

Lecture Notes in Computer Science 5690
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Sourav S. Bhowmick Josef Küng
Roland Wagner (Eds.)

Database and Expert
Systems Applications

20th International Conference, DEXA 2009
Linz, Austria, August 31 – September 4, 2009
Proceedings

13

Volume Editors

Sourav S. Bhowmick
Nanyang Technological University
50 Nanyang Avenue, Singapore 639798
E-mail: assourav@ntu.edu.sg

Josef Küng
Roland Wagner
University of Linz
Altenbergerstraße 69, 4040 Linz, Austria
E-mail: {jkueng, rrwagner}@faw.at

Library of Congress Control Number: 2009932140

CR Subject Classification (1998): J.2, I.2.5, H.2, J.1, H.4, H.3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-642-03572-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-03572-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12734429 06/3180 5 4 3 2 1 0

Preface

The annual international conference on Database and Expert Systems Applications
(DEXA) is now well established as a reference scientific event. The reader will find in
this volume a collection of scientific papers that represent the state of the art of re-
search in the domain of data, information and knowledge management, intelligent
systems, and their applications.

The 20th edition of the series of DEXA conferences was held at the Johannes Ke-
pler University of Linz, from August 31 to September 4, 2009.

Several collocated conferences and workshops covered specialized and comple-
mentary topics to the main conference topic. Seven conferences–––the 11th Interna-
tional Conference on Data Warehousing and Knowledge Discovery (DaWaK), the
10th International Conference on Electronic Commerce and Web Technologies (EC-
Web), the 8th International Conference on Electronic Government (EGOV), the 6th
International Conference on Trust, Privacy, and Security in Digital Business (Trust-
Bus), the 4th International Conference on Industrial Applications of Holonic and
Multi-Agent Systems (HoloMAS), the First International Conference on eParticipa-
tion (ePart), and the Second International Conference on Data Management in Grid
and P2P Systems (GLOBE)–––and 14 workshops are collocated with DEXA.

These events formed a unique international forum with a balanced depth and
breadth of topics. Its much appreciated conviviality fostered unmatched opportunities
to meet, share the latest scientific results and discuss the latest technological advances
in the area of information technologies with both young scientists and engineers and
senior world-renown experts.

This volume contains the papers selected for presentation at the DEXA conference.
Each submitted paper was reviewed by at least three reviewers, members of the Pro-
gram Committee or external reviewers appointed by members of the Program Com-
mittee. Based on the reviews, the Program Committee accepted two categories of
papers: 35 regular papers and 35 short papers of the 202 originally submitted papers.
Regular papers were given maximum 15 pages in the proceedings to report their re-
sults as well as a 25-minute presentation slot in the conference. Short papers were
give an 8-page limit and a 15-minute presentation slot.

The excellence brought to you in these proceedings would not have been possible
without the efforts of numerous individuals and the support of several organizations.

First and foremost, we thank the authors for their hard work and for the quality of
their submissions. We also thank the members of the Program Committee, the re-
viewers, and many others who assisted in the organization for their contribution to the
success and high standard of DEXA 2009 and of these proceedings.

Finally we thank the DEXA Association, the Austrian Computer Society, the Re-
search Institute for Applied Knowledge Processing (FAW), and the Johannes Kepler
University of Linz for making DEXA 2009 happen.

June 2009

Sourav S. Bhowmick
Josef Kung

Organization

Honorary Chairperson

Makoto Takizawa Seikei University, Japan

General Chairperson

Roland R. Wagner FAW, University of Linz, Austria

Conference Program Chairpersons

Sourav S Bhowmick Nanyang Technological University, Singapore
Josef Küng University of Linz, Austria

Publication Chairperson

Vladimir Marik Czech Technical University, Czech Republic

Workshop Chairpersons

A Min Tjoa Technical University of Vienna, Austria
Roland R. Wagner FAW, University of Linz, Austria

Program Committee

Talel Abdessalem TELECOM ParisTech, France
Ajith Abraham Norwegian University of Science and Technology,

Norway
Witold Abramowicz The Poznan University of Economics, Poland
Osman Abul TOBB University, Turkey
Rafael Accorsi University of Freiburg, Germany
Hamideh Afsarmanesh University of Amsterdam, The Netherlands
Patrick Albert ILOG, France
Riccardo Albertoni CNR-IMATI-GE, Italy
Paolo Alencar University of Waterloo, Canada
Rainer Alt University of Leipzig, Germany
Toshiyuki Amagasa University of Tsukuba, Japan

VIII Organization

Sarabjot Singh Anand University of Warwick, UK
Rachid Anane Coventry University, UK
Annalisa Appice Università degli Studi di Bari, Italy
Hiroki Arimura Hokkaido University, Japan
José Enrique

Armendáriz-Iñigo

Universidad Pública de Navarra, Spain

Mustafa Atay Winston-Salem State University, USA
Amit K Awasthi PSIT, India
Ramazan S. Aygun University of Alabama in Huntsville, USA
Costin Badica University of Timisoara, Romania
James Bailey University of Melbourne, Australia
Spiridon Bakiras City University of New York, USA
Cláudio Baptista University of Campina Grande, Brazil
Peter Baumann University of Bremen, Germany
Ladjel Bellatreche ENSMA-Poitiers University, France
Boualem Benatallah The University of New South Wales, Australia
Morad Benyoucef University of Ottawa, Canada
Helmut Berger Matrixware Information Services GmbH, Austria
Catherine Berrut Grenoble University, France
Leopoldo Bertossi Carleton University, Canada
Bishwaranjan Bhattacharjee IBM Thomas J. Watson Research Center, USA
Sourav S Bhowmick Nanyang Technological University, Singapore
Debmalya Biswas SAP Research, Germany
Vania Bogorny Insituto de Informatica - UFRGS, Brazil
Francesco Bonchi Yahoo Research, Spain
Agustinus Borgy Waluyo Institute for Infocomm Research, Singapore
Patrick Bosc IRISA/ENSSAT, France
Abdel Hamid Bouchachia Alps-Adriatic University of Klagenfurt, Austria
Athman Bouguettaya CSIRO, Australia
Danielle Boulanger University of Lyon, France
Omar Boussaid University of Lyon, France
Janez Brank Institut "Jožef Stefan", Slovenia
Stephane Bressan National University of Singapore, Singapore
Christopher Brewster University of Sheffield, UK
Patrick Brezillon University Paris VI, France
Yingyi Bu Microsoft, China
Luis M. Camarinha-Matos Universidade Nova de Lisboa and Uninova,

Portugal
Jiannong Cao Hong Kong Polytechnic University, Hong Kong
Longbing Cao University of Technology, Sydney, Australia
Yiwei Cao RWTH Aachen University, Germany
Barbara Carminati Università degli Studi dell'Insubria, Italy
Silvana Castano Universita' degli Studi di Milano, Italy
Barbara Catania Universita' di Genova, Italy
Michelangelo Ceci University of Bari, Italy
Wojciech Cellary University of Economics at Poznan, Poland
Sharma Chakravarthy The University of Texas at Arlington, USA

 Organization IX

Badrish Chandramouli Microsoft Research , USA
Chin-Chen Chang Feng Chia University, Taiwan
Amitabh Chaudhary University of Notre Dame, USA
Cindy Chen University of Massachusetts Lowel, USA
Jinjun Chen Swinburne University of Technology, Australia
Lei Chen Hong Kong University of Science and Technology,

Hong Kong
Phoebe Chen Deakin University, Australia
Shu-Ching Chen Florida International University, USA
Hao Cheng University of Central Florida, USA
James Cheng The Chinese University of Hong Kong, Hong Kong
Jingde Cheng Saitama University, Japan
Reynold Cheng The University of Hong Kong, China
Max Chevalier IRIT - SIG, Université de Toulouse, France
Byron Choi Hong Kong Baptist University, Hong Kong
Henning Christiansen Roskilde University, Denmark
Soon Ae Chun City University of New York, USA
Christophe Claramunt Naval Academy Research Institute, France
Eliseo Clementini University of L'Aquila, Italy
Sara Cohen Hebrew University of Jerusalem, Israel
Martine Collard University of Nice, France
Gao Cong Microsoft Research Asia, China
Emilio Corchado University of Burgos, Spain
Oscar Corcho Universidad Politécnica de Madrid, Spain
Bin Cui Peking University, China
Carlo A. Curino Politecnico di Milano, Italy
Emiran Curtmola University of California, San Diego, USA
Alfredo Cuzzocrea University of Calabria, Italy
Deborah Dahl Conversational Technologies, worldwide
Ernesto Damiani University of Milan, Italy
Violeta Damjanovic Salzburg Research Forschungsgesellschaft m.b.H.,

Austria
Jérôme Darmont Université Lumière Lyon 2, France
Valeria De Antonellis Università di Brescia, Italy
Andre de Carvalho University of Sao Paulo, Brazil
Vincenzo De Florio University of Antwerp, Belgium
Guy De Tré Ghent University, Belgium
Olga De Troyer Vrije Universiteit Brussel, Belgium
Roberto De Virgilio Università Roma Tre, Italy
Paul de Vrieze SAP Research, Switzerland
John Debenham University of Technology, Sydney, Australia
Hendrik Decker Universidad Politécnica de Valencia, Spain
Hepu Deng RMIT University, Australia
Zhi-Hong Deng Peking University, China
Vincenzo Deufemia Universit`a degli Studi di Salerno, Italy
Alin Deutsch Univesity of California at San Diego, USA
Beniamino Di Martino Seconda Universita' di Napoli, Italy

X Organization

Elisabetta Di Nitto Politecnico di Milano, Italy
Claudia Diamantini Università Politecnica delle Marche, Italy
Juliette Dibie-Barthélemy AgroParisTech, France
Ying Ding Indiana University, USA
Zhiming Ding Chinse Academy of Sciences, China
Gillian Dobbie University of Auckland, New Zealand
Peter Dolog Aalborg University, Denmark
Dejing Dou University of Oregon, USA
Marek J. Druzdzel University of Pittsburgh, Bialystok Technical

University, USA, Poland
Cedric du Mouza CNAM, France
Arjan Durresi Indiana University-Purdue University Indianapolis,

USA
Curtis Dyreson Utah State University, USA
Silke Eckstein Technical University of Braunschweig, Germany
Johann Eder University of Vienna, Austria
Suzanne M. Embury The University of Manchester, UK
Christian Engelmann Oak Ridge National Laboratory, USA
Jianping Fan University of North Carolina at Charlotte, USA
Cécile Favre University of Lyon, France
Bettina Fazzinga University of Calabria, Italy
Leonidas Fegaras The University of Texas at Arlington, USA
Yaokai Feng Kyushu University, Japan
Stefano Ferilli University of Bari, Italy
Eduardo Fernandez Florida Atlantic University, USA
Filomena Ferrucci Università di Salerno, Italy
Flavius Frasincar Erasmus University Rotterdam, The Netherlands
Ada Fu Chinese University of Hong Kong, China
Mariagrazia Fugini Politecnico di Milano, Italy
Hiroaki Fukuda Keio University, Japan
Benjamin Fung Concordia University, Canada
Gabriel Fung The University of Queensland, Australia
Steven Furnell University of Plymouth, UK
Renata de Matos Galante UFRGS - Federal University of Rio Grande do Sul,

Brazil
Fabien Gandon INRIA, France
Aryya Gangopadhyay University of Maryland Baltimore County, USA
Sumit Ganguly Indian Institute of Technology, Kanpur, India
Maria Ganzha Polish Academy of Sciences, Poland
Bin Gao Microsoft Research Asia, China
Yunjun Gao Singapore Management University, Singapore
Dragan Gasevic Athabasca University, Canada
Mário J. Gaspar da Silva University of Lisbon, Portugal
Elli Georgiadou Middlesex University, UK
Manolis Gergatsoulis Ionian University, Greece
Shahram Ghandeharizadeh University of Southern California, USA
Anastasios Gounaris Aristotle University of Thessaloniki, Greece

 Organization XI

Naga Govindaraju Microsoft Corporation, USA
Bernard Grabot LGP-ENIT, France
Fabio Grandi University of Bologna, Italy
Carmine Gravino University of Salerno, Italy
Nathan Griffiths University of Warwick, UK
Sven Groppe Lübeck University, Germany
Crina Grosan Babes-Bolyai University Cluj-Napoca, Romania
William Grosky University of Michigan, USA
Le Gruenwald University of Oklahoma, USA
Volker Gruhn Leipzig University, Germany
Stephane Grumbach INRIA, France
Jerzy Grzymala-Busse University of Kansas, USA
Francesco Guerra Università degli Studi Di Modena e Reggio Emilia,

Italy
Giovanna Guerrini University of Genova, Italy
Levent Gurgen National Institute of Informaatics (NII), Japan
Adolfo Guzman-Arenas Tribunal Electoral del Poder Judicial de la

Federacion, Mexico
Antonella Guzzo University of Calabria, Italy
Saman Kumara Halgamuge University of Melbourne, Australia
Abdelkader Hameurlain Paul Sabatier University, Toulouse, France
Ibrahim Hamidah Universiti Putra Malaysia, Malaysia
Hyoil Han Drexel University, USA
Sung-Kook Han Won Kwang University, Korea
Wook-Shin Han Kyungpook National University, Korea
Takahiro Hara Osaka University, Japan
Theo Härder TU Kaiserslautern, Germany
Aboul Ella Hassanien Cairo University, Egypt
Igor T. Hawryszkiewycz University of Technology, Sydney, Australia
Saven He Microsoft Research at Asia, China
Francisco Herrera University of Granada, Spain
Rattikorn Hewett Texas Tech University, USA
Stijn Heymans Vienna University of Technology, Austria
Birgit Hofreiter University of Vienna, Austria
Steven Hoi Nanyang Technological University, Singapore
Vagelis Hristidis Florida International University, USA
Estevam Rafael Hruschka Jr Carnegie Mellon University, USA
Wynne Hsu National University of Singapore, Singapore
Yu Hua Huazhong University of Science and Technology,

China
Jimmy Huang York University, Canada
Xiaoyu Huang South China University, China
Yan Huang University of North Texas, USA
Ela Hunt University of Strathclyde, UK
San-Yih Hwang National Sun Yat-Sen University, Taiwan
Ionut Emil Iacob Georgia Southern University, USA
Renato Iannella National ICT Australia (NICTA), Australia

XII Organization

Sergio Ilarri University of Zaragoza, Spain
Abdessamad Imine University of Nancy, France
Yoshiharu Ishikawa Nagoya University, Japan
Mizuho Iwaihara Kyoto University, Japan
Anne James Coventry University, UK
Vandana Janeja University of Maryland Baltimore County, USA
Adam Jatowt Kyoto University, Japan
Wie Jie University of Manchester, UK
Peiquan Jin University of Science and Technology, China
Jan Jurjens Open University and Microsoft Research, UK
Janusz Kacprzyk Polish Academy of Sciences, Poland
Urszula Kaczmar Wroclaw University of Technology, Poland
Ejub Kajan High School of Applied Studies, Serbia
Panagiotis Kalnis National University of Singapore, Singapore
Vana Kalogeraki University of CA, Riverside, USA
Rushed Kanawati University of Paris North, France
Ken Kaneiwa National Institute of Information and

Communications Technology(NICT) Japan
Anne Kao Boeing Phantom Works, USA
Dimitris Karagiannis University of Vienna, Austria
Kamal Karlapalem Indian Institute of Information Techology, India
George Karypis University of Minnesota, USA
Stefan Katzenbeisser Technical University of Darmstadt, Germany
Yiping Ke Chinese University of Hong Kong, Hong Kong
Anastasios Kementsietsidis IBM T.J. Watson Research Center, USA
Etienne Kerre University of Ghent, Belgium
Myoung Ho Kim KAIST, Korea
Sang-Wook Kim Hanyang University, Korea
Markus Kirchberg Institute for Infocomm Research, A*STAR,

Singapore
Hiroyuki Kitagawa University of Tsukuba, Japan
Carsten Kleiner University of Applied Sciences&Arts Hannover,

Germany
Christian König Microsoft Research, USA
Ibrahim Korpeoglu Bilkent University, Turkey
Harald Kosch University of Passau, Germany
Michal Krátký VSB-Technical University of Ostrava,

Czech Republic
Petr Kroha Technische Universität Chemnitz-Zwickau,

Germany
Arun Kumar IBM India Research Lab., India
Ashish Kundu Purdue University, USA
Josef Küng University of Linz, Austria
Axel Küpper Ludwig-Maximilians-Universität München,

Germany
Lotfi Lakhal University of Marseille, France
Eric Lam City University of Hong Kong, Hong Kong

 Organization XIII

Nadira Lammari CNAM, France
Gianfranco Lamperti University of Brescia, Italy
Andreas Langegger University of Linz, Austria
Anne Laurent LIRMM, University Montpellier 2, France
Mong Li Lee National University of Singapore, Singapore
Young-Koo Lee Kyung Hee University, Korea
Suh-Yin Lee National Chiao Tung University, Taiwan
Alain Toinon Leger Orange - France Telecom R&D, France
Jeffrey Xu Lei The University of Texas at Arlington, USA
Daniel Lemire Université du Québec à Montréal, Canada
Hans-Joachim Lenz Free University of Berlin, Germany
Scott Leutenegger University of Denver, USA
Pierre Lévy Public Health Department, France
Lenka Lhotska Czech Technical University, Czech Republic
Guoliang Li Tsinghua University, China
Wenxin Liang Japan Science and Technology Agency (JST) and

Tokyo Institute of Technology, Japan
Lipyeow Lim IBM T. J. Watson Research Center, USA
Hong Lin University of Houston-Downtown, USA
Xuemin Lin University of New South Wales, Sydney, Australia
Tok Wang Ling National University of Singapore, Singapore
Sebastian Link Victoria University of Wellington, New Zealand
Volker Linnemann University of Lübeck, Germany
Chengfei Liu Swinburne University of Technology, Australia
Chuan-Ming Liu National Taipei University of Technology, Taiwan
Fuyu Liu University of Central Florida, USA
Hong-Cheu Liu Diwan University, Taiwan
Hua Liu Xerox Research Center at Webster, USA
Lin Liu Tsinghua University, China
Jorge Lloret Gazo University of Zaragoza, Spain
Peri Loucopoulos The University of Manchester, UK
Chang-Tien Lu Virginia Tech, USA
James J. Lu Emory University, Atlanta, USA
Jianguo Lu University of Windsor, Canada
Alessandra Lumini University of Bologna, Italy
Fernando Lyardet Technical University of Darmstadt, Germany
Jianhua Ma Hosei University, Japan
Qiang Ma Kyoto University, Japan
Stéphane Maag TELECOM & Management SudParis, France
Anna Maddalena Università di Genova, Italy
Sanjai Kumar Madria University of Missouri-Rolla, USA
Nikos Mamoulis University of Hong Kong, Hong Kong
Vladimir Marik Czech Technical University, Czech Republic
Elio Masciari ICAR-CNR, Italy
Norman May SAP Research Center, Germany
Jose-Norberto Mazon University of Alicante in Spain, Spain
Dennis McLeod University of Southern California, USA

XIV Organization

Brahim Medjahed University of Michigan - Dearborn, USA
Carlo Meghini ISTI-CNR, Italy
Xiaofeng Meng Renmin University, China
Rosa Meo University of Turin, Italy
Paolo Merialdo Universita' degli Studi Roma Tre, Italy
Elisabeth Metais CNAM, France
Farid Meziane Salford University, UK
Sanjay Misra Atilim University, Turkey
Jose Mocito INESC-ID/FCUL, Portugal
Mohamed Mokbel University of Minnesota, USA
Lars Mönch FernUniversität in Hagen, Germany
Anirban Mondal University of Tokyo, Japan
Hyun Jin Moon UCLA Computer Science, USA
Yang-Sae Moon Kangwon National University, Korea
Reagan Moore San Diego Supercomputer Center, USA
Mirella M. Moro Universidade Federal de Minas Gerais, Brazil
Franck Morvan IRIT, Paul Sabatier University, Toulouse, France
Tadeusz Morzy Poznan University of Technology, Poland
Kyriakos Mouratidis Singapore Management University, Singapore
Yi Mu University of Wollongong, Australia
Tetsuya Murai Hokkaido University, Japan
Mirco Musolesi University of Cambridge, UK
Tadashi Nakano University of California, Irvine, USA
Ullas Nambiar IBM India Research Lab, India
Ismael Navas-Delgado University of Málaga, Spain
Rimma V. Nehme Purdue University, USA
Wolfgang Nejdl University of Hannover, Germany
Wilfred Ng University of Science and Technology, Hong Kong
Daniela Nicklas University of Stuttgart, Germany
Christophe Nicolle University of Burgundy, France
Barry Norton Open University, UK
Chris Nugent University of Ulster, UK
Selim Nurcan University Paris 1 Pantheon Sorbonne, France
Byung-Won On Pennsylvania State University, USA
Jose Antonio Onieva González University of Malaga, Spain
Joann Ordille Avaya Labs Research, USA
Mehmet Orgun Macquarie University, Australia
Luís Fernando Orleans Federal University of Rio de Janeiro, Brazil
Mourad Oussalah University of Nantes, France
Gultekin Ozsoyoglu University Case Western Research, USA
Claus Pahl Dublin City University, Ireland
George Pallis University of Cyprus, Cyprus
Christos Papatheodorou Ionian University, Corfu, Greece
Paolo Papotti Università Roma Tre, Italy
Marcin Paprzycki Polish Academy of Sciences, Warsaw Management

Academy, Poland
Vamsi Paruchuri University of Central Arkansas, USA

 Organization XV

Oscar Pastor Universidad Politecnica de Valencia, Spain
Cesare Pautasso University of Lugano, Switzerland
Witold Pedrycz University of Alberta, Canada
Jovan Pehcevski MIT University, Skopje, Macedonia
Loris Penserini University of Utrecht, The Netherlands
Antonio Picariello Università di Napoli Federico II, Italy
David Pinto BUAP University, Mexico
Clara Pizzuti CNR, ICAR, Italy
Jaroslav Pokorny Charles University in Prague, Czech Republic
Giuseppe Polese University of Salerno, Italy
Pascal Poncelet LIRMM, France
Elaheh Pourabbas National Research Council, Italy
Partha Pratim Talukdar University of Pennsylvania, USA
Xiaojun Qi Utah State University, USA
Gerald Quirchmayr University of Vienna, Austria

University of South Australia, Australia
Fausto Rabitti ISTI, CNR Pisa, Italy
Saïd Radhouani Swiss National Science Foundation, Oregon Health

& Science University, Switzerland
Wenny Rahayu La Trobe University, Australia
Claudia Raibulet Universita’ degli Studi di Milano-Bicocca, Italy
Isidro Ramos Technical University of Valencia, Spain
Ralf Rantzau IBM Silicon Valley Laboratory, USA
Praveen Rao University of Missouri-Kansas City, USA
Andreas Rauber Vienna University of Technology, Austria
G.W. Matthias Rauterberg Eindhoven University of Technology,

The Netherlands
Jan Recker Queensland University of Technology, Australia
P. Krishna Reddy International Institute of Information Technology,

India
Manjeet Rege Rochester Institute of Technology, USA
Rodolfo F. Resende Federal University of Minas Gerais, Brazil
Dimitrios Rigas University of Bradford, UK
John Roddick Flinders University, Australia
Colette Rolland University Paris I, Sorbonne, France
Claudia Roncancio Grenoble University / LIG, France
Kamel Rouibah College of Business Administration, Kuweit
Edna Ruckhaus Universidad Simon Bolivar, Venezuela
Massimo Ruffolo University of Calabria, Italy
Domenico Sacca University of Calabria, Italy
Giovanni Maria Sacco University of Turin, Italy
Fereidoon (Fred) Sadri University of North Carolina at Greensboro, USA
Simonas Saltenis Aalborg University, Denmark
Jose Samos Universidad de Granada, Spain
Demetrios G. Sampson University of Piraeus, Greece
Jagan Sankaranarayanan University of Maryland, USA
Carlo Sansone Università di Napoli "Federico II", Italy

XVI Organization

Paolo Santi Istituto di Informatica e Telematica, Italy
Ismael Sanz Universitat Jaume I, Spain
Marýa Luýsa Sapino Università degli Studi di Torino, Italy
N.L. Sarda I.I.T. Bombay, India
Sumit Sarkar University of Texas at Dallas, USA
Marinette Savonnet University of Burgundy, France
Raimondo Schettini Università degli Studi di Milano-Bicocca, Italy
Ingo Schmitt University of Magdeburg, Germany
Harald Schöning Software AG, Germany
Erich Schweighofer University of Vienna, Austria
Florence Sedes IRIT Toulouse, France
Valeria Seidita University of Palermo, Italy
Nazha Selmaoui University of New Caledonia, France
Luciano Serafini FBK-irst, Italy
Heng Tao Shen The University of Queensland, Australia
Lei Shu National University of Ireland, Ireland
Patrick Siarry Université Paris 12 (LiSSi), France
Gheorghe Cosmin Silaghi Babes-Bolyai University of Cluj-Napoca, Romania
Hala Skaff-Molli Université Henri Poincaré, France
Giovanni Soda University of Florence, Italy
Leonid Sokolinsky South Ural State University, Russia
MoonBae Song Sungkyunkwan University, Korea
Adrian Spalka CompuGROUP Holding AG, Germany
Bala Srinivasan Monash University, Australia
Umberto Straccia Italian National Research Council, Italy
Darijus Strasunskas Norwegian University of Science and Technology

(NTNU), Norway
Martin J. Strauss Michigan University, USA
Lena Stromback Linköpings Universitet, Sweden
Heiner Stuckenschmidt Mannheim University, Germany
Aixin Sun Nanyang Technological University, Singapore
Raj Sunderraman Georgia State University, USA
Ashish Sureka Infosys Technologies Limited, India
Jun Suzuki University of Massachusetts, Boston, USA
Makoto Takizawa Tokyo Denki University, Japan
Wei Tan University of Chicago and Argonne National

Laboratory, USA
Katsumi Tanaka Kyoto University, Japan
Jie Tang Tsinghua University, China
David Taniar Monash University, Australia
Cui Tao Brigham Young University, USA
Maguelonne Teisseire LIRMM, University of Montpellier 2, France
Sergio Tessaris Free University of Bozen-Bolzano, Italy
Olivier Teste IRIT, University of Toulouse, France
Stephanie Teufel University of Fribourg, Switzerland
Jukka Teuhola University of Turku, Finland
Taro Tezuka Ritsumeikan University, Japan

 Organization XVII

J.M. Thevenin University of Toulouse, France
Philippe Thiran University of Namur, Belgium
Helmut Thoma University of Basel, Switzerland
A Min Tjoa Technical University of Vienna, Austria
Andreas Tolk Old Dominion University, USA
Ioan Toma University of Innsbruck, Austria
Vicenc Torra Universitat Autonoma de Barcelona , Spain
Traian Truta Northern Kentucky University, USA
Christos Tryfonopoulos Max Planck Institute for Informatics, Germany
Vassileios Tsetsos National and Kapodistrian University of Athens,

Greece
Theodoros Tzouramanis University of the Aegean, Greece
Shunsuke Uemura Nara Sangyo University, Japan
Nico Van de Weghe Ghent University, Belgium
Maurice van Keulen University of Twente, The Netherlands
Marc van Kreveld Utrecht University, The Netherlands
Christelle Vangenot EPFL , Switzerland
Genoveva Vargas-Solar LSR-IMAG, France
Maria Vargas-Vera The Open University, UK
Yannis Vassiliou National Technical University of Athens, Greece
Brijesh Verma CQ University, Australia
Dirk Vermeir Vrije Universiteit Brussel, Belgium
Krishnamurthy Vidyasankar Memorial University of Newfoundland, Canada
Marco Vieira University of Coimbra, Portugal
J.K. Vijayakumar American University of Antigua, Antigua,

West Indies
Maria Virvou University of Piraeus, Greece
Bing Wang University of Hull, UK
Jianyong Wang Tsinghua University, China
Junhu Wang Griffith University, Brisbane, Australia
Kewen Wang Griffith University, Brisbane, Australia
Wei Wang University of New South Wales, Sydney, Australia
Wendy Hui Wang Stevens Institute of Technology, USA
Andreas Wombacher University Twente, The Netherlands
Raymond Wong University of New South Wales, Sydney, Australia
Songhua Xing University of Southern California, USA
Jianliang Xu Hong Kong Baptist University, Hong Kong
Lai Xu CEC St. Gallen, SAP AG, Switzerland
Lu Yan University of Hertfordshire, UK
Hsin-Chang Yang National University of Kaohsiung, Taiwan
Hui Yang San Francisco State University, USA
Lili Yang Loughborough University, UK
Ming Hour Yang Chung Yuan Christian University, Taiwan
Xiaochun Yang Northeastern University, China
Yelena Yesha University of Maryland, USA
Haruo Yokota Tokyo Institute of Technology, Japan
Jin Soung Yoo Indiana University - Purdue University, USA

XVIII Organization

Clement Yu University of Illinios at Chicago, USA
Ting Yu North Carolina State University, USA
Xiaohui Yu York University, Canada
Zhiwen Yu Northwestern Polytechnical University, China
Gian Piero Zarri University Paris IV, Sorbonne, France
Xiao-Jun Zeng University of Manchester, UK
Zhigang Zeng Huazhong University of Science and Technology,

China
Xuan F. Zha Extension Systems International (ESI), National

Inst. of Standards and Tech. (NIST) , USA
Ji Zhang CSIRO ICT Centre, Australia
Xiuzhen (Jenny) Zhang RMIT University Australia, Australia
Yanchang Zhao University of Technology, Sydney, Australia
Yu Zheng Microsoft Research Asia, China
Xiao Ming Zhou Sybase Engineering, worldwide
Xiaofang Zhou University of Queensland, Australia
Qiang Zhu The University of Michigan, USA
Yi Zhuang Zhejiang Gongshang University, China
Ester Zumpano University of Calabria, Italy

External Reviewers

Sven Hartmann
Giorgos Stoilos
Simon S. Msanjila
Ekaterina E. Ermilova
Chun Ruan
Lina Tutkute
Gang Qian
Adegoke Ojewole
Navin Viswanath
Ana Marilza Pernas
Sérgio Mergen
Devis Bianchini
Michele Melchiori
Camelia Constantin
Horst Pichler
Julius Köpke
Christian Meilicke
Sven Casteleyn
Carlos Buil
Andres García
Boris Villazón-Terrazas
Bei Pan
Zonghui Lian
Dino Ienco

Kaushik Chakrabarti
Luciana Cavalcante de Menezes
Sang Se Lee
Jongwoo Lim
Dongwoo Won
Matthiew Damigos
Arnab Bhattacharyya
Muhammad Aamir Cheema
Wenwu Qu
Chaoming Li
Shariq Bashir
Giorgio Terracina
Shahin Shayandeh
Yang Liu
Zi Huang
Gabriel Fung
Ke Deng
Jun Miyazaki
Ermenlinda Oro
Shiping Chen
Zaki Malik
Wanita Sherchan
Yousuke Watanabe
Wee Hyong Tok

 Organization XIX

Francesco Tarquini
Adam Walczak
Fernando Farfán
Ramakrishna Varadarajan
Rui Chen
Noman Mohammed
Eva Onaindia
Jose H. Canós
Pepe Carsí
Critóbal Costa
Wendell Jordan-Bragnman
Xutong Liu
Paea LePendu
Domenico Potena
Xiubo Geng
Yin He
Yanyan LanN
Venkateswara Reddy
Himanshu Chauhan

Felipe Hummel
Carina F. Dorneles
Mathieu Roche
Lisa Di Jorio
Yoann Pitarch
Cecile Low-Kam
Rosine Cicchetti
Sébastien Nedjar
Hai Huang
Michael Dittenbach
Andreas Pesenhofer
Yingliang Lu
Antonio Penta
Stefano Montanelli
Gaia Varese
Fabrizio Falchi
Raffaele Perego
Rajan Shankara

Table of Contents

Invited Talk

Management of Information Supporting Collaborative Networks 1
Hamideh Afsarmanesh and Luis M. Camarinha-Matos

XML and Databases I

A Low-Storage-Consumption XML Labeling Method for Efficient
Structural Information Extraction . 7

Wenxin Liang, Akihiro Takahashi, and Haruo Yokota

Inclusion Dependencies in XML: Extending Relational Semantics 23
Michael Karlinger, Millist Vincent, and Michael Schrefl

The Real Performance Drivers behind XML Lock Protocols 38
Sebastian Bächle and Theo Härder

XML and Databases II

XTaGe: A Flexible Generation System for Complex XML Collections . . . 53
Maŕıa Pérez, Ismael Sanz, and Rafael Berlanga

Utilizing XML Clustering for Efficient XML Data Management on P2P
Networks . 68

Panagiotis Antonellis, Christos Makris, and Nikos Tsirakis

On the Termination Problem for Declarative XML Message
Processing . 83

Tadeusz Litak and Sven Helmer

Web, Semantics and Ontologies I

Consistency Checking for Workflows with an Ontology-Based Data
Perspective . 98

Gabriele Weiler, Arnd Poetzsch-Heffter, and Stephan Kiefer

Conceptual and Spatial Footprints for Complex Systems Analysis:
Application to the Semantic Web . 114

Bénédicte Le Grand, Michel Soto, and Marie-Aude Aufaure

Automatic Extraction of Ontologies Wrapping Relational Data
Sources . 128

Lina Lubyte and Sergio Tessaris

XXII Table of Contents

Temporal, Spatial, and High Dimensional Databases
(Short Papers)

A Query Cache Tool for Optimizing Repeatable and Parallel OLAP
Queries . 143

Ricardo Jorge Santos and Jorge Bernardino

Efficient Map Portrayal Using a General-Purpose Query Language (A
Case Study) . 153

Peter Baumann, Constantin Jucovschi, and Sorin Stancu-Mara

On Low Distortion Embeddings of Statistical Distance Measures into
Low Dimensional Spaces . 164

Arnab Bhattacharya, Purushottam Kar, and Manjish Pal

Real-Time Traffic Flow Statistical Analysis Based on
Network-Constrained Moving Object Trajectories . 173

Zhiming Ding and Guangyan Huang

Invited Talk

Data Management for Federated Biobanks . 184
Johann Eder, Claus Dabringer, Michaela Schicho, and Konrad Stark

Web, Semantics and Ontologies II

Peer-to-Peer Semantic Wikis . 196
Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli

VisiNav: Visual Web Data Search and Navigation . 214
Andreas Harth

Diagnosing and Measuring Incompatibilities between Pairs of
Services . 229

Ali Aı̈t-Bachir and Marie-Christine Fauvet

Database and Information System Architecture,
Performance and Security (Short Papers)

Scaling-Up and Speeding-Up Video Analytics Inside Database
Engine . 244

Qiming Chen, Meichun Hsu, Rui Liu, and Weihong Wang

Experimental Evaluation of Processing Time for the Synchronization of
XML-Based Business Objects . 255

Michael Ameling, Bernhard Wolf, Thomas Springer, and
Alexander Schill

Table of Contents XXIII

SimulPh.D.: A Physical Design Simulator Tool . 263
Ladjel Bellatreche, Kamel Boukhalfa, and Zaia Alimazighi

Protecting Database Centric Web Services against SQL/XPath
Injection Attacks . 271

Nuno Laranjeiro, Marco Vieira, and Henrique Madeira

Reasoning on Weighted Delegatable Authorizations 279
Chun Ruan and Vijay Varadharajan

Web, Semantics and Ontologies III

Annotating Atomic Components of Papers in Digital Libraries:
The Semantic and Social Web Heading towards a Living Document
Supporting eSciences . 287

Alexander Garćıa Castro, Leyla Jael Garćıa-Castro, Alberto Labarga,
Olga Giraldo, César Montaña, Kieran O’Neil, and John A. Bateman

Web Navigation Sequences Automation in Modern Websites 302
Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and
Javier López

Supporting Personal Semantic Annotations in P2P Semantic Wikis 317
Diego Torres, Hala Skaf-Molli, Alicia Dı́az, and Pascal Molli

XML and Databases III (Short Papers)

OrdPathX: Supporting Two Dimensions of Node Insertion in XML
Data . 332

Jing Cai and Chung Keung Poon

XQSuggest: An Interactive XML Keyword Search System 340
Jiang Li and Junhu Wang

A Prüfer Based Approach to Process Top-k Queries in XML 348
Ling Li, Mong Li Lee, Wynne Hsu, and Han Zhen

Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document
Databases . 356

Yangjun Chen

Query Rewriting Rules for Versioned XML Documents 364
Tetsutaro Motomura, Mizuho Iwaihara, and Masatoshi Yoshikawa

Querying XML Data with SPARQL . 372
Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki, and
Stavros Christodoulakis

XXIV Table of Contents

Query Processing and Optimization I

Progressive Evaluation of XML Queries for Online Aggregation and
Progress Indicator . 382

Cheng Luo, Zhewei Jiang, Wen-Chi Hou, and Gultekin Ozsoyoglu

Dynamic Query Processing for P2P Data Services in the Cloud 396
Pawel Jurczyk and Li Xiong

A Novel Air Index Scheme for Twig Queries in On-Demand XML Data
Broadcast . 412

Yongrui Qin, Weiwei Sun, Zhuoyao Zhang, Ping Yu,
Zhenying He, and Weiyu Chen

Semantic Web and Ontologies IV (Short Papers)

Semantic Fields: Finding Ontology Relationships . 427
Ismael Navas-Delgado, Maria del Mar Roldán-Garćıa, and
José F. Aldana-Montes

Complete OWL-DL Reasoning Using Relational Databases 435
Maria del Mar Roldan-Garcia and Jose F. Aldana-Montes

FRESG: A Kind of Fuzzy Description Logic Reasoner 443
Hailong Wang, Z.M. Ma, and Junfu Yin

Extracting Related Words from Anchor Text Clusters by Focusing on
the Page Designer’s Intention . 451

Jianquan Liu, Hanxiong Chen, Kazutaka Furuse, and Nobuo Ohbo

Invited Talk

Evolution of Query Optimization Methods: From Centralized Database
Systems to Data Grid Systems . 460

Abdelkader Hameurlain

Query Processing and Optimization II

Reaching the Top of the Skyline: An Efficient Indexed Algorithm for
Top-k Skyline Queries . 471

Marlene Goncalves and Maŕıa-Esther Vidal

Energy Efficient and Progressive Strategy for Processing Skyline
Queries on Air . 486

JongWoo Ha, Yoon Kwon, Jae-Ho Choi, and SangKeun Lee

Table of Contents XXV

RoK: Roll-Up with the K-Means Clustering Method for Recommending
OLAP Queries . 501

Fadila Bentayeb and Cécile Favre

Query Processing and Optimization III

On Index-Free Similarity Search in Metric Spaces . 516
Tomáš Skopal and Benjamin Bustos

An Approximation Algorithm for Optimizing Multiple Path Tracking
Queries over Sensor Data Streams . 532

Yao-Chung Fan and Arbee L.P. Chen

Data and Information Integration and Quality

A Versatile Record Linkage Method by Term Matching Model Using
CRF . 547

Quang Minh Vu, Atsuhiro Takasu, and Jun Adachi

On-the-Fly Integration and Ad Hoc Querying of Life Sciences
Databases Using LifeDB . 561

Anupam Bhattacharjee, Aminul Islam, Mohammad Shafkat Amin,
Shahriyar Hossain, Shazzad Hosain, Hasan Jamil, and
Leonard Lipovich

Analyses and Validation of Conditional Dependencies with Built-in
Predicates . 576

Wenguang Chen, Wenfei Fan, and Shuai Ma

Data Mining and Knowledge Extraction
(Short Papers)

Discovering Sentinel Rules for Business Intelligence 592
Morten Middelfart and Torben Bach Pedersen

Discovering Trends and Relationships among Rules 603
Chaohai Chen, Wynne Hsu, and Mong Li Lee

Incremental Ontology-Based Extraction and Alignment in
Semi-structured Documents . 611

Mouhamadou Thiam, Nacéra Bennacer, Nathalie Pernelle, and
Moussa Lô

Tags4Tags: Using Tagging to Consolidate Tags . 619
Leyla Jael Garcia-Castro, Martin Hepp, and Alexander Garcia

XXVI Table of Contents

Data and Information Streams

Detecting Projected Outliers in High-Dimensional Data Streams 629
Ji Zhang, Qigang Gao, Hai Wang, Qing Liu, and Kai Xu

Significance-Based Failure and Interference Detection in Data
Streams . 645

Nickolas J.G. Falkner and Quan Z. Sheng

Incremental and Adaptive Clustering Stream Data over Sliding
Window . 660

Xuan Hong Dang, Vincent C.S. Lee, Wee Keong Ng, and
Kok Leong Ong

Data Mining Algorithms

Alignment of Noisy and Uniformly Scaled Time Series 675
Constanze Lipowsky, Egor Dranischnikow, Herbert Göttler,
Thomas Gottron, Mathias Kemeter, and Elmar Schömer

Extracting Decision Correlation Rules . 689
Alain Casali and Christian Ernst

Maintaining the Dominant Representatives on Data Streams 704
Wenlin He, Cuiping Li, and Hong Chen

Data and Information Modelling

Modeling Complex Relationships . 719
Mengchi Liu and Jie Hu

Intuitive Visualization-Oriented Metamodeling . 727
Dirk Draheim, Melanie Himsl, Daniel Jabornig, Werner Leithner,
Peter Regner, and Thomas Wiesinger

Information Retrieval and Database Systems
(Short Papers)

PISA: Federated Search in P2P Networks with Uncooperative Peers 735
Zujie Ren, Lidan Shou, Gang Chen, Chun Chen, and Yijun Bei

Analysis of News Agencies’ Descriptive Features of People and
Organizations . 745

Shin Ishida, Qiang Ma, and Masatoshi Yoshikawa

Analyzing Document Retrievability in Patent Retrieval Settings 753
Shariq Bashir and Andreas Rauber

Table of Contents XXVII

Classifying Web Pages by Using Knowledge Bases for Entity
Retrieval . 761

Yusuke Kiritani, Qiang Ma, and Masatoshi Yoshikawa

Terminology Extraction from Log Files . 769
Hassan Saneifar, Stéphane Bonniol, Anne Laurent,
Pascal Poncelet, and Mathieu Roche

Database and Information System Architecture and
Performance

Evaluating Non-In-Place Update Techniques for Flash-Based
Transaction Processing Systems . 777

Yongkun Wang, Kazuo Goda, and Masaru Kitsuregawa

A Relational Encoding of a Conceptual Model with Multiple Temporal
Dimensions . 792

Donatella Gubiani and Angelo Montanari

Three Approximation Algorithms for Energy-Efficient Query
Dissemination in Sensor Database System . 807

Zhao Zhang, Xiaofeng Gao, Xuefei Zhang, Weili Wu, and Hui Xiong

Query Processing and Optimization IV
(Short Papers)

Top-k Answers to Fuzzy XPath Queries . 822
Bettina Fazzinga, Sergio Flesca, and Andrea Pugliese

Deciding Query Entailment in Fuzzy Description Logic Knowledge
Bases . 830

Jingwei Cheng, Z.M. Ma, Fu Zhang, and Xing Wang

An Optimization Technique for Multiple Continuous Multiple Joins
over Data Streams . 838

Changwoo Byun, Hunjoo Lee, YoungHa Ryu, and Seog Park

Top-k Queries with Contextual Fuzzy Preferences . 847
Patrick Bosc, Olivier Pivert, and Amine Mokhtari

Reranking and Classifying Search Results Exhaustively Based on
Edit-and-Propagate Operations . 855

Takehiro Yamamoto, Satoshi Nakamura, and Katsumi Tanaka

Author Index . 863

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 1–6, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Management of Information Supporting
Collaborative Networks

Hamideh Afsarmanesh1 and Luis M. Camarinha-Matos2

1 Informatics Institute, University of Amsterdam, Science Park 107,
1098 XG, Amsterdam, The Netherlands

h.afsarmanesh@uva.nl
2 Faculty of Sciences and Technology, New University of Lisbon,

Quinta da Torre, 2829-516, Monte Caparica, Portugal
cam@uninova.pt

Abstract. Dynamic creation of opportunity-based goal-oriented Collaborative
Networks (CNs), among organizations or individuals, requires the availability
of a variety of up-to-date information. In order to effectively address the com-
plexity, dynamism, and scalability of actors, domains, and operations in oppor-
tunity-based CNs, pre-establishment of properly administrated strategic CNs is
required. Namely, to effectively support creation/operation of opportunity-
based VOs (Virtual Organizations) operating in certain domain, the pre-
establishment of a VBE (Virtual organizations Breeding Environment) for that
domain plays a crucial role and increases their chances of success. Administra-
tion of strategic CN environments however is challenging and requires an
advanced set of inter-related functionalities, developed on top of strong man-
agement of their information. With the emphasis on information management
aspects, a number of generic challenges for the CNs and especially for the ad-
ministration of VBEs are introduced in the paper.

Keywords: Information management for Collaborative Networks (CNs), virtual
organizations breeding environments (VBEs).

1 Introduction

Collaborative networks as collections of geographically dispersed autonomous actors,
which collaborate through computer networks, has led both organizations and indi-
viduals to effectively achieving common goals that go far beyond the ability of each
single actor, and providing cost effective solutions, and value creating functionalities,
services, and products. The paradigm of “Collaborative Networks (CN)” represents a
wide variety of networks where each one has distinctive characteristics and features,
as presented in the taxonomy of existing CNs [1].

There is a wide diversity in structural forms, duration, behavioral patterns, and
interaction forms, manifested by different CNs. The structural diversities range from
the process-oriented chain structures as observed in supply chains, to those central-
ized around dominant entities, and the project-oriented federated networks [2; 3]. The
duration and behavioral patterns of different CNs may range from the short life cycle
of the goal-oriented dynamic VOs to the long term strategic alliances, such as the

2 H. Afsarmanesh and L.M. Camarinha-Matos

VBEs that aim at sufficiently supporting their actors with the configuration and estab-
lishment of new opportunity-driven VOs [4]. Similarly, interaction forms within
different CNs vary in intensity, from merely networking to cooperation as well as
collaboration, which also represent different levels of their collaboration maturity [4].

1.1 Challenges in Managing the Information in CNs

Even if all information within CNs, related to its actors, domain of activity, and opera-
tion, were semantically and syntactically homogeneous, still a main generic challenge
remains related to assuring the availability of strategic information about the actors
within the CN. Such information is required in CNs for its proper coordination and
decision making. This can be handled through the enforcement of a push/pull mecha-
nism and establishment of proper mapping strategies and components, between the
information managed at different sites belonging to actors in the network and all those
systems (or sub-systems) that support different functionalities of the CN and its activi-
ties during its life cycle. Therefore, it is necessary that from autonomous actors involved
in the CNs, various types of distributed information are collected. Such information
shall then be processed and organized, to become accessible within the network, both
for navigation by different CN stakeholders as well as for processing by different soft-
ware systems running at the CN. However, although the information about actors
evolves in time - which is typical of dynamic environments such as CNs - and therefore
needs to be kept up to date, there is no need for continuous flow of all the information
from each legacy system to the CN. This would generate a major overload on the infor-
mation management systems at the CN. Rather, for effective CN’s operation and man-
agement, only at some intervals, partial information needs to be pulled/pushed from/to
legacy systems to the CN. Similarly, needs to access information also vary depending
on the purpose for which it is requested. These variations in turn pose a second generic
information management challenge that is related to the classification, assessment, and
provision of the required information based on intended use cases in CNs. These
generic information challenges in CNs shall be addressed ad supported for all key re-
quired CN functionalities, e.g. for its common ontology engineering, competency man-
agement, and trust management, among others.

A third generic information management challenge is related to modeling and or-
ganizing the variety and complexity of the information that needs to be processed by
different functionalities, which support the management and operation of the CNs.
While some of these functionalities deal with the information that is known and stored
within different sites of network’s actors (e.g. data required for actors’ competency
management), the information required for some other functionalities of CNs may be
unknown, incomplete, or imprecise, for which soft computing approaches, such as
causal analysis and reasoning or similar techniques introduced in computational intel-
ligence, shall be applied to generate the needed information, mostly qualitatively.

There is however a number of other generic challenges related to the management
of the CN information, and it can be expected that more challenges will be identified
in time as the need for other functional components unfolds in the research on sup-
porting the management and operation of the CNs. Among other identified generic
challenges, we can mention: ensuring the consistency among the locally managed
semantically and syntactically heterogeneous information at each organization’s leg-
acy systems and the information managed by the management system of the CNs as

 Management of Information Supporting Collaborative Networks 3

well as their availability for access by authorized CN stakeholders (e.g. individuals or
organizations) when necessary. At the heart of this challenge lies the establishment of
needed interoperation infrastructure, as well as a federated information management
system to support inter-linking of autonomous information management systems at
different sites of the actors in CNs. Furthermore, challenges related to update mecha-
nisms among autonomous nodes are relevant. Nevertheless, these generic challenges
are in fact common to many other application environments and are not specific to the
CN’s information management area.

2 Establishing Collaborative Networks – Base Requirements

A generic set of requirements, including: (1) definition of common goal and vision,
(2) performing a set of initiating actions, and (3) establishing common collaboration
space, represent the base pre-conditions for the setting up of the CNs. Furthermore,
the CN environment needs to properly operate, for which its daily supervision as well
as distribution of tasks among its actors shall be supported that represent other chal-
lenges: (1) performing coordination, support, and management of activities, and (2)
achieving agreements and contracts.

Following five sub-sections briefly summarize these main basic requirements, as
identified and addressed within the CN area of research for the next generation of
CNs, and emphasize their information management challenges in italic:

i. Defining a common goal and vision. Collaboration requires the pre-existence of a
motivating common goal and vision to represent the joint/common purpose for estab-
lishment of the collaboration [4]. Establishing a well-conceived vision for CNs needs
involvement of all its actors, and in turn requires the availability of up-to-date infor-
mation regarding many aspects of the network. Development of ontology for CNs, to
support the management of required information for visioning as well as to assure its
effective accessibility to all actors within the network is challenging.

ii. Performing a set of initiating actions. There are a number of initiating actions that
need to be taken as a pre-condition to establishing CNs. These actions, typically taken
by the founder of the CN include [5; 6]: defining the scope of the collaboration and its
desired outcomes; defining roles, responsibilities; setting the plan of actions; task
scheduling and milestones; and defining policies, e.g. for handling conflicts. Typically
most information related to the initiating actions is strategic and considered proprie-
tary, to be accessed only by the CN’s administration. The classification of information
in CNs to ensure its confidentiality level and privacy, while guaranteeing enough
access to the level required by each CN stakeholder is challenging.

iii. Substantiating a common collaboration space. Establishing CNs require the pre-
establishment of their common collaboration space that refers to all needed elements,
principles, infrastructure, etc. that together provide the needed environment for CN
actors to be able to cooperate/collaborate. These include achieving:

– Common concepts and terminology (e.g. meta-data defined for databases or an
ontology, specifying the collaboration environment and purpose) [7].

– Common communication infrastructure and protocols for interaction and
data/information sharing and exchange (e.g. the internet, GRID, open or

4 H. Afsarmanesh and L.M. Camarinha-Matos

commercial tools and protocols for communication and information exchange,
document management systems for information sharing, etc.) [8]

– Common working and sharing principles, value system, and policies (e.g. pro-
cedures for cooperation/collaboration and sharing of different resources, assess-
ment of collaboration preparedness, measurement of the alignment between
value systems, etc.) [9]. The CN related policies are typically modeled and
stored by its administration and are available to its stakeholders.

– Common set of base trustworthiness criteria (e.g. identification, modeling and
specification of periodic required measurements of partners’ performance to
identify their trust level [10]. It is necessary to model, specify, store, and manage
entities and concepts related to trust establishment and their measurements re-
lated to different actors.

– Harmonization/adaptation of heterogeneities among stakeholders due to ex-
ternal factors such as those related to actors from different regions involved in
virtual collaboration networks, e.g. differences in time, language,
laws/regulations, and socio-cultural aspects [9]. Some of these heterogeneities
affect the sharing and exchange of information among the actors in the network,
for which proper mappings and/or adaptors shall be developed and applied.

Certain other specific characteristics of CNs also require to be supported by their
common collaboration space. For example some CNs may require simultaneous or
synchronous collaboration, while others depend on asynchronous collaboration [11].

iv. Substantiating coordination, support, and management of activities. A well de-
fined approach is needed for coordination of CN activities, and consequently establish-
ment of mechanisms, tools, and systems are required for common coordination, support,
and management of activities in the CN. As a starting point, considering the wide vari-
ety of terms and concepts introduced and applied in the CN environments, e.g. within
the VBEs, specification and management of the ontology for these environments is
crucial [7]. As another example, in almost all CNs, the involved actors need to know
about each others’ capabilities, capacities, resources, etc. that is referred to as the com-
petency of the involved actors in [12]. In VBEs for instance, such competency informa-
tion constitutes the base for partner search by the broker/planner, who needs to match
partners’ competencies against detailed characterization of an emerged opportunity, in
order to select the best-fit partners. Similarly, as an antecedent to any collaboration,
some level of trust must pre-exist among the involved actors in the CN and needs to be
gradually strengthened depending on the purpose of the cooperation/collaboration.
Therefore, as a part of the CN management system, rational measurement of the
performance and achievements of CN actors can be applied to determine their trustwor-
thiness, from different perspectives [10]. Considering these and other advanced func-
tionalities [13], as represented in Figure 1, which are needed for effective management
of the CNs [14], classification, storage, and manipulation of their related information
e.g. for competencies of actors and their trust-related criteria need to be effectively
supported and is challenging.

v. Achieving agreements and contracts among actors. Successful operation of the
CN requires reaching common agreements/contracts among its actors [6]. For in-
stance, during the CN’s operation stage, clear agreements should be reached among
the actors on distribution of tasks and responsibilities, extent of commitments, sharing

 Management of Information Supporting Collaborative Networks 5

of resources, and the distribution of both the rewards and the losses and liabilities
[15]. Due to their relevance and importance for the successful operation of the CNs,
detailed information about all agreements and contracts established with its actors
are stored and preserved by CN administration. Furthermore, some CNs with ad-
vanced management systems, model and store these agreements and contracts within
a system so that they can be semi-automatically enforced, for example such a system
can issue automatic warnings when a CN actor has not fulfilled or has violated some
timely terms of its agreement/contract. Organizing, processing, and interfacing the
variety of information to different stakeholders, required to support both reaching
agreement as well as enforcing them, is quite challenging.

BrokerVBE Member Support Institution
Manager

VBE Administrator

Main users/editors of data in the systems / tools:

ODMS

PCMS

MSMS
Member

registration
TrustMan DSS

Low trust

DSS
Lack of

competency

SIMS BAMS MSMS
Rewarding

COC-PlanCO-Finder PSS WizAN

VIMS
VO registration

VIMS
VO inheritance

DSS
Low performance

VOMS

VO creation

Data transfer

6
4

9

10

5

8

10 11 12

14 13

13

17

14
146

2
3

6

7

1
7

15 16

14

2

BM A S

MA
MA A A

A

A

A

AA

A

A M

M

B

BB
BB

SS

1 Profile/competency classification
2 Profile/competency element classification
3 Member’s competency specification
4 Competency classes
5 Low base trust level of organizations

6 Members’ general data
7 Bas trust level of membership applicants
8 Specific trustworthiness of VO partners
9 Organizations’ performance data from the VO
10 Collaborative opportunities’ definitions
11 VO model

12 VO model and candidate partners
13 VO model and VO partners
14 Processed VO inheritance
15 Support institutions’ general data
16 Asset contributors’ general data
17 VO inheritance

Membership Structure Management Systems (MSMS) Ontology Discovery Management Systems (ODMS)
Profile and Competency Management Systems (PCMS) Trust Management system (TrustMan)
Decision Support Systems (DSS) VO information management system (VIMS)
Bag of assets management system (BAMS) Support institution management system (SIMS)
Coll. Opportunity Identification & Characterization (coFinder) CO characterization and VO’s rough planning (COC-plan)
Partners search and suggestion (PSS) Contract negotiation wizard (WizAN)

Fig. 1. VBE management system and its constituent subsystems

3 Conclusion

A main challenging criterion for the success of collaborative networks is the effective
management of the wide variety of information that needs to be handled inside the
CNs. The paper briefly addresses the main challenges of the next generation of CNs,
while addressing their requirements for management of information. Furthermore, the
paper focuses down on the strategic alliances and specifically on the management of

6 H. Afsarmanesh and L.M. Camarinha-Matos

the VBEs, in order to introduce some of the complexity of their needed functionality.
As illustrated by these examples, collaborative networks raise complex challenges,
requiring effective modeling and management of large amounts of heterogeneous
information from autonomous sources, where some information is incomplete and/or
imprecise, therefore, requiring a combination of different approaches such as distrib-
uted/federated database approaches, ontology engineering, as well as applying ap-
proaches introduced by computational intelligence and qualitative modeling.

References

1. Camarinha-Matos, L.M., Afsarmanesh, H.: Collaborative Networks: Reference Modeling.
Springer, New York (2008)

2. Afsarmanesh, H., Camarinha-Matos, L.M.: The ARCON modeling framework. In: Col-
laborative networks reference modeling, pp. 67–82. Springer, New York (2008)

3. Katzy, B., Zang, C., Loh, H.: Reference models for virtual organizations. In: Virtual or-
ganizations – Systems and practices, pp. 45–58. Springer, Heidelberg (2005)

4. Camarinha-Matos, L.M., Afsarmanesh, H.: A comprehensive modeling framework for col-
laborative networked organizations. The Journal of Intelligent Manufacturing 18(5), 527–
615 (2007)

5. Afsarmanesh, H., Camarinha-Matos, L.M.: On the classification and management of vir-
tual organization breeding environments. The International Journal of Information Tech-
nology and Management – IJITM 8(3), 234–259 (2009)

6. Giesen, G.: Creating collaboration: A process that works! Greg Giesen & Associates
(2002)

7. Afsarmanesh, H., Ermilova, E.: Management of Ontology in VO Breeding Environments
Domain. To appear in Int. Journal of Services and Operations Management Inderscience
(2009)

8. Rabelo, R.: Advanced collaborative business ICT infrastructure. In: Methods and Tools for
collaborative networked organizations, pp. 337–370. Springer, New York (2008)

9. Romero, D., Galeano, N., Molina, A.: VO breeding Environments Value Systems, Busi-
ness Models and Governance Rules. In: Methods and Tools for collaborative networked
organizations, pp. 69–90. Springer, New York (2008)

10. Msanjila, S.S., Afsarmanesh, H.: Trust Analysis and Assessment in Virtual Organizations
Breeding Environments. The International Journal of Production Research 46(5), 1253–
1295 (2008)

11. Winkler, R.: Keywords and Definitions Around “Collaboration”. SAP Design Guild, 5th
edn. (2002)

12. Ermilova, E., Afsarmanesh, H.: Competency modeling targeted on promotion of organiza-
tions towards VO involvement. In: Proceedings of PRO-VE 2008 – 9th IFIP Working
Conference on Virtual Enterprises, Poznan, Poland, pp. 3–14. Springer, Boston (2008)

13. Afsarmanesh, H., Camarinha-Matos, L.M., Msanjila, S.S.: On Management of 2nd Gen-
eration Virtual Organizations Breeding Environments. Journal of Annual Reviews in Con-
trol (in press, 2009)

14. Camarinha-Matos, L.M., Afsarmanesh, H., Ollus, M. (eds.): Methods and Tools for Col-
laborative Networked Organizations Collaborative. Springer, New York (2008)

15. Oliveira, A.I., Camarinha-Matos, L.M.: Agreement negotiation wizard. In: Methods and
Tools for collaborative networked organizations, pp. 191–218. Springer, New York (2008)

A Low-Storage-Consumption
XML Labeling Method for

Efficient Structural Information Extraction

Wenxin Liang1,�, Akihiro Takahashi2,��, and Haruo Yokota2,3

1 School of Software, Dalian University of Technology
2 Department of Computer Science, Tokyo Institute of Technology

3 Global Scientific Information and Computing Center, Tokyo Institute of Technology
wxliang@dlut.edu.cn, akihiro@de.cs.titech.ac.jp, yokota@cs.titech.ac.jp

Abstract. Recently, labeling methods to extract and reconstruct the
structural information of XML data, which are important for many ap-
plications such as XPath query and keyword search, are becoming more
attractive. To achieve efficient structural information extraction, in this
paper we propose C-DO-VLEI code, a novel update-friendly bit-vector
encoding scheme, based on register-length bit operations combining with
the properties of Dewey Order numbers, which cannot be implemented
in other relevant existing schemes such as ORDPATH. Meanwhile, the
proposed method also achieves lower storage consumption because it
does not require either prefix schema or any reserved codes for node
insertion. We performed experiments to evaluate and compare the per-
formance and storage consumption of the proposed method with those
of the ORDPATH method. Experimental results show that the execu-
tion times for extracting depth information and parent node labels using
the C-DO-VLEI code are about 25% and 15% less, respectively, and
the average label size using the C-DO-VLEI code is about 24% smaller,
comparing with ORDPATH.

1 Introduction

The Extensible Markup Language (XML) has rapidly become the de facto stan-
dard for representing and exchanging data on the Internet, because it is portable
for representing different types of data from multiple sources. An XML docu-
ment can be modeled as a nested tree structure in which each element is treated
as a node with a start tag and end tag. An example XML document and its
corresponding XML tree are shown in Figure 1 and Figure 2, respectively.

To handle the hierarchical tree model of XML data, XML labeling meth-
ods are required to extract and reconstruct the structural information of the
XML document, which are commonly used for many applications such as XPath

� This work was partially done when the author was with Japan Science and Technol-
ogy Agency (JST) and Tokyo Institute of Technology.

�� The author is currently with NTT Data Corporation.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 7–22, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

8 W. Liang, A. Takahashi, and H. Yokota

<BOOK ISBN = “1-55860-438-3”>
<SECTION>
<TITLE>Bad Bugs</TITLE>
Nobody loves bad bugs

<FIGURE CAPTION=“Sample bug” />
</SECTION>
<SECTION>
<TITLE>Tree Frogs</TITLE>
All right-thinking people

<BOLD>love</BOLD>free frogs.
</SECTION>

</BOOK>

Fig. 1. Example XML document

BOOK

SECTION SECTION

TITEL BOLDFIGURE TITEL All… free…Nobody…

ISBN

CAPTION
love

Depth 0

Depth 1

Depth 2

Depth 3

Element node

Text node

Attribute node

Fig. 2. Example XML tree

query [20] and keyword search [16]. XML labeling methods assign a label to each
node of the XML tree, and each labeled node is stored as a tuple containing the
tag information for element nodes or the Parsible Character Data values of text
nodes together with the label. Structural information, such as containment re-
lationship, order of sibling and depth of nodes in the XML tree, is possible to
be obtained from the regularity of the labels.

A number of XML labeling methods based on numbering schemes such as
the preorder–postorder [10] and Dewey Order (DO) [20] have been proposed.
The preorder–postorder method assigns preorder and postorder numbers to all
nodes to maintain the containment and order information between nodes. The
DO method uses a delimiter to separate the label of a parent node from the
code that expresses the sibling order among its children. The parent–child and
ancestor–descendant relationships, and the relative sibling order, can be deduced
by comparing the labels at corresponding positions determined by the delimiters.
The DO method is effective for obtaining the labels of parent and ancestor
nodes and for determining common ancestors of multiple nodes by using the
delimiters. These properties of the DO method are useful for achieving efficient
XPath query [20] and keyword search [16]. For example, the parent, ancestor
and depth information can be directly determined by analyzing the delimiters,
which is valuable to enable efficient XPath axis determination in XPath queries
and efficient LCA or SLCA extraction in keyword search. However, using simple
numerical values for the sibling order in the preorder–postorder and DO methods
has the problem of expensive update costs. If a new node is inserted in an
intermediate position of the XML tree, many node labels have to be renumbered
to maintain the proper sibling order.

To address the update problem, several update-friendly XML labeling meth-
ods such as DO Variable-Length-Endless-Insertable (DO-VLEI) code [13] and
ORDPATH [17] have been proposed. The DO-VLEI labeling method inherits fea-
tures of the DO method, but reduces the update cost for insertion operations. It
uses the VLEI code [13] for expressing the sibling order by a unique magnitude re-
lationship, which enables the unlimited insertion of new nodes with no relabeling
of other nodes being required. ORDPATH, which is implemented in Microsoft R©
SQL ServerTM 2005, is also an update-friendly labeling method based on the DO
number. [18] reported that ORDPATH achieves both better structural informa-
tion extraction and storage consumption than the existing prefix-based labeling
methods such as LSDX [8] and persistent labeling schemes [9, 12]. DO-VLEI

A Low-Storage-Consumption XML Labeling Method 9

achieves efficient structural information extraction as ORDPATH does. How-
ever, the size of DO-VLEI codes becomes larger when numbering large-scale
XML documents.

Other two update-friendly labeling schemes, namely QED [14] and CDBS [15],
are more efficient than ORDPATH in respect to data updates. However, QED
works worse in some cases and CDBS results in both worse structural infor-
mation extraction and storage consumption than ORDPATH. Therefore, it is
essential to have both efficient structural information extraction and low storage
consumption and update-friendly methods for large-scale XML data. The OR-
DPATH method uses a Compressed binary representation (C-ORDPATH) and
a prefix schema to reduce the size of node labels and to achieve effective struc-
tural information extraction. However, as criticized in MonetDB/XQuery [5, 6],
C-ORDPATH has problems of expensive manipulation and storage costs. On the
structural information extraction point of view, the features of C-ORDPATH
cause the problem of high manipulation cost because decoding of C-ORDPATH
requires to traverse from the head through the whole code and refer to the prefix
schema. With respect to the storage consumption, the label in the C-ORDPATH
cannot be optimized during the initial labeling, because negative integers and
even numbers are reserved for node insertions. In addition, the labels available
for assignment to the XML nodes are limited by the prefix schema. Therefore,
the prefix schema used for C-ORDPATH must be changed when handling large
XML documents, which causes further expensive manipulation and storage costs.

To achieve both efficient structural information extraction and low storage-
consumption for large XML documents with high update frequency, in this paper
we propose the Compressed-bit-string DO-VLEI (C-DO-VLEI) code, an update-
friendly XML labeling method. To achieve efficient structural information ex-
traction, we propose a novel and efficient method based on register-length bit
operations combining with the properties of DO numbers, which cannot be imple-
mented in other bit-vector encoding schemes including ORDPATH. Meanwhile,
C-DO-VLEI also achieves lower storage consumption by using a compressed bi-
nary representation using DO numbering schemes without any prefix schema. We
performed experiments to evaluate and compare the storage consumption and
performance of the proposed method with those of the C-ORDPATH method.
Experimental results show that the proposed method outperforms the ORD-
PATH method with respect to both structural information extraction and stor-
age consumption, particularly for documents of large size and depth.

The main contributions of this paper can be listed as follows.

1. We propose a novel update-friendly bit-vector encoding scheme, C-DO-VLEI
code, for efficiently extracting the structural information between nodes from
the C-DO-VLEI code. The proposed method enables efficient structural in-
formation extraction based on register-length bit operations combining with
the properties of DO numbers instead of bit-by-bit comparisons utilized in
the C-ORDPATH method.

2. The C-DO-VLEI code is also able to shorten the label length and thereby
reduce the storage consumption required for the labeling of large-scale XML

10 W. Liang, A. Takahashi, and H. Yokota

documents, because it does not require either prefix schema or any reserved
codes for node insertion.

3. We performed experiments to compare the performance and storage con-
sumption of the proposed method with those of C-ORDPATH, as verified
in [18], outperforms other existing methods in both storage consumption and
performance. Experimental results indicate that: 1) the execution times for
extracting depth information and parent node labels using the C-DO-VLEI
code are about 25% and 15% less, respectively, than for C-ORDPATH, which
enables the proposed method to achieve high performance in such applica-
tions as XPath query and keyword search; 2) the label size using the C-
DO-VLEI code is about 24% smaller than that using C-ORDPATH, which
means that the proposed method also outperforms the ORDPATH method
with respect to storage consumption.

The remainder of the paper is organized as follows. In Section 2, we briefly
introduce related work. Section 3 proposes the C-DO-VLEI code. Section 4 de-
scribes the method for extracting structural information from the C-DO-VLEI
code. Section 5 describes the experiments and the evaluation of the proposed
methods. Finally, Section 6 concludes the paper.

2 Related Work

One traditional labeling method is the preorder–postorder method [10], which
assigns preorder and postorder numbers to all nodes. Another traditional method
is the DO method [20], which uses a delimiter “.” to separate a parent label from
its child’s label. However, when simple consecutive integers are used for node
labeling in these methods, many nodes must be relabeled to satisfy sibling order
following the insertion of a new node into an intermediate position.

To tackle this problem, several methods have been proposed. The Quartering-
Regions Scheme [4] uses floating-point numbers with the preorder–postorder
method. Range labeling methods [7] prepare appropriate intervals between
preorder–postorder labels in advance. However, these methods still require rela-
beling of many nodes when the prepared intervals for node insertions are used up.
MonetDB is an open-source database system for high-performance applications
in data mining, OLAP, GIS, XML query, text and multimedia retrieval [1]. Mon-
etDB/XQuery [5, 6] encodes XML documents based on the preorder–postorder
method but achieves reasonable update costs by using a technique based on
logical pages. However, MonetDB/XQuery still cannot completely avoid renum-
bering the size and level fields of some nodes when updating the document.
Therefore, it is predicted that the update costs will degrade the performance of
MonetDB/XQuery, especially when processing large-scale XML documents with
high update frequency.

Labeling methods that are capable of unrestrictedly inserting nodes without
relabeling any nodes, have been proposed [13,14,15,17,21]. In [21], the label of a
newly inserted node is made from the product of a prime number and the label of

A Low-Storage-Consumption XML Labeling Method 11

its parent node. The label of the ancestor node can be extracted by factorizing the
label of the child node. However, the factorization is still quite expensive. In [18],
it was reported that the ORDPATH method [17] achieves both better structural
information extraction and storage consumption than the existing prefix-based
labeling methods such as LSDX [8] and persistent labeling schemes [9,12]. Other
two update-friendly labeling schemes, namely QED [14] and CDBS [15], are more
efficient than the ORDPATH method in respect to data updates. However, QED
has worse performance in some cases and CDBS results in both worse structural
information extraction and storage consumption than the ORDPATH method.
The DO-VLEI code [13] can achieve efficient structural information extraction
as the ORDPATH method does. However, the size of DO-VLEI codes becomes
larger when labeling large-scale XML documents. The DO-VLEI code [13], which
is the basis of our proposed method, and the ORDPATH method, which is the
baseline of comparison in our experiments, will be described in detail in the
following two subsections.

2.1 DO-VLEI Code

We first introduce the definition of the VLEI (Variable Length Endless In-
sertable) code as follows.

Definition 1 (VLEI Code). A bit string v = 1 · {0|1}∗is a VLEI code, if the
following condition is satisfied.

v · 0 · {0|1}∗ < v < v · 1 · {0|1}∗

Assume 1 as the reference point, the VLEI code will be smaller than 1 when 0
is added behind it, and on the contrary, it will be larger than 1 when 1 is added
behind it; that is 10<1<11. In the same way, for any bit sequence, it will be
smaller than the original bit sequence if 0 is added behind it, and will be larger
if 1 is added behind it. Besides, the bit sequence, behind which 0 or 1 is added, is
assumed to succeed to the same containment relationship as that of the original
bit sequence. For example, if 0 and 1 are added behind two VLEI codes 10 and
11, respectively, it will be true that 100 < 10 < 101, 110 < 11 < 111. Since we
have already known that 10 < 1 < 11, so we can infer that 100 < 1, 101 < 1,
and 110 > 1, 111 > 1, namely 100 < 10 < 101 < 1 < 110 < 11 < 111. A new
VLEI code can be unrestrictedly generated from two arbitrary adjacent VLEI
codes by an effective algorithm [13]. The VLEI code can be used for both the
preorder–postorder and the DO methods. Here, we focus on the combination of
the DO method and the VLEI code. It is named DO-VLEI code and defined as
follows.

Definition 2 (DO-VLEI Code)
1. The DO-VLEI code of the root node Croot = 1.
2. The DO-VLEI code of a non-root node C = Cparent . Cchild, where Cparent

denotes the DO-VLEI code of its parent and Cchild denotes the VLEI code sat-
isfying the appropriate sibling order.

12 W. Liang, A. Takahashi, and H. Yokota

B OOK

S E C T ION S E C T ION

T IT E L B OLDF IG UR E T ITE L All… free…Nobody…

IS B N

C AP T ION

1.10

1

1.1

1.10.10 1.10.1 1.10 .11 1 .1.100 1.1.10 1.1.101 1.1.1

love

1.1.101.1

Fig. 3. Labeling by DO-VLEI code

BOOK

SECTION SECTION

TITEL BOLDFIGURE TITEL All… free…Nobody…

ISBN

CAPTION

1.1

1

1.3

1.1.1 1.1.3 1.1.5 1.3.1 1.3.3 1.3.5 1.3.7
All…

1.3.5.1

Fig. 4. Labeling by ORDPATH

The DO-VLEI code of the nth ancestor node can be obtained by extracting
the character string between the leftmost character and the nth delimiter. An
example XML document tree labeled by DO-VLEI code is illustrated in Figure 3.

2.2 ORDPATH

ORDPATH [17] is an update-friendly XML labeling method implemented in
Microsoft R© SQL ServerTM 2005, in which arbitrary node insertions require no
relabeling of the existing nodes. The ORDPATH labels are also based on the
DO method, in that a child label is made from a sibling code, a delimiter, and
the label of its parent node. Figure 4 shows an XML tree labeled by ORDPATH.
In ORDPATH, only positive, odd numbers are assigned for the initial labeling;
negative integers and even numbers are reserved for insertions. The end of a
sibling code must be an odd number. For example, when the ORDPATH label
of a node is newly inserted between nodes labeled “1.3.1” and “1.3.3”, the label
“1.3.2.1”, which is made by adding “1” to “1.3.2”, is assigned to the node. The
sibling code of “1.3.2.1” is “2.1”.

ORDPATH is implemented by a compressed binary representation using bit
strings {0, 1}, and is called C-ORDPATH. A pair of bit strings Li and Oi are
used to represent an integer by using a prefix schema (see reference [17] for
details). An ORDPATH label is a string of delimited integers, and i is the order
of the integer within the string. Li is a bit string specifying the number of
bits of Oi. Li is specified by analysis of the tree using the prefix schema. Oi is
treated as a binary number within a range set by Li. For example, ORDPATH
“1.5” is represented in C-ORDPATH as (0111001). (0111001) is divided into
(01,110-01) by sequential analysis using the prefix schema in [17]. (01) and (110-
01) are converted into “1” and “5” based on the Oi value range.C-ORDPATH
represents delimiters by delimiting the bit string according to the prefix schema
and compresses the label size. An XML tree labeled by the C-ORDPATH is
shown in Figure 5.

3 C-DO-VLEI Code

In this section, we propose a compressed binary representation of the DO-VLEI
code, called C-DO-VLEI code, which aims to reduce the label size. In this paper,

A Low-Storage-Consumption XML Labeling Method 13

BOOK

SECTION SECTION

TITEL BOLDFIGURE TITEL All… free…Nobody…

ISBN

CAPTION

0101

01

01101

010101 0101101 010111001 0110101 01101101 0110111001 0110111011
All…

011011100101

Fig. 5. Labeling by C-ORDPATH

TI

1110 0

11

11100100 1110010 111001011 11101000 1110100 111010 11101011

11101010

1110

ISBNBOOK

S E C T I O N

TITLE BODYFIGURE All... free...Nobody.. C A P T I O N

love

S E C T I O N

TITLE

Fig. 6. Labeling by C-DO-VLEI code

“” denotes a character string, and () denotes a bit string. For example, “01” rep-
resents a concatenation of character 0 and 1, and (01) represents a bit sequence
of bit 0 and 1.

3.1 Components of the DO-VLEI Code

A DO-VLEI label is a variable-length character string constructed from the three
characters “.”, “1”, and “0”, which satisfies the following three conditions.

(1) Consecutive “.” characters do not appear.
(2) “.” does not exist at the tail end of a label.
(3) The VLEI code starts with “1”.

According to the above conditions, the “1” that is the beginning of a VLEI code
always appears after “.”. Therefore, “.” and “1” can be combined as “.1”, meaning
that a DO-VLEI code is composed of the three elements “.1”, “1”, and “0”.

3.2 Definition of C-DO-VLEI Code

The C-DO-VLEI code is defined as follows.

Definition 3 (C-DO-VLEI Code). The three elements of a DO-VLEI code:
“.1”, “1”, and “0”, are represented by the bit strings: (10), (11), and (0), re-
spectively. This compressed binary representation of DO-VLEI codes is called
C-DO-VLEI code.

Note that the shortest bit string (0) is assigned to the “0” that can be manually
adjusted to appear more frequently than the other two components, and that
the set of bit strings: (0), (10), and (11) are prefix codes. A prefix code is a set
of words such that no word of the set is a prefix of another word in the set.
By sequentially analyzing the bit string from the prefix code, C-DO-VLEI codes
can be uniquely decoded into the original DO-VLEI codes1. Figure 6 shows an
XML tree labeled by C-DO-VLEI codes.
1 Due to the space limitation of this paper, we do not discuss the end-of-label detection

methods. Please refer to Reference [19] for details.

14 W. Liang, A. Takahashi, and H. Yokota

Table 1. XPath axes

Axis Description

ancestor all the ancestors of the context node (parent, grandparent, etc.)
preceding all the nodes that precede the context node in the document except any ancestor nodes
descendant all the descendants of the context node (children, grandchildren, etc.)
following all the nodes that appear after the context node except any descendant nodes
parent the single node that is the parent of the context node
preceding-sibling all the nodes that have the same parent as the context node and appear before the context node
child the children of the context node
following-sibling all the nodes that have the same parent as the context node and appear after the context node

4 Structural Information Extraction

In this section, we propose an efficient method, based on register-length bit op-
erations combining with the properties of Dewey Order numbers, for extracting
structural information between nodes from the C-DO-VLEI code. The extracted
structural information, such as depth, parent information, are necessary and
valuable for determining XPath axes in XPath query and for detecting LCAs
or SLCAs in XML keyword search. However, due to the space limitation, here
we take XPath query as an example to show how the extracted structural infor-
mation works to determine the XPath axes. The most important and frequently
used XPath axes are listed in Table 1, in which parent, preceding-sibling, child
and following-sibling are subsets of ancestor, preceding, descendant, and follow-
ing, respectively.

Next, we explain how to obtain this information from the C-DO-VLEI codes
by using the properties of DO and simple code comparisons.

4.1 Using Properties of DO

Since C-DO-VLEI codes use the DO method, information about 1) depth of
node, 2) parent’s label and 3) ancestors’ labels can be obtained by the following
three operations that use the properties of DO, respectively.

DO-1 : Count the number of delimiters.
DO-2 : Extract the prefix code before the rightmost delimiter.
DO-3 : Repeat DO-2 until the last delimiter is reached.
It is important to find the locations and count the number of the delimiters

in C-DO-VLEI to implement DO-1–DO-3. The most straightforward method
is to decode the label from the beginning to the end to detect the bit string
(10) that is assigned for the delimiter. However, this is expensive when handling
long codes. To reduce the processing cost, we propose an efficient method for
detecting the delimiters by using register-length bit operations instead of bit-by-
bit comparison.

Since the delimiter in C-DO-VLEI codes is assigned to bit string (10), any
place where the bit changes from (1) to (0) is a delimiter candidate. However,
when “10” appears in the DO-VLEI code, the corresponding C-DO-VLEI will
be (110). That is, the last two bits are also (10). In order to distinguish these two
patterns of (10), we focus on the number of consecutive (1s) before the (0). In
the fragment of C-DO-VLEI code shown in Figure 7, wherever an odd number of
consecutive (1s) appears before (0), the last two bits (10) represent a delimiter,

A Low-Storage-Consumption XML Labeling Method 15

C-DO-VLEI code fragment delimiter

0 0 1 1 1 0 0 1 1 0 1 1 1 0 1

0 7 158

0

odd number of continuous (1)

Fig. 7. Example fragment of a C-DO-VLEI code

Table 2. Bit operation notation

notation description
x � y left shift
x

u�y right shift (logical shift)
x NOT
x&y AND
x|y OR

while (10) ending at an even number of consecutive (1s) represents the DO-
VLEI code “10”. Therefore, it is possible to detect the delimiters by counting
the number of consecutive (1s). Next, we describe algorithms for operations DO-
1–DO-3 based on delimiter detection. Notations for the bit operations used in
the proposed algorithms are shown in Table 2.

Algorithm for DO-1. The operation DO-1, namely the operation for detect-
ing the node depth, can be implemented by the following steps.

D-1: Generate a bit string, endPointOfOne, in which the initial values of all the
bits are (0), and only the last bit at the place where an odd number of consecutive
(1s) appears is set to (1). For the C-DO-VLEI code v shown in Figure 8, the bit
string endPointOfOne can be generated by v&v � 1.

D-2: Generate a bit string endPointOfOne’, in which the initial values of all
the bits are (0), and only the bit at the place where (0) changes to (1) in the
C-DO-VLEI code is set to (1). For the C-DO-VLEI code v shown in Figure 8,
the bit string endPointOfOne’ can be generated by endPointOfOne

u�1.

D-3: Assuming that each bit of the code is assigned an integer ID, as shown
in Figure 8, then the bit (1) in endPointOfOne is a delimiter if the condition
ID(i) − ID(j) = oddnumber is satisfied, where ID(i) and ID(j) denote the
ID of (1) in endPointOfOne and its nearest leftmost (1) in endPointOfOne’,
respectively. For example, the 5th bit (ID=4) in endPointOfOne is a delimiter
because the ID of its nearest leftmost (1) in endPointOfOne’ is 1. However, the
9th bit (ID=8) in endPointOfOne is not a delimiter because the ID of its nearest
leftmost (1) endPointOfOne’ is 6. Algorithm 1 shows the details of delimiter
detection. Algorithm 1 outputs a bit string pointOfDelimiter, in which the initial
values of all the bits are (0), and only the bit indicating the place of delimiters
is set to (1).

D-4: After the delimiters are found by Algorithm 1, the node depth can be
determined by counting the number of (1s) in pointOfDelimiter. Algorithm 2
shows the details for counting the number of (1s) in a bit string based on the
divide-and-conquer algorithm [11].

16 W. Liang, A. Takahashi, and H. Yokota

Algorithm 1. Delimiter detection
Input: C-DO-VLEI code v
Output: pointOfDelimiter
1: endPointOfOne ← v&v � 1
2: delimiterEven ← v&(v+

(endPointOfOne&0x5555))&0xAAAA
3: v′ ← v

u�1
4: endPointOfOne ← endPointOfOne

u�1
5: delimiterOdd ← v′&(v′ + (endPointOfOne ← 0x5555))&0xAAAA
6: pointOfDelimiter ← delimiterEven|delimiterOdd

0 0 1 1 1 0 0 1 1 0 1 1 1 0 1

0 0 0 0 1 0 0 0 1 0 0 0 01 0 1

0 1 0 1 01 10 0 0 0 0 00 0 0

0

+
endPointOfOne

label

delimiter

0 7 81 2 3 4 5 6 9 10 11 12 13 14 15

Fig. 8. Example of delimiter detection

Algorithm for DO-2 and DO-3. DO-2 finds the last delimiter from
pointOfDelimiter generated by Algorithm 1, which is implemented by the fol-
lowing steps.

P-1: Generate pointOfDelimiter.

P-2: Generate a mask by
(pointOfDelimiter& − pointOfDelimiter) − 1|label, as shown in Figure 9.

P-3: The length of the parent label Lp can be obtained by counting the number
of consecutive (1s) from the head of the mask. Algorithm 3 shows the details of
how to count the number of (1s) from the head of a C-DO-VLEI code. Finally,
the parent label can be generated by outputting the Lp bits from the head of
the original label.

In addition, DO-3, namely obtaining the ancestors’ labels, can be imple-
mented by repeating the above operations.

4.2 Using Code Comparison

Theorem 1. Let the bit strings v0, vd, and v1 represent the three elements of
the C-DO-VLEI code “0”, “.1” and “1”, respectively. According to Definition 3,

Algorithm 2. Depth detection
Input: v (16-bit unsigned integer)
Output: number of (1) in v (depth)
1: v ← v − ((v

u�1)&0x5555)
2: v ← (v&0x3333) + ((v

u�2)&0x3333)
3: v ← ((v + (v

u�4))&0x0F0F)
4: v ← v + (v

u�8)
5: v ← v + (v

u�16)
6: depth ← v&0x001F
7: return depth

A Low-Storage-Consumption XML Labeling Method 17

0 0 1 1 1 0 0 1 1 0 1 1 1 0

0 7 8

0 1 0 010 0 0 0 0 0 0

label

0 pointOfDelimiter0

1 1 1 1 1 1 1 1 01 1 1 1 1 mask

1 1

1 1

label length of the parent node + 1

0 0

1 2 3 4 5 6 9 10 11 12 13 14 15

Fig. 9. Example of mask for extracting parent label

Algorithm 3. Count number of consecutive (1s) from the head of code
Input: v (16-bit unsigned integer)
Output: length of parent node, Lp

1: v ← v
2: n ← 16
3: c ← 8
4: repeat
5: x ← v

u�c
6: if x �= 0 then
7: n ← n − c
8: v ← x
9: end if
10: c ← c

u�1
11: until c �= 0
12: return Lp = n − x

v0 = (0), vd = (10) and v1 = (11). Using Algorithm 4, comparison of the C-
DO-VLEI codes for two nodes yields the proper document order if v0, vd and v1
satisfy the following equation2.

1 · v0 < 1 < 1 · vd < 1 · v1 (1)

Moreover, according to Definition 3 and the conditions described in Section 3.1,
the code b for a descendant node of the node with code a is b = a · 10 · {11|0}∗.
Therefore, according to Definition 1, a · 10 · {0}∗ ≤ b < a · 11 · {0}∗. That is,
the codes of a and b satisfy the following equation, where ≺CDV denotes the
comparison based on Algorithm 4.

a ≺CDV b ≺CDV a · 1 (2)

Similarly, the ancestor, preceding, and following nodes can be also obtained by
the code comparison using Algorithm 4. Therefore, as shown in Figure 10, using
the code a of a context node and a · 1 can divide the nodes into three ranges I,
II and III for ancestor and preceding nodes, descendant nodes, and following
nodes, respectively.

4.3 XPath Axis Determination Using Structural Information

Combining the code comparison method described in Section 4.2 and the op-
erations introduced in Section 4.1, all the XPath axes listed in Table 1 can
2 Here we do not give the proofs of this theorem and the other relevant ones due to

the space limitation.

18 W. Liang, A. Takahashi, and H. Yokota

a: C-DO-VLEI code of the context node

a・1

descendant followingancestor ∪ preceding

a
Ⅰ Ⅱ Ⅲ

Fig. 10. Code range for ancestor, preced-
ing, descendant and following

a: C-DO-VLEI code of the context node
p: C-DO-VLEI code of the parent of the context node

a・1

child following-siblingpreceding-sibling

ap p・1
Ⅳ Ⅴ

Fig. 11. Code range for parent, preceding-
sibling, child and following-sibling

Algorithm 4. Code comparison
Input: two C-DO-VLEI codes, v,w

(length(v)≤length(w))
Output: v′ ≥ w is true or false
1: l′ ← length(w) − length(v)
2: v′ ← v · 1 · {0}l′−1

3: if v′ ≥ w then
4: return true
5: else
6: return false
7: end if

Table 3. XPath axis extraction method

Axis Extraction method
ancestor DO-3
preceding (node-set extracted from range I) - ancestor
descendant node-set extracted from range II
following node-set extracted from range III
parent DO-2
preceding-sibling nodes ∈ range IV ∩ nodes with the same depth as the context node (DO-1)
child nodes ∈ range II ∩ nodes whose depth is one more than the context node (DO-1)
following-sibling nodes ∈ range V ∩ nodes with the same depth as the context node (DO-1)

be determined. First, the descendant and following nodes can be obtained by
extracting nodes from ranges II and III, respectively. Ancestor nodes can be
obtained by using DO-3 , and then preceding nodes can be obtained by exclud-
ing ancestor nodes from range I. The parent node can be directly determined
by DO-2. Using the codes of the context node and its parent, the ranges IV
and V for preceding-sibling and following-sibling nodes can be determined by
using Algorithm 4, as shown in Figure 11. As the depths of preceding-sibling and
following-sibling nodes are the same as the context node, and the child nodes
are deeper by one than the context node, the preceding-sibling, following-sibling,
and child nodes can be extracted from the ranges IV, V and II by using DO-
1. The extraction methods for XPath axes listed in Table 1 are summarized in
Table 3.

5 Experimental Evaluation

We performed experiments within the environment described in Table 4 to eval-
uate the storage consumption and performance of DO-1–DO-3, comparing the

A Low-Storage-Consumption XML Labeling Method 19

Table 4. Experimental Environment

CPU: Dual-Core Intel Xeon 5110 (1.60GHz)
Memory: DDR2 ECC FB-DIMM 9GB(2GB×4, 512MB×2)
Storage: D-RAID RAID 0+1
HDD: SEAGATE ST3750640AS (750GB, 7200rpm, 3.5inch)
OS: Linux 2.6.18 CentOS 5(Final)
Compiler: gcc (Red Hat 4.1.1-52)
RDB: PostgreSQL 8.2.4

Table 5. XML documents

XML document size (byte) elements max. depth avg. depth max. fanout avg. fanout
SwissProt.xml 114820211 2977031 5 3.556711 50000 2.034511
dblp.xml 133862772 3332130 6 2.902279 328858 1.943555
ebay.xml 35525 156 5 3.75641 380 5.391305
item0.xml(xmlgen SF=1) 118552713 1666315 12 5.547796 25500 2.10692
item1.xml(xmlgen SF=0.1) 11875066 167865 12 5.548244 2550 2.103751
item2.xml(xmlgen SF=0.01) 1182547 17132 12 5.506012 255 2.102092
item3.xml(xmlgen SF=0.001) 118274 1729 12 5.717756 25 2.04965
lineitem.xml 32295475 1022976 3 2.941175 60175 1.941175
nasa.xml 25050288 476646 8 5.583141 2435 2.000728
orders.xml 5378845 150001 3 2.899987 15000 1.899987
part.xml 618181 20001 3 2.899905 2000 1.899905
partsupp.xml 2241868 48001 3 2.833295 8000 1.833295
psd7003.xml 716853012 21305818 7 5.15147 262526 1.818513
reed.xml 283619 10546 4 3.199791 703 1.809579
treebank e.xml 86082517 2437666 36 7.872788 56384 1.571223
uwm.xml 2337522 66729 5 3.952435 2112 1.952276
wsu.xml 1647864 74557 4 3.157866 3924 2.077534

C-DO-VLEI code with C-ORDPATH. The XML documents used for the exper-
iments were generated by xmlgen [3], using scale factors (SF) from 0.001 to 1,
and were sourced from the XML Data Repository [2]. Table 5 shows the details
of these XML documents. For the evaluation of performance, the labels of all
the nodes for each document were stored in a document table, and the labels of
the nodes in all documents of the same depth were stored in a depth table.

We compared the C-DO-VLEI code with C-ORDPATH to evaluate the perfor-
mance of DO-1–DO-3 3. Figure 12 shows the execution time ratio for extracting
depth information, parent labels, and ancestor labels from the depth tables, us-
ing the C-DO-VLEI code and C-ORDPATH4. From this figure, we can see that
the greater the node depth, the better is the performance by the C-DO-VLEI
code in extracting node depth and parent labels. This is because delimiter de-
tection in ORDPATH requires traversal from the head through the whole code
and refers to the prefix schema for determining each delimiter. On the other
hand, there is no significant difference in extracting the ancestor labels, because,
even for the C-DO-VLEI code, output of all the ancestors requires handling of

3 There is no significant performance difference between C-DO-VLEI and C-
ORDPATH in detecting other XPath axes, because they can determine such axes as
descendant or following by simple code comparison. Therefore, only the experimental
evaluation of DO-1–DO-3 is discussed in this paper.

4 Note that the label size using C-ORDPATH is set to 1 (same in Figure 13 and 14).

20 W. Liang, A. Takahashi, and H. Yokota

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1 2 3 4 5 6 7 8 9 10 11 12

depth

parent

ancestor

Fig. 12. Execution time ratio of C-DO-
VLEI to C-ORDPATH (horizontal axis:
depth of node)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2 depth

parent

ancestor

Fig. 13. Execution time ratio of C-DO-
VLEI to C-ORDPATH (horizontal axis:
XML document)

all delimiters one by one. Figure 13 shows the execution time ratio using the
document tables. From these results, we deduce that the execution times for
extracting depth information and parent labels using the C-DO-VLEI code are
about 25% and 15% less than execution times using C-ORDPATH, respectively,
which indicates that the proposed method can achieve high performance in such
applications as XPath query and keyword search.

We then measured and compared the total label size of each XML document
labeled by the C-DO-VLEI code and C-ORDPATH. Figure 14 shows the label
size ratio of the C-DO-VLEI code to C-ORDPATH for each XML document,
from which we can learn that the average label size using the C-DO-VLEI code
is about 24% on the average smaller than that using the C-ORDPATH, which
means that the proposed method also outperforms the ORDPATH method with
respect to storage consumption.

