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Preface

The 9th ISMM conference covered a very diverse collection of papers, bound
together by the central themes of mathematical morphology, namely, the treat-
ment of images in terms of set and lattice theory. Notwithstanding this central
theme, this ISMM showed increasing interaction with other fields of image and
signal processing, and several hybrid methods were presented, which combine
the strengths of traditional morphological methods with those of, for example,
linear filtering. This trend is particularly strong in the emerging field of adaptive
morphological filtering, where the local shape of structuring elements is deter-
mined by non-morphological techniques. This builds on previous developments
of PDE-based methods in morphology and amoebas. In segmentation we see
similar advancements, in the development of morphological active contours.

Even within morphology itself, diversification is great, and many new areas
of research are being opened up. In particular, morphology of graph-based and
complex-based image representations are being explored. Likewise, in the well-
established area of connected filtering we find new theory and new algorithms,
but also expansion into the direction of hyperconnected filters. New advances
in morphological machine learning, multi-valued and fuzzy morphology are also
presented.

Notwithstanding the often highly theoretical reputation of mathematical
morphology, practitioners in this field have always had an eye for the practical.
Most new theoretical and algorithmic developments are driven by urgent needs
from practical applications. Thus many application areas are covered in this
volume, ranging from biomedical imaging, through materials science to satellite
imaging and traffic analysis. The development of standardized software packages
which make all the latest algorithms easily available to the image processing pro-
fessional is very much a part of this practical side of morphology.

Finally, we wish to thank all the members of the Program Committee for
their efforts in reviewing all submissions and giving extensive feedback, essential
to the quality and success of this conference.

June 2009 Michael Wilkinson
Jos Roerdink
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Discrete Driver Assistance

Reinhard Klette1, Ruyi Jiang2, Sandino Morales1, and Tobi Vaudrey1

1 The University of Auckland, Auckland, New Zealand
2 Shanghai Jiao Tong University, Shanghai, China

Abstract. Applying computer technology, such as computer vision in
driver assistance, implies that processes and data are modeled as be-
ing discretized rather than being continuous. The area of stereo vision
provides various examples how concepts known in discrete mathematics
(e.g., pixel adjacency graphs, belief propagation, dynamic programming,
max-flow/min-cut, or digital straight lines) are applied when aiming for
efficient and accurate pixel correspondence solutions. The paper reviews
such developments for a reader in discrete mathematics who is interested
in applied research (in particular, in vision-based driver assistance). As
a second subject, the paper also discusses lane detection and tracking,
which is a particular task in driver assistance; recently the Euclidean
distance transform proved to be a very appropriate tool for obtaining a
fairly robust solution.

Keywords: Discrete mathematics, driver assistance, stereo analysis, lane
detection, distance transform.

1 Vision-Based Driver Assistance

Driver assistance systems (DAS) are developed to (i) predict traffic situations,
(ii) adapt driving and car to current traffic situations, and (iii) optimize for
safety. Vision-based DAS applies one or multiple cameras for understanding the
environment, to help achieve goals (i-iii).

After specifying a processing model, possibly in continuous space, any specifi-
cation for its algorithmic use will depend on discrete mathematical models, such
as numerical algorithms [13], or concepts in discrete mathematics such as adja-
cency sets A(p) of pixels p, digital straight lines, or distance transforms, which
are examples from digital geometry [14]. Typically, continuous models are used
in motion analysis up to the moment when mapping those concepts into algo-
rithms, but matching techniques for multi-ocular vision typically already start
with a discrete model.

This paper is organized as follows: Section 2 describes techniques applied in
binocular correspondence analysis, followed by Section 3 with (further) illus-
trations of matching results in vision-based DAS. Lane detection via distance
transform is the subject of Section 4. A few conclusions are given in Section 5.

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 R. Klette et al.

2 Stereo Algorithms

Stereo algorithms are designed for calculating pairs of corresponding pixels in
concurrently recorded images. After calibration and rectification [6], images L
(left) and R (right) are in standard stereo geometry (i.e., parallel optical axes,
coplanar image planes, aligned image rows), defined on pixels of an M ×N grid
Ω. See Figure 1; the third view has been used in [17] for prediction error analysis.

Thus, stereo pixel correspondence is basically a 1D search problem, compared
to motion pixel correspondence (e.g., [10]) which is a continuous 2D search prob-
lem. Two corresponding pixels pL = (x, y) and pR(x−Δ(x, y), y) identify a dis-
parity Δ(x, y) which defines the depth bf/Δ(x, y), where b is the base distance
between both focal points, and f is the uniform focal length of both cameras
(after rectification). However, the search should also account for disparity con-
sistency between adjacent scan lines (e.g., between rows y, y − 1, and y + 1).

2.1 Data and Continuity Terms

This stereo matching problem is an instance of a general pixel labeling problem:
given is a finite set L of labels l, h, . . .; define a labeling Δ which assigns to each
pixel p ∈ Ω (in the base image; we assume L to be the base image) a label
Δp ∈ L. Consider a data term of penalties Dp(Δp) for assigning label Δp to
pixel p. The simplest data term is given by Dx(l) = |L(x, y) − R(x− l, y)|b, for
a fixed row y, 1 ≤ x ≤ M , and b either 1 or 2, assuming that image pairs are
photo-consistent (i.e., corresponding pixels have about the same value).

[7] compares various data terms within a the-winner-takes-all strategy: for
each pixel p = (x, y) in the left image, a selected data term is applied for all
potential matches q = (x − l, y) in the right image, for l ≥ 0; that l is taken
as disparity which defines a unique (within the whole row) minimum for this
cost function; if there is no such unique global minimum then the disparity at
p remains undefined. – For example, results in [7] indicate that the census cost
function seems to be very robust (w.r.t. image data variations) in general.

Fig. 1. One time frame of image sequences taken with three cameras (called: third, left,
and right camera - from left to right) installed in HAKA1, test vehicle of the .enpeda..
project. Note the reflections on the windscreen, and differences in lightness (e.g., image
of right camera is brighter than the other two). Left and right views are rectified.
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The minimization of the following energy (or: cost) functional E defines a
basic approach for solving the stereo matching problem:

E(Δ) =
∑
p∈Ω

⎛⎝Dp(Δp) +
∑

q∈A(p)

C(Δp, Δq)

⎞⎠ (1)

This functional combines a data term with a continuity term C(Δp, Δq), which
is often simplified to a unary symmetric function C(|Δp − Δq|), for assigning
labels Δq to adjacent pixels q ∈ A(p). Further terms may be added (e.g., for
occlusion, or ordering constraint). The continuity term assumes that projected
surfaces are piecewise smooth (i.e., neighboring pixels represent surface points
which are at about the same distance to the cameras). A convex function C
supports efficient global optimization, but leads to oversmoothed results [11].

Common choices for a unary continuity function are either a simple step
function (Pott’s model), a linear function, or a quadratic function, where the
latter two need to be truncated for avoiding oversmoothing. A simple choice is
also a two-step function, which penalizes small disparity changes at adjacent
pixels with a rather low weight (to allow for slanted surfaces), but penalizes
larger disparity changes with a higher weight.

Finding a global minimum Δ, which minimizes the energy in Equation (1), as-
suming a continuity function which is not enforcing some kind of over-smoothing,
is an NP-hard problem; see [15]. Purely local matching strategies (e.g., hierar-
chical correlation based methods) failed to provide reasonable approximate solu-
tions. Strategies favored recently follow some semi-global optimization scheme.

2.2 Semi-Global Paradigms for Sub-Optimal Solutions

Basically, current stereo algorithms follow one of the following three paradigms:
scanline optimization often implemented by (DP) dynamic programming [18],
(BP) belief propagation [3], or (GC) graph-cut [15]. These paradigms aim at
finding a sub-optimal solution to the stereo matching problem.

SGM using Scanline Optimization. Semi-global matching (SGM) is com-
monly identified with applying scanline optimization along several digital rays,
all incident with the start pixel p in the base image [9]. Original dynamic pro-
gramming stereo [18] was defined for energy minimization along a single scan
line. Assume that row y remains constant; matching aims at minimizing

Em(Δ) =
m∑

x=1

⎛⎝Dx(Δx) +
∑

x̂∈A(x)

C(Δx, Δx̂)

⎞⎠ with E(Δ) = EM (Δ) (2)

Value m defines the stage of the dynamic optimization process; when arriving
at stage m we have assignments of labels Δx, for all x with 1 ≤ x < m (possibly
excluding pixels close to the left border of the left image), and we have not yet
assignments for x ≥ m; we select Δm by taking that l ∈ L which minimizes

Dm(l) + C(l,Δm−1) + Em−1(Δ) (3)
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Fig. 2. Left: streaks in a single-line DP result (for left and right image as shown in
Figure 1). Right: visible search line patterns in the calculated depth map for 8-ray DP
using mutual information as cost function (also known as SGM MI).

(Obviously, the term Em−1(Δ) can be deleted for the minimization task.) At
m = 1 we only have Δ1 = 0, for m = 2 we may decide between l = 0 or l = 1,
and so forth. When arriving at stage x = M , we have an optimized value E(Δ)
(modulo the applied DP strategy); we identify the used labels for arriving at
this value by backtracking, from x = M to x = M − 1, and so forth.

Dynamic programming propagates errors along the used digital line; here,
this occurs along image rows, from left to right, resulting in horizontal streaks
in the calculated depth map. Disparities in adjacent pixels of the same line, or
in adjacent rows may be used to define a continuity term in the used energy
function for reducing this streak effect. A further option is to combine forward
DP also with the following backward DP strategy:

Em(Δ) =
M∑

x=m

⎛⎝Dx(Δx) +
∑

x̂∈A(x)

C(Δx, Δx̂)

⎞⎠ with E(Δ) = E1(Δ) (4)

where Δm is selected as that l ∈ L which minimizes

Dm(l) + C(l,Δm−1) + Em−1(Δ) + C(l,Δm+1) + Em+1(Δ) (5)

(Em−1(Δ) and Em+1(Δ) can be ignored again.) Obviously, this requires to pro-
ceed up to x = m with ‘normal’ DP both from left and from right, then combining
values along both digital rays into one optimized value Δm at x = m follow-
ing Equation (5). This increases the time complexity, compared to the simple
approach in Equation (3), and time-optimization is an interesting subject.

This double-ray approach was generalized to optimization along multiple dig-
ital rays [9], thus approximating the global (NP-complete; see above) solution.
For a digital ray in direction a, processed between image border and pixel p,
consider the segment p0p1 . . . pna of that digital ray, with p0 on the image bor-
der, and pna = p; the energy contribution along that ray at pixel p is defined via
scanline optimization as in Equation (3). All used digital rays a (ending at p) are
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assumed to have identical impact; the label at pixel p is obtained by generalizing
Equation (5); we assign that disparity l which minimizes

Dp(l) +
∑
a

[C(l,Δna−1) + Ena−1(Δ)] (6)

Labeling Δ in Equation (6) obtains thus a further value Δp at pixel p. Again,
all those Ena−1(Δ) can be deleted for minimization, and algorithmic time opti-
mization (say, scanline optimization along all lines at first, and then combining
results) leads to a feasible solution. [8] also includes a second-order prior into
the used energy function.

Belief Propagation. Belief propagation is a very general way to perform prob-
abilistic inference; the BP stereo matching algorithm in [3] passes messages (the
“belief” which is a weight vector for all labels) around in a 4-adjacency image
grid. Message updates are in iterations; messages are passed on in parallel, from
a pixel to all of its 4-adjacent pixels. At one iteration step, each pixel of the ad-
jacency graph computes its message based on the information it had at the end
of the previous iteration step, and sends its (new) message to all the adjacent
pixels in parallel.

Let mi
q→p denote the message send from pixel q to adjacent pixel p at iteration

i, defined for all l ∈ L as follows:

mi
q→p(l) = min

h∈L

⎛⎝C(h, l) + Dq(h) +
∑

r∈A(q)\p

mi−1
r→q(h)

⎞⎠ (7)

l is just one of the |L| possible labels at p, and h runs through L and is again just
a possible label at q. We accumulate at p a vector of length |L| of all messages
received from all q ∈ A(p), and this contains at its position l ∈ L the following:

Dp(l) +
∑

q∈A(p)

mi
q→p(l) (8)

Besides Dp(l), we also have the sum of all the received message values for l ∈
L. Instead of passing on vectors of length |L|, a belief propagation algorithm
typically uses |L| message boards of the size of the images, one board for each
label l. At the end of an iteration t, that disparity with minimum cost is selected
as being the result for pixel p ∈ Ω.

BP fails in cases of photometric inconsistencies between left and right image;
[5] showed that some edge preprocessing of both images is of benefit, and [19]
performed a systematic study which shows the residual images (rather than orig-
inal input images) carry the important information for correspondence analysis.

Graph-Cut. Consider 4-connected pixels of the base image; this defines an
undirected graph (Ω,A) with nodes Ω and edges A. Assume two additional
nodes s and t, called source and sink, respectively, with directed edges from s
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Fig. 3. Left: BP result (for left and right image as shown in Figure 1). Right: GC
result.

to all the nodes in Ω, and from those nodes to t. This defines altogether an
undirected graph G = (Ω ∪ {s, t}, A ∪ {s} ×Ω ∪Ω × {t}). Edges in this graph
are weighted by w(p, q) (continuity values to undirected edges and data values
to undirected edges), also called capacities.

An (s, t)-cut of G is a partition of Ω ∪{s, t} into subsets S and S, with s ∈ S
and t ∈ S. The energy E(S) of such an (s, t)-cut is the sum of all weights of
edges connecting S with S:

E(S) =
∑

p∈S,q∈S,{p,q}∈A

w(p, q) (9)

A minimum (s, t)-cut is an (s, t)-cut with minimum energy. Ford and Fulkerson
(see [4]) proved that the calculation of a minimum cut is equivalent to the calcu-
lation of a maximum flow; the calculation of a min-cut is commonly implemented
via calculating a max-flow. Used algorithms have about O(n4) worst case run
time, but run in practice in about O(n3) expected time or better.

Let Δ be a labeling of Ω. Any α-expansion of Δ into Δ′ satisfies that

Δ′
p �= Δp =⇒ Δ′

p = α

for every pixel p ∈ Ω. The following expansion-move algorithm is a greedy algo-
rithm which runs in practice in near-linear time:

start with an arbitrary labelling Δ on Ω;
do { success := false;

for each label α ∈ L {
calculate the minimum-energy α-expansion Δ′ of Δ;
if E(Δ′) < E(Δ) then { Δ := Δ′; success := true} } }

until success = false;
return Δ

The calculation of the minimum-energy α-expansion is performed by applying
a min-cut (meaning, via max-flow) algorithm. An α-extension either keeps an
old label Δp or assigns the new label α; this defines a partition of the graph
into set S (old label) and S (new label). Equation (9) defines the energy for this
partitioning (labeling). See, for example, [1] for more details.
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3 Improving Stereo Results by Preprocessing

Obviously, the illustrated resulting depth maps are not satisfactory for DAS.
Errors are often due to varying illumination conditions or other real world imag-
ing effects, and this is different to studies using only ideal images taken indoors
or under controlled conditions. The paper [19] identified residual images as a
promising type of input data for stereo or motion correspondence algorithms.

3.1 Edge Operators

Earlier than [19], the paper [5] studied the effect of edge-preprocessing on stereo
matching, showing that edge-preprocessed input data improve resulting depth
maps in general, especially when applying BP.

Fig. 4. Top: Sobel edge maps of the left-right stereo pair in Figure 1, used as stereo
input pair. Middle: depth maps of single line DP (left) and Birchfield-Tomasi cost
function in 8-ray DP (also known as SGM BT). Bottom: BP (left) and GC results.
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Figure 4 shows four resulting depth maps for the left-right stereo pair in
Figure 1, but after applying the (3 × 3) Sobel edge operator. In case of 8-
path DP, the use of the Birchfield-Tomasi cost function (SGM BT) shows better
results compared to the use of mutual information (SGM MI). – Edge images are
high-frequency components of images, and the same is true for residual images.

3.2 Residual Images

We consider an image I as being a composition I(p) = s(p) + r(p), for p ∈ Ω,
where s = S(I) denotes the smooth component and r = I − s the residual. We
use the straightforward iteration scheme:

s(0) = I, s(n+1) = S(s(n)), r(n+1) = I − s(n+1), for n ≥ 0.

Fig. 5. Top: residual images using 40 iteration of 3×3 mean, used as stereo input pair.
Middle: depth maps of single line DP (left) and Birchfield-Tomasi cost function in 8-ray
DP (also known as SGM BT). Bottom: BP (left) and GC results.
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Figure 4 shows four resulting depth maps for the left-right stereo pair in Figure 1,
but on the residual images defined by a 3×3 mean operator and n = 40 iterations.

As a general conclusion, single-line DP is quite robust and provides a fast and
approximate depth map (“a good draft”, and some kind of temporal or spatial
propagation of results might be useful [16]), SGM-BT fails absolutely on original
data but seems to perform better than SGM-MI on preprocessed images, BP is
highly sensitive to illumination changes, and improves very nicely when using
optimized parameters on preprocessed input data, and GC also improves on
preprocessed input data.

4 Lane Detection and Tracking

Lane detection and tracking has been a successful research subject in DAS. [12]
reviews briefly related work in vision-based DAS and discusses a new lane model,
also providing two algorithms for either time-efficient or robust lane tracking (to
be chosen in dependency of current road situation).

4.1 Bird’s-Eye View and Edge Detection

The proposed lane detection and tracking algorithms work on a single image
sequence. However, the figures show results for both stereo sequences in paral-
lel, illustrating this way the robustness of the method with respect to different
camera positions.

The process starts with mapping a given image into a bird’s-eye view (i.e., a
homography mapping a perspective image into an orthographic top-down view),
based on calibrated projections of corners of a rectangle in front of the car; see
Figure 6 for two resulting bird’s-eye views. This is followed by an edge detection
method which aims at detecting vertical step edges (such as lane marks) rather
than horizontal edges; small artifacts are eliminated from these binarized edge
images which would otherwise disturb the subsequent distance transform.

Fig. 6. Bird’s-eye views (for left and right image as shown in Figure 1)
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Fig. 7. Detected edges (top) and RODT results (bottom). Both for bird’s-eye views as
shown in Figure 6. In RODT, dark = low distance, white = high distance.

4.2 Distance Transform and Lane Tracking

Consider a distance transform, applied to a binary edge map, which labels every
pixel p ∈ Ω by its shortest distance to any edge pixel; see, for example, [14], for
distance transforms in general. Experiments have been performed with various
kinds of distance transforms, and preference was given to the Euclidean distance
transform (EDT). For example, [2] proved that a 2D EDT can efficiently be
calculated by two subsequent 1D EDT. (The developed procedure for calculating
lower envelops is also applicable for calculating lower envelops in a BP algorithm
while using a truncated quadratic continuity function.)

[20] suggested the orientation distance transform (ODT) which separates EDT
values into a row and a column component, represents as complex numbers. We
use the real (i.e., row) part of the ODT. See Figure 7 for binary input edge
maps and resulting RODT (i.e., real ODT) maps, where gray values increase
with measured distance.

In a predefined start row (near to the image’s bottom) we identify a left
and right boundary point for the current lane based on the calculated RODT
values; these two boundary points initialize a particle filter for lane detection.
The subsequent lane tracking module applies either an efficient (but less robust;
designed for good road conditions), or a robust (but less efficient) algorithm.

Figure 8 shows final results of lane detection (using robust method), for left
and right sequence. Some kind of unification might be considered; however,
our experience shows that the method performs very robust on a single image
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Fig. 8. Detected lanes (for left and right image as shown in Figure 1), illustrating
robustness of the technique (i.e., independence of camera position)

sequence. Both tracking algorithms are operating in the bird’s-eye views, and
both are using results of the RODT for evaluating possibilities of finding lane
boundaries.

The RODT not only provides information about the expected centerline of a
lane but also about lane boundaries. However, it takes slightly more computa-
tion time than the total for generating the bird’s-eye view, edge detection, and
removal of artifacts.

5 Conclusions

This paper informs the reader about a few subjects where discrete mathematics
have met program development in recent vision-based DAS, and proved to be
very useful for defining fairly efficient, accurate or robust techniques. The dis-
cussed stereo techniques have been proposed elsewhere, and we provided a brief
and uniform presentation, together with experimental illustration. The lane de-
tection and recognition solution was reported in [12]. Vision-based DAS is ex-
pected to move further ahead, from low-level stereo and motion analysis into
advanced subjects for understanding complex traffic scenes, and further interac-
tions with discrete mathematics are certainly coming this way.
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Abstract. The emergence of new data in multidimensional function lat-
tices is studied. A typical example is the apparition of false colours when
(R,G,B) images are processed. Two lattice models are specially analysed.
Firstly, one considers a mixture of total and marginal orderings where
the variations of some components are governed by other ones. This con-
straint yields the “pilot lattices”. The second model is a cylindrical polar
representation in n dimensions. In this model, data that are distributed
on the unit sphere of n−1 dimensions need to be ordered. The proposed
orders, and lattices are specific to each image. They are obtained from
Voronoi tesselation of the unit sphere The case of four dimensions is
treated in detail and illustrated.

1 Introduction

When one takes the supremum of two numerical functions f and g, the resulting
function f ∨ g may largely differ from the two operands, though at each point x
the supremum (f∨g)(x) equals either f(x) or g(x). In multidimensional cases, the
situation becomes worse. If our two functions now represent colour vectors, their
supremum at point x may be neither f(x) nor g(x). A false colour is generated.
This parasite phenomenon, due to the multidimensionality of our working space,
appears therefore when dealing with satellite data, or with the composite data
of the geographical information systems.

The present study aims to analyze, and, if possible, to control the phe-
nomenon. In such matter one rarely finds a unique good solution, but usually
several attempts, more or less convincing. In this respect, the case of colour im-
agery, and the associated lattices, turns out to be an excellent, and very visual,
paradigm for multidimensional situations. It has motivated many approaches,
from which one can extract the three following themes.

The first theme deals with the advantages and disadvantages of a total or-
dering for multivariate data. For some authors, this ordering seems to be an
absolute requirement, which should be satisfied by lexicographic means [5] [14].
By so doing, one favours the priority variable to the detriment of the second,
and so on. By reaction, other authors observe that total ordering in R1 has the
two different finalities of i) locating the extrema, and ii) defining distances be-
tween grey levels. When passing from grey to colour, i.e. from R1 to R3, it may
be advantageous to dissociate the two roles. Numbers of markers can replace

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 13–23, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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extrema, and numbers of distances can describe vector proximity. This point
of view, clearly explicit in [8], led A.Evans and D.Gimenez to remarkable con-
nected filters for colour images, and F. Meyer to a watershed algorithm for colour
images [11].

However, a total ordering is sometimes necessary, e.g. when we work in a space
for which hue is not a coordinate. As we saw, in the usual product lattice R ×
G×B, the supremum of two triplets (r, g, b) may have a hue different from that of
the two operands. One could argue that it suffices to take cylindrical coordinates,
i.e. to replace R,G,B by L, S,H (for luminance, saturation, hue), equipped with
a correct norm, such as L1 or max−min [1], to bring down the objection, since
the hue is then directly under control. But this solution ignores that the higher
is saturation, the more hue is significant. If the pixel with the highest hue has
also a low saturation, the former is practically invisible, though it can be strongly
amplified by a product of suprema, just as if it was a false colour. In conclusion,
let us say that the matter is less keeping or not a total ordering than ensuring that
some variables must not be treated separately. For example, we could demand that
the hue of the supremum be that of the pixel with the highest saturation. Then
the latter “pilots” the hue, hence the name of this ordering, and of the associated
lattices. They are studied below in section 3.

Now, when passing from the Euclidean representation R,G,B to a polar
system such as L, S,H , we introduce new drawback. On the unit circle, the
hue ordering is not only arbitrary, but also the cause of a strong discontinuity
between violet and red. How to master this parasite effect? One can imagine
several strategies. For example, we may restrict ourselves to use increments only
[9], or we may take several origins for the hue, according to its histogram, as
proposed by E.Aptoula and S.Lefèvre in [3], [4]. We may make the hue depend
on some neighborhood around each pixel, and not on the whole image, etc.. For
multivariate data in n dimensions, the same problem reappears, now on the unit
sphere in Rn. Section 4 below proposes to segment this unit sphere by means of
Voronoi polyhedra, which generalizes the method of Aptoula and Lefèvre .

Finally the third theme, typical of multivariate data, consists in using some
variables for mixing the segmentations of other ones. For example, P. Soille con-
siders a hierarchy of partitions and extracts at each level the classes that satisfy
a constraining criterion [13]. The quaternions algebra offers another way, inves-
tigated by T.A. Ell and S.J. Sangwine [7] for Fourier transform of colour images,
where the real axis is particularized. In [1] J.Angulo and J. Serra segment sepa-
rately the three grey images H,L, and S, and then keep either hue or luminance
segmentation, according as saturation is high or low. This mode of classification
is extended to more dimensions in the example of remote sensing presented in
section 6.

The three above themes lie on the implicit assumption of finiteness of the
data sets, as they resort to Proposition 2 below. But the usual working spaces
R2 and Z2 are not finite. How to reconcile the two points of view? This initial
mathematical step will be the matter of the next section.
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2 Lattices of Finite Parts

Proposition 2 imposes we restrict ourselves to finite families of points only. But
if we take for framework a given finite part of Rn or Zn, we have to renounce to
translation invariance, hence to Minkowsli operations. Observe however that the
problem is not working with the subsets of a finite set, but working with finite
sets that remain finite under the operations that transform them.

Set case. A good way for expressing this idea consists in starting from an arbi-
trary set E, possibly finite, countable, or even continuous, and focusing on its
finite parts exclusively. As they are closed under intersection, with ∅ as smallest
element, we just need to provide them with a universal upper-bound, namely E
itself, for obtaining a complete lattice. Hence we can state [12].

Proposition 1. Set lattice of finite parts (LFP): Let E be a set, and let X ′

be the class of its finite parts. The set X = X ′ ∪ E forms a complete lattice for
inclusion ordering, where, for every family {Xi, X ∈ X , i ∈ I}, possibly infinite,
the infimum ∧Xi and the supremum ∨Xi are given by

∧Xi = ∩Xi,

∨Xi = ∪Xi when ∪Xi is upper-bounded by an element of X ′,
∨Xi = E when not.

Class X is closed under infimum, since even when I is the empty family, we have
that ∧{Xi, i ∈ ∅} = E ∈ X . Proposition1 applies for sets of points with integer
coordinates in Zn or in Rn, as well as for infinite graphs.
Function case. Before extending Proposition 1 to numerical functions, we recall
a classical result on ordered sets.

Proposition 2. Let T be an ordered set. Every finite family {ti, i ∈ I} ∈ T
admits a supremum ∨ti and an infimum ∧ti which are themselves elements of
the family iff the ordering of T is total.

The proposition cannot be generalized to countable families, even neither to
finite families when the ordering is partial only (e.g. R×G×B colour space). In
the following, the set T of Proposition 2 is a numerical lattice, and corresponds
to the arrival space of the functions under study. It may be R̄, or a closed part
of R̄, or Z̄, or any subset of Z̄. The two universal bounds of T are denoted by
M0 and M1. As we did for P(E) with Proposition 1, we can associate with T a
finite lattice T . It suffices to put, for any family {tj, j ∈ J} in T , that

�{tj , j ∈ J} = ∧tj when Card(J) < ∞, and � {tj, j ∈ J} = M0 when not,
�{tj , j ∈ J} = ∨tj when Card(J) < ∞, and � {tj, j ∈ J} = M1 when not.

Lattice T is made of all finite families of numbers, plus M0 and M1. Consider
now the class F of all functions f : E → T with a finite support. Finiteness
must hold not only on the support of f and on f(x), but also on the number
of values taken at point x by any family fj ∈ F . This constraints lead to the
following function lattice [12].
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Proposition 3. Function lattice of finite parts : the class F of functions f :
E → T with finite extrema and finite support forms a complete lattice for the
pointwise numerical ordering. At point x ∈ E the infimum � and the supremum
�of a finite or not family {fj, j ∈ J} in F , are given by the expressions

( � {fj, j ∈ J})(x) = ∧fj(x) when x ∈ ∩Xj, and card J are finite,
( � {fj, j ∈ J})(x) = M0 when not;
( � {fj, j ∈ J})(x) = ∨fj(x) when x ∈ ∪Xj ⊆ X ′, and card J are finite,
( � {fj, j ∈ J})(x) = M1 when not.

Lattice F , and its multidimensional versions, are shared by all models we develop
from now on, even when it is not explicitly recalled.

3 Pilot Lattices

This section is devoted to the first theme met in introduction, and to its conse-
quence on “false colours”. We now work in the n dimensional space T (n), n < ∞.
Its elements are the ordered sequences of n real numbers called components. The
space T (n) can welcome many ordering relations leading to complete lattices,
two extreme representatives of which being the marginal ordering and the lexi-
cographic one. The first one is the product ordering of each component, and the
second one describes a route over the whole space, where the first component is
prioritary, then the second, the third, etc..If t1, t2 ∈ T (n), with t1 = (t11, t12, ...t1n),
and t2 = (t21, t

2
2, ...t

2
n), we get

– for the marginal ordering:

t1 ≤ t2 iff t1i ≤ t2i , 1 ≤ i ≤ n

hence
∨{tj , j ∈ J} = (∨tj1,∨t

j
2, .. ∨ tjn), j ∈ J.

When family J is finite, each component of the supremum is a tji , (Proposition
2), but taken from a point j that may be different for each component.

– for the lexicographic ordering

t1 ≤ t2 iff ∃i such that t1i < t2i and j < i imply t1j = t2j (1)

In other words, the order is obtained by comparing the leftmost coordinate on
which the vectors differ. The ordering being now total, the supremum ∨{tj , j ∈
J} of any finite family J is one of its elements tj = (tj1, t

j
2, ..t

j
n) with all its

components (Proposition 2).
The pilot structures take place between these two extremes. T (n) be a n-

numerical space, and let a partition of T (n) into k complementary sub-spaces.
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Definition 1. . Let {T (n)
s ,1 ≤ s ≤ k} be a family of function lattices of finite

parts that are totally ordered. Their direct product, endowed with the marginal
ordering is called Pilot lattice.

The pure marginal case is obtained for k = n, and the total ordering for k = 1.
Except for marginal ordering, the supremum and infimum of any family always
involve several components of some same elements of the family. Therefore they
do not ensure us to completely preserve the initial data, but some of their
components only. The next section gives examples of pilot lattices.

4 Polar Ordering in Rn

We now develop the second theme pointed out in introduction. The idea is now
to build a pilot lattice for cylindrical coordinates in Rn, where the unit sphere
be equipped with a significative total ordering [12].

Luminance and saturation. Colour polar representations are of cylindric type
in R3. The main diagonal stands for the cylinder axis, and its basis is given by
the chromatic disc. The colour point (r, g, b) is projected in xl on the axis, and
in xs on the base, and the so-called polar representations consist in various
quantizations of these two projections. The generalization to Rn is straightfor-
ward. Let (x1...xn) be the multispectral coordinates of point x, and xl (resp. xs)
be its projection on the main diagonal D (resp. on the plane Π orthogonal to
D passing by the origin O). Introduce the mean m = 1

n

∑
xi. Point xl has all

its coordinates equal to m. As for point xs, its coordinates satisfy the equation∑
xs

i = 0, because vectors Oxl and Oxs are orthogonal, and also the n − 1
equations

x1 − xs
1 = x2 − xs

2 = · · · = xn − xs
n,

telling that x is projected parallel to the main diagonal. Hence,

xs
i =

1
n

[(n− 1)xi −
n−1∑

1

xs
i ] = xi −m 1 ≤ i ≤ n. (2)

According to the chosen norm, such as L1 or L2, the “luminance” (resp. the
“saturation”) is given by the average of the absolute values, or the quadratic
average of the coordinates of xl (resp. xs). In the “chromatic” plane Π , vector xs

is expressed in spherical coordinates, i.e. by one module (the saturation) and by
n− 2 directions (the hues), since n− 2 angles α1...αn−2 are needed for locating
a point on the unit sphere Sn−1 in n− 1 dimensions.

Hues. We purpose to construct a pilot lattice from the product of three total
orderings on luminance, saturation and hues. For the first two ones, which are
energies, a usual numerical lattice is convenient. It remains to model the hues.
Aptoula-Lefèvre ordering [3], [4] can be generalized as follows.

Let {cj, 1 ≤ j ≤ k} be a finite family of poles on Sn−1, of coordinates cj
i ,

1 ≤ i ≤ n − 1. Just as in two dimensions, we use the notation c ÷ cj to indicate
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the value of the acute angle cOcj (i.e. ≤ π) between point c and pole cj . Take, on
the unit sphere Sn−1, the Voronoï polygons w.r. to poles cj , and assign for each
point of the sphere the distance to its closest pole. In case of several equidistant
poles, a priority rule allows to decide between them: conventionally c1 prevails
over c2, which prevails over c3 etc.. Finally, in case of two points equidistant from
a same pole α, we iterate the process in the unit sphere Sn−2 orthogonal axis Oα,
and possibly in Sn−3 etc., until we find an angle inequality. Then we say that c is
closer to its pole than c′ is closer to its own one, and we write c � c′ when

either min
j

{c÷ cj} < min
p

{c′ ÷ cp} 1 ≤ j, p ≤ k, (3)

or min
j

{c÷ cj} = c÷ cj0 = min
p

{c′ ÷ cp} = c′ ÷ cp0 and j0 > p0, (4)

or min
j

{c÷ cj} = c÷ cj0 = min
p

{c′ ÷ cp} = c′ ÷ cj0 and iteration in Sn−2. (5)

The last condition may seem complicated, but it considerably simplifies in
the useful case or R4. The three conditions classify points on the unit sphere
according a total ordering based on angular interval, which can be replaced by
any angular distance. The physical meaning here is the same as the resemblance
to reference hues in the colour case.

Finally, we have in hand three finite total orderings: two numerical ones for
luminance and saturation, plus ordering � for the hues. Propositions 1 and 3
apply, and provide the multivariate data with a pilot lattice.

Choice of the initial data. Formally speaking, this pilot lattice allows us to
segment in a space with more than 100 dimensions as those that occur in satellite
imagery [6]. However, the strong redundancy of the bands makes that processing
cumbersome. Indeed, one rarely finds, in literature on remote sensing, image
processing involving more than 4 principal components. On the other hand, the
situation is now different from the colour case, as the first component is by
construction the most important one. Therefore, it seems more appropriate to
consider it as the main diagonal (the “grey tones”).

Case of four components. We now develop in detail the four dimensional case,
when the first components of a multi-spectral image are w, x, y, z . The first prin-
cipal component w is chosen as the luminance, and describes the main diagonal
in R4. The coordinates of the luminance and saturation vectors are given by

xl = (w, 0, 0, 0) and xs = (0, x, y, z)

with x, y, z ≥ 0. Hyperplane Π is nothing but the space R3, and the polar cylin-
dric coordinates in Π nothing but the usual spherical ones of R3. This context
suggests to adopt the L2 norm, since then the expressions of the saturation and
of the two hues are those of the module ρ, the colatitude θ and the longitude ψ
of the usual spherical coordinates in R3, i.e.

ρ =
√
x2 + y2 + z2 (6)

cos θ =
z

ρ
, cosψ =

x

ρ sin θ
, sinψ =

y

ρ sin θ
. (7)
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Fig. 1. Polar coordinates (ρ, θ, ψ) of point c, itself projection cp of a point in R4

Both colatitude θ and longitude ψ vary from 0 to π
2 since x, y, z ≥ 0. These

angles are depicted in Fig.1. Let {cj, 1 ≤ j ≤ k} be k poles on the unit sphere,
ordered by decreasing priorities, and with coordinates cj = (xj , yj , zj).

The angle cOcj between point c and pole cj is bounded by 0 and π/2. One
obtains it from the scalar product of the two vectors c and cj

cos(cOcj) =
〈
c, cj

〉
=

xxj + yyj + zzj

ρρj
. (8)

This relation allows us to re-formulate the first two relations (3) and (4) of the
hue ordering in a simpler manner. We have c � c′ when

either min
j

{
〈
c, cj

〉
} > min

p
{〈c′, cp〉} 1 ≤ j, p ≤ k, (9)

or min
j

{
〈
c, cj

〉
} =

〈
c, cj0

〉
= min

p
{〈c′, cp〉} = 〈c′, cp0〉 and j0 < p0. (10)

The third relation (5) corresponds to the case when c and c′ are equidistant
to their closest pole cj0 . Then they can be ordered by increasing longitudes ψ.
Finally, if ψ(c) = ψ(c′), what happens when c, c′, and cj0 lie in a same vertical
plane of passing by 0z, the ordering is completed by increasing colatitudes:

minj{
〈
c, cj

〉
} =

〈
c, cj0

〉
= minp{〈c′, cp〉} =

〈
c′, cj0

〉
and

either ψ(c) < ψ(c′)
or ψ(c) = ψ(c′) and θ(c) < θ(c′).

(11)

The three relations (9) to (11) provide the unit sphere of R3 with a total ordering
representing the chosen poles, and which is easy to compute. In the simpler case
of a unique pole α it suffices to take it as north pole, and to take the sum θ +ψ
for Voronoi distance (see below).

5 4-D Segmentations of “Pavie” Image

The image under study, kindly provided by J. Chanussot, represents the univer-
sity of Pavia. It is composed of 103 bands from 0.43 to 0.86 micrometers. It has
already been studied and classified [6]. The first principal component is depicted
in Fig.3a, and the three next ones in Fig.2. Their variances are 64.84%, 28.41%,
5.14%, and 0.51% respectively.
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Fig. 2. Principal components n◦ 2, 3, and 4 of “Pavia” image

Fig. 3. a) First principal component of “Pavia” image; b) saturation R4; c) sum of the
hues on the unit sphere of R3



The “False Colour” Problem 21

Fig. 4. Histogram of “Pavia” saturation ρ in R4 (left), and bidimensional histogram of
the two hues θ and ψ(right)

Fig. 5. Composite segmentations from the three (R3) or four (R4) first principal com-
ponents of “Pavie”

The first component is the axis for polar cylindrical coordinates in R4. In the
perpendicular R3 space, saturation is given by the vector module ρ of Rel.6,
and depicted in Fig.3b. Fig.4, left, depicts its histogram. It is unimodal, and
its threshold at 180, for separating the zones of more representative hue, versus
luminance, was set from the images themselves. The 2-D histogram of the two
hues θ and ψ (Fig.4, right) is sufficiently unimodal for extracting the single pole
of θ = 159 and ψ = 162, indicated in white on the histogram. By taking for
distance on the unit sphere the sum of the distances according θ and ψ, with θ
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prioritary, we establish a total ordering Ohue on the unit sphere. It results in a
unique hue, represented in Fig.3c. The whole 4-D lattice is given by the product
Tlum ⊗ Tsat ⊗Thue where Thue is the lattice associated with Ohue.

The composite segmentation is performed according to the technique already
presented in [1]. The luminance of Fig. 3a is segmented by iterated jumps
(jump=25) and merging of small particles fusion (area ≤5), Similarly the hue
of Fig. 3c is segmented by jumps of 35, and merging 5. Saturation ρ of Fig. 3b
is used as a local criterion for choosing between the partitions of the luminance
and of the hue. The final composite partition is depicted in Fig.5. By comparing
with the same technique applied to the first three components only, we observe
that the fourth dimension allowed us to segment several supplementary details,
in particular in the bottom of the image.

6 Conclusion

A technique for piloting some variables by another ones in multivariable lattices
has been proposed. It led us to establish total orderings on the unit sphere
that are significative in remote sensing. One can probably free oneself from the
discrete assumption, by modelling all numerical variable by Lipschitz functions.
Applications of the method to GIS problems are foreseen.
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Abstract. Bipolarity is an important feature of spatial information, in-
volved in the expressions of preferences and constraints about spatial
positioning, or in pairs of “opposite” spatial relations such as left and
right. Imprecision should also be taken into account, and fuzzy sets is
then an appropriate formalism. In this paper, we propose to handle such
information based on mathematical morphology operators, extended to
the case of bipolar fuzzy sets. The potential of this formalism for spatial
reasoning is illustrated on a simple example in brain imaging.

Keywords: bipolar spatial information, fuzzy sets, spatial relations,
bipolar fuzzy dilation and erosion, spatial reasoning.

1 Introduction

Spatial reasoning includes two main aspects: knowledge representation, concern-
ing spatial entities and spatial relations, and reasoning on them. In this paper,
we consider both imprecision and bipolarity of spatial information. Imprecision
should be taken into account to represent vague knowledge about spatial posi-
tions or spatial relations (typically directional relations such as left and right) [1].
Bipolarity is important to distinguish between (i) positive information, which
represents what is guaranteed to be possible, for instance because it has already
been observed or experienced, and (ii) negative information, which represents
what is impossible or forbidden, or surely false [2]. The intersection of the posi-
tive information and the negative information has to be empty in order to achieve
consistency of the representation, and their union does not necessarily cover the
whole underlying space, i.e. there is no direct duality between both types of
information, leaving room for indifference or indetermination. In this paper, we
consider bipolarity of spatial information and propose to handle it as bipolar
fuzzy sets (Section 2) using mathematical morphology operators, extended to
these representations (Section 3). Some additional properties are included with
respect to our previous work [3,4]. We then present some examples of spatial
reasoning in Section 4, as the main contribution of this paper.

2 Bipolar Fuzzy Sets

Let S be the underlying space (the spatial domain for spatial information pro-
cessing), that is supposed to be bounded and finite here. A bipolar fuzzy set on
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S is defined by a pair of functions (μ, ν) such that ∀x ∈ S, μ(x) + ν(x) ≤ 1. For
each point x, μ(x) defines the membership degree of x (positive information) and
ν(x) the non-membership degree (negative information), while 1 − μ(x) − ν(x)
encodes a degree of neutrality, indifference or indetermination. This formalism al-
lows representing both bipolarity and fuzziness. Concerning semantics, it should
be noted that a bipolar fuzzy set does not necessarily represent one physical
object or spatial entity, but rather more complex information, potentially issued
from different sources.

Let us consider the set L of pairs of numbers (a, b) in [0, 1] such that
a + b ≤ 1. It is a complete lattice, for the partial order defined as [5]:
(a1, b1) � (a2, b2) iff a1 ≤ a2 and b1 ≥ b2. The greatest element is (1, 0) and
the smallest element is (0, 1). The supremum and infimum are respectively
defined as: (a1, b1) ∨ (a2, b2) = (max(a1, a2),min(b1, b2)), (a1, b1) ∧ (a2, b2) =
(min(a1, a2),max(b1, b2)). The partial order � induces a partial order on the set
of bipolar fuzzy sets:

(μ1, ν1) � (μ2, ν2) iff ∀x ∈ S, μ1(x) ≤ μ2(x) and ν1(x) ≥ ν2(x), (1)

and infimum and supremum are defined accordingly. It follows that, if B denotes
the set of bipolar fuzzy sets on S, (B,�) is a complete lattice.

3 Bipolar Fuzzy Erosion and Dilation

Mathematical morphology on bipolar fuzzy sets has been first introduced in [3].
Once we have a complete lattice, as described in Section 2, it is easy to define
algebraic dilations and erosions on this lattice, as operators that commute with
the supremum and the infimum, respectively [3]. Their properties are derived
from general properties of lattice operators. If we assume that S is an affine space
(or at least a space on which translations can be defined), it is interesting, for
dealing with spatial information, to consider morphological operations based on a
structuring element. We detail the construction of such morphological operators,
extending our preliminary work in [3,4].

Erosion. As for fuzzy sets [6], defining morphological erosions of bipolar fuzzy
sets, using bipolar fuzzy structuring elements, requires to define a degree of inclu-
sion between bipolar fuzzy sets. Such inclusion degrees have been proposed in the
context of intuitionistic fuzzy sets [7], which are formally (although not semanti-
cally) equivalent to bipolar fuzzy sets. With our notations, a degree of inclusion
of a bipolar fuzzy set (μ′, ν′) in another bipolar fuzzy set (μ, ν) is defined as:

inf
x∈S

I((μ′(x), ν′(x)), (μ(x), ν(x))) (2)

where I is an implication operator. Two types of implication can be defined [7],
one derived from a bipolar t-conorm ⊥1:
1 A bipolar disjunction is an operator D from L×L into L such that D((1, 0), (1, 0)) =
D((0, 1), (1, 0)) = D((1, 0), (0, 1)) = (1, 0), D((0, 1), (0, 1)) = (0, 1) and that is in-
creasing in both arguments. A bipolar t-conorm is a commutative and associative
bipolar disjunction such that the smallest element of L is the unit element.
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IN ((a1, b1), (a2, b2)) = ⊥((b1, a1), (a2, b2)), (3)

and one derived from a residuation principle from a bipolar t-norm �2:

IR((a1, b1), (a2, b2)) = sup{(a3, b3) ∈ L | �((a1, b1), (a3, b3)) � (a2, b2)} (4)

where (ai, bi) ∈ L and (bi, ai) is the standard negation of (ai, bi).
Two types of t-norms and t-conorms are considered in [7] and will be consid-

ered here as well:

1. operators called t-representable t-norms and t-conorms, which can be ex-
pressed using usual t-norms t and t-conorms T from the fuzzy sets theory [8]:

�((a1, b1), (a2, b2)) = (t(a1, a2), T (b1, b2)), (5)

⊥((a1, b1), (a2, b2)) = (T (a1, a2), t(b1, b2)). (6)

2. Lukasiewicz operators, which are not t-representable:

�W ((a1, b1), (a2, b2)) = (max(0, a1 + a2− 1),min(1, b1 +1− a2, b2 +1− a1)),
(7)

⊥W ((a1, b1), (a2, b2)) = (min(1, a1 + 1− b2, a2 + 1− b1),max(0, b1 + b2 − 1)).
(8)

In these equations, the positive part of �W is the usual Lukasiewicz t-norm of a1
and a2 (i.e. the positive parts of the input bipolar values). The negative part of
⊥W is the usual Lukasiewicz t-norm of the negative parts (b1 and b2) of the input
values. The two types of implication coincide for the Lukasiewicz operators [5].

Based on these concepts, we can now propose a definition for morphological
erosion.

Definition 1. Let (μB, νB) be a bipolar fuzzy structuring element (in B). The
erosion of any (μ, ν) in B by (μB , νB) is defined from an implication I as:

∀x ∈ S, ε(μB ,νB)((μ, ν))(x) = inf
y∈S

I((μB(y − x), νB(y − x)), (μ(y), ν(y))), (9)

where μB(y − x) denotes the value at point y of μB translated at x.

A similar approach has been used for intuitionistic fuzzy sets in [9], but with
weaker properties (in particular an important property such as the commutativ-
ity of erosion with the conjunction may be lost).

2 A bipolar conjunction is an operator C from L×L into L such that C((0, 1), (0, 1)) =
C((0, 1), (1, 0)) = C((1, 0), (0, 1)) = (0, 1), C((1, 0), (1, 0)) = (1, 0) and that is in-
creasing in both arguments. A bipolar t-norm is a commutative and associative
bipolar conjunction such that the largest element of L is the unit element.
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Morphological dilation of bipolar fuzzy sets. Dilation can be defined based on
a duality principle or based on the adjunction property. Both approaches have
been developed in the case of fuzzy sets, and the links between them and the
conditions for their equivalence have been proved in [10,11]. Similarly we consider
both approaches to define morphological dilation on B.

Dilation by duality. The duality principle states that the dilation is equal to the
complementation of the erosion, by the same structuring element (if it is symmet-
rical with respect to the origin of S, otherwise its symmetrical is used), applied to
the complementation of the original set. Applying this principle to bipolar fuzzy
sets using a complementation c (typically the standard negation c((a, b)) = (b, a))
leads to the following definition of morphological bipolar dilation.

Definition 2. Let (μB, νB) be a bipolar fuzzy structuring element. The dilation
of any (μ, ν) in B by (μB, νB) is defined from erosion by duality as:

δ(μB ,νB)((μ, ν)) = c[ε(μB ,νB)(c((μ, ν)))]. (10)

Dilation by adjunction. Let us now consider the adjunction principle, as in
the general algebraic case. An adjunction property can also be expressed between
a bipolar t-norm and the corresponding residual implication as follows:

�((a1, b1), (a3, b3)) � (a2, b2) ⇔ (a3, b3) � IR((a1, b1), (a2, b2)). (11)

Definition 3. Using a residual implication for the erosion for a bipolar t-norm
�, the bipolar fuzzy dilation, adjoint of the erosion, is defined as:

δ(μB ,νB)((μ, ν))(x) = inf{(μ′, ν′)(x) | (μ, ν)(x) � ε(μB ,νB)((μ′, ν′))(x)}
= sup

y∈S
�((μB(x− y), νB(x− y)), (μ(y), ν(y))). (12)

Links between both approaches. It is easy to show that the bipolar
Lukasiewicz operators are adjoint, according to Equation 11. It has been shown
that the adjoint operators are all derived from the Lukasiewicz operators, using
a continuous bijective permutation on [0, 1] [7]. Hence equivalence between both
approaches can be achieved only for this class of operators. This result is similar
to the one obtained for fuzzy mathematical morphology [10,11].

An illustrative example is shown in Figure 1.

Properties.

Proposition 1. All definitions are consistent: they actually provide bipolar
fuzzy sets of B.

Proposition 2. In case the bipolar fuzzy sets are usual fuzzy sets (i.e. ν = 1−μ
and νB = 1− μB), the definitions lead to the usual definitions of fuzzy dilations
and erosions (using classical Lukasiewicz t-norm and t-conorm for the definitions
based on the Lukasiewicz operators). Hence they are also compatible with classical
morphology in case μ and μB are crisp.
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Positive part Negative part Positive part Negative part
Original bipolar fuzzy set Bipolar fuzzy structuring element

Bipolar fuzzy dilation Bipolar fuzzy erosion

Fig. 1. Bipolar fuzzy set and structuring element, dilation and erosion

Proposition 3. The proposed definitions of bipolar fuzzy dilations and erosions
commute respectively with the supremum and the infinum of the lattice (B,�).

Proposition 4. The bipolar fuzzy dilation is extensive (i.e. (μ, ν) �
δ(μB ,νB)((μ, ν))) and the bipolar fuzzy erosion is anti-extensive (i.e.
ε(μB ,νB)((μ, ν)) � (μ, ν)) if and only if (μB , νB)(0) = (1, 0), where 0 is the ori-
gin of the space S (i.e. the origin completely belongs to the structuring element,
without any indetermination).

Note that this condition is equivalent to the conditions on the structuring ele-
ment found in classical and fuzzy morphology to have extensive dilations and
anti-extensive erosions [12,6].

Proposition 5. The dilation satisfies the following iterativity property:

δ(μB ,νB)(δ(μ′
B ,ν′

B)((μ, ν))) = δ(δμB
(μ′

B),1−δ(1−νB )(1−ν′
B))((μ, ν)). (13)

Proposition 6. Conversely, if we want all classical properties of mathematical
morphology to hold true, the bipolar conjunctions and disjunctions used to define
intersection and inclusion in B have be be bipolar t-norms and t-conorms. If both
duality and adjunction are required, then the only choice is bipolar Lukasiewicz
operators (up to a continuous permutation on [0, 1]).

This new result is very important, since it shows that the proposed definitions
are the most general ones to have a satisfactory interpretation in terms of math-
ematical morphology.

Interpretations. Let us first consider the implication defined from a t-
representable bipolar t-conorm. Then the erosion is written as:

ε(μB ,νB)((μ, ν))(x) = inf
y∈S

⊥((νB(y − x), μB(y − x)), (μ(y), ν(y)))

= ( inf
y∈S

T ((νB(y − x), μ(y)), sup
y∈S

t(μB(y − x), ν(y))). (14)
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This resulting bipolar fuzzy set has a membership function which is exactly
the fuzzy erosion of μ by the fuzzy structuring element 1− νB, according to the
original definitions in the fuzzy case [6]. The non-membership function is exactly
the dilation of the fuzzy set ν by the fuzzy structuring element μB.

Let us now consider the derived dilation, based on the duality principle. Using
the standard negation, it is written as:

δ(μB ,νB)((μ, ν))(x) = (sup
y∈S

t(μB(x − y), μ(y)), inf
y∈S

T ((νB(x− y), ν(y))). (15)

The first term (membership function) is exactly the fuzzy dilation of μ by μB,
while the second one (non-membership function) is the fuzzy erosion of ν by
1 − νB, according to the original definitions in the fuzzy case [6].

This observation has a nice interpretation, which well fits with intuition. Let
(μ, ν) represent a spatial bipolar fuzzy set, where μ is a positive information for
the location of an object for instance, and ν a negative information for this loca-
tion. A bipolar structuring element can represent additional imprecision on the
location, or additional possible locations. Dilating (μ, ν) by this bipolar struc-
turing element amounts to dilate μ by μB, i.e. the positive region is extended by
an amount represented by the positive information encoded in the structuring
element. On the contrary, the negative information is eroded by the complement
of the negative information encoded in the structuring element. This corresponds
well to what would be intuitively expected in such situations. A similar inter-
pretation can be provided for the bipolar fuzzy erosion.

Similarly, if we now consider the implication derived from the Lukasiewicz
bipolar operators (Equations 7 and 8), it is easy to show that the negative part
of the erosion is exactly the fuzzy dilation of ν (negative part of the input bipolar
fuzzy set) with the structuring element μB (positive part of the bipolar fuzzy
structuring element), using the Lukasiewicz t-norm. Similarly, the positive part
of the dilation is the fuzzy dilation of μ (positive part of the input) by μB

(positive part of the bipolar fuzzy structuring element), using the Lukasiewicz
t-norm. Hence for both operators, the “dilation” part (i.e. negative part for the
erosion and positive part for the dilation) has always a direct interpretation and
is the same as the one obtained using t-representable operators, for t being the
Lukasiewicz t-norm.

In the case the structuring element is non bipolar (i.e. ∀x ∈ S, νB(x) = 1 −
μB(x)), then the “erosion” part has also a direct interpretation: the positive part
of the erosion is the fuzzy erosion of μ by μB for the Lukasiewicz t-conorm; the
negative part of the dilation is the erosion of ν by μB for the Lukasiewicz t-conorm.

4 Application to Spatial Reasoning

Mathematical morphology provides tools for spatial reasoning at several lev-
els [13]. Its features allow representing objects or object properties, that we do
not address here to concentrate rather on tools for representing spatial relations.
The notion of structuring element captures the local spatial context, in a fuzzy



30 I. Bloch

and bipolar way here, which endows dilation and erosion with a low level spatial
reasoning feature, as shown in the interpretation part of Section 3. This is then
reinforced by the derived operators (opening, closing, gradient, conditional op-
erations...), as introduced for bipolar fuzzy sets in [14]. At a more global level,
several spatial relations between spatial entities can be expressed as morpholog-
ical operations, in particular using dilations [1,13], leading to large scale spatial
reasoning, based for instance on distances [15].

Let us provide a few examples where bipolarity occurs when dealing with spatial
information, in image processing or for spatial reasoning applications: when assess-
ing the position of an object in space, we may have positive information expressed
as a set of possible places, and negative information expressed as a set of impossible
or forbidden places (for instance because they are occupied by other objects). As
another example, let us consider spatial relations. Human beings consider “left”
and “right” as opposite relations. But this does not mean that one of them is the
negation of the other one. The semantics of “opposite” captures a notion of sym-
metry (with respect to some axis or plane) rather than a strict complementation.
In particular, there may be positions which are considered neither to the right nor
to the left of some reference object, thus leaving room for some indifference or neu-
trality. This corresponds to the idea that the union of positive and negative infor-
mation does not cover all the space. Similar considerations can be provided for
other pairs of “opposite” relations, such as “close to” and “far from” for instance.

In this section, we illustrate a typical scenario showing the interest of bipolar
representations of spatial relations and of morphological operations on these
representations for spatial reasoning.

An example of a brain image is shown in Figure 2, with a few labeled structures
of interest.

Let us first consider the right hemisphere (i.e. the non-pathological one). We
consider the problem of defining a region of interest for the RPU, based on
a known segmentation of RLV and RTH. An anatomical knowledge base or

LLV

RTH

RCN

LTH

tumor

LPU

LCN

RLV

RPU

Fig. 2. A slice of a 3D MRI brain image, with a few structures: left and right lateral
ventricles (LLV and RLV), caudate nuclei (LCN and RCN), putamen (LPU and RPU)
and thalamus (LTH and RTH). A ring-shaped tumor is present in the left hemisphere
(the usual “left is right” convention is adopted for the visualization).
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ontology provides some information about the relative position of these struc-
tures [16,17]:

– directional information: the RPU is exterior (left on the image) of the union
of RLV and RTH (positive information) and cannot be interior (negative
information);

– distance information: the RPU is quite close to the union of RLV and RTH
(positive information) and cannot be very far (negative information).

These pieces of information are represented in the image space based on mor-
phological dilations using appropriate structuring elements [1] (representing the
semantics of the relations, as displayed in Figure 3) and are illustrated in Fig-
ure 4. A bipolar fuzzy set modeling the direction information is defined as:

(μdir, νdir) = (δνL(RLV ∪ RTH), δνR(RLV ∪ RTH)),

where νL and νR define the semantics of left and right, respectively. Similarly a
bipolar fuzzy set modeling the distance information is defined as:

(μdist, νdist) = (δνC (RLV ∪ RTH), 1 − δ1−νF (RLV ∪ RTH)),

where νC and νF define the semantics of close and far, respectively. The neutral
area between positive and negative information allows accounting for potential
anatomical variability. The conjunctive fusion of the two types of relations is com-
puted as a conjunction of the positive parts and a disjunction of the negative parts:

(μFusion, νFusion) = (min(μdir, μdist),max(νdir, νdist)).

As shown in the illustrated example, the RPU is well included in the bipolar
fuzzy region of interest which is obtained using this procedure. This region can
then be efficiently used to drive a segmentation and recognition technique of the
RPU.

Let us now consider the left hemisphere, where a ring-shaped tumor is present.
The tumor induces a deformation effect which strongly changes the shape of the
normal structures, but also their spatial relations, to a less extent. In particular
the LPU is pushed away from the inter-hemispheric plane, and the LTH is pushed
towards the posterior part of the brain and compressed. Applying the same
procedure as for the right hemisphere does not lead to very satisfactory results
in this case (see Figure 6). The default relations are here too strict and the
resulting region of interest is not adequate: the LPU only satisfies with low

Fig. 3. Fuzzy structuring elements νL, νR, νC and νF , defining the semantics of left,
right, close and far, respectively
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Fig. 4. Bipolar fuzzy representations of spatial relations with respect to RLV and RTH.
Top: positive information, bottom: negative information. From left to right: directional
relation, distance relation, conjunctive fusion. The contours of the RPU are displayed
to show the position of this structure with respect to the region of interest.

Fig. 5. Bipolar fuzzy structuring element (μvar, νvar)

degrees the positive part of the information, while it also slightly overlaps the
negative part. In such cases, some relations (in particular metric ones) should
be considered with care. This means that they should be more permissive, so as
to include a larger area in the possible region, accounting for the deformation
induced by the tumor. This can be easily modeled by a bipolar fuzzy dilation
of the region of interest with a structuring element (μvar, νvar) (Figure 5), as
shown in the last column of Figure 6:

(μ′
dist, ν

′
dist) = δ(μvar ,νvar)(μdist, νdist),

where (μdist, νdist) is defined as for the other hemisphere. Now the obtained
region is larger but includes the correct area. This bipolar dilation amounts to
dilate the positive part and to erode the negative part, as explained in Section 3.

Let us finally consider another example, where we want to use symmetry in-
formation to derive a search region for a structure in one hemisphere, based
on the segmentation obtained in the other hemisphere. As an illustrative ex-
ample, we consider the thalamus, and assume that it has been segmented in
the non pathological hemisphere (right). Its symmetrical with respect to the
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Fig. 6. Bipolar fuzzy representations of spatial relations with respect to LLV and LTH.
From left to right: directional relation, distance relation, conjunctive fusion, Bipolar
fuzzy dilation. First line: positive parts, second line: negative parts. The contours of
the LPU are displayed to show the position of this structure.

Fig. 7. RTH and its symmetrical, bipolar dilation defining an appropriate search region
for the LTH (left: positive part, right: negative part)

inter-hemispheric plane should provide an adequate search region for the LTH
in normal cases. Here this is not case, because of the deformation induced by
the tumor (see Figure 7). Since the brain symmetry is approximate, a small de-
viation could be expected, but not as large as the one observed here. Here again
a bipolar dilation allows defining a proper region, by taking into account both
the deformation induced by the tumor and the imprecision in the symmetry.

5 Conclusion

In this paper, we have shown how a formal extension of mathematical morphology
operators to the lattice of bipolar fuzzy sets may be used to represent two impor-
tant features of spatial information, imprecision on the one hand and bipolarity on
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the other hand. This formalism can be useful for spatial reasoning, as illustrated
on a typical scenario in brain imaging.
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Abstract. In this paper the notion of hyperconnectivity, first put for-
ward by Serra as an extension of the notion of connectivity is explored
theoretically. Hyperconnectivity operators, which are the hyperconnected
equivalents of connectivity openings are defined, which supports both
hyperconnected reconstruction and attribute filters. The new axiomatics
yield insight into the relationship between hyperconnectivity and struc-
tural morphology. The latter turns out to be a special case of the former,
which means a continuum of filters between connected and structural
exists, all of which falls into the category of hyperconnected filters.

1 Introduction

Connected filters are object-based morphological filters which allow edge pre-
serving filtering based on a range of criteria [1,2, 3]. Fig. 1 shows the difference
between the structural opening and the opening by reconstruction [4]. In some
cases, however, such strict edge preservation is not desirable, because thin struc-
tures can link up different entities in an image. For example, the thin stripes
on the clothes in Fig. 1 link up the face area to other structures nearby. To
circumvent some problems with the strictness of the edge preserving nature of
these filters, and their inability to handle overlapping objects as separate entities,
several solutions have been put forward [5,6,7]. One of these is hyperconnectiv-
ity, first proposed by Serra [6] and extended in [8]. Recently, hyperconnectivity
has moved from a theoretical concept to a practical one, in particular in fuzzy
connectivity [9], in fast reconstruction using reconstruction criteria [10], and in
hyperconnected attribute filtering using k-flat zones (overlapping connected re-
gions of with grey level total variations no more than k grey levels) [11]. The
latter are useful for separation of galaxies from stars in astronomical imaging
(see Fig. 2).

In this paper, a new axiomatics for hyperconnectivity is derived. We will first
deal with some theoretical preliminaries. After this, connectivity and connec-
tivity openings are treated. Then we replace the hyperconnectivity openings
proposed in [8] by operators which return sets of hyperconnected components.
It is then shown that hyperconnected counterparts of the connected attribute
filters introduced by Breen and Jones [1] can only be constructed using the new
framework. Finally, it is shown that any structural morphology can be seen as
a special case of hyperconnected filters. This means that a large family of filters
exist between the extremes of edge preserving connected filters, and structural
filters. A variant of the work in [5] is shown to be part of that family.
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(a) (b) (c) (d)

Fig. 1. Structural, connected, and hyperconnected filters:(a) original image f (b) open-
ing with Euclidean disc of diameter 21 g = γ21f ; (c) connected reconstruction of f by
g (d) hyperconnected reconstruction of f by g according to (32)

(a) (b) (c)

Fig. 2. Separating galaxies from stars: (a) spiral galaxy M81, original image, courtesy
Giovanni Benintende; (b) stars suppressed by an area attribute filter with 2000 ≤ area
≤ 240000; (c) k-flat hyperconnected variant of (b), showing improved suppression of
stellar, and better retention of galactic detail

2 Theory

Let E denote some finite, universal, non-empty set, and P(E) the set of all
subsets of E. P(E)is also finite. A cover A = {Ai} of E is a subset of P(E) such
that ∪iAi = E. A partition A = {Ai} of E is a cover such that Ai ∩ Aj = ∅
for all i �= j, and all Ai are non-empty. Covers of any X ⊆ E can be defined
likewise. Because covers and partitions are sets of subsets of E they are elements
of P(P(E)). To avoid confusion, ∅ denotes the least element of P(E), and ∅P(E)
denotes least element of P(P(E)).

A cover A, or indeed any element of P(P(E)) will be called redundant if there
exists at least one pair of elements Ai, Aj ∈ A such that Ai ⊂ Aj . Obviously,
partitions are non-redundant covers. We denote the set of all non-redundant
subsets of P(E) as N (P(E)).

Any redundant cover can be reduced to a non-redundant cover by means of
a binary reduction operator Φ⊂. This reduces any redundant subset A ⊆ P(E)
to the largest, non-redundant subset of A.
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Definition 1. The binary reduction operator Φ⊂ : P(P(E)) → N (P(E)) is
defined as

Φ⊂(A) = A \ {Ai ∈ A | ∃Aj ∈ A : Ai ⊂ Aj}. (1)

It is important to observe that if E is not finite, Φ⊂(A) might be empty. Let
E = [0, 1] and A = {[0, 1− 1

n ] : n ∈ N}. It can easily be verified that Φ⊂(A) = ∅ in
this case. This problem does not arise in finite, discrete images used in practice.
Obviously, Φ⊂ has the following property

Proposition 1. For any A ∈ P(P(E))⋃
A =

⋃
Φ⊂(A) (2)

Proof. Because Φ⊂(A) ⊆ A by definition, we only need to show that all elements
of

⋃
A are contained in

⋃
Φ⊂(A). Consider a point x ∈

⋃
A. This means that

there is some Ai ∈ A such that x ∈ Ai. If Ai ∈ Φ⊂(A), x is obviously contained
in

⋃
Φ⊂(A). If Ai �∈ Φ⊂(A), there must exist an Aj ∈ Φ⊂(A) such that Ai ⊂ Aj ,

and x is also contained in
⋃
Φ⊂(A).

We can define a partial order on N (P(E)) as

A � B ≡ ∀Ai ∈ A ∃ Bj ∈ B : Ai ⊆ Bj . (3)

This is the same partial order as used for partitions in [12]. Suppose we have some
elements Ci of N (P(E)), with i ∈ I, and I some index set, under � the infimum is∧

i∈I

Ci = Φ⊂

({⋂
i∈I

Di|Di ∈ Ci

})
, (4)

i.e. we first compute all sets which are intersections of one element from each of
the sets Ci. These are the maximal sets which are subset of some set in each of
the Ci. In general this set is redundant, so we map it back to N (P(E)) using
Φ⊂. If the Ci are partitions, (4) is equal to the infimum of partitions in [12]. The
supremum is given by ∨

i∈I

Ci = Φ⊂

(⋃
i∈I

Ci

)
, (5)

i.e. we create a new cover by first combining all elements of all Ci, and then
removing any redundant ones. For any D ∈ Ci there exist an element S ∈

∨
i∈I Ci

such that D ⊆ S. Conversely, because for any S ∈
∨

i∈I Ci there exists a Ci such
that S ∈ Ci. Therefore, we cannot replace any S ∈

∨
i∈I Ci by some smaller

set, without violating Ci �
∨

i∈I Ci. Therefore (5) defines a supremum under �.
Within N (P(E)) the least element under � is ∅P(E) and the maximal element
is {E}. If A1 � A2 for two partitions or covers we state that A1 is finer than
A2, or, equivalently, A2 is coarser than A1.

Note that � is not a partial order on P(P(E)). Suppose I have some redundant
A ∈ P(P(E)), i.e., Ai ⊂ Aj for some Ai, Aj ∈ A. We then have

A � A \ {Ai} ∧ A \ {Ai} � A (6)

but
A \ {Ai} �= A. (7)
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2.1 Connectivity

Connectivity such as is used in morphological filtering is defined through the
notion of connectivity classes or connections [13, 14, 6].

Definition 2. A connection C ⊆ P(E) is a set of sets with the following two
properties:

1. ∅ ∈ C and {x} ∈ C for all x ∈ E
2. for each family {Ci} ⊂ C, ∩Ci �= ∅ implies ∪Ci ∈ C.

Any set C ∈ C is said to be connected. Using such a notion of connectivity,
any set X ∈ P(E) can be partitioned into connected components. These are the
connected subsets of X of maximal extent, i.e. if C ⊆ X and C ∈ C and there
exists no set D ∈ C such that C ⊂ D ⊆ X , then C is a connected component of
X . Let CX be defined as

CX = {C ∈ C | C ⊆ X}, (8)

in other words CX is the set of all connected subsets of X . CX is obviously a cover
of X because for every x ∈ X {x} ∈ CX . Therefore every x ∈ X is represented
in the union of all elements of CX . The set of all connected components C∗

X of
X is simply

C∗
X = Φ⊂(CX). (9)

It is well known that this constitutes a partition of X because any C,D ∈ C∗
X

are either disjoint or equal.
Connected components can be accessed through connectivity openings [6]:

Definition 3. The binary connectivity opening Γx of X at a point x ∈ E is
given by

Γx(X) =

{⋃
{Ci ∈ C | x ∈ Ci ∧ Ci ⊆ X} if x ∈ X

∅ otherwise.
(10)

In this definition the notion of maximum extent is derived by taking the union
of all connected subsets of X containing x. It can readily be shown that this is
equivalent to

Γx(X) =

{
Ci ∈ C∗

X : x ∈ Ci if x ∈ X

∅ otherwise.
(11)

This equivalence stems from the fact that connected subsets of X which contain
x have a non-empty intersection, and that their union is therefore connected.

An important theorem links connectivity openings to connections [6].

Theorem 1. The datum of a connection C in P(E) is equivalent to the family
{Γx, x ∈ E} of openings on x such that:

1. Γx is an algebraic opening marked by x ∈ E
2. for all x ∈ E, we have Γx({x}) = {x}
3. for all X ∈ P(E) and all x ∈ E, we have that x �∈ X ⇒ Γx(X) = ∅.
4. for all X ∈ P(E), x, y ∈ E, if Γx(X) ∩ Γy(X) �= ∅ ⇒ Γx(X) = Γy(X), i.e.

Γx(X) and Γy(X) are equal or disjoint.
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2.2 Hyperconnectivity

Hyperconnectivity is a generalization of connectivity, which generalizes the sec-
ond condition of Definition 2 [6]. Instead of using a non-empty intersection, we
can use any overlap criterion ⊥ which is defined as follows.

Definition 4. An overlap criterion in P(E) is a mapping ⊥ : P(P(E)) → {0, 1}
such that ⊥ is decreasing, i.e., for any A,B ⊆ P(E)

A ⊆ B ⇒ ⊥(B) ≤ ⊥(A). (12)

Any A ⊆ P(E) for which ⊥(A) = 1 is said to be overlapping, otherwise A is
non-overlapping. We can now define a hyperconnectivity class or hyperconnection
as follows.

Definition 5. A hyperconnection H ⊆ P(E) is a set of sets with the following
two properties:

1. ∅ ∈ H and {x} ∈ H for all x ∈ E
2. for each family {Hi} ⊂ H, ⊥({Hi}) = 1 implies

⋃
i Hi ∈ H,

with ⊥ an overlap criterion such that ⊥({Hi}) ⇒ ∩iHi �= ∅.
Any set H ∈ H is said to be hyperconnected. Note that inserting the overlap
criterion

⊥∩({Hi}) =

{
1 if

⋂
i Hi �= ∅

0 otherwise,
(13)

into Definition 5 just yields a connection, showing that a connection is a special
case of hyperconnection [6].

As can be seen from Definition 5, ⊥∩ is the least strict overlap criterion to be
used in a hyperconnection, i.e., ⊥({Hi}) ≤ ⊥∩({Hi}) in general. For example
we might require that the intersection contains a ball Br of some diameter r for
which Br ⊆

⋂
i Hi. This leads to a “viscous” hyperconnectivity [10], which has

been used to implement hyperconnected reconstruction shown in Fig. 1(d).
Like the notion of connected components for connection, we need to define

the notion of hyperconnected component, which are hyperconnected subsets of X
of maximal extent. In complete analogy with connected components we can first
define the set HX of all hyperconnected subsets of X ∈ P(E):

HX = {H ∈ H | H ⊆ X}, (14)

which is a cover of X for the same reasons as for CX . The set of hyperconnected
components H∗

X is defined equivalently

H∗
X = Φ⊂(HX). (15)

Note that H∗
X is not necessarily a partition of X , because two hyperconnected

components Hj , Hk may have a non-zero intersection, but Hj ∪Hk need not be
a member of HX if ⊥({Hj, Hk}) = 0.

Braga-Neto and Goutsias [8] define a hyperconnectivity opening Hx as follows
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Definition 6. The binary hyperconnectivity opening Hx of X at point x ∈ E is
given by

Hx(X) =

{⋃
{Hi ∈ HX | x ∈ Hi} if x ∈ X

∅ otherwise.
(16)

Unlike the connectivity opening Γx, which always returns a connected set, the
hyperconnectivity opening Hx does not necessarily return a hyperconnected set,
as pointed out by Braga-Neto and Goutsias in [8]. In this paper I propose a
different approach.

Instead of the hyperconnectivity opening, we introduce the hyperconnectivity
operator Υx : P(E) → P(P(E)) which returns a set of hyperconnected sets.
In the case of the connectivity opening in definition 3, we capture the notion
of maximal extent by taking the union of all connected sets within X which
contain the point x. This is not possible in the hyperconnected case, where we
use the more explicit formulation using set inclusion used in the definition of
hyperconnected components.

Definition 7. The hyperconnectivity operator Υx : P(E) → P(P(E)) associated
with hyperconnection H is defined as

Υx(X) =

{
Φ⊂({Hi ∈ HX | x ∈ Hi}), if x ∈ X

{∅} otherwise,
(17)

In other words, Υx extracts the set of hyperconnected components of X contain-
ing x. It is obvious that the relationship between Υx and Hx is a simple one:

Hx(X) =
⋃

Hi∈Υx(X)

Hi. (18)

Fig. 3 illustrates the difference between the two operators.

