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Abstract. The theoretical interest and the practical relevance of a sys-
tematic treatment of multiple temporal dimensions is widely recognized
in the database and information system communities. Nevertheless, most
relational databases have no temporal support at all. A few of them pro-
vide a limited support, in terms of temporal data types and predicates,
constructors, and functions for the management of time values (borrowed
from the SQL standard). One (resp., two) temporal dimensions are sup-
ported by historical and transaction-time (resp., bitemporal) databases
only. In this paper, we provide a relational encoding of a conceptual
model featuring four temporal dimensions, namely, the classical valid
and transaction times, plus the event and availability times. We focus
our attention on the distinctive technical features of the proposed tem-
poral extension of the relation model. In the last part of the paper, we
briefly show how to implement it in a standard DBMS.

1 Introduction

Despite the pervasiveness of temporal information, most databases (and infor-
mation systems) basically maintain information about the current state of the
world only. Temporal databases can be viewed as an attempt to overcome this
limitation, making it possible to keep track of the evolution of the domain of in-
terest (valid time dimension) and/or of the database contents (transaction time
dimension). The valid time of a fact can be defined as the time when the fact
is true in the modeled domain, while its transaction time is the time when it is
current in the database and may be retrieved. Historical (resp., transaction-time)
relational databases support the valid (resp., transaction) time dimension. Rela-
tional databases that manage both dimensions are called bitemporal databases. In
[3], two additional temporal dimensions, respectively called event and availability
time, have been proposed to remedy to some weaknesses of valid and transaction
times. The event time of a fact is defined as the pair of occurrence times of the real-
world events that respectively initiate and terminate its validity interval, while its
availability time is the time interval during which it is known and believed correct
by the information system the database belongs to (in general, such an interval
does not coincide with its transaction time interval). No effective support to these
dimensions is provided by existing temporal relational databases. A comprehen-
sive and up-to-date survey of temporal databases can be found in [6].
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The contribution of this paper is part of the work done within ChronoGeo-
Graph (CGG) Project [2], which aims at developing a software framework for
the conceptual and logical design of spatiotemporal databases. The core of the
framework is the CGG model, a conceptual model that extends the classical
Enhanced Entity-Relationship model (EER) with additional constructs for spa-
tiotemporal information [5].

As for the spatial features, CGG supports a large set of representation primi-
tives for spatial data. CGG distinguishes between spatial and non spatial entities.
A spatial entity is characterized by a set of descriptive and spatial attributes plus
a geometry of a given spatial data type (CGG supports 8 different spatial data
types). Spatial attributes take their value over a spatial data type as well. A
spatial dimension can be added to relations as well. CGG supports topologi-
cal, metric and direction relations, and the relation of spatial aggregation (the
part-of relation over spatial entities). Besides the usual relation of specialization,
CGG introduces the relation of cartographic specialization, which supports dif-
ferent spatial representations of the same spatial entity. Finally, CGG supports
the field-based view of spatial information by the notion of (spatial) field and
the notion of schema territory, which defines the spatial domain over which all
spatial elements of the schema are located.

As for the temporal features, CGG allows one to temporally qualify the vari-
ous constructs by properly annotating them. One or more temporal dimensions
can be associated with the schema territory, entities, attributes, relations, and
fields. Different temporal dimensions are associated with different constructs.
Entities can be provided with an existence time (which can be viewed as the
valid time of the entity), possibly paired with a state diagram, a transaction
time, an event time, and an availability time. The other constructs can be en-
dowed with a valid time, a transaction time, an event time, and an availability
time. Furthermore, CGG introduces a distinction between snapshot and lifespan
cardinality constraints for attributes and relations. Snapshot cardinality con-
straints specify the minimum and maximum number of values that an attribute
can take (resp., of instances of a given entity that may participate in a relation)
at a given time, while lifespan cardinality constraints specify minimum and max-
imum bounds with respect to the whole existence of the entity instance (resp.,
the validity interval of the relation instance). As for attributes, CGG also allows
one to collect sets of attributes of a given entity that change in a synchronous
way (it defines a temporal collection as a set of entity attributes with a common
temporal annotation). Finally, it explicitly keeps track of the events that affect
a relevant element, e.g., events that change the state and/or the geometry of an
entity, the validity of a relation, the value of an attribute.

