all responses at an

image location. In order to avoid an ill-posed inverse problem which requires recover-
ing a distribution defined on the manifold of unit quaternions given the measurements
GH(x; ·, θ), we impose a mixture of Bingham distributions on q as a prior. Manifold
of the unit quaternions double-covers SO(3). Double-coverage can be interpreted as
antipodal-symmetry; thus, Bingham distribution is a natural choice for quaternion pri-
ors. For statistical purposes, Bingham distribution is characterized as the hyperspher-
ical analogue of the n-variate normal distribution; essentially it can be obtained by
the “intersection” of a zero-mean normal density with the unit sphere in Rn. Let q be
a 4-dimensional random unsigned unit direction. q is distributed as BL,A if it has the
Bingham density [24] given by,

1F1(1/2, 2, L)−1 exp{trLAqqT AT }dq , (14)

where A is a 4 × 4 rotation matrix, L is a diagonal matrix with concentration values
(which determine the amount of clustering around the mean directions) and 1F1 is a
confluent hypergeometric function of matrix argument as defined in [25]. Using the
relationship between S3 and SO(3), Prentice [24] has shown that q has a Bingham
density if and only if the corresponding rotation matrix, Q, in SO(3) has a matrix
Fisher distribution. A random 3 × 3 rotation matrix Q is said to have a matrix Fisher
distribution FF if it has the following pdf:

0F1(3/2; FFT /4)−1 exp{trFT Q}dQ . (15)

F is a 3 × 3 parameter matrix which encapsulates the concentration values and orienta-
tions, 0F1 is a hypergeometric function of matrix argument and can be evaluated using
zonal polynomials. By using the distance on the manifold SO(3), the proposed model
can be equivalently written in SO(3) instead of S3 as:

‖GH(x; ·,P)‖/Gmax
H

=
∫

SO(3)
e−

tr PT Q−1
2 dF , (16)

where P is the rotation matrix corresponding to the orientation of the QGF, and

dF =
N∑

i=1

wi 0F1(3/2; FiFi
T /4)−1etr Fi

T QdQ (17)
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is a discrete mixture of matrix Fisher densities over the rotation matrix Q with respect
to the uniform distribution on SO(3). We choose to change the prior to this mixture
of matrix Fisher densities since the matrix Fisher density is unimodal and will not be
able to handle orientational heterogeneity. However, note that the model in (16) is still
a continuous mixture model. N here corresponds to the resolution of the SO(3) dis-
cretization and not the number of dominant local orientations. We observed that the
kernel of the matrix Fisher distribution can be utilized to derive a closed form solution
for the right-hand side, leading to:

N∑
i=1

wi
0F1
( 3

2 ; 1
4

[
Fi − P

2

] [
Fi − P

2

]
T
)

0F1(3/2; FiFi
T /4)

. (18)

We can formulate the computation of this analytic form as the solution to a linear
system Aw = y, where y = {‖GH(x; ·, θj)‖}M

j=1/G
max
H

contains the normalized mea-
surements obtained via an application of M QGFs to the color image, A is an M ×N
matrix with

Aji =
0F1

(
3
2 ; 1

4

[
Fi − Pj

2

] [
Fi − Pj

2

]
T
)

0F1(3/2; FiFi
T /4)

(19)

and w = (wi) is the unknown weight vector. The weights in the mixture can be solved
using a sparse deconvolution technique, a non-negative least squares (NNLS) minimiza-
tion which yields an accurate and sparse solution. A sparse solution is what is expected
at each image lattice point since local image geometry does not have a large number of
edges meeting at a junction. Once w is estimated for the given data at each lattice point,
we can construct the convolution kernel for color image segmentation. We represent an
evolving curve C (in a curve evolution framework) by the zero level set of a Lipschitz
continuous function φ : Ω → R. So, C = {(x, y) ∈ Ω : φ(x, y) = 0}. We choose φ
to be negative inside C and positive outside. C is evolved using the following update
equation:

φt+1(x) = φt(x) ∗Q(x) , (20)

where Q(x) is the convolution kernel obtained from (18) by setting the matrix P to the
rotation matrix corresponding to the angle that the coordinate vector x makes with the
x-axis. Note that this formulation yields a spatially varying convolution kernel since the
w vector is estimated at each lattice point in an image.

4 Experiments and Comparisons

In this section, we present several experimental results of our approach (named as
QGmF – Quaternionic Gabors with matrix Fisher density) and compare its performance
with a state-of-the-art technique in segmentation: the mean shift algorithm presented in
[23]. We compare with this algorithm since it presents a tool for feature space analy-
sis. In the following experiments, for each algorithm the segmentations that yield the
highest F -measure values are shown.

In QGmF, we can adjust the level of details/features, which reveal themselves in the
output of the QGF applied to the color images. To do this, we introduce a threshold
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(a) (b) (c)

(d) (e)

Fig. 4. (a) Segmentation performed by a human subject (from the ground truth in the Berkeley
Segmentation Data Set [22]). (b) Segmentation result of the mean shift algorithm. (c) Segmenta-
tion result of the QGmF method with a low threshold value of 0.005. (d) Segmentation result of
the QGmF method with a threshold value of 0.02. (e) True positives (TP) map of (d) with respect
to (a).

(a) (b)

(c) (d)

Fig. 5. (a) Human segmentation (from the ground truth in the Berkeley Segmentation Data Set).
(b) Output of the mean shift algorithm. (c) Output of the QGmF method with a threshold of 0.005.
(d) Output of the QGmF method with a threshold of 0.025.

parameter on the magnitude of the filter responses. A relatively low threshold results
in a segmentation capturing the low contrast details in small scales. Fig. 4c illustrates
such an example where the threshold is set to 0.005. Mean shift algorithm achieves a
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(a) (b) (c)

(d) (e)

Fig. 6. (a) Human segmentation (from the ground truth data). (b) Luminance channel of the color
image. (c) Output of the QGmF method for the color image (QGF threshold = 0.005). (d) Output
of the mean shift segmentation (e) Output of the QGmF method (QGF threshold = 0.025).

Table 1. F1-measure (or Dice’s Coefficient) values

Image QGmF MeanShift
Astronauts 0.74 0.56
Starfish 0.81 0.52
Parade 0.76 0.65
Buffalo 0.86 0.67

successful result as shown in Fig. 4b. However, uniform regions are not consistently
preserved, e.g. the sky is mis-segmented; the boundaries divide the regions which are
actually composed of connected components, as can be seen between the clouds. More-
over, the barricade is mis-segmented with the pavement. Fig. 4d shows a better seg-
mentation using our QGmF method (note that the man riding the horse and the crowd
are clearly segmented, also note the accurate localization of the boundary between the
barricade and the pavement). Fig. 4e shows the pixels correctly labeled as belonging to
the segmentation boundary by QGmF.

Another visual comparison is provided in Fig. 5. Since the mode detection calcu-
lations in mean shift algorithm are determined by global bandwidth parameters, the
algorithm tends to miss small-scale details in some places or over-segment the uniform
regions (see the small areas on the starfish which are mis-segmented as being a part of
the outer region in Fig. 5b). On the other hand, QGmF maintains coherence within tex-
tured regions while preserving the small scale details around the boundaries as shown
in Fig. 5d. Once again, a low threshold value results in over-segmentation (see Fig. 5c).
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(a)

(b) (c)

Fig. 7. (a) Segmentation performed by a human subject (from the ground truth in the Berkeley
Segmentation Data Set). (b) Output of the mean shift segmentation. (c) Output of the QGmF
method.

In Fig. 6b, note the regions which have almost equal luminance but different chro-
maticity. Both Fig. 6c and 6d are over-segmented; however, 6e shows a high quality
result which is very close to the human segmentation (see Figs. 6e and 6a). In Fig. 7b,
mean shift segmentation algorithm mis-segments the heads of the astronauts, and the
boundaries of the astronaut on the left are missed. As visually evident, QGmF performs
better than the competing method.

In order to have a quantitative evaluation of our approach, we present the highest
F1-measure (or Dice’s Coefficient) scores of our method and the competing method for
the above images, as shown in Table 1. Furthermore, in Fig. 8 we present a sensitiv-
ity analysis using the F1-measures on 100 color images (including the images above)
drawn from the Berkeley Segmentation Data Set [22]. F1-measure, commonly known
as the F -measure, is the evenly weighted harmonic mean of precision and recall scores.
The human segmentations from the Berkeley Segmentation Data Set were used as the
ground truth in the evaluation. The boundaries between two segmentations are matched
by examining a neighborhood within a radius of ε = 2. In the QGmF, we tested the
effect of the threshold parameter (for values in [0.005, 0.05]) on the QGF responses.
For the mean shift segmentation algorithm, we tested the effect of the kernel band-
width parameters: hs, space bandwidth; and hr, range bandwidth. They determine the
resolution of the mode selection and the clustering. We tested for 3 different hs val-
ues in [7, 10, 20]. In each curve for the mean shift algorithm, x-axis shows the varia-
tions of the hr values in [4, 20] arranged in ascending order from left to right. Exper-
imentation showed that the F-measure scores change significantly with respect to the
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Fig. 8. F-measure plots for mean shift segmentation algorithm and QGmF convolution-based
kernel method. For QGmF, x-axis shows the variations of the threshold parameter for QGF re-
sponses, arranged in order from left to right, while y-axis shows the corresponding F-measure
value. The threshold for QGF varies within [0.005, 0.05]. For mean shift segmentation algo-
rithm, the corresponding values for the space bandwidth parameter (hs) are shown in the plot,
points along each curve correspond to the variations of the range bandwidth parameter (hr) in
[4, 20].

bandwidth parameters in mean shift segmentation algorithm, making it difficult to
choose the range of the parameters which can provide good results. In QGmF, we ob-
served that a low threshold value for QGF results in over-segmentation which is char-
acterized in the curves by low F-measure, whereas any level of detail for segmentation
can be achieved by tuning the threshold parameter. We notice that the scores of QGmF
are higher than the competing method.

5 Conclusion

In this paper, we addressed the problem of feature/detail preserving segmentation in
color images, and presented a hypercomplex representation framework for capturing
the complicated local geometry contained in a color image via the use of a spatially
varying convolution filter. We introduced a novel quaternionic Gabor filter to extract
the local orientation information in color images. This information is then represented
by a continuous mixture of hypercomplex exponential basis functions, where the mixing
density is assumed to be a mixture of Bingham densities. This integral, when expressed
using matrix Fisher densities on the Stiefel manifold, can be solved in a closed form
leading to the QGmF kernel. Additionally, the same kernel when iteratively applied to
a signed distance function representation of an active contour yields feature/detail pre-
serving segmentations of the color images. Our method does not use any prior informa-
tion to perform segmentations, and yet delivers superior performance in comparison to
a state-of-the-art method. We validated the performance of the proposed method in the
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experimental section using color images from the Berkeley Segmentation Data Set and
showed that our model yields results significantly close to the segmentations performed
by human subjects.
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19. Subakan, Ö.N., Vemuri, B.C.: Image segmentation via convolution of a level-set function
with a Rigaut kernel. In: IEEE Conference on Computer Vision and Pattern Recognition,
Anchorage, Alaska (June 2008)

20. Chan, T.F., Yezrielev, B., Vese, L.A.: Active contours without edges for vector-valued im-
ages. Journal of Visual Communication and Image Representation 11, 130–141 (2000)

21. Sapiro, G.: Color snakes. Comput. Vis. Image Underst. 68(2), 247–253 (1997)
22. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images

and its application to evaluating segmentation algorithms and measuring ecological statistics.
In: IEEE Intl. Conf. on Computer Vision, July 2001, vol. 2, pp. 416–423 (2001)

23. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE
Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)

24. Prentice, M.J.: Orientation statistics without parametric assumptions. Journal of the Royal
Statistical Society. Series B (Methodological) 48(2), 214–222 (1986)

25. Herz, C.S.: Bessel functions of matrix argument. The Annals of Mathematics 61(3), 474–523
(1955)



Quaternion-Based Color Image Smoothing Using a
Spatially Varying Kernel
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Abstract. Addressing the issue of feature/detail preserving color image smooth-
ing, we propose a novel unified approach based on a quaternion framework. The
main idea is to holistically extract the local orientation information at each lat-
tice point, and then to incorporate it into the smoothing process. We introduce a
new Quaternion Gabor Filter to derive the local orientation information in color
images. This derived orientation information is modeled using a continuous mix-
ture of appropriate exponential basis functions. We solve the continuous mixture
integral in analytic form, and develop a spatially varying kernel which respects
to the local geometry at each lattice point in a color image. Superior performance
of our smoothing framework is demonstrated via comparison to competing state-
of-the-art algorithms in literature.

1 Introduction

Color conveys essential information which can be employed in many vision tasks in-
cluding but not limited to object recognition, tracking, segmentation, registration etc.
With the advances in the computing power and memory, color image processing has
attracted much interest over the past few years. In this subject area, color image denois-
ing is still an elusive challenge. Due to the multichannel nature of the color images, the
key issue is how to couple the information contained in the given color (e.g. red, green
and blue) channels. Considering each individual channel of a color image as a separate
monochrome image, the early approaches often comprise the component-wise appli-
cation of the traditional gray level denoising techniques on each channel separately.
However, this approach fails to notice the inherent correlation between the components
and results in color artifacts or blending. To avoid this, denoising process should be
performed in a common and coherent way. In order to restore color and other vector
valued images, Blomgren and Chan [1] proposed to minimize a measure of Color Total
Variation which is still similar to a channel by channel Total Variation diffusion, but
weighted by a coupling term. To retrieve the local geometry of vector valued images,
Weickert proposed to extend his coherence enhancing diffusion using a common diffu-
sion tensor for all image channels [2]. Later, Kimmel et al. introduced a diffusion PDE
called Beltrami flow which involves the minimization of the global area of the surface
representing the vector valued image [3], with respect to the surface metric. In [4], Tang
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416 Ö.N. Subakan and B.C. Vemuri

et al. extended their direction diffusion framework to smoothing only the chromaticity
channel of color images, and combined it with the scalar anisotropic diffusion applied
to the brightness channel of the color image. More recently, Tschumperlé introduced
an image regularization PDE which takes the curvature constraints into account, and
applied it to multi-valued images [5]. For more on multichannel image recovery, we
refer the reader to [6,7].

In this paper, we adopt the quaternion framework for smoothing color images since
it offers scope to process color images holistically, rather than as separate color space
components, and thereby handles the coupling between the color channels naturally.
Moreover, the trichromatic theory of the human color vision suggests vector mathemat-
ics as a natural tool to analyze color images. For a detailed discussion and motivation
on the quaternion representation of color images, we refer the reader to [8,9]. The key
innovation of our work here is a unified approach to color image restoration using a
quaternion framework to extract the local orientation and to model the derived infor-
mation using a continuous mixture on the unit sphere. Continuous mixture models have
been presented in various contexts [10,11,12,13,14]. Another contribution of this paper
is a quaternion Gabor filter (QGF) for the use with color images.

Since their discovery by Hamilton in 1843, quaternions have had a tremendous
amount of influence on various areas of mathematics and physics, including group
theory, topology, quantum mechanics etc. More recently, quaternions have been em-
ployed in bioinformatics, computer graphics [15], navigation systems [16] and coding
theory [17]. In computer graphics, the quaternion representation of orientations facili-
tated computationally efficient and mathematically robust (such as avoiding the gimbal
lock in Euler angle representation) applications. In image processing, quaternions have
been used to represent color images [18,19]. This representation, together with the ex-
tension of the Fourier transform to hypercomplex numbers, has led to applications in
color sensitive filtering [20], edge detection [8,21] and cross correlation of color im-
ages [9]. The very first definition of a hypercomplex Fourier transform was that of
Delsuc [22] in nuclear magnetic resonance. Later, different definitions for the quater-
nionic Fourier transform (QFT) have been introduced in [23] and [24] independently.
Based on their definition of QFT, Bülow and Sommer generalized the concept of an-
alytic signal to two dimensions and introduced quaternionic Gabor filters for use with
scalar images [25]. They extended the Gabor filter by using two quaternion basis i and
j to replace the single complex number i in the definition of the complex Gabor filter.
However, they did not consider an application to color images since their definition of
QFT associates the imaginary units i and j to the local orientations in the image plane,
which has no relationship to the color channels in a color image. In [26], an alterna-
tive definition for QFT was proposed, which utilizes simple formulae for the Fourier
transform of complex-valued signals that can be computed efficiently. We follow this
alternative QFT to introduce a novel definition for the Quaternionic Gabor Filters which
can be employed to extract features from color images without conflicting interpreta-
tions being assigned to the hypercomplex units. We further test QGFs for the optimality
with respect to the two-dimensional uncertainty principle.

The rest of this paper is organized as follows: We briefly describe the quaternion al-
gebra and quaternion Fourier transform in Section 2 and then present a novel
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definition for QGFs. In Section 3, we introduce a continuous mixture model for quanti-
fying the derived orientation information. Section 4 reports on the experimental results
along with a quantitative evaluation depicting the merits of the proposed approach,
while a summary and an outlook for future research in Section 5 conclude the paper.

2 Local Orientation Analysis Using QGFs

2.1 Quaternions

Hypercomplex numbers are higher dimensional complex numbers defined as

q = q0 +
N∑

k=1

ikqk , qk ∈ R , (1)

where ik is orthonormal to il for k �= l in an N+1 dimensional space. The Hamiltonian
quaternions are elements with four orthogonal components; the basic algebraic form for
a quaternion q ∈ H is:

q0 + q1i + q2j + q3k , (2)

where q0, q1, q2, q3 ∈ R, the field of real numbers, and i, j, k are three complex oper-
ators obeying the following rules:

i2 = j2 = −1 , ij = −ji = k . (3)

H can be regarded as a 4-dimensional vector space over R with the natural definition of
addition and scalar multiplication. H is made into a ring by the usual distributive law
together with the multiplication rules above.