(a) (b) (c)

Fig. 3. Hyperconnectivity opening vs. hyperconnectivity operator: (a) binary image X;
(b) outlines of hyperconnected componentsH1,H2,H3 for some hypothetical hypercon-
nection H; (c) outline of union of these hyperconnected components. Hyperconnectiv-
ity opening Hx(X) returns the set outlined in (c) for any x in the intersection

⋂3
i=1Hi,

whereas hyperconnectivity operator Υx(X) returns one or more of the sets outlined in
(b).
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We now define the properties a family of mappings Υx : P(E) → P(P(E))
requires to define a hyperconnection. A few properties are “inherited” from con-
nectivity openings:

1. Υx(Hi) = {Hi} for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ E;
2. Hi ⊆ X for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ X ;
3. for any X,Y ∈ P(E) we have X ⊆ Y ⇒ Υx(X) � Υx(Y ) for all x ∈ X ;
4. for all x ∈ E we have Υx({x}) = {{x}}
5. for all X ∈ P(E), and all x ∈ E we have x �∈ X ⇒ Υx(X) = {∅};
6. for any Hi ∈ Υx(X), y ∈ Hi implies Hi ∈ Υy(X);
7. for all x ∈ E and all X ∈ P(E), and any Hi, Hj ∈ Υx(X) we have Hi �=

Hj ⇒ ⊥({Hi, Hj}) = 0.

The first property ensures each Hi ∈ Υx(X) is hyperconnected according to the
associated hyperconnection H, and it contains x, it is the largest hyperconnected
set contained in itself. Therefore, by definition 7, it is the only set Υx(Hi) should
return. The second property ensures any hyperconnected component of X is a
subset of X .

The third property is increasingness in the sense of (3), which can be shown
as follows. Let X ⊆ Y . In this case any Hi ∈ Υx(X) is a subset of Y , through
property 2. This means that either Hi ∈ Υx(Y ), or there exists an Hj ∈ Υx(Y )
such that Hi ⊂ Hj . Because all sets in Υx(X) have a set in Υx(Y ) which is a
superset or equal, the union of all members of Υx(X) is a subset of the union of
all sets in Υx(Y ).

The fourth property ensures that all singletons are members of H, and the
fifth that each hyperconnected component is marked only by its members.

The sixth property can be derived as follows. Because Hi ∈ Υx(X), there exists
no hyperconnected set Hj ⊆ X , such that Hi ⊂ Hj . If y ∈ Hi but Hi �∈ Υy(X),
this would imply that there is some Hj ⊆ X , such that Hi ⊂ Hj , leading to
contradiction. This also ensures that each hyperconnected component is marked
by all its members.

The seventh property is related, and states that no two different sets Hi, Hj ∈
Υx(X) can overlap in the sense of ⊥. If they did, Hi ∪Hj ∈ H and x ∈ Hi ∪Hj .
This means there exists a hyperconnected superset of both Hi and Hj containing
x, and they should therefore not be members of Υx(X).

2.3 Relationship with Connectivity Openings

We will now investigate how the properties of hyperconnectivity operators relate
to those of connectivity openings. Let #Υx(X) denote the cardinality of Υx(X).

Proposition 2. A hyperconnection H is a connection if and only if

#Υx(X) = 1 for all x ∈ E and all X ∈ P(E), (19)

with Υx the hyperconnectivity operator associated with H. In this case Hx(X) =⋃
Hi∈Υx(X) Hi is a connectivity opening.
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Proof. If #Υx(X) > 1 for some x ∈ E and some X ∈ P(E), H cannot be a
connection because there are at least two hyperconnected components of X to
which x belongs. Therefore, there are at least two sets H1, H2 ∈ H with non-
empty intersection, but for which H1 ∪ H2 �∈ H. This violates property 3 of
Definition 2, and H is not a connection.

If #Υx(X) = 1 for all x ∈ E and all X ∈ P(E) then the hyperconnected
opening Hx is just a way of extracting the single element from Υx(X), i.e.
Hx(X) ∈ Υx(X), implying Hx(X) ∈ H for all x ∈ E and all X ∈ P(E). It
has been shown that Hx is an algebraic opening [8], proving the first require-
ment of Theorem 1.

The second requirement of Theorem 1 follows from property 4, which states that
Υx({x}) = {{x}} for all hyperconnectivity operators, and therefore Hx({x}) =
{x} for allX ∈ P(E). The third requirement derives from property 5, i.e. Υx(X) =
{∅} if x �∈ X , which implies Hx(X) = ∅ for all x �∈ X , for all X ∈ P(E).

The fourth requirement of Theorem 1 derives from property 6 above. If y ∈
Hx(X) it follows from property 6 that Hx(X) ∈ Υy(X), and because #Υy(X) =
1, it follows that Hx(X) = Hy(X). If y �∈ Hx(X), suppose that there exists some
z ∈ Hx(X) ∩ Hy(X). For the previously given reasons, this implies Hz(X) =
Hx(X) = Hy(X), and therefore y ∈ Hx(X), leading to contradiction. Therefore
y �∈ Hx(X) implies Hx(X) ∩Hy(X) = ∅. Thus Hx is a connectivity opening.

Because Hx ∈ H for all x ∈ E and X ∈ P(E), H is a connectivity class
associated with the family of connectivity openings {Hx, x ∈ E}, proving
Proposition 2.

2.4 Hyperconnected Filters

We will now turn to hyperconnected attribute filters, which were not considered
by either Serra or Braga-Neto and Goutsias. Hyperconnected attribute filters
can be defined in much the same way as connected attribute filters. We do this
using a trivial filter ΨΛ(H) which returns H if the criterion Λ(H) = 1 and ∅
otherwise. Let ΨΛ(H∗

X) be shorthand for the subset of all Hi ∈ H∗
X for which

Λ(Hj) = 1.

Definition 8. A hyperconnected attribute filter ΨΛ : P(E) → P(E) based on
criterion Λ : H → {0, 1} is defined as

ΨΛ(X) =
⋃

x∈X

⋃
Hi∈Υx(X)

ΨΛ(Hi) =
⋃

Hj∈H∗
X

ΨΛ(Hj) =
⋃

Hk∈ΨΛ(H∗
X)

Hk, (20)

We can define an alternative attribute filter ΨΛ
H using hyperconnectivity openings

Hx as

ΨΛ
H =

⋃
x∈X

ΨΛ(Hx(X)) =
⋃

x∈X

ΨΛ

(⋃
Υx(X)

)
�=

⋃
x∈X

⋃
Hi∈Υx(X)

ΨΛ(Hi). (21)

Here we see a clear distinction between the framework using hyperconnected
openings Hx versus the proposed framework using operators Υx, because ΨΛ does
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(a) (b) (c) (d)

Fig. 4. Hyperconnected attribute filter with criterion Λ according to (22): (a) origi-
nal images; (b) outlines of hyperconnected components; (c) union of trivial thinnings
applied to hyperconnected components; (d) trivial thinning applied to union of hyper-
connected components

not necessarily commute with set union. Consider the non-increasing criterion
for 2-D images

Λ(H) =

{
1 if Δx(H) = Δy(H)
0 otherwise,

(22)

in which Δx(H) and Δy(H) are the maximal extents in x and y direction re-
spectively. This requires that the minimum enclosing, axis-aligned rectangle is
a square. Fig. 4 demonstrates the different outcomes of attribute filtering using
hyperconnectivity openings and hyperconnectivity operators. The small circle
in the centre is not seen as a separate entity by the Hx, whereas the “cross”
preserved by ΨΛ

H is not hyperconnected.

3 Relationship to Structural Filters

In this section we will show the relationship with structural morphology. Let
S ⊆ E be an arbitrary structuring element centred at the origin 0, and S be the
set of singletons in E, i.e.

S = {{x}|x ∈ E}. (23)

Furthermore, consider a finite chain A ⊆ P(E), i.e. a totally ordered ordered
family of sets under ⊆ such that for an appropriate index set I, Ai ⊆ Aj for any
i ≤ j. Obviously, if A is a chain, so is any subset of A. Furthermore,⋃

i∈I

Ai = Amax I , (24)

provided E is finite. We can now show that the following set

HS = {∅} ∪ S,∪{{x} ⊕ S, x ∈ E}, (25)

is a hyperconnection, if provided with the overlap criterion

⊥0(A) =

{
1 if A is a finite chain
0 otherwise

(26)
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In other words, HS consist of the empty set, all singletons, and all translates of
S. The overlap criterion states that only chains of hyperconnected components
overlap. It is easily seen that a hyperconnected area opening using HS with an
area threshold between 1 and the area of S is just the structural opening with S.
Thus, any structural opening using any structuring element can be represented
as a hyperconnected area opening. By duality, the same holds for closings.

If we combine this result with the well-established result from Serra [6] that
connected filters are a special case of hyperconnected filters, we see that hyper-
connected filters form a family of filters in between the two extremes. An example
of such a filter is inspired by [5, 15], but now based on hyperconnected filters.
Let B be a ball centred on the origin, and C some connection on E. Consider

HB = {∅} ∪ S ∪ {H ∈ P(E) | ∃C ∈ C : H = δBC}, (27)

which is just the set of all dilates by B of all connected sets, augmented with the
empty set and all singletons. This set is a hyperconnection with overlap criterion

⊥B({Ai}) =
⋃
i

(εBAi) �= ∅. (28)

This overlap criterion is true if and only if the intersection of all sets Ai eroded
by B is non-empty. Equivalently, the intersection of Ai must contain at least one
translate of B. In this hyperconnectivity, any image is constructed from a series
of hyperconnected components which all lie within γBf and a series of singletons
which lie in f − γBf . Reconstruction from markers becomes

ρHB (f |g) = δBρ(εBf |εBg). (29)

Thus, we erode the image and the marker, and then reconstruct all those parts
of the eroded image which are marked by the eroded marker. This means those
parts of f which overlap with g in the sense of ⊥B. After this, we dilate the result
to reconstitute the hyperconnected components retained in the reconstruction.
If marker g is obtained by an opening with some ball Br, we can move (more-or-
less) continuously from a structural opening, when Br ⊆ B, through a “viscous”
hyperconnected reconstruction (B0 ⊂ B ⊂ Br) to connected reconstruction
when B = B0, as in [5].

A drawback of this approach is that the end result of this is a subset of γBf
except when singletons are included in the result. This could seriously reduce the
edge-preserving qualities of this filter. We can partly amend this by performing
a geodesic dilation within f , similar to [5]. The geodesic dilation by a unit ball
δ̄1
X within X is defined as

δ̄1
XY = X ∩ δ1Y. (30)

with δ1 the dilation by a unit ball.

HX
B = {∅} ∪ S ∪ {H ∈ P(E) | ∃C ∈ C : H = δ̄1

XδBC}. (31)

This is a hyperconnection under the the overlap criterion from (28). In this case
we simply perform a geodesic dilation by a unit ball after the processing, i.e.:

ρHf
B
(f |g) = δ̄1

fδBρ(εBf |εBg), (32)
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(a) (b) (c)

Fig. 5. Viscous hyperconnections: (a) reconstruction of Fig 4(a) by Fig 4(b) according
to (29); (b) same according to (32); (c) difference (contrast stretched)

as put forward in [10]. The difference between reconstruction according to (29)
and (32) is quite small, as shown in Fig. 5.

4 Conclusion

In this paper new axiomatics for hyperconnected filters have been introduced.
It has been shown that this is needed to define hyperconnected attribute filters.
Before these are of any practical use, efficient algorithms for these filters must
be devised. Currently work is in progress to extend the work in [10] to attribute
filters in general. A drawback of the formulation chosen is that it applies to finite
images, and work is in progress to obtain a more general result. An important
conclusion is the relationship to structural filters. This means that there is a
(semi-)continuum of operators stretching from the edge-preserving connected
filters to structural filters, all of which are hyperconnected. The relationship to
path openings [16] and attribute-space connectivity [7] is explored in the next
paper in this volume [17].

Acknowledgements. I would like to thank the anonymous reviewers for many
valuable comments which have materially improved the content of this paper.
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Abstract. In this paper the relationship of hyperconnected filters with
path openings and attribute-space connected filters is studied. Using a
recently developed axiomatic framework based on hyperconnectivity op-
erators, which are the hyperconnected equivalents of connectivity open-
ings, it is shown that path openings are a special case of hyperconnected
area openings. The new axiomatics also yield insight into the relationship
between hyperconnectivity and attribute-space connectivity. It is shown
any hyperconnectivity is an attribute-space connectivity, but that the
reverse is not true.

1 Introduction

Connected filters are edge-preserving morphological filters [1,2,3]. All connected
filters are based on a notion of connectivity [4, 5], which cannot deal with over-
lapping of image components. To circumvent this inability to handle overlapping
objects as separate entities, two solutions have been put forward: (i) hypercon-
nectivity [5, 6], and attribute-space connectivity [7].

In the previous paper in these proceedings [8] a new axiomatic approach
to hyperconnectivity has been presented. This axiomatics first of all leads to
the definition of hyperconnected attribute filters. Furthermore, it is shown that
structural filters can be seen as a special case of hyperconnected attribute filters.
Given this, and the fact that Serra [5] already showed that connected filters
are a special case of hyperconnected filters, the whole family of hyperconnected
filters must bridge a gap between the two. As we move towards connected filters,
they become more edge preserving, as we approach the “structural side” they
become less so. In [8], it was also shown that reconstruction using reconstruction
criteria [9] can also be interpreted as a hyperconnected filter. These were obvious
candidates to study, because they are designed to be “tunably edge preserving”
depending on the reconstruction criteria used. Another obvious candidate for
inclusion in this bridge region are path openings [10]. In this paper it will be
shown that they too can be seen as hyperconnected filters.

Another open question which can be answered in the new axiomatic frame-
work is that of the relationship between hyperconnectivity and attribute-space
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connectivity, which also allows overlap between structures [7]. After some the-
oretical preliminaries, the axiomatic framework for hyperconnectivity will be
presented briefly, without the proofs, for which the reader is referred to [8].
Then the link with path openings is studied. Finally, it will be shown that any
hyperconnectivity can be defined as an attribute-space connectivity, but not the
reverse.

2 Theory

The axiomatics presented in [8] are restricted to finite images, therefore in the
rest of this paper E denotes some finite, universal, non-empty set, and P(E) the
set of all subsets of E. A cover A = {Ai} of E is any subset of P(E) such that
∪iAi = E. A partition A = {Ai} of E is a cover such that Ai ∩ Aj = ∅ for all
i �= j, and all Ai are non-empty. Covers of any X ⊆ E can be defined in the same
way. Because covers and partitions are sets of subsets of E they are elements of
P(P(E)). To avoid confusion, ∅ denotes the least element of P(E), and ∅P(E)
denotes least element of P(P(E)). Any A ∈ P(P(E)) will be called redundant
if there exists at least one pair of elements Ai, Aj ∈ A such that Ai ⊂ Aj . We
denote the set of all non-redundant subsets of P(E) as N (P(E)).

In [8], it was shown that N (P(E)) combined with the partial order �

A � B ≡ ∀Ai ∈ A ∃ Bj ∈ B : Ai ⊆ Bj , (1)

is a complete lattice with ∅P(E) as the least element and {E} as the greatest in
N (P(E)).

To define hyperconnectivity operators we first must define binary reduction
operator Φ⊂. This reduces any redundant subset A ⊆ P(E) to the largest, non-
redundant subset of A (in the finite case!).

Definition 1. The binary reduction operator Φ⊂ : P(P(E)) → N (P(E)) is
defined as

Φ⊂(A) = A \ {Ai ∈ A | ∃Aj ∈ A : Ai ⊂ Aj}. (2)

Thus, Φ⊂(A) extracts the maximal elements of A.
Both hyperconnectivity and attribute-space connectivity are based on con-

nectivity. Central to connectivity is the notion of a connection [11,4, 5, 12]:

Definition 2. A connection C ⊆ P(E) is a set of sets with the following two
properties:

1. ∅ ∈ C and {x} ∈ C for all x ∈ E
2. for each family {Ci} ⊂ C, ∩Ci �= ∅ implies ∪Ci ∈ C.

Any set C ∈ C is said to be connected. Using connections, connected components
(connected subsets of maximal extent) of images can be defined.
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2.1 Hyperconnectivity

Hyperconnectivity generalizes the second condition of Definition 2 [5]. It replaces
non-empty intersection by any overlap criterion ⊥ defined as follows.

Definition 3. An overlap criterion in P(E) is a mapping ⊥ : P(P(E)) → {0, 1}
such that ⊥ is decreasing, i.e., for any A,B ⊆ P(E)

A ⊆ B ⇒ ⊥(B) ≤ ⊥(A). (3)

AnyA ⊆ P(E) for which⊥(A) = 1 is overlapping, otherwiseA is non-overlapping.
A hyperconnection is defined as:

Definition 4. A hyperconnection H ⊆ P(E) is a set of sets with the following
two properties:

1. ∅ ∈ H and {x} ∈ H for all x ∈ E
2. for each family {Hi} ⊂ H, ⊥({Hi}) = 1 implies

⋃
i Hi ∈ H,

with ⊥ an overlap criterion such that ⊥({Hi}) ⇒ ∩iHi �= ∅.

As in the case of connections, any set H ∈ H is said to be hyperconnected.
Serra [5] already showed that connectivity is a special case of hyperconnectivity.
For hyperconnectivity to be a useful concept, we need useful overlap criteria. An
example explored in [13, 8] required that the intersection contains a ball Br of
some diameter r for which Br ⊆

⋂
i Hi, yielding a hyperconnected reconstruction

similar to viscous lattices [14].
We can now define hyperconnected component, which are hyperconnected sub-

sets of X of maximal extent. As before, we define the set HX of all hypercon-
nected subsets of X ∈ P(E):

HX = {H ∈ H | H ⊆ X}, (4)

which is a cover of X for the same reasons as for CX . The set of hyperconnected
components H∗

X is defined equivalently

H∗
X = Φ⊂(HX). (5)

Note that H∗
X is a non-redundant cover of X , but not necessarily a partition.

This is because two hyperconnected components Hj , Hk may have a non-zero
intersection, but Hj ∪Hk need not be a member of HX if ⊥({Hj , Hk}) = 0.

In [8] hyperconnectivity operators Υx : P(E) → P(P(E)) which return a set
of hyperconnected sets were introduced. Instead of using set-union to capture
maximal extent, as in [11], we use the reduction opening to retrieve the hyper-
connected sets of maximal extent:

Definition 5. The hyperconnectivity operator Υx : P(E) → P(P(E)) associated
with hyperconnection H is defined as

Υx(X) =

{
Φ⊂({Hi ∈ HX | x ∈ Hi}), if x ∈ X

{∅} otherwise,
(6)
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Thus, Υx extracts the set of hyperconnected components of X containing x. In [8]
the following properties required of a family of mappings Υx : P(E) → P(P(E))
to define a hyperconnection were derived:

1. Υx(Hi) = {Hi} for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ E;
2. Hi ⊆ X for all Hi ∈ Υx(X) for all X ∈ P(E) and all x ∈ X ;
3. for any X,Y ∈ P(E) we have X ⊆ Y ⇒ Υx(X) � Υx(Y ) for all x ∈ X ;
4. for all x ∈ E we have Υx({x}) = {{x}}
5. for all X ∈ P(E), and all x ∈ E we have x �∈ X ⇒ Υx(X) = {∅};
6. for any Hi ∈ Υx(X), y ∈ Hi implies Hi ∈ Υy(X);
7. for all x ∈ E and all X ∈ P(E), and any Hi, Hj ∈ Υx(X) we have Hi �=

Hj ⇒ ⊥({Hi, Hj}) = 0.

For a full discussion of the meaning of these properties, the reader is referred
to [8]. The most important property in this context is property 3, which states
that Υx is increasing in the sense of (1).

3 Relationship to Path-Openings

Path openings [10,15] can be defined as unions of openings with a range of differ-
ent structuring element, each consisting of a path of a given length. Their edge
preserving properties lie in between classical structural morphology and con-
nected filters. As such they are ideal candidates for the status of hyperconnected
filter.

Following Heijmans et al. [10], E denotes the discrete grid on which a directed
graph is defined by means of a binary adjacency relation ’�→’, and x �→ y means
an oriented edge between x and y exists. Using this adjacency relation, which
is neither reflexive nor symmetric in general, oriented paths can be defined. A
path of length L is an L + 1-tuple a = (a0, a1, . . . , aL) such that ak �→ ak+1 for
all k = 0, 1, . . . , L− 1. The set of points contained in path a is denoted as V(a),
i.e., V(a) = {a0, a1, . . . , aL}. Note that the adjacency relation must be chosen
such that loop-backs and self-intersections are impossible. The set of all paths
of length L is denoted ΠL. The set of all paths of all lengths of 0 (singletons)
and higher will be denoted Π∗.

Any oriented path a can also be considered as a directed graph (V , E) with
vertices given by V(a) and edges E(a) = {(ak, ak+1)} with k = 0, 1, . . . , L − 1.
If we define a source as a vertex with in-order of 0, and a sink as a vertex with
an out-order of 0, we can define paths as connected, directed graphs which have
exactly one source, exactly one sink, and for which all non-source vertices have
an in-order of exactly one, and all non-sink vertices have an out-order of exactly
one. For any path a ∈ ΠL we will have the convention that a0 denotes the source,
and aL the sink.

The union of two graphs is simply the union of their vertices, and the union
of the edges:

a ∪ b =
(

(V(a) ∪ V(b), (E(a) ∪ E(b)
)
, (7)
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and likewise for intersection. Of course, the intersections or unions of two paths
are not necessarily paths (though they remain directed graphs).

Now, let a continuous sub-path of length K of a ∈ ΠL be any K-tuple

b = (b0, b1, . . . , bK)
= (ak, a1+k, . . . , aK+k)

(8)

for some value of k ∈ {0, 1, . . . , L − K}. Obviously, any such b ∈ ΠK . This
equivalent to saying that a continuous sub-path is a connected subgraph of a.
This can be used to define the following relation between paths.

Definition 6. The binary head-tail overlap ⊥ht : Π∗×Π∗ → {0, 1} returns 1 for
any a = (a0, a1, . . . , aL) and b ∈ (b0, b1, . . . , aK), and any choice of K,L ∈ Z+,
if a∩b is a non-empty, continuous sub-path of both a and b such that for some
natural i ≥ 0

1. for every t with 0 ≤ t ≤ min(L − i,K) we have at+i = bt or
2. for every t with 0 ≤ t ≤ min(K − i, L) we have bt+i = at

and 0 otherwise.

This means that either the tail of a overlaps the head of b, or the head of a
overlaps the tail of b, or they are nested within each other, preserving the order.

Let c = a∪b and d = a∩b. Consider the graph c in the case that ⊥ht(a,b) =
1. Note that only the in-order or out-order of the vertices in the intersection d
can change. The condition that a and b is a non-empty, continuous sub-path of
both a and b in Definition 6 means d ∈ ΠM , for some M ∈ {0, 1, . . . ,min(K,L)}.
It also means that for all of the vertices di ∈ V(d), except for dM , the outgoing
edges are the same in both a and b, and likewise for the incoming edges of all
nodes di ∈ V(d), except for d0. Thus, in the union c, the out-order of the nodes
contained in V(d) \ {dM} is exactly one. Likewise, in c, all the nodes contained
in V(d) \ {d0} must have an in-order of exactly one.

If condition 1 in Definition 6 holds, the source b0 of b is in the intersection d. If
i = 0 both sources a0 and b0 are inV(d), thus a0 = b0 = d0, and the in-order of this
vertex in c is 0, i.e. it is a source. If i > 0 only b0 ∈ V(d), i.e. b0 = d0, and element
ai−1 ∈ V(a) exists such that ai−1 �→ ai = b0, and the in-order of the vertex
corresponding to d0 in the union c is 1. It also means that c has a single source,
i.e., a0. If L − i < K, it follows that aL = dM . Therefore, element bL−i+1 exists
such that aL = bL−i �→ bL−i+1, and the out-order of the vertex corresponding to
dM in the union c is 1, and bK is the single sink for the union c. If L− i = K, both
aL and bK are members of V(d), so that aL = bK = dM and the out-order of this
vertex in c is 0, i.e. it is a sink. Finally, if L − i > K, b is a continuous sub-path
of a and their union c = a. In all cases, the union is an oriented path.

If the second condition of Definition 6 is true, the same reasoning holds with
the roles of a and b interchanged. Thus, if ⊥ht(a,b) = 1, then c = a ∪ b is an
oriented path, because the union contains one source, one sink, and the in-order
of all non-source vertices is one, and the out-order of all non-sink vertices is also
one. Now consider the following overlap criterion for multiple paths A = {ai}.
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Definition 7. The head-tail overlap ⊥HT : P(Π∗) → {0, 1} is defined as

⊥HT (A) =

{
1 if ⊥ht(ai, aj) = 1 for all ai, aj ∈ A,
0 otherwise.

(9)

It is possible to show by induction that for any number of paths ⊥HT ({ai}) = 1
implies

⋃
i ai is a path. This means that given ⊥HT as overlap criterion,

HΠ = {∅} ∪Π∗ (10)

is a hyperconnection. In the binary case a path opening of length L preserves all
pixels x ∈ X which belong to a path a of at least length L, for which V(a) ⊆ X .
This is equivalent to performing a hyperconnected area opening using HΠ as
hyperconnection.

4 Attribute-Space Connectivity

In [7] it was proposed to solve various problems in connectivity by transforming
the binary image X ⊂ E into a higher-dimensional attribute space E × A in
which A is some space encoding the local properties or attributes of pixels in
any image. To embed the image in E ×A an operator Ω : P(E) → P(E ×A) is
used, i.e., Ω(X) is a binary image in E ×A. Typically A ⊆ R or Z. The reverse
operator ω : P(E ×A) → P(E), projects Ω(X) back onto X . The requirements
according to [7] are:

Definition 8. An attribute-space transform pair (Ω,ω) from E ↔ E ×A, is a
pair of operators such that:

1. Ω : P(E) → P(E×A) is a mapping such that for any X ∈ P(E), each point
x ∈ X has at least one corresponding point (x, a) ∈ Ω(X), with a ∈ A,

2. Ω(∅) = ∅,
3. Ω({x}) ∈ CE×A for all x ∈ E,
4. ω : P(E ×A) → P(E) is a mapping such that for any Y ∈ P(E ×A), every

(x, a) ∈ Y is projected to x ∈ ω(Y ),
5. ω(Ω(X)) = X for all X ∈ P(E),
6. ω is increasing.

Note that CE×A is the connection used in E ×A. Axiom four defines ω to be a
projection, which is increasing anyway, so axiom 6 is redundant. Furthermore,
even though ω(Ω(X)) = X for all X ∈ P(E), Ω(ω(Y )) = Y will not in general
hold for all Y ∈ P(E×A). Using the above we can define the notion of attribute-
space connection.

Definition 9. An attribute-space connection A ⊆ P(E) on universal set E gen-
erated by an attribute-space transform pair (Ω,ω) and connection CE×A on E×A,
is defined as

AΩ = {C ∈ P(E)|Ω(C) ∈ CE×A} (11)
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Properties 2 and 3 in Definition 8 mean that singletons and the empty set are
members of AΩ, as in the case of (hyper)connections. Note that only those
elements of CE×A which are in the range RΩ of Ω correspond to an element of
AΩ, with

RΩ = {X ∈ P(E ×A)|∃Y ∈ P(E) : Ω(Y ) = X}. (12)

For Definition 9 to be of practical use, we might want to replace axiom 6 in
Definition 8 by a stronger one

6. ω(Γx(Ω(X))) ∈ AΩ for all X ∈ P(E) and all x ∈ P(E ×A).

This guarantees that the cover of X generated by the attribute-space connection
consists only of members of the attribute-space connection. Not all attribute-
space connections in [7] adhere to this. Attribute-space transform pairs adhering
to this new axiom will be called strong attribute-space transform pairs. Using
the above concepts Attribute-space connected filters can also be defined [7].

Definition 10. An attribute-space connected filter ΨA : P(E) → P(E) is de-
fined as

ΨA(X) = ω(Ψ(Ω(X))) (13)

with X ∈ P(E) and Ψ : P(E×A) → P(E×A) a connected filter, and (Ω,ω) an
attribute-space transform pair.

Therefore attribute-space connected filters first map the image to a higher di-
mensional space, then apply a connected filter and project the result back. If Ψ
is anti-extensive (or extensive), so is ΨA due to the increasingness of ω.

We will now develop a new, strong width space, i.e., one which yields an
idempotent cover of the image domain, unlike the width space in [7]. The mor-
phological skeleton SK(X) of X with S.E. B is defined as

SK(X) =
N⋃

n=0

Sn(X) (14)

with
Sn(X) = X �Bn − (X �Bn) ◦B (15)

with Bn the n-fold dilation of the origin {0} with itself (i.e. X �B0 = X), and
N denotes the largest integer such that SN (X) �= ∅. As is well known, any set
X can be exactly reconstructed from its skeleton sets Sn(X) by:

X =
N⋃

n=0

Sn(X) ⊕Bn (16)

The attribute-space transform ΩSK is defined as

ΩSK(X) =
N⋃

n=0

(
Sn(X) ⊕Bn

)
× {n} (17)
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(a) X (b)ΩSK(X) (front) (c)ΩSK(X) (side) (d)ΩSK(X) (back)

(e)Y (f)ΩSK(Y ) (front) (g)ΩSK(Y ) (side) (h)ΩSK(Y ) (back)

Fig. 1. Attribute-space transforms of two binary images: (a) and (e) binary images X
and Y each containing a single (classical) connected component (b), (c), and (d) three
iso-surface views of ΩSK(X) showing a single connected component in E × A; (f), (g)
and (h) same for ΩSK(Y ), showing two connected components in E × A

in which × represents the Cartesian product of the sets, i.e.

X × {a} = {(x, a) ∈ E ×A | x ∈ X ∧ a ∈ A}. (18)

It can immediately be seen that projecting ΩSK(X) back onto E obtains X for
all X ∈ P(E). An example is shown in Fig. 1. The top image X is considered as
one component due to the slow change in width, whereas the abrupt change in
width causes a split in Y . Because (14) and (16) show that any X is decomposed
into balls of maximal diameter, it can readily be shown that any attribute-
space connected component C = Γx(ΩSK(X)), is a set of maximal balls itself,
when projected back onto E. Therefore, for any such C ∈ CE×A, ω(C) will be
decomposed into the same set of balls by ΩSK , which will again be element of
CE×A.

In the case of a strong attribute-space transform pair, we can define a family of
operators {Θx, x ∈ E}, Θx : P(E) → P(P(E)), which return the attribute-space
connected components of X at any point x ∈ E.

Definition 11. The attribute-space connectivity operatorΘx : P(E) → P(P(E))
associated with strong attribute-space transform pair (Ω,ω) is defined as

Θx(X) =

{
{ω(Γx,a(Ω(X)))|a ∈ A : (x, a) ∈ Ω(X)} if x ∈ X

{∅} otherwise.
(19)
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This operator is the attribute-space connected equivalent of the hyperconnec-
tivity operator Υx. In this case Θx extracts all connected components in the
attribute space which contain at least one point (x, a).

4.1 Hyperconnectivity – Attribute-Space Connectivity Relationship

In [7] it was conjectured that. although hyperconnectivity and attribute-space
connectivity share certain properties, they were different. However, no proof of
this conjecture has been given since. Using the new axiomatics of hyperconnec-
tivity, we can now prove the following theorem.

Theorem 1. For every hyperconnection H on any finite, non-empty, universal
set E there exists an attribute-space-transform pair (ΩH, ωH) and connection
CE×A on attribute space E × A with associated attribute-space connection AH
such that

AH = H. (20)

In other words, the set of all hyperconnections form a subset of the set of all
attribute-space connections.

Proof. Let ΛH be an index set over H, and λH : H → ΛH be a function return-
ing the index of any member of H. We can now construct an attribute-space-
transform pair (ΩH, ωH) between E and E × ΛH as follows.

ΩH(X) =
⋃

x∈X

⋃
Hi∈Υx(X)

(
Hi × {λH(Hi)}

)
, (21)

Thus ΩH computes each hyperconnected component Hi of X , and shifts it along
the ΛH dimension in E×ΛH to he location given by λH(Hi). The reverse operator
ωH : P(E × ΛH) → P(E) is simply

ωH(Y ) = {x ∈ E : ∃(x, a) ∈ Y }. (22)

It is easily verified that this is a attribute-space-transform pair according to
Definition 8. We must also define an appropriate connection on E × ΛH. First
we define operator ΩΛ : P(E × ΛH) → P(ΛH)

ΩΛ(Y ) = {a ∈ ΛH : ∃(x, a) ∈ Y }. (23)

This simply projects every point in Y to its location on the ΛH-dimension. Let
CE×ΛH be defined as follows

CE×ΛH = {∅} ∪ {Y ∈ E × ΛH | ∃a ∈ ΛH : ΩΛ(Y ) = {a}}. (24)

Thus, all Y which are confined to a single plane in E × ΛH are considered
connected. It is easy to show this is a connection: (i) ∅ ∈ CE×ΛH , and singletons
{(x, a)} ∈ CE×ΛH for every (x, a) ∈ E × ΛH, and (ii) if we have any set {Ci} ⊂
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CE×ΛH , the intersection
⋂

i Ci �= ∅ if and only if there exists a single a ∈ ΛH
such that

ΩΛ(Ci) = {a}, for all Ci. ⇒ ΩΛ

(⋃
i

Ci

)
= {a}, (25)

which means that the second property in Definition 2 holds as well. Thus attribute-
space connection AH is given by

AH = {C ∈ P(E)|ΩH(C) ∈ CE×ΛH} (26)

For any element Hi ∈ H it is obvious that

ΩH(Hi) = Hi × {λH(Hi)}, (27)

and therefore,
ΩΛ(ΩH(Hi)) = {λH(Hi)}. (28)

Thus ΩH(Hi) ∈ CE×ΛH , and

X ∈ H ⇒ X ∈ AH. (29)

For any set X �∈ H the cardinality of the set H∗
X of its hyperconnected compo-

nents must be larger than 1. Therefore, the cardinality of ΩΛ(ΩH(X)) > 1, and
ΩH(X) �∈ CE×ΛH , proving

X �∈ H ⇒ X �∈ AH, (30)

which together with (29) proves Theorem 1.

This proves hyperconnectivity to be a special case of attribute-space connectivity.
The difference between hyperconnectivity and attribute-space connectivity is
formulated in the following theorem.

Theorem 2. There exist strong attribute-space connections which are not hy-
perconnections.

Proof. We need only prove the existence of one case. It can readily be shown
that ΩSK yields a strong, width-based attribute-space connection which allows
non-increasing decomposition of a binary image into attribute-space connected
components, i.e., the corresponding attribute-space connectivity operators ΘSK

x

are non-increasing in the sense of (1). This is shown in Fig. 2. In this figure
there are two binary images X and Y , with X ⊂ Y . Each is split into two
attribute-space connected components (X1, X2) and (Y1, Y2) by ΩSK . Let X1
and Y1 denote the narrower of the two components in each attribute space trans-
form respectively. Obviously ω(Y1) ⊂ ω(X1), and ΘSK

x must be non-increasing.
This attribute-space connection is therefore not a hyperconnection due to the
requirement of increasingness of all Υx, proving Theorem 2.
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(a) (b) (c) (d)

(e)Y (f)ΩSK(Y ) (front) (g)ΩSK(Y ) (side) (h)ΩSK(Y ) (back)

Fig. 2. Non-increasingness of attribute-space connected components: (a) and (e) binary
images X and Y , with X ⊂ Y ; (b), (c) and (d) three iso-surface views of ΩSK(X); (f),
(g) and (h) three iso-surface views of ΩSK(Y ). Both X and Y have two attribute-space
connected components Clearly the narrower component Y1 in ΩSK(Y ) is smaller than
the narrower component X1 in ΩSK(X), demonstrating non-increasingness.

5 Conclusion

This paper extends the theoretical work in [8], and shows the utility of the new
axiomatic framework in two important ways. First, it has been shown that the
path openings fall into the general class of hyperconnected filters. This com-
plements the work in [8], in which it was already shown that structural filters
and reconstruction using reconstruction criteria were special cases of hypercon-
nectivity. The question that this raises is whether all increasing filters can be
captured by hyperconnectivity in some way. Furthermore, which other, as yet
unknown filters lie within the domain of hyperconnected filters.

The second important conclusion is that hyperconnectivity is a special case
of attribute-space connectivity. This almost seems to immediately undermine
the utility of hyperconnectivity. However, this result does not mean that hy-
perconnectivity is not important in its own right. A difference between the two
approaches is that hyperconnectivity focuses on the type of overlap, whereas
attribute-space connectivity focuses on the type of transform used to decompose
the image into its constituent components. These complementary viewpoints
may help to solve very different problems.

The work presented here is very much related to other work on connectivity
theory, in particular partial connections and connective segmentation [12, 16].
Attribute-space connections and hyperconnections could open up a way in which
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we can relax the requirement usually imposed in segmentation, namely that
the resulting image components (object and background) are disjoint. There
are cases when no sensible, strict boundary can be drawn, and overlap should
be allowed. Currently, work is in progress to develop fast algorithms for both
attribute-space and hyperconnected filters.
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Abstract. Constrained connectivity relations partition the image defi-
nition domain into maximal connected components complying to a series
of input constraints such as local and global intensity variation thresh-
olds. However, they lead to a stream of small transition regions in sit-
uations where the edge between two large homogeneous regions spans
over several pixels (ramp discontinuity). In this paper, we analyse this
behaviour and propose new definitions for the notions of transition pixels
and regions. We then show that they provide a suitable basis for sup-
pressing connected components originating from non ideal step edges.

1 Introduction

Owing to the natural one-to-one correspondence between the partitions of a set
and the equivalence relations on it [1, p. 130] and given that connectivity relations
are equivalence relations, image segmentation [2] based on logical predicates de-
fined in terms of connectivity relations naturally leads to uniquely defined image
partitions1. For example, the trivial connectivity relation stating that two pixels
are connected if and only if they can be joined by an iso-intensity path breaks
digital images into segments of uniform grey scale [4]. They are called plateaus
in fuzzy digital topology [5] and flat zones in mathematical morphology [6]. In
most cases, the equality of grey scale is a too strong homogeneity criterion so
that it produces too many segments. Consequently, the resulting partition is
too fine. A weaker connectivity relation consists in stating that two pixels of a
grey tone image are connected if there exists a path of pixels linking them and
such that the grey level difference along adjacent pixels of the path does not ex-
ceed a given threshold value. In this paper, we call this threshold value the local
range parameter and denote it by α. Accordingly, we call the resulting connected
components the α-connected components. This idea was introduced in image
processing by Nagao, Matsuyama, and Ikeda in the late seventies [7] but was al-
ready known before in classification as the single linkage clustering method [8].
1 Partial partitions relying on partial equivalence relations (i.e., symmetric and tran-

sitive relations that are not necessarily reflexive) are studied in [3].
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α-connected components are called quasi- or λ-flat zones [9,10] in mathematical
morphology. Although α-connected components often produce adequate image
partitions, they fail to do so when distinct image objects (with variations of in-
tensity between adjacent pixels not exceeding α) are separated by one or more
transitions going in steps having a magnitude less than or equal to α. Indeed, in
this case, these objects appear in the same α-connected component so that the
resulting partition is too coarse. This problem is sometimes referred to as the
’chaining effect’ of the single linkage clustering method [11]. A natural solution
to this problem is to limit the difference between the maximum and minimum
values of each connected component by introducing a second threshold value
called hereafter global range parameter and denoted by ω. This led to the no-
tion of constrained connectivity introduced in [12]. A more general framework
where constraints are defined in terms of logical predicates is put forward in [13].
Constrained connectivity solves the chaining effect of α-connectivity because ap-
propriate global constraints prohibit α-connected components to grow too much.
However, it may create a series of small undesirable regions in situations where
the edge between two homogeneous regions spans over several pixels in the form
of a ramp discontinuity [14]. This motivated us to analyse this behaviour and
propose appropriate definitions for the notions of transition pixels and regions.
They provide a basis to suppress all connected components originating from non
ideal step edges2, see also preliminary results in [15].

Section 2 briefly recalls the notion of constrained connectivity expressed in
terms of logical predicates. Transitions pixels and regions are studied in Sec. 3.
Before concluding, experimental results are presented in Sec. 4.

2 Logical Predicate Connectivity

We define α-connectivity for multichannel images following [7] (see also [16]
where α = (α1, . . . , αm) is referred to as the differential threshold vector): if, for
every channel j, the difference of the values between two adjacent pixels is less
than or equal to αj , then the two pixels belong to the same component. Equiva-
lently, denoting by fj a scalar image, two pixels p and q of a multichannel image
f = (f1, . . . , fm) are α-connected if there exists a path P = (p = p1, . . . , pn = q),
n > 1, such that |fj(pi) − fj(pi+1)| ≤ αj for all 1 ≤ i < n and for all
j ∈ {1, . . . ,m}. By definition, a pixel is α-connected to itself. If necessary, a more
general definition whereby the component-wise grey level difference is replaced
by an arbitrary distance on vectors [10,17,18] can be considered. For instance,
the Mahalanobis distance provides us with a scale-invariant distance taking into
account the correlations between the different channels. Alternatively, one could
define the α-connected component of a pixel by computing the intersection of
the αj-connected components obtained for each channel separately and then ex-
tract the connected component of this intersection that contains this pixel. In
practice, because the connections between pixels may follow different paths in
each channel, it may be necessary to consider the intersection of graphs rather
2 An ideal step edge consists of a discontinuous jump from one value to another.
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than just an intersection on the nodes of the connected components obtained for
each channel. This will be detailed in a future paper.

To determine whether two vectors are ordered, we use the marginal order-
ing [19] and denote by � the resulting relation ’less than or equal to’: f(p) �
f(q) ⇔ fj(p) ≤ fj(q) for all j ∈ {1, . . . ,m}. Nevertheless, the family of partitions
into α-connected components, for varying α, is not totally ordered because of
the absence of total ordering between the vectors αi such that αi � α. We solve
this problem by authorising only local vector range parameters having the same
range α for all channels (so that it comes down to a unique scalar value α). In
practice, this is not a limitation because the individual channels of the input
multichannel image can be transformed beforehand.

Recall that a logical predicate P returns true when its argument satisfies the
predicate, false otherwise. In general, provided that a given predicate returns true
on iso-intensity connected components, we may look for the largest αi-connected
component satisfying this predicate such that every αj-connected component
where αj ≤ αi also satisfies it. This leads to the following general definition
when considering a series of n predicates returning true when applied to iso-
intensity connected components:

(P1, . . . , Pn)-CC(p) = (1)∨{
αi-CC(p)

∣∣∣ Pk

(
αi-CC(p)

)
= true for all k ∈ {1, . . . , n} and

Pk

(
αj-CC(q)

)
= true for all j ≤ i and all q ∈ αi-CC(p)

}
.

Note that in [13] the condition ’and all q ∈ αi-CC(p)’ was missing. The first
author proposed the additional condition following a counter-example provided
to him by Christian Ronse. If all predicates Pk are decreasing3, this procedure
is equivalent to checking the predicates on the αi-CC of p only, see Eq. 4 in [13].
Indeed, once they are satisfied by the αi-CC of p, they will be satisfied by the
αj-CC of q, because the latter are smaller or equal to the former.

Examples of decreasing predicates are ’is the difference between the largest
and smallest value of the αi-connected component below a threshold value ω?’
and ’is the αi-connected component strongly4 connected?’. The predicate ’is the
variance of the intensity values of the αi-connected component below a given
threshold level σ?’ is an example of non-decreasing predicate. Additional ex-
amples of decreasing and non-decreasing predicates (similar to attribute thin-
nings [20]) can be found in [12,13].

From a theoretical point of view, constrained connectivity is related to the
framework of the lattice approach to image segmentation proposed by Serra [21]
and further investigated by Ronse [3]. More precisely, in [21] and [3], one considers
3 A (logical) predicate is said to be decreasing if and only if every subset of any set

satisfying this predicate also satisfies it [13].
4 A α-connected component is strongly connected if and only if all edges of the con-

nected components have a weight less than or equal to α (the weight of an edge
between two adjacent pixels of the CC is defined as the range of the intensity values
of the nodes it links).
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connective segmentation, that is, segmentation methods where a connective cri-
terion is associated to the image so that the final segmentation consists of a parti-
tion of connected components. However, connective segmentation as per [21] and
[3] does not constrain the connected components in the sense of [12]. Therefore,
while constrained connectivity uses a connective criterion (the α-connectivity),
not all connected components resulting from this criterion are allowed but only
the largest ones satisfying a series of constraints. From a theoretical point of
view, the extension of the connective segmentation paradigm in order to inte-
grate the constrained connectivity paradigm is studied mathematically in [22].
In particular, it is shown that constrained connectivity fits the framework of
open-overcondensations [23].

3 Transition Pixels and Regions

The constrained connectivity paradigm partitions the image definition domain
into maximal connected components satisfying a series of constraints expressed
in terms of logical predicates. In practice, large connected components are often
surrounded by a stream of small, usually one pixel thick, connected components.
Indeed, given the general low pass filtering nature of imaging systems, ideal step
edges are actually transformed (blurred) into ramp discontinuities. In the worst
case, the ramp is made of steps of equal intensity so that it is pulverised into as
many connected components as the number of steps (unless the creation of a large
connected component encompassing the whole ramp would not violate the input
connectivity constraints). Ramp pixels are sometimes called stairs [24], transition
regions [25], or simply transitions [26] because they establish a path between
nearby bright and dark regions. They are analogous to the notion of samples
of intermediate (transitional) characteristics lying between actual clusters, see
for example [27]. They are also related to the concept of mixed pixels since the
intensity of a ramp pixel can be viewed as a mixture of the intensity of the
regions separated by the considered ramp.

A definition of transition regions using topological and size criteria is proposed
in [28]. Methods based solely on an area criterion are investigated in [10,29]. How-
ever, small regions do notnecessarily correspond to transition regions. In [25], tran-
sition regions are defined as one-pixel regions having neighbouring brighter and
darker regions after a preprocessing stage based on alternating sequential filters by
reconstruction. In [15], transition regions are defined as connected components dis-
appearing with an elementary erosion and not containing any regional extremum.
Here, we first introduce the notion of transition pixel . It is then used for determin-
ing whether a given connected component correspond to a transition region.

A pixel of a grey level image f is a local extremum if and only if all its
neighbours have a value either greater or lower than that of the considered pixel.
That is, in morphological terms, a pixel is a local extremum if and only if the
minimum between the gradients by erosion ρε and dilation ρδ of f at position p
is equal to 0:

p, local extremum of f ⇔
[
ρε(f) ∧ ρδ(f)

]
(p) = 0. (2)
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The local extremum map LEXTR of a grey level image f is simply obtained by
thresholding the pointwise minimum of its gradients by erosion and dilation for
all values equal to 0:

LEXTR(f) = Tt=0[ρε(f) ∧ ρδ(f)]. (3)

The LEXTR map corresponds to the indicator function returning 1 for local
extrema pixels and 0 otherwise. We define transition pixels of a grey level image
f as those image pixels that are not local extrema:

p, transition pixel of f ⇔
[
ρε(f) ∧ ρδ(f)

]
(p) �= 0. (4)

The value of the morphological gradient of a transition pixel indicates the largest
intensity jump that occurs when crossing this pixel. It corresponds to the inten-
sity difference between its highest and lowest neighbours. We call transition map
the grey tone image obtained by setting each transition pixel to the value of this
intensity difference:[

TMAP(f)
]
(p) =

{
0, if p ∈ LEXTR1(f),[
ρ(f)

]
(p), otherwise,

(5)

where ρ denotes the morphological gradient operator (i.e., sum of the gradients
by erosion and dilation). Interestingly, for an ideal image with regions of constant
intensity levels separated by ideal step edges (and assuming that one pixel thick
regions must correspond to local extrema) the transition map is equal to zero
everywhere. Note that this would not be the case if regional instead of local
extrema would have been considered. Finally, a transition region is defined as a
constrained connected component containing only transition pixels. We present
hereafter formal definitions suitable for the processing of multichannel images.

The search for local extrema in multichannel images is not straightforward be-
cause there exists no total ordering between vectors of more than one dimension.
To circumvent this problem, we adopt a marginal ordering procedure whereby
each channel is processed separately. Hence, when considering a multichannel
image f = (f1, . . . , fm), we define the operator LEXTR

∑
summing the outputs

of the indicator function LEXTR applied to each channel fj of the input image:

LEXTR
∑

(f) =
j=m∑
j=1

LEXTR(fj). (6)

We then define the local extrema of order n as those pixels of the image that
are local extrema in at least n channels of the input image. They are denoted
by LEXTRn:

LEXTRn(f) = {p |
[
LEXTR

∑
(f)

]
(p) ≥ n}. (7)

In the following, we are interested in the local extrema of lowest order LEXTR1.
A pixel p is a transition pixel if and only if, in all channels of the input image,
it has at least one lower and one higher neighbours:

p, transition pixel of f ⇔ p �∈ LEXTR1(f) ⇔ ∨j=m
j=1 LEXTR(fj) = 0. (8)
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That is, a pixel of a multichannel is a transition pixel if and only if it is a
transition pixel in each individual channel.

The calculation of the maximal amplitude of the grey level difference between
neighbours of each transition pixel and over all channels leads to the notion
of transition map for multichannel image. Formally, it is denoted by TMAP
and obtained by setting non transition pixels to 0 and transition pixels to the
pointwise maximum of the morphological gradient computed for each channel:

[TMAP(f)](p) =
{

0, if p ∈ LEXTR1(f),
∨j=m

j=1 [ρ(fj)](p), otherwise.
(9)

Finally, a connected component is deemed to be a transition region if it contains
only transition pixels or, equivalently, if it does not contain any local extremum
pixel appearing in any channel of the input image:

(P1, . . . , Pn)-CC(p) is a transition region
⇔ (P1, . . . , Pn)-CC(p) ∩ LEXTR1 = ∅. (10)

This latter test can be achieved efficiently by performing the reconstruction of the
labelled connected components using the complement of LEXTR1 as seed pixels.

Once transition regions are detected, they can be removed from the partition
so that the latter becomes a partial partition. The remaining non-transition
regions are then expanded so as to cover again the whole image definition domain
in order to obtain again a partition. This is illustrated on actual image data in
the next section.

4 Experimental Results

A sample of a Landsat satellite image is displayed in Fig. 1a (only the true colour
channels among the 6 available channels are considered in this experiment). The
output of LEXTR

∑
is displayed in Fig. 1b. The grey level value of this image indi-

cates how may times each pixel is a local extremum when considering each channel
separately. It follows that the grey level values of Fig. 1b range from 0 (never a lo-
cal extremum) to 3 (local extremum in all 3 channels). Figure 1c shows the output
of LEXTR1, i.e., the local extrema of order 1 of the colour image of Fig. 1a. It cor-
responds to the pixels of Fig. 1b having a value greater than 0.Transition pixels
correspond to the white pixels of Fig. 1c. The transition map TMAP with tran-
sition pixels set to the pointwise maximum of the morphological gradient of each
channel is displayed in Fig. 1d.

Figure 2a shows the constrained connected components of Fig. 1a using iden-
tical contrast values for the local α and global ω range vectors [12]: α = ω =
(32, 32, 32). The transition regions as per Eq. 10 are displayed in Fig. 2b. Once the
transition regions have been detected, they are removed from the partition. The
gaps of the resulting partial partition are filled thanks to a seeded region proce-
dure [30] initiated by the non-transition regions. This procedure ensures that all
transition regions are suppressed but at the cost of some arbitrary decisions in the
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(a) Input colour image f (256×256 pixels) (b) LEXTR
∑

(f) (grey values range from 0 to 3)

(c) LEXTR1(f) (black for 1 and white for 0
values)

(d) Transition map of f : TMAP(f)

Fig. 1. Local extrema of a multichannel image (true colour channels of a Landsat
image) and corresponding transition map

presence of transition regions whose smallest distance (in the spectral domain) to
their neighbouring regions is obtained for more than one region. The resulting fil-
tered partition is shown in Fig. 2c. The idea of filling the gaps of a partial partition
using seeded region growing originates from [31]. In this latter case, the partial
partition was obtained by removing all image iso-intensity connected components
whose area is less than a given threshold value (this idea is further expanded in
[29] to multichannel images and α-connected components). Figure 2d shows the
simplification of Fig. 1a by setting each segment of Fig. 2c to the mean RGB value
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(a) (Pα=(32,32,32), Pω=(32,32,32))-CC of RGB im-
age of Fig. 1a. (7,780 regions)

(b) Transition regions according to Eq. 10

(c) Filtered partition (1,669 regions) (d) Resulting simplified RGB image

Fig. 2. From constrained connected components to transition regions and resulting
edge preserving simplification (see input image in Fig. 1a)

of the input image pixels falling within this segment. The resulting image can be
viewed as a sharpened image through ramp width zeroing based on region grow-
ing. Similarly, our approach can be linked to the discrete sharpening filters pro-
posed in [32] and further developed in [33]. Indeed, the underlying ideas of the
so-called Kramer-Bruckner filters consists in setting each pixel to its dilated or
eroded value depending on which one is closer to its value. Consequently, for grey
tone images, the sharpening transformation modifies only non-local extrema, i.e.,
transition pixels. More generally, a relationship can be established with the class
of morphological image enhancement methods [34].
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Note that transition regions also occur when generating a partition by auto-
matically combining fine to coarse partition hierarchy using lifetime measure-
ments [12]. Indeed, transition regions usually persist for a wide range of scale so
that their lifetime is high. The concepts presented in this paper can also be used
for removing these transitions regions.

5 Concluding Remarks

We have shown that the detection of constrained connected components cor-
responding to transition regions is of interest for segmentation and edge pre-
serving simplification purposes. It is also useful for unsupervised classification
techniques. Indeed, only those pixels not corresponding to transition regions
should be considered when performing cluster analysis in a feature space to
avoid overlap between clusters [35]. Similarly, the detection of transition pixels
could be exploited by methods aiming at separating pure from mixed pixels.
We have advocated the use of local extrema for marking non-transition regions.
Local extrema instead of regional minima or maxima could form a basis for
an interesting new type of jump connection [21,3]. Finally, we plan to anal-
yse whether edge-preserving smoothing using a similarity measure in adaptive
geodesic neighbourhoods [36,37] provides us with a valid pre-processing trans-
formation to reduce the occurence of transition regions.
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Abstract. In this paper we describe a rotation-invariant attribute filter
based on estimating the sphericity or roundness of objects by efficiently
computing surface area and volume of connected components. The method
is based on an efficient algorithm to compute all iso-surfaces of all nodes
in a Max-Tree. With similar properties to moment-based attributes like
sparseness, non-compactness, and elongation, our sphericity attribute can
supplement these in findingblood-vessels in time-of-flight MR angiograms.
We compare the method to a discrete surface area method based on adja-
cency, which has been used for urinary stone detection. Though the latter
is faster, it is less accurate, and lacks rotation invariance.

1 Introduction

Connected filters [1,2] are members of the larger family of morphological opera-
tors, that act on the flat zone level of gray-scale images. Connected filters have
the capacity to precisely identify and extract connected components in their en-
tirety and without distorting their boundaries. This property, critical in many
applications such as medical imaging, increases their popularity and makes them
a suitable tool for problems in which accurate shape analysis is of importance.
Connected components can either be removed or remain intact but new ones
cannot emerge. Emergence and distortion of components is an existing problem
in many other filtering methods.

Attribute filters are a subset of connected operators [3, 4], that access con-
nected components of threshold sets based on their attributes. Examples are
attribute openings, closings, thinnings and thickenings [3,4, 5]. Attribute filters
often rely on either size or shape criteria such as volume, simplicity, complex-
ity, moment of inertia, non-compactness, etc. [3, 4, 6, 7]. Attributes are called
shape descriptors provided they satisfy three key properties: translation, scale
and rotation invariance [8]. Including scale invariance comes at the expense of
increasingness [8], and rotation invariance can come at the cost of a high compu-
tational overhead, and reducing this is the topic of ongoing research. Exceptions
are moment invariants [7,8], which are rotation invariant by definition, and can
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be computed efficiently. Description by moment invariants is limited, hence the
need for new shape descriptors. In this paper we present a non-increasing 3D
shape descriptor to measure how spherical (round) objects are, emphasizing ro-
tation invariance. The sphericity attribute relies on accurate computation of
surface area for which a new method is developed. It is compared to a sim-
pler method based on the 3D equivalent of the city-block perimeter length. The
performance of both methods is evaluated in terms of speed and accuracy.

Outline. The remainder of this article is organized as follows. A short introduc-
tion on attribute filters is given in Section 2 followed by a brief description of the
Max-Tree algorithm in Section 3, used for computing the sphericity attribute.
The latter is described in further detail in Section 4. Finally, Section 5 presents
the results of the sphericity attribute used for 3D medical image enhancement,
comparing it to other methods.

2 Theoretical Background

In the following, binary images X are subsets of some non-empty, universal set
E. The set of all subsets of E is denoted P(E).

2.1 Attribute Filters

Attribute filters are based on connectivity openings. A connectivity opening
Γx(X) yields the connected component containing the point x ∈ X , and ∅ oth-
erwise. A connectivity opening is anti-extensive i.e. Γx(X) ⊆ X , increasing i.e.
X ⊆ Y⇒ Γx(X) ⊆ Γx(Y ) and idempotent i.e.Γx(Γx(X)) = Γx(X). Furthermore,
for all, X ⊆ E, x, y ∈ E,Γx(X) and Γx(Y ) are equal or disjoint. Attribute filters
are defined using a family of connectivity openings, by imposing constraints on
the connected components they return. Such constraints are expressed in the
form of binary criteria which decide to accept or to reject components based on
some attribute measure. Let Δ : P(E) → {false, true} be an attribute criterion;
then ΓΔ is a trivial opening returning the connected component C if Δ(C) is
true and ∅ otherwise. Moreover, ΓΔ(∅) = ∅. Attribute criteria can be represented
as: Δ(C) = Attr(C) ≥ λ where Attr(C) is some real-value attribute of C and
λ is an attribute threshold. A binary attribute opening ΓΔ of a set X with an
increasing criterion can be defined as

ΓΔ(X) =
⋃

x∈X

ΓΔ(Γx(X)) (1)

For non-increasing criteria Δ we obtain an attribute thinning. The sphericity
attribute S(C) is an example and is represented in terms of surface area(A(C))
and volume(V (C)) of each component as

S(C) =
π

1
3 (6V (C))

2
3

A(C)
(2)
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3 The Max-Tree

The Max-Tree [4] data structure was designed for morphological attribute filter-
ing in image processing. The nodes (Ck

h , k is the node index, h the gray level)
of the Max-Tree represent connected components for all threshold levels in a
data set (see Fig. 1). These components are referred to as peak components and
are denoted as P k

h . Each node Ck
h contains only those pixels of peak component

P k
h which have gray level h. The root node represents the set of pixels belong-

ing to the background, that is the set of pixels with the lowest intensity in the
image and each node has a pointer to its parent. The nodes corresponding to
the components with the highest intensity are the leaves. The filtering process
is separated into three stages: construction, filtering and restitution. During the
construction phase, the Max-Tree is built from the flat zones of the image, col-
lecting auxiliary data used for computing the node attributes at a later stage.
The auxiliary data can be used to compute one or more attributes, that describe
certain properties of the peak components represented by those nodes. The fil-
tering process is based on certain rules like the Direct, Min, Max, and Viterbi
rules [3,4], and more recently the Subtractive rule [8], and Branches rule [9,10].
These filtering rules are all designed to deal with non-increasing attributes, in
which accept and reject decisions might alternate along any path from leaf to
root. In the following we will only use the Subtractive rule, which works best for
blood-vessel enhancement and image decomposition based on shape [6,7,8].

Whatever filtering rule used, a key problem when computing Max-Trees lies
in efficient computation of the attributes. Following the approach in Breen and
Jones [3], most methods use a recursive procedure in which data are collected
during the construction phase, and passed down to the parents. This approach
is fine for any attribute which can be computed incrementally, such as those
based on moments, histograms, or on the minimum and maximum coordinate
values. It has however tended to limit the attributes used. In [7] several aug-
mentations to the Max-Tree were made for interactive visualization purposes,
including fast iso-surface rendering. We will use these extensions to compute
surface area efficiently.

(a) (b) (c)

Fig. 1. Example of a Max-Tree: (a) original image; (b) viewed as 3D surface; (c) cor-
responding Max-Tree
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4 Sphericity Attribute Computation

A simple algorithm (called adjacency method in the following) to compute an
approximate surface area is based on 6 connectivity in 3D [11]. Surface area
computation begins by detecting all surface voxels, i.e. object voxels that are 6-
connected to background voxels. For a three-dimensional connected component
that is represented as a set of voxels, one can easily identify the voxels that
are 6-connected to the background and view them as the border of the object.
The boundary of the object is the set of voxel faces that separates the object
from the background. Now the concept of 6-connectedness stems from the fact
that, for any two voxels (x1, x2, x3) and (y1, y2, y3) are called 6 face adjacent
if Σ3

i=1(xi − yi)2 = 1 [12]. To solve the problem of boundary extraction, one
approach is to visit each voxel in each object and determine whether it is 6-
connected to a background voxel or not.

Once the set of voxel faces that separate the object from the background are
identified their areas are estimated separately and added up to constitute the
surface area. In short, for each voxel in a connected component, simply compute
the number of 6-connected neighbors outside the component. This is equal to
the number of faces of each voxel on the boundary. The sum of these values over
the component is the surface area of the discrete representation of the object.

In gray scale, things are more complicated, as the voxels cannot readily be
classified as object and background. Using the depth-first construction algorithm
for Max-Tree construction from [4] (or for that matter the union-find approach
of [13]), the surface area of the current node Ck

h is initialized at zero, and the
surface areas of any child node at higher grey level is added to it. For each
voxel at level h within Ck

h we compute the number of adjacent voxels of lower
gray level, and add this to the surface area of the component. We also compute
the number of adjacent voxels with gray level higher than h. This number is
subtracted from the surface area of the current node Ck

h , because it represents
part of the boundary between the current node and one of its children. This
part has previously been added to the surface area of the node, but is not part
of the boundary of the peak component P k

h represented by node Ck
h , and must

therefore be subtracted.
The adjacency method can be implemented in the usual recursive way, using

auxiliary data as proposed by [3,4]. The computation of the fast sphericity from
the image data is performed as follows:

– Compute Max-Tree according to the algorithm in [4].
– As the Max-Tree is built compute the Volume(V (Ck

h)) of each node using
the existing voxel-based algorithm

– For each node (Ck
h)

• initialize surface area A(Ck
h) to zero,

• add surface areas of children (components at higher levels) to A(Ck
h),

• add number of 6-adjacent voxels to Ck
h with gray level < h to A(Ck

h)
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• subtract number of 6-adjacent voxels to Ck
h with gray level > h from

A(Ck
h)

• compute sphericity π
1
3 (6V (Ck

h))
2
3 /A(Ck

h).

The above algorithm assumes isotropic voxels with unit surface area faces. To
deal with anisotropic voxels, we compute separate sums of neighbours in x, y
and z directions, multiply each sum with the appropriate surface area, and add
the individual results together to obtain the final surface area of each node. The
time complexity of this algorithm (disregarding Max-Tree construction) is O(N),
with N the number of voxels. This is because for each voxel, we need to inspect
6 neighbors, perform at most one addition and one subtraction. The surface area
of each node is added only once to its parent, and because the number of nodes
is bounded by N this part is also O(N).

The problem, as many have noted, is that this does not yield an accurate
measure of surface area [14]. Worse still, as resolution increases, the estimate
does not improve. We therefore adapt a method for fuzzy sets [14], based on
iso-surface estimation to grey-scale volumes and attribute filtering.

Rendering of an object often requires iso-surface detecting algorithms such as
marching cubes [15] which produce a list of triangles approximating the surface.
Iso-surfaces are formed from each level set of the function f for which points
(x, y) have a constant intensity. To find these triangle meshes we need to process
all cells of the volume. A cell is a cube with the voxel centers at its corners.
These triangle meshes are quickly obtained from active cells that intersect the
surface during visualization process, using either range based search or seed set
generation methods [16], but also using an augmented Max-Tree [7]. There can
be up to 5 triangles per each active cell.

In each active cell we have n triangles. Let vi be vertices of the triangles, such
that vi,vi+1,vi+2 form a triangle. Then the sum of the areas of each triangle
approximates the surface area A(S) of the iso-surface patch S intersecting the
cell. This is computed as

A(S) =
1
2
Σn

i=0|(v3i+1 − v3i) × (v3i+2 − v3i)| (3)

where × denotes the vector cross product. We could recursively go through the
Max-Tree, and for each node Ck

h obtain triangle meshes from the augmented
Max Tree representation and compute their area A(Ck

h). This would lead to
repeated visits of cells in the volume leading to cash thrashing. Here we purpose
a different approach, as explained below.

In our iso-surface method we use the augmented Max-Tree that adds vi-
sualization data to the Max-Tree [7]. For the purposes of this paper the most
important additions are the Dilated and Eroded arrays. These contain the max-
imum and minimum node along the root path passing through each cell. Note
that we use 26 connectivity so that all eight voxels at the corners of each cell are
in the same root path. The aim is to compute the surface areas of all iso-surfaces
at all levels in the Max-Tree corresponding to the nodes.
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The surface area attribute computation takes the following procedure:

– Compute the augmented Max Tree.
– Compute the volume V (Ck

h) of each node using the existing voxel-based
algorithm.

– For each cell
• find maximum and minimum nodes from Dilated and Eroded arrays
• set current node to maximum
• while current node is not minimum

∗ compute grey level intermediate between current node and its parent
∗ compute triangle mesh of iso-surface at that level for the current cell
∗ calculate area of the triangles in the mesh and add to area of corre-

sponding node.
∗ set current node to its parent

– compute the surface area of the root node from the volume dimensions.
– For each node Ck

h compute sphericity π
1
3 (6V (Ck

h))
2
3 /A(Ck

h).

Sphericity for a sphere is 1.0 and for a cube it is approximately 0.806. For
our iso-surface method computation of surface area and volume for data objects
should be as close as possible for specific objects’ true values, and retain rotation
invariance. Thus we compare our sphericity computation with the adjacency
method in [11], which is the only other 3-D surface-area-based attribute filter
implementation to date.

The computational complexity of this algorithm is O(NΔG) with N being
the number of cells or voxels, and ΔG is the mean grey level range within each
cell. Thus the algorithm should slow down as grey level resolution is increased.
Memory costs of both algorithms are the same, requiring storage of two doubles
per node: one for volume and one for surface area.

5 Results and Discussion

5.1 Computational Cost

After computing the Max-Tree representation of a data set, the attribute of each
node is computed from its auxiliary data. In the filtering stage and based on each
node’s attribute value, a decision is made and its level is modified according to
the rule chosen. To measure the algorithm’s computational performance, we
ran some timing experiments on a Core 2 Duo E8400 at 3.0 GHz. Attribute
computation times in seconds are shown in the Table. 1. We ran tests on the
mrt16_angio2 and mrt8_angio2 time-of-flight magnetic resonance angiograms
(MRA) from http://www.volvis.org and the fullhead CT data set included
with VTK at 8 bit and 12 bit grey-level resolution for several attributes. As
expected, the iso-surface based attribute is slower than the other attributes.

As expected the iso-surface algorithm performs more slowly on 12-bit resolu-
tion data sets than the equivalent 8-bit data sets. The effect is most pronounced
on the fullHead data set, in which the grey level range is 4095 for the 12-bit
data. The 12-bit mrt16_angio2 has only a 576 grey level range, which explains
why it only doubles in computing time with respect to the 8-bit version.

mrt16_angio2
mrt8_angio2
http://www.volvis.org
fullhead
fullHead
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Sphericity filtering of CT scans along the urinary tract in X-ray rendering mode:
(a) the unfiltered view of a bladder calculus and (b) of kidney calculi; the results of
the sphericity filter for each set with λ = 0.94 (c), and λ = 0.39 (d) respectively; the
results of the volume filter following the sphericity filter with λ = 78 (e) and λ = 450
(f) respectively
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Table 1. Computing time (in seconds) of various attributes

fullHead mrt*angio2 vessels

Attribute 12 bits 8 bits 12 bits 8 bits 8 bits
Sphericity(Iso.) 123.13 8.64 26.77 14.10 2.94
Sphericity(Adj.) 1.44 0.98 1.44 1.30 0.85

Non Compactness 0.70 0.57 0.66 0.62 0.83
Sparseness 0.98 0.83 0.92 0.85 1.18

Volume 0.15 0.08 0.14 0.12 0.12

5.2 Performance Evaluation

CT Scans of the Urinary Tract. To evaluate the performance of the sphericity
filter in isolating compact structures, we used two 3D CT data sets of patients
suffering from urolithiasis. Both are courtesy of the Department of Radiology and
Medical Imaging, University General Hospital of Alexandroupolis, Greece. The
first one shown at the top of left column of Fig. 2 is of a patient diagnosed with a
bladder calculus. The stone is rather compact allowing for high values of λ. Fig. 2
(c) shows the sphericity filter output for λ = 0.94, for which all other anatomical
structures are suppressed. Followed by a volume opening with λ = 78, we can
completely isolate the stone from the remaining noise - Fig. 2 (e).

The second data set shows a severe case of nephrolithiasis, in which a stent
is inserted to one of the kidneys to bypass the obstruction of urine flow. In each
kidney there exists one major calculus accompanied by other smaller ones. Due
to their arbitrary shape, extracting them all (Fig. 2 (d)) requires a low value
for the sphericity threshold – λ = 0.39. To enhance the scene further, a volume
opening is applied with λ = 450, shown in Fig. 2 (f).

Time-of-Flight Angiography. Time-of-Flight angiograms are very difficult to
filter. On the mrt16_angio2 data set (from http://www.volvis.org/, the per-
formance of the two methods is hard to distinguish as shown in Fig. 3(c) and (d).
Both methods perform equally in terms of retaining or discarding specific fea-
tures. However, both struggle in suppressing the background without removing
the vessels. By contrast, the moment-based non-compactness attribute from [6,7]
removes background much more effectively (see Fig. 3(b)). However, it too re-
tains unwanted features. In Fig. 3(e) and (f) we see the effect of applying the
sphericity filters to the volume in Fig. 3(b). Both show a distinct improvement
on background suppression. Evidently, the blood vessels have a larger sphericity
than most unwanted features retained by the non-compactness filter.

Accuracy and Rotational Invariance. To measure the accuracy of the meth-
ods we measure the sphericity for several synthetic objects of known sphericity.
The first volume is an inverted Euclidean distance map from the Volume Library
(http://www9.informatik.uni-erlangen.de/External/vollib/).This yields
a series of Euclidean sphereswith increasing radii. A separate volume of cubes and
blocks of various sizes was made. Finally, a volume consisting of a rod of 4×4×32

mrt16_angio2
http://www.volvis.org/
http://www9.informatik.uni-erlangen.de/External/vollib/
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Sphericity filtering of time-of-flight MRA: (a) Xray rendering of original volume;
(b) filtered with non-compactness attribute at λ = 3.7; (c) original filtered with iso-
surface sphericity attribute at λ = 0.1320; (d) original filtered with adjacency sphericity
attribute at λ = 0.1124; (e) volume (b) filtered with iso-surface sphericity attribute at
λ = 0.1320; (f) volume (b) filtered with adjacency sphericity attribute at λ = 0.1124

rotated from 0◦ to 45◦ in 5◦ steps. For both algorithms we computed the spheric-
ity attributes. For an axis aligned cube of 323 the sphericity of the iso-surface
method yielded 0.821 versus 0.806 for the adjacency method. The latter is the
theoretical value. The difference is due to the rounding of the corners by the
iso-surface method.

The results for the Euclidean distance map are in Fig. 4. This shows that the
iso-surface method approaches the theoretical value of 1.0 as radius r increases.
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Fig. 4. Attribute measure as a function of sphere diameter for Euclidean spheres, for
both the iso-surface (solid) and adjacency method (dashed)
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Fig. 5. Sphericity of a 4 × 4 × 32 rod rotated from 0◦ to 45◦ in steps of 5◦, for both
the iso-surface (solid) and adjacency method (dashed)

The values larger than 1 at small r are caused by the fact that the volume is
computed voxel-wise, and the surface from the iso-surface. This means that the
iso-surface can enclose a smaller volume than that measured by the voxel-based
volume computation. By contrast the adjacency method consistently approaches
2/3 asymptotically, which is what is expected from theory.
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Fig. 5 shows the results of the rotation invariance test. Clearly, as we rotate the
rod the iso-surface method shows more rotation invariance than the adjacency
method. Between 45◦ and 90◦ the results mirror those in the graph. In a second
test we compared the sphericity measure of a 32 × 32 × 32 cube (axis aligned)
with the same cube rotated by 45◦ over the z-axis. For the axis aligned cube
we have 0.806 for the adjacency method and 0.821 for the iso-surface method
as noted above. When we rotate over 45 degrees, the values become 0.637 for
the adjacency method (theoretically approaching 0.632 or 22% off), versus 0.818
for ours (or 0.4% lower than unrotated) again proving our improved rotation
invariance.

6 Conclusions

Rotation invariance is an important property for object detection, and it is a
challenge to achieve it in the case of surface-area-based attributes. In this paper
we presented a rotation invariant, iso-surface method whose performance was
compared to the adjacency method from [11]. The performance of both methods
is shown for images rotated at different angles. While the iso-surface method
performs well in terms of rotation invariance, the adjacency method [11] is faster.
The accuracy of the iso-surface method was better than that of the adjacency
method for large structures, though on small spheres the accuracy was reduced.
This should be improved in the future. Both methods struggled when applied to
very noisy data sets. This is because sphericity is less robust to noise than the
moment-based non-compactness measure from [6]. The reason for this is that
surface area changes dramatically as small holes appear in a component due to
noise, whereas both volume and moment of inertia are affected in more or less
the same way by small holes. However, the combination of sphericity filtering
and non-compactness filtering in time-of-flight MRAs is clearly superior to only
using non-compactness.

Though we focused on sphericity measures in this paper, surface area itself,
and many other surface-area-based attributes can be derived in the same way. All
code, data sets and an installer program for Microsoft Windows demonstrating
these possibilities can be downloaded from http://www.cs.rug.nl/~michael/
MTdemo. This source code can also be compiled under Linux and Apple’s OS-X.
Finally, the iso-surface method presented here only uses a single core of the CPU.
Parallelization of this algorithm should be straightforward, and will be done in
the future.
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Abstract. This paper investigates some geodesic implementations that
have appeared in the literature and that lead to connected operators.
The focus is on two so-called self-dual geodesic transformations. Some
fundamental aspects of these transformations are analyzed, such as
whether they are actually levelings, and whether they can treat each
grain or pore independently from the rest (connected-component
locality). As will be shown, one of the geodesic self-dual reconstructions
studied appears to be not a leveling. Nevertheless, it possesses
a distinctive characteristic: it can process grains and pores in a
connected-component local manner. The analysis is performed in the
set or binary framework, although results and conclusions extend to
(flat) gray-level operators.

