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Abstract. In this paper the notion of hyperconnectivity, first put for-
ward by Serra as an extension of the notion of connectivity is explored
theoretically. Hyperconnectivity operators, which are the hyperconnected
equivalents of connectivity openings are defined, which supports both
hyperconnected reconstruction and attribute filters. The new axiomatics
yield insight into the relationship between hyperconnectivity and struc-
tural morphology. The latter turns out to be a special case of the former,
which means a continuum of filters between connected and structural
exists, all of which falls into the category of hyperconnected filters.

1 Introduction

Connected filters are object-based morphological filters which allow edge pre-
serving filtering based on a range of criteria [1, 2, 3]. Fig. 1 shows the difference
between the structural opening and the opening by reconstruction [4]. In some
cases, however, such strict edge preservation is not desirable, because thin struc-
tures can link up different entities in an image. For example, the thin stripes
on the clothes in Fig. 1 link up the face area to other structures nearby. To
circumvent some problems with the strictness of the edge preserving nature of
these filters, and their inability to handle overlapping objects as separate entities,
several solutions have been put forward [5,6,7]. One of these is hyperconnectiv-
ity, first proposed by Serra [6] and extended in [8]. Recently, hyperconnectivity
has moved from a theoretical concept to a practical one, in particular in fuzzy
connectivity [9], in fast reconstruction using reconstruction criteria [10], and in
hyperconnected attribute filtering using k-flat zones (overlapping connected re-
gions of with grey level total variations no more than k grey levels) [11]. The
latter are useful for separation of galaxies from stars in astronomical imaging
(see Fig. 2).

In this paper, a new axiomatics for hyperconnectivity is derived. We will first
deal with some theoretical preliminaries. After this, connectivity and connec-
tivity openings are treated. Then we replace the hyperconnectivity openings
proposed in [8] by operators which return sets of hyperconnected components.
It is then shown that hyperconnected counterparts of the connected attribute
filters introduced by Breen and Jones [1] can only be constructed using the new
framework. Finally, it is shown that any structural morphology can be seen as
a special case of hyperconnected filters. This means that a large family of filters
exist between the extremes of edge preserving connected filters, and structural
filters. A variant of the work in [5] is shown to be part of that family.

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 35–46, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



36 M.H.F. Wilkinson

(a) (b) (c) (d)

Fig. 1. Structural, connected, and hyperconnected filters:(a) original image f (b) open-
ing with Euclidean disc of diameter 21 g = γ21f ; (c) connected reconstruction of f by
g (d) hyperconnected reconstruction of f by g according to (32)

(a) (b) (c)

Fig. 2. Separating galaxies from stars: (a) spiral galaxy M81, original image, courtesy
Giovanni Benintende; (b) stars suppressed by an area attribute filter with 2000 ≤ area
≤ 240000; (c) k-flat hyperconnected variant of (b), showing improved suppression of
stellar, and better retention of galactic detail

2 Theory

Let E denote some finite, universal, non-empty set, and P(E) the set of all
subsets of E. P(E)is also finite. A cover A = {Ai} of E is a subset of P(E) such
that ∪iAi = E. A partition A = {Ai} of E is a cover such that Ai ∩ Aj = ∅
for all i �= j, and all Ai are non-empty. Covers of any X ⊆ E can be defined
likewise. Because covers and partitions are sets of subsets of E they are elements
of P(P(E)). To avoid confusion, ∅ denotes the least element of P(E), and ∅P(E)

denotes least element of P(P(E)).
A cover A, or indeed any element of P(P(E)) will be called redundant if there

exists at least one pair of elements Ai, Aj ∈ A such that Ai ⊂ Aj . Obviously,
partitions are non-redundant covers. We denote the set of all non-redundant
subsets of P(E) as N (P(E)).

Any redundant cover can be reduced to a non-redundant cover by means of
a binary reduction operator Φ⊂. This reduces any redundant subset A ⊆ P(E)
to the largest, non-redundant subset of A.