The paper addresses the problem of providing a relational encoding of tem-
poral information in CGG schemas. A special attention will be deserved to the
management of temporal dimensions. The distinctive features of the proposed
temporal extension of the relational model are the use of tuple timestampings,
the partition of temporal schemas (resp., instances) into a current component
and a historical one, and the development a number of constraints that guarantee
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the consistency of the values of the different temporal dimensions. In addition, we
implemented the extended temporal model in a standard DBMS, taking advan-
tage of SQL asssertions and triggers, and we developed a translation algorithm
mapping CGG schemas into temporally-extended relational ones.

The rest of the paper is organized as follows. In Section 2 we give a short
account of existing temporal relational models. In Section 3 we describe the ba-
sic features of the proposed temporal relational model supporting the temporal
dimensions of valid, transaction, event, and availability times. We first consider
the single temporal dimensions in isolation and then we analyze their interac-
tions. In Section 4 we focus our attention on the specification of temporal keys.
Section 5 provides some details about the implementation of the model in a
specific DBMS. Finally, in Section 6 we briefly illustrate the translation of CGG
schemas into the proposed model.

2 An Account of Existing Temporal Relational Models

The basic relational model only supports temporal data types, e.g., Date and
Timestamp, and predicates, constructors, and functions for the management of
time values. It provides no primitives to explicitly deal with temporal dimensions.
Various extensions to the relational model have been proposed in the literature
to support the valid and/or transaction time dimensions.

Temporal databases can be classified according to the granularity of timestamp-
ing, the nature of timestamps, and the temporal interpretation of the primary key.
All temporal databases associate one or more timestamp attributes (timestamps
for short) with facts, for every supported temporal dimension. The most common
options are associating a single timestamp with the whole tuple (tuple timestamp-
ing) and a distinct timestamp with any temporal attribute (attribute timestamp-
ing). The former preserves First Normal Form (1NF) and its implementation is
straightforward; in addition, it allows one to benefit from the standard relational
database technology. However, the resulting tables suffer from two weaknesses:
data redundancy and vertical anomaly (information about a domain object is not
recorded in a single tuple, but it is spread over various tuples). The latter is not
affected by the vertical anomaly, because it records the entire history of every do-
main object in a single tuple. However, in doing that it violates 1NF: for every tu-
ple and every temporal dimension, the value of each temporal attribute is a set of
pairs (value, timestamp). As for the nature of timestamps, three different choices
of increasing complexity have been considered: time instants, time intervals, and
temporal elements. In most cases (as an example, this is not the case with aggrega-
tions over time), time intervals are not interpreted as primitive temporal entities,
but just as (convex) sets of time instants. In its turn, temporal elements are usually
defined as a finite set of pairwise disjoint time intervals. Time intervals and tempo-
ral elements allowone to obtain a succinct representationof valid/transaction time
periods, but their manipulation is more complicate: either it requires to transform
them into time instants, to apply the necessary operations on such instants, and to
provide an encoding of the result at the time interval/temporal element level or it
imposes the introduction of additional non-trivial operations, such as coalescing.
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Replacing a set of contiguous time instants with a single time interval makes it
possible to overcome the problem of tuple-timestamping (vertical anomaly and
redundancy) and attribute-timestamping (redundancy). However, these problems
show up again as soon as a single time intervals must be replaced with two or more
ones. The replacement of time intervals with temporal elements solves them, but
it involves the violation of 1NF. Finally, there exist different ways of reinterpreting
the notion of primary key in the temporal setting. Every temporal relation is ob-
tained by extending an atemporal relation with one or more timestamps. Its tem-
poral key can be defined as a set of (non-temporal) attributes which is a primary
key for every temporal snapshot, as in [8,7]. As an alternative, one can introduce
an explicit tuple identifier, which plays the same role of the object identifier in the
object-oriented model. As a third possibility, one can define the temporal key as a
combination of the primary key of the original atemporal relation and a suitable
subset of timestamps, e.g., [1].