Keywords: Levelings, geodesic operators, geodesic reconstructions.

1 Introduction

Levelings are a class of operators that are connected and that satisfy certain
constraints. In the set or binary framework, levelings are called set or binary
levelings. The analysis of this paper is performed in the set or binary frame-
work, although results and conclusions extend to (flat) gray-level operators that
commute with thresholding.

Geodesic transformations are a usual way to implement levelings. This paper
investigates two so-called self-dual geodesic operations presented in the litera-
ture. In the analysis, the sequence of performing an under-reconstruction fol-
lowed by an over-reconstruction (and vice-versa) is also considered.

In particular, this work investigates the following fundamental properties of
them: (a) their leveling nature (i.e., if they are levelings), and (b) whether they
treat each grain or pore independently from the rest (whether they are connected-
component local). A significant finding, as will be shown, is that one self-dual
geodesic reconstruction would not be a leveling. This fact does not necessarily
implies that it is not useful; it has a distinctive characteristic that can make it
interesting in certain applications. Researchers and users of geodesic reconstruc-
tions should know the properties of them.
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The paper is organized as follows. Section 2 provides some background, in-
cluding some definitions of concepts related to connected operators and levelings.
The two self-dual reconstructions (as well as the elementary geodesic transforma-
tions they are based on) are described in Section 3, and are analyzed in Section 4.
Then, Section 5 concludes the paper.

2 Background

2.1 Basic Definitions

Some general references in the field of Mathematical Morphology are the follow-
ing [1][2][3][4][5][6][7].

In the theoretical expressions in this paper, we will be working on the lattice
P(E), where E is a given set of points (the space) and P(E) denotes the set
of all subsets of E (i.e., P(E) = {A : A ⊆ E}). Nevertheless, results can be
extended to gray-level functions by means of the so called flat operators [2][6].

In this work we will deal later with the duality concept, which has a precise
definition in Mathematical Morphology. Two morphological operators ψ1 and
ψ2 are dual of each other if ψ1 = �ψ2�, where � symbolizes the complement
operator. As a particular case, a morphological operator ψ is said to be self-dual
if ψ = �ψ�.

Connected operators do not introduce discontinuities and extend partitions in
the sense that the partition of the output is coarser that that of the input [8] [9].
For binary images (or sets), they treat the connected components of the input
and its complement in an all or nothing way. The operator that extracts the
connected-component a point x belongs to is the opening γx [3]. In this work,
the space connectivity is assumed to be a strong connectivity [10][11], which
avoids the existence of isolated grains and pores. More particularly, connected
subsets of Z2 with four- or eight-connectivity are used as the space E of points in
this paper. Connected operations can be considered as graph operations. Image
representations based on inclusion trees can be useful [12].

The following two sections define two constraints that are particularly useful
for studying the connected operator class: connected-component (c.c.) locality
and adjacency stability.

2.2 Connected-Component Locality

Definition 1. [13][14][15] Let E be a space endowed with γx, x ∈ E. An op-
erator ψ : P(E) −→ P(E) is said to be connected-component local (or
c.c.-local) if and only if, ∀A ∈ P(E):

– ψ preserves (or, respectively, removes) a non-empty grain G of A in operation
ψ(A) if and only if ψ preserves (respectively, removes) grain G in operation
ψ(G).

– ψ preserves (or, respectively, fills) a non-empty pore P of A in operation
ψ(A) if and only if ψ preserves (respectively, fills) pore P in operation
ψ(E \ P ).
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Where “\” denotes the set subtraction operation. (Note that connected operators
just preserve or remove grains, and preserve or fill pores.)

Thus, a c.c.-local connected operator is one that (1) fills grains and/or remove
pores, and (2) treats each grain or pore independently from the rest of grains and
pores. The connected-component local operator concept was also later discussed
in [11], where the term “grain-operator” is used.

2.3 Adjacency Stability

The adjacency stability constraint restrains in some way the behavior of adja-
cent flat zones, in particular the switch from grain to pore and vice-versa. The
adjacency stability concept was introduced in [13][14], and was further studied
in [15]. A related concept and formulation are discussed in [11].

Definition 2. Let E be a space endowed with γx, x ∈ E. An operator ψ :
P(E) −→ P(E) is adjacency stable if, for all x ∈ E:

γx(id
∨

ψ) = γx

∨
γxψ. (1)

Property 1. Extensive and anti-extensive mappings are adjacency stable.

The next property states the composition laws of adjacency stable connected
operators, and, conjointly with Property 1, provides a way to build operators of
this class.

Property 2. The class of adjacency stable connected operators is closed under
the sup, the inf and the sequential composition operations.

2.4 Levelings

Definition 3. An image g is a leveling of an input image f if and only if:

∀ (p, q) neighboring pixels : gp > gq ⇒ fp ≥ gp and gq ≥ fq (2)

The previous definition of leveling is that in [16, Definition 4, p. 193]
[17, Definition 2.2, p. 4]. A more general definition is introduced in [18,
Definition 10, p. 62].

Set levelings are those defined in the set or binary framework. As discussed in
[19], the leveling concept is equivalent to the adjacency stability connected op-
erator concept that was presented in [13][14][15], which therefore constitute the
origin of the leveling concept in the set or binary framework. Composition laws
of set levelings (which are extended to and satisfied by flat gray-level levelings
as well) can be found in [13][14][15] (see Property 1 and Property 2). Regard-
ing some clarifications about whether levelings satisfy the strong property, see
[19][20]. Levelings are useful operators for image filtering that simplify an im-
age while imposing input-output restrictions, and that can be computed using
compositions of morphological connected operators (from Properties 1 and 2).

Other works about levelings are [21][22][23][24].
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3 Geodesic Reconstructions: Definitions and Formulae

The geodesic reconstructions that will be investigated in this work are defined in
the following. This work will focus specially on the Rν and Rν′ self-dual geodesic
reconstructions.

– Reconstruction Rν

The Rν self-dual reconstruction is based on the elementary self-dual
geodesic operator ν. (Note: the description follows the presentation in [6,
Section 6.1.3], although the notation varies in minor details.)

[νg
(1)(f)](x) =

{
(δg

(1)(f))(x), if f(x) ≤ g(x)
(εg

(1)(f))(x), otherwise (3)

where δg
(1)(f) = δ1(f)∧g, and εg

(1)(f) = ε1(f)∨g. The mask image is denoted
by g, and the marker image is symbolized by f .

The νg
(1)(f) operator can be equivalently expressed [6] as ε1(f) ∨ δg

(1)(f)
or δ1(f)∧ εg

(1)(f) (which would follow from leveling expressions presented in
[16][25]).

The corresponding transformation of size n is νg
(n)(f) = νg

(1)(ν
g
(n−1)(f)).

Reconstruction Rν denotes the iteration of ν until idempotence:

Rν(g; f) = νg
(i)(f) (4)

where i is such that νg
(i+1)(f) = νg

(i)(f).
– Reconstruction Rν′

In [6, Section 6.1.3], the next self-dual transformation variant is also pre-
sented:

[ν′g(1)(f)](x) =

{
(δg

(1)(f ∧ g))(x), if f(x) ≤ g(x)
(εg

(1)(f ∨ g))(x), otherwise (5)

ν′g(n)(f) = ν′g(1)(ν
′g
(n−1)(f)), and the reconstruction based on ν′g(1) until idem-

potence is:

Rν′(g; f) = ν′g(i)(f) (6)

where i is such that ν′g(i+1)(f) = ν′g(i)(f).
– Under-reconstruction R and over-reconstruction R

Let R(g; f) denote the normal under-reconstruction or reconstruction by di-
lation (i.e., the iteration of δg

(1)(f) until idempotence), where f ≤ g. Let
R(g; f) symbolize the normal over-reconstruction or reconstruction by ero-
sion (i.e., the iteration of εg

(1)(f) until idempotence), where f ≥ g.
In the work of the paper, we will also consider the sequential compositions

of R and R (i.e., R ◦R and R◦R) to complete the analysis and comparisons.
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(a) Case study 1 (a) Case study 2

Fig. 1. Case studies. Input functions (continuous line) and marker functions (dotted
line) used in the analysis. Note: the space of points is discrete.

4 Analysis of Geodesic Reconstructions Rν and Rν′

In this section, we will analyze the geodesic reconstructions defined in the pre-
vious section on two different cases: one that can be referred to as “normal or
non-problematic”, and another one that has some adjacency issues. The two
cases are displayed in Fig. 1, where the input functions are displayed as contin-
uous lines, and the marker function as dotted lines:

4.1 On the Leveling Nature

We will first use a simple example of the application of the geodesic reconstruc-
tions defined in Section 3 to a 1-D gray-level function and an associated marker,
as displayed in Fig. 2. In fact, we will perform a thresholding operation to oper-
ate on a section to better illustrate the behaviors of the geodesic reconstructions
regarding adjacency matters.

We can observe that all geodesic reconstructions considered compute the same
result in the example of Fig. 2 at each level. In the case at the left of Fig. 2, a
grain is marked and reconstructed (see Fig. 2(d.1)-(g.1)); in the right part, that
same grain is removed (see Fig. 2(d.2)-(g.2)). No differences are observed.

We apply next the geodesic reconstructions considered in this paper to a case
that shows some adjacency issues in Fig. 3. Two levels are considered: the first
one, at the left part of Fig. 3, does not present any problem and all geodesic
reconstructions compute the same result. However, the level at the right part of
the figure poses some adjacency issues, and, as can be observed in Fig. 3(d.2)-
(g.2), not all geodesic reconstructions considered behave the same.

In fact, the result shown in Fig. 3(c.2) computed by Rν′ shows the behavior that
is in fact excluded by the leveling nature: a grain has been removed and an adjacent
pore has been filled. The adjacency stability equation (1) (or expression (2)) is not
satisfied. Thus, based on expression (5) by itself1, the Rν′ reconstruction is

1 We mean without imposing restrictions on the marker. As a matter of fact, in relation
to this issue, it can be mentioned that the marker-based formulation (which does not
get into the details of concrete geodesic implementations) of a set leveling in [22] poses
some constraints on the marker (more exactly, on the markers, since it considers two)
to take into account the adjacency constraints derived from the adjacency stability
equation (1) (or expression (2)).
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(a.1) Gray-level input function G

(continuous line) and gray-level
marker function F (dotted line)

(b.1) Binary input function g

(G thresholded)

(c.1) Binary marker function f

(F thresholded)

(d.1) Rν(g; f)

(e.1) R
ν
′(g; f)

(f.1) R(R(g; f ∧ g); f ∨ g)

(g.1) R(R(g; f ∨ g); f ∧ g)

(a.2) Gray-level input function G

(continuous line) and gray-level
marker function F (dotted line)

(b.2) Binary input function g (G
thresholded)

(c.2) Binary marker function f (F
thresholded)

(d.2) Rν(g; f)

(e.2) R
ν
′(g; f)

(f.2) R(R(g; f ∧ g); f ∨ g)

(g.2) R(R(g; f ∨ g); f ∧ g)

Fig. 2. Geodesic reconstructions for case study 1 at two levels. Part (a) shows the
input gray-level function G (continuous line) and marker F (dotted line), along with the
thresholding level (horizontal discontinuous line) used for parts (b) and (c), which show,
respectively, the binary input function g and marker f employed for the reconstructions
displayed in parts (d) and (e). Note: the left and right parts of the figure refer to
different thresholding levels; the space of points is discrete.

not generally a leveling. The previous statement can depend on the particular
space: it could be the case that a certain self-dual grain removing and pore filling
operation is not a leveling in a certain space but it is in a subset or a superset of
it (see further discussion about some of these aspects in [15]).

The other reconstructions considered, Rν(g; f), R(R(g; f ∧ g); f ∨ g) and
R(R(g; f∨g); f∧g) do not show those adjacency issues. Nevertheless, in the situ-
ation at the right of Fig. 3 R(R(g; f∧g); f∨g) is not equal to R(R(g; f∨g); f∧g)
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(a.1) Gray-level input function G
(continuous line) and gray-level
marker function F (dotted line)

(b.1) Binary input function g (G
thresholded)

(c.1) Binary marker function f (F
thresholded)

(d.1) Rν(g; f)

(e.1) Rν′(g; f)

(f.1) R(R(g; f ∧ g); f ∨ g)

(g.1) R(R(g; f ∨ g); f ∧ g)

(a.2) Gray-level input function G
(continuous line) and gray-level
marker function F (dotted line)

(b.2) Binary input function g (G
thresholded)

(c.2) Binary marker function f (F
thresholded)

(d.2) Rν(g; f)

(e.2) Rν′(g; f)

(f.2) R(R(g; f ∧ g); f ∨ g)

(g.2) R(R(g; f ∨ g); f ∧ g)

Fig. 3. Geodesic reconstructions for case study 2 at two levels. Part (a) shows the
input gray-level function G (continuous line) and marker F (dotted line), along with the
thresholding level (horizontal discontinuous line) used for parts (b) and (c), which show,
respectively, the binary input function g and marker f employed for the reconstructions
displayed in parts (d) and (e). Note: the left and right parts of the figure refer to
different thresholding levels; the space of points is discrete.

(see Fig. 3(f.2) and Fig. 3(g.2)), and they should generally be avoided if self-dual
processing is desired.

4.2 On Connected-Component Locality

A complete study of the c.c.-locality of a marker-based connected operator imple-
mented using reconstruction transformations (self-dual or not) would obviously
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(a) Binary input function g

(b) Binary marker function f

(c) Rν′(g; f)

(d) Marker f ′ computed on (c)

(e) Rν′(Rν′(g; f); f ′)

Fig. 4. Iteration of Rν′ . Note that part (c) is different from part (e) (i.e., Rν′(g; f) �=
Rν′(Rν′(g; f); f ′)).

need to take into account the marker computation. In the following, to simplify
the treatment, we will focus on the reconstruction transformations themselves
(expressions (3) and (5)), except when a second sequential application is com-
mented where the marker computation stage is also considered.

By examining the behaviors of the Rν and Rν′ self-dual reconstructions in
the example of the right part of Fig. 3, we can see that the treatment of a
grain (or respectively, a pore) in Fig. 3(d.2) has been influenced by an adjacent
pore (respectively, a grain). Thus, reconstruction Rν is not c.c.-local. Note that
the geodesic operations themselves of Rν make it non c.c.-local (even when the
marker is c.c.-local).

Regarding the alternative reconstruction Rν′ , those issues do not arise: a grain
that has not been marked would be removed by Rν′ disregarding what happens
at the adjacent pores. Analogously for pores. Thus, Rν′ can be used as a
basis for c.c.-local connected processing.

We will briefly comment that the switching of adjacent grains and pores that
happens in non levelings (such as Rν′) is normally linked to non-idempotent
behavior when c.c.-local processing is desired. This is illustrated in Fig. 4, where
two iterations of Rν′ are applied to the input image Fig. 4(a) using Fig. 4(b)
as marker, where three grains of Fig. 4(a) are signaled to be removed and two
pores are signaled to be filled. Let us assume that the marker criterion is c.c.-
local. Fig. 4(c) displays Rν′(g; f). If we apply the previous operation again, the
marker computed on Fig. 4(c) is Fig. 4(d). We can see that Rν′(Rν′(g; f); f ′)
(Fig. 4(e)) is different from Rν′(g; f) (Fig. 4(c)), in other words, Rν′ does not
show idempotence. As was the case when considering the leveling nature, this
can depend on the particular space.

5 Conclusion

This paper has investigated some fundamental issues that exist with geodesic re-
constructions, and, particularly, the emphasis of the analysis has been on a pair
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of self-dual reconstructions that have appeared in the literature. It is impor-
tant that researchers and users of geodesic reconstructions know the distinctive
properties and characteristics of them.

The focus of the analysis has been on: (a) whether the geodesic transforma-
tions are levelings; and (b) whether they can be used for building connected-
component local operators.

As has been found out, one of them is not generally a leveling. This opera-
tor possesses a characteristic that makes it interesting for certain situations, as
discussed in the paper: it can be used as basis for processing grains and pores
independently from the rest of grains and pores, i.e., for building connected-
component local connected operators.
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Abstract. Pattern spectra have frequently been used in image analysis.
A drawback is that they are not sensitive to changes in spatial distri-
bution of features. Various methods have been proposed to address this
problem. In this paper we compare several of these on both texture clas-
sification and image retrieval. Results show that Size Density Spectra
are most versatile, and least sensitive to parameter settings.

1 Introduction

In image analysis, pattern spectra are a way of extracting information about the
amount of image content at various sizes from an image. The original area pattern
spectra, first introduced by Maragos [1], are insensitive to position information.
This can cause very different images to have nearly identical pattern spectra.
In response to this drawback, many variants have been developed to include
sensitivity to spatial arrangement of the image content at each scale [2, 3, 4].
Apart from choosing a variant, there are many parameters settings to choose.

This paper presents a thorough comparison of four types of spatial size spec-
tra, with as main goal to investigate the differences between the various spatial
pattern spectra, and which ones are most suitable for certain tasks. We test gen-
eralized pattern spectra [3], multi-scale connectivity pattern spectra [5], spatial
size distributions [2], and size-density spectra [4]. This latter method has not
been used much yet, and this paper includes the first direct comparison of this
method against other pattern spectra. In all cases we will use area openings [6],
for which fast algorithms are available [7]. Choosing a single type of granulometry
ensures a fair comparison of the underlying strategies to add spatial informa-
tion to pattern spectra. Connected granulometries were chosen for their speed
advantage over structural granulometries, especially when large numbers of bins
are needed in the pattern spectrum [8].

The methods will be compared on their performance in classifying simple
objects from the COIL-20 database and classifying textures from the Brodatz
database. Finally, there will be a test comparing their performance on content-
based image retrieval, that is, the problem of finding images similar to some
query images, in a database of images. This last task is especially interesting in
the context of online image searches, and is part of continuing research to extend
image searches to include visual information instead of performing queries just
based on the text surrounding the images.

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 92–103, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 Theory

Before going into the theory on spatial size spectra, we give some basic defi-
nitions. A binary image X is defined as some subset of the image domain M
(usually M ⊂ Z2), while a grey-scale image is a map f : M → Z. Dilation,
erosion and opening using a structuring element B are indicated by δB, εB, γB

respectively. The area A of an image X is defined as A(X) = #X for binary
images, with # denoting the cardinality. In the case of grey scale images f
area A must be substituted by the sum of grey levels S in pattern spectra, i.e.
S(f) =

∑
x∈M f(x).

We will also use the area opening [6,7], based on the connected opening Γx(X),
which yields the connected component of X that contains x, and the empty set
if x /∈ X . The area opening is defined as

Γ a
λ (X) = {x ∈ X |A(Γx(X)) ≥ λ}, (1)

i.e., the area opening returns all connected components which have an area ≥ λ.
Parameter λ is the area threshold. For grey-scale images threshold decomposition
can be used.

γa
λ(f)(x) = max {h| x ∈ Γ a

λ (Th(f))}, (2)

where Th(f) = {x ∈ M|f(x) ≥ h} is the threshold set at grey level h, and γa
λ is

the area opening for grey-scale images. Fast algorithms can be found in [7].

2.1 Granulometries and Pattern Spectra

A granulometry [1, 9] is a collection of openings {γλ}λ≥0 with a size parameter
λ such that γλγμ = γmax(λ,μ). Informally, it can be considered a collection of
sieves, with the previous criterion indicating that using two sieves of different
sizes has the same effect as only using the coarser sieve. The pattern spectra
described in this paper all use area openings for the granulometry. A pattern
spectrum [1] is a way to describe the result of applying a granulometry. It stores
the amount of extra details γλ+1 removes compared to γλ. More formally the
pattern spectrum PSX is defined as

PSX(λ) = A(γλ(X) \ γλ+1(X)), (3)

in the binary case. For a grey-scale image f , the pattern spectrum becomes

PSf(λ) = S(γλ(f)) − S(γλ+1(f)) = S(γλ(X) − γλ+1(f)), (4)

where S denotes the summation of all grey values.

Generalized pattern spectra. A generalized pattern spectrum [3] is similar
to a normal pattern spectrum, but uses a general parameterization with a vector
M(f) instead of the area A(f). This ensures differences in spatial arrangement
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are noticed. One possibility for M is to use central moments μij , of order i+ j,
with i, j ∈ Z \ Z−, which are defined as

μij =
∑
(x,y)

(x− x)i(y − y)jf(x, y), (5)

where (x, y) is the center of gravity of the image. These can be normalized using
the the sum of grey levels S = μ00, yielding the normalized central moments ηij

which are invariant under scaling:

ηij =
μij

μ
1+(i+j)/2
00

, for i + j ≥ 2. (6)

Using these, it is also possible to define some quantities which are invariant under
scaling, translation and rotation, such as Hu’s moment invariants [10].

Spatial size distributions. Another way to capture the spatial distribution
of applying a granulometry is to use spatial size distributions denoted SSDf .
Originally proposed by Ayala and Domingo [2], it is defined as:

SSDf(λ, μ) =
1

A(f)2
∑

h∈μU

∑
x∈M

f(x)f(x + h) − γλ(f)(x)γλ(f)(x + h) (7)

where μU is some convex set U containing the origin scaled by a size parameter
μ and M ⊂ Z2 is an image domain. A typical choice for U would be a disc or
square, and any granulometry can be used for γλ. We will use the area opening
γa

λ for γλ. This function produces the difference between the overlap of f(x)
and its translates f(x + h), and the overlap of the opened image γλ(f) and its
translates.

Multi-scale connectivity. Multi-scale connectivity is yet another extension to
normal pattern spectra [5]. Instead of considering the spatial layout of applying
a granulometry, it looks at how the connectivity of clusters in an image changes
under a change of scale. One way to simulate such a change of scale is to use
dilations. When zooming out on a scene, smaller clusters seem to merge. Apply-
ing a dilation also merges these clusters into one larger cluster, and is therefore
somewhat similar to zooming out for the changes in connectivity. The clustering
based connected opening using some extensive operator ψ is defined for a binary
image as

Γψ
λ (X) = {x ∈ X | A (Γx(ψ(X)) ∩X) ≥ λ}. (8)

This is an area opening which effectively looks at connected components in the
extended image ψ(X) while still restricting the area of these components to
the original image X . The method extends to grey-scale as before as in (2).
By using a series of dilation of the form δiB , which denotes i−times dilation
with a structuring element B we can obtain a connectivity pyramid [5], which
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is sensitive to the mutual proximity of structures in the image. Using these
openings, a multi-scale connectivity pattern spectrum MSCf can be defined as:

MSCf (λ, i) = S(γδiB

λ+1(f) − γδiB

λ (f)). (9)

Because δ0B(X) = X , this spectrum includes a normal area pattern spectrum.

Size-density spectra. Size-density spectra combine sensitivity to spatial infor-
mation with low sensitivity to noise. Originally proposed by Zingman et al. [4],
they are significantly different from normal pattern spectra, and not based on
the usual granulometries, but on the density opening θB,d, defined as:

θB,d(f) = f ∧
∨

x∈M

{Bx | D(Bx, f) ≥ d} with D(Bx, f) = S(Bx∧f)/S(B) (10)

where Bx is a grey-scale structuring element B shifted by a vector x. Effectively,
it is an opening which uses whether the overlap D(Bx, f) exceeds some density
d, allowing imperfect overlap, thereby making it less sensitive to noise. However,
even for d = 1 it is still different from the usual structural opening. In the binary
case it is identical to the rank-max opening [11].

This is an opening (anti-extensive, increasing and idempotent), but it lacks
the absorption property with respect to the size of B. However, the opening
does have the absorption property with respect to the density, i.e., θB,d1θB,d2 =
θB,max(d1,d2). This can be used to define a normal pattern spectrum for a con-
stant structuring element PS(d) = A(θB,d(n)(f) − θB,d(n+1)(f)). Although top-
hat spectra, which do not need the absorption property, can be used instead,
using normal pattern spectra is more efficient. The resulting size-density spectra
used here are a concatenation of several pattern spectra (with density as param-
eter) for a range of sizes, also known as “type 2 size-density signatures”. The
structuring elements B are symmetric and completely at the maximum intensity,
allowing fast calculation of density by convolution D(Bx, f) = S(f∗B)

S(B) .

3 Comparison

In this section, the different pattern spectra will be compared on how well they
perform on a variety of tasks.

3.1 COIL-20

The first test is on classification performance using the COIL-20 database [12].
This database consists of 20 objects photographed from 72 different angles, for
a total of 1440 images of size 128× 128. The nearest neighbour classifier is used
with the L1 distance. In most tests the features will be normalized to a standard
deviation of 1, eliminating the large differences in average size between features.
Table 1 contains the results, showing the mean precision P (1), P (10), P (20),
P (50) for a variety of methods and settings. The mean precision P (n) is defined
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Table 1. Results for the COIL-20 database

Method #features P1 P10 P20 P50
Generalized Pattern Spectra

gpsλ<2000,lin: A,x, y, η20, η02, η11 120 0.950 0.776 0.679 0.516
gpsλ<2000,lin: Hu’s invariants 140 0.673 0.471 0.394 0.280
gpsλ<4000,lin: A,x, y, η20, η02 400 0.938 0.788 0.703 0.553
gpsλ<4000,quad: A 80 0.930 0.786 0.704 0.539
gpsλ<4000,quad: A,x, y, η20, η02 400 0.980 0.854 0.770 0.631

Spatial Size Distributions
ssdλ<2000,lin 520 0.891 0.703 0.592 0.431
ssdλ<4000,quad 520 0.948 0.816 0.713 0.527

Multiscale Pattern Spectra
mscλ<2000,lin 500 0.863 0.744 0.665 0.518
mscλ<4000,quad 500 0.978 0.875 0.810 0.661

Size Density Spectra
sdsr%≤10 70 0.983 0.844 0.750 0.606
sdsr%≤20 380 0.995 0.915 0.835 0.664

Combinations of pattern spectra
gps + msc 900 0.996 0.927 0.860 0.723
sds + msc 880 0.997 0.931 0.867 0.731
sds + gps 780 0.999 0.941 0.876 0.740
gps + msc + sds 1280 1.000 0.952 0.891 0.759

Results with optimized parameters for generalized pattern spectra.
gpsr≤58 400 0.978 0.890 0.818 0.662
mscr≤58,i=0,3...57 500 0.990 0.916 0.837 0.682
ssdr≤58 400 0.969 0.870 0.777 0.586
sdsr%≤0.45.. 495 0.983 0.883 0.802 0.630
sdsr%≤20 + mscr≤58 + gpsr≤58 1280 1.000 0.954 0.897 0.750

Results with non-normalized features
gpsλ<4000,quad: A,x, y, η20, η02 (nn) 400 0.880 0.714 0.627 0.472
sdsr%≤20 (nn) 380 0.972 0.862 0.772 0.602

as the fraction of the first n results retrieved that belong to the correct class,
averaged over all images. Normalization almost always yields an improvement of
about 10%, so only a few results using non-normalized features are shown here
to show typical differences.

The ’gps’ results are from generalized pattern spectra [3]. A smaller test using
20 evenly spaced λ < 2000 showed that the best properties to use were area,
center of gravity, and η20, η02, giving a 15-20% improvement over area pattern
spectra. Hu’s invariants were shown to be not very suitable, yielding the lowest
overall performance. Best results were obtained using quadratically spaced λ =
πr2 for evenly spaced r.

The ’ssd’ results are from spatial size distributions [2], using U = B(0, 1),
μ = 0, 1, . . .25 and 20 values of λ spaced linearly or quadratically, as indicated.

The ’msc’ results are from multi-scale connectivity spectra [5]. The number
of dilations used is i = 0, 1, . . .19 and 25 values of λ spaced are linearly or
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quadratically, resulting in 500 features in total. This method performs well, and
is better than the spatial size distributions and generalized pattern spectra,
although the latter difference is not significant.

The ’sds’ results were generated using size-density spectra, with settings r% =
1, 2, . . .10, d = 0.2, 0.3, . . .0.8 for sdsr%≤10 and r% = 1, 2, . . . 20, d = 0.05, 0.15,
. . . 0.95 for sdsr%≤20, where r% indicates the radius of the structuring element
B as a percentage of the minimum of the image width and height. These size-
density spectra perform best, although again the differences compared to gen-
eralized pattern spectra and multiscale connectivity spectra are very small. The
various settings used show that even a very small size-density spectrum of only
70 features performs very well, and the method seems to be less sensitive to the
exact parameters used than the other spectra are.

Combining several spectra also significantly improves the classifier in most
cases. Much better results were obtained using a combination of a generalized
pattern spectrum and a size-density spectrum, which manages to return a correct
first result for 1438 of the 1440 images, and this combination also has the best
P (50) of all combinations of two pattern spectra. Combining all three yields a
slightly higher P (50) of 0.759 and returns a correct first result for all images.

A detailed analysis showed that the distribution of P (50) over different classes
is quite skewed, consisting mostly of almost perfect and very poor results. Al-
though there are some differences between the various pattern spectra, overall
they are fairly similar, failing mostly on the same objects. Also, among the
objects which are hard to classify are several cars and several blocks. This
could be caused by the classifier being unable to distinguish them from each
other.

When compared to the results of shape-size spectra [8], the combinedspatially
sensitive spectra outperform the shape-spectra at the P (1) level (0.989 vs 1.000),
despite the fact that Urbach et al. [8] use a more advanced classifier.

Optimizing the size parameters. As the generalized pattern spectra were
shown to be quite sensitive to parameter settings it is interesting to see how
much the result depends on the choice of the λ values.

We measured the classification performance as a function of the lower and
upper r (with λ = πr2 as usual), where 80 different r values were used, equally
spaced between the lower and upper values in each run. The results showed
that the smaller size scales are very important. We found that the choice of the
upper r is important too, although overestimating the optimal value is better
than underestimating it. The best results were obtained for r < 58 , which
corresponds to λ ≤ 10500, or about 64% of the total image size.

Also interesting is to consider whether this choice of size parameter is also rel-
evant for the other methods, these results are shown in table 1 under ’optimized
results’. There is also significant improvement in the classification using spa-
tial size distributions here. Surprisingly, performance of the similar multi-scale
connectivity spectra only improves after also increasing the number of dilations
used. The size-density spectra once again show completely different behaviour
as the other spectra, with an equivalent an increase to r% ≤ 0.45 significantly
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decreasing the performance. This is probably because the blurring involved in
the density estimation becomes too strong for large r.

The few small improvements obtained here for the generalized and multi-scale
pattern spectra all disappear when once again combining pattern spectra, where
performance is similar to the results in the previous section, which shows that
spending much time optimizing these choices is probably not worth it.

In conclusion, the most important thing in choosing parameters for a gener-
alized pattern spectrum is not to underestimate the maximum size and not to
overestimate the minimum size. When in doubt, using 0− 66%, or even 0− 90%
of the total image size is probably best. Also, normalizing features and using a
quadratically spaced size parameter is especially important in using these pat-
tern spectra, with the best results being obtained this way.

3.2 Brodatz

For the next test, the performance of each method for texture classification
is compared. The Brodatz data set consists of 113 textures of size 640 × 640.
We selected 100 textures shown in Fig. 1 to eliminate flat textures. Next, 25
randomly selected squares of size 128 × 128 were taken from these and used as
the images, for a total of 2500 images. The results for the Brodatz test can be
seen in table 2. These results were obtained in the same way as with the COIL-20
database. Note that because there are only 25 images in each class, the P (50) is
not shown here.

The generalized pattern spectra perform very poorly, with a normal pattern
spectrum outperforming any use of extra moments. This can be explained by the
fact this spectrum, unlike the rest is sensitive to absolute positional information,
not relative. Focussing on the smaller size scales (λ ≤ 400) for a normal pattern
spectrum does not improve results compared to the λ ≤ 4000 settings.

The multiscale connectivity pattern spectra are not very good at classify-
ing these textures, although they perform better than the generalized pattern
spectra. This is possibly because dilating a texture will quickly make every-
thing connected, after which the pattern spectra contain little useful information,
making their performance similar to normal pattern spectra. Overall, these meth-
ods simply does not seem suitable for use on textures.

Fig. 1. A random 128× 128 image from each of Brodatz database classes, sorted from
worst to best classification using the best classifier found. The value of the mean P (20)
are indicated for each class in the outer rows.
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Table 2. Results for the images generated using the Brodatz database

Method #features P1 P10 P20
histogram 25 0.921 0.724 0.569

Generalized Pattern Spectra
gpsλ<4000,quad: A 80 0.320 0.209 0.173
gpsλ<4000,quad: A, η20, η02 240 0.288 0.165 0.134
gpsλ<400,quad : A 95 0.386 0.212 0.171

Spatial Size Distributions
ssdλ≤1000,lin 520 0.555 0.374 0.290
ssdλ≤1250,quad 520 0.665 0.479 0.380
ssdλ≤400,quad 520 0.684 0.485 0.385

Multiscale Pattern Spectra
mscλ<2000,quad 500 0.495 0.270 0.214

Size Density Spectra
sdsr%≤10 70 0.808 0.569 0.442
sdsr%≤20 380 0.803 0.542 0.413
sdsr%≤10 (2) 380 0.869 0.627 0.495

Combinations of pattern spectra
ssdλ≤400,quad + sdsr%≤10 (2) 900 0.92 0.725 0.587

Spatial size distributions are reasonably good at distinguishing different tex-
tures, and performance improves considerably when using quadratically spaced
λ. Again, focussing on the small details only barely improves the classifier. The
size-density spectra are once again the best performing method. Looking at
the difference between the sdsr%≤10 and sdsr%≤20 shows that looking at smaller
size scales improves the result. Indeed, calculating some more features in this
size range (sdsr%≤10 (2), r% = 0.5, 1, . . .10) yields the best results. Again, the
method is not very sensitive to the choice of parameters.

Combining the best spectra, spatial size distributions and size-density spec-
tra, for a final round of classification yields the best results. However, even
this elaborate combination of several pattern spectra has trouble matching the
performance of a simple grey-value histogram. Also, previous work shows that
shape-size spectra [8] can obtain significantly better results (P (1) = 0.965) even
on more dificult tests based on this database.

Overall, spatial pattern spectra are not very suitable for use with textures, as
textures usually do not contain the type of global spatial information that spatial
pattern spectra describe. This is in stark conttrast to size-shape spectra [8],
where a classification performance (comparable to our P (1) result) of 0.965 was
achieved. This suggests that shape is more important in classifying texture than
positional information.

3.3 ImageCLEF 2007 Photographic Retrieval Task

In this section, the pattern spectra will be tested to see how well they perform on
an content-based image retrieval task. The task in question is the ImageCLEF
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2007 photographic retrieval task1. The IAPR TC-12 photographic collection is
a database of 20,000 still natural images taken from locations around the world,
including pictures of different sports and actions, photographs of people, animals,
cities, landscapes and many others. Three query images are provided for each of
the 60 queries, and the task is to find the 1000 most similar images as in [13].
Evaluation is done using the provided list of relevant results for each query. As
performance measures we use the mean average precision (MAP) as in [13]. The
average precision is calculated by taking the mean of the precision values of the
list truncated after each relevant document. Unlike a single precision value P (n),
which yields the same value regardless of whether the relevant documents are
the first k or the last k in the first n, the average precision rewards returning
the relevant documents earlier. Because there are multiple query images, there
are several ways to determine the nearest neighbour even when just using the L1
distance using normalized features. The most important distance measures tried
were minimum, maximum and average distance to a query image. Of these the
minimum distance outperformed the others by far, and is the only one shown.

Results. Because of the computational cost of working with so many images
the faster generalized pattern spectra and multi-scale connectivity spectra will
be investigated first, and tests are limited to the best performing ones in the
COIL-20 case. Three different pattern spectra of each type were computed, one
for each 30% size range, with 80 features per property in each 30% interval. Table
3 shows that the smaller details are the most important. This differs from the
results in [13], where larger details were most important. This can be explained
by considering that the shape of large background objects like mountains may
be more important than their size or spatial distribution. Even though the larger
scales perform poorly on their own, adding these features may improve results.

For the multi-scale connectivity spectra, the settings for iterations used in
the COIL-20 tests were first tested. To avoid the curse of dimensionality , a

Table 3. Results for generalized and multiscale pattern spectra for the ImageCLEF
2007 photographic retrieval task. Shown are the MAP (mean average precision)
values using the minimum L1 distance to the query images. The 2n columns use
i = 0, 1, 2, 4, 8, 16, 32, 64.

Generalized Pattern Spectra Multiscale Pattern Spectra
A, x, y A (rgb) A, x, y (rgb) ≤ 19 0, 6 . . . 54 2n 2n (rgb)

0-30% 0.0125 0.0165 0.0169 0.0144 0.0148 0.0190 0.0254
30-60% 0.0052 0.0063 0.0058 0.0074 0.0076
60-90% 0.0050 0.0054 0.0062 0.0065 0.0062
0-60% 0.0125 0.0161 0.0152 0.0165 0.0190
30-90% 0.0071 0.0082 0.0098 0.0103 0.0096 0.0144 0.0195
0-90% 0.0160 0.0153 0.0169 0.0193 0.0211 0.0265 0.0318

1 See http://eureka.vu.edu.au/~grubinger/ImageCLEFphoto2007/adhoc.htm

http://eureka.vu.edu.au/~grubinger/ImageCLEFphoto2007/adhoc.htm
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shorter feature vector was computed, in which the radius of the dilations was
distributed exponentially as i = 0, 1, 2, 4, 8, 16, 32, 64. This was done because
earlier tests showed the benefits of having high resolution at low scales. Also,
because the larger features perform poorly, they were put together with 25 bins
for size in one 60% interval. These settings perform significantly better that
all others. Because fewer features are used, extension to color images is easier,
yielding another 20% improvement.

Finally, a limited number of tests were done on the spatial size distributions
and size-density spectra. These results are shown in table 4, together with more
detailed performance measures for the best results obtained in previous tests.
This shows the size-density spectra performing better than the generalized pat-
tern spectra, although they are also significantly slower. They are also signifi-
cantly more sensitive to choice of parameters than in previous tests, with only
the smaller size scales performing well. Extending the best performing spectra to
use color data yields a 60% improvement, much higher than the improvements
shown in the other pattern spectra and competitive with the multi-scale spectra.

Table 4. Detailed results for the ImageCLEF 2007 photographic retrieval task. The
bold column heading indicates the performance measure used in table 3, and “hp”
indicates classification by distance to a hand-picked “best” query image, as in [13].

P (20) P (100) MAP MAP
Method #features time min min min hp
gps (best,0-90%) 720 0.55s 0.055 0.021 0.0160 0.0132
msc (best, 0-90%) 400 1.0s 0.080 0.029 0.0265 0.0235
ssd 0-30% 520 10s 0.034 0.016 0.0091 0.0091
sdsr%≤10 70 5.7s 0.058 0.021 0.0176 0.0155
gps (best rgb,0-30%) 720 0.58s 0.060 0.024 0.0169 0.0165
msc (best rgb, 0-90%) 1200 3.1s 0.097 0.034 0.0318 0.0293
sdsr%≤10 (rgb) 210 17s 0.090 0.032 0.0285 0.0305
Tushabe 0-100% 600 0.0215
Tushabe 30-100% 600 0.0273
Tushabe 30-100% (rgb) 1800 0.0337

Spatial size distributions perform worse, and are much slower, than general-
ized pattern spectra. Given this extremely poor performance on the 0−30% size
scale, no more tests were done to extend this to larger scales.

The multi-scale pattern spectra give the best results at a reasonable com-
putational cost. However, their sensitivity to choice of parameters means that
large performance gains might be lost by making poor choices for these. Results
for the best size-density spectrum are similar. Combining both pattern spectra
yields a significant improvement, giving a MAP of 0.0396. Compensating for
the difference in number of features by including the size-density spectra two or
three times yields the best result of 0.0416.

Grubinger et al. [14] report an average MAP of 0.0681 over all purely image-
based methods in ImageCLEF 2007. These methods mostly involve relevance



102 S. Land and M.H.F. Wilkinson

feedback by users during a training stage, or query expansion by providing more
query images, or combinations of the two, whereas neither were used here. The
comparatively low performance does not mean that these pattern spectra do not
work well. In combination with other methods, and using query expansion and
relevance feedback the performance is expected to increase. Indeed, in a later
extension, using multiple shape-size pattern spectra and more advanced retrieval
method, Tushabe and Wilkinson [15] already improved their results to a MAP
value of 0.0571 (70% improvement).

4 Conclusions

The three different problems considered all have quite different dynamics, and
few conclusions can be made that apply to all of them. Generaly, normaliz-
ing features and using quadratically spaced binning for the size parameter im-
proved performance. Also, combining several pattern spectra, especially when
size-density spectra are included, tends to work very well.

Classification using the COIL-20 and Brodatz tests both show that consid-
erable effort is needed to determine the optimal parameters. It is safer to over-
estimate than underestimate the maximum scale. Size-density spectra are more
robust in this sense. For the COIL-20 test, only the spatial size distributions
performed worse than the other pattern spectra, whereas in the Brodatz test,
the generalized pattern spectra and multi-scale spectra performed poorly. This
suggests that local spatial pattern spectra are probably not the best choice for
texture segmentation. Size-shape spectra are probably better [8].

In the test for the ImageCLEF 2007 photographic retrieval task, the multi-
scale connectivity spectra are best. However, the size-density spectra almost
matched their performance and improved performance when combined with
them. Unlike the COIL-20 test and also unlike earlier work using shape-size
spectra [13], the larger size scales were shown being less important for spatial
pattern spectra, although they often still contributed to better performance.

The spatial size distributions [2] were only useful in the texture classifica-
tion test, where they finished second. They are, however, very slow. Only the
size-density spectra [4] performed well in all three tests, but are also very slow
compared to some of the other pattern spectra. The current implementation uses
about 10-20 seconds to process a single 0.2 megapixel image, and this time is
unlikely to be improved much, with about 50% of this time needed for the highly
optimized density calculation.

Overall, there are inherent limits in only using area and spatial information
at various size scales. In the future we will combine spatial pattern spectra with
techniques capturing different information, such as shape [13, 8]. Furthermore,
all pattern spectra are based on the notion of image extrema. This paradigm
is not always the best when dealing with colour images. In our case we simply
used marginal processing, which worked best on size-shape spectra. It would be
interesting to see whether methods based on, e.g., binary partition trees [16]
could be adapted to compute pseudo-pattern spectra efficiently.
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Abstract. This paper is concerned with amoeba median filtering, a
structure-adaptive morphological image filter. It has been introduced
by Lerallut et al. in a discrete formulation. Experimental evidence shows
that iterated amoeba median filtering leads to segmentation-like results
that are similar to those obtained by self-snakes, an image filter based
on a partial differential equation. We investigate this correspondence by
analysing a space-continuous formulation of iterated median filtering. We
prove that in the limit of vanishing radius of the structuring elements,
iterated amoeba median filtering indeed approximates a partial differen-
tial equation related to self-snakes and the well-known (mean) curvature
motion equation. We present experiments with discrete iterated amoeba
median filtering that confirm qualitative and quantitative predictions of
our analysis.

Keywords: morphological amoebas, median filtering, partial differential
equations.

1 Introduction

Morphological amoebas are a class of morphological image filters in which struc-
turing elements adapt to image structures with a maximum of flexibility. They
have been introduced by Lerallut et al. [11,12]. In the amoeba construction, the
structuring elements adapt locally to the variation of grey (or colour) values, also
taking into account the distance to the origin pixel. Thereby, large deviations in
the image values are penalised, so that the amoebas may grow around corners
or along anisotropic image structures. Using the resulting shape as a structuring
element, many filtering procedures can be applied on it. In this paper, we are
particularly interested in the use of the median filter.

Iterated application of amoeba median filtering (AMF) can be carried out in
different ways. In [11], a pilot image is used to steer the iterated processes via an
alternating procedure. This works as follows. A smoothed version of the original
image f is used for constructing amoebas for all pixels. Then, the median filter
is applied using the corresponding structuring elements. The filtered image is

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 104–114, 2009.
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in turn used for constructing new amoebas, and these amoebas are then used
as structuring elements to filter the original image f . We concentrate for this
paper on more straightforward iterative procedures for AMF, using pixelwise the
following steps subsequently: (i) amoeba construction, and (ii) median filtering
using the amoeba as structuring element.

For iterated median filtering with a fixed structuring element, work by
Guichard and Morel [7] has brought out that, in the continuous-scale limit, it
approximates the partial differential equation (PDE) ut = |∇u| div

(
∇u/ |∇u|

)
,

known as (mean) curvature motion [1]. In this sense, iterated discrete median
filtering with a fixed structuring element can be understood as a specific dis-
cretisation of that PDE.

Iterated AMF simplifies images towards a cartoon-like appearance with homo-
geneous regions separated by sharp contours. Even corners are preserved fairly
well, in contrast to median filtering with a fixed structuring element. Using PDE
approaches, similar segmentations can be achieved e.g. by so-called self-snakes
[14,18]. These are filters that stand in close relationship to curvature motion,
with the difference that the evolution is modulated by an edge-stopping func-
tion depending on the local image gradient. Thereby the displacement of edges
is avoided, and edges are sharpened. In the light of Guichard and Morel’s above-
mentioned result it is therefore natural to ask whether there exists a similar
correspondence between a continuous-scale limit case of amoeba filters and a
self-snakes-like PDE.

In the present paper, we address this question. We prove that iterated amoeba
filtering can indeed be understood as a discrete approximation of a PDE which
is related to curvature motion. We discuss how different choices for the distance
measures involved in the amoeba definition influence the limit case.

Our results extend the framework of known correspondences between discrete
and PDE formulations of morphological filters. The study of these relationships
helps to gain a unified view on image filtering methods and to combine advan-
tages of both approaches.

Related work. Median filtering in its non-adaptive form goes back to Tukey
[16] and became common as a structure-preserving image filter in the 90s [6,9].

On the PDE side, (mean) curvature motion for image smoothing has been
proposed by Alvarez et al. [1], already together with the generalisation of the
basic PDE by multiplying the right-hand side with a decreasing function of the
image gradient. Sapiro [14] proposed a variant of this idea, named self-snakes,
in which the edge-stopping factor is placed within the divergence expression.
While curvature motion smoothes in level-line direction only, Caselles et al. [3]
defined for image interpolation purposes a process that smoothes exclusively in
gradient direction, called adaptive monotone Lipschitz extension (AMLE). The
representation of an image as a manifold embedded in the product space of image
domain and greyvalue range has been introduced in PDE-based image filtering
with the so-called Beltrami framework by Kimmel et al. [8] and Yezzi [19].

Since the seminal paper by Guichard and Morel [7] further cross-relationships
between discrete and PDE-based image filters have been studied. For example,



106 M. Welk, M. Breuß, and O. Vogel

van den Boomgaard [17] proved a PDE approximation result for the Kuwahara-
Nagao operator [10,13]. Didas and Weickert [5] studied correspondences between
adaptive averaging and a class of generalised curvature motion filters. Barash [2]
and Chui and Wang [4] considered PDE limits of bilateral filters [15].

Structure of the paper. The paper is organised as follows. In Section 2 we
describe the discrete algorithm. Our main contribution, namely the derivation
of a PDE corresponding to AMF, follows in Section 3. In Section 4, we show
some test results. The paper is finished with a conclusion in Section 5.

2 The Discrete Amoeba Construction

The basic procedure is described in Lerallut et al.’s papers [11,12]. Here, we
give a brief account of the algorithm in the form we have implemented, which is
slightly modified in a few points that will be pointed out in the sequel.

In the following, we work with images f whose pixels are numbered by integers,
such that fi denotes the grey value of the pixel with index i. The coordinates
of this pixel are denoted by (xi, yi). We distinguish the initial image f from
the iterated images u(n), where n denotes the iteration number. For starting
the iterative process, we set u(0) := f . On the amoebas whose construction is
described below the standard median filter is applied.

Description of the algorithm. For each pixel i0 with (x, y)-coordinates
(xi0 , yi0), an adaptive structuring element is determined as follows. We con-
sider pixels i∗ within a prescribed maximal Euclidean distance � of pixel i0. The
number � represents the maximal size of the shape of the amoeba, since it will
also be used for limiting the allowed amoeba distance. For the so pre-selected
pixels we consider paths (i0, i1, . . . , ik ≡ i∗) that connect i0 with i∗ via a se-
quence of pixels in which each two subsequent pixels ij , ij+1 are neighbours.
Among all these, we determine the shortest path P with respect to the amoeba
distance L(P ). If the amoeba distance is below � for P , the pixel i∗ is accepted
as a member of the amoeba structuring element.

It remains to specify the amoeba distance as well as the neighbourhood re-
lation between subsequent pixels. In [11,12], the amoeba distance is given by

L
(n)
L (P ) =

k−1∑
m=0

1 + σ

k−1∑
m=0

∣∣∣u(n)
im+1

− u
(n)
im

∣∣∣ , (1)

where σ > 0 is a parameter that penalises large deviations in grey value data,
and each pixel is required to be in the 4-neighbourhood of its predecessor, i.e.
a horizontal or vertical neighbour. Note that this definition involves the mea-
surement of spatial distances by the city-block metric, since the first sum in (1)
counts the pixels in the path P (without the starting pixel i0). Moreover, spatial
and tonal distances (i.e. greyvalue differences) are combined via an l1 sum.

In our implementation, we use a metric that better approximates the
Euclidean distance in space. To this end, we use 8-neighbourhoods that include
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horizontal, vertical, and diagonal neighbours, and use the Euclidean distance on
these pixel pairs. This results in shorter paths compared to the procedure of
Lerallut et al., as well, conceptually, in an improvement in terms of rotational
invariance. For the way how spatial and tonal distances are combined we con-
sider either a Euclidean sum, or an l1 sum like in (1), which leads finally to two
alternative amoeba distance measures L2 and L1 given by

L
(n)
2 (P ) =

k−1∑
m=0

√(
xim+1 − xim

)2 +
(
yim+1 − yim

)2 + σ2
(
u

(n)
im+1

− u
(n)
im

)2
, (2)

L
(n)
1 (P ) =

k−1∑
m=0

(√(
xim+1 − xim

)2
+

(
yim+1 − yim

)2
+ σ

∣∣∣u(n)
im+1

− u
(n)
im

∣∣∣) . (3)

3 Space-Continuous Analysis

For our further investigation, we need a space-continuous formulation of AMF.
We base this on the representation of a (smooth) image u by its graph Γ =
Γu,σ := {p(x, y) = (x, y, σu(x)) | (x, y) ∈ Ω} where Ω ⊂ R2 is the image
domain, and σ a scaling parameter for grey-values as in (1)–(3). Note that this
embedding is analogous to the Beltrami framework, compare [19]. The surface Γ
is equipped with a metric d which can be obtained by restricting the Euclidean
metric of the embedding space R3, i.e.

d(p1, p2) ≡ d2(p1, p2) = min

1∫
0

√
x′(s)2 + y′(s)2 + σ2u′(s)2 ds (4)

where the minimum is taken over all curves [0, 1] → Γ that start in p1 := p(x1, y1)
and end in p2 := p(x2, y2). Alternatively, and closer to the setting of [11], one
can use an l1 sum of the Euclidean distance in space and the greyvalue distance,

d(p1, p2) ≡ d1(p1, p2) = min

1∫
0

(√
x′(s)2 + y′(s)2 + σ |u′(s)|

)
ds . (5)

One step of amoeba filtering then reads as follows. For a given location (x0, y0)
in the image domain, an amoeba structuring element A(x0, y0) is constituted by
all locations (x, y) for which d(p(x0, y0), p(x, y)) does not exceed a given radius �.
Typical shapes of amoeba structuring elements with both metrics are shown in
Figure 1. It is worth noticing that with the metric (4) the boundary of A(x0, y0)
crosses the level line through (x0, y0) orthogonally and smoothly, while with (5)
it has kinks at the intersection points, giving the structuring element a digonal
overall shape in contrast to the elliptical contour with (4).

Once the structuring element has been constructed, the median of all grey-
values within the structuring element is taken, i.e. the value μ whose level line
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Fig. 1. Amoeba structuring elements. (a) Typical amoeba with metric d ≡ d2 from
(4). (b) Typical amoeba with metric d ≡ d1 from (5).

(the curve along which u(x, y) = μ holds) cuts A(x0, y0) into two parts of equal
area. In the filtered image, μ becomes the new grey-value at location (x0, y0).

We analyse this filter now in a manner similar to Guichard and Morel’s ap-
proach [7]. We focus first on the case of the metric d ≡ d2, see (4). Without loss
of generality, we assume that we are dealing with the location (x0, y0) = (0, 0).
We assume further that u(x0, y0) = 0, and that the image gradient at (x0, y0)
is given by ∇u(x0, y0) = (α/σ, 0)T with some positive α. Then σu possesses the
Taylor expansion

σu(x, y) = αx + βx2 + γxy + δy2 + O(�3) (6)

within A = A(x0, y0), where we have used that x, y = O(�).
Consider now a value z = O(�). We are interested in the level line of u

corresponding to the grey-value z/σ, restricted to A. On this line, σu(x, y) = z
holds. Due to the prescribed gradient direction of u, level lines of u within A
are roughly oriented in y direction. We can therefore express the level line by
writing x as a function of y. Resolving the equation σu(x) = z for x yields

x = x(y) =
(
z

α
− z2β

α3

)
− zγ

α2 y −
δ

α
y2 + O(�3) . (7)

(As a quadratic equation needs to be solved, there is a second solution which is,
however, outside A if � is small enough.) The length of the level line segment
within A acts as a weight with which the value u = z/σ enters the computa-
tion of the median μ. The end points of this segment are obtained by equating
d2(p(x0, y0), p(x(y), y)) to �. Approximating d2 by the Euclidean distance within
R3, this equation becomes x(y)2 + y2 + z2 = �2, a quadratic equation for y with
two solutions y1, y2. The length L(z) of the level line segment within A equals
up to O(�3) the difference |y1 − y2|. We compute therefore
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L(z) = 2�

√
1 − z2(α2 + 1)

�2α2

(
1 +

zδ

α2 +
z3β

α2 (α2�2 − z2(α2 + 1))

)
+ O(�3) . (8)

The median μ is now determined by the equality

σμ∫
Z−

L(z)dz =

Z+∫
σμ

L(z)dz , (9)

where Z+ and Z− are the smallest positive and largest negative values for which
L(Z+) = L(Z−) = 0. One has Z+, Z− = Z∗ + O(�3) with Z∗ = �α/

√
α2 + 1.

Provided that μ = O(�2), the equality (9) can be transformed into

Z∗∫
0

(L(z) − L(−z))dz = 2σμL(0) + O(�4) . (10)

Resolving the integral on the left-hand side analytically yields 4�3δ
3(α2+1) + 8�3β

3(α2+1)2 .
Together with L(0) = 2� + O(�3), this implies

μ =
�2

3σ

(
δ

α2 + 1
+

2β
(α2 + 1)2

)
+ O(�3) (11)

which can be restated in terms of spatial derivatives of u as

μ =
�2

6

(
uyy

1 + σ2u2
x

+
2uxx

(1 + σ2u2
x)2

+ O(�)
)

. (12)

One amoeba median filter step acts therefore approximately like one time step
of an explicit scheme for the PDE

ut =
uξξ

1 + σ2 |∇u|2
+

2uηη(
1 + σ2 |∇u|2

)2 (13)

with time step size τ = �2/6. On the right-hand side, second derivatives are
taken in the directions of the normalised gradient vector η := ∇u/ |∇u| and the
perpendicular vector ξ := η⊥, the tangential vector of the local level line of u.

When � tends to zero, the iterated amoeba median filter therefore converges to
the PDE (13). The first summand of the right-hand side of (13) can obviously
be interpreted as curvature motion ut = uηη modulated in the way proposed
in [1] by an edge-stopping factor g1(|∇u|) :=

(
1 + σ2 |∇u|2

)−1. It can also be
compared to the self-snakes PDE [14,18]

ut = |∇u| div
(
g(|∇u|) ∇u

|∇u|

)
= g(|∇u|)uξξ + 〈∇g(|∇u|),∇u〉 , (14)

except that the term 〈∇g,∇u〉 is not present. As this “shock term” contributes
to the edge-enhancing properties of the self-snakes evolution, the edge-enhancing
effect may be less pronounced with the amoeba filter than with self-snakes.
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Fig. 2. Edge-stopping functions in PDEs approximated by iterated amoeba median
filtering. For visualisation, σ is fixed to 1. (a) Weight functions g1 =

(
1+ |∇u|2 )−1 for

the curvature motion term (solid line), g2 = 2
(
1+|∇u|2 )−2 for the AMLE term (dashed

line) from the PDE (13) based on the Euclidean amoeba metric (4). (b) Corresponding
weight functions for the amoeba metric (5).

The second summand of (13) resembles the AMLE [3] evolution ut = uηη,
but with an edge-stopping factor g2(|∇u|) := 2

(
1 + σ2 |∇u|2

)−2. Note that g2
decreases faster than g1, with g1 = g2 for |∇u| = σ−1, see Figure 2 (a). At
all locations where the gradient is sufficiently large, the PDE (13) is therefore
dominated by the self-snakes-like modulated curvature motion part. The AMLE
contribution dominates in almost flat image regions.

A similar analysis applies if instead of d2 the metric d1 from (5) is used. The
resulting equation is again of the form ut = g1(|∇u|)uξξ + g2(|∇u|)uηη with
decreasing functions g1, g2 of the gradient. Here, g1 and g2 are given by compli-
cated integral expressions that are best evaluated numerically, see Figure 2 (b).
The derivation for this case will be published in a forthcoming paper.

4 Experiments

We present two experiments that confirm the behaviour suggested by the ana-
lytical results from the previous section.

The House experiment. In this experiment we use a relatively “simple” image
in order to investigate the influence of parameters, see Figure 3.

Subfigure (a) shows the original image. Figure 3(b) depicts the steady state
achieved by standard median filtering employing a fixed (3 × 3) structuring
element. As usual with median filtering, the shape of edges is rounded, and the
facade of the depicted house is quite non-uniform in its grey value distribution.
The use of a larger non-adaptive structuring element will distort the shape of
important image features.

In Figure 3(c–f) we compare the results of iterated AMF using the L2 amoeba
distance together with varying parameters.

We start with a relatively strong penalisation of grey value differences given
by σ = 0.25, see (c, d). As predicted, we observe the influence of the self-snakes
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a b

c d

e f

Fig. 3. The House experiment. Top row: (a) Original image. (b) Filtered with iter-
ated median filter, 3×3 stencil, 40 iterations. Middle row: (c) Iterated AMF, � = 10,
σ = 0.25, 4 iterations. (d) Same as in (c) but 20 iterations. Bottom row: (e) Iterated
AMF, � = 10, σ = 0.02, 10 iterations. (f) Iterated AMF, � = 20, σ = 0.25, 1 iteration.
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a b

c d

Fig. 4. The Head experiment. Top row: (a) Original image. (b) Steady state of
iterated median filter. Bottom row: (c) Iterated AMF, � = 10, σ = 0.25, 10 iterations,
L2 amoeba distance. (d) Same but with L1 amoeba distance.

very clearly by the sharp transition of regions of different grey values, while
nearly flat image regions are flattened even more.

When a very small σ is used, as in Figure 3(e), the size of regions that are
treated as nearly flat increases significantly. Indeed, we observe the corresponding
dominant blurring-like influence of AMLE.

In Figure 3(f) we increase the amoeba parameter � relative to the setting
from (c, d). From the analytic point of view, this corresponds to a larger time
step size: Due to the quadratic relationship τ = �2/6 we can expect that for two
structuring elements with radii �1 and �2 = 2�1, four AMF iterations with �1
should roughly make up one iteration with �2. The comparison of Figure 3(c)
and (f) confirms this approximate relationship: One iteration with � = 20 has a
similar outcome as four iterations with � = 10. We observe especially that the
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transition zones at the shadows are located very similarly. The self-snake-like
sharpening, however, appears somewhat more prominent in the image processed
with four iterations.

The Head experiment. In this experiment (Figure 4) we use an MR image of
a human head which is rich in details of different contrast and scale. The original
image is shown in Subfigure (a). In (b–d) iterated AMF results both with L2 and
L1 amoeba distance are displayed. It can be seen that both distance measures
lead to similar results. Moreover, we observe even clearer than in the House
experiment the good quality of segmentation that is achieved in spite of the
relative simplicity of the filtering approach.

5 Conclusion

Our analysis of iterated amoeba median filtering shows that even highly adap-
tive discrete image filters can be interpreted in terms of PDE-based evolutions.
This viewpoint leads to clear explanations of qualitative properties of iterated
AMF, and predictions that can be confirmed by experiments. At the same time,
the cross-relation sheds new light on well-known PDE filters and may inspire
the development of new discretisations of PDE filters. Continuing this direction
of research, we believe that it will not only expedite the development of both
classes of image filters, but also bring forward a fusion between formerly distinct
branches of image processing.
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Abstract. This paper deals with the theory and applications of spatia-
lly-variant mathematical morphology. We formalize the definition of spa-
tially variant dilation/erosion and opening/closing for gray-level images
using exclusively the structuring function, without resorting to comple-
ment. This sound theoretical framework allows to build morphological
operators whose structuring elements can locally adapt their orientation
across the dominant direction of image structures. The orientation at
each pixel is extracted by means of a diffusion process of the average
square gradient field, which regularizes and extends the orientation in-
formation from the edges of the objects to the homogeneous areas of
the image. The proposed filters are used for enhancement of anisotropic
images features such as coherent, flow-like structures.

1 Introduction

The expression “spatially variant” encompasses both ideas of i) the two level
structure of a space E, and of all subsets P(E) and functions on E, and of ii)
some variable processing over space E. Concerning mathematical morphology,
the two founding texts about point i) are [16] (ch.2,3, and 9) and [7]. In [16]
ch.2, devoted to the set case, Serra introduces the structuring function, with the
derived four basic operations of dilation, erosion, and their two products, and
the three dualities (adjunction, reciprocal and complement); it is shown that a
compact structuring function may have a reciprocal version infinite everywhere.
In ch.3, Matheron gives topological conditions for limiting such an expansion.
Ch.9 is a first introduction to the function case, which is actually treated for the
first time in [7]. In particular, Heijmans and Ronse develop the key approach
by pulses sup-generators. More recent advances, due to Bouaynaya and Schon-
feld can be found in [3], due to Soille in [19], and concerning Roerdink group
morphology in [13]. Other papers focus specifically on efficient implementations
of spatially variant morphological operators, such as those of Cuisenaire [5],
Lerallut et al. [11] and Dokladal and Dokladalova [6].

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 115–125, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



116 R. Verdú-Monedero, J. Angulo, and J. Serra

Point ii) involves two branches. All examples in the founding papers refer to
some geometrical deformation of the Euclidean space, by perspective [16] Ch.4,
or by rotation invariance [7]. The perspective case corresponds to an actual
application to traffic control, by Beucher et al. [2]. But one can imagine another
mode of variability, not given by a geometrical law, but by the images under
study themselves. In [17] for example, in the description of a forest fire, the
structuring elements are discs whose variable radii are drawn from a so-called
spread map, and they act on another image, that of the fuel map.

Rather often, spatially variant morphology is associated with the search of di-
rections. For example, fast implementation of morphological filters along discrete
lines at arbitrary angles have been reported by Soille and Talbot in [18]. Other
more sophisticated algorithms for morphological operators on thin structures are
the path openings of Heijmans [9]. Closer to our study, Breuß et al. [4] considered
a PDE formulation for adaptive morphological operators and Tankyevych et al.
[20] proposed also locally orientated operators.

In this paper we focus on linear orientated structuring elements which vary
over the space according to a vector field. The originality of our approach lies
in that we draw the information on the structuring elements from the image
under study itself. The morphological processing is thus locally adapted to some
features that already exist in the image, but that this processing aims to em-
phasize. Evolved filters (based on successive openings and closings) can be then
used for enhancement of anisotropic images features such as coherent, flow-like
structures.

In the work by Tankyevych et al. [20], the orientation information is computed
from Hessian matrix (i.e., second-order derivatives) and the curvilinear opera-
tors, such as the morphological closing, are computed by means of reciprocal
structuring functions. In this paper we show how spatially-variant anisotropic
numerical openings/closings can also be computed from their direct geometric
definitions. In addition, we prefer to use first-order derivatives and a diffusion-
like regularization step in order to calculate the directional vector field.

The paper is organized in four parts. Section 2 sets up the morphological
background. We build and describe the directional vector field from which a
structuring function is generated in Section 3. With this tool in hand, we perform
experiments on a series of numerical images in Section 4, measurements that are
followed by the conclusion.

2 Spatially-Variant Morphology

In mathematical morphology, many usual notions are dual from each other under
complement. When the variation of a structuring function follows a geometrical
law, then the complement of the dilation and of the adjoint opening can be theo-
retically calculated. But that is no longer true for data based variation, and this
drawback obliges us to express the four basic operations by means of the struc-
turing function exclusively, without resorting to complement, or equivalently, to
reciprocal dilation.
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Notation. Letter E denotes an arbitrary set, which can be a digital or contin-
uous space, or any graph. The points of E are given in bold small letters (e.g.
x ∈ E), and their coordinates are represented by small letters (e.g. x =(x, y)).
The subsets of E are given in capital letters (e.g. X ⊆ E), and the set of all
these subsets (including the empty set ∅) is denoted by P(E). The points x of E,
considered as elements {x} of P(E), are called singletons and form the sub-class
S(E) of P(E). A structuring function δ : E → P(E), or equivalently from S(E)
into P(E), is an arbitrary family {δ(x)} of sets indexed by the points of E. One
also writes δ(x) = B(x), for emphasizing that the transform of a point is a set.

The numerical axis T is an arbitrary family closed sequence of non negative
numbers between two extreme bounds, 0 and M say. They can be [0,+∞], or
the integers [0, 255], etc. The family of all numerical functions f : E → T
is denoted by F(E, T ). Both sets P(E) and F(E, T ) are complete lattices, i.e.,
posets whose any family of elements admits a supremum (a smaller upperbound)
and an infimum (a larger lowerbound) [16], [7]. For P(E), they are union and
intersection, and for F(E, T ) the pointwise sup and inf.

Dilation, erosion. Since supremum and infimum do characterize a lattice, the
two basic operations that map lattice P(E) into itself are those which preserve
either union or intersection. In mathematical morphology, they are called dilation
and erosion, and denoted by δ and ε respectively:

δ(∪Xi) = ∪δ(Xi) ; ε(∩Xi) = ∩ε(Xi) Xi ∈ P(E). (1)

Both operations are increasing. The two families of dilations and erosions on
P(E) correspond to each other by the Galois’s relation of an adjunction, namely

δ(X) ⊆ Y ⇔ X ⊆ ε(Y ), (2)

and given a dilation δ, there always exists one and only one erosion ε that satisfies
Equivalence (2) [7].

As a set X is the union of its singletons, i.e.

X = ∪{{x} |{x} ⊆X}

and as dilation commutes under union, this operation is generated by its restric-
tion δ : S(E) → P(E) which associates the structuring function δ(x) with each
singleton {x} (or equivalently with each point x of E). The dilation of Rel.(1)
becomes

δ(X) = ∪{δ{x}|{x}⊆X} = ∪{δ(x)| x ∈ X} = ∪{B(x)| x ∈ X}. (3)

We then draw from adjunction (2) the expression of the erosion, namely

ε(X) = {z | B(z) ⊆ X}. (4)

In spite of the name, a dilation may not be extensive (i.e. δ(X) ⊇ X). Exten-
sivity is obtained iff for all x ∈ E we have x ∈ B(x). Then the adjoint erosion ε
is anti-extensive.
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The operation dual of dilation δ under complement is the erosion

ε∗(X) = [δ(Xc)]c,

whose associated structuring function is the reciprocal version of δ, i.e.

y ∈ ζ(x) if and only if x ∈ δ(y) x,y ∈ E. (5)

Opening and closing. Though erosion ε usually admits many inverses, the
composition product

γ(X) = δε(X) (6)

results in the smallest inverse of ε(X). This product γ is increasing (X ⊆ Y ⇒
γ(X) ⊆ γ(Y )), anti-extensive (γ(X) ⊆ X) and idempotent (γγ(X) = γ(X)). In
algebra, these three features define an opening. Similarly, by inverting δ and ε,
we obtain the closing ϕ = εδ, which is increasing, extensive, and idempotent.

The analytical representation of dilation δ by means of the structuring func-
tion x → B(x) extends to the associated opening and closing. We directly draw
from Relations (3) and (4) that

δε(X) = ∪{B(x)|B(x)⊆X} (7)
εδ(X) = ∪{x |B(x)⊆ ∪ [B(x)| x ∈ X ]} (8)

The geometrical meaning of the first relation is clear: δε(X) is the region of
the space swept by all structuring sets B(x) that are included in X .

Finally, Relations (3), (4), (7), and (8) that give the four basic operations are
completely determined by the datum of the structuring function x → B(x) =
δ(x) and do not involve any reciprocal function. In particular, opening γ = δε
and closing ϕ = εδ are not dual of each other for the complement.

Dilation for numerical functions. Note that the duality under complement
works for sets only, whereas adjunction duality applies to any complete lattice,
such as that F(E, T ) of the numerical functions that we now consider. Associated
with the numerical function f : E → T under study and the set structuring
function x → B(x), we introduce the following pulse function ix,t of level t at
point x

ix,t(x) = t ; ix,t(y) = 0 when y �= x.

Dilating ix,t by the structuring function B results in the cylinder CB(x),t of
base B(x) and height t. Now, function f can be decomposed into the supremum
of its pulses, i.e.

f = ∨{ix,f(x),x ∈ E}.
Since dilation commutes under supremum, the dilate of f by δ, of structuring

function B is given by the supremum of the dilates of its pulses, namely

δ(f) = ∨{CB(x),f(x),x ∈ E}. (9)
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Similarly, the eroded ε(f) is the supremum of those pulses whose dilated
cylinders are smaller than f , i.e.

ε(f) = ∨{ix,t | CB(x),t ≤ f,x ∈ E}. (10)

These two operations satisfy the equalities δ(∨fi) = ∨δ(fi) and ε(∧fi) =
∧ε(fi), fi ∈ F , and Galois equivalence (2) in the lattice F(E, T ) of the numerical
functions. Moreover, the cross sections of δ(f )(resp. ε(f)) are the dilated (resp.
the eroded) versions of the cross sections of f by the same structuring function.
For this reason they are called “flat operations”. Just as in the set case, the duality
under adjunction does not coincide with that under the involution f → M − f
, which plays a role similar to a complement. The operation

ε∗ = M − δ(M − f)

turns out to still be an erosion, but ε∗ is different from the ε of Rel.(10).
The two products γ = δε and ϕ = εδ are opening and closing on F(E, T ),

and, as δ and ε, they commute under cross sectioning. Opening γ, for example,
admits the following expression

γ(f) = ∨{CB(x),t ≤ f,x ∈ E}. (11)

In the product space E×T the subgraph of the opening γ(f) is generated by
the zone swept by all cylinders CB(x),t smaller than f . Again, the closing ϕ = εδ
does not coincide with that, M − γ(M − f), obtained by replacing f by M − f
in Rel.(11).

3 Directional Field Modelling

This section describes the method for estimating the orientation of the structures
contained in a gray-level image. This vector field is obtained by using the average
squared gradient and then applying a regularization process.

Average Squared gradient. The average squared gradient (ASG) method
provides the directional field by squaring and averaging the gradient vectors
[10,1]. Given an image f(x, y), ASG uses the following definition of gradient

g =
[
g1(x, y)
g2(x, y)

]
= sign

(
∂f(x,y)

∂x

)[
∂f(x,y)

∂x
∂f(x,y)

∂y

]
. (12)

Then the gradient is squared (i.e., doubling its angle and squaring its magnitude)
and averaged in some neighborhood using the window W :

gs =
[
gs,1(x, y)
gs,2(x, y)

]
=

[∑
W

(
g2
1(x, y) − g2

2(x, y)
)∑

W (2 g1(x, y) g2(x, y))

]
. (13)

The directional field ASG is d = [d1(x, y), d2(x, y)], where its angle is obtained
as ∠d = Φ

2 − sign(Φ)π
2 ,which is in the range [−π

2 ,
π
2 ], being Φ = ∠gs; and the

magnitude of d, ||d||, can be left as the magnitude of gs, or the squared root of
gs or, in some applications (see e.g [12]) and in this work, it can be set to unity.
In ongoing research, we consider also the use of the magnitude and coherence of
directional field in order to build more general anisotropic structuring functions.
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Regularization of the ASG. The vectors of the ASG field are generally dif-
ferent from zero only near the edges and, in homogeneous regions, where the
gradient is nearly zero, the ASG is also zero. In order to extend the orienta-
tion information to pixels where the gradient is nearly zero a diffusion process
is performed (similar to gradient vector flow, GVF, [21]), providing the ASG
vector flow (ASGVF). The ASGVF is the vector field v = [v1(x, y), v2(x, y)]

that minimizes the energy functional:

E(v) = D(v) + αS(v), (14)

where D represents a distance measure given by the squared difference bet-
ween the original and the regularized average squared gradient, weighted by the
squared value of the last one,

D(v) =
1
2

2∑
l=1

∫
E

||d||2||vl − dl||2 dx dy, (15)

where E is the image support and l = 1, 2 is the component index; the energy
term S determines the smoothness of the directional field and represents the
energy of the first order derivatives of the signal:

S(v) =
1
2

2∑
l=1

∫
E

||∇vl||2 dx dy. (16)

The parameter α is a regularization parameter which governs the trade-off be-
tween the smoothness and data-fidelity.