An Axiomatic Approach to Hyperconnectivity 37

Definition 1. The binary reduction operator Φ⊂ : P(P(E)) → N (P(E)) is
defined as

Φ⊂(A) = A \ {Ai ∈ A | ∃Aj ∈ A : Ai ⊂ Aj}. (1)

It is important to observe that if E is not finite, Φ⊂(A) might be empty. Let
E = [0, 1] and A = {[0, 1− 1

n ] : n ∈ N}. It can easily be verified that Φ⊂(A) = ∅ in
this case. This problem does not arise in finite, discrete images used in practice.
Obviously, Φ⊂ has the following property

Proposition 1. For any A ∈ P(P(E))
⋃

A =
⋃

Φ⊂(A) (2)

Proof. Because Φ⊂(A) ⊆ A by definition, we only need to show that all elements
of

⋃A are contained in
⋃

Φ⊂(A). Consider a point x ∈ ⋃A. This means that
there is some Ai ∈ A such that x ∈ Ai. If Ai ∈ Φ⊂(A), x is obviously contained
in

⋃
Φ⊂(A). If Ai �∈ Φ⊂(A), there must exist an Aj ∈ Φ⊂(A) such that Ai ⊂ Aj ,

and x is also contained in
⋃

Φ⊂(A).

We can define a partial order on N (P(E)) as

A � B ≡ ∀Ai ∈ A ∃ Bj ∈ B : Ai ⊆ Bj . (3)

This is the same partial order as used for partitions in [12]. Suppose we have some
elements Ci of N (P(E)), with i ∈ I, and I some index set, under � the infimum is

∧

i∈I

Ci = Φ⊂

({⋂

i∈I

Di|Di ∈ Ci

})
, (4)

i.e. we first compute all sets which are intersections of one element from each of
the sets Ci. These are the maximal sets which are subset of some set in each of
the Ci. In general this set is redundant, so we map it back to N (P(E)) using
Φ⊂. If the Ci are partitions, (4) is equal to the infimum of partitions in [12]. The
supremum is given by

∨

i∈I

Ci = Φ⊂

(⋃

i∈I

Ci

)
, (5)

i.e. we create a new cover by first combining all elements of all Ci, and then
removing any redundant ones. For any D ∈ Ci there exist an element S ∈ ∨

i∈I Ci

such that D ⊆ S. Conversely, because for any S ∈ ∨
i∈I Ci there exists a Ci such

that S ∈ Ci. Therefore, we cannot replace any S ∈ ∨
i∈I Ci by some smaller

set, without violating Ci �
∨

i∈I Ci. Therefore (5) defines a supremum under �.
Within N (P(E)) the least element under � is ∅P(E) and the maximal element
is {E}. If A1 � A2 for two partitions or covers we state that A1 is finer than
A2, or, equivalently, A2 is coarser than A1.

Note that � is not a partial order on P(P(E)). Suppose I have some redundant
A ∈ P(P(E)), i.e., Ai ⊂ Aj for some Ai, Aj ∈ A. We then have

A � A \ {Ai} ∧ A \ {Ai} � A (6)

but
A \ {Ai} �= A. (7)
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2.1 Connectivity

Connectivity such as is used in morphological filtering is defined through the
notion of connectivity classes or connections [13, 14, 6].

Definition 2. A connection C ⊆ P(E) is a set of sets with the following two
properties:

1. ∅ ∈ C and {x} ∈ C for all x ∈ E
2. for each family {Ci} ⊂ C, ∩Ci �= ∅ implies ∪Ci ∈ C.

Any set C ∈ C is said to be connected. Using such a notion of connectivity,
any set X ∈ P(E) can be partitioned into connected components. These are the
connected subsets of X of maximal extent, i.e. if C ⊆ X and C ∈ C and there
exists no set D ∈ C such that C ⊂ D ⊆ X , then C is a connected component of
X . Let CX be defined as

CX = {C ∈ C | C ⊆ X}, (8)

in other words CX is the set of all connected subsets of X . CX is obviously a cover
of X because for every x ∈ X {x} ∈ CX . Therefore every x ∈ X is represented
in the union of all elements of CX . The set of all connected components C∗

X of
X is simply

C∗
X = Φ⊂(CX). (9)

It is well known that this constitutes a partition of X because any C, D ∈ C∗
X

are either disjoint or equal.
Connected components can be accessed through connectivity openings [6]:

Definition 3. The binary connectivity opening Γx of X at a point x ∈ E is
given by

Γx(X) =

{⋃{Ci ∈ C | x ∈ Ci ∧ Ci ⊆ X} if x ∈ X

∅ otherwise.
(10)

In this definition the notion of maximum extent is derived by taking the union
of all connected subsets of X containing x. It can readily be shown that this is
equivalent to

Γx(X) =

{
Ci ∈ C∗

X : x ∈ Ci if x ∈ X

∅ otherwise.
(11)

This equivalence stems from the fact that connected subsets of X which contain
x have a non-empty intersection, and that their union is therefore connected.