Fig. 14. Label size ratio of C-DO-VLEI to C-ORDPATH (horizontal axis: XML doc-
uments)

6 Conclusions

Recently, labeling methods to determine and reconstruct the structural informa-
tion of XML data are becoming more attractive. The recent increase in large-
scale XML data storage is making the update problem in XML labeling methods

A Low-Storage-Consumption XML Labeling Method 21

more critical. Therefore, update-friendly XML labeling methods becomes more
paramount and require not only low storage consumption by the node labels but
high-performance XML data query handling.

To achieve both efficient structural information extraction and low storage-
consumption for large XML documents with high update frequency, in this pa-
per we have proposed the C-DO-VLEI code, an update-friendly XML labeling
method. To achieve efficient structural information extraction, we have proposed
a novel and efficient method based on register-length bit operations combining
with the properties of DO numbers, which are not able to be implemented in
other bit-vector encoding schemes including ORDPATH. Meanwhile, the C-DO-
VLEI code also achieves lower storage consumption by using a compressed binary
representation using DO numbering schemes without any prefix schema.

We have performed experiments to evaluate and compare the storage con-
sumption and performance of the proposed method with those of the C-
ORDPATH method. Experimental results indicate that: 1) the execution times
for extracting depth information and parent node labels using the C-DO-VLEI
code are about 25% and 15% less, respectively, than for C-ORDPATH, which
enables the proposed method to achieve high performance in such applications
as XPath query and keyword search; 2) the label size using the C-DO-VLEI code
is about 24% smaller than that using C-ORDPATH, which means that the pro-
posed method also outperforms the ORDPATH method with respect to storage
consumption.

Acknowledgments

This work was partially supported by CREST of JST (Japan Science and Tech-
nology Agency), by the Grant-in-Aid for Scientific Research of MEXT Japan
(#19024028), and by the start-up funding (#1600-893313) for newly appointed
academic staff of Dalian University of Technology, China.

References

1. MonetDB, http://monetdb.cwi.nl/
2. XML Data Repository, http://www.cs.washington.edu/research/xmldatasets/
3. Xmlgen, http://monetdb.cwi.nl/xml/downloads.html
4. Amagasa, T., Yoshikawa, M., Uemura, S.: QRS: A Robust Numbering Scheme for

XML Documents. In: Proc. of ICDE, pp. 705–707 (2003)
5. Boncz, P., Flokstra, J., Grust, T., van Keulen, M., Manegold, S., Mullender, S.,

Rittinger, J., Teubner, J.: MonetDB/XQuery—consistent and efficient updates on
the pre/Post plane. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F.,
Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006.
LNCS, vol. 3896, pp. 1190–1193. Springer, Heidelberg (2006)

6. Boncz, P.A., Grust, T., van Keulen, M., Manegold, S., Rittinger, J., Teubner, J.:
MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational Engine. In:
Proc. of SIGMOD Conference, pp. 479–490 (2006)

http://monetdb.cwi.nl/
http://www.cs.washington.edu/research/xmldatasets/
http://monetdb.cwi.nl/xml/downloads.html

22 W. Liang, A. Takahashi, and H. Yokota

7. Cohen, E., Kaplan, H., Milo, T.: Labeling Dynamic XML Trees. In: Proc. of PODS,
pp. 271–281 (2002)

8. Duong, M., Zhang, Y.: LSDX: A New Labeling Scheme for Dynamically Updating
XML Data. In: Proc. of ADC, pp. 185–193 (2005)

9. Gabillon, A., Fansi, M.: A persistent labelling scheme for XML and tree databases.
In: Proc. of SITIS, pp. 110–115 (2005)

10. Gerdemann, D.: Parsing As Tree Traversal. In: Proc. of COLING, pp. 396–400
(1994)

11. Steele Jr., G.L.: Hacker’s Delight. Addison-Wesley Professional, Reading (2003)
12. Khaing, A., Thein, N.L.: A Persistent Labeling Scheme for Dynamic Ordered XML

Trees. In: Proc. of Web Intelligence, pp. 498–501 (2006)
13. Kobayashi, K., Liang, W., Kobayashi, D., Watanabe, A., Yokota, H.: VLEI code:

An Efficient Labeling Method for Handling XML Documents in an RDB. In: Proc.
of ICDE, Tokyo, Japan, pp. 386–387 (2005) (poster)

14. Li, C., Ling, T.W.: Qed: a novel quaternary encoding to completely avoid re-
labeling in xml updates. In: Proc. of CIKM, pp. 501–508 (2005)

15. Li, C., Ling, T.W., Hu, M.: Efficient Processing of Updates in Dynamic XML Data.
In: Proc. of ICDE, p. 13 (2006)

16. Liang, W., Miki, T., Yokota, H.: Superimposed code-based indexing method for
extracting mCTs from XML documents. In: Bhowmick, S.S., Küng, J., Wagner, R.
(eds.) DEXA 2008. LNCS, vol. 5181, pp. 508–522. Springer, Heidelberg (2008)

17. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Labels. In: Proc. of ACM SIGMOD Conference, pp.
903–908 (2004)

18. Sans, V., Laurent, D.: Prefix Based Numbering Schemes for XML: Techniques,
Applications and Performances. In: Proc. of VLDB, pp. 1564–1573 (2008)

19. Takahashi, A., Liang, W., Yokota, H.: Storage Consumption of Variable-length
XML Labels Uninfluenced by Insertions. In: Proc. of ADSS, pp. 571–573 (2007)

20. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and Querying Ordered XML Using a Relational Database System. In:
Proc. of ACM SIGMOD Conference, pp. 204–215 (2002)

21. Wu, X., Lee, M.-L., Hsu, W.: A Prime Number Labeling Scheme for Dynamic
Ordered XML Trees. In: Proc. of ICDE, pp. 66–78 (2004)

Inclusion Dependencies in XML: Extending
Relational Semantics

Michael Karlinger1, Millist Vincent2, and Michael Schrefl1

1 Johannes Kepler University, Linz, Austria
2 University of South Australia, Adelaide, Australia

Abstract. In this article we define a new type of integrity constraint
in XML, called an XML inclusion constraint (XIND), and show that it
extends the semantics of a relational inclusion dependency. This property
is important in areas such as XML publishing and ‘data-centric’ XML,
and is one that is not possessed by other proposals for XML inclusion
constraints. We also investigate the implication and consistency problems
for XINDs in complete XML documents, a class of XML documents
that generalizes the notion of a complete relation, and present an axiom
system that we show to be sound and complete.

1 Introduction

Integrity constraints are one of the oldest and most important topics in database
research, and they find application in a variety of areas such as database design,
data translation, query optimization and data storage [3]. With the adoption
of the eXtensible Markup Language (XML) [4] as the industry standard for
data interchange over the internet, and its increasing usage as a format for
the permanent storage of data in database systems [5], the study of integrity
constraints in XML has increased in importance in recent years.

In this article we investigate the topic of inclusion constraints in XML. We use
the syntactic framework of the keyref mechanism in XML Schema [4], where
both the LHS and RHS of the constraint include a selector, which is used to select
elements in the XML document, followed by a sequence of fields, which are used
to specify the descendant nodes that are required to match in the document.
This general idea of requiring selected elements in a document to have matching
descendant nodes is also found in other approaches towards inclusion constraints
in XML [6,7,8].

While the syntactic framework of the keyref mechanism in XML Schema is
an expressive one, both it and other proposals for XML inclusion constraints
[6,7,8,9,15] have some important limitations from the perspective of semantics.
In particular, these proposals for XML inclusion constraints do not always allow
one to extend the semantics of a relational inclusion dependency (IND), which
we now illustrate by the example of an XML publishing scenario.

Fig. 1 shows two relations teaches and offer. Relation teaches stores the
details of courses taught by lecturers in a department, where lec is the name of

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 23–37, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

24 M. Karlinger, M. Vincent, and M. Schrefl

the lecturer, cno is the identifier of the course they are teaching, day is the day
of the week that the course is being taught and sem is the semester in which the
course is taught. Relation offer stores all the courses offered by the university,
where cno, day and sem have the same meaning as in teaches. We note that the
key for offer is {cno, day, sem} and the key for teaches is {lec, cno, day, sem},
thus more than one lecturer can teach a course. The database also satisfies
the IND teaches[cno, day, sem] ⊆ offer[cno, day, sem], which specifies that a
lecturer can only teach courses that are offered by the university.

Suppose we now map the relational data to XML by first mapping the two
relations to separate documents with root nodes offer and teaches and then
combining these documents to a single document with root node uni, as shown
in Fig. 1. In particular, the tuples in relation offer were directly mapped
to elements with tag course. Concerning the relation teaches, a nesting on
{lec, day, sem} preceded the direct mapping of the (nested) tuples, within which
tags course and info were introduced.

Flat Relations Nested Relation XML Document
<uni>

teaches <teaches>

lec cno day sem cno {lec day sem} <course cno="C1"> 3
L1 C1 TUE 09S C1 L1 TUE 09S <info lec="L1" day="TUE" sem="09S"/>

L1 C1 MON 08W L1 MON 08W <info lec="L1" day="MON" sem="08W"/>

</course> 1 2
offer </teaches>

cno day sem <offer>

C1 TUE 09S <course cno="C1" day="TUE" sem="09S"/>

C1 MON 08W <course cno="C1" day="MON" sem="08W"/>

</offer>

</uni>

Fig. 1. Example Relations and XML Document

Now the XML document satisfies an inclusion constraint because of the orig-
inal IND, but one cannot express this inclusion constraint by

χ = ((uni.teaches.course, [cno, info.day, info.sem]) ⊆
(uni.offer.course, [cno, day, sem])),

where uni.teaches.course and uni.offer.course are the LHS and RHS se-
lector, and [cno, info.day, info.sem] and [cno, day, sem] are the LHS and RHS
fields, and applying the semantics given in [4,6,7,8,9,15]. In particular, the
keyref mechanism [4] requires that there exists for each selector node at
most one descendant node per field. This however does not hold in our
example, since for the LHS selector uni.teaches.course, there exist two de-
scendant info.sem nodes, which are marked with 2 and 3 in Fig. 1. The ap-
proaches in [6,8] require the field nodes to be attributes of the selector nodes.
In our example, LHS fields info.day and info.sem are no attributes of the
LHS selector uni.teaches.course and therefore the approaches in [6,8] cannot

Inclusion Dependencies in XML: Extending Relational Semantics 25

express the constraint χ. Finally, in the proposals in [7,9,15] it is required that
every possible combination of nodes from [cno, info.day, info.sem] within a
uni.teaches.course node must have matching nodes in [cno, day, sem] within
a uni.offer.course node. So, since one combination is {C1, TUE, 08W}, this re-
quires a uni.offer.course node with child nodes {C1, TUE, 08W}, which clearly
does not hold.

In this paper, we propose different semantics so that the constraint χ holds
in our example. The key idea is that we do not allow arbitrary combinations of
nodes from the LHS fields, we only allow nodes that are closely related by what
we will define later as the closest property. So, for example in Fig. 1, the day
and sem nodes marked with 1 and 2 satisfy the closest property, but not nodes
1 and 3 . The motivation for this restriction is that in the relational model data
values that appear in the same tuple are more closely related than those that
belong to different tuples, and our closest notion extends this idea to XML, and
hence allows relational semantics to be extended.

Having an XML inclusion constraint that extends the semantics of an IND is
important in several areas. Firstly, in the area of XML publishing [14], where a
source relational database has to be mapped to a single predefined XML schema,
knowing how relational integrity constraints map to XML integrity constraints
allows the XML document to preserve the original semantics. This argument
also applies to ‘data-centric’ XML [5], where XML databases (not necessarily
with predefined schemas) are generated from relational databases.

The first contribution of this article is to define an XML inclusion constraint
(called XIND) that extends the semantics of an IND. While the constraint is
defined for any XML document (tree), we show that in the special case where
the XML tree is generated by first mapping complete relations to nested relations
by arbitrary sequences of nest operations, and then directly to an XML tree, the
relations satisfy the IND if and only if the tree satisfies the corresponding XIND.

The second contribution of this article is to address the implication problem,
i.e. the question of whether a new XIND holds given a set of existing XINDs,
and the consistency problem, i.e. the question of whether there exists at least
one non-empty XML tree that satisfies a given set of XINDs. We consider in our
analysis a class of XINDs which we call core XINDs. This class excludes from all
XINDs the very limited set of XINDs that interact with structural constraints
of an XML document and impose as a consequence a constraint comparable to
a fixed value constraint in a DTD [4]. We do not address this exceptional case,
since we believe that it is not the intent of an XIND to impose a fixed value
constraint. Also, we focus in our analysis on a class of XML trees introduced
in previous work by one of the authors [10], called complete XML trees, which
is intuitively the class of XML trees that contain ’no missing data’. Within
this context, we present an axiom system for XIND implication and show that
the system is sound and complete. While our axiom system contains rules that
parallel those of INDs [3], it also contains additional rules that have no parallel in
the IND system, reflecting the fact, as we soon discuss, that complete XML trees
are more general than complete relations. Our proof techniques are based on a

26 M. Karlinger, M. Vincent, and M. Schrefl

chase style algorithm, and we show that this algorithm can be used to solve the
consistency problem and to provide a decision procedure for XIND implication.

The motivation for complete XML trees is to extend the notion of a complete
relation to XML. A complete XML tree is however a more general notion than
a complete relation since it includes trees that cannot be mapped to complete
relations, such as those that contain duplicate nodes or subtrees, and trees that
contain element leaf nodes rather than only text or attribute leaf nodes. Our
motivation for considering the implication and consistency problems related to
XINDs in complete XML trees is that while XML explicitly caters for irregularly
structured data, it is also widely used in more traditional business applications
involving regularly structured data [5], often referred to as ‘data-centric’ XML,
and complete XML trees are a natural subclass in such applications.

The rest of the paper is organized as follows. Preliminary definitions are given
in Sect. 2 and our definition of an XIND in Sect. 3. Section 4 shows that an XIND
extends the semantics of an IND, and the implication and consistency problems
are addressed in Sect. 5. Finally, Sect. 6 discusses related work.

2 XML Trees, Paths and Reachable Nodes

In this section we present some preliminary definitions. First, following the model
adopted by XPath and DOM [4], we model an XML document as a tree as
follows. We assume countably infinite, disjoint sets E and A of element and
attribute labels respectively, and the symbol S indicating text. Thereby, the set
of labels that can occur in the XML tree, L, is defined by L = E ∪A ∪ {S}.
Definition 1. An XML tree T is defined by T = (V, E, lab, val, vρ), where

– V is a finite, non-empty set of nodes;
– the total function lab : V → L assigns a label to every node in V. A node
v is called an element node if lab(v) ∈ E, an attribute node if lab(v) ∈ A,
and a text node if lab(v) = S;

– vρ∈V is a distinguished element node, called the root node, and lab(vρ) = ρ;
– the parent-child relation E ⊂ V × V defines the directed edges connecting

the nodes in V and is required to form a tree structure rooted at node vρ.
Thereby, for every edge (v, v̄) ∈ E,
• v is an element node and is said to be the parent of v̄. Conversely, v̄ is

said to be a child of v;
• if v̄ is an attribute node, then there does not exist a node ṽ ∈ V and an

edge (v, ṽ) ∈ E such that lab(ṽ) = lab(v̄) and ṽ �= v̄;
– the partial function val : V → string assigns a string value to every attribute

and text node in V.

In addition to the parent of a node v in a tree T, we define its ancestor nodes,
denoted by ancestor(v), to be the transitive closure of parents of v.

An example of an XML tree is presented in Fig. 2, where E =
{ρ, offer, teaches, course, info} and A = {cno, day, lec, sem}.

The notion of a path, which we now present together with some frequently
required operators on paths, is central to all work on XML integrity constraints.

Inclusion Dependencies in XML: Extending Relational Semantics 27

ρ

v11

cno
C1

v17

course

v13v12

offer

v6v2

v1
teaches

v8

course

v7 v9
cno
C1

v4

course

v3 v5
day
TUE

cno
C1

v10

semday
TUE

v16

info

09S

v15
lec
v14

L1

semday
MON

v20

info

08W

v19
lec
v18

L1

day
MON

sem
08W

sem
09S

Fig. 2. Example XML Tree

Definition 2. A path P = l1. · · · .ln is a non-empty sequence of labels (possibly
with duplicates) from L. Given paths P = l1. · · · .ln and P̄ = l̄1. · · · .l̄m we define

– P to be a legal path, if l1 = ρ and li ∈ E for all i ∈ [1, n−1]1.
– P to be a prefix of P̄, denoted by P ⊆ P̄, if n ≤ m and li = l̄i for all i ∈ [1, n].
– P to be a strict prefix of P̄, denoted by P ⊂ P̄, if P ⊆ P̄ and n < m.
– length(P) = n to denote the length of P .
– the concatenation of P and P̄, denoted by P.P̄, to be l1. · · · .ln.l̄1. · · · .l̄m.
– the intersection of P and P̄ if both are legal paths, denoted by P ∩ P̄, to be

the longest path that is a prefix of both P and P̄ .

For example, referring to Fig. 2, offer.course and ρ.cno.course are paths but
not legal ones, whereas ρ.offer.course is a legal path. Also the path ρ.offer
is a strict prefix of ρ.offer.course, and if P = ρ.offer.course.cno and P̄ =
ρ.offer.course.sem, then P ∩ P̄ = ρ.offer.course.

We now define a path instance, which is essentially a downward sequence of
nodes in an XML tree.

Definition 3. A path instance p = v1. · · · .vn in a tree T = (V, E, lab, val, vρ)
is a non-empty sequence of nodes in V such that v1 = vρ and for all i ∈ [2, n],
vi−1 = parent(vi). The path instance p is said to be defined over a path P =
l1. · · · .ln, if lab(vi) = li for all i ∈ [1, n].

For example, referring to Fig. 2, vρ.v1.v2 is a path instance, and this path instance
is defined over path ρ.offer.course.

The next definition specifies the set of nodes reachable in a tree T from the
root node by following a path P .

Definition 4. Given a tree T = (V, E, lab, val, vρ) and a legal path P, the func-
tion N(P,T) returns the set of nodes defined by {v ∈ V | v is the final node in
path instance p and p is defined over P}.
1 [1, n] denotes the set {1, . . . , n}.

28 M. Karlinger, M. Vincent, and M. Schrefl

For instance, if T is the tree in Fig. 2 and P = ρ.offer.course.day, then
N(P,T) = {v4, v8}. We note that it follows from our tree model that for ev-
ery node v in a tree T there is exactly one path instance p such that v is the
final node in p and therefore N(P,T) ∩N(P̄ ,T) = ∅ if P �= P̄ . We therefore say
that P is the path such that v ∈ N(P,T).

3 Defining XML Inclusion Dependencies

In this section we present the syntax and semantics of our definition of an XIND,
starting with the syntax.

Definition 5. An XML Inclusion Dependency is a statement of the form(
(P, [P1, . . . , Pn]) ⊆ (P ′, [P ′

1, . . . , P
′
n])

)
where P and P ′ are paths called LHS and RHS selector, and P1, . . . , Pn and
P ′

1, . . . , P
′
n are non-empty sequences of paths, called LHS and RHS fields, such

that ∀i ∈ [1, n], P.Pi and P ′.P ′
i are legal paths ending in an attribute or text label.

We now compare this definition to the keyref mechanism in XML, which is the
basis for the syntax of an XIND. (i) We only consider simple paths in the selectors
and fields, whereas the keyref mechanism allows for a restricted form of XPath
expressions. (ii) In contrast to an XIND, the keyref mechanism also allows for
relative constraints, whereby the inclusion constraint is only evaluated in part
of the XML tree. (iii) The restrictions on fields means that we only consider
inclusion between text/attribute nodes, whereas the keyref mechanism also
allows for inclusion between element nodes.

We should mention that the restrictions discussed in (i) - (iii) are not intrinsic
to our approach, and our definition of an XIND can easily be extended to handle
these extension. Our reason for not considering these extensions here is so that
we can concentrate on the main contribution of our paper, which is to apply
different semantics to an XIND so as to extend relational semantics.

To define the semantics of an XIND, we first make a preliminary definition
(first presented in [10]) that is central to our approach. The intuition for it, which
will be made more precise in the next section, is as follows. In defining relational
integrity constraints such as FDs or INDs, it is implicit that the relevant data
values from either the LHS or RHS of the constraint belong to the same tuple.
The closest definition extends this property of two data values belonging to the
same tuple to XML, that is if two nodes in the XML tree satisfy the closest
property, then ‘they belong to the same tuple’.

Definition 6. Given nodes v1 and v2 in an XML tree T, the boolean function
closest(v1, v2) is defined to return true, iff there exists a node v1

2 such that v1
2 ∈

aancestor(v1) and v1
2 ∈ aancestor(v2) and v1

2 ∈ N(P1 ∩ P2,T), where P1 and
P2 are the paths such that v1 ∈ N(P1,T) and v2 ∈ N(P2,T), and the aancestor
function is defined by aancestor(v) = ancestor(v) ∪ {v}.

Inclusion Dependencies in XML: Extending Relational Semantics 29

For instance, in Fig. 2 closest(v3, v4) is true. This is because P =
ρ.offer.course.cno and P̄ = ρ.offer.course.day are the paths such that
v3 ∈ N(P,T) and v4 ∈ N(P̄ ,T), and v3 and v4 have the common ances-
tor node v2 ∈ N(ρ.offer.course,T), where ρ.offer.course = P ∩ P̄ . How-
ever, closest(v3, v8) is false since v3 and v8 have no common ancestor node in
N(ρ.offer.course,T), and closest(v3, v7) is false because v3 and v7 have no com-
mon ancestor node in N(ρ.offer.course.cno,T).

This leads to the definition of the semantics of an XIND.

Definition 7. An XML tree T satisfies an XIND σ = ((P, [P1, . . . , Pn]) ⊆
(P ′, [P ′

1, . . . , P
′
n])), denoted by T � σ, iff whenever there exists an LHS selec-

tor node v and corresponding field nodes v1, . . . , vn such that:

i) v ∈ N(P,T),
ii) for all i ∈ [1, n], vi ∈ N(P.Pi,T) and v ∈ ancestor(vi),
iii) for all i, j ∈ [1, n], closest(vi, vj) = true,

then there exists an RHS selector node v′ and field nodes v′1, . . . , v
′
n such that

i’) v′ ∈ N(P ′,T),
ii’) for all i ∈ [1, n], v′i ∈ N(P ′.P ′

i ,T) and v′ ∈ ancestor(v′i),
iii’) for all i, j ∈ [1, n], closest(v′i, v

′
j) = true,

iv’) for all i ∈ [1, n], val(vi) = val(v′i).

For instance, the XML tree in Fig. 2 satisfies the XIND χ = ((ρ.teaches.course,
[cno, info.day, info.sem]) ⊆ (ρ.offer.course, [cno, day, sem])). This is because
the only sequences of LHS field nodes that pairwise satisfy the closest property
are v12, v15, v16 and v12, v19, v20, and v12, v15, v16 is value equal to the sequence
of RHS field nodes v3, v4, v5 and v12, v19, v20 is value equal to v7, v8, v9. The
essential difference between an XIND and other proposals is that we require the
sequence of field nodes (both LHS and RHS) generated by the cross product
to also satisfy the closest property, whereas other proposals do not contain this
additional restriction [9,7,15]. As a consequence, the constraint χ is violated in
the XML tree in Fig. 2 according to the other proposals.

We also make the point that we do not address the situation where there may
be no node for a LHS field. We only require the inclusion between LHS and RHS
field nodes, when there is a node for every LHS field. This is consistent with
other work in the area, like for example the proposal for XML keys in [11].

4 Extending Relational Semantics

In this section we justify our claim that an XIND extends the semantics of an IND
by showing that in the case where the XML tree is generated from a complete
database by a very general class of mappings, then the database satisfies the
IND if and only if the XML tree satisfies the corresponding XIND. To show this,
we first define a general class of mappings from complete relational databases to
XML trees. The presentation of the mapping procedure presented here will be
abbreviated because of space requirements, and we refer the reader to [10] for a
more detailed presentation if needed.

30 M. Karlinger, M. Vincent, and M. Schrefl

The first step in the mapping procedure maps each initial flat relation to a
nested relation by a sequence of nest operations. To be more precise, we recall
that the nest operator νY(R∗) on a nested (or flat) relation R

∗, where Y is a
subset of the schema R of R

∗, combines the tuples in R
∗ which are equal on

R
∗[R −Y] into single tuples [2]. So if the initial flat relation is denoted by R,

we perform an arbitrary sequence of nest operations νY1 , . . . , νYn on R and so
the final nested relation R

∗, is defined by R
∗ = νYn(· · · νY1(R)).

For instance, in the introductory example the flat relation teaches is con-
verted to a nested relation R

∗ by R
∗ = νlec,day,sem(teaches).

The next step in the mapping procedure is to map the nested relation to an
XML tree by converting each sub-tuple in the nested relation to a subtree in the
XML tree, using a new element node for the root of the subtree, as illustrated
in the introductory example. While we don’t claim that our method is the only
way to map a relation to an XML tree, it does have two desirable features. First,
it allows the initial flat relation to be nested arbitrarily, which is a desirable
feature in data-centric applications of XML [5]. Second, it has been shown that
the mapping procedure is invertible [10], and so no information is lost by the
transformation.

In the context of mapping multiple relations to XML, we extend the method
just outlined as follows. We first map each relation to an XML tree as just
discussed. We then replace the label in the root node by a label containing the
name of the relation (which we assume to be unique), and construct a new XML
tree with a new root node and with the XML trees just generated being principal
subtrees. This procedure was used in the introductory example.

This leads to the following important result which justifies our claim that an
XIND extends the semantics of an IND.

Theorem 1. Let complete flat relations R1 and R2 be mapped to an XML tree T

by the method just outlined. Then R1 and R2 satisfy the IND R1[A1, . . . , An] ⊆
R2[B1, . . . , Bn], where R1 and R2 are the schemas of R1 and R2, iff T

satisfies the XIND ((ρ.R1, [PA1 , . . . , PAn]) ⊆ (ρ.R2, [PB1 , . . . , PBn])), where
ρ.R1.PA1 , . . . , ρ.R1.PAn , ρ.R2.PB1 , . . . , ρ.R2.PBn represent the paths over which
the path instances in T that end in leaf nodes are defined.

For instance, we deduce from the IND teaches[cno, day, sem] ⊆
offer[cno.day.sem] the XIND ((ρ.teaches, [course.cno, course.info.day,
course.info.sem]) ⊆ (ρ.offer, [course.cno, course.day, course.sem])) and,
from the inference rules to be given in the next section, this XIND is equivalent
to the XIND given in the introductory example, namely ((ρ.teaches.course,
[cno, info.day, info.sem]) ⊆ (ρ.offer.course, [cno, day, sem])).

The proof of this theorem is based on a result established in [10], which shows
that if a relation is mapped to an XML tree by the procedure just outlined, then
a set of data values appear in the same tuple of the relation if and only if the
nodes representing these values in the tree pairwise satisfy the closest property.2

2 We omit detailed proofs throughout this paper because of space requirements and
refer the reader to the technical report [1].

Inclusion Dependencies in XML: Extending Relational Semantics 31

5 Reasoning about XML Inclusion Dependencies

We focus in our reasoning on core XINDs in complete XML trees, and we first
define these key concepts in Sect. 5.1. We then present in Sect. 5.2 a chase algo-
rithm and use this algorithm in Sect. 5.3 to solve the implication and consistency
problems related to core XINDs in complete XML trees.

5.1 The Framework: Core XINDs in Complete XML Trees

From a general point of view, before requiring the data in an XML document
to be complete, one first has to specify the structure of the information that
the document is expected to contain. We use a set of legal paths P to specify
the structure of the expected information in an XML document, and now define
what we mean by an XML tree conforming to P.

Definition 8. A tree T is defined to conform to a set of legal paths P, if for
every node v in T, if P is the path such that v ∈ N(P,T), then P ∈ P.

For example, if we denote the subtree rooted at node v1 in Fig. 2 by
T1, then T1 conforms to the set of paths P1 = {offer,offer.course,
offer.course.cno,offer.course.day,offer.course.sem}.

We now introduce the concept of a complete XML tree, which extends the no-
tion of a complete relation to XML. To understand the intuition, consider again
the subtree T1 in Fig. 2 and the set of paths P̄1 = P1 ∪ {offer.course.max}.
Then T1 also conforms to P̄1, but we do not consider it to be complete w.r.t. P̄1
since the existence of the path offer.course.max means that we expect every
course in T1 to have a max number of students, which is not satisfied by nodes
v2 and v6 in Fig. 2. We now make this idea more precise.

Definition 9. If T is a tree that conforms to a set of paths P, then T is defined
to be complete w.r.t. P, if whenever P and P̄ are paths in P such that P ⊂ P̄,
and there exists node v ∈ N(P,T), then there also exists node v̄ ∈ N(P̄ ,T) such
that v ∈ ancestor(v̄).

For instance, as just noted, T1 is not complete w.r.t. P̄1 but it is complete
w.r.t. P1. This example also illustrates an important point. Unlike the relational
case, the completeness of a tree is only defined w.r.t. a specific set of paths and
so, as we have just seen, a tree may conform to two different sets of paths, but
may be complete w.r.t. one set but not the other. We also note that if a tree T is
complete w.r.t. a set of paths P, then P is what we call downward-closed. That
is, if P and P̃ are paths and P ∈ P, then P̃ ∈ P if P̃ ⊂ P . For example the sets
P1 and P̄1 are downward-closed.

We now turn to the class of XINDs that we consider in our reasoning. It is
natural to expect that if an XIND σ is intended to apply to an XML tree T,
then the constraint imposed by σ should belong to the information represented
by T. We incorporate this idea by requiring that the paths in an XIND are taken
from the set of paths to which the targeted tree conforms, which we now define.

32 M. Karlinger, M. Vincent, and M. Schrefl

Definition 10. An XIND σ = ((P, [P1, . . . , Pn]) ⊆ (P ′([P ′
1, . . . , P

′
n])) is defined

to conform to a set of paths P, if for all i ∈ [1, n], P.Pi ∈ P and P ′.P ′
i ∈ P.

We also place another restriction on an XIND, motivated by our belief that an
XIND σ should not enforce, as a hidden side effect, that each node in a set
of nodes in a tree T must have the same value. Suppose then that for the RHS
selector of σ, P ′= ρ, and for some i ∈ [1, n], the RHS field P ′

i is an attribute label.
Then since there is only one root node, and in turn at most one attribute node in
N(P ′.P ′

i ,T), the semantics of σ means, that every node in N(P.Pi,T)∪N(P ′.P ′
i ,T)

must have the same value. We believe that this not the intent of an XIND, and
that such a constraint should be specified instead explicitly in a DTD or XSD.
Since the study of the interaction between structural constraints and integrity
constraints is known to be a complex one [6], and outside the scope of this paper,
we exclude such an XIND and this leads to the following definition.

Definition 11. An XIND ((P, [P1, . . . , Pn])⊆(P ′, [P ′
1, . . . , P

′
n])) is a core XIND,

if in case that P ′ = ρ, then there does not exist a RHS field P ′
i such that

length(P ′
i) = 1 and P ′

i ends in an attribute label.

5.2 The Chase for Core XINDs in Complete Trees

The chase is a recursive algorithm that takes as input (i) a set of paths P, (ii)
a tree T that is complete w.r.t P, and (iii) a set of XINDs Σ that conforms to
P, and adds new nodes to T such that T � Σ. From a bird-eyes view, the chase
halts if the input tree Ts for a (recursive) step s satisfies Σ, and otherwise it

1. chooses an XIND σs = ((P, [P1, . . . , Pn]) ⊆ (P ′, [P ′
1, . . . P

′
n,])) from Σ, such

that Ts � σs because of a sequence of nodes [v0, v1, . . . , vn], where v0 is a
LHS selector node for σs and v1, . . . , vn are corresponding field nodes, and

2. creates new nodes in Ts, such that the resulting tree Ts+1 contains a RHS
selector node v′0 and field nodes v′1, . . . , v

′
n that remove the violation.

We now illustrate a step s in the chase by the example depicted in Fig. 3. Here
the XIND σ is violated in tree Ts by the sequences of nodes [v1, v2] and [v3, v4].
Given that the sequence [v1, v2] is chosen, the chase creates nodes v8, v9 in tree
Ts+1, which remove the violation, and then adds node v10 as a child of v8, in
order that Ts+1 is complete w.r.t. the set of paths P.

ρ

v3
ass

v1
ass

v7
room
R1

v6
name
A3

emp
v5

v10
room

0

v9
name
A1

emp
v8

v4
name
A2

v2
name
A1

Ts Ts+1

σ=((ρ.ass, [name])⊆

ρ.ass
ρ.ass.name

ρ

ρ.emp
ρ.emp.name
ρ.emp.room}

P = {

Σ = {
(ρ.emp, [name]))}

Fig. 3. Example Chase Step

Inclusion Dependencies in XML: Extending Relational Semantics 33

in: A downward-closed sequence of legal paths P = [R1, . . . , Rm] ordered by length
A tree T = (V, E, lab, val, vρ) that is complete w.r.t. P
A sequence of core XINDs Σ that conforms to P

out: Tree T̄ that is complete w.r.t. P and satisfies Σ

1: if T � Σ then return T; end if
2: let σ=((P, [P1, . . . , Pn])⊆ (P ′, [P ′

1, . . . , P
′
n])) be the first XIND in Σ such that T�σ;

3: let Y be the set of all sequences of nodes that violate σ in T;
4: for i := 0 to n do � choose violation
5: repeat
6: choose sequences [v0, v1, . . . , vn] and [v̂0, v̂1, . . . , v̂n] from Y;
7: if vi ≺ v̂i then remove [v̂0, v̂1, . . . , v̂n] from Y; end if
8: until no more change to Y is possible
9: end for

10: let [v0, v1, . . . , vn] be the remaining sequence of nodes in Y;
11: let X be a set that exclusively contains the root node vρ;
12: for i := 1 to m do � remove violation
13: if there exists path P ′

x ∈ [P ′
1, . . . , P

′
n] such that Ri ∩ P ′.P ′

x �= ρ then
14: create a new node v and add v to both V and X;
15: let l1. · · · .lk be the sequence of labels in Ri;
16: set lab(v) = lk;
17: let v̂ be the node in N(l1. · · · .lk−1, T) ∩ X;
18: add (v̂, v) to E such that v is the last child of v̂;
19: if there exists path P ′

y ∈ [P ′
1, . . . , P

′
n] such that Ri = P ′.P ′

y then
20: set val(v) = val(vy); � vy ∈ [v1, . . . , vn]
21: else if lk is an attribute or text label then
22: set val(v) = ”0”;
23: end if
24: end if
25: end for
26: return Chase(P, T, Σ);

Fig. 4. Algorithm Chase(P, T, Σ)

The procedure just outlined is non-deterministic since both the choice of σs
and the choice of a violating sequence of nodes [v0, v1, . . . , vn] in a step s is
random. These choices however essentially determine the characteristics of the
trees generated by the steps of the chase, and thus our proof techniques, which
are based on certain characteristics of the generated trees. We therefore designed
a deterministic chase algorithm, depicted in Fig. 4, that results in a unique tree.
The essential prerequisite is the following, simplified version of document-order.

Definition 12. In a tree T, node v is defined to precede node v̄ w.r.t. document-
order, denoted by v≺ v̄, if v is visited before v̄ in a pre-order traversal of T.

We now illustrate how uniqueness of the tree Ts+1 resulting from a step s of the
chase is achieved. First, the choice of σs at Line 2 in Fig. 4 is deterministic, given
that σs is the first XIND in Σ that is violated in Ts, and that Σ is expected to
be a sequence, rather than a set, of XINDs. Second, in case that there is more

34 M. Karlinger, M. Vincent, and M. Schrefl

than one sequence of violating nodes, then the one that is, roughly speaking,
in the top-left of tree Ts is chosen at Lines 3 - 9. Referring to the example in
Fig. 3, the chase deliberately chooses the sequence of violating nodes [v1, v2],
since v1 ≺ v3. Third, the procedure for removing the violation in a step s is
deterministic. In particular, the chase loops for this purpose over the paths in P
and creates path instances accordingly (cf. Lines 12 - 25), such that the resulting
tree Ts+1 is complete w.r.t. P and contains a sequence of nodes [v′0, v

′
1, . . . , v

′
n]

that removes the violation. The desired uniqueness is basically achieved, since (i)
paths P are expected to be a sequence, rather than a set of paths, and therefore
the succession in which the paths in P are iterated in the loop at Line 12 is
deterministic, and (ii) a new node is always added to the parent as the last child
w.r.t. document-order (cf. Line 18).

We then have the following result on the procedure of the chase.

Lemma 1. An application of Chase(P,T, Σ) terminates and returns a unique
tree T̄ which contains T as a sub-tree, is complete w.r.t. P and satisfies Σ.

Thereby, the argument for the termination of the chase bases on the following
observation on the set U of distinct values of attribute and text nodes in a tree T.
A tree T satisfies an XIND σ = (P, (P1, . . . , Pn) ⊆ (P ′, (P ′

1, . . . , P
′
n)), if T contains

for every sequence of values u1, . . . , un ∈ U× · · · ×U, a sequence of nodes [ṽ1 ∈
N(P ′.P ′

1,T), . . . , ṽn ∈ N(P ′.P ′
n,T)] that pairwise satisfy the closest property, such

that for all i ∈ [1, n], val(ṽi) = ui. Since the number of values in the initial tree is
finite and the chase introduces at most one new value (cf. Line 22), the number of
distinct sequences of values in U×· · ·×U is finite. In turn, the chase terminates,
since it adds in every step, w.r.t. an XIND in Σ, a sequence of pairwise closest
RHS field nodes v′1, . . . , v′n, and val(v′1), . . . , val(v′n) ∈ U× · · · ×U.

5.3 Consistency and Implication of Core XINDs in Complete Trees

We formulate the consistency problem in our framework as the question of
whether there exists a tree T, for any given combination of a downward-closed
set of paths P and a set of core XINDs Σ that conforms to P, such that T is
complete w.r.t. P and satisfies Σ. We have the following result.

Theorem 2. The class of core XINDs in complete XML trees is consistent.

The correctness of Theorem 2 follows from the fact that there always exists a
tree T̃ that is complete w.r.t. a given set of paths P, and the result in Lemma
1 that the tree T̄ returned by Chase(P, T̃, Σ), is complete w.r.t. P and satisfies
the given set of core XINDs Σ.

We now turn to the implication of core XINDs. We use Σ � σ to denote that
Σ implies σ, i.e. that given a set of paths P to which Σ ∪{σ} conforms to, there
does not exist a tree T that is complete w.r.t. P such that T � Σ but T � σ.

In order to discuss the implication problem, which we formulate as the ques-
tion whether Σ � σ (and also Σ � σ) is decidable, we start by giving in Table 1

Inclusion Dependencies in XML: Extending Relational Semantics 35

Table 1. Inference Rules for Core XINDs

R1 Reflexivity
{} � ((P, [P1, . . . , Pn]) ⊆ (P, [P1, . . . , Pn]))
R2 Permutated Projection
((P, [P1, . . . , Pn]) ⊆ (P ′, [P ′

1, . . . , P
′
n])) �

((P, [Pπ(1), . . . , Pπ(m)]) ⊆ (P ′, [P ′
π(1), . . . , P

′
π(m)])), if {π(1), . . . , π(m)} ⊆ {1, . . . , n}

R3 Transitivity
((P, [P1, . . . , Pn]) ⊆ (P̄ , [P̄1, . . . , P̄n])) ∧ ((P̄ , [P̄1, . . . , P̄n]) ⊆ (P ′, [P ′

1, . . . , P
′
n])) �

((P, [P1, . . . , Pn]) ⊆ (P ′, [P ′
1, . . . , P

′
n]))

R4 Downshift
((P, [P1, . . . , Pn]) ⊆ (P ′.R, [P ′

1, . . . , P
′
n])) � ((P, [P1, . . . , Pn]) ⊆ (P ′, [R.P ′

1, . . . , R.P ′
n]))

R5 Upshift
((P, [P1, . . . , Pn]) ⊆ (P ′, [R.P ′

1, . . . , R.P ′
n])) � ((P, [P1, . . . Pn]) ⊆ (P ′.R, [P ′

1, . . . , P
′
n]))

R6 Union
((P, [P1, . . . , Pm]) ⊆ (ρ, [P ′

1, . . . , P
′
m])) ∧ ((P, [Pm+1, . . . , Pn]) ⊆ (ρ, [P ′

m+1, . . . , P
′
n])) �

((P, [P1, . . . , Pn]) ⊆ (ρ, [P ′
1, . . . , P

′
n])), if ρ.P ′

i ∩ ρ.P ′
j = ρ for all i, j ∈ [1, m]×[m+1, n]

a set of inference rules, where symbol denotes that the XINDs in the premise
derive the XIND in the conclusion.

Rules R1 - R3 correspond to the well known inference rules for INDs [3],
which is to be expected given Theorem 1 and the fact that XML trees generated
from a complete relational database from the mapping described in Sect. 4 are
a subclass of complete XML trees. The remaining rules have no parallels in the
inference rules for INDs, and we now discuss them.

Rule R4 allows one to shift a path from the end of the RHS selector in an
XIND down to the start of the RHS fields. For example, by applying R4 to
the XIND ((ρ.teaches.course, [cno]) ⊆ (ρ.offer.course, [cno])), we derive the
XIND ((ρ.teaches.course, [cno]) ⊆ (ρ.offer, [course.cno])), whereby the last
label in the RHS selector ρ.offer.course has been shifted down to the start of
the RHS fields. Rule R5 is the reverse of R4, whereby a path from the start of
the RHS fields is shifted up to the end of the RHS selector.

Rule R6 is a rule that, roughly speaking, allows one to union the LHS
fields and the RHS fields of two XINDs, provided that the RHS fields in-
tersect only at the root. For example, given the XINDs ((ρ.teaches.course,
[cno]) ⊆ (ρ, [offer.course.cno])) and ((ρ.teaches.course, [info.lec]) ⊆
(ρ, [department.lec])), then we can derive ((ρ.teaches.course, [cno, info.lec])
⊆ (ρ, [offer.course.cno, department.lec])), since ρ.offer.course.cno
∩ ρ.department.lec = ρ. However, the XINDs ((ρ.teaches.course,
[cno]) ⊆ (ρ, [offer.course.cno])) and ((ρ.teaches.course, [info.sem]) ⊆
(ρ, [offer.course.sem])) do not imply ((ρ.teaches.course, [cno, info.sem])
⊆ (ρ, [offer.course.cno, offer.course.sem])) since ρ.offer.course.cno ∩
ρ.offer.course.sem �= ρ.

We have the following result on the soundness (Σ σ ⇒ Σ � σ) and com-
pleteness (Σ � σ ⇒ Σ σ) of our inference rules.

36 M. Karlinger, M. Vincent, and M. Schrefl

Theorem 3. The set of inference rules R1 - R6 is sound and complete for the
implication of core XINDs in complete XML trees.

Thereby, rule R1 is trivially sound and we can show soundness of rules R2 -
R6 by the contradiction that if Σ σ and T is a tree such that T � σ, then
T � Σ. The key idea for the proof of completeness is that we first construct
a special initial tree Tσ

3, which essentially has LHS field nodes with distinct
values w.r.t. the XIND σ and is empty elsewhere. We then show by induction
that the only XINDs satisfied by any intermediate tree during the chase are
those derivable from Σ using rules R1 - R6. That is, if T̄σ � σ, where T̄σ is
the final tree returned by the application Chase(P,Tσ, Σ), then Σ σ and thus
Σ � σ ⇒ Σ σ, since T̄σ � σ if Σ � σ from Lemma 1.

Given that Σ σ if T̄σ � σ it follows that T̄σ � σ ⇒ Σ � σ since Σ σ ⇒
Σ � σ. Also, Σ � σ ⇒ T̄σ � σ, since if to the contrary T̄σ � σ then Σ � σ from
Lemma 1. Combining this with the result in Lemma 1 that the chase terminates
yields that the chase is a decision procedure for the implication of core XINDs
in complete XML trees, i.e. Σ � σ iff T̄σ � σ, and we therefore finally have the
following result on the implication problem.

Theorem 4. The implication problem for the class of core XINDs in complete
XML trees is decidable.

6 Discussion and Related Work

In recent years, several types of XML Integrity Constraints (XICs) such as func-
tional dependencies or keys for XML have been investigated. Because of space
requirements, we restrict our attention in this section to inclusion type con-
straints and refer the reader to [13] for a survey of other types of XICs.

An early type of XICs are path constraints [12]. A path inclusion constraint
(PIC) essentially requires that whenever a node is reachable over one path, it
must also be reachable over another path. In contrast, an XIND asserts that given
a set of nodes, there also exist other nodes with corresponding values. Because
of this basic difference, one cannot directly compare a PIC and an XIND.

Closer to XINDs are the XML Foreign Keys defined in [6,7]. Translated to the
selector/field framework, these XICs constrain the fields to point to attribute or
text nodes that are children of the selector nodes and so cannot express for exam-
ple the constraint τ = ((ρ.teaches, [course.cno]) ⊆ (ρ.offer, [course.cno])).

The keyref mechanism of XSD [4] is limited with respect to the possible
number of matching nodes per field. For instance, referring to τ and Fig. 2, the
semantics of the keyref mechanism requires that any offer node has at most
one descendant course.cno node, which is clearly not satisfied in Fig.2.

The XICs in [7,9] overcome these limitations. However, again translated to
the selector/field framework, these XICs regard every sequence of field nodes as
relevant as long as they are descendants of one selector node. As a consequence,

3 A detailed construction procedure is presented in [1].

Inclusion Dependencies in XML: Extending Relational Semantics 37

these XICs do not always preserve the semantics of an IND, which we have
illustrated in detail in the introductory example.

The limitation of not always preserving the semantics of an IND also applies
to the XML inclusion constraint in [15] developed by a subset of the authors,
which in fact motivated the present work of defining an XIND. Compared to the
XIND defined in this paper, the approach in [15] is less expressive and does not
use the selector/field framework. Further, the semantics used in [15], although
partly based on the closest concept, is nevertheless different from the semantics
used in this paper, and as a result an XIND preserves the semantics of an IND.

In further research, we will relax some of the restrictions on the syntax of an
XIND and address the implication and consistency problems related to XINDs
that allow for path expressions rather than simple paths in the selectors and
fields, and a relative constraint that is only evaluated in parts of the XML tree.

References

1. Karlinger, M., Vincent, M., Schrefl, M.: Inclusion Dependencies in XML. Technical
Report 09.01, Dept. of Business Informatics - DKE, JKU Linz (2009)

2. Atzeni, P., DeAntonellis, V.: Relational Database Theory. Benjamin Cummings
(1993)

3. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley,
Reading (1995)

4. Möller, A., Schwartzbach, M.: An Introduction to XML and Web Technologies.
Addison-Wesley, Reading (2006)

5. Vakali, A., Catania, B., Maddalena, A.: XML Data Stores: Emerging Practices.
IEEE Internet Computing 9(2), 62–69 (2005)

6. Arenas, M., Fan, W., Libkin, L.: On the Complexity of Verifying Consistency of
XML Specifications. SIAM J. Comput. 38(3), 841–880 (2008)

7. Fan, W., Kuper, G.M., Siméon, J.: A Unified Constraint Model for XML. Computer
Networks 39(5), 489–505 (2002)

8. Fan, W., Siméon, J.: Integrity constraints for XML. J. Comput. Syst. Sci. 66(1),
254–291 (2003)

9. Deutsch, A., Tannen, V.: XML Queries and Constraints, Containment and Refor-
mulation. Theor. Comput. Sci. 336(1), 57–87 (2005)

10. Vincent, M.W., Liu, J., Mohania, M.: On the Equivalence between FDs in XML
and FDs in Relations. Acta Informatica 44(3-4), 207–247 (2007)

11. Buneman, P., Davidson, S.B., Fan, W., Hara, C.S., Tan, W.C.: Keys for XML.
Computer Networks 39(5), 473–487 (2002)

12. Abiteboul, S., Vianu, V.: Regular Path Queries with Constraints. J. Comput. Syst.
Sci. 58(3), 428–452 (1999)

13. Fan, W.: XML Constraints: Specification, Analysis, and Applications. In: DEXA
Workshops, pp. 805–809. IEEE Computer Society, Los Alamitos (2005)

14. Fan, W.: XML publishing: Bridging theory and practice. In: Arenas, M.,
Schwartzbach, M.I. (eds.) DBPL 2007. LNCS, vol. 4797, pp. 1–16. Springer, Hei-
delberg (2007)

15. Vincent, M.W., Schrefl, M., Liu, J., Liu, C., Dogen, S.: Generalized inclusion de-
pendencies in XML. In: Yu, J.X., Lin, X., Lu, H., Zhang, Y. (eds.) APWeb 2004.
LNCS, vol. 3007, pp. 224–233. Springer, Heidelberg (2004)

The Real Performance Drivers
behind XML Lock Protocols

Sebastian Bächle and Theo Härder

University of Kaiserslautern, Germany
{baechle,haerder}@cs.uni-kl.de

Abstract. Fine-grained lock protocols should allow for highly concur-
rent transaction processing on XML document trees, which is addressed
by the taDOM lock protocol family enabling specific lock modes and
lock granules adjusted to the various XML processing models. We have
already proved its operational flexibility and performance superiority
when compared to competitor protocols. Here, we outline our experiences
gained during the implementation and optimization of these protocols.
We figure out their performance drivers to maximize throughput while
keeping the response times at an acceptable level and perfectly exploiting
the advantages of our tailor-made lock protocols for XML trees. Because
we have implemented all options and alternatives in our prototype system
XTC, benchmark runs for all “drivers” allow for comparisons in identical
environments and illustrate the benefit of all implementation decisions.
Finally, they reveal that careful lock protocol optimization pays off.

1 Motivation

Native XML database systems (XDBMSs) promise tailored processing of XML
documents, but most of the systems published in the DB literature are designed
for efficient document retrieval only [17]. However, XML’s standardization and,
in particular, its flexibility (e.g., data mapping, cardinality variations, optional or
non-existing structures, etc.) are driving factors to attract demanding write/read
applications, to enable heterogeneous data stores and to facilitate data inte-
gration. Because business models in practically every industry use large and
evolving sets of sparsely populated attributes, XML is more and more adopted
by those companies which have even now launched consortia to develop XML
schemas adjusted to their particular data modeling needs.1 For these reasons,
XML databases currently get more and more momentum if data flexibility in
various forms is a key requirement of the application and they are therefore
frequently used in collaborative or even competitive environments [11]. As a
consequence, the original “retrieval-only” focus – probably caused by the first
proposals of XQuery respectively XPath where the update part was left out
– is not enough anymore. Hence, update facilities are increasingly needed in

1 World-leading financial companies defined more than a dozen XML vocabularies to
standardize data processing and to leverage cooperation and data exchange [20].

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 38–52, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Real Performance Drivers behind XML Lock Protocols 39

XDBMSs, i.e., fine-grained, concurrent, and transaction-safe document modifi-
cations have to be efficiently supported. For example, workloads for financial
application logging include 10M to 20M inserts in a 24-hour day, with about 500
peak inserts/sec. Because at least a hundred users need to concurrently read the
data for troubleshooting and auditing tasks, concurrency control is challenged
to provide short-enough response times for interactive operations [11].

Currently, all vendors of XML(-enabled) DBMSs support updates only at doc-
ument granularity and, thus, cannot manage highly dynamic XML documents,
let alone achieve such performance goals. Hence, new concurrency control proto-
cols together with efficient implementations are needed to meet these emerging
challenges. To guarantee broad acceptance, we strive for a general solution that is
even applicable for a spectrum of XML language models (e.g., XPath, XQuery,
SAX, or DOM) in a multi-lingual XDBMS environment. Although predicate
locking for declarative XML queries would be powerful and elegant, its imple-
mentation rapidly leads to severe drawbacks such as undecidability and appli-
cation of unnecessarily large lock granules for simplified predicates – a lesson
learned from the (much simpler) relational world. Beyond, tree locks or key-range
locks [5,12] are not sufficient for fine-grained locking of concurrently evaluated
stream-, navigation- and path-based queries. Thus, we necessarily have to map
XQuery operations to a navigational access model to accomplish fine-granular
locking supporting other XML languages like SAX and DOM [3], too, because
their operations directly correspond to a navigational access model.

To approach our goal, we have developed a family consisting of four DOM-
based lock protocols called the taDOM group by adjusting the idea of multi-
granularity locking (MGL) to the specific needs of XML trees. Their empirical
analysis was accomplished by implementing and evaluating them in XTC (XML
Transaction Coordinator), our prototype XDBMS [9]. Its development over the
last four years accumulated substantial experience concerning DBMS perfor-
mance in general and efficient lock management in particular.

1.1 The taDOM Protocol Family

Here, we assume familiarity of the reader with the idea of multi-granularity
locking (MGL) – also denoted as hierarchical locking [6] – which applies to
hierarchies of objects like tables and tuples and is used “everywhere” in the
relational world. The allow for fine-grained access by setting R (read) or X
(exclusive) locks on objects at the lower levels in the hierarchy and coarse grained
access by setting the locks at higher levels in the hierarchy, implicitly locking the
whole subtree of objects at smaller granules. To avoid lock conflicts when objects
at different levels are locked, so-called intention locks with modes IR (intention
read) or IX (intention exclusive) have to be acquired along the path from the
root to the object to be isolated and vice versa when the locks are released [6].

Although an MGL protocol can also be applied to XML document trees, it is
in most cases too strict, because both R and X mode on a node, would always
lock the whole subtree below, too. While this is the desired semantics for part-of
object hierarchies as in relational databases, these restrictions do not apply to

40 S. Bächle and T. Härder

SX3

a)

CX3

LRQ:

IR1 IX2

level

...

i-1

i

i+1

i+2 . . .

. . .

... ...

...

...
. . .

. . .

......

SR1

cn

b)

IX2

IX1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

NR1
cn

c)

IX2

IR1 IX2

. . .

. . .

... ...

...

. . .

. . .

......

LR1

cn

NR1

SX3

CX3

IX3

CX2

NX2

CX2

NX2

IX3

IX3

NR1

IX3

IX2 CX3

Fig. 1. Example of the taDOM3+ protocol

XML where transactions must not necessarily be guaranteed to have no writers
in the subtree of their current node. Hence, MGL does not provide the degrees
of concurrency that could be achieved on XML documents.

For ease of comprehension, we will give a brief introduction into the essentials
of our taDOM lock protocols (beyond the MGL modes just sketched), which
refine the MGL ideas and provide tailored lock modes for high concurrency in
XML trees [9]. To develop true DOM-based XML lock protocols, we introduced a
far richer set of locking concepts, beyond simple intention locks and, in our terms,
subtree locks. We differentiate read and write operations thereby renaming the
well-known (IR, R) and (IX, X) lock modes with (IR, SR) and (IX, SX) modes,
respectively. We introduced new lock modes for single nodes called NR (node
read) and NX (node exclusive), and for all siblings under a parent called LR
(level read). As in the MGL scheme, the U mode (SU in our protocol) plays a
special role, because it permits lock conversion. The novelty of the NR and LR
modes is that they allow, in contrast to MGL, to read-lock only a node or all
nodes at a level (under the same parent), but not the corresponding subtrees.

To enable transactions to traverse paths in a tree having (levels of) nodes
already read-locked by other transactions and to modify subtrees of such nodes, a
new intention mode CX (child exclusive) had to be defined for a context (parent)
node. It indicates the existence of an SX or NX lock on some direct child nodes
and prohibits inconsistent locking states by preventing LR and SR locks. It does
not prohibit other CX locks on a context node c, because separate child nodes of c
may be exclusively locked by other transactions (compatibility is then decided on
the child nodes themselves). Altogether these new lock modes enable serializable
transaction schedules with read operations on inner tree nodes, while concurrent
updates may occur in their subtrees.2 An important and unique feature (not
applicable in MGL or other protocols) is the optional variation of the lock depth
which can be dynamically controlled by a parameter. Lock depth n determines
that, while navigating through the document, individual locks are acquired for
existing nodes up to level n. If necessary, all nodes below level n are locked by
a subtree lock (SR, SX) at level n.

Continuous improvement of these basic concepts led to a whole family of lock
protocols, the taDOM family, and finally resulted in a highly optimized protocol

2 Although edge locks [9] are an integral part of taDOM, too, they do not contribute
specific implementation problems and are, therefore, not considered here.

The Real Performance Drivers behind XML Lock Protocols 41

called taDOM3+ (tailor-made for the operations of the DOM3 standard [3]),
which consists of 20 different lock modes and “squeezes transaction parallelism”
on XML document trees to the extent possible. Correctness and, especially,
serializability of the taDOM protocol family was shown in [9,18].

Let us highlight by three scenarios taDOM’s flexibility and tailor-made adap-
tations to XML documents as compared to competitor approaches. Assume
transaction T1 – after having set appropriate intention locks on the path from
the root – wants to read-lock context node cn. Independently of whether or not
T1 needs subtree access, MGL only offers a subtree lock on cn, which forces
concurrent writers (T2 and T3 in Fig. 1a) to wait for lock release in a lock
request queue (LRQ). In the same situation, node locks (NR and NX) would
allow greatly enhance permeability in cn’s subtree (Fig. 1b). As the only lock
granule, however, node locks would result in excessive lock management cost and
catastrophic performance behavior, especially for subtree deletion [8]. A frequent
XML read scenario is scanning of cn and all its children, which taDOM enables
by a single lock with special mode (LR). As sketched in Fig. 1c, LR supports
write access to deeper levels in the tree. The combined use of node, level, and
subtree locks gives taDOM its unique capability to tailor and minimize lock gran-
ules. Above these granule choices, additional flexibility comes from lock-depth
variations on demand – a powerful option only provided by taDOM.

1.2 Related Work and Our Own Contribution

To the best of our knowledge, we are not aware of contributions in the open
literature dealing with implementation of an XML lock manager. So far, most
publications just sketch ideas of specific problem aspects and are less compelling
and of limited expressiveness, because they are not implemented and, hence,
cannot provide empirical performance results [4,14,15]. Four Natix lock proto-
cols [10] focus on DOM operations, provide node locks only, and do not enable
direct jumps to inner document nodes and effective escalation mechanisms for
large documents. Together with four MGL implementations supporting node and
subtree locks, their lock protocol performance was empirically compared against
our taDOM protocols [8]. The taDOM family exhibited for a given benchmark
throughput gains of 400% and 200% compared to the Natix resp. MGL proto-
cols which clearly confirmed that availability of node, level, and subtree locks
together with lock modes tailored to the DOM operations pays off.

While these publications only address ideas and concepts, no contribution
is known how to effectively and efficiently implement lock protocols on XML
trees. Therefore, we start in Sect. 2 with implementation and processing cost of
a lock manager. In Sect. 3, we emphasize the need and advantage of prefix-based
node labeling for efficient lock management. Sect. 4 outlines how we coped with
runtime shortcomings of protocol execution, before effectiveness and success of
tailored optimizations are demonstrated by a variety of experimental results in
Sect. 5. Finally, Sect. 6 summarizes our conclusions.

42 S. Bächle and T. Härder

2 Lock Manager Implementation

Without having a reference solution, the XTC project had to develop such a
component from scratch where the generic guidelines given in [6] were used.
Because we need to synchronize objects of varying types occurring at diverse
system layers (e.g., pinning pages by the buffer manager and locking XML-
related objects such as nodes and indexes), which exhibit incomparable lock
compatibilities, very short to very long lock durations, as well as differing access
frequencies, we decided to provide specialized lock tables for them (and not a
common one). Where appropriate, we implemented lock tables using suitable
lock identification (see node labeling scheme, Sect. 3) and dynamic handling of
lock request blocks and queues. Lock request scheduling is centralized by the
lock manager. The actions for granting a lock are outlined below. Otherwise, the
requesting transaction is suspended until the request can be granted or a time-
out occurs. Detection and resolution of deadlocks is enabled by a global wait-
for graph for which the transaction manager initiates the so-called transaction
patrol thread in uniform intervals to search for cycles and, in case of a deadlock,
to abort the involved transaction owning the fewest locks.

2.1 Lock Services

request

block 0
...
8
7
6
5
4
3
2
1

k

block 0

header

request

block 1

block 1

header

request

block 2

block 2

. . .

. . .

request

block m

block m

locking scheme
XYZ
. . .

lock-header
buffer

registered
locking schemes

lock-request
buffer

1 2 3 4 5 6 7 8 ... k
hash table T containing transaction entries

B0 B1 B2 B3 ...Bm

B0 B1 B2 B3 ...Bm

free-placement info
of lock-request buffer

free-placement info
of lock-header buffer

ha
sh

 ta
bl

e
L

co
nt

ai
ni

ng
 lo

ck
 e

nt
rie

s

Fig. 2. Data structures of a lock table

Lock management in-
ternals are encapsu-
lated in so-called lock
services, which provide
a tailored interface
to the various sys-
tem components, e.g.,
for DB buffer manage-
ment, node locks, in-
dex locks, etc. [9]. Each
lock service has its own
lock table with two pre-
allocated buffers for
lock header entries and
lock request entries, each consisting of a configurable number (m) of blocks, as
depicted in Fig. 2. This use of separate buffers serves for storage saving (differing
entry sizes are used) and improved speed when searching for free buffer locations
and is supported by tables containing the related free-placement information. To
avoid frequent blocking situations when lock table operations (look-up, insertion
of entries) or house-keeping operations are performed, use of a single monitor
is not adequate. Instead, latches are used on individual hash-table entries (in
hash tables T (for transactions) and L (for locks)) to protect against access by
concurrent threads thereby guaranteeing the maximum parallelism possible. For
each locked object, a lock header is created, which contains name and current
mode of the lock together with a pointer to the lock queue where all lock requests

The Real Performance Drivers behind XML Lock Protocols 43

for the object are attached to. Such a lock request carries among administration
information the requested/granted lock mode together with the transaction ID.
To speed-up lock release, the lock request entries are doubly chained and contain
a separate pointer to the lock header, as shown in Fig. 2. Further, a transaction
entry contains the anchor of a chain threading all lock request entries, which
minimizes lock release effort at transaction commit.

To understand the general principles, it is sufficient to focus on the man-
agement of node locks. A lock request of transaction T1 for a node with label
ID1 proceeds as follows. A hash function delivers hT(T1) in hash table T. If
no entry is present for T1, a new transaction entry is created. Then, hL(ID1)
selects (possibly via a synonym chain) a lock entry for node ID1 in hash table
L. If a lock entry is not found, a lock header is created for it and, in turn, a
new lock request entry; furthermore, various pointer chains are maintained for
both entries. The lock manager enables protocol adaptation to different kinds
of workloads by providing a number of registered lock schemes [9]. For checking
lock compatibility or lock conversion, a pre-specified lock scheme is used.

2.2 Cost of Lock Management

Lock management for XML trees is hardly explored so far. It considerably dif-
fers from the relational multi-granularity locking, the depth of the trees may
be much larger, but more important is the fact that operations may refer to
tree nodes whose labels – used for lock identification – are not delivered by the
lock request. Many XML operations address nodes somewhere in subtrees of a
document and these often require direct jumps “out of the blue” to a particular
inner tree node. Efficient processing of all kinds of language models [3,19] im-
plies such label-guided jumps, because scan-based search should be avoided for
direct node access and navigational node-oriented evaluation (e. g., getElement-
ById() or getNextSibling()) as well as for set-oriented evaluation of declarative
requests (e.g., via indexes). Because each operation on a context node requires
the appropriate isolation of its path to the root, not only the node itself has
to be locked in a sufficient mode, but also the corresponding intention locks
on all ancestor nodes have to be acquired. Therefore, the lock manager often
has to procure the labels for nodes and their contexts (e.g., ancestor paths) re-
quested. No matter what labeling scheme is used, document access cannot always
be avoided (e.g., getNextSibling()). If label detection or identification, however,
mostly need document access (to disk), dramatic overhead burdens concurrency
control. Therefore, node labeling may critically influence lock management cost.

200K

400K

600K

800K

1000K

5K 10K 15K 20K 25K 30K 35K 40K

[# nodes]

None
Committed

Repeatable

Fig. 3. Number of node locks requested

In a first experiment, we ad-
dressed the question how many lock
requests are needed for frequent use
cases and what is the fraction of
costs that can be attributed to the
labeling scheme. For this purpose,
we used the xmlgen tool of the
XMark benchmark project [16] to

44 S. Bächle and T. Härder

generate a variety of XML documents consisting of 5,000 up to 40,000 individ-
ual XML nodes. These nodes are stored in a B*-tree – a set of doubly chained
pages as document container (the leaves) and a document index (the inner pages)
– and reconstructed by consecutive traversal in depth-first order (i.e., document
order corresponds to physical order) within a transaction in single-user mode.

To explore the performance impact of fine-grained lock management, we have
repeated this experiment under various isolation levels [6]. Furthermore, we have
reconstructed the document twice to amplify the differing behavior between iso-
lation levels committed and repeatable read (in this setting, repeatable is equiv-
alent to serializable). Because of the node-at-a-time locking, such a traversal
is very inefficient, indeed, but it drastically reveals the lock management over-
head for single node accesses. Depending on the position of the node to be locked,
committed may cause much more locking overhead, because each individual node
access acquires short read locks on all nodes along its ancestor path and their
immediate release after the node is delivered to the client. In contrast, isolation
level repeatable read sets long locks until transaction commit and, hence, does
not need to repetitively lock and unlock ancestor nodes. In fact, they are al-
ready locked due to the depth-first traversal. Fig. 3 summarizes the number of
individual node locks requested for the various isolation levels.

In our initial XTC version, we had implemented SEQIDs (including a level
indicator) where node IDs were sequentially assigned as integer values. SEQIDs
allow for stable node addressing, because newly inserted nodes obtain a unique,
ascending integer ID. Node insertions and deletions preserve the document order
and the relationships to already existing nodes. Hence, the relationship to a
parent, sibling, or child can be determined based on their physical node position
in the document container, i.e., within a data page or neighbored pages. While
access to the first child is cheap, location of parent or sibling may be quite
expensive depending on the size of the current node’s subtree. Because intention
locking requires the identification of all nodes in the ancestor path, this crude
labeling scheme frequently forces the lock manager to locate a parent in the
stored document. Although we optimized SEQID-based access to node relatives
by so-called on-demand indexing, the required lock requests (Fig. 3) were directly
translated into pure lock management overhead as plotted in Fig. 4a. Hence, the
unexpectedly bad and even “catastrophic” traversal times caused a rethinking
and redesign of node labeling in XTC (see Sect. 3).

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

[# nodes]

None
Committed

Repeatable

(a) SEQID node labeling

10

20

30

40

50

60

70

5K 10K 15K 20K 25K 30K 35K 40K

(b) SPLID node labeling

Fig. 4. Documents traversal times (sec.)

The Real Performance Drivers behind XML Lock Protocols 45

2.3 Lower Isolation Levels Are Not Always Superior

As compared to repeatable, isolation level committed provides for higher de-
grees of concurrency with (potentially) lesser degrees of consistency concerning
read/write operations on shared documents. Hence, if chosen for a transaction
program, the programmer must be carefully consider potential side-effects, be-
cause he accepts responsibility (because of early releases and later re-acquisitions
of the same locks) to achieve full consistency. As shown in Fig. 4, committed
may cause higher lock management overhead at the system side. Nevertheless,
the programmer expects higher transaction throughput – as always obtained for
isolation level committed in relational systems – compensating for his extra care.

In a dedicated experiment, we went into this matter whether or not the poten-
tially high locking overhead for isolation level committed can be compensated by
reduced blocking in multi-user mode. For this scenario, we set up a benchmark
with three client applications on separate machines and an XDBMS instance on
a forth machine. The clients are executing for a fixed time interval a constant
load of over 60 transactions on the server. The workload – repeatedly executed
for the chosen isolation levels and the different lock depths – consisted of about
16 short transaction types with an equal share of reader and writer transactions,
which processed common access patterns like node-to-node navigation, child and
descendant axes evaluation, node value modifications, and fragment deletions.

Fig. 5a shows the results of this benchmark run. Isolation level none means
that node and edge locks are not acquired at all for individual operations. Of
course, processing transactions without isolation is inapplicable in real systems,
because the atomicity property of transactions (in particular the transaction
rollback) cannot be guaranteed. Here, we use this mode only to derive the upper
bound for transaction throughput in a given scenario. Isolation level repeatable
acquires read and write locks according to the lock protocol and lock depth
used, whereas committed requires write locks but only short read locks. Note,
committed leads to a fewer number of successful transactions than the stronger
isolation level repeatable – and obtains with growing lock depth (and, hence,
reduced conflict probability) an increasing difference. Although less consistency
guarantees are given in mode committed to the user, the costs of separate acqui-
sitions and immediate releases of entire lock paths for each operation reduced
the transaction throughput. Running short transactions, this overhead may not
be amortized by higher concurrency.

 100

 150

 200

 250

 300

 350

 400

 0 1 2 3 4 5

[Lock depth]

None
Committed

Repeatable

(a) Short transactions (committed)

 100

 150

 200

 250

 300

 0 1 2 3 4 5

(b) Stretched run times (committed)

Fig. 5. Transaction throughput controlled by different isolation levels

46 S. Bächle and T. Härder

After we had artificially increased the run times of the same transactions by
programmed delays (in this way simulating human interaction), of course, the
overall transaction throughput decreases, but meets the expectations of tradi-
tional transaction processing (see Fig. 5b): A lower degree of isolation leads to a
higher transaction throughput. If few access conflicts are occurring (lock depths
2 and higher), lock management costs hardly influence the “stretched” transac-
tion durations and transaction throughput is decoupled from the chosen isolation
level. Hence, higher throughput on XML trees is not given for granted using iso-
lation level committed. Surprisingly, committed seems to be inappropriate for
large lock depths and short transactions.

3 Prefix-Based Node Labeling Is Indispensable

Range-based and prefix-based node labeling [2] are considered the prime compet-
itive methods for implementation in XDBMSs. A comparison and evaluation of
those schemes in [7] recommends prefix-based node labeling based on the Dewey
Decimal Classification. Each label represents the path from the document’s root
to the related node and the local order w.r.t. the parent node. Some schemes
such as OrdPaths [13], DeweyIDs, or DLNs [7] provide immutable labels by sup-
porting an overflow technique for dynamically inserted nodes. Here, we use the
generic name stable path labeling identifiers (SPLIDs) for them.

Whenever a node, e.g., with SPLID 1.19.7.5, has to be locked, all its ancestor
node labels are needed for placing intention locks on the entire path up to the
root. Hence, they can be automatically provided: 1.19.7, 1.19, and 1 for the
example. Because such lock requests occur very frequently, the use of SPLIDs is
the key argument for locking support.3 Referring to our lock table (see Fig. 2),
intention locks for the ancestors of 1.19.7.5 can be checked or newly created
using hL(1.19.7), hL(1.19) and hL(1) without document access. Because of the
frequency of this operation, we provide a function which acquires a lock and all
necessary intention locks at a time. A second important property for stable lock
management is the immutability of SPLIDs, i.e., they allow the assignment of
new IDs without the need to reorganize the IDs of nodes present.

We have repeated document traversal using SPLID-based lock management
(see Fig. 4b). Because the difference between none and committed/repeatable
is caused by locking overhead, we see drastic performance gains compared to
SEQIDs. While those are responsible for an up to ∼600% increase of the re-
construction times in our experiment, SPLIDs keep worst-case locking costs in
the range of ∼10 – ∼20%. SEQIDs have fixed length, whereas SPLIDs require
handling of variable-length entries. Coping with variable-length fields adds some
complexity to SPLID and B*-tree management. Furthermore, prefix-compression
of SPLIDs is a must [7]. Nevertheless, reconstruction time remained stable when
SPLIDs were used – even when locking was turned off (case none).
3 Range-based schemes [21] cause higher locking overhead than SPLIDs. They enable

the parent label computation, but not those of further ancestors. An optimization
would include a parent label index to compute that of the grandparent and so on.

The Real Performance Drivers behind XML Lock Protocols 47

Comparison of document reconstruction in Fig. 4a and b reveals for identical
XML operations that the mere use of SPLIDs (instead of SEQIDs) improved the
response times by a factor of up to 5 and more. This observation may convince
the reader that node labeling is of utmost importance for XML processing. It is
not only essential for internal navigation and set-based query processing, but,
obviously, also most important for lock manager flexibility and performance.

4 Further Performance Drivers

Every improvement of the lock protocol shifts the issue of multi-user synchro-
nization a bit more from the level of logical XML trees down to the underlying
storage structures, which is a B*-tree in our case. Hence, an efficient and scalable
B*-tree implementation in an adjusted infrastructure is mandatory.

D1: B*-tree Locking. Our initial implementation revealed several concurrency
weaknesses we had to remove. First, tree traversal locked all visited index pages
to rely on a stable ancestor path in case of leaf page split or deletion. Thus,
update operations lead to high contention. Further, the implemented page access
protocol provoked deadlocks under some circumstances. Although page locking
itself was done by applying normal locks of our generic lock manager, where
deadlocks could be easily detected and resolved, they had a heavy effect on the
overall system performance. Thus, we re-implemented our B*-tree to follow the
ARIES protocol [12] for index structures, which is completely deadlock-free and
can therefore use cheap latches (semaphores) instead of more expensive locks.
Further, contention during tree traversals is reduced by latch coupling, where at
most a parent page and one of its child pages are latched at the same time.

D2: Storage Manager. Navigational performance is a crucial aspect of an
XML engine. A B*-tree-based storage layout, however, suffers from indirect ad-
dressing of document nodes, because every navigation operation requires a full
root-to-leaf traversal, which increases both computational overhead and page-
level contention in the B*-tree. Fortunately, navigation operations have high
locality in B*-tree leaves, i.e., a navigation step from a context node to a related
node mostly succeeds in locating the record in the same leaf page. We exploit
this property, by remembering the respective leaf page and its version number
for nodes accessed as a hint for future operations. Each time when re-accessing
the B*-tree for a navigation operation, we use this information to first locate the
leaf page of the context node. Then, we quickly inspect the page to check if we
can directly perform the navigation in it, i.e., if the record we are looking for is
definitely bound to it. Only if this check fails, we have to perform a full root-to-
leaf traversal of the index to find the correct leaf. Note, such an additional page
access is also cheap in most cases, because the leaf page is likely to be found in
the buffer due to locality of previous references.

D3: Buffer Manager. As shown in [7], prefix-compression of SPLIDs is very
effective to save storage space when representing XML documents in B*-trees.
As with all compression techniques, however, the reduced disk I/O must be
paid with higher costs for encoding and decoding of compressed records. With

48 S. Bächle and T. Härder

page-wide prefix compression as in our case, only the first record in a page is
guaranteed to be fully stored. The reconstruction of any subsequent entry po-
tentially requires to decode all of its predecessors in the same page. Accordingly,
many entries will have to be decoded over and over again, when a buffered page
is frequently accessed. To avoid this unnecessary decoding overhead and to speed
up record search in a page, we enabled buffer pages to carry a cache for already
decoded entries. Using page latches, the page-local cache may be accessed by
all transactions and does not need further considerations in multi-user environ-
ments. Although such a cache increases the actual memory footprint of a buffered
disk page, it pays off when a page is accessed more than once – the usual case,
e.g., during navigation. Further, it is a non-critical auxiliary structure that can
be easily shrinked or dropped to reclaim main memory space.

A second group of optimizations was concerned with XML lock protocols for
which empirical experiments identified lock depth as the most performance-critical
parameter (see Sect. 1.1). Choosing lock depth 0 corresponds to document-only
locks. In the average, growing lock depth refines lock granules, but enlarges ad-
ministration overhead, because the number of locks to be managed increases. But,
conflicting operations often occur at levels closer to the document root (at lower
levels) such that fine-grained locks at levels deeper in the tree do not always pay
off. A general reduction of the lock depth, however, would jeopardize the benefits
of our tailored lock protocols.

D4: Dynamic Lock Depth Adjustment. Obviously, optimal lock depth de-
pends on document properties, workload characteristics, and other runtime pa-
rameters like multiprogramming level, etc., and has to be steadily controlled
and adjusted at runtime. Therefore, we leveraged lock escalation/deescalation as
the most effective solution: The fine-grained resolution of a lock protocol is –
preferably in a step-wise manner – reduced by acquiring coarser lock granules
(and could be reversed by setting finer locks, if the conflict situation changes).
Applied to our case, we have to dynamically reduce lock depth and lock sub-
trees closer to the document root using single subtree locks instead of separate
node locks for each descendant visited. Hence, transactions initially use fine lock
granules down to high lock depths to augment permeability in hot-spot regions,
but lock depth is dynamically reduced when low-traffic regions are encountered
to save system resources. Using empirically proven heuristics for conflict poten-
tial in subtrees, the simple formula threshold = k ∗ 2−level delivered escalation
thresholds, which takes into account that typically fanout and conflicts decrease
with deeper levels. Parameter k is adjusted to current workload needs.

D5: Avoidance of Conversion Deadlocks. Typically, deadlocks occurred
when two transactions tried to concurrently append new fragments under a
node already read-locked by both of them. Conversion to an exclusive lock in-
volved both transactions in a deadlock. Update locks are designed to avoid such
conversion deadlocks [6]. Tailored to relational systems, they allow for a direct
upgrade to exclusive lock mode when the transaction decides to modify the cur-
rent record, or for a downgrade to a shared lock when the cursor is moved to the

The Real Performance Drivers behind XML Lock Protocols 49

next record without any changes. Transactions in XDBMS do not follow such
easy access patterns. Instead, they often perform arbitrary navigation steps in
the document tree, e.g., to check the content child elements, before modifying a
previously visited node. Hence, we carefully enriched our access plans with hints
when to use update locks for node or subtree access.

5 Effects of Various Optimizations

We checked the effectivity of the infrastructure adjustments (D1, D2, and D3),
before we focused on further XML protocol optimizations (D4 and D5). Based on
our re-implemented B*-tree version with the ARIES protocol (D1), we verified
the performance gain of navigation optimizations for D2 and D3. We stored an
8MB XMark document in a B*-tree with 8K pages and measured the average
execution time of the dominating operations FirstChild and NextSibling during
a depth-first document traversal. We separated the execution times for each
document level, because locality is potentially higher at deeper levels.

The results in Fig. 6a and b confirm that the optimizations of D2 and D3
help to accelerate navigation operations. With speed-ups of roughly 70% for all
non-root nodes, the benefit of both is nearly the same for the FirstChild opera-
tion. The fact that the use of cached page entries results even in a slightly higher
performance boost than the drastic reduction of B*-tree traversals through the
use of page hints, underlines the severeness of repeated record decoding. The
actual depth of the operation does not play a role here. In contrast, the page-
hint optimization shows a stronger correlation to the depth of a context node.
As expected, page hints are less valuable for the NextSibling operation at lower
levels, because the probability that two siblings reside in the same leaf page is
lower. For depths higher than 2, however, this effect completely disappears. For
the whole traversal, the hit ratio of the page hints was 97.88%. With documents
of other size and/or structure, we achieved comparable or even higher hit ra-
tios. Even for a 100MB XMark document, e.g., we still obtained a global hit
ratio of 93.34%. With the combination of both optimizations, we accomplished
a performance gain in the order of a magnitude for both operation types.

To examine and stress-test the locking facilities with the lock protocol op-
timizations of D4 and D5, situations with a high blocking potential had to be
provoked. We created mixes of read/write transactions, which access and modify

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11

[Node Level]

Default
Page Hint

Entry Cache
Page Hint + Entry Cache

(a) First-Child Operation

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10 11

(b) Next-Sibling Operation

Fig. 6. Relative execution times of navigation operations (%)

50 S. Bächle and T. Härder

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(a) Committed (old)

 100

 200

 300

 400

 500

SU 0 1 2 3 4 5 6 7 8

[Lock Depth]

no escalation
moderate

eager
aggressive

(b) Aborted (old)

 1000

 2000

 3000

 4000

 5000

 6000

 7000

SU 0 1 2 3 4 5 6 7 8

(c) Committed (new)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

SU 0 1 2 3 4 5 6 7 8

(d) Aborted (new)

Fig. 7. Effects of lock depth and lock escalation on transaction throughput (tpm)

a generated XMark document at varying levels and in different granules [1]. We
again chose an initial document size of only 8 MB and used a buffer size large
enough for the document and auxiliary data structures. Further details of the
specific workloads are not important here, because we only aim at a differen-
tial performance diagnosis under identical runtime conditions. To get insight in
the behavior of the lock-depth optimization D4, we measured the throughput
of transactions per minute (tpm) and ran the experiments for three escalation
thresholds (moderate, eager, aggressive) in single user mode (SU) and in multi-
user mode with various initial lock depths (0–8).

To draw the complete picture and to reveal the dependencies to our other op-
timizations, we repeated the measurements with two XTC versions: XTC based
on the old B*-tree implementation and XTC using the new B*-tree implemen-
tation together with the optimizations D2 and D3. To identify the performance
gain caused by D1–D3, we focused on transaction throughput, i.e., commit and
abort rates, and kept all other system parameters unchanged. Fig. 7 compares
the experiment results. In single-user mode, the new version improves through-
put by a factor of 3.5, which again highlights the effects of D2 and D3. The
absence of deadlocks and the improved concurrency of the latch-coupling proto-
col in the B*-tree (D1) becomes visible in the multi-user measurements, where
throughput speed-up even reaches a factor of 4 (Fig. 7a and c) and the abort
rates almost disappear for lock depths > 2 (Fig. 7b and d).

Deadlocks induced by the old B*-tree protocol were also responsible for the
fuzzy results of the dynamic lock depth adjustment (D4). With a deadlock-free
B*-tree, throughput directly correlates with lock overhead saved and proves the
benefit of escalation heuristics (Fig. 7c and d).

In a second experiment, we modified the weights of the transactions in the
previously used mix to examine the robustness of the approach against shifts in

The Real Performance Drivers behind XML Lock Protocols 51

 400

 800

 1200

 1600

 2000

 2400

Default Deep Flat

single user
no escalation
moderate
optimized
opt. + aggressive

(a) Committed (old)

 20

 40

 60

 80

Default Deep Flat

no escalation
moderate
optimized
optimized + aggressive

(b) Aborted (old)

 1000

 2000

 3000

 4000

 5000

 6000

Default Deep Flat

(c) Committed (new)

 50

 100

 150

 200

 250

 300

Default Deep Flat

(d) Aborted (new)

Fig. 8. Results of workload variations and adjusted escalation strategies (tpm)

the workload characteristics. In the default workload, the document was modified
both in lower and deeper levels. In contrast, the focus in the two other workloads
is on nodes at deeper (deep) and lower (flat) levels, respectively. Additionally, we
provided optimized, update-aware variants of the transaction types to examine
the effect of careful use of update locks. For simplicity, we ran the multi-user
measurements only with initial lock depth 8.

The results in Fig. 8 generally confirm the observations of the previous exper-
iment. But, throughput comparison between old and new B*-tree variants attest
the new one a clearly better applicability for varying workloads. The value of
update locks is observable both in throughput and in abort rates. The optimized
workloads are almost completely free of node-level deadlocks, which directly pays
off in higher throughput. Here, the performance penalty of page-level deadlocks
in the old B*-tree becomes particularly obvious. Further, the results show that
our lock protocol optimizations by the performance drivers D4 and D5 comple-
ment each other, similar to the infrastructure optimizations D1–D3.

6 Conclusions

In this paper, we outlined the implementation of XML locking, thereby showing
that the taDOM family is perfectly eligible for fine-grained transaction isolation
on XML document trees. We disclosed lock management overhead and empha-
sized the performance-critical role of node labeling, in particular, for acquiring
intention locks on ancestor paths. In the course of lock protocol optimization,
we have revealed the real performance drivers: adjusted measures in the sys-
tem infrastructure and flexible options of the lock protocols to respond to the
workload characteristics present. All performance improvements were substanti-
ated by numerous measurements in a real XDBMS and under identical runtime

52 S. Bächle and T. Härder

conditions which enabled performance comparisons of utmost accuracy – not
reachable by comparing different systems or running simulations.

References

1. Bächle, S., Härder, T.: Implementing and Optimizing Fine-Granular Lock Man-
agement for XML Document Trees. In: Proc. DASFAA Conf., Brisbane (2009)

2. Christophides, W., Plexousakis, D., Scholl, M., Tourtounis, S.: On Labeling Schemes
for the Semantic Web. In: Proc. 12th Int. WWW Conf., pp. 544–555 (2003)

3. Document Object Model (DOM) Level 2 / Level 3 Core Specification. W3C Rec-
ommendation (2004), http://www.w3.org/TR/DOM-Level-3-Core

4. Grabs, T., Böhm, K., Schek, H.-J.: XMLTM: Efficient transaction management for
XML documents. In: Proc. CIKM Conf., pp. 142–152 (2002)

5. Graefe, G.: Hierarchical locking in B-tree indexes. In: Proc. German Database
Conference (BTW 2007), LNI P-65, p. 18–42 (2007)

6. Gray, J., Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco (1993)

7. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data & Knowl. Eng. 60(1), 126–149
(2007)

8. Haustein, M.P., Härder, T., Luttenberger, K.: Contest of XML Lock Protocols. In:
Proc. VLDB Conference, Seoul, pp. 1069–1080 (2006)

9. Haustein, M.P., Härder, T.: Optimizing lock protocols for native XML processing.
Data & Knowl. Eng. 65(1), 147–173 (2008)

10. Helmer, S., Kanne, C.-C., Moerkotte, G.: Evaluating Lock-Based Protocols for
Cooperation on XML Documents. SIGMOD Record 33(1), 58–63 (2004)

11. Loeser, H., Nicola, M., Fitzgerald, J.: Index Challenges in Native XML Database
systems. In: Proc. German Database Conf. (BTW), LNI (2009)

12. Mohan, C.: ARIES/KVL: A key-value locking method for concurrency control of
multiaction transactions operating on B-tree indexes. In: Proc. VLDB Conf., pp.
392–405 (1990)

13. O’Neil, P., O’Neil, E., Pal, S., Cseri, I., Schaller, G., Westbury, N.: OrdPaths:
Insert-Friendly XML Node Labels. In: Proc. SIGMOD Conf., pp. 903–908 (2004)

14. Pleshachkov, P., Chardin, P., Kuznetsov, S.O.: XDGL: XPath-based concurrency
control protocol for XML data. In: Jackson, M., Nelson, D., Stirk, S. (eds.) BNCOD
2005. LNCS, vol. 3567, pp. 145–154. Springer, Heidelberg (2005)

15. Sardar, Z., Kemme, B.: Don’t be a Pessimist: Use Snapshot based Concurrency
Control for XML. In: Proc. Int. Conf. on Data Engineering, p. 130 (2006)

16. Schmidt, A., Waas, F., Kersten, M.L., Carey, M.J., Manolescu, I., Busse, R.:
XMark: A Benchmark for XML Data Management. In: Proc. VLDB Conf., pp.
974–985 (2002)

17. Schöning, H.: Tamino – A DBMS designed for XML. In: Proc. Int. Conf. on Data
Engineering, pp. 149–154 (2001)

18. Siirtola, A., Valenta, M.: Verifying parameterized taDOM+ lock managers. In:
Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M.
(eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 460–472. Springer, Heidelberg (2008)

19. XQuery Update Facility, http://www.w3.org/TR/xqupdate
20. XML on Wall Street, Financial XML Projects,

http://lighthouse-partners.com/xml
21. Yu, J.X., Luo, D., Meng, X., Lu, H.: Dynamically Updating XML Data: Numbering

Scheme Revisited. World Wide Web 8(1), 5–26 (2005)

http://www.w3.org/TR/DOM-Level-3-Core
http://www.w3.org/TR/xqupdate
http://lighthouse-partners.com/xml

XTaGe: A Flexible Generation System
for Complex XML Collections

Maŕıa Pérez, Ismael Sanz, and Rafael Berlanga

Universitat Jaume I, Spain
{mcatalan,isanz,berlanga}uji.es

Abstract. We introduce XTaGe (XML Tester and Generator), a sys-
tem for the synthesis of XML collections meant for testing and micro-
benchmarking applications. In contrast with existing approaches, XTaGe
focuses on complex collections, by providing a highly extensible frame-
work to introduce controlled variability in XML structures. In this paper
we present the theoretical foundation, internal architecture and main fea-
tures of our generator; we describe its implementation, which includes a
GUI to facilitate the specification of collections; we discuss how XTaGe’s
features compare with those in other XML generation systems; finally,
we illustrate its usage by presenting a use case in the Bioinformatics
domain.

1 Introduction

Testing is an essential step in the develoment of XML-oriented applications and
in most practical settings, this requires the creation of synthetic data.

Existing XML generators focus on either the creation of collections of a given
size (for stress testing and workload characterization purposes) or with a fixed
schema and little variation. These systems do not suit the requirements of an
emerging class of important applications in fields such as Bioinformatics and
GIS, which have to deal with large collections that present complex structural
features, and specialized content such as protein sequences or vectorial map data.

In this context, the main drawback of existing systems in our application
context is the lack of extensibility, since all systems are limited by the support
of a limited number of predefined generation primitives. Another limitation is
the uneven support for the introduction of controlled variability in generated
structures, useful for example for micro-benchmarking purposes. Finally, the
specification of collections is generally done through the manual creation of a
text-based specification file, which can be tedious and error-prone.

In this paper we introduce XTaGe (XML Tester and Generator), which focuses
on the creation of collections with complex structural constraints and domain-
specific characteristics. XTaGe contributes (i) a flexible component-based frame-
work to create highly tailored generators, (ii) a ready-made set of components that
model common patterns that arise in complex collections, (iii) easy adaptability
to new use cases using a high-level language (XQuery itself) The resulting system

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 53–67, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

54 M. Pérez, I. Sanz, and R. Berlanga

makes it possible to generate test collections whose characteristics would be very
difficult, or impossible, to replicate using the existing generic XML generators.

Related Work. As indicated above, current approaches for generating synthetic
XML data can be classified as either schema-unaware or template-based. The for-
mer are based on the specification of a few global structural characteristics, such
as maximum depth, fan-out and amount of textual data. They are commonly
used in benchmarking applications. Examples include Niagdatagen [2], xmlgen
(developed for the XMark [16]) and genxml (used in the X007 Benchmark [5]).

In contrast, template-based generators use as input an annotated schema that
precisely describe the desired structure of the output documents. The best-
known example is ToXgene [4], which defines an extension of XML Schema,
the Template Specification Language (TSL) to describe the generated XML doc-
ument content. It has some support for generating variability through the use of
probability distributions to create heterogeneous structures. Many benchmarks
applications, such as [17] and [14], generate their testing collections using ToX-
gene. Other examples of template-based generators are: VeXGene [10], MeM-
BeR [3] and [6], which bases the XML data generation on a DTD and examples
of XML instances and support the specifications of constraints of the generated
collection, such required XPath expressions.

As a special case, other approaches attempt to create new collections by trans-
forming existing ones, such as [7], which can adapt existing documents for exper-
iments meant to evaluate semantic query optimization methods; they provide a
set of four transformations to adapt existing XML documents. Another relevant
system is [15], which can modify the content of XML documents by creating
duplicates or by removing content of the documents in order to create “dirty”
documents suitable for testing data cleaning algorithms.

Outline of the Paper. The remainder of this paper is structured as follows.
First, the foundations of XTaGe are presented in Section 2. Then, the XTaGe
component-based framework is described in detail in Section 3. In Section 4 we
present the prototype and a use case that shows an application of the generation
model. Finally, Section 5 presenta a short discussion of XTaGe’s features and
introduces directions of future work.

2 Foundations of XTaGe

One of the main goals of XTaGe is to provide precise control of the generated
data when creating heterogeneous collections and, as a consequence, we will use
template-based techniques as a basis for our approach. In this section we provide
a formal basis for the definition of XML generators, which will allow us to define
a flexible mechanism for the creation and adaptation of XML generators for
complex domains.

We adopt the XML Store [9] as a suitable abstraction of XML collections, which
is commonly used in the context of XML update languages. Following [8], we will
use the following notations: the setA denotes the set of all atomic values, V is the

XTaGe: A Flexible Generation System for Complex XML Collections 55

set of all nodes, S ⊆ A is the set of all strings, and N ⊆ S is the set of strings
that may be used as tag names. The set V is partitioned into the sets of document
nodes (Vd), element nodes (Ve), attribute nodes (Va), and text nodes (Vt).

Definition 1 (XML Store). An XML store is a 6-tuple St = (V,E,<, ν, σ, δ)
where:

– V is a finite subset of V; we write V d for V ∩ Vd (resp. V e for V ∩ Ve, V a

for V ∩ Va,V t for V ∩ Vt);
– (V,E) is an acyclic directed graph (with nodes V and directed edges E) where

each node has an in-degree of at most one, and hence it is composed of trees;
if (m,n) ∈ E then we say that n is a child of m; we denote by E∗ the reflexive
transitive closure of E;

– < is a strict partial order on V that compares exactly the different children
of a common node. Hence for two distinct nodes n1 and n2 it holds that
((n1 < n2) ∨ (n2 < n1)) ⇔ ∃m ∈ V ((m,n1) ∈ E ∧ (m,n2) ∈ E))

– ν : V e ∪ V a → N labels the element and attribute nodes with their node
name

– σ : V a ∪ V t → S labels the attribute and text nodes with their string value
– δ : S → Vd a partial function that associates a document node with an URI

or a file name. It is called the document function. This function represents
all the URIs of the Web and all the names of the files, together with the
documents they contain. We suppose that all these documents are in the
store.