Using the calculus of variations, the ASGF field can be found by solving the
following Euler equations

(v − d)|d|2 − α∇2v = 0. (17)

These equations can be solved by treating v as a function of time and considering
the steady-state solution

vt + (v − d)|d|2 − α∇2v = 0. (18)

These equations are known as generalized diffusion equations. To set up the
iterative solution, let the indices i, j, and n correspond to the discretization of
x, y and t axes, respectively, and let the spacing between pixels be Δx and Δy,
and the time step for each iteration be Δt. Replacing partial derivatives with its
discrete approximations and considering discrete images (Δx = Δy = 1) gives
our iterative solution to ASGF as follows:

vl,n
i,j = vl,n−1

i,j −Δtf l,n−1
i,j +

1
η
(vl,n−1

i+1,j + vl,n−1
i−1,j + vl,n−1

i,j+1 + vl,n−1
i,j−1 − 4vl,n−1

i,j ) (19)

where f l,n−1
i,j = (vl,n−1

i,j − dl
i,j)|di,j |2, n is the iteration index and η = (αΔt)−1.
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4 Applications and Discussion

This section shows the results of applying spatially-variant morphology operators
for gray-level filtering, with a linear structuring element of fixed length λ but
variable orientation. More precisely, the structuring function

B(x) ≡ L
θ(x)
λ ,

where θ(x) is the angle at point x from the regularized vector field v. Besides
erosions ε

L
θ(x)
λ

, dilations δ
L

θ(x)
λ

, openings γ
L

θ(x)
λ

and closings ϕ
L

θ(x)
λ

, we illustrate
in the examples the application of alternate sequential filters (ASF): ϕnγn · · ·
ϕ2γ2 ϕ1γ1(f), or the dual version γnϕn · · · γ2ϕ2 γ1ϕ1(f). ASF present excellent
properties for image denoising and regularization of dominant structures.

The present adaptive morphological filters are compared with standard trans-
lation invariant linear openings/closings which are built according to the prop-
erty that the supremum (resp. infimum) of openings (resp. closings) is an opening
(resp. closing) as well. The translation-invariant linear opening of size λ is given
by

γLlines
λ

(f)(x) = γLl,θ1 (f)(x) ∨ γLl,θ2 (f)(x) ∨ · · · ∨ γLl,θd (f)(x),

where the following directions {θ1, θ2, · · · , θd} are considered.
In Fig. 1 are given two synthetic images and the application of spatially-

variant morphological operators. In the first example, the ASG uses a flat squared

(a) f1(x) (b) ASGV field (c) ε
L

θ(x)
λ

(f1)(x) (d) δ
L

θ(x)
λ

(f1)(x)

(e) f2(x) (f) ASGV field (g) γ
L

θ(x)
λ

(f2)(x) (h) ϕ
L

θ(x)
λ

(f2)(x)

Fig. 1. (a) Image “circles”, (b) ASGV field using η = 1, (c) locally oriented linear
erosion of length 9 pixels, (d) equivalent dilation. (e) Images “lines”, (f) ASGV, η = 1,
(g) locally oriented linear opening of length 11 pixels, (h) equivalent closing. Both
images of size 256 × 256 pixels.
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f(x) ε
L

θ(x)
21

(f)(x) δ
L

θ(x)
21

(f)(x)

γ
L

θ(x)
21

(f)(x) ϕ
L

θ(x)
21

(f)(x) γ
L

lines
21

(f)(x) ϕ
L

lines
21

(f)(x)

ϕ
L

θ(x)
11

γ
L

θ(x)
11

ϕ
L

θ(x)
21

γ
L

θ(x)
21

ϕ
L

θ(x)
11

γ
L

θ(x)
11

γ
L

θ(x)
11

ϕ
L

θ(x)
11

γ
L

θ(x)
21

ϕ
L

θ(x)
21

γ
L

θ(x)
11

ϕ
L

θ(x)
11

Fig. 2. (a) Original image (of size 447×447 pixels), (b) ASGV field using η = 0.001, (c)
spatially-variant linear erosion of length 21 pixels, (d) spatially-variant linear dilation
of length 21 pixels, (e) spatially-variant linear opening of length 21 pixels, (f) spatially-
variant linear closing of length 21 pixels, (g) classical spatially-invariant linear opening
of length 21 pixels (using four directions), (h) classical spatially-invariant linear open-
ing of length 21 pixels (using four directions), (i) spatially-variant linear alternate filter
(opening followed by closing) of size 11, (j) spatially-variant linear alternate sequential
filter (opening followed by closing) of sizes 11 and 21, (k) spatially-variant linear alter-
nate filter (closing followed by opening) of size 11, (l) spatially-variant linear alternate
sequential filter (closing followed by opening) of sizes 11 and 21

averaging window of size 15×15, the constant of the regularization process for
the ASGVF is η = 1 and the length of the structuring element is λ = 9. In
the second example the window used in ASG is 11×11 pixels, η equals 1 and
the structuring element is 11 pixel long. We can remark the appropriateness
of very simple morphological filters for closing interrupted line structures and
for the suppression of line structures of small size. As expected, the results are
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(a) f(x) (b) γ
L

θ(x)
21

(f)(x) = fγ(x)

(c) ϕ
L

θ(x)
21

(f)(x) = fϕ(x) (d) (fγ(x) + fϕ(x)) /2

Fig. 3. (a) Original image (of size 256×256 pixels), (b) spatially-variant linear opening
of length 21 pixels, (c) spatially-variant linear closing of length 21 pixels, (d) average
image between the spatially-variant linear opening and closing. The ASGV field has
been computed using η = 0.01.

quite spatially regular and only a negligible number of points propagate values
according to wrong directions.

The example depicted in Fig. 2 is a real world image, presenting a network
of coherent, flow-like structures on a very irregular background. The window
used in ASG is 21 × 21 pixels, η = 0.001. We have studied the proposed filters
for enhancement of anisotropic image features. In particular, it is shown how
the ASF produce very interesting anisotropic effects. It is evident in this case
that the closing (or the ASF starting by a closing) is more appropriate because
the target structures are darker than their background. We can also compare
the new spatially-variant linear opening/closing with their counterpart classical
spatially-invariant linear opening/closing.
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Fig. 3 provides a last case of morphological anisotropic filtering. For this
example, the window used in ASG is 21 × 21 pixels, η = 0.01. The original
image represents a hand palm and the aim of the filtering step is to enhance
the main lines which are the most important for biometric identification. A pair
of spatially-variant linear opening and closing are compared with the average
images of both operators. As we can observe, the average image is a good trade-
off between these two basic morphological anisotropic filters and the result is
quite regular but preserves the significant linear structures.

One of the key points for the good results of these anisotropic filters is the
computation of the gradient field. In the three examples, the value of the time
step of the regularization process is Δt = 1. The size of the averaging window
has been taken in order to preserve the orientation of the main structures in
the images: circles or lines in Fig. 1, big crevices in Fig. 2) and main lines in
Fig. 3), without affecting the presence of gaps in the lines and circles nor the
small spots/crevices/lines. For example, in Fig. 1-bottom, the lines have a width
of 3 pixels, therefore computing the ASG with an averaging window of size
greater than 3 × 3 will preserve the main orientation of the lines ignoring the
gaps. In the regularization process, the parameter η is related to the bandwidth
of a low-pass filter which filters the increments of ASGVF in Eq. (19). When
the gradient of the image has homogeneous areas and abrupt transitions (as it
happens in the first synthetic image) a higher value is necessary to allow abrupt
transitions (spatial high frequencies) exist. On the other hand, when the gradient
has not abrupt transitions a low value of η gets the appropriate smoothness in
the regularized vector field (as happens in Fig. 2 and 3).

5 Conclusion and Perspectives

We have clarified and solved some difficulties in the definition of spatially vari-
ant dilation/erosion and opening/closing for gray-level images. Then, we have
proposed an algorithm for a reliable extraction of orientation information, which
is finally used to build linear anisotropic morphological filters. The performance
of derived operators has been illustrated for enhancement of anisotropic images
features such as coherent, flow-like structures.

In ongoing research, we would like to address the theory of spatially-variant
geodesic operators. From a practical viewpoint, we are working on a full ex-
ploitation on the directional field, including the information of magnitude and
angular coherence in order to propose more general anisotropic structuring ele-
ments, not limited to orientated lines of fixed length. The extension to 3-D and
more generally to n-D spaces and the application to 3-D images (e.g., denoising
MRI data, enhancement of fiber networks, etc.) will be also explored in future
work.
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Abstract. Mechanical properties of molded components made from
fibre-reinforced composite materials locally depend of the orientation of
the fibres. The evaluation of the properties is done by sampling the com-
ponent at known positions. The samples (of size of 1 mm3) are scanned
in a tomograph which yields 3-D images. We are interested in extracting
the individual fibres, to analyze their length and local orientation.

The segmentation of the fibres is a challenging task. First, the res-
olution of the reconstruction being at the limits of the capabilities of
the device (optics, sensor, wavelength), the images are noisy and fuzzy.
Second, the fibres have a non uniform length and are heavily tangled.
This paper describes the segmentation process.

1 Introduction

Starting from X-ray microtomographic images, the objective is to extract 3-
D presentational maps of fibres in components manufactured by molding from
fibre-composite materials. The map will serve as a support for the simulation of
alignment of fibres in the flowing, liquid matrix during the molding process.

The proposed method proceeds in two steps. First step, it extracts the skeleton
of the fibres by a thinning. Second, individual fibres are reconstructed from the
skeleton.

The reconstruction process is formulated and implemented using the theory
of graphs. It uses basic, local graph operations as the edge or vertex contraction.
The graph models a real object. Its geometrical properties must not alter during
the simplification. They are encoded as weights associated to the graph. During
the contraction of the graph, the weights are iteratively inherited, until the
ultimate state, beyond which no additional simplification is possible.

After that, we perform a statistical analysis of geometric properties of the
material, such as distribution of the orientation and length of the fibres.

Previous, related work:

– Directional morphological filtering - a set of oriented morphological filters,
Soille and Talbot [1], [2]. For bright objects on a dark backgroung, one would
use an anti-extensive filter such as an opening.

Letting the filter rotate, finding the maximum in the response, gives an
indication on the local orientation. In addition to that, to evaluate the length
of every fibre would require to let vary also the SE length.
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Even though an efficient algorithm for computing openings with multiple
structuring elements has been proposed by Urbach and Wilkinson [3] this
would still take considerable time.

The computational cost makes that this approach is unusable for large
or n-D data, n≥3.

– In the Fourier domain - the local orientation can be detected by observing
the spectrum energy, Kass and Witkin 1987. Jeulin and Moreaud [4] detect
local orientation of textures in 2-D and 3-D from the covariance matrix of
the gradient.

The FFT allows an efficient implementation. However, the non locality
of the FFT makes impossible to extract individuals to measure their length
and evaluate the length histogram of the whole population of the fibres.

– Orientation space - a useful concept introduced by Chen and Hsu [5], and
explored later by Van Vliet and Verbeek [6], Chen et al [7] or Ginkel [8].
Works well on isolated objects. Using a bank of filters infers a trade off
between accuracy and locality. This drawback makes that this approach is
not usable for tangled objects. Also, the computational cost, induced by
applying a set of filters, is quite high.

Adding supplementatry dimensions for the orientation increases the mem-
ory requirements. The orientation in 2-D is one, and in 3-D two values.
Analysing 3-D images requires working with 5-D data.

– Perona and Malik [9] or Frangi [10] use extraction of local orientation for
enhancement of thin, elongated, tubular objects. The detection of orientation
is local, based on second (or higher) derivatives. It is not suitable for noisy
images.

– Stein et al. [11] use graphs to analyze the geometry of collagen gel images
acquired by a confocal microscope. This work is perhaps the most similar to
our approach, described below.

1.1 Preliminaries

Consider 3-D, grey-scale Z3 → Z and binary images Z3 → {0, 1}. A binary
object X ⊂ Z3 is a set X = {xi | xi=1}. All x ∈ Z3 are associated a set N(x) of
neighbors (or adjacent points), N(x) ⊂ Z3. Below, the same holds for all types
of neighborhood most often used on the rectangular grid Z3, that are N6, N18
or N26.

A connected component of X is such a subset CC ⊂ X that for any points
x, y ∈ CC there is a sequence of adjacent points all included in CC. CC(X) shall
denote the set of all connected components of X .

The skeleton sk(X) of some object X is its binary, thin representation. It is
included and centered in X and it preserves its topology. In 3-D there are 2
types of skeleton, a surface like and a wireframe like. Here, given the geometric
form of the objects - fibres, we use the wireframe type skeleton.

A wireframe-type skeleton sk, sk ⊂ Z3, contains three types of points, char-
acterized according to the number of their neighbors. For any x ∈ sk we have
Card{xi | xi ∈ N(x) ∩ sk} = 1, 2 or 3 (or more), respectively denoted hereafter
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as terminal, linear and triple points. For convenience, n-P, with n = 1, 2 and 3
shall respectively denote the sets of terminal, linear and triple points of sk.

The skeleton sk is thin in the sense that ∀x, x ∈ 2-P ∪ 3-P, the set sk \ {x}
changes the topology w.r.t. sk.

Connected components CC(2-P) shall be called linear segments (or branches)
of the skeleton.

The 3-P points constitute the junctions. One expects junctions be composed
of triple points. Notice that the skeleton junctions may be non singleton sets,
composed of more triple points. Fig. 1 shows a place where two fibres touch. The
junction in the skeleton may be composed of several triple points, see Fig. 1a
or Fig. 1b. Obviously, other configurations of junctions exist. Consequently, in
practice, one needs to consider junctions as connected components of triple points
CC(3-P).

(a) (b)

Fig. 1. Various configurations of skeleton junctions: a) four, and b) two triple points

2 Method

For several reasons, the segmentation of the fibres is a challenging task:
• The material properties - The contrast between the fibres and the matrix is

low. The reconstruction is not easy. The fibres have a non uniform length and
are heavily tangled.

• The image quality - The fibres are small (units μm) compared to the size of
the sample (1mm3). The resolution of the reconstruction is at the limits of the
capabilities of the device elements, dependent of a number of parameters: the
optics, sensor, available directional sampling, etc.

The images represent a considerable amount of data, 2000x2000x1100 pixels,
coded in 16bits. The execution time of the analysis is also to take into consideration.

The used method comprises two steps: 1) From the grey-scale images we
extract a 3-D binary skeleton, 2) the skeleton is then submitted to a filtering
and reconstruction (performed on a graph).

2.1 Extraction of the Skeleton of the Fibres

We consider here a skeleton sk of a grayscale image I, given a binary marker
M . The skeleton sk is obtained by a homotopic thinning of M , as proposed in
[12], [13].
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The thinning consists of an iterative deletion of simple, non terminal points
from M .

Algorithm 1

Input: Priority Image F , Marker M
Output: Skeleton sk
—–
X0 = M
repeat until stability:

select a point x, such that x = arg minx∈Xn{F (x)}
if x is simple and not 1-P then :

Xn+1 = Xn \ {x}
sk = X∞

The selection scheme is any order-generating criterion on the set of points in
X , given I. It can be the intensity, distance, etc. Here the choice is inferred from
a priority image F . The priorities can either be directly the input image, F = I,
or what we have used here a pile of successive erosions

F = I + εI + εεI + . . . (1)

Using a pile of erosions is advantageous when the objects itself have a poorly
defined center. Accumulated erosion from both sides towards the center creates
a crest line situated in the center of the object.

The marker image was obtained by thresholding. Experimentally, the most
convenient threshold was found above the 80 percentile of the intensity histogram
of the input image. The constant 80 comes from the a priory knowledge of the
charge of the material in fibres - ≈ 20%. The fibres appear bright and occupy
upper 20% of the intensity histogram.

A simple point is a point that can be deleted from some object without mod-
ifying its topology [14]. The decision whether some point is simple is local. It
can be done by examination of the neighborhood of the point [15]. Optimal im-
plementations in O(1) have been proposed, based on a Look-Up-Table in 2-D
and a Binary Decision Diagram in 3-D. Here we use a BDD-based scheme that
decides in at mosts 26 tests whether a point is simple or not.

In order to run efficiently, the selection scheme is implemented with priority
queues, for details see [12].

2.2 Extraction of fibres

The extraction of individual fibres is done in several steps. All these steps are
easily formulated and implemented using common operations from the graph
theory.

A graph G is a pair (V,E), with V a set of vertices, and E a set of edges
or links. E is a subset of V×V . Furthermore, we consider undirected graphs,
i.e. graphs for which the relations between pairs of vertices are symmetric.
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(a) (b) (c) (d)

Fig. 2. Fibre-reinforced composite material: a) a 256x256 illustration crop from original
2000x2000x1100 data, b) priority image (a 3-D 60x60x60 crop) used for the thinning
(Eq. 1), c) marker image, d) skeleton

(a) (b) (c) (d)

Fig. 3. Construction of the graph, a) a wire-frame skeleton of fibres, b) its graph, c)
spurious skeleton branches due to noise, d) doubled skeleton junction and its graph

For a given skeleton sk, the graph G = (V, E) is constructed by taking
V ↔ CC(3-P)∪1-P and E ↔ CC(2-P), see Fig. 3. The black and the un-
filled vertices in Fig. 3b represent the junctions and the terminal points of the
skeleton, respectively.

On undirected graphs, the rank of a vertex vi denotes the number of vertices
linked to it by an edge, given by d(vi) = Card{vj | eij ∈ E, j �= i}. It represents
here the number of linear segments meeting in the corresponding triple point.

Both sets V and E are associated weights. The vertices are associated coor-
dinates of extremal points or barycenters for junctions: b0 : V → Z3.

Every branch lsi of the skeleton is approximated by an oriented, undirected
line. Therefore, the set of edges E is also associated the barycenter b0 : E → Z3

of the line. The orientation is given as a pair of angles, azimuth and elevation
(θ, ϕ) : E → [0, π[× [0, π[ (radians). The length is l : E → R+.

Two edges of a graph are called adjacent if they are incident to a common
vertex.

A pair of edges eij , ejk, that are incident to the same vertex vj , bound an
angle α(eij), in 0 < α(eij , ejk) ≤ π. α defines an order on E × E.

Definition 1. Using α allows us to define on the set E the relation closest
neighbor. For any edge eij ∈ E, the closest neighbor is the adjacent edge that
delimits with e the smalest angle π−α.
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This order induced by α is used below to conceive an algorithm extracting from
the graph salient, co-linear structures representing individual fibres. This algo-
rithm proceeds in two steps, i) filters spurious edges induced by noise and ii)
extracts the fibres by reconstruction.

2.3 Filtering

The objective is to filter spurious branches, due principally to noise.
Wherever fibres touch, the skeleton contains intersections. The fibres being

thick, the intersections may contain several triple points.

Filter 1. The filter 1 is to filter spurious skeleton branches (shorter than L) that
can be deleted without modifying the topology of the object. Coded in terms of
graphs, the filter sums to Algorithm 1.

Algorithm Filter 1

Input: G(V,E), Length L ∈ R+
Output: G(V,E)
——
for all eij ∈ E do:

if l(eij) < L and d(vi) = 1 and d(vj) = 3:
delete eij

The deletion delete is done in two steps:

1. contraction of eij : E ← E \ {eij}, V ← V \ {vi}
2. contraction of the attaching 3-P vertex vj :

V ← V \ {vj}
E ← E \ {ejk, ejl}
E ← E ∪ {ekl}

The new edge is associated weights. The length is the distance of the barycen-
ters of the attaching vertices l{ekl} = ||b(vk) − b(vl)||. The orientation and the
barycenter are obtained as weighted means, weighted by the length of the ances-
tors l(ejk) and l(ejl). In this way, the global geometric properties of the object
are preserved during the filtering process.

Remark 1: The case d(vi) = 3 and d(vj) = 1 is geometrically identical and
processed similarly; it differs only in the indices i, j.

Remark 2: We consider here only T-junctions occuring in such vj that have
d(vj) = 3. The crossings are processed by Filter 2 below.

Filter 2. Junctions in real wire-frame type skeletons are often erroneously dou-
bled, see Fig. 3d. These doubled junctions prevent from correct simplification of
the skeleton, because the skeleton branches that belong to one fibre are actually
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not incident to a unique vertex of the graph. The filter type 2 is to eliminate these
doubled junctions. In terms of graph operations this filter is an edge contraction
of all non terminal edges shorter than L. Notice, that geometric properties of
contracted edges need to be inherited.

It is well known that edge contraction may result in creating multiple edges or
loops. Simple graphs, that are used here, can not contain multiple edges. Adding
an edge to already connected vertices of a simple graph is identity operator. On
the other hand, loops do not have a real physical meaning for coding adjacency
relation of straight fibres and are therefore deleted.

This filter is coded by Algorithm 2.

Algorithm Filter 2

Input: Graph G(V,E), Length L ∈ R+
Output: Graph G(V,E)
——
for all eij ∈ E do:

if l(eij) < L and d(vi) > 1 and d(vj) > 1:
closest neighbor of eij inherits its geometric proper-

ties
contract eij

Recall the edge contraction operation: for some given graph G(V,E), the
contraction of some edge eij , does the following: It removes eij from the set of
edges E. It removes the vertex vj , and attaches to vi all edges previously incident
to vj , except eij .

The closest neighbor inherits the geometric properties of eij as in the case of
filter 1.

Reconstruction of fibres. The fibres to extract are supposed to not bend
(made from some rigid material). This assumption is being used during the
reconstruction of the fibres from the skeleton. A straight object will comprise
line segments attached in junctions and almost aligned.

Proposition 2. Using the Definition 1 above, extracting rigid structures is
equivalent to extraction of shortest mean graph walks.

Proof: An open graph walk (defined as an alternating sequence of vertices and
edges, starting and ending by a vertex) describes a continuous object such as a
fibre stem.

The term shortest expressed in terms of angle π−α, see Definition 1, with α be-
ing the angle between two adjacent edges, gives preference to straight continuous
structures.

Mean makes the overall weight express the mean curvature of the walk. Hence
shortest mean graph walk prefers straight continuous structures with the lowest
mean curvature.
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Notice that this approach is - to some extent - equivalent to minimal path finding
for extraction of fine structures used in [16]. Here, the algorithm extracts from
the graph the shortest mean walks by the from-closest-to-closest reconstruction
strategy.

Algorithm Reconstruction of fibres

Input: Graph G(V,E)
Output: Graph G(V,E)
——
repeat until stability:

select a pair of edges (eij , ejk)
unlink eij and ejk from vj

contract eij and ejk

if rank(vj)=0 then
V ← V \ {vj}

The selection criterion is done on the following basis:

1. the edges (eij , ejk) are adjacent, incident to a common vertex vj .
2. The pair (eij , ejk) are the currently closest neighbors in E × E,

(eij , ejk) = arg min
eij ,ejk∈E

α(eij , ejk)

The angle α is the difference between the bound edge and π. The min selection
criterion therefore chooses pairs of edges geometrically closest to the straight line.

The stopping criterion is the maximum authorized angle bound by two edges,
i.e. the cycle repeat may stop as soon as there are no more adjacent edges bound-
ing and angle inferior to some given bound. We have used 30 degrees. This value
has been determined experimentally as a trade-off between the over- and under-
reconstruction.

During the reconstruction, the fibres lose their common vertex vj . One can
also iterate the repeat cycle until there are no more adjacent edges. Experiments
have shown practically no influence of the value of this criterion on the result.

Note: In order to run efficiently, the select criterion needs to be implemented
with a priority waiting list containing all pairs of adjacent edges of the graph
G(V,E), ordered with the priority π−α. This list is filled once before, and
progressively emptied during the reconstruction algorithm.

3 Experimental Results

The method has been proven on synthetic images. A full validation on real data
is currently not feasible because of the absence of the ground truth data.

A set of fibres have been randomly drawn in a test volume according to
a known distribution law. Several synthetic images have been generated, with
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uniform and normal distribution, and one image where two normal distributions
meet.

The validity was proved by comparison of the measured parameters to those
used to generate the images.

Several simulations were done to validate the algorithm. For all, 100 fibres
were drawn in a 3-D image 1003. The thickness of the fibres is 4 pixels.

Simulation 1: Normal distribution of orientations with mean of azimuth and
elevation equal π/6, and standard deviation 0.1 rad, see Fig. 4.

Simulation 2: Uniform distribution of orientations in [0, π], see Fig. 5.

(a) Ground truth (b) Measured

Fig. 4. Simulation 1. Anisotropic bundle of random fibres with normal distribution of
orientations.

(a) Ground truth (b) Measured

Fig. 5. Simulation 2. Isotropic bundle of random fibres with uniform distribution of
orientations.
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The bivariate histograms of orientations: (ϕ, θ) show a fair match for all sim-
ulations. The histogram of lengths are slightly biased towards shorter lengths,
showing that not all fibres could have been correctly reconstructed. A few indi-
viduals with a longer length show that there has also been overreconstruction.
This occurs in case of co-parallel, touching fibres.

4 Conclusion

The proposed segmentation technique is implemented in an optimal way, using
hierarchical waiting lists storing the fragments of fibres, ordered in the decreasing
order of the mutual angle. This ensures the best geometrical result, and the
lowest computation complexity.

The filters applied to the skeleton satisfy properties required from filters,
increasingness and idempotence. Moreover, both filters are anti-extensive.

The analyzed objects are reduced to their 1-D representation - a skeleton.
This brings two important advantages: There’s no trade off to find between lo-
cality and accuracy as in various previous works based on oriented filtering.
Secondly, working with skeletons represents a considerable data reduction. In-
deed, we reduce 3-D objects to 1-D, which brings a considerable reduction of the
computation time.

Execution time - The tests have been done on an AMD Opteron 2.6GHz,
16GB RAM, running MS Windows Server 2000, for volumic images 1003 con-
taining fibres.

Homotopic thinning, coded in C++, and implemented by using priority queues
is optimal in terms of computation complexity. The thinning takes about 250 ms.
The reconstruction of the fibres (with preliminary filtering), all coded in Python,
takes ≈ 8-9 s.

The graph has been coded in XML. The time spend on its construction from
the skeleton is negligeable (hundreds of ms) compared to the rest of the algo-
rithm. The execution time of the filtering and reconstruction is proportional to
the number of fibres in the volume.

Processing real data containing 2000 × 2000 × 1100 samples at once is not
feasible. It was done in blocks of 1003 to 1203 points, without overlap. The
execution time was between 9 and 12 hours.

Perspective - Obtaining the graph-based description of the fibre network al-
lows us to evaluate other material parameters such as the local fibre density, local
isotropy, boundaries between zones from different moulding pipes, etc. Coupling
data from numerous samples allows to create maps of these properties. The val-
idation of the results on real images by using maps of local orientation is an
undergoing process.

The next step will be to provide 3D maps of orientations, estimated from
the orientation tensor of fibres in a neighborhood of each point, as in [4]. The
orientation parameters are weighted by the length of fibres, and are not sensitive
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to the fragmentation of fibres resulting from fibre breaks or from an incomplete
reconnection at the end of the reconstruction process.

Acknowledgment. The authors are grateful to Aedinca for its support to this
research project.
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Abstract. Elongated objects are more difficult to filter than more iso-
tropic ones because they locally comprise fewer pixels. For thin linear
objects, this problem is compounded because there is only a restricted
set of directions that can be used for filtering, and finding this local di-
rection is not a simple problem. In addition, disconnections can easily
appear due to noise. In this paper we tackle both issues by combining
a linear filter for direction finding and a morphological one for filtering.
More specifically, we use the eigen-analysis of the Hessian for detecting
thin, linear objects, and a spatially-variant opening or closing for their en-
hancement and reconnection. We discuss the theory of spatially-variant
morphological filters and present an efficient algorithm. The resulting
spatially-variant morphological filter is shown to successfully enhance
directions in 2D and 3D examples illustrated with a brain blood vessel
segmentation problem.

Keywords: Adaptive morphology, spatially-variant morphology, vascu-
lar imaging, vesselness, Hessian-based filtering, directional filtering.

1 Introduction

In this paper, we define thin objects in image as semantically consistent objects
that exhibit at least one dimension much smaller than the others. We focus
particularly on elongated thin objects, locally curve- or line-like, e.g. fibres, hair,
strings, or blood vessels.

It is generally difficult to filter such objects. Indeed, classical filters in the lit-
erature assume extended objects (median, averaging, linear convolutions, mor-
phological filters with standard structuring elements) [1,2]. Those that do not
make this assumption still filter only in areas of low gradient in a region of
interest [3,4,5]. Elongated objects may in fact present no part with a suitable
low gradient, due to both noise and object edges, as in Figure 1. For elongated
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Fig. 1. A thin, noisy brain blood vessel. There is no low-gradient zone in this object,
disconnections are due to noise.

objects, in the literature, it is often assumed that one dimension is long, every-
where tangent to the object. Filtering can be applied along this direction without
necessarily destroying the object entirely. Within the morphology framework, one
classically use families of segments as structuring elements (SEs), selecting the
one best matching each object [6]. This, however, requires directional sampling,
which may be prohibitive in 3D. Alternatively, path-based families of structur-
ing elements can be used instead with no sampling required, but with similar
complexities and running times [7,8]. Finally, in [9], curvature evaluation was
also used in 2D in conjunction with mathematical morphology operators.

Linear (in the mathematical sense) filtering methods have also been proposed.
In the case of the scale-space framework, which should be suitable to this prob-
lem, edge and ridge detection methods were proposed [10,11] utilising the Hessian
or the structure tensor [12,13]. As an extension of these methods, anisotropic dif-
fusion is often proposed for filtering, using the tensorial information for diffusing
only within the object. In practice diffusion may fail if the object is very thin [14].

Elongated objects have a tendency to be sensitive to noise, often implying
disconnection along the object, as is readily apparent in Figure 1. Segmentation
of this kind of objects is often reliant on connection being maintained throughout
the object. Diffusion is often not well suited for this task [15,14] as it will become
isotropic outside the oriented objects.

In order to achieve reconnection, disconnected sets can be matched [16], but
this is an ill-posed problem. Minimal path methods have been proposed to
achieve reconnection [17,18], but the problem of specifying endpoints can be
difficult to solve.

Recently, two similar 2D approaches were proposed combining the analysis of
orientation from either the Hessian or the structure tensor, and using spatially-
variant (SV) morphology to bridge the disconnection gaps [19,20]. This is a
productive approach, as long as the resulting filter is indeed a morphological
one, and directions are well estimated.

Spatially-variant mathematical morphology (SVMM) was introduced in [21]
for binary sets using structuring functions. In [22] it was used for adaptive filter-
ing on grey-level and colour images. An efficient algorithm for variable rectangles
was proposed in [23], finally, SVMM was studied from the theoretical point of
view in [24,25,26].
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In this article, in the first section we expose a simple version of the theory
of SVMM together with an efficient algorithm. In the second section we briefly
introduce multi-scale Hessian analysis for the study of local directions. In the
third section we present applications using both concepts combined.

2 Spatially-Variant Morphological Filtering

The theory of SVMM and corresponding algorithms are formulated with the
purpose of filtering an image differently at various positions. In the case of elon-
gated objects, we wish to discover their local orientation and filter them locally
along this direction, for instance, with an oriented segment.

This presents a challenge. Traditionally one could use a supremum of openings
or an infimum of closings with a family of segments or paths as SEs, but the
range of this kind of filters is limited. For instance, there is no known way
to produce in this manner a morphological equivalent to an edge-enhancing,
orientation-driven, inverse diffusion filter as in [12].

In this section we present the theory upon which, the filter presented in sec-
tion 4 relies on.

2.1 Adjunction and Spatially-Variant Morphology

First, we note that it is not useful to establish a distinction between binary and
grey-level SVMM. Indeed, SVMM can be described on an arbitrary lattice in
which SEs are available. In general, one can construct a simple SV morphological
operator by computing a max or min filter using an SE that is not the same
everywhere in the image. For instance, one can use parametrized disks or oriented
segments, and vary respectively the diameter or the orientation according to a
scalar field. Erosions and dilations with these SEs pose no problem by themselves.
However, for filtering, openings and closings are the more interesting operators,
but adjunct respective dilations and erosions are not trivially computed, as we
shall see shortly.

Note that in general even though one can perform a kind of pseudo-opening or
closing operation in each separate SE (by combining a max and min filter in the
same window), the result of such an operator is not guaranteed to be idempotent
due to the change of homothecy or rotation, and would furthermore be dependent
on the order of operations. Consequently, it will not be a morphological filter [2].

In Figure 2, the concept of adjunction is illustrated in the case of SE-based
operators. In Figure 2(a) we have the translation-invariant (TI) case of a 2 × 1
horizontal line segment. In the general case, the transpose of a SE B, noted B̌ is

B̌(x) = {y | x ∈ B(y)}, (1)

where x and y are points, and B(y) is the potentially spatially-variant structuring
element originating at point y. For a TI operator as in Figure 2(a), we observe
that the general definition collapses to the usual one, i.e, B̌ = −B, the symmetric
of B with respect to the origin. However, for the SV case this is not true. In
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(a) TI case. (b) SV case.

Fig. 2. Adjunct structuring elements with explicit formulation for B̌ for the TI case
but not the SV one (as for the highlighted pixel)

Figure 2(b), we use the same SE, but with varying orientation (arrows denote
directions). In Fig. 2(b), for the indicated pixel, the transpose of the SE is
not a segment. Computing openings and closings with SV erosions and dilations
requires the transpose to be computed everywhere, which can be computationally
expensive requiring an exhaustive search. This becomes prohibitive for large, nD
data (n ≥ 2). In the next section we present a way to decrease the computation
complexity.

2.2 Adjunct by Conditional Propagation

In the following, we describe the SV dilation δ and its adjunct erosion ε both
using spatially-variant SEs .

Let L be a family of functions, or images, defined as a mapping from the
support D to the set of values V . Let δ, ε: L → L be a dilation and an erosion
of f ∈ L given by:

[δB(f)](x) = [
∨

b∈B(x)

fb](x) (2)

[εB̌(f)](x) = [
∧

b∈B̌(x)

fb](x), (3)

where fb denotes the translation of f by b computed as fb(x) = f(x − b). B
stands for the structuring element. In standard mathematical morphology, B is
translation invariant, defined as B ⊂ D.

In the context of SVMM, B is often denoted as structuring function and is
defined as B : D → P(D), P being the collection of all subsets of D. As above,
B(x) denotes the structuring element B originating at point x.

The transpose of B, denoted B̌, is defined in Eq. 1 and used in Eq. 3. This
formulation of B̌ can be computationally costly. It can a priori be of arbitrary
extent depending on the B family, which becomes problematic for forming filters
based on adjunctions of dilations and erosions in order to make a closing ϕB or
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an opening γB :

ϕB(f) = εB̌(δB(f)); γB(f) = δB(εB̌(f)). (4)

Note that there also exists a complementary, SE-based SV erosion εB(f) =
−δB(−f) and its adjunct δB̌(f), and that in general εB and εB̌ differ.

In the following we propose an implementation of the adjunct operator iden-
tical in complexity to the normal one.

Implementation. The inf/sup-of-functions in Eqs. 2 and 3 are usually com-
puted sequentially in raster scan order according to this scheme:

[δB(f)](x) = max
b∈B(x)

f(x− b) (5)

[εB̌(f)](x) = min
b∈B̌(x)

f(x− b) = min
y|x∈B(y)

f(x− y) (6)

The dilation of Eq. 5 is computed in O(MN), where N = Card(D) , and M =
Card(B(x)). In the following erosion, from Eq. 6, given some x, the set {y |
x ∈ B(y)} is a priori unknown and is computed in O(N2) by exhaustive search.
However, relaxing the sequential order of computing, the adjunct erosion of Eq. 6
can be computed more efficiently, as shown below.

Theorem 1 (Conditional propagation for the adjunct erosion). Assume
εB̌(f), i.e. the output, originally set everywhere equal to f . One can sequentially
read the input f at each point x. Considering the structuring element B(x) of
origin x, for all elements y of B(x), we update the output value [εB̌(f)](y) by
taking the min operator between the current input value at x and the current
output value at y.

Proof. It is easy to show that both ways of computing the adjunct are equivalent.
As we scan the input image at x and update the value in the output image at
y, we are indeed computing a min operator between all the origins of B(x) such
that B(x) intersects y. So, once the whole image has been scanned, if B(x)
intersects y, then x is in B̌(y) and vice-versa.

This theorem is illustrated in Figure 3. In the Fig. 3(a) the original image is
illustrated with the directions at each pixel as arrows. The structuring element
B is originating at the selected pixel x for a SE-based dilation δB . The result of
this dilation is shown in the Fig. 3(b). In the same figure the adjunct structuring
elements B̌ are pointing at the selected pixel y for the efficient adjunct erosion.
This operation is performed with the minimal value updated everywhere along
B̌ as it spans the image, the result can be observed in the Fig. 3(c). This theorem
leads to Algorithm 1 based on a conditional propagation of the value at the origin
of each B(x). In this algorithm, the for loop (lines 4-5) computes sequentially for
all x ∈ D, the dilation δB(f) implemented by definition of Eq. 5. Every δB(f)
is then stored in d (previously initialized (line 3)). Notice that there is no need
to store the entire image δB(f). The erosion is implemented by a conditional
propagation (lines 6-7).
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Fig. 3. Efficient SV closing (arrows at each pixel denote directions, thick long arrows
indicate the operation on the selected pixel)

The result ϕB(f) is available as soon as the raster scan of the input image
ends (lines 2-7). The overall computational complexity is O(

∑
x∈D Card(B(x))).

If B is of constant size, this reduces to O(MN), where N = Card(D), and
M = Card(B). The SV opening can be computed analogously.

Notes. (1) In the illustrated algorithm the closing starts with the SE-based
dilation, but it would be possible to start with the complementary, adjunct dila-
tion δB̌, followed by the SE-based erosion εB. The two results differ in general.
(2) Forming an opening starting with the adjunct erosion requires intermediary
storage. (3) SE can be of any shape, not just a line segment.

In the following section we propose a way to derive an orientation tensor
field.

Algorithm 1. Spatially-Variant Closing

Input: image f , structuring function B
Result: closing ϕB(f)

Data: d - scalar

ϕB(f) ← ∞ ; initialization1

forall x ∈ support(f) do2

d← 0 ; initialization3

forall b ∈ B(x) do4

d← max(d, f(x−b)) ; —– dilation (δB(f)) —–5

forall b ∈ B(x) do6

ϕB(f(x−b)) ← min(ϕB(f(x−b)), d) ; —– erosion (εB̌(f)) —–7
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3 Multiscale Hessian Analysis

For a real, twice derivable function L(x1, . . . , xi, . . . , xn) on a support D, the
Hessian operator is the order-2 tensor of the second derivatives

H =
(

∂2L

∂xi∂xj

)
1≤i,j≤n

.

If the second derivatives are continuous, H is symmetric semi-definite. In com-
puter vision, the derivative operator ∂ is not well-defined because of digitization,
and so H is only estimated, at a certain scale σ, via a convolution of L by a
Gaussian of parameter σ and a discrete derivative operator [1]. Eigen-analysis
of H can reveal local structure information. In this paper we focus on the case
n = 3, with the three eigenvalues, |λ1| , |λ2| , |λ3|, of H in increasing order, and
(e1, e2, e3) as their corresponding eigenvectors.

3.1 Line Detection Using the Hessian in 3D

Here we mostly follow the formulations by [11,13]. Tubular objects in 3D are
indicated by features which exhibit low curvature along the main axis of the
object, and strong curvature in the perpendicular plane to this axis. In Hessian
eigenspace, this translates to |λ3| ≥ |λ2| ≥ |λ1|, and the main axis is indicated by
e1 (in the case of a bright vessel). Consequently, V = λ3−λ2 is a simple tubular
indicator, which is of high value in tubular structures. Frangi [13] has a more
sophisticated model for computing a so-called “vesselness measure” involving
multiscale analysis to estimate the probability of a voxel to belong to a blood
vessel:

ν(x, σ) =

{
0 if λ2 > 0 or λ3 > 0,

(1 − e
−R2

A
2α2 ) · e−

R2
B

2β2 · (1 − e
−S2

2γ2 ) otherwise,
(7)

with
RA = |λ2|

|λ3| ,

RB = |λ1|√
|λ2λ3|

,

S = ‖Hσ‖ =
√∑

j λ
2
j ,

(8)

in which RA differentiates between plate and line like objects, RB describes
blob-like ones, and S accounts for the intensity difference between these objects
and background. Parameters α, β and γ influence the weight of the according
objects. The final vesselness result is produced by its best response at different
scales σ for each voxel x.

Blood vessels are not strictly made of tubular structures, but also of junctions,
more complex, spongious areas, and stenosis, forming double conic shapes. In
general, junctions and also thin objects that are not tube-like, e.g. membranes,
surfaces or double cones, can also be characterized to some degree with the
Hessian analysis but ultimately will require more sophisticated analysis. There
are works that have proposed Hessian-based formulations of these kind of objects
[27,28]. In the application part of this article, we only consider the tubular object
detection problem.
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4 Application

In this section we describe an application where combined Hessian and mor-
phological analysis is useful. More specifically, we propose to improve Frangi’s
vesselness measure by morphological SV closing, allowing to reduce the noise
and vessel disconnections.

4.1 Algorithm

The steps of the algorithm are illustrated in the Figure 4. In the first step
of the algorithm, the Hessian analysis is performed at each pixel on multiple
scales of the image. The vesselness as in Eq. 7 is calculated across these scales
with the maximum final response for each voxel. This indicates which voxels
belong to a tubular feature but fails to connect vessels portions when the noise
level is too high or when vessels are too narrow. However, we observe that the
orientation field is relatively robust within an appropriate choice of scales (see
more discussion in Section 4.2).

In the second step, we use a family B(e1(x)) of centered segments as struc-
turing elements oriented in the direction of e1, and of fixed length for the mor-
phological closing operation with the aim of vessel reconnection. The SE-based
dilation is followed by the adjunct erosion εB̌(δB) as in section 2.2. In order
to propagate the objects in the space, the dense orientation field is necessary.
In our case, this is required only as far as the dilation can reach. At first, the
dilation is performed only on the directional image. Then, the actual intensity
image is dilated according to the directions obtained in the previous dilation.
This is followed by the adjunct erosion operation. This ensures an idempotent
result of the closing operation, which guarantees that the resulting filter obeys
all morphological rules.

Following the morpho-Hessian closing - which performs like an edge-enhancing
inverse diffusion filter in some ways - noise levels are generally increased. In order
to filter out the noise not connected with vessels and reconnect the vessels, we
perform a gray-level reconstruction [29] using the initial vesselness image as
marker, and the result of the morphological closing as mask. For the simple
example from the Fig. 4, the result of the grayscale reconstruction is similar to
the closing.

Fig. 4. Illustration of the directional closing. The original, noisy, broken vessel is at
the top. Vessel directions are estimated from the Hessian (first step). A SV closing is
performed in the main direction of the vessel (second step). A gray-scale reconstruction
from the vesselness is also performed, the result is similar to the closing for this example.
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(a) Volume rendering of small arteries of
the brain (in red) in MRI-TSA modality.

(b) Surface rendering of the vesselness re-
sponse.

(c) Vector flow lines of the principal eigen-
vectors oriented in the main direction of
the vessel.

(d) Reconstructed vessel by spatially-
variant closing.

Fig. 5. Application to the segmentation of brain vessels

4.2 Results and Discussion

The described algorithm was implemented with the ITK library using the avail-
able implementations of vesselness.

The image volume is produced with MRI and is of size 256×256×256 pixels.
The time processing of the Hessian multiscale method is 2 minutes and of the
morphological closing is 1 minute 20 seconds on a single core of a 2.5GHz Intel
Quad-Core Xeon processor.

The considered vesselness parameters have been set to: α = β = 0.5 and γ =
5, as proposed in [13]. The SE is symmetric according to the origin projecting
the opposite direction of the current pixel, its total length is fixed at 7 voxels. It
would be also possible to modify the length of B according to λ1 (this might be
more costly at larger scales), but experiments indicate that this is not critical.

Commonly, the lower scales are more sensitive to noise. Furthermore, in [30] it
has been reported that the vesselness response curve differs not more than 3 per-
cent between σ = 1 and σ = 2

√
2 using a set of discrete values σi ∈ 1,

√
2, 2, 2

√
2

and that is applicable for most applications. For this filtering method, we used
the scales between σ = 1 and σ = 2

√
2 with three logarithmic natural incremen-

tation steps.
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The results are illustrated in Figure 5 with an application to the segmen-
tation of brain vessels obtained with MRI angiography modality. The original
and filtered images are surface-rendered with the same threshold. The volume-
rendered image (Figure 5(a)) shows that the image contains a high level of noise
and disconnections that prevent using a low threshold for detecting all vessels.
In Figure 5(b), it can be observed that the vesselness filters out the noise, but
does not manage to reconnect the noise-corrupted vessels. However, the orien-
tation of the first eigenvector (Figure 5(c)) remains relatively unchanged by the
noise level, due to Gaussian filtering in the Hessian estimation (the turbulence-
like effect of the vector flow is an artifact of a visualisation program). Thanks
to these, principal vessel directions and in the contrast to the vesselness filter,
morpho-Hessian filter (Figure 5(d)), accomplishes reconnections of the smaller
vessel parts and eliminates the noise, up to some extent.

The gray-level reconstruction eliminates all non-connected noise of the result
of morpho-Hessian filter. The final segmentation is achieved by top-hat thresh-
olding [1]. The threshold parameter is chosen heuristically and is the same for
all methods while an automated segmentation method is under development.

5 Conclusions

In this article we have presented a concise theory of spatially-variant morphology
with the main result being an efficient algorithm in O(MN) for spatially-variant
openings and closings, where N is the size of the image, and M (M ' N) is the
size of the structuring element. While SVMM is not in itself novel, we believe
that the presentation of the algorithm in this article is simple and enlightening.

As an application, we have presented a morpho-Hessian filter for 3D image
filtering, in particular, enhancement and reconnection of thin, tubular objects.
Directions in 3D were obtained by eigen-analysis of the Hessian, and reconnec-
tion was achieved by SV morphology. Hessian analysis is fast, multiscale and
relatively robust for object direction detection, whereas orientation analysis us-
ing known MM methods would require directional sampling, which, in turn,
would be prohibitive in 3D. Conversely, anisotropic diffusion is inefficient, re-
quiring many iterations and featuring convergence issues, whereas a closing or
opening converges in one iteration.

The results obtained by applying this filter on real 3D MRI-TSA data, com-
pared to those acquired with the vesselness function [13], underline the aptitude
of the suggested routine for reconnection of the smaller vessels.

Our proposed filter also requires very few parameters, namely the range of
scales in Hessian analysis and the length of the closing/opening segment for
reconnection.

Overall, this approach may be seen as a productive combination of linear and
non-linear techniques. Future work includes studying alternatives to the Hessian
tensor for improved noise robustness and direction detection. The handling of
scales with regard to the topology of the vascular tree could also be consid-
ered in further works. And, as proposed in [23], the size of the spatially-variant
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structuring elements could be resized according to the eigenvalues of the Hessian
matrix. Lastly, a more complete application involving large-scale reconstruction
of the brain vascular system, its semi- or completely automatic segmentation
and classification of arteries and veins are our ultimate goals.
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Abstract. We study some basic morphological operators acting on the
lattice of all subgraphs of a (non-weighted) graph G. To this end, we
consider two dual adjunctions between the edge set and the vertex set
of G. This allows us (i) to recover the classical notion of a dilation/erosion
of a subset of the vertices of G and (ii) to extend it to subgraphs of G.
Afterward, we propose several new erosions, dilations, granulometries
and alternate filters acting (i) on the subsets of the edge and vertex set
of G and (ii) on the subgraphs of G.

1 Introduction

From a formal point of view, digital image processing historically consists of
analyzing the transformations that act on the subsets of Z2 (the sets of pixels in
a binary image) and the transformations that act on the maps from Z2 to N (the
images themselves). In such a perspective, mathematical morphology provides a
set of filtering and segmenting tools that are very useful in applications.

On the other hand, there is a growing interest for considering digital objects
not only composed of points but also composed of elements lying between them
and carrying structural information about how the points are glued together (see
[1,2] for recent examples). The simplest of these representations are the (non-
weighted) graphs. The domain of an image is considered as a graph whose vertex
set is made of the pixels and whose edge set is given by an adjacency relation on
these pixels. In this context, it becomes relevant to consider the transformations
acting on the set of all subgraphs and not only those acting on the set of all
subsets of pixels.

When dealing with a graph G, we often need (see e.g. ([1,3,4,5]) to consider
the graph induced by a subset S of vertices of G. To this end, we associate with S
the largest subset of edges of G such that the obtained pair is a graph. In other
cases, we have to consider a graph induced by a subset of the edges of G.

Motivated by classifying and understanding these operations and their com-
binations, we propose a systematic study of the basic operators which are used
to derive a set of edges from a set of vertices and a set of vertices from a set of
edges. It turns out that these operators are dilations and erosions. They allow
us (i) to recover the classical notion of a dilation/erosion of a subset of vertices
and (ii) to extend it to subgraphs (Section 3). Then, we propose several new
erosions, dilations, granulometries and alternate sequential filters acting (i) on
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the subsets of edges and on the subsets of vertices and (ii) on the subgraphs.
We emphasize that, contrarily to most of the previous work on morphology in
graphs (such as [6,7,8,9]), the main operators of this paper input and output
graphs.

The proofs of the properties presented in this paper will be given in a future
extended version [10].

2 Lattice of Graphs

We define a graph as a pair X = (X•, X×) where X• is a set and X× is
composed of unordered pairs of distinct elements in X•, i.e., X× is a subset
of {{x, y} ⊆ X• | x �= y}. Each element of X• is called a vertex or a point (of X),
and each element of X× is called an edge (of X). In the sequel, to simplify the
notations, ex,y stands for the edge {x, y} ∈ X×.

Let X and Y be two graphs. If Y • ⊆ X• and Y × ⊆ X×, then X and Y are
ordered and we write Y ( X . If Y ( X , we say that Y is a subgraph of X , or
that Y is smaller than X and that X is greater than Y .

Important remark. Hereafter, the workspace is a graph G = (G•,G×) and
we consider the sets G•, G× and G of respectively all subsets of G•, all subsets
of G× and all subgraphs of G.

Let S0,S1 ⊆ G be the sets of respectively the graphs made of a single ver-
tex and the graphs made of a pair of vertices linked by an edge, i.e., S0 =
{({x}, ∅) | x ∈ G•} and S1 = {({x, y}, {ex,y}) | ex,y ∈ G×}. We set S = S0 ∪ S1.
Any graph X ∈ G, is generated by the family F = {X1, . . . , X�} of all elements
in S smaller than X : X = (

⋃
i∈[1,�] Xi

•,
⋃

i∈[1,�] Xi
×); we say that the elements

of F are the generators of X . Conversely, any family F of elements in S generates
an element of G. Hence, S (sup-) generates G.

Clearly, the ordering ( on graphs amount to say that Y ( X when all
generators of Y are also generators of X . Therefore, ordering ( provides a
lattice structure on the set G. Indeed, the largest graph smaller than a fam-
ily F = {X1, . . . , X�} of elements in G is the graph generated by the gener-
ators common to all Xi, i ∈ [1, !]; this infimum is denoted by )F . Similarly,
the supremum *F is generated by the union of the families of generators of
all Xi, i ∈ [1, !].

If X• ⊆ G• (resp. Y × ⊆ G×), we denote by X• (resp. Y ×) the complementary
set of X• (resp. Y ×) in G• (resp. G×), that is X• = G• \ X• (resp. Y × =
G×\Y ×). Observe that, if X is a subgraph of G, then, except in some degenerated
cases, the pair (X•, X×) is not a graph.

Property 1. The set G of the subgraphs of G form a complete lattice, sup-
generated by the set S = S0 ∪S1, but not complemented. The supremum and the
infimum of any family F = {X1, . . .X�} of elements in G are given by respec-
tively )F = (

⋂
i∈[1,�] Xi

•,
⋂

i∈[1,�] Xi
×) and *F = (

⋃
i∈[1,�] Xi

•,
⋃

i∈[1,�] Xi
×).
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3 Dilations and Erosions

In the graph G, we can consider sets of points as well as sets of edges. Therefore,
it is convenient to consider operators to go from one kind of sets to the other one.
In this section, we investigate such operators and we study their morphological
properties. Then, based on these operators, we propose several dilations and
erosions acting on the lattice of all subgraphs of G.

Let X• be a subset of G•, we denote by GX• the set of all subgraphs of G
whose vertex set is X•. Let Y × be a subset of G×. We denote by GY × the set
of all subgraphs of G whose edge set is Y ×.

Definition 2 (edge-vertex correspondences). We define the operators δ•,
ε• from G× into G• and the operators ε×, δ× from G• into G× as follows:

G× → G• G• → G×

Provide the object with
a graph structure

X× → δ•(X×) such that
(δ•(X×), X×) = )GX×

X• → ε×(X•) such that
(X•, ε×(X•)) = *GX•

Provide its complement
with a graph structure

X× → ε•(X×) such that
(ε•(X×), X×) = )GX×

X• → δ×(X•) such that
(X•, δ×(X•)) = *GX•

In other words, if X• ⊆ G• and Y × ⊆ G×, (δ•(Y ×), Y ×) is the smallest subgraph
of G whose edge set is Y ×, (X•, ε×(X•)) is the largest subgraph of G whose
vertex set is X•, (ε•(Y ×), Y ×) is the smallest subgraph of G whose edge set
is Y ×, and (X•, δ×(X•)) is the largest subgraph of G whose vertex set is X•.

These operators are illustrated in Figs. 1a-f. The following property locally
characterize them. This property leads in particular to simple linear-time al-
gorithms (with respect to the cardinality of G• and G×) to compute δ•(X×),
ε×(Y •), ε•(X×) and ε•(X×) without explicitly considering the families GX× ,
GX• , G

X× and GX• .

Property 3. For any X× ⊆ G× and Y • ⊆ G•:

1. δ• : G× → G• is such that δ•(X×) = {x ∈ G• | ∃ex,y ∈ X×};
2. ε× : G• → G× is such that ε×(Y •) = {ex,y ∈ G× | x ∈ Y • and y ∈ Y •};
3. ε• : G× → G• is such that ε•(X×) = {x ∈ G• | ∀ex,y ∈ G×, ex,y ∈ X×};
4. δ× : G• → G× is such that δ×(Y •) = {ex,y ∈ G× | either x ∈ Y • or y ∈

Y •}.

In other words, δ•(X×) is the set of all vertices which belong to an edge of X×,
ε×(Y •) is the set of all edges whose two extremities are in Y •, ε•(X×) is the set
of all vertices which do not belong to any edge of X×, and δ×(Y •) is the set of
all edges which have at least one extremity in Y •.

From this characterization, we can recognize the general graph version of some
operators introduced by Meyer and Angulo [8] (see also [9]) for the hexagonal
grid. However, unlike Property 3, the important theorem of structure 9 does not
appear in [8] or [9], neither Theorem 12 nor Property 14.

Before further analyzing the operators defined above, let us briefly recall some
algebraic tools which are fundamental in mathematical morphology [11].
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a: G b: X = (X•,X×) c: δ•(X×) d: ε×(X•) e: ε•(X×)

f: δ×(X•) g: δ �Δ(X) h: ε� E(X) i: α3(X) j: β3(X)

Fig. 1. Dilations and erosions

Given two lattices L1 and L2, an operator δ : L1 → L2 is called a dilation
when it preserves the supremum (i.e. ∀E ⊆ L1, δ(∨1E) = ∨2{δ(X) | X ∈ E},
where ∨1 is the supremum in L1 and ∨2 the supremum in L2). Similarly, an
operator which preserves the infimum is called an erosion.

Two operators ε : L1 → L2 and δ : L2 → L1 form an adjunction (ε, δ)
when for any X in L2 and any Y in L1, we have δ(X) ≤1 Y ⇔ X ≤2 ε(Y ),
where ≤1 and ≤2 denote the order relations on respectively L1 and L2. Given
two operators ε and δ, if the pair (ε, δ) is an adjunction, then ε is an erosion
and δ is a dilation.

Given two complemented lattices L1 and L2, two operators α and β from L1
into L2 are dual (with respect to the complement) of each other when, for any X ∈
L1, we have β(X) = α(X). If α and β are dual of each other, then β is an erosion
whenever α is a dilation.

Property 4 (dilation, erosion, adjunction, duality)

1. Both (ε×, δ•) and (ε•, δ×) are adjunctions.
2. Operators ε× and δ× (resp. ε• and δ•) are dual of each other.
3. Operators δ• and δ× are dilations.
4. Operators ε• and ε× are erosions.

Let us compose these dilations and erosions to act on G• and G×.



Some Morphological Operators in Graph Spaces 153

Definition 5 (vertex-dilation, vertex-erosion). We define δ and ε that act
on G• (i.e., G• → G•) by δ = δ• ◦ δ× and ε = ε• ◦ ε×.

As compositions of respectively dilations and erosions, δ and ε are respectively
a dilation and an erosion. Moreover, by composition of adjunctions and dual
operators, δ and ε are dual and (ε, δ) is an adjunction.

In fact, it can be shown that δ and ε correspond exactly to the usual notions
of an erosion and of a dilation of a set of vertices in a graph [6]. It means, in
particular that, when G• is a subset of the grid points Zd and when the edge
set G× is obtained from a symmetrical structuring element, then the operators
defined above are equivalent to the usual binary dilation and erosion by the
considered structuring element. For instance, in Fig. 1, G• is a rectangular subset
of Z2 and G× corresponds to the basic “cross” structuring element. It can be
verified that the vertex sets in Fig. 1g and h, obtained by applying δ and ε to X•

(Fig. 1b), are the dilation and the erosion by a “cross” structuring element of X•.
We now consider a dual/adjunct pair of dilation and erosion acting on G×.

Definition 6 (edge-dilation, edge-erosion). We define Δ and E that act
on G× by Δ = δ× ◦ δ• and E = ε× ◦ ε•.

Definition 7. We define the operators δ �Δ and ε � E by respectively (δ(X•),
ΔX×) and (ε(X•), E(X×)), for any X ∈ G.

For instance, Figs. 1f and 1g present the results obtained by applying the oper-
ator δ � Δ and the operator ε � E to the subgraph X (Fig. 1b) of G (Fig. 1a).

Lemma 8. The family G is closed under the operators δ � Δ and ε � E. More
precisely, for any subgraph X of G, both δ � Δ(X) and ε � E(X) are subgraphs
of G.

Theorem 9 (graph-dilation, graph-erosion). The operators δ � Δ and
ε � E are respectively a dilation and an erosion acting on the lattice (G,().
Furthermore, (ε � E , δ � Δ) is an adjunction.

Note that since lattice G is sup-generated by set S, it suffices to know the dilation
of the graphs in S for characterizing the dilation of the graphs in G.

Compared to classical morphological operators on sets, the dilations and ero-
sions introduced in this section furthermore convey some connectivity properties
different than the ones which can be deduced from classical dilations and ero-
sions. Observe, for instance, in Fig. 1g, that some 4-adjacent vertices of δ(X•)
are not linked by an edge in the graph δ�Δ(X). These properties can be useful
in further processing involving for instance connected operators [12,13,14,15].

Thanks to the operators presented in Definition 2, other intersecting adjunc-
tions (hence dilations/erosions) can be defined on G:

1. (α1, β1) such that ∀X ∈ G, α1(X) = (G•, X×) and β1(X) = (δ•(X×), X×);
2. (α2, β2) such that ∀X ∈ G, α2(X) = (X•, ε×(X•)) and β2(X) = (X•, ∅);
3. (α3, β3) such that ∀X ∈ G, α3(X) = (ε•(X×), ε× ◦ ε•(X×)) and β3(X) =

(δ• ◦ δ×(X•), δ×(X•)).
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The adjunction (α3, β3) is illustrated in Fig. 1i and 1j. Note also that, using
usual graph terminologies, β1 (resp. α2) can be defined as the operator which
associates to a graph the graph induced by its edge set (resp. vertex set).

4 Filters

In mathematical morphology, a filter is an operator α acting on a lattice L, which
is increasing (i.e. ∀X,Y ∈ L, α(X) ≤ α(Y ) whenever X ≤ Y ) and idempotent
(i.e. ∀X ∈ L, α(α(X)) = α(X)). A filter α on L which is extensive (i.e. ∀X ∈ L,
X ≤ α(X)) is called a closing on L whereas a filter α on L which is anti-extensive
(i.e. ∀X ∈ L, α(X) ≤ X) is called an opening on L. It is known that composing
the two operators of an adjunction yields an opening or a closing depending on
the order in which the operators are composed [11]. In this section, the operators
of Section 3 are composed to obtain filters on G•, G× and G.

Definition 10 (opening, closing)

1. We define γ1 and φ1, that act on G•, by γ1 = δ ◦ ε and φ1 = ε ◦ δ.
2. We define Γ1 and Φ1, that act on G×, by Γ1 = Δ ◦ E and Φ1 = E ◦Δ.
3. We define the operators γ � Γ1 and φ � Φ1 by respectively γ � Γ1(X) =

(γ1(X•), Γ1(X×)) and φ � Φ1(X) = (φ1(X•), Φ1(X×)) for any X ∈ G.

Figs. 2b and 2f present the result of γ � Γ1 and φ � Φ1 for respectively the
subgraph of Fig. 2a and the one of Fig. 2e.

In fact, by composing δ• with ε× and δ× with ε•, we obtain smaller filters.

Definition 11 (half-opening, half-closing)

1. We define γ1/2 and φ1/2, that act on G•, by γ1/2 = δ•◦ε× and φ1/2 = ε•◦δ×.
2. We define Γ1/2 and Φ1/2, that act on G× by Γ1/2 = δ×◦ε• and Φ1/2 = ε×◦δ•.
3. We define the operators γ�Γ1/2 and φ�Φ1/2 by respectively γ�Γ1/2(X) =

(γ1/2(X•), Γ1/2(X×)) and φ�Φ1/2(X) = (φ1/2(X•), Φ1/2(X×)), for any X ∈
G.

Thanks to Property 3, the operators defined above can be locally characterized.
Let X• ⊆ G• and Y × ⊆ G×, we have:

γ1/2(X•) = {x ∈ X• | ∃ex,y ∈ G× with y ∈ X•}
= X• \ {x ∈ X• | ∀ex,y ∈ G×, y /∈ X•}

Γ1/2(Y ×) = {u ∈ G× | ∃x ∈ u with {ex,y ∈ G×} ⊆ Y }
= Y × \ {u ∈ Y × | ∀x ∈ u, ∃ex,y ∈ G× with ex,y /∈ Y ×}

φ1/2(X•) = {x ∈ G• | either x ∈ X• or ∀ex,y ∈ G×, y ∈ X•}
= X• ∪ {x ∈ X• | ∀ex,y ∈ G×, y ∈ X•}

Φ1/2(Y ×) = {ex,y ∈ G× | ∃ex,z ∈ Y × and ∃ey,w ∈ Y ×}
= Y ∪ {ex,y ∈ Y × | x ∈ δ•(Y ×) and y ∈ δ•(Y ×)}.
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a: Y b: γ � Γ1(Y ) c: γ � Γ1/2(Y ) d: β3 ◦ α3(Y )

e: Z f: φ� Φ1(Z) g: φ� Φ1/2(Z) h: α3 ◦ β3(Z)

Fig. 2. Openings and closings (G is induced by the 4-adjacency relation)

Informally speaking, γ1/2 removes from Y • its isolated vertices whereas Γ1/2
removes from Y × the edges which do not contain a vertex completely covered by
edges in Y ×. It may be furthermore seen that γ1/2 (resp. Γ1/2) is the dual of φ1/2

(resp. Φ1/2). Thus, φ1/2 adds to Y • the vertices of X• completely surrounded by
elements of Y • whereas Φ1/2 adds to Y × the edges of Y × whose two extremities
belong to at least one edge in Y × (see for instance Fig. 2).

The family G is closed under the operators presented in Definition 10.3 since
they are obtained by composition of operators also satisfying this property
(Lemma 8). Furthermore, it can be deduced from the local characterization of
the operators γ1/2, Γ1/2, φ1/2 and Φ1/2 that the family G is also closed under
the operators of Definition 11.3. Hence, thanks to the properties of adjunctions
recalled in the introduction of this section, the following theorem can be estab-
lished.

Theorem 12 (graph-openings, graph-closings)

1. The operators γ1/2 and, γ1 (resp. Γ1/2 and Γ1) are openings on G• (resp. G×)
and φ1/2, and Φ1 (resp. Φ1/2 and φ1) are closings on G• (resp. G×).

2. The family G is closed under γ � Γ1/2, φ � Φ1/2, γ � Γ1, and φ � Φ1.
3. The operators γ�Γ1/2 and γ�Γ1 are openings on G and φ�Φ1/2 and φ�Φ1

are closings on G.
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Composing the operators of the adjunctions (αi, βi), defined at the end of Sec-
tion 3, also yields remarkable openings and closings. Indeed, it can be easily seen
that: α1◦β1 = α1, α2◦β2 = α2, β1◦α1 = β1 and β2◦α2 = β2. Thus α1 and α2 are
both a closing and an erosion and β1 and β2 are both a dilation and an opening.
This means, in particular, that α1 and α2 are idempotent extensive erosions and
that β1 and β2 are idempotent anti-extensive dilations. The opening and the
closing resulting from the adjunction (α3, β3) are illustrated in Figs. 2d and 2h.

It is possible to associate with any lattice L, the lattice of all increasing
operators on L. In this context, two filters ϕ1 and ϕ2 on the lattice L are said
ordered if, for any X ∈ L, ϕ1(X) ≤ ϕ2(X) or if, for any X ∈ L, ϕ2(X) ≤ ϕ1(X).
A usual way to build a hierarchy of filters (i.e. an ordered family of filters) from
an adjunct pair (α, β) of erosion and dilation consists of building the dilations
and erosions obtained by iterating several times α and β. In general, composing
these iterated versions of α and β leads to hierarchies of filters when the number
of iterations increases. In the remaining of the section, we follow this classical
approach to build granulometries and alternate sequential filters in the lattice G.

Let α be an operator acting on a lattice L and i be a nonnegative integer.
The operator αi is defined by the identity on L when i = 0 and by α ◦ αi−1

otherwise.

Definition 13 (granulometries, ASF). Let λ ∈ N.

1. We define γ�Γλ/2 (resp. φ�Φλ/2) by γ�Γλ/2 = (δ�Δ)i◦(γ�Γ1/2)j◦(ε�E)i

(resp. φ�Φλ/2 = (ε�E)i◦(φ�Φ1/2)j◦(δ�Δ)i), where i and j are respectively
the quotient and the remainder in the integer division of λ by 2.

2. We define the operator ASFλ/2 by the identity on graphs when λ = 0 and
by ASFλ/2 = γ � Γλ/2 ◦ φ � Φλ/2 ◦ASF(λ−1)/2 otherwise.

Note that it is possible to define a second family of operators similar to ASF =
{ASFλ/2 | λ ∈ N} by replacing in Definition 13.2 the sequence of primitives γ �

Γλ/2 ◦ φ � Φλ/2 by the sequence φ � Φλ/2 ◦ γ � Γλ/2. The following proposition
(Property 14.2), which establishes that ASF is a family of alternate sequential
filters, also holds true for this second family.

Property 14

1. The families {γ � Γλ/2 | λ ∈ N} and {φ� Φλ/2 | λ ∈ N} are granulometries:
– for any λ ∈ N, γ � Γλ/2 (resp. φ� Φλ/2) is an opening (resp. a closing)

on G;
– for any two elements λ, μ ∈ N such that λ ≤ μ, we have γ � Γμ/2(X) (

γ � Γλ/2(X) and φ � Φλ/2(X) ( φ � Φμ/2(X) for any X ∈ G.
2. The family {ASFλ/2 | λ ∈ N} is a family of alternate sequential filters:

– for any two elements λ, μ ∈ N, λ ≥ μ implies that ASFλ/2 ◦ ASFμ/2 =
ASFλ/2.

Given a graph X ∈ G, it must be noticed that the vertex set (resp. edge set)
of γ � Γλ/2(X) and φ � Φλ/2(X) depends only on the vertex set (resp. edge



Some Morphological Operators in Graph Spaces 157

(a) original binary image (b) noisy binary image

(c) classical ASF (d) graph ASF

(e) classical ASF of double size (f) classical ASF (double resolution)

Fig. 3. ASF illustration [see text]

set) of X . Thus, Definition 13 also induces granulometries and alternate sequen-
tial filters on G• and G×. If we consider the case where λ is even, we deduce
from the observation stated after Definition 5 that, when G• is a subset of the
grid points Zd and when G× is obtained from a symmetrical structuring ele-
ment, then the vertex parts of γ � Γλ/2 and φ � Φλ/2 correspond to the usual
opening and closing of size λ/2. Hence, we can see that, in the case of a set of
points, the proposed framework completes the granulometries and filters which
are classically used in applications by considering the odd values of λ.
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Same as Fig. 3 but in 3D. Rendering of: (a) original binary image, (b) noisy
binary image, (c) result of classical ASF, (d) result of graph ASF, (e) result of classical
ASF of double size and (f) result of classical ASF (double resolution) [see text].
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In order to illustrate the proposed framework, let us analyze the effect of
our filters on the binary image of Fig. 3b obtained by adding random impulse
noise of different size and shape to the digital shape shown in Fig. 3a. Fig. 3c
shows the results given by the “classical” ASF (using the structuring elements
corresponding to the 4-adjacency relation) of size 4. Fig. 3d presents the results
given by ASF8/2 (on the graph induced by the 4-adjacency relation) which is
the corresponding alternate filter in our framework. Clearly, ASF8/2 removes
more noise than the classical ASF. However, it requires more iterations since
it considers the filters γ � Γλ/2 and φ � Φλ/2 for both odd and even values
of λ whereas the classical ASF only considers the even values of λ. In order
to compare the proposed ASF with filters using the same number of iterations,
we produce two other filtered images. The first one is obtained by filtering the
image with a classical ASF of size 8 (Fig. 3e). It can be seen that more noise
are removed but also that less details are preserved (see in particular the head
of the zebra). The second one (Fig. 3f) is obtained in three steps: 1) double the
resolution of the noisy image; 2) apply to it a classical ASF of size 8; and 3)
divide by two the resolution of the output image. It can be seen that this last
procedure removes more noise than the classical ASF but does not perform as
well as the ASF introduced in the present paper. This qualitative assessment is
confirmed by a quantitative study that will be published in a future extended
version of this paper [10]. Fig. 4 provides a similar illustration for the case of a
3-dimensional synthetic binary object.

5 Conclusion

This paper investigates the lattice of all subgraphs of a graph and provides it
with morphological operators. In particular, we propose new filters which input
and output graphs. We show the interest of restricting these filters to sets of
vertices. Indeed, they allow us to complete some classical morphological filters
used in image analysis applications.

In future work, the proposed approach will be extended to (node and edge)
weighted graphs considered as stacks of graphs. We will also study morphology in
simplicial (and cubical) complexes (see [2] for image operators defined in cubical
complexes and [16] for examples of morphological operators in 2D simplicial
complexes). These topological structures extend graphs to higher dimensions in
the sense that a graph is a 1-D structure made of points and edges considered
as 0D and 1D elements. The proposed approach extends to general complexes
by considering additional generators. In 2D, for instance, a third generator for
the elementary triangles (or squares) is required.
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Abstract. This paper revisits the construction of watershed and water-
fall hierarchies through a thorough analysis of Boruvka’s algorithms for
constructing minimum spanning trees of edge weighted graphs. In the
case where the watershed of a node weighted graph is to be constructed,
we propose a distribution of weights on the edges, so that the waterfall
extraction on the edge weighted graph becomes equivalent with the wa-
tershed extraction on the node weighted graph.

Keywords: Waterfall, minimum spanning tree, adjunctions on graphs.

1 Introduction

Graphs are the fundamental structures used to represent images and partitions.
Different graph theoretical approaches are well suited to describe morphologi-
cal segmentation: 1) detection of shortest paths or cycles for various types of
distances ; 2) extraction of minimum spanning trees and forests (watershed hi-
erarchies and segmentation with markers) ; 3) maximal flows and minimal cuts.
Some links between these optimal structures have already been studied [1,2,3].

From these previous studies, it appears that minimum spanning trees and
forests play a central role for watershed, waterfall and hierarchical segmenta-
tions. In this paper a thorough examination of Boruvka’s algorithm, known as
the first algorithm created for constructing minimum spanning trees, give us a
deeper insight into the links between waterfalls and watersheds. We first define
a non conventional morphology based on adjunctions between nodes and edges
of weighted graphs. From these new operators, we show that waterfalls can be
directly obtained from a specific morphological opening. Morphological segmen-
tations can be well described by flooding a topographic surface. We highlight
how the different steps of Boruvka’s algorithm can be used to build watersheds
and waterfalls on edge weighted graphs. We then address the problem of the
non-uniqueness of minimal spanning trees arising when graphs have plateaux
and edges having the same weight. We especially give several strategies to by-
pass this problem. Finally, we present an extension of this methodology in case
of node weighted graphs.
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2 Adjunctions on Graphs and Interpretations in Terms
of Flooding

A non oriented graph G = [N,E] is a collection of a set N whose elements
are called vertices or nodes and of a set E whose elements u ∈ E are pairs of
vertices called edges. The weights [e, n] of the graph G are represented as two
functions h and k, respectively for the edges and the nodes. hij is the weight
of the edge (i, j) and ki the weight of the node i. The same graph may have
various distributions of weights. If there is no ambiguity, in the case where only
one distribution of weights is considered, e will also represent the distribution of
weights of the edges and n the distribution of weights of the nodes.

2.1 Various Adjunctions on Graphs

Classical morphology on graphs involves operations between nodes (i.e. oper-
ations on pixels) or operations between edges. We define in this section new
types of adjunctions between both nodes and edges. These operators permit us
to interpret flooding in terms of basic morphological operations.

Definition 1. We define here several operators involving both edges and nodes
of a weighted graph.

- an erosion [εenn]ij = ni∧nj and its adjunct dilation [δnee]i =
∨
eik

(k neighbors of i)
.

- a dilation [δenn]ij = ni∨nj and its adjunct erosion [εnee]i =
∧
eik

(k neighbors of i)
.

Proposition 1. The operators defined above are pairwise adjunct or dual
operators:
- εne and δen are adjunct operators.
- εen and δne are adjunct operators.
- εne and δne are dual operators from the edge weight function e to the node
weight function n.
- εen and δen are dual operators from the node weight function e to the edge
weight function n.

As εne and δen are adjunct operators, the operator ϕn = εneδen is a closing on
n and γe = δenεne is an opening on e.

Similarly as εen and δne are adjunct operators, the operator ϕe = εenδne is a
closing on e and γn = δneεen is an opening on n.

The operators εE = εenεne and δE = δenδne are respectively the elemen-
tary erosion and the elementary dilation on a neighborhood graph operating on
neighboring edges : E → E, since (εE , δE) also form an adjunction. Likewise
the operators εN = εneεen and δN = δneδen are the usual elementary erosions
and dilations on a neighborhood graph operating on nodes: N → N . As such
(εN , δN ) also form an adjunction.
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2.2 Interpretation of γe in Terms of Flooding

Let G represent a neighboring graph of catchment basins, such as a region ad-
jacency graph of a watershed segmentation, then the operators defined above
have a physical interpretation. [εnee]i represents the lowest pass point between
the catchment basin i and its neighbors ; its altitude or weight is the overflood
level of basin i. A flooding starting in basin i would flood into the neighboring
basins through this pass point. So γe(i, j) = δenεne(i, j) represents the highest
overflood level of the basins i and j. γe will thus be invariant on all edges which
are the overflood of one of the neighboring basins or in terms of graphs the
lowest edge of one of their extremities. This property is used later to show how
waterfalls can be constructed locally using invariants of the opening γe.