An important theorem links connectivity openings to connections [6].

Theorem 1. The datum of a connection C in P(E) is equivalent to the family
{Γx, x ∈ E} of openings on x such that:

1. Γx is an algebraic opening marked by x ∈ E
2. for all x ∈ E, we have Γx({x}) = {x}
3. for all X ∈ P(E) and all x ∈ E, we have that x �∈ X ⇒ Γx(X) = ∅.
4. for all X ∈ P(E), x, y ∈ E, if Γx(X) ∩ Γy(X) �= ∅ ⇒ Γx(X) = Γy(X), i.e.

Γx(X) and Γy(X) are equal or disjoint.
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2.2 Hyperconnectivity

Hyperconnectivity is a generalization of connectivity, which generalizes the sec-
ond condition of Definition 2 [6]. Instead of using a non-empty intersection, we
can use any overlap criterion ⊥ which is defined as follows.

Definition 4. An overlap criterion in P(E) is a mapping ⊥ : P(P(E)) → {0, 1}
such that ⊥ is decreasing, i.e., for any A,B ⊆ P(E)

A ⊆ B ⇒ ⊥(B) ≤ ⊥(A). (12)

Any A ⊆ P(E) for which ⊥(A) = 1 is said to be overlapping, otherwise A is
non-overlapping. We can now define a hyperconnectivity class or hyperconnection
as follows.

Definition 5. A hyperconnection H ⊆ P(E) is a set of sets with the following
two properties:

1. ∅ ∈ H and {x} ∈ H for all x ∈ E
2. for each family {Hi} ⊂ H, ⊥({Hi}) = 1 implies

⋃
i Hi ∈ H,

with ⊥ an overlap criterion such that ⊥({Hi}) ⇒ ∩iHi �= ∅.
Any set H ∈ H is said to be hyperconnected. Note that inserting the overlap
criterion

⊥∩({Hi}) =

{
1 if

⋂
i Hi �= ∅

0 otherwise,
(13)

into Definition 5 just yields a connection, showing that a connection is a special
case of hyperconnection [6].

As can be seen from Definition 5, ⊥∩ is the least strict overlap criterion to be
used in a hyperconnection, i.e., ⊥({Hi}) ≤ ⊥∩({Hi}) in general. For example
we might require that the intersection contains a ball Br of some diameter r for
which Br ⊆ ⋂

i Hi. This leads to a “viscous” hyperconnectivity [10], which has
been used to implement hyperconnected reconstruction shown in Fig. 1(d).

Like the notion of connected components for connection, we need to define
the notion of hyperconnected component, which are hyperconnected subsets of X
of maximal extent. In complete analogy with connected components we can first
define the set HX of all hyperconnected subsets of X ∈ P(E):

HX = {H ∈ H | H ⊆ X}, (14)

which is a cover of X for the same reasons as for CX . The set of hyperconnected
components H∗

X is defined equivalently

H∗
X = Φ⊂(HX). (15)

Note that H∗
X is not necessarily a partition of X , because two hyperconnected

components Hj , Hk may have a non-zero intersection, but Hj ∪Hk need not be
a member of HX if ⊥({Hj, Hk}) = 0.

Braga-Neto and Goutsias [8] define a hyperconnectivity opening Hx as follows



40 M.H.F. Wilkinson

Definition 6. The binary hyperconnectivity opening Hx of X at point x ∈ E is
given by

Hx(X) =

{⋃{Hi ∈ HX | x ∈ Hi} if x ∈ X

∅ otherwise.
(16)

Unlike the connectivity opening Γx, which always returns a connected set, the
hyperconnectivity opening Hx does not necessarily return a hyperconnected set,
as pointed out by Braga-Neto and Goutsias in [8]. In this paper I propose a
different approach.

Instead of the hyperconnectivity opening, we introduce the hyperconnectivity
operator Υx : P(E) → P(P(E)) which returns a set of hyperconnected sets.
In the case of the connectivity opening in definition 3, we capture the notion
of maximal extent by taking the union of all connected sets within X which
contain the point x. This is not possible in the hyperconnected case, where we
use the more explicit formulation using set inclusion used in the definition of
hyperconnected components.

