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Abstract. Component-trees can be used for the design of image pro-
cessing methods, and in particular segmentation ones. However, despite
their ability to consider various kinds of knowledge and their tractable
computation, methodological deadlocks often forbid to efficiently involve
them in real applications. In this article, we explore new solutions to some
of these deadlocks, and more especially those related to (i) complexity
of the structures of interest and (ii) multiple knowledge handling. The
usefulness of the proposed strategies is illustrated by preliminary results
related to vessel segmentation from 3-D angiographic data.

Keywords: Component-trees, segmentation, attribute-filtering, grey-
level images.

1 Introduction

The component-tree (also knownas dendrone [1,2], confinement tree [3] ormax-tree
[4]) is a graph-based structure which models some characteristics of a grey-level
image by considering its binary level-sets obtained from successive thresholding
operations.

Initially proposed in the field of statistics, the component-tree has been
(re)defined in the theoretical framework of mathematical morphology and in-
volved, in particular, in the development of morphological operators [5,4].
Thanks to efforts devoted to its efficient computation [5,4,3,6,7] or its use in
complex knowledge handling procedures [8], component-trees have been con-
sidered for the design of various kinds of grey-level image processing methods,
including image filtering and segmentation [1,9,10,11,12,13], video segmentation
[4], image registration [3], image compression [4], or image retrieval [14,15].

Despite the ability of component-trees to consider complex/multiple knowl-
edge and their tractable computation, methodological deadlocks often forbid to
efficiently involve them in real applications. In this article, we propose to ex-
plore solutions to some of these deadlocks, and more especially those related to
(i) complexity of the (shape of) structures of interest and (ii) multiple knowledge
handling.
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In Section 2, previous works involving component-trees in the design of seg-
mentation methods are described, emphasising the remaining challenges to be
faced. Section 3 introduces definitions and notations required to make the ar-
ticle self-contained. In Section 4, some methodological considerations provide
solutions to tackle the challenges stated in Section 2. An application, described
in Section 5 for 3-D angiographic image segmentation illustrates the soundness
of the proposed framework. Section 6 summarises the contributions of this article
and points out the main perspectives.

2 Segmentation Based on Component-Trees

As mentioned above, component-trees have been considered for the development
of image segmentation methods, mainly in the field of (bio)medical imaging, and
in particular for: dermatological data [13], wood micrographs [9], cerebral MRI
[16], CT/MR angiography [17], or confocal microscopy [11].

It has to be noticed that their use is often only devoted to one specific step
of the segmentation (marker selection in [16]), or to perform filtering [17,11],
i.e. to remove “useless” parts of the processed image, leading to a superset of
an actual segmentation. Among the methods which fully use component-trees
for segmentation purpose, some can consider complex (i.e. multiple) knowledge
[13] or can be run without user-interaction [9], but none of them is able to
determine the correct pieces of knowledge required to perform segmentation
without guidance of the user. Moreover, such methods only deal with simple-
shape objects (circular or elliptical 2-D features in [9,13]).

This emphasises the fact that automatic segmentation of complex objects
based on the use of multiple elements of knowledge obviously remains an open
methodological problem in the field of component-tree-based methods, a fortiori
when such knowledge also needs to be automatically determined (which may be
necessary whenever the size of the parameter space becomes too large). In the
next sections, we explore some ways to deal with this difficult issue. In particu-
lar, we consider strategies enabling to decrease the potential complexity of the
structures of interest, and to determine the nodes (and thus the attributes) of
the component-trees of ground truth images, then enabling automatic learning
of correct parameters for segmentation purpose.

3 Definitions and Notations

Let n ∈ N
∗. In the sequel, [a..b] (with a, b ∈ Z) denotes the discrete interval

[a, b] ∩ Z. We set Z = Z ∪ {−∞}. A discrete grey-level image can be defined as
a function I : Z

n → Z. The support of I is defined by supp(I) = {x ∈ Z
n |

I(x) �= −∞}. We assume that for any considered image I, supp(I) is finite. We
will note supp(I) = E and V = [a..b] ⊂ Z, where a = min{I(x) | x ∈ E} and
b = max{I(x); x ∈ E}. From now on, we will assimilate an image I : Z

n → Z to
its (finite) restriction I|E : E → V .
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Let X ⊆ E. The connected components of X are the equivalence classes of
X w.r.t. the equivalence relation on E induced by the adjacency relation chosen
for Z

n. The set of the connected components of X is noted C[X ].
Let v ∈ V . We set P(E) = {X ; X ⊆ E}. Let Xv : V E → P(E) be the

thresholding function defined by Xv(I) = {x ∈ E; v ≤ I(x)} for all I : E → V .
Let v ∈ V and X ⊆ E. We define the cylinder function CX,v : E → Z by