The following properties must hold for an XML store: each document node of
V d is the root of a tree and has only one child element; attribute nodes of
V a and text nodes of V t do not have any children; in the <-order attribute
children precede the element and text children, i.e. if n1 < n2 and n ∈ V a then
n1 ∈ V a; there are no adjacent text children, i.e. if n1, n2 ∈ V t and n1 < n2
then there is an n3 ∈ V e with n1 < n3 < n2; for all text nodes nt of V t holds
σ(nt) �= ”” ; all the attribute children of a common node have a different name,
i.e. if (m,n1), (m,n2) ∈ E and n1, n2 ∈ V a then ν(n1) �= ν(n)2.

Given an XML Store St we will use following auxiliary notations and func-
tions:

– VSt,ESt,νSt,σSt and δSt return the corresponding components of St. We also
define V d

St, V
e
St and V a

St.
– genDocNode(), genElement(), genAttribute() return members from Vd, Ve

and Va which do not exist in V d
St, V

e
St and V a

St respectively. These func-
tions are abstractions of the creation of new element document and attribute
nodes. Note that text nodes will be generated by appropriately specific func-
tions.

– root(St) is the root node of the store.
– descendantsSt(n) is the set of all nodes in St which are descendants of n.

For simplicity, and without loss of generality, in the remainder of this paper we
will ignore the partial order <, and we will not indicate the name of the XML
Store when it is obvious from context.

56 M. Pérez, I. Sanz, and R. Berlanga

2.1 Creating XML Documents from Scratch

We will model XML generators as functions that create XML Stores. Like in other
schema-based systems, the generation will be based on the specification of a base
model, whose expressivity must be the same of XML Schema languages ([13]).

Definition 2 (base model, generator, interpretation). An XTaGe base
model, M , is a tree that represents a generating functional expression (or gen-
erator, for short) f whose interpretation GenM (f) is an XML store.

A base model is, therefore, conceptually similar to the expression trees that ap-
pear when parsing programming languages. For example, consider the following
operation:

Example 1. Given a generator model tree M , The element(name) component is
a generating functional expression whose interpretation GenM (element(name))
generates a XML Store (V,E,<, ν, σ, δ) such that:

– newNode = genElement(), that is, a new node
– V = {newNode} ∪ VGen(ci) for each ci ∈ childrenT (c)
– E = {(newNode, root(Gen(ci))} ∪ (

⋃
EGen(ci)) for each ci ∈ childrenT (c)

– ν = {(newNode, name)} ∪ (
⋃{(a, b) : (a, b) ∈ νGen(ci)}) for each ci ∈

childrenT (c)
– δ =

⋃{(a, b) : (a, b) ∈ δGen(ci)} for each ci ∈ childrenT (c)
– σ =

⋃{(a, b) : (a, b) ∈ σGen(ci)} for each ci ∈ childrenT (c)

where childrenM (c) represents the children of node c in the generation model
tree M . We treat the attribute nodes similarly.1

Figure 1 represents a simple generation tree that uses the element generator.

element(root)

element(a) element(b)

(a)

<root>
<a/>

</root>

(b)

Fig. 1. A simple tree generation using the element generator component and the cor-
responding XML tree

In order to provide a functionality similar to basic XML Schema, we introduce
the following generators that account for the possible content models:

– sequence(name, attr, n,minOccurs,maxOccurs): A functional component
that is a generalization of the previously introduced element, including sup-
port for attributes (attr) a number of repetitions (n) and cardinality con-
straints (minOccurs and maxOccurs).

1 The main difference with the treatment of element nodes is that the attribute nodes
cannot be nested.

XTaGe: A Flexible Generation System for Complex XML Collections 57

– choice(name, attr, n,minOccurs,maxOccurs): A functional equivalent of the
XML Schema choice content model, represented by a bar (|) in DTDs.

The features of the generation model presented so far support the creation of
XML documents based on a fixed XML-like schema. We now introduce two
features which are specifically designed to introduce controlled variability in
collections: distributions and probability-labeled arcs.

Value Distributions. In XTaGe, every value is extracted from a probability dis-
tribution, including constant numbers and strings (which are considered to be
extracted from a suitably defined constant distribution). This includes:

– Parameters of functional components, for example the number of repetitions
n in sequences or choices.

– Synthetic content in attributes or text nodes.

This allows us to easily express empirical properties of the generated data, such
as that the number of children of a given node is normally distributed, or Zipf-like
distribution for words in textual content.

Probability-Labeled Tree Arcs. Another mechanism to introduce controlled vari-
ability in generated XML is introducing the notion of probabilistic labeling. Each
arc (u, v) in a generator tree M is labeled with a probability value p((u, v)) ∈
[0, 1]. The meaning of a probability-labeled arc is that the child functional ex-
pression v will be ignored with probability 1− p((u, v)).

Example 2. Figure 2 shows a simple generator tree that includes probability-
labeled arcs, and some of the XML trees that could be generated by it.

element(root)

element(a)

0.5

element(b)

0.7

(a)

<root>
<a/>

</root>

(b)

<root>

</root>

(c)

<root/>

(d)

<root>
<a/>

</root>

(e)

Fig. 2. A generator tree with probabilistic arcs and some possible generated trees

2.2 Transforming XML Documents

The second mechanism by which a new XML collection may be generated is
by the controlled transformation of an existing one. Analogously to tree genera-
tion model trees, we introduce a transforming functional expressions (or trans-
formations, in short). Moreover, these transformations provide the foundations
required to model global contraints over XML documents. Since there are many
transformation languages available for XML (XSLT, XDuce), we will focus in the
introduction of controlled variability into XML collections through the definition
of transforms.

58 M. Pérez, I. Sanz, and R. Berlanga

Definition 3 (locator). A locator is a function that takes an XML Store St
and returns an XML Store St′ such that:

– V ′
St ⊆ VSt

– E′
St ⊆ ESt

– St′ is well formed according to Definition 1

Example 3. Given a locator and an XML Store St, the delChild transformation
removes a random child of the root node of a tree with probability p, and returns
a new XML Store St′. We can define it as follows:

– Choose a node n ∈ children(root(l)), where l is the subtree induced by the
locator, with probability p.

– VSt′ = Vl\({n} ∪ descendantsl(n))
– ESt′ = El\{(u, v) such that u, v ∈ {n} ∪ descendants(n)}
– νSt′ , δSt′ and σSt′ are suitably modified.

Probability-labeled tree arcs are also used in transformation trees to determine if a
transformation will be applied or not in the XML documents. It is important also
to remark that transformations are applied on the original XML Store, and not on
a “different” XML store induced by the locator, which must then be grafted on the
original tree. This property allows us to define meta-transformation operations,
which can be used to combine different transformations into complex operations.
The main meta-transformation is the macro-transformation:

Definition 4 (macro-operation). Given an XML Store St and list of (loca-
tor, transformation) pairs, the macro-operation macroSt[(l1, t1), . . . , (ln, tn)] is
defined as the sequential application of all pairs to St.

3 Component-Based Framework

The concepts outlined in the previous section have been realized in XTaGe by
means of a lightweight component-oriented software model, outlined in Figure 3.
The use of components as an abstraction of the generation and transformation
functional expressions has a number of benefits directly related to the goals of
XTaGe.

First of all, it makes metadata about components and their relationships ex-
plicit. This facilitates greatly the construction of support tools such as GUIs,
and it also allows the simplified creation of new components without requiring
the modification of the XTaGe code. This can be accomplished by a simple two-
stage process: (i) create the function in a high-level language (XQuery in our
case, as we will explain presently) and (ii) register it by filling in the appro-
priate metadata. For the most complex cases (usually involving calling external
libraries), new components can be coded by implementing the appropriate in-
terface. Libraries of related components (e.g. for testing of biomedical data sets)
may be put together and maintained independently.

XTaGe: A Flexible Generation System for Complex XML Collections 59

Fig. 3. Simplified UML diagram of the XTaGe component architecture

3.1 Generators in XTaGe

In addition to the basic XML Schema-related components described in Section 2,
a number of components useful for the generation of collections with controlled
variability are pre-defined:

XOR. This generator chooses one node between all its descendants according
to their xor probability values. The descendants of a XOR constructor have
an additional probability parameter, xor probability, which determines the
likelihood of a node of being chosen by its parent.

Combi. This generator creates a new node whose tag is a combination of the
tags of its descendants.

DminDmax. The functionality of this generator is creating a new node located
n levels below its ancestor. The value of n depends on the values of the
attributes dmin and dmax of the constructor. The value of n is a random
number between dmin and dmax.

IfAncestor. This generator determines if a node appears in the new document
depending on the tag of its ancestor.

An XML node generated by one of these components is assigned a unique id
value, which can be specified by the user, automatically by the system, or by a
user-defined function. Attributes (and IDREFs, which are treated as a special
case) can be defined by the user in the generator model tree.

As mentioned above, the preferred way to create new components is by means
of the creation of an XQuery functions. XQuery was chosen because it is inher-
ently well-suite to define operations on XML trees. The function must conform
to the following signature:

60 M. Pérez, I. Sanz, and R. Berlanga

declare function component−name($comp as node()) as node()∗;

where $comp represents the component metainformation (serialized as XML),
including its parameters.

To support the creation of components, a library of XQuery functions has
been defined that permits access to the defined distributions and the structure
of the model tree.

Example 4. The following XQuery function implements the component Dmin
Dmax, using an auxiliary function to handle recursion:

declare function dmindmax($comp as node())) as node()∗ {
let $dist := $comp/param/dist
return dmindmax aux($comp, $dist) }

declare function dmindmax aux($comp as node()∗, $dist)) as node()∗ {
if ($dist = 1)
then xtg:create node($comp)
else(let $actual dist := xs: integer ($dist) − 1

let $random tag := xtg::randomTag()
return element{$random tag} {dmindmax aux($comp, $actual dist)})

}
where library function xtg:create node($comp) creates an element based on
the parameters of the component and xtg:randomTag() returns random strings.

Note the use of XPath to extract the value of the parameters from the com-
ponent metadata object. Besides the $comp parameter, the component accepts
$dist, that is a number obtained from a user-defined distribution that must lie
between the values of the parameters dmin and dmax of the component.

3.2 Transformations in XTaGe

In order to apply controlled transformations, XTaGe includes a few pre-defined
XML transformation components:

Add. This transformation component takes as input two XML trees, t1 and t2.
The component adds t2 to t1 as a descendant of the node or nodes of t1
determined by the component locator.

Delete. This component removes the node determined by the component lo-
cator of the XML document tree. The component has a parameter called
recursive, whose value determines if the operation is executed recursively or
not. If its value is 1, the node and all its descendants are removed; if its
value is 0, only the node is removed and its descendants occupy its place.
In case the nodes have references, XTaGe allows the user to specify whether
the references must be automatically re-calculated.

Change Order. This component changes the order of a node and one of its
siblings by changing their positions. The user has to determine the ancestor
of the node that is going to be changed and, optionally, the node that is going

XTaGe: A Flexible Generation System for Complex XML Collections 61

to change its position. If the user does not specify this node, the component
chooses a descendant of the ancestor node randomly. The user can also
determine the new position of the node; in case the user does not specify it,
the component determines randomly the new position.

Change Level. This component changes the position of a node and one of its
descendants, chosen by the user or randomly. The descendant will be now the
ancestor of its siblings and its ancestor will become one of its descendants.

XTaGe also allows the definition of new transformations using XQuery. The
functions must conform to the following signature:

declare function component−name($context as node(), $locator as node()∗,
$comp as node()) as node()∗;

where $context represents the current context node in the source XML docu-
ment, that defines where the transformation will be applied; $locator is the set
of nodes induced by the locator; and $comp contains metainformation about the
component.

Example 5. The XQuery function that implements the functionality of the com-
ponent Change order may be implemented as follows:

declare function change order($context, $loc, $config) as node()∗ {
let $newpos:= xtg:newPos($config)
let $child:= xtg:child($context, $config)
let $sibling := xtg: sibling ($context, $config)
return element{fn:local−name($context)}

{for $att in $context/@∗
return attribute{fn:local−name($att)}{$att},

for $c at $pos in $context/∗
return if ($pos = $newpos)

then xtg:traverse($child , $context, $config)
else (if ($c is $child)

then xtg:traverse($sibling , $context, $config)
else xtg: traverse($c,$context, $config))}

}
where:

newPos($config) returns the new position of the node, if this value is not set
in the parameter NewPos of the component Change order, the function
returns a random value in the range of [1, number of descendants of the
context node].

child($context, $config) returns the element that is going to be changed.
This node is retrieved by the locator component.

sibling($context, $config) returns the element that now occupies the po-
sition newpos.

traverse($context, $loc, $config) is a function that traverses the XML
document, element by element.

62 M. Pérez, I. Sanz, and R. Berlanga

This set of transformations does not allow the user to model global constraints
but it is possible to create and add new components that support non-local
contraints models.

4 Prototype and Use Cases

The next section presents a use case in the Bioinformatics domain in which
XTaGe is applied. It addresses the problem of evaluating techniques based on
the modification of specific characteristics of a XML collection.

4.1 Generating Controlled Testing Collections

We consider a problem of exploratory search of XML collections in the Bioinfor-
matics domain. This domain is characterized by the existence of a great number
of complex, large and heterogeneous XML data sources, which poses serious is-
sues in data integration applications [11]. Usually, a first step in the design of
these applications is the characterization of a sample of these collections, which
requires the use of approximate querying techniques due to the lack of a schema
and the presence of complex, domain-specific data such as protein sequences,
which inherently require approximate matching algorithms.

Testing of these systems is difficult, since (i) they may not correspond well
with the expected work load (ii) they might not exercise all possible structural
variations that might appear in the production system or (iii) they may contain
errors which need to be corrected [12].

In such a context, the features of XTaGe for the introduction of controlled
variability in collections may facilitate the design process greatly. Consider the
case of an application trying to integrate information coming from the complex
BioPAX collection [1], which is derived from OWL specifications and exhibits
an essentially free-form schema when translated into XML.

To account for the possible variations, XTaGe can be used to automatically
generate test cases that can be used to check for unexpected structural varia-
tions. For example, Figure 4 shows an example of a user-defined schema that
generates XML structures with BioPAX-derived information. Figure 5 shows dif-
ferent XML structures generated by this schema. Note how the structure of the
documents varies due to the probabilities and the patterns of the components.

This is also useful to help assess the performance of the approximate tech-
niques being used for data exploration, in particular in the presence of charac-
teristics of interest. This calculation requires the generation of different versions
of a same collection, each one exhibiting a different characteristic. To achieve
this goal, XTaGe can be used to generate such a set of XML collections.

Figure 6 shows the steps to generate the new versions of the XML collection.
The approach is based in a multi-step process. First, a “background collection”
is determined; this can be synthetic, or a sample of existing. Next, to facilitate
comparisons, a XML structure suitable for transformation is determined. A num-
ber of transformations are written, in order to exercise the different structural

XTaGe: A Flexible Generation System for Complex XML Collections 63

Fig. 4. An example of a user-defined schema. Note that the GUI shows the list of
available components (left pane) which can be dragged and dropped to create the
schema.

characteristics that should be tested (e.g. presence/absence of nodes or sub-
trees, changes in ordering, and so on). Finally, new versions of the background
collections are created and subjected to testing.

Next we explain with further details the two main steps required to obtain
the different versions of the background collection and we clarify them with an
example.

Creating the New XML Structure. In this first phase the user has to define the
schema of the XML fragment that, in the following phase, is going to be modified
and finally, added to the background collection. The result of executing this
schema is an XML document, which we call synthetic XML document, whose
structure and tags are well-known by the user.

In our example, we have designed a XML document that contains informa-
tion about publications, its schema is shown in Figure 7. Figure 8b shows the
synthetic XML document generated by it.

Creating Synthetic Collections. In this phase, the user has to define the schemas
of the transformations that are going to be executed in the synthetic XML
document in order to exercise the different structural characteristics that should
be tested. The goal is to create a set of n synthetic collections where each one
differs from the others in a known characteristic. The steps to do that are the
following:

64 M. Pérez, I. Sanz, and R. Berlanga

1. Create n transformation schemas, one per each characteristic to be analyzed.
Each schema is composed by a set of transformations whose execution mod-
ifies a specific characteristic of the synthetic XML document.

2. Execute each transformation schema on the synthetic XML document. The
result is a set of n modified versions of this synthetic XML document.

3. Add each modified version of the synthetic XML document to the back-
ground collection. The result of this last step is a set of n versions of the
background collection ready to testing experiments.

Fig. 5. Structures generated by the schema shown in Figure 4

Fig. 6. Steps to generate new versions of an existing XML collection

Figure 8a shows the transformation schema we have created to modify the
synthetic XML document. Then, Figure 8b shows the result of executing this
transformation schema on the synthetic XML document generated by the gen-
erator schema shown in Figure 7. The execution of this schema consists on:

1. Change Level: The execution of this component will change the positions
of the elements “Publication” and “ID”, being now the element “ID” the
ancestor and “Publication” the descendant.

XTaGe: A Flexible Generation System for Complex XML Collections 65

2. Change order: The element “Author” will occupy the second position in its
siblings set wherever it appears, due to the ancestor’s path specified in the
location parameter, “.// ∗ /[Author]”.

Later, this modified XML structure will be added to the background collection
by using an Add transformation component.

Fig. 7. A schema that generates XML documents with information about publications

Fig. 8. (a) A transformation schema and (b) a resulting document

5 Discussion and Conclusions

We have presented how the XTaGe XML generator can be used to overcome the
limitations of existing system when dealing with complex collections.

66 M. Pérez, I. Sanz, and R. Berlanga

The first issue that XTaGe addresses is the lack of adaptability of the current
generators to new domains or new use cases. Most of them cannot be adapted
to new domains because they have been designed for specific purposes in a spe-
cific domain. XTaGe provides a flexible component-based framework that makes
possible to adapt it to new specifications. The user can add new components
that implement new functionalities in order to fulfill the new requirements.

In addition, XTaGe also supports creating different versions of an existing
XML collection by applying a set of user-defined transformations as [7] does.
However, [7] supports only a limited set of 4 functions that have been imple-
mented for their specific purpose, the evaluation of semantic query optimization
techniques, and they don’t mention any way to expand this set with new func-
tions. XTaGe also provides a set of basic transformation components that encap-
sulate typical XML tree-based transformations but, in contrast to [7], XTaGe
allows the user to expand this set with other components according to the new
requirements.

Future directions for research include extending and generalizing the features
of XTaGe. We are currently focusing on the automatic generation of preliminary
generation models by examining existing samples of collections. Another impor-
tant issue is the lack of support for non-local constraint specification (as in [6]),
although XTaGe’s architecture sets the foundations to model these constraints,
specific components have to be implemented and added. Another relevant di-
rection is the extension of the component model to be able to better organize
collections of pre-defined components and managing their dependencies. Finally,
we aim to design specific generators, such as OWL instances generator and GIS
data generator, based on XTaGe. The implementation of these specific genera-
tors will be based on an MDA architecture, where the specific generator models
will be transformed into the XTaGe’s model.

In conclusion, XTaGe builds upon the main features of existing schema-aware
generators, and extends them in order to provide support for complex collec-
tions. The resulting system has excellent support for the creation of controlled
variability, which is useful in testing complex and highly specific features of XML
collections in particular domains. The component-based architecture is the basis
for a GUI, which facilitates the specification of new collections.

Acknowledgements

This work has been partially supported by the Ministry of Science and Innovation
(TIN2008-01825).

References

1. Biopax, http://www.biopax.org/
2. Aboulnaga, A., Naughton, J.F., Zhang, C.: Generating Synthetic Complex-

structured XML Data. In: WebDB 2001 (2001)

http://www.biopax.org/

XTaGe: A Flexible Generation System for Complex XML Collections 67

3. Afanasiev, L., Manolescu, I., Michiels, P.: MemBeR XML Generator,
http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

4. Barbosa, D., Mendelzon, A.O.: Declarative generation of synthetic XML data.
Software: Practice and Experience 36, 1051–1079 (2006)

5. Bressan, S., Lee, M.L., Li, Y.G., Lacroix, Z., Nambiar, U.: The XOO7 Benchmark.
In: Efficiency and Effectiveness of XML Tools, and Techniques (EEXTT 2002), pp.
146–147. Springer, London (2002)

6. Cohen, S.: Generating XML Structure Using Examples and Constraints. In: VLDB
(2008)

7. Geng, K., Dobbie, G.: An XML Document Generator for Semantic Query Opti-
mization Experimentation. In: iiWAS 2006, pp. 367–376 (2006)

8. Hidders, J., Marrara, S., Paredaens, J., Vercammen, R.: On the expressibility of
functions in XQuery fragments. Information Systems 33, 435–455 (2008)

9. Hidders, J., Michiels, P., Paredaens, J., Vercammen, R.: LiXQuery: A formal foun-
dation for XQuery research. SIGMOD Record 34(4), 21–26 (2005)

10. Jeong, H.J., Lee, S.H.: A Versatile XML Data Generator. International Journal of
Software Effectiveness and Efficiency 1, 21–24 (2006)

11. Mesiti, M., Jiménez-Ruiz, E., Sanz, I., Berlanga, R., Valentini, G., Perlasca, P.,
Manset, D.: Data integration issues and opportunities in biological XML data
management. In: Open and Novel Issues in XML Database Applications: Future
Directions and Advanced Technologies. IGI Global (2009)

12. Mlynkova, I., Toman, K., Pokorny, J.: Statistical Analysis of Real XML Data Col-
lections. In: COMAD 2006 (2006)

13. Murata, M., Lee, D., Mani, M., Kawaguchi, K.: Taxonomy of XML schema lan-
guages using formal language theory. ACM Trans. Internet Techn. 5(4), 660–704
(2005)

14. Nicola, M., Kogan, I., Schiefer, B.: An XML Transaction Processing Benchmark.
In: SIGMOD 2007 (2007)

15. Puhlmann, S., Naumann, F., Weis, M.: The Dirty XML Generator
16. Schmidt, A., Waas, F., Kersten, M., Carey, M.J., Manolesc, I., Busse, R.: XMark:

A Benchmark for XML Data Management. In: VLDB, pp. 974–985 (2002)
17. Yao, B.B., Tamer Özsu, M., Keenleyside, J.: XBench - A Family of Benchmarks

for XML DBMSs (2003)

http://ilps.science.uva.nl/Resources/MemBeR/member-generator.html

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 68–82, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Utilizing XML Clustering for Efficient XML Data
Management on P2P Networks

Panagiotis Antonellis, Christos Makris, and Nikos Tsirakis

Computer Engineering and Informatics Department,
University of Patras, Rio 26500, Greece

{adonel,makri,tsirakis}@ceid.upatras.gr

Abstract. Peer-to-Peer (P2P) data integration combines the P2P infrastructure
with traditional scheme-based data integration techniques. Some of the primary
problems in this research area are the techniques to be used for querying, index-
ing and distributing documents among peers in a network especially when
document files are in XML format. In order to handle this problem we describe
an XML P2P system that efficiently distributes a set of clustered XML docu-
ments in a P2P network in order to speed-up user queries. The novelty of the
proposed system lies in the efficient distribution of the XML documents and the
construction of an appropriate virtual index on top of the network peers.

Keywords: XML, P2P, XML clustering, XML queries, XML management.

1 Introduction

1.1 Background and Related Work

Since the emergence of file sharing applications, the P2P model has been increasingly
popular along with the deployment in distributed directory service, storage and grid
computing [18], [22]. The model refers to communications between similar processes
running in different computers, or communication between devices that are equivalent
with regard to how they exchange information and control communications. Among
the main qualities that distinguish P2P networks, we recall dynamicity of data
sources, robustness, scalability, reliability, no central administration, and no control
over data placement.

In the context of P2P computing many methods have been proposed for data
management. As far as concerning the content-based full-text search which is a chal-
lenging problem in Peer-to-Peer (P2P) systems, Tang et al. [31] developed a P2P
information retrieval system called pSearch, in which document semantics are com-
puted by latent semantic indexing in a vector space. The pSearch system can achieve
performance comparable to centralized information retrieval systems by searching
only a small number of nodes. Aberer et al. [1] proposed PGrid that builds a trie
and clusters semantically similar data, thereby providing in-network indexing. Their
algorithm is an efficient, completely decentralized approach which supports the fast,
parallel construction of structured overlay networks. BATON [16], a balanced tree
overlay structure which supports both exact queries and range queries efficiently.

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 69

Each node of the tree is stored on exactly one peer, and each node has links to its
parent, children, adjacent nodes, and selected neighbors at the same level. P-Ring [9]
proposes a P2P range index for efficiently supporting equality and range queries.
Viglas in [32] addresses the issue of building scalable distributed structures over peer-
to-peer overlay networks. In this concept he proposes schemes to maintain these
structures such as B+-trees and heap files in a DHT. P2P indexes have been proposed
for multi-dimensional data in [22], [12]. In these approaches, the entire multi-
dimensional space is partitioned and merged as peers join and leave the P2P system.
Sartiani et al. [27] proposed a p2p XML data management system called XPeer.
XPeer is currently being implemented on top of an existing persistent XML query
engine. In this system more powerful peers take up extended responsibilities for a
group of peers. Peers export a summary of their XML data in the form of a tree-
shaped DataGuide [14]. XP2P [4] is a P2P framework for answering XPath queries
which also builds on a DHT framework and allows peers to store whole or fragments
of XML documents locally, whose path expressions are encoded by Rabin’s finger-
printing method [26] and stored in the DHT. Garces et al. [13] describe techniques for
indexing data stored in peer-to-peer DHT networks. Their system built a hierarchy of
indexes using a DHT containing query-to-query mappings, such that a user can look
up more specific queries for a given broader query, thereby refining his or her inter-
ests. Skobeltysn et al. [29] proposed a solution for the efficient support of structured
queries, more specifically, XPath queries, in large-scale structured P2P systems based
on the approach of the P-Grid structured overlay network. Abiteboul et al. [2] present
KADOP which is a distributed infrastructure for warehousing XML resources in a
P2P framework. This system allows a user to publish XML resources, search for
them and declaratively built thematic portals. Some challenges arise in specific tasks,
such as the need of an efficient query language that can handle the nature of these
XML documents which may be incomplete, of different schemes and being distrib-
uted in a network. XQuery [7] is designed to provide a flexible and standardized way
of searching through (semi-structured) data that is either physically stored as XML or
virtualized as XML. Also the XKeyword [15] provides efficient keyword proximity
queries on large XML graph databases and XSearch [8] is a semantic search engine
for XML based also on keyword search. Structure based queries work effectively
when data have the same structure but require from the user to know each time the
scheme of the data in order to perform right queries. When data have different
schemes then keyword queries are more suitable.

Another challenge is techniques for indexing XML documents for this type of ap-
plications. There are three basic types of P2P indexes. First the no index type [19] just
floods data in the network for routing information but this results to a network’s over-
load. This means that the peer where the query is formed contact with neighbor peers
until there is a result. The second type is a centralized index [23] where the information
for the data that peers handle, is being stored in a single peer. For example, if a peer
enters the network, it has to send its data information to the central peer of the network
in order to be aware for future queries. This type has the drawback of central index
server bottleneck and can only be solved in a degree with the creation of copies of this
single peer. Finally a distributed index can provide better results and it depends on the
nature of the network. In structured networks each peer stores index information with a
hash function, about the data that handles. Recent research such as [28], [31] extend

70 P. Antonellis, C. Makris, and N. Tsirakis

structured P2P systems by exploiting the content of documents for determining the
keys. In [11] the authors propose a distributed catalog framework based on Chord [30].
XP2P [4] also extends Chord for XML data while RDFPeers [5] are based on Multi-
Attribute Addressable Network [6] which extends again Chord to answer multi-
attribute and range queries. A DHT-based approach is presented in [33] while a
non-DHT P2P architecture is presented in [24]. In unstructured networks there are used
routing indexes such as those presented in [10]. These routing indexes of a peer store
information about the data that neighbor peers have. In [21] the authors present two
architectures for routing XML documents, while in [20] Koloniari and Pitoura present
content-based routing of path queries using Bloom filters for indexing. Finally, the
authors at [25] present a new system, called psiX that runs on top of an existing
distributed hashing framework. PsiX supports efficient location of relevant XML docu-
ments into the network according to user-submitter XPATH queries by creating alge-
braic signatures of both XML documents and user queries.

1.2 Paper Motivation and Contribution

Most of the previous work on indexing and querying XML data over a P2P network is
based on path decomposition. Complex user queries are decomposed in separate paths
and those paths are looked-up over the network. The results of each look-up are then
merged in order to identify the matching XML documents. However, this approach
may lead in a vast increase of the number of hops required to identify relevant XML
documents in the network. In addition, all of the previous works suppose random
distribution of the XML documents among the network peers. Although this approach
imposes no restrictions of what XML documents can be stored in every peer, it results
on more complex indexing and querying algorithms.

Based on these notions, in our work we introduce an innovative scheme for storing
and querying XML data over a P2P network, called PeerXML. The proposed scheme
differentiates from the previous works in the sense that instead of assuming random
distribution of XML documents along the network peers, it introduces specific rules
of what XML documents can be stored in every network peer. More specifically, the
proposed scheme is based on clustering of the stored XML documents and then effi-
ciently distributing them along the network’s peers. Each peer can store only XML
documents belonging to the same cluster, thus ensuring a more homogeneous distri-
bution of the XML documents along the P2P network. In addition, peers who are
physically close to each other, store XML documents of the same cluster in order to
reduce costly hops between distant peers.

Rather than storing a centralized index of the XML documents, peerXML builds a
hierarchical index of the stored XML documents inspired by the VBI-tree which util-
izes multi-level Bloom filters for reducing the size of the index. An indexed approach
has been aloes used by psiX [25]. However, psiX requires an existing DHT network
to work, while our index has no such restrictions. Finally, our querying algorithm
allows a query to be processed holistically - even in the presence of ‘//’, thus eliminat-
ing additional hops when searching for matching XML documents.

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 71

Fig. 1. Example of a LevelEdge representation

The contribution of this work can be summarized as follows:

• Clustering of the XML documents using the XEdge clustering algorithm.
• Distribution of the XML documents in the network’s peers based on the

belonging cluster.
• Multi-level indexing of the network’s peers inspired by the VBI-tree

[17].
• Utilization of multi-level Bloom filters for quickly testing if a query may

match with a set of XML documents.
• Efficient routing and processing of the incoming user queries.
• Efficient handling of deletion/insertion/alteration of stored XML docu-

ments.

To our knowledge, this is the first work that utilizes XML clustering for efficiently
distributing XML documents into the P2P network peers.

2 LevelEdge Representation and XEdge Clustering Algorithm

Our system utilizes the LevelEdge representation and XEdge clustering algorithm
introduced in [3] in order to efficiently cluster the stored XML documents, before
distributing them to the underlying P2P network. Below, we briefly describe Lev-
elEdge and XEdge along with their use in our system.

The LevelEdge representation groups the distinct edges for each level in the XML
document. It is organized as a vector of levels, where each level contains a list of
distinct edges. Each distinct edge is uniquely defined by its two distinct point-nodes.
The distinct edges are first encoded as integers and those integers are used in order to
construct the LevelEdge representation of an XML document. Figure 1(b) presents
the LevelEdge representation of the XML document in Figure 1(a). The integer num-
bers in the side of each edge in the XML document are the encodings of the corre-
sponding edges. For example, all the Paper-Author edges are encoded as 3, while the
Poster-Author edge is encoded as 5.

72 P. Antonellis, C. Makris, and N. Tsirakis

Although the LevelEdge cannot be used for fully reconstructing the original XML
document, it is compact enough and it can be used for quickly answering if a query
doesn’t exist in a given XML document. If the query’s structure doesn’t match with
the LevelEdge summarized information, it is certain that the query is not contained in
the underlying XML document. However, depending on the structure of the query
and the underlying document, the LevelEdge may provide a false positive answer.
Although this case may lead to an overhead in our system, the system’s accuracy is
not affected because every positive answer leads to a full query checking against the
corresponding XML document, thus a false positive answer will be rejected after fully
checking the query against the underlying XML document.

Our system utilizes the structure of the LevelEdge representation to construct
multi-level Bloom filters for quickly checking if a query is contained in the stored
XML documents of a peer, as we describe in a later section.

The XEdge clustering algorithm is a modified version of k-Means where each XML
document is represented by its LevelEdge and which utilizes the previously described
distance metric in order to calculate the distance between two LevelEdge representations.
In addition, for every cluster we define its cluster representative. A cluster representative
is a LevelEdge representation that summarizes all the LevelEdge representations of the
XML documents belonging to the corresponding cluster. More precisely, each level of
the cluster representative contains all the distinct edges in that level of all the cluster’s
LevelEdge representations.

XEdge consists of the initialization phase and the main phase. In the initialization
phase, k clusters are formed and the initial centroid for each cluster is calculated. During
the main phase, every LevelEdge representation is checked again each cluster and is
assigned to the closest cluster. The distance between a LevelEdge representation and a
cluster is defined as the distance between and the cluster’s representative. After assign-
ing all the LevelEdge representations, the cluster representatives are recalculated. The
main phase is repeated until no cluster representative is changed.

Our system utilizes XEdge for clustering the XML documents before distributing
them to the underlying P2P network and the cluster representatives for quickly checking
if a user query may have an answer in the XML documents belonging to a specific clus-
ter. Thus, we check the query against only documents that belong to matched clusters,
as described later.

3 Multi-level Bloom Filters

In order for quickly checking if a twig query is contained in a set of XML documents,
we propose an extension of Bloom filters based on the LevelEdge representation. The
LevelEdge Bloom filter (LBF) for a LevelEdge representation L with n levels is a set
of n Bloom filters {LBF0, LBF1, … LBFn-1}. In each LBFi Bloom filter we insert all
the edges appearing in the i-th level of L. If the original LevelEdge representation
summarizes the structure of only one XML document, then the corresponding LBF
can be utilized for checking if a twig query exists in the underlying XML document.
On the other hand, if the original LevelEdge representation summarizes a set of XML
documents, then the LBF can be utilized for checking the existence of a twig query in
any document of the underlying set.

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 73

1

...
... m

...
Neighborhood i

Control peers

Leaf peers

1

...
... m

...
Neighborhood j

Control peers

Leaf peers

...

...

VBI-tree

Fig. 2. Utilized indexing scheme

The filtering of a twig query q through an LBF LF is the process of checking
whether there is possibility that q is contained in any of the documents that are sum-
marized by LF. If the filtering process returns a positive result, then we fully process
the corresponding query against every document summarized by the underlying Lev-
elEdge representation of LF. Our model is orthogonal to any method of twig query
processing against a set of XML documents.

In order to filter a twig query against a LBF we first query the edges at the first
level of the query with every level of the LBF. If we find some level(s) of the LBF
that contain all the edges of the first level of the query we continue the filtering proc-
ess, otherwise we abort it. For every such matched level of LBF we apply the follow-
ing steps: We proceed to the next level of the query and check the current edges with
the next level of the LBF. If the edges are contained in the LBF we repeat until we
reach the end of the query or until the edges are not contained in the LBF. For edges
with the ancestor/descendant axis ‘//’, the query is split at the //, and the sub-queries
are processed at all the appropriate levels. All matches are stored and compared to
determine whether there is a match for the whole query. If the query was matched
against the LBF, then there is big possibility that the query is contained in some of the
underlying XML documents; otherwise we are certain that the query is not contained
in any of the underlying XML documents.

4 Document Distribution and Index Construction

The clustering of the initial set of XML documents is performed once in a central
server, before initializing our system. The utilized clustering algorithm is the XEdge
algorithm described in Section 2. The number of formed clusters may vary and de-
pends mainly on how many different “topics” of XML documents are included in our
collection. From now on we make the assumption that the clustering algorithm has
formed k distinct clusters.

74 P. Antonellis, C. Makris, and N. Tsirakis

For every formed cluster, the XEdge algorithm creates a corresponding LevelEdge
representation, called cluster representative as described in Section 2. Our system
creates for every cluster representative an LBF as described in Section 3. Those LBFs
are used for quickly testing if a query is contained in the XML documents of a spe-
cific cluster, thus avoiding routing the query in peers that we are certain they don’t
contain XML documents matching with the query. This is a main advantage of utiliz-
ing the formed clusters for minimizing the hops during query routing and processing.
From now on, we will refer to the LBFs for the cluster representatives as CLBF1 …
CLBFk , where CLBFi is the LBF for the i-th cluster representative. As we describe
later, every peer of the network has a copy of all the CLBFs in order to speed up the
query routing and processing phase and minimize the total hops.

Our indexing scheme is inspired by the VBI-tree framework [17] which introduces
a P2P framework for multidimensional indexing schemes. Below we describe in de-
tails the proposed scheme:

The underlying P2P network is divided into k neighborhoods, with each neighbor-
hood storing and managing the XML documents of a single cluster. Each neighbor-
hood consists of physical neighbor peers, in order to minimize the total number of
required hops during query routing and processing. Thus, neighbor peers store similar
XML documents, while distant peers store different XML documents. Every
neighborhood is organized in a two-level hierarchy to help optimize the query routing
as well as the insertion/deletion/update of the stored XML documents. The low-level

peers of a neighborhood iN are called leaf peers and are used for actually storing the

XML documents of the i-th cluster. Each leaf peer stores /i id n documents, where

id is the total number of XML documents belonging to the i-th cluster and in is the

total number of leaf peers in iN . The top-level peers of iN are called control peers

and are used for query routing through the current neighborhood as well as through
different neighborhoods in the network. Every control peer is responsible for a subset

of the leaf peers in iN , called its leaf subset peers. The total number of control peers

is much smaller than the total number of leaf peers, but not too small otherwise they
will become the bottleneck of the query processing procedure described later. The
control peers of each neighborhood know all their leaf subset peers and can redirect
any query to all of them. On the other hand, the leaf peers know only their control
peer as well all their sibling leaf peers, which are the peers belonging to the same
control peer.

All the control peers of our network are organized in a multi-level indexing scheme
inspired by VBI-tree. Thus, every control peer is assigned a pair of VBI-Tree nodes: a
routing node and a data node, in which the data node is the left adjacent node of the
routing node (in the in-order traversal of the tree). We utilize this scheme for efficient
and balanced query routing through the different control peers in our network. Each
routing node of the indexing scheme maintains links to its parent, its children, its
adjacent nodes and its sideways routing tables as in VBI-tree. In addition every rout-
ing node stores a LevelEdge structure that summarizes the XML documents of all its
children data nodes (e.g. control peers) and a corresponding LBF. This LBF is used
for checking the cover area of each routing node in the VBI-tree. Thus the root node
stores an LBF that covers all the XML documents stored in the network.

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 75

A query is said to match with the cover area of a routing node if and only if it
matches with the corresponding node’s LBF. The routing algorithm described in the
original VBI-tree utilizes this cover-area check in order to identify in which nodes the
query should be forwarded.

In order for the query processing to be efficient, every control and leaf peer initial-
izes and utilizes some extra structures, described below:

Each leaf peer creates an LBF for all its XML documents, called Local LBF, which
is used for quickly determining if a query is likely to match with any stored XML
document in that peer. On the other hand, each control point stores the cluster repre-
sentative LBF for the neighborhood’s cluster along with an LBF for all the XML
documents that are stored in its leaf subset peers.

5 Query Routing and Processing

The query processing algorithm of our system utilizes the indexing structure to effi-
ciently forward the user queries to the appropriate control peers of the neighborhoods
that are possible to match the query. The set of XML documents is considered as the
total search space and each data node (control peer) of the indexing scheme contains a
region of the search space that corresponds to the XML documents belonging to its
leaf subset peers. A query intersects with a region of the search space if and only if it
matches with any of the XML documents belonging to that region. The indexing
scheme in order to apply the VBI-tree range query algorithm for forwarding the query
to the appropriate control peers should also be able to check if two regions (sets of
XML documents) intersect with each other. This can be easily done by checking the
LevelEdge structures of the corresponding routing nodes. If the two LevelEdges con-
tain at least one common edge in any of their levels, then the corresponding regions
(sets of XML documents) intersect with each other.

When a query is submitted to a peer jp of the network, the peer jp is automati-

cally responsible for processing and answering the submitted query. jp checks at

first its LBF to see if the query is likely to be contained in its XML documents. If so,
it performs a full query processing against all its stored XML documents using an
XML search algorithm and stores the results in its cache. Then, it forwards the query
to its parent control peer for further routing.

When a query reaches a control peer jc , it first checks its LBF to see if the query

is likely to be contained in the XML documents stored in its leaf subset peers. If so, it
forwards it to all its leaf subset peers. Next, it checks the cluster representative LBF to
see if the query is likely to be contained in the XML documents of the neighborhood’s
cluster. If so, it forwards the query to the rest control peers of the neighborhood.
Those peers will check their LBFs and if the query matches, they will forward the
query to their leaf subset peers. Finally, the control peer uses the VBI-tree to forward
the query to any other control peer which its LBF contain the query. The query rout-
ing is done as proposed in the original VBI-tree framework [17], with the difference
that the routing nodes check their LBFs to decide where to forward the query.

76 P. Antonellis, C. Makris, and N. Tsirakis

Algorithm 1. QueryProcessing(node n, query q)
if (n is leaf_peer) then
 if (q matches LBF of n)
 perform full match against the documents of n
 end if
 QueryProcessing(parent(n), q) /*Forward the query to the parent of n*/
else /*n is a control peer*/
 if (q matches LBF of n)
 /*Forward the query to the leaf subset peers of the control peer*/
 for (each leaf ln in leaf subset peers of n) do
 QueryProcessing(ln, q)
 end
 end if

 if (q matches CLBF of n)
 /*Forward the query to the all control peers of the neighborhood*/
 for (each control peer cp of the neighborhood(n)) do
 QueryProcessing(cp, q)
 end
 end if

 /*Now use the VBI-tree routing algorithm to forward the query into*/
 /*appropriate peers*/
 VBI_query_process(n, q)
end if

Every peer that matches any of its XML documents with the query propagates the

results back to the original peer, because this peer is responsible for gathering the total
results. The peer can utilize any ranking or top-k algorithm before displaying the
results to the end-user. From the previously described query routing process, it is
clear that the query is propagated only to the appropriate cluster neighborhood leaf
peers, thus reducing the total hops and checks.

6 Updates Handling

The proposed P2P scheme has the advantage of efficiently handling inser-
tion/deletion/alteration of the underlying XML documents. Any of those updates is
handled locally in a single neighborhood and includes updates only in the control peers
of the corresponding neighborhood and in a single leaf peer. Thus, the overhead is
always constant and relatively small as it only affects a very small number of peers in
the total P2P network. Below we describe the handling of each supported operation:

Insertion/Alteration. When a new XML document is inserted or altered in a leaf peer,
the peer itself updates its LBF in order to include the newly added/altered XML docu-
ment. In addition, it forwards the XML document to its parent control peer, which in

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 77

turn updates its LBF as well as the CLBF of the corresponding cluster. At next, it for-
wards the altered CLBF to the rest of control peers in the current neighborhood. Fi-
nally, the VBI-tree nodes are updated accordingly in order to reflect the changes in the
data nodes (control peers). It is important to note that every altered VBI-tree node also
updates its stored LBF and LevelStructure in order to reflect the changes. Thus, the
change is propagated only on nodes belonging to the path from the root to the affected
leaf peer.

Deletion. When an XML document is deleted from a leaf peer, the peer itself updates
its LBF in order to exclude the removed XML document. In addition, it forwards the
XML document to its parent control peer, which in turn updates its LBF as well as the
CLBF of the corresponding cluster. At next, it forwards the updated CLBF to the rest
of control peers in the current neighborhood. Finally, the VBI-tree nodes are updated
accordingly in order to reflect the changes in the data nodes (control peers). Again the
change is propagated only on nodes belonging to the path from the root to the affected
leaf peer.

The insertion/removal of a node from the network is handled accordingly to the
original VBI tree and is beyond the scope of our work.

7 Experimental Study

We have built a prototype P2P emulator to evaluate the performance of our proposed
indexing system over large-scale networks. The prototype was implemented in Java 6
and the experiments were performed in a machine with 2.2 Core2Duo processor and 2
GB of RAM.

In order to evaluate the performance of the proposed system, we performed two
different experiments and we counted the average number of hops required for each
query in order to reach the appropriate peers in the network. In each experiment we
utilized the Niagara XML dataset along with additionally created synthetic XML
documents to form a dataset of about 2000 XML documents. Those documents were
first clustered and then distributed in the P2P network as described. In addition we
created a varied set of user queries, with each query matching either with some XML
documents of a specific cluster or with none cluster.

For each query, which was propagated in a random leaf peer, we counted the num-
ber of hops required in order to reach the appropriate leaf peers which contain the
XML documents that match with it.

7.1 Varying Number of Peers

In this experiment, we wanted to study the relationship between the number of peers
in the network and the number of hops required for each query to be processed. Thus,
we created 8 clusters of totally 2000 XML documents which were distributed in 100,
200, 500 and 1000 number of peers in the network. For each case we counted the
average number of hops for each query in the query set. The experimental results are
shown in Table 1 and Figure 3.

78 P. Antonellis, C. Makris, and N. Tsirakis

Table 1. Results of first experiment

#Peers #Total hops #Neighbor hops #Routing hops Percentage
(#Total hops / #peers)

100 11 5 6 11%
200 19 15 4 9.5%
500 57 51 6 11.4%

1000 108 97 11 10.8%

Fig. 3. Number of hops in relation to the number of peers

As we can observe, the average number of hops required for each query to be proc-
essed is increasingly analogously to the number of peers in the P2P network. This was
an expected result because as the number of peers increases, the number of peers that
contain XML documents which match with the query increases, so the query needs to
be propagated to more nodes. In addition, due to the fact that the XML documents
belonging to each utilized cluster were very similar to each other, each query related
to a specific cluster was propagated to all the leaf peers of the corresponding network
neighborhood. This leads to the identified relationship between the number of hops
and the number of peers in the P2P network.

Table 2. Results of second experiment

#Clusters #Total hops #Neighbor hops #Routing hops
4 145 141 4
8 108 97 11

16 107 91 16

However, from Table 1 it is clear that the average number of peers engaged in the

processing of a single query is about 10% of the total peers in all cases. This means
that no matter how large is the P2P network, each single query will reach only 10% of

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 79

Fig. 4. Number of hops in relation to the number of clusters

the peers, thus the traffic is reasonably small in all cases. However, the most impor-
tant result of that experiment is that most of the required hops per query (about 90%
in most cases) are between leaf peers in the same neighborhood of the P2P network
and only about 10% are hops between routing peers. For example, in the case of 1000
peers, only 11 hops are between routing nodes, while the rest 97 are hops between
leaf peers in the same neighborhood. This means that each query requires very little
hops in order to reach the matched appropriate network neighborhood which is related
to it. After reaching it, it is being propagated to all the neighborhood’s peers as de-
scribed in Section 5.

Based on the assumption that peers belonging to the same network’s neighborhood
are physically close to each other, the cost of the neighbor hops is much less than the
cost of the routing hops. Thus the proposed scheme achieves to process user queries
with a very small number of routing hops (about 1% of the total number of peers in
the P2P network).

7.2 Varying Number of Clusters

In this experiment, we wanted to study the relationship between the number of formed
clusters (neighborhoods) in the network and the number of hops required for each
query to be processed. Thus, we emulated a P2P network of 1000 peers and formed 4,
8 and 16 clusters of totally 2000 XML documents. For each case we counted the av-
erage number of hops for each query in the query set. The experimental results are
shown in Table 2 and Figure 4.

As we can observe, the average number of hops required for each query to be proc-
essed is at first decreasing as the number of clusters increases and then converges to a
constant value. This was an expected result because as the number of clusters in-
creases, the number of control peers and the size of the VBI tree index increases but
the size of each neighborhood is decreasing, so the query requires more routing hops

80 P. Antonellis, C. Makris, and N. Tsirakis

but much less neighbor hops. Thus, the total number of hops is decreasing between 4
and 8 clusters but remains about the same between 8 and 16 clusters. The later result
comes from the fact that in the case of 16 clusters some clusters were very similar to
each other, so some queries matched with more than one cluster. This prevented the
number of hops of decreasing as expected. If the clusters were totally distinct to each
other, then the number of hops would decrease again between 8 and 16 clusters. In
addition, this experiment confirms the observation that the number of routing hops is
about 10% of the total number of hops required per query. The rest of them are hops
between leaf peers of the same network’s neighborhood.

Both experiments showed that each query requires a very small number of hops
(~1% of peers) between routing nodes of different neighborhoods. The rest of the
required hops are between nodes in the same neighborhood and are necessary, be-
cause a query that matches with a cluster’s signature (LBF) may match any document
belonging to that cluster. Thus, the query should be forwarded to every node in the
corresponding network neighborhood in order to acquire all the possible matches.
However, between nodes in the same neighborhood that are physically located close
to each other, the cost of those hops is small relatively with the cost of hops between
nodes in different neighborhoods. Thus, the main contribution of the proposed scheme
is that it eliminates the costly hops between different neighborhoods, thus reducing
the total processing time of each query.

8 Conclusions and Future Work

In this work we have presented a novel scheme for storing and querying XML data over
a P2P network. The proposed scheme is based on clustering of the stored XML docu-
ments for efficiently distributing them along the network’s peers. The proposed scheme
utilizes the XEdge clustering algorithm for clustering the XML documents and then
distributes the documents of the same cluster into peers belonging to the same network
neighborhood. This distribution is based on the assumption that peers belonging to the
same network neighborhood are physically close to each other, thus we are able to
eliminate messages between peers belonging to different network neighborhoods. This
is achieved by implementing an efficient index structure on top of the network’s
neighborhoods, inspired by the VBI-tree index and by efficiently propagated only to the
neighborhoods that match with. The experimental results showed that the total number
of hops required per query is about 10% of the total number of peers, but only 10% of
them are hops between peers in different neighborhoods.

As future work, we intend to improve our P2P network simulator in order to per-
form more detailed experiments and integrate into it other approaches too; moreover
we aim to extend our routing process in order to efficiently take into consideration not
only the query structure but the query value predicates as well.

Acknowledgements

Panagiotis Antonellis’ work was supported in part by the Hellenic State Scholarships
Foundation (IKY).

 Utilizing XML Clustering for Efficient XML Data Management on P2P Networks 81

References

1. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing Dataoriented Overlay Net-
works. In: Proc. of the 31st VLDB Conference, Trondheim, Norway, pp. 685–696 (2005)

2. Abiteboul, S., Manolescu, I., Preda, N.: Constructing and Querying Peer-to-Peer Ware-
houses of XML Resources. ICDE: 1122-1123 (2005)

3. Antonellis, P., Makris, C., Tsirakis, N.: XEdge: Clustering Homogeneous and Heteroge-
neous XML Documents Using Edge Summaries. In: 23rd Annual ACM Symposium on
Applied Computing, Fortalezza, Brazil (2008)

4. Bonifati, A., Matrangolo, U., Cuzzocrea, A., Jain, M.: XPath Lookup Queries in P2P Net-
works. In: The 6th annual ACM Intl. Workshop on Web Information and Data Manage-
ment (WIDM 2004), Washington, DC, November 2004, pp. 48–55 (2004)

5. Cai, M., Frank, M.: RDFPeers: A Scalable Distributed Repository based on a Structured
Peer-to-Peer Network. In: WWW (2004)

6. Cai, M., Frank, M., Chen, J., Szekely, P.: MAAN: A Multi-Attribute Addressable Network
for Grid Information Services. J. Grid Comput. 2(1), 3–14 (2004)

7. Chamberlin, D.: XQuery: An XML query language. IBM System Journal 41 (2003)
8. Cohen, S., Mamou, J., Kanza, Y., Sagiv, Y.: XSEarch: A semantic Search Engine for

XML. In: VLDB (2003)
9. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shanmugasundaram, J.: P-

Ring: An Efficient and Robust P2P Range Index Structure. In: Proc. of the 2007 ACM-
SIGMOD Conference, Beijing, China, pp. 223–234 (2007)

10. Crespo, A., Garcia-Molina, H.: Routing Indices for Peer-to-Peer Systems. In: ICDCS
(2002)

11. Galanis, L., Wang, Y., Jeffrey, S., DeWitt, D.: Locating Data Sources in Large Distributed
Systems. In: VLDB (2003)

12. Ganesan, P., Yang, B., Garcia-Molina, H.: One Torus to Rule them All: Multi-dimensional
Queries in P2P Systems. In: Seventh Intl. Workshop on the Web and Databases, Paris,
France (June 2004)

13. Garces-Erice, L., Felber, P.A., Biersack, E.W., Urvoy-Keller, G., Ross, K.W.: Data Index-
ing in Peer-to-peer DHT Networks. In: Proc. of the 24th IEEE Intl. Conference on Distrib-
uted Computing Systems, Tokyo, March 2004, pp. 200–208 (2004)

14. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in
Semistructured Databases. In: Proc. of the 23rd VLDB Conference, Athens, Greece, Au-
gust 1997, pp. 436–445 (1997)

15. Hristidis, V., Papakonstantinou, Y., Balmin, A.: Keyword Proximity Search on XML
Graphs. In: ICDE (2003)

16. Jagadish, H., Ooi, B.C., Vu, Q.H.: BATON: A Balanced Tree Structure for Peer-to-Peer
Networks. In: Proc. of the 31st VLDB Conference, Trondheim, Norway (2005)

17. Jagadish, H.V., Ooi, B.C., Vu, Q.H., Zhang, R., Zhou, A.: VBI-Tree: a Peer-to-Peer
Framework for Supporting Multi-Dimensional Indexing Schemes. In: ICDE (2006)

18. Jiang, H., Jin, S.: Exploiting Dynamic Querying like Flooding Techniques for Unstruc-
tured Peer-to-peer Networks. In: Proceedings of IEEE ICNP (2005)

19. Knowbuddy’s Gnutella faq (2009), http://www.rixsoft.com/Knowbuddy/gnutellafaq.html
(Accessed January 10, 2009)

20. Koloniari, G., Pitoura, E.: Content-based routing of path queries in peer-to-peer systems.
In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M.,
Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 29–47. Springer, Heidel-
berg (2004)

82 P. Antonellis, C. Makris, and N. Tsirakis

21. Koudas, N., Rabinovich, M., Srivastava, D., Yu, T.: Routing XML Queries. In: ICDE
(2004)

22. Liu, B., Lee, W.C., Lee, D.L.: Supporting Complex Multi-Dimensional Queries in P2P
Systems. In: Proc. of the 25th IEEE Intl. Conference on Distributed Computing Systems,
Columbus, OH, June 2005, pp. 155–164 (2005)

23. Napster (2009), http://www.napster.com (Accessed January 10, 2009)
24. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C., Schlosser, M., Brunkhorst, I., Loser,

A.: Super-Peer-Based Routing and Clustering Strategies for RDF-Based Peer-to-Peer
Networks. In: WWW (2003)

25. Rao, P.R., Moon, B.: Locating XML Documents in a Peer-to-Peer Network using Distrib-
uted Hash Tables. IEEE Transactions on Knowledge and Data Engineering (January 08,
2009)

26. Rabin, M.O.: Fingerprinting by Random Polynomials. Harvard University, Cambridge,
MA 02138, Tech. Rep. TR 15-81 (1981)

27. Sartiani, C., Manghi, P., Ghelli, G., Conforti, G.: XPeer: A Self-Organizing XML P2P Da-
tabase System. In: Intl. Workshop on Peer-to-Peer Computing and Databases, Greece
(2004)

28. Schmidt, C., Parashar, M.: Flexible Information Discovery in Decentralized Distributed
Systems. In: HPDC (2003)

29. Skobeltsyn, G., Hauswirth, M., Aberer, K.: Efficient Processing of XPath Queries with
Structured Overlay Networks. In: The 4th Intl. Conference on Ontologies, DataBases, and
Applications of Semantics, Aiga Napa, Cyprus (October 2005)

30. Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications. In: SIGCOMM (2001)

31. Tang, C., Xu, Z., Dwarkadas, S.: Peer-to-Peer Information Retrieval Using Self-
Organizing Semantic Overlay Networks. In: Proc. of the 2003 ACM-SIGCOMM Confer-
ence, Germany, August 2003, pp. 175–186 (2003)

32. Viglas, S.: Distributed File Structures in a Peer-to-Peer Environment. In: Proc. of the 23th
IEEE Intl. Conference on Data Engineering, Cancun, Mexico, pp. 406–415 (2007)

33. Wang, Q., Oszu, M.: A Data Locating Mechanism for Distributed XML Data over P2P
Networks. Technical report, CS-2004-45, University of Waterloo, School of Computer
Science, Waterloo, Canada (2004)

On the Termination Problem for Declarative
XML Message Processing

Tadeusz Litak and Sven Helmer�

School of Computer Science and Information Systems
Birkbeck, University of London

Malet Street, Bloomsbury, London WC1E 7HX, UK
{tadeusz,sven}@dcs.bbk.ac.uk

Abstract. We define a formal syntax and semantics for the Rule Defi-
nition Language (RDL) of DemaqLite, which is a fragment of the declar-
ative XML message processing system Demaq. Based on this definition,
we prove that the termination problem for any practically useful sub-
language of DemaqLiteRDL is undecidable, as any such language can
emulate a Single Register Machine—a Turing-complete model of compu-
tation proposed by Shepherdson and Sturgis.

1 Introduction

An important way to model active systems, i.e. systems that not only respond
to queries but trigger actions themselves (such as reordering stock when supply
levels fall below a certain threshold), is based on event processing. Event-based
systems employ event-condition-action (ECA) rules to model the application
logic, which means that actions are only triggered when certain events occur
and certain conditions are met. The concept of rule-based processing has also
been picked up by distributed systems (such as Web Services and their infrastruc-
ture) to orchestrate their activities. Message-oriented middleware, for example,
provides communication based on message queues monitoring and reacting to
incoming messages.

We focus on Demaq (DEclarative Messaging And Queuing), an XML-based
message queue management system proposed by Böhm et al. [5] that uses a
declarative rule language to specify the application logic. While a prototype of
Demaq has been implemented, no formal semantics of the rule language has
been provided yet and all available specifications of the Demaq Rule Definition
Language (RDL) and the rule execution semantics are of an informal character.
There is also no analysis of the termination of rules in Demaq. The concept of ter-
mination, i.e. determining whether rule execution will cease at some point given
a certain input, is very important for systems employing active rules. Oversights
in formulating rules can lead to unwanted side effects such as a subset of rules
triggering each other endlessly. The ability to analyze and handle termination
issues is an important prerequisite for a systematic study of rule rewriting and
� The authors gratefully acknowledge the support of an EPSRC grant EP/F002262/1.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 83–97, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

84 T. Litak and S. Helmer

optimization in active systems of this kind—see [1] for an analysis of termination
in active relational databases and Section 5 below for more references. Our work
takes place in this context and we make the following contributions:

– We give a clear-cut formal description of the syntax and semantics for a core
fragment of Demaq RDL, which we call DemaqLiteRDL.

– Working with this formal specification, we show that for any practically use-
ful fragment of DemaqLiteRDL the termination problem is undecidable. Our
undecidability proof relies on a less-known, but useful and elegant Turing-
complete model of computation proposed by Shepherdson and Sturgis [16].

Our goal was to obtain an undecidability result which relies as much as possible
on the active aspects of the language and as a little as possible on the power
of the underlying XML query and transformation language. In other words, the
design of DemaqLiteRDL is fairly minimalist. For example, the query equivalence
problem for the fragment of XPath used by DemaqLiteRDL is decidable—and
would remain decidable even if more powerful constructs were allowed. See [18]
for a particularly powerful yet decidable superset and [17] for an overview.

The remainder of this paper is organized as follows. In Section 2 we give a
brief introduction to Demaq by presenting its basic message queue management
functionality. This is followed by a formal description of the syntax and seman-
tics of DemaqLiteRDL in Section 3. We prove that the termination problem is
undecidable for DemaqLiteRDL in Section 4. Section 5 covers the related work
and Section 6 concludes the paper.

2 A Brief Introduction to Demaq

Demaq, which stands for “DEclarative Messaging And Queuing”, is a system for
managing XML messages in the context of a native XML database system (the
one specifically intended by the authors of Demaq was Natix [7]). The message
queue management is integrated into a database system in order to reuse some of
the functionality needed for reliable message queue management, such as trans-
action management and recovery mechanisms. An application is made up of sets
of rules, which are defined on XML message queues and govern the flow of mes-
sages through the system. The rule language itself is based on XQuery to allow
for native processing of XML messages, avoiding issues concerning impedance
mismatch. It was also designed as a declarative language to make it easier for
developers to write applications: there is no need to connect many different
components such as message-oriented middleware, local application logic, and
relational database systems. In the following, we give a brief overview of the
main features of Demaq; see [5] for a more detailed description.

2.1 Queues

Demaq uses queues both in order to communicate with remote systems (incoming
gateway queues and outgoing gateway queues) and to model the actual business

On the Termination Problem for Declarative XML Message Processing 85

logic of applications via rule sets (basic queues). Queues are created using the
Demaq Queue Definition Language (QDL). Here are three simple examples to
illustrate Demaq queues:

create queue customerData kind basic;

create queue incomingMsg kind incoming;

create queue outgoingMsg kind outgoing;

In full-blown Demaq, queues can have a number of properties like modes or
interfaces, which help to improve reliability of the system or to describe the way
gateway queues interact with remote systems.

2.2 Rules

The rule-based language of Demaq is an extension to XQuery, adding message-
processing functionality to the latter. The most important features of this ex-
tension cover the assignment of rules to queues, the querying of the content of
messages and queues, and enqueuing (new) messages into queues. Here is an
example of a rule that registers information about a new customer arriving at
the gateway queue incomingMsg:

create rule registerNewCust for incomingMsg
if (//registerNewCustomer) then (

enqueue message . into customerData;
enqueue message <result> new customer inserted </result> into outgoingMsg;)

else ();

The rule registerNewCust is attached to the queue incomingMsg and first checks
whether a received message contains an element called registerNewCustomer or
not. In case it does, this incoming message is then enqueued into the basic queue
customerData and a response is enqueued into the gateway queue outgoingMsg.
In case it does not contain such an element, this rule does not perform any action
(indicated by the empty else-branch).

2.3 Additional Features Not Covered by DemaqLite

There are some additional features of rules and messages, which we will only
cover very briefly here and leave out from the syntax and semantics of DemaqLi-
teRDL. They are not essential for understanding the basics of rule execution
semantics and the discussion of the termination problem. Compared to other
event-condition-action languages, Demaq is much simpler, basically containing
only rules for insertions—but not for deletion or update operations.

In addition to the content, a message can be annotated with properties, which
consist of key/value pairs. These are kept separate from the actual payload and,
once assigned, are fixed for the rest of the lifetime of a message. Properties help
in identifying certain sets of messages when accessing them some time after they
have been inserted.

Another concept, called a slicing, is used to simplify the access to specific
subsets of messages by grouping logically related messages together. A slicing

86 T. Litak and S. Helmer

Table 1. Syntax of DemaqLiteRDL (full)

ProgramEx ::= RuleCreateEx+
RuleCreateEx ::= “on-enqueue-at ” QueueName ConditionalEx EnqueueEx+
ConditionalEx ::= “if (” BoolCondEx “) ”
EnqueueEx ::= “enqueue ” MessageCreateEx “into ” QueueName“;”
MessageCreateEx ::= MessageCreateFun | SMessageEx
MessageCreateFun ::= “message { ” NodeCreateEx “ } ”
NodeCreateEx ::= “element ” StringEx “{ ” (ContentCreateEx (“,” ContentCreateEx)*)? “ } ”
ContentCreateEx ::= NodeCreateEx | AbsPathEx
BoolCondEx ::= “fn:true() ” | “fn:false() ” | AbsPathEx |

| BoolCondEx “and ” BoolCondEx | “not (”BoolCondEx“)”
AbsPathEx ::= AnyMessageEx “/” RelPathEx
AnyMessageEx ::= MMessagesEx | SMessageEx
MMessageEx ::= QueueFun
SMessageEx ::= MMessagesEx “[” PositionTest “]” | “qs:message() ”
QueueFun ::= “qs:queue (”QueueName “)”
RelPathEx ::= AxisStep (“/” AxisStep)*
AxisStep ::= ForwardStep FilterEx*
ForwardStep ::= ForwardAxis “::” NameTest
ForwardAxis ::= “child” | “descendant” | “following-sibling” | “following”
NameTest ::= NodeName | WildCardOp
WildCardOp ::= “*”
FilterEx ::= “[”BoolFilterEx“]”
BoolFilterEx ::= “fn:true() ” | “fn:false() ” | AbsPathEx

| RelPathEx | LocFilterEx | “not (”BoolFilterEx“)”
LocFilterEx ::= PositionTest | AxisTest
PositionTest ::= “ fn:position()=” (“-”)? NUM
AxisTest ::= ForwardAxis | ReverseAxis
ReverseAxis ::= “parent” | “ancestor” | “preceding-sibling” | “preceding”
StringEx == STRING
NodeName == NAME
QueueName == NAME

can range over messages from different queues (e.g. a customer together with
all their invoices). It is similar to parameterized views for relational databases,
which define a family of views [19].

3 DemaqLiteRDL and Its Formal Semantics

3.1 Syntax of DemaqLiteRDL vs. Demaq RDL

In the previous section we have already hinted that a number of features of De-
maq are going to be left out from the small fragment under consideration here:
we wanted the undecidability result to depend solely on the active aspects of the
rule language and to keep the formal semantics as simple as the undecidability
proof would allow. In particular, we are not interested in the Queue Definition
Language (QDL) mentioned in Section 2.1 above and all features presented in
Section 2.3 are left out. Besides, we use a very restricted fragment of XPath
and XQuery. For example, we do not allow the use of variables—hence there is
no counterpart of FLWOR expressions. Finally, some minor modifications are
introduced to the Demaq RDL syntax in order to make it analogous to stan-
dard ECA (event-condition-action) active database languages. The full syntax
of the DemaqLite Rule Definition Language (DemaqLiteRDL) is presented in
Table 1. To give some intuition of this language, here is a reformulation of the
RegisterNewCust rule presented in the previous section:

On the Termination Problem for Declarative XML Message Processing 87

on-enqueue-at incomingMsg
if (qs:message()/descendant::registerNewCustomer)

enqueue qs:message()into customerData;
enqueue message {

element result {
elementnew customer inserted { }

} } into outgoingMsg;

In addition to the differences mentioned above, the example makes it clear that
we do not give names to rules and do not consider text nodes—hence the contents
of the result node in the original example had to be replaced with an element
node. We are going to see more examples of DemaqLiteRDL rules in the proof
of Theorem 2 below.

3.2 Formal Semantics

The semantic types we use in evaluating DemaqLiteRDL are presented in
Table 2. The semantics itself is provided by the function EV-RUL presented
in Table 3. It utilizes auxiliary functions EV-AT, EV-CON, EX-ENQ and EX-
NOD—these are to be discussed in more detail below. This is an example of
what is known as (typed) operational semantics, just like the formal semantics
of XQuery—see [9] or [14] for more on operational semantics in general and [12],
[20] on the formal semantics of XQuery. The notation differs somewhat to the
one most commonly used (i.e., styled after logical inference rules), however we
found the present notational convention most readable and precise.

Table 2. Semantic Types

Bool ::= “fn:true() ” | “fn:false() ”
ElementSgl ::= “element ” NodeName “{ ” ElementSeq “ } ”
ElementSeq ::= ElementSgl (“,” ElementSgl)* | “fs:empty()”
MessageSgl ::= “message { ” ElementSgl “ } ” | “fs:empty()”
MessageSeq ::= MessageSgl (“,” MessageSgl)* | “fs:empty()”
Queue ::= “fs:queue ” QueueName “{ ” MessageSeq? “ } ” | “fs:empty()”
EnqStat ::= MessageSgl fs:intoQueueName | “fs:empty()”
Schedule ::= “fs:schedule { ” (EnqStat (“,” EnqStat)*)? “ } ”
Database ::= “fs:database { ” (Queue (“,” Queue)*)? “ } ”
OutcomeSgl ::= Database “+ ” Schedule
OutcomeInDet ::= “fs:outcomes { ” OutcomeSgl* “ } ”

Just like in the case of formal semantics of XQuery [20], our semantics intro-
duces a number of auxiliary abstract entities, which themselves are not part of
the DemaqLiteRDL language. In such cases, we will follow the W3C convention
of using an italicized prefix fs:. Items preceded by this prefix are used only for
specification purposes; more specifically, to define entities which have no explicit
DemaqLiteRDL constructors (see Table 2). These are, namely:

88 T. Litak and S. Helmer

– queues (fs:queue).
– their collections—which we call databases (fs:database).
– schedules (fs:schedule)—lists of pending primitive update events, i.e., mes-

sages to be enqueued together with target queue ID (preceded by the keyword
fs:into).

– possible outcomes (fs:outcomes)—possible results yielded by a given set of
rules P triggered by a given primitive enqueue event, depending on the
reordering of rules inside P . The need for fs:outcomesarises because of the
assumed indeterminism: there are no relative priorities between rules in a
given set.

– Finally, fs:empty() is used universally to denote both null items inside
queues, databases, and outcomes and the SKIP command inside schedules.
We need it for technical reasons: mostly to define evaluation results for trivial
or redundant (but well-formed) inputs.

While fs:queue { . . . } and fs:schedule{ . . . } are ordinary lists (i.e., both the
order and the number of occurrences of items does matter), fs:outcomes{ . . . } is
to be interpreted as a set constructor : the order and number of occurrences of
items inside this constructor is irrelevant. fs:database{ . . . } is to be interpreted
as a partial mapping constructor between queue identifiers and queue contents.

Thus, our interpretation of entities prefixed with fs: entails that some strings
of distinct syntactic shape may be in fact equivalent in the formal semantics.
To be precise, we write P ≡ R and say that the two expressions are semanti-
cally equivalent if one can be obtained from the other by the following standard
transformations:

– Adding or removing an arbitrary number of fs:empty() items inside all four
constructors in the fs: namespace

– Reordering, adding or removing duplicates of items inside the fs:database{
. . . } and fs:outcomes{ . . . } constructors

Let NORM denote the normalization function removing duplicates and occur-
rences of fs:empty() wherever appropriate so that NORM(S) ≡ S. Also, for all
four constructors, the ∈ notation denotes being equivalent to an item listed in
the constructor. E.g.,

(S, fs:schedule { fs:empty() }) ∈ fs:outcomes { (S, fs:schedule { fs:empty(), fs:empty() }) }

and

fs:outcomes { (S, fs:schedule { fs:empty() }) }= NORM({ (S, fs:schedule { fs:empty(), fs:empty()

}), (S, fs:schedule { fs:empty(), fs:empty(), fs:empty() }) })

Now we are in the position to define the semantics of program execution. Eval-
uation of a set of rules against database D annotated with schedule S (i.e.,
an object of semantic type OutcomeSgl) is performed by the function EV-RUL
presented in Table 3. It executes in D the first of the operations scheduled in
S (this is performed by the auxiliary function EX-ENQ) and returns the re-
sulting database annotated with an updated schedule. By the latter we mean

On the Termination Problem for Declarative XML Message Processing 89

the removal of the recently performed action from the head of the schedule and
adding at the tail of schedule all the actions initiated by the rules fired by this
update. However, as there are no relative priorities between those rules (recall
the indeterministic nature of Demaq), we have to consider all possible orders
in which the corresponding sequences of actions can be combined. This is why
EV-RUL returns results of type OutcomeInDet, that is, collections of objects of
type OutcomeSgl.

The auxiliary function EV-AT evaluates which rules were fired by a given
primitive update event and what actions were induced by these rules. In other
words, it translates from the DemaqLiteRDL language to the semantic metalan-
guage specified in Table 2 given an object of the type Database and an object of
the type EnqStat. To do so, it has to evaluate both the Demaq-specific syntactic
constructs and the fragment of XPath allowed in DemaqLite. Table 3 focuses on
the former task, delegating the job of evaluating XPath expressions to yet two
other auxiliary functions EV-CON and EX-NOD described briefly in Table 4.
They require an additional argument called a context vector : a vector represent-
ing the position of context nodes in {D,E} (see [20] and other W3C documents
for the notion of a context node and its semantic role). As each context node is
represented as a vector of integers describing its position at subsequent nesting
levels of “{ } ” in constructors, the context vector is a vector of vectors. The
only reason why we replace a single context node with a context vector is the
desire to avoid a FLWOR-like construct for iterating through a given sequence
in our variable-free language. Other than that, our semantics for navigational
XPath expressions is perfectly standard and we do not give the details.

With all those formal prerequisites, we are ready to define the basic notions of
the semantics of DemaqLiteRDL program execution: input, execution path and
the exact meaning of termination.

Definition 1
– An input consists of a database D and a primitive enqueue event E, i.e., it

is a pair of semantic types Database and EnqStat, respectively (see Table 2).
– An execution path for a given collection of rules P (of syntactic type Pro-

gEx in Table 1) and a given input (D,E) is a (possibly finite) sequence of
elements Di +Si s.t. D0 = D, S0=fs:schedule{ E } and for every i,
Di+1 +Si+1 ∈EV-RUL(Di +Si, P). If for some k, Sk ≡ fs:schedule{
fs:empty() } then Dk is called a terminal state for D + fs:schedule{ E
} and the branch itself is said to terminate.

When we restrict our attention to normalized schedules, we can define termi-
nation in an alternative way: an execution path reaches a terminal state iff it
stabilizes or reaches a fixed point. This is shown as follows:

Lemma 1. For an arbitrary argument D+S of type OutcomeSgl s.t. D=NORM
(D) and an arbitrary collection of rules P ,

D +S ∈ EV-RUL(D +S, P) iff S ≡fs:schedule{ fs:empty() } .

Moreover, if D′ �≡ D, then D′ +S′ �∈ EV-RUL(D + { fs:empty() } ,P) for
any S′.

90 T. Litak and S. Helmer

T
a
b
le

3
.
Fo

rm
al

Se
m

an
ti
cs

:
E

xe
cu

ti
on

s
of

P
ro

gr
am

s
(N

on
de

te
rm

in
is
ti
c

R
ul

e
Se

ts
)

E
V

-R
U

L
:
(O

u
tc

om
eS

gl
,P

ro
gE

x)
→

O
u
tc

om
eI

n
D

et
F
ix

D
:=

fs
:d
a
t
a
b
a
s
e
{

Q
0
,
..

.,
Q

n
−

1
}

,
S

:=
D

+
fs

:s
c
h
e
d
u
l
e
{

E
0
,
..

.,
E

k
−

1
}

E
V

-R
U

L
(S

,
R

0
;.

..
;R

l−
1
;
)

=
N

O
R

M
(f
s:
o
u
t
c
o
m
e
s
{

P
}

)
w

h
er

e
P

:=
th

e
li
st

of
al

l
E

X
-E

N
Q

(D
,E

0
)
+

fs
:s
c
h
e
d
u
l
e
{

E
1
,
..

.,
E

k
−

1
,
E

V
-A

T
(D

,E
0
,R

f
(0

)
),

..
.,

E
V

-A
T

(D
,E

0
,R

f
(l

−
1
)
)

}
fo

r
ea

ch
p
os

si
b
le

p
er

m
u
ta

ti
on

f
of

{0
,
..

.,
l
−

1}
E

X
-E

N
Q

:
(D

at
ab

as
e ,

E
n
qS

ta
t)

→
D

at
ab

as
e

(a
u
xi

li
ar

y
m

ap
p
in

g)
K

ee
p

th
e

sa
m

e
D

as
ab

ov
e

E
X

-E
N

Q
(D

,M
′
fs

:i
n
t
o

Q
j
)

=
D

w
it

h
fs

:q
u
e
u
e

Q
j
{

M
}

re
p
la

ce
d

w
it

h
fs

:q
u
e
u
e

Q
j
{

M
,
M

′
}

an
d

E
X

-E
N

Q
(D

,
fs

:e
m
p
t
y
(
)
)

=
D

A
b
sE

xp
r

::
=

N
od

eC
re

at
eE

x
|
A

b
sP

at
h
E

x
|
M

es
sa

ge
C

re
at

eF
u
n

|
C

on
d
it

io
n
al

E
x
|
E

n
qu

eu
eE

x
|
R

u
le

C
re

at
eE

x
A

b
sO

u
tT

yp
e

::
=

E
le

m
en

tS
gl

|
E

le
m

en
tS

eq
|
M

es
sa

ge
S
gl

|
B

oo
l
|
E

n
qS

ta
t
|
S
ch

ed
u
le

E
V

-A
T

:
(D

at
ab

as
e,

E
n
qS

ta
t,

A
b
sE

xp
r)

→
A

b
sO

u
tT

yp
e

F
ix

D
:=

fs
:d
a
t
a
b
a
s
e
{

Q
1
,
..

.,
Q

n
}

an
d

E
of

ty
p
e

E
n
qS

ta
t

N
od

eC
re

at
eE

x
ev

al
u
at

es
to

ty
p
e

E
le

m
en

tS
gl

E
V

-A
T

(D
,
E

,
e
l
e
m
e
n
t

N
{

S
}

)
=
{e

l
e
m
e
n
t

N
{

}
if

E
V

-A
T

(D
,
E

,S
)
≡

fs
:e
m
p
t
y
(
)

e
l
e
m
e
n
t
{

E
V

-A
T

(D
,
E

,S
)

}
el

se

A
b
sP

at
h
E

x
ev

al
u
at

es
to

ty
p
e

E
le

m
en

tS
eq

E
V

-A
T

(D
,
E

,
A

/R
)

=
E

X
-N

O
D

(E
V

-C
O

N
({

D
,
E

}
,A

/R
,(

(0
))

))

M
es

sa
ge

C
re

at
eF

u
n

ev
al

u
at

es
to

ty
p
e

M
es

sa
ge

S
gl

E
V

-A
T

(D
,
E

,
m
e
s
s
a
g
e
{

S
}

)
=
{m

e
s
s
a
g
e
{
e
l
e
m
e
n
t

E
l

}
if

E
V

-A
T

(D
,
E

,
S
)

=
e
l
e
m
e
n
t

E
l

fs
:e
m
p
t
y
(
)

el
se

n
ot

e:
w

e
ar

e
th

u
s

d
em

an
d
in

g
ev

er
y
m
e
s
s
a
g
e
h
as

ex
ac

tl
y

on
e
e
l
e
m
e
n
t
ch

il
d

(r
o
o
t
e
le

m
e
n
t)

C
on

d
it

io
n
al

E
x

ev
al

u
at

es
to

ty
p
e

B
oo

l

E
V

-A
T

(D
,
E

,
i
f

(A
/R

)
)

=
{f

n
:
f
a
l
s
e
(
)

if
E

V
-A

T
(D

,
E

,A
/R

)
≡

fs
:e
m
p
t
y
(
)

f
n
:
t
r
u
e
(
)

el
se

E
V

-A
T

(D
,
E

,i
f

(f
n
:
t
r
u
e
(
)
)
)

=
f
n
:
t
r
u
e
(
)

E
V

-A
T

(D
,
E

,i
f

(f
n
:
f
a
l
s
e
(
)
)
)

=
f
n
:
f
a
l
s
e
(
)

cl
au

se
s

fo
r

b
oo

le
an

s
st

an
d
ar

d

E
n
qu

eu
eE

x
ev

al
u
at

es
to

ty
p
e

E
n
qS

ta
t

E
V

-A
T

(D
,
E

,e
n
q
u
e
u
e

S
fs

:i
n
t
o

Q
i
)

=
{m

e
s
s
a
g
e

M
e

fs
:i
n
t
o

Q
i

if
E

V
-A

T
(D

,
E

,S
)

=
m
e
s
s
a
g
e

M
e

an
d

Q
i
=

Q
j

an
d

“f
s:
q
u
e
u
e

Q
i
”

oc
cu

rs
in

D
fs

:e
m
p
t
y
(
)

el
se

R
u
le

C
re

at
eE

x
ev

al
u
at

es
to

ty
p
e

(E
n
qS

ta
t

(“
,”

E
n
qS

ta
t)

?
)*

E
V

-A
T

(D
,
E

,o
n
-
e
n
q
u
e
u
e
-
a
t

Q
k
i
f

(B
)

=
{E

V
-A

T
(D

,
E

,S
0
),

..
.,

E
V

-A
T

(D
,
E

,S
m

−
1
)

if
E

V
-A

T
(D

,
E

,B
)

=
f
n
:
t
r
u
e
(
)
,

S
0
;
..

.,
S

m
−

1
;)

E
=

M
fs

:i
n
t
o

Q
k

fo
r

so
m

e
M

an
d

Q
k

oc
cu

rs
in

D
fs

:e
m
p
t
y
(
)

el
se

S
ee

T
ab

le
4

fo
r

au
xi

li
ar

y
fu

n
ct

io
n
s

E
V

-C
O

N
an

d
E

X
-N

O
D

.

On the Termination Problem for Declarative XML Message Processing 91

Table 4. Formal Semantics Continued: Auxiliary Functions EV-CON and EX-NOD

ContextExpr ::= RelPathEx | AbsPathEx | AnyMessageEx
ContextResultType ::= ElementSgl | ElementSeq | MessageSgl
EV-CON: (Database, EnqStat, ContextExpr, ((N∗)∗ | fs:empty())) → ((N∗)∗ | fs:empty())
EX-NOD: (Database, EnqStat, ((N∗)∗ | fs:empty())) → ContextResultType

Fix D := fs:database { Q0, . . . , Qn−1 } and E of type EnqStat
EV-CON({ D, E } , S,fs:empty()) = fs:empty()
An auxiliary function LOCAT({ D, E } , T) returns the position of the item denoted by T inside
the nested list NORM({ D, E }) as a N

∗-vector assuming T occurs exactly once and fs:empty()
otherwise
Another auxiliary function ELEMS-AT({ D, E } , n) returns the length of the sequence pointed by
the vector n inside the nested list NORM({ D, E }) if the node pointed to exists and fs:empty()
otherwise
As we keep { D, E }fixed in this table, we drop it in our notation

EV-CON(qs:message() ,v) ={ (1) if E �≡fs:empty()
fs:empty() else

EV-CON(qs:queue (Qi[fn:position()=m]),v) ={ ((LOCAT(qs:queue (Qi),((0))),m − 1)) if
LOCAT(qs:queue (Qi),((0))) �= fs:empty()

and m < ELEMS-AT(LOCAT(qs:queue (Qi)))
fs:empty() else

EV-CON(qs:queue (Qi[fn:position()=−m]),v)
={ ((LOCAT(qs:queue (Qi),((0))),k − m + 1)) if

LOCAT(qs:queue (Qi),((0))) �= fs:empty()and m < k
where k = ELEMS-AT(LOCAT(qs:queue (Qi)))

fs:empty() else

We give just one example for the evaluation of XPath navigational expressions:
EV-CON(child::N [B],((v0

0 , . . . , v0
j0−1), . . . , (vk−1

0 , . . . , vk−1
jk−1−1))) =

((v0
0 , . . . , v0

j0−1, v0
g0
0
), . . . , (v0

0 , . . . , v0
j0−1, v0

g0
f
(0)

), . . .

. . . (vk−1
0 , . . . , vk−1

jk−1−1, v0
g

k−1
0

), . . . , (vk−1
0 , . . . , vk−1

jk−1−1, vk−1

g
k−1
f

(k−1)
)),

where for every i ∈ {0, . . . , k − 1}, gi
0, . . . , gi

f(i)−1 is the list of those indices on the list pointed to

by LOCAT(vi
0, . . . , vi

ji−1) (i.e., all children of the corresponding node) which are labeled by N and

satisfy the condition B, while f(i) ≤ELEMS-AT(vi
0, . . . , vi

ji−1) stores the number of such children

items. If no item of those pointed to by (v0
0 , . . . , v0

j0−1), . . . , (vk−1
0 , . . . , vk−1

jk−1−1) has such a child,

then the result is fs:empty().
Finally, the function EX-NOD(v) extracts the items pointed to by vectors in v.

Proof (Sketch). The “only if” direction relies on the fact that insertions are the
only primitive events in our framework. If the head of the normalized schedule
NORM(S) is a non-trivial enqueue statement, i.e., is of the form M fs:intoQi

for some Qi occurring in D, then the definition of EX-ENQ forces that for every
D′ +S′ ∈EV-RUL(D +S, P), D′ �≡ D. If the head of the schedule NORM(S)
evaluates to fs:empty(), it is removed from S′ via the normalization procedure
if S′ contains any other scheduled event; thus S′ is strictly shorter than S.
Note that the head of the normalized schedule NORM(S) cannot be equal to
fs:empty(). The “if” direction of the equivalence is a useful exercise for the
reader to understand the working of the formal semantics. ��
It is an interesting question whether termination depends on the order of exe-
cution of the rules. However, for the purposes of the present paper it is actually
irrelevant, as the set of rules used in the undecidability proof is going to be
deterministic in the sense defined below and thus the issue of non-equivalent
possible execution sequences cannot arise at all.

92 T. Litak and S. Helmer

Definition 2

– EV-RUL is said to be deterministic for a given triple (D +S, P) if the the
value of EV-RUL for this triple is unique up to equivalence.

– A collection of rules P is deterministic if EV-RUL(D +S, P) is determin-
istic for every D +S.

Thus, Lemma 1 entails that EV-RUL(D + fs:schedule{ fs:empty() } ,P) is
deterministic for any D and P . However, this is a trivial reason for determinism:
if no events are scheduled, no rules are triggered. More importantly, when no
more than one rule is triggered or when at most one rule can fire even if more
than one rule is triggered, then clearly no ambiguities concerning scheduling can
arise. As we are going to encounter the last situation in what follows, we record
it as a separate

Lemma 2 (Determinism). If a collection of rules is of the form

P = on-enqueue-atQ0 if (B0) . . . ; on-enqueue-atQn−1 if (Bn−1) . . . ;

and for any (D,E), there is at most one i < n s.t. EV-AT(D,E, if(Bi) . . .) =
fn : true() , then P is deterministic.

Proof. Straightforward application of semantic rules in Table 3—see the proof
of Lemma 1 above for a similar reasoning. ��

4 The Undecidability of the Termination Problem

As our undecidability proof relies on a model of computation described by Shep-
herdson and Sturgis [16, Section 5], we first give a brief introduction to their
Single Register Machine. This is followed by the actual proof.

4.1 Shepherdson-Sturgis Single Register Machine (SSSRM)

We fix an alphabet of symbols A = {a0, a1, . . . , am} for m ≥ 1, symbols a0 and
am having a special role. We follow the convention of representing a natural
number n by a sequence of n + 1 a0’s. Thus, 0 := a0, 1 := a0a0 . . . and so on.
The second special symbol am is used only as a separator and can be written as
“,”. Those are the only symbols whose presence is crucial; other ones are only for
convenience and from a theoretical point of view can be eliminated. [16] shows
how to generalize the notion of a partial recursive function in case of m > 1, i.e.,
for alphabets containing more than one non-separator symbol. The set of words
over alphabet A is, as usual, denoted as A∗.

A Shepherdson-Sturgis Single Register Machine (SSSRM) program over al-
phabet A is defined as a mapping S : {0, . . . , n − 1} �→ Im for some m ∈ N≥2,
where Im is the set of instructions in the following language (its meaning is going
to be explained below):

〈push ai〉 | 〈pop〉 | 〈 if first =ai goto line j〉,

On the Termination Problem for Declarative XML Message Processing 93

where i < m, j ∈ N (in fact, given a specific upper bound n on the number of
lines, we can restrict attention to j ≤ n). The value of S(j) will be called the
j-th line of S. The set of all SSSRM -programs over alphabet A is denoted as
PROGRAMS(A); we are going to drop A from the notation wherever it does not
lead to ambiguities. For a given S ∈ PROGRAMS of the form S : {0, . . . , n−1} �→
Im, we define maxline(S) = n (that is, the number of lines occurring in S) and
maxletter(S) = m (that is, the upper bound of the index of letters occurring in
the program code).

A pair (A, j) where a ∈ A∗ and j ∈ N is going to be called a (normal) SSSRM-
state. The set of all normal states is denoted as NORMSTATES. In addition, we
have a special halting constant Halt. The set of halting states HALTSTATES is
defined as {(A,Halt) | A ∈ A∗}. We denote ALLSTATES = NORMSTATES ∪
HALTSTATES. The semantics of SSSRM -programs is specified by the atomic
action mapping ⇒ from PROGRAMS × NORMSTATES to ALLSTATES defined
as follows:

S, (a0
. . . a

k−1
, j) ⇒

8>>>><
>>>>:

if j ≥ maxline(S) : (a0 . . . ak−1, Halt)
else if S(j) = 〈push ai〉 : (a0 . . . ak−1ai, j + 1)
else if S(j) = 〈pop〉 : (a1 . . . ak−1, j + 1)
else if S(j) =

˙
if first =ai goto line j′¸ and a0 = ai : (a0 . . . ak−1, j′)

else if S(j) =
˙
if first =ai goto line j′¸ and a0 �= ai : (a0 . . . ak−1, j + 1)

Note that we write S, (A, j) ⇒ (A′, j′) rather than ⇒ (S, (A, j)) = (A′, j′).
Intuitively, the first coordinate (A, j) denotes the input word and the second
coordinate—the number of the next line the program would execute. If there
exists a sequence (A0, j0), . . . , (Ak, jk) s.t. j0 = 0, jk = Halt and for every l < k,
S, (Al, jl) ⇒ (Al+1, jl+1), then we say S halts on input A0 with Ak as the result.

As it turns out, this simple model of computation can compute all the func-
tions computable by Turing machines. Formally, for S : {0, . . . , n− 1} �→ Im, let
us define a function fS : A∗ �→ A∗ as follows:

– if S halts on input A with B as a result, fS(A) = B;
– otherwise, fS(A) is undefined.

Shepherdson and Sturgis [16, Theorem 8.1] show that all partial recursive func-
tions over {a0, . . . , am−1} can be represented as fS for some S over {a0, . . . ,
am−1,“,”}. In the simplest case of A = {a0,“,” }, it means that SSSRM -programs
can compute all partial recursive functions over N (recall how we represent the
natural numbers!) and hence their halting problem is as undecidable as the halt-
ing problem for Turing machines. To put it formally,

Theorem 1. For any m ≥ 1, there is no algorithm to decide whether a given
S : {0, . . . , n− 1} �→ Im will halt for a given A ∈ {a0, . . . , am}∗.
In fact, just like for all models of computation equivalent to Turing machines,
one can prove a stronger result. It is easily seen that one can define a recursive
encoding of all SSSRM -programs over a given alphabet. Thus, there exists an
SSSRM -program equivalent to the universal Turing machine: a program which

94 T. Litak and S. Helmer

given the code number of another SSSRM -program S and a word A performs
exactly the same action as S would on A. The halting problem would be unde-
cidable then for this particular SSSRM -program: there is no algorithm to decide
whether it eventually halts on a given input. However, for our purposes, even
the weaker version of the result presented above would do.

4.2 Undecidability Proof

The undecidability of the halting problem for SSSRM -programs will be used
by us to show the undecidability of the termination problem for active rules in
DemaqLiteRDL. We represent an SSSRM -state (a0 . . . ak−1, j) (j ≤ n + 1) as
an XML tree whose root element node (recall it is the single child of the virtual
message root node) is labeled with j and the immediate children of the root are
labeled with subsequent letters of A as shown below:

message { element j { element a0 { } , element a1 { } , . . . , elementak−1 { } } }

Theorem 2. The question whether a given set of DemaqLiteRDL rules will ter-
minate on a given XML tree is undecidable, even under the following restrictions:

– only deterministic sets of rules are allowed—conditions are required to be
mutually disjoint, i.e., the assumptions of Lemma 2 have to be satisfied

– queries are not allowed to scan the content of messages enqueued in previous
stages—the use of qs:queue is not allowed

– no more than one queue name is allowed
– the body of every rule contains only one enqueue statement
– the use of backward axis is allowed only in axis tests and no other axis or

location tests are allowed. That is, neither the use of forward axes nor of
fn:position() is allowed in boolean filter expressions.