3 Morphological Segmentation on Edge Weighted Graphs

Edge weighted graphs are useful in segmentation since they carry a compact
representation of hierarchical segmentation : cutting all edges with a weight
> λ transforms the graph into a forest, where each tree spans a region of the
segmentation. For increasing threshold values, less and less edges are cut and the
associated segmentation becomes coarser. The minimum spanning tree (MST) of
the edge weighted graph (among all spanning trees) is particularly useful in this
context, since by cutting the edges with a weight > λ yields the same partition
as by cutting the edges above the same threshold on the initial graph.

The MST is ubiquitous in morphological segmentation issues. Segmenting
with markers leads to constructing a minimum spanning forest [4], where each
tree is rooted in a marker. Serge Beucher and Béatrice Marcotegui [5] have shown
that the waterfall hierarchy may be obtained by constructing the watershed on
the MST associated to the regional minima [6]. Jean Cousty et al [7], studying the
watershed defined on edge weighted graphs, have shown the equivalence between
watershed and minimum spanning forests associated to the regional minima of
the graph.

3.1 Waterfalls

Waterfall hierarchies have been introduced by Serge Beucher in his thesis [8,9].
The waterfall hierarchy describes the intrication of the catchment basins and
the nested structures of a topographic surface. The waterfall hierarchy may be
obtained by flooding. The lowest and finest level of the hierarchy corresponds to
the set of all catchment basins. The first level of hierarchy is obtained by taking
the catchment basins of the topographic surface after it has been submitted to
the following flooding : each catchment basin is filled up to its lowest pass point.
The process is then repeated for this new topographic surface and produces the
successive levels of the hierarchy. The process ends when a topographic surface
is created containing only one catchment basin.
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The waterfall hierarchy seen through Boruvka’s algorithm. A careful
examination of Boruvka’s algorithm for constructing MSTs give us a deeper in-
sight in the relations between waterfalls, watersheds on graphs through invariants
for the morphological opening γe. For the following analysis, we suppose that
each node has only one lowest edge. We analyze later the general case. The wa-
terfall hierarchy becomes apparent while constructing the MST using Boruvka’s
algorithm. The following different events can be distinguished by constructing
iteratively a spanning tree of a graph G from an empty set of edges and nodes.

1. Two isolated nodes i and j are connected by a new edge. Since two adjacent
edges have necessarily different weights, this edge is surrounded by higher
edges in the graph G and hence is a regional minimum edge. Edge u is the
lowest edge adjacent to i and j. Hence, as seen earlier, edge u is invariant
by the opening γe(u) = δenεne(u) and represents the lowest overflood level
of the basins i and j.

2. The edge connects an isolated node i with a subtree of T . Clearly u is the
lowest edge adjacent to i, otherwise node i would have been incorporated in
a subtree earlier. Again edge u is invariant by the opening γe(u) = δenεne(u).

3. The edge u connects two nodes i and j already belonging to subtrees of
T . The nodes i and j have been joined to their respective subtrees through
edges with lower weights than u. Hence u is not the lowest edge of the nodes
i and j. For this reason u is not invariant by the opening γe(u) = δenεne(u).

During events (1) and (2) the edges incorporated in the MST are invariant by
the opening γe whereas events of type (3) never use edges invariant by γe. On
the other hand, each node has one and only one lowest edge, through which it
will be assigned to the MST during an event of type (1) or (2). Especially, if we
only consider edges invariant by γe without also adding the edges of type (3),
we obtain a spanning forest, and this forest is minimal as we will see in the next
section. In fact this minimum spanning forest yields the same partition as the
princeps waterfall algorithms proposed by Serge Beucher, in the case where G
represents a region adjacency graphs, where each node represents a catchment
basins and the edges are weighted with the altitude of the pass point between
adjacent basins. Each basin is flooded up to the level of its lowest pass point ;
like that there is no regional minimum anymore in the basins and each of them
is absorbed by a neighboring basin. The edge along which this absorption takes
place is precisely the lowest edge of one of its neighboring basin, that is an edge
invariant by opening γe, belonging to the spanning forest constructed above. An
example of waterfall segmentation is illustrated figure 1.

3.2 Minimum Spanning Forest

Let us now show that the spanning forest obtained by using Boruvka’s algorithm
is indeed minimal. If we chose an arbitrary adjacent node mu for each minimal
edge of the graph G, we obtain a family of nodes (mu), one for each regional mini-
mum. Adding a dummy node o linked to each mu through an edge with valuation
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(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Original image. (b) Probabilistic gradient computed from the stochastic
watershed transform [10]. (c) Watershed of the probabilistic gradient. A region adja-
cency graph is built from this partition, edges are weighted by the lowest passpoint
between two regions. (d) Results of Boruvka’s algorithm, only edges of type (1) and (2)
are kept. (e-f) Second and third level of waterfall hierarchy using Boruvka’s algorithm
on the region adjacency graph of the partition of the previous level of the hierarchy.

−1, we get a new graph G′. Let us now construct the MST of G′ starting with
the dummy node o. The first steps of the algorithm visit all dummy edges with
negative weights adjacent to the dummy node o. The next steps visit the edges in
the same order as Boruvka’s algorithm with one major difference : events of type
(3) are never met, since from the beginning, there is only one tree.

After the construction is completed, we suppress the dummy node and the
dummy edges and get a minimum spanning forest. This forest is identical with
the forest obtained by considering only events of type (1) and (2) in Boruvka’s
algorithm, showing that considering only the edges invariant by opening γe pro-
duces indeed a minimum spanning forest. We find here by another mean the
result of Serge Beucher and Beatriz Marcotegui [5], constructing the waterfall
by a watershed algorithm on the MST of the neighborhood graph. This shows
also that the waterfall partition of level 1 is the result of segmenting the graph
G with the family of markers (mu).
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3.3 Locality or Non Locality of the Watershed ?

The edges of the spanning forest may be obtained as invariant of the opening γe,
which is a purely local operation. Extracting the individual trees can be done
via any classical labeling algorithm of connected components in a graph. It is
even possible to extract a single tree, without extracting the others. This is a
major difference with the watershed defined on the nodes, defined as the SKIZ
of the minima for the topographic distance and constructed through competitive
flooding algorithms.

4 Ambiguity in Case of Multiple Minimum Spanning
Trees

In the general case, a node may have several lowest edges. Adjacent edges with
the same altitude may form plateaus of any size. At each step of Boruvka’s algo-
rithm for constructing the MST, several equivalent choices of edges are possible,
growing different trees. A multiplicity of spanning trees coexist, having all the
same distribution of edges and producing the same nested partitions if one cuts
the edges with a weight above some threshold. In particular the events of type
(1), an edge connecting two nodes not connected earlier, do not necessarily pro-
duce regional minima, as this edge may belong to the inside of a plateau, which
is not a regional minimum.

For this reason, one has to detect the regional minima beforehand and give
the same label to all nodes belonging to the same regional minimum. After
introducing as earlier a dummy node o linked by an edge of valuation −1 to
each regional minimum, one may then apply Prim’s algorithm for constructing
the MST. Edges are considered with increasing values ; at each stage of the
algorithm, only the edges adjacent to the already constructed part of the tree
are considered. Nevertheless, this construction leaves a large freedom of choices
and a great number of spanning trees are possible. Some of these trees do not
seem desirable, as they cut the plateaus in an unfair way ; one may wish sharing
the plateaus among neighboring basins by cutting them at equal distance to
their lower borders.

4.1 A Hierarchical Queue Implementation for the Watershed of
Edge Weighted Graphs

A fair sharing of plateaus may be reached if one resorts to the classical hierarchi-
cal queue structure: the edges are processed in increasing order, but edges with
the same weight are processed according to increasing distances to the lower bor-
ders in plateaus. The structure of hierarchical queues introduces naturally the
flooding order in the processing. However we loose the nice feature met above to
be able to extract any tree from the watershed forest without necessarily con-
structing the neighboring trees which constitute its limits. In order to be able to
achieve this type of extraction, one has to introduce a lexicographic order among
the edges as we will see just below.
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4.2 A Lower Complete Edge Graph

Our aim in this section is to complete the order relation between adjacent edges
by an additional, lexicographic order relation, such that each non minimal edge
has at least one neighboring edge with a lower weight. In the graph G, the
edges without lower neighbor are the edges in the regional minima and the edges
inside non minimal plateaus. However, each non minimal plateau has itself lower
neighbors. The idea for resorbing the plateaus is to compute a geodesic distance
function within the plateau towards the lower border. This distance is defined
as follows : an edge u will be assigned a distance n, if n is the smallest index
such ε

(n)
E (u) < ε

(n−1)
E (u). This distance function may be classically obtained

through a queue implementation. After this completion, each edge, except the
edges inside the regional minima will have two valuations : the initial valuation
w(u) and the distance function π(u) to a lower border ; the lexicographic order
relation being: u > v ⇔ {w(u) > w(v)} or {w(u) = w(v) and π(u) > π(v)}.

The lexicographic order relation between neighboring edges amounts to in-
troducing a polarisation between edges. It can be represented by replacing the
non oriented edges by oriented arcs. Recall that we only consider the edges in-
variant by the opening γe. Each such edge (i, j) is the lowest neighbor of one
of its extremities, say i. The other extremity j is then necessarily the extrem-
ity of the lower neighboring edge of (i, j). This analysis shows that there exists
an implicit orientation from lower towards higher edges ; replacing the non ori-
ented edge (i, j) by an oriented arc

−−→
(j, i) with an orientation opposite to the

downwards direction conveys the same information as the lexicographic distance
function of the previous paragraph. Of course the edges belonging to regional
minima regions remain non oriented edges, as they do not possess a downwards
direction.

With the introduction of the oriented edge graph, we will be able to extract
individual trees or regions associated to a particular minimum or marker without
constructing the whole watershed. It has been noticed that for the partial graph
associated to the edges invariant by γe, neighboring basins may be connected,
implying that a connected subgraph may contain various regional minima. It
is not the case anymore with our oriented graph. We will associate to each
minimum mi the set of node which may be reached by an oriented path having
its origin in the minimum. The ordinary Dijkstra algorithm of shortest oriented
paths may be used for this extraction.

In the partial non oriented graph G′, there exist nodes having two lowest
edges with the same weight, leading to two distinct regional minima m1 and
m2. Such nodes, together with all nodes for which they are downstream nodes,
belong to the catchment basins of each adjacent minimum m1 and m2. Each of
the oriented subtrees associated to these minima will contain this divide zone.
Suppressing the zones which are common to two distinct neighboring oriented
trees creates a minimal watershed tessellation which is not a partition, as the
divide zones are missing.
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4.3 Application to the Waterfall Hierarchy

The level 1 of the waterfall hierarchy consists in a minimum spanning forest,
where each tree is centered on the minima. This minimum spanning forest differs
from a minimum spanning tree by some missing edges. Contracting each tree of
the forest to one node and introducing the missing edges produces a new tree T 1.
In the case where all edges of the graph were with distinct weights, the edges of
this tree also have distinct weights. And the waterfall hierarchy of level 2 is again
the invariant set by opening γe. In all other cases, tree T 1 may have edges with
the same weight and one of the general constructions above has to be applied.

5 Watershed on Node Weighted Graphs

In this last section we show how the construction of waterfalls and watersheds
on edge weighted graph may be applied for constructing watersheds on node
weighted graphs. In the context of segmentation, most often the watershed has to
be constructed on a gradient image derived from the image. One of the problem
to take into consideration is the problem of scale ; for a binary image, or a mosaic
images (the image is constant on each tile of a mosaic) the gradient is a thin line
and may be represented faithfully on an edge graph, in which each edge would
be weighted by taking the absolute difference of the weights of its extremities.
Such a local gradient does however not correctly the contours of natural images,
where the boundaries of the objects are more or less blurred, corrupted by noise
and the contour information is spread out on a larger surface than thin lines.

In this section we present how to transform a node weighted graph into an
edge weighted graph. The watershed is then constructed on this edge weighted
graph with the method presented earlier, producing a forest centered on the
minima, yielding the same watershed as the watershed constructed on the node
graph. The advantage of this way of doing are multiple:

– extending the waterfall hierarchy to node weighted graphs,
– transforming the problem of watershed construction into a problem of MST

construction,
– after completion of the graph in order to suppress the plateaus, being able to

extract individual trees, without constructing the watershed with competing
markers,

– being able to construct a minimal watershed and isolate the thick divide zones.

Weighting the edges in order to stress the directions of steepest
descent. Given a node weighted graph, we want to weight the edges in such
a way that the watershed constructed on the edge graph is identical with the
watershed on the node graphs. The weight of each edge (i, j) will be computed
as follows.

1. Case where w(i) > w(j). Then we compute the lower gradient ς(i) = w(i)−
εN (i), obtained by subtracting from the weight of i the weight of its lowest
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(a) (b) (c) (d)

Fig. 2. (a-d) First, second, third and forth level of waterfall hierarchy using Boru-
vka’s algorithm on the pixel adjacency graph. The waterfall was obtained from the
probabilistic gradient proposed by Angulo et al. [10] illustrated in figure 1.

neighbor. The weight of edge (i, j) is then w(i, j) = w(j) + ς(i). In the case
where j is the lowest neighbor of i, then ς(i) = w(i) − εN (i) = w(i) − w(j)
and w(i, j) = w(i). In all other cases, this weight will be higher than w(i).

2. Case where w(i) = w(j) , then we take min(w(j) + ς(i), w(i) + ς(j)). In
the case where i or j have no lower neighbor, then ς(i) = ς(j) = 0 and
w(i, j) = w(i) = w(j), and a plateau of edges with the same values will be
created.

On this edge weighted graph, we may apply the results described earlier. A
waterfall segmentation of the pixel graph obtained from a gradient image is
illustrated in figure 2.

6 Conclusion

We have highlighted some new properties of the watershed and the waterfall
transform through a detailed analysis of Boruvka‘s algorithm. These properties,
linked with invariants of a specific morphological opening on graphs, provide
new methods and algorithms for constructing the waterfall segmentation. We
have presented these properties for both edges and nodes weighted graphs. This
study brings a different point of view on the importance of minimum spanning
trees for watershed and waterfall based segmentation.
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2 Université Nancy 1, LORIA, UMR CNRS 7503, France
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Abstract. Component-trees can be used for the design of image pro-
cessing methods, and in particular segmentation ones. However, despite
their ability to consider various kinds of knowledge and their tractable
computation, methodological deadlocks often forbid to efficiently involve
them in real applications. In this article, we explore new solutions to some
of these deadlocks, and more especially those related to (i) complexity
of the structures of interest and (ii) multiple knowledge handling. The
usefulness of the proposed strategies is illustrated by preliminary results
related to vessel segmentation from 3-D angiographic data.

Keywords: Component-trees, segmentation, attribute-filtering, grey-
level images.

1 Introduction

The component-tree (also known as dendrone [1,2], confinement tree [3] ormax-tree
[4]) is a graph-based structure which models some characteristics of a grey-level
image by considering its binary level-sets obtained from successive thresholding
operations.

Initially proposed in the field of statistics, the component-tree has been
(re)defined in the theoretical framework of mathematical morphology and in-
volved, in particular, in the development of morphological operators [5,4].
Thanks to efforts devoted to its efficient computation [5,4,3,6,7] or its use in
complex knowledge handling procedures [8], component-trees have been con-
sidered for the design of various kinds of grey-level image processing methods,
including image filtering and segmentation [1,9,10,11,12,13], video segmentation
[4], image registration [3], image compression [4], or image retrieval [14,15].

Despite the ability of component-trees to consider complex/multiple knowl-
edge and their tractable computation, methodological deadlocks often forbid to
efficiently involve them in real applications. In this article, we propose to ex-
plore solutions to some of these deadlocks, and more especially those related to
(i) complexity of the (shape of) structures of interest and (ii) multiple knowledge
handling.
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In Section 2, previous works involving component-trees in the design of seg-
mentation methods are described, emphasising the remaining challenges to be
faced. Section 3 introduces definitions and notations required to make the ar-
ticle self-contained. In Section 4, some methodological considerations provide
solutions to tackle the challenges stated in Section 2. An application, described
in Section 5 for 3-D angiographic image segmentation illustrates the soundness
of the proposed framework. Section 6 summarises the contributions of this article
and points out the main perspectives.

2 Segmentation Based on Component-Trees

As mentioned above, component-trees have been considered for the development
of image segmentation methods, mainly in the field of (bio)medical imaging, and
in particular for: dermatological data [13], wood micrographs [9], cerebral MRI
[16], CT/MR angiography [17], or confocal microscopy [11].

It has to be noticed that their use is often only devoted to one specific step
of the segmentation (marker selection in [16]), or to perform filtering [17,11],
i.e. to remove “useless” parts of the processed image, leading to a superset of
an actual segmentation. Among the methods which fully use component-trees
for segmentation purpose, some can consider complex (i.e. multiple) knowledge
[13] or can be run without user-interaction [9], but none of them is able to
determine the correct pieces of knowledge required to perform segmentation
without guidance of the user. Moreover, such methods only deal with simple-
shape objects (circular or elliptical 2-D features in [9,13]).

This emphasises the fact that automatic segmentation of complex objects
based on the use of multiple elements of knowledge obviously remains an open
methodological problem in the field of component-tree-based methods, a fortiori
when such knowledge also needs to be automatically determined (which may be
necessary whenever the size of the parameter space becomes too large). In the
next sections, we explore some ways to deal with this difficult issue. In particu-
lar, we consider strategies enabling to decrease the potential complexity of the
structures of interest, and to determine the nodes (and thus the attributes) of
the component-trees of ground truth images, then enabling automatic learning
of correct parameters for segmentation purpose.

3 Definitions and Notations

Let n ∈ N∗. In the sequel, [a..b] (with a, b ∈ Z) denotes the discrete interval
[a, b] ∩ Z. We set Z = Z ∪ {−∞}. A discrete grey-level image can be defined as
a function I : Zn → Z. The support of I is defined by supp(I) = {x ∈ Zn |
I(x) �= −∞}. We assume that for any considered image I, supp(I) is finite. We
will note supp(I) = E and V = [a..b] ⊂ Z, where a = min{I(x) | x ∈ E} and
b = max{I(x);x ∈ E}. From now on, we will assimilate an image I : Zn → Z to
its (finite) restriction I|E : E → V .
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Let X ⊆ E. The connected components of X are the equivalence classes of
X w.r.t. the equivalence relation on E induced by the adjacency relation chosen
for Zn. The set of the connected components of X is noted C[X ].

Let v ∈ V . We set P(E) = {X ;X ⊆ E}. Let Xv : V E → P(E) be the
thresholding function defined by Xv(I) = {x ∈ E; v ≤ I(x)} for all I : E → V .

Let v ∈ V and X ⊆ E. We define the cylinder function CX,v : E → Z by
CX,v(x) = v if x ∈ X and −∞ otherwise. A discrete image I : E → V can then
be expressed as I =

∨
v∈V CXv(I),v =

∨
v∈V

∨
X∈C[Xv(I)] CX,v, where

∨
is the

pointwise supremum for the sets of functions.
Let K =

⋃
v∈V C[Xv(I)]. The relation ⊆ is a partial order on K, and the Hasse

diagram (K, L) of the partially ordered set (K,⊆) is a tree (i.e. a connected
acyclic graph), the root of which is the supremum R = sup(K,⊆) = E. This
rooted tree (K, L,R) is called the component-tree of I. The elements K, R and L
are the set of the nodes, the root and the set of the edges of the tree, respectively.

Note that each node of K is a binary connected component distinct from
all the other ones. However, such a connected component can be an element
of C[Xv(I)] for several (successive) values v ∈ V . For each X ∈ K, we set
m(X) = max{v ∈ V ;X ∈ C[Xv(I)]} = minx∈X{I(x)}. An image I : E → V can
then be defined from its component-tree (K, L,R) as I =

∨
X∈K CX,m(X).

Component-trees enable the storage - at each node - of elements of informa-
tion, also called attributes, related to the binary connected component associated
to the node. It is possible to consider any kind of quantitative/qualitative and
scalar/vectorial attributes, provided they can be conveniently formalised. Prun-
ing a component-tree (K, L,R) of an image I according to the attributes stored
at the nodes (by removing the nodes having a non-correct attribute w.r.t. a given
criterion) enables to perform filtering on I. The filtered image If is then defined
as If =

∨
X∈Kf

CX,m(X) where Kf ⊆ K is the subset of the remaining nodes
after the pruning process. When performing segmentation, a binary result Ib can
similarly be obtained as Ib =

⋃
X∈Kf

X .

4 Methodological Concepts

In this section, we present methodological tools enabling to develop algorithms
based on component-trees, and dealing with the main challenges described in
Section 2. In Subsection 4.1, solutions are proposed to spatially decompose (and
reconstruct) an image, thus breaking complex structures into (hopefully) simpler
sub-ones. In Subsection 4.2, the way to automatically extract relevant nodes
from the component-tree of a ground truth (i.e. a correctly segmented) image is
discussed, enabling to avoid user-interaction in segmentation processes.

4.1 Image Partitioning/Reconstruction

The binary connected components at the nodes X ∈ K of a component-tree
may possibly be complex and/or gather several structures of interest of the
associated image. In such cases, these nodes, potentially composed of several
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(a) (b) (c) (d) (e)

Fig. 1. (a) A grey-level image containing different semantic elements (geometric
shapes). (b-e) Threshold images obtained from (a) at successive grey-levels: the ob-
tained nodes/connected components do not enable to discriminate the visualised ele-
ments (see text).

semantic elements may be hard to detect/discriminate due to the heterogeneity
of the characterising properties of these elements.

In order to illustrate this assertion, let us consider the grey-level image of
Fig. 1(a), which is composed of four semantic entities: squares, disks, thin
straight lines and thick curves. Here, we obtain a critical situation where only
one - useless - node is available at each level of the tree, as observed in Fig. 1(b-e).
Despite the existence of specific properties (elongation, straightness, compact-
ness, etc.) for each kind of elements, their specific intensity in the image and/or
their spatial organisation (connections, generation of complex shapes from sim-
pler ones, etc.) result in a component-tree the nodes of which do not enable any
characterisation.

In similar cases, the computation of attributes devoted to characterise accu-
rate and specific properties will generally fail. It has to be noticed that such
situations are not infrequent in real applications. For instance, in angiographic
image analysis (see Section 5), vessels are generally organised into a unique net-
work, thus making attributes characterising single tubular structures inefficient.

A solution to this general issue can consist in processing the image as a col-
lection of smaller subimages, hence enabling to split complex structures into
smaller - and hopefully easier to detect - sub-ones. A straightforward strategy
based on this approach is the following one.

1. Divide I : E → V into a set of images Ik : Ek → V (k ∈ [1..m]) such that
{Ek}m

k=1 is a partition of E, and I|Ek = Ik for all k ∈ [1..m].
2. Compute, for each k ∈ [1..m], the component-tree of Ik and perform seg-

mentation, then generating a binary output image Bk ⊆ Ek.
3. Define the segmentation result B by merging all the results Bk : B =⋃m

k=1 B
k.

This simple and potentially useful approach however suffers from two drawbacks:
(i) the partition of E may split a structure of interest between several subsets
Ek, thus forbidding its correct detection, and (ii) the size of the subsets Ek,
possibly well-chosen to fit a given structure, may be non-adapted to the detection
of another one.
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Partitioning. A way to avoid these two drawbacks is to compute a redun-
dant and multiscale decomposition of I, in order to fit at best the differ-
ent structures of interest. The support E of I is then split by defining a set
Eα,β =

⋃
a∈α{Ek

a,β}
ma,β

k=1 , such that for all a ∈ α we have

∀k ∈ [1..ma,β], |Ek
a,β | = |E|/a , (1)

E ⊆
ma,β⋃
k=1

Ek
a,β , (2)

∀x ∈ E, |{X ∈ {Ek
a,β}

ma,β

k=1 ;x ∈ X}| = β , (3)

where α ⊆ [1..|E|] is a set of volume ratios (“scales”), and β ∈ N∗ is the “redun-
dancy factor” of the pseudo-partitions {Ek

a,β}
ma,β

k=1 at each scale a ∈ α. Broadly
speaking, the image support is decomposed (several times) into subsets the sizes
of which are determined by Eq. (1), and for each one of these sizes, the union of
these subsets has to match the whole image support1 (Eq. (2)), while each point of
this support has to belong to a given number of these subsets, this number being
determined by Eq. (3). It may generally be convenient to define α as a subset of
{2nk}k≥0 in order to build subsets Ek

a,β of E ⊂ Zn in an “octree” fashion.

Reconstruction. Once processed, each partial image Ik
a,β : Ek

a,β → V provides
a binary output Bk

a,β ⊆ Ek
a,β . We set Bα,β =

⋃
a∈α{Bk

a,β}
ma,β

k=1 . By opposition
to the initially proposed strategy, which enables to recover B ⊆ E by simply
merging the subimages Bk, the one proposed above does not straightforwardly
lead to a final result, since overlaps induced by both multiscale and redundancy
may lead to ambiguous results for any point x ∈ E (depending on the image
Ik
a,β where x is considered).

For any x ∈ E, let Ex
α,β = {Ek

a,β ∈ Eα,β ;x ∈ Ek
a,β} and Bx

α,β = {Bk
a,β ∈

Bα,β;x ∈ Bk
a,β} (note that 0 ≤ |Bx

α,β| ≤ |Ex
α,β | = β.|α|). Final images Bf ⊆ E

and If : E → [0, 1] (binary and fuzzy, respectively) can be reconstructed as follows

Bf = {x ∈ E;λ ≤ |Bx
α,β|} for a given λ ∈ [1, β.|α|] , (4)

If (x) = |Bx
α,β|/(β.|α|) for all x ∈ E . (5)

It can be noticed that (i) setting λ = 1 in Eq. (4) is equivalent to define Bf =⋃
X∈Bα,β

X , and (ii) Bf can be obtained by thresholding If at the considered
value λ.

4.2 Multiple Criteria Handling

It is possible to involve arbitrarily large and heterogeneous sets of knowledge in
segmentation processes by associating to each node of the component-tree vecto-
rial attributes (containing qualitative, quantitative, structural information, etc.).
1 Note that in Eq. (2) the inclusion (instead of an equality) between the two elements

implies that the set {Ek
a,β}ma,β

k=1 is actually not a partition of E since some of the Ek
a,β

may be partially out of E to guarantee the same redundancy β at each point of E.
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This can lead to very accurate descriptions of the structures to be segmented.
However, a straightforward and undesired side effect is the difficulty to deter-
mine, among the whole (and potentially huge) parameter space Ω induced by
this knowledge, the correct subset ω ⊂ Ω characterising the structures of interest,
a fortiori in an interactive fashion.

In such conditions it becomes fundamental to enable automatic determination
of such characterising subsets. This can be done by using learning - and in
particular classification - tools. To this end, it is necessary to find a way to put
in correspondence a “ground truth” (i.e. correct examples of what should be
segmented) and the closest result which may be obtained by the component-
tree-based method.

The problem to solve may be formalised as follows. Let Ig : E → V be a
ground truth image (similar to those to be further processed by the method),
and Bg ⊆ E be the correct segmentation of this image. Let (K, L,R) be the
component-tree of Ig. Let S = {∪X∈CX}C⊆K be the set of all binary images
which can be generated from the set of nodes K. In general, we will - unfor-
tunately - never have Bg ∈ S. We then need to determine the “best” binary
image which may be computed from K w.r.t. Bg. This requires to define a
(pseudo)distance d on P(E) enabling to compare Bg and the candidate binary
images of S. In particular, the best binary image B̂ can be defined as

B̂ = arg min
B∈S

{d(B,Bg)} . (6)

In this context, several strategies can reasonably be considered.

– By setting d−(B,Bg) = |Bg \ B| if B ⊆ Bg and +∞ otherwise, we have
B̂− = max⊆{B ∈ S;B ⊆ Bg}, i.e. B̂− is the largest object included in Bg

which may be built from K.
– By setting d+(B,Bg) = |B \ Bg| if B ⊇ Bg and +∞ otherwise, we have

B̂+ = min⊆{B ∈ S;Bg ⊆ B}, i.e. B̂+ is the smallest object including Bg

which may be built from K.

The first (resp. second) strategy focuses on the elimination of false positives
(resp. false negatives) with the side effect of possibly authorising the preser-
vation of false negatives (resp. false positives). It has to be noticed that these
asymmetric strategies can be efficiently implemented since the set of nodes gen-
erating B̂ can obviously be computed with a (worst case) algorithmic complexity
O(max{|K|, |E|}) linear w.r.t. the number of nodes of the component-tree or the
size of the image.

Some - more symmetric - strategies could also be proposed. The most straight-
forward one consists in setting d∗(B,Bg) = |Bg \B|+ |B \Bg|. It aims at finding
a “best compromise” between the amount of false positives and false negatives.
In particular, we have B̂− ⊆ B̂∗ ⊆ B̂+. Also note that if Bg ∈ S, we have
B̂− = B̂∗ = B̂+. Surprisingly, this approach (by opposition to other symmetric
ones, involving Hausdorff distances for example, which may present high algo-
rithmic complexities) also leads to an algorithmic complexity O(|K|) (this claim
will be proved in further works).
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When a minimal set B̂ has been extracted from S, remains to determinate an
adequate set of nodes K̂ ⊆ K associated to B̂ (i.e. such that

⋃
X∈K̂ X = B̂). Let

Ĉ ⊆ K be the set defined by Ĉ = {X ∈ K;X ⊆ B̂} (note that the nodes of Ĉ
generate a set of subtrees of the component-tree (K, L,R) of Ig). The set B̂ can
be generated by any set of nodes K̂ ⊆ Ĉ verifying

⋃
X∈K̂ X =

⋃
X∈Ĉ X = B̂.

In order to determine such a set K̂, two main strategies can, in particular, be
considered.

– By setting K̂+ = Ĉ, any node included in B̂ is considered as a useful (i.e.
informative) binary connected component.

– By setting K̂− = {X ∈ Ĉ; ∀Y ∈ Ĉ,X �⊂ Y }, only the roots of the subtrees
induced by Ĉ are considered as useful binary connected components.

The first (resp. second) strategy is the one considering the largest (resp. smallest)
possible set of nodes/connected components among Ĉ; in particular, it can be
seen as the one which focuses at most on the grey-level (resp. binary) structure
of the ground truth image Ig. The choice of the strategy may then be directed
by the kind (binary vs. grey-level) of criteria/attributes to be considered.

Once a set of nodes K̂ has been defined from the whole set K (from one
or possibly several ground truth image(s)), the determination of the subset of
characterising knowledge ω ⊂ Ω has to be performed. Let A : K → Ω be the
function associating, to each node of the component-tree, its stored attribute.
The determination of ω can be expressed as a classification problem consisting in
partitioning Ω into two classes thanks to the samples A(K̂) = {A(N);N ∈ K̂}
(corresponding to the attributes of the structures of interest) and A(K \ Ĉ) =
{A(N);N ∈ K \ Ĉ}. This process can, for instance, be carried out by usual
classification tools (such as the Support Vector Machine (SVM) [18], which has
been considered in the experiments of the next section).

5 A Case Study – Angiographic Image Segmentation

Based on the framework described above, a strategy is being developed for seg-
menting 3-D angiographic data (namely phase contrast magnetic resonance an-
giographies - PC-MRAs). We propose hereafter a preliminary and simplified
description of this method, and we provide - for illustrative purpose - some ob-
tained results. A complete description of the final method (with full validations
and a larger set of involved attributes) will be found in dedicated further works.

PC-MRAs are bimodal images (Im, Ip) ∈ (V E)2 where Ip : E → V is the phase
(i.e. vascular) image while Im : E → V is the magnitude (i.e. morphological)
image, with E = [0..255]3 and V = [0..N ] ⊂ N (see Fig. 2(a,b)). The proposed
method is devoted to segment phase images Ip in order to extract the vessels
(and in particular to discriminate them from noise and artifacts).

In order to enable a correct segmentation of the vessels from such images,
three attributes have been considered: (i) the second Hu’s moment, (ii) an inertia
matrix-based elongation criterion, both computed from the component-tree of
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(a) (b) (c) (d)

Fig. 2. (a,b) Phase contrast magnetic resonance angiography (ground truth image
Ig): sagittal 2-D slices of the magnitude image Im (a) and of the phase image Ip

(b). (c,d) Ground truth segmentation Bg obtained from Ip: sagittal slice (c) and 3-D
visualisation (d).

(a) (b) (c)

Fig. 3. (a) Phase contrast magnetic resonance angiography: sagittal 2-D slice of the
phase image Ip. (b,c) Segmentation result (binary segmentation): sagittal 2-D slice (b)
and 3-D visualisation (c).

Ip, and (iii) the (signed) distance to the brain surface, computed from both Im

(used for brain surface extraction) and the component-tree of Ip.
From these three attributes (generating a parameter space Ω ⊂ R3), a vascular

ground truth image Ig (Fig. 2(a,b)) and its segmentation Bg (Fig. 2(c,d)) have
been involved in a learning process based on the computation of the best binary
image B̂− w.r.t. the d− distance, and the computation of the corresponding set
of nodes K̂− (the choice of d− / B̂− is linked to the considered ground truth data
Ig for which Bg has been slightly oversegmented by the expert, while the choice
of K̂− is the result of experimental considerations). An (automatic) SVM classi-
fication process has then been applied on the set of binary connected components
of K̂− to determine an adequate set ω ⊂ Ω of attribute values. PC-MRA phase
images similar to Ig have then been segmented in a multiscale fashion by using
the attribute values of ω. It has to be noticed that the segmentation process (and
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then the learning step) have been performed at several scales (α = {1, 8, 64}),
and with a redundancy factor β = 2. The results have been obtained by fusing
the partial binary images in a binary fashion (Eq. (4) with λ = 1). An example
of these results is illustrated in Fig. 3. It can been observed that, despite the
presence of few false negatives, the obtained results globally present no artifacts
(i.e. no false positive). This constitutes a satisfactory and encouraging property
for the - difficult - analysis of such (non contrast-enhanced) data where vessels
and artifacts present similar intensities and are often connected.

6 Conclusion

A generic framework, based on image partitioning and automatic selection of rel-
evant structural elements from ground-truth data, has been proposed for the de-
velopment of segmentation methods relying on component-trees. Methods based
on this framework can automatically process complex images by use of poten-
tially large sets of knowledge, as illustrated by an application devoted to 3-D
angiographic data.

The concept of multiscale (i.e. spatial) decomposition has been explored. The
decomposition of the image signal will also be considered in further works, lead-
ing to multiresolution approaches, permitting to enrich the proposed framework.

From an applicative point of view, a more complete version of the vessel
segmentation method obtained from this framework, and introduced in Section
5 for illustrative purpose, will be described and fully validated in further works.
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Abstract. We study hierachical segmentation in the framework of edge-
weighted graphs. We define ultrametric watersheds as topological wa-
tersheds null on the minima. We prove that there exists a bijection
between the set of ultrametric watersheds and the set of hierarchical
edge-segmentations.

Introduction

This paper is a contribution to a theory of hierarchical image segmentation
in the framework of edge-weighted graphs. Image segmentation is a process of
decomposing an image into regions which are homogeneous according to some
criteria. Intuitively, a hierarchical segmentation represents an image at different
resolution levels.

In this paper, we introduce a subclass of edge-weighted graphs that we call
ultrametric watersheds. Theorem 9 states that there exists a one-to-one cor-
respondance, also called a bijection, between the set of indexed hierarchical
edge-segmentations and the set of ultrametric watersheds. In other words, to
any hierarchical edge-segmentation (whatever the way the hierarchy is built),
it is possible to associate a representation of that hierarchy by an ultrametric
watershed. Conversely, from any ultrametric watershed, one can infer a indexed
hierarchical edge-segmentation.

Following [1], we can say that, independently of its theoretical interest, such a
bijection theorem is useful in practice. Any hierarchical segmentation problem is
a priori heterogeneous: assign to an edge-weighted graph an indexed hierarchy.
Theorem 9 allows such classification problem to become homogeneous: assign
to an edge-weighted graph a particular edge-weighted graph called ultrametric
watershed. Thus, Theorem 9 gives a meaning to questions like: which hierarchy
is the closest to a given edge-weighted graph with respect to a given measure or
distance?

The paper is organised as follow. Related works are examined in section 1.
We introduce segmentation on edges in section 2, and in section 3, we adapt the
topological watershed framework from the framework of graphs with discrete
weights on the nodes to the one of graphs with real-valued weights on the edges.
We then define (section 4) hierarchies and ultrametric distances. The last part of
the paper (section 5) introduces hierarchical edge-segmentations and ultrametric
watersheds, the main result being the existence of a bijection between these two
sets (theorem 9).
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Apart from Theorems 2 and 3, and to the best of the author’s knowledge, all
the properties and theorems formally stated in this paper are new. Proofs of the
various properties and theorems will be given in an extended version [2] to be
published in a journal paper.

1 Related Works

1.1 Hierarchical Clustering

From its beginning in image processing, hierarchical segmentation is thought of
as a particular instance of hierachical classification [3]. One of the fundamental
theorems for hierarchical clustering states that there exists a one-to-one corre-
spondance between the set of indexed hierarchical classification and a particular
subset of dissimilarity measures called ultrametric distances; This theorem is
generally attributed to Johnson [4], Jardine et al. [5] and Benzécri [3]. Since
then, numerous generalisations of that bijection theorem have been proposed
(see [1] for a recent review).

Our main theorem is an extension to hierarchical edge-segmentation of this
fundamental hierachical clustering theorem.

1.2 Hierarchical Segmentation

There exist many methods for building a hierachical segmentation [6], which can
be divided in three classes: bottom-up, top-down, and split-and-merge. A recent
review of some of those approaches can be found in [7]. A useful representation of
hierarchical segmentations was introduced in [8] under the name of saliency map.
This representation has been used (under several names) by several authors, for
example for visualisation purposes [9] or for comparing hierarchies [10].

In this paper, we show that any saliency map is an ultrametric watershed,
and conversely.

1.3 Watersheds

For bottom-up approaches, a generic way to build a hierarchical segmenta-
tion is to start from an initial segmentation and progressively merge regions
together [11]. Often, this initial segmentation is obtained through a water-
shed [12, 8, 13]. See [14] for a recent review of these notions in the context of
mathematical morphology.

Among many others [15], topological watershed [16] is an original approach to
watersheding that modifies a map (e.g., a grayscale image) while preserving the
connectivity of each lower cross-section (see fig. 2). It as been proved [16,17] that
this approach is the only one that preserves altitudes of the passes (named con-
nection values in this paper) between regions of the segmentation. Pass altitudes
are fundamental for hierarchical schemes [8]. On the other hand, topological wa-
tersheds may be thick. A study of the properties of different kinds of graphs with
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respect to the thinness of watersheds can be found in [18,19]. An interesting frame-
work is that of edge-weighted graphs, where watersheds are naturally thin; fur-
thermore, in that framework, a subclass of topological watersheds satisfies both
the drop of water principle and a property of global optimality [20].

In this paper, we translate topological watersheds from the framework of
node-weigthed-graphs to the one of edge-weighted graphs, and we identify ul-
trametric watersheds, a subclass of topological watersheds that is interesting for
hierarchical edge-segmentation.

2 Segmentation on Edges

This paper is settled in the framework of edge-weighted graphs. Following the
notations of [21], we present some basic definitions to handle such kind of graphs.

We define a graph as a pair X = (V,E) where V is a finite set and E is
composed of unordered pairs of V , i.e., E is a subset of {{x, y} ⊆ V | x �= y}.
We denote by |V | the cardinal of V , i.e, the number of elements of V . Each
element of V is called a vertex or a point (of X), and each element of E is called
an edge (of X). If V �= ∅, we say that X is non-empty.

As several graphs are considered in this paper, whenever this is necessary, we
denote by V (X) and by E(X) the vertex and edge set of a graph X .

A graph X is said complete if E = V (X) × V (X).
Let X be a graph. If u = {x, y} is an edge of X , we say that x and y are

adjacent (for X). Let π = 〈x0, . . . , x�〉 be an ordered sequence of vertices of X , π
is a path from x0 to x� in X (or in V ) if for any i ∈ [1, !], xi is adjacent to xi−1.
In this case, we say that x0 and x� are linked for X . We say that X is connected
if any two vertices of X are linked for X .

Let X and Y be two graphs. If V (Y ) ⊆ V (X) and E(Y ) ⊆ E(X), we say
that Y is a subgraph of X and we write Y ⊆ X . We say that Y is a connected
component of X , or simply a component of X , if Y is a connected subgraph of X
which is maximal for this property, i.e., for any connected graph Z, Y ⊆ Z ⊆ X
implies Z = Y .

Let X be a graph, and let S ⊆ E(X). The graph induced by S is the graph
whose edge set is S and whose vertex set is made of all points which belong to
an edge in S, i.e., ({x ∈ V (X) | ∃u ∈ S, x ∈ u}, S).

Important remark. Throughout this paper G = (V,E) denotes a connected
graph, and the letter V (resp. E) will always refer to the vertex set (resp. the
edge set) of G. We will also assume that E �= ∅.

Let S ⊂ E. In the following, when no confusion may occur, the graph induced
by S is also denoted by S.

Typically, in applications to image segmentation, V is the set of picture el-
ements (pixels) and E is any of the usual adjacency relations, e.g., the 4- or
8-adjacency in 2D [22].

If S ⊂ E, we denote by S the complementary set of S in E, i.e., S = E \ S.
A set C ⊂ E is an (edge-)cut (of G) if each edge of C is adjacent to two

different nonempty connected components of C.
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(a) (b) (c)

Fig. 1. Illustration of edge-segmentation and edge-cut. (a) A graph X. (b) An edge-
segmentation of X; the set of dotted-lines edges is the associated edge-cut of X. (c) A
subgraph of X which is not an edge-segmentation of X: the grey point is isolated.

A graph S is called an (edge-)segmentation (of G) if E(S) is a cut.
Any connected component of a segmentation S is called a region (of S).

The previous definitions of cut and segmentation (illustrated on fig. 1) are not
the usual ones. In particular, Prop. 1.(i) below states that there is no isolated
point in an edge-segmentation. If we need an isolated point x, it is always possible
to replace x with an edge {x′, y′}. Furthemore, isolated points are often noise in
an image.

It is interesting to state the definition of a segmentation from the point of
view of vertices of the graph. A graph X is said to be spanning (for V ) if
V (X) = V . We denote by φ the map that associates, to any X ⊂ G, the graph
φ(X) = {V (X), {{x, y} ∈ E|x ∈ V (X), y ∈ V (X)}}. We observe that φ(X) is
maximal among all subgraphs of G that are spanning for V (X), it is thus a
closing on the lattice of subgraphs of G [23]. We call φ the edge-closing.

Property 1. A graph S ⊆ G = (V,E) is an edge-segmentation of G if and only if

(i) The graph induced by E(S) is S;
(ii) S is spanning for V ;
(iii) for any connected component X of S, X = φ(X).

3 Topological Watershed

3.1 Edge-Weighted Graphs

We denote by F the set of all mappings from E to R+ and we say that any
mapping in F weights the edges of G. For any F ∈ F , the pair (G,F ) is called
an edge-weighted graph. Whenever no confusion can occur, we will denote the
edge-weighted graph (G,F ) by F .

For applications to image segmentation, we will assume that the altitude of u,
an edge between two pixels x and y, represents the dissimilarity between x and y
(e.g., F (u) equals the absolute difference of intensity between x and y; see [24]
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for a more complete discussion on different ways to set the mapping F for image
segmentation). Thus, we suppose that the salient contours are located on the
highest edges of (G,F ).

Let λ ∈ R+ and F ∈ F , we define F [λ] = {v ∈ E | F (v) ≤ λ}. The graph
(induced by) F [λ] is called a (cross)-section of F . A connected component of a
section F [λ] is called a (level λ) component of F .

We define C(F ) as the set composed of all the pairs [λ,C], where λ ∈ R+ and
C is a component of the graph F [λ]. We call altitude of [λ,C] the number λ. We
note that one can reconstruct F from C(F ); more precisely, we have:

F (v) = min{λ | [λ,C] ∈ C(F ), v ∈ E(C)}

For any component C of F , we set h(C) = min{λ | [λ,C] ∈ C(F )}. We define
C�(F ) as the set composed by all [h(C), C] where C is a component of F . The
set C�(F ), called the component tree of F [25,26], is a finite subset of C(F ) that
is widely used in practice for image filtering.

A (regional) minimum of F is a component X of the graph F [λ] such that for
all λ1 < λ, F [λ1] ∩ E(X) = ∅. We remark that a minimum of F is a subgraph
of G and not a subset of the points of G; we also remark that any minimum X
of F is such that |V (X)| > 1.

We denote by M(F ) the graph whose vertex set and edge set are, respectively,
the union of the vertex sets and edge sets of all minima of F .

3.2 Topological Watersheds on Edge-Weighted Graphs

Let X be a subgraph of G. An edge u ∈ E(X) is said to be W-simple (for
X) (see [16]) if X has the same number of connected components as X + u =
(V (X)∪u,E(X)∪{u}). An edge u such that F (u) = λ is said to be W-destructible
(for F ) with lowest value λ0 if there exists λ0 such that, for all λ1, λ0 < λ1 ≤ λ,
u is W-simple for F [λ1] and if u is not W-simple for F [λ0].

A topological watershed (on G) is a mapping that contains no W-destructible
edges.

A mapping F ′ is a topological thinning (of F ) if:

– F ′ = F , or if
– there exists a mapping F ′′ which is a topological thinning of F and there

exists an edge u W-destructible for F ′′ with lowest value λ such that ∀v �=
u, F ′(v) = F ′′(v) and F ′(v) = λ0, with λ ≤ λ0 < F ′′(v).

An illustration of a topological watershed can be found in fig. 2.
The connection value between x ∈ V and y ∈ V is the number

F (x, y) = min{λ | x ∈ V (C), y ∈ V (C), [λ,C] ∈ C(F )} (1)

In other words, F (x, y) is the altitude of the lowest element [λ,C] of C(F ) such
that x and y belong to C (rule of the least common ancestor).

Two points x and y are separated (for F ) if F (x, y) > max{λ1, λ2}, where
λ1 (resp. λ2) is the altitude of the lowest element [λ1, c1] (resp. [λ2, c2]) of C(F )



186 L. Najman

Fig. 2. Illustration of topological watershed. (a) An edge-weighted graph F .
(b) A topological watershed of F . The minima of (a) are ({m, i}), ({p, l}),
({g, h}, {c, d}, {g, c}, {h, d}) and are in bold in (a).

such that x ∈ c1 (resp. y ∈ c2). The points x and y are λ-separated (for F ) if
they are separated and λ = F (x, y).

The mapping F ′ is a separation of F if, whenever two points are λ-separated
for F , they are λ-separated for F ′.

If X and Y are two subgraphs of G, we set F (X,Y ) = min{F (x, y) | x ∈
X, y ∈ Y }.

Theorem 2 (Restriction to minima [16]). Let F ′ ≤ F be two elements of
F . The mapping F ′ is a separation of F if and only if, for all distinct minima
X and Y of M(F ), we have F ′(X,Y ) = F (X,Y ).

A graph X is flat (for F ) if for all u, v ∈ E(X), F (u) = F (v). If X is flat, the
altitude of X is the number F (X) such that F (X) = F (v) for any v ∈ E(X).

We say that F ′ is a strong separation of F if F ′ is a separation of F and
if, for each X ′ ∈ M(F ′), there exists X ∈ M(F ) such that X ⊆ X ′ and
F (X) = F (X ′).

Theorem 3 (strong separation [16]). Let F and F ′ in F with F ′ ≤ F . Then
F ′ is a topological thinning of F if and only if F ′ is a strong separation of F .

In other words, topological thinnings are the only way to obtain a watershed
that preserves connection values.

In the framework of edge-weighted graphs, topological watersheds allows for
a simple characterization.

Theorem 4. A mapping F is a topological watershed if and only if:

(i) M(F ) is a segmentation of G;
(ii) for any edge v = {x, y}, if there exist X and Y in M(F ), X �= Y , such that

x ∈ V (X) and y ∈ V (Y ), then F (v) = F (X,Y ).

Note that if F is a topological watershed, then for any edge v = {x, y} such that
there exists X ∈ M(F ) with x ∈ V (X) and y ∈ V (X), we have F (v) = F (X).
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4 Hierarchies and Ultrametric Distances

Let Ω be a finite set. A hierarchy H on Ω is a set of parts of Ω such that

(i) Ω ∈ H
(ii) for every ω ∈ Ω, {w} ∈ H
(iii) for each pair (h, h′) ∈ H2, h ∩ h′ �= ∅ =⇒ h ⊂ h′ or h′ ⊂ h.

An indexed hierarchy on Ω is a pair (H,μ), where H denotes a given hierarchy
on Ω and μ is a positive function, defined on H and satisfying the following
conditions:

(i) μ(h) = 0 if and only if h is reduced to a singleton of Ω;
(ii) if h ⊂ h′, then μ(h) < μ(h′).

A distance d, in general, obeys the triangular inequality d(ω1, ω2) ≤ d(ω1, ω3) +
d(ω3, ω2) where ω1, ω2 and ω3 are any three points of the space. An ultrametric
distance (on Ω) is a function d from Ω × Ω to R+ such that d(ω1, ω2) = 0 if and
only if ω1 = ω2, such that d(ω1, ω2) = d(ω2, ω1) and such that d obeys ultrametric
inequality d(ω1, ω2) ≤ max(d(ω1, ω3), d(ω2, ω3)) for allω1, ω2, ω3. The ultrametric
inequality [27] is stronger than the triangular inequality.

A partition of Ω is a collection (Ωi) of non-empty subsets of Ω such that any
element of Ω is exactly in one of these subsets. Note that any given partition
of the set Ω induces a large number of trivial ultrametric distances: d(ω1, ω1) =
0, d(ω1, ω2) = 1 if ω1 ∈ Ωi, ω2 ∈ Ωj , i �= j, and d(ω1, ω2) = a if i = j, 0 < a < 1.
The general connection between indexed hierarchies and ultrametric distances
was proved by Benzécri [3] and Johnson [4]. This result states that there is a one-
to-one correspondance between indexed hierarchies and ultrametric distances
both defined on the same set. Indeed, associated with each indexed hierarchy
(H,μ) on Ω is the following ultrametric distance:

d(ω1, ω2) = min{μ(h) | ω1 ∈ h, ω2 ∈ h, h ∈ H}. (2)

In other words, the distance d(ω1, ω2) between two elements ω1 and ω2 in Ω is
given by the smallest element in H which contains both ω1 and ω2. Conversely,
each ultrametric distance d is associated with one and only one indexed hierarchy.

Observe the similarity between eq. 2 and eq. 1. Indeed, connection value is an
ultrametric distance on V whenever F > 0. More precisely, we have the following
property.

Property 5. Let F ∈ F . Then F (X,Y ) is an ultrametric distance on M(F ).
If furthemore, F > 0, then F (x, y) is an ultrametric distance on V .

Let Ψ be the mapping on F such that for any F ∈ F the map Ψ(F ) and for
any edge {x, y} ∈ E, Ψ(F )({x, y}) = F (x, y). It is straightforward to see that
Ψ(F ) ≤ F , that Ψ(Ψ(F )) = Ψ(F ) and that if F ′ ≤ F , Ψ(F ′) ≤ Ψ(F ). Thus Ψ
is an opening on the lattice (F ,≤) [28]. We remark that the subset of strictly
positive maps that are defined on the complete graph (V, V × V ) and that are
open with respect to Ψ is the set of ultrametric distances on V . The mapping Ψ
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is known under several names, in particular the one of subdominant ultrametric
and the one of ultrametric opening. It is well known that Ψ is associated to
the simplest method for hierarchical classification called single linkage cluster-
ing [5,29], closely related to Kruskal’s algorithm [30] for computing a minimum
spanning tree.

Thanks to Th. 4, we observe that if F is a topological watershed, then Ψ(F ) =
F . However, an ultrametric distance d may have plateaus, and thus the weighted
complete graph (V, V ×V, d) is not always a topological watershed. Nevertheless,
those results underline that topological watersheds are related to hierarchical
classification, but not yet to hierarchical edge-segmentation; the study of such
relations is the subject of the rest of the paper.

5 Hierarchical Edge-Segmentations, Saliency and
Ultrametric Watersheds

Informally, a hierarchical segmentation is a hierarchy made of connected regions.
However, in our framework, a segmentation is not a partition, and as the union
of two disjoint connected subgraphs of G is not a connected subgraph of G, the
formal definition is slightly more involved. A hierarchical (edge-)segmentation
(on G) is an indexed hierarchy (H,μ) on the set of regions of a segmentation S
of G, such that for any h ∈ H , φ(∪X∈hX) is connected (φ being the edge-closing
defined in section 2).

For any λ ≥ 0, we denote by H [λ] the graph induced by {φ(∪X∈hX)|h ∈
H,μ(h) ≤ λ}. The following property is an easy consequence of the definition of
a hierarchical segmentation.

Property 6. Let (H,μ) be a hierarchical segmentation. Then for any λ ≥ 0,
the graph H [λ] is a segmentation of G.

Property 5 implies that the connection value defines a hierarchy on the set
of minima of F . If F is a topological watershed, then by Th. 4, M(F ) is a
segmentation of G, and thus from any topological watershed, one can infer a
hierachical segmentation. However, F [λ] is not always a segmentation: if there
exists a minimum X of F such that F (X) = λ0 > 0, for any λ1 < λ0, F [λ1]
contains at least two connected components X1 and X2 such that |V (X1)| =
|V (X2)| = 1. Note that the value of F on the minima of F is not related to the
position of the divide nor to the associated hierarchy of minima/segmentations.
This leads us to introduce the following definition.

A map F ∈ F is an ultrametric watershed if F is a topological watershed, and
if furthemore, for any X ∈ M(F ), F (X) = 0.

Property 7. A map F is an ultrametric watershed if and only if for all λ ≥ 0,
F [λ] is a segmentation of G.

This property is illustrated in fig. 3.
By definition of a hierarchy, two elements of H are either disjoint or nested.

If furthermore (H,μ) is a hierarchical segmentation, the graphs E(H [λ]) can be
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Fig. 3. An example of an ultrametric watershed F and a cross-section of F

stacked to form a map. We call saliency map [8] the result of such a stacking, i.e. a
saliency map is a map F such that there exists (H,μ) a hierarchical segmentation
with F (v) = min{λ|v ∈ E(H [λ])}.

Property 8. A map F is a saliency map if and only if F is an ultrametric
watershed.

A corrolary of property 8 states the equivalence between hierachical segmenta-
tions and ultrametric watersheds. The following theorem is the main result of
this paper.

Theorem 9. There exists a bijection between the set of hierachical edge-
segmentations on G and the set of ultrametric watersheds on G.

As there exists a one-to-one correspondance between the set of indexed hier-
archies and the set of ultrametric distances, it is interesting to search if there
exists a similar property for the set of hierarchical segmentations. Let d be the
ultrametric distance associated to a hierarchical segmentation (H,μ). We call
ultrametric contour map (associated to (H,μ)) the map dE such that:

1. for any edge v ∈ E(H [0]), then dE(v) = 0;
2. for any edge v = {x, y} ∈ E(H [0]), dE(v) = d(X,Y ) where X (resp. Y ) is

the connected component of H [0] that contains x (resp. y).

Property 10. A map F is an ultrametric watershed if and only if F is the
ultrametric contour map associated to a hierarchical segmentation.

6 Conclusion

Fig. 4 is an illustration of the application of the framework developped in this
paper to a classical hierarchical segmentation scheme based on attribute open-
ing [8,25,14]. Fig. 5 shows some of the differences between applying such scheme
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Fig. 4. Example of ultrametric watershed

(a) (b)

Fig. 5. Zoom on a comparison between two watersheds of a filtered version of the
image 4.a. Morphological filtering tends to create large plateaus, and both watersheds
(a) and (b) are possible, but only (a) is a subset of a watershed of 4.a. No hierarchical
scheme will ever give a result as (b).

and applying a classical morphological segmentation scheme, e.g. attribute open-
ing followed by a watershed [12]. As watershed algorithms generally place water-
shed lines in the middle of plateaus, the two schemes give quite different results.

It is important to note that most of the algorithms proposed in the litterature
to compute saliency maps are not correct, often because they rely on wrong con-
nection values or because they rely on thick watersheds where merging regions
is difficult. Future papers will propose novel algorithms (based on the topologi-
cal watershed algorithm [31]) to compute ultrametric watersheds, with proof of
correctness.

On a more theoretical level, this work can be pursued in several directions.

– We will study lattices of watersheds [32] and will bring to that framework
recent approaches like scale-sets [9] and other metric approaches to segmen-
tation [10]. For example, scale-sets theory considers a rather general formula-
tion of the partitioning problem which involves minimizing a two-term-based
energy, of the form λC + D, where D is a goodness-of-fit term and C is a
regularization term, and proposes an algorithm to compute the hierarchi-
cal segmentation we obtain by varying the λ parameter. We can hope that
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the topological watershed algorithm [31] can be used on a specific energy
function to directly obtain the hierarchy.

– Subdominant theory (mentionned at the end of section 4) links hierachical
classification and optimisation. In particular, the subdominant ultrametric
d′ of a dissimilarity d is the solution to the following optimisation problem
for p < ∞:

min{||d− d′||pp | d′ is an ultrametric distance and d′ ≤ d}

It is certainly of interest to search if topological watersheds can be solutions
of similar optimisation problems.

– Several generalisations of hierarchical clustering have been proposed in the
literature [1]. An interesting direction of research is to see how to extend in
the same way the topological watershed approach, for example for allowing
regions to overlap.
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Abstract. Using tools from multi-scale morphology, we reformulate a region-
based active-contour model using a minimum-variance criterion. Experimental
results of 3D data show that our discrete model achieves similar segmentation
quality as the continuous model based on the level-set framework, while being
two orders of magnitude faster than optimized implementations of the original
continuous model.

1 Introduction

Segmenting images using active contour models (snakes) involves evolving a curve or
surface (i.e., an interface), subject to constraints derived from a given input image (vol-
ume). Active contour models [1, 2, 3] found applications in medical imaging (see [4, 5]
for recent surveys), geometric modeling [6], computer animation [7], texture segmen-
tation [8] and object tracking [9, 10]. State-of-the-art active contours (see [4, 5] and
references therein) are based on the level set framework [11], which enables active con-
tours to handle complicated topologies of the underlying shapes, unlike most parametric
snakes [2, 7].

Let C(s) : [0,1] → R2 be a parametrized 2D curve. Within the level set framework,
C is represented implicitly via a higher-dimensional Lipschitz function φ , e.g., C =
{(x,y) |φ(x,y) = 0}. The evolving curve is given by the zero level-set at time t of func-
tion φ(x,y,t). Further, evolving C in normal direction with speed F can be done solving

∂φ
∂ t

= F ||∇φ || , (1)

with initial condition φ(x,y,0) = φ0(x,y), where φ0(x,y) is the initial embedding (i.e.,
the signed distance function) of C. Note that for surfaces, φ is defined on a subset of R3.

In the context of image segmentation, various formulations for the speed function
F have been proposed. Traditionally F is set to some function of the gradient image
[12, 13], such that the active contour stops its evolution whenever important edges in
the input image are encountered. However, as shown by Siddiqi et al. [14], these formu-
lations are affected by boundary leakage in the vicinity of blurred edges. An effective
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solution specific to gradient-based active contours is to incorporate (global) region de-
scriptors into the energy functional [15,16,17]. For example, Chan and Vese [17] formu-
lated their “active contours without edges” as a simplified version of the Mumford-Shah
piecewise constant model [18], with a limited number of regions. Their energy func-
tional includes a minimum-variance criterion of the segmented regions, see section 2.
The resulting model is much more robust to noise and boundary leakage than traditional
gradient-based snake models [17].

Apart from large computational requirements, some inherent problems have to be
tackled by most formulations based on level sets. Most notably, the level set function
φ , initialized to the signed distance function from the interface, has to be maintained
(Lipschitz) smooth during the evolution, and thus it has to be periodically reinitialized.
Moreover, if the speed F is only known at the locations of the zero level set, F has to
be extended to all other level sets of φ (the so-called velocity extension problem).

In this paper we reformulate Chan and Vese’s active contour model within the frame-
work of mathematical morphology, relying solely on binary multi-scale morphological
operators [19, 20]. We show that the resulting algorithm is effective and more efficient
compared to its level set counterpart.

2 Model Description

2.1 Minimum Variance Model

Let Ω be a bounded open subset of R2, with ∂Ω denoting its boundary. Let I : Ω → R
be a given image and assume that the evolving curve C is the boundary of an open subset
ω of Ω , i.e., ω ∈ Ω and C = ∂ω . Using the calculus of variations it can be shown that
in order to minimize an energy functional

E1(C) =
∫

ω
f (x,y) dxdy, (2)

each point of C should move under the influence of the force F1 = − f NC, where NC is
the outward normal of C. Let inside(C) denote the region ω and outside(C) denote the
region ωc = Ω \ω . Using the result above, the optimal way to decrease

E2(C) =
∫

inside(C)
fo(x,y) dxdy +

∫
outside(C)

fb(x,y) dxdy (3)

is to evolve C under the force F2 = ( fb − fo)NC.
The active contour model of Chan and Vese minimizes the functional E(c1,c2,C)

derived from E2 by setting fo = |I(x,y)− c1|2 and fb = |I(x,y)− c2|2, with c1,c2 some
constants depending on C, and some additional regularizing terms, i.e.,

E(c1,c2,C) =μ ·Length(C)+ ν ·Area(inside(C))

+ λ
∫

inside(C)
|I(x,y)− c1|2 dxdy +

∫
outside(C)

|I(x,y)− c2|2 dxdy, (4)

with μ ≥ 0, ν ≥ 0, λ > 0 fixed parameters. Thus, the resulting force pushes C inwards
when fb − fo < 0 and outwards if fb − fo > 0. In other words, the curve shrinks if the
variance inside ω is larger than that of ωc and expands otherwise.
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Using the level set formalism, the steepest-descent method leads to

∂φ
∂ t

=
{

μ ·κ −ν + λ
[
(I − c2)2 − (I− c1)2]} ||∇φ || , (5)

which has to be solved for φ , with κ the level set curvature and c1 = average(I) in {φ ≥
0} and c2 = average(I) in {φ < 0}. The first term in Eq. (5) represents the curvature
flow and minimizes the length of the curve, the second term represents inwards motion
at constant speed and minimizes the area of the region, whereas the last term represents
region competition by the minimum-variance criterion.

2.2 The Minimum-Variance Model and Discrete Multi-scale Set Morphology

We now interpret each term of Chan and Vese’s minimum-variance model within the
context of discrete multi-scale morphology [19, 20]. Thus, let us define k to be the
discrete version of the continuous scale parameter t, and ε the scale step. Therefore, the
link between discrete scale k and t is t = εk, neglecting rounding errors.

Motion at constant speed. In this case, the speed F in Eq. (1) becomes Fc = −ν , with
ν ≥ 0. Using a forward (first-order) finite-element discretization in time, the update rule
for φ becomes

φ k+1 = φ k −Δ t ν ||∇φ || . (6)

Since φ should at any time be an approximate, signed distance transform, i.e., ||∇φ || =
1, the update rule above means that the graph of φ is translated at each iteration by
(Δ t ν) along the negative z-axis (i.e., the direction of the levels). Thus, setting Sk =
inside(Ck) = {(x,y) : φ k ≥ 0}, after applying the update rule, the set becomes Sk+1 =
Sk�(Δ t ν)B = {(x,y) : φ k ≥ (Δ t ν)}, where � denotes set erosion and B is the unit ball
induced by the Euclidean norm ||·||.

In the general case, let Bp = {(x,y) : ||(x,y)||p ≤ 1} denote unit balls corresponding
to some lp norm ||·||p. Let h be the spatial (grid) step size. Setting ε = (Δ t ν) ≤ h/4 as
required for the Courant-Friedrichs-Lewy (CFL) condition, the multi-scale set erosion
of S0 becomes

Sεk = S0 � (εk)Bp = {(x,y) : φ0
p(x,y) ≥ εk}, (7)

with φp the distance transform with respect to the metric induced by the norm ||·||p.
Without loss of generality, let us assume that ε = 1, so that the scale parameter t be-
comes t = k ∈ N. Then, for any k ∈ N, an approximate, weak solution for the PDE
describing inwards curve motion at constant speed is given by Sk = S0 � kBp. Employ-
ing decomposition of the structuring element and the iteration property of set erosions,
one obtains

Sk = S0 �Bk
p = S0 � (

k times︷ ︸︸ ︷
Bp⊕Bp ⊕·· ·Bp) = ((. . . (S0 �Bp)�Bp) . . . )�Bp, (8)

where Bk
p denotes k-fold dilation of Bp with itself. Thus, a discrete approach to curve

motion at constant speed consists in iteratively eroding (or dilating for outward motion)
an input set S0 embedding the initial curve C, by a set Bp approximating the unit ball.
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Region competition. The speed F in Eq. (1) is now Fr = λ
[
(I− c2)2 − (I− c1)2

]
, with

λ > 0. Following a similar reasoning as in the previous subsection, the iteration be-
comes

Sk+1 =
((

Sk ⊕Bp

) ⋂
T k

ε

) ⋃ ((
Sk �Bp

) ⋂
(T k)c

ε

)
(9)

where T k
ε = {(x,y) : εk > 0}, (T k)c

ε = Ω \ T k
ε , εk = Δ tFk

r and initial condition S0 =
inside(C0) = {(x,y) : φ0 ≥ 0}. The resulting set Sk+1 contains points (x,y) which are
either the result of a set dilation of Sk if Fk

r (x,y) = λ
[
(I(x,y)− ck

2)
2 − (I(x,y)− ck

1)
2
]
>

0 or of an erosion of Sk otherwise.
Given the CFL condition and without considering the large computational overhead

introduced by upwind discretizations [11] usually employed to approximate ||∇φ || in
Eq. (6) when F may change signs, computing the solution using this approach needs
at least four times less iterations than the PDE-based approach (assuming h = 1, then
ε ≤ 0.25, so that more than four iterations are needed for ||∇φ || = 1). This is at the
same grid resolution and assuming a 3×3 discretization stencil for ||∇φ ||.

Curvature flow. The Euclidean shortening flow (curvature flow) is obtained setting
Fκ = μκ in Eq. (1), where κ is the (mean) curvature.

It can be proved that iterating k times a (weighted) median filter using a window
of size ε converges when ε → 0, k → ∞, εk → t to the (mean) curvature flow, see for
example [21, 22, 23]. Moreover it was shown [24] that an opening-closing filter by Bp

smooths a (binary) signal similar to a median filter of (roughly) size 2 ·
∣∣Bp

∣∣, where
∣∣Bp

∣∣
is the number of elements of Bp. Thus, an approximation of the curvature flow iteration
can be obtained setting

Sk+1 = MED(Sk) ≈ (Sk ◦Bp)•Bp, (10)

where MED(·) denotes the median, ’◦’ denotes set opening and ’•’ set closing. By the
CFL condition the PDE-based approach requires for stability reasons ε = Δ tμ |κ | ≤
0.25. Assuming h = 1, |κ | ≤ 1 and μ = 1, it follows that the PDE-based method needs
at least eight times more iterations than the discrete method based on iterated opening-
closing filters, neglecting the extra computational overhead of curvature and upwind
computations. However, since one opening-closing filter application requires four it-
erations, overall we expect that our discrete method requires at least two times less
iterations than the continuous method.

2.3 Proposed Discrete Model

An obvious approach to formulate the PDE in Eq. (5), as in section 2.2, using multi-
scale set morphology, would be to start from an initial state S0 = {(x,y) : φ0 ≥ 0} and
march through the solution Sk as follows. Assume that Sk has been solved at (discrete)
time k and that we wish to compute Sk+1. We can solve Eq. (5) at the next iteration
in three steps: start from solution W0 = Sk of the previous time step and sequentially
resolve each term on the right hand size of Eq. (5) using the appropriate speed functions
F , as follows:

W0
Fr−→W1

Fc−→W2
Fκ−→W3. (11)
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Then, the solution at (k+1) is given by the last set, Sk+1 = W3. In this way, the solution
using the approach in section 2.2 would be expected to require at least two times less
iterations than the PDE-based approach. Of course, if a smoother solution is desired,
some of the (smoothing) steps can be repeated, at the expense of increased CPU time.

Instead of pursuing this solution process, for efficiency reasons we define our ap-
proximate minimum-variance model as follows. Similar to the level set method, let
u : Ω → R be the binary function

u(x,y) = χω(x,y)− χωc(x,y) =
{

1, if (x,y) ∈ ω = inside(C)
−1, if (x,y) ∈ ωc = outside(C) , (12)

with χω the characteristic function of ω . Assume that C is embedded as the zero level
set of u, i.e., C = {(x,y) : u(x,y) = 0}. If C deforms, the curve is given by the zero
level-set at (discrete) time k of function uk. Note that although zero is not a regular
value of u, we can always use linear interpolation to reconstruct C within the given grid
resolution, as ω and ωc form a partition of Ω . The discrete update rule for u, describing
our approximate model is

uk+1 = sgn
(

uk ∗ χBp + sgn( f k)
(∣∣Bp

∣∣−1
))

, (13)

with sgn(x) = 1 if x > 0, = −1 otherwise,
∣∣Bp

∣∣ the number of elements of Bp, and ’*’
denoting linear convolution. The ’speed function’ f k is given by

f k = λ
(
(I − ck

2)
2 − (I− ck

1)
2
)

+ α · sgn(uk ∗ χBp + β ), (14)

where λ ≥ 0, α ∈ R and β ∈ Z.
Note that according to (13), given the definition (12), and by the duality relation

of set dilations and erosions, we evolve C by thresholding the outcome of the linear
convolution (similar to [25]) of the characteristic function of its interior region and that
of Bp. Accordingly, curve C locally expands or shrinks as the sign of f changes. The
speed function f (not limited to binary values) represents the competition of two terms:
region homogeneity (minimum variance) and smoothing/regularization. Although the
update rule maintains u binary, the decision function f prescribing whether to locally
shrink or expand C does not suffer from this limitation. However, if one replaces sgn(·)
with a sigmoidal function in (13) and (14), u becomes smoother as it is not restricted
anymore to binary values.

Instead of using the iterative solution process of (11), the contributions of the speed
terms in (14) are multiplexed in order to obtain a final decision (used in (13)) whether to
locally expand or shrink the curve. Thus, using (13) instead of (11) should in principle
be more efficient, see section 3. Note also that, similar to the minimum-variance model,
our model extends trivially to 3D.

A whole range of smoothing/regularizing operations can be achieved varying the
free parameters in the definition of f . For example, assuming that λ = 0, then setting
α > 0 and β = 0, f k represents the output of a (binary) median filter applied to uk.
Thus, iterating (14), curve C is smoothed through uk by a morphological curvature
flow. If we set β to |β | ∈

(
0,
∣∣Bp

∣∣−1
)
, then other rank filters can be obtained. For



198 A.C. Jalba and J.B.T.M. Roerdink

example, a (small) negative value can be used to mimic the behaviour of the continuous
minimum-variance model when ν > 0, such that the area of ω is minimized. Setting
|β |=

∣∣Bp
∣∣−1, local dilations or erosions can be performed, see subsection 2.2. If during

the iteration process, one appropriately alternates the sign of β , set opening-closing or
closing-opening filters can be obtained. Note that since u in (13) is a binary symmetric
function, all above morphological operations are very efficiently implemented by linear
convolution. Finally, when λ > 0, a competition takes place between the data term,
maintaining region homogeneity, and the smoothing terms.

The advantage of this solution process compared to the one given by (11) is that
the ’compute kernel’ remains the same, no matter which smoothing method is used, or
whether the curve has to expand or shrink during an iteration. This is a key aspect for
achieving good efficiency in a parallel implementation of the model, on shared-memory,
multi-core architectures, see section 3.

3 Results

Both the PDE-based model and our discrete model were implemented on graphics pro-
cessing units (GPUs), so as to take advantage of their increased computational power
as compared to current CPUs. All experiments were conducted on a PC equipped with
a 2.4 GHz processor, 4 GB of RAM and an NVIDIA GTX280 GPU. In order to further
increase the efficiency of our model, we used the l1 norm such that the number of tex-
ture lookups is minimal (i.e., B1 consists of only 5 elements in 2D and 7 in 3D). The
PDE-based model (bound to use the l2 norm), is discretized in 2D using a 3×3 stencil
(3× 3× 3 in 3D) and first order upwinding. Unless explicitly mentioned, the simula-
tions were run until steady state was reached, using the criterion of [26]. Accordingly,
we computed the rate of change of the interface length over a fixed number of itera-
tions. If this number was exceeded and the change in length was small, we stopped the
iteration process. No smoothing/regularization of the input data was performed, as no
gradient computations are required.

For initialization, we used disks of radius 10 in 2D and small spheres of radius 20 in
3D. These were manually placed such that at least parts of the object of interest were
inside the disk/sphere; only one initialization was performed per data set.

Behaviour of the discrete model. In the first experiment we performed a brief, com-
parative study in 2D of the behaviour of both models, see Fig. 1, which shows the
segmentation of blood vessels in angiographic data. Initialization (not shown) was done
in both cases by placing a small disc inside the body of the main artery. Model pa-
rameters were varied such that the regularizing effect (without area minimization, i.e.,
ν = 0) of curvature flow and of its discrete counterparts became more and more pro-
nounced. In the first three cases of Fig. 1, our model closely mimics the PDE model,
when the influence of the data-dependent term is large compared to the regularization
term, and when curvature flow is approximated in our model by iterated (binary) median
filtering. If strong, length-minimizing regularization is desired (last column in Fig. 1),
alternating opening-closing (binary) filters can be employed to achieve results similar
to the PDE-based model. Although the resulting curve in the last example is certainly
smoother than that delivered by our model, one should recall that we purposely used a
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μ=ν=0, λ=1 μ=0.1, ν=0, λ=1 μ=0.3, ν=0, λ=1 μ=0.6, ν=0, λ=0.5

α=β=0, λ=1 α=0.1, β=0, λ=1 α=0.2, β=0, λ=1 α=±0.2, β=4, λ=0.5

Fig. 1. Model behaviour in 2D, with different parameter settings. First row: PDE-based model,
second row: discrete model.