Definition 7. The hyperconnectivity operator Υx : P(E) → P(P(E)) associated
with hyperconnection H is defined as

Υx(X) =

{
Φ⊂({Hi ∈ HX | x ∈ Hi}), if x ∈ X

{∅} otherwise,
(17)

In other words, Υx extracts the set of hyperconnected components of X contain-
ing x. It is obvious that the relationship between Υx and Hx is a simple one:

Hx(X) =
⋃

Hi∈Υx(X)

Hi. (18)

Fig. 3 illustrates the difference between the two operators.

(a) (b) (c)

Fig. 3. Hyperconnectivity opening vs. hyperconnectivity operator: (a) binary image X;
(b) outlines of hyperconnected components H1, H2, H3 for some hypothetical hypercon-
nection H; (c) outline of union of these hyperconnected components. Hyperconnectiv-
ity opening Hx(X) returns the set outlined in (c) for any x in the intersection

⋂3
i=1 Hi,

whereas hyperconnectivity operator Υx(X) returns one or more of the sets outlined in
(b).
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We now define the properties a family of mappings Υx : P(E) → P(P(E))
requires to define a hyperconnection. A few properties are “inherited” from con-
nectivity openings:

1. Υx(Hi) = {Hi} for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ E;
2. Hi ⊆ X for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ X ;
3. for any X, Y ∈ P(E) we have X ⊆ Y ⇒ Υx(X) � Υx(Y ) for all x ∈ X ;
4. for all x ∈ E we have Υx({x}) = {{x}}
5. for all X ∈ P(E), and all x ∈ E we have x �∈ X ⇒ Υx(X) = {∅};
6. for any Hi ∈ Υx(X), y ∈ Hi implies Hi ∈ Υy(X);
7. for all x ∈ E and all X ∈ P(E), and any Hi, Hj ∈ Υx(X) we have Hi �=

Hj ⇒ ⊥({Hi, Hj}) = 0.

The first property ensures each Hi ∈ Υx(X) is hyperconnected according to the
associated hyperconnection H, and it contains x, it is the largest hyperconnected
set contained in itself. Therefore, by definition 7, it is the only set Υx(Hi) should
return. The second property ensures any hyperconnected component of X is a
subset of X .

The third property is increasingness in the sense of (3), which can be shown
as follows. Let X ⊆ Y . In this case any Hi ∈ Υx(X) is a subset of Y , through
property 2. This means that either Hi ∈ Υx(Y ), or there exists an Hj ∈ Υx(Y )
such that Hi ⊂ Hj . Because all sets in Υx(X) have a set in Υx(Y ) which is a
superset or equal, the union of all members of Υx(X) is a subset of the union of
all sets in Υx(Y ).

The fourth property ensures that all singletons are members of H, and the
fifth that each hyperconnected component is marked only by its members.

The sixth property can be derived as follows. Because Hi ∈ Υx(X), there exists
no hyperconnected set Hj ⊆ X , such that Hi ⊂ Hj . If y ∈ Hi but Hi �∈ Υy(X),
this would imply that there is some Hj ⊆ X , such that Hi ⊂ Hj , leading to
contradiction. This also ensures that each hyperconnected component is marked
by all its members.

The seventh property is related, and states that no two different sets Hi, Hj ∈
Υx(X) can overlap in the sense of ⊥. If they did, Hi ∪Hj ∈ H and x ∈ Hi ∪Hj .
This means there exists a hyperconnected superset of both Hi and Hj containing
x, and they should therefore not be members of Υx(X).

2.3 Relationship with Connectivity Openings

We will now investigate how the properties of hyperconnectivity operators relate
to those of connectivity openings. Let #Υx(X) denote the cardinality of Υx(X).

Proposition 2. A hyperconnection H is a connection if and only if

#Υx(X) = 1 for all x ∈ E and all X ∈ P(E), (19)

with Υx the hyperconnectivity operator associated with H. In this case Hx(X) =⋃
Hi∈Υx(X) Hi is a connectivity opening.
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Proof. If #Υx(X) > 1 for some x ∈ E and some X ∈ P(E), H cannot be a
connection because there are at least two hyperconnected components of X to
which x belongs. Therefore, there are at least two sets H1, H2 ∈ H with non-
empty intersection, but for which H1 ∪ H2 �∈ H. This violates property 3 of
Definition 2, and H is not a connection.