In the following, we will describe an original temporally-extended relational
model supporting the four temporal dimensions described above. It opts for tuple-
timestamping, to preserve 1NF, it assumes temporal homogeneity for all relations
(a tuple holds over a given interval if and only if it holds at all time instants be-
longing to it), it makes use of time intervals (resp., time instants) to model valid,
transaction, and availability times (resp., event time), and it defines temporal keys
as suitable temporal extensions of the primary keys of the original atemporal rela-
tions. The closest relatives of such a model are the Time Relational Model (TiRM),
the Temporal Relational Model (TRM), and the Historical DataBase Manage-
ment System (HDBMS). Ben-Zvi’s TiRM model [1] supports three temporal di-
mensions: (i) the effective time of a fact, which corresponds to valid time, (ii) the
registration time of a fact, which is the pair of time instants at which the beginning
and ending of its effective time interval are inserted into the database, and (iii) the
deletion time of a fact, which is the time instant at which it is logically deleted (the
combination of registration and deletion times can be viewed as a counterpart of
transaction time). TiRM associates five timestamps with every tuple, namely, Tes

and Tee (for the beginning and ending of effective time), Trs and Tre (for the be-
ginning and ending of registration time), and Td (for the deletion time). Tes and
Tee are specified by the user, while Trs, Tre, and Td are generated by system. The
temporally-extended tuple is called tuple version. Tuples with the same value for
the atemporal key are called tuple version set. A temporal relation is defined as a
set of tuple version sets, rather than a set of tuples. Navathe and Ahmed’s TRM
model [10] supports one temporal dimension only, which corresponds to valid time.
It distinguishes between the set Rs of static (atemporal) relations and the set Rt

of time-varying (valid-time) relations. Every time-varying relation includes two
timestamps ts and te that record the left and right endpoints of valid-time inter-
vals, respectively. The key of a time-varying relation consists of the primary key
of its atemporal part (time-invariant key, TIK for short) and the timestamp ts
(since the value of te can be unknown, the pair (TIK,te) is not an alternative key).
Sarda’s HDBMS model [12] supports one temporal dimension only as well, called
real valid time, which corresponds to valid time. The aim of Sarda was to develop
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a temporal DBMS that receives as input a set of atemporal relation schemas and
provides a subset of them (specified by the designer) with a temporal extension.
The model allows one to distinguish between properties (historical relations) and
instantaneous events. The system automatically associates two timestamps, from
and to, with historical relation schemas, to keep track of their historical evolution,
and a single timestamp at with events, to record their occurrence time. It allows
the timestamps of different temporal relations to refer to different time granulari-
ties. The tuples of each historical relation are partitioned in two classes: the current
segment, which contains only tuples belonging to the current state (tuple whose
timestamp from has value null), and the history segment, which contains tuples
representing historical data (tuples such that from < now). New tuples are first in-
serted in the current segment and later, when their real valid interval ends, moved
to the history one. The primary key of a relation in the current segment is defined
as in the basic relational case. The key of a relation in the history fragment is de-
fined as follows: a set of (atemporal) attributes K is a key for a relation R(X), with
K ⊆ X, if for any value k of K and any time instant t there is at most one tuple in
R(X) with value k for K whose real valid interval includes t (keys are time-unique,
rather than tuple-unique as in the relational model).

3 A Relational Model with Four Temporal Dimensions

In the following, we describe a temporal extension to the relational model that
supports the temporal dimensions of valid, transaction, availability, and event
time. As a matter of fact, the resulting model can be viewed as the relation
counterpart of the spatio-temporal conceptual model ChronoGeoGraph (CGG),
a spatio-temporal model that pairs the classical features of the EER model with a
large set of spatial and temporal constructs [5]. First, we take into consideration
each temporal dimension in isolation; then, we will deal with their combination.

Valid time. The valid time of a tuple is the time when the fact it represents
is true in the modeled domain. We encode valid time intervals by means of
two distinct timestamps V T start and V T end. The extension of an atemporal
relation R(X) with valid time has the form:

R(X, V T start, V T end) (1)
Let Tg be the (discrete) temporal domain at granularity g over which times-
tamps V T start, V T end take their value. Any pair of values ts for V T start
and te for V T end identifies a time interval [ts, te) ⊂ Tg (we assume valid time
intervals, as well as transaction and availability time intervals, to be closed to
the left and open to the right). Valid time intervals consisting of a single chronon
are represented as degenerate intervals with coincident endpoints (notationally,
[ts, ts+1)). While the left endpoint V T start of a valid time interval must always
exist, its right endpoint V T end might be missing1. The intended semantics of
valid time intervals is captured by the following constraints:
1 To represent valid time intervals open to the right, most models assign to V T end

either the “value” null or the “value” until change (uc for short). Since null is used
in a variety of contexts with different meanings, we opt for the second alternative.
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(i) ∃ts ∈ Tg ts = V T start
(ii) ∃te ∈ Tg te = V T end ∨ V T end = uc
(iii) V T start < V T end

(2)

Transaction time. The transaction time of a tuple is the time when the tuple
is current in the database. We represent transaction time intervals by means of
two distinct timestamps TT start and TT end. A transaction time interval is
generated whenever a database update is executed. For every interval associated
with a tuple in the database, we have that the value of TT start is less than
the current instant and that of TT end is either until change, if the tuple is
current, or less than or equal to the current instant, if the tuple is not current.
Since deletion of a tuple can never precede its insertion/modification, TT start
must obviously be less than TT end. The intended semantics of transaction time
intervals is captured by the following constraints:

(i) ∃t ∈ Tg t = TT start
(ii) TT end ≤ now ∨ TT end = uc
(iv) TT start < TT end

(3)

As in the HDBMS model, the schema (resp., instance) of every temporal relation
is partitioned into two distinct schemas (resp., instances). The first instance,
called current instance, consists of all and only the tuples which are current in
the database. It only features the timestamp TT start, whose value records the
time instant at which the tuple was added to the database (the value TT end
for all current tuples is equal to uc, and thus omitted). The second one, called
historical instance, records the tuples which have been logically deleted from the
database. It features the two timestamps TT start and TT end that respectively
record the times at which insertion and deletion take place.

R(X, TT start) and R history(X, TT start, TT end) (4)

Tuples are always inserted in the current instance. The time instant at which
insertion is executed is automatically assigned to the timestamp TT start. The
logical deletion of a tuple simply moves the tuple from the current instance to
the historical one, without changing the value of its attributes. The time instant
at which deletion is executed is automatically assigned to the new timestamp
TT end. The update of a tuple in the current instance can be described as a
logical deletion of the current tuple followed by the insertion of the updated one
(deletion/insertion times are equal to the time instant at which the update is
executed). Tuples in the historical instance cannot be deleted or updated.

There are several advantages in separating the historical schema/instance
from the current one. First, TT end can be omitted in the current schema.
Second, transaction time management is fully automatized. Third, since tuples in
the historical instance cannot be modified, constraint checking can be restricted
to tuples in the current instance (we will come back to this in Section 4). Finally,
an improvement in query performance is often achieved. Whenever a query refers
to current information only (we expect it to be the most common case), its
execution can ignore all tuples in the historical instance.
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Availability time. The availability time of a tuple is the time interval during
which the fact it represents is known and believed correct by the information
system the database belongs to. Availability time intervals are encoded by a
pair of timestamps AT start, AT end and must satisfy the same constraints
that transaction time intervals must satisfy:

(i) ∃t ∈ Tgt = AT start
(ii) AT end ≤ now ∨ AT end = uc
(iii) AT start < AT end

(5)

Additional constraints are imposed on the relationships between availability and
transaction times. First, a fact can be stored in the database only if it is or was
known by the information system. Similarly, a fact can be (logically) deleted
from the database only if it is not believed correct/up-to-date by the informa-
tion system. Moreover, if a fact is known and believed correct by the information
system and it has been added to the database (AT end = uc), then the corre-
sponding tuple must belong to the current instance (TT end = uc); conversely,
it can never happen that AT end �= uc and TT end = uc. Finally, we must con-
sider the case in which the information systems acquires and discharges some
fact before its insertion in the database. Such a situation can be modeled by
letting AT end ≤ TT start (when inserted in the database, information was al-
ready out-of-date) if and only if TT start = TT end (information never became
current in the database).