Proof. Assume the SSSRM -program to be encoded has n lines. We fix a single
queue—let it be called “Default”. Line numbers correspond to root labels of
messages, as described above. For each j < n, the translation of j-th line looks
as follows:

– if S(j) = 〈push ai〉 for some i ≤ m:
on-enqueue-atDefault if (qs:message()/child::j)

enqueue message { element j+1
{ qs:message()/child::*/child::*, elementai { } } }
intoDefault;

– if S(j) = 〈pop〉:
on-enqueue-atDefault if (qs:message()/child::j)

enqueue message { element j+1 { qs:message() /child::*/child::*[preceding-sibling] } }
intoDefault;

– If S(j) = 〈 if first =ai goto line j′〉 for some i ≤ m, j′ ∈ N:
on-enqueue-atDefault if (qs:message()/child::j and
qs:message() /child::*/child::ai[not (preceding-sibling)])

enqueue message { element j’ { qs:message() /child::*/child::*}}
intoDefault;

On the Termination Problem for Declarative XML Message Processing 95

on-enqueue-atDefault if (qs:message()/child::j and
not (qs:message()/child::*/child::ai[not (preceding-sibling))])

enqueue message { element j+1 { qs:message() /child::*/child::*}}
intoDefault;

We need to verify that the behavior of this set of rules on an input encoding an
SSSRM -state will mimic the behavior of the corresponding program. Our set
of rules satisfies the assumptions of Lemma 2: on a given input, the condition
of at most one of them can evaluate to fn:true() (recall that messages cannot
have more than one root element). Thus, the output is going to be deterministic
(equivalent to an element of the form fs:outcomes{ OutcomeSgl }) and as
each of those rules involves a single enqueueoperator, the schedule part of the
single outcome will consist of a single enqueue statement—either of the form “M ′

fs:intoDefault” or “fs:empty()”. It is straightforward, if tedious, to verify that
for an input of the form “M fs:intoDefault” where M is a message encoding an
SSSRM -state (A, j) as described above, the schedule part of the single outcome
is going to be of the former shape where M ′ is a message encoding the SSSRM -
state (A′, j′) s.t. S, (A, j) ⇒ (A′, j′). ��
It is possible to prove an analogous theorem for other fragments of DemaqLi-
teRDL: the most straightforward is to replace [preceding-sibling] (and its
negation) in the formulation of rules above with [fn:position()=1] (and its
negation, accordingly). Other encodings are also possible, e.g., replacing axes
other than child with the attribute axis and more involved string operations—
namely, the operations of taking substrings and concatenation. Finally, allowing
advanced use of the counting predicate fn:count would enable us to replace
the use of the SSSRM machine with the well-known 2CM-machine model of
computation along the lines sketched in [8] and [17].

5 Related Work

Looking at a fragment or a core of a language is a common approach when dealing
with such issues as the decidability of a certain problem. For example, there
are numerous papers on the decidability of XPath query containment covering
various subsets of the language ([8,13,17,21] just to name a few, for an overview
see [15]). That is one reason why we decided to investigate the active, rule-based
part of Demaq rather than reiterating results already established for XPath and
XQuery.

Attempts to isolate a core sublanguage have also been made for XQuery and
XQuery Update by Hidders et al. [10,11]. The focus, however, was on suitability
for educational and research purposes rather than on combination of decidabil-
ity and practical usefulness. We believe that DemaqLiteRDL is well-suited for
similar goals (e.g., research on query optimization or expressive power of sub-
languages). Nevertheless, there is rather little overlap with the present paper.

96 T. Litak and S. Helmer

Recently, there has been work on combining ECA rules with XML. Bailey
et al. [4] look at data consistency when updating XML documents while Bonifati
et al. examine ECA rules in an e-commerce context [6]. However, these publica-
tions focus on updates within XML documents (this also applies to [10] above),
not on message queue management. More closely related to our work is the re-
search on rule execution semantics in active database systems by Bailey et al. [2].
The main differences to our work are the relative simplicity of Demaq language
(we only consider insertions into message queues) and the indeterminism of the
order in which Demaq rules are processed. It is worth mentioning, however, that
our approach to semantics of indeterministic ECA rules was inspired by the
concluding remarks of that paper [2, Section 8.3].

6 Conclusion and Outlook

We have shown that the termination problem for DemaqLiteRDL, a very re-
strictive subset of Demaq, is undecidable. From a practical point of view, De-
maqLiteRDL is already too restricted to be of much use (e.g. it does not allow
the use of variables or FLWOR expressions), hence reducing the functionality
even further in order to arrive at a language for which the termination problem
is decidable as it was done in, e.g., [1] is not going to improve the situation.

Consequently, we want to turn our attention to rule analysis and optimization
via abstract interpretation, similar to what has been done in the context of active
(relational and functional) databases—see, e.g., [3]. On the one hand our job is
made simpler by the fact that we only have to consider insertion operations, but
on the other hand we have to be able to cope with a highly indeterministic rule
evaluation.

References

1. Bailey, J., Dong, G., Ramamohanarao, K.: Decidability and undecidability results
for the termination problem of active database rules. In: 17th ACM SIGMOD-
SIGACT-SIGART PODS Symposium, Seattle, Washington, pp. 264–273 (1998)

2. Bailey, J., Poulovassilis, A.: Abstract interpretation for termination analysis in
functional active databases. J. Intell. Inf. Syst. 12(2-3), 243–273 (1999)

3. Bailey, J., Poulovassilis, A., Courtenage, S.: Optimising active database rules by
partial evaluation and abstract interpretation. In: Ghelli, G., Grahne, G. (eds.)
DBPL 2001. LNCS, vol. 2397, pp. 300–317. Springer, Heidelberg (2002)

4. Bailey, J., Poulovassilis, A., Wood, P.: An event-condition-action language for
XML. In: 11th International World Wide Web Conference, pp. 486–495 (2002)

5. Böhm, A., Kanne, C.C., Moerkotte, G.: Demaq: A foundation for declarative XML
message processing. In: 3rd Biennial Conference on Innovative Data Systems Re-
search (CIDR), Asilomar, California, pp. 33–43 (2006)

6. Bonifati, A., Ceri, S., Paraboschi, S.: Active rules for XML: A new paradigm for
e-services. VLDB Journal 10(1), 39–47 (2001)

7. Fiebig, T., Helmer, S., Kanne, C.C., Moerkotte, G., Neumann, J., Schiele, R.,
Westmann, T.: Anatomy of a native XML base management system. VLDB Jour-
nal 11(4), 292–314 (2002)

On the Termination Problem for Declarative XML Message Processing 97

8. Geerts, F., Fan, W.: Satisfiability of XPath queries with sibling axes. In: Bierman,
G., Koch, C. (eds.) DBPL 2005. LNCS, vol. 3774, pp. 122–137. Springer, Heidelberg
(2005)

9. Hennessy, M.: The Semantics of Programming Languages: an Elementary Intro-
duction using Structural Operational Semantics. John Wiley and Sons, New York
(1990)

10. Hidders, J., Paredaens, J., Vercammen, R.: On the expressive power of XQuery-
based update languages. In: Amer-Yahia, S., Bellahsène, Z., Hunt, E., Unland, R.,
Yu, J.X. (eds.) XSym 2006. LNCS, vol. 4156, pp. 92–106. Springer, Heidelberg
(2006)

11. Hidders, J., Paredaens, J., Vercammen, R., Demeyer, S.: A light but formal intro-
duction to XQuery. In: Bellahsène, Z., Milo, T., Rys, M., Suciu, D., Unland, R.
(eds.) XSym 2004. LNCS, vol. 3186, pp. 5–20. Springer, Heidelberg (2004)

12. Katz, H., Chamberlin, D., Kay, M., Wadler, P., Draper, D.: XQuery from the
Experts: A Guide to the W3C XML Query Language. Addison-Wesley Longman
Publishing Co. Inc., Boston (2003)

13. Miklau, G., Suciu, D.: Containment and equivalence for an XPath fragment. In:
21st Symposium on Principles of Database Systems (PODS), pp. 65–76 (2002)

14. Plotkin, G.D.: A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus (1981)

15. Schwentick, T.: XPath query containment. SIGMOD Record 33(1), 101–109 (2004)
16. Shepherdson, J.C., Sturgis, H.E.: Computability of recursive functions. Journal of

ACM 10(2), 217–255 (1963)
17. ten Cate, B., Marx, M.: Navigational XPath: calculus and algebra. SIGMOD

Record 36(2), 19–26 (2007)
18. ten Cate, B., Marx, M.: Axiomatizing the logical core of XPath 2.0. Theory of

Computing Systems (to appear) Open access:
http://www.springerlink.com/content/m62011j670270282/fulltext.pdf

19. Toyama, M.: Parameterized view definition and recursive relations. In: 2nd Int.
Conf. on Data Engineering (ICDE), Los Angeles, California, pp. 707–712 (1986)

20. W3C. XQuery 1.0 and XPath 2.0 formal semantics. W3C recommendation.
http://www.w3.org/TR/xquery-semantics/

21. Wood, P.T.: Containment for XPath fragments under DTD constraints. In: Cal-
vanese, D., Lenzerini, M., Motwani, R. (eds.) ICDT 2003. LNCS, vol. 2572, pp.
297–311. Springer, Heidelberg (2002)

http://www.springerlink.com/content/m62011j670270282/fulltext.pdf
http://www.w3.org/TR/xquery-semantics/

Consistency Checking for Workflows with an
Ontology-Based Data Perspective

Gabriele Weiler1,2, Arnd Poetzsch-Heffter2, and Stephan Kiefer1

1 Fraunhofer Institute for Biomedical Engineering, St. Ingbert, Germany
{gabriele.weiler,stephan.kiefer}@ibmt.fraunhofer.de

2 Software Technology Group, University of Kaiserslautern, Germany
poetzsch@informatik.uni-kl.de

Abstract. Static analysis techniques for consistency checking of work-
flows allow to avoid runtime errors. This is in particular crucial for long
running workflows where errors, detected late, can cause high costs. In
many classes of workflows, the data perspective is rather simple, and the
control flow perspective is the focus of consistency checking. In our set-
ting, however, workflows are used to collect and integrate complex data
based on a given domain ontology. In such scenarios, the data perspective
becomes central and data consistency checking crucial.

In this paper, we motivate and sketch a simple workflow language with
an ontology-based data perspective (SWOD), explain its semantics, clas-
sify possible inconsistencies, and present an algorithm for detecting such
inconsistencies utilizing semantic web reasoning. We discuss soundness
and completeness of the technique.

1 Introduction

Workflows describe the processing of data according to a well-defined control
flow. Workflows often interact with humans and integrate them into the process-
ing. We consider workflows in which the processed data has semantic metadata
in terms of a given domain ontology, like e.g. for medical trials. Such semantic
metadata is not only crucial to allow data integration, but can also help to im-
prove data quality. In our work we show that it can be utilized to detect data
inconsistencies in the workflow definition at design time of the workflow. Such
static checking prevents executing faulty workflows where errors might occur
only months after the workflow was started, causing potentially huge costs. In
this paper we focus on the detection of data inconsistencies. Integration with ex-
isting control flow checking techniques, such as deadlock detection (e.g. [1], [2])
is considered as future work. We divide data inconsistencies into two categories:

1. Data-Dependent Control Flow Inconsistencies causing e.g. undesired abor-
tion of workflow executions or unreachable tasks due to unsatisfiable condi-
tions.

2. Semantic Data Inconsistencies causing data collected during workflow exe-
cution to be inconsistent with the knowledge of the underlying domain that
we assume to be given by a domain ontology1.

1 Similarly, one could check consistency with complex XML-schema information.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 98–113, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Consistency Checking for Workflows 99

To guarantee reliable workflow executions, it is important to detect and eliminate
the first kind of inconsistencies. Avoiding the second kind of inconsistencies
guarantees that the collected data is consistent, a prerequisite to get reliable
results from data analysis and to enable integration of data collected in different
information or workflow systems.

Few existing algorithms are able to detect data inconsistencies in workflows.
Sun et al. [3] developed a framework for detecting data flow anomalies, which
is e.g. capable of detecting missing data in conditions, but is not able to check
the satisfiability of conditions in a workflow. Eshuis [4] describes a framework for
verification of workflows based on model checking. His framework is able to check
satisfiability of conditions, but these checks consider only boolean expressions
and their dependencies. Our central contribution is an algorithm to check both
categories of data inconsistencies, in particular to verify consistency with domain
ontologies. The main aspects of this contribution are:

– Workflow Language. The considered class of workflows consists of human
processable tasks, comprising forms that users have to fill in at execution
time. We present a language for this class of workflows with a formally
defined data perspective based on an existing domain ontology. We provide
a well defined semantics for the language.

– Categories of Inconsistencies. We provide a precise definition and cate-
gorization of potential data inconsistencies that can cause problems during
workflow execution.

– ConsistencyChecking Algorithm.We describe a static consistency check-
ing technique that utilizes description logic and its reasoning services to detect
the defined inconsistencies. We discuss soundness and completeness of the al-
gorithm.

Our approach has various strengths. Semantic annotations in terms of the do-
main ontology can be assigned automatically to data collected in workflows
encoded in our workflow language. That allows to query the data in terms of
the ontology, enabling meaningful interpretation of the data and inference of
new knowledge from the data. Technologies developed for the semantic web are
reused, e.g. the Web Ontology Language (OWL) [5] and description logic reason-
ers. Consistency checking avoids that contradictory data is collected that can not
be utilized for information integration and increases reliability of the workflow
execution avoiding e.g that workflow execution aborts unexpectedly.

Our workflow language shall not be seen as a substitute to existing powerful
workflow languages, but as an example, how these languages can be augmented
with ontology-based data perspectives and profit from techniques described in
this work. The interested reader is refered to the Technical Report accompanying
this paper [6], where detailed formal descriptions and examples can be found.

The paper is structured as follows: In Sec. 2, we describe our motivating
application scenario the ontology-based trial management system ObTiMA. In
Sec. 3, we specify the workflow language. In Sec. 4, data inconsistencies and in
Sec. 5 an algorithm to detect these inconsistencies are described. We conclude
with discussion and related work.

100 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

2 ObTiMA – An Ontology-Based Trial Management
System

The motivating application for this work is ObTiMA, an ontology-based trial
management system [7], which has been developed for the European project
ACGT (Advancing Clinico Genomic Trials on Cancer) [8]. ACGT aims to provide
a biomedical grid for semantic integration of heterogeneous biomedical databases
using a shared ontology for cancer trials, the ACGT Master Ontology [9].

ObTiMA allows trial chairmen to set up patient data management systems
with comprehensive metadata in terms of the ACGT Master Ontology to facili-
tate integration with data collected in other biomedical data sources. Forms to
collect patient data during the trial can be designed and questions on the forms
can be created from the ontology in a user friendly way. Furthermore, treat-
ment plans can be designed in ObTiMA, which are workflows to guide doctors
through the treatment of a patient. A form with ontology annotation can be
assigned to each task of these treatment plans to document the patient’s treat-
ment. The algorithm described in this work will enable ObTiMA to detect data
inconsistencies in the treatment plans automatically.

3 Workflow Language

In this section we describe a simple workflow language with an ontology-based
data perspective (SWOD). A workflow description in SWOD consists of a work-
flow template describing the control flow and the forms, and a workflow anno-
tation containing the semantic description of the data.

3.1 Workflow Template

A workflow template describes tasks and their transitions. Tasks describe a piece
of work which has to be executed by a human user. Each task contains one form
that has to be filled in to document the piece of work. A form contains one
or more questions also called items. SWOD supports acyclic workflows with the
basic control flow patterns sequence, XOR-/AND-split and XOR-/AND-join (for
description of control flow patterns s. [10]). Each outgoing transition of an XOR-
split has an associated condition described in terms of an ontology (s. Sec. 3.2).
For reasons of simplicity we describe in the following SWOD, inconsistencies and
the algorithm for workflows without concurrency. An extension for concurrent
workflows can be found in [6]. To illustrate our language and our algorithm, we
use a simple example treatment plan (for outline s. Fig. 1).

3.2 Workflow Annotation

A workflow annotation describes the semantic annotation of the data in terms
of an existing domain ontology. It assigns a description from the ontology to
each item (item annotation) and to each condition (condition annotation). With

Consistency Checking for Workflows 101

Regis-
tration

Form RE

Surgery

Form SU

Condition A

Condition B

Chemo-
therapyA

Form CA

Chemo-
therapyB

Form CB

Follow
Up

Form FU
atomic task

XOR-split task

XOR-join task

Fig. 1. Example workflow: “example treatment plan”

this information, the data, stored in form based data sources, can be queried in
terms of the ontology.

Each workflow has a so-called focal point, which denotes the subject of a
workflow execution (e.g. for a treatment plan it is a patient). Each annotation
of an item or a condition refers to that focal point.

The workflow annotation of the example treatment plan is shown in Lst. 1.
It describes the item annotations of items “Age of mother”, “Type of tumor”
“Name of mother” and “Does patient have metastasis?” and the condition an-
notations of Condition A and B. The underlying domain ontology is a simple
example ontology, which is partly shown in the next paragraph. In the following,
classes of the domain ontology are prefixed with ’d:’.

WFAnnotation ExampleTreatmentPlan
focal PPatient;
FormAnnotation FormRE
ItemAnnotation(IAge OntoPath(d:HumanBeing(PPatient) hasMother(PPatient,

5 PMother) d:HumanBeing(PMother) hasAge(PMother, PAge) integer(PAge))
Value(Max(130)))

ItemAnnotation(ITum OntoPath(d:HumanBeing(PPatient) hasTumor(PPatient,
PTumor) d:Tumor(PTumor)) Specify(Case(breasttumor d:Breasttumor)
Case(nephroblastoma d:Nephroblastoma)

10 Case(other NOT(d:Breasttumor OR d:Nephroblastoma)))
FormAnnotation FormSU
ItemAnnotation(IName OntoPath(d:HumanBeing(PPatient) hasMother(PPatient,
PMother) d:HumanBeing(PMother) hasName(PMother, MName) string(MName)
Value())

15 ItemAnnotation(IMet OntoPath((d:HumanBeing(PPatient) hasMetastasis(PPatient,
PMet) d:Metastasis(PMet) Exist())

ConditionAnnotation(ConditionA
d:Metastasis(?met)∧ hasMetastasis(PPatient, ?met))

ConditionAnnotation(ConditionB
20 (=0 hasMetastasis.d:Metastasis)(PPatient))

Listing 1. Extract from workflow annotation of example treatment plan

102 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

Domain Ontology. We have chosen description logics (DL) as language for the
domain ontology, because this family of knowledge representation formalisms
provides the base of most modern ontology languages, as e.g. OWL 2, the se-
mantic web ontology language. A basic understanding of DL is required in the
following, and we refer to [11] for a detailed description.

The basic elements in DL are individuals, atomic concepts representing sets
of individuals, and roles representing binary relationships between individuals.
In DL, an ontology O introduces the terminology of an application domain.
An extract from the domain ontology for our example treatment plan is shown
below, which describes that a human being has at most one mother and his age
may be at most 150. A breast tumor is a tumor and it is located in the breast:

HumanBeing
 ((≤ 1 hasMother.HumanBeing) � (∀ hasAge.integer[≤ 150]))
Breasttumor
 (Tumor � (∀ locatedIn.Breast))

An ontology introduces the terminology as a set of axioms of the form C � D
(i.e. D subsumes C) and C ≡ D (i.e C � D and D � C), where C and D are general
concepts. DL languages can be distinguished by the constructors they provide for
defining general concepts. We currently consider the DL language ALCQ(D) for
the domain ontologies. This language provides amongst others the constructors
number restriction (e.g. ≤ 1 hasMother.HumanBeing), value restriction (e.g. ∀
locatedIn.Brain) and data type restriction (e.g. ∀ hasAge.integer[≤ 150]). The
signature of an ontology Sig(O) is the set of concepts, roles and individuals that
occur in O.

In DL an ABox A describes assertions about individuals in terms of an ontol-
ogy. An ABox contains concept assertions C(a) (i.e. individual a is an instance
of concept C), and role assertions R(a,b) (i.e. individual b is a filler of the role R
for a).

DL-reasoners exist, which can e.g. check if one concept subsumes another, if
an ontology is consistent, if an ABox is consistent wrt. an ontology, i.e. they are
not contradictory, or if an ontology implies an axiom β (written O |= β).

In most modern ontology languages, concepts are called classes and roles are
called properties. We use this notation in the following sections.

Item Annotation. An item annotation is the ontology description of an item.
It consists of an ontology path and an item constructor.

Ontology Path. An ontology path is the basic ontology description of an item.
It describes the individuals and constants, for which information is queried in
the item, and their relations to the focal point of the workflow. In a simplified
notation it can e.g. be “Patient hasTumor Tumor” or “Patient hasTumor Tumor
hasWeight Weight”. Formally an ontology path consists of variable assertions,
which represent the individuals and constants, and relation assertions. A variable
assertion consists of a variable name and a type, which can be a class or a
primitive data type from the domain ontology. Variables of the former kind
are called object variables, variables of the later kind data type variables. E.g.
in Lst. 1, line 5 the object variable PMother of type d:HumanBeing and the
data type variable PAge of type integer are described. Variables with distinct

Consistency Checking for Workflows 103

names denote distinct individuals or constants. Relations between variables can
be expressed with relation assertions (e.g. in Lst. 1, line 5 PMother and PAge
are related with hasAge). A relation between an object variable and a data
type (resp. an object) variable has to be a data type (resp. an object) property
from the domain ontology. For each workflow description one focal variable is
declared, e.g. PPatient (Lst. 1, line 2). Each ontology path of an item starts with
this variable.

Item Constructors. Different kinds of item descriptions can be assembled from
an ontology path depending on how the value of the item is considered in the
semantics (s. Sec. 3.3). Thus, we defined different item constructors. The last
variable in the ontology path is the associated variable of the item constructor.

1. Value-Items query values of data type properties from the ontology, e.g.
“age of mother” (Lst. 1, line 4-6) or “weight of patient”. Numerical value-
items can have range restrictions, denoted with Min and Max. The associated
variable has to be a data type variable. E.g. the associated variable of the
item “age of mother” is “PAge” and the maximum value is 130.

2. Exist-Items query if an individual for the associated variable exists, e.g.
“Does patient have metastasis?” (Lst. 1, line 15-16). The associated variable
has to be an object variable.

3. Specify-Items are multiple choice items, which restrict the associated vari-
able for different answers with different classes from the domain ontology,
e.g. “Type of tumor?” with answer possibilities: “breasttumor”, “nephrob-
lastoma”, “other” (Lst. 1, line 7-10). The associated variable has to be an
object variable. The answer possibilities need to have associated class de-
scriptions from the ontology which have to be subsumed by the ontology
classes which are defined as type of the associated variable.

itemAnnotation ::= ItemAnnotation(itemID ontoPath itemConstructor);
ontoPath ::= OntoPath(focPointAssert ontoPathPart);
ontoPathPart ::= (relAssert varAssert)∗;
itemConstructor ::= existItem|specifyItem|valueItem;
valueItem ::= Value(Min(minv)? Max(maxv)?);
specifyItem ::= Specify(cases);
cases ::= case | cases case;
case ::= Case(acode ontdescr);
existItem ::= Exist();
focPointAssert ::= varAssert;
relAssert ::= rel(srcvar, tarvar);
varAssert ::= type(var);

Listing 2. Grammar for an item annotation.

The grammar for an item annotation is depicted in Lst. 2. We have chosen the
notation according to this grammar here, because it is well suited to describe the
algorithms, although for storage of SWOD workflow descriptions a less redundant
notation can be used (e.g. declaring variable and relation assertions for each
form).

104 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

Condition Annotation. A condition annotation is the ontology description
of a condition. It is formalized similar to bodies of SWRL-rules (Semantic Web
Rule Language [12]), but in a simplified form. Conditions refer to the focal
variable of the workflow also called focal variable of the condition. Furthermore,
the conditions refer to condition variables, which are prefixed with “?” (e.g. ?v).
Conditions consist of a conjunction of atoms of the form class(x), dataType(x),
objProp(x, y), dataProp(x, y) or cmpOp(x, y), where class is a class description,
dataType a data type, objProp is an object property, dataProp a data type prop-
erty from the domain ontology, cmpOp is a comparison operator like ≤ and x
and y are either the focal variable of the condition, condition variables or data
values. Each condition variable has to be related by property atoms to the focal
variable. E.g. “Patient has a tumor with weight greater than 4” is formalized as
follows:

d:Tumor(?tum) ∧ hasTumor(PPatient, ?tum) ∧ hasDiameter(?tum, ?dia) ∧ float(?dia)
∧ >(?dia, 4)

3.3 Semantics of Workflow Description

We describe the semantics of a workflow description by defining workflow execu-
tions. A workflow execution starts with the start task of the workflow description.
Then tasks are executed in the order they are related with transitions. For an
XOR-split the task succeeding the condition, which is satisfied for the current
execution, is executed next. This must be exactly one in a consistent workflow
description. During execution of a task a user has to fill in a value into each item
of the associated form of the task.

Since we do not consider concurrency, at each point of execution the executed
part of the workflow can be described by a sequence of already filled items
(described by their item annotation and the filled in value). We call such a
sequence executed workflow data path (EWDP).

From such an EWDP an ABox Ap can be calculated, representing the state,
i.e. the data which has been collected until this point in the workflow execution.
This ABox is the base to query the collected data in terms of the ontology.

To derive Ap from an EWDP starting with an empty ABox, we defined a
calculus, called “ABoxRules”. The calculus extends Ap for each filled item in
EWDP as follows (illustrated with item “age of mother” (Lst. 1, line 4-6) and
value 61):

– Ontology Path. For each object variable in the ontology path an individual
is created in Ap, which is represented with the same name as the variable.
Each variable assertion type(var) is added as a concept assertion to Ap (e.g.
d:HumanBeing(PPatient) and d:HumanBeing (PMother)). Each object rela-
tion assertion rel(srcvar, tarvar) is added as a role assertion to Ap (e.g. has-
Mother(PPatient, PMother)). The individual created for the focal variable of
the workflow is called focal individual.

– Item constructor. For an item into which value v is filled in and for which
the last part of the associated ontology path is rel(srcvar, tarvar) type(tarvar),
Ap is extended according to the item constructor as follows:

Consistency Checking for Workflows 105

For a value-item, the according individual in Ap is related with the appro-
priate data type relation to the value of the item, i.e. rel(srcvar, v) is added
to Ap. For the example item hasAge(PMother, 61) is added to Ap.
For a specify-item, the according individual is restricted with the class de-
scription c, which is associated to v, i.e. c(tarvar) is added to Ap.
For an exist-item, an individual for the associated variable is only created if
value is yes. Else a concept assertion (=0 rel.type)(srcvar) is added to Ap.

Whether a condition is satisfied for an execution (i.e. the task after it is se-
lected for further execution), can be determined with the help of the ABox Ap

calculated from the EWDP ending with the last item before the condition. A
condition is satisfied for the execution if it has a valid binding to Ap. Here, we
describe valid bindings informally and refer to [6] for a formal description. A
valid binding between a condition and Ap exists if each of the variables from the
condition can be bound to an individual of Ap, where the focal variable of the
condition is bound to the focal individual, and certain binding- and condition-
specific constraints hold on Ap. E.g. Condition A (s. Lst. 1, line 18) has a valid
binding to any ABox Ap, with individuals p and m, for which holds that p is
the focal individual and assertions d:Metastasis(m) and hasMetastasis(p,m) can
be inferred from Ap. Then a valid binding exists, where p is bound to PPatient
and m is bound to ?met.

4 Data Inconsistencies

In this section, we describe the kinds of data inconsistencies, which can occur
in a workflow description, and define them based on the semantics proposed in
Sec. 3.3.

4.1 Semantic Data Inconsistencies

If at any point of a workflow execution the calculated ABox Ap is inconsis-
tent wrt. the domain ontology, a Semantic Data Inconsistency occurs. In such
a situation the workflow description contradicts the domain ontology causing
collected data to be erroneous. We distinguish Semantic Data Inconsistencies by
the restrictions, which are violated through them in the domain ontology. In the
following, we list some Semantic Data Inconsistencies and describe them with
an example.

– Violation of disjoint class restrictions. E.g. a variable on a form is declared
to be of type d:Breasttumor, a variable with the same name on another
form of type d:Nephroblastoma. Both forms can occur in the same workflow
execution. The classes d:Nephroblastoma and d:Breasttumor are declared to
be disjoint in the domain ontology.

– Violation of number restrictions. E.g. in the domain ontology is defined that
a human being can have at most one mother. Two variables for the patient’s
mother with different names are defined on the forms.

106 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

– Violation of data type restrictions. E.g. in the domain ontology is defined that
the height of a patient must not be greater than 250 cm. A value between 0
and 300 cm may be filled into the item, which queries the height of a patient.

4.2 Data-Dependent Control Flow Inconsistencies

Unsatisfiable conditions A condition is unsatisfiable if it is not satisfied for any
workflow execution (has no valid binding to the ABox Ap of the appropriate
EWDP). That means that for each workflow execution it is either not satisfied or,
due to missing data, it can not be determined if it is satisfied or not. Unsatisfiable
conditions can lead to unreachable tasks after the condition.

Example: A condition is fulfilled if the weight of the patient’s tumor is greater
than 2000 g. For the item querying the weight of the tumor, a maximum input
value of 1500 g is defined.

XOR-stall. If for a workflow execution none or more then one of the conditions at
an XOR-split are satisfied, the task to be executed next can not be determined
unambiguously. We call such a situation XOR-stall. In such a case workflow
execution aborts.

Example: Item “type of tumor” (Lst. 1, line 7-10) is declared on a form. An
XOR-split, following the form, has two outgoing transitions with conditions “Pa-
tient has breasttumor” and “Patient has nephroblastoma”. If answer possibility
“other” is selected for the item, an XOR-Stall occurs.

5 Consistency Checking Algorithm
In the following, we describe an algorithm, which is able to detect the described
inconsistencies. We describe in detail how the algorithm detects Semantic Data
Inconsistencies and in principle how Data-Dependent Control Flow Inconsisten-
cies can be detected. The most obvious algorithm for this problem is a simula-
tion of all possible workflow executions. We have described such an algorithm,
called CCABoxes-algorithm, in [6]. This algorithm calculates for each possible
workflow path the set of possible ABoxes, called Xp, and checks the ABoxes for
inconsistencies according to their definitions described in Sec. 4. This algorithm
is by definition sound and complete, but it does not always terminate. This is
due to the fact that primitive data types (e.g. integer) have infinite data ranges,
and e.g. into a value-item with data type integer an infinite number of different
values can be filled in. Since in the CCABoxes-algorithm an ABox is created
for each possible execution, this results in the creation of an infinite number of
ABoxes. Therefore, we need to replace the calculated set of ABoxes with a fi-
nite abstraction, which preserves the information needed to detect the described
inconsistencies, to gain a terminating algorithm.

We use an ontology as abstraction, which describes all ABoxes sufficiently to
detect the inconsistencies. The resulting “CCOnto-algorithm” calculates a so-
called path ontology Op for each workflow path. The idea of our abstraction is
to represent individuals by newly created classes in Op. Each individual created

Consistency Checking for Workflows 107

Algorithm 1. CCOnto-algorithm
input: SWOD WF description swodWf, domain ontology OD

Set W ← determineWFDPs(swodWf);
foreach WFDP ∈ W do

Opi ← OD;
Op ← ontoRules(Opi, WFDP);
if Op ≡ ERROR(kind, id) then

if kind ≡ “XOR-Stall” OR “Semantic Data Inconsistency” then
ABORT with ERROR(kind, id)

if kind ≡ “Condition unsatisfiable for WFDP” then
delete WFDP from W

foreach condition con in swodWf do
if con not in any of WFDP ∈ W then

ABORT with ERROR(“Condition unsatisfiable”, id);

during any workflow execution is represented by at least one class, called its
corresponding class. The information about the relations of the individual and
the classes it belongs to are preserved in Op by appropriate restrictions on its
corresponding class. That results in the fact that Semantic Data Inconsistencies
can be detected, because in any ABox of Xp a Semantic Data Inconsistency
occurs if and only if Op is inconsistent or a violation of a data value restriction
occurs. A class in Op can have an infinite number of corresponding individuals
from different ABoxes Ap.

Furthermore, to detect Data-Dependent Control Flow Inconsistencies, a so-
called condition ontology is created in the CCOnto-algorithm as abstraction for
a condition. In such an ontology a focal condition class is created to represent the
condition and this class is restricted according to the axioms in the condition.
The focal condition class is constructed such that a focal leaf class in Op is a
subclass of the focal condition class if and only if it has a corresponding focal
individual in an ABox which has a valid binding to the condition.

5.1 Outline of Algorithm

In the following, we describe the CCOnto-algorithm (see Alg. 1) in more detail.
The input of the algorithm is the SWOD workflow description swodWf and the
domain ontologyOD. If the algorithm does not abort with an error, the workflow
description is consistent.

Determine WFDPs. To calculate Op for a workflow path we have to consider
the items in the flow as well as each condition, because the ABoxes Ap for which
the condition is not satisfied are not any more possible after its application. We
describe this information by a workflow data path (WFDP), which is a sequence
of item and condition annotations, according to the following grammar, where
conditionAnnot is a condition annotation:

wfdp::= itemAnnotation wfdp | conditionAnnot wfdp | itemAnnotation | conditionAnnot;

108 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

O-wfdpComp

Op � itemAnnotation −→ O′
p

O′′
p = checkSemInc(O′

p) O′′
p �= ERROR(kind, id) O′′

p � wfdp −→ O′′′
p

Op � itemAnnotation wfdp −→ O′′′
p

O-wfdpCon

Op � conditionAnnot −→ O′
p O′

p �= ERROR(kind, id) O′
p � wfdp −→ O′′

p

Op � conditionAnnot wfdp −→ O′′
p

O-vitemMinMax

Op � focPointAssert −→ O′
p

O′
p � ontoPathPart −→ O′′

p O′′′
p = O′′

p ∪ {srcvar � ∃rel.type[≥ minv, ≤ maxv]}
Op � ItemAnnotation(iID OntoPath(focPointAssert ontoPathPart rel(srcvar tarvar)

type(var) Value(Min(minv) Max(maxv)) −→ O′′′
p

O-ontoPathPart

Op � varAssert −→ O′
p O′

p � relAssert −→ O′′
p O′′

p � ontoPathPart −→ O′′′
p

Op � relAssert varAssert ontoPathPart −→ O′′′
p

O-objVar

O′
p = Op ∪ {var � ontoClass}

O′′
p = O′

p ∪ {(var � ¬C) | ∀C.(C ∈ Sig(O′
p)) ∧ (O′

p |= C �� var)}
Op � ontoClass(var) −→ O′′

p

O-objRel

O′
p = Op ∪ {srcvar � (≥ 1 rel.tarvar)}
Op � rel(srcvar, tarvar) −→ O′

p

Fig. 2. Excerpt of calculus OntoRules, for all rules see [6]

The first step of the CCOnto-algorithm is to determine all possible workflow
paths from swodWF and store the corresponding WFDPs in a set W . E.g. one
of the two WFDPs for the example consists of the item annotations IAge, ITum,
IName, IMet and the condition annotation ConditionA.

Create Ops for each WFDP in W. The path ontology Op is created by
the function ontoRules(OPi, WFDP), where OPi is the initial path ontology
comprising the axioms from the domain ontology (s. Sec. 5.2). The result of
the function is either the consistent path ontology or an error term describing
an inconsistency which occurred during creation of Op. If the result is an error
term ERROR(kind id) with kind “XOR-Stall” or “Semantic Data Inconsistency”,
the algorithm aborts with an error message. If kind is “Condition unsatisfiable
for WFDP”, the processed WFDP is deleted from W since the corresponding
workflow path can never be taken during workflow execution.

After Op is created for each WFDP, it is checked if a condition is unsat-
isfiable for the workflow by checking if any of the conditions does not appear
in any of the WFDPs left in W , which represent the possible flows through the
workflow. In that case the algorithm aborts with an appropriate error.

5.2 Creation of Path Ontology

Function ontoRules(OPi, WFDP) creates Op as the longest possible derivation
with the rules of the calculus OntoRules (part of calculus is shown in Fig. 2).

Consistency Checking for Workflows 109

In principle Op is created as follows from WFDP and the initial path ontology
utilizing the calculus. WFDP is split into its item and condition annotations
(described in rules O-wfdpComp and O-wfdpCon), which are processed in
the order they appear in the WFDP:

– Item Annotation. For each item annotation the following steps are processed
(illustrated with item “age of mother” (Lst. 1, line 4-6)):
• Object variable assertion. As described in rule O-objVar, for each object

variable in the ontology path a class is created, which is represented with
the same name as the object variable, called corresponding class of the
variable. The class is declared to be a subclass of the type of the variable
and to be disjoint to classes created from variables with distinct names.
The class created for the focal variable is called top focal path class and
its subclasses are called focal path classes.
For the example item {PPatient � d:HumanBeing � ¬ PMother, PMother
� d:HumanBeing} is added to Op. PPatient is the top focal path class.

• Object relation assertion. As described in rule O-objRel, for each ob-
ject relation objProp(X, Y) in the ontology path the axiom (X � (≥1
objProp.Y)) is added to Op (e.g. PPatient � (≥1 hasMother.PMother)}).

• Item constructor. We describe in detail how value-items and in principle
how exist- and specify-items are processed.
For a value-item with minimum value mi, maximum value ma and for which
the last part of the associated ontology path is rel(X, Y) type(Y), the ax-
iom (X � ∃ rel.type[≥ mi, ≤ ma]) is added to Op, as described in rule O-

vitemMinMax. For the example item, PMother � ∃ hasAge.integer[≤
130] is added toOp. This shows that using an ontology allows the CCOnto-
algorithm to work with data ranges instead of single data values, which
enables the algorithm to terminate always.
For exist-, and specify items, classes for each answer possibility are cre-
ated, which represent the individuals in the ABoxes, for the workflow
executions, in which the according answer possibilities are filled out. In
a first step classes for the associated variables of the item are created and
in a second step, which is called expansion step, classes for each other
variable in the associated ontology path is created. The created classes
are subclasses of the corresponding class of the variable they are created
for and of classes, which are specific for the answer possibility they are
created for.

• Semantic Data Inconsistency. A Semantic Data Inconsistency occurs
after applying an item annotation if Op is inconsistent or a violation
of a data value restriction occurs. In this case Op is set to an ap-
propriate error term. A violation of a data value restriction occurs if
dataRange �⊆ dataRangeC holds, for any axiom (X � ∃ datarel.dataRange)
∈ Op, for which a data range dataRangeC exists and (Op |= X � ∀
datarel.dataRangeC) holds.

– Condition Annotation. When a condition is applied, the classes are deleted
from Op, which are corresponding to individuals in ABoxes Ap for which

110 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

the condition is not satisfied. Therefore, the condition ontology is created
and all focal path classes are deleted from Op, except for these which are
subsumed by the focal condition class or are a superclass of such a subsumed
class. Then recursively each class Y is deleted from Op for which holds (�C
∈ Sig(Op).Op |= C � (≥ 1 objProp.Y)), for any object property objProp.

• Condition unsatisfiable. If Op has no more classes after applying a con-
dition, the condition is unsatisfiable for this WFDP and Op is set to an
appropriate error term.

• XOR-Stall. Before the first condition of an XOR-split is applied, Op is
checked for an XOR-stall. Therefore, it is checked if any of the focal
path classes, which is a leaf class, is a subclass of exactly one of the
focal condition classes of the conditions at the XOR-split. If any focal
path class is a subclass of none condition class, then it exists a possible
ABox for which none of the conditions is satisfied. If any focal path class
is a subclass of more then one of the condition classes, then it exists a
possible ABox for which more then one of the conditions is satisfied. In
both cases Op is set to an appropriate error term.

Example Inconsistency. The example treatment plan is consistent. In the fol-
lowing, we illustrate how a Semantic Data Inconsistency can be detected. There-
fore, the workflow annotation is changed as follows. In line 5 of Lst. 1, variable
PMother is replaced by PMother1. During execution of the changed workflow in
any ABox two different individuals for mother are created. Since it is declared in
the domain ontology that a human being can have at most one mother, each pos-
sible ABox Ap is not consistent wrt. the domain ontology. That can be detected
with the CCOnto-algorithm as follows. For the original workflow description in
Op only one class is created for mother. For the changed workflow description
in Op two disjoint classes for mother are created:

PPatient
 (≥ 1 hasMother.PMother)� (≥ 1 hasMother.PMother1)� d:HumanBeing...
PMother1
 ¬ PMother

Since in the domain ontology it is declared that a human being can have at
most one mother, class PPatient is unsatisfiable and thus Op is inconsistent. The
algorithm aborts with error “Semantic Data Inconsistency”.

5.3 Soundness and Completeness

In this section we sketch the proof that the CCOnto-algorithm is complete, i.e.
all inconsistencies listed in Sec. 4 are detected, and sound, i.e. only the described
inconsistencies are detected. From the definition of inconsistencies follows sound-
ness and completeness for the CCABoxes-algorithm. Completeness and sound-
ness of the CCOnto-algorithm is proved by showing that it detects the same
inconsistencies as the CCABoxes-algorithm, as outlined in the following.

The steps of the two algorithms are the same, with the difference, that CCOnto
utilizes Op instead of a set of ABoxes, Xp, to detect inconsistencies. Op derived
from WFDP is called an abstraction of Xp derived from the same WFDP. We

Consistency Checking for Workflows 111

can show that following criteria hold between Xp and its abstraction Op: Each
individual in any ABox of Xp has a corresponding class in Op and each leaf class
in Op has a corresponding individual. With the help of these criteria we are able
to prove for each type of the inconsistencies that exactly those inconsistencies
are detected with the CCOnto as with the CCABoxes-algorithm (for full proof
and definition of corresponding individuals and classes s. [6]).

6 Discussion

In this paper, we described a workflow language with an ontology-based data
perspective, called SWOD, and defined its semantics. We classified possible data
inconsistencies, which can occur in SWOD-workflow descriptions and described
an algorithm, called CCOnto-algorithm, to detect them during design time.

Implementation. A prototypical implementation of the CCOnto-algorithm is
currently developed in Java using the OWL API [13] and the DL-reasoner Pel-
let [14]. We plan to integrate it into ObTiMA, to support users in defining
consistent treatment plans.

Related Work. Consistency checking algorithms exist to check structural con-
sistency (e.g. [1], [2]), but few integrate data (e.g. [3], [15] or [4]). We are not
aware of an algorithm, which is able to detect inconsistencies in complex data
perspectives based on semantic annotations. Nonetheless, semantic annotation
and its applications are an active research field crucial for the realization of the
semantic web. Existing work on semantic annotations for web services is espe-
cially interesting, since web services can be composed to workflows, also called
composite services. Various languages for semantic annotations of Web Services
have been defined (e.g [16], [17]), which amongst others describe data, like input
and output values, with metadata from ontologies. E.g. SAWSDL (Semantic An-
notations for WSDL and XML), recommended by W3C, defines the syntax for
semantic annotations, but does not define a formal semantics. The main aims
of SAWSDL is automatic service discovery and composition, but enriched with
appropriate semantics it can be used for data consistency checking of complex
workflows composed from web services. Therefore, in the future we aim to inves-
tigate how to integrate semantic web services in our work. However, currently
we are interested in allowing collection of data and focus on the semantic anno-
tation for forms. Few related work on generating forms from an ontology exist.
These approaches mostly base the forms on the structure of the ontology and
do not allow for flexible item creation (e.g. Protege form generation [18]). More
flexible approaches allow to define arbitrary items but do not allow to define re-
lational metadata from the ontology and only link items to classes (e.g. caCore
FormBuilder [19]).

Future Work. We plan to extend the data perspective e.g. by allowing to create
more complex items from the ontology and to define constants or constraints
between items. We aim for a more expressive control flow perspective comprising
e.g. cyclic workflows with respect to research on workflow-patterns [10]. We plan
to consider time in the data and control flow perspectives.

112 G. Weiler, A. Poetzsch-Heffter, and S. Kiefer

Conclusion. Ontology-based data perspectives in data intensive workflows are
well suited to provide the basis for static data analysis. In this work we defined
a semantics for ontology-based workflows based on ABoxes, which provides the
basis for algorithms to find data inconsistencies. We have shown how to use
ontologies to finitely abstract infinitely many ABoxes, representing infinite data
ranges in such an algorithm. Integrated with existing algorithms for checking
structural consistency (e.g. [1], [2]) the technique described in this paper can
have the capability to guarantee soundness of complex workflows.

References

1. Verbeek, H., van der Aalst, W., ter Hofstede, A.: Verifying Workflows with Can-
cellation Regions and OR-joins: An Approach Based on Relaxed Soundness and
Invariants. Computer Journal 50(3), 294–314 (2007)

2. Qian, Y., Xu, Y., Wang, Z., Pu, G., Zhu, H., Cai, C.: Tool Support for BPEL Ver-
ification in ActiveBPEL Engine. In: Proceedings of the 2007 Australian Software
Engineering Conference, pp. 90–100 (2007)

3. Sun, X., Zhao, J., et al.: Formulating the Data-Flow Perspective for Business Pro-
cess Management. Information Systems Research 17(4), 374–391 (2006)

4. Eshuis, R.: Semantics and Verification of UML Activity Diagrams for Workow
Modelling. PhD thesis, University of Twente (2002),
http://www.ctit.utwente.nl/library/phd/eshuis.pdf

5. W3C OWL Working Group: OWL 2 Web Ontology Language. W3C Working Draft
(2009), http://www.w3.org/TR/owl2-overview/

6. Weiler, G.: Consistency Checking for Workflows with an Ontology-Based Data
Perspective (unpublished) (2009),
http://softech.informatik.uni-kl.de/twiki/bin/view/Homepage/

PublikationsDetail?id=133

7. Weiler, G., Brochhausen, M., Graf, N., Schera, F., Hoppe, A., Kiefer, S.: Ontol-
ogy Based Data Management Systems for Post-Genomic Clinical Trials within a
European Grid Infrastructure for Cancer Research. In: Proc. of the 29 Annual
International Conference of the IEEE EMBS, August 2007, pp. 6434–6437 (2007)

8. Tsiknakis, M., Brochhausen, M., et al.: A Semantic Grid Infrastructure Enabling
Integrated Access and Analysis of Multilevel Biomedical Data in Support of Postge-
nomic Clinical Trials on Cancer. IEEE Transactions on Information Technology in
Biomedicine 12(2), 205–217 (2008)

9. Brochhausen, M., Weiler, G., et al.: The ACGT Master Ontology on Cancer - A new
Terminology Source for Oncological Practice. In: Proc. of 21st IEEE International
Symposium on Computer-Based Medical Systems, pp. 324–329 (2008)

10. Russel, N., ter Hofstede, A., van der Aalst, W., Mulyar, N.: Workflow Control-Flow
Patterns: A Revised View. Technical report, BPMcenter.org (2006)

11. Baader, F., Calvanese, D., et al. (eds.): The Description Logic Handbook, Theory
Implementation and Applications. Cambridge University Press, Cambridge (2003)

12. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web Rule Language. W3C Member Submission (2004)

13. Horridge, M., Bechhofer, S., Noppens, O.: Igniting the OWL 1.1 Touch Paper: The
OWL API. In: OWLED 2007, 3rd OWL Experiences and Directions Workshop,
Innsbruck, Austria (June 2007)

http://www.ctit.utwente.nl/library/phd/eshuis.pdf
http://www.w3.org/TR/owl2-overview/
http://softech.informatik.uni-kl.de/twiki/bin/view/Homepage/PublikationsDetail?id=133
http://softech.informatik.uni-kl.de/twiki/bin/view/Homepage/PublikationsDetail?id=133

Consistency Checking for Workflows 113

14. Sirin, B., Parsia, B., Grau, B., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2) (2007)

15. Sundari, M., Sen, A., Bagchi, A.: Detecting Data flow Errors in Workflows: A
Systematic Graph Traversal approach. In: Proc. 17th Workshop on Information
Technology & Systems (2007)

16. Farrell, J., Lausen, H.: Semantic Annotations for WSDL and XML Schema. W3C
Recommendation (2008)

17. Martin, D., Burstein, M., et al.: OWL-S: Semantic Markup for Web Services. W3C
Member Submission (2004)

18. Rubin, D., Knublauch, H., et al.: Protege-owl: Creating ontology-driven reasoning
applications with the web ontology language. In: AMIA Annu. Symp. Proc. (2005)

19. Whitley, S., Reeves, D.: Formbuilder: A tool for promoting data sharing and reuse
within the cancer community. Oncological Nursing Forum 34 (2007)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 114–127, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Conceptual and Spatial Footprints
for Complex Systems Analysis:

Application to the Semantic Web

Bénédicte Le Grand1, Michel Soto2, and Marie-Aude Aufaure3

1 Université Pierre et Marie Curie– Paris 6 CNRS
Benedicte.Le-Grand@lip6.fr

2 Université Paris Descartes
Michel.Soto@lip6.fr

3 MAS Laboratory, Ecole Centrale Paris
Marie-Aude.Aufaure@ecp.fr

Abstract. This paper advocates the use of Formal Concept Analysis and Galois
lattices for complex systems analysis. This method provides an overview of a
system by indicating its main areas of interest as well as its level of specific-
ity/generality. Moreover, it proposes possible entry points for navigation by
identifying the most significant elements of the system. Automatic filtering of
outliers is also provided.

This methodology is generic and may be used for any type of complex sys-
tems. In this paper, it is applied to the Topic Map formalism which can be used
in the context of the Semantic Web to describe any kind of data as well as on-
tologies. The proposed Conceptual and Spatial Footprints allow the comparison
of Topic Maps both in terms of content and structure. Significant concepts and
relationships can be identified, as well as outliers; this method can be used to
compare the underlying ontologies or datasets as illustrated in an experiment.

Keywords: Topic Maps, Semantic Web, Ontologies, Navigation, Visualization,
Clustering, Formal Concept Analysis, Galois lattices, Conceptual footprint.

1 Introduction

Semantic Web [1] standards have been developed to enhance information retrieval on
the Web by adding explicit semantics to its content. Various formalisms exist, with
different levels of complexity and expressiveness, from simple annotation syntaxes to
sophisticated reasoning capabilities. In this paper the “lower” layers of the Semantic
Web stack are considered, i.e. semantic annotation syntaxes, such as RDF [2] or
Topic Maps [3] [4]. These formalisms allow describing data’s content and relation-
ships, thus providing it with a semantic structure. However, these syntaxes can also be
used at a more abstract level to formalize ontologies themselves. Topic Maps and
RDF can inter-operate at a fundamental level [5] and each language may be used to
model the other. The analysis method proposed in this paper is illustrated on systems
represented as Topic Maps but it may thus also be used with RDF.

 Conceptual and Spatial Footprints for Complex Systems Analysis 115

Although semantics and relationships are explicit in Topic Maps (or ontologies),
some problems remain in terms of information retrieval. A large number of ontologies
have indeed been developed for various purposes and their comparison and/or integra-
tion is a challenge. In order to compare ontologies, one should first have a clear idea
of each ontology’s content and structure. At a more general level, the conceptual
analysis method proposed in this paper provides an overview of the complex network
under study, through the identification of its most significant elements, as well as a
characterization in terms of homogeneity / heterogeneity. Navigation facilities also
provide intuitive and interactive means to have a better knowledge of the system. An
automatic outliers filtering function is also proposed.

This paper proposes a methodology and tools based on Galois lattices [6] [7] [8]
for the analysis of Topic Maps or ontologies at a semantic, conceptual and structural
level. More precisely, the goal of this methodology is therefore to help users’ infor-
mation retrieval and navigation in large Topic Maps and ontologies by:

• giving information about their specificity / generality,
• identifying their most significant elements,
• simplifying their structure by eliminating outliers,
• providing an overview and showing the relative impact of the various elements of

the semantic structure.

This analysis is particularly useful to compare or integrate several Topic Maps or
ontologies.

This paper is organized as follows. Section 2 introduces the context of this work,
i.e. the notion of complex system in general and, in particular, the Topic Maps which
are a possible formalism for the Semantic Web. Section 3 presents the proposed con-
ceptual analysis method, which relies on Galois lattices. Experimental results are
analyzed in Section 4 and Section 5 finally concludes and discusses the perspectives
and extensions of this work.

2 Context

2.1 Complex Systems

The etymology of the word "complex" has for origin the Latin word "complexus"
which means "weaving". A complex system is composed of elements connected by
numerous and diverse links. The number and the diversity of these links make the
system difficult to understand. Such a system is made of heterogeneous elements
associated (weaved) in an inseparable way and between which numerous actions
exist, interactions, feedback, determinations and sometimes fates [9]. In order to un-
derstand a complex system neither a global analysis nor the analysis of the elementary
parts should be privileged: both have to be performed [10]. From a methodological
point of view, it ensues that the analysis of a complex system has to be conducted by
exploring frames of complexity which weave the system by making as much round
trips as necessary between the global and the elementary parts [11]. In the domain of
visual data mining Shneiderman [12] has formulated this methodology as: "The Vis-
ual Information Seeking Mantra is: Overview first, zoom and filter, then details-on-
demand". This requires tools such as the ones presented in section 3 et 4.

116 B. Le Grand, M. Soto, and M.-A. Aufaure

The methodology proposed in this paper and its associated tools are illustrated on
the Semantic Web which can be considered as a complex system.

2.2 Topic Maps

Many candidate techniques have been proposed to add semantic structures to the
Web, such as semantic networks [13], conceptual graphs [14], the W3C Resource
Description Framework (RDF) [2] and Topic Maps [3]. Semantic networks are basi-
cally directed graphs (networks) consisting of vertices linked by edges which express
semantic relationships between vertices.

The conceptual graphs theory developed by Sowa [15] is a language for knowledge
representation based on linguistics, psychology and philosophy.

RDF data consists of nodes and attached attribute/value pairs. Nodes can be any
Web resource (pages, servers, basically anything identified by a URI), or other in-
stances of metadata. Attributes are named properties of the nodes, and their values are
either atomic (character strings, numbers, etc.), metadata instances or other resource.
This mechanism allows building labelled directed graphs.

Topic Maps, as defined in ISO/IEC 13250 [3], are used to organise information in
a way which can be optimised for navigation. Topic Maps were designed to solve the
problem of large quantities of unorganised information, as information is useless if it
cannot be found or if it is related to nothing else. The Topic Map formalism comes
from the paper publishing world, where several mechanisms exist to organise and
index the information contained within a book or a document. Topic Maps constitute
a kind of semantic network above the data themselves and can thus be thought of as
the online equivalent of printed indexes; they are indeed much more than this: Topic
Maps are also a powerful way to manage link information, much as glossaries, cross-
references, thesauri and catalogues do in the paper world. The Topic Map formalism
can also be used to represent ontologies themselves as explained in the following.

The original Topic Map language, based on SGML, is often considered as too
complex and a specification aiming at applying the Topic Map paradigm to the Web
has been written: XTM (XML Topic Maps) [4], which allows structuring data on the
Web so as to make Web mining more efficient.

As stated in the introduction, all the formalisms described in this section have the
same goals and many of them are compatible. RDF and Topic Maps both add seman-
tics to existing data without modifying them. They are two compatible formalisms.
Moore, in [5], stated that RDF could be used to model Topic Map and vice versa.
There are slight differences, e.g. the notion of scope -contest- exists in Topic Maps
and not in RDF. RDF is more synthetic and more suited to queries whereas Topic
Maps more suited for navigation. In the following, this paper will focus on XML
Topic Maps, called Topic Maps in the remainder of the article for simplicity.

A Topic Map defines concepts (topics), for example ontological concepts if the
Topic Map describes an ontology, and original data elements are occurrences of these
topics. It is also possible to specify relationships (associations) among topics, i.e.
among abstract concepts themselves. Ontologies can be formalized as Topic Maps
because associations are not limited to the “is-a” relationship. Thanks to the links
provided by associations, users may navigate at the (abstract) topic level and “go
down” to original data once they have found an interesting concept. Finding a topic of

 Conceptual and Spatial Footprints for Complex Systems Analysis 117

interest is easier than navigating in the original data layer, thanks to the semantic
structure provided by the Topic Map.

An example Topic Map will be used to illustrate the notions presented in this
paper. This Topic Map, called Music, is dedicated to music, The Clash band in
particular1. This is a very small Topic Map which contains 46 topics, 6 associations
and 4 occurrences. Figure 1 illustrates the resource and the semantic levels of a Topic
Map; original data elements belong to the resource level and are related to the seman-
tic level through occurrences relationships (which may be of different types). The
semantic level consists of topics (which may be of different types) and the associa-
tions between topics (which may also be of different types). In a Topic Map, almost
everything is a topic: topics of course, but also topic types, association types and
occurrences types.

Association Type

Place of birth

Work

Membership

Joe StrummerAnkara The Clash I fought the law

Semantic Level

Resources Level

Topic type

Disc

City

Band

Artis t Occurrence type

Map

Music

Video

Picture

Fig. 1. Topic Map Structure Fig. 2. Music Topic Map Graph

One of Topic Maps’ strengths is that they do not modify data itself; this semantic

annotation and structure may thus be performed by other persons than the owners of
original data. Moreover, the semantic layer is independent of the underlying data, and
can thus be used on different datasets or ontologies. Conversely, a given data-
set/ontology may be described by different Topic Maps.

Topic Maps significantly increase the relevance of query results as the semantics
avoid ambiguities. Moreover, advanced queries, based on the various types of rela-
tionships, may be performed, for example: “Which members of The Clash band were
not born in Ankara?”. Tolog [16] is an example of Topic Maps query language.

The Figure 2 represents the graph of concepts (linked by associations) contained in
the Music Topic Map. If the number of topics, associations and occurrences increases,
this graph may rapidly become cluttered and therefore difficult to interpret.

The approach followed in this article relies on the exploitation of all existing rela-
tionships: explicit ones defined in a Topic Map –as associations or occurrences- and
implicit ones, inferred from data elements’ similarity. The method developed to iden-
tify these implicit relationships is based on a specific clustering performed by Galois

1 This Topic Map was written by Kal Ahmed, http://www.techquila.com/

118 B. Le Grand, M. Soto, and M.-A. Aufaure

lattices (see Section 3). The clustering provided by a Galois lattice has several advan-
tages. First, it is exhaustive as it computes all possible clusters. Moreover, these clus-
ters may be overlapping, which is another advantage of this algorithm. Finally, the
semantics of each cluster is explicit, as it consists of the common properties of objects
in the corresponding concept.

3 Conceptual Approach for Topic Maps Analysis

This section presents the conceptual method proposed in this paper for Topic Maps
analysis. Early ideas and preliminary results have been presented in [17]; since then,
substantial refinement and optimizations have been presented, as presented in this
paper. Section 3.1 introduces Galois lattices and section 3.2 describes the objects and
properties’ generation process. The conceptual statistics computed from Galois lat-
tices are then presented in section 3.3, in particular the Relatedness and Closeness
parameters which constitute the basis of the proposed conceptual footprints and con-
ceptual distributions. Finally, a hierarchical and multiple-scale visualization is pro-
posed in Section 3.4.

3.1 Formal Concept Analysis and Galois Lattices

FCA is a mathematical approach to data analysis which provides information with
structure. FCA may be used for conceptual clustering as shown in [8] and [18]. The
notion of Galois lattice to describe a relationship between two sets is the basis of
several conceptual classification methods. This notion was introduced by [7] and [6].
Galois lattices group objects into classes which materialize concepts of the domain
under study. Individual objects are discriminated according to the properties they
have in common.

Consider two finite sets D (a set of objects) and M (the set of these objects’ proper-
ties), and a binary relation R ⊆ DxM between these two sets. Let o be an object of D
and p a property of M. We have oRp if the object o has the property p.

According to Wille’s terminology [19]:

Fc = (D, M, R)

is a formal context which corresponds to a unique Galois lattice, representing natural
groupings of D and M elements.

Let P(D) be the powerset of D and P(M) the powerset of M. Each element of the
lattice is a couple, also called concept, noted (O, A). A concept is composed of two
sets O ∈ P (D) and A ∈ P(M) which satisfy the two following properties:

A = f(O), where f(O) = {a∈M│for all o∈O, oRa}
O = f’(A), where f’(A) = {o∈D│for all a∈A, oRa}

O is called the extent of the concept and A its intent. The extent represents a subset
of objects and the intent contains these objects’ common properties.

An example of Galois lattice generated from a binary relation is illustrated on
Figure 3. The concept ({1, 2}; {a, c}) contains the objects 1 and 2 in its extent, and the
common properties of these two objects are a and c. The concept may be generalized

 Conceptual and Spatial Footprints for Complex Systems Analysis 119

in two ways, either with ({1, 2, 3}; {a}) or ({1, 2, 4}; {c}), depending on which com-
mon property is chosen. It may also be specialized in two different manners, either
with ({1}; {a, c, f, h}) or ({2}; {a, c, g, i}), depending on which object is chosen.

({1,2,3,4,5},φ)

({1,2,3},{a}) ({1,2,4},{c}) ({4,5},{b}) ({2,3,5},{g})

({1,2},{a,c})

({2,3},{a,g,i}) ({1,4},{c,f,h}) ({5},{b,e,g})

({1},{a,c,f,h}) ({2},{a,c,g,i}) ({3},{a,d,g,i}) ({4},{b,c,f,h})

(φ,{a,b,c,d,e,f,g,h,i})

0010100105

0101001104

1010010013

1010001012

0101001011

ihgfedcbaR

Fig. 3. Example of Galois lattice

Fig. 4. Galois lattice of the Music Topic Map

A partial order on concepts is defined as follows:

Let C1=(O1, A1) and C2=(O2, A2), C1<C2 ⇔ A1⊆ A2 ⇔ O2 ⊆ O1.

Galois lattices are very well fitted to showing the various types of relations –explicit and
implicit- among topics of a Topic Map. However, the number of concepts in a lattice
grows exponentially with the number of objects and properties, which makes the inter-
pretation with traditional Hasse diagrams impossible. The Figure 4 shows the Galois
lattice generated for the Music Topic Map. Although it “only” contains 124 concepts, its
Hasse diagram is very cluttered. The authors of [20] have defined interest measures to

120 B. Le Grand, M. Soto, and M.-A. Aufaure

reduce the size of large concept lattices and apply their method to healthcare social
communities. Our approach exploits the whole lattice, in order to follow an exhaustive
approach, leading to the definition of a Conceptual Distribution and a Conceptual Foot-
print, as presented in the following Section.

3.2 Objects and Properties Generation

As explained in Section 2, Topic Map consists of topics related to other topics
through associations and to raw data through occurrences. Topics my also be in-
stances of other topics (i.e. they are subclasses of these topics). In the context of Ga-
lois lattice construction algorithm, objects are topics and their properties are their
XML attributes, superclasses and associations. In this case, the Galois lattice then
consists of concepts comprising sets of topics (objects) described by their common
attributes, superclasses and associations (common properties).

Let a specific topic: t-disc-the-clash, which is the topic related to discs made by The
Clash band. This topic is an instance of the tt-disc topic and it has an occurrence
–clash.gif-, which is the picture on a CD jacket. Moreover, it is associated to the topic
t-the-clash –which is itself an instance of the topic tt-band, through the association with
id N304 (which is an instance of the at-recorded type of association).

The t-disc-the-clash object’s properties are its occurrences, the topic(s) it is an in-
stance of and the identifiers of the associations it is involved in, i.e. tt-disc, clash.gif
and N304. The topics with which t-disc-the-clash is associated (e.g. t-the-clash) do
not directly appear as its properties, but the relationship with them will appear in
Galois lattices as they have the N304 association as a common property.

In practice, the Topic Map needs to be parsed twice to generate objects and proper-
ties: the first step identifies all objects (i.e. all identifiers of topic elements in the
Topic Map) and their intrinsic properties (i.e. the values of the attributes of the topic
elements, basically their ids, names and superclasses, as well as the values of the
attributes of their children elements as the XML file structure is hierarchical). The
second step completes the list of objects properties with the identifiers of all associa-
tions they are involved in.

3.3 Conceptual Distribution and Conceptual Footprint

Consider an object o (i.e. a topic). In the methodology proposed in this paper, it is
characterized by two parameters called Relatedness and Closeness computed from the
Galois lattice.

Relatedness indicates the proportion of objects with which o has some properties in
common; such objects are called o’s related objects. However, the “resemblance”
between o and its related objects might be very little -or on the contrary very high.

Closeness precisely provides this information, by indicating the proportion of com-
mon properties between o and its related objects. The computation of these two pa-
rameters –which constitute the object o’s Conceptual Distribution-, is explained in the
following.

Relatedness. Let C(o) be the set of the lattice G’s concepts containing o in their ex-
tent. Let C’(o) be the subset of concepts from C(o) which have a least one other object

 Conceptual and Spatial Footprints for Complex Systems Analysis 121

than o in their extent and at least one property in their intent. The value of the object
o’s Relatedness (Relatedness(o)) is the average number of objects with which o is
clustered into C’(o) concepts, divided by the total number of objects in the system
(i.e. in the Topic Map). The Relatedness value indicates if o is connected to many
other objects.

)))(((

)))('((
))('(

1

)(

)'(

1

GInfExtentCard

oCExtentCard
oCCard

osrelatednes

CCard

i
i∑

==

Closeness. Let S be the set of objects which are grouped with o in one –or more-
concepts of the lattice (i.e. the set of o’s related objects)2; these objects have at least
one of o's properties (by construction). The value of the object o’s Closeness (Close-
ness(o)) is the average number of properties o shares with other objects, divided by
the total number of properties in the system. This parameter indicates whether o’s
resemblance to other objects from S is little or high (in terms of common properties).

)))(((

)))('((
))('(

1

)(

)'(

1

GSupIntentCard

oCIntentCard
oCCard

ocloseness

CCard

i
i∑

==

Conceptual Distribution. The couple (Relatedness(o), Closeness(o)) constitutes the
object o’s conceptual distribution (illustrated of Figure 6).

Conceptual Footprint. Each object of a given system is therefore characterized by
the Relatedness and Closeness parameters (i.e. its conceptual distribution). The aver-
age value for all objects of the dataset is the conceptual footprint of this system (illus-
trated on Figure 5).

Let syst be the complex system under study –in this case a Topic Map- containing
N objects.

conc_footprint(syst) = (relatedness(syst), closeness(syst))

where
N

osrelatednes

systsrelatednes

N

i

i∑
== 1

)(

)(

and
N

ocloseness

systcloseness

N

i

i∑
== 1

)(

)(

3.4 Automatic Objects Filtering

In a Topic Map, some objects may share "many" common properties with "many"
other objects. These objects are called regular objects and they are semantically more
significant than others. The meaning of the words "many" (properties) and "many"
(objects) depends on the values of relatedness and closeness of the Topic Map’s con-
ceptual footprint.

2 C’(o) is a subset of S, consisting of elements from S which have at least one property in their

intent.

122 B. Le Grand, M. Soto, and M.-A. Aufaure

On the other hand, a Topic Map may contain topics which are not semantically sig-
nificant or not much related to others. These topics are called marginal topics and
may be considered as outliers. They may be eliminated from the Topic Map in order
to simplify it. The filtering process was automated by eliminating from the original
dataset all marginal objects, i.e. objects whose Relatedness and Closeness values are
below the system’s Relatedness and Closeness values minus α*standard deviation for
each parameters, where α may vary.

An object o is marginal if it verifies the following conditions:

relatedness (o) ≤ relatedness (syst) – α * std.dev (relatedness (syst))

and

closeness (o) ≤ closeness (syst) – α * std.dev (closeness (syst)),

where
N

systsrelatednesosrelatednes

systsrelatednesdevstd

N

i
i∑

=
−

= 1

)()(
))((.

and

N

systclosenessocloseness

systclosenessdevstd

N

i
i∑

=

−
= 1

)()(

))((.

The Relatedness and Closeness parameters are computed again for all objects of the
new dataset and marginal elements are eliminated, and so on. The filtering algorithm
converges when the dataset no longer contains marginal elements, i.e. when the Re-
latedness and Closeness values of all remaining objects are sufficiently homogeneous
(or when there is only one topic left if the network is highly heterogeneous).

3.5 Galois Lattice’s Concepts Selection

The number of objects in a Topic Map after the convergence of the filtering algorithm
may still be high and consequently the number of concepts of the corresponding Ga-
lois lattice too. It would thus be interesting to select the most significant concepts,
organized in different levels of details –or scales- in order to make navigation and
visualization easier.

The selection of concepts proposed here consists in extracting a tree from the
original lattice. This tree provides a hierarchical representation of the complex system
with different levels of detail corresponding to the depth of the tree. The result is
therefore a hierarchical clustering where clusters may be overlapping (as they are
selected concepts from the lattice). The root of the tree contains all objects; the next
level groups some objects together (with possible overlaps), the next level is a finer
grouping of objects, etc.

The construction of the tree starts from the finest level of detail: the leaf clusters of
the tree are the most specific concepts of the lattice –i.e. the parent concepts of the
upper bound.

For each leaf, one unique parent concept is selected which is a generalisation of the
leaf concept. This selection is done according to a hierarchy of criteria in case a con-
cept has several parent concepts in the lattice. The first criterion consists in selecting

 Conceptual and Spatial Footprints for Complex Systems Analysis 123

the parent with the lower distance to the lower bound of the lattice. If several parents
meet this criterion, another one aims at minimizing the total number of concepts in the
extracted tree. Another selection criterion relies on possible weights assigned to prop-
erties. If several candidates still remain, one of them is selected randomly.

A unique parent is then selected for each selected concept, and so on until the
lower bound of the lattice is reached. At the end of this process, a tree is created. Each
level of the tree contains clusters which correspond to a specific level of detail. The
tree extracted from the Music Topic Map’s Galois lattice is shown on Figure 9.

The methodology and features presented above are illustrated in an experiment in
the following section.

4 Results

Four Topic Maps – of different sizes and subjects- were analyzed; these datasets’
features are summarized in Table 1.

Table 1. Description of Studied Topic Maps

Topic Map Subject Nb of
objects

Nb of
properties

Nb of
associations

Nb of
occurrences

Nb of
concepts
in lattice

Music Music 46 112 6 4 124
Discovery Cooking 48 79 9 18 172
SHCC Theatre 76 125 25 3 185
ICC XTM 25 84 6 28 72

4.1 Conceptual Footprints and Distributions

Figure 5 represents the conceptual footprints of the four studied Topic Maps. These
conceptual footprints consist in the average Relatedness and Closeness values for
each system. Figure 5 shows that ICC has the highest average Relatedness value, then
Music, Discovery and finally SHCC. This means that the topics from ICC dataset have
common properties with a higher proportion of topics in their Topic Map than the
topics of the three other samples.

The Closeness values show whether the resemblance between topics is strong or
not: Relatedness indeed indicates that there is at least one common property; Close-
ness specifies if there are few or many common properties (it thus represents the
strength of the relationship). Results presented on Figure 5 show that even in samples
with a quite high average Relatedness value, relationships amongst topics are not very
strong as the average Closeness values are very low.

In order to analyze more precisely these Topic Maps (as conceptual Footprints rep-
resent average values), it is interesting to study the conceptual distributions of indi-
vidual topics. On Figure 6 each bubble represents a set of objects of the Topic Map.
The (x, y) coordinates of a bubble’s center correspond respectively to the Relatedness
and Closeness values of the corresponding object(s). If several objects have the same
Relatedness and Closeness values then they are represented by a unique bubble which
size is proportional to the number of objects.

124 B. Le Grand, M. Soto, and M.-A. Aufaure

Relatedness
Closeness

Music

ICC

SHCC

Discovery

0

2

4

6

8

10

12

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

-5 0 5 10 15 20 25

Relatedness

C
lo

se
n

es
s

SHCC

Discovery

ICC

Music

Fig. 5. Conceptual Footprints Fig. 6. Topics Conceptual Distribution

Figure 6 illustrates various types of Conceptual Distributions (homogeneous / het-
erogeneous). ICC’s Relatedness and Closeness values are slightly more homogeneous
(i.e. the bubbles are located in a smaller zone of the graphic) than those of the other
Topic Maps for which several groups may be identified. If the Topic Map formalism
is used to describe ontologies, the comparison of these ontologies’ individual concep-
tual distributions indicates which ones are the more specific / general.

4.2 Automatic Topic Maps Filtering

Music, SHCC and Discovery’s conceptual distributions contain topics with very low
values of both Relatedness and Closeness parameters; these correspond to marginal
objects which have very few common properties with very few other topics of their
respective Topic Map (these objects correspond to the bottom-left corner bubbles in
Figure 6).

The Figure 7 shows the various steps of the automatic filtering algorithm. At Step
1 –i.e. before any filtering- the Music Topic Map contains 100% of its objects. At
Step 2, 89% of original objects are present, then 85%, 83% and finally 78% after
which the algorithm converges.

70

75

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10 11 12

Steps

%
 o

f r
em

ai
n

in
g

 o
b

je
ct

s

SHCC

Music

Discovery

ICC

-0,5

0

0,5

1

1,5

2

2,5

-5 0 5 10 15 20 25 30

Relatedness

C
lo

se
n

es
s

1st step

2nd step

3rd step

4th step

5th step

Fig. 7. Topic Maps Filtering Fig. 8. Music Topic Map filtering process

 Conceptual and Spatial Footprints for Complex Systems Analysis 125

The convergence is faster for the ICC Topic Map, which is not surprising as this
was the most homogeneous dataset (see Figure 6). After the end of the filtering proc-
ess, more than 70% of original objects remain in the topic maps; this means that there
was little “noise” (or outliers) in these datasets.

The Figure 8 shows the conceptual distributions of the Music Topic Map at the
various steps of the filtering process. The Topic Map obviously contains marginal
elements contained in the bubble at the bottom-left corner; this bubble disappears at
the second filtering step. The evolution of conceptual distributions between steps 2
and 5 is minor: the values of Relatedness and Closeness of the remaining objects
slightly increase after each step.

4.3 Galois Lattice’s Concepts Selection

Figure 9 shows the result of the tree extraction algorithm applied to the Music Topic
Map. This interactive visualization (in SVG format [21]) indicates the most relevant
topics and associations of this Topic Map and thus provides an intuitive overview of
its most significant content.

at-member-of

tt-geography

tt-musician

tt-person

tt-song

tt-music tt-country
tt-band

at-recorded

at-born-in

at-played-
instrument-in

normalised

fv-fierce

ft-website-rating

Fig. 9. Clusters Visualization

The Figure 9 shows the tree of concepts extracted from the lattice, displayed as a
disc (one disc for each level of detail, where the more general discs have the larger
diameters). The labels displayed on the Figure 9 correspond to first level of detail of
the tree –i.e. the most general layer. The size of each portion of the disc is propor-
tional to the number of objects in the cluster. This Figure thus shows that most topics
are about musicians (tt-musician label) and the bands they belong to (at-member-of),
as well as the records they made (at-recorded). It also indicates that a significant
proportion of topics deal with their place of birth (at-born-in and tt-geography). This
Topic Map is therefore dedicated to music but not restricted to the musical content

126 B. Le Grand, M. Soto, and M.-A. Aufaure

only. This hierarchical visualization is very useful to provide an intuitive overview of
the complex system’s content and structure.

5 Conclusion and Perspectives

The goal of this paper was to propose a generic method relying on Formal Concept
Analysis and Galois lattices for complex systems analysis. Although this method may
be applied to any type of complex system, this article has focused on its application to
the Semantic Web, in particular to complex systems (e.g. ontologies) formalized with
the Topic Map paradigm.

Conceptual parameters - called Relatedness and Closeness- were designed to pro-
vide an overview of the datasets, help identify significant elements and conversely
eliminate outliers automatically. The proposed method has been experimented on four
Topic Maps in order to illustrate its operation and results. Ontologies could be com-
pared in terms of content and structure, as well as regarding their level of specific-
ity/generality.

A conceptual algorithm was finally defined to select the most significant concepts
of a Galois lattice by extracting a tree of concepts from the original lattice. An interac-
tive hierarchical and multiple-scale visualization was proposed to help users identify the
Topic Map’s content and structure. The labels of the clusters at the most general level of
detail provide an overview of the Topic Map by indicating the most significant
concepts.

One perspective of this work is to integrate an additional dimension to the pro-
posed conceptual parameters in order to reflect the generalization/specialization rela-
tionship between the concepts of a lattice. Relatedness and Closeness are currently
based on Galois concepts’ extents and intents; they should be enriched with informa-
tion provided by links among concepts so as to fully exploit the information provided
by the lattice.

The complexity of Galois algorithm limits the size of the analyzed complex sys-
tems. We are currently studying how this conceptual approach may be combined to
more scalable clustering algorithms in order to solve this problem. A distributed com-
putation of our conceptual parameters is also investigated. Another possible approach
consists in building small lattices and connect them through semantic bridges [22].

Finally, this method will also be used to analyze datasets with neither structure nor
semantics, as Galois lattices precisely provide data with a structure and help identify
implicit relationships among objects. Such a method could automate (part of) the
semantic annotation process –and therefore of Topic Map and ontologies generation.

References

1. Berners-Lee, T.: A roadmap to the Semantic Web (September 1998),
http://www.w3.org/DesignIssues/Semantic.html

2. World Wide Web Consortium. Resource Description Framework (RDF) Model and Syn-
tax Specification, W3C Recommendation, February 22 (1999)

3. International Organization for Standardization, ISO/IEC 13250, Information Technology-
SGML Applications-Topic Maps, ISO, Geneva (1998)

 Conceptual and Spatial Footprints for Complex Systems Analysis 127

4. TopicMaps.Org XTM Authoring Group, XTM: XML Topic Maps (XTM) 1.0:
TopicMaps.Org Specification, March 3 (2001)

5. Moore, G.: RDF and Topic Maps, An Exercise in Convergence. In: XML Europe 2001,
Berlin, Germany, May 21-25 (2001)

6. Barbut, M., Monjardet, B.: Ordre et classification, Algèbre et combinatoire, Tome 2,
Hachette (1970)

7. Birkhoff, G.: Lattice Theory, First Edition, Amer. Math. Soc. Pub. 25, Providence, R. I
(1940)

8. Carpineto, C., Romano, G.: Galois: An order-theoretic approach to conceptual clustering.
In: Proc. Of the 10th Conference on Machine Learning, Amherst, MA, pp. 33–40. Morgan
Kaufmann, San Francisco (1993)

9. Morin, E., Motta, R., Ciurna, E.-R.: Eduquer pour l’aire planétaire – la pensée complexe
comme méthode d’apprentissage dans l’erreur et l’incertitude humaine, Balland Ed (2003)

10. Morin, E.: Sciences avec conscience, Points Sciences, Seuil Ed (1990)
11. De Freitas, L., Morin, E., Nicolescu, B.: Charte de la transdisciplinarité, 1er Congrès

Mondial de la Trandisciplinarité, Convento da Arrábida, Centre International de Recher-
ches et Études Transdisciplinaires, Portugal (1994)

12. Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visuali-
zations. In: Proceedings of 1996 IEEE Visual Languages, Boulder, CO, pp. 336–343
(1996)

13. Woods, W.A.: What’s in a link: foundations for semantic networks. In: Bobrow, D.G.,
Collins, A.M. (eds.) Representation and Understanding: Studies in Cognitive Science, pp.
35–82. Academic Press, New York (1975)

14. Chein, M., Mugnier, M.-L.: Conceptual Graphs: Fundamental Notions. Revue
d’intelligence artificielle 6(4), 365–406 (1992)

15. Sowa, J.F.: Conceptual Information Processing in Mind and Machine. Addison-Wesley,
Reading (1984)

16. Garshol, L.M.: “tolog” – A Topic Map Query Language. In: XML Europe 2001, Berlin,
Germany, 21-25 May (2001)

17. Le Grand, B., Soto, M.: XML Topic Maps and Semantic Web Mining. In: Proceedings of
Semantic Web Mining Workshop, jointly with ECML/PKDD 2001 conference, Freiburg,
Germany (September 2001)

18. Wille, R.: Line diagrams of hierarchical concept systems. Int. Classif. 11, 77–86 (1984)
19. Wille, R.: Concept lattices and conceptual knowledge systems. Computers & Mathematics

Applications 23(6-9), 493–515 (1992)
20. Jay, N., Kohler, F., Napoli, A.: Analysis of Social Communities with Iceberg and Stabil-

ity-Based Concept Lattices. In: Medina, R., Obiedkov, S. (eds.) ICFCA 2008. LNCS,
vol. 4933, pp. 258–272. Springer, Heidelberg (2008)

21. World Wide Web Consortium, Scalable Vector Graphics (SVG) 1.0 Specification, W3C
Candidate Recommendation, November 2 (2000)

22. Polaillon, G., Aufaure, M.-A., Le Grand, B., Soto, M.: FCA for contextual semantic navi-
gation and information retrieval in heterogeneous information systems. In: Proceedings of
the workshop on Advances in Conceptual Knowledge Engineering, in conjunction with
DEXA 2007, Regensburg, Germany (2007)

Automatic Extraction of Ontologies Wrapping
Relational Data Sources

Lina Lubyte and Sergio Tessaris

KRDB Research Centre for Knowledge and Data – Free University of Bozen-Bolzano

Abstract. Describing relational data sources (i.e. databases) by means
of ontologies constitutes the foundation of most of the semantic based
approaches to data access and integration. In spite of the importance
of the task this is mostly carried out manually and, to the best of our
knowledge, not much research has been devoted to its automatisation. In
this paper we introduce an automatic procedure for building ontologies
starting from the integrity constraints present in the relational sources.

Our work builds upon the wide literature on database schema reverse
engineering; however, we adapt these techniques to the specific purpose of
reusing the extracted schemata (or ontologies) in the context of semantic
data access. In particular, we ensure that the underlying data sources can
be queried through the ontologies and the extracted ontologies can be
used for semantic integration using recently developed techniques in this
area.

In order to represent the extracted ontology we adopt a variant of the
DLR-Lite description logic because of its ability to express the mostly
used modelling constraints, and its nice computational properties. The
connection with the relational data sources is captured by means of sound
views. Moreover, the adoption of this formal language enables us to prove
that the extracted ontologies preserve the semantics of the integrity con-
straints in the relational sources. Therefore, there is no data loss, and
the extracted ontology constitutes a faithful wrapper of the relational
sources.

1 Introduction

Recent research on ontology languages tailored to data access demonstrates that
ontologies (or conceptual models) can be very effective in overcoming several lim-
itations of traditional database systems. In particular, the capability of handling
incomplete information has been proved crucial in several important applications
of databases, including federated databases [1], data warehousing [2], informa-
tion integration through mediated schemas [3], and the Semantic Web [4] (for a
survey see [5]).

In order to take advantage of semantics charged techniques to access or reuse
legacy data, one of the pre-requisites is the definition of wrappers providing for-
mal and machine readable descriptions of the semantics of the underlying data
sources. These wrappers are often ontologies which make explicit the assump-
tions (or constraints) over the stored data. The definition of these wrappers, in

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 128–142, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Automatic Extraction of Ontologies Wrapping Relational Data Sources 129

spite of the fact that this is a crucial and error prone process, is usually per-
formed manually with little or no automatic support. Moreover, it requires at
the same time a deep understanding of the adopted ontology language and good
knowledge of the data source being wrapped.

In this paper we propose a technique that enables the automatic extraction
of an ontology from a relational data source; in addition, our algorithm provides
mappings which connect the terms from the ontology to the actual data. These
mappings are defined as sound views over the logical schema of the relational
data source; i.e., similar to the global-as-view (GAV) approach in the informa-
tion integration literature [3]. We show that the extracted ontologies capture all
the constraints of the underlying data sources, and the availability of mappings
enables the use of these ontologies to query and integrate the wrapped data.

The adopted ontology language – a variant of the DLR-Lite family of lan-
guages (see [6]) – is expressive enough to capture commonly used features from
Entity-Relationship (ER) [7] and UML class diagrams1, and at the same time is
compatible with the Semantic Web ontology language OWL2.

Our ontology extraction technique relies on the availability of the logical
schema of the relational data sources as well as constraints (e.g. foreign keys,
uniqueness, etc.) providing the actual semantics of the data. In most of the
cases this information can be automatically extracted from any DBMS; but we
are aware of the fact that often these constraints are not stored in the actual
DBMS but enforced by the programs accessing and updating the data or by
ad hoc triggers and stored procedures. To account for these cases we provide
the possibility to manually annotate the logical schema in order to specify the
constraints. Our experience in several projects showed us that while it is rel-
atively easy for data analysts to provide the constraints of a specific database
application, the process of writing an ontology describing the same data can be
daunting. Moreover, most of the standard database constraints can be discovered
by analysing the actual data.

The contributions of this paper are the adaptation of a Description Logic [8]
based ontology language compatible with OWL3 including the definition of map-
pings over relational data (Section 2); the definition of an algorithm to extract
an ontology given a relational data source (Section 3); and the formal proof that
the extracted ontology fully capture the meaning of the data source using the
general concept of information capacities (Section 3.1).

2 Formal Framework

In this section we define a formal framework for describing relational sources and
their wrapping ontologies. For the input relational source, we adopt a standard
relational model with integrity constraints. In order to represent the extracted
ontology, we use a variant of DLR-Lite [6] description logic detailed below.
1 http://www.uml.org
2 See http://www.w3.org/TR/owl-ref/
3 Demonstrated by the availability of a Protégé plugin in Section 5.

http://www.uml.org
http://www.w3.org/TR/owl-ref/

130 L. Lubyte and S. Tessaris

2.1 Relational Model, Constraints and Queries

We assume the reader is familiar with the basic notions of relational databases [9].
A relational schema R consists of an alphabet of relation symbols, each one
with a fixed set of attributes (assumed to be pairwise distinct) with associated
datatypes. The number of attributes denotes the arity of a relation. We assume
that the database domain is a fixed denumerable set of elements Δ represent-
ing real world objects, and that every element in Δ is denoted uniquely by a
constant symbol, called its standard name [10]. Moreover, we consider Δ to be
partitioned into the datatypes Di and to contain a special constant null, called
the null value4. Then, a database instance (or simply a database) D over a rela-
tional schema R is an (interpretation) function that maps each relation R in R
into a set RD of total functions from the set of attributes of R to Δ5.

The ontology extraction procedure takes as input a relational source. We
abstract from any specific database implementation by considering an abstract
relational source DB, which is a pair (Ψ,Σ), where Ψ is a relational schema
as defined above and Σ is a set of integrity constraints, i.e., assertions on the
relations that express conditions that are intended to be satisfied by database
instances. A database D over Ψ is said to satisfy a set of integrity constraints
Σ expressed over Ψ if every constraint in Σ is satisfied by D. Given a relation r
in Ψ and s attribute of r, let A denote the sequence of attributes of r and r [s]
the projection of r on attribute s [9]. The database integrity constraints that we
consider in our framework are the following (for more details see [11]):

– nulls-not-allowed constraints, written nonnull(r, A), satisfied in a database
when null is not contained in any attribute in A of r;

– unique constraints, written unique(r, A), satisfied in a database when the
sequence of attributes A is unique in a relation r. If in addition we have
nonnull(r, A), then these correspond to key constraints, denoted key(r, A);

– inclusion dependencies, written r1 [s1] ⊆ r2 [s2]6, satisfied in a database when
projections over s1, s2 of relations r1 and r2, respectively, are included one
in the other. If in addition we have key(r2, s2), we call them foreign key
constraints ;

– exclusion dependencies, written (r1 [s1]∩ r2 [s2]) = ∅, satisfied in a database
when the intersection of the projections over s1, s2 of relations r1, r2 is
empty set;

– covering constraints, written (r1 [s1] ∪ . . . ∪ rm [sm]) ⊆ r0 [s0], satisfied in a
database when the projection of the relation r0 over s0 is included in the
union of the projections of the respective relations in the set.

4 We consider a null value to be different from any other constant and from a null
value in any other tuple. Assuming this semantics is not crucial though, different
ones can be accommodated.

5 I.e., each total function represents a single tuple in RD. We assume set semantics.
6 For simplicity, we restrict inclusion, exclusion and covering constraints to projections

over single attribute; see last paragraph of Section 2.2.

Automatic Extraction of Ontologies Wrapping Relational Data Sources 131

R[s] � R
′[s′] πsR

D ⊆ πs′R
′D Inclusion

R[s] disj R
′[s′] πsR

D ∩ πs′R
′D = ∅ Disjointness

key(R[s1, . . . , sk]) for all φ1, φ2 ∈ R
D with φ1 �= φ2, we have

φ1(si) �= φ2(si) for some si, 1 ≤ i ≤ k
Key

R1[s1], . . . , Rk[sk] cover R[s] πsR
D ⊆

[

i=1...k

πsi
R

′D

i Covering

Fig. 1. Syntax and semantics of DLR-DB axioms

2.2 Ontology Language

In this section we present the ontology language we shall deal in the rest of the
paper, and we give its semantics in terms of relational models. The ontology
language adopted can be seen as an alternative to the use of standard mod-
elling paradigms of ER or UML class diagrams and enables to represent their
commonly used modelling constructs (see [12]). The advantage over these for-
malisms lies on the fact that our adopted ontology language, besides enabling
the use of automatic reasoning to support the designer, also represents models
that preserve the relational ones (see Section 3.1).

We call a DLR-DB system S a tuple 〈R,K〉, where R is a relational schema
as described in Section 2.1 and K is a set of assertions involving names in R. The
DLR-DB ontology language, used to express the constraints in K, is based on
the idea of modelling the domain by means of axioms involving the projection
of the relation over the attribute. We call K an ontology.

An atomic formula is a projection of a relation R over one of its attributes,
denoted by R[s]. The attributes involved in the projections correspond to key
attributes of the respective relations. This reflects the fact that in conceptual
models non key attributes are not considered relevant to identify an element of
an entity or a relationship (see Example 1). Two attributes are compatible, if
their datatypes are equal. Then we say that two atomic formulae R[s] and R′[s′]
are compatible iff the two corresponding attributes s and s′ are compatible.

Given the atomic formulae R[s], R′[s′], Ri[si], an axiom is an assertion of the
form specified in Figure 17, where all the atomic formulae involved in the same
axiom must be compatible. In the same figure, we give the semantics of a DLR-
DB system 〈R,K〉, which is provided in terms of relational models for R, where
K plays the role of constraining the set of “admissible” models. A database D
is said to be a model for K if it satisfies all its axioms. The above conditions
are well defined because we assumed the compatibility of the atomic formulae
involved in the axioms.

Example 1. To provide the intuition on the use of the DLR-DB formalism we
show a simple example exhibiting some of the modelling constructs defined
above. Consider the ER diagram shown in Figure 2, and assume, for the sake of
exposition, that we have the underlying relational source containing a relation for
7 In relational algebra, πsR

D denotes the projection of RD over attribute s [9].

132 L. Lubyte and S. Tessaris

0,1

id acronymurl

Orgunit ActivityInvolvedIn1,n

id description
keywords

ResearchActivity

orgid actid

OrganisationalActivityFunds

orgid actid {disjoint}id id
publications event

Fig. 2. ER diagram for Example 1

(1) InvolvedIn[orgid] � Orgunit[id] (7) key(Activity[id])
(2) InvolvedIn[actid] � Activity[id] (8) key(ResearchActivity[id])
(3) Funds[orgid] � Orgunit[id] (9) key(OrganisationalActivity[id])
(4) Funds[actid] � ResearchActivity[id] (10) key(Funds[orgid])
(5) Orgunit[id] � InvolvedIn[orgid] (11) ResearchActivity[id] � Activity[id]
(6) key(Orgunit[id]) (12) OrganisationalActivity[id] � Activity[id]
(13) ResearchActivity[id] disj OrganisationalActivity[id]

Fig. 3. DLR-DB axioms corresponding to the ER diagram in Figure 2

each entity and relationship in the diagram. That is, we have relations Orgunit of
arity 3, InvolvedIn of arity 2, etc. Then, to model the constraints reflected in the
given ER diagram, we will define the axioms shown in Figure 3 that constrain the
relational schema. In particular, axioms (1)–(4) represent role typing constraints,
stating that the projection of InvolvedIn and Funds relations on the orgid (resp.
actid) attribute is of type Orgunit (resp. Activity and ResearchActivity). Axiom
(5) instead states mandatory participation, meaning that instances of Orgunit
projected over the id attribute participate to the relation InvolvedIn as value
for its projection over the orgid attribute. The key axioms in (6)–(10) express
that, for instance, an object can appear in the orgid attribute of Funds relation
only once. Axioms (11) and (12) correspond to is-a relationships among the re-
spective relations, while axiom (13) states disjointness among the objects of the
corresponding projections of relations.

The adopted ontology language is close to the DLR family of DLs [13]. This
means that the same reasoning mechanism used for DLR can be employed for
DLR-DB . The ability of employing correct and complete automated reasoning
enables us to provide well-founded tools to support the maintenance and evolu-
tion of the extracted ontology (see [14]). More importantly, by taking away the
covering axioms and allowing only unary key constraints, this language corre-
sponds to DLR-LiteF [6]. This implies that we can use the same efficient query
answering technique (LogSpace in the size of the data) to evaluate conjunctive
queries mediated by the ontology.

For the sake of simplicity, in this paper we restricted the atomic formulae to
projections over a single attribute; however, our original definition of a DLR-DB
system captures the notion of composite keys in relational databases. Assume
for example that in our ontology we need to represent the inclusion axiom cor-

Automatic Extraction of Ontologies Wrapping Relational Data Sources 133

responding to the foreign key constraint spanning over several attributes. To
account for these cases, we associate to each relation in the relational schema
a set of components (each one with a sequence of attributes) which partitions
the set of attributes of the relation. Then, the axioms involve the projections of
relations over their components instead of single attributes (see [11] for details).
Importantly, we can still show that the reasoning mechanism used for DLR and
DLR-LiteF can be employed for DLR-DB extended with components.

3 Ontology Extraction

The principles of our ontology extraction process are based on ideas used in
database reverse engineering (DBRE) literature.8 Roughly speaking, the essence
of our extraction technique is to reverse the standard database modelling pro-
cess [15], namely, that of translating ER model to the relational one. The benefit
of such approach is that it can be shown that our algorithm, though heuristic
in general, is able to reconstruct the original ER diagram. In this way, we can
formally prove that our extraction procedure preserves semantics of constraints
in the relational database (see Section 3.1).