Denoting the scalar and vector parts of a quaternion q by Sq = q0 and V q = q1i +
q2j + q3k respectively, we can give the product of two quaternions q and p as

qp = SqSp− V q · V p + SqV p + SpV q + V q × V p , (4)

where the · and × indicate the usual 3D scalar and vector cross products respectively.
For any quaternion q, there exists a conjugate quaternion, q∗ = q0−q1i−q2j−q3k. The
norm of a quaternion q is ‖q‖ =

√
qq∗ =

√
q∗q =

√
q2
0 + q2

1 + q2
2 + q2

3 . A quaternion
with a unit norm is called unit quaternion, whereas a quaternion with a zero scalar part
is called a pure quaternion.

Euler’s formula for the complex exponential can be generalized to hypercomplex,
yielding a polar form:

q = ‖q‖eθμ = ‖q‖(cos θ + μ sin θ) , (5)

where μ is a unit pure quaternion.
Quaternion representation of color image pixels was proposed independently in

[18,19]. They encode the color value of each pixel in a pure quaternion. For example,
a pixel value at location (n,m) in an RGB image can be given as a quaternion-valued
function f(n,m) = R(n,m)i + G(n,m)j + B(n,m)k where R,G and B denote the
red, green and blue components of each pixel respectively. This 3-component vector
representation yields a system which has well-defined and well-behaved mathematical
operations to apply on color images holistically.
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2.2 Quaternionic Gabor Filters

In order to develop our complex Gabor filters in higher-dimensional algebras, we follow
the QFT definition in [26], which was proposed with the motivation of using a simple
generalization of the standard complex operational formulae for convolution in color
images:

F [u, v] =
1√
MN

M−1∑
m=0

N−1∑
n=0

e−μ2π(mv/M+nu/N)f(n,m) , (6)

where μ is a unit pure quaternion. For color images in RGB space, μ is chosen as
1√
3
(i + j + k) (note that both the luminance and the chromaticity information is still

preserved; this is still a full color image processing, not a grayscale image processing.).
Complex Fourier transform is a special case of this transform, where μ = i, and f(n,m)
is a complex valued function.

In the following, we introduce a novel Quaternionic Gabor Filter.

Definition 1 (Quaternionic Gabor Filter). The impulse response of a quaternionic
Gabor filter is a Gaussian modulated with the basis functions of the QFT:

GH(x;u, σ, λ, α) = g(x′, y′) exp(μ2π(u0x + v0y)) , (7)

where g(x, y) = N exp
(
−x2+λy2

2σ2

)
with N being the normalization constant, λ being

the aspect ratio. [
x′

y′

]
=
[

cosα sinα
− sinα cosα

] [
x
y

]
The center frequency of the QGF is given by

√
u2

0 + v2
0 and its orientation is α =

arctan(v0/u0). Let us consider the QFT of an isotropic Gaussian in 2D. QFT of an
anisotropic Gaussian can be evaluated similarly.

QFT {g(x, y)} = N

∫
R2

e−
x2+y2

2σ2 e−μ2π(ux+vy)dx

= N

∫
R

(∫
R

e−(x+2πμuσ2)/2σ2
dx
)
e−

y2

2σ2 eμ22π2σ2u2
e−μ2πvydy (8)

After some algebraic manipulations, we obtain that QFT {g(x, y)} =
c e−2π2σ2(u2+v2), i.e. an un-normalized Gaussian in (u, v)-space, with c being a con-
stant. Now we prove the Modulation Theorem for the continuous QFT.

Theorem 1 (Modulation Theorem for QFT). Let f(x,y) be a quaternion-valued sig-
nal, FH(u, v) be its quaternion Fourier transform, and h(x, y) = f(x, y)eμ2π(u0x+v0y).
Then, QFT {h(x, y)} = FH(u− u0, v − v0).

Proof.

QFT {f(x, y)} =
∫

R2
f(x, y)e−μ2π(ux+vy)dx =: FH(u, v)

QFT {h(x, y)} =
∫

R2
f(x, y)eμ2π(u0x+v0y)e−μ2π(ux+vy)dx

= FH(u− u0, v − v0)
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The QFT of a Gaussian together with the Modulation Theorem can then be used to
conclude that QGFs defined above are shifted Gaussian functions in the quaternionic
frequency domain, i.e. if

f(x) = e
− x2

2σx2 − y2

2σy2 eμ2π(u0x+v0y) , (9)

then the QFT of f is:

FH(u) = e−2π2σ2
x(u−u0)2−2π2σ2

y(v−v0)2 . (10)

In analogy to Gabor filters, we consider the quaternionic analytic signal which has been
defined in [25] to work with QGFs. For positive frequenciesu0 and v0, the main amount
of the Gabor filter’s energy in (10) is in the upper right quadrant. Hence, QGFs provide
approximation to quaternionic analytic signal. In order to show that QGFs are optimally
localized in both quaternionic spatial and frequency domains simultaneously, we will
simply extend the definition of the uncertainties for quaternion-valued functions which
has also been done in [27]. The spatial and frequency uncertainties Δx and Δu of a
quaternion-valued signal f can be given as:

(Δx)2 =

∫
R
f(x)f∗(x)x2dx∫

R
f(x)f∗(x)dx

, (Δu)2 =

∫
R
FH(u)F ∗

H
(u)u2du∫

R
FH(u)F ∗

H
(u)du

. (11)

The uncertainties of the QGF given in (9) can be evaluated using the above definitions
and their analogs for Δy and Δv to be

Δx =
σx√

2
, Δy =

σy√
2
, Δu =

1
2
√

2σxπ
, Δv =

1
2
√

2σyπ
. (12)

Thus, QGFs are shown to achieve the minimum product of uncertainties defined in [28]

ΔxΔyΔuΔv ≥ 1/16π2 . (13)

For an application of QGFs, consider the Fig. 1. We applied 13 oriented QGFs to the
image of Barbara, by convolving the quaternion representation of the color image with
the quaternion valued filter. Quaternion convolution is equivalently performed by using
QFT. Calculations follow the rules of the quaternion algebra. Note that color transitions
in the coupled channels GB, RB and RG show themselves in the components of the
vector part of the QGF responses.

In an image, it is possible to have a color contrast without having a luminance con-
trast. In a grayscale version of such an image, the two different colored objects appear
blended into a single one. In Fig. 2, we demonstrate that the proposed Quaternionic
Gabor Filters can extract the local orientation information from a constant luminance
image as well. Fig. 2a shows a synthetic color image where all pixels have the same
luminance value (see Fig. 2b), but the chromaticity inside the object differs from the
chromaticity outside. We applied 10 QGFs to the quaternion representation of this color
image. The sum of the magnitude responses of 10 QGFs is shown in Fig. 2d. Although
a black-and-white version (Fig. 2c) of the input image is a uniform gray without any
changes in orientation, the proposed QGFs successfully derive the orientation informa-
tion in the color version, showing that they are well suited for analyzing color images
and the result is not a grayscale image processing.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Image of Barbara is quaternion-convolved with QGFs of different orientations. (a)-(d)
Color image and GB, RB, RG images respectively, (e) Scalar part of the sum of the QGF re-
sponses, (f)-(h) Vector part of the sum of QGF responses.

(a) (b) (c) (d)

Fig. 2. Application of Quaternionic Gabor Filters across equal luminance: (a) a synthetic color
image where the object and the background are of equal luminance, (b) luminance channel, (c)
a grayscale version of (a), (d) the sum of the magnitude responses of QGFs applied to the color
image in (a).

(a) (b) (c)

Fig. 3. (a) A synthetic color image where (R +G +B)/3 is the same everywhere. (b) (R +G +
B)/3 values for each pixel. (c) The sum of the magnitude responses of QGFs applied to the color
image in (a).

We have chosen the unit pure quaternion direction μ in QGF as 1√
3
(i+ j+k). How-

ever, this choice does not mean that the proposed quaternion framework is processing
the sum of the RGB values. Also note that the convolution between a QGF and a quater-
nion representation of a color image is performed following the rules of quaternion al-
gebra. At each pixel, the quaternion-valued filter is multiplied with the color direction
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of that pixel through a quaternion product. Hence, QGF handles the coupling between
the channels while, at the same time, processing all information in a color image. Fig.
3a shows a color image where (R + G + B)/3 is the same for all pixels. As shown in
Fig. 3c, the proposed framework can accurately extract the orientation information.

3 Modeling Derived Orientation Information

In the previous section, we introduced the QGFs to extract the local orientation infor-
mation in a color image. The resulting responses over a circle of directions are modeled
in this section in a probabilistic framework. We postulate that at each lattice point there
is an underlying probability measure induced on the unit circle. An appropriate choice
for the basis functions is exp(cos(θ−α)), where α is the orientation of the QGF, and θ
is a random variable on the circle. The proposed continuous mixture model is given by,

Gv
H
(x; ·, α) =

∫
S1

ecos(θ−α)dF , (14)

where dF = f(θ)dθ denotes the underlying probability measure with respect to the
uniform distribution dθ on S1. Gv

H
, v = i, j, k denote the i, j and k components of the

vector part in the quaternion-valued response, respectively. We only model the compo-
nents of the vector part. Scalar part of the filter response can be regarded as a smoothed
second derivative of the initial image, and can be of use for edge detection.

In order to avoid an ill-posed inverse problem which requires recovering a distribu-
tion defined on the circle given the measurements Gi

H
(x; ·, α), we impose a mixture of

von Mises distributions on θ as a prior. The von Mises distributions have a significant
role in statistical inference on the circle, analogous to that of the normal distributions
on the line. For statistical purposes, any von Mises distribution can be approximated by
a normal distribution wrapped around the circumference of the circle of unit radius. θ
is distributed as fM(θ;β, κ) if it has the von Mises density given by,

1
2πI0(κ)

eκ cos(θ−β)dθ , (15)

where β and κ are the mean direction and the concentration parameter, respectively. I0
is the modified Bessel function of the first kind and zeroth order ([29]).

This distribution is unimodal and symmetric about θ = β. κ determines the degree
of the clustering around the mode; i.e. the larger the value of κ, the greater the cluster-
ing around the mode. In order to handle orientational heterogeneity we need a multi-
modal distribution. Therefore, we choose the prior to be a discrete mixture of von Mises
distributions:

dF =
N∑

n=1

wn
1

2πI0(κn)
eκn cos(θ−βn)dθ . (16)

Plugging this measure into (14), we obtain our model given as follows:

Gv
H(x; ·, α) =

∫
S1

N∑
n=1

wn
1

2πI0(κn)
eκn cos(θ−βn)ecos(θ−α)dθ . (17)
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However, note that this is still a continuous mixture model. N here corresponds to
the resolution of the discretization of the circle; it does not correspond to the number
of modes (peaks) characterizing the local geometry or the number of dominant local
orientations. We observed that the kernel of the von Mises distribution can be utilized
to derive a closed form solution for the continuous mixture integral, leading to:

Gv
H(x; ·, α) =

N∑
n=1

wn
I0(
√

κ2
n + 1 + 2κn cos(βn − α))

I0(κn)
. (18)

We can formulate the computation of this analytic form as the solution to a linear system
Aw = y, where y = {Gv

H
(x; ·, αm)}M

m=1 contains the measurements obtained via an
application of M QGFs to the image, A is an M ×N matrix with

Amn =
I0

(√
κ2

n + 1 + 2κn cos(βn − αm)
)

I0(κn)
(19)

and w = (wn) is the unknown weight vector. We solve the weights in the mixture using
a sparse deconvolution technique, a non-negative least squares (NNLS) minimization
which yields an accurate and sparse solution for:

min ‖Aw − y‖2 subject to w ≥ 0. (20)

A sparse solution is what is expected at each image lattice point since local image
geometry does not have a large number of edges meeting at a junction. Once w is
estimated for the given data at each lattice point, we can construct the convolution kernel
for color image smoothing. The update equation for image channel Iv, v = R,G,B is
given as follows:

Iv
t+1(x) = Iv

t (x)∗Qv(x) , (21)

Qv(x) =
N∑

n=1

wv
n

I0(
√

κ2
n + 1 + 2κn cos(βn − α))

I0(κn)

where Qv(x) is the convolution kernel on the right-hand side of (18) for the correspond-
ing Gv

H
(·), wv is the weight vector obtained from (20) using the corresponding Gv

H
(·)

measurements, and the orientation α is the angle that the coordinate vector x makes
with the x-axis. This formulation yields a spatially varying convolution kernel since
the w vector depends on location; it is estimated at each lattice point x in an image.
Moreover, the weights w and hence the convolution kernel is different for each color
channel Iv . Note that this framework handles the coupling between the color channels
through the application of quaternionic Gabor filters to the quaternion representation of
the color image.

4 Experiments and Comparisons

In this section, we evaluate the performance of the proposed framework with applica-
tions on color image denoising and inpainting. We compare our denoising results with



Quaternion-Based Color Image Smoothing Using a Spatially Varying Kernel 423

(a) (b)

(c) (d)

(e) (f)

Fig. 4. (a) Original image. (b) Noisy image with a Gaussian noise of standard deviation 35. De-
noised images using (c) the coherence enhancing diffusion, (d) the Beltrami flow, (e) the curvature
preserving regularization, (f) our method.

three prominent techniques: Weickert’s coherence enhancing diffusion (CED) for color
images [2], the Beltrami flow proposed by Kimmel et al. [3], and the curvature preserv-
ing regularization (CPR) proposed by Tschumperlé [5]. In the denoising experiments,
for each algorithm the outputs that have the highest PSNR values are shown. Parame-
ters of each method were chosen so as to reach its best PSNR value. We compute the
PSNR on the RGB channels of the color image. We also report the PSNR values on the
luminance channel of the YCbCr representation of the RGB image, since the human
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Table 1. PSNR Values for Denoised Images

Image PSNR Method CED Beltrami CPR Ours Noisy Image

Butterfly
Luminance 26.45 27.37 25.14 28.18 22.32

RGB 24.48 24.84 23.11 26.33 17.71

Parrots
Luminance 29.01 28.95 28.91 30.03 22.3

RGB 26.95 26.85 26.75 27.70 17.62

eye is more sensitive to luma information in a color image. PSNR for RGB domain is
defined as:

PSNR = 10 log10
2552

MSE
, MSE =

1
3|Ω|

∑
x∈Ω

∑
v=R,G,B

(Iv
0 (x) − Îv(x))2 (22)

where Ω is the image domain of |Ω| pixels, I0 is the noise-free ideal image, and Î is its
estimate obtained from the denoising method. PSNR for the luminance channel is the
same except the MSE is the sum over the squared value differences of the luminance
channel, divided by |Ω|.

In all of our experiments, we use the same number of measurements for our model;
i.e. the size of the Quaternion Gabor Filter bank, M, is 21 for all experiments. N, the
resolution of the discretization of the unit circle for the mixing density, is set to 81.
Hence, the size of matrix A is 21 × 81, and the unknown of this under-determined
system, which is the weight vector w, is an 81-dimensional vector. Note that this size
does not correspond to the expected number of different orientations at a pixel. The
concentration parameter κ is the same for all distributions in the mixture of von Mises
distributions. We experimented with different values of κ and in the following exper-
iments, a value of 8, which gives a sharper mode in a von Mises distribution, yields
the best PSNR values. In denoising experiments, the original images are corrupted by
additive white-Gaussian noise, having a high standard deviation (σ = 35). For a quan-
titative evaluation of our approach, we present the highest PSNR values obtained using
the abovementioned methods in Table 1. In all cases, our unsupervised and adaptive
method produces the best PSNR values.

In Fig. 4, we illustrate the potential of our approach with a butterfly image corrupted
by additive white-Gaussian noise, having a high standard deviation (Fig. 4b, σ = 35).
Our method preserves significant geometric features and the original color contrasts
without producing undesirable artifacts (see Fig. 4f). However, both in Fig. 4c and in
Fig. 4d, we can notice the color artifacts in flat regions, which look like artificial texture
effects. Coherence enhancing diffusion creates fiber effects on the background. Cur-
vature preserving regularization performs better, however it creates a color bleeding
around the edges of the wings (see zoomed-in view in Fig. 4e). Both visually and in
terms of PSNR, our method outperforms the competing methods.

Another comparison is presented in Fig. 5 with multi-colored parrots. The noisy im-
age has a PSNR value of 17.62 in RGB domain. In this experiment, competing methods
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. (a) Original image. (b) Noisy image with a Gaussian noise of standard deviation 35. De-
noised images obtained from (c) the coherence enhancing diffusion, (d) the Beltrami flow, (e) the
curvature preserving regularization, and (f) our method.

generated blurred images. Although the Beltrami flow gives a slightly lower PSNR than
the coherence enhancing diffusion, it smoothes the flat regions better and produces a vi-
sually more pleasing image (Fig. 5d). We can notice some color diffusing effect in Fig.
5e. Our algorithm, however, is able to remove the noise, preserve the color and the ori-
entation details without any color blending problems (see the patch around the eye in
the close-up view in Fig. 5f), as well as achieve the highest PSNR value.

In inpainting, we compare our results with the direct application of the curvature
preserving PDE as proposed by Tschumperlé in [5]. To fill-in the missing/desired im-
age regions, we apply the iterative convolution of our spatially-varying kernel on the
regions to inpaint, without using any texture synthesis or reconstruction technique as
a post-processing step. We illustrate how our technique can be used to remove ob-
jects from digital photographs in Fig. 6 and Fig. 7 along with the comparisons. In both
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(a) (b) (c)

Fig. 6. Inpainting a fish net in a color image using (b) curvature preserving regularization, (c) our
method

(a) (b) (c)

Fig. 7. Inpainting a cage in (a) a color image (courtesy of D. Tschumperlé [30]), with curvature
preserving regularization (b), and with our method (c).

experiments, our method generates a better result. Note that the fish net is still noticeable
in Fig. 6b, similarly the cage in Fig. 7b. In addition, parrot’s toe is over-diffused by the
curvature preserving regularization, whereas our result looks visually more appealing.