Fig. 2. Segmentation of the bone structure of the human feet in a CT scan. Left: volume rendering
of input data, right: segmentation result.

crude approximation of the continuous disk (as given by the l1 norm), thus further trad-
ing accuracy for speed, see section 3. Note that in all images shown in Fig. 1, a single
object is segmented.

3D segmentation results. First, we segmented a (noise free) CT dataset, see Fig. 2.
The parameters of the discrete model were set to α = 0.1, β = 0 and λ = 1. Note that
most structures were correctly segmented, although in this case the result is similar to
what an iso-surface would look like. However, this is not the case for the noisy data set
shown in Fig. 3.

Next, we segmented the white matter of a human brain from an MRI scan, see Fig. 4.
The parameters of the model were set to α = ±0.1, β = 4 and λ = 1, and opening-
closing filters were employed for regularization.

Although our method is not multi-phase, i.e., multiple objects cannot be segmented
simultaneously, a sequential approach consisting in successively ’peeling’ outside layers
can be easily implemented using a binary mask M, see Fig. 5 for an example. While this
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Fig. 3. Blood vessel extraction from a noisy data set. Left: volume rendering of input data, center:
typical iso-surface, right: segmentation result.

Fig. 4. Segmentation of the white matter of the human brain from an MRI scan. Left: volume
rendering of input data, center, right: two views of the segmentation result.

Fig. 5. Segmentation of multiple nested objects. Left, center: volume renderings of a tooth data
set, right: result showing its segmented constituent parts: the enamel, dentin and the root canal.

Fig. 6. Segmentation of a large (512×380×400) data set. scan. Left-to-right: input volume ren-
dering, result by the (GPU) PDE method, GPU discrete model, and a difference of the two.

approach is not as general as a multi-phase method, it can certainly be used to segment
an object made of several, nested parts, as follows. Initially the binary mask M (equal
in size to that of the input volume) is set to one, such that all voxels are visited when
computing the region speed, Fr. Once a segmentation of the whole object is obtained
(e.g., the whole tooth), M is set such that voxels outside the object (set to zero in M)
are skipped in further computations of Fr. Then, within the object, one can reinitialize
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Fig. 7. Results by discrete methods. First row: sequential method from (11), second row: our final
method from (13), see text.

the interface in a region showing the highest contrast compared to its surroundings (e.g.,
the enamel). After the segmentation is obtained, those voxels of M which belong to the
segmented region are set to zero, and the process is repeated for the remaining parts
(regions).

We also compared the two discrete approaches based on (11) and (13) for approx-
imating the continuous model from equation Eq. (5), see Fig. 7. The first approach
consists in applying sequentially (i) region competition, (ii) area minimization, and (iii)
length minimization. We modified the GPU implementation of the proposed model in
(13), such that it achieves this behaviour in three iterations per time step. To allow this,
the parameters of the model were set as follows:

• region competition iteration: λ = 1, α = β = 0;

• area-minimization iteration: λ = 0, α = 1, β = 2;

• length-minimization iteration: λ = 0, α = ±0.8 . . .0, β = 5.

The parameters of the model in (13) were set (similarly) to λ = 1, α = ±0.8 . . .0 and
β = 5. Fig. 7 shows some of the results obtained using α = 0.8,0.5,0.1. In both cases
the initializations were identical and consisted of a small sphere surrounding the central
aneurism. Clearly the sequential model extracts less structures than our final model, for
similar parameter settings. Also, the sequential model needs about three times more
iterations to converge and the order in which the above iterations are applied has a great
impact on the final result. For example, if one reverses the order of iterations, the initial
sphere shrinks to a point and then disappears.

Efficiency. A full-grid GPU implementation of our model and three implementations
of the PDE-model were considered: full-grid running on the GPU, full-grid on the CPU
and an optimized narrow-band CPU method [27, 28]. The CPU time required by each
method to extract the main vessels from a data set of size 512×380×400 (see Fig. 6)
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Table 1. CPU timings of all considered methods; data-set size: 512×380×400, see Fig. 6

Method Iterations/sec. (ips) Total iterations Total time (min.)

GPU
Discrete, full-grid 37.2 3010 1.3

PDE, full-grid 6.1 8210 22.8

CPU
PDE, narrow-band 0.8−1.2 9250 90.2

PDE, full-grid 0.05 − −

using identical initialization (a small sphere) is given in Table 1. The parameters of the
discrete model were set as in the last 3D experiment above. For the PDE model, the time
step was pushed close to the CFL limit (for fast convergence), while the others were:
μ = 0.1, ν = 0 and λ = 1. Note that we used constant time-stepping, as opposed to
recomputing the time step after each iteration, as such computation (a reduction) would
introduce extra overhead for the GPU implementation. As shown in Table 1 and look-
ing at the full-grid GPU implementations, the discrete model converges almost three
times faster than the PDE model, which agrees with the expected number of iterations
that should, on average, be about three times less for the discrete model, see subsec-
tion 2.3. We also see that per iteration, the discrete model is about six times faster than
the PDE model. This however is not a surprise as the number of assembly GPU instruc-
tions of the compute kernel is about four times larger and also more (expensive) texture
lookups have to be performed, for discretizing the continuous model. Finally, compared
to the optimized narrow-band algorithm of [27, 28], our method is about two orders of
magnitude faster, while delivering similar results, see Fig. 6.

4 Conclusions

We presented a discrete region-based active surface model incorporating the minimum-
variance homogeneity criterion of [17]. Experiments showed that our discrete model
produces similar qualitative results, compared to the continuous model based on level
sets, while being almost two orders of magnitude faster. We believe that a narrow-band
version of our simple, discrete model implemented on the GPU would not be more ef-
ficient than the full-grid approach, as the extra overhead involved for maintaining the
narrow band around the interface will be more expensive than performing all (trivial)
computations involved. Further, we would like to study the connections between both
models more deeply, with respect to parameter settings and convergence rates. More-
over, we plan to develop multi-phase extensions of our discrete model.
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Abstract. In this paper, a method for morphological segmentation using shape
information is presented. This method is based on a morphological operator named
ultimate attribute opening (UAO). Our approach considers shape information to
favor the detection of specific shapes. The method is validated in the framework
of two applications: façade analysis and scene-text detection. The experimental
results show that our approach is more robust than the standard UAO.

1 Introduction

Segmentation is a fundamental problem in image analysis to distinguish between ob-
jects of interest and "the rest". It creates a partition of the image into disjoint and uni-
form regions, according to some features such as gray value, color, or texture [1]. An
overview of morphological segmentation is presented by Meyer in [2] where a uni-
fied framework for supervised or unsupervised, multi-scale or single scale, color or
grayscale and 2D or 3D images is introduced. Furthermore, a new morphological oper-
ator, named ultimate opening (UO) [3], has been increasingly used as a powerful seg-
mentation method due to its various advantages (non-parametric operator, segmentation
of contrasted structures, intrinsically multi-scale, etc). This morphological operator can
be used for shape analysis by associating a granulometry function. Retornaz and Mar-
cotegui have proposed and implemented ultimate attribute opening (UAO) [4], where
attribute opening (AO) was introduced by Breen and Jones [5].

In this paper, we present an integrated approach for image segmentation based on
UAO combined with shape constraints. In contrast to using only grayscale values to
locate regions with the UAO, the proposed method uses a similarity function defined
through a prior knowledge of the shapes. This similarity function is based on the char-
acteristics of connected components CCs in images (shapes). Urbach et al. defined in
[6] vector-attribute filters based on shape descriptors and a dissimilarity measure. A
threshold is required in order to filter out CCs different from the prior one. In contrast,
our method detects the most contrasted shapes similar to the prior one. Our results are
shown on real applications: façade analysis and scene-text detection.

The paper is organized as follows. In Section 2, UAO are presented. Section 3 de-
scribes UAO with shape information. In Section 4, two applications are shown and the
advantages of our method are illustrated. Finally, conclusions are drawn in Section 5.
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2 Ultimate Attribute Opening

Ultimate opening (UO), closing by duality, has been introduced by Beucher in [3]. This
is a non-parametric method and a non-linear scale-space based on morphological nu-
merical residues to extract (CCs). Several applications have been developed: automatic
localization of text [7] and façade segmentation [8].

2.1 Ultimate Opening

The ultimate opening θ analyzes the difference between consecutive openings. This
operator has two significant outputs for each pixel x from an input image I: the maximal
difference between openings (Residue, Rθ(I)) and the opening size, when the maximal
residue is generated (qθ(I)). The equations describing the UO evolution are written as:

Rθ (I) = max (rλ (I)) , ∀λ ≥ 1
with rλ (I) = γλ (I) − γλ+1 (I)

qθ (I) = max (λ) + 1 : λ ≥ 1, rλ (I) = Rθ (I) ∧Rθ (I) > 0
(1)

where, γλ is an opening of size λ.

2.2 Attribute Opening

A binary attribute opening, defined by Breen and Jones [5], consists in a connected
opening associated with a given increasing criterion T , based on attributes. This cri-
terion is used to keep or discard CCs. Gray attribute openings γT can be defined as
follows:

γT (I (x)) = max
(
h|x ∈ Γ T (Jh (I))

)
(2)

where, Jh (I) is the threshold at level h of I , and Γ T is a binary attribute opening. If
κCC is a CC attribute, λ is a scalar value and T (CC) criterion is κCC ≥ λ, an attribute
opening γT can be denoted as γλ. AO and UAO are connected operators. They can only
merge input flat zones but never cut them. As stated by Salembier in [9], the Max-Tree
is a suitable image representation to compute connected operators.

2.3 Max-Tree

The Max-Tree, by duality Min-Tree, was introduced by Salembier [10] as a structure
for computing connected operators. It is a multi-scale image representation and a hier-
archical structure in which the nodes Ck

h represent k’th binary connected components
of Jh (I). The root node corresponds to the whole image. The leaf nodes correspond to
the image maxima. The links between the nodes describe the inclusion relationship of
the binary connected components. Once the Max-Tree is created, several attributes can
be estimated, allowing an efficient computation of attribute openings.

On Max-Tree, an attribute opening γλ removes a node Ck
h when its attribute κCk

h
is

smaller than a parameter λ. Fig. 1(a) illustrates a synthetic image and its corresponding
Max-Tree (Fig. 2(a)). Fig. 1(d) shows the attribute opening results, with λ increasing
values. The attribute κ used is height (y-extent) of Ck

h . These openings are obtained by
pruning the tree at the corresponding dot-lines of Fig. 2(a).
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(a) Image

(b) Max Tree

h = 0 h = 1 h = 2 h = 4 h = 5 h = 6

(c) Jh (I)

λ = 2 λ = 3 λ = 4

(d) γT (I)

Fig. 1. (a) Original image, (b) Jh (I), (c) Max-Tree and (d) height openings γT (I), where T :
κCk

h
≥ λ

(a) Max Tree + rλ

r1 = γ1 − γ2 r2 = γ2 − γ3 r3 = γ3 − γ4

(b) rλ (I)

λ = 1 λ = 2 λ = 3

(c) Rθ (I)

λ = 1 λ = 2 λ = 3

(d) qθ (I)

Fig. 2. (a) Max-Tree and residue rλ

(
Ck

h

)
and (b) height openings Rθ (I) and qθ (I)
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Fabrizio in [11] implemented a fast UAO based on Max-Tree taking advantage of the
structure. The residue of each removed node in a given γλ is computed by the difference
between its gray level and the gray level of its first ancestor with a different attribute.
Fig. 2 shows intermediate steps of UAO computation. A height opening with λ = 2
removes the node C0

5 , producing a residue of γ1 − γ2 = 5 − 2 = 3. Then, a height
opening with λ = 3 removes C0

6 with a residue of γ2 − γ3 = 6 − 4 = 2. Finally,
a height opening with λ = 4 generates a residue for tree CCs, C0

2 , and C0
1 and C0

4 .
These residues are compared to current Rθ and only pixels with a larger residue are
updated.

rλ

(
Ck

h

)
computation on the Max-Tree is summarized in an iterative procedure as

follows:

rλ

(
Ck

h

)
=

{
h− h′ κCk

h
�= κCk′

h′

h− h′ + rλ

(
Ck′

h′

)
otherwise

(3)

where, Ck′
h′ is the parent node (Ck

h ⊂ Ck′
h′ and h′ < h). The residue is calculated for a

parent node and it is propagated to all children. Every child compares his residue with
its parent, and Rθ keeps the maximum value between them. Each child becomes parent
and repeats the process. qθ is the child attribute κ + 1 when the maximal residue is
generated.

2.4 Masking Problem

In spite of this non-parametric operator capacity to segment the most contrasted struc-
tures, it shows a problem of blindness named as "masking". The UO is an operator
without memory and it only saves the last maximum residue. Hence, when a structure
is nested in others, it may be masked by a bigger residue. For example, in Fig. 3(a), the
masking problem is shown by applying the ultimate attribute (height) opening. The im-
age has three nested shapes: a rectangular shape (dimensions 120× 40), a square shape
(dimensions 30× 30) and a circle one (diameter 90). These structures are enclosed in a
minimum gray value bounding box.

The square is the first shape found (λ = 31) , and then this shape is masked by a
circle filtered by opening λ = 91. Before the height opening λ = 161 is applied, two
shapes have been detected; nevertheless, in this opening, an important residue masks the
relevant information. In order to solve the masking problem, we propose to use shape
information, exploiting a prior knowledge of the image and preserving specific shapes
before being masked.

(a) Syn-

thetic Image

λ = 31 λ = 91 λ = 121 λ = 161

(b) qθ (I)

Fig. 3. (a) Original image, (b) qθ (I) of intermediate results after openings (λ+ 1)
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3 Ultimate Attribute Opening with Shape Information

In contrast to employing only grayscale values to locate regions with the UAO, the
proposed method uses a similarity function based on the characteristics of connected
components in images (shapes).

3.1 Shape Information

In this Section, we define our shape similarity measure. The shape definition has been
widely studied in the literature. Charpiat et al. [12] note Ω any shape, i.e. any regular
bounded subset of D, and Γ or ∂Ω, its boundary, a smooth curve of R2. In our context,
we are interested in comparing two different shapes, and their similarity measure. Many
different definitions of the similarity functions ψ () between two shapes (Ωi, Ωj) have
been proposed in the computer vision literature.

In order to compare two shapes, we propose to define a similarity function via shape
descriptors κΩ . In our method, we propose to use the simplest shape descriptors: geo-
metric features (height, width, etc) and their relations (fill ratio, circularity, moments,
etc). We define ψκ (Ωi, Ωj) by the use of Eq. 4, where τκ is the similarity threshold of
attribute κ.

ψκ (Ωi, Ωj) ←

⎧⎨⎩
1 κΩi = κΩj

[0, 1]
∣∣κΩi − κΩj

∣∣
0 otherwise

< τκ (4)

We have defined similarity functions with only one attribute κ. In practice, several mea-
sures are used to describe a prior shape in a same application. So, we expand the com-
parison between two shapesΩi, Ωj to several attributes by using a simple multiplication
function of similarity functions as follows: ψ∀κ =

∏
∀κ∈Ω

ψκ (Ωi, Ωj).

All these possible shape attributes and similarity functions can be utilized to give
an advantage over specific shapes in a segmentation process. Nevertheless, we must be
careful with the selection of measures, because of the following reasons:

– Computing Time: Measures are computed for each tree node. To keep a reason-
able computing time, we have used the simplest shape attributes, because they can
straightforwardly and accurately be estimated during the Max-Tree construction.

– Robustness of position, scale, and rotation invariant (PSRI): UO may be in-
trinsically PSRI. However, the invariance of the proposed method also depends on
the chosen measures. For example, if we choose fill ratio attribute, the new opera-
tor will only be PSI, besides if we choose compactness descriptor, it will be fully
invariant.

3.2 Definition

We propose to consider a shape factor function f (Ωi, Ωref ) to a reference shape Ωref

within the residue computation (Eq. 5). In that way, the residue of a Ωi similar to Ωref

is artificially increased. Thus, masking becomes more difficult. As the UAO is computed
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by using Max-Tree, each tree nodeCk
h corresponds to a Ωi and, f (Ωi, Ωref ) is denoted

by f
(
Ck

h

)
.

rΩ
λ ← f (Ωi, Ωref ) rλ (5)

The factor function f
(
Ck

h

)
is related to the similarity function ψ∀κ of Ck

h as follows:
1+αψ∀κ . An offset of 1 is added in order to switch to standard UO when the similarity
function is equal to 0 (rΩ

λ becomes rλ). As well, a multiplicative factor α is used to
control the influence of the shape factor with respect to the gray level. Hence, 1 + α
represents the maximum value that the function may reach.

Finally, function fCk
h

is stored on an imageFΩ
θ (I) when the maximal residue (Rθ(I))

is generated. With this information, we modify the original expression of UO Eq. 1 by
Eq. 6.

RΩ
θ (I) = sup

(
rΩ
λ (I)

)
FΩ

θ (I) = f
(
Ck

h

)
qΩ
θ (I) = max (λ) : λ ≥ 1

}
RΩ

θ (I) = rΩ
λ (I) ,

RΩ
θ (I) > 0

(6)

3.3 Example on Synthetic Image

Now, we test our approach on a synthetic image (Fig. 3(a)) to analyze it. First, we try
to favor rectangular shapes. For this purpose, we use as a shape metric the fill ratio
ΥΩ = AΩ

AbboxΩ
, where (AΩ) is the shape area and (AbboxΩ) is the bounding box area.

The ratio lies in the range [0,1]; where, if the value is close to 1, it means that the
shape corresponds to a rectangular polygon without rotation. We suppose that Ωref is a
rectangular shape without rotation, i.e. ΥΩref

= 1. Then, we have imposed area limit to
validate the shape. We utilize a maximum area limits (90 % of image area AI ) to reject
the largest regions. This factor function is translated into Eq. 7. Fig. 4(b) presents the
result on a synthetic image. In this case, the masking problem is solved and the three

f
(
Ck

h

)
= 1 + αψ1

(
Ck

h

)
ψ2

(
Ck

h

)

(a) F Ω
θ (I) (b) qΩ

θ (I)

ψ1

(
Ck

h

)
= ΥCk

h
,

ψ2

(
Ck

h

)
=

{
1 ACk

h
< 90%AI

0 otherwise

(7)

(c) F Ω
θ (I) (d) qΩ

θ (I)

ψ1

(
Ck

h

)
=

(
ΥCk

h

)3

,

ψ2

(
Ck

h

)
=

{
1 ACk

h
< 90%AI

0 otherwise

(8)

(e) F Ω
θ (I) (f) qΩ

θ (I)

ψ1

(
Ck

h

)
=

4πA
Ck

h(
L

Ck
h

)2 ,

ψ2

(
Ck

h

)
=

{
1 ACk

h
< 90%AI

0 otherwise

(9)

Fig. 4. Synthetic image segmentation (Fig. 3(a)) using UAO with shape constraints, κ is height
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shapes are segmented. The importance of limits ψ2
(
Ck

h

)
is remarkable in this example,

because the masking opening, size = 161, shape reaches a high factor ΥCk
h
≈ 1. Using

the limits, these shapes have a factor equal to 1, thus rΩ
λ = rλ.

Even though Υ mainly favors rectangular structures, the circular shape factor is high
enough to unmask it. If we want to favor only rectangular shapes, we modify ψ1

(
Ck

h

)
by a narrow function. For example, we changeΥCk

h
in Eq. 7 by ΥCk

h
cube value as shown

in Eq. 8.
Another shape factor example is implemented to favor circular shapes. In circle de-

tection, the most frequently used metric is circularity. The metric is the shape area (AΩ)
ratio to a circle area having the same perimeter (LΩ): 4πAΩ

(LΩ)2 . Eq. 9 shows factor func-
tion by using the circularity expression. Fig. 4(d) and Fig. 4(f) confirm that rectangular
shapes and circular shapes are segmented, respectively.

4 Applications

The aim of the proposed method is to improve UAO segmentation results avoiding
masking problems. In order to demonstrate the performance of our method, we illus-
trate two segmentation applications: façade image analysis and scene-text detection. We
show all databases and result tests on the following web site: http://cmm.ensmp.fr/
~hernandez/results/UOSC/testsegmentationOUSC.html.

4.1 Façade Image Analysis

Initially, we employed an ultimate attribute opening to segment façade images. For the
façade structure detection, a height attribute of the CCs bounding box is used. Fig. 5(b)
shows an example of an ultimate attribute opening using a color gradient of Fig. 5(a).
In the example, all internal structures are masked in the segmentation process because
the contrast between the sky and the building façade is bigger than the contrast between
the wall and the windows. Most urban images contain sky information; for this reason
their UAO segmentation is highly affected by the masking problem.

In façade images, windows and doors have particular features. Mayer and Reznik
[13] describe that most windows are at least partially rectangular and the height-width
ratio (ℵ) of a window generally lies between 0.20 and 5. With these features, we can
define a similarity function for the internal structures of façades.

In the case of the synthetic image, α was selected as max /2, however after several
tests with façade images, the contrast between the sky and the façade is about ten times
bigger than the one between the wall and the windows. For this reason, we have cho-
sen α = 9, i.e. 1 + α = 10. The first shape attribute is ℵ, we have used a dynamic
function centred on ℵΩref

= 2.6 and the limits have been defined on τℵ = ±2.4. The
second shape attribute is Υ because we suppose that windows are partially rectangu-
lar (ΥΩref

= 1). We have employed a square value of ΥCk
h

as a dynamic function to
penalize non-rectangular shapes or rectangular shapes with holes.

The segmentation result on the façade image is illustrated in Fig. 5. Our approach
shows a better segmentation because interest structures appear (seven over nine win-
dows/doors). Nevertheless, some structures which are neither windows nor doors be-
come visible on the image segmentation, such as bricks (Fig. 5(d)).

http://cmm.ensmp.fr/
~hernandez/results/UOSC/testsegmentationOUSC.html
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(a) Original Image (b) qθ (I) (c) FΩ
θ (I) (d) qΩ

θ (I)

α = 9,

ψ1

(
Ck

h

)
=

⎧⎨⎩ 1 −
( ℵ

Ck
h
−2.6

2.4

)
0.2 < ℵCk

h
< 5

0 otherwise
,

ψ2

(
Ck

h

)
=

(
ΥCk

h

)2

Fig. 5. (a) Original image: façade, (b) qθ (I) of UAO, (c)-(d) FΩ
θ , qθ (I) of UAO with shape

information, κ is height. Factor function: f
(
Ck

h

)
= 1 + αψ1

(
Ck

h

)
ψ2

(
Ck

h

)
. Color images in

the web site.

4.2 Scene-Text Detection

The text in a scene is linked to the semantic context of the image and constitutes a
relevant information for content-based image indexation [7]. In several cases, the text
on images is at least partially placed on a surface of different color such as: placards,
posters, etc; and favors the visibility of letters. But this surface is also contrasted in
comparison to its surrounding (Fig. 6(a)). When we utilize UAO, characters may be
masked by the contrast of the signboard with its surroundings (Fig. 6(b)).

In the same way, we propose some text features to define shape information. Based
on histograms of approximately 2000 analyzed characters , letter features are described
as follows: 1- the range of height/width ratio mostly lies between 0.4 and 2, 2- the range
of Υ falls approximately between 0.4 and 0.8 and 3- the biggest height and width of a
character is 1/3 of the image height and width respectively. We have used a similar-
ity function analogous to the façade application. For ℵ and Υ metrics, the dynamics
functions are centred on ℵΩref

= 1.2 and ΥΩref
= 0.6, respectively.

In Fig. 6, the example image shows the results of the text detection using UAO with
shape constraints. The results from this preliminary study indicate that the proposed
method is superior to the classical UAO segmentation.

5 Discussion and Future Work

In this paper we introduce a segmentation method based on ultimate opening with shape
constraints. Our approach exploits a prior knowledge to define shape information. The
method can be combined with all types of similarity shape functions, thanks to the
independence between the shape method computation and the classical UAO process.
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(a) Original Image (b) qθ (I)

(c) FΩ
θ (I) (d) qΩ

θ (I)

α = 9,

ψ1

(
Ck

h

)
=

⎧⎨⎩ 1 −
(ℵ

Ck
h
−1.2

0.8

)
0.4 < ℵCk

h
< 2.0

0 otherwise
,

ψ2

(
Ck

h

)
=

⎧⎨⎩ 1 −
(

Υ
Ck

h
−0.6

0.2

)
0.4 < ΥCk

h
< 0.8

0 otherwise
,

ψ3

(
Ck

h

)
=

{
1 HCk

h
< HI

3
∧WCk

h
< WI

3

0 otherwise

Fig. 6. (a) Original image: placard, (b) qθ (I) of UAO, (c)-(d) FΩ
θ , qθ (I) of UAO with shape

information, κ is height. Factor function: f
(
Ck

h

)
= 1 + αψ1

(
Ck

h

)
ψ2

(
Ck

h

)
ψ3

(
Ck

h

)
. Color

images in the web site.

UAO provides two pieces of information, contrast (RΩ
θ (I)) and size (qΩ

θ (I)). The pro-
posed method provides a third interesting piece of information: the shape factor image
(FΩ

θ (I)), that conveys a shape similarity measure with a reference shape. We store this
factor when the maximal residue is generated.

The proposed method has been validated in two applications of structure extractions
from façade and text images. The proposed method produces much better segmenta-
tion results than the standard UAO. In façade example (Fig. 5(c)), we can see that one
window with shutters (down - right) is not detected, even if this shape is similar to a
rectangle. The reason is its low contrast making the shape factor insufficient to avoid the
masking effect. Fig. 6(c) illustrates factor images for text example. Several letters are
not detected. ”m” case is not favored (f (Ωi, Ωref ) = 1) because its ℵ is outside the
fixed limits. In ”f” and ”t” cases, the factor value is not big enough to unmask them.
On the other hand, many noise CCs are valued with a high factor function and they are
still masked thanks to their low contrast.

In the future, we will analyze in details the factor function of the segmentation algo-
rithm in order to validate the performance on a larger databases. The detection process
is the first step in computer vision problems. We intend to apply a machine learning
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process using shape features (shape and color descriptors) to classify regions in both
applications. As well, machine learning techniques could be considered as a factor func-
tion into the presented method.
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Hierarchical Shape Decomposition via Level Sets
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Abstract. A new tool for shape decomposition is presented. It is a func-
tion defined on the shape domain and computed using a linear system
of equations. It is demonstrated that the level curves of the new func-
tion provide a hierarchical partitioning of the shape domain into visual
parts, without requiring any features to be estimated. The new tool is an
unconventional distance transform where the minimum distance to the
union of the shape boundary and an unknown critical curve is computed.
This curve divides the shape domain into two parts, one corresponding
to the coarse scale structure and the other one corresponding to the fine
scale structure.

The connection of the new function to a variety of morphological con-
cepts (Skeleton by Influence Zone, Aslan Skeleton, and Weighted Dis-
tance Transforms) is discussed.

Keywords: level set methods, PDEs and variational methods, curve
evolution, shape representation, shape decomposition.

1 Introduction

Let Ω, a connected, bounded, open domain of R2, represent a planar shape. Let
∂Ω denote the shape boundary. Consider the following PDE:

(,− α) v = −α (1)
with v(x) = 0 for x = (x, y) ∈ ∂Ω

where , denotes the Laplace operator and α is a constant scalar. The parameter
α inversely indicates the strength of diffusion. As α → 0, the trivial solution
which is identically zero is attained.

This equation has been proposed by Tari, Shah and Pien [1,2] as an alter-
native method to compute a weighted distance transform [3,4] where the local
steps between neighboring points are given different costs. The level curves of v
are related to the motion of fronts propagating with curvature dependent speed
in the direction of the inward normal and it has been demonstrated that the gra-
dient of v along a level curve approximates the curvature of level curves, thus,
suggesting a robust method for skeleton extraction by locating the extrema of
the gradient of v along the level curves. The method is illustrated in Fig. 1 using
a cat silhouette given on a 256 × 256 lattice. The level curves of v for α = 1

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 215–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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(a) (b) (c)

Fig. 1. The method of Tari, Shah and Pien [1,2]. (a)-(b) Level curves of v for α = 1
and α = 1/

√
128 ≈ 0.88, respectively. (a) The cat is given on a 256 × 256 lattice. For

large α, the v function resembles the standard distance transform. As α is reduced, the
level curves get smoother; and the number of extrema decreases. Observe that in (b)
the v function has a single extrema located at the center. (c) Skeletons computed from
the v function depicted in (b).

and α = 1/
√

128 ≈ 0.88 are shown in (a) and (b), respectively. For large α,
the v function resembles the standard distance transform. As α is reduced, the
level curves get smoother; and the number of extrema decreases. Observe that
in (b) the v function has a single extremum located at the center. In (c) the
skeletons computed from the v function depicted in (b) is shown. The skeleton
computation method of Tari, Shah and Pien [1,2] exploits connections among
morphology, distance transforms and fronts propagating with curvature depen-
dent speeds. (Such connections have stimulated many interesting approaches in
solving shape related problems [4].) Tari, Shah and Pien approach is important
in the sense that it is a first attempt to unify segmentation and local symme-
try computation into a single formulation by exploiting the connection between
(1) and the Mumford and Shah [5] segmentation functional (via its Ambrosio
and Tortorelli [6] approximation). It naturally extends to shapes in arbitrary
dimension [7].

The success of the v function as well as other diffused distance functions,
can be attributed to the replacement of the Euclidean distance with a diffusion
distance; as this allows wider interaction among boundary points. However, the
skeletons extracted from v exhibit instability when a limb is close to a neck.
The remedy proposed by Aslan and Tari [8,9,10] is to gradually increase the
diffusion such that each shape is forcefully interpreted as a single blob. Despite
its successful use in shape matching [9,10,11] neither the v function nor its mod-
ification [8,9,10] provide a natural decomposition into part structure. One has
to rely on skeleton branches whose computation requires high enough resolu-
tion. Furthermore, after the ad-hoc modification by Aslan and Tari [8,9,10], the
method cannot be applied to shapes which can not be reduced to a single blob
e.g. shapes with holes or dumbbell-like shapes.

In this paper, we propose a new function w defined over the shape domain Ω
whose level sets provide a parameter-free, robust, hierarchical decomposition of
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the shape into visual parts. This new function is computed by solving a set of linear
equations which is obtained from (1) after discretization and modification steps.

The paper is organized as follows. In Section 2, the construction of the function
w is explained. In Section 3, experiments are presented and discussed. Connec-
tion between the new function and a variety of morphological concepts are also
discussed in Section 3. Finally, in Section 4, a summary is provided.

2 The Method

In the discrete setting, (1) takes the following form:

(L − αI)v = −α1 (2)

where v is the discretized and vectorized v whose dimension N is the number
of pixels that cover the shape domain Ω, L is the N ×N matrix representation
of the Laplace operator defined on the discrete shape domain, I is the N × N
identity matrix, and −α1 is the constant right hand side term.

Let dΩ be the distance transform of the domain Ω and dΩ be the vector
representation of the discrete distance transform. Throughout the text, we use
small letters to represent continuous functions and bold small letters to denote
their discrete representations as vectors. Let J be the N × N matrix whose all
entries are equal to one. Consider the linear equation:

(L − αI − βJ)w = −αdΩ (3)

which is obtained from (2) by

– changing the right hand side term from constant to linear;
– adding a new term −βJ to the operator.

Claim: The function w (with a vectorized form w) is a smooth and necessarily
an oscillatory approximation of dΩ.

To support our claim, we relate the linear system (3) to a minimization prob-
lem. First, ignoring the third term, we establish the connection between (3) and
a quadratic energy, when β = 0.

Proposition: When β = 0, the solution w of (3) is the discretization of a
smooth approximation of dΩ with a smoothing level proportional to 1/α.

Proof: In the continuous setting, consider the following energy∫ ∫
Ω

|∇w|2dxdy + α

∫ ∫
Ω

(w − dΩ)2dxdy (4)

with w(x) = 0 for x = (x, y) ∈ ∂Ω

The above energy is minimized if the function w is close to dΩ and if its squared
gradient is small. This means that the function w is a regularized approximation
of dΩ . Setting the first variation of (4) equal to zero, to find its minimizer, yields

∇ · (∇w) − α (w − dΩ) = 0 ⇒ ∇ · (∇w) − αw = −αdΩ (5)
with w(x) = 0 for x = (x, y) ∈ ∂Ω
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Discretizing (5) using finite difference approximation gives (3) for the special
choice β = 0. Q.E.D.

Now, let us discuss the effect of the third term of the operator in (3). The
operator J computes the sum of the components of the vector that it is applied
to. Consequently, 1

N J is a global averaging operator over the shape domain.
When it is applied to a vector w, it produces μ1 where μ denotes the average
of the components of the vector w. (We remark that 1

N J is an idempotent
operator.) If the components of w sum up to 0, then the application of the
operator 1

N J produces 0. Therefore, for w �= 0, wT 1
N Jw ≥ 0.

Adding − 1
N J to (L − αI) may be interpreted as adding a non-local term to

the energy minimization problem given in (4). This term in discrete form is:

1
N

(
N∑

k=1

w(kh)

)2

where h is the spatial discretization step size. Notice that the minimum for this
expression is attained when the values of the function at the nodal points add
up to zero. Hence, the function w whose discrete form w is obtained from (3)
should simultaneously satisfy the following three competing criteria:

1. being smooth,
2. being close to dΩ,
3. having zero-crossings (attaining both positive and negative values inside the

domain).

The relative importance of each criterion depends on αwhen the other parameter,
β, is fixed at 1

N . The onlydifference betweenL and (L−αI) fromthenumerical alge-
bra point ofview is the reduction in the condition number. The role ofα in adjusting
the trade-off between the second and the third criteria is more critical. Intuitively,
we expect that the size of the negative region to shrink as α increases. In Fig. 2, for
1−D case, the solutions to (3) for various choices ofα are displayed. In (a), the solid
blue line is the solution when α = 1/N (that is α = 1/31). Each of the dashed line
plots are obtained by reducing the value of α by a factor of 2 (1/62, 1/124, 1/248).
In (b), the solidblue line is the distance transform. The dashed line indicates the so-
lution forα = 2/N . The dash-dotted line represents the solution forα = 2. Clearly,
the data fidelity criterion dominates over the other two criteria, thus, the solution
is quite close to the distance transform. Notice that the choice of α affects neither
the location of the zero-crossings nor the location of the extrema, as long as α does
not significantly exceed 1/N . Thus, both parameters are set to 1

N , giving(
L − 1

N
I− 1

N
J
)

w = − 1
N

dΩ (6)

The right hand side of the equation may be multiplied with a constant scalar
(e.g. N), without altering the qualitative behavior of the level curves.

The transformation facilitated by (6) takes both local and global interactions
within the shape domain into account, as L is a local operator; I is a point-wise
operator; J is a global operator.
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Fig. 2. The effect of α. (a) Plot of w for various choices of α not exceeding 1
N

. Seemingly
the choice of α affects neither the location of the zero-crossings nor the location of the
extrema. (b) The solid blue line is dΩ. The dashed line is w for α = 2

N
. The dash-dotted

line is the solution for α = 2. In this case, data fidelity criterion dominates.

3 Experimental Results and Discussion

In Fig. 3 and Fig. 4, the level curves of w for a few sample shapes are depicted.
The new function attains both positive and negative values. The inner zero-
level curve shown in black separates the shape domain Ω into two disjoint open
sets {Ω− : (x, y) ∈ Ω s.t w(x, y) < 0} and {Ω+ : (x, y) ∈ Ω s.t w(x, y) > 0} with
a common boundary ∂Ω+. This boundary, which is the zero-level curve, divides
the shape domain into two parts capturing, respectively, the coarsest structure
(in the sense of Aslan and Tari [8,10]), and the peripheral structure including
limbs, protrusions, boundary texture and noise. This is the first partitioning
level in the hierarchy. The size of Ω− relative to the size of Ω+ (i.e. |Ω−|

|Ω+| ) is a
measure of boundary roughness [12] which attains its smallest value for a circle.
The ratio increases for a shape with significant protrusions. Let us consider the
human silhouettes given in Fig. 3. The first level of partitioning with the help
of zero level set separates the main body from the legs, the arms, and the head.
The restriction of w to Ω− (note that this is the lower level set at threshold 0)
has five local minima, located roughly at the centers of the two legs, the two
arms, and the head. Five watershed [13,14] regions within Ω− capture the legs,
the arms and the head. The restriction of w to Ω+ (note that this is the upper
level set at threshold 0) has a single maximum located at the center. The main
body is a single blob without any boundary concavities indicating otherwise.

For most cases, Ω+ is composed of a single blob. In some cases, such as the
dog-bone like shapes in Fig. 4, Ω+ is composed of multiple blobs. In (a)-(d), the
restrictions of w to Ω+ has two local maxima. These points may be interpreted
as seed points. In the process of growth, two growing blobs may merge at the
unique saddle point and continue to grow together (Fig. 4 (a) and (b)). Notice
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Fig. 3. The level curves of w for two human shapes. The inner black level curve is the
zero-level curve. It partitions the shape into disjoint sets inside which w attains positive
and negative values, respectively. This partitioning separates the coarse structure from
the peripheral structure. Intuitive parts are also captured. See the text for discussion.

that ∂Ω+ has a pair of concavities indicating two blobs. For the shapes shown
in Fig. 4 (c) and (d), the peripheral structure grows before the merge of the two
inner blobs. In these cases, the restriction of w to Ω− does not have a saddle
point. In all cases, Ω+ captures the coarse scale structure.

Similar to the Eccentricity transform by Kropatsch et al. [15], the new func-
tion is a peculiar distance transform. In the classical distance transform and its
smooth analogues [10,3,16,2], for each point on the shape interior, the minimum
distance to the shape boundary ∂Ω is computed. Thus, the value of the dis-
tance function at a point depends monotonically on the minimum distance of
the point to the shape boundary ∂Ω. Curiously, the value of w at a point seems
to be a monotonic function of the minimum distance to either ∂Ω or ∂Ω+ (yet
unknown), whichever is closer.

The new function w has an intriguing connection to the v function in [2,8,10].
Once Ω+ and Ω− are separated, the level curves in both subdomains are analo-
gous to the level curves of the v function. Thus the skeleton computation method
in [1,2] becomes readily applicable, as demonstrated in Fig. 5. ∂Ω+ resembles
the level curve passing through the last disconnection point in [10]. Notice that
∂Ω− ≡ ∂Ω+ ∪ ∂Ω.

We offer a connection between the new function and a morphological concept
called SKIZ (Skeleton by Influence Zone). Consider the human shapes displayed
in Fig. 3. Imagine six seed points, respectively, in the centers of the body, arms,
legs and head. Let a growth start from these seed points, each claiming a region
of influence. These growing regions finally meet at the zero-level curve separating
the coarse scale structure from the fine scale structure. We illustrate this concept
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Fig. 4. The level curves of w for dog-bone like shapes. The inner black level curve is
the zero-level curve. See the text for discussion.

in Fig. 6 using the dog-bone-like shape from Fig. 4(a). Each figure depicts a union
of a lower level set

{
χλ− : (x, y) ∈ χλ− s.t. w(x, y) < λ−

}
, and an upper level

set
{
χλ+ : (x, y) ∈ χλ+ s.t. w(x, y) > λ+

}
. λ− is negative and λ+ is positive.

From left to right, λ− increases, while λ+ decreases. Both thresholds gradually
approach to zero at the rightmost figure.

The behavior of the level sets is being explored, using the harmonic analysis
point of view, in a future paper [17].

Finally, in Fig. 7, sample decomposition results are displayed. Watershed zones
are extracted by applying Matlab’s watershed command directly to the restric-
tion of w to Ω−. Parts of Ω− are shown in bright colors. Dark blue pixels are the
watershed boundaries. Ω+ is shown in gray. Note that the decomposition is not
applied to Ω+ which in some cases such as the one in (n) is actually composed of
two blobs of approximately equal size. (See also Fig.4(a)-(b).) Multiple instances
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(a) (b)

Fig. 5. A shape on a 200 × 225 lattice [9]. (a) The level curves of w. (b) Skeleton
extracted from w using the skeleton extraction method of Tari, Shah and Pien [1,2]
followed by the prunning and grouping procedure by C. Aslan [8,9,10]. The procedures
are applied directly to w, without any pre or post procesing. The outer shape boundary
and the inner zero-level curve is superimposed merely for illustration purpose. The zero
level curve resembles the level curve passing through the last disconnection point in the
disconnected Aslan skeleton [8,10,9]. Notice that some of the skeleton branches code
the main body and some of the skeleton branches code the individual parts; consistent
with the implied part structure. (The figure is prepared by E. Erdem using the codes
of C. Aslan and the author.)

→ → →

Fig. 6. Connection to SKIZ. Imagine four seed points located at the local min-
ima inside Ω−, and two seed points located at the local maxima inside Ω+.
These seeds grow and merge at the zero-level curve. Each figure depicts a union
of a lower level set

{
χλ− : (x, y) ∈ χλ− s.t. w(x, y) < λ−

}
, and an upper level set{

χλ+ : (x, y) ∈ χλ+ s.t. w(x, y) > λ+

}
. λ− is negative and λ+ is positive. From left

to right, λ− increases, while λ+ decreases. Both thresholds gradually approach to zero
at the rightmost figure.

from the same shape category are used in order to demonstrate the insensitiv-
ity of the w function to visual transformation including local variations and
articulations. Similar shapes are decomposed similarly and the detected parts
are compatible with our intuition. There are some little discrepancies that may
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Fig. 7. Sample decomposition results. Shapes are drawn at most on a 60 × 60 lattice.
Parts of Ω− are shown in bright colors. Dark blue pixels are the watershed boundaries.
Ω+ is shown in gray. Parts are extracted by applying Matlab’s watershed command
directly to the restriction of w to Ω−. Multiple instances from the same shape category
are used in order to demonstrate the insensitivity of the w function to visual trans-
formations including local variations and articulations. Similar shapes are decomposed
similarly and the detected parts are compatible with our intuition.

seem like an instability at first look. The middle finger in (h) is decomposed into
two parts. This is due to a discretization error in the original shape. There is a
two pixel thick bridge between the ring and the middle fingers, forming an arti-
ficial hole in between the two parts. Despite this complication, the partitioning
is quite similar to the others. We may assign a saliency to each partitioning in
order to eliminate less salient partitions. For example we may use the value of
the w function at the point of break as a saliency measure. Another possibility
is to compare neighboring parts for a possible merge.

4 Summary and Conclusion

We presented a linear equation (6) whose solution is an unconventional distance
function. The level sets of this new function provide a hierarchical decomposition
of the shape domain in the form of watershed zones. The new function takes
both positive and negative values inside the shape domain. The zero level curve
resembles the level curve passing through the last disconnection point in the
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disconnected Aslan skeleton [8,9,10]; and it divides the domain into a coarse
scale structure (Ω+) and a fine scale structure (Ω−). Inside both Ω+ and Ω−,
the behavior of the level curves is equivalent to that of of the Tari, Shah Pien v
function [1,2,7].

Features extracted from distance transform or its analogues has been previ-
ously used for part decomposition e.g. [18,19]. Unlike these works, we do not
extract any features. The method does not require any parameters. In our com-
putations, we retain the locally diffusive effect of the Laplace operator while
introducing a global effect. The perceptual implications of the exploitation of
the combined local/global character of shapes is a subject matter of an upcom-
ing publication by the author [20].
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Abstract. The aim of this paper is to propose efficient tools for analysing
shape families using morphological operators. The developments include
the definition of shape statistics (mean and variance of shapes, modes of
shape variation) and the interpolation/extrapolation in shape geodesic
paths. The main required ingredients for the operators and the algorithms
here introduced are well known in mathematical morphology such as the
median set, the watershed on distance functions or the interpolation func-
tion. In addition, the projection of shapes in spaces with reduced dimen-
sions using PCA or ISOMAP techniques permits to apply morphological
interpolation techniques in shape manifolds.

1 Introduction

Let X = {X1, X2, · · · , XN} = {Xi}N
i=1 be a family (or collection) of N shapes,

where Xi ∈ P(E) represents the set (or binary image) of the shape i, and the
support space E is a nonempty set. Typically for the digital 2D images E ⊂ Z2.
The set Xi is a compact set (and typically a closed simply connected set). The
family X can be considered as a random variable of shape, where Xi represents
a realization of this random variable. The family may also viewed as defined in
a shape space, where X is modelled as a low dimensional manifold embedded in
a higher-dimensional space. The aim of this paper is to propose efficient tools
for analysing shape families using morphological operators. This kind of analysis
includes the definition of shape statistics (mean and variance of shape, modes of
variation of shape) and the interpolation/extrapolation in shape manifolds or in
shape geodesic paths.

Statistical theory of shapes has been studied by Kendall [9], representing the
shapes as a finite number of salient points; and by Grenander [6], considering the
shapes as points on some infinite-dimensional differentiable manifold, under the
actions of Lie groups. More in relation with our study, Klassen et al. [10] pro-
posed statistical shape analysis and shape interpolation by differential geometry
methods, where the shapes are represented by curvature functions. Whitaker [16]
proposed a method for image blending by progressive minimisation of a differ-
ence metric in a variational framework (i.e., a pair of coupled nonlinear PDE),
where the metric is based on computing the distance between level-set shapes
(distance function for binary images). Charpiat et al. [3] and Etyngier et al. [5]
formalised the problem by optimizing mappings based on the Hausdorff metric
and the signed distance functions.

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 226–237, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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Background notions. The main required ingredients for the operators and the
algorithms introduced here are well known in mathematical morphology.

Let E be a metric space equipped with a distance dM : E × E → R+, and
let K′ be the class of the non empty compact sets of E. The distance of point
x to set Y is defined as dM (x, Y ) = inf{dM (x, y), y ∈ Y }, x ∈ E and Y ∈ K′.
Then, the distance function of set X according to metric dM is the mapping
ΔMX : E → R+, such that

ΔMX(x) = dM (x,Xc) = inf{‖x, y‖M : y ∈ Xc}.

We also use in this study the notion of distance between two shapes. Given two
sets X , Y ∈ K′, the most basic mapping K′ × K′ → R+ to compare two sets is
their Euclidean distance, i.e., dE(X,Y ) =

∑
x∈E 1x∈[(X∪Y )\(X∩Y )]. Classically,

it is considered most useful in practice the distance associated to the Jacquard
coefficient :

dJ (X,Y ) = 1 −
∑

x∈E 1x∈(X∩Y )∑
x∈E 1x∈(X∪Y )

=
∑

x∈E 1x∈X�Y∑
x∈E 1x∈(X∪Y )

,

where X,Y = [(X ∪Y )\ (X ∩Y )]. Furthermore, the natural metric to compare
spatial shapes is the Hausdorff distance:

dH(X,Y ) = max
{

sup
x∈X

d(x, Y ) ; sup
y∈Y

d(y,X)
}

.

The Hausdorff distance can also be expressed by means of the dilations by the
balls of space E [14]:

dH(X,Y ) = inf {λ : X ⊆ δλ(Y );Y ⊆ δλ(X)} ,

with δλ(X) being the dilation of X ∈ K′ by a radius of size λ ∈ R+: δλ(X) =
∪{Bλ(x), x ∈ X}, where Bλ(x) stands for the compact ball of centre x and of
radius λ.

The theory of morphological interpolation was introduced in [11,2,14]. In par-
ticular, the interpolation distance function [11],

Y
interp

X
(x) =

dY
X(x)

dY
X(x) + dX

Y (x)
;

and the morphological median set [2]:

m(X,Y ) = Y,{x :
Y

interp
X

(x) ≤ 0.5},

will be frequently used below. The distance dY
X(x) : E×E → R+ to set X in set

Y is defined as [13]:

dY
X(x) = n if

(
εn

X(Y ) = 0 and εn−1
X (Y ) = 1

)
,
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(a) (b)

Fig. 1. (a) Four population of cells, each one representing a spatially equivalent shape
family X . (b) Two approaches for computing the mean shape using the median set:
top, merger algorithm and bottom, iterative algorithm.

where ε1
X(Y ) = X ∩ δ1(X ∩ Y ) for points on Y ⊆ X , ε1

X(Y ) = X ∪ ε1(X ∪ Y )
for points on X ⊆ Y ; and εn

X(Y ) = ε1
Xεn−1

X (Y ).
Shape analysis makes no sense without a renormalisation of shapes. We only

consider spatially equivalent shape families: two shapes will be considered as
equivalent if there exists a rotation and a translation transforming one shape
in the other. In practice, the mass center and the angle of orientation of prin-
cipal axis are obtained by computing the second order inertia moments. Then
the shapes are aligned and rotated to impose the same centroid and the same
principal axis of variation, see in Fig. 1(a) four examples of spatially equivalent
shape families. Other algorithms of centring and orientation can be considered,
e.g. embedding which maximises the intersection between the sets [7], or which
minimises the Hausdorff distance between the sets [14].

2 Shape Statistics

Let us start with the basics of shape statistics, the mean shape μX and the
variance of shape σ2

X from a shape family X . These basic statistics are needed for
instance to build prototypes or shape priors in model-based image segmentation
or to define primary grains for Boolean modelling and simulation. We describe
and compare 3 different methods.

2.1 Computation of Mean Shapes

Approach based on the median set μms
X . The morphological median set

is defined only for two sets, i.e., m(X1, X2). The extension to N sets requires
consequently the combination of successive median sets. Fig. 1(b) illustrates
two different cascaded median set operators to compute μms

X . The merger al-
gorithm leads sequentially to a single final shape, whereas the iterative algo-
rithm is applied until that the cumulated distance between sets is lower than
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a fixed threshold (i.e., convergence to the mean set). Both algorithms depend
on the ordering of the operators since the median set is not associative, i.e.,
m(m(X1, X2), X3) �= m(X1,m(X2, X3)). Empirical observations show that the
iterative algorithm depends less upon the ordering of the sets and converges after
a few iterations, however the merger algorithm requires less computation and at
the end the results are quite similar.

Extrinsic mean by thresholding the sum of distance functions μthres
X .

The sum of the distance functions of the sets in X has been widely used in
the literature to build the theory of averaging shapes [4,1], although the asso-
ciated algorithms to estimate the mean shapes are often inefficient. Inspired by
the work [1], we propose to use both the inner and outer distance functions
to estimate two extrinsic means, where the inner distance function of the fam-
ily is ΔX (x) =

∑N
i ΔXi(x) and the outer distance function is ΔX c (x) =∑N

i ΔXc
i (x). The algorithm aims at computing an optimal level set in ΔX (x).

Let Xu ∈ P(E) be the set obtained by thresholding the inner distance function
at value u, i.e.,

Xu = {x ∈ E : ΔX (x) ≥ u} , u ∈ [0,max(ΔX (x))[.

We define the cumulative distance of shape family X to set Xu by

DΔX (x)(u) =
N∑
i

dM (Xi, X
u),

where dM (·, ·) is the distance between the two sets. Then the inner extrinsic
mean is defined as

μinner
X = argu minDΔX (x)(u),

this minimization problem can be solved by an exhaustive search algorithm (i.e.,
discretization of ΔX (x) in K thresholded sets and selection of the minimum). A
similar outer extrinsic mean μouter

X can be defined from optimal thresholding on
function DΔX c(x)(u). The associated extrinsic mean shape μthres

X is then defined
as the median set between μinner

X and μouter
X . Fig. 2(a) gives an example of the

various elements for an example. An important parameter of this algorithm is
the distance dM (·, ·). We have compared the performance of both the Jacquard
distance and the Hausdorff distance: it appears that the obtained mean shapes
are more interesting when the Jacquard distance is chosen.

Locally optimal mean by watershed of sum of squared distance func-
tions μwshed

X . The previous approach presents two main limitations: i) the inner
and outer distance functions are used separately, ii) the obtained mean shape is
optimal only for a constant level set. A more original and powerful technique to
exploit the sum of distance functions is based on the classical definition of the
mean μ of N samples: μ is the value such that

∑N
i (μ− xi)2 is minimal, which

leads to
∑N

i (μ − xi) = 0 and consequently to Nμ =
∑N

i xi. In the extension
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∨
x∈E δqX (x)B(x)

(b)

Fig. 2. (a) Computation of extrinsic mean by thresholding the sum of distance func-
tions. (b) Computation of locally optimal mean by watershed of sum of squared dis-
tance functions. X is the population B) of Fig. 1(a), where the last image represents
an intermediate step of the quench function reconstruction.

to the case of the shape family X , we start by constructing the sum of distance
functions to the frontier sets ∂Xi using the squared Euclidean distance, i.e.,

Δ2
E∂X (x) =

N∑
i

Δ2
E∂Xi(x),

which takes simultaneously the inner/outer distance functions. The locally min-
imal contour of Δ2

E∂X (x) corresponds, by definition, to the mean shape.
This optimal contour can be easily obtained by computing the watershed line

of the inverse of this distance function, i.e.,

∂μwshed
X = Wshed([Δ2

E∂X (x)]c,mrk(x)),

where the marker function is mrk(x) = εB(mrkin(x)) ∪ εB(mrkout(x)), with
mrkin = {

⋂
i Xi} and mrkout = [{

⋃
i Xi}]c. Fig. 2(b) depicts an example of the

algorithm. Replacing the L2 norm by the L1 norm and calculating the watershed
from the inverse of ΔE∂X (x) leads to the contour of the median shape of the
family.

We have compared the three approaches μms
X , μthres

X and μwshed
X for computing

mean shape from the same family. The three algorithms yield very similar results.
However the last method, summing the squared distance function to the contours
and extracting its thalweg line (watershed of the inverse function) is by far the
most efficient. Moreover, as we show below, it is also useful to compute the shape
variance.
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A) B) C) D) A) & C) & D)

Fig. 3. Mean shapes ∂μwshed
X (in red) and std. dev. of shape σX (in white) for the

populations of cells of Fig. 1(a).

2.2 Variance of a Shape Family

Having defined a mean shape, we can now explore the computation of the vari-
ance of a shape family. In fact, it is more interesting, for the purpose of repre-
sentation as an image, to obtain the standard deviation σX .

If we remind that the variance of a set of points is σ2 = 1/N
∑N

i (μ − xi)2,
it is evident that the variance can be easily computed from Δ2

E∂X (x). More
precisely, starting from the squared quench function of the family of shapes X ,
which is defined as:

q2
X (x) =

⎧⎨⎩
(1/N) ·Δ2

E∂X (x) if x ∈ ∂μwshed
X

0 if x ∈ [∂μwshed
X ]c

then, the image representation of the standard deviation of shape is obtained by
the reconstruction of the quench function:

σX =
∨

x∈E

δqX (x)(x).

In Fig. 3 are given the mean shape and the std. dev. of shape for the populations
of cells of Fig. 1(a).

The notion of shape variance can be also obtained using alternative algo-
rithms. For instance, after computing the distance of each shape Xi to their
mean μX , i.e., dXi

μX (x), the variance on the frontier of the mean shape, ∂μX , can
be approached by 1/N

∑N
i

(
dXi

μX

)2.

3 Linear Methods for Dimensionality Reduction:
Eigenshapes, Modes of Shape Variation

The computation of the mean shape (and variance of shape) has real sense only
in the case of homogenous shape families since on collections of very heteroge-
neous shapes, the mean tends to be a circle. The application of standard tech-
niques of multivariate data analysis can help the exploration of shape families
(to determine the homogenous subfamilies) and their representation in spaces
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of reduced dimension. The most classical approach is the principal component
analysis (PCA) [8].

The basic idea is to represent the sets as vectors: Xi ∈ P(E) → xi ∈ RD

(D is the cardinal of discrete space E), thus the shape family is now given
by the following matrix of data X = [x1 x2 · · · xN ]. The covariance matrix
of centred data: CXX = cov(X̂), where X̂ = X − X (if the average X is not
subtracted, the average will appear as the first principal component) summarizes
the variability of the family, analysed by solving the following spectral problem
CXXw = λw, whose eigendecomposition leads to [Λ,W] = eig(CXX), where
Λ is the diagonal matrix of different eigenvalues λj and W is the matrix of
the associated eigenvectors wj . The relative value of λj (i.e., the variance of
shape explained by the axis j) is used to determine the number of significant
dimensions K.

Fig. 4 illustrates the method. First of all, it is possible to produce an image
representation of the K first shape modes {vj}K

j=1: vj = X̂wj . The correspond-
ing images of the eigenvectors, Vj(x), are the eigenshapes which correspond to
the principal modes of shape variation (see Fig. 4(a)). In addition, the N values
of each eigenvector correspond to the projection of each shape onto this vector
(see Fig. 4(a)). This can be used typically for shape clustering (i.e., unsupervised
classification in shape space in order to identify sub-families of shapes). Another
application is the computation of an intrinsic mean shape as follows:

ν̂X = argk∈1,2,··· ,N min
N∑

i=1

⎛⎝ K∑
j=1

(sj(i) − sj(k))2

⎞⎠ ,

where sj(i) = WT xi, i.e., ν̂X is the shape which minimises his cumulated dis-
tance to the other shapes in the PCA space (see Fig. 4(b)).

PCA has already been applied to shape analysis [7], but the exploitation of
the eigenshapes has not yet considered in detail. One of the basic objectives
is to decompose the eigenshapes into binary images representing the orthogonal
modes of variation. As we observe in the eigenshapes images Vj(x), the modes are
differentiated by positive/negative structures on a reference intensity. Using the
classical close-holes operator, we can decompose both phases into two different
images:

Vj↓(x) = [CloseHoles(V c
j (x))]c ; Vj↑ = [CloseHoles(Vj(x))].

The objective is to construct two closed binary shapes from Vj↓ and Vj↑, but as
we can observe in Fig. 4(c), the “modes of shape variation” require an additional
“average shape” V0(x), which is obtained from the image of the average: X →
V0(x)). The gradient of each image Vj↓ and Vj↑ is combined by sum with the
gradient of the average image, i.e., g0(x) = δ1(V0)(x) − ε1(V0)(x). Hence, the
two phases of mode of variation j can be now segmented with the watershed
transformation as follows:

Wshed(ĝj↓(x),mrk(x)) ; Wshed(ĝj↑(x),mrk(x)),
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V1(x) V2(x)

V3(x) V4(x)

(a) (b)

V0 V1↓ V1↑

g0(x) ĝ1↓(x) ĝ1↑(x)

mrk(x) Wsd(ĝ1↓, mrk) Wsd(ĝ1↑, mrk)

(c)

Fig. 4. Shape analysis using PCA of family X (population B) of Fig. 1(a)): (a) Four first
eigenshapes. (b) Projection of shapes on the two first components (in red, intrinsic mean
shape). (c) Morphological segmentation of modes of variation from the first eigenshape
(see the text for full details).

where ĝj↓(x) = gj↓(x) + g0(x) with ĝj↓(x) = δ1(Vj↓)(x) − ε1(Vj↓)(x). The ob-
tained images for the example are also given in Fig. 4(c).

Morphological interpolation does not always a good job if two shapes are too
dissimilar; PCA can then be used as a useful preprocessing: the shapes X and Y
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to be interpolated are first projected onto the different K principal components
produced by PCA ; the projections are then are interpolated separately. Finally,
the K interpolated shapes are recombined linearly in order to obtain the final
shape.

4 Isometric Shape Spaces and Geodesic Shape
Interpolation

PCA is based on the covariance matrix of the shape family, which corresponds
to consider a dimensionality reduction using the Euclidean distance of shapes. A
lot of effort has been paid in recent years to introduce nonlinear dimensionality
reduction techniques compatible with other distances between the points of the
space. Particularly interesting for our purposes is the isometric feature mapping
(ISOMAP) [15]. It is a method for estimating the intrinsic geometry of a data
manifold based on a rough positioning of the neighbours of each data point on
the manifold. More precisely, it is a low-dimensional embedding method based on
geodesic distances on a weighted neighbourhood graph, which is then reduced by
multidimensional scaling (MDS). ISOMAP depends on being able to choose the
neighbourhood size (k-nearest neighbours graph) and on a distance to compare
each pair of points (weights of edges of graph). This weighted graph defines the
connectivity of each data point via its nearest neighbours in the high-dimensional
space. The precise algorithm for ISOMAP is described in [15].

In Fig. 5(a) is given the two-dimensional ISOMAP embedding (with the neigh-
bourhood graph) for the four populations of Fig. 1(a). We have compared various
distances to weight the graph, and again the Jacquard distance outperforms the
Hausdorff distance in our examples. Compared to the PCA projection of shape
families, the ISOMAP embedding allows to define geodesic paths between the
shapes, and in addition, the shortest path distances in the neighbourhood graph
are preserved in the two dimensional embedding recovered by ISOMAP. This
property is specially useful for the interpolation of shapes in the family X (see
Fig. 5(b)). For instance, given two shapes Xi and Xj , an Euclidean shape path

[X0 = Xi, X
P = Xj ]

of P −1 intermediate points Xk is classically obtained by thresholding the inter-
polating function interpXP

X0 (x) at values λ = (1/P ) · k, with k = 1, 2, · · · , P − 1.
Now, using the ISOMAP graph, we can define the geodesic shape path

ΠP+1(Xi, Xj) =
(
X0 = Xi, X

1, · · · , XP = Xj

)
,

which includes the Q shapes of the family X belonging to the path. The remain-
ing (P − Q − 1) shapes are computed by the interpolation function according
to their respective geodesic distance, i.e., the number of intermediate shapes
between two successive shapes Xn and Xm ∈ ΠP+1(Xi, Xj) is

(P −Q− 1) · (dgeo(Xn, Xm)/(dgeo(Xi, Xj)),
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(a) (b)

(c)

Fig. 5. (a) Projection of four populations of shapes on the two first ISOMAP dimen-
sions (using the Jacquard distance). (b) Idem. for family X : population B) of Fig. 1(a)).
(c) Morphological shape interpolation of 8 intermediate shapes between X0 and XP (in
red): Top, interpolation along an Euclidean shape path; bottom, interpolation along a
geodesic path (including 3 shapes of the family in blue).

where dgeo(X,Y ) is the geodesic distance between the shapes X and Y . See
example in Fig. 5(c).

Shape interpolation in reduced spaces has been also studied in [5], with a
Delaunay triangulation of the training family of shapes in the reduced space.
When a new shape Y is projected in the trained space (which is a difficult
problem), the corresponding triangle determines the 3 initial sets which can
be used to approach Y by a barycentric-weighted mean shape. This problem
can also be solved in our framework. Let us define the weighting interpolation
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function between sets X and Y as
Y

interp
X

(x;ωX , ωY ) =
ωXdY

X(x)
ωXdY

X(x) + ωY dX
Y (x)

,

where ωX and ωY are the weights (i.e., ωX/ωY corresponds to the speed of
propagation between sets X and Y ). The gravity centre between three sets of
the family Xi, Xj and Xk is obtained as X i,j,k = {x : interpXk

Xi,j (x; 2, 1) ≤
0.5}, where X i,j = {x : interpXj

Xi
(x; 1, 1) ≤ 0.5}. The result depends on the

processing order however the differences are negligible in practical examples.
For the interpolation of a not centred shape in a triangle, the coefficient for each
set can be proportionally set up.

5 Conclusions

We have proposed efficient tools for analysing shape families using morphological
operators. Various algorithms for the computation of mean shape and variance of
shape as well as for the construction of shape priors for modes of shape variation
have been introduced. We have also illustrated how the morphological interpo-
lation can be used in shape manifolds to obtain more relevant results. The main
motivation of this study was to define prototypes and shape targets for model-
based morphological segmentation. More generally, the statistical analysis of
shapes families requires the computation of advanced notions such as covariance
and probability distribution in shape spaces. This last point will be the object
of ongoing work.
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Abstract. In classical mathematical morphology for scalar images, the
natural ordering of grey levels is used to define the erosion/dilation and
the derived operators. Various operators can be sequentially applied to
the resulting images always using the same ordering. In this paper we
propose to consider the result of a prior transformation to define the
imaginary part of a complex image, where the real part is the initial im-
age. Then, total orderings between complex numbers allow defining sub-
sequent morphological operations between complex pixels. In this case,
the operators take into account simultaneously the information of the
initial image and the processed image. In addition, the approach can be
generalised to the hypercomplex representation (i.e., real quaternion) by
associating to each image three different operations, for instance a direc-
tional filter. Total orderings initially introduced for colour quaternions
are used to define the derived morphological transformations. Effects of
these new operators are illustrated with different examples of filtering.

1 Introduction

Let f(x) = t be a scalar image, f : E → T . In general t ∈ T ⊂ Z or R, but for the
sake of simplicity of our study, T = {0, 1, · · · , tmax} (e.g., tmax = 255 for 8 bits
images) is considered as an ordered set of grey-levels; and typically, for digital 2D
images x = (x, y) ∈ E where E ⊂ Z2 is the support of the image. For 3D images
x = (x, y, z) ∈ E ⊂ Z3. According to the natural scalar partial ordering ≤, T
is a complete lattice, and then F(E, T ) is a complete lattice too. Morphological
operators are naturally defined in the framework of functions F(E, T ) [15,16,9].
Various operators can be sequentially applied to the resulting images always
using the same ordering ≤.

The aim of this paper is to construct (hyper)-complex image representations
which will be endowed with total orderings and consequently, which will lead
to complete lattices. More precisely, it is proposed to use the result of a prior
morphological transformation to define the imaginary part of a complex image,
where the real part is the initial scalar image. Then, total orderings between
complex numbers allow defining subsequent morphological operations between

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 238–249, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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complex pixels. In this case, the operators take into account simultaneously the
scalar intensities of both the initial and the transformed images. The complex
scalar value brings information about the invariance of intensities with respect to
a particular size and shape structure (i.e., using openings, closings or alternate
sequential filters) as well as information about the local contrast of intensities
(i.e., by means of top-hat transformations). In addition, the approach is then
generalised to the hypercomplex representation (i.e., real quaternion) by associ-
ating to each image three different operations, for instance a series directional
filters.

The motivation of these methodological developments is to obtain “regular-
ized” morphological operators whose result depends not only on the sup/inf of
the grey values, locally computed in the structuring element, but also on differen-
tial information or more regional information. The problem has been previously
addressed using an inf-semilattice framework [10], working on fuzzy logic mor-
phology [4] or introducing microviscous effects by second-order operators [13].

Geometric algebraic representations have been previously used for image mod-
elling and processing. Classically, in one-dimensional (1D) signal processing, the
analytic signal is a powerful complex-model which provides access to local am-
plitude and phase. The complex signal is built from a real signal by adding its
Hilbert transform -which is a phase-shifted version of the signal- as an imaginary
part to the signal. The approach was extended to 2D signals and images in [3]
by means of the quaternionic Fourier transform. In parallel, another theory in-
troduced in [7] to extend the analytic model in 2D is based on the application
of the Riesz transform as generalised Hilbert transform, leading to the notion
of monogenic signal which delivers an orthogonal decomposition into amplitude,
phase and orientation. Later, the monogenic signal was studied in the framework
of scale-spaces [8]. More recently, in [19], the 2D scalar-valued images are embed-
ded into the geometric algebra of the Euclidean 4D space and then the structure
are decomposed using monogenic curvature tensor. The quaternion-based rep-
resentations have been also used to deal with colour image processing, such as
colour Fourier transform, colour convolution and linear filters, have been studied
mainly by [5,14,6], and to build colour PCA by [18]. We have recently explored
also the interest of colour quaternions for extending mathematical morphology
to colour images [2].

2 Complex Representation, Total Orderings and Complex
Operators

Let ψ : T → T be a morphological operator for scalar images. We need to recall
a few notions which characterise the properties of morphological operators. ψ
is increasing if ∀f, g ∈ F(E, T ), f ≤ g ⇒ ψ(f) ≤ ψ(g). It is anti-extensive if
ψ(f) ≤ f and it is extensive if f ≤ ψ(f). An operator is idempotent if ψ(ψ(f)) =
ψ(f).

The transformation ψ is applied to f(x) ∈ F(E, T ) according to the shape
and size associated to the structuring element B and it is denoted as ψB(f)(x).
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We may now define the following ψ-complex image

fC(x) = f(x) + iψB(f)(x),

with fC ∈ F(E, T × iT ). The data of the bivalued image are discrete complex
numbers: fC(x) = cn = an + ibn, where an and bn are respectively the real and
the imaginary part of the complex of index n in the discrete space T ×iT ⊂ C. Let
us consider the polar representation, i.e., cn = ρn exp (iθn), where the modulus
is given by ρn = |cn| =

√
a2

n + b2n and the phase is computed as θn = arg (cn) =
atan2 (bn, an) = sign(bn) atan (|bn|/an), with atan2 (·) ∈ (−π, π]. The phase can
be mapped to [0, 2π) by adding 2π to negative values.

Working in the polar representation, two alternative total orderings based on
lexicographic cascades can be defined for complex numbers:

cn ≤
Ω

θ0
1

cm ⇔
{
ρn < ρm or
ρn = ρm and θn �θ0 θm

; cn ≤
Ω

θ0
2

cm ⇔
{
θn ≺θ0 θm or
θn =θ0 θm and ρn ≤ ρm

where �θ0 depends on the angular difference to a reference angle θ0 on the unit
circle, i.e.,

θn �θ0 θm ⇔
{

(θn ÷ θ0) > (θm ÷ θ0) or
(θn ÷ θ0) = (θm ÷ θ0) and θn ≤ θm

such that

θp ÷ θq =
{ | θp − θq | if | θp − θq |≤ π

2π− | θp − θq | if | θp − θq |> π

These total orderings can be easily interpreted. In ≤
Ω

θ0
1

, priority is given to the
modulus, in the sense that a complex is bigger than another if its modulus is
bigger, and if both have the same modulus the bigger value is the one whose
phase is closer to the reference θ0. In case of equal phase angular distances,
the last condition for a total ordering is based on closeness to the phase origin,
i.e., θ = 0. The ordering ≤

Ω
θ0
2

uses the same priority conditions, but they are
reversed. Furthermore, by the equivalence of norms, we can state that ρn ≤ ρm

⇔ |an| + |bn| ≤ |am| + |bm|.
Given now a set of pixels of the initial image [f(z)]z∈Z , the basic idea behind

our approach is to use, for instance ≤
Ω

θ0
1

, for ordering the set Z of initial pixels.
Formally, we have

fC(y) ≤
Ω

θ0
1

fC(z) ⇒ f(y) �
Ω

θ0
1

f(z),

where the indirect total ordering �
Ω

θ0
1

allows to compute the supremum
∨̃

Ω
θ0
1

and

the infimum
∧̃

Ω
θ0
1

in the original scalar-valued image, i.e., fC(y) =
∨

Ω
θ0
1

[fC(z)]

⇒ f(y) =
∨̃

Ω
θ0
1

[f(z)].
We notice that the complex total orderings are only defined once the trans-

formation ψB is totally defined. The next question to be studied is what kind
of morphological operators are useful to build basic operators such as dilations
and erosions.
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Adjunction and duality by complementation. The theory of adjunctions
on complete lattices has played an important role in mathematical morphol-
ogy [15,16,9]. The operator ε between the complete lattice T and itself is an ero-
sion if ε (

∧
Ωθ0 [f(xk)]) =

∧
Ωθ0 ε ([f(xk)]), k ∈ I, for every function f ∈ F(E, T ).

A similar dual definition holds for dilation δ (i.e., commutation with the supre-
mum). The pair (ε, δ) is called an adjunction between T → T iff δ (f) (x) ≤Ωθ0

g(x) ⇔ f(x) ≤Ωθ0 ε (f) (x). If we have an adjunction for the ordering Ωθ0 , the
products of (ε, δ) such as the openings and the closings can be defined in a stan-
dard way. Hence, it is important that the proposed complex erosions/dilations
verifies the property of adjunction.

One of the most interesting properties of standard grey-level morphological
operators is the duality by the complementation �. The complement image (or
negative image) �f is defined as the reflection of f with respect to tmax/2; i.e.,
�f(x) = tmax − f(x) = f c(x), ∀x ∈ E. Let the pair (ε, δ) be an adjunction,
the property of duality holds that ε(f c) = (δ(f))c ⇒ ε(f) = (δ(f c))c, and this
is verified for any other pair of dual operators, such as the opening/closing. In
practice, this property allows us to implement exclusively the dilation, and using
the complement, to be able to obtain the corresponding erosion. In our case, the
transformation f → �f ⇒ fC → f̃C = �f + iψB(�f) = �f + i�ξB(f), where
ξB(f) = �ψB(�f) is the dual operator of ψB. Note that this is different from the
complement of the ψ-complex image: �fC = �f + i�ψB(f).

Ordering invariance and commutation under anamorphosis. The con-
cepts of ordering invariance and of commutation of sup and inf operators under
intensity image transformations is also important in the theory of complete lat-
tices [11,17]. More precisely, in mathematical morphology a mapping A : T → T
which satisfies the criterion t ≤Ω s ⇔ A(t) ≤Ω A(s) ∀t, s ∈ T is called an anamor-
phosis. Then, we say that the ordering ≤Ω is invariant under A. Any increasing
morphological operator ψ commutes with any anamorphosis, i.e., ψB (A(f)) =
A (ψB(f)). It is well known for the grey-tone case that any strictly increasing map-
ping A is an anamorphosis.

A typical example is the linear transformationA(t) = K(t) if 0 ≤ K(t) ≤ tmax,
A(t) = 0 if K(t) < 0 and A(t) = tmax if K(t) > tmax, where K(t) = αt + β,
with α ≥ 0. In our case, we have for the ψ-complex image: f → f ′ = A(f) ⇒
fC → f ′C = A(f) + iψB(A(f)) = A(f) + iA (ψB(f)), i.e., both axes of complex
plane are modified according to the same mapping (scaled and shifted for the
example of the linear transformation). Obviously, the partial ordering according
to the modulus is invariant under A. The partial ordering with respect to the
phase is also invariant if θ is defined in the first quadrant. Hence, the orderings
Ωθ0

1 and Ωθ0
2 commutes with anamorphosis applied on the scalar function f .

γ-complex dilation and ϕ-complex erosion. A morphological filter is an
increasing operator that is also idempotent (i.e., erosion and dilation are not
idempotent). The two basic morphological filters, the opening γB and the clos-
ing ϕB, seem particularly appropriate to build the ψ-complex image. Besides
the idempotence, the opening (closing) is an anti-extensive (extensive) operator
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which removes bright structures and peaks of intensity (dark structures and val-
leys of intensity) that are thinner than the structuring element B, the structures
larger than B preserve their intensity values.