The ontology extraction algorithm consists of two steps: (i) a classification
scheme for relations is derived by analysing the constraints in the relational
source, (ii) the actual ontology is generated, together with a set of sound views
(i.e., GAV mappings [3]) that connect the extracted ontology with the source
schema. Specifically, given a relational source DB = (Ψ,Σ) as input, the algo-
rithm generates the DLR-DB system S = 〈R,K〉 with an ontology K and a set
of views in R, defined over the source schema Ψ of DB. So, R can be seen as
a new schema containing set of view definitions, and axioms of the extracted
ontology K are over names in R. In such setting, every ontology term has an
associated view over the data sources (see Section 4 for an example).

Given a relation r in the source schema Ψ , in the following we will denote
by A sequence of all attributes of r, K the set of key attributes of r such that
key(r,K), and FK the set of all foreign keys of r such that r [FKi] ⊆ r′ [K ′],
for each foreign key FKi ∈ FK that references key K ′ of relation r′, where
1 ≤ i ≤ n and n – number of foreign keys of r. Then, each relation r in Ψ is
classified as one of the following:

– base relation, if K and FK do not share attributes;
– specific relation, if K is among FK (i.e., key is also foreign key) and if one

of the following holds
(a) |FK| = 1, i.e., r has single foreign key, or
(b) r′ [FK ′

i] ⊆ r [K], i.e., r is referred to by the foreign key of other relation;
– relationship relation, if K is entirely composed of foreign keys and |FK| > 1;
– ambiguous relation, if it does not satisfy any of the above conditions.

The intuition for the above classification scheme comes directly from the process
of translating the ER model to relational model. In particular, a base relation
8 We discuss how our proposed framework relates to DBRE approaches in Section 6.

134 L. Lubyte and S. Tessaris

Table 1. Summary of the extraction procedure

Relation type Views in R Corresponding axiom in K
base relation r R = πA−FK(r)
key(r,K) key(R[K])
specific relation r R = πA−FK(r)
key(r,K) key(R[K])
r [K] ⊆ r′ [K′] R[K] � R′[K′]
r1 [K1] ∩ r2 [K2] = ∅ R1[K1] disj R2[K2]
r′ [K′] ⊆ r1 [K1] ∪ . . . ∪ rm [Km] R1[K1], . . . , Rm[Km] coverR′[K′]
base or specific relation r R′′ = πK,K′(r′ �� r) key(R′′[K])
r [FKi] ⊆ r′ [K′], FKi �= K R′′[K] � R[K]; R′′[K′] � R′[K′]
nonnull(r, FKi) R[K] � R′′[K]
unique(r, FKi) key(R′′[K′])
r′ [K′] ⊆ r [FKi] R′[K′] � R′′[K′]
relationship relation r R = πA(r)
r [FKi] ⊆ r′ [K′] R[FKi] � R′[K′]
r′ [K′] ⊆ r [FKi] R′[K′] � R[FKi]
ambiguous relation r repeat steps as for relationship relations

r results from mapping an entity to a relation, and its foreign key FKi – from
“embedding” a one-to-one or one-to-many (i.e., functional) relationship between
entities corresponding to (base or specific) relations r and r′. A specific relation
instead follows from translating a sub-entity. The condition (b) in discovering a
specific relation is needed due to the fact that such relation (i.e., with key being
a foreign key) may also represent a one-to-one relationship between two entities
mapped to a single relation. A relationship relation results from mapping a many-
to-many relationship between entities corresponding to base or specific relations.
Finally, note that in order not to mislay any relation during the extraction
process, we put all “non-standard” relations to the ambiguous relations category.

Once relations in the source DB are classified, the actual algorithm derives
the ontology and views (i.e. mappings) by means of DLR-DB system. Table 1
shows the corresponding axioms and view definitions that are generated for each
category of relations and integrity constraints imposed on them. Note that the
table also reflects the order in which the distinct relations are processed, that is,
we start by creating axioms and mappings for base relations, then specific ones,
followed by the corresponding structures for the foreign keys of base and specific
relations, etc. Furthermore, observe that for ambiguous relations our automated
algorithm uses heuristics which “prefers” to recover elements corresponding (in
ER terms) to many-to-many, possibly n-ary relationships. However, we also pro-
vide the possibility for a user to manually define their intended meaning (see
Section 5 for discussion).

It is easy to see that the whole two-step process is linear in the number of
relations in the source schema.

Automatic Extraction of Ontologies Wrapping Relational Data Sources 135

3.1 Correctness and Completeness of the Technique

Our proposed ontology extraction technique can be seen as a schema transfor-
mation as defined in [16]. An important consideration in such a process (i.e.,
transforming one data model into another) is the potential for loss of informa-
tion. We evaluate the correctness of our schema extraction procedure using the
relative information capacities of the source and target schemata. In this section
we briefly outline the main principles of this analysis; for full details and the
actual proofs the reader is referred to [11].

In the following we denote by S and T source and target schemata correspond-
ing to the input relational source DB and relational schema R of the extracted
DLR-DB system. Let DS and DT be consistent instances of schemata S and T ,
respectively. An equivalence preserving mapping between the instances of S and
T is a bijection μ : DS → DT . Then S and T are said to be equivalent via μ,
denoted S ≡ T . Given schemas S and T , a (schema) transformation is a total
function M : S → T . M is an equivalence preserving transformation if it induces
an equivalence preserving mapping. To this end, we con show the following:

Theorem 1. The ontology extraction procedure is an equivalence preserving
schema transformation.

The actual proof of the above theorem can be found in [11]. Roughly speaking,
we devise a bijective transformation for the respective models and we show that
the constraints of the original schema and extracted ontology are satisfied by
the models generated by this transformation.

The fact that our extraction procedure is equivalence preserving not only
shows that there is no information loss, so the extracted schema can be used to
access the data, but that we can evaluate queries expressed using the extracted
ontology by simply expanding the generated views. This is no longer true in the
case that the ontology is going to be modified; in this case, more sophisticated
query answering techniques must be adopted in order to guarantee completeness
(e.g. query rewriting [6]).

4 Ontology Extraction by Example

Consider the relational schema with constraints detailed below (keys are under-
lined).

Orgunit(id, url, acronym, actid) Activity(id, description, keywords)
ResearchActivity(id, publications) OrganisationalActivity(id, events)
InvolvedIn(orgid, actid)

(1) InvolvedIn [orgid] ⊆ Orgunit [id]
(2) InvolvedIn [actid] ⊆ Activity [id]
(3) Orgunit [actid] ⊆ ResearchActivity [id]

(4) Orgunit [id] ⊆ InvolvedIn [orgid]
(5) unique(Orgunit, actid)
(6) ResearchActivity [id]∩

OrganisationalActivity [id] = ∅

At the initial step of the extraction process, relations Orgunit and Activity
are classified as base relations, ResearchActivity and OrganisationalActivity as

136 L. Lubyte and S. Tessaris

specific relations, while relation InvolvedIn satisfies the condition required for
relationship relations.

The ontology generated from this relational source is the one given in Exam-
ple 1 of Section 2. The extracted schema with view definitions is given below (we
denote with serif and slanted font, respectively, relation names in the extracted
and source schema).

Orgunit = πid,url,acronym(Orgunit)
Activity = πid,description,keywords(Activity)
ResearchActivity = πid,publications(ResearchActivity)
OrganisationalActivity = πid,events(OrganisationalActivity)
Funds = πid,id(Orgunit �� Activity)
InvolvedIn = πorgid,actid(InvolvedIn)

Now, consider the extracted ontology provided in Example 1 and the set of
views above denoting mappings between the ontology and the actual sources.
Suppose we want to know the the pairs of organisational units and research
activities that those organisational units fund. The corresponding conjunctive
query we would formulate is

q(x, y) ← Orgunit(x,w, z),Funds(x, y),ResearchActivity(y).

To answer this query, it is enough to substitute each atom in the body of q with its
corresponding query in the view definition, and to evaluate it over the actual data
sources (we recall the reader that a conjunctive query can be translated into an
equivalent SQL select-project-join (SPJ) query using standard translation [9]).

5 Implementation and Case Study

In order to evaluate the applicability of our approach, it is crucial to test it with
real-world schemas. To automate the ontology extraction process for wrapping
the underlying data sources, we have implemented the ontology extraction algo-
rithm in a prototype system. The implementation allows to display the extracted
ontology with annotated views using the ICOM Ontology Design tool [17]. How-
ever, in order to fully leverage the available and well-established techniques for
using such wrappers for data access, we have also implemented an automatic
ontology extraction support plug-in on top of the OBDA plug-in9 for Protégé10.
The OBDA plug-in provides facilities to design Ontology Based Data Access
(OBDA) system components (i.e., data sources and mappings). It supports the
definition of relational data sources and GAV like mappings to link the concepts
in the DL-LiteA ontology [18] to the data in the defined sources. It also provides
support for conjunctive query answering (by using SPARQL syntax), a service
commonly offered by OBDA centric reasoners. A notable aspect of DL-LiteA
description logic used as ontology language in OBDA plug-in is that it admits
9 http://obda.inf.unibz.it/protege-plugin

10 http://protege.stanford.edu

http://obda.inf.unibz.it/protege-plugin
http://protege.stanford.edu

Automatic Extraction of Ontologies Wrapping Relational Data Sources 137

Fig. 4. Ontology extraction plug-in for Protégé

query answering (with incomplete information) that is LogSpace in the size of
the data at the sources. Even more importantly, it allows to reformulate query
answering in terms of the evaluation of suitable SQL queries issued over the
sources. Our ontology extraction framework fits thus very well into such OBDA
setting (see [19] for interesting scenarios).

The goal of our plug-in is to provide a framework for the automated support
for deriving the wrapping ontology form existing data sources together with an
automatic generation of mappings. The ontology engineer can then explore the
obtained ontology, possibly refine it, and formulate conjunctive queries over the
this ontology using the OBDA plug-in. Figure 4 shows the screenshot of the on-
tology (displayed with OWL Protégé plug-in) automatically extracted from the
source schema, where the data sources are specified by using the Datasource Man-
ager tab of the OBDA plug-in. The generated mappings (i.e., views associated to
ontology terms) are also manifested in the latter tab. The user at this point can
pose queries over the resulting ontology, and the answers are returned from the
underlying data source by taking into account the mappings (see OBDA plug-in
website and [20] for details). It is worth noting however that since our ontology lan-
guage supports n-ary roles, while DL-LiteA (and OWL) does not, the extracted
ontology must be reified [21].

We next report the results of a case study with CERIF database schema.
CERIF (Common European Research Information Format)11 is the standard
EU recommendation used to harmonise databases on research projects. The
schema is strongly structured containing 123 relations and is fairly rich in terms
of integrity constraints explicitly declared through the DDL code. Table 2 shows
the outcome of analysing the constraints over CERIF schema that result in

11 http://cordis.europa.eu/cerif/src/toolkit.htm

http://cordis.europa.eu/cerif/src/toolkit.htm

138 L. Lubyte and S. Tessaris

Table 2. Summary for extracting ontology from CERIF database schema

(a) Classified relations

Relation type #Classified

Base 52
Relationship 25

Specific 0
Ambiguous 46

(b) Extracted axioms

Axiom #Extracted

Inclusion 68
Key 63

Disjointness 0
Covering 0

classified relations (a) and the corresponding axioms derived for each class of
relations (b). Note that those numbers do not include axioms for ambiguous
relations.

From the table it can be seen that the tool produced correct12 ontology con-
structs for 77 relations (out of 123). We were particularly interested in the useful-
ness of our approach for the category of ambiguous relations. We have identified
that all 46 relations classified as ambiguous can be divided into two types: (i)
those having their set of foreign keys properly included in their keys, and (ii)
those having keys properly included in the set of their foreign keys, where the
number of foreign keys is at least 3 and keys span at least 2 foreign keys. For
instance,

(i) person research interest(language,trans type,per id,keywords),
(ii) proj person(proj id,per id,proj per role,proj per start,proj per end)

where keys are underlined and per id in (i) is the single foreign key, while in (ii)
all proj id,per id and proj per role are foreign keys. By carefully analysing
the schema, we have derived that the intended meaning behind both types of the
above relations are, in ER terms, relationships between entities corresponding to
the referenced relations. In particular, language,trans type can be treated
as a “hidden” foreign key referencing a “hidden” relation.

We are currently extending the original extraction algorithm in order to cap-
ture the above cases. The idea is to use an iterative approach for the extraction
process. That is, first derive the initial classification as described in Section 3
with the corresponding axioms, then analyse ambiguous relations again by taking
into account the above cases and manifest to the user possible suggestions.

6 Related Work

As we have mentioned, we build our method on top of the existing results in
the area of database reverse engineering (DBRE) [22]. DBRE is defined as a
process of recovering a conceptual model that represents the meaning of the log-
ical schema by examining an existing database system to identify the database
contents and their interrelationships. Approaches to recovering a conceptual
12 With “correct” we mean the intended meaning when following the principled

methodologies of relational database design from ER diagrams.

Automatic Extraction of Ontologies Wrapping Relational Data Sources 139

schema from a relational database have appeared in the literature over the years
[23,24,25,26]. Four main sources (and their combination) have been explored
for finding evidence to construct a conceptual schema from a logical database:
structures and integrity constraints of the database schema [23,24], application
programs that access the database [25], data instances stored in the database
[26], and users and designers [27]. Moreover, because reverse engineering of re-
lational databases is a complex task, all existing approaches are conditioned by
a set of restrictive assumptions, namely, relational schemas are supposed to be
normalised (3NF, BCNF), and the constraints on the schema are available (e.g.,
keys and foreign keys, inclusion and exclusion dependencies).

Even though there is a close connection between this area and the frame-
work that we propose, there are however important differences. First, DBRE
approaches usually produce just a pictorial representation of a conceptual model,
without formal mappings that link the obtained schema to the database, and
are thus used for “documenting” the database. Our approach, instead, is tailored
for the direct use of the extracted ontology – that of accessing the data. In this
setting, views generated during the extraction process that connect the derived
ontology with the data sources play a crucial role. Second, most of DBRE meth-
ods are informal and do not specify quality of the outcome. On the contrary, we
provide formal results showing that the extracted ontology represents all infor-
mation sources and does not represent any extra information not present in the
sources (see Section 3.1).

There are several works coming closer to ours that arose in the context of the
Semantic Web and Information Integration, and that bring together relational
databases and ontologies. Astrova [28] uses DBRE techniques to build ontolo-
gies with the purpose of migrating relational database content into the ontology
(i.e., data-intensive web sites to the Semantic Web). Thus, while our framework
uses the extracted ontology for accessing the data stored in external sources
by means of sound views, here data is to be stored in the reverse engineered
ontology. The work by Volz et al. [29]13 provides a framework for creating meta-
data by generating Web pages from an available database which finally leads to
the deep annotation of the database. Then, such annotations can be used for
two purposes: for querying the database through an ontology, and for migrating
database content to ontology-based instance data. The database structure is first
manually described on a Web page and then one of the means to create map-
pings between the ontology and the database is a semi-automatic process that
integrates DBRE techniques. The advantage of our approach over this work, as
well as the aforementioned one, is that our framework enables the representation
of a formal ontology wrapping relational sources which allows for automated rea-
soning to support the designer. The proposals on data source ontology wrapping
as SWARD [31] and Virtuoso14 systems support the automated generation of
RDF views over relational data sources, enabling to access the underlying data
using RDF query languages. The advantage of our technique over all the above

13 Later version of this work has also appeared as part of WonderWeb project (see [30]).
14 http://virtuoso.openlinksw.com/wiki/main/

http://virtuoso.openlinksw.com/wiki/main/

140 L. Lubyte and S. Tessaris

mentioned works is that we ensure faithfulness of the obtained model, meaning
that it fully captures the meaning of the data source being wrapped.

D2R MAP [32] and R2O [33] provide means to declaratively state, respec-
tively, ontology-to-database and database-to-ontology mappings. The mapping
language of D2R MAP is based on RDF15, while R2O uses XML. Both lan-
guages allow to define expressive and explicit correspondences between compo-
nents of the two models. A similar work in [34] presents an approach to map data
stored in relational databases into the Semantic Web using RDF query language
(e.g., SPARQL [35]). A different approach of [36] describes a (semi-)automatic
mapping discovery between database relations and ontologies. In [18] a set of
pre-existing sources is linked to the ontology (expressed in description logic) by
defining expressive mappings. These works however require an existing target
ontology the relations are mapped onto.

7 Conclusions and Current Work

We have described an heuristic procedure for extracting an ontology from a re-
lational database schema. The mappings between the extracted ontology and the
underlying database are defined by associating views over the original data to each
term in the ontology. To represent the extracted ontology, instead of a graphical
notation, we employ an ontology language thus retaining its precise semantics.
Our extraction procedure integrates and enhances standard database reverse en-
gineering techniques by relying on constraints defined over the database schema,
(i.e., key and foreign key structure, restrictions on attributes and dependencies be-
tween relations), as well as standard methodologies for database design. We ensure
that the underlying data sources can be queried through the extracted ontology
by expanding the defined views.

We are aware of the fact that many databases have not been designed fol-
lowing the disciplined methodologies, so their schemas exhibit “idiosyncrasies”,
as coined by Blaha et al [37]. To this purpose we are starting to experiment
with other real database schemas to identify other design patterns and enrich
with them our extraction algorithm. We also realise that often databases do
not include all the relevant constraints on the data that were planned at design
phase. Indeed, in most of the cases these constraints are enforced by the code
accessing and updating the data. To the same extent, we are designing a tool to
provide a support to explore the logical schema of a database and to facilitate
the annotation of the schema by means of standard database constraints.

References

1. Sheth, A.P., Larson, J.A.: Federated database systems for managing distributed,
heterogeneous and autonomous databases. ACM Computing Surveys 22(3), 183–
236 (1990)

15 http://www.w3.org/RDF/

http://www.w3.org/RDF/

Automatic Extraction of Ontologies Wrapping Relational Data Sources 141

2. Calvanese, D., Giacomo, G.D., Lenzerini, M., Nardi, D., Rosati, R.: Data integra-
tion in data warehousing 10(3), 237–271 (2001)

3. Lenzerini, M.: Data integration: A theoretical perspective. In: Proc. of PODS 2002,
pp. 233–346 (2002)

4. Heflin, J., Hendler, J.: A portrait of the semantic web in action. IEEE Intelligent
Systems 16(2), 54–59 (2001)

5. Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Hubner, S.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Proc. of IJCAI 2001 Workshop: Ontologies and Information Sharing,
pp. 108–117 (2001)

6. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
of Automated Reasoning 39(3), 385–429 (2007)

7. Chen, P.: The entity-relationship model: Toward a unified view of data. ACM
Transactions on Database Systems (TODS) 1(1), 9–36 (1976)

8. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.):
The Description Logic Handbook: Theory, Implementation and Applications. Cam-
bridge University Press, Cambridge (2003)

9. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

10. Levesque, H.J., Lakemeyer, G.: The Logic of Knowledge Bases. MIT Press, Cam-
bridge (2001)

11. Lubyte, L., Tessaris, S.: Extracting ontologies from relational databases.
Technical report, KRDB group – Free University of Bozen-Bolzano (2007),
http://www.inf.unibz.it/krdb/pub/TR/KRDB07-4.pdf

12. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on uml class diagrams.
Artificial Intelligence 168(1), 70–118 (2005)

13. Calvanese, D., De Giacomo, G., Lenzerini, M.: Identification constraints and func-
tional dependencies in description logics. In: Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), pp. 155–160 (2001)

14. Lembo, D., Lutz, C., Suntisrivaraporn, B.: Tasks for ontology design and mainte-
nance. Deliverable D05, TONES EU-IST STREP FP6-7603 (2006)

15. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 4th edn. Addison
Wesley Publ. Co., Reading (2004)

16. Miller, R.J., Ioannidis, Y.E., Ramakrishnan, R.: The use of information capacity in
schema integration and translation. In: Proc. of VLDB 1993, pp. 120–133. Morgan
Kaufmann Publishers Inc., San Francisco (1993)

17. Fillottrani, P.R., Franconi, E., Tessaris, S.: The new icom ontology editor. In: Proc.
of the 19th Int. Workshop on Description Logics, DL 2006 (2006)

18. Poggi, A., Lembo, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Rosati, R.:
Linking data to ontologies. J. on Data Semantics X, 133–173 (2008)

19. Rodriguez-Muro, M., Lubyte, L., Calvanese, D.: Realizing ontology based data
access: A plug-in for protégé. In: Proc. of the Workshop on Information Integration
Methods, Architectures, and Systems (IIMAS 2008), pp. 286–289 (2008)

20. Calvanese, D., Giacomo, G.D., Horridge, M., et al.: Software tools for ontology
interoperation. Deliverable D25, TONES EU-IST STREP FP6-7603 (2008)

21. Noy, N., Rector, A.: Defining n-ary relations on the semantic web. Technical report,
W3C Recommendation (2006), http://www.w3.org/TR/swbp-n-aryRelations/

22. Hainaut, J.L.: Database reverse engineering: models, techniques and strategies. In:
Proc. of the 10th Conference on ER Approach (1998)

http://www.inf.unibz.it/krdb/pub/TR/KRDB07-4.pdf
http://www.w3.org/TR/swbp-n-aryRelations/

142 L. Lubyte and S. Tessaris

23. Markowitz, V.M., Makowsky, J.A.: Identifying extended entity-relationship object
structures in relational schemas. IEEE Transactions on Software Engineering 16(8),
777–790 (1990)

24. Chiang, R.H.L., Barron, T.M., Storey, V.C.: Reverse engineering of relational
databases: extraction of an eer model from a relational database. Data and Knowl-
edge Engineering 12(2), 107–142 (1994)

25. Andersson, M.: Extracting an entity-relationship schema from a relational database
through reverse engineering. In: Loucopoulos, P. (ed.) ER 1994. LNCS, vol. 881,
pp. 403–419. Springer, Heidelberg (1994)

26. Alhajj, R.: Extracting an extended entity-relationship model from a legacy rela-
tional database. Information Systems 26(6), 597–618 (2003)

27. Johannesson, P.: A method for transforming relational schemas into conceptual
schemas. In: Proc. of the Int. Conf. on Data Engineering (ICDE 1994), pp. 190–
201 (1994)

28. Astrova, I.: Reverse engineering of relational databases to ontologies. In: Bussler,
C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp.
327–341. Springer, Heidelberg (2004)

29. Volz, R., Handschuh, S., Staab, S., Stojanovic, L., Stojanovic, N.: Unveiling the
hidden bride: deep annotation for mapping and migrating legacy data to the se-
mantic web. Web Semantics 2(1), 187–206 (2004)

30. Volz, R., Handschuh, S., Staab, S., Studer, R.: Ontolift demonstrator. Deliverable
Del 12, WonderWeb IST-2001-33052 (2004)

31. Petrini, J., Risch, T.: Processing queries over RDF views of wrapped relational
databases. In: Proc. of the 1st Int. Workshop on Wrapper Techniques for Legacy
Systems, WRAP 2004 (2004)

32. Bizer, C.: D2R MAP - a database to RDF mapping language. In: Int. World Wide
Web Conference, WWW 2003 (2003)

33. Barrasa, J., Corcho, O., Gomez-Perez, A.: An extensible and semantically based
database-to-ontology mapping language. In: Bussler, C.J., Tannen, V., Fundulaki,
I. (eds.) SWDB 2004. LNCS, vol. 3372. Springer, Heidelberg (2005)

34. de Laborda, C.P., Conrad, S.: Database to semantic web mapping using RDF query
languages. In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215,
pp. 241–254. Springer, Heidelberg (2006)

35. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. Technical re-
port, W3C Recommendation (2008), http://www.w3.org/TR/rdf-sparql-query/

36. An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between
relational tables and ontologies from simple correspondences. In: Int. Conf. on
Ontologies, Databases and Applications of Semantics (ODBASE 2005), pp. 1152–
1169 (2005)

37. Blaha, M.R., Premerlani, W.J.: Observed idiosyncracies of relational database de-
signs. In: Proc. of the Working Conf. on Reverse Engineering (1995)

http://www.w3.org/TR/rdf-sparql-query/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 143–152, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Query Cache Tool for Optimizing Repeatable and
Parallel OLAP Queries

Ricardo Jorge Santos1 and Jorge Bernardino1,2

1 CISUC – Centre of Informatics and Systems of the University of Coimbra, Portugal
2 ISEC – Superior Institute of Engineering of Coimbra, Portugal

lionsoftware.ricardo@gmail.com, jorge@isec.pt

Abstract. On-line analytical processing against data warehouse databases is a
common form of getting decision making information for almost every business
field. Decision support information oftenly concerns periodic values based on
regular attributes, such as sales amounts, percentages, most transactioned items,
etc. This means that many similar OLAP instructions are periodically repeated,
and simultaneously, between the several decision makers. Our Query Cache
Tool takes advantage of previously executed queries, storing their results and
the current state of the data which was accessed. Future queries only need to
execute against the new data, inserted since the queries were last executed, and
join these results with the previous ones. This makes query execution much
faster, because we only need to process the most recent data. Our tool also
minimizes the execution time and resource consumption for similar queries si-
multaneously executed by different users, putting the most recent ones on hold
until the first finish and returns the results for all of them. The stored query re-
sults are held until they are considered outdated, then automatically erased. We
present an experimental evaluation of our tool using a data warehouse based on
a real-world business dataset and use a set of typical decision support queries to
discuss the results, showing a very high gain in query execution time.

1 Introduction

Over the last decades, data warehouses (DW) have become excellent decision-support
resources for almost every business field. Decision making information is mainly
obtained using tools performing On-Line Analytical Processing (OLAP) against DW
databases. These databases usually store the whole business history, having a frequent
huge number of rows, and grow to gigabytes or terabytes of storage size, making
query performance one of the most important issues in data warehousing. The author
in [14] refers that standard decision making OLAP queries which are executed peri-
odically at regular intervals are, by far, the most usual form of obtaining decision
making information. This implies that this kind of information is usually based on the
same regular SQL instructions. This makes it relevant and important to optimize the
performance of predefined decision support queries, which would be executed repeat-
edly at any time, by a significant number of OLAP users. Most research proposals for
optimizing parallel and repeatable query execution focus on issues such as data and
hardware balancing, to take advantage of multi-threading and multi-core processors

144 R.J. Santos and J. Bernardino

[6, 9]. The proposed solutions are somewhat complex and expensive. In this paper, we
propose a solution at the data and SQL level, which is farther more simple, under-
standable and inexpensive.

Our proposal consists on a method for speeding up the execution of two types of
queries: periodically repeatable queries, which keep their original OLAP instruction;
and two or more similar query instructions which are executed simultaneously. This is
done by storing the latest results of the frequently used OLAP queries. Therefore,
only the most recent factual data is used for processing incremental results, which will
be joined with the previous results in order to supply the OLAP queries’ response.
Our proposal also avoids spending time and resources of the DBMS in processing
simultaneously similar OLAP instructions. This is done by looking into the query
cache, for every OLAP query to be executed, to see if there is any similar query being
executed at the same time. If there is, the latest user is put on hold and will receive the
results as soon as it finishes processing for the first user who started the execution. As
it can be seen in the results provided in the experimental evaluation, this method pro-
vides very high gains in query response time and resource consumption for repeatable
and parallel querying, for several number of simultaneous users.

The remainder of this paper is organized as follows. Section 2 presents our pro-
posal, describing how the query caching method works and is used in the Query
Cache Tool. In Section 3 we present an experimental evaluation and discuss its re-
sults. Section 4 presents related work on parallel query execution, query caching and
other research related with the solutions used in our proposal. Finally, section 5 pre-
sents conclusions and future work.

2 The Query Cache Tool

Traditionally, it has been well accepted that DW databases are updated periodically –
typically in a daily, weekly or even monthly basis [19]. In our experience, the daily
updates seem to be the most used approach. These updates consist on integrating new
data into the DW databases and rebuilding all associated optimization data structures,
such as indexes, materialized views, etc. While these update procedures are executed,
the databases are offline, i.e., unavailable to end users such as decision makers and
OLAP tools. Between these updates, i.e., while the databases are available, the exist-
ing data is static in its contents and structures.

Now suppose that several decision makers need to execute the same queries among
each other along the day, for instance, consulting how much was the total sales
amount of the day before the current. During that same day, the existing data in the
DW databases does not change. This brings up a very relevant question: Why should
we request the execution of similar queries more than once, between DW updates, if
the data is always the same? The results are also always the same! Therefore, if we
store the results for the most recently executed queries, which decision makes will
probably need to consult repeatedly, we already have fast direct access to the results
and do not need to process those queries once more. Furthermore, the new data which
is integrated in the databases is always incremental, i.e., it adds new records and never
changes previously stored data [10]. Therefore, if a repeatable query is executed be-
fore a data update, and a user requests its execution afterwards, in order to obtain its

 A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries 145

results we should only query the most recent added factual data and join the results
with the previously stored ones from query’s prior execution. We can also avoid over-
time and resource consumption. Comparing real-time simultaneous query execution
between the DW users, we can see if there are any similar queries requested to exe-
cute at the same time. Therefore, if we consider a set of users trying to execute the
same queries, and put the latest users on hold until the first conclude query process-
ing, then returning results for all of them, we efficiently avoid overuse of resource
consumption and processing time, minimizing query response time.

The Query Cache Tool (QCT) deals with all of the mentioned issues, looking to
optimize all repeatable and parallel querying. In the following subsections, we shall
explain what data structure is used for managing the query execution history and how
the query cache algorithm works.

2.1 The Query Cache Tool Data Schema

To store all the information for the QCT, we use the data schema shown in Figure 1.

Fig. 1. Query Cache Tool data schema

Table QueryCache is the master table for the QCT, storting one row for each
query executed by the QCT. Column QC_QueryID is a unique identifier for each SQL
query instruction and QC_QueryText stores a copy of the instruction. Columns
QC_Date and QC_Time store the date and time when the respective query was first
executed. Columns QC_ExpireDate and QC_ExpireTime allow defining when will
the respective query’s result become overdue or irrelevant. When this happens, the
QCT will automatically delete all references and results to it, using what we call the
QueryCacheCleanSweep procedure, which we will explain further on. Column
QC_Executing is a logical flag attribute which indicates if the respective query is
currently being executed or not. Table QC_LastValues is a detail table which will
store the last values of the data in each dimension and fact tables which are needed for
processing each query. Column QCLV_QueryID references the query identifier
QC_QueryID for the query in master table QueryCache. Column QCLV_TableName
indicates the name of a table which is needed for query identified by QCLV_QueryID,
and column QCLV_TableType indicates if that table is dimensional (D) or factual (F).
Columns QCLV_KeyColumn and QCLV_ColumnType respectively indicate the name
and type of a key column existing in table QCLV_TableName, while column
QCLV_LastValue stores the greatest recorded value for that QCLV_KeyColumn in
table QCLV_TableName, acting as a row stamp for distinguishing new data since the

146 R.J. Santos and J. Bernardino

query was last executed. For the QCT, each query execution generates a table named
QCacheResponseX, that stores the corresponding result, where X is the value of the
query’s identifier QC_QueryID in the QueryCache table. For instance, if it receives a
query to execute to which it associates QC_QueryID = 1, the corresponding results of
its execution is stored in an isolated table QCacheResponse1, in the QCT database.

We shall now explain how our QCT algorithm uses this data schema in order to
optimize repeatable and parallel OLAP query execution.

2.2 The Query Cache Tool Algorithm

As we mentioned before, the QCT assumes that if no new data has been added to the
DW database, the results for any query X which has already been executed is stored in
one of the formerly saved QCacheResponseX tables. Therefore, there is no need to
execute these queries again, just to supply the results by returning the rows in the
correspondent QCacheResponseX table which relates to the desired query, saving
time and resource consumption. This makes supplying results for repeated queries an
extremely fast task for the QCT. Suppose a certain user A, which starts execution of
an OLAP query X. If another user B, has previously started executing an OLAP query
Y, similar to query X, which is currently being processed, the QCT does not execute
query X. Instead, it discards the execution of query X and puts user A on hold while
query Y finishes being processed, and then returns the same results to both users. This
allows minimizing time and resource consumption for simultaneous similar query
execution, speeding up response time for this type of parallel querying. The algorithm
also needs to insure the creation and storage of the results from the first execution of
each different query, along with the latest values of each dimensional and factual
table needed in processing those results, for identifying in the future if the data in the
needed tables has changed or not. It also needs to define the validity of each query
results, for automatically disposing those which become overdue.

The QCT algorithm for OLAP query execution is showed on the next page. Due to
space constraints, the algorithm is presented in a summarized manner, for its complete
code is too long to include in this paper. We have highlighted the instructions which
distinguish its major sections. The first highlighted IF instruction verifies if the sub-
mitted query QueryN has already been executed earlier, meaning that it has already
been stored in QueryCache and its results are stored in a corresponding QCacheRe-
sponse table. If QueryN exists in QueryCache, the second IF instruction checks if it
is currently being executed on behalf of other user, and if this is true, waits until the
execution finishes. Otherwise, it processes the query against the data which has been
added to the database since it was last executed and joins those results to the previ-
ously stored ones, saving new results in the corresponding QCacheResponse table.
The actual last recorded values of each key column for each table in the query are
recorded in QC_LastValues with QC_QueryID of the each current query, for future
comparison in data content updates. If data has not changed since the query’s last
execution, no processing is needed, since the results are already stored in the corre-
sponding QCacheResponse table. If first highlighted IF instruction is FALSE, this
means it is the first execution of QueryN. Consequently, a new QC_QueryID value is
given to the query, recorded in a new row in QueryCache for identification, along
with the query’s features (complete SQL instruction, current execution date and time,

 A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries 147

expiring date and time, and QC_Executing flag attribute as TRUE). The actual last
recorded values of each key column for each table in the query are recorded in
QC_LastValues with QC_QueryID of the current query for future comparison in
data content updates. The results of the query’s execution are then stored in the corre-
sponding QCacheResponse table. The results to all users which submitted the query
are given by querying the QCacheResponse table, independently if it is a first time
execution, a waiting process or an incremental join to previously stored results.

PROCEDURE ExecuteQuery(QueryN: SQL Query Instruction)
BEGIN
 IF THERE IS A ROW IN QueryCache WHERE QC_QueryText = QueryN THEN
 QID = QC_QueryID FOR QueryN
 IF QueryN IS ALREADY BEING PROCESSED (QC_Executing = TRUE) THEN
 WAIT
 DELAY Y SECONDS
 VERIFY QC_Executing VALUE FOR QueryN
 UNTIL QC_Executing FOR QueryN IS EQUAL TO FALSE
 ELSE
 SAVE QC_Executing = TRUE IN QueryCache FOR QC_QueryID = QID
 ReQuery = FALSE
 FOR EACH TABLE NEEDED IN QueryN
 LOOKUP LAST RECORDED VALUES IN EACH KEY COLUMN
 IF VALUES ARE DIFFERENT FROM
 RECORDED VALUES IN QC_LastValues FOR QueryN THEN
 LOOKUP LAST RECORDED VALUES IN EACH KEY COLUMN
 SAVE THOSE LAST RECORDED VALUES IN QC_LastValues
 ReQuery = TRUE
 END IF
 NEXT
 IF ReQuery = TRUE THEN
 FOR EACH FactTable IN QueryN
 BUILD TmpFactTable WITH ALL THE NEW ROWS INSERTED
 SINCE LAST EXECUTION OF QueryN
 NEXT
 EXECUTE QueryN AGAINST TmpFactTables
 JOIN RESULTS WITH PREVIOUSLY STORED QCacheResponseX
 WHERE X = QC_QueryID FOR QueryN
 RECREATE QCacheResponseX WITH NEW RESULTS
 END IF
 SAVE QC_Executing=FALSE IN QueryCache FOR QC_QueryID=QID
 END IF
 ELSE
 DETERMINE A NEW QC_QueryID FOR QueryN
 INSERT A NEW ROW IN QueryCache FOR QueryN WITH QC_Executing = TRUE
 FOR EACH TABLE NEEDED IN QueryN
 LOOKUP LAST RECORDED VALUES IN EACH KEY COLUMN
 SAVE THOSE LAST RECORDED VALUES IN QC_LastValues
 NEXT
 EXECUTE QueryN AND SAVE RESULTS IN QCacheResponseX
 WHERE X = QC_QueryID FOR QueryN
 SAVE QC_Executing = FALSE IN QueryCache FOR QC_QueryID = QID
 END IF
 RETURN RESULTS BY SELECTING ALL ROWS FROM QCacheResponseX
 WHERE X = QC_QueryID FOR QueryN
END

Joining the results from a previous execution of a query with new processed results
requires taking several issues under consideration. Queries containing the SUM and
COUNT aggregation functions do not need to be changed. The first stored results just
need to be added to the new ones. The final results of the queries with aggregation
functions is computed in a similar way as in DW stripping, presented in [3, 4]. The
average function AVG is calculated dividing a SUM by COUNT, and if there is a need for
obtaining STDDEV and VARIANCE, they are determined by usage of COUNT, VARI-
ANCE, SUM and COUNT functions, as shown in the previous mentioned papers.

148 R.J. Santos and J. Bernardino

As time goes by, the number of QCacheResponse tables and storage space they
take up need to be dealt with. This is done by looking for query results which have
been considered overdue or obsolete, checking the values of the QC_ExpireDate and
QC_ExpireTime columns. To perform this, the QCT executes a procedure which we
have called the QueryCacheCleanSweep. This procedure seeks for all the rows in
QueryCache referring queries that are not currently being executed (QC_Executing
= FALSE) and where the current server date/time considers overtime (already past the
values of the QC_ExpireDate and QC_ExpireTime columns). The procedure is
automatically executed every X seconds, where X should be defined by the DBA after
consulting with decision makers as to which is the minimum period of interestingness.
The simplified algorithm for the QueryCacheCleanSweep is shown below.

PROCEDURE QueryCacheCleanSweep
BEGIN
 FOR EACH Row IN QueryCache WHERE QC_Executing = FALSE
 QID = VALUE OF KEY COLUMN QC_QueryID IN CURRENT QueryCache ROW
 IF (CurrentDate() > QC_ExpireDate) OR
 (CurrentDate() = QC_ExpireDate AND
 CurrentTime() >= QC_ExpireTime) THEN
 DELETE ALL ROWS IN QC_LastValues WHERE QCLV_QueryID = QID
 DELETE CURRENT ROW IN QueryCache
 DROP TABLE QCacheResponseX WHERE X = QID
 END IF
 NEXT
END

3 Experimental Evaluation

We have implemented a real-world sales DW, based on a star schema with one fact
table (Sales) and four dimension tables (Time, Customers, Products, and Promotions).
The dimension features of the database, corresponding to one year of commercial
data, are shown in Table 1. To build the DW, we used Oracle 10g DBMS on a 2.8
GHz Pentium IV CPU, with 1 GByte RAM and a 180 GByte 7200 rpm hard disk.

Table 1. Dimensional features of the Commercial Sales Business Enterprise Data Warehouse

 Times Customers Products Promotions Sales
Number of Rows 8 760 250 000 50 000 89 812 31 536 000
Storage Size 0,12 MB 90 MB 7 MB 10 MB 1 927 MB

To obtain results for aiding business decision making, a set of 12 OLAP queries
was selected. These queries represent a sample of decision making information which
is typically needed in the business, such as customer product and promotion sales
daily, monthly, quartery and anually values. The set of these 12 queries represents the
workload used in each experimental scenario. We have tested the QCT for each day
of December, 2008, considering 4 execution possibilities for each query:

a) Standard Execution: traditional execution of the query workload in the
Oracle SQL*Plus interface in a standard manner;

b) QCT First Execution: execution of the query workload by QCT, assuming
that the query cache database is empty, i.e., each query is executed for the
first time by QCT;

 A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries 149

c) QCT Incremental Execution: execution of the workload by the QCT,
where a first execution has been previously made and their results are already
stored in the query cache database, and after inserting an entire day of new
data in the DW fact table (which stands for an average of 86746 new rows in
Sales), to join these new results with the previously stored ones;

d) QCT Sequential Execution: execution of the workload by the QCT a second
time after it has already been executed and their results are already stored in the
query cache database, with no change in the DW tables’ contents.

Assuming that the DW is updated in a daily fashion, first we shall present the results
concerning the usage of the QCT during one day, against traditional query workload
execution. Tables 2, 3, and 4 present the results for comparing standard query work-
load execution on 31-12-2008, against each of the three presented execution possibili-
ties using the QCT on the same day.

Table 2. Standard workload execution time vs. QCT workload first exec. time on a day

 Standard Exec. Time QTC First Exec. Time Time Difference Times Faster/Slower
1 User 764 s 810 s + 46 s 1.06 times slower
2 Users 1336 s 832 s - 504 s 1.61 times faster
4 Users 2050 s 1212 s - 838 s 1.69 times faster
8 Users 4206 s 1868 s - 2338 s 2.25 times faster
16 Users 7807 s 3797 s - 4010 s 2.06 times faster

Table 3. Standard workload exec. time vs. QCT workload incremental exec. time on a day

 Standard Exec. Time QTC Incremental Exec. Time Time Difference Times Faster/Slower
1 User 764 s 49 s - 715 s 15.6 times faster
2 Users 1336 s 89 s - 1247 s 15.0 times faster
4 Users 2050 s 164 s - 1886 s 12.5 times faster
8 Users 4206 s 304 s - 3902 s 13.8 times faster
16 Users 7807 s 583 s - 7224 s 13.4 times faster

Table 4. Standard workload exec. time vs. QCT workload sequential exec. time on a day

 Standard Exec. Time QTC Sequential Exec. Time Time Difference Times Faster/Slower
1 User 764 s 13 s - 751 s 58.8 times faster
2 Users 1336 s 26 s - 1310 s 51.4 times faster
4 Users 2050 s 48 s - 2002 s 42.7 times faster
8 Users 4206 s 87 s - 4119 s 48.3 times faster
16 Users 7807 s 160 s - 7647 s 48.8 times faster

As it can be seen from the results, the QCT is much faster than the standard query
execution for all cases, except for the first execution with only 1 user querying,
showed in QCT First Time Execution. This happens because the QCT has to execute
the first workload with 1 user in a standard manner and still has to create and store the
initial results. However, for more than 1 user, the QCT takes advantage of checking if
there are any similar queries executing simultaneously, dismissing parallel querying
for those queries, contrarily to the standard execution, which reexecutes all of the
queries. This means that the more the users, the better QCT outperforms the standard
execution. This can be confirmed by observing Figure 2. By analyzing the previous

150 R.J. Santos and J. Bernardino

tables and the figure, we can see that if a query which has been stored in the query
cache database is repeated, showed by the QCT Sequential Execution, the QCT can
supply the results around 50 times faster, for it only needs to access the previously
stored results in order to process the query. It is also much faster to join new calcu-
lated results from new added data with previously stored ones to supply query results,
showed by the QCT Incremental Execution, than reexecuting the queries against the
whole amount of data.

Query Workload Execution Time with Variable Number of Simultaneous Users on 31-12-2008

0

1000

2000

3000

4000

5000

6000

7000

8000

Standard Execution Time 764 1336 2050 4206 7807

QCT First Execution Time 810 832 1212 1868 3797

QCT Incremental Exec. Time 49 89 164 304 583

QCT Sequential Exec. Time 13 26 48 87 160

1 User 2 Users 4 Users 8 Users 16 Users

Fig. 2. Query workload execution of standard execution vs. QCT execution for 31-12-2008

4 Related Work

Most of the research work done in this area is focused on optimizing data search
methods and physical data distribution. Our method aims for the OLAP SQL instruc-
tion level. Many DBMS vendors claim to support parallel data warehousing to various
degrees, e.g. Oracle10g R2 [13], IBM/Informix Red Brick [15], and Microsoft SQL
Server [9]. Most of these products, however, do not use dimensionality of data that
exists in a DW and it remains unclear to what extent multidimensional fragmentation
is exploited to reduce query work. None of the aforementioned vendors provide suffi-
cient information or even tool support on how to determine an adequate data alloca-
tion for star schemas. The effective use of parallel processing in this environment can
be achieved only if we are able to find innovative techniques for parallel data place-
ment using the underlying properties of data in the warehouse.

The most common choice consists of systems that offer massive parallel process-
ing capabilities [1, 18], as Massive Parallel Processing (MPP) systems or Symmetric
MultiProcessing (SMP) systems. Due to the high price of this type of systems, less
expensive alternatives have already been proposed and implemented [5, 7, 12]. One of
those alternatives is the DW Stripping (DWS) technique [3, 4]. A large amount of
research has been performed for processing and optimizing queries over distributed
data (see, e.g. [2, 11, 16, 17]). However, this research has focused mainly on distrib-
uted join processing rather than distributed computation. Only recently [6] we have a

 A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries 151

new architecture and optimizations for parallel SQL execution in the Oracle 10g data-
base and a practical solution for parallelizing query optimization in the multi-core
processor architecture, including a parallel join enumeration algorithm and several
alternative ways to allocate work to threads to balance their load. This solution has
been prototyped in PostgreSQL [9]. The approach we explore in this paper marries
the concepts of distributed processing and parallel OLAP queries to provide a fast and
reliable relational DW.

5 Conclusions and Future Work

We have explained how our query cache tool works, optimizing the execution of
repeatable OLAP queries and simultaneous similar query executions. We have also
shown that our query cache tool is efficient, significantly reducing query execution
time and processing resources. The presented results in the experimental evaluation
show that the query cache method is much better than the standard query workload
execution, for this type of queries. As future work, we intend to enhance the method
for including features which can deal with queries which represent incremental col-
umn results that can be added to the results of other previously processed queries. We
also mean to work on similar query recognition, for identifying similar OLAP instruc-
tions which are not written exactly the same way, but aim for similar results.

References

[1] Agosta, L.: Data Warehousing Lessons Learned: SMP or MPP for Data Warehousing.
DM Review Magazine (2002)

[2] Akinde, M.O., Bhlen, M.H., Johnson, T., Lakshmanan, L.V.S., Srivastava, D.: Efficient
OLAP query processing in distributed data warehouses. Information Systems 28, 111–
135 (2003)

[3] Bernardino, J., Madeira, H.: Experimental Evaluation of a New Distributed Partitioning
Technique for Data Warehouses. In: Int. Symposium on Database Engineering and Ap-
plications, IDEAS 2001 (2001)

[4] Bernardino, J., Furtado, P., Madeira, H.: Approximate Query Answering Using Data
Warehouse Striping. Journal of Intelligent Information Systems – Integrating Artificial
Intelligence and Database Technologies 19(2), 145–167 (2002)

[5] Critical Software SA, DWS, http://www.criticalsoftware.com
[6] Cruanes, T., Dageville, B., Ghosh, B.: Parallel SQL Execution in Oracle 10g. In: ACM

SIG International Conference on Management of Data, SIGMOD (2004)
[7] DATAllegro, DATAllegro v3TM, http://www.datallegro.com
[8] Galindo-Legaria, C.A., Grabs, T., Gukal, S., Herbert, S., Surna, A., Wang, S., Yu, W.,

Zabback, P., Zhang, S.: Optimizing Star Join Queries for Data Warehousing in Microsoft
SQL Server. In: Int. Conf. on Data Engineering (ICDE 2008), pp. 1190–1199 (2008)

[9] Han, W.S., Kwak, W., Lee, J., Lohman, G.M., Markl, V.: Parallelizing Query Optimiza-
tion. In: International Conference on Very Large Data Bases, VLDB (2008)

[10] Kimball, R., Ross, M.: The Data Warehouse Toolkit, 2nd edn. John Wiley & Sons,
Chichester (2002)

[11] Kossman, D.: The state of the art in distributed query processing. ACM Computing Sur-
veys 32(4), 422–469 (2000)

152 R.J. Santos and J. Bernardino

[12] Netezza, The Netezza Performance Server® DW Appliance,
http://www.netezza.com

[13] Oracle Data Warehousing Guide 10g R2,
http://downloadwest.oracle.com/docs/cd/B1930601/server.102/
b14223.pdf

[14] Pedersen, T.B.: How is BI used in industry?: Report from a knowledge exchange net-
work. In: Kambayashi, Y., Mohania, M., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181,
pp. 179–188. Springer, Heidelberg (2004)

[15] RedBrick White Paper,
 ftp://ftp.software.ibm.com/
 -software/data/informix/pubs/whitepapers/
 redbrickwpO40904.pdf

[16] Schewe, K.D., Zhao, J.: Balancing redundancy and query costs in distributed data ware-
houses – an approach based on abstract state machines. In: Hartmann, S., Stumptner, M.
(eds.) 2nd Asia-Pacific Conference on Conceptual Modelling (ER), Austral. CRPIT,
vol. 43, pp. 97–105. Computer Society (2005)

[17] Stanoi, I., Agrawal, D.P., El Abbadi, A.: Modeling and Maintaining Multi-view Data
Warehouses. In: Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E. (eds.) ER
1999. LNCS, vol. 1728, pp. 161–176. Springer, Heidelberg (1999)

[18] Sun Microsystems, Data Warehousing Performance with SMP and MPP Architectures,
White Paper (1998)

[19] Zurek, T., Kreplin, K.: SAP Business Information Warehouse – From Data Warehousing
to an E-Business Platform. In: International Conference on Data Engineering, ICDE
(2001)

Efficient Map Portrayal
Using a General-Purpose Query Language

(A Case Study)

Peter Baumann, Constantin Jucovschi, and Sorin Stancu-Mara

Jacobs University Bremen
{p.baumann,c.jucovschi,s.stancumara}@jacobs-university.de

Abstract. Fast image generation from vector or raster data for map
navigation by Web clients is an important geo Web application today.
Raster data obviously account for the larger volume of the underlying
data sets served through WMS and other such interfaces. Dedicated
server implementations prevail because an often heard argument is that
general-purpose server software, such as database systems, cannot be
efficient enough for such high-volume application scenarios.

In this paper we refute that. We investigate just-in-time compilation
of query fragments in two variants, for CPU and GPU, as implemented in
the general purpose raster DBMS rasdaman. Results suggest that array
databases are suitable for realtime geo raster services.

1 Introduction

GoogleMaps, Virtual Earth, and several similar services have become a commod-
ity for everybody, thereby stretching use of geo data from a mere expert focus
to the general Internet user. Actually, web-based map navigation currently con-
stitutes one of the most widely used Web GIS (Geographic Information System)
functionality and accounts for a large part of the geo service traffic generated.

For portrayal in a map, one or more layers are superimposed. We disregard
vectorial data and concentrate on raster data where four types of layers are
common:

– Greyscale or color raster imagery. These can be displayed more or less di-
rectly.

– Elevation and bathymetry data. They lack an immediate visual semantics
and, hence, have to be classified, i.e., height/depth values are replaced by
some color indicator.

– Thematic raster maps. In these boolean images a pixel value of false indi-
cates transparency, while a value of true indicates that an object covers this
location. During portrayal, true values get replaced by some color value.

Obviously, fast portrayal of raster maps represents an extra challenge due to the
base data set’s size which typically ranges into multi-Terabyte volumes, thereby
exceeding vector data volumes by several orders of magnitudes. Elevation and

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 153–163, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 P. Baumann, C. Jucovschi, and S. Stancu-Mara

bathymetry data, in turn, constitute the computationally most expensive part
due to the classification task. Hence, in this contribution we will focus on speed-
ups particularly for these processing intensive map data type.

We inspect such services from a database perspective to see how query lan-
guages can act as a tool interface for data access. Array databases provide a
suitable abstraction for raster services, including declarative, optimizable query
models [2][14][15][29]; our analysis is based on the rasdaman array algebra [5] and
DBMS [3] which is in operational use as a map server since many years and on
multi-Terabyte image objects. Concretely, we evaluate a recently implemented
optimization technique, just-in-time (JIT) compilation. This method starts out
by pre-clustering of operations in the query tree, and then generates either CPU
or GPU (Graphics Processing Unit) code.

The remainder of this contribution starts, in Section 2, with a brief array
model introduction as far as needed here. Section 3 discusses the use case.
Section 4 presents the JIT optimization techniques. The state of the art is re-
viewed in Section 5, and Section 6 concludes the paper.

2 The rasdaman Array DBMS

In this Section we give a brief overview of the rasdaman data model and query
processing, as far as required for our discussion. The rasdaman language [20] and
algebra [5], various optimization techniques [10][13][11][32], architecture, further
applications [3][21][23], and its impact on standardization [4] are presented else-
where.

2.1 Array Model and Query Language

Arrays are modeled as functions mapping from an d-dimensional domain to some
value set. Anticipating its embedding into the relational model, the rasdaman
conceptual model consists of tables (”collections”) with two columns, one hold-
ing the array and the other one a unique object identifier (OID) allowing for
foreign key relationships. The query language [20], rasql, allows to compose ex-
pressions on arrays embedded into the select/from/where style of SQL. For easier
comprehension we only use rasql syntax here; see [2][5] for more background.

Three core operations cover the complete range of expressive power [5]: MAR-
RAY constructs an array; CONDENSE represents a summation functional;
SORT, finally, sorts slices within an array. All other operations can be reduced
to these.

Of particular interest for the web map query patterns investigated here are
induced operations. They apply some unary or binary operation which is defined
on the cell (pixel) type of the array to all cells simultaneously. For example,
a+ b performs a pixelwise addition of arrays a and b which obviously must have
matching domains. The induced comparison a > 0 returns a boolean array with
true values for all cells where a has positive values.

Lateron we will make use of induced multiplication with composite pixels to
lift binary or greyscale images to color images. To this end, we allow nested

Efficient Map Portrayal Using a General-Purpose Query Language 155

records of values. The expression a ∗ {1, 0, 0} takes an array a with an atomic,
integer cell type and extends it to a 3-component RGB array with first compo-
nent holding the a values while all others are zero, i.e., black. The result can be
interpreted as a colored in red.

Specifically for the support of geo applications the induced overlay operator
has been added to rasdaman. It overlays two same-size arrays and takes the
first operand’s cell value whenever this is not null, otherwise takes the second
operand’s cell value.

Further operations and their efficient implementation, such as scaling [9] are
discussed elsewhere. In rasql, such operations are embedded in SQL-style queries,
such as

select png((AirborneImage.red + AirborneImage.green
+ AirborneImage.blue) / 3
from AirborneImage

AirborneImage is assumed to be a collection of color-valued arrays. Each array
is inspected in turn. The select clause first applies the induced operations which
effectively convert the color image into a grayscale image, and then encode the
result image into PNG format for shipping to the client.

2.2 Array Query Processing

The rasdaman engine follows the classical query evaluation scheme: incoming
queries are parsed, analyzed syntactically and semantically, heuristic and cost-
based optimizations are applied [22][10], and the resulting query program is
executed against the data [30]. For storage, arrays are partitioned into sub-arrays
called tiles which form the unit of disk access and array processing [6]. The query
tree generated consists of operator nodes representing, among others, the above
introduced operations. The derived operators do not just constitute syntactic
sugar, but are internally mapped to specifically optimized implementations -
hence, they are not transformed into MARRAY nodes. During evaluation of the
query, nodes recursively fetch and process data based on the open-next-close
(ONC) protocol whenever possible.

3 Web Mapping as Database Queries

A first simple request retrieves a color image from AirborneImage. By conven-
tion, each collection holds exactly one array tuple. We assume that the trans-
lation from geo to pixel coordinates has been performed already; let the source
bounding box be given by coordinates (x0, y0 and (x1, y1) and the result image
size by 300× 300.

select png(scale(AirborneImage[x_0:x_1,y_0,y_1], [0:299,0:299]))
from AirborneImage

156 P. Baumann, C. Jucovschi, and S. Stancu-Mara

Elevation data add significant complexity to such queries. For portrayal, their
floating point pixel values, which indicate height or depth in some unit of mea-
sure, need to be mapped to color codes. The corresponding lookup tables typi-
cally contain several dozens of entries. Assuming a suitable collection Elevation
and n threshold height values h1, ..., hn and grey levels {i, i, i} for i ∈ {0..255}
we obtain

select png((Elevation <= h1) * {1,1,1}
+ (h1 < Elevation and Elevation <= h2) * {2,2,2}
+ (h2 < Elevation and Elevation <= h3) * {3,3,3}
...
+ (hn < Elevation) * {n,n,n}
)

from Elevation

Obviously, query complexity easily encompasses hundreds of operations in
presence of overlays and elevation layers.

4 Dynamic Compilation of WMS Queries

The above query patterns convey a regular, albeit expensive schema in terms
of the number of operations. In particular induced operations constitute the
CPU intensive part. Our approach to optimizing such computationally complex
queries first clusters suitable query fragments and subsequently compile them to
run on either CPU or GPU.

4.1 Operator Node Conflation

In a query tree representing some algebraic expression, normally each node is
responsible for exactly one operation. For physical optimization, however, it is
common to introduce special node types which combine, e.g., a table scan with
attribute filtering. We extend this principle by introducing a conflation node type
which represents not just some fixed operation combination, but an expression
subtree [12] (there called group iterator).

Node conflation determines maximal subtrees in the query tree which are
suitable for grouping and substitutes them with the according conflation node.
The algorithm for replacing query fragments by conflation nodes walks the query
tree in a bottom-up fashion as follows. Assume the algorithm is inspecting node
N . Then,

– if N is a leaf node (i.e., either an array reader or a constant) then it is
transformed into a new conflation node C containing this one node operation.

– if non-leaf N is a singleton operation, like scaling, then its operation is incor-
porated into a new conflation node which replaces N . The conflation node
is locked against any further conflation.

Efficient Map Portrayal Using a General-Purpose Query Language 157

– if N is a non-leaf node supporting conflation then N together with its sub-
tree is replaced by a single conflation node. Assume N has as children the
non-locked conflation nodes C1, ..., Cm and further nodes N1, ..., Nn (which,
by construction, can be either locked conflation nodes or node types not
supported by conflation) for some m,n > 0, then the new node C has N ’s
root operation with Ci as operation subexpressions arguments and Nj as tile
input streams for i ≤ m, j ≤ n.

Nodes supporting conflation are those which receive array-valued input, i.e.:
unary and binary induced operations, aggregates, and scaling. Induced opera-
tions, like comparison and arithmetics, take arrays and deliver arrays, hence can
appear anywhere inside a conflation node; they are simply conflated into one
node when encountered. Aggregates (which are not of relevance in WMS-type
queries) deliver scalars and, consequently, can appear only at the root of the
tree fragment collected, not as a conflationr-internal or leaf node. An aggregate
is added to the conflation node on hand, which subsequently is locked. All other
query tree nodes remain unchanged, except for scaling nodes which cannot be
merged into a loop and anyway are expensive enough to individually benefit from
just-in-time compilation; hence, these are boxed into separate single-operation
conflation nodes to flag them for compilation.

This merging per se does not lead to an improved performance, as it again
would require interpretation of its contents. A benefit, however, is that iteration
over some input array (i.e., a tile) now has only one cell iteration variable instead
of the previous situation where every node required its own iteration.

4.2 Dynamic CPU Compilation

In the first variant, from each conflation node a piece of C source code is gener-
ated, compiled into a shared library, linked into the server, and executed on the
conflation node’s parameters.

The code generation algorithm [12] is implemented as a recursive function
which first generates C code for its children and then concatenates their codes
in a way that the overall result is provided as the result of the current operation.
A challenge is presented by the complex type system of rasdaman which actually
supports any valid C/C++ struct as array cell type. To make the C program
generated agnostic against complex types all complex structures are linearized
into separate operation units.

Elevation data classification may serve as an example. Consider the following
query fragment:

(T > -15 and T<0) * {10,40,100}

The code generated essentially looks like this:

void process(int units, void *data, void *result) {
int iter; void* dataIter = data; void* resIter = result;
for (iter=0; iter<units; ++iter, dataIter+=8, resIter +=12) {

158 P. Baumann, C. Jucovschi, and S. Stancu-Mara

float var0 = *(float*)dataIter;
bool c = (var0>-15) && (var0<0);
((int)resIter) = (c?10c:0c);
((int)resIter+4) = (c?40c:0c);
((int)resIter+8) = (c?100c:0c);

}
}

Register allocation, peephole optimization, instrumentation for processor-
specific speedup like pipelining, etc. are exploited through the compiler’s builtin
optimization.

Preliminary performance results were obtained on an Intel Pentium QuadCore
CPU 6600 running at 2.4 GHz. The compiler used was GNU gcc 4.3 under a
vanilla Debian Etch Linux with kernel 2.6.25. The effect of JIT optimization has
been evaluated both standalone and embedded into the rasdaman system. In the
standalone scenario, data were already in memory; in the integrated scenario,
times measured include tile loading from the 7200 rpm disk. Each scenario was
tested in two modes, COLD and HOT, resp. In COLD mode the C program had
to be generated and compiled prior to query evaluation. In HOT mode the shared
library was available and can be loaded and executed right away. For comparison
additionally a handcrafted, manually tuned C code version (”TAILORED”) was
implemented.

The dataset used consists of one 512×512 array of double-precision floats stored
in the database as one tile upon which the elevation classification query was ap-
plied. Measurements were made for queries containing n = 20, .., 27 classification
fragments as presented above, each one applying five operations per pixel.

Figure 1 shows left the results for the standalone version of the algorithm and
right the results of the integrated test.

Fig. 1. Standalone (left) and integrated (right) performance results for n classification
query fragments

Efficient Map Portrayal Using a General-Purpose Query Language 159

Repeated occurrence of the query fragment pattern which the conflation node
represents is beneficial in several respects: When the same fragment arrives next,
time the code still is loaded and can be executed immediately; in this case, run-
time is close to precompiled code. In case the server instance has been restarted
since, the dynamic library remains cached in the file system, this still means a
significant boost compared to interpretation. Further, if parallel server instances
run on a server then all of them will benefit from the first compilation of the
library; this is particularly beneficial in a parallel architecture like rasdaman has.

4.3 Dynamic GPU Compilation

GPU tasking with array query fragments [26][25] takes conflation nodes, gener-
ates GPU code for each node, ships code and tiles to the GPU, and fetches back
results for regular further processing in the query tree. We inspect each step in
turn.

For each conflation node an OpenGL Shading Language (GLSL) [24] source
code unit is generated. On principle, the GLSL code generated looks as follows
where ”...” is the placeholder for the expression to be evaluated on each pixel
(which is rather similar to conventional CPU code):

uniform sampler2D data;
void main() {

float f = texture2D(data,vec2(gl_FragCoord.x
/512.0,gl_FragCoord.y/512.0)).r;
f = ...;
gl_FragColor = vec4(f, 1, 1, 1);

}

In the GPU programming model, input and output data form textures ; the
program to be executed in the GPU is coded as a shader. The above code first
declares data to be a 2-D texture variable. Inside the main() routine first a
2-D texture is generated and bound to the data, with the extent given by the
system-provided global variable gl FragCoord. The next expression resembles
the operation to be executed on each pixel, in a syntax very much like C code.
Then, a 4-channel red/green/blue/alpha pixel is generated as prescribed by the
programming model. After rendering, the result is copied back into main mem-
ory, ready for passing it on to the conflation node’s parent.

Compilation of the GLSL code into GPU machine code is done by the graphics
card driver. The OpenGL driver manages all concurrency and load balancing,
so no preparation is required in the source code. As OpenGL lacks any intuition
about further usage of the textures (i.e., image data) and shader programs, a
special-purpose cache manager performs this task.

Tasking a GPU with array processing is beneficial from several perspectives.
First, GPUs are optimized for image processing operations like the ones on hand.
Further, GPUs provide a large number – typically hundreds – of cores which
come with builtin scheduling which makes them a very cost-efficient method of

160 P. Baumann, C. Jucovschi, and S. Stancu-Mara

increasing hardware parallelism. Finally, the CPU can perform other tasks in
parallel.

For performance evaluation, an Intel Core2 2.5 GHz on an nForce 790i SLi
motherboard was used with 1 GB RAM with 1.333 GHz front side bus running
a vanilla Debian Etch 2.6.25. Graphics cards under test were Nvidia 8800GT,
8800GT SLI, 8800GTX, and 9800GX2 (a high-end card at the time of this
writing). Disk access was excluded from measurements. GPU code compilation
was found to be almost always below 1ms.

Two classes of tests were performed, one varying the number of instructions,
the other one varying the number of textures used. For each test, with results
averaged over 100 runs, the following scenarios were investigated:

– Compile query, ship query, and input texture to GPU; process texture and
ship back result (single query, cold shader cache).

– Process a texture already in place, with a shader program readily compiled
and loaded (single query, hot shader cache). This together with the previous
measurement allowed to separate net processing time from time spent in
logistics.

– Process one texture 100 times, with both texture and shader already in place.
This allowed to observe the parallelization effect.

Fig. 2. CPU query processing time without JIT

Figure 3 gives the corre-
sponding benchmark re-
sults for the existing,
interpreted query process-
ing algorithm running on
the CPU. It clearly shows
that time consumed de-
pends directly on the
number of operations.

Of particular interest
in presence of GPU paral-
lelism is how the number
of operations within a query fragment impacts response time. Figure 3; shows
results of the classification query used earlier; ”number of operations” refers to

Fig. 3. Single query in a cold pipeline (left) and 100 queries in a hot pipeline (right)

Efficient Map Portrayal Using a General-Purpose Query Language 161

the number of multiplications per pixel. Interestingly, almost no difference be-
tween low-end and high-end GPUs is obvserved; further research is required to
explain this.

5 State of the Art

For heavy-traffic services usually response time is optimized through large-scale
hardware with pre-materialized map imagery (which is what GoogleMaps and
similar services do) and/or specialized data architectures, such as tailored image
formats [19][16][17].

A large part of research in array database query processing focuses on op-
timization by finding a semantically equivalent sequence of operations which
would determine the same result faster. In most cases optimizations are lim-
ited to reordering, restructuring, and sometimes joining query tree nodes [8][15].
There are not many papers which focus on the optimal implementation of the
actuall execution part of the query [31]. This is unfortunate as some papers,
when comparing their results with tailored solution written in C or C++ find
themselves 5-181 times slower [15] even though the strategies of computing are
the same.

Similar attempts to optimize the evaluation parts of a query were made by
introducing embedded (or stored) procedures [18][1][28]. Indeed, many complex
applications reported increased performance as well as better modularity and
easier management. The obvious disadvantage, however, is that manual work
and depp expertise is required to identify optimization candidates and implement
them subsequently.

In the domain of supercomputing, array processing has a long tradition. Loop
fusion is one of the techniques successfully applied there, see, e.g., [7]. Further,
optimization of main memory array operations has been investigated, e.g., in the
context of APL [33]. Our approach is to adopt such techniques to cluster array
iterations into maximal query fragments for subsequent native code generation.

6 Conclusion and Outlook

Map portrayal requires flexible, scalable services on large objects – hence, a
classical database tasks. In this contribution we have shown first results from
applying non-standard optimization techniques to Web mapping requests imple-
mented through array database queries. The benchmark results are encouraging
as they seem to indicate that the high number of operations can be optimized
effectively by CPU and GPU just-in-time code generation.

Scaling currently is not yet performed on the GPU, although it clearly is a
candidate. Among further aspects to be researched is a comprehensive evaluation
of CPU and GPU JIT, including best practices which can serve as a decision
basis for an intelligent optimizer.

Still, the optimization potential of array databases by far is not exhausted.
Among further optimizations not addressed here are n-D image pyramids and

162 P. Baumann, C. Jucovschi, and S. Stancu-Mara

cluster-based parallelization. While pyramids are common practice since long,
we are working on transferring results from OLAP preaggregation, thereby
extending the pyramid concept to the multi-dimensional case and to flexible,
demand driven maintenance of pre-computed data [10]. Cluster-based paral-
lelization transparently distributes incoming queries over a network of servers.

Finally, now that rasdaman is IO-bound, further disk optimization gets on the
agenda again. Among the work in progress are tile sequencing strategies [27].

References

1. Acheson, A., et al.: Hosting the.net runtime in microsoft sql server. In: Proc. ACM
SIGMOD, pp. 860–865. ACM, New York (2004)

2. Baumann, P.: On the management of multi-dimensional discrete data. VLDB Jour-
nal Special Issue on Spatial Database Systems 4(3), 401–444 (1994)

3. Baumann, P.: Large-scale raster services: A case for databases (invited keynote).
In: Roddick, J., Benjamins, V.R., Si-said Cherfi, S., Chiang, R., Claramunt, C.,
Elmasri, R.A., Grandi, F., Han, H., Hepp, M., Lytras, M.D., Mǐsić, V.B., Poels, G.,
Song, I.-Y., Trujillo, J., Vangenot, C. (eds.) ER Workshops 2006. LNCS, vol. 4231,
pp. 75–84. Springer, Heidelberg (2006)

4. Baumann, P.: The ogc web coverage processing service (wcps) standard. Geoinfor-
matica (2009) (accepted for publication)

5. Baumann, P.: A database array algebra for spatio-temporal data and beyond. In:
Tsur, S. (ed.) NGITS 1999. LNCS, vol. 1649, pp. 76–93. Springer, Heidelberg (1999)

6. Furtado, P., Baumann, P.: Storage of multidimensional arrays based on arbitrary
tiling. In: Proc. ICDE, pp. 328–336 (1999)

7. Gao, G.R., Olsen, R., Sarkar, V., Thekkathdw, R.: Collective loop fusion for array
contraction. In: Banerjee, U., Gelernter, D., Nicolau, A., Padua, D.A. (eds.) LCPC
1992. LNCS, vol. 757, pp. 281–295. Springer, Heidelberg (1993)

8. Graefe, G.: Query evaluation techniques for large databases. ACM Comput.
Surv. 25(2), 73–169 (1993)

9. Gutierrez, A.G.: The Application of OLAP Pre-Aggregation Techniques to Speed
Up Query Processing in Raster-Image Databases. Phd thesis (2009)

10. Gutierrez, A.G., Baumann, P.: Computing aggregate queries in raster image
databases using pre-aggregated data. In: Proc. ICCSA (2008)

11. Hahn, K., Reiner, B., Höfling, G., Baumann, P.: Parallel query support for mul-
tidimensional data: Inter-object parallelism. In: Hameurlain, A., Cicchetti, R.,
Traunmüller, R. (eds.) DEXA 2002. LNCS, vol. 2453, p. 820. Springer, Heidel-
berg (2002)

12. Jucovschi, C.: Precompiling Queries in a Raster Database System. Bachelor thesis,
Jacobs University Bremen (2008)

13. Jucovschi, C., Baumann, P., Stancu-Mara, S.: Speeding up array query processing
by just-in-time compilation. In: Proc. IEEE SSTDM, pp. 408–413 (2008)

14. Libkin, L., Machlin, R., Wong, L.: A query language for multidimensional arrays:
design, implementation and optimization techniques. In: ACM SIGMOD, pp. 228–
239 (1996)

15. Marathe, A.P., Salem, K.: Query processing techniques for arrays. VLDB Jour-
nal 11(1), 68–91 (2002)

16. n. n. Ecw – ermapper compress wavelets (.ecw), gdal.org/frmt_ecw.html (ac-
cessed June 13, 2009)

gdal.org/frmt_ecw.html

Efficient Map Portrayal Using a General-Purpose Query Language 163

17. n. n. Jpeg2000, www.jpeg.org/jpeg2000/ (accessed June 13, 2009)
18. Neugebauer, L.: Optimization and evaluation of database queries including embed-

ded interpolation procedures. SIGMOD Rec. 20(2), 118–127 (1991)
19. n.n. Mrsid – multi-resolution seamless image database,

en.wikipedia.org/wiki/MrSID#External_links (accessed June 13, 2009)
20. n.n. rasdaman query language guide, 7.0 ed. rasdaman GmbH (2008)
21. Pisarev, A., Poustelnikova, E., Samsonova, M., Baumann, P.: Mooshka: a system

for the management of multidimensional gene expression data in situ. Information
Systems 28, 269–285 (2003)

22. Ritsch, R.: Optimization and Evaluation of Array Queries in Database Manage-
ment Systems. Phd thesis (1999)

23. Roland, P., Svensson, G., Lindeberg, T., Risch, T., Baumann, P., Dehmel, A.,
Frederiksson, J., Halldorson, H., Forsberg, L., Young, J., Zilles, K.: A database
generator for human brain imaging. Trends in Neurosciences 24(10), 562–564 (2001)

24. Rost, R.J.: OpenGL shading language. Addison-Wesley, Reading (2006)
25. Stancu-Mara, S.: Method for server-side data processing using graphic processing

units (2007)
26. Stancu-Mara, S.: Using Graphic Cards for Accelerating rater Database Query Pro-

cessing. Bachelor thesis, Jacobs University Bremen (2008)
27. Stancu-Mara, S.: Optimization Support for Linear Indexed Queries in Raster

Databases. Master thesis, Jacobs University Bremen (2009)
28. Trissl, S., Leser, U.: Fast and practical indexing and querying of very large graphs.

In: Proc. ACM SIGMOD, pp. 845–856. ACM, New York (2007)
29. van Ballegooij, A.R.: RAM: A multidimensional array DBMS. In: Lindner, W.,

Mesiti, M., Türker, C., Tzitzikas, Y., Vakali, A.I. (eds.) EDBT 2004. LNCS,
vol. 3268, pp. 154–165. Springer, Heidelberg (2004)

30. Widmann, N.: Efficient Operation Execution on Multidimensional Array Data.
Phd thesis (2000)

31. Widmann, N., Baumann, P.: Efficient execution of operations in a DBMS for mul-
tidimensional arrays. In: Proc. SSDBM, pp. 155–165 (1998)

32. Widmann, N., Baumann, P.: Performance evaluation of multidimensional array
storage techniques in databases. In: Proc. IDEAS (1999)

33. Wiedmann, C.: A performance comparison between an apl interpreter and com-
piler. In: Proc. APL, pp. 211–217. ACM, New York (1983)

www.jpeg.org/jpeg2000/
en.wikipedia.org/wiki/MrSID#External_links

On Low Distortion Embeddings of Statistical
Distance Measures into Low Dimensional Spaces

Arnab Bhattacharya, Purushottam Kar, and Manjish Pal

Department of Computer Science and Engineering,
Indian Institute of Technology Kanpur, India
{arnabb,purushot,manjish}@cse.iitk.ac.in

Abstract. In this paper, we investigate various statistical distance mea-
sures from the point of view of discovering low distortion embeddings
into low dimensional spaces. More specifically, we consider the Maha-
lanobis distance measure, the Bhattacharyya class of divergences and
the Kullback-Leibler divergence. We present a dimensionality reduction
method based on the Johnson-Lindenstrauss Lemma for the Mahalanobis
measure that achieves arbitrarily low distortion. By using the Johnson-
Lindenstrauss Lemma again, we further demonstrate that the Bhat-
tacharyya distance admits dimensionality reduction with arbitrarily low
additive error. We also examine the question of embeddability into met-
ric spaces for these distance measures due to the availability of efficient
indexing schemes on metric spaces. We provide explicit constructions
of point sets under the Bhattacharyya and the Kullback-Leibler diver-
gences whose embeddings into any metric space incur arbitrarily large
distortions. To the best of our knowledge, this is the first investigation
into these distance measures from the point of view of dimensionality
reduction and embeddability into metric spaces.

1 Introduction

The problem of embedding distance measures into normed spaces arises in ap-
plications dealing with large amounts of high dimensional data where perform-
ing point, range or nearest-neighbor (NN) queries in the ambient space entails
enormous computational costs (curse of dimensionality [1]). The problem of in-
dexing and searching is magnified if the distance measures being imposed on
the data objects do not form a metric. Various approaches have been proposed
to solve this problem including easily estimable upper/lower-bounds on the dis-
tance measures [2] and finding embeddings that allow specific proximity queries
to be efficiently carried out [3]. These methods have been found to be crucial for
database retrieval algorithms in obtaining speedups over näıve search techniques.

An interesting, and often more difficult, situation arises in the case of statisti-
cal distance measures which are widely used in database and pattern recognition
applications. It has been found that in many scenarios, especially in similarity
based search in image retrieval [4], statistical distance measures like the Ma-
halanobis and Bhattacharyya measures give better performance than the stan-
dard l2 distance. The Mahalanobis distance has found also application in face

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 164–172, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Low Distortion Embeddings of Statistical Distance Measures 165

recognition tasks [5]. The Bhattacharyya class of distance measures which in-
clude the Bhattacharyya distance and the Hellinger distance are used in di-
verse database scenarios such as nearest-neighbor classification [6] and detecting
voice over IP floods [7]. Another important statistical similarity measure is the
Kullback-Leibler divergence which has been shown to be well suited for use in
real-time image segmentation algorithms [8]. This measure is also interesting
from a theoretical perspective as well because of its information-theoretic roots.
These distance measures have received a lot of attention recently and have been
examined from several perspectives including clustering [9] and sketching [10].

We examine these distance measures from another interesting perspective –
that of low-distortion embeddings into metric spaces and dimensionality reduc-
tion. The lack of inherent “geometric” properties make them harder candidates
for such embeddings.

Our Contributions: In this paper, we examine three statistical distance mea-
sures with the goal of obtaining low distortion, low dimensional embeddings for
them. First, we consider the Bhattacharyya distance and develop a technique to
prove that there cannot exist low-distortion embeddings for the Bhattacharyya
distance into a metric space in Section 3. We also provide a satisfactory positive
result by providing an embedding into the l22 space. In Section 4 we develop an-
other technique that, along with the previous technique, allows us to prove lower
bounds on the distortion of any embedding of the Kullback-Leibler divergence
into a metric space. Finally, in Section 5, we investigate the Mahalanobis dis-
tance and develop a dimensionality reduction scheme for the more general family
of Quadratic Form Distances. Due to lack of space we do not provide complete
proofs of the theorems stated. The proofs appear in the complete version of the
paper [11].

2 Preliminaries

We begin by defining the concept of distortion for embeddings of metric spaces.

Definition 1 (D-embedding and Distortion). Given two metric spaces
(X, ρ) and (Y, σ), a mapping f : X −→ Y is called a D-embedding where D ≥ 1,
if there exists a number r > 0 such that for all x, y ∈ X, we have

r · ρ(x, y) ≤ σ (f(x), f(y)) ≤ D · r · ρ(x, y).
The infimum of all numbers D such that f is a D-embedding is called the dis-
tortion of f .

It is easy to see that this notion of distortion can be naturally extended to
non-metric spaces as well. A classic result widely used in the field of metric
embeddings is the Johnson-Lindenstrauss Lemma which makes it possible for
large point sets in high dimensional Euclidean spaces to be embedded into low
dimensional Euclidean spaces with arbitrarily small distortion [12]. This result
was made more accessible for use in databases by a result of Achlioptas [13]

166 A. Bhattacharya, P. Kar, and M. Pal

which showed that one can use a projection matrix with each entry chosen in-
dependently from the distribution U{−1,+1}. This is most suited to a database
application where the random projection can now be applied using simple SQL
queries. We now state the main result of Achlioptas which assures that our
algorithmic results are readily applicable to database situations as well.

Lemma 1 ([13]). Let R = (rij) be a random d×k matrix, such that each entry
rij is chosen independently according to U{+1,−1}. For any fixed unit vector

u ∈ R
d, and any ε > 0, let u′ =

√
d
k

(
RTu

)
. Then, E

[‖u′‖2
]

= 1 = ‖u‖2 and

Pr
[
(1 − ε)‖u‖2 < ‖u′‖2 < (1 + ε)‖u‖2

] ≥ 1− e
−k
2

(
ε2
2 − ε3

3

)
.

Corollary 1. Let u, v be unit vectors in R
d. Then, for any ε > 0, a random

projection of these vectors to yield the vectors u′ and v′ respectively satisfies

Pr [u · v − ε ≤ u′ · v′ ≤ u · v + ε] ≥ 1− 4e
−k
2

(
ε2
2 − ε3

3

)
.

Proof. Apply Lemma 1 to the vectors u, v and u − v. The result follows from
using simple facts concerning inner products. ��
We shall refer to the process of mapping high dimensional point sets to low
dimensional ones via random projections as JL-type embeddings. In the discussion
below, we assume the histograms to be normalized, i.e., they correspond to
probability distributions.

Definition 2 (Representative vector). Given a d-dimensional histogram P=
(p1, . . . pd) the representative vector of P is the unit vector

√
P =(

√
p1, . . . ,

√
pd).

Definition 3 (α-constrained histogram). A histogram P = (p1, p2, . . . pd) is
said to be α-constrained if pi ≥ α

d for all i ∈ {1, 2, . . . , d}.
The above definition ensures that the α-constrained histograms have a level of
“smoothness” to them. It can be easily seen that the inner product between the
representative vectors of two α-constrained histograms P and Q is at least α.
For convenience, we will denote α

d by β. A β-constrained distribution will imply
an α-constrained distribution with α = β · d. We next examine three statistical
distance measures starting with the Bhattacharyya class of distance measures.

3 The Bhattacharyya Class of Distance Measures

In the field of pattern classification, more specifically Bayesian decision the-
ory, the Bhattacharyya bound is an upper-bound on the expected error rate
of a Bayesian decision process [14]. For two histograms P = (p1, p2, . . . , pd)
and Q = (q1, q2, . . . qd), the Bhattacharyya coefficient is defined as BC(P,Q) =∑n

i=1
√
piqi. Using this coefficient, two distance measures can be defined as fol-

lows. The Bhattacharyya distance is defined as BD(P,Q) = − lnBC(P,Q). This
measure does not form a metric. Another distance measure in this class, namely

the Hellinger distance is defined asH(P,Q)=1−BC(P,Q) = 1
2

(
‖√P −√

Q‖
)2

.
The fact that H(P,Q) is the Euclidean distance between representative vectors
allows us to state the following theorem upon application of Lemma 1.

On Low Distortion Embeddings of Statistical Distance Measures 167

Theorem 1. The Hellinger distance admits a low-distortion dimensionality re-
duction.

3.1 Dimensionality Reduction for the Bhattacharyya Distance

We now consider the possibility of extending this idea to the Bhattacharyya
distance. The following theorem shows that indeed such an embedding incurs
only a small additive error.

Theorem 2. The Bhattacharyya distance measure for α-constrained histogram
admits a JL-type embedding with arbitrarily low additive error.

Proof. By Corollary 1, we have the following with high probability:
〈√

P ,
√
Q

〉
−

ε′ ≤
〈√

P ′,
√
Q′

〉
≤

〈√
P ,
√
Q

〉
+ ε′. Taking − ln() throughout and using the

definition of the Bhattacharyya distance, we have BD(P ′, Q′) ≥ BD(P,Q) −
ln

(
1 + ε′

〈√P,
√

Q〉
)

and BD(P ′, Q′) ≤ BD(P,Q) + ln

(
1

1− ε′
〈√P,

√
Q〉

)
. Since the

distributions are α-constrained, we have
〈√

P ,
√
Q

〉
≥ α. Hence, BD(P ′, Q′) ≥

BD(P,Q) − ln
(
1 + ε′

α

)
and BD(P ′, Q′) ≤ BD(P,Q) + ln

(
1

1− ε′
α

)
. For any x,

ex ≥ 1 + x. Hence, ln
(
1 + ε′

α

)
≤ ε′

α . Also, the function f(x) = 2x− ln
(

1
1−x

)
is

positive for all x ≤ 1
2 . Hence, for ε′

α ≤ 1
2 (which is true since ε′ = ε·α

2 and ε ≤ 1),

we have ln
(

1
1− ε′

α

)
≤ 2ε′

α . Hence, BD(P,Q)− ε′
α ≤ BD(P ′, Q′) ≤ BD(P,Q)+ 2ε′

α

which gives us the desired result since ε′ = ε·α
2 . ��

We now explore whether the Bhattacharyya distance, being a non-metric, also
admits low distortion embeddings into metric spaces due to the availability of
efficient indexing schemes in metric spaces [1]. We next develop a proof technique
that shows that the distortion incurred by any embedding of point sets under
the Bhattacharyya distance into a metric space can be made arbitrarily large by
including appropriately chosen histograms.

3.2 The Relaxed Triangle Inequality Technique

We first define the notion λ-relaxed triangle inequality for a distance measure
which parallels the definition of a relaxed metric as defined in [9].

Definition 4 (λ-Relaxed Triangle Inequality). A distance measure d : X×
X −→ R

+ ∪ {0} defined on a set X is said to satisfy the λ-relaxed triangle
inequality if for all triplets p, q, r ∈ X, d(p, r) + d(r, q) ≥ λ · d(p, q) for some
constant λ ≤ 1 .

Lemma 2. Any embedding of a distance function d violating the λ-relaxed tri-
angle inequality into a metric space incurs a distortion of at least 1

λ .

168 A. Bhattacharya, P. Kar, and M. Pal

Proof. Let X contain points p, q, s that violate the inequality. Let f be a D-
distortion embedding of (X, d) into a metric space (Y, ρ). Hence ρ(f(p), f(s)) +
ρ(f(s), f(q)) ≥ ρ(f(p), f(q)) since (Y, ρ) is a metric space. However the distortion
bounds tell us that for all points x, y ∈ X , we have r · d(x, y) ≤ ρ (f(x), f(y)) ≤
D · r · d(x, y). This yields D > 1

λ . ��

3.3 Lower Bound on Distortion for Embeddings into Metric Spaces

We now appeal to the relaxed triangle inequality argument by constructing point
sets under the Bhattacharyya distance that fail to satisfy the relaxed triangle
inequality and then applying Lemma 2 to get a lower bound on the distortion.
Our result is characterized by the following theorem.

Theorem 3. There exist d-dimensional β-constrained distributions such that
any embedding of these distributions under the Bhattacharyya distance measure

into a metric space must incur a distortion of Ω
(

ln 1
dβ

ln d

)
when β > 4

d2 and

Ω
(

ln 1
β

lnd

)
when β ≤ 4

d2 .

Proof (Sketch). Consider the β-constrained distributions : P =
(1

d ,
1
d , . . . ,

1
d

)
,

Q = (1− (d− 1)β, β, . . . , β) and R = (β, 1− (d− 1)β, . . . , β). An application
of Lemma 2 along with some manipulations gives us the desired result. In the
following section, we demonstrate that this bound is tight upto a O(d ln d) factor.
The complete proof can be found in [11]. ��

3.4 A Metric Embedding for the Bhattacharyya Distance

In this section, we first show that the Bhattacharyya distance is very closely
related to the Hellinger distance measure. Since the Hellinger distance forms
a metric in the positive orthant, this allows us to get an upper bound on the
distortion which, for a fixed dimension, approaches the lower bound.

Theorem 4. For any two d-dimensional β-constrained distributions P and Q
with β < 1

2d , we have H(P,Q) ≤ BD(P,Q) ≤ d
1−2βd ln 1

(d−1)βH(P,Q).

Proof. For two distributions P,Q, recall BD(P,Q) = − ln
(∑d

i=1
√
pi
√
qi

)
=

− ln (1−H(P,Q)) =
∑∞

k=1
H(P,Q)k

k . To arrive at the lower bound, we trun-
cate the infinite series at the first term. For the upper bound, we use the
fact that the function f(x) = − ln(1 − x) is convex. The maximum Hellinger
distance between any two β-constrained distributions is 2(

√
1− (d− 1)β −

β)2. Let, a = (
√

1− (d− 1)β − β)2. Due to convexity of f , the line mx

lies above the curve − ln(1 − x) where m = f(a)
a . Therefore, we have

BD(P,Q) = − ln (1−H(P,Q)) ≤ 1
a ln

(
1

1−a

)
H(P,Q). Also, 1− a = (d− 1)β +

2β
√

1− (d− 1)β − β2 ≥ (d − 1)β since 2
√

1− (d− 1)β − β ≥ 0. Thus we get

BD(P,Q) ≤ d
1−2βd ln

(
1

(d−1)β

)
H(P,Q).

On Low Distortion Embeddings of Statistical Distance Measures 169

This implies that the identity embedding of a point set under the Bhat-
tacharyya distance into one under the Hellinger distance incurs a distortion of

d
1−2βd ln 1

(d−1)β . ��
This gives the distortion of the identity embedding into the Hellinger distance.
For constant d and sufficiently small β, the lower bound presented in Section 3.3
is essentially Ω

(
ln 1

β

)
, whereas the embedding presented in this section has a

distortion of O
(
ln 1

β

)
which implies that the lower bound is tight. In general

it can be seen using Theorems 3 and 4 that for sufficiently small β the lower
bound presented is tight upto a factor of O(d ln d). Further, the result presented
in Theorem 1 can be used to perform dimensionality reduction as well.

4 The Kullback-Leibler Divergence

Given two histograms P = {p1, p2, . . . , pd} and Q = {q2, q2 . . . qd}, the Kullback-
Leibler divergence KL(P,Q) =

∑d
i=1 pi ln pi

qi
. The Kullback-Leibler divergence is

non-symmetric and unbounded. In order to avoid these singularities, we assume
that the histograms are β-constrained.

Lemma 3. Given two β-constrained histograms P , Q, 0 ≤ KL(P,Q) ≤ ln 1
β .

Proof. The lower bound follows directly from Jensen’s inequality [14]. Since
pi

qi
≤ 1

β , we have KL(P,Q) =
∑d

i=1 pi ln pi

qi
≤ ∑d

i=1 pi ln 1
β = ln 1

β . ��
In the following, we develop a technique to prove lower bounds akin to those in
Section 3.2. Together with the relaxed triangle inequality technique, we use it to
prove the non-existence of low distortion embeddings into metric spaces for the
Kullback-Leibler divergence.

4.1 The Asymmetry Technique

We present a general result that can be used to prove lower bounds on the
embedding distortion of a non-symmetric distance measure into a metric space.
Consider the following definition.

Definition 5 (γ-Relaxed Symmetry). A set X equipped with a distance func-
tion d : X×X −→ R

+∪{0}, is said to satisfy γ-relaxed symmetry if there exists
γ ≥ 0 such that for all point pairs p, q ∈ X, |d(p, q)− d(q, p)| ≤ γ.

Lemma 4. Any embedding of a bounded distance function d (i.e., d(x, y) ≤M
for all x, y ∈ X) violating the γ-relaxed symmetry into a metric space incurs a
distortion of at least 1 + γ

M .

Proof. Let X contain points p, q that violate the γ-relaxed symmetry. Without
loss of generality, assume that d(p, q) > d(q, p) + γ. Let f be a D-distortion em-
bedding of (X, d) into a metric space (Y, ρ). Hence ρ(f(p), f(q)) = ρ(f(q), f(p))
since (Y, ρ) is a metric space. However the distortion bounds tell us that for all
points x, y ∈ X , we have r · d(x, y) ≤ ρ (f(x), f(y)) ≤ D · r · d(x, y). This yields
D > 1 + γ

M . ��

170 A. Bhattacharya, P. Kar, and M. Pal

4.2 Lower Bounds on Distortion for Embeddings into Metric Spaces

We now apply the above lemma to show that one cannot obtain an almost iso-
metric embedding of the Kullback-Leibler divergence into any metric space. We
show the existence of two histograms P and Q such that |KL(P,Q)−KL(Q,P)|
is large. The result is formally stated in the following theorem.

Theorem 5. For sufficiently large d and small β, there exists a set S of d-
dimensional β-constrained histograms and a constant c > 0 such that any em-
bedding of S into a metric space incurs a distortion of at least 1 + c.

Proof (Sketch). Consider the distributions P =
{ 1

d ,
1
d , . . . ,

1
d

}
and Q = {1− (d−

1)β, β, . . . , β}. For large d, an application of Lemma 4 gives us a lower bound of
1 + Ω(1) for both large β, – say β = 1

Θ(d) as well as small β, – say β = o
(1

d4

)
.

The complete proof can be found in [11]. ��
It turns out that one cannot get significant improvement on the above bound
by choosing different points. However, an application of the relaxed triangle
inequality technique shows that the situation is much worse as is demonstrated
below.

Theorem 6. For sufficiently large d, there exist d-dimensional β-constrained
distributions such that embedding these under the Kullback-Leibler divergence

into a metric space must incur a distortion of Ω
(

ln 1
dβ

ln(d ln 1
β)

)
. ��

Proof. We construct three β-constrained distributions that fail to satisfy the
relaxed triangle inequality under the Kullback-Leibler divergence. Consider the
following distributions. The parameters ε and c will be fixed later. Let P =(1

d ,
1
d , . . . ,

1
d

)
, Q = (1− (d− 1)ε, ε, . . . , ε) and R = (1− (d− 1)e−c, e−c, . . . , e−c)

where 1
d ≥ ε > e−c ≥ β. We have,

KL(P,Q) =
(
1− 1

d

)
ln 1

dε + 1
d ln 1

d(1−(d−1)ε) ≤ ln 1
dε

KL(Q,R) = (1− (d− 1)ε) ln 1−(d−1)ε
1−(d−1)e−c + (d− 1)ε ln(εec)

≤ (d− 1)ε ln ε+ (d− 1)cε
KL(P,R) =

(
1− 1

d

)
ln 1

de−c + 1
d ln 1

d(1−(d−1)e−c)
≥ 1

2 (c− ln d) + 1
d ln 1

d = Ω(c− ln d)−O(1)

Using the above inequalities, λ= KL(P,Q)+KL(Q,R)
KL(P,R) =O

(
ln 1

dε +(d−1)ε ln ε+(d−1)cε

c−ln d

)
.

Hence, any point set containing these three points violates the λ-relaxed triangle
inequality. Now, using Lemma 2, the distortion for the Kullback-Leibler diver-
gence is D > 1

λ = Ω
(

c−lnd
ln 1

dε +dε ln ε+dcε

)
. Since ε ln ε < 0, hence D = Ω

(
c−lnd

ln 1
dε +dcε

)
.