5 Conclusion

We described a novel feature preserving color image smoothing technique based on
a quaternion framework. The main idea is to capture the complicated local geometry
contained at a lattice point via a continuous mixture model, and then to incorporate
this information into a spatially varying convolution filter. We first introduced a novel
quaternionic Gabor filter to extract the local orientation information while appreciating
the vectorial nature of a color image. Each component of this quaternion-valued data
is then represented by a continuous mixture of exponential basis functions, where the
mixing density is assumed to be a mixture of von Mises densities. We derived a closed
form solution for this integral, which leads to a spatially varying convolution kernel.
We qualitatively and quantitatively validated that our framework delivers superior per-
formance in comparison to competing state-of-the-art methods; it produces smoother
flat regions, and preserves complex geometries and texture details without any prior
information.

The proposed method handles the coupling between the channels through the appli-
cation of QGFs to the quaternion representation of color images; image channels do
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not evolve independently with different smoothing geometries, because the color and
orientation spaces are linked through the QGFs. We envision that the derived orien-
tation information, being quaternion-valued, can be modeled using quaternionic basis
functions in the unit quaternion space. Moreover, depending on the formation of the
convolution kernel, the update equation of the smoothing process can be modified to
perform a quaternion-convolution of color image with a quaternion-valued kernel. Fu-
ture research will encompass the search for such formulations to discover new valuable
tools for color image processing.
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25. Bülow, T., Sommer, G.: Multi-dimensional signal processing using an algebraically extended
signal representation. In: Sommer, G. (ed.) AFPAC 1997. LNCS, vol. 1315, pp. 148–163.
Springer, Heidelberg (1997)

26. Sangwine, S., Ell, T.A.: The discrete fourier transform of a colour image. In: Blackledge,
J.M., Turner, M.J. (eds.) Image Processing II: Mathematical Methods, Algorithms and Ap-
plications, pp. 430–441 (2000)
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Abstract. This article1 presents a new adaptive texture model. Locally
parallel oscillating patterns are modeled with a weighted Hilbert space
defined over local Fourier coefficients. The weights on the local Fourier
atoms are optimized to match the local orientation and frequency of
the texture. We propose an adaptive method to decompose an image
into a cartoon layer and a locally parallel texture layer using this model
and a total variation cartoon model. This decomposition method is then
used to denoise an image containing oscillating patterns. Finally we show
how to take advantage of such a separation framework to simultaneously
inpaint the structure and texture components of an image with missing
parts. Numerical results show that our method improves state of the art
algorithms for directional and complex textures.

1 Introduction

The analysis and modeling of textures is a central topic in computer vision and
graphics. Texture modeling is fundamental for a large number of problems, such
as image segmentation, object recognition and image restoration.

1.1 Previous Works

Image Decomposition. A variational decomposition algorithm seeks a decompo-
sition f = u + v of an image f where u should capture the sketch of the image
and v the texture content. This decomposition is often defined as the solution
of a minimization problem involving two norms, one for each component. Total
variation [1] is broadly used as a cartoon model since it allows to recover piece-
wise smooth functions without smoothing sharp discontinuities. On the other
hand, the norm on v, the texture component, should be small for typical texture
patterns one wants to extract.

Following [1], where Rudin, Osher and Fatemi proposed to capture the noise
of an image by using the usual L2 norm, Yves Meyer [2] pushed forward the idea
1 This work has been done with the support of the French “Agence Nationale de la

Recherche” (ANR), under grant NATIMAGES (ANR-08-EMER-009), “Adaptivity
for natural images and texture representations”.
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of using more complex norms || · ||T to capture oscillating patterns. In particular
he proposed a weak norm dual of the TV norm. This idea inspired several works
[3,4,5]. An alternative to this dual norm approach has been presented in [6], the
Morphological Component Analysis: it uses the �1 norm of decompositions on
bases such as a local cosine dictionary for the texture component and a wavelet
dictionary for the cartoon one.

Inpainting. The problem of inpainting can be stated as follows : given a region
Ω to be restored, use the valid surrounding information for synthesizing the
most plausible data in Ω. Several classes of methods have been considered. In
the first category of approaches, the focus has been on recovering the geome-
try. These methods [7,8,9,10,11] use partial differential equations that propa-
gate the information from the boundary of the missing region to its interior.
The drawback of this kind of methods is their well-known incapacity to restore
texture. In parallel to these geometry-oriented approaches, the exemplar-based
methods [12,13] turned out to be very efficient for reconstructing isotropic and
non-geometric textures. Different approaches have been proposed in combination
with an exemplar-based inpainting, either based on a manual intervention by the
user [14], or trying to combine texture and geometric interpolation in the most
automated possible way [15]. A last class of approaches relies on sparse regular-
ization in several transform domains (e.g. Fourier, wavelet or framelet) and also
aims to deal with geometric and texture information simultaneously [16,17].

1.2 Contributions

The main contribution of this work is a new adaptive texture model. We propose
methods for using this new model in some applications such as image decom-
position, denoising and inpainting, and we present algorithms for solving these
problems. We model locally parallel textures in order to extract oscillating pat-
terns which present spatial and frequency variability. We start (section 2) by
defining a texture norm || · ||T = || · ||ξ depending on a parameter ξ(x) which is the
instantaneous frequency of the oscillating texture. For a point x in the image,
ξ(x) gives the local frequency ||ξ(x)|| and the local orientation ξ(x)/||ξ(x)|| of
the texture around x. The norm || · ||ξ is small for an oscillating pattern around
x if its main frequency is close to ξ(x). We then use this norm for a decom-
position problem (section 3): we want to separate the image into three layers,
f = u + v + w where u is the geometric layer, v is the texture modeled by
our norm and w is the noise. And finally the interest of such a texture norm is
highlighted in section 4 by its use in an inpainting method which simultaneously
inpaints the geometric and the texture layers. Numerical examples are shown
for decomposition, denoising and inpainting and our results are compared with
other methods.

In the following, we suppose that f ∈ RN is a discrete image of N = n × n
pixels and the two operators gradient and divergence are discretized by forward
finite difference (for example, we refer the reader to [18] for details). In this
framework, we have ||∇|| =

√
8.
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2 Texture Modeling Using an Adaptive Hilbert Norm

2.1 Hilbert Texture Norm

In [19], Aujol and Gilboa proposed to use a linear Hilbert norm defined by some
symmetric positive kernel K: ||v||2T = 〈Kv, v〉L2 . This norm can be computed
using a frame {ψ�}� that is a possibly redundant family of P � N atoms ψ� ∈
RN . The decomposition of an image in this frame reads

Ψf = {〈f, ψ�〉}P−1
�=0 ∈ R

P , (1)

where Ψ : RN → RP is the frame operator.
Given a set of positive weights γ� � 0, a norm can then be defined as

||f ||2T =
∑

�

γ2
� |〈f, ψ�〉|2 = ||γΨf ||2L2 , (2)

where γ = diag�(γ�). This corresponds to a Hilbert space associated to the kernel
K = Ψ∗γ2Ψ .

2.2 Texture Norm over a Local Fourier Basis

Aujol and Gilboa [18] proposed to use the Fourier basis so that Ψ corresponds
to the discrete Fourier transform. This defines a translation-invariant kernel K.
This paper proposes to replace the global Fourier basis by a redundant local
Fourier basis, to capture the spatially and frequentially varying structures of
locally parallel textures.

Local Fourier Frame. A discrete short time Fourier atom, located around a
position xp = pΔx and with local frequency ξk = kΔξ = k/q is defined as

ψp,k[y] = q−1g[y − pΔx]e
2iπ

q (y1k1+y2k2), (3)

for k ∈ {−q/2, . . . , q/2 − 1}2 and p ∈ {0, . . . , n/Δx}2, where g is a smooth
window, centered around 0, and the size of its support is q × q pixels with
q > Δx. In this paper, we use a Haning window function: g[x] = sin(πx1/q −
π/2)2 sin(πx2/q − π/2)2.

The local Fourier frame {ψp,k}p,k is a redundant family of P = (q/Δx)2N
vectors of RN . The decomposition Ψf = {〈f, ψp,k〉}p,k ∈ RP of an image f in
this frame can be computed with the 2D Fast Fourier Transform of the q × q
image f [y]g[Δxp− y]. The computation of Ψf thus requires O(NQ log2(Q)/Δ2

x)
operations.

The dual operator Ψ∗ reconstructs an image Ψ∗c ∈ RN from a set of coeffi-
cients c[p, k] ∈ RQ×N

Ψ∗c =
∑
p,k

c[p, k]ψp,k. (4)
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This dual operator is implemented using N/Δ2
x inverse Fast Fourier Transforms.

The operator Ψ∗Ψ is in fact diagonal, and one has

Ψ∗Ψ = diagx(
∑

y

go[Δxy − x]2). (5)

and the norm of the operator Ψ∗Ψ is maxx

∑
y g

o[Δxy − x]2.

2.3 Weight Design

We define a Hilbert norm || · ||T adapted to oscillating texture as a weighted norm
over the local Fourier coefficients. The general formulation (2) is instantiated
using a local Fourier frame ψ� = ψp,k for � = (p, k) as follow

||f ||2T =
∑
p,k

γ2
p,k|〈f, ψp,k〉|2, (6)

where each γp,k � 0 weights the influence of each local Fourier atom in the
texture model.

Intuitively, γp,k should be small when the texture f contains a local oscillation
of frequency close to ξk around the point xp. We consider a locally oscillating
texture model, where typical texture patterns are locally well approximated by
a single atom.

The texture norm ||·||T is therefore parametrized by a vector field ξ : RN �→ R2

which represents the local frequency of the texture component of f . For a point
x of the image, the local frequency around x is given by |ξ(x)| and the local
orientation of the texture is given by ξ(x)/|ξ(x)|. The norm || · ||T = || · ||ξ should
be small for an oscillating pattern around the point x if its main frequency is
close to ξ(x). As a consequence the weight γp,k should be small if ξk is close to
ξ(xp) or to −ξ(xp). By convention, ξ(x) is set to (0, 0) if there is no significant
oriented patterns around x in the image.

The weights are therefore defined as a function of ξ:

γp,k(ξ) =

{
1 if ξ(xp) = (0, 0)(

1 −Gσ

(
||ξk + ξ(xp)||

))(
1 −Gσ

(
||ξk − ξ(xp)||

))
otherwise (7)

where Gσ(x) = exp(−(x/σ)2/2)) and σ is a scale parameter reflecting the devia-
tion we are expecting to find in the frequency spectrum of the texture compared
to ξ(x) (in our numerical experiments we took σ = 1). When there is not a sig-
nificant oriented texture around xp, we choose γp,k = 1 for all k, in order not to
promote an arbitrary orientation in the extraction. The texture norm is finally
given by:

||v||2T = ||v||2ξ =
∑
p,k

γp,k(ξ)2|〈v, ψp,k〉|2 = ||Γ (ξ)Ψv||2L2 . (8)

where Γ (ξ) = diag�=(p,k)(γp,k(ξ)). This is actually a semi-norm since ||v||T = 0
does not imply v = 0 but, for the sake of simplicity, we use the term of norm in
the following.
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3 Image Decomposition and Denoising Using an
Adaptive Hilbert Norm

Decomposing an image into meaningful components is an important problem in
image processing. Using the texture norm introduced in section 2, we present an
image decomposition framework which aims to separate an image f into three
components: f = u+v+w, where u should capture the sketch of the image, v the
texture content and w the noise. We define this decomposition as the solution
of the following minimization problem:

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

μ||ṽ||2
ξ̃

+ λ||ũ||TV +
1
2
||f − ũ− ṽ||2L2 , w = f − u− v. (9)

where ||||TV is the total variation norm, ||u||TV =
∫
|∇u| (the discrete total varia-

tion of u is then defined by ||u||TV =
∑

1�i,j�n |(∇u)i,j |) and ||v||ξ is our texture
norm defined by (8).

C is a set of constraints on the orientation field ξ. We first force the frequency
|ξ| to be large enough in order not to extract low frequencies in the texture com-
ponent v: ∀p, |ξ(xp)| > τ , for some real positive parameter τ > 0. Furthermore,
an oscillating pattern of frequency ξ(xp) is assumed to be present in the image
f around the point xp only if |〈f, ψp,k〉| > ηp where k = ξ(xp)/Δξ and ηp > 0
is a real positive parameter. In fact, one does not want to arbitrary select a
frequency for an area of the image where there is no oscillating pattern. In our
numerical experiments we take τ = 2/q, where q is the size of the local Fourier
windows, and ηp = 2|Ψfp| where |Ψfp| is the average value of |〈f, ψp,k′〉| for
k′ ∈ {−q/2, . . . , q/2 − 1}2. In short, we have:

C =
{
ξ : R

N/Δx �→ R
2
∣∣∣∣∀p, |ξ(xp)| > τ
∀p,
(
∀k, |〈f, ψp,k〉| � ηp

)
⇒ ξ(xp) = (0, 0)

}
(10)

The minimization (9) iterates between two steps: one on ξ and one on u and
v. We detail these two steps in the next two sections. Although the energy is
decreasing at each step, this algorithm is not guaranteed in general to converge
to a minimum. However we did not encounter any optimization problems during
our numerical experiments.

3.1 Minimization with Respect to the Orientation Field ξ

If u and v are fixed, we search for the frequency field ξ verifying:

ξ = argmin
ξ̃∈C

||v||2
ξ̃
.

This requires, for each p, to compute:

ξ(xp) = argmin
ξ̃(xp)∈C

∑
k

γp,k(ξ̃(xp))2|〈v, ψp,k〉|2.

where γp,k(ξ̃(xp)) is given by (7).
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If σ in the weight definition (7) is small enough, this minimization boils down
to compute maxk |〈v, ψp,k〉|, which allows us to speed up the computation by
taking:

ξ(xp) = Δξ argmax
k> τ

|Δξ|

|Ψv[p, k]|. (11)

Figure 1 illustrates the underlying principle of this orientation estimation: for
a given point xp, a unique direction and frequency ξ(xp) is selected and the
corresponding weights γp,k(ξ) are constructed according to (7).

(a) (b) (c) (d)

Fig. 1. Illustration of the orientation estimations. From left to right: (a) the input
image f , (b) the windowed image around some point xp, (c) the corresponding local
Fourier transform and (d) the weights γp,k(ξ) corresponding to the ξ estimated from
the local Fourier transform.

3.2 Minimization with Respect to the Components u and v

If ξ is fixed, we search for u and v verifying:

(u, v) = argmin
ũ,ṽ

μ||Γ (ξ)Ψṽ||2L2 + λ||ũ||TV +
1
2
||f − ũ− ṽ||2L2 , (12)

where Γ (ξ) is defined at the end of section 2.3. This minimization is done itself
iteratively on u and v. Starting from some initial u(0) and v(0), one solves:
• v is fixed: one minimizes

u(i+1) = argmin
ũ

λ||ũ||TV +
1
2
||(f − v(i)) − ũ||2L2 . (13)

This minimization can be solved using iterations of the original algorithm
of Chambolle [20]. This algorithm is based on the observation that u(i+1) =
(f − v(i)) + λdiv(w) where w is the solution of the following constrained min-
imization problem

w = argmin
||w̃||∞�1

||(f − v(i)) + λdiv(w̃)||, (14)

where the infinite norm of a vector field w = (w1, w2) is

||w||∞ = max
i,j

√
w1[i, j]2 + w2[i, j]2. (15)
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Chambolle proposed a fixed point algorithm to solve (14), and one can also
use a projected gradient descent by initializing w(0) = 0 and then iterating a
gradient step

w̄(�) = w(�) + ν∇(ū(k) + λdiv(w(�))) (16)

and a projection on the constraints

∀ (i, j), w(�+1)[i, j] =
w̄(�)[i, j]

max(||w̄(�)[i, j]||, 1)
. (17)

The gradient step size should satisfy ν < 2/||∇||2 = 1/4 (with the discretization
used in this paper) so that f − v(i)) + λdiv(w(�)) converges with � → +∞ to
u(i+1).

• u is fixed: one minimizes

v(i+1) = argmin
ṽ

μ||Γ (ξ)Ψṽ||2L2 +
1
2
||(f − u(i+1)) − ṽ||2L2 , (18)

Computing the gradient of (18), we obtain that v(i+1) satisfies:

(2μΨ∗Γ 2Ψ + Id)v(i+1) = f − u(i+1) (19)

and the solution can be obtained by conjugate gradient descent (notice that
A = μΨ∗Γ 2Ψ + Id is positive symmetric).

3.3 Decomposition of a Noise Free Image

If the input image f does not contain any noise, one can also decompose f into
only two components, the sketch u and the texture f − u:

(u, ξ) = argmin
ũ, ξ̃∈C

λ||ũ||TV +
1
2
||f − ũ||2

ξ̃
, (20)

In this case, a faster algorithm can be used. The minimization step on ξ is the
same as the one described in section 3.1, but the second step on v is different.
One can use an extension of Chambolle’s algorithm designed to deal with inverse
problem, see for instance [21,22] for equivalent description of this method. From
an initial texture layer u(0) ∈ R

N , this algorithm iterates between a gradient
step of the functional u �→ ||γΨu− y||2 (where y = γΨf):

ū(k) = u(k) + νΨ∗γ(y − γΨu(k)), (21)

where ν > 0 is a step size that should obey ν < 2/||γΨ ||2, and a denoising step

u(k+1) = argmin
ũ∈RN

1
2
||ū(k) − ũ||2 + λν||ũ||TV. (22)

which is equivalent to (13) and therefore can be solved using the projected
gradient descent described in section 3.2.
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 2. A synthetic example: (a) the input image, first column: (b) original structure
and (e) texture components used to produce the image, second column (c) and (f):
decomposition results with TV − L2 and third column (d) and (g) : decomposition
results with our adapted TV-Hilbert method. The obtained result is almost perfect.

3.4 Numerical Examples

The local Fourier transform described in section 2.2 depends on two parameters
q, which is the size of the local Fourier windows, and Δx which measure the
overlapping of the windows. Let us note that an estimation of the lowest fre-
quency ξmin present in the texture component to extract is an indication for the
choice of the parameter q. As a matter of fact, if q is too small, the spectrum
of the local Fourier windows cannot differentiate very low frequency oscillating
patterns from geometric information. In fact, we have ξk = k/q and we can take
q = 3/ξmin to be sure that ξmin is detected. As for the parameter Δx, which
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(a) f0

(b) f (c) u + v (d) ξ

(e) u (f) v (g) w

Fig. 3. First row: (a) the original noise free image. Second row: (b) the input noisy
image f , (c) the restored image u + v and (d) the estimated orientations of oscillating
patterns ξ. Third row: the decomposition into three components, (e) the sketch u of
the image, (f) the texture content v and (g) the noise w.

verifies Δx < q, it should be taken smaller for a texture which strongly varies
spatially than for a texture which is smoother. Good candidates for Δx are for
example q/2 or q/4.