CX,v(x) = v if x ∈ X and −∞ otherwise. A discrete image I : E → V can then
be expressed as I =

∨
v∈V CXv(I),v =

∨
v∈V

∨
X∈C[Xv(I)] CX,v, where

∨
is the

pointwise supremum for the sets of functions.
Let K =

⋃
v∈V C[Xv(I)]. The relation ⊆ is a partial order on K, and the Hasse

diagram (K, L) of the partially ordered set (K,⊆) is a tree (i.e. a connected
acyclic graph), the root of which is the supremum R = sup(K,⊆) = E. This
rooted tree (K, L, R) is called the component-tree of I. The elements K, R and L
are the set of the nodes, the root and the set of the edges of the tree, respectively.

Note that each node of K is a binary connected component distinct from
all the other ones. However, such a connected component can be an element
of C[Xv(I)] for several (successive) values v ∈ V . For each X ∈ K, we set
m(X) = max{v ∈ V ; X ∈ C[Xv(I)]} = minx∈X{I(x)}. An image I : E → V can
then be defined from its component-tree (K, L, R) as I =

∨
X∈K CX,m(X).

Component-trees enable the storage - at each node - of elements of informa-
tion, also called attributes, related to the binary connected component associated
to the node. It is possible to consider any kind of quantitative/qualitative and
scalar/vectorial attributes, provided they can be conveniently formalised. Prun-
ing a component-tree (K, L, R) of an image I according to the attributes stored
at the nodes (by removing the nodes having a non-correct attribute w.r.t. a given
criterion) enables to perform filtering on I. The filtered image If is then defined
as If =

∨
X∈Kf

CX,m(X) where Kf ⊆ K is the subset of the remaining nodes
after the pruning process. When performing segmentation, a binary result Ib can
similarly be obtained as Ib =

⋃
X∈Kf

X .

4 Methodological Concepts

In this section, we present methodological tools enabling to develop algorithms
based on component-trees, and dealing with the main challenges described in
Section 2. In Subsection 4.1, solutions are proposed to spatially decompose (and
reconstruct) an image, thus breaking complex structures into (hopefully) simpler
sub-ones. In Subsection 4.2, the way to automatically extract relevant nodes
from the component-tree of a ground truth (i.e. a correctly segmented) image is
discussed, enabling to avoid user-interaction in segmentation processes.

4.1 Image Partitioning/Reconstruction

The binary connected components at the nodes X ∈ K of a component-tree
may possibly be complex and/or gather several structures of interest of the
associated image. In such cases, these nodes, potentially composed of several
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(a) (b) (c) (d) (e)

Fig. 1. (a) A grey-level image containing different semantic elements (geometric
shapes). (b-e) Threshold images obtained from (a) at successive grey-levels: the ob-
tained nodes/connected components do not enable to discriminate the visualised ele-
ments (see text).

semantic elements may be hard to detect/discriminate due to the heterogeneity
of the characterising properties of these elements.

In order to illustrate this assertion, let us consider the grey-level image of
Fig. 1(a), which is composed of four semantic entities: squares, disks, thin
straight lines and thick curves. Here, we obtain a critical situation where only
one - useless - node is available at each level of the tree, as observed in Fig. 1(b-e).
Despite the existence of specific properties (elongation, straightness, compact-
ness, etc.) for each kind of elements, their specific intensity in the image and/or
their spatial organisation (connections, generation of complex shapes from sim-
pler ones, etc.) result in a component-tree the nodes of which do not enable any
characterisation.

In similar cases, the computation of attributes devoted to characterise accu-
rate and specific properties will generally fail. It has to be noticed that such
situations are not infrequent in real applications. For instance, in angiographic
image analysis (see Section 5), vessels are generally organised into a unique net-
work, thus making attributes characterising single tubular structures inefficient.