Consider the function f(c, ε) = c−lnd
ln 1

dε +dcε
. It turns out that ∂f

∂c > 0 for all values

of c. Hence, the maxima is achieved at the maximum value of c which is ln 1
β .

Furthermore we find that ∂f
∂ε = 0 at ε = 1

dc = 1
d ln 1

β

. It can be confirmed that

this extrema is actually a maxima. For a fixed value of d we can choose β small

On Low Distortion Embeddings of Statistical Distance Measures 171

enough to make sure that the value of ε is at least β. For these values of c and

ε we get the lower bound as D = Ω

(
ln 1

dβ

ln(d ln 1
β)+1

)
. Thus, the result follows. ��

Interpreting the Lower Bounds: The above bounds indicate that near the
uniform distribution, asymmetry makes the Kullback-Leibler divergence hard to
approximate by a metric but as we move away from the uniform distribution
the hardness is because of the violation of the relaxed triangle inequality. More
formally, it can be seen that for point sets which are β-constrained for large
β (say β = Ω

(1
d

)
), the lower bound using the asymmetry argument gives a

1 + Θ(1) bound whereas the triangle inequality argument gives a o(1) bound.
For smaller β (say β = o

(1
d4

)
) we get a better lower bound using the relaxed

triangle inequality argument. This lower bound behaves asymptotically as
ln 1

β

ln ln 1
β

which can be made arbitrarily large as against the constant bound given by the
asymmetry technique.

4.3 An Embedding for the Kullback-Leibler Divergence

In this section, we examine the properties of the identity embedding of point sets
under the Kullback-Leibler divergence into the l22 distance measure. Our result
is characterized by the following theorem.

Theorem 7. For any two d-dimensional β-constrained distributions P and Q,
l22(P,Q)

2 ≤ KL(P,Q) ≤
(

1
2β + 1

3β5

)
l22(P,Q).

Proof. Present in the complete version of the paper [11]. ��
Although this embedding does not give us a provably low distortion, due to
the embedding being into l22 space, it allows for low distortion dimensionality
reduction via JL-type embeddings.

5 The Class of Quadratic Form Distance Measures

Given a d×d positive definite matrix A, the Quadratic Form Distance measures
(QFDs) define a distance measure over R

d. If x, y ∈ R
d, then QA(x, y) is defined

to be QA(x, y) =
√

(x− y)TA(x − y). The family of quadratic form distances
corresponding to positive definite A form a metric. We now show that every
metric QFD can be embedded into a low dimensional space with low distortion.

Theorem 8. The family of quadratic form distance measures admit a low-
distortion JL-type embedding.

Proof. Since every positive definite matrix A can be subjected to a Cholesky De-
composition of the form A = LTL, QA(x, y) is essentially the Euclidean distance
between the points Lx and Ly. Hence the result follows from Lemma 1. ��
Since the Mahalanobis distance is special QFD measure where the A is the co-
variance matrix of some multivariate distribution, it too, admits a low-distortion
JL-type embedding.

172 A. Bhattacharya, P. Kar, and M. Pal

6 Conclusions
We examined various statistical distance measures from the point of view of di-
mensionality reduction and embeddability into metric spaces. In particular we
presented dimensionality reduction schemes for the Bhattacharyya distance, the
Hellinger distance and the Mahalanobis distance. We developed two novel tech-
niques that were used to prove lower bounds on the distortion of embeddings of
non-metrics into metric spaces and applied these to the Bhattacharyya distance
and the Kullback-Leibler divergence. For the Bhattacharyya distance, we demon-
strated that the lower bound presented is almost tight. We performed a similar
exercise for the Kullback-Leibler divergence where the embedding provided is of
practical significance since it allows for dimensionality reduction.

References
1. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann Publishers, San Francisco (2005)
2. Ljosa, V., Bhattacharya, A., Singh, A.K.: Indexing spatially sensitive distance mea-

sures using multi-resolution lower bounds. In: Ioannidis, Y., Scholl, M.H., Schmidt,
J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C.
(eds.) EDBT 2006. LNCS, vol. 3896, pp. 865–883. Springer, Heidelberg (2006)

3. Indyk, P., Thaper, N.: Fast Image Retrieval via embeddings. In: 3rd International
Workshop on Statistical and Computational Theories of Vision (2003)

4. Rahman, M.M., Bhattacharya, P., Desai, B.C.: Similarity searching in image re-
trieval with statistical distance measures and supervised learning. In: Pattern
Recognition and Data Mining, pp. 315–324 (2005)

5. Fraser, A., Hengartner, N., Vixie, K., Wohlberg, B.: Incorporating invariants in
Mahalanobis distance based classifiers: Application to Face Recognition. In: Inter-
national Joint Conference on Neural Networks (2003)

6. Lee, C.H., Shin, D.G.: Using Hellinger Distance in a nearest neighbour classifier
for relational databases. Knowledge-Based Systems 12, 363–370 (1999)

7. Sengar, H., Wang, H., Wijesekera, D., Jajodia, S.: Detecting VoIP Floods using the
Hellinger Distance. IEEE Transactions on Parallel and Distributed Systems 19(6),
794–805 (2008)

8. Mathiassen, J.R., Skavhaug, A., Bø, K.: Texture Similarity Measure Using
Kullback-Leibler Divergence between Gamma Distributions. In: Proceedings of the
7th European Conference on Computer Vision-Part III, pp. 133–147 (2002)

9. Chaudhuri, K., McGregor, A.: Finding Metric Structure in Information-Theoretic
Clustering. In: Proceedings of COLT 2008, pp. 391–402 (2008)

10. Guha, S., Indyk, P., McGregor, A.: Sketching Information Divergences. In: Bshouty,
N.H., Gentile, C. (eds.) COLT. LNCS, vol. 4539, pp. 424–438. Springer, Heidelberg
(2007)

11. Bhattacharya, A., Kar, P., Pal, M.: On Low Distortion Embeddings of Statisti-
cal Distance Measures into Low Dimensional Spaces (Manuscript) (May 2009),
http://www.cse.iitk.ac.in/users/purushot/low-dist.pdf

12. Johnson, W.B., Lindenstrauss, J.: Extensions of Lipschitz maps into a Hilbert
Space. Contemporary Mathematics 26, 189–206 (1984)

13. Achlioptas, D.: Database-friendly Random Projections. In: ACM Symposium on
Principles of Database Systems (2001)

14. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Pub-
lications, Chichester (2000)

http://www.cse.iitk.ac.in/users/purushot/low-dist.pdf

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 173–183, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Real-Time Traffic Flow Statistical Analysis Based on
Network-Constrained Moving Object Trajectories

Zhiming Ding1 and Guangyan Huang2

1 Institute of Software, Chinese Academy of Sciences, Beijing 100190, P.R. China
2 School of Engineering & Science, Victoria University, Melbourne, Australia

zhiming@iscas.ac.cn, abysshuang@gmail.com

Abstract. In this paper, we propose a novel traffic flow analysis method,
Network-constrained Moving Objects Database based Traffic Flow Statistical
Analysis (NMOD-TFSA) model. By sampling and analyzing the spatial-temporal
trajectories of network constrained moving objects, NMOD-TFSA can get the
real-time traffic conditions of the transportation network. The experimental results
show that, compared with the floating-car methods which are widely used in
current traffic flow analyzing systems, NMOD-TFSA provides an improved
performance in terms of communication costs and statistical accuracy.

Keywords: Database, Spatiotemporal, Moving Object, Statistics.

1 Introduction

With the recent advances in mobile computing and in Intelligent Transportation Sys-
tems (ITS), the statistical analysis of traffic flow has become a key research issue. To
improve traffic conditions and to manage transportation systems more effectively,
various techniques have been adopted to collect traffic data, such as stationary sen-
sor/camera based methods (monitoring from traffic sensors or optical devices),
air/space borne methods (monitoring from airplanes or satellites), and floating-car
based methods (monitoring from floating/probe cars).

However, the above mentioned methods have a lot of limitations. For example, sta-
tionary sensor/camera based methods can only measure traffic data at fixed positions.
To get the traffic information of the whole transportation network, a large number of
detectors are needed so that the system can be very expensive. Air/space borne meth-
ods can monitor traffic conditions over large areas, but the data are available only
when the air/space borne detectors are flying over the monitored areas.

To solve the above problems, increasing research interests are focused on the
Floating-Car Method (or FCM for short) in recent years, with a lot of feasible solu-
tions achieved [1-6]. In the FCM system, certain kinds of vehicles are equipped with
GPS and wireless communication interfaces, and periodically report to the central
server their locations, velocities, and directions (these data are called Floating-Car
Data, or simply FCD). In every certain time interval the server launches a statistical
process to match the FCD with the traffic network so that traffic flow parameters (for
instance, average speed, travel time, and traffic jam of each route) of the network can

174 Z. Ding and G. Huang

be computed and refreshed. Since floating cars collect traffic data when they move,
FCM is a “moving sensor” based method.

Even though FCM is becoming increasingly popular because of its flexibility, it
still has some obvious limitations. (1)The data sampling method in FCM is fixed-
time-based (sampling FCD in fixed time interval, say in every 2 minutes) or fixed-
distance-based (sampling FCD in fixed distance, say in every 500 meters). As a result,
the dilemma between communication cost and accuracy can not be easily solved, as
stated in [7, 8]. (2)The precision of traffic flow analysis in current floating car sys-
tems is not satisfactory. In FCM, the geographical path of a moving object between
two consecutive FCD sampling points is approximated by the shortest path, which can
cause errors in traffic statistical analysis. Actually, multiple paths can coexist between
two points over the network and the driver often take a path which he/she is familiar
with, instead of taking shortest path always. (3)In FCM, the traffic flow parameters
are refreshed in certain time interval (say in 5 minutes) instead of in real-time so that
considerable time delays can exist.

To solve the above problems, we propose a new “moving-sensor” based traffic
flow analysis method, Network-constrained Moving Objects Database based Traffic
Flow Statistical Analysis (NMOD-TFSA) model, in this paper. Through a network-
based location update mechanism, NMOD-TFSA can track the precise network-
matched trajectories of moving objects so that the precision can be greatly improved
while the communication cost can still be kept to the minimum.

The remaining part of this paper is organized as follows. Section 2 defines the data
model, Section 3 describes the NMOD-TFSA traffic flow statistical analysis methods
and the statistical analysis data structure CTSAG, Section 4 discusses performance
evaluation results, and Section 5 finally concludes the paper.

2 Modeling Traffic-Parameterized Road Networks and Moving
Object Trajectories

In this section, we propose a two-layered, route-ARS based traffic-parameterized road
network framework, in which the network is modelled as a set of routes plus a set of
junctions. Each route is again composed of a set of directed Atomic Route Sections
(ARS) which are equivalent to directed edges of the traffic network. With every ARS
or junction a set of traffic parameters is associated so that the current traffic condition
of the read network can be expressed. Figure 1 illustrates the two-layered road net-
work framework.

Fig. 1. Two-layered route-ARS based transportation network

1-end

route r1

route r2
route r3

r4

r5 r6

r7ars1
ars2

ars5

ars4ars3
ars6

ars10

ars9
ars8 ars7

+

− 0-end
Intersections & Endpoints
Exits & Entrances
Directed Atomic Route Sections

Junctions

 Real-Time Traffic Flow Statistical Analysis 175

In Figure 1, route r1 has two traffic flow directions, “+” and “–” (“+” traffic flow is
from 0-end to 1-end, and “–” is from 1-end to 0-end, see Definition 2). Therefore, the
directed atomic route sections are also in two directions. ARSs of the two route sides
can be asymmetrical (for instance, ars2 and ars9, ars3 and ars8).

Each ARS or junction of the traffic network has a set of traffic parameters associ-
ated to express its current traffic conditions (such as number of moving objects, traf-
fic-jam status, and average travel time), and these parameters are refreshed in
real-time through location updates.

Definition 1 (Traffic-parameterized Road Network). A traffic-parameterized road
network N is defined as a pair:

N = (Routes, Juncts), where Routes is a set of traffic-parameterized routes (see
Definition 2), and Juncts is a set of traffic-parameterized junctions (see Definition 4).

Definition 2 (Traffic-parameterized Route). A traffic-parameterized route of net-
work N, denoted by r is defined as follows:

r = (rid, geo, len, ((jidj, posj))
m
j 1= , ARS), where rid∈int is the identifier of r;

geo∈polyline is the geometry of r (the beginning point and the end point of geo are
called “0-end” and “1-end” respectively); len∈real is the length of r, (jidj, posj) (1≤ j ≤
m) describes the jth junction inside the route where jidj∈int is the identifier of the
junction and posj∈[0, 1] is the relative position of the junction’s center (suppose that
the total length of each route is 1, then any position inside the route can be presented
by a real number pos∈[0, 1], which is called “relative position” inside the route); and
ARS is the set of directed atomic route sections (each directed atomic route section
has a set of traffic parameters associated, see Definition 3) of the route.

Definition 3 (Directed Atomic Route Section). A directed Atomic Route Section
(ARS), denoted by ars, is a directed edge which connects two nearby junctions of the
network and does not contain any other junctions in between along the same traffic
flow direction, which is defined as:

ars = (aid, (jids, poss), (jide, pose), Paraa), where aid∈int is the identifier of ars;
(jids, poss) and (jide, pose) describe the starting point and the end point of ars respec-
tively (jids and jide are junction identifiers, and poss and pose are the starting position
and end position of ars which are measured just outside the junction area (see Defini-
tion 4) borders); Paraa={ηmo, τ, β} is a set of basic traffic flow parameters describing
the current traffic condition of ars (ηmo∈int is the number of moving objects currently
inside ars; τ ∈real is the average travel time of moving objects passing through ars; β
∈{0, 1} is the traffic jam status of ars, which can be either 1 or 0, indicating
“blocked” or “unblocked” respectively).

Through these basic traffic parameters and some additional parameters of the trans-
portation network (such as the portion of moving objects among all vehicles, the ca-
pacity of each route section, and so forth), the system can derive more complicated
traffic information of ars, such as flux, vehicle density, and so forth.

176 Z. Ding and G. Huang

Definition 4 (Traffic-parameterized Junction). A traffic-parameterized junction of
traffic network N, denoted by j, can correspond to an intersection, an exit/entrance, or
a route endpoint of real-world traffic networks, which is defined as follows:

j = (jid, loc, ((ridi, posi))
n
i 1= , γ, matrix, Paraj), where jid∈int is the identifier of j;

loc∈point is the location of j; (ridi, posi) (1≤ i ≤ n) describes the ith route connected
by j, where ridi∈int is the route identifier, posi∈[0,1] is the relative position of j’s
center inside the route; γ is the radius of the junction area, which describes the size of
the junction area. matrix is the traffic-parameterized connectivity matrix of j. It con-
tains possible matches of traffic flows in the routes connected by the junction, and the
element associated with each match takes the form (ϕ, τ, β), where ϕ can assume
either 0 or 1, indicating whether moving objects can transfer from the “in” traffic flow
to the “out” traffic flow through this junction [7, 9], τ describes the average travel
time through the junction area along the corresponding traffic flow, and β describes
the traffic jam status of the corresponding traffic flow inside the junction area.
paraj={ηmo} where ηmo is the number of moving objects currently inside the junction.

Based on the above route-ARS based traffic-parameterized road network frame-
work, we can then define the trajectories of network-constrained moving objects. A
trajectory is defined as a sequence of trajectory segments, with each segment describ-
ing a continuous movement of the moving object.

Definition 5 (Network Position). A position inside the network N, denoted by npos,
is defined as a pair:

npos = (rid, pos), where rid∈int is a route identifier, and pos∈ [0, 1] is a relative
position inside the route. Since the geometry of each route is kept in the database as a
poyline (see Definition 2), npos can be transformed to the (x, y) form easily.

Definition 6 (Network Route Section). A network route section nrs is a part of a
route, and is defined as the form:

nrs=(rid, S), where rid∈int is a route identifier isomorphic to integer, and S ⊆
[0, 1] is a interval over [0, 1] specifying a section of the route.

Definition 7 (Motion Vector). Motion vectors are snapshots of moving object’s
movements and are generated through location updates. A motion vector, mv, is de-
fined as the following form:

mv = (t, (rid, pos), v
r

, actv), where t∈real is a time instant, (rid, pos) is a network
position describing the location of the moving object at time t, and v

r
∈real is the

speed measure of the moving object at time t. v
r

 contains both speed and direction
information. Its absolute value is equal to the speed of the moving object at time t,
while its sign (either positive or negative) indicates the traffic flow direction the mov-
ing object belongs to at time t. If the moving object is moving from 0-end towards 1-
end, then the sign is positive. Otherwise, the sign is negative. actv∈bool is a flag
indicating whether the motion vector is the active motion vector [8].

Definition 8 (Trajectory Segment of Moving Object). A trajectory segment of mov-
ing object mo, denoted as trseg, is a sequence of motion vectors sent by mo through
location updates during its journey. trseg describes a continuous online movement of

 Real-Time Traffic Flow Statistical Analysis 177

mo (by “online” we mean that the moving object is continuously tracked by the
server) and is defined as follows:

trseg = (mvj) m
j 1= = ((tj,(ridj, posj), v

r
j, actvj)) m

j 1= , where for ∀i ∈ {1, …n-1}: ti < ti+1.

Definition 9 (Trajectory of Moving Object). The trajectory of a moving object mo,
denoted as traj, is a sequence of trajectory segments generated when mo is running in
the traffic network, which is defined as:

traj = (trsegi) 1
n
i= = (((tij,(ridij, posij), v

r
ij, actvij))

im
j 1=) 1

n
i=

In the trajectory, only the last motion vector can be active [8]. If the last motion
vector is active, then we know that the moving object is currently online, and the last
motion vector (called “active motion vector” in this case) contains the key informa-
tion for computing the current or near future locations of the moving object and for
triggering the next location update. If the last motion vector is inactive, then the mov-
ing object is currently offline (for instance stopped at night).

A trajectory can describe the movement of a moving object for a long period of
time (for instance 3 months), with each trajectory segment describing a continuous
online movement. As explained in [7, 8], the trajectory is generated through location
updates. In network-constrained moving objects databases, we have defined three
kinds of location updates, that is, ID-Triggered Location Update (IDTLU), Distance-
Threshold Triggered Location Update (DTTLU), and Speed-Threshold Triggered
Location Update (STTLU) [7, 8]. DTTLU and STTLU are triggerd when the moving
object exceeds the distance threshold ThD and the speed threshold ThS respectively,
and IDTLU is triggered when the moving object transfers from one route to another
via a junction. These three kinds of location updates work together to finish the trajec-
tory data sampling process of the moving object.

3 Real-Time Statistical Analysis of Traffic Parameters in
NMOD-TFSA

As stated earlier, each ARS or junction of the transportation network in NMOD-
TFSA has a set of traffic parameters associated to describe its current traffic condi-
tion. These basic parameters are refreshed whenever a location update related to the
corresponding ARS/junction occurs.

Suppose that the functions route(rid), ars(rid, aid), and junct(jid) return the route,
ARS, and junction corresponding to the identifiers respectively.

3.1 Trajectory Transformation Functions

Assume that traj is a trajectory, and its last motion vector is mvn = (tn, (ridn, posn), v
r

n,
actvn). The function appcurr(traj) appends the current motion vector mvnow to the end
of traj. If the last motion vector of traj is active (that is actvn = true), then
appcurr(traj) first computes the location of the moving object at the current time in-
stant tnow, denoted as posnow, and then generates a new motion vector mvnow = (tnow,
(ridn, posnow), ⊥, false) and appends it to traj. If the last motion vector of traj is inac-
tive (that is actvn = false), the function will do nothing.

178 Z. Ding and G. Huang

Function truncate_t(traj, I) returns part of traj (the result is still a trajectory) which
is corresponding to the given time interval I=[t1, t2] temporally. Function trun-
cate_g(traj, ars) returns part of traj which is corresponding to the given atomic route
section ars geographically. Function truncate_v(traj, vslow) returns part of traj during
which the speed of the moving object is slower than vslow. Necessary interpolation
may be required to get the end points of the resulted trajectory.

Function project_t(traj) projects traj on the time axle and returns a set of time in-
tervals. Function project_g(traj) projects traj on the geographical plane and returns a
set of network route sections (see Definition 6).

3.2 Traffic Parameter Refreshing Algorithms for ARSs and Junctions

Let’s first consider how to compute traffic parameters for ARSs. When the traffic
parameter refreshing process for a certain directed atomic route section ars is trig-
gered, the system will check all trajectories of the moving objects that have stayed in
or passed through ars in the last Δt time (Δt is a time period of 5-10 minutes, called
“statistics window”). From each trajectory, the system can derive the travel time and
the current position of the corresponding moving object. Therefore, ars’s traffic pa-
rameters ηmo and τ can be computed accordingly.

To get ars’s traffic jam status β, the system first computes the jammed area of ars:

)))), ,_g(v(truncate(truncate_(project_g
1

slowi

n

i

jam varstrajI
=

=α

where I is the spatial intersection operator between network route sections.
From the formula we can see that αjam is a section of ars through which all moving

objects move with speed slower than vslow in the last Δt time. Therefore, if αjam is not
NULL, then ars is blocked. Otherwise, no blockage exists in ars. That is:

⎩
⎨
⎧

∅=
∅≠

=
) (if false;

) (if true;

jam

jam

α
α

The traffic parameter refreshing algorithm for ARSs is given in Algorithm 1.

Algorithm 1. Traffic Parameter Refreshing Algorithm for ARSs
INPUT: rid, aid ;

1. TrajSet ← GetRTraj(rid, Δt);
2. ars = ars(rid, aid);
3. ηmo=τsum =τnum= monum= 0;
4. FOR traj ∈ TrajSet DO
5. monum++;
6. traj = addcurr (traj);
7. IF inside(GetLastMV(traj).pos, ars) THEN ηmo++; ENDIF;
8. slowseg = trancate_v(trancate_g(traj_ars, ars), vslow);
9. IF monum= 1 THEN αjam = slowseg; ELSE αjam=αjam ∩ slowseg; ENDIF;
10. tin = at(traj, ars.poss); tout = at(traj, ars.pose);
11. IF defined(tin) AND defined(tout) THEN τmo = tout –tin; τsum = τsum+τmo ; τnum++; ENDIF;
12. ENDFOR;
13. τ = τsum / τnum;
14. IF αjam ≠ ∅ THEN β = true ELSE β = false; ENDIF;
15. Refresh(ars, ηmo, τ, β).

β

 Real-Time Traffic Flow Statistical Analysis 179

The algorithm first retrieves all the trajectories geographically passing through
route(rid) in the last Δt time by calling the GetRTraj(rid, Δt) function (line 1).
Through the statistical data structure (see Subsection 3.3), this function can be sup-
ported efficiently. For each trajectory in GetRTraj(rid, Δt), the algorithm checks
whether its latest position in route(rid), GetLastMV(traj).pos, is inside ars, and ad-
justs ηmo accordingly (line 7). Then the algorithm computes the slow speed segments
for every trajectory (line 8) and gets the union of them into αjam (line 9). The jam
status β of ars can then be determined from the final result of αjam (line 14). Lines 10-
11 compute the travel time of each moving object through ars by computing two time
instants tin and tout (the entering time and exiting time of the moving object on ars), so
that ars’s average travel time τ can be derived (line 13). When the statistics is fin-
ished, the parameters of ars are refreshed with the new values (line 15).

The traffic parameter refreshing method for junctions is similar to that of ARSs.
For example, ηmo can be computed by counting the moving objects whose current
position is inside the junction area. The difference is that τ and β need to be computed
for each traffic flow inside the junction.

Suppose that ξμν is a traffic flow of the junction junct (the in-flow and out-flow are
μ and ν respectively). When computing the average travel time of the junction along
ξμν, denoted as τμν, we only need to consider the moving objects running along ξμν.
The traffic jam status of ξμν, denoted as βμν, can be derived from τμν. If τμν is longer
than a predefined threshold ψ, then βμν=true, and otherwise βμν=false. The traffic
parameter refreshing algorithm for junctions is given in Algorithm 2.

Algorithm 2. Traffic Parameter Refreshing Algorithm for Junctions
INPUT: jid

1. TrajSet ← GetJTraj(jid, Δt);
2. junct = junct(jid); ηmo= 0;
3. FOR μ ∈ junct.inflows AND v ∈ junct.outflows DO
4. τsum(μ,ν) =τnum(μ,ν)=0;
5. ENDFOR;
6. FOR traj ∈ TrajSet DO
7. traj = addcurr (traj);
8. IF inside(GetLastMV(traj).pos, junct) THEN ηmo++; ENDIF;
9. GetInOutFlows(traj, junct, μ, ν);
10. tin = at(traj, junct, μ); tout = at(traj, junct, ν);
11. IF defined(tin) AND defined(tout) THEN τmo = tout –tin; τsum(μ, ν) = τsum(μ,ν)+τmo; τnum(μ,ν)++; ENDIF;
12. ENDFOR
13. FOR μ ∈ junct.inflows AND v ∈ junct.outflows DO
14. matrix(μ,ν).τ = τsum(μ,ν) / τnum(μ,ν);
15. IF matrix(μ,ν).τ >ψ THEN matrix(μ,ν). β = true; ELSE matrix(μ,ν). β = false; ENDIF;
16. ENDFOR;
17. Refresh(junct, ηmo, matrix).

Algorithm 2 first retrieves all the trajectories geographically passing through
junct(jid) in the last Δt time by calling the GetJTraj(jid, Δt) function (line 1). For each
trajectory in GetJTraj(jid, Δt), the algorithm first checks whether its latest position,
GetLastMV(traj).pos is inside junct, so that ηmo can be computed accordingly (line 8).

180 Z. Ding and G. Huang

After that, the in and out traffic flows will be determined (line 9), so that the trajec-
tory will only contribute to the statistical computation of the traffic flow it belongs to
(lines 10-11, 13-16). The parameters are kept in matrix which is used to refresh the
junction parameters when the statistics is finished (line 17).

3.3 NMOD-TFSA Statistical Data Structure and Refreshing Method

To speed up the statistical analysis, we propose a statistical data structure, called the
Current Traffic-status Statistical Analysis Graph (CTSAG), in this subsection. Figure 2
illustrates the structure of CTSAG.

Fig. 2. Structure of CTSAG

As shown in Figure 2, CTSAG includes two B+-Trees, RouteB+-Tree and
JunctB+-Tree, which are interconnected with each other at the bottom.

RouteB+-Tree organizes the route records on the rid attribute into a B+-Tree struc-
ture. The leaf nodes contain records of the form (rid, SDBPointer), where rid is the
identifier of the route, and SDBPointer is a pointer to SDB(rid), the statistical data
block (SDB) of route(rid). Each SDB takes the form (geo, len, (aidi, (jidsi, possi), (jidei,
posei), Paraai) n

i 1=
, datasource), where (geo, len, (aidi, (jidsi, possi), (jidei, posei),

Paraai) n
i 1=

) is the route record (with ARS information included, see Definitions 2 and

3), and datasource is a set of trajectory pieces acting as the data source for the statisti-
cal computation. Each trajectory piece in SDB(rid) is still in a trajectory form (see
Definition 9), but it only contains the motion vectors corresponding to route(rid). For
the sake of efficiency, only the recent Δt time trajectory data corresponding to
route(rid) are kept in datasource. Each SDB has a set of pointers ((jpointerj, posj)) m

j 1=

leading to the records of junctions within the route.
JunctB+-Tree organizes the junction records on the jid attribute into a B+-Tree

structure. The leaf nodes contain records of the form (jid, JRecordPointer), where jid
is the junction identifier, and JRecordPointer is a pointer to the junction record of the
form (jid, loc, γ, matrix, Paraj) (see Definition 4). Each junction has a set of pointers

((SDBPointeri, posi))
n
i 1= leading to the SDBs of the routes connected by the junction.

When a location update occurs with a moving object mo, the system will first save
the newly generated motion vector(s) to the corresponding SDB(s) and then refresh
the traffic parameters of the related ARSs and junctions by calling algorithms 1 and 2

B+-Tree
(on junct ID)

JRecord JRecordJRecord

Trajectory pieces
in route(rid1) for
the last Δt time

Geoinfo ARSPara

Trajectory pieces
in route(ridn) for
the last Δt time

Geoinfo ARSPara

rid1 ridn

B+-Tree
(on route ID)

SDBn

Trajectory pieces
in route(rid1) for
the last Δt time

Geoinfo ARSPara

Location Update Messages

rid2

SDB1 SDB2

jid1 jidn

RouteB+-Tree

JunctB+-Tree

 Real-Time Traffic Flow Statistical Analysis 181

respectively.Suppose that the last motion vector of mo is mvn = (tn, (ridn, posn), v
r

n,
actvn), and the new location update occurs at position (ridu, posu). We notate the geo-
graphical path that mo has covered from (ridn, posn) to (ridu, posu) as pathnu.

If mo triggers a DTTLU or an STTLU, then a new motion vector mvu = (tu, (ridu,
posu), v

r
u, actvu) will be generated (with ridu = ridn). In this case, the system will first

save mvu to mo’s trajectory piece in SDB(ridn), and meanwhile, discard motion vec-
tors in SDB(ridn) which are older than Δt. After that, the traffic parameters of all
ARSs and junctions that intersect pathnu will be refreshed.

If mo transfers from route(ridn) to route(ridu) via junct(jidnu) and triggers an
IDTLU, then three motion vectors mvu1 = (tu1, (ridu1, posu1), v

r
u1, actvu1), mvu1 = (tu1,

(ridu1, posu1), v
r

u1, actvu1), and mvu1 = (tu1, (ridu1, posu1), v
r

u1, actvu1), will be generated
(with ridu1 = ridn, ridu2 = ridu3 =ridu). In this case, the system will save mvu1 to mo’s
trajectory piece in SDB(ridn) and save mvu2 and mvu3 to mo’s trajectory piece in
SDB(ridu), and refresh parameters for all ARSs and junctions that intersect pathnu.

Since all the trajectory pieces associated with route(rid) are kept together in
SDB(rid), the system can support the GetRTraj(rid, Δt) and GetJTraj(jid, Δt) func-
tions (see Algorithms 1 and 2) through CTSAG efficiently so that the performance of
statistical analysis can be improved.

4 Performance Evaluation

The above stated NMOD-TFSA model has been implemented as a prototype system
in C++, running in a Pentium IV processor (512M RAM, 1.6G HZ) under Linux. To
evaluate the performance, we have conducted a series of experiments based on the
prototype system and some additionally implemented modules.

The traffic network data sets for the experiments are real GIS data of Beijing. To
generate network-constrained moving object trajectories, we have implemented a
network constrained moving objects generator, NMO-Generator, which can simulate
the movements of network-constrained moving objects. In the experiments, each
simulation run involves 3000 moving objects running for 16 hours.

Figure 3 shows the average number of samplings per moving object/floating car in
collecting traffic data, which can reflect the data sampling efficiency. From the figure
we can see that, compared with FCM (sampling FCD in fixed distance), NMOD-
TFSA can considerably reduce the communication cost in the data sampling process.
The reason is that in NMOD-TFSA, the location update mechanism is motion vector
based, which samples data according to moving parameters. If the moving object
moves roughly according to the parameters, then nothing happens even though it runs
for a long distance. Only when the motion vector becomes out-of-date a new location
update is initiated. In this way, the frequency for data sampling is reduced.

Figure 4 shows the experiment result in terms of statistical precision λ. λ is defined
based on travel time precision (with other traffic parameters we get similar results):

%100
1

)
).,.max(

|..|
(1 ×

=

−
−= ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑ u
u

i arsars

arsars

gimfi

gimfi

ττ
ττλ

where μ is the number of ARSs that the moving object has passed through, mfi τars . is
the computed average travel time of arsi through NMOD-TFSA or through FCM,

182 Z. Ding and G. Huang

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

50 250 450 650 850

Distance Threshold/Interval for Data Sampling (m)

A
ve

ra
ge

 N
um

be
r

of
 D

at
a

S
am

pl
in

gs
pe

r
M

ov
in

g
O

bj
/F

lo
at

in
g

C
ar

FCM

NMOD-TFSA

0

10

20

30

40

50

60

70

80

90

100

50 250 450 650 850

Distance Threshold/Interval for Data Sampling (m)

S
ta

tis
tic

al
 P

re
ci

si
on

λ

(%
)

FCM
NMOD-TFSA

 Fig. 3. Data sampling efficiency Fig. 4. Statistical precision

gi τars . is the actual average travel time of arsi computed from the original trajectory

data generated by NMO-Generator. λ can reflect in what extent the statistical results
conform to the reality.

From Figure 4 we can see that, NMOD-TFSA has better performance in terms of
statistical precision compared with FCM. The reason is that NMOD-TFSA is based
on moving object trajectories, which can better describe the movement of moving
objects, while FCM can incur errors because of the shortest path approximation.

5 Conclusion

With the recent advancement in mobile computing, sensor networks, and intelligent
transportation systems, the network dynamic traffic flow statistical analysis has be-
come a hot research issue. However, current traffic flow analysis methods have a lot
of limitations such as high communication costs, low statistical precision, and consid-
erable time delay. To solve these problems, we propose an NMOD-TFSA model in
this paper. The experimental results show that compared with floating car methods
which are widely used in real-world applications, NMOD-TFSA provides better per-
formance in terms of data sampling efficiency and statistical precision. In the future
work, the traffic-aware continuous query based on NMOD-TFSA and the dynamic
traffic data broadcasting mechanisms will be dealt with. Also, data warehousing and
data mining techniques base on NMOD-TFSA will be studied.

Acknowledgments. The work was partially supported by NSFC under grand number
60573164, and by SRF for ROCS, SEM.

References

1. Cowan, K.W., Gates, G.: Floating Vehicle Data System – A Smart Move. In: Proc. of 9th
World Congress on Intelligent Transport Systems, Chicago (2002)

2. Fouladvand, M.E., Darooneh, A.H.: Statistical Analysis of Floating-Car Data: An Empirical
Study. The European Physical Journal B 47 (2005)

 Real-Time Traffic Flow Statistical Analysis 183

3. Torday, A.: Link Travel Time Estimation with Probe Vehicles in Signalized Networks. In:
Proc. of Swiss Transport Research Conference, Ascona (2003)

4. Lahrmann, H.: Floating Car Data for Traffic Monitoring. In: Proc. of i2TERN conference,
Aalborg, Denmark (2007)

5. Lo, C.-H., Chen, C.-W., Lin, T.-Y., Lin, C.-S., Peng, W.-C.: CarWeb: A Traffic Data Col-
lection Platform. In: Proc. of MDM 2008, Beijing, China (2008)

6. Yoon, J., Noble, B., Liu, M.: Surface Street Traffic Estimation. In: Proc. of MobiSys 2007,
San Juan, Puerto Rico (2007)

7. Ding, Z., Güting, R.H.: Managing Moving Objects on Dynamic Transportation Networks.
In: Proc. of SSDBM 2004, Santorini, Greece (2004)

8. Ding, Z., Zhou, X.: Location update strategies for network-constrained moving objects. In:
Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 644–652.
Springer, Heidelberg (2008)

9. Güting, R.H., Almeida, V.T., Ding, Z.: Modeling and Querying Moving Objects in Net-
works. VLDB Journal 15(2) (2006)

Data Management for Federated Biobanks�

Johann Eder1, Claus Dabringer1, Michaela Schicho1, and Konrad Stark2

1 Alps Adria University Klagenfurt, Department of Informatics Systems
{Johann.Eder,Claus.Dabringer,Michaela.Schicho}@uni-klu.ac.at

2 University of Vienna, Department of Knowledge and Business Engineering
Konrad.Stark@univie.ac.at

Abstract. Biobanks store and manage collections of biological material
(tissue, blood, cell cultures, etc.) and manage the medical and biological
data associated with this material. Biobanks are invaluable resources for
medical research. The diversity, heterogeneity and volatility of the do-
main make information systems for biobanks a challenging application
domain. The European project BBMRI (Biobanking and Biomolecular
Resources Research Infrastructure) has the mission to network European
biobanks, to improve resources for biomedical research, an thus con-
tribute to improve the prevention, diagnosis and treatment of diseases.
We present the challenges and discuss some architectures for intercon-
necting European biobanks and harmonizing their data.

Keywords: Biobanks, heterogeneity, federation, CSCW.

1 Introduction

Biobanks are collections of biological material (tissue, blood, cell cultures, etc.)
together with data describing this material and their donors and data derived
from this material. Biobanks are of eminent importance for medical research -
for discovering the processes in living cells, the causes and effects of diseases, the
interaction between genetic inheritance and life style factors, or the development
of therapies and drugs. Information systems are an integral part of any biobank
and efficient and effective IT support is mandatory for the viability of biobanks.

For an example: A medical researcher wants to find out why a certain liver
cancer generates a great number of metastasis in some patients and in others not.
This knowledge would help to improve the prognosis, the therapy, the selection
of therapies and drugs for a particular patient, and help to develop better drugs.
For such a study the researcher needs besides biological material (cancer tissue)
an enormous amount of data: clinical records of the patients donating the tissue,
lab analysis, microscopic images of the diseased cells, information about the
life style of patients, genotype information (e.g. genetic variations), phenotype
information (e.g. gene expression profiles), etc. Gathering all these data in the
� The work reported here was partially supported by the European Commission 7th

Framework program - project BBMRI and by the Austrian Ministry of Science and
Research within the program Gen-Au - project GATIB.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 184–195, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Data Management for Federated Biobanks 185

course of a single study would be highly inefficient and costly. A biobank is
supposed to deliver the data needed for this type of research and share the data
and material among researchers.

A major challenge for biobank information systems is to integrate various
forms of data stemming from very different autonomous sources. So biobanks
are foremost integration and interoperability projects. Another important issue
is the dynamics of the field: new insight leads to more differentiated diagnosis,
new analysis methods allow the assessment of additional measurements, or im-
prove the accuracy of measurements. So an information system for biobanks will
be continuously evolving. And last but not least, biobanks store very detailed
personal information about donors. To protect the privacy and anonymity of the
donors is mandatory and misuse of the stored information has to be precluded.

In recent years biobanks have been set up in various organizations, mainly
hospitals and medical and pharmaceutical research centers. Since the availability
of material and data is a scarce resource for medical research, the sharing of the
available material and data within the research community increased. This leads
to desire to organize the interoperation of biobanks in a better way.

The European project BBMRI (Biobanking and Biomolecular Resources Re-
search Infrastructure) has the mission to network European biobanks to improve
resources for biomedical research an thus contribute to improve the prevention,
diagnosis and treatment of diseases. BBMRI is organized in the framework of
European Strategy Forum on Research Infrastructures (ESFRI).

In this paper we give a broad overview of the requirements for IT systems for
biobanks, present the architecture of information systems supporting biobanks,
discuss possible integration strategies for connecting European biobanks and
discuss the challenges for this integration. Furthermore, we show how such an
infrastructure can be used and present a support system for medical research
using data from biobanks. An extended version of this paper will appear in [11].

2 What Are Biobanks?

Biobanks are biorepositories in which biological material with associated data is
collected, stored, processed and distributed. Human biological samples in com-
bination with donor-related clinical data are essential resources for the identi-
fication and validation of biomarkers and the development of new therapeutic
approaches, especially in the development of systems for biological approaches
to study the disease mechanisms. Nowadays, they are prominently used to ex-
plore and understand the function and medical relevance of human genes, their
interaction with environmental factors and the molecular causes of diseases [7].
Biological material (samples) can include any kind of tissue, fluid or other mate-
rial that can be obtained from an individual. Usually, biospecimens in a biobank
are blood and blood components (serum), solid tissues such as small biopsies
and so on. The stored data from a donor, which come along with the collected
sample includes:

186 J. Eder et al.

– General information (e.g. race, gender, age, ...)
– Lifestyle and environmental information (e.g. smoker - non smoker, living in

a big city with high environmental pollution or living in rural areas)
– History of present illnesses, treatments and responses (e.g prescribed drugs

and the reactions of adverse)
– Longitudinal information (e.g. a sequence of blood tests after tissue collection

in order to test the progress behavior of diseases)
– Clinical outcomes (e.g. success of the treatment: Is the donor still living?)
– Data from gene expression profiles, laboratory data,...

Donors of biological materials must be informed about purpose and intended use
of their samples. Typically, the donor signs an informed consent [4] which allows
the use of samples for research and obliges the biobank institution to guarantee
privacy of the donor.

Biobanks contribute to avoid redundant analysis and achieve the most effi-
cient and effective use of non-renewable biological material [8]. A common and
synergetic usage of this resource will enable lots of research projects especially in
case of rare diseases with very limited material available. The aim is to answer as
many research questions as possible without access to the samples themselves.
Therefore, already acquired data of samples are stored in databases and shared
among interested researchers (in silico experiments [23]). So modern biobanks
offer the possibility to decrease long-term costs of research and development as
well as effective data acquisition and usage.

Biobanks may contain various types of collections of biological materials.
Apart from the organizational challenges, an elaborated information system is
required for capturing all relevant information of samples, managing borrow and
return activities and supporting complex search enquiries. If a biobank is built
on the basis of existing resources (material and data), a detailed evaluation is es-
sential. The collection process, the inventory and documentation of samples has
to be assessed, evaluated and optimized. The increasing number of biobanks all
over the world has drawn the attention of international organizations, encourag-
ing the standardization of processes, sample and data management of biobanks.
The Organization for Economic Cooperation and Development (OECD) released
the definition of Biological Resource Centers (BRC) which ”must meet the high
standards of quality and expertise demanded by the international community of
scientists and industry for the delivery of biological information and materials”
[3]. BRCs are certified institutions providing high quality biological material
and information. The model of BRCs may assist the consolidation process of
biobanks defining quality management and quality assurance measures [16].

3 Data Integration in Biobanks

Since biobanks may involve many different autonomous datasources and man-
ages very different types data ranging from typical record keeping, over text and
various forms of images to gene vectors and 3-D chemical structures, it is obvious
that heterogeneity is ever-present. Biobanks may comprise interfaces to sample

Data Management for Federated Biobanks 187

management systems, labor information systems, research information systems,
etc. The origin of the heterogeneity lies in different data sources (clinical, lab-
oratory systems, etc), hospitals, research institutes and also in the evolution of
involved disciplines. Heterogeneity appearing in biobanks comes in various forms
and thus can be divided into two different classes.

Heterogeneity between different data sources. This kind of heterogeneity
is mostly caused by the independent development of the different datasources.
Here we have to deal with several different types of mismatches which all lead to
heterogeneity between the systems as shown in [14,21]. Typical mismatches can
be found in the attribute namings, different attribute encodings, content and
precision of attributes, attribute granularity, different modeling of schemata,
multilingualism, quality of the data stored and in the aspect of semi-structured
data (incompleteness, plain-text,...).

Heterogeneity within one data source. [17] showed, that the longer data
will be kept in biobanks the greater its scientific value is. On the other hand
keeping data in biobanks for a long time leads to heterogeneity because medi-
cal progress leads to changes in database structures and the modeled domain.
Changes that typically arise in this context are changes in disease codes, progress
in biomolecular methods results in higher accuracy of measurements, extension
of relevant knowledge (e.g. GeneOntology [2] is changed daily), treatments and
standard procedures change or the quality of sample conservation increases, etc.
Furthermore, also the technical aspects within one biobank are volatile: data
structures, semantics of data, parameters collected, etc.

Evolution. Biobanks need a mechanism to represent the changes mentioned
above and to correctly deal for the best possible exploitation of the collection.
Wherever possible biobanks should provide transformations to map data be-
tween different versions. Using ontologies to annotate content of biobanks can
be quite useful. By providing mapping support between different ontologies the
longevity problem can be addressed. Further on, versioning and transforma-
tion approaches can help to support the evolution of biobanks. Techniques from
temporal databases and temporal data warehouses can be used for the repre-
sentation of volatile data together with version mappings to transform all data
to a selected version [9,10,12,13,24]. This knowledge can be directly applied to
biobanks as well.

3.1 Example Architecture – MUG Biobank

In the context of the MUG (Medical University of Graz) biobank several types
of information systems are accessed, as illustrated in figure 1. The different data
sources are integrated in a database federation, whereas interface wrappers have
been created for the relevant data. On the one hand, there are large clinical
information systems which are used for routine diagnostic and therapeutical ac-
tivities of medical doctors. Patient records from various medical institutes are
stored in the OpenMedocs sytem, pathological data in the PACS system and
laboratory data in the laboratory information system LIS. On the other hand

188 J. Eder et al.

research databases from several institutes (e.g. the Archimed system) containing
data about medical studies are incorporated as well as the biological sample man-
agement system SampleDB and diverse robot systems. Further, survival data of
patients is provided by the external institution Statistics Austria. Clinical and
routine information systems (at the bottom of figure 1) are strictly separated
from operational information systems of the biobank. That is, sensitive patient-
related data is only accessible for medical staff and anonymized otherwise. The
MUG Biobank operates an own documentation system in order to protocol and
coordinate all cooperation projects. The CSCW system (at the top of figure 1)
provides a scientific workbench for internal and external project partners, allow-
ing to share data, documents, analysis results and services. A modified version
of the CSCW workbench will be used as user interface for the European Biobank
initiative BBMRI, described in section 4.

Fig. 1. Data Integration in context of the MUG Biobank

3.2 Related Work

UK-Biobank. The aim of UK Biobank is to store health information about
500.000 people from all around the UK who are aged between 40-69. UK Biobank
has evolved over several years. Many subsystems, processes and even the system
architecture have been developed from experience gathered during pilot opera-
tions. UK Biobank integrated many different subsystems to cooperate [6].

Data Management for Federated Biobanks 189

caBIG. The cancer Biomedical Informatics Grid (caBIG) has been initiated by
the National Cancer Institute (NCI) as a national-scale effort in order to de-
velop a federation of interoperable research information systems. The federated
interoperability is reached by a service oriented middleware infrastructure, called
caGrid. A key characteristic of the framework is its focus on metadata and model
driven service development. This aspect of caGrid is particularly important for
the support of syntactic and semantic interoperability across heterogeneous ap-
plications [18].

CRIP. The concept of CRIP (Central Research Infrastructure for molecular
Pathology) enables biobanks to annotate projects with additional necessary data
and to transfer them into valuable research resources. CRIP offers a virtual si-
multaneous access to tissue collections of participating pathology archives. An-
notated valuable data comes from different heterogeneous data sources and is
stored in a central CRIP database [19].

4 Biobanking and Biomolecular Resources Infrastructure

To benefit European health-care, medical research, and ultimately, the health
of the citizens of the European Union the European Commission is funding a
biobank integration project called BBMRI. The aim of BBMRI is to build a co-
ordinated, large scale European infrastructure of biomedically relevant, quality-
assessed mostly already collected samples as well as different types of biomolecular
resources. In addition to biological materials and related data, BBMRI will facili-
tate access to detailed and internationally standardised data sets of sample donors
(clinical data, lifestyle and environmental exposure) as well as data generated by
analysis of samples using standardised analysis platforms [1].

Benefits. The benefits of BBMRI are versatile. Talking in short-terms BBMRI
leads to an increased quality of research as well as to a reduction of costs. The
mid-term impacts of BBMRI can be seen in an increased efficacy of drug dis-
covery/development. Long-term benefits of BBMRI are improved health care
possibilities in the area of personalized medicine/health care [5].

Data Harmonisation and IT-infrastructure. An important part of BBMRI
is responsible for designing the IT-infrastructure and database harmonisation,
which includes also solutions for data and process standardization. The harmo-
nization of data deals with the identification of the scope of needed information
and data structures. Further on, it analysis how available nomenclature and
coding systems can be used for storing and retrieving (heterogenous) biobank
information. Several controlled terminologies and coding systems may be used
for organizing the information about biobanks [5,15]. Since not all medical in-
formation is fully available in the local databases of biobanks the retrieval of data

190 J. Eder et al.

involves big challenges. That implies the necessity of flexible data sharing and
collaboration between centers.

4.1 Use Cases in a Federation of Biobanks

In section 3 we discussed issues within one biobank as integration project. Now
we are concerned with a set of heterogenous biobanks as integration project.
There exist several different proposals for the handling of enquiries within the
BBMRI project. In the following we distinguish between five different kinds of
use cases:

1. Identification of biobanks. Retrieves a list with contact data from participat-
ing biobanks which have desired material for a certain study. This use case
only operates on the meta-databases which contains a small set of attributes.
A good candidate, for example, is the attribute ”diagnose” standardized as
ICD-Code because it may be very useful to know which biobank(s) store
information about specific diseases.

2. Identification of cases. Retrieves the pseudonym identifiers of cases1 stored
in local biobanks which correspond to a given set of parameters. Since the
meta-database located on the hosts does not store any case or donor related
information it is necessary to additionally query the local databases. Within
this use case no donor related information is sent to the researcher.

3. Retrieval of data. Obtains available information (material, data, etc.) directly
from a biobank for a given set of parameters. To realize this use case further
legal and ethical questions have to be answered.

4. Upload or linking of data. Connecting samples with data generated from this
sample internally and externally. Quality of data as well as data provenance
are important issues within this use case.

5. Statistical queries. Performs analytical queries on a set of biobanks.

We assume that researchers use the contact information and pseudonym iden-
tifiers to retrieve data from a biobank. Within BBMRI the focus lies on the
first two use cases mentioned before. The following query is an exemplary query
for use case 2. A researcher requires the ID of about 20 cases and their location
(biobank) with the following characteristics:

– paraffin tissue
– with diagnose breast cancer
– staging T1 N2 M0
– from donors of age 40-50 years
– including follow-up data (e.g. therapy) from the oncology

A special case within the identification of cases is determined by a slight
variance in the result set. Depending on a certain policy the result set can also
contain only a list of biobanks with their contact information as discussed in
scenario 1.
1 In our context a case is a set of jointly harvested samples of one donor.

Data Management for Federated Biobanks 191

4.2 Data Sharing and Collaboration between Different Biobanks

There exists several different approaches how to realize the IT-infrastructure
within BBMRI. We are going to present the most important ones and discuss
their pros and cons.

Peer to Peer. Within this approach the biobanks are connected via a peer to
peer infrastructure. All biobanks must provide a query interface because queries
are sent to all participating biobanks by the requestor. The exchange format
can be defined or even undefined. An undefined exchange format leads to inter-
operability problems - but defining an exchange format upfront could lead to
a domination of the biobank with the smallest schema. Therefore defining the
format is a critical success factor for the peer to peer architecture. One disadvan-
tage of this approach is that small biobanks which are not permanently online
can not take part in the federation. The major drawback of the peer to peer
approach is that there exists data in biobanks that is not allowed to leave the
biobank until it is aggregated and anonymized.

Centralized with Integration Hub. The centralized integration hub works
as a mediator within the federation. This central hub distributes queries within
the federation and it is also responsible for integrating results from the different
biobanks. This architecture is also able to solve the disadvantage of the peer to
peer approach with the use of a data warehouse. Here the data is stored in an
aggregated and anonymized form and it is available for the federation. Further
on small biobanks could export the needed data and thus do not need to be
online all the time. Nevertheless the centralized integration hub represents a
single point of failure.

Combined Approach. To overcome the before mentioned problems we
designed an architecture for the collaboration between different biobanks as a
hybrid of peer to peer and a hub and spoke structure. In our approach a BBMRI-
Host (figure 2) represents a domain hub in the IT-infrastructure and uses a meta
structure to provide data sharing. Several domain hubs are connected via a peer-
to-peer structure and communicate with each other via standardized and shared
Communication Adapters. Each participating European biobank is connected
with its specific domain hub resp. BBMRI-Host via hub and spoke-structure.

Biobanks provide their obtainable attributes and contents as well as their
contact data and biobank specific information via the BBMRI Upload Service
of the associated BBMRI-Host. A Mediator coordinates the interoperability is-
sues between BBMRI-Host and the associated biobanks. The information about
uploaded data from each associated biobank is stored in the BBMRI Content-
Meta-Structure. Permissions related to the uploaded data as well as contracts
between a BBMRI-Host and a specific biobank are managed by the Disclosure
Filter. A researcher can use the BBMRI Query Service for sending requests to
the federated system.

192 J. Eder et al.

Fig. 2. Architecture of BBMRI IT-infrastructure

4.3 Lookup Data-Mart

Our approach for the BBMRI Content-Meta-Structure (see figure 2) was to
accomplish a hybrid-solution of a federated system and an additional data ware-
house as a kind of index to primarily reduce the query overhead. This decision
led to the design of a class (named ContentInformation, figure 3) which con-
tains attributes with different meanings, similar to online analytical processing
(Olap), including:

– Content-attributes. Are a small set of attributes, which provide information
about their content in the local database (cf. 4.1). The data-type must be
an enumeration like ICD-Code, patient sex etc.

– Number of Cases (NoC). Is an order of magnitude for all available cases of
a specific disease in combination with all content-attributes.

– Existence-attributes accept two different kinds of characteristics:
1. Value as quantity. Represented by a numeric value greater than a

defined k-value for an aggregated set of cases.
2. Value as availability. Storage of values does not take place in an ag-

gregated form like mentioned above, but as bitmap - with 0 not available
and 1 available.

To avoid data overkill we designed a kind of lower-bound schema that contains
attributes usually occurring in most or even all of the participating biobanks.

In comparison to an Olap data-cube our class ContentInformation (see
figure 3) acts as the fact-table with the content-attributes as dimensions and

Data Management for Federated Biobanks 193

Fig. 3. Example data of class ContentInformation

existence-attributes (including the Number of Cases) as measures. Depending
on the type of the biobank (cancer, metabolic, ...) the datamodel is able to
store different sets of attributes. With the proposed data model it is possible
to support different kinds of content information depending on the needs of
the biobanks. Besides once a new attribute is introduced, this does not lead to
changes in the database schema. The datamodel enables a dynamic generation
of the ContentInformation. I.e. Each biobank first declares the attributes they
store in their local databases. Especially they declare which of them are content-
attributes and which of them are existence-attributes. However this could affect
requests on material, therefore one must be careful with the declaration.

– Requests on existence of attributes. For a request on the existence of several
attributes it does not matter whether the requested attributes are declared
as content-attribute or existence-attribute. The only fact to get a query-hit
for that request is that the searched attributes are declared by a biobank.

– Requests on content of attributes. For a request on the content of several
attributes, all requested attributes must be declared as content-attribute by
a biobank in order to get a query-hit.

The semi-structured data within the federation of biobanks complicates query an-
swering. It will often happen that there are only a few entries in the result because
different data is available in different biobanks. For the researchers not only full
matches but also partial or near matches could contain interesting material. To
cope with that problem we suggest an approximate query answering with inte-
grated result ranking. With the help of an intelligent result ranking we are able to
include partial and near matches in the result set by assigning them lower ranks.

5 Working with Biobanks

Medical research is a collaborative process in an interdisciplinary environment
that may be effectively supported by a CSCW system allowing flexible integra-
tion of data, analysis services and communication mechanisms. Persons with dif-
ferent expertise and access rights cooperate in mutually influencing contexts (e.g.
clinical studies, research cooperations). Thus, appropriate virtual environments
are needed to facilitate context-aware communication, deployment of biomedical
tools as well as data and knowledge sharing. Leveraging on the service oriented
CSCW middleware Wasabi (www.open-steam.org), we developed a CSCW sys-
tem for medical research [20,22] with the following key features:

www.open-steam.org

194 J. Eder et al.

– R(1) User and Role Management.
– R(2) Transparency of physical Storage.
– R(3) Flexible Data Presentation.
– R(4) Flexible Integration and Composition of Services.
– R(5) Support of cooperative Functions.
– R(6) Data-coupled Communication Mechanisms.
– R(7) Knowledge Creation and Knowledge Processing.

We tested this workbench supporting a workflow for gene expression analysis for
a Breast Cancer project. A detailed breast cancer data set was annotated at the
Pathology Graz. In this context much emphasis is put on detecting deviations in
the behavior of gene groups. We support the entire analysis workflow by supply-
ing an IT research platform allowing to select and group patients arbitrarily, pre-
process and link the related gene expressions and finally perform state-of-the-art
analysis algorithms. We developed an appropriate database structure with im-
port/export methods allowing to manage arbitrary medical data sets and gene
expressions. We also implemented web service interfaces to various gene expres-
sion analysis algorithms. The workflow consisted of the following steps: (1) Se-
lecting cases with appropriate documentation for the study, (2) Normalization of
Gene Expression Profiles, (3) gene annotation, (4) extend data with gene function
groups from Gene Ontology, (5) link with annotated patient data, (6) group cases
according to medical parameters and (7) analysis to identify significant genes.

We are able to show that a service-oriented CSCW system provides the func-
tionality to build a workbench for medical research supporting the collaboration
of researchers, allowing the definition of workflows and gathering all necessary
data for maintaining provenance information. According to our medical collab-
orator the increase in performance using this system was dramatic and reduced
essential steps of the study from weeks to days.

6 Conclusion

Biobanks are challenging application areas for advanced information technol-
ogy. The foremost challenges for the information system support in a network of
biobanks as envisioned in the BBMRI project are the following: We presented
biobanks and discussed the requirements for biobank information systems. We
have shown that many different research areas within the IS field contribute to
this endeavor. We were just able to show some examples: advanced information
modeling, (semantic) interoperability, federated databases, approximate query
answering, result ranking, computer supported cooperative work (CSCW), and
security and privacy. Some well known solutions from different application ar-
eas have to be revisited given the size, heterogeneity, diversity dynamics, and
complexity of data to be organized in biobanks.

References

1. Biobanking and Ciomolecular Resources Research Infrastructure,
http://www.bbmri.eu

2. Geneontology, http://www.geneontology.org

http://www.bbmri.eu
http://www.geneontology.org

Data Management for Federated Biobanks 195

3. Oecd: Underpinning the future of life sciences and biotechnology (2001)
4. Nih guide: Informed Consent in Research Involving Human Participants (2006)
5. Bbmri: Construction of new Infrastructures - Preparatory Phase. In: INFRA–2007–

2.2.1.16: European Bio-Banking and Biomolecular Resources (April 2007)
6. Uk biobank: Protocol for a large-Scale Prospective Epidemiological Resource. Pro-

tocol No: UKBB-PROT-09-06 (March 2007)
7. Asslaber, M., Abuja, P., Stark, K., et al.: The Genome Austria Tissue Bank

(GATIB). In: Pathobiology 2007, vol. 74, pp. 251–258 (2007)
8. Asslaber, M., Zatloukal, K.: Biobanks: Transnational, European and Global Net-

works. Briefings in Functional Genomics & Proteomics 6(3), 193–201 (2007)
9. Chamoni, P., Stock, S.: Temporal structures in data warehousing. In: Mohania, M.,

Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 353–358. Springer, Heidelberg
(1999)

10. Eder, J., Koncilia, C.: Evolution of Dimension Data in Temporal Data Warehouses.
In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2001. LNCS,
vol. 2114, pp. 284–293. Springer, Heidelberg (2001)

11. Eder, J., Dabringer, C., Schicho, M., Stark, K.: Information Systems for Federated
Biobanks. Transactions on Large Scale Data and Knowledge Centered Systems 1(1)
(2009) (in print)

12. Eder, J., Koncilia, C., Morzy, T.: The COMET metamodel for temporal data ware-
houses. In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE
2002. LNCS, vol. 2348, p. 83. Springer, Heidelberg (2002)

13. Goos, G., Hartmanis, J., Sripada, S., Leeuwen, J.V., Jajodia, S.: Temporal
Databases: Research and Practice. Springer, New York (1998)

14. Litwin, W., Mark, L., Roussopoulos, N.: Interoperability of Multiple Autonomous
Databases. ACM Comput. Surv. 22(3), 267–293 (1990)

15. Muilu, J., Peltonen, L., Litton, J.: The Federated Database - a basis for Biobank-
Based Post-Genome Studies, Integrating Phenome and Genome Data from 600 000
Twin Pairs in Europe. European Journal of Human Genetics 15, 718–723 (2007)

16. Rebulla, P., Lecchi, L., Giovanelli, S., Butti, B., Salvaterra, E.: Biobanking in the
Year 2007. Transfusion Medicine and Hemotherapy 34, 286–292 (2007)

17. Riegman, P., Morente, M., Betsou, F., de Blasio, P., Geary, P.: Biobanking for Bet-
ter Healthcare. In: The Marble Arch International Working Group on Biobanking
for Biomedical Research (2008)

18. Saltz, J., Oster, S., Hastings, S.: Design and Implementation of the Core Architec-
ture of the Cancer Biomedical Informatics Grid. Bioinformatics (2006)

19. Schroeder, C.: Vernetzte Gewebesammlungen f. d. Forschung. Laborwelt, 5 (2007)
20. Schulte, J., Hampel, T., Stark, K., Eder, J., Schikuta, E.: Towards the Next Genera-

tion of Service-oriented Flexible Collaborative Systems – a basic framework applied
to medical research. In: ICEIS 2008 - Proc. of the 10th Int. Conf. on Enterprise
Information Systems (2008)

21. Sheth, A.P., Larson, J.A.: Federated Database Systems for Managing Distributed,
Heterogeneous, and Autonomous Databases. ACM Comput. Surv. (1990)

22. Stark, K., Schulte, J., Hampel, T., Schikuta, E., Zatloukal, K., Eder, J.: GATiB-
CSCW, medical research supported by a service-oriented collaborative system. In:
Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 148–162.
Springer, Heidelberg (2008)

23. Stevens, R., Zhao, J., Goble, C.: Using Provenance to Manage Knowledge of in
Silico Experiments. Briefings in bioinformatics 8(3) (2007)

24. Yang, J.: Temporal Data Warehousing. Stanford University (2001)

Peer-to-Peer Semantic Wikis

Hala Skaf-Molli, Charbel Rahhal, and Pascal Molli

INRIA Nancy-Grand Est
Nancy University, France

{skaf,charbel.rahal,molli}@loria.fr

Abstract. Wikis have demonstrated how it is possible to convert a com-
munity of strangers into a community of collaborators. Semantic wikis
have opened an interesting way to mix web 2.0 advantages with the
semantic web approach. P2P wikis have illustrated how wikis can be
deployed on P2P wikis and take advantages of its intrinsic qualities:
fault-tolerance, scalability and infrastructure cost sharing. In this paper,
we present the first P2P semantic wiki that combines advantages of se-
mantic wikis and P2P wikis. Building a P2P semantic wiki is challenging.
It requires building an optimistic replication algorithm that is compati-
ble with P2P constraints, ensures an acceptable level of consistency and
generic enough to handle semantic wiki pages. The contribution of this
paper is the definition of a clear model for building P2P semantic wikis.
We define the data model, operations on this model, intentions of these
operations, algorithms to ensure consistency and finally we implement
the SWOOKI prototype based on these algorithms.

1 Introduction

Wikis are the most popular tools of Web 2.0, they provide an easy to share
and contribute to global knowledge. The encyclopedia Wikipedia is a famous
example of a wiki system. In spite of their fast success, wiki systems have some
drawbacks. They suffer from search and navigation [1], it is not easy to find
information in wikis [2]. They have also scalability, availability and performance
problems [3,4] and they do not support offline works and atomic changes [5].
To overcome these limitations, wiki systems have evolved in two different ways:
semantic wikis and peer-to-peer wikis.

Semantic Wikis. Semantic wikis are a new generation of collaborative editing
tools.They allow users to add semantic annotations in the wiki pages. Users
collaborate not only for writing the wiki pages but also for writing semantic
annotations. Usually, this is done by annotating the links between wikis pages.
Links in semantic wikis are typed. For instance, a link between the wiki pages
”France” and ”Paris” may be annotated by ”capital”. Semantic wikis provide a
better structuring of wikis by providing a means to navigate and search based on
annotations. These annotations express relationships between wikis pages, they
are usually written in a formal syntax so they are processed automatically by

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 196–213, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Peer-to-Peer Semantic Wikis 197

machines and they are exploited by semantic queries. Many semantic wikis are
being developed such [1,6,2].

P2P wikis. Wikis on a peer-to-peer network attempt to reconcile the benefits
of mass collaboration and the intrinsic qualities of peer-to-peer network such as
scalability, fault-tolerance, better performance and resistance to censorship.There
are currently many research proposals to build P2P wikis such [3,7,5,8]. The basic
idea is to replicate wiki pages on the peers of a P2P network and the main problem
is to ensure the consistency of copies.

In this paper, we propose to build the first peer-to-peer semantic wiki, called
SWOOKI. SWOOKI combines advantages of P2P wikis and Semantic wikis. The
main problem for building such a system is to maintain consistency of replicated
semantic wiki pages. We propose an algorithm that ensures the CCI consistency
model. This model [9] is a well established consistency model for group editors.

– Causality preservation: operations ordered by a precedence relation will be
executed in same order on every peer.

– Convergence: When the system is idle, all copies are identical.
– Intention and Intention preservation: The intention of an operation is the

effects observed on the state when the operation was generated. The effects of
executing an operation at all sites are the same as the intention of the operation.
The effect of executing an operation does not change the effects of independent
(not causally dependent) operations.

Building a P2P semantic wiki based on the CCI model is challenging. The
fundamental problem is to provide an optimistic replication algorithm that (1)
is compatible with P2P constraints, (2) ensures the CCI model and (3) is generic
enough to manage semantic wiki pages. In this paper, we define formally the se-
mantic wiki page data type, we specify its operations and we define the intentions
of these operations. We extend the WOOT [10] algorithm to take into account
semantic annotations and finally we build SWOOKI the first P2P semantic wiki
based on this algorithm.

The paper is organized as follow. Section 2 presents use cases. Section 3
presents some related works. Section 4 details the general approach for building
a P2P semantic wiki. It defines a data model and editing operations. Section 5
defines the causality and intentions of operations used to edit semantic data.
Section 6 develops the integration algorithm. Section 7 gives an overview of the
architecture. The last section concludes the paper and points to future works.

2 Use Cases for P2P Semantic Wikis

We have identified three interesting use cases for P2P semantic wikis. We aim
to develop a peer to peer semantic wiki that supports these use cases.

Mass Collaboration. In this case, a P2P semantic wiki system is deployed
as a Usenet network[11]. A thousands of semantic wiki servers can be deployed
within organizations or universities. Any user can connect to any semantic wiki
server. This allows : (1) to handle a large number of users by dividing the load on

198 H. Skaf-Molli, C. Rahhal, and P. Molli

the whole network. Semantic queries can be performed locally on each semantic
wiki server. (2) to tolerate many faults. A crash of one semantic wiki server
does not stop the service. (3) to share the cost of the infrastructure. Wikis are
set up and maintained by different organizations. Therefore, it is not necessary
to collect funds just to maintain the infrastructure. For instance, Wikipedia
foundation has to collect 150000 $ every three months just to maintain the
Wikipedia infrastructure. (4) to resist to censorship. An organization controls
only one semantic wiki server and not all data.

Off-line work and transactional changes. Adding off-line capabilities to
web applications is currently a major issue. For instance, the development of
Google gears and Firefox3 off-line capabilities demonstrate the need of the off-
line work. Wikis are web applications and the need for off-line wiki editing is real.
Current technologies for adding off-line capabilities to web applications focus on
Ajax applications. However, the off-line mode of these web applications does
not provide all features available in the on-line mode. This can be an obstacle
for a wiki system. For instance, the off-line mode of the wiki allows navigation
but it does not allow editing. A P2P semantic wiki tolerates naturally off-line
work by means of an integrated merge algorithm. The off-line mode enables also
transactional changes.

Ad-hoc Collaborative Editing. This scenario is derived from the previous
one. Imagine several off-line wiki users have a meeting. Unfortunately, there is
no Internet connection available in the meeting room. Therefore, they decide to
set up an ad-hoc network within the meeting room. A P2P semantic wiki is able
to propagate changes within the ad-hoc network and allows collaborative editing
just for these off-line users. Of course, when the meeting is finished and users
return to their organizations, their semantic wiki systems will re-synchronize
with the whole P2P network.

The above use cases illustrate the importance of optimistic replication
algorithms.

3 Related Work

The fundamental problem for building a P2P semantic wiki is to provide an opti-
mistic replication algorithm that (1) supports collaborative editing, (2) manages
a semantic wiki data type, (3) ensures the CCI model and (4) is compatible
with P2P constraints. Many researches have been done in P2P semantic web
[12,13,14,15,16]. These works focus on sharing, querying and synchronizing RDF
resources rather than collaborative editing of RDF resources. Sharing is different
from collaboration. In sharing, some peers publish data while others can only
read these data and concurrent updates are not managed. In P2P semantic wikis,
some peers publish data, others can read and write these data and a synchro-
nization algorithm integrates concurrent updates while maintaining consistency
of these data. Data replication in collaborative P2P systems mainly relies on
optimistic replication. Existing approach can not be apply to the P2P semantic
wikis context. For instance, the Bayou system [17] is suitable for deploying a

Peer-to-Peer Semantic Wikis 199

collaborative application on a decentralized network. Unfortunately, in order to
ensure the convergence of copies, Bayou has to arrange eventually operations in
the same order. To achieve this, it relies on a primary site that will enforce a
global continuous order on a growing prefix of history. Using such a primary site
is not compatible with P2P network constraints. Other systems such as Usenet
[11] apply the Thomas write rule [18] to ensure eventual consistency. They ensure
that, when the systems are idle i.e all operations have been sent and received
by all sites, all copies are identical. Unfortunately, in case of two concurrent
write operations the rule of ”the last writer wins” is applied. This means that a
modification of a user is lost. Collaborative editing cannot be easily achieved if
the system can loose some changes just to ensure eventual consistency.

Many algorithms have been developed by the Operational Transformation
community [9] such as SOCT2, GOTO, COT etc. They are designed to verify the
CCI model. But only few of them support P2P constraints such as MOT2 [19].
However MOT2 algorithm suffers from a high communication complexity [20]
and no transformation functions for a semantic wiki page are available.

Some existing P2P wikis such as giki or git-wiki use distributed version con-
trol systems (DVCS) to manage data. Wiki pages are stored as text files. DVCS
manage them as code files. They ensure causal consistency. This implies that
concurrent write operations can be seen in a different order on different ma-
chines. In this case, if two sites observe 2 write operations in different order
then copies on both sites can diverge. DVCS systems are aware of this problem
and delegate the problem to external merge algorithms for managing concurrent
operations. However, as existing merge algorithms are not intrinsically deter-
ministic, commutative and associative so convergence cannot be ensured in all
cases. Wooki [3] is the only available P2P wiki that ensures the CCI consistency.
Wooki relies on the WOOT [10] algorithm to ensure the CCI consistency for
wiki pages. However, WOOT cannot be applied directly to a P2P semantic wiki.
WOOT is designed to synchronize linear structures, it can not synchronize a mix
of text and RDF graphs. We propose to extend the WOOT algorithm to handle
collaborative writing on replicated RDF data model.

4 P2P Semantic Wiki Approach

A P2P semantic wiki is a P2P network of autonomous semantic wiki servers
(called also peers or nodes) that can dynamically join and leave the network.
Every peer hosts a copy of all semantic wiki pages and an RDF store for the
semantic data. Every peer can autonomously offer all the services of a semantic
wiki server. When a peer updates its local copy of data, it generates a corre-
sponding operation. This operation is processed in four steps:

1. It is executed immediately against the local replica of the peer,
2. it is broadcasted through the P2P network to all other peers,
3. it is received by the other peers,

200 H. Skaf-Molli, C. Rahhal, and P. Molli

4. it is integrated to their local replica. If needed, the integration process
merges this modification with concurrent ones, generated either locally or re-
ceived from a remote server.

The system is correct if it ensures the CCI consistency model (see section 1).

4.1 Data Model

The data model is an extension of Wooki [3] data model to take in consideration
semantic data. Every semantic wiki peer is assigned a global unique identifier
named NodeID. These identifiers are totally ordered. As in any wiki system, the
basic element is a semantic wiki page and every semantic wiki page is assigned a
unique identifier PageID, which is the name of the page. The name is set at the
creation of the page. If several servers create concurrently pages with the same
name, their content will be directly merged by the synchronization algorithm.
Notice that a URI can be used to unambiguously identify the concept described
in the page. The URI must be global and location independent in order to ensure
load balancing. For simplicity, in this paper, we use a string as page identifier.

Definition 1. A semantic wiki page Page is an ordered sequence of lines LBL1,
L2, . . . LnLE where LB and LE are special lines. LB indicates the beginning of
the page and LE indicates the ending of the page.

Definition 2. A semantic wiki line L is a four-tuple < LineID, content, degree,
visibility > where

– LineID is the line identifier, it is a pair of (NodeID, logicalclock) where
NodeID is the identifier of the semantic wiki server and logicalclock is a log-
ical clock of that server. Every semantic wiki server maintains a logical clock,
this clock is incremented when an operation is generated. Lines identifiers are
totally ordered so if LineID1 and LineID2 are two different lines with the val-
ues (NodeID1, LineID1) and (NodeID2, LineID2) then LineID1 < LineID2 if
and only if (1) NodeID1 < NodeID2 or (2) NodeID1 = NodeID2 and LineID1
< LineID2.

– content is a string representing text and the semantic data embedded in
the line.

– degree is an integer used by the synchronization algorithm, the degree of a
line is fixed when the line is generated, it represents a kind of loose hierarchical
relation between lines. Lines with a lower degree are more likely generated earlier
than lines with a higher degree. By definition the degree of LE and LB is zero.

– visibility is a boolean representing if the line is visible or not. Lines are never
really deleted they are just marked as invisible. For instance, suppose there are
two lines in a semantic wiki page about ”France” , ”France” is the identifier of
the page.

France is located in [locatedIn :: Europe]
The capital of France is [hasCapital ::Paris]

Peer-to-Peer Semantic Wikis 201

Suppose these two lines are generated on the server with NodeID = 1 in the
above order and there are no invisible lines, so the semantic wiki page will be
internally stored as.

LB

((1,1), France is located in [locatedIn :: Europe], 1, true)
((1,2), The capital of France is [hasCapital ::Paris], 2, true)
LE

Text and semantic data are stored in separate persistent storages. Text can be
stored in files and semantic data can be stored in RDF repositories, as described
in the next section.

Semantic data storage model. RDF is the standard data model for encoding
semantic data. In P2P semantic wikis, every peer has a local RDF repository that
contains a set of RDF statements extracted from its wikis pages. A statement is
defined as a triple (Subject, Predicate, Object) where the subject is the name of
the page and the predicates (or properties) and the objects are related to that
concept. For instance, the local RDF repository of the above server contains: R
= {(”France”, ”locatedIn”, ”Europe”), (”France”, ”hasCapital”, ”Paris”) }. As
for the page identifier, a global URI can be assigned to predicates and objects of
a concept, for simplicity, we use a string. We define two operations on the RDF
repositories:

– insertRDF(R,t): adds a statement t to the local RDF repository R. – dele-
teRDF(R,t): deletes a statement t from the local RDF repository R.

These operations are not manipulated directly by the end user, they are called
implicitly by the editing operations as shown later.

4.2 Editing Operations

A user of a P2P semantic wiki does not edit directly the data model. Instead, she
uses traditional wiki editing operations, when she opens a semantic wiki page,
she sees a view of the model. In this view, only visible lines are displayed. As
in a traditional semantic wiki, she makes modifications i.e. adds new lines or
deletes existing ones and she saves the page(s). To detect user operations, a diff
algorithm is used to compute the difference between the initial requested page
and the saved one. Then these operations are transformed into model editing
operations. A delete of the line number n is transformed into a delete of the nth

visible line and an insert at the position n is transformed into insert between the
(n − 1)th and the nth visible lines. These operations are integrated locally and
then broadcasted to the other servers to be integrated. There are two editing
operations for editing the wiki text: insert and delete. An update is considered
as a delete of old value followed by an insert of a new value. There are no
special operations for editing semantic data. Since semantic data are embedded

202 H. Skaf-Molli, C. Rahhal, and P. Molli

in the text, the RDF repositories are updated as a side effect of text replication
and synchronization. (1) Insert(PageID, line, lP , lN) where PageID is the
identifier of the page of the inserted line. line is the line to be inserted. It is a
tuple containing < LineID, content, degree, visibility >. lP is the identifier of the
line that precedes the inserted line. lN is the identifier of the line that follows the
inserted line. During the insert operation, the semantic data embedded in the
line are extracted, RDF statements are built with the page name as a subject
and then they are added to the local RDF repository thanks to the function
insertRDF (R, t). (2) The delete(PageID, LineID) operation sets the visibility
of the line identified by LineID of the page PageID to false. The line is not
deleted physically, it is just marked as deleted. The identifiers of deleted lines
must be kept as a tombstones. During the delete operation, the set of RDF
statements contained in the deleted line is deleted from the local RDF repository
thanks to the deleteRDF (R, t).

5 Correction Model

This section defines causal relationships and intentions of the editing operations
for our P2P semantic wiki data model.

5.1 Causality Preservation

The causality property ensures that operations ordered by a precedence relation
will be executed in the same order on every server. In WOOT, the precedence
relation relies on the semantic causal dependency. This dependency is explicitly
declared as preconditions of the operations. Therefore, operations are executed
on a state where they are legal i.e. preconditions are verified. We define causality
for editing operations that manipulate text and RDF data model as:

Definition 3. insert Preconditions Let Page be the page identified by
PageID, let the operation op=Insert(PageID, newline, p , n), newline =<
LineID, c, d, v> generated at a server NodeID, R is its local RDF repository.
The line newline can be inserted in the page Page if its previous and next lines
are already present in the data model of the page Page.

∃i ∃j LineID(Page[i]) = p ∧ LineID(Page[j]) = n

Definition 4. Preconditions of delete operation Let Page be the page iden-
tified by PageID, let op = Delete(PageID, dl) generated at a server NodeID
with local RDF repository R, the line identified by dl can be deleted (marked as
invisible), if its dl exists in the page.

∃i LineID(Page[i]) = dl

When a server receives an operation, the operation is integrated immediately if
its pre-conditions are evaluated to true else the operation is added to a waiting
queue, it is integrated later when its pre-conditions become true.

Peer-to-Peer Semantic Wikis 203

peer1 peer2 peer3

Text
RDFRepository

Text
RDFRepository

Text
RDFRepository

op1 = Insert(1, ”France is located..”)

��

op2 = Insert(1, ”France is a country... ”)

��

��

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe)}
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}
France is located in [locatedIn::Europe]

{(France, locatedIn, Europe)}

op3 = delete(1)

��

Text

op3 op2

France is a country in [locatedIn::Europe]

{ }
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)}

Fig. 1. Semantic inconsistency after integrating concurrent modifications

5.2 Intentions and Intentions Preservation

The intention of an operation is the visible effect observed when a change is
generated at one peer, the intention preservation means that the intention of the
operation will be observable on all peers, in spite of any sequence of concurrent
operations. We can have a naive definition of intention for insert and delete:

– The intention of an insert operation op= Insert(PageID, newline, p , n)
when generated at site NodeID, where newline =< nid, c, d, v> is defined as:
(1) The content is inserted between the previous and the next lines and (2) the
semantic data in the line content are added to the RDF repository of the server.

– The intention of a delete operation op= delete(pid, l) when generated at
site S is defined as : (1) the line content of the operation is set to invisible and
(2) the semantic data in the line content are deleted from the RDF repository
of the server.

Unfortunately, it is not possible to preserve the previous intention definitions.
We illustrate a scenario of violation of these intentions in figure 1. Assume that
three P2P semantic wiki servers, peer1, peer2 and peer3 share a semantic wiki page
about ”France”.Every server has its copyof shareddata andhas its ownpersistence
storage repository. At the beginning, the local text and the RDF repositories are
empty. At peer1, user1 inserts the line ”France is located [located In::Europe]” at
the position 1 inher copy of the ”France”page.Concurrently,at peer2 user2 inserts
anew line ”France is a country in [located In::Europe]” inher local copy of ”France”
page at the same position and finally at peer3 user3 deletes the line added byuser1.
When op2 is integrated at peer1, the semantic annotation is present two times in the
text and just one time in the RDF repository. In fact, the RDF repository cannot

204 H. Skaf-Molli, C. Rahhal, and P. Molli

store twice the same triple. When op3 is finally integrated on peer1, it deletes the
corresponding line and the semantic entry in the RDF repository. In this state, the
text and the RDF repository are inconsistent. Concurrently, peer3 has integrated
the sequence [op1;op3;op2]. This sequence leads to a state different than the state
on peer1. Copies are not identical, convergence is violated.

The above intentions cannot be preserved because the effect of executing
op3 changes the effect of op2 which is independent, of op3 i.e. op3 deletes the
statement inserted by op2, but op3 has not seen op2 at generation time.

5.3 Model for Intention Preservation

It is not possible to preserve intentions if the RDF store is defined as a set of
statements. However, if we transform the RDF store into multi-set of statements,
it becomes possible to define intentions that can be preserved.

Definition 5. RDF repository is the storage container for RDF statements,
each container is a multi-set of RDF statements. Each RDF repository is defined
as a pair (T,m) where T is a set of RDF statements and m is the multiplicity
function m : T → N where N = 1, 2......

For instance, the multi-set R = { (”France”, ”LocatedIn”, ”Europe”),(”France”,
”LocatedIn”, ”Europe”),(”France”, ”hasCapital”, ”Paris”) } can presented by
R={ (”France”, ”LocatedIn”, ”Europe”)2, (”France”, ”hasCapital”, ”Paris”)1 }
where 2 is the number of occurrence of the first statement and 1 is this of the
second one.

Definition 6. Intention of insert operation Let S be a P2P semantic wiki
server, R is its local RDF repository and Page is a semantic wiki page. The
intention of an insert operation op= Insert(PageID, newline, p , n) when gen-
erated at site S, where newline =< nid, c, d, v> and T is the set (or multi-set)
of RDF statements in the inserted line, is defined as: (1) The content is inserted
between the previous and the next lines and (2) the semantic data in the line
content are added to R.

∃i ∧ ∃ iP < i LineID(Page[iP]) = p (1)

∧ ∃ i ≤ iN LineID(Page[iN]) = n (2)

∧Page′[i] = newline (3)

∧ ∀j < i Page′[j] = Page[j] (4)

∧ ∀j ≥ i Page′[j] = Page[j − 1] (5)

∧R′ ← R � T (6)

Where Page′ and R′ are the new values of the page and the RDF repository
respectively after the application of the insert operation at the server S and
is the union operator of multi-sets. If a statement in T already exists in R so its
multiplicity is incremented else it is added to R with multiplicity one.

Peer-to-Peer Semantic Wikis 205

Definition 7. Intention of delete operation Let S be a P2P semantic wiki
server, R is the local RDF repository and Page is a semantic wiki page. The
intention of a delete operation op= delete(PageID, ld) where T is the set (or
multi-set) of RDF statements in the deleted line, is defined as: (1) the line ld is
set to invisible and (2) the number of occurrence of the semantic data embedded
in ld is decreased by one, if this occurrence is equal to zero which means these
semantic data are no more referenced in the page then they are physically deleted
from the R.

∃i ∧ PageID(Page′[i]) = ld (7)

∧ visibility(Page′[i]) ← false (8)

∧ R′ ← R − T (9)

Where Page′ and R′ are the new values of the page and the RDF repository
respectively after the application of the delete operation at the server S and
− is the difference of multi-sets. If statement(s) in T exists already in R so
its multiplicity is decremented and deleted from the repository if it is equal to
zero. Let us consider again the scenario of the figure 1. When op2 is integrated
on peer1, the multiplicity of the statement (”France”, ”locatedIn”, ”Europe”)
is incremented to 2. When op3 is integrated on peer1, the multiplicity of the
corresponding statement is decreased and the consistency between text and RDF
repository is ensured. We can observe that Peer1 and Peer3 now converge and
that intentions are preserved.

Peer 1 Peer 2 Peer 3

Text
RDFRepository

Text
RDFRepository

Text
RDFRepository

op1 = Insert(1, ”France is located..”)

��

op2 = Insert(1, ”France is a country... ”)

��

��

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe,1)}
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe,1)}

op2 op1

France is located in [locatedIn::Europe]
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)2}

France is located in [locatedIn::Europe]

{(France, locatedIn, Europe)1}

op3 = delete(1)

��

Text

op3 op2

France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)1}
France is a country in [locatedIn::Europe]

{(France, locatedIn, Europe)1}

Fig. 2. Convergence after integrating concurrent modifications

206 H. Skaf-Molli, C. Rahhal, and P. Molli

6 Algorithms

As any wiki server, a P2P semantic server defines a Save operation which de-
scribes what happens when a semantic wiki page is saved. In addition, it defines
Receive and Integrate operations. The first describes what happens upon receiv-
ing a remote operation and the second integrates the operation locally.

Save operation. During saving a wiki page, a Diff algorithm computes the
difference between the saved and the previous version of the page and generates
a patch. A patch is the set of delete and insert operations on the page (Op =
Insert(PageID, line, lP , lN) or Op = Delete(PageID, LineID)). These oper-
ations are integrated locally and then broadcasted to other sites in order to be
executed as shown below.

Upon Save(page, oldPage) :
let P ← Diff(page, oldPage)

for each op ∈ P do
Receive(op)

endfor
Broadcast(P)

At this level of description, we just make the hypothesis that Broadcast(P) will
eventually deliver the patch P to all sites. More details are given in section 7.

Delivery Operation. When an operation is received (cf figure 3) its precondi-
tions are checked (cf figure 4). If they are not satisfied, the operation is added
to the waiting log of the server, else according to the type of the operations
some steps are executed. The waiting log is visited after the integration and the
operations that satisfy their preconditions are removed from the log and inte-
grated. The function ContainsL(PageID, id) tests the existence of the line in
the page, it returns true if this is the case. The function isV isible(LineID) tests
the visibility of the line.

Upon Receive(op) :
if isExecutable(op) then

if type(op) = insert then
IntegrateIns(op)

if type(op) = delete then
IntegrateDel(op)

else
waitingLog ← waitingLog

⋃ {op}
endif

Fig. 3. Receive operation

isExecutable(op) :
if type(op) = del then

return
containsL(PageID,LineID)
and isVisible(LineID)

else
return ContainsL(PageID,lP)

and ContainsL(PageID, lN)
endif

Fig. 4. isExecutable Operation

Peer-to-Peer Semantic Wikis 207

Integrate operation. The integration of an operation is processed in two steps
(cf figure 5): (1) text integration and (2) RDF statements integration. To inte-
grate a text delete operation (cf. figure 6), the visibility flag of the line is set
to false whatever is its content. To integrate RDF statements (cf figure 7), a
counter is used to implement a multi-set RDF repository. A counter is attached
to every RDF triple, the value of the counter corresponds to the number of oc-
currence of the triple in the repository. During the delete operation, the counter
of the deleted statements is decreased, if the counter is zero the statements are
physically deleted from the repository.

IntegrateDel(LineID) :
IntegrateDelT(LineID)
IntegrateDelRDF(LineID)

Fig. 5. IntegrateDel operation

IntegrateDelT(LineID) :
Page[LineID]. visibility ←false

Fig. 6. IntegrateDelT Operation

IntegrateDelRDF(LineID) :
let S ← ExtractRDF(LineID)
if S
= ∅ then
for each triple ∈ S do

triple .counter−−
if triple .counter = 0 then

deleteRDF(R,triple)
endif

endif

Fig. 7. IntegrateDelRDF operation

IntegrateIns(PageID, line, lP , lN) :
IntegratedInsT(PageID, line, lP , lN)
IntegrateInsRDF(line)

Fig. 8. IntegrateIns Operation

To integrate an insert operation (cf figure 8) the line has to be placed among
all the lines between lP and lN , some of these lines can be previously deleted
or inserted concurrently and the inserted semantic data are integrated. To inte-
grate a line in a wiki page, we use the integration algorithm defined in [3]. This
algorithm (cf. figure 9) selects the sub-sequence S’ of lines between the previous
and the next lines, in case of an empty result, the line is inserted before the next
line. Else, the sub-sequence S’ is filtered by keeping only lines with the minimum
degree of S’. The remaining lines are sorted according to the line identifiers or-
der relation <id [10], therefore, line will be integrated in its place according <id

among remaining lines, the procedure is called recursively to place line among
lines with higher degree in S’. To integrate the semantic data (cf figure 10), the
RDF statements of the inserted line are extracted and added to the local RDF
repository. If the statements exist already in the repository, their counter is in-
cremented, otherwise, they are inserted into the RDF repository with a counter
value equals to one as shown below.

208 H. Skaf-Molli, C. Rahhal, and P. Molli

IntegrateInsT(PageID, line, lP , lN) :
let S’ ←
subseq(Page[PageID]), lP , lN)
if S = ∅ then

insert(PageID, line, lN)
else

let i ← 0
let dmin ← min(degree(S′))
let F ← filter(S′, degree = dmin)
while (i < |F | − 1)and(F [i] <idline)
do i ← i +1

IntegrateInsT(PageID,line,F[i−1],F[i])
endif

Fig. 9. Integrate insert text operation

IntegrateInsRDF(line) :
let S ← ExtractRDF(line)
if S �= ∅ then

for each triple ∈ S do
if Contains(triple) then

triple .counter++
else

insertRDF(R,triple)
endif

endif

Fig. 10. IntegrateInsRDFOperation

To summarize, causality as defined in section 5.1 is ensured by the Receive al-
gorithm. Convergence for text is already ensured by the WOOT algorithm [10].
Convergence for semantic data is trivially ensured by the multi-set extension
of the RDF repository. The intention preservation for a text is demonstrated
in [10]. Here, we are concerned with the intention of semantic data as defined in
5.2. The intention of an insert operation is trivially preserved by the algorithm
IntegrateInsRDF. Since a possible way to implement a multi-set is to associate
a counter to every element. In the same way, the algorithm IntegrateDelRDF
preserves the intention of the delete operation. The basic idea behind all these
algorithms is to reach convergence and preserve intentions whatever is the order
of reception of operations. This implies that these algorithms “force” commuta-
tivity of operations. If operations are commuting then all concurrent executions
are equivalent to a serial one. In our system, users can start a transaction just
by switching to the offline mode and end a transaction by switching to online
mode. We chose this way to interact with users in order to keep the system sim-
ple. If a user produces a consistent change, as all operations of any transaction
are commuting and ensure the same effects, then all concurrent execution of
transactions generate a correct state.

7 Implementation and Discussion

We have implemented the first peer-to-peer semantic wiki called SWOOKI
based based on algorithms presented in section 6. The SWOOKI prototype
has been implemented in Java as servlets in a Tomcat Server and demon-
strated in [21]. This prototype is available with a GPL license on sourceforge
at http://sourceforge.net/projects/wooki and it is also available online at:
http://wooki.loria.fr/wooki1

SWOOKI Architecture. A SWOOKI server is composed of the following
components (cf. figure 11):

http://sourceforge.net/projects/wooki
http://wooki.loria.fr/wooki1

Peer-to-Peer Semantic Wikis 209

Fig. 11. SWOOKI Architecture Fig. 12. User Interafce of SWOOKI

User Interface. It is basically a regular wiki editor (cf. figure 12). It allows
users to edit a view of a page by getting the page from the SWOOKI manager.
Users can disconnect their peer to work in an offline mode (feature1) and they
can add new neighbors in their list to work with (feature2). In addition, the
UI allows users to see the history of a page, to search for pages having some
annotation (feature3), to execute semantic queries (feature4), and to export the
semantic annotations of the wiki pages in an RDF format (feature5).

SWOOKI Manager. The SWOOKI manager implements the SWOOKI algo-
rithm. Its main method is Integrate(Patch) that calls the Receive() algorithm
for all operations contained in the patch.

Sesame Engine. We use Sesame 2.0 [22] as RDF repository. Sesame is con-
trolled by the SWOOKI manager for storing and retrieving RDF triples. We
used a facility of the Sesame interface to represent RDF triples as multi-set.
This component allows also generating dynamic content for wiki pages using
queries embedded in the wiki pages. It provides also a feature to export RDF
graphs.

Diffusion Manager. In order to ensure the CCI model, we made the hypothesis
that all operations eventually reach all sites of the unstructured P2P network.
The diffusion manager is in charge to maintain the membership of the unstruc-
tured network and to implement a reliable broadcast. Membership and reliable
broadcast of operations are ensured by an implementation of the Lpbcast al-
gorithm [23]. This algorithm ensures that all connected sites receive messages
and that there is no partition in the P2P network. Disconnected sites cannot be
reached, so we added an anti-entropy mechanism based on [24]. The anti-entropy
algorithm selects randomly a neighbor in the local table of neighbors and sends a
digest of its own received messages. The receiver returns missing messages to the
caller. Using the anti-entropy implies that each server keeps received messages
in a log, as this log can grow infinitely, the log is purged as detailed in [3].

Discussion. Every SWOOKI server provides all the services of a semantic wiki
server. We analyze our system with respect to the following criteria, more de-
tailed analyzing results can be found in [23] and [20].

210 H. Skaf-Molli, C. Rahhal, and P. Molli

Availability, fault tolerance and load balancing. Data are available on every
peer so they are accessible even when some of the peers are unavailable. The global
naming of the wiki pages (concepts) and their associated properties and objects
and the respect of the CCI model ensure to have the same data at any node. So if
a server is unavailable or slow, it is possible to access to another server.

Performance. We analyze the performance with respect to messages necessary
to execute query, propagate modification and synchronize data.

– Query execution: Every server can execute every query locally without gen-
erating network traffic for resolving it.