Figure 2 presents an example of the decomposition of a noise free image: the
input image 256 × 256, shown in the first row, is generated by addition of a
cartoon picture and a synthetic texture whose orientation and frequency vary
spatially. These two components are shown in the first column. We applied the
TV −L2 method [1] and we chose the smallest parameter λ (on the total variation
norm) which provides a total extraction of the texture (here λ = 0.9). For our
method we chose λ = 0.1, q = 16, Δx = 4.
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(a) (b) Noisy input image f (c)
Original image f0 (SNR = 10.25) Restored image u + v

(d) u (e) v (f) w

Fig. 4. first row: (a) the original noise free image f0, (b) the noisy input image f and
(c) the restored image u + v. second row: the decomposition (d) u the sketch of the
image, (e) v the texture content and (f) w the noise.

In Figure 3 an image f composed by a cartoon picture and a fingerprint tex-
ture is degraded by a Gaussian noise. The noisy image f is then decomposed into
three components u, v, and w using our method with the following parameters
λ = 0.1, μ = 0.3, q = 16, Δx = 4. Since u captures the sketch of the image, v the
locally parallel patterns and w the noise, we can reconstruct a restored version
of the noisy image by addition of u and v.

With the same idea, we show in Figure 4 an example of result obtained by
this decomposition and denoising process on the “barbara” image. Figure 5 com-
pares our result with two other denoising methods. Every parameter is chosen to
achieve the best SNR result. The decomposition between structure and texture
provides a better reconstruction of the texture and therefore a better SNR. Let
us remark that the former image decomposition frameworks (such as TV-G [2]
or TV-H−1 [4]) are not suitable for denoising. As a matter of fact, the G and the
H−1 norms are low for any high-frequency patterns and are then also low for a
large part of the noise. On the other hand, the TV norm penalizes strongly os-
cillating patterns and therefore these models are not able to separate efficiently
the texture from the noise. On the contrary our norm is low for patterns which
presents a certain frequency and orientation and is therefore more appropriate
for denoising.
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(a) SNR=17.34 (b) SNR=17.98 (c) SNR=19.93

Fig. 5. Comparison with other methods. Denoising of image f from Fig. 4. (a) TV-
denoising (λ is chosen to achieve the best SNR, λ = 0.1),(b) Translation Invariant
Wavelet Denoising (the threshold is chosen to achieve the best SNR) and (c) our result
which achieves a better SNR.

4 Inpainting with Adapted Hilbert Space

4.1 Simultaneous Cartoon and Texture Inpainting

Inpainting aims at restoring an image f from which a set Ω ⊂ {0, . . . , n− 1}2 of
pixels is missing. It corresponds to the inversion of the ill posed linear problem
y = Φf + ε where Φ is defined as

(Φf)(x) =
{

0 if x ∈ Ω,
f(x) if x /∈ Ω.

(23)

and ε is an additive noise. We search for the image f as a decomposition f ≈ u+v
where u has a low total variation and v has a small Hilbert texture norm. This
corresponds to the solution of

(u, v, ξ) = argmin
ũ, ṽ, ξ̃∈C

λ||ũ||TV + μ||ṽ||2
ξ̃

+
1
2
||Φ(ũ + ṽ) − y||2L2 , (24)

where μ and λ should be adapted to the noise level and the regularity of f .
The inpainting is done similarly to section 3 by performing the minimization

iteratively on ξ, u and v. The minimization step on ξ does not change, see
section 3.1. We describe here the second step, on u and v. Starting from some
initial u(0) and v(0), one solves

• v is fixed: one minimizes

u(i+1) = argmin
ũ

λ||ũ||TV +
1
2
||Φũ − ȳ||2L2 (25)

where ȳ = y − Φv(i). Similarly to (20), this minimization can again be seen
as an ill-posed inverse problem from measurements ȳ = Φ(f − v(i)) + ε
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(in (20), y = γΨf) with a total variation regularization. We can therefore
use the extension of Chambolle’s algorithm described in section 3.3.

• u is fixed: one minimizes

v(i+1) = argmin
ṽ

μ||γΨṽ||2 +
1
2
||Φṽ − ȳ||2L2 (26)

where ȳ = y−Φu(i+1) and where γ are the local Fourier weights. The solution
is computed by conjugate gradient descent to solve the linear system

(2μΨ∗γ2Ψ + Φ∗Φ)v(i+1) = Φ∗ȳ, (27)

If no noise is present, then the value of λ + μ can be decreased during the
iterations of the inpainting algorithm, in order to have a small norm for the
residual term 1

2 ||Φ(ũ + ṽ) − y||2L2 .

4.2 Numerical Examples

Figure 6 presents an example of inpainting reconstruction of the image from
Figure 3 degraded by randomly placed holes (350 squares, 15 pixels by 15 pixels,
the image is of size 512 × 512). We used the same parameters as in Figure 3.
Let us notice that the texture is well reconstructed thanks to the estimation of

(a) y (b) u (c) v

(d) u + v (e) TV Inpainting

Fig. 6. First row: (a) y, the image to inpaint degraded by randomly chosen holes in
black, the original image is f0 in Fig. 3(a), (b) u the inpainted geometric component,
(c) v the inpainted texture component. Second row: (d) u + v the reconstruction using
our method, (e) “TV Inpainting” using a simple TV diffusion.
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(a) (b) (c) (d)

Fig. 7. Inpainting of a degraded image, the original image is f0 in Fig. 4. First row, (a)
the image to inpaint, (b) reconstruction using a TV diffusion, (c) result of MCA [17]
with curvelet and local discrete cosine dictionaries, (d) our reconstruction. Our method
achieves a better reconstruction of the texture directions inside the missing parts.

the orientations and to the overlapping of the local FD windows. On the other
hand the reconstruction of the geometric component is only accomplished by the
effect of the Total Variation norm. However since our method provides a sepa-
ration into two components (geometry and texture), one can imagine to apply
a post-processing on the geometric component using any method available in
order to improve the final reconstruction. Figure 7 shows a second example of
inpainting reconstruction for the image from Figure 4. For comparison, we also
show the result of the TV diffusion process and the MCA method [17], using a
curvelet dictionary for the cartoon component and a local discrete cosine trans-
form for the texture part. For images with locally parallel patterns, our method
achieves a better reconstruction of the directions of the texture inside the missing
parts.

5 Conclusion

In this paper we presented a new adaptive texture model well-suited for locally
parallel oscillating patterns. The use of this adaptive norm improves state of
the art algorithms both in decomposition and inpainting for images which con-
tain oriented textures. The adaptivity is in fact crucial for this kind of images
where the texture is anisotropic, since it allows to take into account the texture
geometry.
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Abstract. In this work we present a novel method for detecting multi-
ple objects of interest in one image, when the only available information
about these objects are their shape and color. To solve this task we
use a global optimal variational approach based on total variation. The
presented energy functional can be minimized locally due its convex for-
mulation. To improve the runtime of our algorithm we show how this
approach can be scheduled in parallel.Our algorithm works fully auto-
matically and does not need any user interaction. In experiments we show
the capabilities in non-artificial images, e.g. aerial or bureau images.

1 Introduction

To detect multiple objects of interest we use the concept of image segmenta-
tion. We will segment the image plane into two regions: foreground (objects of
interest) and background. In this context we will use the minimization of an
energy functional in continuous space introduced in [1] and [2]. The usage of
shape information for image segmentation is normally done using the level-set
representations (cf. [3] [4] [5] [6]). In this representation a shape is defined as the
boundary given by the zero level set of an embedding function φ : IRd → IR:

C =
{
x ∈ IRd

∣∣∣φ(x) = 0
}
. (1)

The shape priors in this context are then defined on a space of embedding func-
tions using the space of signed distance functions. Although this formulation has
its benefits (independency of parametrization and easy handling of topological
changes) there exist two well-known drawbacks: Firstly, the space of signed dis-
tance functions is not a linear space, and secondly, the resulting cost or energy
functionals are generally not convex.

Recently, an alternative to the continuous level set representation has been
proposed, where the segmentation of images is formulated on the basis of convex
functional minimization using the concept of Total Variation(TV) (c.f [7], [8]). In
[9] the formulation of a globally optimal color-based image segmentation using
the TV norm was shown. In this paper we extend this work by combining it with
shape information.

D. Cremers et al. (Eds.): EMMCVPR 2009, LNCS 5681, pp. 443–454, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Shape Information

In this section we briefly describe the shape prior model, introduced in [10], which
will be used in the following because of its convex and continuous formulation.

For the representation of shapes we use the shape space Q:

Definition 1. A shape in IRd is a function

q : IRd → [0, 1] , (2)

which assigns to any pixel x ∈ IRd a probability q(x) that x is part of the object.
The space of all shapes will be denoted Q. In our case we will only consider
planar shapes, so we set d = 2.

The benefit of this model lies in the independency of any parametrization. So the
problem of shape alignment does not require the estimation of point correspon-
dences. Furthermore the values of q can be easily interpreted in a probabilistic
sense. Cremers et al. have shown in their paper [10] that the shape space Q is
convex. This characteristic of Q leads to the conclusion that any convex combi-
nation of elements of the set

χ = {q1, q2, ..., qN} (3)

is a valid shape. With this we can define statistic quantities such as mean,
covariance matrices and eigenmodes of a training set χ.

Let χ = {q1, q2, ..., qN} be a set of N training shapes; then the mean value
μ : IR2 → [0, 1] of this set is defined through

μ(x) =
1
N

N∑
i=1

qi(x). (4)

This is a function that assignes to each pixel x ∈ IR2 the average of all proba-
bilities. Using principal component analysis (PCA) we compute the eigenmodes
of the shape set χ. We use only a subspace of χ spanned by the first n ≤ N
eigenmodes {ψ1, ψ2, ..., ψn}. The size n follows from the cumulative energy con-
tent for each eigenmode. In experiments we used a threshold value of about 0.8.
Figure 1 shows the normalized cumulative energy for our training set database.
Now a subspace χn is given by:

χn =

{
qα = μ +

n∑
i=1

αiψi

∣∣∣∣∣ qα(x) ∈ [0, 1] , αi ∈ IR

}
. (5)

In [10] it was shown that χn is convex. Now we can generate an shape from
this space as

qα = μ + αT Ψ (6)

With this we can describe every shape only storing the vector α ∈ IRn. Ψ is a
matrix containing the eigenmodes ψ1, ψ2, ..., ψn. Figure 2 shows some examples.
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Fig. 1. Normalized cumulative energy content of eigenmodes vs. the number of eigen-
modes used for the representation for a database of human hands (left figure) and for
a car database segmented manually from aerial images (right).

a) b)

c) d)

e) f)

Fig. 2. Shape information: On the left side a hand database is used, on the right side we
use a collection of manually-segmented cars from aerial images. a) and b) are example
shapes from our database. c) and d) are the mean shapes μ from equation (4). e) and
f) represent the first eigenmode ψ1 of the database.
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3 Multiple Object Detection

In this section we describe how to detect multiple object using shape and color
information. First we formulate a convex energy function and show that it can
be computed efficiently by parallelization. Then we describe the following steps
of our algorithm.

3.1 Convex Functional

The energy function used in [9] was formulated for color-based image segmenta-
tion.We extend this approach to incorporate also shape information. The general
form of a functional for a desired segmentation u : IR2 → [0, 1] is

E(u) = Eimg(u) + β ·Eshape(u). (7)

The color based energy function is of the form

Eimg(u) =
∫
Ω

f(x)u(x) dx + γ

∫
Ω

|∇u(x)| dx + ρ

∫
Ω

ξ(u(x))dx, (8)

where Ω ⊆ IR2 denotes the image plane and β, γ, ρ ∈ IR are weighting parame-
ters.The function ξ penalizes values of u lying outside of the valid range of [0, 1].
f can be an arbitrary function which measures the consistency of a point x with
the foreground. In our work we used the following function for f :

f(x) = Δ
(
IHSV(x),νobj

)
−Δ

(
IHSV(x),νbgd

)
. (9)

Here, IHSV is the input image I transformed into the HSV color space. The
function Δ computes the squared distances of the single channels of IHSV to the
mean value ν of a region.

Δ
(
IHSV(x),ν

)
= wH

(
IH(x) − νH)2 + wS

(
IS(x) − νS)2 + wV

(
IV(x) − νV)2

(10)
wH, wS and wV being (normalized) weighting parameters.

The term introducing the shape information into the segmentation isEshape(u):

Eshape(u) =
∫
Ω

|u(x) − q̃α(x)| dx (11)

with

q̃α =
K∑

k=1

Φu (qαk, Θk) . (12)

The function Φu projects the shape qαk into the image plane of u using the
transformation vector Θk = (tx, ty, φ, λ) for every object k. K is the number
of object in the image I. This number is estimated automatically. Details on
this will be given later in this paper. The transformation vector Θk contains
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two parameters for the translation (tx and ty), one for rotation (φ), and one for
scaling (λ). With these parameters we can perform any similarity transformation
of a planar shape q. qαk is a shape generated from our database given the vector
αk:

qαk = μ +
n∑

i=1

αk(i) · ψi. (13)

Let us define the transformed version of qαk as:

qΘk
αk

= Φu(qαk, Θk). (14)

Since it was shown in [9] that Eimg is a convex functional, what remains to
be shown is that Eshape(u) is also convex.

Lemma 1. The energy functional (11) is convex.

Proof (of lemma 1). To show that (11) is convex with respect to u, we have to
show that for all ρ ∈ (0, 1) holds

∀u1, u2 : Eshape ((1 − ρ)u1 + ρ · u2) ≤ (1 − ρ)Eshape(u1) + ρ ·Eshape(u2). (15)

So we can write

Eshape ((1 − ρ)u1 + ρ · u2) =
∫
Ω

|(1 − ρ)u1 + ρ · u2 − q̃α| dx (16)

≤
∫
Ω

(1 − ρ) |u1 − q̃α| + ρ · |u2 − q̃α| dx (17)

=
∫
Ω

(1 − ρ) |u1 − q̃α| dx +
∫
Ω

ρ · |u2 − q̃α| dx (18)

= (1 − ρ) ·Eshape(u1) + ρ ·Eshape(u2) (19)

��

For the sake of completeness we write down the complete energy functional:

E(u) =
∫
Ω

f(x)u(x) dx + γ

∫
Ω

|∇u(x)| dx

+ ρ

∫
Ω

ξ(u(x)) dx + β

∫
Ω

|u(x) − q̃α(x)| dx. (20)

Since the norm function is not continuously differentiable we will replace it with
a smoothed version by introducing a small offset ε ∈ IR:

|u|ε =
√

u2 + ε2. (21)

In experiments we often used ε = 0.001.
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Now we can formulate the Euler-Lagrange equation of (20):

∂E

∂u
= f − γdiv

( ∇u

|∇u|ε

)
+ ρξ′(u) + β

u− q̃α√
(u− q̃α)2 + ε2

= 0 (22)

Without the shape term you can solve equation (22) as a system of linear equa-
tions, e.g. with successive over-relaxation (SOR). Details on this can be found
in [9]. We write the new shape term in equation (22) as:

s(u) =
u− q̃α√

(u − q̃α)2 + ε2
(23)

Due the fact that s(u) is not linear in u we have to perform a linearization by
first-order Taylor expansion:

s(ut) = s
(
ut−1)+ s′

(
ut−1) · (ut − ut−1) (24)

= s
(
ut−1)+

ε2

((ut−1 − q̃α) + ε2)3/2 · (ut − ut−1) (25)

Since we use a iterative solver such as SOR we know the solution of u from the
last timestep t− 1 and denote it here as ut−1. The value of s(ut−1) can then be
seen as a constant. With this we can generate a system of linear equations. For
the SOR formalism we need a linear system of equations of the form Au = b.
For this we write u as a vector u, such that the columns of the image matrix are
concatenated to an N -dimensional column vector with N the number of pixels.
The vector b is given by the constant part of (22),

bi = −f − β · s
(
ut−1(i)

)
− β · s′

(
ut−1(i)

)
· ut−1(i). (26)

Accordingly, A contains the ut-depended part (22). It is useful to replace the
function ξ(u) in the actual implementation with a simple thresholding. We obtain
for A = (aij) :

aij =

⎧⎪⎪⎨⎪⎪⎩
gi∼j if j ∈ N (i)
β · s′(ut−1(i)) −

∑
k∈N (i)

gi∼k if i = j

0 otherwise

(27)

where gi∼j is the diffusivity between pixel i and its neighbor j. N (i) denotes the
neighborhood of pixel i. The Matrix A is diagonally dominant. In our experi-
ments we use a 4-connected neighborhood, so we get only five non-zero diagonals.
All other entries of A are zero. Because the diffusivity g = 1

|∇u| depends on the
actual solution for u, we do not really have a linear system of equations, but
we make the assumption, that the diffusion is constant, and we perform a new
computation of it only every L iterations.

For a speedup in the computation time we use the red-black computation
scheme for SOR (see [11] for details). With this we schedule the computation
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parallel, so that we create a separate thread for every pixel that computes the
solutions using the latest information from its neighbor. For this computation
we use the NVIDIA CUDA framework, so the main computing is done in parallel
on the GPU.

3.2 Estimation of the Optimal Transformation Parameters for
Every Shape

Given an initial solution of u we need to determine the number of object candi-
dates in the segmented image. Since u is almost binary this can be solved easily,
e.g. through connected components. This gives us the number K of possible ob-
jects in the input image I. For each of these candidates we need to know its
transformation parameters Θk.