A solution to this general issue can consist in processing the image as a col-
lection of smaller subimages, hence enabling to split complex structures into
smaller - and hopefully easier to detect - sub-ones. A straightforward strategy
based on this approach is the following one.

1. Divide I : E → V into a set of images Ik : Ek → V (k ∈ [1..m]) such that
{Ek}m

k=1 is a partition of E, and I|Ek = Ik for all k ∈ [1..m].
2. Compute, for each k ∈ [1..m], the component-tree of Ik and perform seg-

mentation, then generating a binary output image Bk ⊆ Ek.
3. Define the segmentation result B by merging all the results Bk : B =⋃m

k=1 Bk.

This simple and potentially useful approach however suffers from two drawbacks:
(i) the partition of E may split a structure of interest between several subsets
Ek, thus forbidding its correct detection, and (ii) the size of the subsets Ek,
possibly well-chosen to fit a given structure, may be non-adapted to the detection
of another one.
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Partitioning. A way to avoid these two drawbacks is to compute a redun-
dant and multiscale decomposition of I, in order to fit at best the differ-
ent structures of interest. The support E of I is then split by defining a set
Eα,β =

⋃
a∈α{Ek

a,β}ma,β

k=1 , such that for all a ∈ α we have

∀k ∈ [1..ma,β], |Ek
a,β | = |E|/a , (1)

E ⊆
ma,β⋃

k=1

Ek
a,β , (2)

∀x ∈ E, |{X ∈ {Ek
a,β}ma,β

k=1 ; x ∈ X}| = β , (3)

where α ⊆ [1..|E|] is a set of volume ratios (“scales”), and β ∈ N
∗ is the “redun-

dancy factor” of the pseudo-partitions {Ek
a,β}ma,β

k=1 at each scale a ∈ α. Broadly
speaking, the image support is decomposed (several times) into subsets the sizes
of which are determined by Eq. (1), and for each one of these sizes, the union of
these subsets has to match the whole image support1 (Eq. (2)), while each point of
this support has to belong to a given number of these subsets, this number being
determined by Eq. (3). It may generally be convenient to define α as a subset of
{2nk}k≥0 in order to build subsets Ek

a,β of E ⊂ Z
n in an “octree” fashion.

Reconstruction. Once processed, each partial image Ik
a,β : Ek

a,β → V provides
a binary output Bk

a,β ⊆ Ek
a,β . We set Bα,β =

⋃
a∈α{Bk

a,β}ma,β

k=1 . By opposition
to the initially proposed strategy, which enables to recover B ⊆ E by simply
merging the subimages Bk, the one proposed above does not straightforwardly
lead to a final result, since overlaps induced by both multiscale and redundancy
may lead to ambiguous results for any point x ∈ E (depending on the image
Ik
a,β where x is considered).

For any x ∈ E, let Ex
α,β = {Ek

a,β ∈ Eα,β ; x ∈ Ek
a,β} and Bx

α,β = {Bk
a,β ∈

Bα,β; x ∈ Bk
a,β} (note that 0 ≤ |Bx

α,β| ≤ |Ex
α,β | = β.|α|). Final images Bf ⊆ E

and If : E → [0, 1] (binary and fuzzy, respectively) can be reconstructed as follows

Bf = {x ∈ E; λ ≤ |Bx
α,β|} for a given λ ∈ [1, β.|α|] , (4)

If (x) = |Bx
α,β|/(β.|α|) for all x ∈ E . (5)

It can be noticed that (i) setting λ = 1 in Eq. (4) is equivalent to define Bf =⋃
X∈Bα,β

X , and (ii) Bf can be obtained by thresholding If at the considered
value λ.

4.2 Multiple Criteria Handling

It is possible to involve arbitrarily large and heterogeneous sets of knowledge in
segmentation processes by associating to each node of the component-tree vecto-
rial attributes (containing qualitative, quantitative, structural information, etc.).
1 Note that in Eq. (2) the inclusion (instead of an equality) between the two elements

implies that the set {Ek
a,β}ma,β

k=1 is actually not a partition of E since some of the Ek
a,β

may be partially out of E to guarantee the same redundancy β at each point of E.
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This can lead to very accurate descriptions of the structures to be segmented.
However, a straightforward and undesired side effect is the difficulty to deter-
mine, among the whole (and potentially huge) parameter space Ω induced by
this knowledge, the correct subset ω ⊂ Ω characterising the structures of interest,
a fortiori in an interactive fashion.