(i) AT start ≤ TT start
(ii) AT end ≤ TT end
(iii) AT end = uc ⇒ TT end = uc
(iv) TT end = uc ⇒ AT end = uc
(v) AT end ≤ TT start ⇔ TT start = TT end

(6)

Since in any realistic scenario the choice of including availability time and ex-
cluding transaction time looks meaningless, we do not consider temporal rela-
tion schemas with availability time and without transaction time. In addition,
we must find a way to deal with information that never becomes current in the
database (TT start = TT end), preserving the condition that imposes to insert
any new fact in the current instance and to move it to the historical one when
it is logically deleted. To cope with this problem, we include both the AT start
and the AT end timestamps in the current schema. As a result, we obtain the
following schema:

R(X, TT start, AT start, AT end)
R history(X, TT start, TT end, AT start, AT end) (7)

We must distinguish two different modalities of tuple insertion. The first one
provides a value for AT start, but no value for AT end. In this case, the system
assigns the specified value to AT start, it sets TT start to the current time, and
it adds the tuple to the current instance. The second one deals with the case
in which a value less than (or equal to) the current time is given to AT end.
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The system assigns to AT start and AT end the specified values, it sets both
TT start and TT end to the current time (thus TT start ≥ AT end), it inserts
the tuple in the current instance, and it immediately moves it to the historical
one. Two different modalities of (logical) tuple deletion must be considered as
well, depending on the value of AT end. The first case is that of synchronous
deletion: both AT end and TT end are set to the current time and the tuple
is automatically moved from the current instance to the historical one. The
second case considers a possible delay in the registration of a deletion from the
information system: the system replaces the value uc of AT end with the deletion
time (which is less than the current time), it sets TT end to the current time, and
it automatically moves the tuple from the current instance to the historical one.

Event time. The event time of a tuple consists of the occurrence times of the
real-world events that respectively initiate and terminate the valid time interval
of the fact it represents. To model it, we add two timestamps ET start, ET end
to the relation schema. By definition, event time can be added only to relation
schemas provided with valid time. No constraints are imposed on event time.

R(X, V T start, V T end, ET start, ET end) (8)

Relations with multiple temporal dimensions. We conclude the section
with an analysis of temporal relations provided with two or more temporal di-
mensions. As a general rule, we start from an atemporal relational schema and we
add the appropriate timestamps for every supported temporal dimension. How-
ever, we cannot add available (resp., event) time without adding transaction
(resp., valid) time as well. The addition of transaction time forces the partition
of the relation schema in a current schema and a historical one. As an example,
a temporal schema with the four temporal dimensions can be obtained by an
atemporal schema R(X) as follows. First, we add valid time:

R(X, V T start, V T end) (9)

Then, we add event time:

R(X, V T start, V T end, ET start, ET end) (10)

The addition of transaction time forces the splitting of the table:

R (X, VT start, VT end, ET start, ET end, TT start)
R history (X, VT start, VT end, ET start, ET end,TT start, TT end) (11)

Finally, the addition of available time affects both schemas (in a different way):

R(X, VT start, VT end, ET start, ET end, TT start, AT start, AT end)
R history (X, VT start, VT end, ET start, ET end, TT start, TT end,

AT start, AT end)
(12)

A well-known problem in temporal databases is to assign a consistent value
to missing temporal dimensions, thus providing every relation with a temporal
interpretation with respect to all temporal dimensions. In such a way, no relations
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are ignored during (temporal) query evaluation. The assignment of a value to
missing temporal dimensions is done according to the following rules.

– Transaction time is missing. Tuples are current in the database when they
can be retrieved from it, that is, we assume the transaction time interval of
tuples to be [now, now]).

– Valid time is missing. Valid time is assimilated to transaction time: if trans-
action time is present, then valid time intervals are equal to transaction time
intervals; otherwise, tuples are valid at the time instant in which they are
retrieved from the database, that is, we assume the valid time interval of
tuples to be [now, now]).

– Event time is missing. We assume ET start = V T start and ET end =
V T end (on-time events).

– Available time is missing. We assume AT start = TT start and AT end =
TT end (no delay in registration).

Such rules can be turned into suitable projection functions (one for each temporal
dimension) that, given a relation instance, return the temporal values it explicitly
or implicitly takes on temporal dimensions. We consider transaction and valid
times; the cases of event and availability times are similar. Given a (temporal)
relation R, let rc (resp., rh) be the instance of its current (resp., historical)
schema (if transaction time is missing, R has a current schema only).