Using a parallel framework we can compute the residuum

r = b − Au. (28)

given the actual solution u, all transformation parameters Θk and all shape pa-
rameters αk for k = 1, 2, ...,K. The estimation of the optimal Θk for all k is done
by computing a ”branch & bound” search on the space of valid transformations
parameters. For initialization we set the values of the translation parameters to
the barycenter of each candidate. The norm of r indicates the correctness of the
found parameters. In every node in the branch & bound searching tree we save
the actual intervals for all parameters, the norm of r and an indicator holding
the information which interval of a parameter has to be divided for the next
level of the search. The search is stopped if a satisfying accuracy is achieved,
e.g. when the residuum does not change any more. It was shown in [10] that this
approach leads to a globally optimal solution. Although our derivation is more
general, the extension of the proof shown there is straight-forward and will not
be presented here.

3.3 Estimating the Optimal Shape Representation

Knowing the actual solution of u and the optimal transformation parameters
Θk we have to estimate the optimal shape parameters αk for every candidate
k = 1, 2, ...,K. This can be summarized in three steps:

1. divide q̃α into qΘ1
α1

, qΘ2
α2

, ..., qΘK
αK

, such that each qΘk
αk

only contains information
of candidate k (cf. Figure 3),

2. transform the eigenmodes ψ1, ..., ψn with Φu(ψi, Θk) for each eigenmode i =
1, .., n and each candidate k = 1, ...,K, so that you get a transformed set of
eigenmodes Ψk for each candidate,

3. solve:
min
αk

∥∥ ΨT
k · αk −

(
qΘk
αk

− Φu(μ,Θk)
)∥∥ (29)

for all k = 1, ...,K.
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a) b) c)

Fig. 3. Examples of Step 1 in section 3.3: a) q̃α, b) qΘ1
α1 , c)qΘ2

α2

The first two steps can be easily implemented. The third step can be solved in
different ways. We use in our experiments a singular value decomposition (SVD)
to obtain αk. Due the fact that n is a very small number (in our case 3 or 5)
the computation time of the SVD is short. So we do not need a more complex
solving algorithm. If the training set database contains many dissimilar shapes
then n will be larger and a different computation strategy for step 3 would be
probably faster.

3.4 Algorithm Summary

Now we can summarize the whole algorithm:

1. solve (22) with β = 0 to get an initial solution for u only based on the color
information,

2. determine the number of object candidates K,
3. estimate the optimal translation parameters Θk for k = 1, 2, ...,K using

branch & bound,
4. estimate the optimal shape parameters αk solving (29) for k = 1, 2, ...,K,
5. check for each candidate k = 1, 2, ...,K whether the segmented object matches

the found shape representation qΘk
αk

and discard false responses,
6. solve (22) with β �= 0 to get a optimal solution for u based on color and

shape information
7. if the accuracy is sufficient stop, else return to step 2.

Step 5 can be realized with the following procedure. First divide the segmentation
u into disjoint images u1, u2, ..., uK , so that each uk contains only the information
of u that corresponds to candidate k. Since we have already found the optimal
translation and shape parameters of the corresponding shape qΘk

αk
, we can now

simply compute the difference of uk and qΘk
αk

:

dk

(
uk, q

Θk
αk

)
=
∣∣uk − qΘk

αk

∣∣ . (30)

If the cumulated and normalized difference is bigger than a threshold τ ∈ IR,
then the candidate is discarded, and we save this information, such that the
candidate will not re-appear in the segmentation. This can be realized with:
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I(x) =

⎧⎨⎩uk(x) · νbgd + (1 − uk(x)) · I(x) , 1
‖Ω‖ ·

∫
Ω

dk(x)dx > τ

I(x) otherwise
(31)

A more precise shape verification strategy, e.g. shape matching, can be applied
to step 5, but was not needed in our experiments. Since shape matching generally
needs high computation times we solved this problem here in a simpler way to
save runtime. Some fast algorithms for shape matching are described in [12]
and [13].

Fig. 4. Object detection results using shape and color information. Left column: input
images. Right column: Detection results presented as colored version of the segmenta-
tion result u. Each color represents a label for a pixel.
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4 Results

In this section we present the results obtained with the proposed algorithm. We
performed the presented experiments on a Intel Core2Quad 8200 CPU with 4GB
RAM and a NVIDIA GeForce GTX280 with 1GB RAM. As already described in
Section 2, we use a hand database which we test on bureau images. In addition
to this we created a car database from manually segmented aerial images. These
images were taken from a height of about 500 meters obove ground with opening
angles of 13.6 and 10.4 degrees. The resolution of both image categories is 1024
× 768 pixels.

Results can be seen in Figure 4. The first input image shows a bureau scene
with hands in it. The challenge with this image is the high level of noise and

Fig. 5. Object detection results using only color information. Left column: input im-
ages. Right column: Detection results presented as colored version of the segmentation
result u. Each color represents a label for a pixel.

Table 1. Running times for multiple object detection based on aerial images

size sec
256 × 192 0.475
512 × 384 1.077
1024 × 768 3.192
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strongly varying color distribution of both hands. Despite these difficulties our
method yields the correct segmentation and the corresponding positions of ob-
jects of interest in this scene. The next images show aerial scenes in which cars
shall be detected. Here, the challenging point is the fact that often the color of
the car windows differ strongly from the rest of the car. This leads a algorithm
only controlled by color information to the belief, that a car in a scene consists of
two objects. Examples for this behavior can be seen in Figure 5. But the fusion
of color and shape information yields the correct segmentation. Furthermore, the
man-made objects in this scene (e.g. houses) have the same color distribution as
the car, so they will appear as object candidates when using color information
only (c.f Figure 5). In addition to this the shape representation of a car is quite
unspecific (c.f Figure 2), so a shape-only algorithm will not work properly. The
benefit lies here in the fusion of both approaches.

Table 1 displays the running times for our algorithm with a GPU-based solu-
tion of (22). Since these times depend on the number of objects found, we used
the first aerial image from Figure 4 with different resolutions for our time mea-
surements. We did not use a parallel version of SVD to solve (29). This would
further decrease the computation time.

5 Conclusion

In this work we presented a novel method for a globally optimal multiple object
detection using shape and color information. The proposed method is based
on a convex energy functional for image segmentation. We showed how this
functional can be parallized to improve the computation time. In experiments
we demonstrated the capabilities of this approach with challenging scenes.

In future work we indend to decrease the computation time through a parallel
solving of (29) and a faster solving method for the transition parameters of the
objects.
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Abstract. The estimation of human age from face images has many real-world 
applications. However, how to discover the intrinsic aging trend is still a chal-
lenging problem. We proposed a general distance metric learning scheme for 
regression problems, which utilizes not only data themselves, but also their cor-
responding labels to strengthen the credibility of distances. This metric could be 
learned by solving an optimization problem. Via the learned metric, it is easy to 
find the intrinsic variation trend of data by a relative small amount of samples 
without any prior knowledge of the structure or distribution of data. Further-
more, the test data could be projected to this metric by a simple linear transfor-
mation and it is easy to be combined with manifold learning algorithms to  
improve the performance. Experiments are conducted on the public FG-NET 
database by Gaussian process regression in the learned metric to validate our 
framework, which shows that its performance is improved over traditional re-
gression methods. 

Keywords: Age Estimation, Metric Learning, Regression. 

1   Introduction 

Face-based biometric systems such as Human-Computer Interaction have great poten-
tial for many real-world applications. As an important hint for human communication, 
facial images comprehend lots of useful information including gender, expression, 
age, pose, etc. Unfortunately, compared with other cognition problems, age estimation 
from face images is still very challenging. This is mainly due to the fact that, aging 
progress is influenced by not only personal gene but also many external factors. 
Physical condition, living style and plenty of other things may accelerate or slower 
aging process. Besides, since aging process is slow and with long duration, collecting 
sufficient data for training is a fairly strenuous work. 

[10,17] formulated human ages as a quadratic function. Yan et al. [27,28] modeled 
the age value as the square norm of a matrix where age labels were treated as a non-
negative interval instead of a certain fixed value. However, all of them regarded age 
estimation as a regression problem without special concern about the own characteris-
tics of aging variation. As Deffenbacher [8] stated, the aging factor has its own essen-
tial sequential patterns. For example, aging is irreversible, which is expressed as a 
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trend of growing older along the time axis. Such general evolution of aging course is 
beneficial to age estimation, especially when training data are limited and distributed 
unbalanced over each age range. 

Geng et al. [13,12] firstly made some pioneer research on seeking for the underly-
ing aging patterns by projecting each face in their aging pattern subspace (AGES). 
Guo et al. [16] proposed a scheme based on Orthogonal Locality Preserving Projec-
tions (OLPP) [5] for aging manifold learning and get the state-of-art results. In [16], 
SVR (Support Vector Regression) is used to estimate ages on such a manifold and 
the result is locally adjusted by SVM. However, they only tested their OLPP-based 
method on a private large database consisting of only Japanese people, and no di-
mension reduction work was done to exact the so-called aging trend on the public 
available FG-NET database [1]. A possible reason is that, FG-NET database may not 
supply enough samples to recover the intrinsic structure of data. The lack of suffi-
cient data is a prominent barrier in age estimation. 

Therefore, how to dig out the underlying variation trend of data within a limited 
amount of samples is well worth investigation. From a generalized standpoint, mani-
fold learning algorithm is unsupervised distance metric learning, which attempt to 
preserve the geometric relationships between most of the observed data. The starting 
point is the input data, while labels are always not taken into consideration. But labels 
indeed provide important cues about similarities among samples, which is crucial to 
construct the structure of data, especially under a small given dataset. To take full 
advantage of labels, a family of supervised metric learning algorithms [3,14,25,26] 
are developed, which adds label information as a weight to entice samples pertaining 
to the same class to go nearer by learning a special metric. Yet, almost all of these 
methods are specially designed for classification problem. For regression problems 
such as age estimation, there are naturally infinite classes, where the constraints in 
previous literatures are not practical. 

We propose a new framework aiming to learn a special metric for regression prob-
lems. Age is predicted based on the learned metric rather than the traditional Euclid-
ean distance. We accomplish this idea by formulating an optimization problem, which 
approximates a special designed distance that scaled by a factor determined according 
to the labels of data. In this way, the metric measuring the similarity of samples is 
strengthened. More importantly, since labels are incorporated to depict the underlying 
sample distribution tendency, which signifies the inclusion of more information, a 
smaller amount of training data is required. Unlike the nonlinear manifold learning 
where it is repeated to find its low dimensional embedding, a merit of our framework 
is that, a full metric over the input space is learned and expressed as a linear transfor-
mation, and it is easy to project a novel data into this metric. Moreover, the proposed 
framework may also be used as a pre-processing step to assist those unsupervised 
manifold learning algorithms to find a better solution. 

The rest of the manuscript is arranged as follows: Section 2 gives the details of the 
metric learning formulation for regression problems based on labels of training data. 
Section 3 takes Gaussian Process Regression (GPR) as an example to explain how to 
make use of the learned metric. Section 4 demonstrates the experimental results of the 
performance of the proposed framework on FG-NET Aging Database. Section 5 com-
ments on conclusions. 
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2   Metric Learning for Regression 

Let S = (Xi, yi) (1≤i≤N) denotes a training set of N observations with inputs Xi∈Rd 
and their corresponding non negative labels yi. Our goal is to rearrange these data in 
high-dimensional space with a distinct trend as what their labels characterize. In other 
words, we hope to find a linear transformation T: Rd→Rd, after applying which, the 
distances between each pair-wise observation may be measured as: 

2ˆ( , ) || ( ) ||i j i jd X X T X X= −  (1) 

The distance ˆ( , )i jd X X  should be reliable to measure the difference as what their 

labels indicate. 

2.1   Problem Formulation 

Metrics is a general concept, as a function giving a generalized scalar distance be-
tween two argument patterns [11]. Straightforwardly, different distances are also 
possible to depict the tendency of a data set. Similar to Weinberger et al. [25] and 
Xing et al. [26], we consider learning a distance metric of the form 

( , ) ( ) ( )T
A i j i j i jd X X X X A X X= − −  (2) 

But unlike their works for classification problems, in regression problems, every two 
observations are of different classes. Better metrics over their inputs are expected and 
a new metric learning strategy ought to be established. 

Suppose given certain well-defined distance ˆ ˆ( , )ij i jd d X X=  ideally delineating the 

data trend, our target is to approximate ˆ
ijd  by ( , )A i jd X X  minimizing the energy 

function 

( )2

,

ˆ( ) ( , ) ( )p p
A i j ij

i j

A d X X dε = −∑  
(3) 

To promise that A is a metric, A is restricted to be symmetric and positive semi-
definite. For simplicity, p is assigned to be 2. This metric learning task is formulated 
as an optimization problem with the form below 

( )2
2

,

ˆmin ( ) ( ) ( )T
i j i j ij

i j

X X A X X d− − −∑  (4) 

satisfying the matrix A is symmetric and positive semi- definite. And there exists a 
unique lower triangular L with positive diagonal entries such that A=LLT [15]. Hence 
learning the distance metric A is equivalent to finding a linear transform LT projecting 
observation data from the original Euclidean metric to a new one by 

TX L X=%  (5) 
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2.2   Distance with Label Information 

In practical application, Euclidean distance is not always capable to guarantee the 
rational relationship among input data. Although manifold learning algorithms may 
discover the intrinsic low-dimensional parameterizations of the high dimensional data 
space, at the outset, it also requires Euclidean distance to apply kNN (k-Nearest 
Neighbors) to know the local structure of the original space. On the other hand, mani-
fold learning demands a large amount of samples, which is not available in some 
circumstances. Figure 1 visualizes the age manifolds of the FG-NET Aging Database 
learned by Isomap [24], Locally Linear Embedding (LLE) [21] and OLPP [5] respec-
tively. Data points of age from 0 to 69 are colored from blue to red. From the 2-D 
view, none of them can detect a distinctive aging trend. A possible reason is that, FG-
NET database only have 1002 images, and each person only have a few images that 
span from 0 to 69, inadequate to approximate its underlying manifold correctly. 

For many regression and classification problems, it is in fact a waste of informa-
tion if only data Xi is utilized but with their associated labels yi ignored in the  
training stage. Balasubramanian et al. [2] proposed a biased manifold embedding 
framework to estimate head poses. In their work, the distance between data is modi-
fied by a factor of the dissimilarities fetched from labels. The basic form of this 
modified distance is 

,

( , )
'( , ) ( , )

max ( , ) ( , )m n

P i j
d i j d i j

P m n P i j

β ×= ×
−

  (6) 

where d(i, j) is the Euclidean distance between two samples Xi and Xj . P(i, j) is the 
difference of poses between Xi and Xj. 

Through incorporating the label information to adjust Euclidean distance, the 
modified distances are prone to give rise to the true tendency of data variation i.e. if 
the distance of two observations is large, then the distance of their labels is also large, 

vice versa. Hence it is intuitively that the biased distance is a good choice for ˆ
ijd  in 

Eq.(3): 

| ( , ) |ˆ( , ) ( , )
( , )

p
L i j

d i j d i j
C L i j

β⎛ ⎞×= ×⎜ ⎟−⎝ ⎠
            (7) 

Analogously, L(i, j) is the label difference between two data. C is a constant greater 
than any label value in a train set and p is selected to make data easier to discriminate. 
d(i, j) is the Euclidean distance between two samples Xiψand Xj. 

2.3   Optimization Strategy 

Since the energy function is not convex, it is a non-convex optimization and conse-
quently it is impossible to find a closed form solution. The metric A is with the 
property to be symmetric and positive semi-definite, so it is natural to compute a 
numerical solution to Eq.(4) using the Newton’s method. Similar to [26], in each 
iteration, a gradient descent step is employed to update A. The iteration algorithm is 
summarized as follows: 
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1. Initialize A and step length α; 
2. Enforce A to be symmetric by A←(A+AT)/2; 
3. The Singular Value Decomposition of A=LT∆L, where the diagonal matrix ∆ con-

sists of the eigenvalues λ1,…,λn of A and columns of L contains the corresponding 
eigenvectors; 

4. Ensure A to be positive semi-definite by A←LT∆'L, where ∆'=diag(max(λ1,0),…, 
max(λn, 0)); 

5. Update A'←A − ( )A Aα ε∇ , where ( )A Aε∇  is the gradient of the energy func-

tion in Eq.(3) w.r.t. A; 
6. Compare the energy function ε(A) with ε(A') in Eq.(3), if ε(A)<ε(A'), then aug-

ment the step length α with a momentum to accelerate the optimization process; 
otherwise, shrink α to assure a local minimum is not overpassed. 

7. If A has converged or the maximum iteration times are reached, terminate; other-
wise go back to Step 2. 

3   Gaussian Process Regression 

GPR from the traditional Minkowski metric is extended to the learned metric. It 
should be clarified that, the learned metric is designed for regression problems, espe-
cially kernel based method such as GPR [20] and SVR (Support Vector Regression) 
[22]. GPR is preferred here because it can determine the hyper-parameters of the 
kernel automatically based on Bayesian model selection criterion such as Maximum 
A Posteriori, Markov Chain Monte Carlo method [18] etc. rather than SVR where 
parameters is often chosen by cross-validation. Hereby it is not necessary to partition 
the training set into two parts to get an extra validation set. 

For target prediction such as human ages and head poses, designing an appropriate 
regressor is a key point to model the problem. SVR is one of the most popular and 
powerful tools, which adopts a Radial Basis Function (RBF) kernel computed in 
Euclidean space. In recent years, predictor variables in extended versions of SVR are 
assumed to be in the proximity of a low dimensional manifold embedded in a high 
dimensional input space. 

Sugiyama et al. [23] modified the RBF kernels by substituting the Euclidean dis-
tance with the geodesic distance. But it has been proven that for many practical prob-
lems, geodesic distance fails to discover the intrinsic structure of data [9]. Figure 1 is 
just such an example. More importantly, geodesic distance is also not reliable to con-
struct kernels even if in a proper case. Since such distance is approximated by search-
ing the shortest path on a k nearest neighbor graph [24], and there is no guarantee that 
the kernel matrix is positive semi-definite. Hence it is possible that a local optimum 
can not be arrived and the inverse matrix could not be computed. 