In such conditions it becomes fundamental to enable automatic determination
of such characterising subsets. This can be done by using learning - and in
particular classification - tools. To this end, it is necessary to find a way to put
in correspondence a “ground truth” (i.e. correct examples of what should be
segmented) and the closest result which may be obtained by the component-
tree-based method.

The problem to solve may be formalised as follows. Let Ig : E → V be a
ground truth image (similar to those to be further processed by the method),
and Bg ⊆ E be the correct segmentation of this image. Let (K, L, R) be the
component-tree of Ig. Let S = {∪X∈CX}C⊆K be the set of all binary images
which can be generated from the set of nodes K. In general, we will - unfor-
tunately - never have Bg ∈ S. We then need to determine the “best” binary
image which may be computed from K w.r.t. Bg. This requires to define a
(pseudo)distance d on P(E) enabling to compare Bg and the candidate binary
images of S. In particular, the best binary image B̂ can be defined as

B̂ = arg min
B∈S

{d(B, Bg)} . (6)

In this context, several strategies can reasonably be considered.

– By setting d−(B, Bg) = |Bg \ B| if B ⊆ Bg and +∞ otherwise, we have
B̂− = max⊆{B ∈ S; B ⊆ Bg}, i.e. B̂− is the largest object included in Bg

which may be built from K.
– By setting d+(B, Bg) = |B \ Bg| if B ⊇ Bg and +∞ otherwise, we have

B̂+ = min⊆{B ∈ S; Bg ⊆ B}, i.e. B̂+ is the smallest object including Bg

which may be built from K.

The first (resp. second) strategy focuses on the elimination of false positives
(resp. false negatives) with the side effect of possibly authorising the preser-
vation of false negatives (resp. false positives). It has to be noticed that these
asymmetric strategies can be efficiently implemented since the set of nodes gen-
erating B̂ can obviously be computed with a (worst case) algorithmic complexity
O(max{|K|, |E|}) linear w.r.t. the number of nodes of the component-tree or the
size of the image.

Some - more symmetric - strategies could also be proposed. The most straight-
forward one consists in setting d∗(B, Bg) = |Bg \B|+ |B \Bg|. It aims at finding
a “best compromise” between the amount of false positives and false negatives.
In particular, we have B̂− ⊆ B̂∗ ⊆ B̂+. Also note that if Bg ∈ S, we have
B̂− = B̂∗ = B̂+. Surprisingly, this approach (by opposition to other symmetric
ones, involving Hausdorff distances for example, which may present high algo-
rithmic complexities) also leads to an algorithmic complexity O(|K|) (this claim
will be proved in further works).



Segmentation of Complex Images Based on Component-Trees 177

When a minimal set B̂ has been extracted from S, remains to determinate an
adequate set of nodes K̂ ⊆ K associated to B̂ (i.e. such that

⋃
X∈K̂ X = B̂). Let

Ĉ ⊆ K be the set defined by Ĉ = {X ∈ K; X ⊆ B̂} (note that the nodes of Ĉ
generate a set of subtrees of the component-tree (K, L, R) of Ig). The set B̂ can
be generated by any set of nodes K̂ ⊆ Ĉ verifying

⋃
X∈K̂ X =

⋃
X∈Ĉ X = B̂.

In order to determine such a set K̂, two main strategies can, in particular, be
considered.

– By setting K̂+ = Ĉ, any node included in B̂ is considered as a useful (i.e.
informative) binary connected component.

– By setting K̂− = {X ∈ Ĉ; ∀Y ∈ Ĉ, X �⊂ Y }, only the roots of the subtrees
induced by Ĉ are considered as useful binary connected components.

The first (resp. second) strategy is the one considering the largest (resp. smallest)
possible set of nodes/connected components among Ĉ; in particular, it can be
seen as the one which focuses at most on the grey-level (resp. binary) structure
of the ground truth image Ig. The choice of the strategy may then be directed
by the kind (binary vs. grey-level) of criteria/attributes to be considered.