Let us use the diagram depicted in Fig. 1(a) for illustrating how the complex
values are ordered. If we consider for instance ψ ≡ γ and Ωθ0

1 , the pixels in
structures invariant according to B have module values which are bigger than
pixels having the same initial grey value but belonging to structures that do not
match B. In the diagram, c1 is bigger than c3, but for c1 and c2 which have
the same modulus, a reference θ0 is needed. By the anti-extensivity, we have
f(x) ≥ γB(f)(x) and hence 0 ≤ θ ≤ π/4. By taking θ0 = π/2, we consider that,
with equal modulus, a point is bigger than another if the intensities before and
after the opening are more similar (i.e., more invariant). Or in other words, when
the ratio γB(f)(x)/f(x) is closer to 1 or θ is closer to π/4, and consequently to
π/2. This implies that the opening is an appropriate transformation to define
a dilation which propagate the bright intensities associated in priority to B-
invariant structures.

The same analysis leads to easily justify the choice of ψ ≡ ϕ and Ω
π/2
1 for

the complex erosion. Note that now ϕB(f)(x)/f(x) ≥ 1 ⇒ π/4 ≤ θ ≤ π/2. By
taking the reference θ0 = π/2, the idea of intensities invariance before and after
the closing is again used, in the ordering by θ, for considering now that a point
is smaller than another if both have the same modulus and the first is closer to
θ0 = π/4 than the second (in the example of Fig. 1(a), c5 is smaller than c4).

Mathematically, the γ-complex dilation is defined by⎧⎪⎨⎪⎩
fC(x) = f(x) + iγBC (f)(x),

δ〈γBC
,B〉(f)(x) = {f(y) : fC(y) =

∨
Ω

π/2
1

[fC(z)], z ∈ B(x))}.

and the dual ϕ-complex erosion is formulated as follows:⎧⎪⎨⎪⎩
fC(x) = f(x) + iϕBC (f)(x),

ε〈ϕBC
,B〉(f)(x) = {f(y) : fC(y) =

∧
Ω

π/2
1

[fC(z)], z ∈ B(x))}.

The complex operator requires two independent structuring elements: BC asso-
ciated to the imaginary part; and B which is properly the structuring element
of the complex transformation. Obviously, BC and B can have different size and
shape.

The pair
(
δ〈γBC

,B〉, ε〈εBC
,B〉

)
is an adjunction, i.e., δ〈γBC

,B〉(f)(x) �
Ω

π/2
1

g(x)
⇔ f(x) �

Ω
π/2
1

ε〈ϕBC
,B〉(g)(x), for any f, g ∈ F(E, T ). The proof is as follows. We

consider the values of points z ∈ B(x), and we have
∨

Ω
π/2
1

[fC(z)] ≤
Ω

π/2
1

gC(x)
⇔

∨
Ω

π/2
1

[f(z) + iγBC (f)(z)] ≤
Ω

π/2
1

g(x) + iγBC (g)(x) ⇔ f(x) + iγBC (f)(x)
≤

Ω
π/2
1

g(x) + iγBC (g)(x) ≤
Ω

π/2
1

g(x) + iϕBC (g)(x). On the other hand, we have
f(x)+ iϕBC (f)(x) ≤

Ω
π/2
1

∧
Ω

π/2
1

[g(z)+ iϕBC (g)(z)] ⇔ f(x)+ iγBC (f)(x) ≤
Ω

π/2
1

f(x) + iϕBC (f)(x) ≤
Ω

π/2
1

g(x) + iϕBC (g)(x). Consequently, we establish that∨
Ω

π/2
1

[fC(z)] ≤
Ω

π/2
1

gC(x) ⇔ fC(x) ≤
Ω

π/2
1

∧
Ω

π/2
1

[gC(z)].
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In addition, if we apply the dilation to the complemented original im-
age, we have

∨
Ω

π/2
1

[f c(z) + iγBC (f c)(z)] =
∨

Ω
π/2
1

[f c(z) + iϕc
BC

(f)(z)] =[∧
Ω

π/2
1

[f c(z) + iϕc
BC

(f)(z)]c
]c

=
[∧

Ω
π/2
1

[f(z) + iϕBC (f)(z)]
]c

, z ∈ B(x).
Hence, we have the following classical result of duality: δ〈γBC

,B〉(f) =[
ε〈ϕBC

,B〉(f c)
]c

.
It should be remarked that the dilation is extensive according to the ordering

Ω
π/2
1 : f(x) �

Ω
π/2
1

δ〈γBC
,B〉(f)(x), but not necessarily according to the standard

ordering: f(x) � δ〈γBC
,B〉(f)(x). If this last property is required for any reason,

we can define the γ-complex upper dilation as:

δ̂〈γBC
,B〉(f)(x) = δ〈γBC

,B〉(f)(x) ∨ f(x).

Using the standard infimum ∧, the dual definition leads to the ϕ-complex lower
erosion ε̂〈φBC

,B〉(f)(x), which is anti-extensive according to the grey level or-
dering.

As we show below, because they constitute an adjunction, the γ-complex
dilation and the ϕ-complex erosion can be combined to construct derived γ, ϕ-
complex operators such as gradients, openings/closing and even geodesic opera-
tors (e.g., opening by reconstruction, leveling, etc.). Instead of a morphological
opening/closing for the γ-complex dilation and the ϕ-complex erosion, any other
pair of anti-extensive extensive dual transformation can play a similar role, e.g.
opening/closing by reconstruction, or thinning/thickening which are not idem-
potent operators. It is also possible to consider the ordering Ωθ0

2 for computing a
complex dilation and erosion where the complex part is an opening or a closing
respectively. However, we prefer to illustrate other possible ways for introducing
the complex part.

τ+-complex dilation and τ−-complex erosion. Let us consider another
family of complex dilation/erosion using now the residues of the opening/closing.
We remind that the top-hat and the dual top-hat are respectively the residue
of the opening and the closing [12], i.e., τ+

B (f)(x) = f(x) − γB(f)(x) and
τ−B (f)(x) = ϕB(f)(x) − f(x). The top-hat transformations yield positive grey-
level images and are used to extract contrasted components (i.e., smaller than the
structuring element used for the opening/closing) with respect to the background
and removing the slow trends. The top-hat is an idempotent transformation and
if f(x) ≥ 0 then τ+(f)(x) is anti-extensive and [τ−(f)]c(x) is extensive.

We introduce, with the help of the top-hats, the τ+-complex dilation as⎧⎪⎨⎪⎩
fC(x) = f(x) + iτ+

BC
(f)(x),

δ〈τ+
BC

,B〉(f)(x) = {f(y) : fC(y) =
∨

Ω
π/4
2

[fC(z)], z ∈ B(x))}.

and the equivalent τ−-complex erosion defined by⎧⎪⎨⎪⎩
fC(x) = f(x) − i[τ−BC

(f)]c(x),

ε〈τ−
BC

,B〉(f)(x) = {f(y) : fC(y) =
∧

Ω
−π/4
2

[fC(z)], z ∈ B(x))}.
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(a)

(b1) (b2)

(b3) (b4)

Fig. 1. (a) Complex plane for points ∈ f(x) + iψB(f)(x). Standard erosion vs. com-
plex erosions: (b1) original image f , (b2) erosion εB(f)(x), (b3) ϕ-complex erosion
ε〈ϕBC

,B〉(f)(x), (b4) τ−-complex erosion ε〈τ−
BC

,B〉(f)(x). For the three examples B is

a square of size 10 pixels and BC is a square of 40 pixels.

We must remark that for the τ−-erosion fC ∈ F(E, T × −iT ). We can use
again the diagram of Fig. 1(a) to interpret these operators. By using the ordering
Ωθ0

2 , the supremum favours the complex points closer to π/4 which correspond
to those where the initial intensity is more similar to the intensity of the top-
hat (the point c1 is bigger than the points c2 and c3); or in other words, the
points belonging to structures well contrasted with respect to BC . The intensity
itself has only a secondary influence which is introduced by the modulus (second
condition in the lexicographic ordering Ωθ0

2 ). In the case of the erosion, a point
is smaller than another is the θ of the first is closer to −π/4 than the θ of the
second. In the diagram, c7 is smaller than c6 and c8 is the smallest between the
three (even if c8 presents the biggest initial intensity). In summary, by means
of the τ+-complex dilation and τ−-complex erosion, we obtain a mechanism
of filtering based on the local contrast of structures and the expected results
should be quite different of the standard dilation and erosion. Due to the fact
that the modulus of the complex number at point x is strongly correlated to
its initial intensity at x, the γ-complex dilation and ϕ-complex erosion lead to
filtering effects more similar to the standard ones. This analysis is illustrated by
the comparative example of erosion depicted in Fig. 1(b). The properties of the
pair of operators

(
δ〈τ+

BC
,B〉, ε〈τ−

BC
,B〉

)
cannot be explored in detail by the limited

length of the paper.
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3 Generalisation to Multi-operator Cases Using Real
Quaternions

We generalise the ideas introduced above by the extension to image represen-
tations based on hypercomplex numbers or real quaternions. Before that, we
remind the foundations of quaternions.

Remind on quaternionic representations. A quaternion q ∈ H may be
represented in hypercomplex form as q = a + bi + cj + dk, where a, b, c and d
are real. A quaternion has a real part or scalar part, S(q) = a, and an imaginary
part or vector part, V (q) = bi + cj + dk, such that the whole quaternion may
be represented by the sum of its scalar and vector parts as q = S(q) + V (q). A
quaternion with a zero real/scalar part is called a pure quaternion. The addition
of two quaternions, q,q′ ∈ H, is defined as follows q+q′ = (a+a′)+(b+b′)i+(c+
c′)j + (d + d′)j. The addition is commutative and associative. The quaternion
result of the product of two quaternions q′′ = qq′ = S(q′′) + V (q′′) can be
written in terms of dot product · and cross product × of vectors as S(q′′) =
S(q)S(q′)− V (q) · V (q′) and V (q′′) = S(q)V (q′) + S(q′)V (q) + V (q)× V (q′).
The multiplication of quaternions is not commutative, i.e., qq′ �= q′q; but it is
associative.

Any quaternion may be represented in polar form as q = ρeξθ, with ρ =√
a2 + b2 + c2 + d2, ξ = bi+cj+dk√

b2+c2+d2 = ξii+ξjj+ξkk and θ = arctan
(√

b2+c2+d2

a

)
.

Then a quaternion can be rewritten in a trigonometric version as q =
ρ (cos θ + ξ sin θ). In the polar formulation, ρ = |q| is the modulus of q; ξ is
the pure unitary quaternion associated to q (by the normalisation, the pure
unitary quaternion discards “intensity” information, but retains orientation in-
formation), sometimes called eigenaxis ; and θ is the angle, sometimes called
eigenangle, between the real part and the 3D imaginary part. It is possible to
describe vector decompositions using the product of quaternions. A full quater-
nion q may be decomposed about a pure unit quaternion pu [5,6]: q = q⊥ +q‖,
the parallel part of q according to pu, also called the projection part, is given
by q‖ = S(q) + V‖(q), and the perpendicular part, also named the rejection
part, is obtained as q⊥ = V⊥(q) where V‖(q) = 1

2 (V (q) − puV (q)pu) and
V⊥(q) = 1

2 (V (q) + puV (q)pu).

Total orderings for quaternions. Total orderings introduced initially for
colour quaternions [2] can be used also to define the derived morphological trans-
formations. Hence, we can generalise the polar-based total orderings proposed
above, now named ≤Ω

q0
1

and ≤Ω
q0
2

, by including an additional condition in the
cascade associated to the distance of the eigenaxis between the quaternions n
and m and a reference quaternion, i.e., ‖ξn − ξ0‖ ≥ ‖ξm − ξ0‖. Note that here
the reference θ0 is the eigenangle from the reference quaternion q0 (and ξ0 is
the eigenaxis of the reference). The total ≤Ω

q0
3

is defined by considering as first
condition in the lexicographical cascade the distance to reference eigenangle. But
we can also introduce another total ordering based on the ‖ / ⊥ decomposition
as follows:
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qn ≤Ω
q0
4

qm ⇔
{ |q‖ n| < |q‖ m| or
|q‖ n| = |q‖ m| and |q⊥ n| ≥ |q⊥ m|

The pure unitary quaternion required for the ‖ / ⊥ decomposition is just the
corresponding to the reference quaternion q0. The last one is only a pre-ordering,
i.e., two distinct quaternions can verify the equality of the ordering. In order to
have total ordering, the lexicographic cascade can be completed with a priory in
the choice of the various hypercomplex components.(
Ψ+, Ωq0

+

)
-hypercomplex dilation and

(
Ψ−, Ωq0

−
)
-hypercomplex ero-

sion. Given the four-variate transformation Ψ =
(
ψ0

B0
, ψI

BI
, ψJ

BJ
, ψK

BK

)
, the

Ψ -hypercomplex image is defined as

fH(x) = ψ0
B0

(f)(x) + iψI
BI

(f)(x) + jψJ
BJ

(f)(x) + kψK
BK

(f)(x).

After choosing a particular Ψ+-hypercomplex representation as well as a partic-
ular quaternionic total ordering Ωq0

+ , one defines the
(
Ψ+, Ωq0

+
)
-hypercomplex

dilation as δ〈Ψ+,B〉(f)(x) = {f(y) : fH(y) =
∨

Ω
q0
+

[fH(z)], z ∈ B(x))}. Similarly,
associated to the pair

(
Ψ−, Ωq0

−
)
, a Ψ−-hypercomplex erosion is defined. We

should notice that this framework generalise the complex operators introduced
in previous section; e.g., Ψ+ = (Id, γBC , 0, 0) and Ωq0

+ ≡ Ωq0
1 with q0 = 1 + i

corresponds to the γ-complex dilation. Therefore, two kinds of degrees of free-
dom must be set up (i.e., the hypercomplex transformation and the quaternionic
ordering, which includes the choice of the reference quaternion) to have totally
stated the operator. As we show below in the examples, the four-variate trans-
formation can be used for instance to introduce directional openings, directional
top-hats or directional gradients for the imaginary part, and real counterpart be-
ing an isotropic operator which cannot be necessary the identity. This framework
can be specifically exploited by working with Ωq0

4 and selecting the appropriate
reference quaternion for the ‖ / ⊥ decomposition. The properties of these generic
four-variate hypercomplex operators should be studied in depth in ongoing re-
search.

4 Examples of Derived Morphological Operators and
Applications

The hypercomplex dilations/erosions introduced in the paper can be used to
build more advanced operators such as gradients, openings/closings (and their
residues), alternate sequential filters; and geodesic operators, such as the open-
ings/closings by reconstruction or the levelings. The principle entails using al-
ways a homogeneous pair of basic operators and then applying the standard
definitions for the evolved operators.

In Fig. 2 are given three comparative examples of morphological filters applied
to natural images. The idea is to compare the standard result with various
hypercomplex operators. In the first case we calculate a symmetric gradient
(i.e., dilation minus erosion) of a very noisy image. It is observed that each
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(a0) (b0) (c0)

(a1) (a2) (a3) (a4)

(b1) (b2) (b3) (b4)

(c1) (c2) (c3) (c4)

Fig. 2. First row: original images. Second row, comparison of gradient �B(f) =
δB(f) − εB(f) (B is a square of 3 pixels): (a1) standard transformation, (a2) τ+-
complex dilation and τ−-complex erosion where BC = D5 is a square of size 5, (a3)
Ψ+/− = (γB0/ϕB0 , γBI/ϕBI , γBJ /ϕBJ , 0), Ω

q0
3 with q0 = i + j, where B0 = D5,

BI = Lx
5 is an horizontal line of length 5 and BJ = Ly

5 is an vertical line of length
5, (a4) Ψ+/− =

(
τ+

D5
/− [τ−D5

]c, τ+
Lx

5
/− [τ−Lx

5
]c, τ+

L
y
5
/− [τ−

L
y
5
]c, 0

)
, Ωq0

3 with q0 = i + j.
Third row, comparison of γBϕB(f) (B is a square of 3 pixels): (b1) standard transfor-
mation, (b2) based on γ-complex dilation and ϕ-complex erosion with BC = D10, (b3)
Ψ+/− =

(
γD10/ϕD10 , γLx

10
/ϕLx

10
, γL

y
10
/ϕL

y
10
, 0

)
, Ωq0

3 with q0 = i+ j, (b4) idem. with

q0 = i. Four row, comparison of top-hat τ+
B (B is a square of 25 pixels): (c1) stan-

dard transformation, (c2) based on γ-complex dilation and ϕ-complex erosion with
BC = D10, (c3) Ψ+/− =

(
γD10/ϕD10 , γLx

10
/ϕLx

10
, γL

y
10
/ϕL

y
10
, 0

)
, Ωq0

3 with q0 = i+ j,

(c4) Ψ+/− =
(
γD10/ϕD10 , �Lx

10
/− �Lx

10
, �L

y
10
/− �L

y
10
, 0

)
, Ωq0

3 with q0 = i+ j.
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hypercomplex gradient presents particular characteristics but in any case the
results are regularised with respect to the standard gradient. The second example
illustrates how an alternate open/close filter is used to simplify a noisy image.
We notice again that the behaviour of hypercomplex operators is quite different
of standard ones, and in particular, we observe the way to introduce directional
effects on the filters by decomposing the quaternions according to a particular
privileged direction. The effects of a top-hat are finally compared in the last
example. The aim is to remove as well as possible the background, in order to
enhance the aeroplanes. As we observe, the results are better for some of the
hypercomplex operators.

5 Conclusions and Perspectives

We have introduced morphological operators for grey-level images based on in-
direct total orderings. The orderings are associated to hypercomplex image rep-
resentations where the components of the hypercomplex function are obtained
from a prior transformation of the original image. The motivation was to intro-
duce in the basic erosion/dilation operators some information on size invariance
or on relative contrast of structures. The results obtained from the initial tests
showed their potential applicative interest. However, a more detailed character-
isation of their properties and some specific applications of these operators are
currently under study. Other representations using upper dimensional Clifford
Algebras [1] can be foreseen in order to have a more generic framework not lim-
ited to four-variables image representations. In addition, the approach can also
be extended to already natural multivariate images (i.e., multispectral images)
and, in this last case, it seems appropriate to envisage tensor representations
and associated total orderings.
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Abstract. In order to describe anisotropy in image processing models
or physical measurements, matrix fields are a suitable choice. In diffusion
tensor magnetic resonance imaging (DT-MRI), for example, information
about the diffusive properties of water molecules is captured in symmet-
ric positive definite matrices. The corresponding matrix field reflects the
structure of the tissue under examination. Recently, morphological par-
tial differential equations (PDEs) for dilation and erosion known for grey
scale images have been extended to matrix-valued data.

In this article we consider an adaptive, PDE-driven dilation process
for matrix fields. The anisotropic morphological evolution is steered with
a matrix constructed from a structure tensor for matrix valued data. An
important novel ingredient is a directional variant of the matrix-valued
Rouy-Tourin scheme that enables our method to complete or enhance
anisotropic structures effectively. Experiments with synthetic and real-
world data substantiate the gap-closing and line-completing properties
of the proposed method.

1 Introduction

The enhancement and extraction of shape information from image objects is
one of the principle tasks of mathematical morphology. Traditionally this task is
successfully tackled with morphological operations based on the fundamental di-
lation process. Dilation and erosion can be realised in a set-theoretic or ordering
based framework, see e.g. [1,2,3,4,5,6], but it may also be implemented within the
context of partial differential equations (PDEs) [7,8,9,10,11] and their numerical
solution schemes (see [12] as well as the extensive list of literature cited there).
On a set-theoretic basis, locally adaptive linear structuring elements whose direc-
tions are inferred from a diffused squared gradient field have been introduced for
binary images in [13]. The PDE-based approach is conceptually attractive since
it allows for digital scalability and even adaptivity of the represented structuring
element. This versatility was exploited, for example in [14] to create a adaptive,
PDE-based dilation process for grey value images. In [15] the idea of morpholog-
ical adaptivity has been transferred to the setting of matrix fields utilising the

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 250–260, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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operator-algebraic framework proposed in [16]. The goal of [15] was to enhance
line-like structures in diffusion tensor magnetic resonance imaging (DT-MRI),
the main source of matrix fields consisting of positive semidefinite matrices.

In this article we propose a concept for PDE-based adaptive morphology for
matrix fields, involving directional derivatives in the formulation of the PDE-
based dilation process. In contrast to the work in [15] the numerical realisation
employed in this article takes advantage of the accurate calculation of directional
derivatives that relies on bi-linear interpolation.

We will start from a scalar adaptive formulation for d-dimensional data u in
form of the dilation PDE

∂tu = ‖M(u) · ∇u‖ (1)

with a data dependent, symmetric, positive semidefinite d×d-matrix M = M(u).

Let us consider greyvalue images (d = 2): Then one has M =
(
a b
b c

)
=(

‖(a, b)‖ν
‖(b, c)‖η

)
with unit vectors ν = 1

‖(a,b)‖
(

a
b

)
and η = 1

‖(b,c)‖
(

b
c

)
. This turns

(1) into

∂tu =
√

(a∂xu + b∂yu)2 + (b∂xu + c∂yu)2 , (2)

=
√
‖(a, b)‖2(∂νu)2 + ‖(b, c)‖2(∂ηu)2 . (3)

In [15] the partial derivatives ∂xu and ∂yu in (2) were approximated with the
standard Rouy-Tourin scheme [17] to obtain a directional derivative, which might
lead to numerical artifacts. Now, however, we calculate the directional derivatives
necessary for the steering process directly by means of equation (3). Hence it is
decisive for our approach to implement the directional derivatives ∂νu and ∂ηu
in (3) via a directional version of the Rouy-Tourin scheme as will be explained
in Section 4.

Equation (1) describes a dilation with an ellipsoidal structuring element since
an application of the mapping (x, y) �→ M(x, y) transforms a sphere centered
around the origin into an ellipse. The necessary directional information of the
evolving u contained in the matrix M may be derived from the so-called structure
tensor. The structure tensor, dating back to [18,19], allows to extract directional
information from an image. It is given by

Sρ(u(x)) := Gρ ∗
(
∇u(x) · (∇u(x))

)
=

(
Gρ ∗

(
∂xiu(x) · ∂xju(x)

))
i,j=1,...,d

(4)

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ. For
more details the reader is referred to [20] and the literature cited there. In [21,22]
Di Zenzo‘s approach [23] to construct a structure tensor for multi-channel images
has been extended to matrix fields yielding a standard structure tensor

Jρ(U(x)) :=
m∑

i,j=1

Sρ(Ui,j(x)) (5)
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with matrix entries Ui,j, i, j = 1, . . . ,m. This tensor is a special case of the full
structure tensor concept for matrix fields as proposed in [24]. For our purpose
it suffices to use the standard tensor Jρ(U(x)) to infer directional information
from matrix fields.

The article is structured as follows: In Section 2 we will briefly give an account
of basic notions of matrix analysis needed to establish a matrix-valued PDE for
an adaptively steered morphological dilation process. We introduce the steering
tensor that guides the dilation process adaptively in Section 3. It is explained
how the numerical scheme of Rouy and Tourin is turned into a directional variant
that can be used on matrix fields in Section 4. An evaluation of the performance
of our approach to adaptive morphology for matrix fields is the subject of Section
5. The remarks in Section 6 conclude this article.

2 Elements of Matrix Analysis

This section provides the essential notions for the formulation of matrix-valued
PDEs. For a more detailed exposition the reader is referred to [16].

A matrix field is considered as a mapping F : Ω ⊂ IRd −→ Symm(IR) from a
d-dimensional image domain into the set of symmetric m×m-matrices with real
entries, F (x) = (Fp,q(x))p,q=1,...,m . The set of positive semi-definite matrices,
denoted by Sym+

m(IR), consists of all symmetric matrices A with 〈v,Av〉 :=
vAv ≥ 0 for v ∈ IRm . DT-MRI produces matrix fields with this property.
Note that at each point x the matrix F (x) of a field of symmetric matrices can
be diagonalised yielding F (x) = V (x)D(x)V (x), where V (x) is a orthogonal
matrix, while D(x) = diag(λ1, . . . , λm) represents a diagonal matrix with the
eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λm ∈ IR of F (x) as entries.

The extension of a function h : IR −→ IR to Symm(IR) is standard [25]: We set
h(U) := V diag(h(λ1), . . . , h(λm))V ∈ Sym+

m(IR). Specifying h(s) = |s|, s ∈ IR
as the absolute value function leads to the absolute value |A| ∈ Sym+

m(IR) of a
matrix A. The partial derivative for matrix fields at ω0 is handled componentwise:
∂ωU(ω0) = (∂ωUp,q(ω0))p,q where ∂ω stands for a spatial or temporal derivative.
We define the generalised gradient ∇U(x) at a voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1U(x), . . . , ∂xd
U(x)) (6)

which is an element of (Symm(IR))d, in close analogy to the scalar setting where
∇u(x) ∈ IRd. For (extended) vectors W ∈ (Symm(IR))d with matrix components
we set |W |p := p

√
|W1|p + · · · + |Wd|p for p ∈]0,+∞[ . It results in a positive

semidefinite matrix from Sym+
m(IR), the direct counterpart of a nonnegative real

number as the length of a vector in IRd. Since the product of two symmetric
matrices is in general not symmetric we employ the so-called Jordan product

A •B :=
1
2
(AB + BA) . (7)

It produces a symmetric matrix, and it is commutative but neither associative
nor distributive. In the proposed numerical scheme we will use the maximum
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and minimum of two symmetric matrices A,B. In direct analogy with relations
known to be valid for real numbers one defines [26]:

max(A,B) =
1
2
(A + B + |A−B|) , min(A,B) =

1
2
(A + B − |A−B|) , (8)

where |F | stands for the absolute value of the matrix F . Now we are in the
position to formulate the matrix-valued counterpart of (1) as follows:

∂tU = |M(U) • ∇U |2 (9)

with an initial matrix field F (x) = U(x, 0). Here M(U) denotes a symmetric
md×md-block matrix with d2 blocks of size m×m that is multiplied block-wise
with ∇U employing the symmetrised product ”•”. Note that | · |2 stands for
the length of M(U) •∇U in the matrix valued sense. The construction of M(U)
is detailed in the next section.

3 Steering Matrix M(U) for Matrix Fields

With these notions at our disposal we propose the following construction of the
steering matrix M in the adaptive dilation process for matrix fields.

First, the directional information is deduced from the standard structure ten-
sor Jρ(U) in (5); this symmetric d × d-matrix Jρ(U) is spectrally decomposed,
and the following mapping is applied:

H :
{

IRd
+ −→ IRd

+
(λ1, . . . , λd) �−→ c

λ1+···+λd
(λd, λd−1, . . . ,

K
c · λ1)

, (10)

with constants c,K > 0. H applied to Jρ(U) yields the steering matrix M ,

M := H
(
Jρ(U)

)
.

The eigenvalues of Jρ(U) fulfil λ1 ≥ · · · ≥ λd. Hence, the ellipsoid associated
with the quadratic form of M is flipped, and, depending on the choice of K,
more excentric if compared with Jρ(U). In this way we enforce dilation towards
the direction of least contrast, i. e. along structures.

Second, in order to enable a proper matrix-vector-multiplication in (9) we
enlarge the d× d-matrix M to a md×md-matrix M by an extension operation
utilising the m×m-identity matrix Im and the so-called Kronecker product [25]:

M = M ⊗

⎛⎜⎝ Im · · · Im

...
. . .

...
Im · · · Im

⎞⎟⎠ =

⎛⎜⎝M11Im · · · M1dIm

...
. . .

...
Md1Im · · · MddIm

⎞⎟⎠ (11)

which yields a suitably sized (block-) matrix.



254 L. Pizarro et al.

4 Matrix-Valued Directional Numerical Scheme

The first-order finite difference method of Rouy and Tourin [17] may be used to
solve the scalar PDE (3) in the isotropic case with M = Id. Let us denote by un

ij

the grey value of a scalar 2D image u at the pixel centred in (ihx, jhy) ∈ IR2 at
the time-level nτ of the evolution, with n the iteration number and τ the time
step size. Furthermore, we employ standard forward and backward difference
operators, i.e., Dx

+u
n
i,j := un

i+1,j − un
i,j and Dx

−u
n
i,j := un

i,j − un
i−1,j with

spatial grid size hx, hy in x− and y−direction, respectively. The Rouy-Tourin
method utilises an upwind approximation in the pixel (ihx, jhy) of the partial
derivative ux (and analogously uy):

ux ≈ max
(

1
hx

max
(
−Dx

−u
n
i,j , 0

)
,

1
hx

max
(
Dx

+u
n
i,j , 0

))
. (12)

For a unit vector ν = (ν1, ν2) the directional derivative ∂νu of u may be
approximated by ∂νu = 〈ν,∇u〉 = ν1∂xu + ν2∂yu . Hence it is close at hand
to approximate numerically equation (2) directly. However, this favours mass
transport along the directions of the x- and y-axis leading to a poor representa-
tion of the directional derivative. Instead we take advantage of equation (3) in
this article and propose an alternative involving an interpolated function value
ui+ν1,j+ν2 defined by the subsequent bi-linear1 approximation (13).

ui,j+1 ui+1,j+1

ui+1,j
ui,j

ui+1,j−1

ui+ν1,j+ν2

ui−ν1,j−ν2

ui+ν1,j+ν2

= ui,j · (1 − hx|ν1|) · (1 − hy|ν2|)
+ ui+sign(ν1),j · hx|ν1| · (1 − hy|ν2|)
+ ui,j+sign(ν2) · (1 − hx|ν1|) · hy|ν2|
+ ui+sign(ν1),j+sign(ν2) · hx|ν1| · hy|ν2|

(13)

Fig. 1. Interpolated image value ui+ν1,j+ν2 with
√
ν2
1 + ν2

2 = 1. It allows for backward
and forward finite differences in the direction of (ν1, ν2)
.

This leads to forward and backward difference operators in the direction of ν
with ‖ν‖ = ‖(ν1, ν2)‖ =

√
ν2
1 + ν2

2 = 1:

Dν
+u

n
i,j := un

i+ν1,j+ν2
− un

i,j and Dν
−u

n
i,j := un

i,j − un
i−ν1,j−ν2

(14)

1 For the sake of efficiency we use bi-linear interpolation, although higher order alter-
natives such as bi-cubic or spline interpolation can be employed as well.
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and to a direct approximation of the directional derivative

∂νu = uν ≈ max
(

1
h

max
(
−Dν

−u
n
i,j, 0

)
,

1
h

max
(
Dν

+u
n
i,j , 0

))
(15)

where h := min(hx, hy) . The extension to higher dimensions poses no prob-
lem. Furthermore, the resulting approximation of the directional derivatives is
also consistent: Note that bi-linear approximation implies ui+ν1,j+ν2 = u((i +
ν1)hx, (j + ν2)hy) + O(hx · hy), and hence

1
h
Dν

+ui,j =
1
h

(
u((i + ν1)hx, (j + ν2)hy) − u(ihx, jhy)

)
+ O(max(hx, hy))

= uν + O(max(hx, hy)) . (16)

Analogous reasoning applies to Dν
−ui,j . With the calculus concept presented in

Section 2 it is now straightforward to define one-sided directional differences in
ν-direction for matrix fields of m×m-matrices:

Dν
+U

n(ihx, jhy) := Un((i+ν1)hx, (j+ν2)hy)−Un(ihx, jhy) ∈ Symm(IR) , (17)

Dν
−U

n(ihx, jhy) := Un(ihx, jhy)−Un((i−ν1)hx, (j−ν2)hy) ∈ Symm(IR) . (18)

In order to avoid confusion with the subscript notation for matrix components
we wrote U(ihx, jhy) to indicate the (matrix-) value of the matrix field evaluated
at the voxel centred at (ihx, jhy) ∈ IR2. The η-direction is treated accordingly.
The notion of supremum and infimum of two matrices – as needed in a matrix
variant of Rouy-Tourin – has been provided in Section 2 as well. Hence, having
these generalisations at our disposal a directionally adaptive version of the Rouy-
Tourin scheme is available now in the setting of matrix fields simply by replacing
grey values un

ij by matrices Un(ihx, jhy) and utilising the directional derivative
approximations.

5 Experiments

Each matrix of the field is represented and visualised as an ellipsoid resulting
from the level set of the quadratic form {xA−2x = const. : x ∈ IR3} associated
with a matrix A ∈ Sym+

3 (IR). By employing A−2 the length of the semi-axes of
the ellipsoid correspond directly with the three eigenvalues of the matrix. We
apply our PDE-driven adaptive dilation process to synthetic 2D data as well as
to real DT-MRI data. For the explicit numerical scheme we used a time step size
of 0.1, grid size h = hx = hy = 1, and c = 0.01 ·K in (10).

Figure 2(a) exhibits a 32 × 32 synthetic matrix field used for testing. It is
composed of two interrupted diagonal stripes with different thickness, built from
cigar-shaped ellipsoids of equal size but different orientation. The lines intersect
the x-axis with an angle of about −63 degrees. Figure 2(b) shows the result of
applying the proposed adaptive dilation process using a directional Rouy-Tourin
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Fig. 2. Synthetic data sets. (a) Top left: Ellipsoids in line-like arrangement. (b) Top
right: Proposed adaptive dilation with D-RT scheme; K = 20, ρ = 4, t = 1. (c)
Middle left: Ellipsoids in spiral arrangement. (d) Middle right: Isotropic dilation;
t = 1. (e) Bottom left: Adaptive dilation with RT scheme; K = 20, ρ = 2, t = 1. (f)
Bottom right: Proposed adaptive dilation with D-RT scheme; K = 20, ρ = 2, t = 1.
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Fig. 3. Real data, 2D-slice of a 3D DT-MRI matrix field, and enlarged regions.
(a) Top left: Original data set. (b) Top center: Adaptive dilation with RT scheme;
K = 10, ρ = 1, t = 1.5. (c) Top right: Proposed adaptive dilation with D-RT scheme;
K = 10, ρ = 1, t = 1.5. (d) Middle left: Zoomed original data set. (e) Middle right:
Zoomed isotropic dilation after t = 1.5. (f) Bottom left: Zoomed adaptive dilation
with RT scheme. (g) Bottom right: Zoomed adaptive dilation with D-RT scheme.
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(D-RT) scheme (9). Note that the direction and amount of anisotropic dilation
does not depend on the orientation of the ellipsoids, but on the orientation and
strength of the structural conformations.

Figure 2(c) displays another 32 × 32 testing image, namely a spiral-like field
where large portions of the spiral have been removed. Figures 2(d), 2(e) and 2(f)
depict the results of applying isotropic dilation [26], adaptive dilation with the
classical Rouy-Tourin (RT) scheme [15], and the proposed adaptive dilation em-
ploying a directional Rouy-Tourin (D-RT) scheme (9). Comparatively, classical
isotropic dilation requires much more time to fill in the missing ellipsoids and
it also broadens the structures in all directions. Adaptive dilation with the RT
scheme as in [15] does close the gaps in an anisotropic manner. However, numer-
ous artifacts appear due to the numerical scheme bias to the coordinate axes.
This problem is successfully solved in our PDE-based adaptive dilation process
by utilising a D-RT scheme for approximating the partial derivatives. Evidently,
relying on the D-RT scheme is much more accurate for longer dilation times.

We also tested the proposed method on a real DT-MRI data set of a human
head consisting of a 128 × 128 × 38-field of positive definite matrices. Figure
3(a) shows the lateral ventricles in a 40× 55 2D section. Adaptive dilation with
the classical RT scheme [15] and the proposed adaptive dilation process with a
D-RT scheme (9) are shown in Figures 3(b) and 3(c), respectively. For a better
comparison we scale-up these images around the genu area in Figures 3(d)-(g),
including isotropic dilation [26] in Fig.3(e). Due to measurement errors the fibre
tracts are interrupted in the original data. These holes are quickly and anisotrop-
ically filled by our directional-adaptive dilation process while enhancing slightly
the directional structure of the fibres and preserving the shape of the ventricles.
The adaptive dilation process with the classical RT scheme presented in [15] is
affected by numerical artifacts and isotropic dilation [26] is too dissipative.

6 Conclusion

In this article we have presented a method for an adaptive, PDE-based dilation
process in the setting of matrix fields. The evolution governed by a matrix-valued
PDE is guided by a steering tensor. In order to enable proper directional steer-
ing we extended the classical Rouy-Tourin method in two ways: First, turning it
into a directional Rouy-Tourin scheme based on directional finite differences via
interpolation. Second, by means of matrix calculus, extending this directional
scheme to matrix fields solving the matrix valued adaptive dilation PDE. Pre-
liminary tests on synthetic and real DT-MRI data reveal a good performance of
the method when it comes to filling in of missing data and segmentation of image
structures involving directional information. As such the proposed approach may
have its merits, for example, as a preprocessing step for fiber tracking algorithms.

Clearly, it is within our reach to formulate the anisotropic counterparts of
other morphological operations such as erosion, opening, closing, top hats, gra-
dients etc., which can be employed in more advanced image processing tasks for
tensor fields, e.g. filtering and segmentation. In addition, the extension to the
3D setting is straightforward.
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13. Verdú-Monedero, R., Angulo, J.: Spatially-variant directional mathematical mor-
phology operators based on a diffused average squared gradient field. In: Blanc-
Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS
2008. LNCS, vol. 5259, pp. 542–553. Springer, Heidelberg (2008)

14. Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology.
In: Mart́ı, J., Bened́ı, J.M., Mendonça, A., Serrat, J. (eds.) IbPRIA 2007. LNCS,
vol. 4478, pp. 515–522. Springer, Heidelberg (2007)

15. Burgeth, B., Breuß, M., Pizarro, L., Weickert, J.: PDE-driven adaptive morphology
for matrix fields. In: Tai, X.-C., et al. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 247–
258. Springer, Heidelberg (2009)

16. Burgeth, B., Didas, S., Florack, L., Weickert, J.: A generic approach to diffusion
filtering of matrix-fields. Computing 81, 179–197 (2007)

17. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM
Journal on Numerical Analysis 29, 867–884 (1992)



260 L. Pizarro et al.

18. Förstner, W., Gülch, E.: A fast operator for detection and precise location of
distinct points, corners and centres of circular features. In: Proc. ISPRS Inter-
commission Conference on Fast Processing of Photogrammetric Data, Interlaken,
Switzerland, June 1987, pp. 281–305 (1987)

19. Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation
with applications to texture analysis and optical flow. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 13(8), 775–790 (1991)

20. Bigün, J.: Vision with Direction. Springer, Berlin (2006)
21. Brox, T., Weickert, J., Burgeth, B., Mrázek, P.: Nonlinear structure tensors. Image
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1 Université Nancy 1, LORIA, UMR CNRS 7503, France
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Abstract. In this article, we discuss the way to derive connected operators based
on the component-tree concept and devoted to multi-value images. In order to do
so, we first extend the grey-level definition of the component-tree to the multi-
value case. Then, we compare some possible strategies for colour image process-
ing based on component-trees in two application fields: colour image filtering and
colour document binarisation.

Keywords: Component-trees, multi-value images, connected operators.

1 Introduction

Connected operators can be defined from various ways (for instance by region-adjacency
graph merging [9], levelings [14], geodesic reconstruction, etc.). One possibility is to
consider an image via its component-tree structure. Component-trees [19] (also known
under different denominations [20,7,13]) have been devoted to several image process-
ing tasks (segmentation, filtering, coding, etc.) and have, until now, exclusively involved
grey-level images. Since there is an increasing need to process colour - and more gen-
erally multi-value - images, we propose to explore some solutions to use component-
tree-based operators with such images. These solutions are experimentally assessed in
the context of colour image filtering and colour document binarisation.

In Sec. 2, we briefly recall previous work and usual concepts related to multi-value
image processing and component-trees. In Sec. 3, we propose an extension of the “grey-
level” definition of the component-tree structure in order to use it with multi-value
images. In Sec. 4, processing strategies allowing to use component-trees with multi-
value images are described. In Sec. 5, we present two examples using the component-
trees with colour images. A discussion and perspectives are given in Sec. 6.

2 Related Work

2.1 Multi-value Image Processing

The extension of mathematical morphology to the case of colour/multi-value images
is an important task, which has potential applications in multiple areas. For decades, a
significant amount of work has been devoted to this specific purpose (see e.g. [3] for a
recent survey).

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 261–271, 2009.
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Several attempts have been made to extend connected operators to colour images.
Some of them are based on the contraction of a region adjacency graph structure [21].
Some others consider colour extrema using specific vectorial orderings [10,8]. However
until now, no attempts have been made to use the component-tree data structure in
combination with multi-value images.

In the mathematical morphology framework, two main ways are usually proposed to
perform colour image processing. The first one, called marginal processing, consists in
processing separately the different channels of a multi-value image, thus reducing the
problem to the processing of mono-value images and their fusion to recover a multi-
value result. This approach is straightforward, unfortunately it may also induce several
drawbacks such as the generation of false colours, for instance.

The second one, called vectorial processing, consists in defining a total order (or
preorder) relation on the set of multi-value components. To this end, various vector-
based orderings have been proposed [4]: conditional ordering (C-ordering, including
lexicographic ordering), reduced ordering (R-ordering, which implies to reduce a vec-
tor value to a scalar one) which has been extensively studied in [11], “partial ordering”
(P-ordering, where vectors are gathered into equivalence classes as in [22]). Recently,
usual morphological operators for colour images have been derived from a total order-
ing based on a reduced ordering (leading to a preorder) completed by a lexicographic
ordering to obtain a total order [2].

2.2 Component-Trees

The component-tree structure provides a rich, scale-invariant, description for grey-level
images [20,19]. It has been involved, in particular, in the development of attribute filter-
ing [6,20], object identification [12,16,18], and image retrieval [15,1]. In the context of
segmentation or recognition tasks, it enables to perform object detection without having
to precompute a specific threshold (which is usually an error-prone task).

Another advantage of this structure lies in its low algorithmic cost: efficient algo-
rithms have been designed to compute it [20,19,5]. Moreover, the component-tree com-
putation can be done offline, therefore leading to very fast (real-time) and interactive
processing [24].

Until now, component-tree-based processing has always involved binary or grey-
level images. We now propose to investigate the multi-value case.

3 Component-Trees and Multi-value Images

3.1 Multi-value Images

Let n ∈ N∗. Let {(Ti,≤i)}ni=1 be a family of (finite) totally-ordered sets (namely the sets
of values). For any i ∈ [1..n], the infimum of Ti is denoted by ⊥i. Let T be the set
defined by T =

∏n
i=1 Ti = T1 × T2 × . . . × Tn. A value t ∈ T is then a vector composed

of n scalar values: t ∈ T⇔ t = (ti)n
i=1 = (t1, t2, . . . , tn) with ti ∈ Ti for any i ∈ [1..n]. Let

≤ be the binary relation on T defined by: ∀t, u ∈ T, (t ≤ u⇔ ∀i ∈ [1..n], ti ≤i ui). Then
(T,≤) is a complete lattice, the infimum ⊥ of which is defined by ⊥ = (⊥i)n

i=1.
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Let d ∈ N∗. A (discrete) multi-value image is defined as a function F : Zd → T. For
all i ∈ [1..n], the mappings Fi : Zd → Ti defined such that ∀x ∈ Zd,F(x) = (Fi(x))n

i=1
are called the channels (or the bands) of the multi-value image F. The support of F is
defined by supp(F) = {x ∈ Zd | F(x) � ⊥} and we note supp(F) = E. In the sequel, we
will assume that for any image F, supp(F) is finite. We will then assimilate an image F
to its (finite) restriction F|E : E → T.

3.2 Component-Trees

Let X ⊆ E. The connected components of X are the subsets of X of maximal extent.
The set of all the connected components of X is noted C[X].

Let R be a total preorder on T, i.e. a binary relation verifying (i) reflexivity (∀t ∈
T, t R t), (ii) transitivity (∀t, u, v ∈ T, (t R u) ∧ (u R v) ⇒ (t R v)) and (iii) totality
(∀t, u ∈ T, (t R u) ∨ (u R t)).

We set P(E) = {X | X ⊆ E}. For all t ∈ T, let Xt : TE → P(E) be the thresholding
function defined by Xt(F) = {x ∈ E | t R F(x)}, for all F : E → T. Since R is transitive,
we have ∀F : E → T,∀t, t′ ∈ T, t R t′ ⇔ Xt′ (F) ⊆ Xt(F).

Let F : E → T be a multi-value image. Let K = ⋃t∈T C[Xt(F)]. Then the relation
⊆ is a partial order on K , and the Hasse diagram (K , L) of the partially-ordered set
(K ,⊆) is a tree (i.e. a connected acyclic graph), the root of which is the supremum
R = sup(K ,⊆) = E. This rooted tree (K , L,R) is called the component-tree of F. The
elements K , R and L are the set of the nodes, the root and the set of the edges of the
tree, respectively.

Note that if F : E → T is monovalued (i.e. if n = 1 or, equivalently, T = (T1)) and
equipped with a total order relation, then F can be assimilated to a function taking its
values in a totally-ordered set ([0..|T1| − 1],≤Z), and we actually retrieve the “usual”
component-tree definition for grey-level images.

3.3 Tree Pruning

The nodesK of a component-tree store information, also called attributes, on the asso-
ciated connected components of an input image F. Practically, to each node N ∈ K , we
then associate an attribute σ(N) ∈ K (where K is a set of knowledge).

Let Q : K → B be a criterion (i.e. a predicate on K). By setting KQ ⊆ K as
KQ = {X ∈ K | Q(X)}, we generate the subset of the nodes satisfying the criterion Q.
Such a selection process enables to perform pruning on the component-tree of an image
F according to a given criterion, leading to a filtering process which generates an image
reconstructed from F with respect to KQ.

As it will be illustrated in the next section, for any given criterion Q, it is generally
possible to define a connected operator Ψ : TE → TE which associates to a multi-
value image F the image Ψ (F) generated from KQ. Similarly, a segmentation operator
Γ : TE → P(E) can be derived by setting Γ(F) =

⋃
X∈KQ

X.

4 Processing Strategies for Multi-value Images

In this section, we explore some original processing strategies allowing to define con-
nected operators for multi-value images based on the component-tree structure. These
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different approaches are illustrated in Fig. 1 on a synthetic image, considering an exam-
ple of area opening.

4.1 Marginal Processing

Based on the marginal approach, an operator Ψ can be used to handle multi-value im-
ages by processing separately each one of the n component-trees associated to each
channel of the image.

For all i ∈ [1..n], let K i be the set of nodes of the individual channel Fi, according to
the total order relation ≤i. Then, an operator Ψ can be defined by

Ψ (F) =
∨

i∈[1..n]

∨

X∈K i
Q

CX,vi(X) , (1)

where, CX,vi(X) : E → T is the cylinder function defined by CX,vi(X)(x) = vi(X) if x ∈ X
and ⊥ otherwise, vi(X) = (⊥1, . . . ,⊥i−1,mi(X),⊥i+1, . . . ,⊥n) and mi(X) is the “value”
of the component X in the channel Fi: mi(X) = min{Fi(x) | x ∈ X}.

A well-known drawback of marginal processing lies in the possible appearance of
“false” values, i.e. values that are not present in the original image. Note however that
Ψ is a connected operator, ensuring that no false contours are introduced.

4.2 Vectorial Processing

By contrast to the marginal case, considering a vectorial approach for processing multi-
value images can ensure that no false values will be introduced in the result image.
However, the nature of the relation R influences the way Ψ (F) is reconstructed from
the filtered set of nodes KC ⊆ K . In particular, the image reconstruction is different
whether R is a total preorder or a total order relation.

Total order. If R is a total order on T (i.e. if R is anti-symmetric: ∀t, u ∈ T, (t R u) ∧
(u R t)⇒ (t = u)), an operator Ψ can be defined by

Ψ (F) =
∨

R
X∈KQ

CX,v(X) , (2)

where v(X) = minR{F(x) | x ∈ X}.

(a) (b) (c) (d) (e)

Fig. 1. Area opening of size 6 on a synthetic RGB image F : [0, 10]2 → [0..255]3. (a) Original im-
age, (b) marginal processing, (c) vectorial processing based on a total lexicographic order (L), (d,
e) vectorial processings relying on a distance-based reduced ordering using r = (255, 255, 255)
as reference, with median reconstruction (Pmedian) (d) and mean reconstruction (Pmean) (e).



Component-Trees and Multi-value Images: A Comparative Study 265

This is the case, for instance, when considering the lexicographic ordering, a case
of C-ordering, or a total ordering based on the distance w.r.t. a reference vector and
completed by a lexicographic ordering, as described in [2].

Total preorder. If R is a total preorder, there may possibly exist some t, u ∈ T such
that t � u while (tR u)∧(uR t). For any U ⊆ T, let MinRU = {u ∈ U | ∀u′ ∈ U, uR u′}.
Then we can derive an operator Ψ by

Ψ (F) =
∨

R
X∈KQ

CX,v(X) , (3)

where v(X) is a value computed from the set V(X) = MinR{F(x) | x ∈ X} (note that
MinR{F(x) | x ∈ X} = {minR{F(x) | x ∈ X}}wheneverR is a total order). The value v(X)
may belong to the set V(X) (for example by ranking the vectors using a total ordering
and taking a representant value, as the median vector), or may be computed from the
values of V(X) (by taking, for example, the mean vector of V(X)).

Using component-trees based on a total preorder allow us, in particular, to merge in
a same component several flat-zones taking distinct values. In particular, it can lead to
highlight structures of interest according to some predetermined knowledge. In order to
illustrate this assertion, let us consider the reduced ordering ≤r defined w.r.t. a function
r : T → R by t ≤r u ⇔ r(t) ≤ r(u) for all t, u ∈ T. If r is non-injective, ≤r induces a
preorder relation on T. For instance, we can consider the distance to a reference value
r ∈ T, i.e. r(t) = d(r, t). By choosing r close to the “colour” of some given structures of
interest (i.e. to be removed, to be segmented, etc.), such structures may probably appear
as single nodes close to the leaves of the tree. More generally, one could define a set of
reference values S = {ri}ki=1 (k ∈ N∗). A reduced ordering could then be induced by the
function φS : T→ R defined by φS (t) = mini∈[1..k]{d(ri, t)} for all t ∈ T.

5 Experiments

In this section we illustrate the proposed approaches in the context of two application
fields. Let F : E → T be a colour image defined in the RGB space T = Tr × Tg × Tb =

[0..255]3, with E ⊆ Z2.
The following methods have been considered. The first one (M) is based on marginal

processing. The other ones (L, dL, Pmean, Pmedian) are based on vectorial processing.
Two of them rely on a total ordering of the image values: lexicographic ordering (L)

t ≤L t′ ⇔ (tr < t′r) ∨ ((tr = t′r) ∧ (tg < t′g)) ∨ ((tr = t′r) ∧ (tg = t′g) ∧ (tb ≤ t′b)) , (4)

and a distance-based reduced ordering followed by a lexicographic ordering (dL)

t ≤dL t′ ⇔ (r(t) < r(t′)) ∨ ((r(t) = r(t′)) ∧ (t ≤L t′)) . (5)

The two other ones are based on a total distance-based preordering

t ≤P t′ ⇔ r(t) ≤ r(t′) , (6)
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with r(t) = ‖t−r‖ (‖ . ‖ being the Euclidean norm). One (Pmean) uses the mean vector
to reconstruct the filtered image (see Sec. 4.2), the other one (Pmedian) uses the median
vector based on a total lexicographic ordering ≤L.

5.1 Colour Image Filtering

The proposed strategies have been evaluated from their performance in the context of
image filtering. For this purpose, an image processing scheme based on area opening
[23] using a component-tree implementation has been assessed. A filtering operator Ψ
was defined by: Ψ = � ◦ γλ ◦ � ◦ γλ, where � denotes the colour image complement
defined for all p ∈ E by: �F(p) = (255− Fr(p), 255− Fg(p), 255− Fb(p)) and γλ is the
area opening of parameter λ.

The experiments have been carried out by processing colour images corrupted by
random noise and Gaussian noise.
The methods dL, Pmean, Pmedian used r = (255, 255, 255) as reference vector. From a
qualitative point of view, the operator based on marginal processing (M) outperforms
the other ones, since it is the one that visually preserves at best the image (see Fig. 2).
The filtering operator based on preordering using a mean reconstruction (Pmean) pre-
serves correctly image details, however it tends to reduce the quantisation of the image
values, therefore reducing the overall image saturation. Note that all the other methods
introduce undesired coloured artifacts.

As in [3], quantitative denoising comparisons based on the Normalised Mean Square
Error (NMSE) measure have been performed. Given a reference image F, the NMSE
measure of the denoised image F′ is defined by

NMSE =

∑
p∈E ‖F(p) − F′(p)‖2
∑

p∈E ‖F(p)‖2 . (7)

For the sake of comparison, the filtering operatorΨ has been compared with the OCCO
filter [3] (using a marginal processing) defined by

OCCOB =
1
2
γB[φB(F)] +

1
2
φB[γB(F)] , (8)

where γB and φB denote the opening and closing operators, respectively. In these exper-
iments B is the elementary ball. The results are summarised in Table 1.

Table 1. NMSE results of the proposed denoising operators based on different strategies (Lenna
image, see Fig. 2)

M L dL Pmean Pmedian OCCO
Random noise (15%) 0.33 0.68 1.39 0.99 1.27 2.32
Gaussian noise (μ = 0, σ = 32) 1.13 4.07 4.08 1.34 3.49 0.84

In the case of random noise, the proposed filtering approach based on marginal pro-
cessing leads to the lowest NMSE, emphasising the efficiency of connected based op-
erators in this particular context.
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Comparison of filtering operators Ψ based on area opening using different processing
strategies. (a) Lenna image corrupted by 15% random noise. (b) Marginal processing (M).
(c) Lexicographic ordering (L). (d) Distance-based total ordering (dL). (e) Preordering (Pmean).
(f) Preordering (Pmedian).

In the case of Gaussian noise, the marginal strategy still performs better than the
other ones based on the filteringΨ operator. We notice however that the OCCO operator
achieves the lowest NMSE in this context. Indeed, in the case of Gaussian noise, the
original image values are not necessarily present in the corrupted version. Therefore, a
denoising operator should enable to choose values that are not present in the image in
order to restore the original ones. This is the case of the M, Pmean and OCCO methods,
that are the best ones in this context. However, in a denoising context, the Pmean strategy
suffers from the quantisation of the image values that results from the non-injective
distance-based reduced ordering.

5.2 Colour Document Binarisation

Connected operators can be efficiently involved in object detection tasks. Based on the
proposed strategies, an object extraction scheme relying on connected operators was
experimented and applied to the case of colour document binarisation. This binarisation
method was initially designed for grey-level document images and is fully described in
[17]. We summarise it hereafter.
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The core of the method is based on the concept of the component-tree branch. Let
(K , L,R) be the component-tree of a monovalued (grey-level) image. The set of regional
maxima (i.e. the set of tree leaves) is defined byM = {X ∈ K | ∀Y ∈ K , Y � X}. The
branch of the tree starting from the leaf M ∈ M is defined by the (unique) sequence
of nodes BK (M) = (Xk)t

k=1 ∈ K , such that X1 = M, Xt = R, ∀k ∈ [1, t − 1], Xk ⊂
Xk+1 ∧ ∀Y ∈ K , Xk ⊆ Y ⊂ Xk+1 ⇒ Y = Xk.

The method is based on the assumption that, for each branch of the tree, there exists
a node corresponding to an object of interest. In the considered application, such a node
is the one that maximises a contrast criterion based on the Fisher discriminant

Jλ(X) = (μ1 − μ2)2/(σ2
1 + σ

2
2) , (9)

where μ1 and σ1 (resp. μ2 and σ2) denote the mean and standard deviation of the origi-
nal values of the node X (resp. of the neighbourhood of X) and the parameter λ defines
the size of the neighbourhood of X. Therefore, for each branch, a unique node maximis-
ing the criterion is preserved which allows to filter the component-tree without the use
of any threshold parameter. However, using this procedure, each regional maximum can
possibly create a component. Therefore, prior to the maximisation procedure, a rough
binarisation based on the image grey-levels is first applied to discard irrelevant regional
maxima.

Finally, a maximisation procedure on the tree branch aiming at finding the most
plausible components based on the bounding-box size is performed. The proposed ap-
proach is then composed of three steps, each devoted to preserve relevant components
according to a chosen criterion.

1. Rough binarisation based on a K-Means classifier applied to the pixel values.
2. For each branch of the tree, selection of the node X maximising the contrast mea-

sure Jλ(X) (X marked as active).
3. For each branch of the tree, preservation of the active node maximising a size cri-

terion (related to the bounding box of the component).

This method was applied on a set of colour documents from the MediaTeam Oulu Doc-
ument Database1. It was implemented following the proposed strategies. Note that in
order to extract the relevant components, prior knowledge related to the values of the
objects of interest is necessary. As a consequence, marginal processing and total order-
ings (L and dL) - logically - led to unsatisfactory results.

The reduced ordering based on multiple reference vector provided interesting results,
since it enabled to highlight the objects of interest w.r.t. the background. However it was
not appropriate in this application: for example, in Fig. 3(a), the letter “G” in black in
the image upper left became connected to the river in blue, therefore preventing the
correct extraction of this component. The best result was obtained by using multiple
distance-based reduced ordering, each aiming at extracting characters of a given colour
and by taking the supremum of the results (see Fig. 3).

1 http://www.mediateam.oulu.fi/downloads/MTDB
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(a) (b)

Fig. 3. Binarisation method of colour documents. (a) Original colour document, (b) Binarisa-
tion method based on a processing strategy involving two distance-based reduced orderings (dL)
aiming at extracting black and dark blue characters.

6 Conclusion

In this article we have proposed an extension of the definition of the component-tree to
the case of multi-value images equipped (at least) with a total preorder. Some solutions
have also been explored to define connected operators based on the component-tree
structure in the case of such images. The interest of component-tree-based operators
in combination with colour images has, in particular, been illustrated in the context of
denoising and binarisation.

In the case of denoising applications, the marginal processing approach remains the
most efficient one, as pointed out in other works [3]. As far as object detection is consid-
ered, prior knowledge related to the object values is necessary, and therefore distance-
based reduced ordering become more suited to such issues. We also believe that the
usefulness of colour connected operators based on component-tree could be greatly in-
creased by considering other - more perceptual - colour spaces. This possibility has been
considered in other works [3,2] and has not been developed here for the sake of generality.

In terms of computational efficiency, marginal processing and strategies based on re-
duced ordering are the fastest in the case of colour images, since the number of different
values remains limited (less than 255 for 24 bits colour images in marginal processing).
Approaches based on total colour ordering lead to the construction of component-trees
having a large depth (around 100 000 different values in the case of the Lenna image)
and huge number of nodes, therefore implying longer processing times (although spe-
cific algorithms have been designed for this case [5]).

In this paper we have not explored the case in which the thresholding function Xt is
defined w.r.t. the partial order ≤ of T. In this case the Hasse diagram (K , L) obtained
from the set K = ⋃t∈T C[Xt(F)] is not a tree anymore. This leads to a, more general,
graph structure, which will be investigated in future works.
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Abstract. We present an efficient implementation of the ultimate at-
tribute opening operator. In this implementation, the ultimate opening
is computed by processing the image maxtree representation. To show
the efficiency of this implementation, execution time is given for various
images at different scales. A quasi-linear dependency with the number
of pixels is observed. This new implementation makes the ultimate at-
tribute opening usable in real time. Moreover, the use of the maxtree
allows us to process specific zones of the image independently, with a
negligible additional computation time.

1 Introduction

The ultimate opening (U.O.) is a powerful morphological operator that high-
lights the highest contrasted areas in an image without needing any parameters.
It has been used, for example, as a segmentation tool for text extraction [1]. We
offer, in this paper, a fast implementation of the U.O. based on a maxtree.

The article is organized as follows: in the first part, the U.O. operator is
briefly explained. In the second part, the fast implementation is explained and
an adaptation of the algorithm is made, to implement the iterated U.O., which
we introduce. In the last part the speed of the algorithm is measured and then
comes the conclusion.

2 The Ultimate Opening Operator

Introduced by Beucher [2], the U.O. is a residual operator that highlights patterns
with the highest contrast. The operator successively applies increasing openings
γi (of size i) and selects the maximum residue ri computed between two successive
results of opening, γi and γi+1, applied to the image (i.e. the difference γi −γi+1).
The examples of Figs. 1 and 2, show that whatever small variations and noise,
the operator only keeps the strongest patterns of the image: small variations on
a contrasted structure are considered as noise and are automatically eliminated.
For each pixel, the operator gives two pieces of information, the maximal residue
ν and the size q of the opening leading to this residue:

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 272–281, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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ν = sup(ri) = sup(γi − γi+1) (1)
q = max (i) + 1; ri = ν(�= 0). (2)

ν, called the transformation in the literature, gives indications on the contrast of
pattern and q, usually called residual or associated function, gives an estimation
of the pattern size (a sort of granulometric function). It is also possible to use an
attribute opening [3]. In this case, the associated function provides information
linked with the given attribute. In this article, all tests and comments have been
made on ultimate attribute openings. The attribute we have chosen is the height
of the connected component, defined as the maximum difference of vertical co-
ordinate among pixels that belong to the connected component. We have chosen
this attribute according to our application. Height attribute is easily computed
during maxtree creation. Other attributes could have been used instead.

Fig. 1. The computation of the ultimate opening. From left to right: 1. the profile
of the image is given, then 2. an opening of size 1 (γ1) does not change the image
and γ2 removes two maxima. The residue is recorded in the transformation. 3. γ3

generates a residue with the result of the previous opening, this residue is recorded
in the transformation. Following openings (γ4 to γ7) do not generate residues. 4. At
the end, γ8 generates a bigger residue than the previous ones and is recorded in the
transformation. As this residue is high, it erases all previous residues.

Fig. 2. On the left hand-side, an image, on the right hand-side the result (the transfor-
mation) of the ultimate height opening. Image copyright institut géographique national
(IGN).

3 The Implementation Based on Maxtree

The U.O. operator is a very powerful non-parametric operator. Its direct imple-
mentation (by applying successive openings) leads to a high computation time.
A faster implementation has been proposed by Retornaz [4,5] but it is still time
consuming because many regions of the image are processed several times.
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Fig. 3. From left to right: The image and the corresponding maxtree. The insertion
of a node before in the branch (function next label lower()). The insertion of a node
after in the branch (function next label higher()).

We propose a much faster implementation of the U.O. operator. This imple-
mentation is based on the use of maxtree [6] and has multiple advantages:

– the image is processed only twice: once to create the tree and the other to
deduce the transformation and the associated function,

– a region may be processed independently from the rest of the image by
processing the corresponding branch of the tree,

– once the maxtree is created, many other filters [7] can be applied to the image
directly on the tree without processing the image (which is much faster [8]).

The maxtree is a data structure that represents the image by a tree (Fig. 3). A
node of level l is linked with a subset of pixels at level l in the image. Those
pixels must be connected together by pixels laying at a level higher or equal to
l. This means that a node and all its sub-nodes represent a region of the image
which is the union of connected regions of level equal or higher than l. Two
nodes at the same level l are separated in the image by pixels at a level lower
than l. The mintree is the dual structure. Our algorithm is divided into three
parts: 1. building the maxtree according to the image, 2. processing the tree and
3. generating the output of the operator. We will study each step in details.

3.1 Building the Maxtree

Algorithms to compute the tree already exist [9,6,10] and [11]. Any of them
could have been used. In order to have the description of all the process steps
and because the creation of the tree is time consuming, the tree creation is
revisited.

Before writing the algorithm, the first thing to do is to choose data structures.
Huang et al. in [10] offer to use a combination of a linked list and a hash map.
The linked list is used to chain the tree nodes and the hash map is used to
access, in a constant and small time period, each node of the tree. They also
propose to store, in each node, a large amount of data and particularly: a unique
identifier (id), its parent id and its children id list. Thanks to an adapted data
structure, a lot of memory may be saved. Firstly, we do not keep the node id in
the node. This id is implicitly given by the offset from the root node in the data
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structure. Next, as we do not need to go backward, we do not record the parent
id. Moreover the list of children proposed by Huang implies the use of another
linked list (one for each node) which increases the complexity and is memory
consuming. These lists make us lose time during the tree creation. We replace
these lists by two (integer) fields in the node: son the first child id and brother
the first brother id. Then finding every children of a node i is easy and fast (all
brothers may not have the same level):

01 child=node[i].son; //first child
02 while(child !=0 ) child=node[child].brother; //next child

As the id gives us the index of a node in the data structure, we do not need
the hash table any more and we save memory again. The underlying structure
is also a bit different. Huang says that an array should not be used and uses a
linked list instead. But a linked list has some drawbacks: it consumes time to
allocate each node and does not offer a simple way to access a node (that is why
they are obliged to use a hash table). We use instead an intermediate paginated
structure: we do not link nodes but a group of nodes (a page). Each group of
nodes is recorded in an array (of N elements). This simplifies the allocation
because nodes are allocated by blocks. Elements can also be simply accessed: to
get the ith element we compute the page number page = i / N and the offset in
the page offset = i modulo N .

Now that we have seen data structures, let us see the algorithm itself which
is strongly inspired from [9]. To build the tree, a priority lifo structure is needed
with standard functions: push(e, p) which pushes an element e with the specified
priority p, pop() which provides the last element with the highest priority level
and get higher level() which gives the highest priority available.

The creation of the maxtree is based on a flooding process and starts on a pixel
that has the minimum value. During the flooding process, from pixel p, when a
new pixel p next is flooded, three different situations may occur (figure 3):

– A) p next has a level higher than p (line 14). Then, a new branch of the tree
is created starting from branch p (function next label higher()),

– B) p next has a level lower than p and this level is unknown (line 17). Then
a new node is created at the correct level in the same branch of node p and
adds this pixel to this node (function next label lower()).

– C) p next has a level lower than p and this level is known (line 19). Then
p next is added to the node ancestor to node p at the correct level,

The tree is built by the following algorithm called with the min value of the pixel
in the lifo. To simplify the readability some variables are used as if they were
globally declared. Particularly, the tree, which is the main output of the function
flood, is split into two indexed variables: son and brother (son[i] gives the first
child of node i and brother[son[i]] gives his second and so on...). attributes[i]
and level[i] give respectively the value of the attribute and the gray level of
node i. Notice that the index of a node is the label used to fill in a region in
lab img, allowing to link the tree node with the corresponding region. Finally,
the variable next label always gives the next index available.
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01 void flood(img, lab_img, labs_branch, level)
02 in
03 img: the input image,
04 labs_branch: labs_branch[l] gives the label of level l in the current branch of the tree
05 level: the level of the starting point of the flooding process
06 out
07 the labeled image (lab_img) and the tree (son, brother, attributes and level)
08 {
09 index: the label;
10 p: the current pixel;
11 while( (get_higher_level()>=level) && (p=pop())!=-1)
12 {
13 for all pixels p_next, unlabeled neighbor of p {
14 if (img[p_next]>img[p]) { // CASE A
15 for(j=img[p]+1;j<img[p_next];j++) labs_branch[j]=0;
16 index=lab_img[p_next]=labs_branch[j]=

next_label_higher(img[p], img[p_next], labs_branch);
17 } else if (labs_branch[img[p_next]]==0) { // CASE B
18 index=lab_img[p_next]=

labs_branch[img[p_next]]=next_label_lower(img[p_next], labs_branch);
19 } else index=lab_img[p_next]=labs_branch[img[p_next]]; // CASE C
20 // *** update here attributes[index] according to p_next ***
21 push(p_next, img[p_next]);
22 if (img[p_next]>img[p]) flood(img, lab_img, labs_branch, img[p]);
23 }
24 }
25 }
26
27 label next_label_lower(value, labs_branch)
28 in:
29 value: the level of the pixel,
30 labs_branch: labs_branch[l] gives the label of level l in the current branch of the tree
31 {
32 level[next_label]=value;
33 l=level_of_parent_of(labs_branch[value]);
34 son[next_label]=son[labs_branch[l]];
35 son[labs_branch[l]]=next_label;
36 brother[next_label]=brother[son[next_label]];
37 brother[son[next_label]]=NO_BROTHER;
38 // *** init here attributes[next_label] ***
39 return next_label++;
40 }
41
42 label next_label_higher(parent_value, value, labs_branch)
43 in:
44 parent_value: the level of the ancestor pixel,
45 value: the level of the pixel,
46 labs_branch: labs_branch[l] gives the label of level l in the current branch of the tree
47 {
48 level[next_label]=value;
49 brother[next_label]=son[labs_branch[parent_value]];
50 son[labs_branch[parent_value]]=next_label;
51 // *** init here attributes[next_label] ***
52 return next_label++;
53 }

A comparison with a non optimized version of the algorithm proposed in [9]
(provided by the authors) shows that our implementation is in average 33%
faster. This difference seems to be mainly due to memory management.

3.2 Computing Ultimate Opening

An attribute opening γi discards regions with attributes j smaller than i. γi can
easily be deduced from the previously computed maxtree by pruning branches
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Fig. 4. The computation of the residue in the tree according to an attribute height
opening

with an attribute smaller than i [7] (each node is valuated with the attribute
value of its corresponding region). A residue can be computed between two
successive openings γi and γi+1 by the difference of the resulting images of
each opening. In the tree, this residue is computed (in every node removed
by γi+1) by the difference between the gray level of each node and its first
ancestor with a different attribute. A node with attribute different from i has
no residue at step i (i.e ri = 0). The U.O. analyzes the residue of successive
growing size openings and the highest residue is kept (Fig. 4, Eq. 1-2). During
the process, an opening γi may generate a residue r1 for a node n1. Later, a
bigger opening γj will generate a residue r2 for a node n2 ancestor of n1 in the
tree. As n2 encompasses n1, if r2 is bigger than r1, r2 must also be assigned to n1
(if not n1 keeps r1). To find the highest residue of all nodes, each ancestor nk of
each node must be checked. This is why the maxtree data structure is suitable:
the highest residue will not be searched among ancestors but all ancestors will
transmit their own maximum residue. The tree is recursively processed: on a
given node, the computed residue is transmitted to every child (see l 22-25 of
pseudo-code). Every child will compare its own residue (var. contrast) with the
one transmitted by its ancestors (l 11-17), and will keep the maximum of them
(transform node LUT) as well as the opening attribute size associated with the
maximum residue (associate node LUT) (l 18-19). This maximum is transmitted
again and so on. This process is in o(n), with n the number of nodes.

Figure 4 illustrates an example of ultimate opening computation on the max-
tree. The height attribute is chosen for the example (we note Hk the height of
region k). First, the max-tree is created and each node is given the gray level
and the attribute of the corresponding region. Note that regions B and D have
the same attribute. Both regions are then removed by the same opening, of size
HB +1 (= HD +1). The residue generated on region D by γHB+1 is not lD − lB
(the gray level difference with its parent node) but lD − lA, A been its first
ancestor with a different attribute.

Let us process the tree to compute the ultimate height opening. The process
follows a depth-first traversal starting from the root node. The first computed
residue is residue rB of region B. This residue is equal to the difference of the
level of region B and the level of region A (lB − lA). Then, this residue rB
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is transmitted to child D. The residue of this child is then computed as the
difference between region D level and region A level (lD − lA and not lD − lB
as region B and region D have the same attribute and are then removed by
the same opening). rD value is the highest value between rB and lD − lA. The
next child E is processed. The residue of this child is lE − lB and rE is the max
between rB and lE − lB. The last region C is processed. Residue rC is simply the
difference between region C level and region A level (lC−lA). r value for all nodes
is then known. Every time a residue is selected, the size of the opening leading
to the residue is recorded (and transmitted to children) in order to generate the
associated function q of equation 1.
01 void compute_uo(node, max_tr, max_in, parent_attribute, parent_value, previous_value)
02 In:
03 node: the processed node
04 max_tr: the maximum of contrast of previous nodes
05 max_in: the attribute that generate max_tr
06 parent_attribute: the attribute of the parent node
07 parent_value: the value of the parent node
08 previous_value: the value of the 1st ancestor with a

different attribute: the parent of the branch
09 {
10 contrast=(attributes[node]==parent_attribute)?

level[node]-previous_value:level[node]-parent_value;
11 if (contrast>=max_tr) {
12 max_contrast=contrast;
13 linked_attributes=attributes[node];
14 } else {
15 max_contrast=max_tr;
16 linked_attributes=max_in;
17 }
18 transform_node_LUT[node]=max_contrast;
19 associated_node_LUT[node]=linked_attributes+1;
20 child=son[node];
21 if (attributes[node]==parent_attribute) pv=previous_value; else pv=parent_value;
22 while (child!=0) {
23 compute_uo(child, max_contrast, linked_attributes, attributes[node], level[node], pv);
24 child=brother[child];
25 }
26 }

3.3 Generating the Output Images

The last step consists in generating the two results (the transformation and the
associated function). This is an easy step: by the use of the labeled image ob-
tained by the flooding step and the two look-up tables computed in compute uo
(transform node LUT and associated node LUT which give, for a given la-
bel, respectively the maximum contrast and the associated attribute for this
contrast), we can deduce the transformation and associated function images:
01 for all pixel p {
02 transform[p]=transform_node_LUT[lab_img[p]];
03 associate[p]=associated_node_LUT[lab_img[p]];
04 }

3.4 Iterated Ultimate Opening

The maxtree is well adapted to process U.Os.. Several filters may be deduced
from the same tree structure. These filters can be applied on the entire image
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Fig. 5. From left to right: input image, the result of the U.O. (some details such as
the text “UNITED STATES” are masked), and the result of the iterated U.O. where
the text is clearly visible (contrast of both images is enhanced to be visible). With the
maxtree, negligible additional time is needed to iterate the U.O. onto some areas of
the image. Here, the condition to re-start U.O. is based on feature size and contrast.

or on a part of it (which corresponds to a branch of the tree). In this section we
illustrate this property. A major issue with the U.O. is that sometimes, when
an interesting area of the image is surrounded by a highly contrasted border
(text over a sign board for example), the content of this area is masked by the
U.O. (Fig. 5). To solve this issue, we offer to iterate the U.O. on such an area
(Fig. 5). Function compute uo can simply be adapted to this improvement and
is modified in compute uo iterative to process specific areas of the image (ie.
a specific branch) from the rest of the image. A condition is checked before
processing branches:

1 if (specific condition) max_tr_propag=0; else max_tr_propag=max_contrast;
2 while (child!=0) {
3 compute_uo_iterative(child, max_tr_propag, linked_attributes,

attributes[node], level[node], pv);
4 child=brother[child];
5 }

Instead of transmitting the estimated contrast deeper in the branch, we just
transmit 0 as the previous contrast. The branch will be processed as a new tree
without consuming additional time. Trying to perform this operation directly on
the image is much harder and much more time consuming. The main difficulty
with this approach is to determine when the U.O. will be restarted but this
question is out of the scope of this article and depends on the application.
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Format 128x128 256x256 512x512 1024x1024 2048x2048
Nb of pixels 16384 65536 262144 1048576 4194304
Time (ms) 0,18 2,39 12,01 52,04 235,53
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Fig. 6. Execution time of the U.O. according to the number of pixels

4 Results

To measure the efficiency of the implementation, we have tested it on a per-
sonal image database (about 570 various photos). We evaluate the average time
consumed by our implementation by computing ten times the U.O. on every pic-
ture. We perform the test at different scales. The result is approximately linear
according to the number of pixels in the image (Fig. 6) (except for very small
images; the cache may introduce a bias). All tests have been carried out on a
DELL D630 laptop with 2,4GHz T7700 processor and the implementation is in
C. Given times include all the process: all allocations (lifo structure...) maxtree
creation, U.O. process, result generation and memory cleaning (intermediary
data such as the maxtree, the lifo structure...). Only I/O operations are not in-
cluded in given times. Moreover, let us consider the execution time distribution:
72% of time in average is spent to build the tree, 9% and 19% of time is spent
for processing the tree and generating the result respectively. This new imple-
mentation of the U.O. operator is a major improvement and makes this operator
usable in various contexts and even in real time for rather large images.