Many existing methods of regression on manifolds measure distance in Minkowski 
metric [4,19]. The evaluation of similarity by this metric is based on the assumption 
that, the similar point should be close to the query point in all dimensions. If the at-
tributes of data are many enough, Euclidean distance is not credible. In [2], a biased 
Euclidean distance scaled by label difference is used to find the k nearest neighbors of 
each data and then applied to manifold learning algorithms. To construct the nonlinear 
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relationship between the high and low dimensional space, [2] takes a Generalized 
Regression Neural Network to learn this nonlinear mapping. Yet, the training of a 
Neural Network is time consuming, and the curse of dimensionality is inevitable since 
the input dimension (typically raw images) is high. 

Given a training set S = (Xi, yi) (1≤i≤N) as described in Section II and a sample X* 
for query, GPR predicts its output y* by putting a Gaussian process prior on this func-
tion f(·), assuming that all sample points evaluated from the function have a multivari-
ate Gaussian density [20]. 

Let X=[X1,…,XN] and Y=[y1,…,yN]T, the Gaussian predictive distribution of y* is 
derived of the form 

p(y*|X*,X,Y,Θ)~N(μ(X*),V(X*))          (8) 

The mean prediction and covariance matrix in Eq.(8) are 

μ(X*)=k(X*,X)[K+σ2I]-1Y            (9) 

V(X*)=k(X*,X*)-k(X*,X)T[K+σ2I]-1k(X*,X)        (10) 

where k(·,·) is the covariance function, K is the covariance matrix of X and σ2 is the 
variance of noise. 

Another way to perceive and thus rewrite Eq.(9) is to treat the mean prediction as a 
linear combination of N kernel functions: 

* *

1

( ) k( , )
N

C c
c

X X xμ α
=

=∑             (11) 

where α=(K+σ2I)-1Y 
Gaussian kernel is a good choice for the covariance function 

k(Xi,Xj)=v2exp(-||Xi-Xj||
2/2l2+σ2σXiXj)            (12) 

In respect that the proposed learned metric encodes label information implicitly, it 
is bestowed as the similarity measure and Eq.(12) becomes 

k(Xi,Xj)=v2exp(-(Xi-Xj)
TA(Xi-Xj)/2l2+σ2σXiXj)            (13) 

 

 

Fig. 1. The 2 dimensional embedding of FG-NET Aging Database by Isomap, LLE and OLPP 
methods, based on the Euclidean distance. Points of age from 0 to 69 are marked from blue to 
red as prescribed in the gradient ruler rightward. 
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4   Experimental Results 

Age estimation is carried on the public FGNET Aging Database [1] by the regression 
strategy on the basis of the proposed metric. The database contains totally 1002 color 
or gray images from 82 people. Each person has around 10 face images with the 
ranges from 0 to 69 with labeled ground truth. These images are taken under varying 
lighting condition, poses and expressions. Each image is labeled by 68 points charac-
terizing its shape features. Similar to [13,16,27,28], input features are selected to be 
the parameters of AAMs [6]. Figure 2 presents some typical face images and their 
reconstructed faces by AAM. 

 

Fig. 2. Typical sample images of FG-NET Aging Database and their AAM synthetic faces 

MDS based on the Euclidean distance   MDS based on the learned metric 

 
(a)    (b) 

Fig. 3. 2-D view of the clustering effects of the 300 training samples by metric learning. It 
illustrates the 2 dimensional embedding of the training data sampled from FG-NET Aging 
Database by MDS. Points of age from 0 to 69 are marked from blue to red. It is seen that, the 
distance calculated based on our learned metric in Figure (b) preserves local proximity of sam-
ples with close labels better than that based on the traditional Euclidean distance in Figure (a). 

Firstly we hope to testify that the proposed metric is able to disinter some internal 
patterns of human’s aging progression. We randomly choose 300 images out of all the 
1002 images in FG-NET Database as training samples, and the rest as test samples. 
The parameters in Eq.(7) are chosen as C=100, β=1 and p=1. The energy function is 
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MDS based on the Euclidean distance   MDS based on the learned metric 

 
(a)    (b) 

Fig. 4. 2-D view of the clustering effects of the 702 testing samples by metric learning, corre-
sponding to Figure 3. It is obvious that, the actual aging trend is, to some extended, manifested 
in the hyper-space based on our learned metric. 

Isomap age manifold on learned metric   LLE age manifold on learned metric   OLPP age manifold on learned metric 

 

Fig. 5. 2D age manifolds. This figure illustrates the 2 dimensional embedding of FG-NET 
Aging Database by Isomap, LLE and OLPP algorithms based on our learned metric. 

converged after 50 iterations or so. Figure 3(a) and 3(b) portrays the positional rela-
tionship among training samples in the hyper-space measured by Euclidean distance 
and the learned metric A. The 2D view is acquired by Multi-Dimensional Scaling 
(MDS) [7]. Figure 4 plots the relative position of the remaining 702 image samples 
for test. Contrast to Figure 1, manifold learning algorithms like Isomap, LLE and 
OLPP fails to predicate the aging trend sometimes. Furthermore, though only 30% of 
the entire data set is directed for learning the aging trend is effectually set up. 

As in Eq.(5), the original parameters from AAMs can be linearly transformed into 
a hyper-space based on our learned metric, by multiplying LT satisfying A=LLT. Fig-
ure 5 draws the 2D aging manifold inputted with the transformed data. Compared to 
Figure 1, the linear transform LT is salutary for other manifold algorithms to find an 
improved aging trend. 

Then, age estimation of our methodology is compared with the performance of 
some state-of-art approaches. The Leave- One-Person-Out mode [13,16,27,28] is the 
mechanism for experimentation, i.e. each time we choose one person for testing and 
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all others for training. The same as in [13,16,27, 28], two criteria are adopted for 
performance evaluation. One is the Mean Absolute Value (MAE), which is defined as 

1
| | /

N

ii
i

MAE age age N            (14) 

where for each Xi, iage is its labeled ground truth and iage  is the estimated age. N is 

the number of testing images. 
Another widely acknowledged criterion is the cumulative score at error level l [13] 

CumScore(l)=Nerror ≤ l /N×100%             (15) 

In respect that, when a face image is labeled as O years old, the person is customarily 
thought to be [O,O+1) years old [27], thus the error less than a specified number of 
years is by and large neglectable in practical application. Eq.(15) is an indicator of the 
algorithmic correct rate. 

The parameters in Eq.(7) are rectified to be C=80, β=1 and p=0.6. Table 1 lists the 
MAE of different approaches. The MAE of the proposed method is almost the same 
as the best one [16]. However, unlike their LARR, we simply predict ages in a new 
metric by regression without any local refinement. LARR slides the estimated age up 
and down by checking different age values to see if it can come up with a better 
 

Table 1. MAE comparison of different methods 

Reference Method MAE 
[13] AGES 6.77 
[12] KAGES 6.18 
[27] RUN1 5.78 
[28] RUN2 5.33 
[16] LARR 5.07 

Proposed Metric learning+GPR 5.08 

Table 2. MAEs over various age ranges on FG-NET Database for the proposed method, GPR 
and RUN. In the first column, the value in the parenthesis stands for the proportion 
(percentage) for each age group out of the whole database. 

Age Range Proposed GPR RUN[27] 
0-9(37.0%) 2.99 3.55 2.51 

10-19(33.8%) 4.19 4.34 3.76 
20-29(14.4%) 5.34 5.09 6.38 
30-39(7.9%) 9.28 9.04 12.51 
40-49(4.6%) 13.52 14.65 20.09 
50-59(1.5%) 17.79 19.77 28.07 
60-69(0.8%) 22.68 31.76 42.50 

Average 5.08 5.45 5.78 
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Fig. 6. Cumulative scores of our method and GPR at error levels [0,10] 

prediction [16]. The parameters defining the search range is determined manually, 
which is at least not convenient and automatic enough, and may be laborious and not 
feasible in some real-world applications. Table 2 details Table 1 with separate MAEs 
over different age range. The MAE of our method in younger people is slightly higher 
than other recent methods. As compensation, an outstanding improvement is achieved 
in the larger age range. This trait is fairly attractive considering the fact that, people 
over 30 years old account for less than 15% of the whole FG-NET database. Even if 
there are only a few samples (for example, there are only 8 images out of 1002 over 
60 years old), a relatively acceptable age prediction can be obtained. 

Figure 6 displays the cumulative scores of our method and GPR. It can be found 
that at each level, our method is better than GP regression to some degree. 

5   Conclusions 

In this paper, a new metric learning framework is proposed to resolve regression 
problems. It is feasible to be applied to many other problems in machine learning or 
computer vision. No assumptions about the structure or distribution of the samples are 
made, and a relatively small quantity of training samples is required to learn their 
underlying variation trend. Experiments shows the effectiveness of the learned metric 
to restore the intrinsic infrastructure of input sample data and encouraging perform-
ance is acquired on a widely used public face aging database. 

References 

1. FG-NET Aging Database, http://www.fgnet.rsunit.com 
2. Balasubramanian, V.N., Ye, J., Panchanathan, S.: Biased manifold embedding: A frame-

work for person-independent head pose estimation. In: IEEE Conf. CVPR, pp. 1–7 (2007) 
3. Bar-Hillel, A., Weinshall, D.: Learning distance function by coding similarity. In: Proc. 

ICML, pp. 65–72 (2007) 
4. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: a geometric framework for 

learing from labeled and unlabeled examples. Journal of Machine Learning Research 7, 
2399–2434 (2006) 



 Human Age Estimation by Metric Learning for Regression Problems 465 

5. Cai, D., He, X., Han, J., Zhang, H.J.: Orthogonal laplacianfaces for face recognition. IEEE 
Trans. Image Processing 15, 3608–3614 (2006) 

6. Cootes, T., Edwards, G., Taylar, C.: Active appearance models. IEEE Trans. Pattern 
Analysis & Machine Intelligence 23(6), 681–685 (2001) 

7. Cox, T., Cox, M.: Multidimensional Scaling. Chapman & Hall, London (1994) 
8. Deffenbacher, K.A., Vetter, T., Johanson, J., O’Toole, A.J.: Facial aging, attractiveness, 

and aistinctiveness. Perception 27 (1998) 
9. Donoho, D.L., Grimes, C.E.: When does geodesic distance recover the true hidden pa-

rametrization of families of articulated images? In: Proc. European Symposium on Artifi-
cial Neural Networks (2002) 

10. Draganova, A.L.C., Christodoulou, C.: Comparing different classifiers for automatic age 
estimation. IEEE Trans. Systems, Man, and Cybernetics 34(1), 621–628 (2004) 

11. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. John Wiley & Sons, 
Inc., New York (2001) 

12. Geng, X., Smith-Miles, K., Zhou, Z.-Z.: Facial age estimation by nonlinear aging pattern 
subspace. In: Proc. ACM Conf. Multimedia (2008) 

13. Geng, X., Zhou, Z.H., Zhang, Y., Li, G., Dai, H.: Learning from facial aging patterns for 
automatic age estimation. In: Proc. ACM Conf. Multimedia, pp. 307–316 (2006) 

14. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components 
analysis. In: NIPS (2005) 

15. Golub, G.H., Loan, C.F.V.: Matrix Computations. Johns Hopkins Univ. Press (1996) 
16. Guo, G., Fu, Y., Dyer, C., Huang, T.S.: Image-based human age estimation by manifold 

learning and locally adjusted robust regression. IEEE Trans. on Image Processing 17, 
1178–1188 (2008) 

17. Lanitis, A., Taylor, C.J., Cootes, T.: Toward automatic simulation of aging effects on face 
images. IEEE Trans. Pattern Analysis and Machine Intelligence 24(4), 442–455 (2002) 

18. Neal, R.M.: Monte carlo implementation of gaussian process models for bayesian regres-
sion and classification. Technical Report CRG-TR-97-2 

19. Nilsson, J., Sha, F., Jordan, M.I.: Regression on manifolds using kernel dimension reduc-
tion. In: IEEE Conf. ICML, pp. 265–272 (2007) 

20. Raumussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT Press, 
Cambridge (2006) 

21. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. 
Science 290(5500), 2323–2326 (2000) 

22. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regulariza-
tion, Optimization, and Beyond. MIT Press, Cambridge (2002) 

23. Sugiyama, M., Hachiya, H., Towell, C., Vijayakumar, S.: Geodesic gaussian kernels for 
value function approximation. Autonomous Robots 25, 287–304 (2008) 

24. Tenebaum, J.B., de. Silva, V., Langford, J.C.: A global geometric framework for nonlinear 
dimensionally reduction. Science 290(5500), 2319–2323 (2000) 

25. Weinberger, K., Blitzer, J., Saul, L.: Distance metric learning for large margin nearest 
neighbor classification. In: Proc. NIPS, pp. 1475–1482 (2006) 

26. Xing, E., Ng, A., Jordan, M.I., Russell, S.: Distance metric learning with application to 
clustering with side-information. In: Proc. NIPS (2002) 

27. Yan, S., ang, H.W., Huang, T.S., Tang, X.: Ranking with uncertain labels. In: IEEE Conf. 
Mulitimedia and Expo, pp. 96–99 (2007) 

28. Yan, S., Wang, H., Tang, X., Huang, T.S.: Learning autostructured regressor from uncer-
tain nonnegative labels. In: IEEE Conf. ICCV, pp. 1–8 (2007) 

 



Clustering-Based Construction of Hidden
Markov Models for Generative Kernels

Manuele Bicego1,2,	, Marco Cristani1,2, Vittorio Murino1,2, Elżbieta P ↪ekalska3,
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Abstract. Generative kernels represent theoretically grounded tools
able to increase the capabilities of generative classification through a
discriminative setting. Fisher Kernel is the first and mostly-used repre-
sentative, which lies on a widely investigated mathematical background.
The manufacture of a generative kernel flows down through a two-step se-
rial pipeline. In the first, “generative” step, a generative model is trained,
considering one model for class or a whole model for all the data; then,
features or scores are extracted, which encode the contribution of each
data point in the generative process. In the second, “discriminative” part,
the scores are evaluated by a discriminative machine via a kernel, exploit-
ing the data separability. In this paper we contribute to the first aspect,
proposing a novel way to fit the class-data with the generative models, in
specific, focusing on Hidden Markov Models (HMM). The idea is to per-
form model clustering on the unlabeled data in order to discover at best
the structure of the entire sample set. Then, the label information is re-
trieved and generative scores are computed. Experimental, comparative
test provides a preliminary idea on the goodness of the novel approach,
pushing forward for further developments.

1 Introduction

Hidden Markov Models (HMMs) represent a powerful and ductile statistical learn-
ing framework. In the classical HMM-based classification a single HMM is built
for each class and the Maximum A Posteriori (MAP) approach is used to classify
an unlabeled sequence O, thus following a pure generative classification scheme.

Even though the MAP rule represents the theoretically optimal decision rule
(i.e. leading to the minimum probability of error [1]), in practice, generative
classification may suffer from poor discriminative abilities. This is likely to oc-
cur in case of poorly estimated class models (e.g. due to insufficient learning
examples), improper model topologies, (e.g.due to a bad model definition or
conditional dependence of the states), or possible class overlap (as may occur
� Corresponding author. Strada Le Grazie, 15 - 37134 Verona, Italy, Tel.: +39 045
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e.g. in medical problems where patient diagnoses vary between medical doctors).
Some of these issues can be addressed by improving or/and extending classical
HMMs (e.g. Hierarchical HMM [2], Factorial Hidden Markov Models [3], Coupled
HMM [4] and others). Alternatively, the discriminative skills can be enhanced by
training HMMs with discriminative criteria. Two popular examples are based on
Maximum Mutual Information (MMI) [5] and Minimum Bayes Risk (MBR) [6],
but other extensions are available. One must however remember that although
discriminative criteria try to reduce the recognition error directly, they require
a rather large amount of training data. Furthermore, there exist generalizations
of HMMs towards probabilistic discriminative models. These are Conditional
Random Fields (CRFs) [7] and Hidden CRFs (HCRFs) [8], in which condi-
tional maximum likelihood is often used to estimate the parameters. All these
discriminative techniques need complex training procedures, whereas the final
classification still relies on the MAP approach.

In recent years, a new direction has aroused great interest in the Pattern
Recognition community: the hybrid generative-discriminative approach. The idea
is to merge the description abilities of the Hidden Markov Models (and more in
general of generative models) with the discriminative skills of discriminative
methods, i.e. methods that directly model the posterior probability and, by this,
focus on the class separability. Generally speaking, there is a proven comple-
mentarity of discriminative and generative estimations: asymptotically (in the
number of labeled training examples), discriminative methods lead to lower clas-
sification error than the generative ones [9], when comparing logistic regression to
naive Bayes classifiers. On the other hand, generative counterparts are effective
with less (and possibly unlabeled) data.

Different approaches have been proposed in this context. They may roughly
be divided into two classes: generative embeddings and generative kernels. In
the first case, the basic idea is to employ generative models in order to embed
objects to a vectorial feature space (where any discriminative classifier can be
trained – [10,11,12,13,14]). In the latter case a specific kernel is designed (which
may rely either on an explicit or implicit space), further used in the Support
Vector Machine scenario. Such examples can be found in [15,16,17,18]. In this
paper, we will focus on the second class of approaches.

The most famous and widely investigated generative kernel, defined not only
for HMM but for any generative model, is the Fisher Kernel [15], first advocated
in the context of protein sequence analysis. A generative model is used to build
a feature space in which a kernel is defined by suitable object comparisons. In
particular, the Fisher Kernel approach measures the relation between objects by
comparing them in the tangent space induced by the trained generative model.
In practice, each object is represented by a feature vector, whose components are
called Fisher scores. These scores are defined by derivatives of the log-likelihood
of the generative model with respect to all individual parameters. The resulting
kernel is then defined in such a feature space; the inner product was used in [15].