Once a set of nodes K̂ has been defined from the whole set K (from one
or possibly several ground truth image(s)), the determination of the subset of
characterising knowledge ω ⊂ Ω has to be performed. Let A : K → Ω be the
function associating, to each node of the component-tree, its stored attribute.
The determination of ω can be expressed as a classification problem consisting in
partitioning Ω into two classes thanks to the samples A(K̂) = {A(N); N ∈ K̂}
(corresponding to the attributes of the structures of interest) and A(K \ Ĉ) =
{A(N); N ∈ K \ Ĉ}. This process can, for instance, be carried out by usual
classification tools (such as the Support Vector Machine (SVM) [18], which has
been considered in the experiments of the next section).

5 A Case Study – Angiographic Image Segmentation

Based on the framework described above, a strategy is being developed for seg-
menting 3-D angiographic data (namely phase contrast magnetic resonance an-
giographies - PC-MRAs). We propose hereafter a preliminary and simplified
description of this method, and we provide - for illustrative purpose - some ob-
tained results. A complete description of the final method (with full validations
and a larger set of involved attributes) will be found in dedicated further works.

PC-MRAs are bimodal images (Im, Ip) ∈ (V E)2 where Ip : E → V is the phase
(i.e. vascular) image while Im : E → V is the magnitude (i.e. morphological)
image, with E = [0..255]3 and V = [0..N ] ⊂ N (see Fig. 2(a,b)). The proposed
method is devoted to segment phase images Ip in order to extract the vessels
(and in particular to discriminate them from noise and artifacts).

In order to enable a correct segmentation of the vessels from such images,
three attributes have been considered: (i) the second Hu’s moment, (ii) an inertia
matrix-based elongation criterion, both computed from the component-tree of
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(a) (b) (c) (d)

Fig. 2. (a,b) Phase contrast magnetic resonance angiography (ground truth image
Ig): sagittal 2-D slices of the magnitude image Im (a) and of the phase image Ip

(b). (c,d) Ground truth segmentation Bg obtained from Ip: sagittal slice (c) and 3-D
visualisation (d).

(a) (b) (c)

Fig. 3. (a) Phase contrast magnetic resonance angiography: sagittal 2-D slice of the
phase image Ip. (b,c) Segmentation result (binary segmentation): sagittal 2-D slice (b)
and 3-D visualisation (c).

Ip, and (iii) the (signed) distance to the brain surface, computed from both Im

(used for brain surface extraction) and the component-tree of Ip.
From these three attributes (generating a parameter space Ω ⊂ R

3), a vascular
ground truth image Ig (Fig. 2(a,b)) and its segmentation Bg (Fig. 2(c,d)) have
been involved in a learning process based on the computation of the best binary
image B̂− w.r.t. the d− distance, and the computation of the corresponding set
of nodes K̂− (the choice of d− / B̂− is linked to the considered ground truth data
Ig for which Bg has been slightly oversegmented by the expert, while the choice
of K̂− is the result of experimental considerations). An (automatic) SVM classi-
fication process has then been applied on the set of binary connected components
of K̂− to determine an adequate set ω ⊂ Ω of attribute values. PC-MRA phase
images similar to Ig have then been segmented in a multiscale fashion by using
the attribute values of ω. It has to be noticed that the segmentation process (and
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then the learning step) have been performed at several scales (α = {1, 8, 64}),
and with a redundancy factor β = 2. The results have been obtained by fusing
the partial binary images in a binary fashion (Eq. (4) with λ = 1). An example
of these results is illustrated in Fig. 3. It can been observed that, despite the
presence of few false negatives, the obtained results globally present no artifacts
(i.e. no false positive). This constitutes a satisfactory and encouraging property
for the - difficult - analysis of such (non contrast-enhanced) data where vessels
and artifacts present similar intensities and are often connected.

6 Conclusion

A generic framework, based on image partitioning and automatic selection of rel-
evant structural elements from ground-truth data, has been proposed for the de-
velopment of segmentation methods relying on component-trees. Methods based
on this framework can automatically process complex images by use of poten-
tially large sets of knowledge, as illustrated by an application devoted to 3-D
angiographic data.

The concept of multiscale (i.e. spatial) decomposition has been explored. The
decomposition of the image signal will also be considered in further works, lead-
ing to multiresolution approaches, permitting to enrich the proposed framework.

From an applicative point of view, a more complete version of the vessel
segmentation method obtained from this framework, and introduced in Section
5 for illustrative purpose, will be described and fully validated in further works.
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