If #Υx(X) = 1 for all x ∈ E and all X ∈ P(E) then the hyperconnected
opening Hx is just a way of extracting the single element from Υx(X), i.e.
Hx(X) ∈ Υx(X), implying Hx(X) ∈ H for all x ∈ E and all X ∈ P(E). It
has been shown that Hx is an algebraic opening [8], proving the first require-
ment of Theorem 1.

The second requirement of Theorem 1 follows from property 4, which states that
Υx({x}) = {{x}} for all hyperconnectivity operators, and therefore Hx({x}) =
{x} for all X ∈ P(E). The third requirement derives from property 5, i.e. Υx(X) =
{∅} if x �∈ X , which implies Hx(X) = ∅ for all x �∈ X , for all X ∈ P(E).

The fourth requirement of Theorem 1 derives from property 6 above. If y ∈
Hx(X) it follows from property 6 that Hx(X) ∈ Υy(X), and because #Υy(X) =
1, it follows that Hx(X) = Hy(X). If y �∈ Hx(X), suppose that there exists some
z ∈ Hx(X) ∩ Hy(X). For the previously given reasons, this implies Hz(X) =
Hx(X) = Hy(X), and therefore y ∈ Hx(X), leading to contradiction. Therefore
y �∈ Hx(X) implies Hx(X) ∩ Hy(X) = ∅. Thus Hx is a connectivity opening.

Because Hx ∈ H for all x ∈ E and X ∈ P(E), H is a connectivity class
associated with the family of connectivity openings {Hx, x ∈ E}, proving
Proposition 2.

2.4 Hyperconnected Filters

We will now turn to hyperconnected attribute filters, which were not considered
by either Serra or Braga-Neto and Goutsias. Hyperconnected attribute filters
can be defined in much the same way as connected attribute filters. We do this
using a trivial filter ΨΛ(H) which returns H if the criterion Λ(H) = 1 and ∅
otherwise. Let ΨΛ(H∗

X) be shorthand for the subset of all Hi ∈ H∗
X for which

Λ(Hj) = 1.

Definition 8. A hyperconnected attribute filter ΨΛ : P(E) → P(E) based on
criterion Λ : H → {0, 1} is defined as

ΨΛ(X) =
⋃

x∈X

⋃

Hi∈Υx(X)

ΨΛ(Hi) =
⋃

Hj∈H∗
X

ΨΛ(Hj) =
⋃

Hk∈ΨΛ(H∗
X)

Hk, (20)

We can define an alternative attribute filter ΨΛ
H using hyperconnectivity openings

Hx as

ΨΛ
H =

⋃

x∈X

ΨΛ(Hx(X)) =
⋃

x∈X

ΨΛ

(⋃
Υx(X)

)
�=

⋃

x∈X

⋃

Hi∈Υx(X)

ΨΛ(Hi). (21)

Here we see a clear distinction between the framework using hyperconnected
openings Hx versus the proposed framework using operators Υx, because ΨΛ does
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(a) (b) (c) (d)

Fig. 4. Hyperconnected attribute filter with criterion Λ according to (22): (a) origi-
nal images; (b) outlines of hyperconnected components; (c) union of trivial thinnings
applied to hyperconnected components; (d) trivial thinning applied to union of hyper-
connected components

not necessarily commute with set union. Consider the non-increasing criterion
for 2-D images

Λ(H) =

{
1 if Δx(H) = Δy(H)
0 otherwise,

(22)

in which Δx(H) and Δy(H) are the maximal extents in x and y direction re-
spectively. This requires that the minimum enclosing, axis-aligned rectangle is
a square. Fig. 4 demonstrates the different outcomes of attribute filtering using
hyperconnectivity openings and hyperconnectivity operators. The small circle
in the centre is not seen as a separate entity by the Hx, whereas the “cross”
preserved by ΨΛ

H is not hyperconnected.

3 Relationship to Structural Filters

In this section we will show the relationship with structural morphology. Let
S ⊆ E be an arbitrary structuring element centred at the origin 0, and S be the
set of singletons in E, i.e.