Definition 1. Let R be a (temporal) relation. If TT start, TT end ∈ R, then
πTT (rc) = [πTT start(rc), now] and πTT (rh) = [πTT start(rh), πTT end(rh)]. If
TT start, TT end �∈ R, then πTT (rc) = [now, now].

Definition 2. Let R be a (temporal) relation. If both V T start, V T end ∈ R
and TT start, TT end ∈ R, then πV T (ri) = [πV T start(ri), πV T end(ri)], for i ∈
{c, h}. If V T start, V T end ∈ R and TT start, TT end �∈ R, then πV T (rc) =
[πV T start(rc), πV T end(rc)]. If V T start, V T end �∈ R and TT start, TT end ∈
R, then πV T (rc) = πTT (rc) and πV T (rh)=πTT (rh). If both V T start, V T end �∈
R and TT start, TT end �∈ R, then πV T (rc) = πTT (rc) = [now, now].

4 Temporal Primary Keys and Functional Dependencies

In this section we deal with the problem of specifying primary key and functional
dependencies of a temporal relation. As it happens in the relational setting, there
is a close connection between them; however, the addition of multiple temporal
dimensions introduces various technical intricacies.

Both problems have been already addressed in the temporal databases lit-
erature, but there are no consensus solutions to them. As for temporal keys,
different alternatives have been proposed, which range from the addition of one
or more temporal attributes to the primary key of the atemporal schema [8] to
the introduction of explicit object identifiers that uniquely identify each tuple
in the temporal relation [14]. As for temporal functional dependencies (TFDs),
a short account of existing proposals can be found in [4]. The simplest ones
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define TFDs as classical functional dependencies on the temporal snapshots of
the relation [8], the most complex ones allow TFDs to constrain the values of
(atemporal) attributes at different time points [13,14].

Our goal is to guarantee an appropriate trade-off between expressiveness and
effectiveness. In particular, we would like to maintain the notion of temporal
key and temporal dependency as simple and easy to manage as possible. The
solution we propose deals with multiple temporal dimensions retaining much
of the simplicity of the relational model. In addition, the separation between
current and historical schemas/instances makes it possible to simplify the process
of constraint checking.

As a general rule, we define TFDs as temporal generalizations of (atemporal)
functional dependencies (FDs), which are obtained by making the latter time
dependent. From a notational point of view, we replace every FD Z → Y by the
corresponding TFD Z →T Y. The role of the four temporal dimensions in TFDs
is quite different. By means of TFDs, we constrain FDs to be satisfied by pairs
of tuples at common valid time instants with respect to common transaction
or availability time instants. As availability (resp., transaction) time intervals
may start before (resp., end after) than the corresponding transaction (resp.,
availability) time intervals, this amounts to require functional dependency to be
satisfied with respect to common availability/transaction time instants belonging
to a time interval that starts when the availability interval starts and ends when
the transaction time interval ends. Event time plays no role in the definition of
TFDs.

Definition 3. Given a temporal relation R with atemporal schema R(X) and a
TDF Z →T Y, with Z,Y ⊆ X, we say that an instance r ∈ R satisfies the TFD
if and only if, for each pair of tuples a, b ∈ r, if a[Z] = b[Z], πV T (a)∩πV T (b) �= ∅
(their valid time intervals overlap), and πTT (a)∩πTT (b) �= ∅ ∨ πAT (a)∩πAT (b) �=
∅ (their transaction or availability time intervals overlap), then a[Y] = b[Y].

Missing temporal dimensions are implicitly added according to the assignment
rules given in Section 3. The notion of violation of a TFD is defined in the
obvious way. We say that two tuples are temporally inconsistent if they violate
a TFD.