– Messages delivery: As our algorithm generates no traffic for ensuring CCI
consistency, the traffic cost for our system is the traffic cost of Lpbcast [23] and
the traffic cost of the anti-entropy classical algorithm. As logs of messages can
be purged safely, the traffic cost, even for anti-entropy, is bounded. Currently,
the volume of change generated by Wikipedia is less than 10Mb by month for
all wikipedia in all languages 1. In 2008, the total size of wikipedia in french was
less than 2,5Gb.

– Data synchronization: The complexity of the integration of n operations
is O(n ∗ l2) [20], where l is the number of lines that have been inserted in the
wiki page. In fact, as deleted lines are just marked as deleted and there is no
garbage collecting algorithm compatible with P2P constraints, the size of the
wiki page is growing infinitely. However, traditional wikis such as Wikipedia
keeps all changes in log history and never delete it. Consequently, in the context
of a wiki, our solution seems acceptable.

Scalability. SWOOKI scales with respect to the number of peers. The number
of peers is not a parameter of the complexity in time and space of our algorithm.
However, It does not support solution for scalability with the size of data, the
storage capacity is limited by the storage capacity of each node. For achieving
this scalability, a solution based on partial replication is better. But in this case,
offline editing and transactional changes are much more difficult to obtain.

Offline-work and transactional changes. Users can work disconnected if
they lack internet connection or if they decide to disconnect directly from the
user interface.While disconnected, a user can change many semantic wiki pages
in order to produce a consistent change. By this way she generates a transac-
tion. All changes performed in disconnected mode are kept in the diffusion man-
ager component. As our optimistic replication algorithm forces all operations to
commute (according to the CCI consistency) then, the concurrent execution of
several transactions is always equivalent to a serial one. Thus, a consistent state
is produced in all cases.

Cost sharing. The deployment of SWOOKI network is very similar to the
deployment of the Usenet P2P network. A trusted peer of any organization
can join the network, take a snapshot of replicated data and start answering
wiki requests. The proposed architecture can be easily deployed on the Internet
1 http://stats.wikimedia.org/EN/TablesDatabaseEdits.htm

http://stats.wikimedia.org/EN/TablesDatabaseEdits.htm

Peer-to-Peer Semantic Wikis 211

across different organizations. In the contrast to the Wikipedia infrastructure
that requires a central site with costly hardware and high bandwidth, the cost
of the underlying infrastructure of our system can be shared by many different
organizations.

8 Conclusion, Open Issues and Perspectives

Peer-to-peer semantic wikis combines both advantages of semantic wikis and
P2P wikis. The fundamental problem is to develop an optimistic replication
algorithm that ensures an adequate level of consistency, supports P2P constraints
and manages semantic wiki page data type. In this paper, we proposed such an
algorithm. By combining P2P wikis and semantic wikis, we are able to deliver
a new work mode for people working on ontologies: transactional changes. This
work mode is useful to help people to produce consistent changes in semantic
wikis. Often, managing a semantic wiki requires to change a set of semantic
wiki pages. These changes can take a long time and if intermediate state results
are visible, it can be confusing for other users and it can corrupt the result of
semantic requests. We believe that this working mode is crucial if we want to
use semantic wikis for collaborative ontologies building. However, this approach
has many open issues and perspectives:

– Security issues are an important aspect. Replication makes security man-
agement more difficult. Often in wikis, security is represented as page attributes.
If wiki pages are replicated, it means that security policies are replicated. In this
case, it is possible to produce concurrent changes on security policy itself. If
we re-centralize security management, we loose the benefits of replication. This
problem can be solved by applying the approach proposed in this paper. To
manage security policy: define the security policy data type, its operations, the
intentions of these operations and update the replication algorithm with these
new operations.

– An alternative way for managing security issues is to deploy a P2P semantic
wiki on the web of trust. Instead on relying on Lpbcast to build an unstructured
P2P network, users can organize themselves in the topology of a network based
on trusted relationships. Consequently, the resulting system is a P2P semantic
wiki based on a social network that promotes privacy.

– We explored also the combination of an unconstrained semantic wiki with a
P2P wiki system based on total replication. We motivated this choice by pointing
out to the need of transactional changes. However, even if it is more difficult,
it is possible to achieve the same objective with a P2P wiki based on partial
replication and consequently take advantage of partial replication benefits such
as reduced traffic, infinite storage and cheap join procedure.

References

1. Krötzsch, M., Vrandecic, D., Völkel, M., Haller, H., Studer, R.: Semantic wikipedia.
Journal of Web Semantic 5(4), 251–261 (2007)

2. Buffa, M., Gandon, F.L., Ereteo, G., Sander, P., Faron, C.: Sweetwiki: A semantic
wiki. Journal of Web Semantic 6(1), 84–97 (2008)

212 H. Skaf-Molli, C. Rahhal, and P. Molli

3. Weiss, S., Urso, P., Molli, P.: Wooki: a p2p wiki-based collaborative writing tool.
In: Web Information Systems Engineering, Nancy, France. Springer, Heidelberg
(2007)

4. Morris, J.: DistriWiki: a distributed peer-to-peer wiki network. In: Proceedings of
the 2007 international symposium on Wikis, pp. 69–74 (2007)

5. Du, B., Brewer, E.A.: Dtwiki: a disconnection and intermittency tolerant wiki. In:
17th international conference on World Wide Web, pp. 945–952. ACM, New York
(2008)

6. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management.
In: WETICE, pp. 388–396. IEEE Computer Society, Los Alamitos (2006)

7. Git: git based wiki (2008), http://atonie.org/2008/02/git-wiki
8. Patrick Mukherjee, C.L., Schurr, A.: Piki - a peer-to-peer based wiki engine. In:

Eighth International Conference on Peer-to-Peer Computing, pp. 185–186. IEEE,
Los Alamitos (2008)

9. Sun, C., Jia, X., Zhang, Y., Yang, Y., Chen, D.: Achieving Convergence, Causality
Preservation, and Intention Preservation in Real-Time Cooperative Editing Sys-
tems. ACM Transactions on Computer-Human Interaction 5(1), 63–108 (1998)

10. Oster, G., Urso, P., Molli, P., Imine, A.: Data Consistency for P2P Collaborative
Editing. In: Proceedings of the ACM Conference on Computer-Supported Cooper-
ative Work - CSCW 2006, Banff, Alberta, Canada. ACM Press, New York (2006)

11. Spencer, H., Lawrence, D.: Managing Usenet. O’Reilly, Sebastopol (1988)
12. Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmér,

M., Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In: 11th
international conference on World Wide Web, pp. 604–615. ACM, New York (2002)

13. Morbidoni, C., Tummarello, G., Erling, O., Bachmann-Gmür, R.: Rdfsync: effi-
cient remote synchronization of rdf models. In: 6th International Semantic Web
Conference and 2nd Asian Semantic Web Conference. Springer, Heidelberg (2007)

14. Cai, M., Frank, M.: Rdfpeers: a scalable distributed rdf repository based on a
structured peer-to-peer network. In: 13th international conference on World Wide
Web, pp. 650–657. ACM, New York (2004)

15. Chirita, P.-A., Idreos, S., Koubarakis, M., Nejdl, W.: Publish/Subscribe for RDF-
based P2P networks. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.)
ESWS 2004. LNCS, vol. 3053, pp. 182–197. Springer, Heidelberg (2004)

16. Staab, S., Stuckenschmidt, H. (eds.): Semantic Web and Peer-to-peer. Springer,
Heidelberg (2005)

17. Petersen, K., Spreitzer, M.J., Terry, D.B., Theimer, M.M., Demers, A.J.: Flexi-
ble update propagation for weakly consistent replication. In: Proceedings of the
sixteenth ACM symposium on Operating systems principles, pp. 288–301. ACM
Press, New York (1997)

18. Johnson, P., Thomas, R.: RFC677: The maintenance of duplicate databases (1976)
19. Cart, M., Ferrie, J.: Asynchronous reconciliation based on operational transforma-

tion for P2P collaborative environments. In: International Conference on Collabo-
rative Computing: Networking, Applications and Worksharing, pp. 127–138. IEEE
Computer Society, Los Alamitos (2008)

20. Ignat, C.L., Oster, G., Molli, P., et al.: A Comparison of Optimistic Approaches
to Collaborative Editing of Wiki Pages. In: Proceedings of the International Con-
ference on Collaborative Computing: Networking, Applications and Worksharing.
IEEE Computer Society, Los Alamitos (2007)

21. Rahhal, C., Skaf-Molli, H., Molli, P.: Swooki: A peer-to-peer semantic wiki. In: The
3rd Semantic Wikis workshop, co-located with the 5th Annual European Semantic
Web Conference (ESWC), Tenerife, Spain (2008)

http://atonie.org/2008/02/git-wiki

Peer-to-Peer Semantic Wikis 213

22. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture
for storing and querying rdf and rdf schema. In: First International Semantic Web
Conference (2002)

23. Eugster, P.T., Guerraoui, R., Handurukande, S.B., Kouznetsov, P., Kermarrec,
A.M.: Lightweight Probabilistic Broadcast. ACM Transactions on Computer Sys-
tems 21(4), 341–374 (2003)

24. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.,
Swinehart, D., Terry, D.: Epidemic Algorithms for Replicated Database Mainte-
nance. In: Proceedings of the ACM Symposium on Principles of Distributed Com-
puting, Vancouver, British Columbia, Canada, pp. 1–12. ACM Press, New York
(1987)

VisiNav: Visual Web Data Search and
Navigation

Andreas Harth�,��

National University of Ireland, Galway
Digital Enterprise Research Institute

Abstract. Semantic Web technologies facilitate data integration over
a large number of sources with decentralised and loose coordination,
ideally leading to interlinked datasets which describe objects, their at-
tributes and links to other objects. Such information spaces are amenable
to queries that go beyond traditional keyword search over documents. To
this end, we present a formal query model comprising six atomic opera-
tions over object-structured datasets: keyword search, object navigation,
facet selection, path traversal, projection, and sorting. Using these atomic
operations, users can incrementally assemble complex queries that yield
a set of objects or trees of objects as result. Results can then be either
directly displayed or exported to application programs or online services.
We report on user experiments carried out during the design phase of
the system, and present performance results for a range of queries over
18.5m statements aggregated from 70k sources.

1 Introduction

Keyword search over hypertext documents is an established technology and is
used by a large majority of web users [6]. Search engines are popular because i)
users are accustomed to the concept of hypertext: documents and links, and ii)
search engines employ a simple conceptual model: the engines return those doc-
uments that match the specified keywords. Search engines operate over millions
of documents which have been collected automatically, however, the function-
ality is limited: the engine returns only links to web pages but not directly the
actual answer or data items sought. Typical keyword phrases used for search are
insufficient to specify a complex information need since they consist mostly of
only a few words [6]; moreover, information expressed in documents in natural
language is ambiguous and thus hard to process automatically. Data formats
such as RDF1 provide more structure, however, there is the open question of
how end users should express complex queries over such datasets.

Natural language question answering interfaces are judged preferable to other
interfaces by users [11], however, are not in common use today because the ap-
proach is fraught with usability issues: despite user training with regards to the

� Current affiliation: Institute AIFB, University of Karlsruhe (TH), Germany.
�� This work has been supported by Science Foundation Ireland (SFI/08/CE/I1380).
1 Resource Description Framework, http://www.w3.org/RDF/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 214–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

VisiNav: Visual Web Data Search and Navigation 215

capabilities and limitations of a natural language system, users quickly develop
negative expectations about the system due to the relatively high error rates in
parsing and interpreting natural language [17]. Users are unable to understand
the limitations of such systems, that is, to distinguish between conceptual cov-
erage (i.e. does the dataset contain the answer?) and linguistic coverage (i.e. is
the system capable of parsing the query?).

A promising approach is to use a menu-based dialogue system in which users
incrementally construct the query [17] [19]. Offering only valid choices ensures
that the user can only pose queries which can be satisfied by the available data,
preventing empty result sets. Designing an interaction model and developing a
useable system for interrogating collaboratively-edited datasets raises a number
of challenges:

1. Intuitive Use: both occasional users and subject-matter experts should be
able to interact with the data immediately. The user interface should be
consistent and allow users to quickly derive results with a few clicks.

2. Universality: previous attempts at using structured information have been
restricted to manually crafted domain-specific datasets since the data on the
web lacked quantity (no general-domain information available) and quality
(no shared identifiers, no inter-linkage).

3. Zero Configuration: data on the web comes in an abundance of formats and
vocabularies. Consequently, manual intervention is a labour intensive task.
In addition, web data is often chaotic and may contain duplicates, erroneous
items, malformed syntax and incorrect formatting.

4. Scalability: since we target the web as a data source the system has to scale
competently, which has implications on the architecture and implementation
of the system.

5. User Satisfaction: the system should be visually appealing and users should
be able to import the results of their information seeking task into application
programs to get a sense of achievement immediately.

In this paper, we describe VisiNav, a fully implemented system2 based on a visual
query construction paradigm. The users of the system can construct complex
queries from several atomic operations. Our system is unique in that it is the
first system which offers these features in combination over datasets collected
from a large number of web sources. To leverage existing familiarity of users
with search engines, the first step in our interaction model is typically a keyword
search to locate objects. In subsequent steps, users refine their query based on
the navigation primitives; as such, the interaction model leads to an explorable
system that can be learned through experimentation. Since the system calculates
the possible next steps based on the current state, only legal choices are displayed
and thus the user can only compose queries which the system can answer.

Our contributions are as follows:

– We define and formalise a set of atomic query operations on object-orientated
data models which can be combined to form complex queries.

2 http://visinav.deri.org/

216 A. Harth

– We introduce the notion of result trees which extend single-set results to
multiple result sets containing result paths.

– We describe the architecture and implementation of a prototype system to
investigate the practicality of the interaction model.

– We define the notion of topical subgraphs, subsets of the data which contain
both the answer to the query and auxiliary information required to derive
prospective choices and render the results.

– We propose a set of indices supporting the atomic operations and a query
processing algorithm with top-k processing, and present a performance eval-
uation of the system on a web dataset with 18.5m statements.

We provide an overview of the user interface and preliminary definitions in
Section 2, define and formalise the atomic operations and result trees in Section 3,
present architecture and implementation in Section 4 and discuss experiments and
evaluation in Section 5. Section 6 covers related work, and Section 7 concludes.

2 Overview and Preliminaries

In the following, we describe the characteristics of the target dataset collected
from the web, present example queries, and introduce the conceptual model and
the user interface.

2.1 Web Data

Common to data currently found on the web in structured formats (microfor-
mats, XML, RDF) is that data publishers take a loosely object-centred view.
RDF in particular uses URIs3 as global identifiers for objects, which, if multiple
sources reuse identifiers, leads to an interconnected object space encoded in a
graph-structured data format. Currently, reuse of identifiers is particularly com-
mon in social networking and social media data, expressed in FOAF4 for people,
SIOC5 for online community sites, and DC6 for documents. While a large num-
ber of current RDF files use a mix of these vocabularies, data publishers use a
plethora of other vocabularies. Our dataset of 18.5m statements from 70k sources
contains over 21k different vocabulary URIs.

Given the wide availability of information about people and communities,
we use the social network scenario to study user interfaces on collaboratively-
edited datasets. However, the interaction model and the implemented system are
domain independent. We list a number of example queries – that can be answered
with currently available web data – with increasing complexity in Table 17. We

3 Uniform Resource Identifiers, http://www.rfc-editor.org/rfc/rfc3305.txt
4 Friend-of-a-Friend, http://foaf-project.org/
5 Semantically Interlinked Online Communities, http://sioc-project.org/
6 Dublin Core, http://dublincore.org/
7 timbl:i expands to http://www.w3.org/People/Berners-Lee/card#i; we assume

the standard namespace prefixes for foaf, sioc and dc.

VisiNav: Visual Web Data Search and Navigation 217

Table 1. Example queries. Users typically start with a keyword query (“tim berners-
lee”) and subsequently select the URI identifying the intended object. Further choices
are made from a menu of valid selections.

Query Description
1 objects matching the keyword phrase “tim berners-lee”
2 information available about timbl:i
3 objects foaf:made by timbl:i
4 sioc:Posts foaf:made by timbl:i
5 objects that timbl:i foaf:knows
6 objects foaf:made by objects that timbl:i foaf:knows
7 query 6, results sorted by dc:date

Query

Datatype
properties

Object
properties

Results

Export

View

Fig. 1. User interface displaying “objects foaf:made by objects that timbl:i

foaf:knows, sorted by dc:date” (Query 7). The interface consists of three main sec-
tions: i) the current result set in the main content area, ii) the current query in the top
part and iii) the prospective choices on the left, divided into datatype properties and
object properties to reflect the different operations possible on each.

218 A. Harth

use these queries instantiated with different names and object URIs to conduct
performance tests in Section 5.

2.2 Conceptual Model

Our conceptual model for navigation assumes an object-oriented view, describing
objects (U), their attributes and links to other objects. Attributes of objects are
expressed using datatype properties (PD), and links to other objects are specified
using object properties (PO)8. Please note that there is no clear distinction
between instance-level objects and schema-level ones – classes and properties
can be instances themselves.

Users are able to search over the object space yielding objects as a result
set. Users can restrict the result set to objects matching specified facets - com-
binations of properties and objects or datatype values (L). In addition, query
operations can be used to navigate in the result set along object properties,
yielding another set of objects. The individual object sets form, in combination,
a result tree, and previous result sets can be used later in the search process.
The current result set can be modified by projecting out datatype properties
and sorting the object result set according to datatype properties. Users can
choose to display the result set in detail, list, and table view; optionally, a map,
timeline, or graph view are available if the result objects contain suitable infor-
mation for the view. Users are able to export the results to application programs
or services. We discuss each operation in detail in Section 3.

The interface in Figure 1 shows results for the query “objects foaf:made by
objects that timbl:i foaf:knows, sorted by dc:date” (Query 7). The results
displayed have been aggregated and integrated from multiple web sources.

3 Search and Navigation Operations

In the following we introduce our query operations and a grammar describing
how to compose complex queries from atomic operations, and present a formal-
isation of query results using trees.

3.1 Query Operations

– Keyword Search: A search session can start with the user specifying key-
words to pinpoint objects of interest. The operation leads to an initial set
of results based on a broad matching of string literals connected to objects.
We perform matching on keywords without manually extending the query
for synonyms or other natural language processing techniques. Rather, we
leverage the noise in web data, ie. the fact that the same resource might be
annotated using different spellings or different languages.

8 As specified in OWL, Web Ontology Language, http://www.w3.org/2004/OWL/

VisiNav: Visual Web Data Search and Navigation 219

– Object Navigation: The object navigation operation is similar to following
a hypertext link in a web browser. The user either starts with a set of results
or a single result, and clicks on a node to bring it into focus. The operation
yields always a result set with a single element.

– Facet Selection: Another way of restricting the result set is via selecting
facets. A facet is a combination of a property and a literal value or an
object (distinguishing between datatype and object properties). Facets are
calculated relative to the current result set. Based on derived facets, the user
can reformulate the query and obtain increasingly specific result sets.

– Path Traversal: Rather than arriving at a single result by performing a
object navigation operation, users are also able to navigate along an object
property to establish a new set of results. Users can select an object property
which allows them to perform a set-based focus change, ie. they follow a
certain link, either from a single result or a set of results.

– Projection: For views which display individual values of datatype proper-
ties (such as the table view), our framework includes a projection operation
to select only a number of datatype properties for display.

– Sorting: Users are often required to sort the result set according to specific
datatype property values. In our model, users can select one or more sorting
criteria which can be applied to the current result set.

Users start a query building process via specifying a keyword or a URI of the
object to bring into focus. The Extended Backus-Naur Form grammar in Figure 2
describes how the individual operations can be combined (via interactions with
the user interface) to form complex queries.

<query> ::= <init> { <refine> | <modify> } ;
<init> ::= keyword search | object navigation ;
<refine> ::= <facet> | path traversal ;
<facet> ::= datatype facet | object facet;
<modify> ::= project | sort ;
keyword search ::= specify keyword ;
object navigation ::= specify object focus ;
datatype facet ::= restrict result by PD, L facet ;
object facet ::= restrict result by PO, U facet ;
path traversal ::= traverse path PO ;
project ::= add PD to projection criteria ;
sort ::= sort results according to PD ;

Fig. 2. EBNF grammar describing queries. Terminals describe end user actions.

3.2 Result Trees

Iterative application of the restriction and navigation operations leads to a set
of focus nodes R. Using one result set is sufficient for keyword searches, object

220 A. Harth

navigation (specifying a single-element result set), and faceted browsing (incre-
mentally reducing the size of the result set). The path traversal (or set-based
navigation) operation is different: often, users are interested in the objects on
the navigation path that led them to the current result set. Thus, the system
adds a new result set Ri whenever the user performes a path traversal operation.
The result of multiple path traversal operations are result sets R0 . . . Rn where
n is the number of path traversal operations in a query. Users are able to select
result sets R0 . . . Rn for display; Rn is the result set displayed as default.

Consider, for example, the query “objects foaf:made by objects that timbl:i
foaf:knows” (Query 6). That query yields three result sets R0, R1, R2. We as-
sume that the query was constructed in the following way: the user teleports to
Tim Berners-Lee R0 = timbl:i, from there performs a path traversal along the
foaf:knows property R1 = people that Tim knows, and from there again per-
form a path traversal along the foaf:made property yielding R2 = things made
by people Tim knows. When inspecting the results, users might be interested
not only in the things made by Tim’s acquaintances, but also in retaining the
connection between the things and the person who made them. To this end, we
incorporate the notion of result trees, ie. objects connected to each other based
on the path traversal steps performed. Figure 3 shows an example result tree.

Tim Berners-Lee

Dan Brickley Henry Story Dan Connolly

FoaF Document for
Dan Brickley

Henry Story’s
FOAF file

del.ici.ous links
and notes

Semantic Web Tutorial
Using N3

Fig. 3. Partial result tree for query “objects foaf:made by objects that timbl:i

foaf:knows” (Query 6). Labels displayed instead of URIs for clarity.

4 Architecture and Implementation

To verify our ideas, we implemented a prototype system as a Java web appli-
cation. We present first the architecture, describe our indexing and query pro-
cessing component, explain how we generate a set of prospective choices for the
current result set, and finally describe the rendering pipeline.

4.1 System Architecture

The architecture is based on the Model-View-Controller (MVC) paradigm. The
Controller, implemented as servlet, receives queries from the users and retrieves
the topical subgraph (Section 4.2) from the database – we use top-k processing
over specialised index structures described in Section 4.3. The Model classes

VisiNav: Visual Web Data Search and Navigation 221

parse the statements comprising the topical subgraph for the query into Java
objects and generate the set of prospective choices (Section 4.4). Finally, in the
View, the results are rendered and returned to the web browser (Section 4.5).
Optionally the user can request the results in a format suitable for import in
external services or applications.

4.2 Topical Subgraphs

We use the notion of a “topical subgraph”, which contains all information re-
quired to firstly display the results tree and secondly calculate possible next
steps for navigation. Figure 4 depicts a topical subgraph. To retrieve the topical
subgraph we first calculate the sets of focus nodes: the nodes directly match-
ing the query criteria. Then, we expand the sets by following outgoing links up
to a specified limit ε. The parameter ε denotes how much information in the
neighbourhood of the focus nodes should be returned as input to the subsequent
processing steps. In our current implementation we use ε = 2, however, applica-
tions might require larger portions of the graph to operate. To be able to track
the sources of a given piece of data, the topical subgraph refers to a directed
labeled graph of data with context [4] derived for a particular query.

Fig. 4. Topical subgraph for one focus node with ε = 1, 2, 3

Please observe that our notion of topical subgraph does not contain in-links to
nodes. Given that the notion of directionality of links in semantic graphs is both
somewhat arbitrary and difficult to communicate to end users, we just assume
out-links from nodes. In case browsing is required both from and to a node,
we assume that a property is either specified as symmetric or has its inverse
property defined. Upon reasoning [8], a link is inferred in both directions.

4.3 Indexing and Query Processing

The query processing component performs top-k processing of the queries, based
on a set of rankings for all identifiers in the system. Top-k processing – which is

222 A. Harth

not sufficiently supported in current RDF query processors – is a crucial feature
for the application since the intermediate result sizes become large, leading to
performance degradation, and a simple cut-off of unranked identifiers leads to
suboptimal results. Ranking is out of scope for this paper, however, one can
assume a simple frequency-based ranking where the rank of an identifier depends
on how often the identifier occurs.

We devise a set of index structures to match the navigation primitives of-
fered to the user. Conceptually, our index structures match the <key, posting
list> structure known from Information Retrieval systems. The current proto-
type utilises the following indices:

– Statement Index (<subject, poc list>): store a list of predicate/object/
context tuples (poc) per subject. This index is used for topical subgraph
lookups where ε = 1.

– Path Index (<subject, path list>): store the topical subgraph with ε = 2
per subject. This index is used for topical subgraph lookups where ε = 2.

– Text Index (<term, subject list>): store a list of subjects per term. This
inverted index is used for keyword lookups, intersecting the postings list in
case of multiple search terms.

– Facet Index (<po, subject list>): store a list of subjects per facet (predi-
cate/object pair). The index is used for facet restrictions.

– Out-link Index (<sp, object list>): store a list of objects per subject/
predicate (sp) pair. The index is used for the path traversal operation.

The Statement Index in combination with the Path Index is used for topical
subgraph lookup. In case there is no Path Index available, or subgraphs with
ε > 2 are requested, the query processor computes the joins between Statement
Index and Path Index in a breadth-first manner.

The query processing is carried out as follows: execute each navigation oper-
ation using the respective index, sort the posting lists according to the global
ranks, intersect the posting lists (starting with the smaller one), and look up the
topical subgraph for the resulting focus nodes. During query processing, each
navigation primitive is applied to an index, which returns a set of focus nodes,
which are in turn again used as input for the next operation. Lastly, the topical
subgraph for the final result set is retrieved, and returned as set of statements.
In case of path traversals, the topical subgraphs for the multiple result sets are
retrieved, and information to link together the objects on the results path is
added. We use the sets of statements abstractions rather than storing objects
directly to be able to optionally plug in an RDF store as the back-end, or perform
lookups on live RDF sources.

The Model component converts the information in the topical subgraphs to
Java objects that other components can conveniently process the data.

4.4 Computing Prospective Choices

The users should be able to refine their queries relative to the current result
set (now encoded in Java objects). The system computes prospective choices

VisiNav: Visual Web Data Search and Navigation 223

(possible facets and path traversals) from the current result set. Similarly to
result sets, we rank the properties and also rank the values and objects that are
part of a facet based on their global rank.

4.5 Result Rendering Pipeline

Having processed and ranked the dataset, the View components prepare the
display of information to the user. The system can present the results using
different visualisation views, ie. detail view, list view, table view. The table view
is similar to a spreadsheet program, where users are allowed to specify projections
to show only selected properties of the returned objects. Depending on the types
of objects returned, a map view (for geographic coordinates) or a timeline view
(for objects with associated date) can be selected. In case users performed path
traversal operations, they can optionally select a graph view which renders the
result tree in a node-link diagram.

There are three ways of rendering results:

– Results display in the web browser: the web application renders the view in
XML; the browser then applies XSL and CSS to finally render the view to
the user.

– XML-based data export: the web application renders the view in XML and
returns the file to the requester.

– Text-based data export: the web application renders the results in plain text
returns the file to the requester.

In addition, the system offers to generate certain files in matching data formats
for subsequent processing by the user via software programs. For example, geo-
graphic coordinates can be exported to KML9 or objects with associated dates
to iCalendar format (RFC 2445).

Displaying and exporting based on the result types requires export plug-ins
to process and convert the objects to the target file format. This is the inverse to
data integration systems where wrappers are used to convert the data to a com-
mon data format. With Semantic Web data, the objects are already described
in the common data format RDF, so export plugins are becoming important.
The system currently allows to export objects containing RDF literals of type
xsd:date in RSS and Timeline10 formats, geo:lat and geo:long in KML, and
result trees in JSViz11. We provide rendering views of these formats in Timeline,
Google Maps, and JSViz widgets directly in the user interface.

5 Experiments and Evaluation

We implemented a series of prototypes operating on a number of datasets to
validate and refine our design ideas. Our methodology was iterative: once we
9 Keyhole Markup Language, http://www.opengeospatial.org/standards/kml/

10 http://simile.mit.edu/timeline/
11 JavaScript graph visualisation, http://www.jsviz.org/

224 A. Harth

received feedback on a version of the implementation, we incorporated the user
feedback into the next prototype. We tested the system on a number of datasets:
the Mondial database12 consisting of information about countries, an RDF ver-
sion of CrunchBase13 containing information about technology startups, and an
RDF web crawl, seven hops from a seed URI14, containing information mainly
about people. We first provide anecdotal evidence of the utility of our system,
and then present measurements evaluating the performance of query processing
and view rendering.

5.1 Iterative Design and Continuous Feedback

We initiated the design process using the Mondial dataset and several queries
(e.g. “islands in calabria”, “gdp of countries bordering italy”). We asked in total
ten participants to evaluate early versions of the interface design based on several
user tasks and a questionnaire. One session took around 20 minutes; we asked
users to interact with the system immediately without a training or introduction
phase since visitors to the web site would not receive training either.

The setup was the participants’ laptop together with a projector so that the
evaluator could track the user actions. We utilised the “thinking aloud” method
to gain insight into what the users would expect from the system. The results
were mixed: some users picked up quickly the conceptual model behind the user
interface and were able to complete all queries, while the majority were able to
retrieve the right answers only for about half of the queries.

The suggestions and comments of the first round of evaluations were taken
into account for subsequent versions of the interface, and a second round of
evaluations were conducted on a new user interface using a different dataset.
This time, we used CrunchBase as the dataset, and performed only a few tests
to verify the changes made were actually benefitting the users (which the small
study confirmed).

Finally, we performed a series of user tests with the current version of the user
interface on the web dataset with five participants. All five participants were able
to find the correct answers to queries over the web dataset (“find foaf:Person
X”, “find foaf:Persons that X foaf:knows”, “find objects that X foaf:made”).
While the initial user studies have proved very valuable during the design phase,
we plan to conduct larger, more rigorous user studies.

5.2 Performance Evaluation

For the performance evaluation we use the queries from Table 1 as templates;
we inserted into the query templates the names and URIs of six selected people
for which a sizable amount of information is available. We measure separately
the time elapsed in query processing and rendering the view on the server; data
transmission time and rendering performance on the client are independent of
12 http://www.dbis.informatik.uni-goettingen.de/Mondial/
13 http://cb.semsol.org/
14 http://www.w3.org/People/Berners-Lee/card

VisiNav: Visual Web Data Search and Navigation 225

our method and thus not covered in the measurements. The measurements were
carried out on a machine with a 2.2GHz AMD Opteron CPU, 4GB of main
memory and a 160GB hard disk. The servlet container was Tomcat 5.5 in com-
bination with a Sun Java 1.6.0. Figure 5 shows the average performance of query
processing and view rendering.

 0

 1000

 2000

 3000

 4000

 5000

 6000

Q1 Q2 Q3 Q4 Q5 Q6 Q7

T
im

e
in

 m
s

Query

604

1

27 1

66

577

577

query time
rendering time

Fig. 5. Average query processing and view rendering performance for queries from
Table 1. The numbers above the bars denote the average result sizes for the final layer
in the result tree.

The results indicate that the majority of time spent is on query processing;
we indeed removed a previous bottleneck due to the use of a method which
renders the XML in-memory rather than stream-based. Queries with many path
traversal steps (Q5 - Q7) are the most expensive ones due to the join method
used. We expect major performance improvements by replacing the current hash
join implementation with an index nested loops join algorithm.

6 Related Work

NLMenu [17] is an early system advocating the use of multi-step query construc-
tion based on menus. Faceted browsing [19], while less expressive in terms of the
complexity of queries, has become popular and is used on e-commerce sites such
as Ebay.com. Polaris [16] provides complex query and aggregation operations,
however, operates over relational data and thus requires a priori knowledge about
the schema used.

226 A. Harth

A number of systems exist that operate over graph-structured data, which
range from quite basic browsing facilities (e.g. Disco15 allows only object navi-
gation) to systems allowing complex constructs such as negation [14] or nested
facets [18]. Table 2 provides a feature-set comparison of related systems.

Table 2. Feature comparison of related systems

Sy
st

em

K
ey

w
or

ds
Fa

ce
ts

Pa
th

s
R

es
ul

ts
R

an
ki

ng

C
on

fig
ur

at
io

n
D

at
a

so
ur

ce
s

Flamenco [19] x x - set - manual one
Magnet [15] x x - set - schema one
MuseumFinland [10] x x - set - rules several
GRQL [1] - o x set - schema one
/facet [7] x x - set group-by auto one
BrowseRDF [14] x x - set facets auto one
ESTER [2] x x - set top-k auto one
SWSE [5] x o x set top-k auto web
TcruziKB [13] x - x set - schema several
Humboldt [12] x x x sets - auto one
Parallax [9] x x x sets - auto several
VisiNav x x x trees top-k auto web

In general, system designs have to balance a trade-off between ease of use
and query expressiveness. Our system uses the combined set of query primitives
offered by a range of established browsing and navigation systems for graph-
structured data, providing evidence that the selection of features in our system
represent a consensus in the community. This suggests that a sizeable user com-
munity is able to understand the operations.

The systems most closely related to our system in terms of features are GRQL
[1], Humboldt [12] and Parallax [9]. GRQL relies on schema information rather
than automatically deriving the schema from the data itself, a feature required
for web data which does not necessarily adhere to the vocabulary definitions.
GRQL lacks keyword search, a useful feature when operating on arbitrary data,
since keywords are independent of any schema. Rather than allowing arbitrary
facets, GRQL allows to restrict based on the rdf:type predicate. GRQL is, to
our knowledge, the earliest system that provides functionality to perform set-
based navigation. Parallax [9] is a recent system which exhibits browsing features
similar to ours. However, Parallax operates over the Freebase dataset which is
manually curated; our system operates over RDF data collected from the web.
Parallax lacks ranking, a crucial feature when operating on web data. Our system
15 http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/

VisiNav: Visual Web Data Search and Navigation 227

prioritises facets, navigation axes and results based on global ranks. Although
Parallax uses multiple result sets, the connections between the result sets are not
propagated to the level of the user interface; our system maintains result paths
in the results trees. Finally, we provide a set of export plug-ins which allows to
directly load result sets into application programs and online services for display
or further processing.

Regarding methodology, our system can be described in terms of the Seman-
tic Hypermedia Design Method [3]. We describe our abstract interface – the
information exchange between users and system – in terms of user operations,
formalised in EBNF, and result trees. Our concrete interface – the look and feel
– is implemented using a multi-layered rendering pipeline spanning server (RDF,
queries and XML) and client (XSLT and CSS).

7 Conclusion

Established efforts such as the Linked Open Data16 already provide large cor-
pora of structured data in various domains, and more efforts are underway17.
Projects such as FOAF and SIOC provide vocabularies and best practices, en-
abling both individuals and organisations to publish high-quality data on the
web. More structured and interlinked data, in combination with a search and
navigation system as presented in this paper, represents an opportunity to bring
novel and powerful ways for interacting with data to the web. To this end, we
have demonstrated VisiNav, a system based on a formal interaction model that
empowers users to search, browse, and navigate a large, domain-independent
dataset collectively created by a global user community. Future work includes
further improvements of the usability of the system; in particular we would like
to enhance the query response times and streamline the user experience based
on insights obtained through additional user testing.

References

1. Athanasis, N., Christophides, V., Kotzinos, D.: Generating on the fly queries for
the semantic web: The ics-forth graphical rql interface (grql). In: 3rd International
Semantic Web Conference, November 2004, pp. 486–501 (2004)

2. Bast, H., Chitea, A., Suchanek, F., Weber, I.: Ester: efficient search on text, entities,
and relations. In: 30th ACM SIGIR Conference on Research and Development in
Information Retrieval, pp. 671–678 (2007)

3. de Moura, S.S., Schwabe, D.: Interface development for hypermedia applications in
the semantic web. In: Joint Conference 10th Brazilian Symposium on Multimedia
and the Web & 2nd Latin American Web Congress, pp. 106–113 (2004)

4. Harth, A., Decker, S.: Optimized index structures for querying RDF from the web.
In: 3rd Latin American Web Congress, pp. 71–80 (2005)

16 http://linkeddata.org
17 e.g. http://openflydata.org/ and http://www.w3.org/2001/sw/hcls/

228 A. Harth

5. Harth, A., Hogan, A., Delbru, R., Umbrich, J., O’Riain, S., Decker, S.: SWSE:
Answers before links! In. In: Semantic Web Challenge, 6th International Semantic
Web Conference (2007)

6. Henzinger, M.: Search Technologies for the Internet. Science 317(5837), 468–471
(2007)

7. Hildebrand, M., van Ossenbruggen, J., Hardman, L.: Facet: A browser for hetero-
geneous semantic web repositories. In: 5th International Semantic Web Conference,
November 2006, pp. 272–285 (2006)

8. Hogan, A., Harth, A., Polleres, A.: SAOR: Authoritative reasoning for the web. In:
3rd Asian Semantic Web Conference, pp. 76–90 (2008)

9. Huynh, D.F., Karger, D.: Parallax and companion: Set-based browsing for the data
web. Technical report

10. Hyvnen, E., Mkel, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: Museumfinland – finnish museums on the semantic web. Journal
of Web Semantics 3(2), 25 (2005)

11. Kaufmann, E., Bernstein, A.: How useful are natural language interfaces to the
semantic web for casual end-users? In: 6th International Semantic Web Conference,
November 2007, pp. 281–294 (2007)

12. Kobilarov, G., Dickinson, I.: Humboldt: Exploring linked data. In: Linked Data on
the Web Workshop (2008)

13. Mendes, P., McKnight, B., Sheth, A., Kissinger, J.: Tcruzikb: Enabling complex
queries for genomic data exploration. In: IEEE International Conference on Se-
mantic Computing, August 2008, pp. 432–439 (2008)

14. Oren, E., Delbru, R., Decker, S.: Extending faceted navigation for RDF data. In:
5th International Semantic Web Conference (November 2006)

15. Sinha, V., Karger, D.R.: Magnet: supporting navigation in semistructured data
environments. In: ACM SIGMOD International Conference on Management of
Data, pp. 97–106 (2005)

16. Stolte, C., Tang, D., Hanrahan, P.: Polaris: A system for query, analysis, and
visualization of multidimensional relational databases. IEEE Transactions on Vi-
sualization and Computer Graphics 8(1), 52–65 (2002)

17. Thompson, C.W., Ross, K.M., Tennant, H.R., Saenz, R.M.: Building usable menu-
based natural language interfaces to databases. In: 9th International Conference
on Very Large Data Bases, pp. 43–55 (1983)

18. Tvarozek, M., Bielikova, M.: Adaptive faceted browser for navigation in open infor-
mation spaces. In: 16th International Conference on World Wide Web, pp. 1311–
1312 (2007)

19. Yee, K.-P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: SIGCHI Conference on Human factors in Computing Systems,
pp. 401–408 (2003)

Diagnosing and Measuring Incompatibilities
between Pairs of Services�

Ali Aı̈t-Bachir and Marie-Christine Fauvet

LIG, University of Grenoble, France
{Ali.Ait-Bachir,Marie-Christine.Fauvet}@imag.fr

Abstract. This paper presents a technique which detects all behavioural
incompatibilities between two service interfaces (a client and a provider).
This may happen because the provider has evolved and its interface has
been modified. It may also happen because the client decided to change
for another provider which addresses the same needs but offers a different
interface. Unlike prior work, the proposed solution does not simply check
whether two services are incompatible or not, it rather provides detailed
diagnosis, including the incompatibilities and for each one the location in
the service interfaces where these incompatibilities occur. A measure of
similarity between interfaces which considers outputs from the detection
algorithm is proposed too.

1 Introduction

A service interface is defined as the set of messages the service can receive
and send, and the inter-dependencies between these messages. Service interfaces
can be seen from at least three perspectives: structural, behavioural and non-
functional. The structural interface of a service describes the types of messages
that the service produces or consumes and the operations underpinning these
message exchanges. In the case of web services, the structural interface of a
service can be described for example in WSDL [20]. The behavioural interface
refers to the order in which the service produces or consumes messages. This can
be described for example using BPEL ([20]) business protocols, or more simply
using state machines as discussed in this paper. Finally, the non-functional in-
terface refers to reliability, security and other aspects that are not considered
to be part of the functional requirements of a service. The work presented here
focuses on behavioural interfaces and is complementary to other work which has
studied the problem of structural interface incompatibility [17]. These incompat-
ibilities lead to the situation where the interface provided by a service no longer
matches the interfaces that its peers expect from it. This may result in stopping
relationships between the service provider and her/his clients. Actually, each
time an incompatibility occurs a new client application has to be implemented.
Developing such pieces of software is a costly and tedious task.
� This work is partially funded by the Web Intelligence Project, Rhône-Alpes French

Region.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 229–243, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 A. Aı̈t-Bachir and M.-C. Fauvet

Our approach aims at providing a tool which is capable of reporting incom-
patibilities between two service interfaces. Its main contributions are:

– An algorithm which detects all differences that cause two service interfaces
not to be compatible from a behavioural viewpoint.

– A measure of similarity between behavioural interfaces of services which is
based on the outputs of the detection algorithm. This measure evaluates the
degree of similarity between two interfaces.

– A tool which implements the algorithm and the similarity measure and pro-
vides business process designers a visual diagnosis, resulting from the incom-
patibility detection process applied on two interfaces.

The paper is structured as follows. Section 2 frames the problem addressed and
introduces a motivating example. In Section 3 we show how we model service
interfaces according to their behavioural dimension. Section 4 presents the prin-
ciple of the proposed approach while Section 5 details the detection algorithm
and discusses implementation details and experiments. Section 6 compares the
proposal with related ones, and Section 7 concludes and sketches further work.

2 Motivation

As a motivating example, we consider services that handle purchase orders pro-
cessed either online or offline. In Figure 1 the behavioural interfaces are described
using UML activity diagram notation that captures control-flow dependencies
between message exchanges (i.e. activities for sending or receiving messages).
The figure distinguishes between the provided interface that a service exposes,
and its required interface as it is expected by its clients or peers. Specifically,
Figure 1-a shows the provided interface P of a service S. S interacts with a client
application C that requires an interface R. We consider the scenario where C
wishes to interact with another service S′ whose interface is P ′ while meeting the
same needs then S (see Figure 1-b). In this setting, and considering client ap-
plications or peers of the service S, the questions that we address are: (i) do the
differences between P and P ′ cause incompatibilities between S′ and client(s) of
S? and if so, (ii) which differences lead to these incompatibilities? Specifically,
we consider three situations: (1) an operation1 is defined in P while it is not
in P ′, (2) conversely, an operation is defined in P ′ while it is not in P , (3) an
operation is defined in P and changed with another one in P ′. We argue that
other changes can be described in terms of these ones.

In Figure 1, we observe that the flow which loops from Receive OfflineOrder
back to itself in P does not appear in P ′. In other words, customers of S′ are not
allowed to alter offline orders. This is a source of incompatibility since clients
that rely on interface P may attempt to send messages to alter their offline
order while the service S′ does not expect a new order after the first one. On the

1 We use the terms operation and message interchangeably, while noting that strictly
speaking, messages are events that initiate or result from operations.

Diagnosing and Measuring Incompatibilities between Pairs of Services 231

Send

Send
Transfer

OfflineInvoice
Receive

OfflineOrder

Send

Send

Receive
OnlineOrder

OnlineInvoice

Receive
CreditCard

Details

OfflineInvoice

OfflineOrder
Receive

Receive
Transfer

STN
ReceiveSend

ShipmentTrackingNumber
(STN)

Interface P provided by S Interface R required by C

(a) P compatible with R

Send

Send
Transfer

OfflineInvoice
Receive

OfflineOrder

Receive Receive

Send

Send

Receive

CC Details

OnlineOrder

Transfer

OfflineInvoice

OfflineOrder
Receive

OnlineInvoice

?

?

Interface P’ provided by S’ Interface R required by C

Send
AdvanceShipmentNotice

(ASN)

Receive
ASN

(b) P’ not compatible with R

Fig. 1. Differences between two service interfaces

other hand, message ShipmentTrackingNumber (STN in short) has been replaced
in P ′ by message AdvanceShipmentNotice (ASN in short). This difference will
certainly cause an incompatibility vis-a-vis of S’s clients and peers. Another
difference is that paying by bank transfer is offered in service S′ while it is not
in service S. However, this difference does not lead to any incompatibilities since
S’s clients have not been designed to use this option. A difference between P ′

and P only leads to an incompatibility if it causes P ′ not to simulate P .

3 Modelling Behavioural Dimension of Service Interfaces

In our approach, the detection of incompatibilities relies on an abstract repre-
sentation of service interfaces with an emphasis on behavioural aspects. Thus,
we consider order dependencies between messages but we do not look into the
schema of these messages. Accordingly, we model the behaviour of a web ser-
vice interface using Finite State Machines (FSM [5,16]). Our choice of FSMs is
motivated by the following reasons:

– It is arguably the simplest and most widely understood model of system
behaviour and it has been used in several previous work in the area of be-
havioural service interface analysis [6,4,15].

– It is sufficiently powerful to capture most forms of behaviour encountered in
service interfaces, including race conditions and interleaved parallelism.

– There exist transformations from other notations for service behaviour mod-
elling to FSMs. In particular several transformations from BPEL to FSMs
are implemented in existing tools such as WS-Engineer [9].

Following [5,14], we adopt a simple yet effective approach to model service inter-
face behaviour using Finite State Machines (FSMs). In the FSMs we consider,
transitions are labelled with messages (to be sent or received). When a message

232 A. Aı̈t-Bachir and M.-C. Fauvet

is sent or received, the corresponding transition is fired. Figure 2 depicts FSMs of
provided interfaces P and P ′ of the running example presented in Section 2. The
message m has prefix > (respectively <) when it is sent (respectively received).
Each conversation initiated by a client starts an execution of the corresponding
FSM. The figure shows also all differences between P and P ′. The latter will be
discussed in the next section.

S1

S6

S3

S5

S2

S4

S7

deletion

modification

addition

FSM of the interface P FSM of the interface P’

S1’

S3’S2’

S4’ S5’

S6’

S7’

>ASN

<CreditCardDetails

>STN

<OnlineOrder

<OfflineOrder

<OnlineOrder

<OfflineOrder <OnlineOrder <OfflineOrder

>OfflineInvoice
>OnlineInvoice>OfflineInvoice

<OnlineOrder
>OnlineInvoice

<CreditCardDetails

<Transfer

<Transfer<Transfer

Fig. 2. FSMs modelling P and P ′

Definitions and notations: An FSM is a tuple (S,L, T, s0, F) where: S is a
finite set of states, L a set of events (actions), T the transition function (T :
S × L −→ S). s0 is the initial state such as s0 ∈ S, and F the set of final states
such as F ⊂ S. The transition T associates a source state s1 ∈ S and an event
l1 ∈ L to a target state s2 ∈ S.

To check whether or not differences between an interface P (of service S,
seen as a reference) and another one P ′ (of service S′) lead to incompatibilities,
it is necessary to identify situations when P ′ does not simulate P . Actually, if
P ′ simulates P then each interface R required by the clients of S, which are
compatible with P remain compatible with P ′ (see [2] for a proof).

Assumptions: (1) Even thought web service communication is not always syn-
chronous, we assume synchronous communication as it provides, to a certain
extent, a suitable basis for analysing service behaviour. First of all, synchronous
communication is more restrictive than asynchronous communication. Therefore,
incompatibilities that arise within the asynchronous case arise in the synchronous
case as well. Second, for a relatively large class of interfaces, it has been shown
that adopting the synchronous communication model leads to the same analysis
results than adopting the asynchronous model [10]. (2) We focus on interfaces
that expose only externally visible behaviour. In particular, internal actions or
timeouts do not appear in the service interface unless they are externalised as

Diagnosing and Measuring Incompatibilities between Pairs of Services 233

messages. (3) We assume messages with the same structure to be semantically
equivalent.

4 Detection of Differences

To detect differences between P and P ′, their respective FSMs are traversed
synchronously starting from their respective initial states s0 and s′0. The traversal
seeks for two states s and s′ (belonging respectively to P and P ′) which are such
as the sub-automaton starting from s in P and the one starting from s′ in P ′

are incompatible (details are given in Section 5.1). We first discuss and illustrate
the conditions that need to be evaluated when P has an operation which does
not exist in P ′ (for the sake of simplicity we call this situation, a deletion, see
Section 4.1) and when an operation in P is replaced with another one in P ′ (this
is called a modification, see Section 4.2). We do not detail here the situation
when P ′ has an operation which does not exist in P as it is transposed from the
addition mentioned above.

4.1 Deletion of an Operation

Figure 3 depicts two situations where an operation appears in P and not in P ′.
First in Figure 3-a, we observe that all operations enabled in state S1′ are also
enabled in state S1. Moreover, there is an operation (namely >R(m)) enabled
in state S that has no match in state S1′. Hence we conclude that, considering
the pair of states S1 and S1′, >R(m) is missing in P ′. Once this difference
has been detected, the pairs of states to be examined next in the process of
comparing P and P ′ are 〈S2, S2′〉 and 〈S3, S3′〉: S2 in P and S2′ in P ′ are
targets of transitions both labelled by the same operation: >X(m). The same
remark applies to S3 and S3′ with the operation <Z(m).

>R(m)

<Z(m)

<Z(m)

>X(m)deletion

Interface P Interface P’

>X(m)

S2 S3 S2’ S3’

S1’S1

(a) >R(m) deleted in P ′

Interface P

S2

S1

S3

Interface P’

S3’

S2’

S1’

deletion <Z(m)

>R(m)<Z(m)

>X(m)

(b) >X(m) deleted in P ′

Fig. 3. Diagnosis of deletions

In Figure 3-b we note that first, the operation <Z(m) is enabled in S1′ and not
in S1, and second the operation >X(m) is enabled in S1 but not in S1′. There
are two reasons for this mismatch: either operation >X(m) has been modified

234 A. Aı̈t-Bachir and M.-C. Fauvet

and has become <Z(m), or >X(m) has been deleted. In this example, we can
discard the former possibility because <Z(m) appears downstream in the FSM
of P ′ (it labels an outgoing transition of state S2). Hence, <Z(m) can not be
considered as a replacement for >X(m). Thus, we conclude that >X(m) has been
deleted in P ′. Once this difference has been detected, the pair of states to be
examined next in the process of comparing P and P ′ is langleS2, S1′〉.

Formally, when comparing two interface FSMs P and P ′, the fact an oper-
ation is defined in P and missing in P ′ is diagnosed in a pair of states 〈s, s′〉
(respectively belonging to P and P) if the following condition holds (each part
of this condition is explained further down).

‖Label(s•)− Label (s′•)‖ � 1 ∧ ‖Label(s′•)− Label (s•)‖ = 0 (1)

∨ ∃t ∈ s•, ∃t′ ∈ s′• : Label(t) �∈ Label(s′•) ∧ ExtIn(t′, (t◦)•) (2)

In the previous equations, the notations given below apply (examples refer to
Figure 3):

− s• is the set of outgoing transitions of s
(e.g. S1• = {〈S1, >X(m), S1〉, 〈S1, <Z(m), S3〉, 〈S1, >R(m), S2〉}

− t◦ is the target state of the transition t. (e.g. 〈S1, <Z(m), S2〉◦ = S2).
− Label(t) is the label of t. (e.g. Label(〈 S1, <Z(m), S2〉) = <Z(m))
− ‖ X ‖: cardinality of X .
− The ◦ operator (respectively •) is generalised to a set of transitions (respec-

tively states). For example, if T =
⋃n

i=1{ti} then T ◦ =
⋃n

i=1{ti◦}; where
n =‖ T ‖. Similarly, operator Label is generalised to a set of transitions.

A deletion is detected in state pair (s, s′) in two cases. The first one (line 1)
is when every outgoing transition of s′ can be matched to an outgoing tran-
sition of s, but on the other hand, there is an outgoing transition of s that
can not be matched to a transition of s′. A second case is when there exists
a pair of outgoing transitions t and t′ (of states s and s′ respectively) such
that: (i) transition t can not be matched to any outgoing transition of s′; and
(ii) the label of t′ occurs somewhere in the FSM rooted at the target state
of t (line 2).2 This second condition is tested in order to determine whether
the non-occurrence of t’s label among the outgoing transitions of s′ should in-
deed be interpreted as a deletion, as opposed to a modification or an addi-
tion. To check if a transition label occurs somewhere in the FSM rooted at the
target of a given transition, we use the following recursive Boolean function:
ExtIn(t, T) ≡ T �= ∅ ∧ (Label (t) ∈ Label(T) ∨ ⋃‖T‖

i=1 ExtIn(t, (Ti◦)•)). In other
words, ExtIn(t, T) (where t is a transition and T is a set of transitions) evaluates
to true if either transition t’s label appears among the labels of transitions in T
(Label(t) ∈ Label (T)) or, there exists a transition taken in T which has a target
state whose set of outgoing transitions (namely T 1) is such that ExtIn(t, T 1)
evaluates to true. The way it is defined, this recursive function does not converge
2 By FSM P rooted at s we mean FSM P in which the initial state is set to be s. This

means that we ignore any state or transition that is not reachable from s.

Diagnosing and Measuring Incompatibilities between Pairs of Services 235

if the FSM has cycles, but it can be trivially extended to converge by adding an
input parameter to store the set of visited states and to ensure that each state
is only visited once.

4.2 Modification of an Operation

Figure 4 shows a situation where we can diagnose that operation >X(m) has
been replaced by operation >Y(m) (i.e. a modification). The reason is that the
operation >X(m) is enabled in S1 but not in S1′, and conversely >Y(m) is
enabled in S1′ but not in S1. Moreover, the transition labelled >X(m) does
not match to any transitions t′ in state S1′ such that operation >X(m) occurs
downstream along the branch starting with t′, and symmetrically, >Y(m) does
not match any transitions t of state S1 such that >Y(m) occurs downstream
along the branch starting with t. Thus we can not diagnose that >X(m) has
been deleted, nor can we diagnose that >Y(m) has been added.

In this case, the pairing of transition >X(m) with transition >Y(m) is arbi-
trary. If state S1′ had a second outgoing transition labelled >Z(m), we would
just as well diagnose that >X(m) has been replaced by >Z(m). Thus, when we
diagnose that >X(m) has been replaced by >Y(m), all we capture is that >X(m)
has been replaced by another operation, possibly >Y(m). The output produced
by the proposed technique should be interpreted in light of this.

>X(m)
modification

S2

S1

Interface P

<Z(m)

S2’

S1’

Interface P’

<Z(m)

>Y(m)

S3 S3’

Fig. 4. Diagnosis of a modification/replacement

The state pair to be visited next in the synchronous traversal of P and P ′ is
such that both transitions involved in the modification are traversed simultane-
ously. In this example, 〈S2, S2′〉 should be visited next.

Formally, a modification is diagnosed in state pair (s,s′) if the following con-
dition holds:

∃t1 ∈ s•, ∃t1′ ∈ s′• : Label(t1) �∈ Label(s′•) ∧ Label(t1′) �∈ Label(s•)
∧¬∃t2 ∈ s• : ExtIn(t1′, (t2◦)•)) ∧¬∃t2′ ∈ s′• : ExtIn(t1, (t2′◦)•))

5 Implementation Details and Experiments

The detection algorithm presented below (see Section 5.1) is implemented in
a tool whose main feature is to detect differences between two behavioural

236 A. Aı̈t-Bachir and M.-C. Fauvet

interfaces that cause that the second interface does not simulate the behaviour
of the first one3[1].

5.1 Detection Algorithm

The algorithm implementing the detection illustrated in the previous section is
detailed in Figure 5. Given two interface FSMs P and P ′, the algorithm traverses
P and P ′ synchronously starting from their respective initial states s0 and s′0. At
each step, the algorithm visits a state pair consisting of one state from each of the
two FSMs. Given a state pair, the algorithm determines if an incompatibility
exists and if so, it classifies it as an addition, deletion or modification. If an
addition is detected (e.g. an operation is enabled from s′0 in P ′ and not from s0 in
P), the algorithm progresses along the transition of the operation in the interface
it has been added. Conversely, if the change is a deletion (e.g. an operation is
enabled from s0 in P and not from s′0 in P ′), the algorithm progresses along the
transition of the deleted operation in. However, if a modification is detected, the
algorithm progresses along both FSMs simultaneously. While traversing the two
input FSMs, the algorithm accumulates a set of differences represented as tuples
of the type Difference defined as below:

type Difference: < State, Transition, State, Transition >
{ Let 〈s, t, s′, t′〉 be of type Difference: s and s′ are states respectively belonging to
FSMs P and P ′ to be compared. t = null ⇐⇒ t′
= null ∧ t′ is enabled in P ′ while
it is not in P (t′ added in P ′), t′ = null ⇐⇒ t
= null ∧ t is enabled in P while it is
not in P ′ (t is deleted), t
= null ∧ t′
= null ⇐⇒ t in P is modified by t′ in P ′. }

For instance, the detection algorithm applied on the motivating example (see
Figure 2) returns the set of tuples {〈S2, <OfflineOrder, S2’, null〉, 〈S4, null, S4’,
<Transfer〉 〈S6, >STN, S6’, >ASN〉} which summarises the differences found
when comparing P ′ to P . It is worth noting that comparing P to P ′ returns
{〈S2’,<null, S2, OfflineOrder〉, 〈S4’,<Transfer, S4, null〉 〈S6’,>ASN, S6, >STN〉}.

The algorithm proceeds as a depth-first algorithm over state pairs of the
compared FSMs. Two stacks are maintained: one with the visited state pairs and
another with state pairs to be visited (see Figure 5, line 5). These state pairs are
such that the first state belongs to the FSM of Pi while the second state belongs
to the FSM of Pj. The first state pair to be visited is the one containing the
initial states of Pi and Pj (line 6). Once a pair of states is visited it will not be
visited again. To ensure this, the algorithm uses the variable visited to memorise
the already visited pairs of states (line 10). Labels in common among those of
outgoing transitions of si and labels of outgoing transitions of sj are considered
as unchanged (no change to detect). Thus, a set of state pairs is built where
states are target states of common labels (line 11). Also, the algorithm reports all
differences between the outgoing transitions of si and the outgoing transitions of
sj (line 12). The two set differences of transitions are put in two variables difPiPj
(transitions whose labels belongs to Label(si•) but do not belongs to Label (sj•))
an difPjPi (transitions whose labels belong to Label(sj•) but do not belong to
3 See http://mrim.imag.fr/ali.ait-bachir/webServices/webServices.html

http://mrim.imag.fr/ali.ait-bachir/webServices/webServices.html

Diagnosing and Measuring Incompatibilities between Pairs of Services 237

Detection (Pi: FSM, Pj: FSM): {Difference}
2 { Detection (Pi,Pj) is the set of differences between Pi and Pj. }
3 setRes: { Difference } { the result }
4 si, sj: State { auxiliary variables }
5 visited, toBeVisited: Stack of type <State, State>

{ pairs of states that have been visited / must be visited }
7 toBeVisited.push(< initState(Pi), initState(Pj) >)
8 while notEmpty(toBeVisited)
9 < si, sj > ← toBeVisited.pop()
10 visited.push(< si, sj >) { < si, sj > is now considered as visited }
11 combEqual ← {(ti, tj) ∈ si• × sj• | Label(ti) = Label(tj)}

{ pairs of matching transitions }
12 difPiPj ← {ti ∈ si• | Label(ti)
∈ Label(sj•)}

difPjPi ← {tj ∈ sj• | Label(tj)
∈ Label(si•)}
13 combPiPj ← difPiPj × difPjPi

{ all pairs of si and sj uncorresponding outgoing transitions. }
14 If ‖difPiPj‖ � 1 and ‖difPjPi‖ = 0 then { deletion }
15 For each t in difPiPj do setRes.add(< si, t, sj, null>)
16 If((t◦, sj) /∈ visited) then toBeVisited.push((t◦, sj))
17 If ‖difPjPi‖ � 1 and ‖difPiPj‖ = 0 then { addition }
18 For each t in difPjPi do
19 If (polarity(t) = ‘send’) then setRes.add(< si, null, sj, t>)

{ otherwise this addition does not lead to incompatibility }
20 If ((si, t◦) /∈ visited) then toBeVisited.push((si, t◦))
21 For each (ti, tj) in combPiPj do
22 If ExtIn(ti, (tj◦)•) then { addition }
23 setRes.add(< si, null, sj, tj>)
24 If ((si, tj◦) /∈ visited) then toBeVisited.push((si, tj◦))
25 If ExtIn(tj, (ti◦)•) then { deletion }
26 setRes.add(< si, ti, sj, null,’deletion’>)
27 If ((ti◦, sj) /∈ visited) then toBeVisited.push((ti◦, sj))
28 If ((¬∃tj′ ∈ sj• : ExtIn(ti, (tj′◦)•))

∧(¬∃ti′ ∈ si• : ExtIn(tj, (ti′◦)•))) then { modif. }
29 setRes.add(< si, ti, sj, tj>)
30 if((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
31 For each (ti, tj) in combEqual do

If ((ti◦, tj◦) /∈ visited) then toBeVisited.push((ti◦, tj◦))
32 Return setRes

Fig. 5. Detection algorithm

Label(si•)). Line 13 calculates all combinations of transitions whose labels are
not in common among Label(si•) and Label(sj•).

Lines 14 to 16 are dedicated to detect a deletion when an outgoing transition
of si does not match any transition in sj•. The result is returned as set of tuples
< si, t, sj,null > where t is one of the outgoing transitions of si whose label
does not appear in any of sj’s outgoing transitions. As mentioned in Section4.1,
when an operation is deleted in Pj FSM the algorithm progresses in Pi FSM,

238 A. Aı̈t-Bachir and M.-C. Fauvet

along the branch of the transition which does not exist in Pj, but remains in
the same state in Pj FSM.

The detection of an addition is quite similar to the detection of a deletion
(lines 17 to 20).

The variable combPiPj contains transition pairs such that the label of the first
transition ti belongs to si• but does not belong to Label(sj•) while the label of
the second transition tj belongs to sj• but not to Label(si•). For each transition
pair satisfying this condition, the algorithm checks the conditions for diagnosing
an addition (lines 22 to 24), a deletion (lines 25 to 27) or a modification (lines
28 to 30).

Finally, the algorithm also progresses along pairs of matching transitions, i.e.
pairs of transitions with identical labels (line 31). In fact, if no incompatibilities
are detected in the current state pair, the algorithm will only progress along
pairs of transitions that match one another.

5.2 Complexity of the Detection Algorithm

Let P and P ′ be two interface FSMs given as input to the detection algorithm,
P (respectively P ′) has n (resp. n′) states and m (resp. m′) transitions. Also,
let w and w′ be the number of distinct transition labels appearing in P and P ′

respectively. We observe that the algorithm performs a depth-first search over
the space of state pairs 〈s, s′〉 such that s is a state of P and s′ is a state of P ′.
The algorithm visits each state pair at most once, therefore one component of
the complexity is O(n ∗n′). We then observe that for each visited state pair, the
algorithm examines transitions pairs 〈t, t′〉 such that t is an outgoing transition
of s and t′ is an outgoing transition of s′. Also, when a transition t in one FSM
can not be matched to a transition in the other FSM, we examine t individually.
Overall each transition pair 〈t, t′〉 such that t is a transition of P and t′ is a
transition of P ′ is examined at most once. Additionally, each transition t in P
and t′ in P ′ is examined at most once individually. Thus another component of
the complexity is O(m ∗m′ +m+m′). Since the first term dominates the other
two, this can be written as O(m ∗m′). Thus, the complexity of the traversal is
O(n ∗ n′ +m ∗m′).

For each visited pair 〈t, t′〉 of transitions a condition is evaluated. This con-
dition is based on the transition labels and, in some cases, it also involves a
“look-ahead” operation. The purpose of this look-ahead is to find, for a given la-
bel, whether or not this label appears in the FSM rooted at either the target of t
or the target of t′. This look-ahead can be avoided as follows. In a pre-processing
stage, we traverse each of the two FSMs individually using a breadth-first search
algorithm. During this traversal, we construct a look-up table that maps each
state s to a list of pairs 〈l, b〉 where l is a transition label and b is a Boolean
value indicating whether or not l is the label of a transition reachable from s. For
each state s, we calculate the value of b for each label, based on the correspond-
ing values of b for each direct successor of s. This step is linear on the number
of labels appearing in the FSM. Thus, the complexity of this pre-processing is
O((n+m) ∗w) for P and O((n′ +m′) ∗w′) for P ′ . Since the number of distinct

Diagnosing and Measuring Incompatibilities between Pairs of Services 239

labels in an FSM is bounded by the number of transitions, the complexity of the
pre-processing stage is bounded by O(n ∗m+ (m)2 + n′ ∗m′ + (m′)2).

Adding up the complexity of the pre-processing and the detection algorithm,
the overall complexity is O(n ∗m+(m)2 +n′ ∗m′ +(m′)2 +n ∗n′ +m ∗m′). As-
suming the number of transitions in an FSM is greater than the number of states
(which, modulo one transition, holds because the FSMs are connected graphs),
the complexity is bounded by O((m+m′)2). Thus the worst-case complexity is
quadratic on the total number of transitions in both FSMs.

5.3 Measure of Similarity

This section presents a measure meant to give a quantitative evaluation of how
much an interface is different from another one. This measure relies on a function
QS : VStates → [0..1] where VStates is the set of state pairs visited by the
detection algorithm (VStates ⊆ S×S′, S being the set of states in P and S′ the
set of those in P ′). Given a pair of states 〈s, s′〉 ∈ VState, QS(〈s, s′〉) measures
incompatibilities detected at 〈s, s′〉 relatively to the number of transitions in
common between s and s′. The formulæ is (see explanations below):

QS(〈s, s′〉) =

⎧⎨
⎩

1 if s• = ∅
‖ LC ‖ +

∑
d∈Diff (〈s,s′〉) Weight(d)

‖ LC ‖ + ‖ Diff (〈s, s′〉) ‖ otherwise

LC = Label (s•) ∩ Label(s′•) is the set of labels in common in transitions whose
sources are s and s′. Diff (〈s, s′〉) is the set of differences pinpointed from the
state pair 〈s, s′〉. The function Weight : Difference → [0..1[is such as Weight(d)
is the penalty associated with d. Penalties are arbitrary chosen and depend on
whether the difference is an addition, a deletion or a modification.

When s does not have any outgoing transitions, QS(〈s, s′〉) = 1. Otherwise,
QS tends toward zero as the weight of incompatibilities, evaluated relatively to
the global number of transitions in common, rooted at s and s′. For a fixed
number of these transitions, more differences are found at 〈s, s′〉 higher is the
dividend and closer to 0 is QS(〈s, s′〉). The divisor, which is meant to keep QS
in [0, 1], is never equal to 0: either s has no outgoing transition (QS(〈s, s′〉) =
1), or s has at least one outgoing transition and it corresponds to a difference
(‖ Diff (〈s, s′〉) ‖> 0) or not (‖ LC ‖≥ 1).

For example, in Figure 2, assuming the penalty for the deletion is set
to 0.5, thus: QS (〈 S3, S3’〉) = (1+0.5)/(1+1)=0.75 while QS(〈 S1, S1’〉) =
(1+0)/(1+0)=1

Eventually, to quantitatively compare P and P ′, we propose to calculate the
mean of values returned when applying QS on each pair of states visited by the
algorithm. This is done by the function MQS. MQS (P, P ′) = 1 means that P ′

simulates P .
MQS (P, P ′) =

∑
p∈VStates

QS(p)/ ‖ VStates ‖

In the running example, if the penalty values are set to 0.5 then the mean
quantitative simulation is: MQS (P, P ′) = 0.875.

240 A. Aı̈t-Bachir and M.-C. Fauvet

5.4 Experimental Results

For validation purposes, we built a test collection of 15 behavioural interfaces
derived from the textual description of choreographies expressed in the standard
xCBL4. The experiment consisted in comparing interfaces to each other.

Table 1 gives a fragment of the results obtained when comparing service inter-
faces. Each line reports the comparison between the interface seen as a reference
and a particular interface given by its id number (see column Interface). In the
column MQS is displayed the value returned when applying the function MQS
(see above) to the list of differences built by the detection algorithm. The num-
ber of items in this list is given in column Nb diff while the column States (resp.
Transitions) shows how many states (resp. transitions) where found in the in-
terface to be compared. Each interface has between 3 and 16 transitions. The
interface given as a reference has 11 states and 13 transitions.

Table 1. Fragment of experimental results

Interface MQS States Transitions Nb diff

�12 1 11 13 0
�14 0.977 11 13 1
�13 0.875 10 13 3
�1 0.43 4 3 11
�3 0.37 6 6 16
�5 0.30 8 11 21
�11 0.233 10 14 19

The interface whose id is �11 has 10 states and 14 transitions. It has 19
differences with the interface given as the reference. The value returned by MQS
is 0.233 which is lower then the one returned when comparing the interface whose
id is �5. The interface �5 has a better score (0.30) then the one which id is �11,
even thought �5 has less differences then �11. The interface �12 scores 1 and has
no difference with the reference, thus it simulates the reference interface.

6 Related Work

The issues tackled in this paper have been partially addressed before, with vari-
ous points of view. Web service interactions may fail because of interface incom-
patibilities according to their structural dimension. In this context, reconciling
incompatible interactions leads towards transforming message types (using for
instance Xpath, XQuery, XSLT). Issues that arise in this context are similar to
those widely studied in the data integration area. A mediation-based approach is
proposed in [3]. While this approach relies on a mediator (called virtual supplier)
it focuses on structural dimension of interfaces only.
4 XML Common Business Library (http://www.xcbl.org/).

http://www.xcbl.org/

Diagnosing and Measuring Incompatibilities between Pairs of Services 241

In [14], authors introduced a technique to diagnosis message structure mis-
matches between service interfaces and to fix them with adaptors. An extension
of this technique is applied to resolve mismatches between service protocols.
The proposed iterative algorithm builds a mismatch tree to help developers to
choose the suitable adapter each time and incompatibility is detected. However,
this technique can only be applied to protocols which describe a sequence of
operations. More complex flow controls such as iterative or conditional composi-
tions are not taken into consideration. The solution proposed in this paper does
not have this limitation. Another drawback of this approach is that adaptors
have no control logic and can not resolve complicated protocol mismatches, such
as extra condition, missing condition, or iteration structure, etc.

Compatibility test of interfaces has been widely studied in the context of Web
service composition. Most of the approaches which focus on the behavioural
dimension of interfaces rely on equivalence and similarity calculus to check,
at design time, whether or not interfaces described for instance by automata
are compatible (see for example [6,11]). The behavioural interface describes the
structured activities of a business process. Checking interface compatibility is
thus based on bi-similarity algorithms [13]. In [19], authors analyze the com-
patibility of two services by using the colored Petri net of service interfaces.
The idea is to build the reachability graph of boths services and to verify if
the graph is well-formed (i.e. services are compatible) or not (i.e. services are
incompatible). These approaches do not deal with pinpointing exact locations of
incompatibilities as our proposition does.

Recent research has addressed interface similarity measure issues. In [18], au-
thors present a similarity measure for labelled directed graphs inspired by the
simulation and bi-simulation relations on labelled transition systems. The pre-
sented algorithm returns a value of a simulation measure but does not give the
location of the incompatibilities which have been detected. Its complexity is ex-
ponential or factorial to the number of states of the graphs to be compared.
According to this theoretical result, our algorithm is more efficient. In [12], the
author presents a similarity measure for labelled directed graphs inspired by the
simulation and bi-simulation relations on labelled transition systems. The au-
thor applies this technique to detect and correct deadlocks. A similar algorithm
with the same limitations and complexity has been used in service discovery as
introduced in [8]. More specifically, some algorithms for detecting incompatibil-
ities have been proposed, but they focus only on structural aspect of interfaces
and do not address their behavioural dimension [7].

In [15], authors propose an operator match which is a similarity function com-
paring two interfaces for finding correspondences between models. This function
is the same as the one introduced in [18] which consider the behavioural seman-
tics. The similarity measure is a heuristic which returns a value which calculated
according to changes involved by the addition and by the deletion of an opera-
tion. However, the result do not pinpoints the exact location of these changes.

In [21], the authors propose an approach to business process matchmaking
based on automata extended with logical expressions associated to states. Their

242 A. Aı̈t-Bachir and M.-C. Fauvet

algorithm determines if the languages of two automata have a non-empty in-
tersection. This technique for detecting process differences returns a Boolean
output. It does not provide detailed diagnosis.

7 Conclusion and Further Study

In this paper we have presented both design and implementation of a tool in-
tended to detect differences (addition, deletion or modification of an operation)
that give rise to behavioural incompatibilities between two service interfaces.
The main originality of the proposed solution is that the detection algorithm
does not stop at the first incompatibility encountered but keeps searching fur-
ther to identify all incompatibilities leading up to the final state of one of the
interfaces to be compared. We have introduced a measure of similarity between
interfaces. This measure is meant to be used to select, among a set of services,
which one has the closest interface to a given service interface.

Ongoing work aims at extending the proposed solution toward two directions:
(i) detecting complex types of incompatibilities (e.g. the order of two operations
is swapped or an entire branch is deleted); and (ii) assisting business process de-
signers in determining how to address an incompatibility. Also, communications
are currently assumed to be synchronous. Future work will aim at extending
the technique to address the asynchronous case. This extension can be achieved
by maintaining a buffer of unconsumed messages during the traversal, as it is
proposed in [14].

References

1. Aı̈t-Bachir, A., Dumas, M., Fauvet, M.-C.: BESERIAL: Behavioural service inter-
face analyser. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 374–377. Springer, Heidelberg (2008)

2. Ait-Bachir, A., Dumas, M., Fauvet, M.-C.: Detection behavioural incompatibilities
between pairs of services. In: Proc. of the 4th WESOA 2008 in conj. with the 6th
ICSOC, Sydney, Australia (2008)

3. Altenhofen, M., Boerger, E., Lemcke, J.: An execution semantics for mediation
patterns. In: Proc. of the BPM’2005 Workshops: Workshop on Choreography and
Orchestration for Business Process Managament, France (2005)

4. Benatallah, B., Casati, F., Grigori, D., Nezhad, H.R.M., Toumani, F.: Developing
adapters for web services integration. In: Pastor, Ó., Falcão e Cunha, J. (eds.)
CAiSE 2005. LNCS, vol. 3520, pp. 415–429. Springer, Heidelberg (2005)

5. Beyer, D., Chakrabarti, A., Henzinger, T.A.: Web service interfaces. In: Proc. of
the 14th WWW int. conf, Japan. ACM Press, New York (2005)

6. Bordeaux, L., Salaün, G., Berardi, D., Mecella, M.: When are two web services
compatible? In: Shan, M.-C., Dayal, U., Hsu, M. (eds.) TES 2004. LNCS, vol. 3324,
pp. 15–28. Springer, Heidelberg (2005)

7. Champin, P.-A., Solnon, C.: Measuring the similarity of labeled graphs. In: Ashley,
K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689. Springer, Heidelberg
(2003)

Diagnosing and Measuring Incompatibilities between Pairs of Services 243

8. Corrales, J.C., Grigori, D., Bouzeghoub, M.: BPEL processes matchmaking for
service discovery. In: Meersman, R., Tari, Z. (eds.) OTM 2006. LNCS, vol. 4275,
pp. 237–254. Springer, Heidelberg (2006)

9. Foster, H., Uchitel, S., Magee, J., Kramer, J.: WS-Engineer: A tool for model-based
verification of web service compositions and choreography. In: Proc. of the IEEE
Int. Conf. on Software Engineering, China (2006)

10. Fu, X., Bultan, T., Su, J.: Synchronizability of conversations among web services.
IEEE Transactions on Software Engineering 31(12) (2005)

11. Haddad, S., Melliti, T., Moreaux, P., Rampacek, S.: Modelling web services in-
teroperability. In: Proc. of the 6th Int. Conf. on Enterprise Information Systems,
Portugal, vol. 4. ICEIS Press (2004)

12. Lohmann, N.: Correcting deadlocking service choreographies using a simulation-
based graph edit distance. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM
2008. LNCS, vol. 5240, pp. 132–147. Springer, Heidelberg (2008)

13. Martens, A., Moser, S., Gerhardt, A., Funk, K.: Analyzing compatibility of bpel
processes. In: Proc. of the Advanced Int. Conf. on Telecommunications and In-
ternational Conference on Internet and Web Applications and Services, French
Caribbean. IEEE Computer Society Press, Los Alamitos (2006)

14. Motahari-Nezhad, H.-R., Benatallah, B., Martens, A., Curbera, F., Casati, F.:
Semi-automated adaptation of service interactions. In: Proc. of the 16th Int. Conf.
on World Wide Web, Canada. ACM Press, New York (2007)

15. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave, P.: Matching and
merging of statecharts specifications. In: Proc. of the 29th Int Conf on Software
Engineering, USA. IEEE Computer Society Press, Los Alamitos (2007)

16. Pathak, J., Basu, S., Honavar, V.: Modeling web service composition using symbolic
transition systems. In: Proc. of the 21st Conf. on Artificial Intelligence. Workshop
on AI-driven Technologies for Service-Oriented Computing, USA (2006)

17. Ponnekanti, S.R., Fox, A.: Interoperability among independently evolving web ser-
vices. In: Jacobsen, H.-A. (ed.) Middleware 2004. LNCS, vol. 3231, pp. 331–351.
Springer, Heidelberg (2004)

18. Sokolsky, O., Kannan, S., Lee, I.: Simulation-based graph similarity. In: Hermanns,
H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 426–440. Springer, Hei-
delberg (2006)

19. Tan, W., Fan, Y., Zhou, M.: A petri net-based method for compatibility analysis
and composition of web services in business process execution language. IEEE
Transactions on Automation Science and Engineering 6(1) (2009)

20. Weerawarana, S., Curbera, F., Leymann, F., Storey, T., Ferguson, D.: Web Services
Platform Architecture. Prentice-Hall, Englewood Cliffs (2005)

21. Wombacher, A., Fankhauser, P., Mahleko, B., Neuhold, E.: Matchmaking for busi-
ness processes based on choreographies. In: Proc. of the IEEE Int. Conf. on Mul-
timedia and Expo, Taiwan. IEEE, Los Alamitos (2004)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 244–254, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Scaling-Up and Speeding-Up Video Analytics
Inside Database Engine

Qiming Chen1, Meichun Hsu1, Rui Liu2, and Weihong Wang2

1 HP Labs, Palo Alto, California, USA
2 HP Labs, Beijing, China

Hewlett Packard Co.
{qiming.chen,meichun.hsu,liurui,weihong.wang}@hp.com

Abstract. Most conventional video processing platforms treat database merely
as a storage engine rather than a computation engine, which causes inefficient
data access and massive amount of data movement. Motivated by providing a
convergent platform, we push down video processing to the database engine us-
ing User Defined Functions (UDFs).

However, the existing UDF technology suffers from two major limitations.
First, a UDF cannot take a set of tuples as input or as output, which restricts the
modeling capability for complex applications, and the tuple-wise pipelined
UDF execution often leads to inefficiency and rules out the potential for ena-
bling data-parallel computation inside the function. Next, the UDFs coded in
non-SQL language such as C, either involve hard-to-follow DBMS internal sys-
tem calls for interacting with the query executor, or sacrifice performance by
converting input objects to strings.

To solve the above problems, we realized the notion of Relation Valued
Function (RVF) in an industry-scale database engine. With tuple-set input and
output, an RVF can have enhanced modeling power, efficiency and in-function
data-parallel computation potential. To have RVF execution interact with the
query engine efficiently, we introduced the notion of RVF invocation patterns
and based on that developed RVF containers for focused system support.

We have prototyped these mechanisms on the Postgres database engine, and
tested their power with Support Vector Machine (SVM) classification and
learning, the most widely used analytics model for video understanding. Our
experience reveals the value of the proposed approach in multiple dimensions:
modeling capability, efficiency, in-function data-parallelism with multi-core
CPUs, as well as usability; all these are fundamental to converging data-
intensive analytics and data management.

1 Introduction

Video has become an indispensable carrier of information for business perception,
decision and actions that enterprises cannot afford to ignore. However, the existent
video analysis applications generally fail to scale. A major reason is that almost all the
video processing platforms treat database merely as a storage engine rather than a
computation engine. As a result, the transfer of massive amount of video data between

 Scaling-Up and Speeding-Up Video Analytics Inside Database Engine 245

the storage platform and the computation platform causes serious problems in
performance and scalability. With demand for near real-time responses to enable Op-
erational BI (OpBI) in face of bigger and bigger data sets, more and more complex
transformation and analysis, the separation of data-intensive transformation/analytics
and data management is increasingly recognized as the performance bottleneck.

Motivated by providing a convergent platform, we push down video processing to
the database engine for fast data access and reduced data transfer, and rely on User
Defined Functions (UDFs) to perform video analysis and search operations which are
beyond the relational database operations.

1.1 The Problems

For wrapping computation the current UDF technology has several limitations. One
limitation lies in the lack of formal support of relational input and output. Existing
SQL systems offer scalar, aggregate and table functions, where a scalar or aggregate
function cannot return a set; a table function does return a set but its input is limited to
a single-tuple argument. These types of UDFs are not relation-schema aware, unable
to model complex applications, and cannot be composed with relational operators in a
SQL query. Further, they are typically executed in the tuple-wise pipeline in query
processing, which may incur performance penalty for certain applications, and pro-
hibits data-parallel computation inside the function body. Although the notion of rela-
tional UDF has been studied by us [3] and others [9], it is not yet realized in any
product due to the difficulty in interacting with the query executor.

Next, there exists a dilemma between UDF execution efficiency and ease of cod-
ing. Executed inside a DBMS core by the query executor, a UDF (in a non-SQL lan-
guage such as C) must deal with the system internal data objects with system specific
calls, which are hard to follow by users. In some systems such complexity is allevi-
ated by a system utility that converts DBMS internal data into strings to pass to
UDFs. This approach, not only is limited to simple UDFs, but also incurs significant
overhead, particularly in per-tuple processing. As reported in [10], with SQL Server,
no matter how simple a UDF is, it significantly underperforms system functions and
expressions. To the other extreme, in some other database systems such as Postgres,
UDFs are coded in exactly the same way as system functions. While such UDFs can
run efficiently, the UDF developer must have the knowledge of DBMS internal data
structures and system calls to deal with argument passing, memory management, etc,
which actually keeps UDFs out of reach from most users.

1.2 The Proposed Solutions

To solve the above problems, our solutions start with supporting Relation-Valued
Functions (RVF) at SQL language level. The output of RVFs can serve as relational
data sources in the dataflow of query processing; their abilities to receive multiple
relations as input, and to return a relation as output are required by modeling and scal-
ing most video analysis and other analytics applications. We shall use Support Vector
Machine (SVM), which is widely used as the classification method in video under-
standing, to illustrate the power and to quantify the performance gain of using RVFs.
We will also use multi-core enabled SVM learning to show the potential of using
RVFs for in-function parallel processing.

246 Q. Chen et al.

An RVF is invoked within a query. Like other relational operators in the query, the
RVF may be called once for returning an entire tuple-set, or called multiple times, one
for each returned tuple. During execution, an RVF interacts with the query executor in
several aspects for resolving arguments, caching initial data for multiple calls, manag-
ing memory life span, etc. Without any constraint, in a function body, the code for
system utilities and the code for user logic may be interleaving, thus it is hard to pro-
vide high-level APIs to free the UDF development from DBMS internal details in a
deterministic way. We address this challenge in the following way.

− We explicitly define the specific mechanisms for applying RVFs to their input rela-
tions as RVF invocation patterns. Regulating RVF execution to well-defined pat-
terns ensures well-understood behavior and system interface.

− We develop invocation pattern-oriented RVF containers for running RVFs with
focused system support.

These solutions have been prototyped on the open-sourced Postgres database engine.
We tested our approach with the Support Vector Machine (SVM) based classification
and learning, which are widely used in video and image understanding. Our experi-
ence reveals the value of the proposed approach in multiple dimensions: modeling
capability, efficiency, in-function data-parallelism with multi-core CPUs, as well as
usability; all these are fundamental to converging data-intensive analytics and data
management.

The rest of this paper is organized as follows: Section 2 discusses the limitation of
the conventional UDF approach with in-database SVM classification as an example;
Section 3 reviews the notion of RVF and introduces RVF invocation patterns; Section 4
describes RVF container as the query executor extension for supporting RVF invoca-
tions; Section 5 illustrates experimental results; Section 6 concludes the paper.

2 UDF Limitation in Supporting Video Analysis

In this section we use a widely adopted analytics application for video understanding,
Support Vector Machine (SVM) based image classification, to explain how video
analysis is pushed down to the database engine as a UDF; we reveal the limitation of
the conventional UDF technology in supporting such applications.

Fig. 1. Video “pattern recognition” process (left) and retrieval process (right)

Use sample image as positive example and randomly
selected images as pseudo negative examples

Search
Engine UI

Query
by

image

Query
by

key-

Features

Query by concept

Google/WordNet

Sample
image

Feature
extraction

Training
SVM binary

classifier

Rank
stored
shots

Expansion
Rank

Text
Indices

Concept
Indices

Keywords
Extraction

Keywords
Expansion

Similarity
Check

Multi-dimension vectors

TABLE

TABLE

TABLE

UDF

UDF

UDF UDF UDF

Query

UDF

Frame/concept
matrix with

Whole frame
or subdivided

partitions

Boundary detection
key-frame extraction

Video
stream

Key
Frames

Visual
Features

Concept
Detection
from Text

Concept Detection
with pre-trained
SVM classifers

Feature
Extraction

Key
Frames

Concept
Indices

Text
IndicesASR/Caption

UDF

TABLE

TABLE
TABLE

UDF

TABLE

UDF

UDF

 Scaling-Up and Speeding-Up Video Analytics Inside Database Engine 247

Let us observe two general processes in video information management where
SVM model plays a key role.

− The pattern recognition process (Fig. 1 left) that segments video frames, identifies
key frames for each segment, extracts (up to 60) visual features from each key
frame, and recognizes multiple high-level concepts from the key frames by apply-
ing their features against a priori knowledge or pre-trained model, which is typi-
cally the SVM model.

The resulting features and concepts represent patterns of the images, which can
be compared with existing patterns and serve as indices of the video frames.

− The retrieval process (Fig. 1 right) that returns the meaning of newly captured
video streams or a ranked list of N segments or key-frames in answering a user’s
keyword-, concept- or image based query. In image-based searching, the sample
image first goes through a classifier, i.e., SVM in our system, generating a concept
vector, which is compared with existent concept vectors using multidimensional
similarity (dot product). If the sample image gets annotated by the user in rele-
vance feedback, a new SVM will be trained on the fly, using that image as a posi-
tive example, along with 300 randomly selected negative examples.

These processes are analogous to load (or ETL) and query processes in a database,
although more complicated.

Below we will show how SVM classification can be expressed in SQL with UDFs.
Then we will reveal the performance problem using conventional scalar UDFs, and
indicate the need of RVFs. In a later section, we will also use SVM learning as an
example to show the potential of using RVF for in-function parallel processing.

2.1 Support Vector Machines

SVM was first introduced in 1992 [1] and is now regarded as an important example of
“kernel methods”, one of the key area in machine learning. In video processing, SVM
is used for mapping the extracted image features to the high-level concepts, the key
step for image understanding.

For image understanding, the low-level fea-
tures of images are binary-classified to high-
level concepts based on SVM models. Multiple
types of low-level visual features such as color
map, color histogram, etc, can be extracted
from a key-frame image. A feature is a vector,
or multidimensional point. A SVM “model”
contains vectors that can be stored as first class
object in a database. Our experience showed
that such integration is a precondition to making video analysis models shared and
reused in a rich way with near-real-time response.

For each feature type, a SVM model is pre-trained for labeling a feature instance of
this type with a concept with a probability measure. Therefore, given K feature types
and M concepts, the classification has two phases:

Clas

Clas

Mar

248 Q. Chen et al.

− In the classification phase, the K features of an image are used as input to the pre-
trained SVM models to yield K•M scores, each represents the degree of nearness of
a feature of the image to a particular concept;

− In the fusion phase, the nearness measures obtained from multiple features of the same
image are aggregated, say, by average, to yield an aggregate score for each concept.

Let us express SVM classification in SQL using UDF. Suppose the input data are
stored in tables Features and Models while the output data are kept in table Labels:

 Features [featureID, imageID, featureType, feature]
 Models [modelID, featureType, concept, model]
 Labels [imageID, concept, nearness]

We create Postgres composite UDTs (User Defined Types) for vector and vector
arrays as

 CREATE TYPE FloatVectorType AS (CREATE TYPE SVMModelType AS (
 mask BIT VARYING(8), floatVectorArray FloatVectorType [],
 floatVector float4 [] weight float4[],
); vector_num int
);

In the Features table, a feature is a FloatVectorType object, and a model in the
Models table is a SVMModelType object. The weight array stores the weights w of
support vectors. Our implementation is based on the well-known LIBSVM, which
represents sparse vectors with (index:value) pairs to avoid storing too many 0’s. For
example, (1:32 2:44 4:69 6:89) is used to represent the vector (32, 44, 0, 69, 0, 89).

The SQL statement for SVM classification expresses two steps:

− For each feature of each image, its nearness score to each concept is computed;
− The resulting nearness measures are aggregated by an average function (or any

other appropriate aggregate function) and grouped by image and concept.

2.2 Limitations of the Current UDF Technology

Using a conventional scalar UDF, classify0, which returns a nearness score, the above
two steps of SVM classification can be expressed in SQL as follows:

[Query 0: Classify using conventional scalar UDF]

SELECT imageID, concept, AVG (nearness) FROM

 (SELECT imageID, featureID, concept, classify0 (f.featureType, m.concept, f.feature,
 m.model) AS

 nearness FROM Features f, Models m WHERE f.featrureType = m.featrureType)

GROUP BY imageID, concept;

Since the UDF used in this query is a scalar UDF, it is evaluated on a per-feature
basis but unable to receive a set of models for the input feature. As a result, the set of
relevant models are not cached but retrieved repeatedly for each feature. Such relation
fetch overhead is caused by the lack of relation input argument for UDFs, and is pro-
portional to the number of feature points, as for each feature, the set of models must

 Scaling-Up and Speeding-Up Video Analytics Inside Database Engine 249

be reloaded. Introducing block operations, such as hash join, provides a limited, but
far from general, solution to this kind of problems.

In addition to the above problem, some applications cannot be modeled without the
presence of whole relations (such as minimal spanning tree computation). Further,
feeding a UDF only one tuple may not make full use of the power of multi-core or
GPU for data-parallel computation inside the function. All these have motivated us to
support a more general form of UDFs called RVFs.

3 RVF and Invocation Pattern

We have discussed the notion of RVF in [3]; it was also studied in the OODB context
[10]. In fact, a SQL query can be viewed as a limited form of an RVF where the func-
tion body consists of standard relational operations. Here, for completeness, we pro-
vide a short description of this notion, while motivate and justify our choice of using
RVF to support data-intensive analytics inside database engine.

3.1 RVFs as Relational Operators

The conventional scalar, aggregate and table UDFs are unable to express relational
transformations and cannot be composed with other relational operators in a query,
since neither their inputs nor outputs are relations. In query processing, they are typi-
cally processed with tuple-wise input which may incur modeling difficulty or execu-
tion inefficiency [3]. In order to overcome these limitations, we introduce RVFs at the
SQL language level. An RVF is a kind of UDF which takes a list of relations as input
and returns a relation as output. For instance, a simple RVF definition can be

 DEFINE RVF f (R1, R2, k) RETURN R3 {

 Relation R1 (/*schema*/); Relation R2 (/*schema*/);
 int k; Relation R3 (/*schema*/);
 PROCEDURE fn(/*dll name*/);
 RETURN MODE SET_MODE; INVOCATION PATTERN BLOCK

 }

where the relation schemas R1, R2 and R3 denote the “schema” of f, in the sense that
the actual relation instances or query results compliant to those schemas can be bound
to f as actual parameters. In a SQL statement, a relational argument of an RVF can
syntactically be expressed by a relation name, view name or query statement.

An RVF produces a relation as output (although it can have database update effects
in the function body) just like a standard relational operator, thus can be naturally
composed with other relational operators or sub-queries in a SQL query, such as

 SELECT * FROM RVF1(RVF2(Q1, Q2), Q3);

where Q1, Q2, Q3 are views or queries.
Resuming our previous example, SVM classification can make use of a generic

RVF classify1 (Features, Models), as expressed in Query 1 in Fig 2. It has two input
relations and returns a set of <imageID, featureID, concept, nearness> tuples.

250 Q. Chen et al.

[Query 1: RVF with relation input and output]

SELECT imageID,concept,AVG(nearness)
 FROM (SELECT imageID, featureID,
 concept, nearness FROM classify1(
 “SELECT * FROM Features”,
 “SELECT concept, model, featureType
 FROM Models”))
GROUP BY imageID, concept;

classify1

Models

imageID,
concept,
nearness

Avg-groupby

Features

* concept,model,
featureType

Fig. 2. SVM by RVF with entire relations as input

3.2 RVF Invocation Patterns

In a relational database engine, the argument of a relation operator may be fed in tuple
by tuple (e.g. at the probe site of hash-join), or by a set of tuples (e.g. at the build-site of
hash-join). If an operator has a tuple-wise input, it is called multiple times w.r.t. that
input during execution. The query is thus evaluated tuple by tuple in a pipelined fashion,
where a parent operator demands its child operator to return and supply the “next” tuple,
and recursively the child operator demands its own child operator to return the “next”
tuple, etc., in the top-down demand driven and bottom-up dataflow fashion. How to deal
with input/output relation data constitutes the invocation patterns.