5 Conclusion

We have presented a fast implementation of the U.O. based on a maxtree. Even
if existing maxtree implementations may be used for our purpose, we propose a
new implementation with a more efficient memory management.

As stated in the literature, several connected operators may be deduced from
the same tree-structure. This is why, the maxtree is an efficient representation
to implement an ultimate attribute opening operator (which definition involves
a series of connected openings). The maxtree creation itself, remains the most
time consuming task of our process. Moreover, we propose an iterated version of
the ultimate opening. It provides more details in a given region, with negligible
additional time, exploiting the re-usability of the maxtree representation.

At the end, we evaluate the executing time and show that the algorithm is quasi-
linear according to the number of pixels. The U.O. is a powerful nonparametric
tool. This fast implementation makes it very competitive and usable in real time.
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Abstract. Stack Filters define a large class of increasing filter that
is used used widely in image and signal processing. The motivations
for using an increasing filter instead of an unconstrained filter have
been described as: 1) fast and efficient implementation, 2) the rela-
tionship to mathematical morphology and 3) more precise estimation
with finite sample data. This last motivation is related to methods de-
veloped in machine learning and the relationship was explored in [1].
In this paper we investigate this relationship by applying Stack Filters
directly to classification problems. This provides a new perspective on
how monotonicity constraints can help control estimation errors, and
also suggests new learning algorithms for Boolean function classifiers
when they are applied to real-valued inputs.

1 Introduction

Just as linear models generalize the sample mean and weighted average,
weighted order statistic models generalize the sample median and weighted
median [2]. This analogy can be continued informally to generalized additive
models in the case of the mean, and Stack Filters in the case of the me-
dian. Both of these model classes have been extensively studied for signal and
image processing, but it is surprising to find that for pattern classification,
their treatment has been significantly one sided. Generalized additive models
are now a major tool in pattern classification and many different learning al-
gorithms have been developed to fit model parameters to finite data. Several
model classes related to Stack Filters have been suggested for classification in-
cluding morphological networks [3], min-max networks [4], order statistics [5]
and Positive Boolean Functions [6], [7]. However direct application of Stack
Filters to classification problems is yet to be seen. One of the reasons why
Stack Filters have not been directly applied to classification problems is be-
cause Stack Filter classifiers appear to reduce to a known problem: learning a
Boolean function. In this paper we show that on closer inspection, optimizing
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Stack Filters for classification leads to a different Boolean function learning
problem than has been traditionally considered.

Since Stack Filter classifiers reduce to Boolean function classifiers, they
also share many properties with decision tree classifiers, including fast and
simple implementation, and increased interpretability. Some of the difficulties
encountered with these types of classifiers include high approximation error
and combinatorial learning problems. Several important learning algorithms
have been developed to address these difficulties in different ways. Tradition-
ally tree models are built with a top-down greedy method, and then pruned
to control over-fitting [8]. More recently theoretical results and increased com-
puting resources have enabled the development of optimal learning algorithms
over the class of dyadic decision trees [9]. These methods have been applied
successfully to practical problems and provide an exact minimization of a
complexity penalized loss function.

In this paper we propose an approach most similar to this second method, in
that we suggest a global optimization problem for Boolean function classifiers
that can be exactly minimized. We also show that by approaching the problem
as a Stack Filter, we arrive at a new and unique method to control over-fitting.

2 Main Results

We consider two-class classification, where we are given a training set of N
points, x ∈ RD, with labels, y ∈ {−1, 1}, drawn from a distribution PX,Y .
The task is to find a model (or function) F : RD → R that has small error
e(F ) = EX,Y (1{sgn(F (x)) �=y}). Classification performance is measured by the
excess error of the classifier e(F ) compared to the Bayes optimal classifier
e∗ = inf∀F e(F ) and can be viewed as a combination of approximation and
estimation errors (these quantities are related to bias and variance):

e(F ) − e∗ =
(
e(F ) − inf

F ′∈F
e(F ′)

)
+

(
inf

F ′∈F
e(F ′) − e∗

)
(1)

The first term is estimation error and is due to the fact that we only have
a finite number of examples to select the best model from the model class
F . The second term is approximation error and is due to the fact that the
Bayes classifier is not represented in the model class. These two errors have
conflicting needs: a common way to reduce approximation error is to increase
the capacity of the model class but this typically increases the estimation
error. The learning algorithm must balance these needs and the most common
approach is to choose a function F that minimizes a training set error:

F̂ ∈ arg min
F∈F

ê(F,L) (2)
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F̂ ∈ arg min
F∈F

1
N

N∑
i=1

L(F (x(i)), y(i)) (3)

where L : (R × {−1, 1}) → R is a loss function. The choice of loss function
affects both the estimation and approximation errors of F̂ and must be care-
fully chosen. A popular approach is to define a very rich model class and then
parameterize the loss function in a way that allows the tradeoff to be easily
tuned to the application: Lγ(F (x), y). At one extreme of γ, the loss function
would define a classifier with zero approximation error and at the other ex-
treme, a classifier with zero estimation error. We would also like both errors
to decrease as N increases. It would also be desirable if the value of γ was well
behaved, or in some way easy to tune e.g. it is a smooth (convex) function of
the excess error, and/or it is constrained to a small, finite number of values.

Support vector machines provide one solution to this problem for Repro-
ducing Kernel Hilbert space model classes, and in this case the loss function
includes a regularization parameter. In this paper we suggest a loss function
and calibration parameter for Stack Filter classifiers with several desirable
properties. In particular, for misclassification loss:

L(F (x), y) = 1{F (x) �=y} (4)

a Stack Filter minimizer can be found via a linear program of O(N) variables.
For large-margin misclassification loss:

Lγ(F (x), y) = 1{yF (x)<γ} (5)

a Stack Filter minimizer

F̂γ(x) ∈ arg min
F∈F

ê(F,Lγ) (6)

is equivalent to minimizing misclassification loss with a Stack Filter from a
restricted function class:

F̂γ(x) ∈ arg min
F∈Fγ

ê(F,L) (7)

where Fγ ⊆ . . . ⊆ F1 ⊆ F . This margin parameter is monotonically related
to the size of the Stack Filter function class and is also discrete and bounded.
For large margin hinge loss:

Lh
γ(F (x), y) = (γ − yF (x))+ (8)

a Stack Filter minimizer also minimizes the sum of large-margin misclassifi-
cation loss functions:

F̂h
γ (x) ∈ arg min

F∈F

γ∑
γ′=−γ

ê(F,Lγ′) (9)



Stack Filter Classifiers 285

This result implies that large-margin hinge loss is a good choice for optimizing
stack filter classifiers. It has one parameter, which determines the size of the
model class considered during optimization, and it minimizes the dependence
on that parameter, which should make it easier to tune. The size of the model
class F , although finite, can be made arbitrarily large and minimization over
F is exact with a linear program of O(2γD) variables.

3 Stack Filter Classifiers

Stack Filters are defined using threshold decomposition and monotonicity
constraints. Given a real valued input vector x = [x1, x2, . . . , xD] we define a
thresholding function u = x � c, parameterized by a scalar c, that produces
a binary vector with components ui = 1{xi�c}. We then define a Stack Index
Filter, SI : RD → {1, . . . , D} as:

SI(x) =
D∑

d=1

f(x � x(d)) (10)

where x(d) is the dth smallest component of x and f : {0, 1}D → {0, 1} is a
positive Boolean function (PBF). A Boolean function is positive (or monotone,
non-decreasing) if it satisfies the stacking constraint that ui � vi, ∀i implies
f(u) � f(v). A Boolean function that is defined using ‘and’ and ‘or’, but no
negations, satisfies this constraint. A Stack Filter, S : RD → R, is related to
a Stack Index Filter by the relationship:

F (x) = x(SI(x)) (11)

In classification problems we typically threshold a real valued function to
produce an indicator for class labels. However the output from a Stack Filter
is always one of the inputs, which means choosing a sensible threshold is
non-trivial. We suggest extending the input space using the mirror-map M :
RD → R2D given by M(x) = [x,−x] [10]. This means zero is guaranteed
to lie between the Dth and (D + 1)th order statistics, and we can use the
sign of the Stack Filter as a class indicator. Figure 1a provides an example
of a Stack Filter classifier predicting y = 1 for a mirrored input sample x =
[3, 1, 2,−3,−1, 2]. The monotonicity constraints mean that the the output
column is always a solid stack of ones, and the height corresponds to the
Stack Index Filter output. In addition, monotonicity also means that:

1{F (x)�t} = 1{f(x�t)} (12)

In Figure 1a we see a Stack Filter thresholded at zero is equivalent to a
positive Boolean function applied to an abstract middle row between Dth and
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Fig. 1. a) Stack Filter Classifier. b) Classification loss functions investigated.

(D+ 1)th thresholds. A topic of interest in this paper are learning algorithms
that require the Stack Filter output to be further from the decision boundary.
This distance can be measured in terms of the number of threshold levels and
is called rank-order margin [11]. For example, in Figure 1a the sample has
been predicted with rank-order margin γ = 2.

There are several loss functions we might consider for Stack Filter classifiers.
We investigate three, which are illustrated in Figure 1b, and described in the
next few sub-sections.

3.1 0-1 Loss

Finding the Stack Filter which minimizes 0-1 loss, is equivalent to finding the
positive boolean function that minimizes 0-1 loss. From Equation 12 it follows
that:

L(F (x), y) = 1{yF (x)<0}
= 1{−yf(x�0)}

(13)

where we redefine the Boolean function output labels to simplify notation:
f : {0, 1}D → {1,−1}. We first consider the related problem of finding
a Boolean function that minimizes 0-1 loss. We define a partially specified
Boolean function where we assign class labels to the rows of a look-up table
that appear in the training set thresholded at zero: u = x � 0. The same row
can appear multiple times in the training set and so we identify the unique set
by Q = {q(1), q(2), . . . , q(M)}. A straightforward solution is to implement a
plug-in type classifier and estimate the class conditional probability for each
q(i) independently:

P̂q(i) =
∑N

n=1 1{u(n)=q(i),y(n)=1}∑N
i=1 1{u(n)=q(i)}

.

We assign class labels zi for each qi with the rule:

zi =
{

1 if P̂q(i) > 0.5
−1 otherwise

(14)
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Fig. 2. a) Lattice diagram of the mirrored input space. b) Example of the input
expansion described in Section 4.

If we restrict the Boolean function to be positive, then we must introduce
monotonicity constraints. This means the plug-in rule of Equation 14 is re-
placed by an integer linear program:

minimize c.z
subj zi � zj when qi � qj

and zi ∈ {0, 1} ∀i, j
(15)

where the cost for variable zi is ci = 0.5 − P̂q(i). Note, to simplify notation
we switched to class labels {0, 1}. This linear program was first suggested for
Stack Filter optimization under mean absolute error [12].

3.2 Large Margin 0-1 Loss

We now consider large-margin loss functions and define margin, γ, as the
number of thresholds above (and below) zero in Figure 1. This leads to the
large margin 0-1 loss:

Lγ(F (x), y) = 1{yF (x)<x(D+γ)}
= 1{−yf(x�x(D+yγ))}

(16)

where to simplify notation: f : {0, 1}D → {1,−1} and we have omitted a
class dependent offset. For class 1 samples, x is thresholded by x(D+γ), which
is larger than x(D), which means there are less ones. In a similar way, for class
-1 samples, x is thresholded by x(D−γ+1), which is smaller than x(D), which
means there are more ones. The problem has the same form as the 0-1 loss
problem, however the binary input samples are different.

In Figure 2a the monotonicity constraints of positive Boolean functions are
illustrated as a lattice where links between two Boolean values u and v implies
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an ordering u � v (ui � vi, ∀i). The mirrored representation means that the
original input space is a subset of entries in the middle row of the lattice where
[u, ū]. As rank order margin is increased, samples move higher (for class 1)
and lower (for class -1) in the lattice, which produces increasing numbers of
constraints. In Figure 2 a sample u = [1100] moves to u′ = [1000] at margin
1, which places an additional constraint on v = [1001].

As γ increases, the number of positive boolean functions that can satisfy
the additional constraints decreases. The large margin 0-1 loss functions for
Stack Filters therefore define reduced sets of PBF function classes.

3.3 Hinge Loss

Hinge loss is typically defined as (1 − F (x))+, but for Stack Filters, the loss
function is discrete and bounded. Furthermore, as shown in Figure 1b, the
maximum loss incurred is 2γ at threshold level (D − γ + 1). This is because
for class 1, threshold levels 1 . . . (D − γ) do not introduce any additional
constraints, i.e., all samples at threshold (D−γ) are below the class -1 samples
at (D − γ + 1) and therefore can be trivially satisfied. The same reasoning
applies to class -1 samples above (D+γ). Given this reduced set of thresholds,
we can write Stack Filter hinge loss as:

Lh
γ(F (x), y) =

γ∑
γ′=−γ

1{−yf(x�x(D+yγ′))} (17)

By reordering summations we see minimizing hinge loss is equivalent to
minimizing the sum of large margin 0-1 loss functions as described in
Equation 9. The solution has the same form as Equation 15, but with more
variables (2γ times more) and more constraints. Note, that this decomposi-
tion of hinge loss to a sum of misclassification loss functions follows directly
from the original results for Stack Filters under mean absolute error [12]. For
classification, this decomposition suggests that the optimal Stack Filter clas-
sifier will have some degree of invariance to the rank order margin parameter.
This is useful in practice since we need to choose this parameter for the ap-
plication. Put another way, optimizing Stack Filters with hinge loss smoothes
the error estimate as a function of margin, which should help methods like
cross-validation converge.

4 Input Expansion

Direct application of Stack Filters typically leads to significant approxima-
tion error, e.g., in two dimensions, the Stack Filter function class has only
two functions (maximum and minimum). The solution is to map the input
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space into a higher-dimensional feature space. This is typically an applica-
tion specific problem, but here we consider a general purpose expansion that
work wells with Stack Filter learning algorithms. First, we map each input
independently using a set of constant thresholds:

xxd = [xd − td(1), xd − td(2), . . . , xd − td(Td)] (18)

The two main ways we choose thresholds are: 1) evenly spaced across the
input range, and 2) midpoints between consecutive samples in the training
set. When applying Stack Filter classifiers we threshold the expanded input
at zero. This means we can calculate and represent the thresholded expansion
by ranks, i.e., each dimension is replaced by an integer which simply counts
how many thresholds are below the given sample:

rd =
Td∑
i=0

1{xd−t1,i>0} (19)

We call r the rank expansion and it allows us to manipulate a (2D ∗ TD) di-
mensional Stack Filter with 2D integers. In Figure 2b we provide an example
of this input expansion in two-dimensions with 4 points: {P1 = (−6, 4), P2 =
(−2,−8), P3 = (6, 10), P4 = (12,−12)} and 3 data dependent thresholds de-
fined per component t1 = {−4, 2, 9} and t2 = {−10,−2, 7}. Point P1 = [−6, 4]
would be expanded to [{−2,−8,−15}, {14, 6,−3}]. We then threshold the ex-
panded input at zero to produce a binary string [{000}, {110}] which we rep-
resent with integer ranks r = [0, 2].

The final step in the input expansion, is to apply the mirror map. We use the
same threshold constants for both original and mirrored input components.
This allows us to assign any class label to any partition with a PBF. That is,
for any two partitions a and b, it is not true that ai 	 bi∀i, and hence there
is always a PBF that can assign arbitrary class labels to a and b. Note that
partitions, r, were described in Section 3.1 as rows of a look-up-table, u, but
that the two terms are equivalent.

The rank expansion has a simple geometric interpretation. Misclassifica-
tion loss minimization is a tiling problem where we maximize training sam-
ple coverage with γ-sized partitions. At zero margin training samples have
equal numbers of ones and zeros and define non-overlapping partitions i.e.,
q(i) � q(j) � q(i). This means that there are no monotonicity constraints
and a pbf can be found using Equation 14. As we increase margin, partitions
grow in size, one threshold at a time. Eventually partitions overlap and this
means that monotonicity constraints must be satisfied using Equation 15.

For real valued inputs, the order in which components of r(n) are reduced
(or increased) as margin increases, depends on the distance between the sam-
ple and the threshold constants. In Figure 2b we show an example for P1 which
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we will assume has a class label 1. As margin is increased from 1 through to
6, we subtract 1 from rd in the following order d = {0, 1, 3, 0, 3, 0}. The cor-
responding thresholds are numbered in Figure 2b.

For other types of inputs, e.g. categorical or binary, the distances to thresh-
olds are less meaningful, and often equal. In this case, the Stack Filter approach
does not suggest which thresholds should be relaxed first. In this paper we use
a simple heuristic to resolve tied distances: we select the threshold which pro-
duces the smallest number of conflicts.

5 Rank-Distance Classifier

The hinge loss classifier can be found via a Linear Program of O(2γN) vari-
ables. One way to view the optimization is shown on the left in Figure 3.
The monotonicity constraints of positive (crosses) and negative (circle) mar-
gin samples define local contours of a margin function and the Linear Program
selects a continuous path from these contours that maximizes the sum of sam-
ple margins. The solid gray line in Figure 3 is a hypothetical solution that
misclassifies one negative sample. One of the main problems with the hinge
loss solution is computational cost.

The main objective in optimizing hinge loss is to assign class labels to
input partitions that are poorly represented in the training data. As we have
seen, Stack Filter minimizers of hinge loss have attractive properties for this
problem, however we now consider an alternative, which is to directly optimize
class labels for the input partitions independently. This is illustrated on the
right in Figure 3. We define the rank-order distance classifier as a function of
r (the mirrored, rank expansion of an input x) as:

f̂(r) = sgn(
∑

n∈C1

γ∑
m=0

1{r�rm(n)} −
∑

n∈C0

γ∑
m=0

1{r�rm(n)}) (20)

Fig. 3. A one-dimensional representation of samples (zeros and crosses), and mono-
tonicity constraints. a) Hinge loss minimization and b) direct estimation of input
partitions (squares) with rank-order distance.
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where rm(n) is a margin modified version of the nth training sample. In geo-
metric terms, this classifier is defined by counting the number of positive and
negative partitions that overlap a given point r. In practice this classifier is
implemented by constructing a rank-order distance matrix, and we add (and
subtract) the distances from a given point r to each training sample. We call
the distance function rank-order distance and it is defined as the value of
margin where the point is covered by a training sample. In contrast to the
Linear program, this approach is memory-based and appears similar to Parzen
window or nearest neighbor methods.

The rank-order distance approach assumes we really only care about the
statistics of the thresholded hinge-loss Stack Filter. By estimating these statis-
tics independently for each partition we obtain significant computational sav-
ings but also reduce approximation error. That is, the partitions used by the
hinge loss are larger than those estimated with the rank-order distance ap-
proach. The price one pays is the density of solution and the interpretability.
The hinge-loss solution typically produces a small number of terms and each
term directly dictates class labels for large partitions of the input space. This
model is both fast to implement and easy to interpret in a decision tree like
fashion. With the rank-order distance classifier we no longer have this simple
partitioning of the input space. Instead we derive class labels for a given point
by accumulating many terms.

6 Experiments

We investigate the relationship between the different loss functions and learn-
ing algorithms with synthetic experiments. For the first experiment samples
for two classes are drawn from 4-dimensional symmetric Gaussians. The pa-
rameters for the Gaussians are μ−1 = 0, σ−1 = I and μ1 = 1.5I, σ1 = 1.5I.
The training sample size is fixed at 50 and performance evaluated with 5000
test samples. The number of data dependent thresholds is fixed at 8 for each
dimension. In Figure 4a we show the performance of zero-one, hinge loss clas-
sifiers as well as the rank-order distance classifier as a function of margin,
averaged over 20 trials. The rank-order distance classifier clearly outperforms
hinge loss which clearly outperforms zero-one loss. The rank-order distance
classifier obtained the best performance at maximum margin, which we at-
tribute to the limited capacity of the model class defined by the small number
of thresholds.

To investigate this further we apply the rank-order distance classifier to
a multi-modal 2-dimensional xor problem where samples are drawn from
Gaussian distributions with equal variance σ = 2, and class means cen-
tered on μ = ±2. We compare 3 classifiers in Figure 4b. RankDistance8
and rankDistance500 are the rank-order distance classifier with 8 and 500
thresholds/dimension respectively. We also compare the performance of an
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Fig. 4. a) Test error versus rank-order margin for different learning algorithms. b)
Test error of rank-distance classifiers with different numbers of thresholds compared
to an SVM. Note that the x-axis scale applies only to the rankDistance8 result.

SVM rbf classifier as the regularization parameter is varied: C = [1e− 3, 1e−
2, 1e− 1, 1, 5, 10, 50, 100, 500]. The SVM rbf parameter is set at σ = 0.1, the
best value found with C = 1. With the increased model capacity, we see that
the rank-order margin parameter behaves as we would expect, and that its
performance appears competitive with the SVM.

The rank-order distance classifier is applied to the UCI benchmark datasets
described in [9]. Each problem is provided as 100 pre-partitioned training and
test set pairs and the reported percentage is the average test set error over the
100 trials. During these experiments a simple cross-validation scheme is used
to choose the value of rank-order margin for each trial independently. 75% of
the training set is used to train the classifier and the remaining 25% is used
as a validation set. We choose the value of margin with the minimal average
validation error over 10 folds. Table 1 summarizes results reported in [9] and
the results obtained with the rank-order distance method (SFC: Stack Filter
Classifier).

In all problems, the SFC approach outperformed C4.5 and in two of the
problems it outperformed ODT. We observed that the SFC had difficulty
with purely categorical, or binary inputs such as the Flare-Solar and Titanic
datasets. As discussed in Section 4 the best way to expand partitions for bi-
nary, or categorical, inputs is not well defined with our approach. Future work
will need to address this problem and we suggest incorporating techniques
from the decision tree literature may be useful. For the Titanic problem, we
also observed that an error rate of 22.3 could be obtained by simply memoriz-
ing the data (zeroOne loss classifier at 0 margin). This error rate is in fact lower
than the best reported score for this problem and indicates how important the
choice of margin (or regularization) parameter is for learning algorithms. In
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Table 1. Classification accuracies on selected benchmarks. *Results reproduced
from [9].

Data set C4.5∗ ODT ∗
SFC

Banana 15.2± 1.3 14.9 ± 1.2 11.03 ± 0.6

Breast cancer 30.8± 4.9 28.7 ± 4.2 29.4 ± 4.2

Diabetes 27.9± 2.6 26.0 ± 2.3 26.7 ± 1.9

Flare-solar 34.5± 2.1 32.6 ± 1.9 34.4 ± 2.2

Thyroid 8.4± 3.5 8.2 ± 3.4 4.9 ± 2.3

Titanic 23.0± 1.1 22.5 ± 1.2 22.9 ± 1.9

fact, we observed that better performance could often be achieved for several
of the problems, by simply choosing a fixed margin for the SFC.

7 Discussion

Stack Filter classifiers and decision tree classifiers produce similar decision
boundaries. The two approaches place different constraints on how parti-
tions, induced by thresholds, can be assigned, but both approaches produce
a unique rule for each partition. In contrast, the rank-order distance method
does not produce a rule based representation for input partitions. In this re-
gard, the rank-order distance method is perhaps better compared to a non-rule
based classifier such as an SVM. The best results obtained on the benchmark
datasets using this larger class of methods can be found in [9]. The results
reported here have higher error than these methods, which we attribute to the
fact that the SVM has a well motivated method to optimize weights associ-
ated with each training sample. An open question is whether the Stack Filter
approach suggests methods to introduce and optimize weights for the rank-
order distance classifier. In summary, we have proposed two complementary
and related methods for designing Stack Filter Classifiers: one that produces
a decision tree like model and one that produces a Parzen window like model.
This relationship appears unique to Stack Filter classifiers and could lead
to new methods for maximizing the benefit of both approaches for a given
application.
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Abstract. We present a programming framework for discrete mathe-
matical morphology centered on the concept of genericity. We show that
formal definitions of morphological algorithms can be translated into ac-
tual code, usable on virtually any kind of compatible images, provided a
general definition of the concept of image is given. This work is imple-
mented in Milena, a generic, efficient, and user-friendly image processing
library.

1 Introduction

Software for mathematical morphology targets several audiences: end users, de-
signers and providers. End users of morphological tools want to apply and as-
semble algorithms to solve image processing, pattern recognition or computer
vision problems. Designers of morphological operators build new algorithms by
using constructs from their software framework (language, libraries, toolboxes,
programs, etc.). Finally, providers of data structures are interested in extending
their framework with new data types (images, values, structuring elements, etc.).

The size of the population of these categories is decreasing: there are more
end users of morphological software than designers of algorithms, and the latter
themselves outnumber providers of data structures. Morphological frameworks
usually address the needs of their clients in this order, and even sometimes ignore
the third or second categories. However, a full morphological framework should
suit all groups of users so that structures of providers and algorithms of designers
can be used by every actor. In this article, we present a software framework for
mathematical morphology designed with two major goals in mind:

1. Be as simple as calling C routines for end users.
2. Be modular enough to be extended w.r.t. algorithms and data structures;

and four minor:

3. Be generic: if a morphological operator admits a general definition whatever
the context (topology of the image, structuring element, etc.), then this
algorithm should have a corresponding single implementation.

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 295–306, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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4. Be close to theory: reading (and writing) algorithms should eventually be-
come natural to scientists used to mathematical morphology notations.

5. Retain efficiency (with respect to run time speed and memory usage) when
it is possible. Dedicated and efficient implementations of morphological algo-
rithms for certain cases are known and should be selected whenever possible.

6. Be user-friendly: users should not have to address memory-related issues or
deal with a program silently failing because of an arithmetic overflow. The
tool should handle these situations, and help the user diagnose any problem.

The paradigm of Generic Programming (GP) [1] which is at the heart of many
modern C++ libraries [2,3] and its application to the C++ language address many
of these concerns. Developing a software library in the context of GP requires
some effort. One of the key ideas is that such a library should be based on
abstractions of the domain (mathematical morphology in this case). The above
requirements will not be fully satisfied if we fail to reify intrinsic concepts of
the domain as abstractions. Several image processing libraries relying on the GP
paradigm exist (ITK [4], VIGRA [5], Morph-M [6]) but as far as the authors
know, none of them seem to meet all of the above requirements.

From the general lattice theory on which is built mathematical morphology,
many authors have proposed derived theoretical frameworks. The first ones are
graphs [7,8], later extended to store information both on vertices and between
vertices (on edges) [9,10]. The notion of complex (see Section 3.2) has also been
used to express topological and geometrical attributes of images beyond the
scope of graphs [11,12]. Generic programming frameworks to implement algo-
rithms on complexes and grid data structures have been proposed [13,14,15].
Other possible frameworks include combinatorial maps [16] and orders [17].

Let us for instance consider the framework of graphs as the basis of morpho-
logical image processing in order to express definitions and properties as general
as possible (and meet requirement 3). We could then use a graph-related library
like the Boost Graph Library (BGL) [3]. However, such a design suffers from lim-
itations, as mathematical morphology, despite having many intersections with
graph theory, has its own definitions, idioms, notations, and issues. Therefore,
adapting morphological algorithms to a graph software framework would dis-
tort their definitions, which is contrary to requirements 4 and 6. Moreover, we
would probably lose efficiency (requirement 5) for restricted use cases in image
processing (but at the same time, the most common ones): regular 2D or 3D im-
ages on grids, classical structuring elements, etc. Finally, setting graphs as the
ultimate representation of images in mathematical morphology once and for all
might prevent future extensions. For example the notion of complex mentioned
previously, which extends the notion of graph, can be considered to form the
basis of a morphological framework.

Therefore, instead of using a fixed system, we propose to rethink mathemat-
ical morphology under the light of generic programming [18]. The first step is
to define software abstractions matching morphological entities (topology, sets,
functions, lattices, structuring elements, geometry, etc.), starting with the con-
cept of discrete image. Then, it will be possible to express algorithms in terms of
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these concepts on the one hand, and provide actual data structure implementing
these abstractions on the other hand.

In this paper, we present a generic and efficient C++ programming library,
Milena, a part of the Olena image processing platform [19,20]. Milena uses and
extends the idea of GP [21]. It implements the abstractions for mathematical
morphology software mentioned previously.

This article mainly targets end users of the library and designers of algo-
rithms. It is structured as follows: in Section 2, we study how morphological
algorithms are commonly implemented and what are the issues of classical yet
restrictive designs. Section 3 proposes a generic definition of an image and shows
how this genericity is expressed through the image’s traits. As an illustration, a
small generic image processing chain is given in Section 4 and applied to various
images.

2 Software Implementation of Mathematical Morphology

Translating mathematical morphology methods and objects into readable and
usable algorithms is often biased either to satisfy constraints of actual data or
meet software and hardware requirements. An example of the first circumstance
is the prominent case of a 2-dimensional single-valued image, set on a rectan-
gular (boxed) domain with integer coordinates (a discrete grid D ⊆ Z2). Many
morphological algorithms are solely expressed with this framework in mind. The
second bias is computer-dependent: for the sake of efficiency or simplicity of im-
plementation, algorithms sometimes include language- or hardware-related con-
structs: buffers, loops, dimension decomposition, out-of-bounds behavior, etc.

Let us consider a simple example: the elementary morphological dilation of a
gray-level image ima with a (flat) structuring element. A shortened definition in
the framework of complete lattices [22] would be:

δB(I)(x) = sup
h∈B

I(x + h)

where I (the image to process) is a function D → V associating a point from
the domain D to a value from the set V ; and B the structuring element associ-
ated to, e.g., the usual 4-connectivity neighborhood. A simple implementation in
C++ could be as the one from Algorithm 1. However, this solution makes extra
hypotheses that were not contained in the definition of the operation, e.g.:

1. The image is 2-dimensional, since it is accessed using a (row, col) notation.
2. Sites are points with nonnegative integers coordinates starting at 0.
3. The values of the image are compatible with the 8-bit unsigned char type.
4. The values of the image form a totally ordered set; hence the operator < can

be used to compute the supremum.
5. The structuring element is based on the 4-connectivity.

Each of the previous hypotheses is an actual limitation on the generality
of Algorithm 1. It cannot be reused as-is if for instance one or several of the
following conditions are expected:
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image dilation(const image& input) {
image output (input.nrows(), input.ncols()); // Initialize an output image.
for (unsigned int r = 0; r < input.nrows(); ++r) // Iterate on rows.

for (unsigned int c = 0; c < input.ncols(); ++c) { // Iterate on columns.
unsigned char sup = input(r, c);
if (r != 0 && input(r−1, c) > sup) sup = input(r−1, c);
if (r != input.nrows() − 1 && input(r+1, c) > sup) sup = input(r+1, c);
if (c != 0 && input(r, c−1) > sup) sup = input(r, c−1);
if (c != input.ncols() − 1 && input(r, c+1) > sup) sup = input(r, c+1);
output(r, c) = sup;

}
return output;

}
Algorithm 1. Non generic implementation of a morphological dilation of an 8-bit
gray-level image on a regular 2D grid using a 4-c flat structuring element.

1. The input is a 3-dimensional image.
2. Its points are located on a box subset of a floating-point grid, that does not

necessarily include the origin.
3. The values are encoded as 12-bit integers or as floating-point numbers.
4. The image is multivalued (e.g., a 3-channel color image).
5. The structuring element represents an 8-connectivity.

Even if the class of images accepted by Algorithm 1 covers day-to-day needs of
numerous image processing practitioners, image with features from the previous
list are also quite common in fields like biomedical imaging, astronomy, document
image analysis or arts. Algorithm 1 also highlights less common restrictions. As
is, it is unable to process images with the following features:

– A domain
• which is not an hyperrectangle (or “box”);
• which is not a set of points located in a geometrical space, e.g., given a

3D triangle mesh, one can build an image by mapping each triangle to
a set of values;

• which is a restriction (subset) of another image’s domain, still preserving
essential properties, like the adjacency of the sites.

– A neighborhood where neighbors of a site are not expressed with a fixed-set
structuring element, but through a function associating a set of sites to any
site of the image. This is the case when the domain of the image is a graph,
where values are attached to vertices [8].

– Non scalar image values, like color values.

Furthermore, the style used in Algorithm 1 does not allow for optimizations.
An optimized code (taking advantage, for example, of a totally ordered domain
of values, with an attainable upper bound), requires a whole new algorithm per
compatible data structure.
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template <typename I, typename W>
mln concrete(I) dilation (const I& input, const W& win) {

mln concrete(I) output; initialize (output, input); // Initialize output.
mln piter(I) p(input.domain()); // Iterator on sites of the domain of ‘input’.
mln qiter(W) q(win, p); // Iterator on the neighbors of ‘p’ w.r.t . ‘win’.
for all(p) {

accu::supremum sup = input(p); // Accumulator computing the supremum.
for all(q) if (input.has(q))

sup.take(input(q));
output(p) = sup.to result();
return output;

}
}

Algorithm 2. Generic implementation of a morphological dilation.

In the remainder of this paper, we show how the programming framework
of Milena allows programmers to easily write generic and reusable [23] image
processing chains using mathematical morphology tools. For instance a Milena
equivalent of Algorithm 1 could be Algorithm 2. In this algorithm I is a generic
image type, while W is the type of a generic structuring element (also named
window). p and q are objects traversing respectively the domain of ima and the
sites of the structuring element win centered on p. The predicate input.has(q)
ensures that q is a valid site of input (this property may not be verified e.g.
when p is on the border of the image). sup iteratively computes the supremum
of the values under win for each site p. An example of use similar to Algorithm 1
would be:

image2d<unsigned char> ima dil = dilation(ima, win c4p());

where win c4p() represents the set of neighboring sites in the sense of the 4-
connectivity plus the center of the structuring element.

Algorithm 2 is a small yet readable routine and is no longer specific to the
aforementioned 2-dimensional 8-bit gray-level image case of Algorithm 1. It is
generic with respect to its inputs, and no longer restricted by the limitations
we mentioned previously. For instance it can be applied to an image defined
on a Region Adjacency Graph (RAG) where each site is a region of an image,
associated to an n-dimensional vector expressing features from each underlying
region, provided a supremum is well defined on such a value type.

3 Genericity in Mathematical Morphology

3.1 A Generic Definition of the Concept of Image

The previous considerations about the polymorphic nature of a discrete image
require a clear definition of the concept of image. To embrace the whole set of
aforementioned aspects, we propose the following general definition.
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Definition. An image I is a function from a domain D to a set of values V . The
elements of D are called the sites of I, while the elements of V are its values.

For the sake of generality, we use the term site instead of point : if the domain
of I were a RAG, it would be awkward to refer to its elements (the regions)
as “points”. This definition forms the central paradigm of Milena’s construc-
tion. However, an actual implementation of an image object cannot rely only on
this definition. It is too general as is, and mathematical morphology algorithms
expect some more information from their inputs, like whether V is a complete
lattice, how the neighboring relation between sites is defined, etc. Therefore, we
define additional notions to supplement the definition of an image. These notions
are designed to address orthogonal concerns in image processing and mathemat-
ical morphology, so that actual definitions (implementations) of images can be
changed along one axis (e.g., the topology of D) while preserving another (e.g.,
the existence of a supremum for each subset X ⊆ V ).

Algorithms are then no longer defined in terms of specific image characteris-
tics (e.g., a domain defined as two ranges of integers representing the coordinates
of each of its points) but using abstractions (e.g., a site iterator object, providing
successive accesses to each site of the image, that can be deduced from the image
itself). This paradigm based on Generic Programming promotes “Write Once,
Reuse Everywhere Applicable” design of algorithms by introducing abstract en-
tities (akin to mathematical objects) in software defined by their properties.

The genericity of our approach resides in both the organization of the library
around entities dedicated to morphological image processing (images, sites, site
sets, neighborhoods, value sets, etc.) and in the possibility to extend Milena with
new structures and algorithms, while preserving and reusing existing material.

The next section presents the main entities upon which we define morpho-
logical algorithms in Milena, and how they provide genericity in mathematical
morphology.

3.2 Genericity Traits

We define actual images as models of the previous definition of an image, with
extra properties on I, D or V . These traits express the generic nature of this
definition, and are related to the notions of this section. Each of them is as
much orthogonal (or loosely coupled) to the others as possible, so that an actual
implementation of one of these concepts can be defined and used with many
algorithms regardless of the other features of the input(s). In the rest of this
section, we illustrate how the limitations of Algorithm 1 mentioned in Section 2
are lifted by the generic implementation of Algorithm 2.

Restriction of the Domain. It is possible to express the restriction of an
image ima to a subset s of its domain using the dedicated operator |; the result
can then be used as input of an algorithm:

image2d<int> ima dil = morpho::dilation(ima | s, win);
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The subset s can either be a comprehensive collection of sites (array, set, etc.) or
a predicate. A classical example is the use of a “mask” to restrict the domain of
an image. This mask can for instance be a watershed line previously computed
on ima; the dilation above would act as a reconstruction of the pixels of ima
belonging to this watershed line.

Structuring Elements, Neighborhoods and Windows. Structuring ele-
ments of mathematical morphology can be generalized with the notion of win-
dows : functions from D to P(D). A special case of window is a neighborhood :
a non-reflexive symmetric binary relation on D. In the case of images set on
n-dimensional regular grids (as in the previous example of dilation of a 2D im-
age), D is a subset of Zn and is expressed as an n-dimensional bounding box.
Windows’ members can be expressed regardless of the considered site, using a
(fixed or variable) set of vectors, called delta-sites, as they encode a difference
between two sites. For instance a 4-connectivity window is the set of 2D vectors
{(−1, 0), (0,−1), (0, 0), (0, 1), (1, 0)}.

In more general cases, windows are implemented as domain-dependent func-
tions. For instance, the natural neighbors of a site p (called the center of the
window) of a graph-based image, where D is restricted to the set of vertices,
are its adjacent vertices, according to the underlying graph. Such a window is
implemented by an object of type adjacent vertices window p in Milena (see
below). This window does not contain delta-sites; instead, it encodes the defini-
tion of its member sites as a function of p. Using an iterator q to iterate over
this window (as in Algorithm 2) successively returns each of its members.

Topological Structure. The structure of D defines relations between its ele-
ments. Classical images types are set on the structure of a regular graph, where
each vertex is a site of I. More general images can be defined on general graphs,
where sites can be either the vertices of the graph, its edges or even both.

An example of dilation on regular 2D image was given in Section 2. In the
case of an image associating 8-bit integer values to the elements (vertices and
edges) of graph, computing an elementary dilation with respect to the adjacent
vertices would be written as this:

graph image<int u8> ima dil =
morpho::dilation(ima | vertices , adjacent vertices window p());

ima | vertices creates an image based on the subset of vertices on-the-fly,
while adjacent vertices window p() returns a window mapping each vertex
to the set of its neighbors plus the vertex itself.

We can generalize this idea by using simplicial complexes. An informal def-
inition of a simplicial complex (or simplicial d-complex) is “a set of simplices”
(plural of simplex), where a simplex or n-simplex is the simplest manifold that
can be created using n points (with 0 ≤ n ≤ d). A 0-simplex is a point, a
1-simplex a line segment, a 2-simplex a triangle, a 3-simplex a tetrahedron. Sim-
plicial complexes extends the notion of graphs; a graph is indeed a 1-complex.
They can be used to define topological spaces, and therefore serve as supports
for images. Figure 1 shows an example of simplicial 3-complex.
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Fig. 1. A simplicial 3-complex Fig. 2. A mesh seen as a simplicial 2-complex

Let us consider an image ima based on a simplicial 2-complex (Figure 2) where
each element is located in space according to a geometry G (the notion of site
location and geometry is addressed later) with 8-bit integer values. The domain
D of this image is composed of points, segments and triangles. We consider a
neighboring relation among triangles (also known as 2-faces) where two triangles
are neighbors iff they share a common edge (1-face). The code to compute the
dilation of the values associated to the triangles of D with respect to this relation
is as follows:

complex image<2, G, int u8> ima dil =
dilation (ima | faces (2), complex lower dim connected n face window p<2, G>());

As in the example of the graph-based image, ima | faces(2) is a restric-
tion of the domain of ima to the set of 2-faces (triangles). The expression
complex lower dim connected n face window p<2, G>() creates the neighbor-
ing relation given earlier (for a site p of dimension n, this window is the set of
n-faces sharing an (n− 1)-face, plus p itself).

Site Location and Geometry. In many context, the location of the sites
of an image can be independent from the structure of D. For instance if the
domain of I is built on the vertices of a graph, these sites can be located in
Zn or Rn with n ∈ N∗. In some cases, the location of sites is polymorphic.
E.g., if D is a 3-dimensional simplicial complex located in a 3D space (as in
Figure 1), the location of site p can be a 3D point (if p is a vertex), a pair of
points (if p is an edge), a triplet of points (if it is a triangle) or a quadruplet
(if it is a tetrahedron). We encode such information as a set of locations called
a geometry. For instance, the term G from the previous code is a shortcut for
complex geometry<2, point2d>.

Value Set. Almost all framework support several (fixed) value sets representing
mathematical entities such as B, N, Z, Q, R or subsets of them. Some of them
also support Cartesian products of these sets. Not so many support user-defined
value types. To be able to process any kind of values, properties should be
attached to these sets: quantification, existence of an order relation, existence of
a supremum or infimum, etc. Then it is possible to implement algorithms with
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expected constraints on V . For instance, one can perform a dilation of a color
image with 8-bit R, G, B channels by defining a supremum on the rgb8 type:

rgb8 sup (const rgb8& x, const rgb8& y) {
return rgb8(max(x.r(),y.r()), max(x.g(),y.g()), max(x.b(),y.b()));

}
image2d<rgb8> ima dil = morpho::dilation(ima, win c4p());

3.3 Design and Implementation

Milena aims at genericity (broad applicability to various inputs, reusability) and
efficiency (fast execution times, minimum memory footprint). The design of the
library focuses on the following features, that we can only sketch here.

Ease of Use. The interface of Milena is akin to classical C code to users, minus
the idiosyncratic difficulties of the language (pointers, manual memory allocation
and reclaim, weak typing, etc.). Users do not need to be C++ experts to use the
library. Images and other data are allocated and released automatically and
transparently with no actual performance penalty.

Efficiency. Milena handles non-trivial objects (images, graphs, etc.) through
shared memory, managed automatically. The mechanism is efficient since it
avoids copying data. As for algorithms, programmers can provide several ver-
sions of a routine in addition to the generic one. The selection mechanism is
static (resolved at compile-time), and more powerful than function overloading:
instead of dispatching with respect to types, it dispatches with respect to one or
several properties attached to one or several types [21].

Usability. Milena targets both prototyping and effective image processing. In
the case of very large images (1 GB), we cannot afford multiples copies of values
or sometimes even loading a whole image (of e.g. several gigabytes). Therefore,
the library provides alternative memory management policies to handle such
inputs: in this case, memory-mapped image types which, by design, have no
impact whatsoever on the way algorithms are written or called.

4 Illustrations

In this part, we consider a simple, classical image processing chain: from an image
ima, compute an area closing c using criterion value lambda; then, perform a
watershed transform by flooding on c to obtain a segmentation s. We apply this
chain on different images ima. All of the following illustrations use the exact
same Milena code corresponding to the processing chain above. Given an image
ima (of type I), a neighborhood relation nbh, and a criterion value (threshold)
lambda, this code can be written as this (nb is a placeholder receiving the number
of catchment basins present in the watershed output image) :
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template <typename L, typename I, typename N>
mln ch value(I, L) chain(const I& ima, const N& nbh, int lambda, L& nb) {

return morpho::watershed::flooding(morpho::closing::area(ima, nbh, lambda),
nbh, nb);

}

Regular 2-Dimensional Image. In the example of Figure 3(a), we first
compute a morphological gradient used as an input for the processing chain.
A 4-c window is used to compute both this gradient image and the output
(Figure 3(d)), where basins have been labeled with random colors.

Graph-Based Image. Figure 3(b) shows an example of planar graph-based [7]
gray-level image, from which a gradient is computed using the vertex adjacency
as neighboring relation. The result shows four basins separated by a watershed
line on pixels.

Simplicial Complex-Based Image. In this last example [24], a triangular
mesh is viewed as a 2-simplicial complex, composed of triangles, edges and ver-
tices (Figure 3(c)). From this image, we can compute maximum curvature values
on each triangle of the complex, and compute an average curvature on edges.

(a) Regular 2D Image (b) Graph-Based Image (c) Complex-Based Image

(d) Result on a gradient of
(a)

(e) Result on a gradient of
(b)

(f) Result on the curvature
of (c)

Fig. 3. Results of the image processing chain of Section 4 on various inputs
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Finally, a watershed cut [25] on edges is computed, and basins are propagated
to adjacent triangles and vertices for visualization purpose (Figure 3(f)).

All examples use Meyer’s watershed algorithm [26], which has been proved to
be equivalent to watershed cuts when used on the edges of a graph [27].

5 Conclusion

We have presented the fundamental concepts at the heart of Milena, a generic
programming library for image processing and mathematical morphology, re-
leased as Free Software under the GNU General Public License. Milena allows
users to write algorithms once and use them on various image types. The pro-
gramming style of the library promotes simple, close-to-theory expressions.

As far as implementation is concerned, Milena extends the C++ language
“from within”, as a library extension dedicated to image processing. Though we
designed the library to make it look familiar to image processing practitioners,
it does not require a new programming language nor special tools: a standard
C++ environment suffices. Moreover, as Generic Programming allows many op-
timizations from the compiler, the use of abstractions does not introduce actual
run-time penalties.

We encourage practitioners of mathematical morphology interested in Milena
to download the library at http://olena.lrde.epita.fr/Download and see if
it can be useful to their research experiments.
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Abstract. Multi-scale connectivity measures have been introduced in the con-
text of shape analysis and image segmentation. They are computed by progressive
shape decomposition of binary images. This paper presents an efficient method
to compute them based on the dual-input Max-Tree algorithm. Instead of han-
dling a stack of binary images, one for each scale, the new method reads a single
gray-level image, with each level associated to a unique scale. This reduces the
component labeling iterations from a total number equal to the number of scales
to just a single pass of the image. Moreover, it prevents the repetitive decompo-
sition of each component under study, for the remaining scale range, since these
information are already mapped from the input image to the tree hierarchy. Syn-
thetic and real image examples are given and performance issues are discussed.

1 Introduction

Connected operators [1] are morphological functions that modify the intensity of im-
age regions, known as connected components, instead of individual points. They rely
on some notion of image connectivity, which in the lattice-theoretic framework of
connected morphology [2], it is defined through set families known as connectivity
classes [3].

A connected operator given a point on the image domain, extracts the connected
component containing it in its entirety and without edge or shape modifications. This
property, though particularly valuable in many applications, is responsible for what is
known as the “leakage” problem [4, 5] of connected operators. Wide object regions
linked by narrow, elongated bridging paths, which could be the result of background
texture, are extracted as one object when it is often desirable to treat them separately.
Contraction-based second-generation connectivity [6, 7] can in part resolve this issue
by handling pixels in these paths as singleton sets. The result of connected operators
configured with this type of connectivity is a heavy edge distortion and a severe blur-
ring effect in gray-scale images, known as oversegmentation [8]. Moreover, computing
connected pattern-spectra [9] from granulometries using this notion of connectivity, sat-
urates the spectrum bin accounting for objects of size 1. That is, much of the structural

M.H.F. Wilkinson and J.B.T.M. Roerdink (Eds.): ISMM 2009, LNCS 5720, pp. 307–319, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



308 G.K. Ouzounis

information contained on the edges of the image objects is discarded by being placed
to the spectrum entry accounting mostly for noise.

To counter this, a multi-scale connectivity analysis framework was introduced, based
on the axiomatic definition of generalized morphological connectivity measures [5]. An
example is the adjunctional multi-scale connectivity function employed for computing
generalized granulometries. This function incorporates geometrical cues to quantify
“how strongly connected” a set is. This is by evaluating the rate at which it can be
partitioned into a set of disjoint non-empty subsets through the recursive application
of an anti-extensive local operator such as an erosion or an opening. The adjunctional
multi-scale connectivity functions can be computed using the Connectivity Tree (C-
Tree) [5], which is a hierarchical binary image representation structure, encoding in
each level how “strong” the image connections are. Fine-tuning of the tree allows the
control of the leakage problem. Moreover, it allows the handling of structures that are
inaccessible with operators configured with the regular topological connectivity.

In this paper a new method for computing the adjunctional multi-scale connectivity
functions is presented. It is based on the dual-input Max-Tree algorithm [10] and han-
dles gray-level images. Each level corresponds to a unique shape decomposition scale
of the original binary image. The decomposition is computed through a sequence of
anti-extensive erosions or openings at an off-line stage, with scale corresponding to the
radius of the structuring element involved. After configuring the input image and the
mask [10], the Max-Tree is computed. This process, described in Section 3.2, delivers
a structure in which the entire image is fragmented to singleton sets. Following, the
tree is re-partitioned with the aid of a wavefront expansion routine that groups sets of
singletons to larger components, under the connectivity scheme of [5] (Section 4). In
a step further - Section 5, the Max-Tree nodes satisfying the C-Tree node criteria, are
pinpointed in the structure, the connectivity function parameters for these nodes are
obtained by accumulating information from the remaining nodes and the adjunctional
multi-scale connectivity function for each node visited is computed. The algorithm is
tested on real and synthetic images of known structural characteristics - Section 6. The
findings, together with the advantages of this method over the regular C-Tree algorithm
and a short analysis into computational complexity issues are discussed in Section 7.

2 Connectivity Measures and the C-Tree

The concept of connectivity measures μ(X) (X being a binary set) was introduced
in the context of multi-scale shape connectivity analysis, aiming at quantifying the
strength of object connections. An example is given in Fig. 1 where the objective is
to differentiate the three cases based on the structural characteristics of each path, i.e.

r1 < r2 < R1 < R2 ⇒ μ(A1) > μ(A2) > μ(A3) (1)

Tzafestas et al. [5] proposed a multi-scale connectivity function based on adjunctions,
given by:

Definition 1. Letα = (εB, δB) denote an adjunction onP(E). A functionμa : P(E)×
R+ → [0, 1] defined as:

μa(X, s) = e−λra(X,s),with (2)
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Fig. 1. An example of two circular objects linked with a path of different structural characteristics
in each case

ra(X, s) =
∨

{r ∈ N : δr
B(es

B(X)|X) ∈ C \ ∅}, (3)

is called an adjunctional connectivity function and gives a measure of the connectivity
of a set X ⊆ E, at scale s.

E is an arbitrary superset, P(E) is the powerset of E, C is a connectivity class [3], and
εB and δB are Minkowski erosions and dilations with a structuring element B.

The adjunctional multi-scale connectivity functions can be computed using the Con-
nectivity Tree. In [5], a detailed description of the algorithm is given. In brief, the C-
Tree creation resides on a recursive procedure, called create-CTree(child[j]), that takes
as input a C-Node structure, constructs the children C-Nodes and recursively calls itself
to complete the remaining part of the C-Tree hierarchy. Following is a brief summary
of this procedure (as given in [5]) in four steps.

1. Perform erosion Xε = εsB(X) on the input image (X = C-node→Image), with
progressively increasing scale s until Xε is partitioned into a number (nc > 1) of
disjoint connected components Yj(j = 1, ..., nc) (if X vanishes completely for a
particular scale s without being partitioned into separated connected components,
then the current C-Node is a leaf node.

2. Perform a conditional wavefront expansion on the partition {Yj} of Xε, to recon-
struct a partition {Zj} of X , that is, a new set of disjoint connected componentsZj

such that:
⋃
Zj = X .

3. Create children C-Node structures (child[j], for j = 1, ..., nc). Call recursively the
create-CTree(child[j]) procedure.

4. Compute the adjunctional multiscale connectivity function μa(Xk
j , s), where k is

the tree level.

The Max-Tree node structure [4] discussed next, is enriched with some of the mem-
bers of the C-Node structure, namely the c_max_scale which marks the maximum
scale smax : ∀s > smax ⇒ εsB(Xk

j ) = ∅, the c_func[] which is an array storing
μa(Xk

j , s), ∀s : 0 ≤ s ≤ smax, and the number of C-Node equivalent Max-Tree chil-
dren nodes c_num_children.
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3 The Dual-Input Max-Tree Algorithm

3.1 The Original Algorithm

The Max-Tree is a versatile image representation structure for anti-extensive attribute
filtering [4]. It is a rooted, unidirected tree in which, given a gray-level image f , the
node hierarchy corresponds to the nesting of its peak components. A peak component
Ph [11] is a connected component of the threshold set Th(f) at level h and a flat-zone
Fh [11] is a connected component of the set of pixels with level strictly equal to h. If a
peak component Ph has no neighbors at h′ > h, it is called a regional maximum.

Each tree node, addressed by its level h and index i, corresponds to a set of flat-zones
for which there exists a unique mapping to a peak component. The “leaves” of the tree
correspond to its regional maxima while the root is defined at the minimum level hmin

and represents the background. Each node except for the root points to its parent at level
h′ < h. The root node points to itself. An example is shown in Fig. 2.

Each tree node stores auxiliary data from the set of image flat-zones it associates
with, and from all its descendant nodes. Node attributes can be computed directly and
filtering is done on a node basis. Data inheritance from child to parent node is a simple

image f (std conn.) image m (std conn.) image f (m-conn.)

Fig. 2. Max-Tree examples: the first two trees on the left, are of the images f and m respec-
tively, both associated to standard (std) connectivity, and with regular nodes only. The third Max-
Tree, (dimt algorithm), is of the image f using m as a connectivity mask. f is associated to a
contraction-like m-connectivity, in which all foreground regions are converted to singletons.
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accumulation in the case of increasing attributes but for the more complicated case of
shape descriptors, a more delicate handling is required [10].

The Max-Tree algorithm runs a three-stage process in which the construction of the
tree and the collection of auxiliary data is separate from image filtering and restitu-
tion. The construction is based on a recursive flood-fill function fed by a set of hier-
archical FIFO queues (see [4] for pseudo-code). Differences between the standard and
dual-input mode are limited to the construction stage only. The dual-input mode (dimt
algorithm) [10] is designed for operators associated to second-generation connectiv-
ity [6, 7, 10]. The algorithm reads two input images; the original f and the gray-scale
mask image m. An inspection routine in the flooding function checks for intensity mis-
matches between the same pixel p in f and m. Depending on whether p is higher in
m or in f , the algorithm assigns it to a local cluster or contraction of connected com-
ponents according to C. Fig. 2 shows an example of a contraction-like m−connectivity
according to which, all foreground components of the image f are treated as singletons.
This type of second-generation connectivity is only supported from the mask-based
connectivity framework in [10].

3.2 Fragmenting the Image Domain

The Max-Tree structure is employed in this work to represent hierarchically the differ-
ent shape decomposition scales s of a binary image. To build the Max-Tree structure,
the input images are first created at an off-line stage. Starting from a binary image X
at s = 0 and X0

ε = X , Xs
ε = εsB(Xs−1

ε ) is computed recursively until Xsmax+1
ε = ∅.

Each binary set Xs
ε , is given a unique gray-level with all levels being equally-spaced

(separated by lev_diff ). Superimposing the total of smax+1 images (including the orig-
inal) yields a gray-level image f in which any peak component at level h is strictly a
subset of its parent peak component at h′ < h. An example is given in Fig. 3. 8-bit
images support up to s = 253 because the original binary image should be assigned a
level at least 2 levels up from the background, which is at h = 0. If smax > 253 then
16-bit images should be used. The mask image m is a replica of f reduced in intensity
by lev_diff. With m < f , the dimt computes a structure in which f is characterized
by a contraction-like mask-based second-generation connectivity [10]. This is a rather

(a) (b) (c)

Fig. 3. Input image (from left): original binary image (a); gray-scale encoding of 37 erosion-based
decomposition scales (0-36) (b); the surface plot of the previous image (c)
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unusual type of connectivity because essentially every point not belonging to the back-
ground is represented by a singleton set. Each singleton node marked by a point x at
level h points to its parent, which is a replica of the connected component of f , ac-
cording to C, that is marked by x, only reduced in intensity by lev_diff. Its parent, and
thus every parent of the tree other than the root node, is a “hidden node”, i.e. it has no
flat-zones. An example is shown in Fig. 2 - third tree from the left.

4 The Repartitioning Function

The Max-Tree of an image f computed as described in the previous section, is a structure
with singleton and hidden nodes only. Using the hidden nodes as markers (Fig. 4(b)), the
repartitioning function delivers sets of connected components by merging progressively
all singletons of the same level to their closest marker. This is in a fashion similar to the
wavefront expansion routine described in [5].

Merging singletons to the appropriate hidden nodes is done on a scale basis, i.e. for
each level of the mask image separately. This is an iterative procedure controlled in a
while() loop for each given level h. The loop records the number of singletons merged
at each iteration (stored in new_count), and exits if no more merges take place. In each
iteration all nodes at level h are accessed sequentially. Each node Tree[idx] is tested to
see if it is a singleton or not. If true, its coordinates (pixel p) and those of its neighbors
are retrieved. For each neighbor, the node id to which it belongs to, is computed and if
it is not a singleton, two further conditions are checked, otherwise it is ignored. If not
a singleton, it is either a hidden node which remains “hidden” or it has already been
expanded. In the first case, the neighbor’s intensity ORI_F[q] (the array containing
the intensity of each pixel in f , pixel q in this case) is higher than h. We proceed if
GLUE_STEP[q] (an array storing the number of iterations before a pixel gets merged
to a node) is less than the current number of iterations. In Fig. 4(c), the GLUE_STEP[]
entry for the marker (the hidden node) is still 0 while the process is in its first iteration,
thus all pixels adjacent to it will be merged at this pass. This is done to prevent the next
neighbor of p which might not be adjacent to the current boundaries of the hidden node,
to be merged at the iteration step in progress. Merging the singleton node containing p
to a hidden node is by setting the STATUS[p] entry to the hidden node’s index. Each
entry of the image-size STATUS[] array contains an offset that is used for retrieving the

(a) (b) (c) (d) (e) (f)

Fig. 4. Steps of the Repartitioning function: a peak component of f according to standard con-
nectivity or a set of 55 singletons according to the m−connectivity discussed (a), and a hidden
node used as marker (b). 1st expansion step (c). 2nd, 3d and 4th expansion steps in (d),(e) and (f)
respectively. The gray shades and crosses indicate the expansion steps and pixels to be processed.
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node to which each pixel belongs to. In the case of a marker that remains hidden, this is
retrieved by accessing the parent id of the node above it.

In the second case, that is when a hidden node has already been expanded, we pro-
ceed if the neighbor is not a singleton node, if ORI_F[q]=h and if the GLUE_STEP[q]
condition is true as before. Merging is simply by setting STATUS[p]=STATUS[q]. Ex-
amples of this case are shown in Fig. 4(d-e), i.e. iteration steps 2-4 respectively.

After a singleton node at p is processed, the GLUE_STEP[p] is updated to the current
number of iterations. Moreover, the singleton node updates the auxiliary data of the
expanded marker, found at q, and the hidden node’s GLUE_STEP[q] is updated to the
current iteration step. The singleton node needs to be invalidated so that in the next
iteration though the nodes or in the case of wavefront collision, it will be ignored. That
is by marking it as ghost. The new_count is incremented by one for every merge.

When all singleton nodes for a level h are processed and the while() loop exits, for
each one of them including pixels p assigned to the original hidden nodes at h, the cor-
responding entry of GLUE_STEP[] is initialized to 0 for the next level to be processed.
The C-style pseudo-code for the repartition function is given in Fig. 5. When finished
with all levels, a loop through all nodes sets the number of children for each node and
performs a final merge of all remaining singletons; these are the pixels corresponding
to the regional maxima of f according to standard connectivity.

5 Computing the Connectivity Measures

After re-partitioning the Max-Tree to represent structures according to the definition of
connectivity given in [5], the Max-Tree nodes (MTNodes) corresponding to the equiva-
lent C-Nodes (MTCnodes) need to be identified. Additionally, a parent-to-child relation
directly between them needs to be established. With each level associated to a shape
decomposition at the corresponding scale, this becomes rather trivial since all that is
needed is to check which MTNodes exist at the first scale s = 0 and for the rest, which
ones are children nodes of a parent with more than one child.

Next, given any MTCnode at level h (or scale sref ), the maximum number of expan-
sion steps from a marker at scale s : sref < s ≤ smax, that are needed to reconstruct it,
must be computed. This number is stored in a scale-size array called MaxIterPerScale[].
The process breaks in two loops going through the tree structure. In the first loop, from
s = 0 to smax, for each MTCnode found at scale sref , MaxIterPerScale[sref ] is set
to 0, i.e. the partition of X it represents needs 0 iterations to be reconstructed from
itself. Moreover, if it is not a root MTCnode, the child count of its MTCnode parent
is increased by one. The MTCnode parent updates its MaxIterPerScale[sref ] too, with
the maximum between the existing and a newly computed value. This is the sum of
the MaxIterPerScale[sref − 1] of itself and the number of expansion steps registered
to the MTCnode under inspection, during the re-partitioning phase. Note that this is
not sufficient for computing the connectivity functions of each MTCnode because the
contribution of regular MTnodes has not been considered to that stage.

This is addressed at the second loop that goes from smax to s = 0. For each MTCn-
ode detected (at sref ) its MaxIterPerScale[s] entries corresponding to regular MTnodes
along the same root-path, that are used as markers at s > sref , are computed and prop-
agated to its MTCnode parent. Moreover, for each MTCnode its connectivity measures
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PROCEDURE: MaxTreeRepartition(MaxTree Tree)
{

/* general purpose variables */
var: p, q, i, l, x, y, neighs, num_neighbors;
/* node ID storing variables */
var: idx, parent, root, neigh_par, neigh_idx;
/* counting and iteration variables */
var: old_count, new_count, iterations;
/* stores the 8-neighbors coordinates */
var: *neighbors;

Allocate(neighbors);

for(h= h_max_m; h>=h_min_m; h--)
{
old_count=0; new_count=1; iterations = 0;
while(new_count>old_count)
{

old_count = new_count;
iterations++;
for(i=0; i<numbernodes[h]; i++)
{

idx : Get_Node_ID;
parent : Get_Node_Parent_ID;
if (Tree[idx]->singleton==true) /*"->" denotes member of...*/
{

p = Tree[idx]->singleton_coord;
x : Get_X_Coord(p); y : Get_Y_Coord(p);
/* retrieve its 8- neighbors */
num_neighbors = Get8Neighbors(p, neighbors);
for (neighs=0; neighs<num_neighbors; neighs++)
{

q = neighbors[neighs];
neigh_idx : Get_Node_ID;
if(Tree[idx]->singleton==true)
{

neigh_par : /* get neighbor’s parent id */
if((ORI_F[q]>h)&& (GLUE_STEP[q]<iterations))
{

/* Get the node’s index to which p belongs to (singleton)*/
STATUS[p] : Get_Node_ID(p);
GLUE_STEP[p] = iterations;
AddToAuxiliaryData(Tree[neigh_idx]->Attribute,x,y);
Tree[neigh_par]->steps=

MAX(GLUE_STEP[p],Tree[neigh_par]->steps);
/* mark this singleton as ghost*/
Tree[idx]->singleton=ghost;
new_count++;

}
if((ORI_F[q]==h)&&(GLUE_STEP[q]<iterations)&&

(Tree[neigh_idx]->singleton==false))
{

STATUS[p] = STATUS[q];
GLUE_STEP[p] = iterations;
AddToAuxiliaryData(Tree[neigh_idx]->Attribute,x,y);
Tree[neigh_idx]->steps=

MAX(GLUE_STEP[p],Tree[neigh_idx]->steps);
Tree[idx]->singleton=ghost;
new_count++;

} } } } } } /* EO while */
/* Need to reset all GLUE_STEP entries for that level */
for(i=0; i<ImageSize; i++)

if(ORI_F[i]==h) GLUE_STEP[i] = 0;
} /* EO for */

}

Fig. 5. The Max-Tree Repartitioning function in C-style pseudo code
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c_func[s], at each scale s > sref are computed as in (2). The entry c_func[sref ] of the
MTCnode at sref is set to 1.0, since a partition of X prior to any decomposition is fully
connected. The same applies for all s : 0 ≤ s ≤ sref , i.e. μa(X, s) = 1.0 by definition.

The process is complemented with three attribute overrules. The first concerns MTC-
nodes that remain connected after the reference scale. The value of μa(X, s) in this case,
remains constant until the scale s > sref that the MTCnode breaks in two or more com-
ponents. The attribute overrules are enforced by overwriting the previously computed
values for μa(X, s) wherever applicable. The second case concerns the MTCnodes
which are regional maxima in the C-Tree sense. For such a node defined at scale sref ,
μa(X, s) is set to 1.0 for each scale sref < s ≤ smax for which MaxIterPerScale[s]>0
and 0.0 otherwise. This is because, it doesn’t split until the scale at which it vanishes,
i.e. it is fully connected. The third attribute overrule is rather more complicated and
concerns the case in which two or more regional maxima emerge from a single MTn-
ode, independent of whether it is an MTCnode or not. Consider an example in which,
at a given root-path there exist two regional maxima at scales smax1 and smax2 respec-
tively, such that smax1 > smax2. Moreover, let the two paths meet at an MTCnode at
scale sref . At sref + 1, there exist two MTCnodes, i.e. the MTCnode parents of the re-
gional maxima, one of which has descendants that span for diff_sc = smax1 − smax2
scales more than the other. This is called the “dominant component”. Without consid-
ering an overrule, the values μa(X, smax1) and μa(X, smax2) for all MTCnodes at
s : 0 < s ≤ sref are computed based on their MaxIterPerScale[] entries for these two
scales. And though for any scale smax2 < s ≤ smax1 this is rather clear, for smax2 their
MaxIterPerScale[smax2] entries are computed based on the max between the expansion
steps of the dominant and non-dominant components. This is in fact wrong. MTCnodes
at scales smaller or equal to sref must have values of μa(X, s), with s > sref , com-
puted from the dominant component only. Moreover, for the last diff_sc scales before
the top, μa(X, s) must be forced to 1.0 because the regional maximum is the last re-
maining structure that cannot be further partitioned. In the case that all regional maxima
have the same height, i.e. appear at the same scale, diff_sc is set to smax1 − sref . An
in-depth analysis of these routines with pseudo-code samples are given at the corre-
sponding page in http://www.georgios-ouzounis.info.

6 Experiments

The proposed algorithm for computing the adjunctional multi-scale connectivity mea-
sures was validated on a number of synthetic images with known structural characteris-
tics. An example, similar to the one in [5], is shown in Fig. 3. The MTCnodes and their
child to parent relations from the Max-Tree of Fig. 3(b) are shown in Fig. 6(a). Images
(b-c) of the same figure show two MTCnode profiles, i.e. the adjunctional connectivity
measures as functions of scale. The MTCnodes have C-Tree labeling with s = 0 for
the original binary image. It is observed that the connectivity measure of MTCnodes
increases as we move upwards in the Max-Tree hierarchy. This means that peak com-
ponents at higher scales correspond to “stronger” structures compared to those at lower
scales, and further that the connectivity measure μa(X, s) is non-increasing, i.e.

s1 < s2 : Xs1 ⊃ Xs2 ⇒ μa(Xs1 , s1) ⊂ μa(Xs2 , s2). (4)

http://www.georgios-ouzounis.info


316 G.K. Ouzounis

(a) (b) (c)

Fig. 6. The MTCnodes and child to parent relations from the Max-Tree of Fig.3(b) in (a); multi-
scale connectivity function profiles of nodes (1,2) and (3,2), (b) and (c) respectively

Strong connections are evident at the surface plot (Fig. 3(c)), where for example,
the path between the largest two subsets of X (if treated as disjoint), is considerably
brighter than the rest, i.e. it requires more erosions to disappear compared to the others.

To analyze the two node profiles, consider first the original binary image in Fig. 3(a).
It shows a single object made of five block regions that are linked with four bridges.
The MTCnode at scale s = 0 corresponds to this object which remains connected until
scale s = 1, i.e. SE side r = 1. For s = 1, the left most bridge of diameter 1 is
removed, breaking the original object to two components. The smaller one labeled as
Node(1, 1) remains connected until it vanishes after 12 erosions on the original image.
Node(1, 2), shown in Fig. 6(b), remains connected only until s = 1. For s = 2 it is
fragmented further, as is for s = 3. The dominant object remains connected from s = 3,
to s = 10, and the decline of the values of μa(Xs, s) is rather smooth as expected from
(2). At s = 11 the thickest, right-most bridge is removed fragmenting the dominant
object further. Moreover, at s = 24, there remains just one component which cannot
be further fragmented until the scale it is removed (s = 37). The value of μa(Xs, s),
for s = 24 to s = 36, remains constant and equal to 1 since the component is fully
connected. Node(3, 2) in Fig. 6(c), refers to the dominant object that results after an
erosion with r = 3 on the original. That is, the object containing the two largest blocks,
which is fully connected from s = 0 to 10 and from s = 24 to 36 as before.

The adjunctional multi-scale connectivity measure as a function of scale, has been
used to compute generalized pattern spectra for soil-section image analysis. For at-
tribute filtering purposes however, it is preferable dealing with scalar values instead. In
this case, the average adjunctional connectivity measure is used [5], defined as

μa(X) =

∫ smax

s=0 μa(X, s)ds
smax

. (5)

A filter based on the μa(.) measure as an attribute, can be computed efficiently us-
ing the proposed method thanks to the existing Max-Tree functionality. An example
employing the direct filtering rule [4] is given in Fig. 7. Image (a) shows a diatom,
of the Skeletonema species, courtesy of the Analytical Instruments and Field Research
Laboratory, Texas A& M University-Kingsville, USA (http://www.tamuk.edu
/chemistry/research/AnalyticalLab/ana_lab.htm) The diatom is first

http://www.tamuk.edu
/chemistry/research/Analytical Lab/ana_lab.htm
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(a) (b) (c)

(d) (e) (f)

(h) (i) (j)

Fig. 7. Diatom filtering: the original image of a Skeletonema diatom (a); the segmented binary
input, superimposed with 81 decomposition scales (b) and its surface plot (c). Images (d-j) show
the filter output for attribute thresholds from 0.4 to 0.9 respectively.

segmented and the resulting binary image is eroded 81 times (SE side of 1) before every-
thing disappears, i.e. ∀s ≥ 82 ⇒ εsB(Xs−1

ε ) = ∅. Assigning the level h = 100 to the set
X0 and setting diff_lev = 1, the superposition of all 81 shape decomposition scales
with the original is shown in image (b) and its surface plot in (c). The mask is computed
by subtracting the value 1 from the input image. Images (d-j) show the filter outputs for
attribute thresholds starting from 0.4 to 0.9 (the step is 0.1), respectively.

7 Discussion

The proposed algorithm is based on the Max-Tree structure and consists of three sepa-
rate stages. In the first stage, a Max-Tree of the input image is constructed, associated
to a contraction-like m−connectivity. The complexity of this stage has been analyzed
in [10] and is approximately O(GN), where G is the number of gray levels and N the
number of pixels. In the second stage, the tree consisting of hidden and singleton nodes
only, is repartitioned based on a wavefront expansion routine that is equivalent to a set
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of conditional dilations with a square SE of side equal to 1. As shown in Fig. 5, this
process runs through four loops. The first goes through all levels or scales G and the
second, through the number of expansion steps of the nodes at each level (worst case is
N/2 for nodes n . N/2 in a 3-level image). If the average number of nodes per scale
is N/G and the average number of merges in each iteration for all scales is N/2G,
this yields an overall complexity equal to O(N2/G) and in the worst case O(N2). The
third stage in which the multi-scale connectivity functions are computed, consists of
several loops, the worst cases of which, in terms of complexity, go through the number
of scales, the number of nodes at each scale and through a scale range for which the
average value of G/2 is considered. This yields an approximate complexity of O(GN).

Comparing this algorithm to the regular C-Tree algorithm, a number of advantages
are observed. The C-Tree, at each scale s operates a component labeling routine on the
corresponding binary input image resulting in total of smax searches. If this is with the
regular Max-Tree for example, which has an almost linear computational complexity
with image size, the overhead becomes smax times higher than the proposed method
which instead requires a single pass of the image. Moreover, in the C-Tree algorithm, at
each scale s for which a C-Node is defined, a wavefront expansion routine is computed
to reconstruct the new partition of X from the marker. A number of erosions are then
operated on the marker to compute μa(X, s) for the remaining scales before the it dis-
appears. In the new algorithm no further erosions are needed to compute μa(X, s) since
all partitions of X (one per scale) are already mapped into the Max-Tree structure.

The dimt is an efficient algorithm for computing attribute filters on sets character-
ized by second-generation connectivity. Using its existing functionality and the adjacent
multi-scale connectivity measures μa(X, s) as attributes, new filters can be defined with
applications to image enhancement, segmentation and pattern analysis. In future work,
the target is to derive a framework supporting the computation of connectivity measures
on gray-level images and extend the functionality of the current algorithm to support it.
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