In order to define a generative kernel, the first step is to employ data to build
the generative model. Let us consider this problem in the Fisher Kernel case [15].
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In the original scenario defined by Jaakkola and Haussler in [15], the Fisher Ker-
nel was computed on the basis of the log-likelihood of a single generative model,
representing both competing classes. Another early version, by Fine et al. [19],
defined the kernel on the basis of a generative model trained on a single class (the
positive class). However, if more than one generative model is established, each
representing a single class, more discriminative information may be extracted.
Smith and Gales [20] exploited such an idea in the binary classification case by
proposing to employ in Fisher Kernel the derivatives of the log-ratio of the two
likelihoods calculated from the two competing models. It has been shown in the
paper that this scheme may enhance the discriminative power of Fisher Kernel.
Other generalizations to multi-class models have been proposed, for example in
[21], where multiple per class generative models were trained and used to derive
Fisher kernel. In the paper, the authors also proposed a method to reduce the
number of needed models (by randomly selecting a subset of per class models),
in order to deal with the increased computational burden.

In this work a further contribution to the aforementioned scenario is made.
The idea is to allow a generative framework a free discovery of natural struc-
tures or groups in the training set. This is achieved with a preliminary step
of clustering, during which a large number of small hidden natural groups is
extracted from the data, disregarding class label information. Subsequently, a
single and simple generative model is trained for each group (as the groups tend
to be small). The underlying intuition is simple: generative models are not used
to discriminate between classes (this is left to the discriminative methods), but
are used to finely describe the local structure of the data as an ensemble of clus-
ters. In this way, the problem space is partitioned into small regions, each one
characterized by a simple but well trained generative model.

Even if the proposed methodology may be general (and applicable to any
generative kernel), here we will explore this direction focusing on the HMM-
based Fisher Kernel case, showing promising and comparative results obtained
from some preliminary experiments.

The remainder of the paper is organized as follows: in Sec. 2 basic theoretical
notions are provided and the notation is fixed. Sec. 3 proposes our generative
kernel, whose classification comparative performances are presented in Sec. 4.
Some considerations about the results are discussed in Sec.5. Finally, Sec. 6
closes the paper and opens for novel research perspectives.

2 Foundations

This section describes the basics of HMM and Fisher Kernel, mainly to fix the
notation.

2.1 Hidden Markov Models

A discrete-time hidden Markov model λ can be viewed as a Markov model
whose states are not directly observed: instead, each state is characterized by
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a probability distribution function, modeling the observations corresponding to
that state. More formally, an HMM is defined by the following entities [22]:

– S = {S1, S2, · · · , SN} the finite set of possible (hidden) states;
– the transition matrix A = {aij , 1 ≤ j ≤ N} representing the probability of

moving from state Si to state Sj ,

aij = P [qt+1 = Sj |qt = Si], 1 ≤ i, j ≤ N,

with aij ≥ 0,
∑N

j=1 aij = 1, and where qt denotes the state occupied by the
model at time t.

– the emission matrix B = {b(o|Sj)}, indicating the probability of emission of
symbol o ∈ V when the system state is Sj ; V can be a discrete alphabet or
a continuous set (e.g.V = IR), in which case b(o|Sj) is a probability density
function.

– π = {πi}, the initial state probability distribution,

πi = P [q1 = Si], 1 ≤ i ≤ N

with πi ≥ 0 and
∑N

i=1 πi = 1.

For convenience, we represent an HMM by a triplet λ = (A,B,π).
Learning the HMM parameters, given a set of observed sequences {Oi}, is

usually performed using the well-known Baum-Welch algorithm [22], which is
able to determine the parameters by maximizing the likelihood P ({Oi}|λ). One
of the steps of the Baum-Welch algorithm is an evaluation step, where it is
required to compute P (O|λ), given a model λ and a sequence O; this can be
computed using the forward-backward procedure [22].

2.2 Fisher Kernel

Fisher Kernel [15] was first advocated in the context of protein sequence analysis
and proposed as a general way of mixing generative and discriminative models
for classification. The basic idea is to employ a generative model to define feature
vectors and project objects to the resulting feature space. There a meaningful
similarity/distance measure is defined, leading to a kernel. In particular, the
Fisher kernel approach measures the relation between the objects by comparing
them in the tangent space induced by the trained generative model, which is
considered as a point in the Riemannian manifold defined by a family of gener-
ative models. This space has a number of desirable characteristics, such as the
possibility of measuring geodesic distances between points along the manifold
(leading to the concept of natural gradients [23]). In practice, each object is rep-
resented by a feature vector, whose components are called Fisher Scores, defined
by derivatives of the log-likelihood of the generative model with respect to all
parameters. The dimensionality of this space equals the number of parameters.
A kernel can be defined in various ways in the resulting space; the inner product
was used in [15].
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The general formulation is as follows: given two observations Oi and Oj , and
a generative model P(O|θ) — with θ being the vector of parameters of the
generative model — Fisher Kernel is defined as:

FK(Oi,Oj) =< FS(Oi, θ), FS(Oj , θ) >

where < ·, · > is the inner product, and FS(O, θ) is called Fisher Score and is
defined as

FS(O, θ) = ∇θ logP(O|θ)

In the HMM case, θ is replaced with λ, representing the trained HMM. The
vector parameter is composed by the transition probabilities, the emission prob-
abilities (the mean and the covariance in case of Gaussian models) and the
initial state probabilities. The derivation of such derivatives is not complex, and
is omitted here. Interested readers are referred to [21].

3 Methodology

The construction of our HMM-based generative kernel is realized in three steps:
(1) discovering the data groups, (2) building single HMM for each group, and (3)
calculating and exploiting the related generative scores in the kernel definition.
The three phases are reviewed in detail in the following.

3.1 HMM-Based Clustering of Sequences

The first step is to discover natural groups in the data by performing sequence
clustering. It is well known that data clustering is inherently a more difficult
task than supervised classification, and this difficulty worsens if sequential data
are considered: the structure of the underlying process is often difficult to infer,
and typically different length sequences have to be dealt with.

The sequence clustering step represents the most crucial part of the proposed
methodology: it seems very reasonable to employ a process able to explicitly
consider the generative model employed in the Fisher Kernel. In such sense, the
clustering methodology employed here is based on HMM. HMMs have not been
extensively employed for clustering sequences, with only a few papers exploring
this direction. More specifically, early approaches related to speech recognition
were presented in [24,25,26]. A relevant contribution was made by Li and Biswas
[27,28,29,30,31]). Basically, in their approach [27], the clustering problem is ad-
dressed by focusing on the model selection issue, i.e. the search for the HMM
topology best representing data, and the clustering structure issue, i.e. finding
the most likely number of clusters.

More advanced techniques have been proposed by Smyth [32] (see also the
more general and more recent [33]), where a series of sequential steps permits
to realize a block-wise HMM, modeling the whole data set. Other interesting
examples can be found in [34], where HMMs are used as cluster prototypes, with
the clustering obtained with the rival penalized competitive learning (RPCL)



Clustering-Based Construction of HMM for Generative Kernels 471

algorithm, and in [35], where HMMs were employed to derive a feature space
where standard vector-based clustering algorithms have been applied.

In any case, the simplest and most widely used class of approaches for HMM-
based clustering is the proximity-based clustering, where the main effort of the
clustering process lies in devising good similarity or distance measures between
sequences. With such measures, any standard distance-based method (as agglom-
erative clustering) can be applied. Within this context, HMMs are employed to
compute similarities between sequences, using different approaches (see for exam-
ple [36,37]), and standard pairwise distance-based approaches (as agglomerative
hierarchical) are then used for the final data clusters.

In our study, we chose a simple yet effective clustering method, belonging to
the class of proximity-based clustering approaches. Considering a given set of
N sequences {O1...ON} to be clustered, the algorithm performs the following
steps:

1. Train a single HMM λi for each sequence Oi (the details of the training are
in the next section).

2. Compute the distance matrix D = {D(Oi,Oj)}, representing a matrix of
similarities between sequences or between models. This is typically obtained
either by calculating the model-likelihood probabilities, or by devising a mea-
sure of distances between models. In the past, few authors have proposed
approaches to compute these distances: early approaches were based on the
Euclidean distance of the discrete observation probability, while other ap-
proaches were based on entropy, or on co-emission probability of two models,
or, very recently, on the Bayes probability of error (see [37] and the refer-
ences therein). Here we use the following distance, employed in [32,36]. First,
given the sequences {Oj} and the models {λi}, we compute the following
matrix:

Lij = P (Oj |λi) (1)

The similarity matrix S(Oi,Oj) is then obtained by symmetrizing the matrix
Lij . Thus we define

S(Oi,Oj) =
1
2

[Lij + Lji] . (2)

Clearly the choice of this distance is crucial for the effectiveness of the clus-
tering: readers interested in this aspect may refer to [36], where different
Likelihood-based distances have been considered and tested in an EEG clus-
tering scenario.

3. Use a hierarchical agglomerative clustering method (with the Complete Link
rule [38]) on S(Oi,Oj) to perform the clustering.

Clearly the choice of the best number of clusters represents a problem, even
though different indices/strategies have been proposed (see for example [38]).
In our experimental evaluation we let it vary in a proper range, and report the
different results.
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3.2 HMM Training

Once estimated the natural groups inside the data set, a single HMM is trained
for each group. HMM training is performed by using the Baum-Welch re-
estimation procedure, stopping at the likelihood convergence. We assume that
we deal with fully ergodic HMMs. Initialization is random both for the transi-
tion probabilities and initial state probabilities. In case of continuous signals, the
emission probability models are initialized by a Gaussian Mixture clustering. In
case of discrete symbol sequences, 20 independent training runs are performed,
starting from a random initialization, picking the best likelihood model as the
representative. In the experimental part, the best number of states has been
determined with a preliminary experimental evaluation.

3.3 Kernel Computation

The goal in this phase is to compute the Fisher Kernel given a set of trained
models. Here we adopt the scheme proposed in [21], and recently adopted also
in [14] – where a set of different HMM-based generative embeddings have been
proposed. The idea is to concatenate the scores obtained from each model. Here
we adopt the same strategy, the difference is that the models are not built on
the classes but on the extracted clusters.

More formally, given two sequences Oi and Oj , and the set of K trained
HMMs {λk} (with K being the number of clusters), the kernel is then deter-
mined as the inner product in the vector space being a Cartesian product of the
Fisher score spaces resulting from all individual models, in the same way the
Fisher Kernel is built. In other words, given a sequence Oi, the Fisher scores
FS(Oi,λk), are computed using each trained model λk, concatenating them in
a single vector:

CFS(Oi, {λk}) = [FS(Oi,λ1), FS(Oi,λ2), · · · , FS(Oi,λK)].

Given two concatenated vectors CFS(Oi, {λk}) and CFS(Oj , {λk}), relative
to two sequences Oi and Oj , the kernel is then computed as:

FK(Oi,Oj) =< CFS(Oi, {λk}), CFS(Oj , {λk}) >

where < ·, · > represents the inner product.
Given the kernel, the classification task may be solved by using standard SVM.

4 Experimental Evaluation

The proposed methodology has been tested using a 2D shape recognition prob-
lem. Recognition of 2D shapes is an unconventional application of HMMs, even
though promising results have been reported [39,40,41]. The idea, in this case, is
to extract the contour of the shape, transforming it to a sequence that is modeled
by an HMM.
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In particular, we studied the Chicken database, a very nasty problem: the
results published in [42] report a baseline leave-one-out accuracy of ≈ 66% by
using the 1-NN on the Levenshtein (non-cyclic) edit distance. In our experiments,
two different sequence representations are used to model contours, chain codes
and curvature angles. In the first case, a standard 8-direction chain encoding
procedure is applied to each image. Discrete HMMs are used to model these
classes of symbol sequences. In the second case, we derive curvature sequences
as in [41,43]. First, contours are extracted by using the Canny edge detector;
the boundary is then approximated by segments of approximately fixed length.
Then, at any given point x the curvature value is derived as an angle between
two consecutive segments intersecting at x. The initial point is the rightmost
point lying on the horizontal line passing through the object centroid, following
the boundary in a counterclockwise manner. Classes of curvature sequences are
finally modeled by continuous Gaussian HMMs.

Four methodologies to build the Fisher Kernel have been tested and compared:

1. One model for the whole data set. This is the standard methodology, pro-
posed by Jaakkola and Haussler in their original paper [15]. One single model
is built using all the data present in the training set. At the end only one
model is trained.

2. One class-model. This is a generalization of the method proposed in [19],
where a single model was trained using the data of the positive class. Since
in that paper only binary problems were addressed, here we extend it to deal
with the multi class case. To do that, we just select one of the classes, build
the model for that class, and use this model to compute the Fisher Kernel.
At the end only one model is trained. Clearly, depending on the chosen class,
results may vary. Here we tried all the possibilities (reported in the tables as
“Method 2 (class k)”, indicating that an HMM has been trained using only
the examples of the class k).

3. C models: one per class (C number of classes). This is the scheme proposed
in [21], where one model per class is built. As explained before, the resulting
Fisher Kernel is then defined as the inner product in the space obtained
as a Cartesian product of the spaces resulting from each model (namely
concatenating all Fisher Scores of all models). At the end, C models are
trained, where C is the number of classes.

4. K models: one per cluster (K number of clusters). This represents the pro-
posed approach.

In all cases the Fisher Score space has been normalized before the training of
the linear SVM: this is required in order to make the Fisher Kernel work (see for
example [20]). Accuracies have been computed by using the Averaged Holdout:
the data set has been split in two random partitions, one used for training and
one for testing. The process is repeated 10 times and the results are averaged.
The results for continuous and discrete HMMs are shown in Tables 1 and 2,
respectively.
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Table 1. Continuous HMMs applied to the Chicken Database with curvature se-
quences: averaged accuracies (and standard errors) for different methods – see above.
In the Clustering-based Fisher Kernel case (method 4), only the best result among the
different clusterings is shown (in the range of 2-25 clusters).

Method # models Accuracy
(Std error of the mean)

1 1 0.759 (0.003)
2 (class 1) 1 0.755 (0.004)
2 (class 2) 1 0.758 (0.002)
2 (class 3) 1 0.755 (0.004)
2 (class 4) 1 0.734 (0.004)
2 (class 5) 1 0.752 (0.002)

3 5 0.775 (0.004)
4 19 0.798 (0.002)

Table 2. Discrete HMMs applied to the Chicken Database with chain code sequences:
averaged accuracies (and standard errors) for different methods – see above. In the
Clustering-based Fisher Kernel case (method 4), only the best result among the differ-
ent clusterings is shown (in the range of 2-25 clusters).

Method # models Accuracy
(Std error of the mean)

1 1 0.706 (0.006)
2 (class 1) 1 0.629 (0.004)
2 (class 2) 1 0.697 (0.009)
2 (class 3) 1 0.725 (0.006)
2 (class 4) 1 0.695 (0.005)
2 (class 5) 1 0.662 (0.004)

3 5 0.815 (0.004)
4 18 0.858 (0.002)

5 Discussion

As a general comment, it is evident from the tables that the clustering-based
building of the HMM pool results in a positive increase in the accuracy of the
SVM based on Fisher Kernel; this is more evident in the discrete case.

Moreover, the obtained results are remarkable, considering the difficulty of the
data set. As a reference, we put in Table 3 some results on the same dataset: it
is evident how the proposed approach performs very competitively with respect
to the state of the art.

We also want to emphasize again that normalization of the Fisher Score spaces
is essential (in whatever version, concatenated or not). Without normalization,
the classification performance deteriorates significantly. This confirms the intu-
ition provided in [20].
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Table 3. Comparative Results on the Chicken dataset

Methodology Protocol Accuracy Reference
1-NN + Levenshtein edit distance Leave One Out ≈ 67% [42]

1-NN + approximated cyclic distance Leave One Out ≈ 78% [42]
KNN + cyclic string edit distance Train/Test/Valid 74.3% [43]
SVM + Edit distance-based kernel Train/Test/Validf 81.1% [43]

1-NN + mBm-based features Leave One Out 76.5% [44]
1-NN + Hmm-based distance Leave One Out 73.77% [44]

SVM + Hmm-based entropic features Leave One Out 81.21% [45]

Concerning the Fisher Kernels defined on a single model (methods 1 and 2),
it is interesting to observe that it does not make a significant difference to train
the HMM either on the whole data set or on a single class. These models have
discriminative powers which are, apparently, different, as combining appears to
be useful. This may rise the following question: is it reasonable to train a single
“general shape HMM”, namely to train an HMM on a different data set of shapes
(or on a large collection of many databases)? In this way, the proposed approach
may be considered as a pure feature extraction process.

The fact that Fisher Kernels built with only one model perform always worse
than when built with more models confirms the intuition of [21], and is even
more evident when using the clustering approach. Clearly, the resulting space
may be very high-dimensional when several models are used, and the question
arises of how to manage such a space. Here we solve this by using an SVM
based on the Fisher Kernel defined for the underlying Fisher Score spaces. As
can seen from the definitions in section 3.3, the Fisher Kernel of the combined
space is just the average of the Fisher Kernels of the individual spaces. The
kernel matrices have, of course, the same size determined by the size of the
training set and are independent of dimensionalities. Reasonably, this aspect
would have become drastically crucial when studying the presented approach
from a “generative embedding” point of view, namely when employing other
classifiers (more sensitive to the curse of dimensionality) in the vector space
derived from the generative model. Another important observation is that in
all the experiments we made, the best number of states in the clustering-based
approach was two, indicating very small models. What we are doing in such a
case is to increase the number of models while reducing the size of each model.
This may alleviate the dimensionality issue.

In Figure 1 we plot the performances of the proposed approach in the chain
code experiment while varying the number of clusters. As the presented approach
can be understood as based on averaging kernels that are different, but that all
make sense in one way or another, the number of kernels (and thereby clusters)
should be sufficiently large to cover all aspects of the class distributions. After
that the performance may stabilize, or may deteriorate somewhat as cluster sizes
will shrink, resulting in models that may be more specific and thereby less useful
for the following discriminative step.
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The interplay between model size and number of clusters needs further study.
In our approach, both are unsupervised procedures and may be based on other
data than those available in a training set. Together they determine the kernel.
The final performance however obtained in the discriminative step by the SVM
depends on the relation between this kernel and the size of the training set. So
all three have to be studied together: model size, number of models (clusters)
and training set size.
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Fig. 1. Performances on chain code experiment with varying number of clusters

Looking at the whole procedure, there is a heavy data re-use: HMM training
per sequence, clustering, HMM-training per group, parameter setting for SVM
and classifier training. Since we over-use the data a lot, we can benefit from weak
and/or simple models, which is in fact confirmed in the experimental evaluation.