Let us consider now the problem of specifying the key of a temporal relation
schema (temporal key for short). As anticipated in Section 2, we basically define
the (primary) temporal key as a temporal extension of the primary key of the
original atemporal relation. We distinguish between the current schema and
the historical schema of a temporal relation: the temporal key of the current
schema add valid time to the atemporal key, while the temporal key of the
historical schema add both valid and transaction times to the atemporal key.
If valid time is missing, the temporal key of the current schema coincides with
the atemporal one, while that of the historical schema consists of the atemporal
key extended with transaction time. The fact that we compactly represent both
valid and transaction times by means of interval timestamps, instead of instant
ones, introduces some complications. A simple example of these complications
is given in Table 1.
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Table 1. The current instance of a table Employee devoid of transaction time

SSN Salary VT start VT end

XXXNNN88HH 1000 15/10/2000 31/07/2006

XXXNNN88HH 1200 01/10/2003 31/07/2007

The two tuples belonging to the relation in Table 1 are temporally inconsis-
tent, because they assign both the value 1000 and the value 1200 to the salary of
employee XXXNNN88HH over the valid time interval [01/10/2003,31/07/2006).
Such an inconsistency can be obviously detected by replacing the interval times-
tamp (V T start, V T end) by the instant one V T , by choosing (SSN, V T ) as
the temporal key, and by replacing every tuple by a set of tuples, one for each
time instant in the valid time interval. However, the resulting instance turns out
to be extremely redundant: a single tuple is replaced by a number of tuples that
only differ in their temporal value. To avoid to introduce such a redundancy, we
decided to maintain the interval timestamp. Unfortunately, in such a case, all
possible choices for the attributes of the temporal key, namely, (SSN, V T start),
(SSN, V T end), and (SSN, V T start, V T end), do not detect the inconsistency
in Table 1. As a consequence, the satisfaction of the key constraint (for any pos-
sible choice of the temporal key) does not suffice to conclude that there are
not temporal inconsistencies and thus temporal consistency must be explicitly
checked.

Table 2. Temporal keys for temporal relations: a summary

Cases Temporal keys Temporal dimensions

atemporal R(K, ...) -

valid time R(K, V T start, ...) V
V E

transaction time R(K,...) T
R history(K,TT start,...) TA

V T
valid and transaction R(K,V T start,...) V TE
times R history(K,V T start,TT start,...) V TA

V TAE

Among the three possible choices for the temporal key of the current schema,
we opt for the addition of V T start to the atemporal key. It detects more tem-
poral inconsistencies than the temporal key that includes both V T start and
V T end and, unlike V T end, V T start does not assume the “value” uc. Analo-
gously, for the historical schema we choose to add to the atemporal key V T start
and TT start. A summary of the resulting cases is given in Table 2.

In principle, constraint checking can be executed whenever a tuple is inserted
in the current database or moved from the current to the historical database
(tuples in the historical database cannot change their values). However, when a
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tuple is transferred from the current to the historical database, it only changes
the value of TT end and, possibly, the value of AT end. Such changes cannot
cause any inconsistency in the historical database2. Hence, constraint checking
can be confined to insertions in the current database. When a tuple is inserted
in the current database, an inconsistency may arise with respect to both current
and historical tuples. In the former case, according to the proposed model, the
intersection of both transaction and availability time intervals associated with
current tuples is always not empty and thus the only constraint one needs to
check on the current database is:

∀a, b ∈ R(X)∀Y ⊆ X(a[K] = b[K]∧πV T (a)∩πV T (b) �= ∅ → a[Y] = b[Y]) (13)

where X is the set of atemporal attributes of R (and R history) and K is
the atemporal key of R (and R history). In the latter case, the intersection of
transaction time intervals associated with the inserted tuple and a historical one
is always empty and thus the only constraint one needs to check is:

∀a ∈ R(X) ∀b ∈ R history(X) ∀Y ⊆ X(a[K] = b[K]∧
∧πV T (a) ∩ πV T (b) �= ∅ ∧ πAT (a) ∩ πAT (b) �= ∅ → a[Y] = b[Y]) (14)

This constraint can be violated only if the relation R (and R history) includes
the three dimensions V TA. An inconsistency may occur if and only if the value of
AT start for the inserted tuple a is less than the value of TT start (if πAT (a) =
πTT (a), then the intersection of the availability time intervals for a and any
historical tuple is empty).

5 Implementation

In this section, we briefly describe an implementation of the proposed model
in the Oracle DBMS [11]. As for the definition of the relational schemas and
of data types, we use the standard SQL facilities featured by Oracle SQL [9].
To deal with timestamps, we take advantage of the timestamp data type (the
conventional value uc is represented by the null value). Temporal constraints
are encoded either as generic SQL assertions, using the SQL construct check
constraint (the simplest ones), or as triggers (the most complex ones). As a
concrete example of constraint management, we describe the triggers that rule
the transition of relation tuples from the current instance to the historical one
(for the sake of simplicity, we assume the relations to be devoid of availability
time).