S = {{x}|x ∈ E}. (23)

Furthermore, consider a finite chain A ⊆ P(E), i.e. a totally ordered ordered
family of sets under ⊆ such that for an appropriate index set I, Ai ⊆ Aj for any
i ≤ j. Obviously, if A is a chain, so is any subset of A. Furthermore,

⋃

i∈I

Ai = Amax I , (24)

provided E is finite. We can now show that the following set

HS = {∅} ∪ S,∪{{x} ⊕ S, x ∈ E}, (25)

is a hyperconnection, if provided with the overlap criterion

⊥0(A) =

{
1 if A is a finite chain
0 otherwise

(26)



44 M.H.F. Wilkinson

In other words, HS consist of the empty set, all singletons, and all translates of
S. The overlap criterion states that only chains of hyperconnected components
overlap. It is easily seen that a hyperconnected area opening using HS with an
area threshold between 1 and the area of S is just the structural opening with S.
Thus, any structural opening using any structuring element can be represented
as a hyperconnected area opening. By duality, the same holds for closings.

If we combine this result with the well-established result from Serra [6] that
connected filters are a special case of hyperconnected filters, we see that hyper-
connected filters form a family of filters in between the two extremes. An example
of such a filter is inspired by [5, 15], but now based on hyperconnected filters.
Let B be a ball centred on the origin, and C some connection on E. Consider

HB = {∅} ∪ S ∪ {H ∈ P(E) | ∃C ∈ C : H = δBC}, (27)

which is just the set of all dilates by B of all connected sets, augmented with the
empty set and all singletons. This set is a hyperconnection with overlap criterion

⊥B({Ai}) =
⋃

i

(εBAi) �= ∅. (28)

This overlap criterion is true if and only if the intersection of all sets Ai eroded
by B is non-empty. Equivalently, the intersection of Ai must contain at least one
translate of B. In this hyperconnectivity, any image is constructed from a series
of hyperconnected components which all lie within γBf and a series of singletons
which lie in f − γBf . Reconstruction from markers becomes

ρHB (f |g) = δBρ(εBf |εBg). (29)

Thus, we erode the image and the marker, and then reconstruct all those parts
of the eroded image which are marked by the eroded marker. This means those
parts of f which overlap with g in the sense of ⊥B. After this, we dilate the result
to reconstitute the hyperconnected components retained in the reconstruction.
If marker g is obtained by an opening with some ball Br, we can move (more-or-
less) continuously from a structural opening, when Br ⊆ B, through a “viscous”
hyperconnected reconstruction (B0 ⊂ B ⊂ Br) to connected reconstruction
when B = B0, as in [5].

A drawback of this approach is that the end result of this is a subset of γBf
except when singletons are included in the result. This could seriously reduce the
edge-preserving qualities of this filter. We can partly amend this by performing
a geodesic dilation within f , similar to [5]. The geodesic dilation by a unit ball
δ̄1
X within X is defined as

δ̄1
XY = X ∩ δ1Y. (30)

with δ1 the dilation by a unit ball.

HX
B = {∅} ∪ S ∪ {H ∈ P(E) | ∃C ∈ C : H = δ̄1

XδBC}. (31)

This is a hyperconnection under the the overlap criterion from (28). In this case
we simply perform a geodesic dilation by a unit ball after the processing, i.e.:

ρHf
B
(f |g) = δ̄1

fδBρ(εBf |εBg), (32)
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(a) (b) (c)

Fig. 5. Viscous hyperconnections: (a) reconstruction of Fig 4(a) by Fig 4(b) according
to (29); (b) same according to (32); (c) difference (contrast stretched)

as put forward in [10]. The difference between reconstruction according to (29)
and (32) is quite small, as shown in Fig. 5.

4 Conclusion

In this paper new axiomatics for hyperconnected filters have been introduced.
It has been shown that this is needed to define hyperconnected attribute filters.
Before these are of any practical use, efficient algorithms for these filters must
be devised. Currently work is in progress to extend the work in [10] to attribute
filters in general. A drawback of the formulation chosen is that it applies to finite
images, and work is in progress to obtain a more general result. An important
conclusion is the relationship to structural filters. This means that there is a
(semi-)continuum of operators stretching from the edge-preserving connected
filters to structural filters, all of which are hyperconnected. The relationship to
path openings [16] and attribute-space connectivity [7] is explored in the next
paper in this volume [17].
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