In summary, we should observe that the best results for clustering are obtained
with small models (two state models) and a large number of clusters. The effect
of such a result is that the problem space is partitioned into small regions, each
characterized by a simple but well trained generative model. Consequently, we
can obtain an optimal description of the feature space (via a generative model),
which is then discriminated via a discriminative method.
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6 Conclusions and Future Perspectives

In this paper we furnished a novel way to build a generative kernel based on Hid-
den Markov Models and Fisher Kernel. In the typical generative kernel building
process, a generative model is fit on the data, considering class-label informa-
tion: this generates two main fit directions, namely, one model for class or one
model for all the data. Then, scores are extracted from the trained models which
highlight the generative correspondence among points and the single model pa-
rameters. Finally, discriminative reasoning exploits data separability. Our contri-
bution is to suggest an alternative way to build the HMM generative framework
from the data. The idea is to consider all the data together, allowing possible
data structural information to better emerge. This information is captured by
performing model clustering, which provide few HMM models encoding all the
data as surrogates of many initial simple models fit on local data points. Class
label information is then recovered in the score building process, and, subse-
quently, by the discriminative machinery. This paper represents a preliminary
work toward a novel research direction for the manufacture of generative ker-
nels. Our work consists on several comparative tests which show what are the
potentialities to take into account and the possible issues to face. The promising
results allow us to further investigate this research direction.
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Abstract. Bayesian boundary models often assume that the evidence
for each contour is derived from the entire image. Consequently, the nor-
malization term in the Bayes rule is the same for every contour and
becomes irrelevant when seeking the optimal. However, in practice these
models only use the vicinity of a contour, making the normalization term
contour-specific. We propose a formulation that acknowledges the nor-
malization term and includes it in the optimization. We show that it can
be interpreted as a confidence measure promoting contours which are far
better than other nearby candidate contours. We validate our approach in
an interactive boundary delineation setting and demonstrate that com-
plex boundaries can be extracted with significantly smaller amount of
user input than when traditional Bayesian models are employed.

1 Introduction

The Bayesian formulation for finding boundaries in the image seeks the contour
C with the maximal posterior probability P (C|O) given observations O:

P (C|O) =
P (O|C) P (C)

P (O)
(1)

Our work concerns the normalization term P (O) in the formulation (Fig 1).

O

C C

O

a: traditional dependencies b: proposed dependencies

Fig. 1. The observations O for a contour C depend on the entire image in traditional
Bayesian models (a), and only on the vicinity of C in our model (b)
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Previous work has assumed that O always consists of features extracted from
the entire image and it is the same for every C (Fig. 1a). Hence the normalization
term P (O) becomes irrelevant and can be ignored during the optimization of
P (C|O). However, this assumption does not typically hold in implementations:
each contour is often characterized with locally extracted features (Fig. 1b). In
other words, O and thus P (O) are different for different contour C’s, and P (O)
cannot be omitted from the optimization; it affects the maximum of P (C|O) and
the optimal contour C.

Our formulation adopts the same criterion in Eqn. 1, but acknowledges the
normalization term P (O), so that boundaries are optimal contours in terms of
both appearance and area of support. Optimal contours not only best explain
the image evidence P (O|C) (e.g. delineating the intensity discontinuities in the
image), and have the desired properties P (C) (e.g. smooth), but they are also
the best candidates in their vicinity with respect to their local evidence P (O)
(e.g. weak but distinctive boundaries).

The normalization term not only helps promote distinctively better contours,
but also addresses the length bias problem which plagues energy models for
boundaries: short contours automatically have a lower energy than longer ones.

The bias problem has been long recognized and tackled in a number of ways.
One approach is to provide a good initialization of boundaries [1,2], or guide
the user during the delineation process [3,4,5]. A significant amount of human
intervention is often required in these cases. Other approaches have incorporated
heuristics in the optimization method [6,7,8]. These methods essentially extract
the boundary in a piecewise fashion and it is unclear whether the collection
of these boundary segments is optimal. Additional image features [9,10,11] and
stronger contour priors [12,13,14] have also been explored. Such methods im-
pose additional constraints but do not fundamentally tackle the bias problem.
The most direct attempt to solving the bias problem has been to normalize the
contour goodness score by the length of the contour [15,16]. These approaches
however are applicable to closed contours and do not admit user interaction.

Our formulation by design does not favor degenerate solutions such as short
contours. The normalization term serves as a confidence measure and only favors
contours which are significantly better than other candidates.

Including the normalization term results in a more complex criterion. How-
ever, the criterion can be globally optimized using dynamic programming in
polynomial time, with little loss in computational efficiency.

We develop and analyze our Bayesian formulation in Section 2, address com-
putational issues related to the global optimization in Section 3, evaluate our
method in Section 4, and conclude in Section 5.

2 Bayesian Formulation

We first develop our formulation and explain why the contour-specific normaliza-
tion term favors contours distinctive in their vicinity. In this sense, our method
is similar to non-maximum suppression used in edge detection [17]. While both
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methods enhance boundaries, non-maximum suppression does so in a heuristic
and local fashion, whereas our method is principled and operates globally.

We then relate our criterion to entropy and show that the normalization term
can be seen as a confidence measure of the quality of a boundary.

2.1 Criterion: Contour-Dependent Observations

Let OC denote the observations associated with candidate contour C (Fig. 1b).
We assume that contour points Ci are conditionally independent and that the
observations are conditionally independent given the contour points. We have:

logP (C|OC) =
∑

i

{logP (OCi |Ci) + logP (Ci|Ci−1)} − logP (OC) (2)

P (OC) =
∑
C

P (OC |C) P (C) (3)

The difference of Eqn. 2 with all previous Bayesian formulations is the term
P (OC). In traditional formulations, it is the same for all contours and does not
play any role in the optimization. When this term is not present, the proba-
bility of a contour decreases monotonically with its length; short contours are
significantly more likely than long ones.

In contrast, our criterion contains two competing terms: While the term
logP (OC |C) + logP (C) expresses the quality of a boundary in terms of fea-
tures and smoothness and the term P (OC) sums the probabilities of all possible
contours in the vicinity of the contour C. The favored contours are not just the
ones with high logP (OC |C) + logP (C), but also the ones with low P (OC). The
latter occurs when all the contours in the vicinity of C have very low probabili-
ties, or in other words, when C is the best contour in a given image area.

We show how the normalization term promotes certain contours in the simple
case where all the candidate contours except the optimal one have the same cost
(Fig. 2). Assume the desired contour connecting points A and B is the straight

A

B

A

B
a: single best C b: multiple good C’s

Fig. 2. The thickness of the line indicates the quality of the boundary. a) There is a
single best candidate connecting points A and B (straight line). b) There exist several
good candidate contours connecting points A and B.
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line C∗. In Fig. 2a, C∗ is a much better candidate than other possible contours
connecting A and B, unlike Fig. 2b where other good candidates exist as well.
In both cases the quantity P (OC |C∗) P (C∗) is α. The corresponding quantities
P (OC |C)P (C) for all other candidate contours C are β and γ for Fig. 2a and
2b respectively, with γ > β. If there are n+1 possible ways of connecting points
A and B, then:

log(n β + α) < log(n γ + α)
logα− log(n β + α) > logα− log(n γ + α)

Our criterion favors contours for which there are no other competitors in the
same neighborhood. Degenerate solutions of very short contours in image areas
with no characteristic features will receive very low probability.

2.2 Analysis: Entropy Interpretation

We show that our criterion (Eqn. 2) can be understood from an entropy point
of view. Let P (OC |C) P (C) = βj , where each βj corresponds to a different
candidate contour C. βj is the probabilistic cost of a contour according to Eqn. 1
without the normalization term and we will refer to it as “cost”. We also have
P (OC) =

∑
j βj . The log probability of Eqn. 2 is a function of βj :

E(βj) = log βj − log
∑

i

βi (4)

The maximum of E(βj) is obtained at 0, since E(·) is the log of a probability
distribution:

E(βj) = 0 ⇒ βj = βj +
∑
i�=j

βi ⇒
∑
i�=j

βi � 0 (5)

The last condition holds when all the contours, except the j-th one, have costs
close to 0. The minimum of E(βj) is achieved at −∞ and this occurs when∑

i

βi � ∞ (6)

i.e., when there are many strong candidate paths in the given image area.
The behavior E(βj) is reminiscent of the inverse behavior of the entropy of

a distribution. Most informative or high-entropy distributions are the ones who
do not favor any particular data points. For example, the most informative one-
dimensional distribution is the uniform distribution. On the other hand, least
informative distributions are the ones favoring a single value. E(βj) is maximized
when a single candidate contour is assigned high cost and is minimized when all
the candidate contours have very high costs.

In fact, we can find an entropy lower bound for E(βj), which offers an inter-
esting interpretation of the normalization term P (OC). We have:

E(βj) ≥ log βj −
∑

i

log βi ≥ log βj −
∑

i

βi log βi (7)
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where the above holds for βi < 1, for all i. The term −
∑

i βi log βi is a pseudo-
entropy term since the costs βi do not sum up to 1. The entropy of a distribution
can be seen as a measure of the uncertainty of the distribution. Thus, the normal-
ization factor P (OC) can be seen as a confidence measure regarding the image
location a contour belongs to. Contours that belong to low-uncertainty image
regions, that is, they are the sole candidates, are assigned high cost. On the other
hand, contours from high-uncertainty image regions are assigned low costs.

3 Optimization Using Dynamic Programming

Our criterion can be globally optimized with dynamic programming. The al-
gorithm proposed merges the optimization scheme employed by the computer
vision community for P (OC |C) P (C) ([18,2,19,3,4,5]) with the algorithm used to
calculate P (OC) [20]. We first show how to calculate P (OC) using scaling accord-
ing to [20]. We then describe some additional approximations needed. Finally,
we show how to optimize our criterion in a graph-based framework using Dijk-
stra’s algorithm in low-order polynomial time. Dijkstra’s algorithm can globally
optimize our criterion when points on the boundary to be extracted are known
(either automatically or via user input).

3.1 Calculation of P (OC)

We calculate P (OC) using the well-known forward-backward algorithm employed
in HMM inference problems [20]. Let C = (c1, . . . cn) be the hidden random
variables corresponding to a contour of n points. The set of the values each of
these random variables can take is D = {0, . . . , 7} corresponding to the possible
directions employed by the chain code curve representation. Let also OC =
{Oc1 , . . . , Ocn} be the observations associated with the individual contour points.

For the forward-backward algorithm, we define

αi(dk) = P (Oc1 , . . . , Oci , qi = dk)

where qi is the label assigned to the i-th contour point ci and dj takes values
from D = {0, . . . , 7}. Recursively we can compute:

α1(dk) = P (Oc1 |c1 = dk) (8)

αi+1(dk) =

⎛⎝∑
dj

αi(dj)P (ci+1 = dj |ci = dk)

⎞⎠P (Oci+1 |ci+1 = dk) (9)

The probability of the observations is now given as:

P (OC) =
∑

dj∈D

αn(dj) (10)
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3.2 Scaling

The calculation of P (OC) involves multiplications of very small quantities and
very quickly the results are outside the range of machine precision. To this need
we need to apply the scaling procedure in [20], so that each time an αi(dj) value
is computed, it is scaled by si:

si =
1∑

dj
αi(dj)

(11)

α̂i(dj) =
αi(dj)∑
dj

αi(dj)
(12)

With this scaling method, logP (OC) is given by::

logP (OC) =
n∑

i=1

log
1
si

(13)

3.3 Approximations

logP (OC) is usually computed as log
∑n

i=1 e
−xi. The summation of exponentials

often approaches 0 very fast. To calculate it reliably, we have:

n∑
i=1

e−xi = e−xm

⎛⎝1 +
∑

xi �=xm

e−(xi−xm)

⎞⎠ = e−xm (1 + S) (14)

where xm = min
i

xi (15)

Therefore, log
n∑

i=1

e−xi = −xm + log(1 + S) (16)

where S =
∑

xi �=xm

e−(xi−xm) (17)

When |S| < 0.1, we can use the approximation log(1 + S) � S.

3.4 Graph-Based Optimization

We use Dijkstra’s algorithm [21] to simultaneously compute P (OC) and find
the optimal boundary. We assume that points {A1, A2, · · · , Ap} on the desired
boundary are given. The optimal boundary passing from {A1, A2, · · · , Ap} is the
concatenation of the optimal contours connecting A1 to A2, A2 to A3 and so on.

To find the optimal contour connecting two given points, we represent the
image with a graph, where each pixel corresponds to a graph node and each
node is connected with its 8 neighbors. The weight between adjacent nodes u, v
consists of two terms. The first term is a constituent of P (OC |C) P (C) and the
second of P (OC). Assuming u, v are points on the desired boundary, we have:

w(u, v) = logP (Ou, Ov|u, v) + logP (v|u) − log
∑
dj

α̂v(dj) (18)
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where the summation takes place over all possible directions dj . The calculation
of α̂v(dj) depends on values calculated at neighboring nodes. Thus, the com-
plexity of Dijkstra’s algorithm increases by a small multiplicative factor, equal
to the number of different directions dj (in our case 8).

4 Experimental Validation

We first explain our choices regarding the calculations ofP (Oci |ci) andP (ci−1|ci),
and then present boundary delineation results on a variety of images.

4.1 Feature Calculations

For reliable computations, we will assume second-order dependencies among the
contour points and we will compute P (O{ci}|ci+1, ci, ci−1) and P (ci+1|ci, ci−1),
where O{ci} denotes the observations associated with contour points ci+1, ci, ci−1.

II

i+1c

c

c i−1

i

R I

R

Fig. 3. The data term is calculated based on how likely the pixels in the vicinity of the
contour points belong to the two sides of the desired boundary.

The term P (O{ci}|ci+1, ci, ci−1) is computed by estimating how well the pixels
in the vicinity of ci+1, ci, ci−1 belong to the two sides of the boundary. The sta-
tistical model required for this task is computed based on pixel labeling provided
by the user in small image areas. Contour points ci+1, ci, ci−1 divide the pixels
in their vicinity into two regions RI and RII , as shown in Fig. 3. If MI(p) and
MII(p) are two functions estimating how well a pixel p is classified as belonging
to side I or side II of the desired boundary, then

P (O{ci}|ci+1, ci, ci−1) =
∑

p∈RI

MI(p) +
∑

p∈RII

MII(p) (19)

The prior P (ci+1|ci, ci−1) is defined so that it takes higher values for contour
points forming a straight line than for contour points that form an angle.
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4.2 Boundary Delineation Results

We evaluate our formulation in an interactive boundary finding application
where the user places seed points sequentially in a manner similar to [3]. Figures
4, 5, and 6 show in three columns the part of the image used to statistically
characterize the interior of the object and the background, the delineation re-
sults obtained using Eqn. 1 without and with the normalization term. All the
results were obtained using the same parameters λc = 0.2, λs = 0.1, and the
same training data acquired at the beginning of the delineation process.

a: training samples b: old results c: new results

Fig. 4. Segmentation given user clicked boundary points (red dots) on images with
complex boundaries. a) Windows mark training samples for foreground (yellow) and
background (red). b) Results from traditional models. c) Our results.
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a: training samples b: old results c: new results

Fig. 5. Color image segmentation given user clicked boundary points (red dots). a)
Windows mark training samples for foreground (yellow) and background (red). b)
Results from traditional models that ignore the normalization term. c) Our results.
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a: training samples b: old results c: new results

Fig. 6. Texture image segmentation results. Same convention as Fig. 5.

Table 1. Number of mouse clicks required to delineate the various boundaries using
the traditional formulation and our probabilistic criterion

image name # clicks in old method # clicks in our method
cheetah 16 5
zebra 12 7

cowboy 7 5
parrots 10 4

iris 8 2
pink flower 2 2

fuchsia flower 24 2
white flower 3 2

statue 12 9
woman 9 5

peppers1 2 2
peppers2 7 4
cover1 2 2
cover2 7 3
liver1 4 4
liver2 4 5
liver3 6 3

Table 1 summarizes the number of mouse clicks required to delineate the
object boundaries, as a measure of the method effectiveness. Since the user is
always part of the interactive segmetnation system, the correctness of the output
of the segmentation algorithm is not to be contested.
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Fig. 7. Classification results using the classifier built from the training data in Fig. 6

Our criterion significantly outperforms traditional Bayesian formulations. The
most drastic difference between the amount of mouse clicks required to delineate
a boundary is for the image “cheetah”. The reason for this can be seen in Fig. 7,
where the classification of the image pixels is shown. These results were obtained
using the classifier trained on the data shown in Fig. 6. The results are very noisy
and the original criterion has trouble localizing the object boundary. On the
other hand, the observation-dependent criterion is quite effective in eliminating
the noise and tracking the desired discontinuities. In general, the probabilistic
criterion consistently produces contours that adhere to the object boundary more
faithfully, with fewer mouse clicks.

5 Conclusions

Traditional Bayesian criteria for boundaries assume that the evidence for a can-
didate contour is derived from the entire image, and the normalization term can
thus be omitted during optimization. In practice however, evidence in the vicin-
ity of the contour is employed, and the normalization term is contour-specific
and cannot be ignored. Our formulation explicitly acknowledges this term and
extacts boudaries optimal in both appearance and area of support.

The normalization term helps promote contours that are better than alterna-
tives in their vicinity. Consequently, it alleviates the length bias problem present
in traditional Bayesian formulations. Degenerate solutions such as short contours
in featureless image areas are no longer favored by design.

Our formulation has the same asymptotic complexity as previous Bayesian
formulations, as it can be globally optimized with dynamic programming.

We validate our method with an interactive boundary delineation application,
where significantly fewer mouse clicks are needed to extract complex boundaries.
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