When a tuple is inserted in the current instance, the trigger sets TT start to
the value systimestamp(0) (the current time of the system):

2 As a matter of fact, this implies that temporal keys for historical schemas are not
really necessary. We decided to keep them to comply with the relation model, but
they could be removed without causing any problem.
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CREATE OR REPLACE TRIGGER nameTable insertTT
BEFORE INSERT ON nameTable
FOR EACH ROW

BEGIN
SELECT systimestamp (0) INTO : new . TT start

FROM dual ;
END;

The deletion of a tuple from the current instance consists of the assignment of
the value systimestamp(0) to its TT end and of its insertion in the historical
instance:

CREATE OR REPLACE TRIGGER nameTable delete
BEFORE DELETE ON nameTable
FOR EACH ROW

DECLARE
now timestamp ;

BEGIN
SELECT systimestamp (0) INTO now

FROM dual ;
INSERT INTO nameTable history (A, TT end)

VALUES ( : o ld .A, now) ;
END;

Tuple updates are implemented as a deletion followed by an insertion as usual:

CREATE OR REPLACE TRIGGER nameTable update
BEFORE UPDATE ON nameTable
FOR EACH ROW

DECLARE
now timestamp ;

BEGIN
SELECT systimestamp (0) INTO now

FROM dual ;
INSERT INTO nameTable history (A, TT end)

VALUES ( : o ld .A, now) ;
: new . TT start := now ;

END;

Finally, the following trigger disallows the execution of updates or deletions on
the historical database (similar triggers have been added to prevent the user to
execute other improper actions, e.g., to operate on transaction timestamps):

CREATE OR REPLACE TRIGGER nameTable history upde
BEFORE UPDATE OR DELETE ON nameTable history
FOR EACH ROW

BEGIN
r a i s e a p p l i c a t i o n e r r o r (−20001 , ’ H i s t o r i c a l t ab l e s cannot

be updated or de l e t ed ’ ) ;
END;
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As an alternative, one can create one or more user views that specify the priv-
ileges of (different classes of) database users, e.g., information in the historical
database can be queried, but not updated.

6 Mapping CGG Schemas into the Temporal Model

In [2] we define and implement a translation of CGG schemas into the above-
described temporal model. On the one hand, the translation algorithm revises
and extends the standard relational encoding of basic ER primitives (entities,
relations, specializations,..); on the other hand, it introduces specific rules for the
management of spatial and temporal information. Here, we briefly summarize
the treatment of CGG temporal features.

The translation introduces a set of relation schemas for every temporal entity
and relation in the CGG schema. Such a set consists of a root schema, called
kernel, that plays the role of reference schema for all relation schemas generated
by a given entity or relation. Each single relation schema is linked to the kernel
by means of a suitable foreign key as shown in Figure 1.

Fig. 1. The relational translation of a temporal entity

Let us consider the case of a temporal entity E with attributes X={k1, . . . , kn,
a1, . . . , am}, whose conceptual key is K = {k1, . . . , kn}, with n ≥ 1 (the case of
temporal relations is similar).

Fig. 2. A CGG entity with different types of attribute

The schema of the kernel consists of the key attributes k1, . . . , kn,, that is,
E kernel(k1, . . . , kn). It allows one to identify all entity instances. The temporal
features of the entity (temporal qualification of the entity, sets of synchronized
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temporal attributes, ..) are distributed over different component relations. In
addition, each component relation includes key attributes to allow one to merge
information about an entity instance. All atemporal (single-valued) attributes
{ai1 , . . . , ail

} are collected in a single component relation Eai1 ,...,ail
(k1, . . . , kn,

ai1 , . . . , ail
). A distinct component relation is then added for each group of tem-

poral attributes that change their values in a synchronous way. As an example,
consider the entity in Figure 2. Its relational translation is as follows:

Person kernel(SSN)
Person atemporalNochange(SSN, firstName, lastName)
Person work(SSN, V T start, V T end, TT start, work)
Person work history(SSN, V T start, V T end, TT start, TT end, work).
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