RVFs and relational operators can be composed in a query; the notion of invocation
patterns can be applied to RVFs. An RVF pattern represents a specific mechanism for
applying the RVF to its input/output relations. The simplest pattern, PerTuple, can be
defined such that applying PerTuple to RVF f with a single input relation R means f is to
be invoked for every tuple in R (pipelined). Under the Block pattern, as shown in Query 1
in Fig. 2, an RVF is called only once in processing a query, with all input relations re-
trieved and cached up front. The block pattern underlies “in-RVF data parallel computa-
tion”; however, when the input relation is sizable, this invocation mode is inappropriate
as the system may run out of memory. In that case, a more complex pattern, CartProd-
Probe (Cartesion product probe), can be used. Applying this pattern to RVF f with 2 in-
put relations Rleft and Rright, means that f is to be invoked for every combination of tuples
in Rleft and Rright, where Rleft is invoked tuple by tuple (pipelined), and Rright is small
enough that one can assume that a data structure representing all tuples in Rright can reside
in memory. In Query 2 shown below (Fig 3), we have specified the invocation pattern of
RVF classify2 as CartProdProbe; for each given feature, it returns a set of <featureID,
imageID, concept, nearness> tuples.

 [Query 2: CartProdProbe pattern]

SELECT r.imageID, r.concept, AVG(r.nearness)
 FROM (Features f CROSS APPLY classify2 (
 f.featureID, f.featureType, f.feature, “SELECT
 concept, model, featureType FROM Models”)) r
GROUP BY r.imageID, r.concept;

classify2

Models

imageID,
concept,
nearness

Features

FeatureID,
featureType,
feature

Avg-groupby

concept,model,
featureType

Fig. 3. Features table is fed into RVF tuple by tuple; Models table fed in as a whole

 Scaling-Up and Speeding-Up Video Analytics Inside Database Engine 251

RVF patterns are a generalization of the limited forms of declarations existent to-
day on some implementation of user-defined aggregate functions. We have defined
richer patterns to provide benefits in optimized data flow. This is because explicitly
declaring RVF “invocation pattern” can ensure that its interaction with the query ex-
ecutor is defined at a high level, therefore making it possible to provide focused sys-
tem support and high-level APIs to shield the UDF developers from tedious DBMS
system internal details.

4 RVF Container

In order for the RVF to be executable in the query processing environment, certain
system support is needed. An RVF container is an extension of query executor for
offering such support. RVF containers are invocation pattern-specific; each container
provides specific facilities for building and running the contained RVFs based on a
designated pattern, in argument evaluation, return value wrapping, memory context
switching, data conversion, initial data preparation, cross-call data passing, and final
cleanup.

When an RVF is defined and registered, its name, arguments (scalars, relations)
and return mode: TUPLE_MODE or SET_MODE is stored in a system table.

When the RVF is invoked, several handle data structures are provided by sub-
classing the corresponding ones in query executor, which can be outlined abstractly
below.

− Handle of RVF Execution (hFE) keeps track of, at a minimum, the information
about actual input/output relation arguments: schema, values (as C array), return
mode, result set, etc.

− Handle of RVF Invocation Context (hFIC) is used to control the execution of the
RVF across calls. hFIC has a pointer to the hFE, and at a minimum keeps track of
the information about number of calls, end-of-data status, memory context (e.g. life
span over one or multi-calls), etc. A pointer to user-provided context known as
scratchpad for retaining certain application data between calls, is provided.

During function execution, the RVF container uses several system functions and
macros to manipulate the hFE and hFIC structure for performing RVF execution. For
instance, in the case of multi-calls, an RVF invocation includes the following steps.

− On the first call (only), initialize the hFIC to persist across calls; evaluate each re-
lation argument expressed by a relation name or a query, by launching a query
evaluation sub-process where the argument query is parsed, planned and executed;
convert the complex DBMS internal tuple structures to an array of simple data
structures to be passed into the “user-function”; initialize other arguments and pos-
sibly the scratchpad.

− On every function call, including the first, set the environment up for using the
hFIC and clearing any previously returned data left over from the previous pass;
get non-static input argument values; invoke user-function where the input and re-
turned relations are array of structures defined in the corresponding header files;
convert the data generated by user-function back to DBMS internal data structures,
and store them in the result-set pointed to by hFE. If the return mode is

252 Q. Chen et al.

TUPLE_MODE, return the first tuple in the result-set to the caller; otherwise if the
return mode is SET_MODE, return the entire result-set.

− At the end, perform clean up and terminate the RVF.

5 Experiments

Our video processing platform is a server cluster running multiple PostgreSQL engines
in parallel, with a centralized planner for controlling the communication of these en-
gines. The server is HP ProLiant DL360 G4 with 2 x 2.73 Ghz CPUs and 7.74 GB
RAM, running Linux 2.6.18-92.1.13.el5 (x86_64). In the given SVM computation, the
relation Features is hash partitioned by imageID over multiple nodes, and the relation
Models is replicated on every node. With this arrangement, each node has sufficient
information for its local SVM classification computation in the share-nothing paradigm.
In SVM learning, however, the local results need to be aggregated. For the computa-
tions that require the communication between the root node planner and the regular
nodes, we carefully design the algorithm based on sufficient statistics.

5.1 Performance Gain in SVM Classification by Using RVF

We support parallel classification. The dll code and registration information of an
RVF are made available, and the RVF container capabilities are supported on each
node. Since the SVM classification can be made self-contained in every node, in this
experiment we measure the per-node performance. The performance comparison be-
tween using RVF (Query 1) and using scalar UDF (Query 0) for SVM classification,
demonstrates scalability and better performance of the proposed RVF approach. Both
queries calculate the nearness score between each image and each concept. We ran
the two queries with different data load (number of feature vectors) and 39 concepts.
The performance comparison is shown in Fig 4.

RVF vs. Scalar UDF

0

50

100

150

200

250

75 100 125 150 175 200 300 400 500

Number of Features

T
im

e
in
 S
ec

on

Scalar
RVF

Fig. 4. Using RVF in SVM query over-performs that using conventional scalar UDF

Both queries scale linearly, while our RVF based SVM classification outperforms
the query based on conventional UDFs by 35-40% The inability of conventional
UDFs of receiving whole relations forces the engine to perform multi-scan joins and
fetch models repeatedly wrt each feature. With RVF, in contrast, the above overhead
is avoided and hence the performance gain.

 Scaling-Up and Speeding-Up Video Analytics Inside Database Engine 253

5.2 Support In-RVF Data-Parallel SVM Learning

The use of RVF allows sets of tuples to be manipulated in the user function, which
potentially supports in-function data parallelism. To illustrate this advantage, we im-
plemented parallel SVM learning inside an RVF using multi-core CPUs. The learning
procedure is outlined as follows.

− A training set of key-frame images are provided where each image is labeled by its
nearness scores to a given concept. For example, an image may be labeled as 100%
for “out-door”, 70% for “sports”, 50% for “boys”, and 40% for “school”. These
data are stored in the table TrainLabels [imageID, concept, nearness].

− The labels of an image apply to all the features of that image, stored in TrainFea-
tures [imageID, featureType, feature].

− A join of these two relations on imageID forms the base data with schema [fea-
tureType, feature, concept, nearness] for SVM model learning.

− Models are stored in Models [modelID, featureType, concept, model]. A model is
unique with respect to a featureType and a concept.

For a given ‘feature_type’ and ‘concept_name’ the SVM learning process is ex-
pressed as the following query:

 INSERT INTO Models
 SELECT modelID + 1, ‘feature_type’, ‘concept_name’, svm_learning (
 “SELECT feature, nearness FROM TrainFeatures f, TrainLables l WHERE
 l.imageID = f.imageID AND l.concept = ’concept_name’ AND f.featureType = ‘feature_type’”)
 FROM Models WHERE modelID = (SELECT max(modelID) from Models);

Fig. 5. SVM learning speed up in multi-core RVF

With data structure conversion handled by the RVF container, the developer only
needs to care about the learning algorithm itself, i.e., the user function svm_learning().
The returned support vectors are automatically mapped into VectorArrayType defined
in section 2.1. Feeding sets of tuples into the RVF allows in-function data parallel com-
putation for gaining high performance. In this experiment, the training procedure is par-
allelized on multi-core CPUs using the Intel Threading Building Blocks C++ template
library. Each model was obtained in iterations similar to cascade SVM [9]. Fig. 5 shows
the execution times of the above query on a dual quad-core CPU workstation, when the

254 Q. Chen et al.

number of cores simultaneously evaluating svm_learning() increased from 1 to 8. Our
experiments show that performance scales well from 1 core to 2 cores; however 4 cores
and 8 cores show diminishing returns. This is consistent with the intrinsic parallelism
available in the SVM learning algorithm employed in this experiment, and confirms our
RVF’s ability to utilize parallelism for in-database computation.

6 Conclusions

Embedding data-intensive analytics in the database layer for fast data access and re-
duced data transfer is an active research field [2-7]. This work aims to build a video
analysis system inside a database engine for achieving a powerful combination. Since
query processing engines are primarily used for relational query evaluation, the reach of
more general applications relies on UDFs. In this research we tackled two major limita-
tions found in the existing UDF technology: lack of set-oriented input or output which
makes application modeling difficult, causes the inefficiency of execution, and mingling
of system code and application logic. With RVFs, a language level extension, we gain
improvement in application modeling and efficiency in the use of cache and computa-
tion parallelism. With RVF container and its associated APIs, analytics logic is well
separated from system administration and programming efforts. Prototyped on the Post-
gres database engine, our experience reveals the benefits of the proposed approaches in
enhancing UDF’s modeling power for executing complex analytics applications, in sig-
nificant performance gain, and in ease of user function development, which makes the
convergence of video analytics and database engine a reality.

References

1. Boser, B.E., et al.: A Training Algorithm for Optimal Margin Classifiers. In: Proceedings of
the Fifth Annual Workshop on Computational Learning Theory, vol. 5, pp. 144–152 (1992)

2. Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.:
SCOPE: Easy and Efficient Parallel Processing of Massive Data Sets. In: VLDB 2008 (2008)

3. Chen, Q., Hsu, M.: Data-Continuous SQL Process Model. In: Proc. 16th International
Conference on Cooperative Information Systems, CoopIS 2008 (2008)

4. Chen, Q., Hsu, M.: Inter-Enterprise Collaborative Business Process Management. In: Proc.
of 17th Int’l Conf on Data Engineering (ICDE 2001), Germany (2001)

5. Dayal, U., Hsu, M., Ladin, R.: A Transaction Model for Long-Running Activities. In:
VLDB 1991 (1991)

6. Dean, J.: Experiences with MapReduce, an abstraction for large-scale computation. In: Int.
Conf. on Parallel Architecture and Compilation Techniques. ACM, New York (2006)

7. DeWitt, D.J., Paulson, E., Robinson, E., Naughton, J., Royalty, J., Shankar, S., Krioukov, A.:
Clustera: An Integrated Computation And Data Management System. In: VLDB 2008 (2008)

8. Graf, H.P., Cosatto, E., Bottou, L., Durdanovic, I., Vapnik, V.: Parallel Support Vector
Machines: The Cascade SVM. In: NIPS 2004 (2004)

9. Jaedicke, M., Mitschang, B.: User-Defined Table Operators: Enhancing Extensibility of
ORDBMS. In: VLDB 1999 (1999)

10. Novick, A.: Drilling Down into Performance Problem. Transact-SQL User-Defined Func-
tions, ch. 11, pp. 235–244. Wordware Publishing (2004) ISBN 1-55622

Experimental Evaluation of Processing Time for the
Synchronization of XML-Based Business Objects

Michael Ameling1, Bernhard Wolf1, Thomas Springer2, and Alexander Schill2

1 SAP Research CEC Dresden
2 Technische Universität Dresden

{michael.ameling,b.wolf}@sap.com,
{thomas.springer,alexander.schill}@tu-dresden.de

Abstract. Business objects (BOs) are data containers for complex data structures
used in business applications such as Supply Chain Management and Customer
Relationship Management. Due to the replication of application logic, multiple
copies of BOs are created which have to be synchronized and updated. This is
a complex and time consuming task because BOs rigorously vary in their struc-
ture according to the distribution, number and size of elements. Since BOs are
internally represented as XML documents, the parsing of XML is one major cost
factor which has to be considered for minimizing the processing time during syn-
chronization. The prediction of the parsing time for BOs is an significant prop-
erty for the selection of an efficient synchronization mechanism. In this paper, we
present a method to evaluate the influence of the structure of BOs on their pars-
ing time. The results of our experimental evaluation incorporating four different
XML parsers examine the dependencies between the distribution of elements and
the parsing time. Finally, a general cost model will be validated and simplified
according to the results of the experimental setup.

1 Introduction

Business applications such as Supply Chain Management and Customer Relationship
Management are placed on business application servers. The business application data
is organized as business objects (BOs) such as a Sales Orderwhich represent object
data containers specified for business processes. Within multi-tier architectures BOs are
stored at the data tier and are cached at the middle tier for efficient processing. Due to
the replication of application logic in distributed environments, multiple copies of BOs
(called replica) are created to achieve fast local access, scalability and availability. Thus,
concurrent changes of BO data might occur. Once a BO is modified the changes have
to be forwarded to all other replicas. Changes have to be identified, forwarded to and
integrated in other replicas. However, the processing of BOs for change detection and
integration is a complex and time consuming task because BOs not only differ in their
content. They rigorously vary in their structure according to the distribution, number
and size of elements caused by their definition and usage. Since BOs are internally
represented as XML documents, the parsing of XML is one major cost factor during
the synchronization [1]. Therefore, the prediction of the parsing time for BOs is one
significant property for the selection of an efficient synchronization mechanism. In [2]

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 255–262, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

256 M. Ameling et al.

we introduced a cost model for an efficient replication of BOs. The parameters for a
system model were defined to express the processing time for all elements of BOs.
Finally, simplifications based on an experimental evaluation for the system model were
done for one parser implementation.

In this paper, we present a method to evaluate the influence of the structure of XML-
based BOs on their processing time. We adopt our evaluation method for an experimen-
tal evaluation incorporating four XML parsers to examine the dependencies between
the distribution of elements in XML-based BOs and their parsing time. Finally, the cost
model provided in [2] can be validated and simplified according to the results of the
experimental setup in this paper. In the following, we discuss the general structure of
XML documents and particularly XML-based BOs, the relation of the structure, and the
resulting parsing time (Section 2). Next we describe the setup and results of our experi-
mental evaluation (Section 3). Moreover, the results of our measurements are discussed
(Section 4). After that related work is discussed in Section 5. We end the paper with a
summary and an outlook to future work.

2 Processing of Business Objects

2.1 Structure of Business Objects

A BO is a data container for complex data structures of the business world. A BO
instance belongs always to one BO type. The BO types can be compared to a class in
object oriented programming. The BO instances are the real BOs and are filled with
content. XML-based BOs consist of nodes, node values, attributes, attribute values and
links. The structure of a BO is defined as a tree-structure and describes the amount and
size of elements as well as how elements are distributed within the tree structure. The
distribution of elements is described by the location of elements at certain levels and
positions.

Fig. 1. BO Structure

In Figure 1 an abstract BO structure is depicted. A node, denoted as noden, has the
index n. The mandatory root node has the index n = 0. Each node can have none,
one or multiple subnodes which are also called child nodes. In the abstract example,
the nodes node1, node2 are subnodes of the root node node0. Nodes that do not have
a subnode are leaf nodes. Leaf nodes can have a node value. Since BOs can link to
other BOs a leaf node can have a link as a node value. The node values vn and links fn

have the index of the node. Moreover, nodes may have attributes. An attribute (kn,λ)

Experimental Evaluation of Processing Time 257

is indexed by the index of the node n and the position λ within the list of attributes
of one particular node. Each attribute has an attribute value. The size of the attribute
value is wn,λ. The connection between a node (parent node) and subnode (child node)
is defined as relation. A level describes the distance (number of relations) between a
node and the root node. The variable l describes the level a particular element is located
in the tree-structure of the BO. The root node is placed at level l = 0.

2.2 Processing of Business Objects

During the synchronization services which returns BO data in a XML document in a
serialized form are used. Thus, the time for processing the BO is determined by the
time for accessing the document elements, i.e. parsing of and navigation through the
document, and the time for performing the operation. Since the goal of our work is
to examine the influence of the BO structure on the processing time, we focus in the
foll0wing experiments on the time for accessing all elements. Thus, the term processing
time refers to the access time for the elements of a BO. We assume that the processing
time for each element type is determinable. It can be distinguished in: a - the processing
time for a node, b - the processing time for an attribute, c - the processing time for an
attribute value, d - the processing time for a (node) value, and e - the processing time
for a link.

The influence of the distribution of elements is has to be defined in dependency of
the position. The indexes l for the level of an element, ν for the position of an element
within a list of elements at a certain level, n for the node the element is placed and λ
for the position of an element at a node are used for the processing time of elements as
follows: al,ν , bn,λ, cn,λ, dn and en. As proposed in [2] the dependency of processing
time on the structure varies between parser implementations. However, for some parser
implementations we assume that the system model can be simplified. For example, the
processing time for a node al,ν at level l and position ν can be the same for all positions:
al,ν = al. The dependency of the processing time can be evaluated experimentally. A
detailed description of a suitable experiment setup to determine the processing time for
all element types on their position follows.

3 Experimental Evaluation

3.1 Description of Experiments

The influence of the distribution across levels and number of elements will be shown by
moving or adding elements levelwise. Additionally, the size of node values and attribute
values is modified. Within one experiment class only one type of element is adjusted.
For each experiment a group of documents is created. Within one group of documents
only one property of an element is adjusted. Elements are adjusted by adding elements,
moving elements or changing the size of an element. The experiments are labeled in
capital letters. Each of the following created XML documents for a BO consists of a
header with a fixed size and a body. The XML header is equal for all XML documents
and is not considered as BO data. The body of the document contains the BO with the
BO name as root node. The processing of the header is defined as the offset.

258 M. Ameling et al.

Node Experiments. The following class of experiments deals with the modification of
nodes. (Figure 2). The number of node and the position of nodes is changed separately.
The node experiments show the influence of additional nodes and the position of nodes
on the processing time. For each experiment a group of 1001 documents was created.

Experiment A1000 shows the influence of additional nodes at the same level on the
processing time. In this experiment 1000 child nodes are added stepwise to the root
node. Finally, 1000 nodes exist at the first level (L1). Figure 2a depicts the increase of
nodes. Finally, 1001 XML documents are created where the first document just contains
the root node. The last document contains the root node having 1000 equal child nodes.

Fig. 2. Node Experiments

Experiment B1000 shows the influence of the distribution of nodes across levels on the
processing time. The number of nodes is increased stepwise but each additional node is
child node of the last added node (Figure 2b). This way, the number of level increases
proportionally with each additional node. Finally, the last document within this group
of documents has 1000 additional nodes distributed across 1000 levels (L1−L1000; root
at L0). Experiment C1000 shows the influence of the position of nodes at a certain level.
The number of nodes is constant for this group of documents. There always exist 1000
child nodes distributed over 1000 levels. Additionally there exist a group of 1000 nodes
as child nodes of the root node at the first level. The group of 1000 nodes is moved
stepwise one level down through the levels (Figure 2b). Finally there exist 1001 nodes
at level 1000 (L1000).

Attribute and Node Value Experiments. For attribute experiments and node value
experiments we created similar documents where we stepwise added attributes or node
values to one child node (D1000, D1) or to many child nodes a the same level (E1000,
K1000) or to many child nodes on different levels (F1000, M1000). Experiment G1 shows
the influence of the attribute size on the processing time. The attribute value is increased
stepwise for one child node by 1kB up starting with 0kB and ending with 1000kB
attribute size.

3.2 Experimental Setup

The system used for measurements has a 1.6GHz CPU and 2GB RAM. We did the
same experiments on an Itanium server. Since we did not focus on absolute values we
got the same results. For processing of the XML documents the parser implementations
of JDOM [3], DOM4J [4], SAX [5] and XPP [6] were used. The measured process time

Experimental Evaluation of Processing Time 259

includes the loading of the document and the serializing (marshalling) of the whole
XML document. Each experiment has been repeated 100 times. The results represent
the minimum values of the processing times measured in nanoseconds. The average val-
ues are not used since system processes can increase the measured values significantly.

3.3 Measurements

Node Experiments. The measurements of experiment A1000 (Figure 3) depict a linear
increase of the processing time for nodes added at the first level with all four parser
implementations. The slopes of the lines of discrete points enable the determination of
the processing time for one node. The intersection with the ordinate is indicates the
processing time for the offset. SAX performs the best for nodes since the slope is the
lowest. However, the time for processing the offset with SAX is higher than with XPP.
The slope for JDOM and DOM4J is equal. The measurements of experiment B1000

(Figure 3) depict a linear increase of the processing time for added nodes at sublevels
(L1−L1000) with DOM4J, SAX and XPP. The processing time increases quadratically
with JDOM. The intersections with the ordinate are the same as in experiment A1000

since the first documents of both groups are equal. The experiment shows that with
JDOM the processing time for a node increases when the node is placed at a higher
level. The level has no influence for DOM4J, SAX and XPP. The measurements of
experiment C1000 (Figure 4) also reflect the results of B1000.

Fig. 3. Measurements Experiment A1000 and B1000

Attribute and Node Value Experiments. The measurements of experiment D1000

(Figure 4) depict a linear increase of the processing time for additional attributes for
SAX and DOM4J. The processing time of attributes increases quadratically with the
position λ using JDOM or XPP. The experiment also shows that the position λ at a
node has no influence with SAX and DOM4J. The measurements of experiment E1000

and F1000 depict a linear increase of the processing time for additional attributes at the
first level (L1) or rather across levels with all four implementations. The measurements
of experiment G1 and H1 depict the linear increase of the processing time for increasing
attribute and node vales with all four implementations. The stepwise extension of the
Java heap size causes the jumps for the processing time with JDOM at certain points.

260 M. Ameling et al.

Fig. 4. Measurements Experiment C1000 and D1000

Fig. 5. Measurements Experiment G1 and H1

The measurements of experiments K1000 and M1000 showed for all implementations a
linear increase of the processing time for adding node values at the same level or across
levels, respectively.

4 Discussion

The results of the experimental evaluation allow simplifying the system model for the
processing time of elements. Table 1 summarizes the simplification of the processing
time parameters for elements which can be done based on the experimental evaluation
for each of the four parser implementations. The experiments show the influence of the
structure of BOs on the processing time of elements. In dependency of the used imple-
mentation the position of an element has influence on its processing time. Especially
the level where a node is placed and the position where an attribute is placed within a
node can have crucial impact. We showed an experimental evaluation how to find the
dependencies for four parser implementations. The procedure can be also used with any
other implementation e.g.,: Xerces [7] and Electric XML as well. Once the influence of
the structure of BOs on the processing time of elements is identified the introduced ex-
periment setup allows exactly determining the processing time for all type of elements.
Since the processing time for elements depends on the running machine they have to be
determined for each system.

Experimental Evaluation of Processing Time 261

Table 1. Implementation Dependent Simplified System Model

RESULT JDOM DOM4J SAX XPP DESCRIPTION

al,ν = al X X X X The processing time for a node without any at-
tributes is same for all nodes ν at level l

al = a - X X X The processing time for a node without any at-
tributes is same for all nodes at all levels l

bl,λ = bλ X X X X The processing time for an attr. with fixed size at
position λ is the same for nodes at all levels l

bν,λ = bλ X X X X The processing time for an attr. with fixed size at
position λ is as same as for nodes at all pos. ν

bλ = b - X X - The processing time for an attribute with fixed
size is the same at all positions λ

cn,λ = c X X X X The processing time for the attribute value is the
same for all nodes n at all levels l

dn = d X X X X The processing time for node values is the same
at all nodes n

To determine the processing time for a node the created documents can be used.
Firstly, the offset can be measured using the first document from the group in exper-
iment A1000. Secondly, in dependency of the implementation the parameter a or the
parameter al with influence of the level position of the node has to be determined. The
parameter al equals a linear function f(l) = m∗ l+r. The constant value r presents the
processing time for the node at level 0. The slope m presents the increase of the node
processing time for one level. The slope m can be determined with experiment C1000.
The slope of the curve of discrete points divided by the number of moved nodes (1000)
is m. For parser implementations where the level has no influence on the processing
time of nodes the value m is zero. The parameter r can be determined with experiment
A1000. The discrete point for one node minus the offset equals r. The processing time
for the other elements can be determined equally. To achieve a proper accuracy several
documents should be measured for parameter determination. Finally, the knowledge of
the processing time for elements for a system allows predicting the time for processing
a BO. The amount of elements and the positions have to be known which can be done
by profiling BOs [1]. A full model of all parameters for a BO profile is described in [2].

5 Related Work

A cost model for replication BOs at the application layer was introduced in [2]. The
adaptive synchronization approach is described in [1]. Other approaches implement-
ing a replication at the middle-tier are [8] (Middle-R), [9] (Ganymed) and [10,11]
(CORBA). However, they do not provide a cost model for the synchronization pro-
cess of BOs and focus on strategies such as snapshot isolation [12]. An overview of
middle-ware based data replication can be found in [13]. To improve the performance

262 M. Ameling et al.

of data transfer through the network compression can be used to decrease the size of
messages. However, XML compression such as binary XML [14] are not focused since
it is more network layer related and they take place after the processing of BOs.

6 Conclusions and Outlook

A cost model can be used to determine the processing time of BOs. The structure of
BOs has influence on the processing time of their elements. In this paper, we proposed
an experimental setup to validate and determine the influence of the position of ele-
ments on their processing time. A comprehensive experimental evaluation was done
for the elements of BOs with four parser implementations. We described how to deter-
mine dependencies on the structure. A procedure how determine the parameters for the
processing time of elements was introduced. Furthermore, we described a procedure to
predict the processing time of elements which is an important step for the cost estima-
tion of synchronizing BOs. The experimental setup is generally applicable for different
implementations. Furthermore, our solution can be even used to switch between parser
implementations to reach more efficiency based on the used BOs. Another contribution
we did not focused but which is suitable as well is the design of BOs which are less
complex and easy to process.

References

1. Ameling, M., Wolf, B., Springer, T., Schill, A.: Adaptive synchronization of business objects
in service oriented architectures. In: ICSOFT (2009)

2. Ameling, M., Wolf, B., Armendariz-Inigo, J.E., Schill, A.: A cost model for efficient business
object replication. In: WAMIS 2009. IEEE, Los Alamitos (2009)

3. JDOM: JDOM project, http://jdom.org/
4. dom4j, http://dom4j.org/index.html
5. SAX: Simple API for XML, http://www.saxproject.org
6. XML Pull Parser: XPP,

http://www.extreme.indiana.edu/xgws/xsoap/xpp/
7. Apache XML: Xerces Java Parser, http://xerces.apache.org/xerces-j/
8. Patiño-Martinez, M., Jiménez-Peris, R., Kemme, B., Alonso, G.: Middle-R: Consistent

database replication at the middleware level. ACM Trans. Comput. Syst. (2005)
9. Plattner, C., Alonso, G.: Ganymed: Scalable replication for transactional web applications.

Middleware, 155 – 174 (2004)
10. Killijian, M.O., Fabre, J.C.: Implementing a reflective fault-tolerant CORBA system. In:

SRDS (2000)
11. Felber, P., Guerraoui, R., Schiper, A.: Replication of CORBA objects. In: Krakowiak, S.,

Shrivastava, S.K. (eds.) BROADCAST 1999. LNCS, vol. 1752, p. 254. Springer, Heidelberg
(2000)

12. Daudjee, K., Salem, K.: Lazy database replication with snapshot isolation. In: VLDB 2006,
VLDB Endowment, pp. 715–726 (2006)

13. Cecchet, E., Candea, G., Ailamaki, A.: Middleware-based database replication: the gaps be-
tween theory and practice. In: SIGMOD 2008, pp. 739–752. ACM, New York (2008)

14. Martin, B., Jano, B.: Wap binary xml content format (W3C),
http://www.w3.org/TR/wbxml/

http://jdom.org/
http://dom4j.org/index.html
http://www.saxproject.org
http://www.extreme.indiana.edu/xgws/xsoap/xpp/
http://xerces.apache.org/xerces-j/
http://www.w3.org/TR/wbxml/

SimulPh.D.: A Physical Design Simulator Tool

Ladjel Bellatreche1, Kamel Boukhalfa1, and Zaia Alimazighi2

1 LISI/ENSMA Poitiers University Futuroscope, France
{bellatreche,boukhalk}@ensma.fr

2 USHTB Algiers, Algeria
alimazighi@wissal.dz

Abstract. The importance of physical design has been amplified as
query optimizers became sophisticated to cope with complex decision
support applications. During the physical design phase, the database de-
signer (DBD) has to select optimization techniques to improve query
performance and to well manage different resources assigned for his/her
databases. The decision of using these optimization techniques is taken
either before or after creating the database schema. Once this decision
taken, DBD has to perform three main tasks: (i) choosing one or several
optimization techniques, (ii) managing interdependencies among the cho-
sen techniques and (iii) choosing a selection algorithm for each technique.
Faced to these crucial choices, the development of simulators intended to
improve the quality of the physical design represents challenging issue. In
this paper, we propose a simulator, called SimulPh.D that assists DBD
to perform different choices thanks to user friendly graphical interfaces.

1 Introduction

Designing advanced database applications is complex and time-consuming. The
lifecycle of designing such applications requires four main phases: conceptual,
logical, physical and tuning. During the conceptual phase, database designer
(DBD) identifies properties used by the future application. Conceptual model
is translated to logical one using rules. These two phases can be done without
knowing the target DBMS. Both are usually performed by a designer tool. Phys-
ical design determines how efficiently a priori known queries are executed on a
database thanks to optimization techniques. Tuning phase monitors and diag-
noses the use of configuration (set of optimization techniques) generated by the
physical phase. It is usually performed when the database is under exploitation.
As for conceptual and logical design phases, some tasks of physical design may be
done also without having a precise idea on the target DBMS. Conceptual, logical
and physical phases are strongly related, since, the inputs of each phase are the
outputs of the previous one. For instance, the physical design uses information
coming from conceptual and logical models, such as number of tables, number
of attributes per table, length of each attribute, etc. During the physical design
phase, DBD has to choose optimization techniques among a large spectrum:
materialized views, advanced indexing schemes, data partitioning, data compres-
sion, parallel processing, etc. The decision of selecting an optimization technique

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 263–270, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 L. Bellatreche, K. Boukhalfa, and Z. Alimazighi

is done either before or after the creation of the database schema. An example
of optimization techniques selected when creating the database schema is hori-
zontal partitioning [2,10] (when it is applied on tables). Two main examples of
optimization techniques selected when exploiting the database are: materialized
views and indexing schemes. Algorithms used for selecting optimization tech-
niques are usually driven by cost models estimating the execution cost of queries
in the presence of these techniques. We distinguish two types of cost models:
academic cost models and industrial cost models. The first type is mainly used
by research community to validate their proposed algorithms [5], whereas the
second one by commercial DBMS [2,13].

To assist administrators in their physical design tasks, several commercial ad-
visor tools were proposed. We can cite Microsoft AutoAdmin, Database Tuning
Advisor (which is part of Microsoft SQL Server 2005) [2,1], DB2 Design Ad-
visor [13] and Oracle Advisor. These tools use cost models of their optimizers.
They are DBMS-dependent and mainly concentrated in developing self-managing
systems that can relegate many of the database designer’s more mundane and
time-consuming tasks [13]. Therefore, they cannot be applied easily during the
physical phase design because they suppose the existence of the target DBMS.
Some take into account interdependencies between materialized views and in-
dexes such as in [13], but they ignore interdependencies between other opti-
mization techniques such as bitmap join indexes and horizontal partitioning [6].
Selection algorithms used by these tools are encapsulated in the optimizer.

Since physical design can be done without having a precise idea on the target
DBMS, the use simulation may contribute in getting efficient database applica-
tions. Simulation has proven to be highly effective tool for evaluating database
designs. It has been used in 80’s in order to facilitate the process of designing
centralized and distributed databases [7,8] and recently for assisting students
to understand the process of evaluating queries [3]. Brownsmith [7] proposed a
database system simulator helping database designers and analysts in designing
their logical and physical models using a language for data description and data
access. Allenstein et al. [3] proposed a query simulation system for general com-
puter science education community that offers means to understand the query
execution process on Oracle. The idea behind this simulator motivates us to pro-
pose a physical design simulator, where students are replaced by designers. The
main contributions of the use of simulators during the physical design are: (i)
aiding in guarantying an efficient physical design, since DBD can test/evaluate
several optimization scenarios and (ii) helping DBD in choosing the target DBMS
based on the proposed recommendations (for instance, if the simulator recom-
mends the use of referential horizontal partitioning which is only supported by
Oracle, and if the DBD is convinced by this solution, he/she may adopt Oracle
DBMS for his/her application). Note that simulators and commercial advisors
may be conjointly used to ensure a high performance of database applications.

In this paper, we present a simulator, called, SimulPh.D offering DBDs possi-
bility to choose their favourite optimization technique(s), to evaluate their ben-
efit and to measure the used resources (e.g., storage). Once these choices done,

SimulPh.D.: A Physical Design Simulator Tool 265

SimulPh.D proposes DBDs recommendations summarizing different information
regarding optimization techniques. If DBD is satisfied with this recommenda-
tion, s/he by a simple click generates appropriate scripts that will execute on
the target DBMS (if it is available).

The remainder of this paper is organized as follows. Section 2 presents func-
tionalities that we consider important to develop a simulation tool. An overview
of the SimulPh.D design and its architecture illustrated in Section 3, where each
component is illustrated by screenshots. Section 4 validates our tool. Section 5
concludes the paper by suggesting some future work.

2 Requirements for Designing Simulator Tool

Any physical design simulator has to offer DBDs at least three following function-
alities: (1) the choice of optimization techniques, (2) the choice of their selection
mode and (3) the choice of selection algorithms.

1. Choice of Optimization Techniques. A simulator shall propose to DBS a
large variety of optimization techniques supporting by main DBMS. Note that
some of these techniques are similar like horizontal partitioning and bitmap join
indexes [6]. This similarity complicates their selection processes [13].

2. Choice of the Selection Mode. Once optimization technique(s) chosen, two
selection modes are possible: sequential and combined. In the sequential selec-
tion, each technique is selected in isolation. The main drawback of this approach
is its ignorance of the interactions between different optimization techniques.
In the combined selection mode, a joint searching is performed directly in the
combined search space of optimization techniques. Choosing one of these modes
for selecting optimization techniques adds another degree of difficulty to DBD.

3. The Choice of Selection Algorithms. Once the DBD chooses optimiza-
tion techniques and their selection mode, he/she shall choose their selection algo-
rithms. To select an optimization technique in the sequential mode, an important
number of algorithms are available. In the combined mode, few algorithms exist
and concern materialized views and indexes [11,12]. Note that each selection al-
gorithm has its parameters, utilization context, advantages and limitations. For
optimization techniques like horizontal partitioning and indexing, DBD shall also
choose table(s) that will be partitioned/indexed and then attributes. Commercial
DBMS advisors do not allow designers to choose their favourite algorithms.

3 SimulPh.D Overview

This section describes the different components of our tool. The main objectives
of SimulPh.D that we fix are:

– displaying the current state of the database (the schema, attributes, size of
each table, definition of each attribute, etc.) and the workload (description of
queries, number of selection operations, selection predicates, etc.).

266 L. Bellatreche, K. Boukhalfa, and Z. Alimazighi

– offering two types of administration: zero administration and personalized ad-
ministration. If DBD chooses zero administration, SimulPh.D selects different
optimization techniques in a transparent manner without designer intervention
(this mode is well adapted when DBD wants an auto-administration of his/her
database). In the personalized administration, DBD chooses selection techniques,
algorithms and sets different parameters that s/he considers important.
– supporting both sequential and combined selection modes.
– improving iteratively the selected optimization techniques based on the pro-
posed recommendation based on feedback. SimulPh.D displays the quality of
each optimization technique. This quality is based on a cost model estimating
the number of inputs outputs required for executing each query [5]. Therefore,
if some queries do not get benefit from the suggested optimization techniques,
DBD can refine some parameters in order to satisfy them.
– generating scripts for each optimization technique. They can be directly exe-
cuted on the database, in the case, where the DBD is satisfied with the suggested
recommendations. This task is used when the target DBMS is available, other-
wise, this generation will be postponed till the presence of DBMS.

Administrator

DB
• Tables
• Description of tables
• Attributes
• Domaines of attributs

Database

• Queries/updates
• Query Frequency
• Selectivity Factors of Predicates

Workload

Visualization of Current State of DB

DBMS Parameters
Buffer, Page Size, etc.

Horizontal Partitioning INDEXING HP&INDEX

Attribute candidates

Domaine decomposition

Preparation Script
Generation

Execution
of scripts

Recommandations

Setting W Nature of
Fragmentation

HP Schema

Personalized
partitioning

Non personalized
fragmentation

Choice of
Algorithm

Parameter
Setting

Choice of
Tables

Choice of
attributes

Attribute
Candidates Attribute Candidates

Script
Generation

Execution of
scripts

RecommandationPreparation

Administrator

DB
• Tables
• Description of tables
• Attributes
• Domaines of attributs

Database

• Tables
• Description of tables
• Attributes
• Domaines of attributs

Database

• Queries/updates
• Query Frequency
• Selectivity Factors of Predicates

Workload

• Queries/updates
• Query Frequency
• Selectivity Factors of Predicates

Workload

Visualization of Current State of DB

DBMS Parameters
Buffer, Page Size, etc.

Horizontal Partitioning INDEXING HP&INDEX

Attribute candidates

Domaine decomposition

Preparation Script
Generation

Execution
of scripts

Recommandations

Setting W Nature of
Fragmentation

HP Schema

Personalized
partitioning

Non personalized
fragmentation

Choice of
Algorithm

Parameter
Setting

Choice of
Tables

Choice of
attributes

Attribute
Candidates Attribute Candidates

Script
Generation

Execution of
scripts

RecommandationPreparation

Fig. 1. Architecture Overview

3.1 Design Methodology of SimulPh.D

The main difficulty in designing interactive applications is the identification of
different requirements of DBD and their representations. To perform this essen-
tial step (named the task analysis), we use one of the task model formalisms
[4]. They first allow analyzing interactive applications focusing on their use and
then, to express the activities/tasks that user wants be able to carry out. Among
existing models, we choose K-MAD1, since it was developed in partnership with
the HCI team of our Laboratory and INRIA. It offers simulation tool such as
1 http://kmade.sourceforge.net

SimulPh.D.: A Physical Design Simulator Tool 267

CTTE. In addition, it allows the definition of logical conditions (pre, post, it-
eration) taken into account when simulating the use of SimulPh.D. The task
modeling helps us to identify the different needs of the future use of SimulPh.D.
In order to validate the task scheduling, we used the simulation tool supported
by K-MAD which produces use scenarios. Based on these scenarios, we obtain
the global architecture of the tool SimulPh.D (Figure 1).

3.2 Components of SimulPh.D

SimulPh.D supports three techniques: primary horizontal partitioning, derived
horizontal partitioning and join indexes. It is mainly composed of three compo-
nents, where each one corresponds to a non elementary task: (1) visualization of
the current state of the database, (2) horizontal partitioning and (3) indexing.

Fig. 2. Visualization of Current State of the Database

Visualization of Current State of Database. This task allows DBD to visu-
alize the current state of his/her database that concerns three aspects: (i) tables :
their descriptions, definition and domain of each attribute, (ii) workload : type of
queries (search, update), their SQL descriptions, access frequency of each query,
selectivity factors of selection and join predicates, and (iii) resources required
by physical design phase: size of the buffer, page size, storage required for re-
dundant techniques, etc. Information regarding tables is obtained by accessing
meta-base of the database.

Data Partitioning Component. This component has six sub tasks are iden-
tified: (a) display non key attributes, (b) cut, (c) prepare data warehouse, (d)
recommend, (e) generate script and (f) perform script2. The first subtask al-
lows to display different non key attributes candidate for fragmenting dimension
table(s) using the primary partitioning mode. The cut subtask partitions each
non key attribute domain in sub domains [5]. The prepare subtask is a complex
since it requires three phases: (1) determine W , (2) choose partitioning type and
(3) select fragmentation algorithm. Determine W concerns mainly the derived
2 K-MAD requires to use verb to naming tasks.

268 L. Bellatreche, K. Boukhalfa, and Z. Alimazighi

horizontal fragmentation of the fact table based on partitioning schemas of di-
mension tables. To realize this phase, DBD shall first choose which dimension
table(s) to be partitioned and then on which attributes. DBD has the possibility
to control the number of fragments of fact fragments (denoted by W) in order
to avoid its explosion. The ”choose partitioning type” phase offers to DBD two
modes to perform her/his partitioning: (a) personalized partitioning and (b) non-
personalized partitioning. In the personalized mode, the DBD is free to choose
attributes candidate and the partitioning algorithm. Three selection algorithms
are supported by our tool: hill climbing, genetic and simulated annealing algo-
rithms [5]. DBD can also set different parameters of the selected algorithm. In
this mode, the choice of the partitioning algorithm is mandatory. To ensure this
operation, we used the formal pre-condition offered by K-MAD. Figure 3 gives
a screen shot of this task. In non-personalized mode, SimulPh.D performs parti-
tioning process using all attributes candidate and using a partitioning algorithm
per default. The prepare subtask generates the partitioning schema.

Fig. 3. Choosing Algorithms and their Setting

Once the ”prepare subtask” finished, the DBD can visualize the recommenda-
tions proposed by SimulPh.D (subtask recommends). They concern the number
of fragments of different tables (those partitioned by primary mode and those
by derived mode), decomposition of each domain attribute, reduction obtained
by horizontal partitioning (which is estimated using a cost model [6] comput-
ing the inputs/outputs required for executing a set of queries), queries getting
benefit or not from horizontal partitioning, etc. If DBD is not satisfied with the
suggested optimization techniques, s/he can use another algorithm and modify
its parameters. This rollback is essential in the physical design phase. If s/he
is satisfied, the partitioning process ends and SimulPh.D generates partitioning
scripts (subtask generate script) that may be applied directly on the warehouse
(subtask perform script). Figure 4 shows interface of personalized partitioning.

Indexing the Database. Indexing task allows the DBD to select bitmap join
indexes. This selection can be done either sequentially or mixed with horizon-
tal partitioning. In the combined mode, SimulPh.D proposes to DBD a list of
indexable attributes candidate for performing this optimization and the storage

SimulPh.D.: A Physical Design Simulator Tool 269

Fig. 4. Personalized Partitioning

capacity. This task is quite similar to the partitioning one. The only difference
is the cut subtask which not required for selecting indexes. Two indexing modes
are available: non personalized indexing and personalized indexing. Two types of
selection algorithms are supported: a greedy (considered as per default algorithm
for non personalized mode) and a data mining driven algorithm. The recommen-
dations given by SimulPh.D concern indexing attributes, reduction obtained by
the selected indexes, storage cost consumed by indexes, available storage, etc.
In the combined mode, instead of proposing all indexable attributes candidate,
only attributes which are not used by the partitioning are proposed to DBD.

4 Implementation and Validation Aspect of SimulPh.D

All components of our simulator have been implemented using Visual C++.
Before the implementation phase, we have simulated our tool using K-MAD
tool. This simulation allows us to fix different needs of using SimulPh.D and
make ordering for different tasks and subtasks. We have established many use
scenarios to validate our tool with Ph.D. students of our laboratory (LISI). These
scenarios are based on data set of the ABP-1 benchmark and OLAP workload
[9]. Each student using a user friendly interface proposed by SimulPh.D can
visualize the tables and queries defined on the data set of this benchmark.

5 Conclusion and Future Work

In this paper, we have highlighted the difficulties that DBD might encounter
during the phases of physical design and tuning. These difficulties are numer-
ous, since they involve multiple levels of design. Given these difficulties, we have
identified the need to develop a simulation tool to assist designers to meet the
needs in terms of choices. We proposed a tool, called SimulPh.D supporting three
optimization techniques: primary horizontal fragmentation, referential fragmen-
tation and bitmap join indexes. To design the interfaces, we use a methodology
borrowed from Ergonomics and Human-Computer Interaction (HCI) community,

270 L. Bellatreche, K. Boukhalfa, and Z. Alimazighi

called K-MAD which is a task model. It is validated using the APB1 benchmark,
where several scenarios have been tested by Ph.D. students of LISI lab. This
preliminary work gives a new research direction regarding the use of simulators
during physical design phase.

References

1. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P., Narasayya, V.R., Syamala,
M.: Database tuning advisor for microsoft sql server 2005: demo. In: SIGMOD, pp.
930–932 (2005)

2. Agrawal, S., Narasayya, V.R., Yang, B.: Integrating vertical and horizontal par-
titioning into automated physical database design. In: SIGMOD, June 2004, pp.
359–370 (2004)

3. Allenstein, B., Yost, A., Wagner, P., Morrison, J.: A query simulation system to
illustrate database query execution. In: Proceedings of the 39th SIGCSE Technical
Symposium on Computer Science Education (SIGCSE 2008), pp. 493–497 (2008)

4. Balbo, S., Ozkan, N., Paris, C.: Choosing the right task-modeling notation: A
taxonomy. In: Diaper, D., Stanton, N. (eds.) The Handbook of Task Analysis
for Human-Computer Interaction. Lawrence Erlbaum Associates (LEA), Mahwah
(2004)

5. Bellatreche, L., Boukhalfa, K., Abdalla, H.I.: SAGA: A combination of genetic and
simulated annealing algorithms for physical data warehouse design. In: Bell, D.A.,
Hong, J. (eds.) BNCOD 2006. LNCS, vol. 4042, pp. 212–219. Springer, Heidelberg
(2006)

6. Bellatreche, L., Boukhalfa, K., Mohania, M.: Pruning search space of physical
database design. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS,
vol. 4653, pp. 479–488. Springer, Heidelberg (2007)

7. Brownsmith, J.D.: The database system simulator (dbss): Data description and
data access capabilities. In: Proceedings of the 15th annual symposium on Simu-
lation, pp. 265–276 (1982)

8. Chaturvedi, A.R., Gupta, S., Bandyopadhyay, S.: Simds: A simulation environment
for the design of distributed database systems. Database 29(3), 65–81 (1998)

9. OLAP Council. Apb-1 olap benchmark, release ii (1998),
http://www.olapcouncil.org/research/bmarkly.htm

10. Eadon, G., Chong, E.I., Shankar, S., Raghavan, A., Srinivasan, J., Das, S.: Sup-
porting table partitioning by reference in oracle. In: SIGMOD 2008, pp. 1111–1122
(2008)

11. Sanjay, A., Surajit, C., Narasayya, V.R.: Automated selection of materialized views
and indexes in microsoft sql server. In: VLDB 2000, September 2000, pp. 496–505
(2000)

12. Talebi, Z.A., Chirkova, R., Fathi, Y., Stallmann, M.: Exact and inexact methods
for selecting views and indexes for olap performance improvement. In: EDBT 2008,
pp. 311–322 (March 2008)

13. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M., Storm, A., Garcia-Arellano, C.,
Fadden, S.: Db2 design advisor: Integrated automatic physical database design. In:
VLDB, August 2004, pp. 1087–1097 (2004)

http://www.olapcouncil.org/research/bmarkly.htm

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 271–278, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Protecting Database Centric Web Services against
SQL/XPath Injection Attacks

Nuno Laranjeiro, Marco Vieira, and Henrique Madeira

CISUC, Department of Informatics Engineering
University of Coimbra, Portugal

{cnl,mvieira,henrique}@dei.uc.pt

Abstract. Web services represent a powerful interface for back-end database
systems and are increasingly being used in business critical applications. How-
ever, field studies show that a large number of web services are deployed with
security flaws (e.g., having SQL Injection vulnerabilities). Although several
techniques for the identification of security vulnerabilities have been proposed,
developing non-vulnerable web services is still a difficult task. In fact, security-
related concerns are hard to apply as they involve adding complexity to already
complex code. This paper proposes an approach to secure web services against
SQL and XPath Injection attacks, by transparently detecting and aborting ser-
vice invocations that try to take advantage of potential vulnerabilities. Our
mechanism was applied to secure several web services specified by the TPC-
App benchmark, showing to be 100% effective in stopping attacks, non-
intrusive and very easy to use.

Keywords: Web services, vulnerabilities, security attacks, SQL Injection,
XPath Injection, code instrumentation.

1 Introduction

Web services are now widely used to support many businesses, linking suppliers and
clients in sectors such as banking and financial services, transportation, or automotive
manufacturing, among others. Web services are self-describing components that can
be used by other software in a platform-independent manner, and are supported by
standard protocols such as SOAP (Simple Object Access Protocol), WSDL (Web
Services Description Language) and UDDI (Universal Description, Discovery, and
Integration) [1]. In a service-based environment, providers offer a set of services that
frequently access a back-end database and can be explored and used by service con-
sumers. The web services technology provides a clear interface for consumers, and
this is frequently used to enable the aggregation of services in compositions [2],
where a security failure in a component may compromise the whole composition.

A recent McKinsey report indicates web services and SOA as one of the most im-
portant trends in modern software development [10]. However, the wide use and
exposure of web services results in any existing security vulnerability being most
probably uncovered and exploited by hackers. In fact, command injection attacks
(e.g., SQL or XPath injection) are frequent types of attacks in the web environment

272 N. Laranjeiro, M. Vieira, and H. Madeira

[11]. These attacks take advantage of improperly coded applications to change queries
sent to a database, enabling, for instance, access to critical data.

Vulnerabilities allowing SQL/XPath injection attacks are particularly relevant in
web services [15], as their exposure is high and they frequently use a data persistence
solution [14] based either in a traditional relational database or in a XML database.
Currently major database vendors and several open-source efforts provide XML data-
bases (e.g., Oracle XML DB, SQL Server 2008, Apache Xindice, etc) and, frequently,
the access to this type of databases uses XPath expressions. While the goal of XPath
Injection is to maliciously explore any existing vulnerabilities in XPath expressions
used by an application (for instance to access an XML database), SQL Injection tries
to change the SQL statements in a similar manner [11].

Although web services are increasingly being used in complex business-critical
systems, current development support tools do not provide practical ways to protect
applications against security attacks. In this paper, we present a phased approach that
is able to: 1) characterize the web service in terms of security vulnerabilities; 2)
learn the profile of regular client requests by transforming requests into invariant
statements; 3) protect web service applications from SQL/XPath injection attacks by
matching incoming requests with the valid set of codes previously learned. Regard
that this work focuses on source code vulnerabilities and not any specific security
mechanisms, such as authentication or data encryption.

A common way to remove SQL/XPath Injection vulnerabilities is to separate the
query structure from the input data by using parameterized queries (e.g. prepared
statements or parameterized Xpath expressions). In [12] an approach for replacing
the SQL statements by secure prepared statements is described. Code inspection and
static analysis were used to disclose code prone to SQL injection, which was then
replaced by generated secure code. An approach for converting SQL statements into
prepared statements is presented in [13]. However, the conversion algorithms are
limited and need to be improved to reduce the large number of unhandled cases.

AMNESIA (Analysis and Monitoring for NEutralizing SQL-Injection Attacks) [4]
is a tool that uses a model-based approach designed to detect SQL injection attacks,
and combines static analysis and runtime monitoring. Static analysis is used to build a
model of the legitimate queries that an application can generate. At runtime, when a
query that violates the model is detected, it is classified as an attack and is prevented
from accessing the database. Our approach learns the profile of legitimate queries at
runtime, which may represent a richer, more realistic learning profile, overcoming the
intrinsic limitations of static analysis (e.g., requiring access to source code).

The proposed approach is extremely effective, has a quite low overhead, and does
not require any access to the source code of the application. Instead, we use bytecode
instrumentation for transparently performing the necessary modifications to protect
the target service. To show the effectiveness of our approach we have used two im-
plementations of the web services specified by the TPC-App performance benchmark.
A large number of security problems have been disclosed and fully corrected, show-
ing that our approach is effective and a powerful tool for developers and system ad-
ministrators.

The structure of the paper is as follows. Next section presents the technique for fix-
ing security problems and Section 3 presents the experimental evaluation. Section 4
concludes the paper.

 Protecting Database Centric Web Services against SQL/XPath Injection Attacks 273

2 Security Improvement Approach

To perform SQL Injection the attacker exploits an unchecked input in order to modify
the structure of a SQL command [11]. Usually, the attacker starts by adding an extra
condition in the ‘where’ clause of a SQL command to gain a privileged access. Then
the attacker executes a SQL command returning valuable information (typically using
a union clause with the malicious select), disrupting the database by performing in-
serts, deletes or updates. Regarding XPath, the attack approach is basically the same
and only the expression syntax differs. This way, our proposal for identifying poten-
tial SQL and XPath injection attacks is based on anomaly detection, which consists of
searching for deviations from an historical (learned) profile of good commands, and
includes three major phases:

1. Service assessment – Consists of using penetration testing, automated static code

analysis, or human code inspection to disclose SQL/XPath Injection vulnerabili-
ties and thus characterize the service in terms of these vulnerabilities.

2. Statement learning – The goal is to identify the valid set of valid SQL state-
ments or XPath expressions. It is composed of two steps:
2.1. Workload generation, execution, and measurement.
2.2. Service instrumentation to learn valid SQL statements and XPath expressions

used by the application.
3. Service protection – Consists of instrumenting the service to provide protection

against SQL/XPath Injection attacks. Afterwards, the developer may revisit phase
1 to verify if the previously detected vulnerabilities were effectively protected.

2.1 Service Assessment

The goal of this first phase is to assess the security of the web service application in
terms of SQL/XPath injection vulnerabilities. This initial characterization phase is
optional, as the developer may simply wish to apply the security mechanism as a
regular attack barrier, without searching the service for potential vulnerabilities.

Any of the following alternatives can be used for vulnerabilities detection: penetra-
tion testing (by using scanners or fuzzers) [11]; static code analysis [9] (a developer
can easily use tools such as FindBugs [5]); or, in more difficult cases (or in cases
where a high degree of confidence is needed), human code inspections by security
assurance teams [3]. The outcome of this phase is essentially a set of SQL/XPath
injection vulnerabilities in the service code. This information can be used later to
verify the effectiveness of the proposed protection scheme by re-running this phase
over the protected service.

2.2 Statement Learning

This phase includes 2 steps. The first step in this phase consists of generating and
executing a workload, which is essentially inspecting the service description docu-
ment, the WSDL file. This XML file is automatically processed to obtain the list of
operations, parameters and associated data types and domains. In this context, we use

274 N. Laranjeiro, M. Vieira, and H. Madeira

a language, named ‘Extended Domain Expression Language – EDEL’, that enables
web services to fully express their operations domains (including complex parameter
domains dependencies) [8]. EDEL can be used to create workloads that respect the
operations’ domains, hence greatly increasing their coverage.

After having collected the necessary information, the workload generation is con-
ducted in an automatable way, as proposed in [8]. In summary, the procedure consists
of generating a set of XML objects, which are the service inputs (created in compli-
ance with the WSDL file) and integrating them into unit tests in an automatable way.
Our goal is to exercise as many source code points as possible (ideally, the complete
set of data access SQL/XPath statements present in the code). The final step consists
of executing the workload and using a test coverage analysis tool, such as Cobertura
(http://cobertura.sourceforge.net/), to get a metric of the code coverage. If the devel-
oper is not satisfied with the coverage then more service calls are required.

The second step consist of learning the SQL/XPath commands profile. We start
by exercising the web service by executing the generated workload. This enables us to
automatically identify all the locations in the web service code where the SQL and
XPath commands are executed. This is achieved by using AOP (Aspect Oriented
Programming) [6] to intercept all the calls to a set of method signatures that corre-
spond to well-known APIs for executing SQL commands (e.g., Java’s JDBC API, the
Spring Framework JDBC API, etc.) and evaluating XPath expressions (e.g., Java’s
JAXP API). Besides this set of well-known APIs, virtually any API can be easily
added to the learning mechanism, as the only requirement is to know the full signature
of the method to be intercepted.

At runtime, each data access call is intercepted and delivered to a dispatcher that
determines if the application is in learning or protection mode. During learning, SQL
and XPath commands are parsed in order to remove the data variant part (if any) and
a hash code is generated to uniquely identify each command. In other words, the in-
formation used does not represent the exact command text, since commands may
differ slightly in different executions, while keeping the same structure. For example,
in the SQL command “SELECT * from EMP where job like 'CLERK' and SAL
>1000”, the job and the salary in the select criteria (job like ? and sal > ?) depend on
the user’s choices. This way, instead of considering the full command text, we just
represent the invariant part of it. After removing the variant part of each command it
is possible to calculate the command signature using a hash algorithm. We associate
each hash with a code entry point (provided that the code being tested was compiled
with code line information, which is generally the case).

2.3 Service Protection

Service protection at runtime (i.e., after deployment) consists in performing one secu-
rity check per each data access command executed. All SQL and XPath commands
are intercepted and hashed. The request flow is very similar to the learning phase, but
obviously, the calculated hash codes are not added to the learned command set. In-
stead, they are compared to the hash values of the learned valid commands for the
code point at which the command was submitted.

 Protecting Database Centric Web Services against SQL/XPath Injection Attacks 275

In practice, the matching process consists in looking up the current source code ori-
gin and getting the list of hash codes of the valid (learned) commands for that point.
This list (generally quite small) is then searched for an element that exactly matches the
hash of the command that is being executed. Execution is allowed to proceed if a match
is found. Otherwise, a security exception (the unqualified name for this exception is
SecurityRuntimeException) is thrown and, in this way, code execution is kept from
proceeding, which prevents the potential attack. If the source code origin is not found in
the lookup process, code execution is also kept from proceeding in a similar manner (in
this case, a different exception is thrown –CodePointNotTrainedRuntimeException).
This case strongly indicates that the learning phase is incomplete (test coverage was not
good enough) and that an extended workload is probably required.

To verify if the security mechanism is working properly the web service should be
re-assessed using a security analysis approach (similar to phase 1). The goal is to
check if any of the initially identified vulnerabilities still exist and the expectation is
that our mechanism stops any injection attempts by raising the appropriate security
exception. If a security vulnerability is detected it means that the workload coverage
was not good enough and that the learning phase is incomplete. In this case, the work-
load should be extended and the learning process repeated.

Finally, the developer may want to re-execute the original workload to verify if the
service behavior remains correct. Problem indicators include responses outside the
expected domains. For certain services, responses that are different from those ob-
tained during the first workload execution are also problem indicators.

3 Experimental Evaluation

In this section we present the experimental evaluation performed over an initial
Java prototype tool (available at [7]). To demonstrate our approach we have used the
following subset of the web services specified by the standard TPC-App [14] per-
formance benchmark: Change Payment Method, New Customer, New Product, and
Product Detail. TPC-App is a performance benchmark for web services and applica-
tion servers that is widely accepted as representative of real environments. Two ver-
sions of each service (versions A and B) were created by independent programmers,
and the setup consisted of two nodes (client and server) that were deployed on two
machines connected over an isolated Fast Ethernet network.

The first phase of the experimental evaluation consisted of performing a services
assessment to try to identify potential vulnerabilities. Initially, we opted to use auto-
mated tools (vulnerability scanners and static code analyzers), however, due to the
poor results obtained we decided to perform a code inspection by a team of security
experts with different experience backgrounds. Table 1 summarizes the results. All
detected vulnerabilities correspond entirely to SQL injection issues, as the TPC-App
specification does not include any XPath usage. However, the assessment approach is
essentially the same, as the main difference resides on the syntax of each language.
As discussed below, FindBugs, the static analyzer used, was unable to provide indi-
vidual results per service.

276 N. Laranjeiro, M. Vieira, and H. Madeira

Table 1. Vulnerabilities detected by the different methods

Scanner FindBugs Code Inspection Service
A B A B A B

ChangePaymentMethod 0 0 (3 FP)1 2 (2 FP) 0

NewCustomer 1 + 1 0 (3 FP) 19 (1 FP) 0

NewProducts 0 0 1 (1 FP) 0
ProductDetail 0 0

2 0

0 0

We used a well-known commercial vulnerability scanner that was able to identify 2

critical vulnerabilities in version A. Both were manually checked and in fact corre-
sponded to SQL Injection vulnerabilities (although one was originally identified by the
scanner as a database error). The scanner also indicated 6 vulnerabilities in version B.
An important aspect is that version B was using SQL prepared statements (with excep-
tion of one statement that, however, does not add any security concern as it is a static
SQL command). As prepared statements are the most powerful way of preventing SQL
Injection, we were expecting no issues in this version. Anyway, we decided to examine
the scanner responses and the code of version B. We found that the reported errors indi-
cated in all these cases a ‘value to large for column’ error message. However, even if a
smaller attack expression had been used, it would still pose absolutely no threat as the
prepared statement engine escapes offending characters like (‘).

As vulnerability scanners are known to present poor results in this kind of
environments [15] we decided to use also a well known static code analysis tool
(FindBugs) for disclosing SQL Injection vulnerabilities. As we can see in Table 1,
FindBugs was able to mark 2 vulnerabilities for version A, and none for version B as
expected. Considering version A, the developer created a set of methods for database
access and FindBugs marked the last point of the source code where a non constant
string was passed to an execute SQL method. We then analyzed the database access
methods to try to distribute the vulnerabilities per service, which was not possible, as
some services did use the database methods in a vulnerable way, while others did not.

To obtain more accurate results we asked a team of security experts to disclose
SQL Injection Vulnerabilities in the source code by executing a thorough code in-
spection and penetration tests. The security analysis team was composed of 5 ele-
ments. Three of these elements are developers with more than 2 years of experience
on developing database centric business critical web applications in Java. The remain-
ing two are security researchers, one junior (one year of experience) and one senior
(four years working on security related topics). Table 1 presents the summary of the
vulnerabilities detected by the team (results represent the union of the vulnerabilities
detected by each team member). One vulnerability was counted per each web service
input parameter used in a given SQL statement in a vulnerable way. It is important to
mention that we double-checked the vulnerabilities pointed out by each participant
(under the form of an example service request) to discard false-positives.

As we can see, 3 of the services were vulnerable in version A, and one in particular
had 19 security flaws. This large number is due to a large number of user input

1 FP: False positives.

 Protecting Database Centric Web Services against SQL/XPath Injection Attacks 277

parameters, being used in more than one SQL statement throughout the code. As
expected, Version B presented no security vulnerabilities.

For the second phase (statement learning) we analyzed the WSDL and XML
schema (XSD) of each web service and, for each input and output parameter, we
manually extended the service definitions to include domain restrictions while fully
respecting the TPC-App specification. EDEL [8] was applied to express the final
domains. The workload was defined based on a set of web service requests (a total of
5 requests for the 4 services). Before continuing we analyzed the coverage using Co-
bertura, and found out that, the coverage was in general above 80% (except in one
case), a value accepted as representative by the developers.

The workload was then applied to exercise each TPC-App version in order to learn
the expected SQL commands. After the learning process, we manually checked
whether all possible SQL commands executed by the service application were cor-
rectly learned by our mechanism, and that was effectively the case. Note that, the
learning process is quite important in our approach and is directly influenced by the
coverage of the workload used. If there were commands not learned we would have to
increase the size (and coverage) of the workload.

After this, we proceeded to the third phase by configuring our mechanism to enter
the protective state and detect maliciously modified commands, thus improving se-
curity. The vulnerability scanner was then used to re-test all services for security
vulnerabilities. The results were a total zero disclosed SQL/XPath injection vulner-
abilities for all services. All new malicious requests were indeed stopped, preventing
any further service execution and possible security consequences. Security tests over
version B presented the same initial erroneous results discussed before, so for our
purposes the total sum of security issues is zero.

Due to the instrumentation technique we were using, we did not re-run FindBugs,
as static analysis is not able to detect that our protection mechanism blocks particular
data access statement executions. So, we replayed all malicious requests crafted by
our code inspection participants. All attempts to inject SQL code were again aborted.

To verify if the security improvement mechanisms changed the services’ function-
ality we re-ran the workload for all three versions. The web services responses were
analyzed for deviations from the valid output domains. No problem was identified,
providing a strong indicator that we did not change the application’s normal behavior.

Finally, we executed a test to assess the performance impact related to executing
the security system. As we were expecting small values for the security improvement,
we tested the worst case scenario found in the services and executed 100000 invoca-
tions using that worst-case scenario. Our mechanism took on average 0,052 ms
(± 0,029) to execute, less than 0,3% of the total time for the fastest executing service.

In summary, our learning mechanism was able to stop all security attacks with a
negligible overhead. This is a very significant result, as besides effectively securing
the target application, it implied absolutely no extra-effort from the developers that
implemented the original services.

4 Conclusion

Previous works on web application security have shown that SQL/XPath Injection
attacks are extremely relevant in web service applications. This paper presents an

278 N. Laranjeiro, M. Vieira, and H. Madeira

approach for improving web services security. The proposed approach consists of
learning the profile of valid data access statements (SQL and XPath) and using this
profile to later prevent the execution of malicious client requests. The approach was
illustrated using two different TPC-App implementations. Various security issues
were disclosed and corrected without additional development effort. In fact, while
introducing an extremely low performance overhead, our approach proved to be
100% effective, as it was able to abort all attacks attempted in our experiments.

During the whole experimental process, no extra complexity was added to the
source code. In fact, as source code is not needed, the mechanism can also be used to
easily protect legacy services, which would otherwise require a difficult to implement
and hard to maintain procedure. These facts make it an extremely useful tool for de-
velopers and service administrators.

References

1. Curbera, F., et al.: Unraveling the Web services web: an introduction to SOAP, WSDL,
and UDDI. IEEE Internet Computing 6, 86–93 (2002)

2. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice Hall
Professional Technical Reference (2005)

3. Fagan, M.: Design and code inspections to reduce errors in program development. Soft-
ware pioneers: contributions to software engineering, pp. 575–607. Springer, Heidelberg
(2002)

4. Halfond, W., Orso, A.: Preventing SQL injection attacks using AMNESIA. In: 28th in-
terna-tional conference on Software engineering, pp. 795–798. ACM, Shanghai (2006)

5. Hovemeyer, D., Pugh, W.: Finding bugs is easy. ACM SIGPLAN Notices, 39 (2004)
6. Kiczales, G., et al.: Aspect-Oriented Programming. In: 11th European Conf. on Object-

oriented Programming (1997)
7. Laranjeiro, N., Vieira, M., Madeira, H.: EDEL and Security Improvement for Web Ser-

vices (2009),
 http://eden.dei.uc.pt/~cnl/papers/edel-security-tool.zip

8. Laranjeiro, N., Vieira, M., Madeira, H.: Improving Web Services Robustness. In: Interna-
tional Conference on Web Services (ICWS). IEEE Computer Society, Los Angeles (2009)

9. Livshits, V., Lam, M.: Finding security vulnerabilities in java applications with static
analysis. In: Proceedings of the 14th conference on USENIX Security Symposium,
vol. 14, p. 18. USENIX Association, Baltimore (2005)

10. McKinsey&Company: Enterprise Software Customer Survey (2008)
11. Stuttard, D., Pinto, M.: The Web Application Hacker’s Handbook: Discovering and Ex-

ploiting Security Flaws. Wiley, Chichester (2007)
12. Thomas, S., Williams, L., Xie, T.: On automated prepared statement generation to remove

SQL injection vulnerabilities. Information and Software Technology 51, 589–598 (2009)
13. Thomas, S., Williams, L.: Using Automated Fix Generation to Secure SQL Statements. In:

Third International Workshop on Software Engineering for Secure Systems (2007)
14. Transaction Processing Performance Council: TPC BenchmarkTM App (Application

Serv-er) Standard Specification, Version 1.1 (2005),
 http://www.tpc.org/tpc_app/

15. Vieira, M., Antunes, N., Madeira, H.: Using Web Security Scanners to Detect Vulnerabili-
ties in Web Services. In: Intl. Conf. on Dependable Systems and Networks, Estoril, Lisbon
(2009)

Reasoning on Weighted Delegatable
Authorizations

Chun Ruan1 and Vijay Varadharajan1,2

1 School of Computing and Mathematics,
University of Western Sydney, Penrith South DC, NSW 1797 Australia

{chun,vijay}@scm.uws.edu.au
2 Department of Computing,

Macquarie University, North Ryde, NSW 2109 Australia
vijay@ics.mq.edu.au

Abstract. This paper studies logic based methods for representing and
evaluating complex access control policies needed by modern database ap-
plications. In our framework, authorization and delegation rules are spec-
ified in a Weighted Delegatable Authorization Program (WDAP) which
is an extended logic program. We show how extended logic programs can
be used to specify complex security policies which support weighted ad-
ministrative privilege delegation, weighted positive and negative autho-
rizations, and weighted authorization propagations. We also propose a
conflict resolution method that enables flexible delegation control by con-
sidering priorities of authorization grantors and weights of authorizations.
A number of rules are provided to achieve delegation depth control, con-
flict resolution, and authorization and delegation propagations.

1 Introduction

Access control comprises all system mechanisms that are required to decide
whether an access request issued by a particular user is allowed or not. It is
needed in any secure database system that provides for controlled sharing of
information among multiple users. Access control models, or authorization mod-
els, provide a formalism and framework for specifying, analyzing and evaluating
security policies that determine how an access is granted and delegated among
users.

Several issues need to be considered before developing an authorization model.
The first issue is about the types of authorizations to be allowed in the model.
Basically there are two types of authorizations, positive and negative. Positive
authorization means permission, whereas negative authorization means prohibi-
tion. Many systems consider only positive authorizations whereas some consider
only negative authorizations. A more comprehensive system needs to consider
both positive and negative authorizations, and require a policy to resolve con-
flicts. The second issue is about the type of privilege administration paradigm to

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 279–286, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

280 C. Ruan and V. Varadharajan

be adopted by the model, centralised or decentralised. Centralised administra-
tion allows only one central authorization unit to grant access to subjects, while
decentralised administration allows many grantors to grant access to subjects,
and may further allow grantors to delegate administrative privilege to subjects.
Decentralised administration is usually more flexible and more suitable for mod-
ern database applications, but is also more difficult to manage. The third issue is
whether implicit authorizations are to be supported. In a system that supports
implicit authorizations, not every access has to be explicitly granted. Authoriza-
tions may be derived from inheritance relationships, which are very popular in
an object oriented databases. Authorizations may also be derived from specified
logic rules through reasoning techniques. Allowing implicit authorizations can
usually greatly reduce the size of explicit authorization set.

This paper studies the problem of resolving conflicts properly in a decentral-
ized authorization administration context that allows both positive and negative
authorizations; especially when the administrative privilege can be delegated be-
tween subjects. There has not been much work in literature that addresses this
problem. In this paper, we propose a logic program based model that supports
both positive and negative authorizations, authorization delegation with dele-
gation depth control, and authorization inheritance. A comprehensive conflict
resolution method is provided to solve conflicts in authorization delegations,
which will consider the priorities of grantors as well as those of authorizations.
As you will see, most of the current conflict resolution methods are special cases
of our conflict resolution method.

On the other hand, logic based authorization models have been studied by
many researchers for the purpose of formalizing authorization specifications and
evaluations [1,3,5]. The advantage of this methodology is to separate policies
from implementation mechanisms and give policies precise semantics. We will
develop our framework based on extended logic programs [2], which supports
both negation as failure and classical negation. We extend our previous work in
[4] by allowing the weights to be expressed in authorizations and delegations, by
enforcing delegation depth control, which is an important issue in authorization
delegations, and by providing a more comprehensive conflict resolution method
etc. In our framework, authorization rules are specified in a weighted delegatable
authorization program (WDAP) which is an extended logic program associated
with different types of partial orderings on the domain for inheritance relation-
ships. A number of domain-independent rules are provided to achieve delegation
depth control, conflict resolution, and authorization and delegation propaga-
tions. The semantics of WDAP is defined based on the well-known answer set
semantics. The framework provides users a useful way to express complex secu-
rity policies in a database system.

The paper is organised as follows. Section 2 describes basic ideas about the
model, and Section 3 presents the syntax of the weighted delegatable authoriza-
tion program (WDAP). Section 4 defines the semantics of the program, while
Section 5 concludes the paper.

Reasoning on Weighted Delegatable Authorizations 281

2 Basic Ideas

To develop a formal semantics of a WDAP, five aspects will be taken into consid-
eration in the process of evaluating a WDAP: delegation correctness, delegation
propagation, authorization correctness, authorization propagation, and conflict
resolution.

Administrative privilege delegation correctness

Definition 1. We say that an authorization set is delegation correct if it sat-
isfies the following two conditions: A subject s can delegate other subjects the
privilege to grant an access right a over object o with depth d if and only if s
is the owner of o or s has been delegated the privilege to grant a over o with
delegation depth d+ 1.

Authorization correctness

Definition 2. We say that an authorization set is authorization correct if it
satisfies the following condition: subject s can grant other subjects an access
right a of type + or − over object o if and only if s is the owner of o or s has
been delegated the right to grant a over o.

Authorization and delegation propagations

Rule based authorization specification allows implicit authorizations to be derive
from the authorization set, and hence this can greatly reduce the size of explicit
authorization set. In our model, we also support the implicit authorizations by
permitting authorization inheritance. We consider the authorization propaga-
tions along hierarchies of subjects, objects and access rights represented by the
corresponding partial orders.

Conflict resolution

– Solving conflicts using weighted authorization path. We say that (s1, s2, ...,
sn−1, sn) is an authorization path from s1 to sn on an access right r over an
object o if there exists delegations on r over o from si to si+1, i = 1, ..., n−2,
and an authorization from sn−1 to sn. The weighted length of the path is
w1 +w2 + ...+wn−1, where wi is the weight of the grant from si to si+1. If
two authorizations a1 and a2 are conflicting and their grantee is s, then we
say a1 overrides a2 if the weighted length of the path from the root (owner)
to s via a1 is shorter than that of the path via a2.

– Conflicts that are unsolvable. If the two conflicting authorizations have the
same shortest weighted path, we treat this conflict as unsolvable.

3 Syntax of Weighted Authorization Programs
Our language L is a multi-sorted first order language, with five disjoint sorts
S,O,A, T , andN for subject, object, access right, authorization type and weight
or depth respectively. Variables are denoted by strings starting with lower case

282 C. Ruan and V. Varadharajan

letters, and constants by strings starting with upper case letters. In addition,
three partial orders <S, <O and <A are defined on sorts S,O and A respectively,
which represent the hierarchical structures of subjects, objects and access rights.
There are two authorization types denoted by −,+, where − means negative, +
means positive. A negative authorization specifies that the access must be for-
bidden, while a positive authorization specifies that the access must be granted.
N is a set of non-negative numbers. In the following, we will normally use the
following vocabulary:

1. Sort subject: with subject constant poset (S,<S): S, S1, S2, ..., and subject
variables s, s1, s2,

2. Sort object: with object constant poset (O,<O): O,O1, O2, ..., and object
variables o1, o2, o3,

3. Sort access right: with access right constant poset (A,<A): A,A1, A2, ...,
and access right variables a, a1, a2,

4. Sort authorization type: with authorization type constant set T = {−,+},
and authorization type variables t, t1, t2,

5. Sort non-negative number: with constant set N = 0, 1, 2, and variables
w,w1, w2, ..., d, d1, d2,

6. Predicate Symbol set P

P consists of a set of ordinary predicates defined by users, and three built-in
predicate symbols, grant, can-grant, and own, for authorization, administrative
privilege delegation, and object ownership respectively. grant is a 6-term predi-
cate symbol with type S ×O× T ×A× S ×N . Intuitively, grant(s, o, t, a, g, w)
means that s is granted by g a t type of access right a on object o with weight w.
w represents the degree of certainty for this authorization, with smaller weight
denoting the higher certainty. can-grant is a 6-term predicate symbol with type
S × O × A × S × N × N . Intuitively, can-grant(s, o, a, g, w, d) means that s
is granted by g the right to further grant access right a on object o for the
maximum depth d and the grant weight is w . w represents the priority of the
delegatee, in terms of their further granting, given by the delegator, with smaller
weight denoting the higher priority. d represents the allowed depth of the ad-
ministrative privilege delegation. If d = 0, the delegatee cannot further grant
administrative privilege to other subjects. If d = 1, the delegatee can further
grant administrative privilege with maximum depth of 0. If d = 2, the delegatee
can further grant administrative privilege with maximum depth of 1, and etc.
own is a 2-term predicate symbol with type S ×O. Intuitively, own(s, o) means
s is the owner of o.

A term is either a variable or a constant. In general, we prohibit function
symbols in our language for the sake of simplicity, but allow some simple built-
in arithmetic functions to be used.

An atom is a construct of the form p(t1, ..., tn), where p is a predicate of arity
n in P and t1, ..., tn are terms.

A literal is either an atom p or the negation of the atom ¬p, where the nega-
tion sign ¬ represents classical negation. Two literals are complementary if they

Reasoning on Weighted Delegatable Authorizations 283

are of the form p and ¬p, for some atom p. For simplicity, we forbidden the
negation form of the authorization predicate grant. The restriction will not af-
fect the expressive power of the language since the type argument in grant
can denote the opposite meanings. Two authorizations grant(s, o,+, r, g, w) and
grant(s′, o′,−, r′, g′, w′) are conflicting if s = s′, o = o′, r = r′, and g �= g′.

A rule r is a statement of the form:

b0 ← b1, ..., bk, not bk+1, ..., not bm,m >= 0

where b0, b1, ..., bm are literals, and not is the negation as failure symbol. The b0
is the head of r, while the conjunction of b1, ..., bk, not bk+1, ..., not bm is the body
of r. Obviously, the body of r could be empty. Correspondingly, when b0 is an
authorization literal, the rule is called authorization rule.

A Weighted Authorization Program, WDAP, consists of a finite set of rules.
A term, an atom, a literal, a rule or program is ground if no variable appears

in it.

Example 1. let S={Dean,Alice, Bob,Mary,HOS,A/Dean,Casual;Casual<S

Alice,HOS <S Bob,A/Dean <S Mary}, O = {Staff}, A = {select, update;
update <A select}. Then the following is an example WDAP.

(r1). can-grant(HOS, Staff, select,Dean, 2, 1)←
(r2). can-grant(A/Dean, Staff, select,Dean, 1, 2)←
(r3). grant(Casual, Staff,−, select,Dean, 3)←
(r4). grant(Alice, Staff,+, select, Bob, 0)←
(r5). grant(Casual, Staff,−, select,Mary, 0)←
(r6). own(Dean, Staff) ←

4 Formal Semantics

In this section, we first define a set of general rules. We then present the formal
semantics for WDAP, which is based on answer set semantics, and give our access
control policy.

4.1 Domain-Independent Rules

In this section, we define a set of domain-independent rules to formally achieve
delegation correctness, authorization correctness, authorization and delegation
propagations, and conflict resolution discussed before.

Rules for administrative privilege delegation correctness

The following rules are used to guarantee that the administrative privileges are
properly delegated in terms of the eligible delegators and the valid delegation
depths. The first rule means the owner’s any administrative privilege delegation
is accepted (represented by predicate can-grant1). The second rule means if a
subject has been delegated the right to grant for the maximum delegation depth
d′, then the subject’s further administrative delegation with depth less than d′

is accepted.

284 C. Ruan and V. Varadharajan

(w1). can-grant1(s, o, a, g, w, d) ← can-grant(s, o, a, g, w, d), own(g, o)
(w2). can-grant1(s, o, a, g, w, d) ← can-grant(s, o, a, g, w, d),

can-grant1(g, o, a, g′, w′, d′),
d′ > d, g �= s

Rules for administrative privilege propagation

The next three rules are about administrative privilege propagations. It means
that a subject’s administrative privilege on some object and access right would
propagate automatically to its next lower level subjects represented by <S re-
lation, next lower level objects represented by <O and next lower level access
rights represented by < A.

(w3). can-grant1(s, o, a, g, w, d) ← can-grant1(s′, o, a, g, w, d), s′ <S s
(w4). can-grant1(s, o, a, g, w, d) ← can-grant1(s, o′, a, g, w, d), o′ <O o
(w5). can-grant1(s, o, a, g, w, d) ← can-grant1(s, o, a′, g, w, d), a′ <A a

Rules for authorization correctness

The following two rules mean any grant from the owner or a grantor holding the
right to grant is accepted (represented by predicate grant1).

(w6). grant1(s, o, t, a, g, w) ← grant(s, o, t, a, g, w), own(g, o)
(w7). grant1(s, o, t, a, g, w) ← grant(s, o, t, a, g, w),

can-grant1(g, o, a, g′, w′, d′), g �= s

Rules for authorization propagation

The following rules are used to achieve authorization propagation along sub-
jects, objects and access rights inheritance hierarchies. The first rule means any
authorization given to a subject would propagate to its subordinate subjects
represented by the <S relation. The second rule means any authorization on an
object would propagate to its sub-objects represented by the <O relation. The
third and fourth rules mean any authorization on an access right would prop-
agate to its next lower level or next higher level access right depending on its
authorization type being positive or negative. Note that unlike other propaga-
tions that are downward along the hierarchies, when the grant type is −, the
propagation is upward along the access right hierarchy.

(w8). grant1(s, o, t, a, g, w) ← grant1(s′, o, t, a, g, w), s′ <S s
(w9). grant1(s, o, t, a, g, w) ← grant1(s, o′, t, a, g, w), o′ <O o
(w10). grant1(s, o,+, a, g, w) ← grant1(s, o,+, a′, g, w), a′ <A a
(w11). grant1(s, o,−, a, g, w) ← grant1(s, o,−, a′, g, w), a <A a′

Rules for conflict resolution

As mentioned before, the conflict resolution is based on the priority of the grantor
and the weight of the authorization.The priority of a grantor is the weighted length
of the shortest delegation path from the owner to it, since there may exist multiple

Reasoning on Weighted Delegatable Authorizations 285

paths to it. In the following rules, we use predicate priority to represent the pri-
ority of a grantor, which is the length of the shortest path to it. We use priorities
to represent all the priorities that a grantor received from their delegators, which
are lengths of all possible paths. Predicate exist-higher-prioritiesmeans that the
corresponding priorities is not the highest one. It is introduced to avoid the exis-
tential quantifier to be used in (w15), as in an extended logic program all the vari-
ables in clauses are considered to be universally quantified. For the two conflicting
authorizations, we will compare the sum of the grantor’s priority and weight of the
authorization, and the one with smaller value will win. Predicate overridden is in-
troduced to indicate that the corresponding authorization is overridden by some
other authorizations. Predicate holdmeans the corresponding authorization holds
as it is not overridden by any other authorizations.

(w12). priority(g, o, a, 0) ← own(g, o)
(w13). priorities(g, o, a, x+ w) ← can-grant1(g, o, a, g′, w, d),

priority(g′, o, a, x)
(w14). exist-higher-priorities(g, o, a, x) ← priorities(g, o, a, x),

priorities(g, o, a, y), y < x
(w15). priority(g, o, a, x) ← priorities(g, o, a, x),

not exist-higher-priorities(g, o, a, x)
(w16). overridden(s, o, t, a, g, w) ← grant1(s, o, t, a, g, w),

grant1(s, o, t′, a, g′, w′),
priority(g, o, a, x),
priority(g′, o, a, y), y + w′ < x+ w

(w17). hold(s, o, t, a, g, w) ← grant1(s, o, t, a, g, w),
not overridden(s, o, t, a, g, w)

Let W denote all the general rules, i.e. W = {w1, ..., w17}

4.2 Formal Semantics

Let Π be a WDAP, the Base BΠ of Π is the set of all possible ground literals
constructed from the system reserved predicates and predicates appearing in the
rules of Π , the constants occurring in S,O,A, T ,N . A ground instance of r is
a rule obtained from r by replacing every variable W in r by δ(x), where δ(x)
is a mapping from the variables to the constants in the same sorts. Let G(Π)
denote all ground instances of the rules occurring in Π . Two ground literals
are conflicting on subject S, object O and access right A if they are of the
form hold(S,O,+, A,G,W) and hold(S,O,−,A,G′,W ′). A subset of the Base of
BΠ is consistent if no pair of complementary or conflicting literals is in it. An
interpretation I is any consistent subset of the Base of BΠ .

Definition 3. Given a WDAP Π, an interpretation for Π is any interpretation
of Π ∪W .

Definition 4. Let I be an interpretation for a WDAP G(Π), the reduction of
Π w.r.t I, denoted by ΠI , is defined as the set of rules obtained from G(Π ∪W)

286 C. Ruan and V. Varadharajan

by deleting (1) each rule that has a formula not L in its body with L ∈ I, and
(2) all formulas of the form not L in the bodies of the remaining rules.

Given a set R of ground rules, we denote by pos(R) the positive version of R,
obtained from R by considering each negative literal ¬p(t1, ..., tn) as a positive
one with predicate symbol ¬p.
Definition 5. Let M be an interpretation for Π. We say that M is an answer
set for Π if M is a minimal model of the positive version pos(ΠM). If M is an
answer set for Π, then its subset of all the literals with predicate name hold is
called authorization answer set for Π, denoted by A.

Example 2. Let us consider the WDAP given in Example 1. To evaluate the
authorizations holding, it should be combined with the general rules in W . In the
process of answer set generation, the authorization and delegation correctness is
enforced, the authorization and delegation propagations are carried out along the
defined inheritance hierarchies in the domain, and the conflicts are resolved based
on our resolution policy. For instance, for Alice, three authorizations will be
derived from Bob (directly), Mary and Dean (indirectly through the inheritance
from the Casual)respectively, and the Mary’s authorization will override.

5 Conclusions

There are several interesting issues that worth further exploring. First, we are
considering to extend our current model by considering dynamic trust relation-
ships in authorizations and delegations. Second, we plan to develop a dynamic
prioritized conflict resolution method which can support different policies by us-
ing various semantic properties of subjects, objects and access rights. Finally,
we also plan to implement a prototype of our framework using answer set logic
programming techniques.

References

1. Bertino, E., Buccafurri, F., Ferrari, E., Rullo, P.: A logical framework for reasoning
on data access control policies. In: Proceedings of the 12th IEEE Computer Society
Foundations Workshop, pp. 175–189. IEEE Computer Society Press, Los Alamitos
(1999)

2. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365–385 (1991)

3. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing au-
thorizations. In: Proceedings of the 1997 IEEE Symposium on Security and Privacy,
pp. 31–42. IEEE Computer Society Press, Los Alamitos (1997)

4. Ruan, C., Varadharajan, V., Zhang, Y.: Logic-based reasoning on delegatable autho-
rizations. In: Proceedings of the 13th International Symposium on Methodologies
for Intelligent Systems (2002)

5. Woo, T., Lam, S.: Authorization in distributed systems: a formal approach. In:
Proceedings of IEEE on Research in Security and Privacy, pp. 33–50 (1992)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 287–301, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Annotating Atomic Components of Papers in Digital
Libraries: The Semantic and Social Web Heading
towards a Living Document Supporting eSciences

Alexander García Castro1, Leyla Jael García-Castro2, Alberto Labarga3,
Olga Giraldo4, César Montaña5, Kieran O’Neil6, and John A. Bateman1

1 University of Bremen, Bibliothekstrasse 1,
28359 Bremen, Germany

cagarcia@uni-bremen.de
2 Universität der Bundeswehr München, Werner-Heinsenberg-Weg 39,

85779 Neubiberg, Germany
leyla.garcia@ebusiness-unibw.org

3 University of Granada,
Madrid, Spain

alberto.labarga@scientifik.info
4 International Center for Tropical Agriculture,

Palmira, Valle, Colombia
oxgiraldo@cgiar.org

5 IT&BI Consulting Services,
Bogota, Colombia

ca.montana70@egresados.uniandes.edu.co
6 Terry Fox Laboratory, British Columbia Cancer Research Centre,

Britsh Columbia, Canada
koneill@bccrc.ca

Abstract. Rather than a document that is being constantly re-written as in the
wiki approach, the Living Document (LD) is one that acts as a document router,
operating by means of structured and organized social tagging and existing on-
tologies. It offers an environment where users can manage papers and related
information, share their knowledge with their peers and discover hidden asso-
ciations among the shared knowledge. The LD builds upon both the Semantic
Web, which values the integration of well-structured data, and the Social Web,
which aims to facilitate interaction amongst people by means of user-generated
content. In this vein, the LD is similar to a social networking system, with users
as central nodes in the network, with the difference that interaction is focused
on papers rather than people. Papers, with their ability to represent research
interests, expertise, affiliations, and links to web based tools and databanks, rep-
resent a central axis for interaction amongst users. To begin to show the poten-
tial of this vision, we have implemented a novel web prototype that enables
researchers to accomplish three activities central to the Semantic Web vision:
organizing, sharing and discovering. Availability: http://www.scientifik.info/

Keywords: Semantic Web, Social Web, Knowledge Integration, Knowledge
Representation, Folksonomy, Ontology.

288 A. García Castro et al.

1 Introduction

eScience is an umbrella term describing converging sets of trends and technologies
that have the potential to radically transform the conduct of science [1]. In particular,
sharing and linking data in order to support the extraction of information and knowl-
edge discovery is one central pillar in the realization of eSciences. Within Life Sci-
ences scholarly production is predominantly stored in databases (DBs) and digital
libraries. For instance genomic and proteomic databases store not only sequences but
also other related information; furthermore, these resources are highly interrelated and
it is sometimes possible to formulate and execute queries that are distributed across
several databases; this process is transparent for the end user.

Although papers and DBs store complementary information, the relationships cur-
rently defined across the information contained within papers, existing DBs and
online resources are negligible. Digital libraries within the biomedical domain store
information related to methods, defined material, topics, statements of problems being
addressed, hypotheses, results, etc. However, retrieving papers addressing the same
topic and for which similar biomaterial has been used is not a trivial task. In order to
improve search and retrieval, and also to enrich the available metadata, digital librar-
ies should provide facilities by means of which links can be established between
atomic components of papers (domain terminologies, concepts) and resources over
the Web capable of processing and/or adding meaning to them. For instance, for pa-
pers containing data types such as proteins, genes and metabolic pathways, digital
libraries should link them to the corresponding data entries in DB’s, Knowledge Or-
ganization Systems (KOS), and/or existing online resources. Once a data type has
been identified within a text, available infrastructure such as BioMoby [2] also makes
it possible to determine what resources can consume it. Furthermore, existing infra-
structure can also support the replication of experiments if the raw data generated and
used by researchers becomes part of the paper; in this way could not only the review
process be more open, but also collaboration could be boosted. Biomedical ontolo-
gies—such as those from the Open Biomedical Ontologies (OBO, http://www.
obofoundry.org) initiative —could be used as an anchor point over which links are
established and further expanded by collaborative tagging. Combining social tagging
and ontology-based marking improves information retrieval and facilitates the en-
richment of metadata [3-5]; it also would serve to encourage methods that shift the
creation of metadata from the individual to a collective [6].

Tags as such allow users to organize resources into categories, i.e. groups of re-
sources with the same tag by means of which the retrieval of the tagged information
becomes easier [5]. For instance, Delicious (http://delicious.com), Bibsonomy (http://
www.bibsonomy.org) and Connotea (http:// www.connotea.org) facilitate the tagging of
online resources and bibliographic references. These online tools harness the collective
knowledge that is modelled by the collective tagging. Collaboration is thus based on
similarities in tags and tagged objects. Although tagging papers, as a whole is now pos-
sible, this is still insufficient. Marking and linking atomic components of papers, idem
words, pieces of images or segments of video, is also necessary in order to enrich the
metadata structure and to facilitate concept-based social interaction. Annotation of this
kind is not yet possible, however, within a collaborative environment.

 Annotating Atomic Components of Papers in Digital Libraries 289

The research reported here investigates how to support the annotation of the atomic
components of research papers in the life sciences by combining ontology-based and
user-generated tags within a social network built upon these tagged concepts. To this
end we propose the Living Document (LD), a document that lives on the web by
interacting with other papers and resources related to the data types it hosts. In this
manner researchers can tag individual components of their papers drawing on catego-
ries from ontologies such as the Gene Ontology [7] via automatic tagging systems,
without being exposed to the complexity of the ontology; at the same time, they are
also able to generate their own tags, or extend existing ones. The Living Document
(LD) is therefore not one that is constantly being written as in the wiki approach, but
one that acts as a document router by drawing on both structured and organized social
tagging and existing ontologies. We argue that papers should be understood as con-
tainers of knowledge and that, as such, the hosted knowledge should be easily net-
worked with related resources. As an example, the sentence “IGFBP-2 expression is
negatively regulated by PTEN and positively regulated by phosphatidylinositol 3-
kinase (PI3K) and Akt activation [8]” contains valid ontology terms that could be
linked to existing databases and relevant online resources. By the same token, domain
experts reading this paper could enhance the annotation by providing, for instance,
more external resources relevant to the identified terms.

The LD supports this notion of rich semantic annotation by applying the social
tagging paradigm to a document management environment encompassed in a docu-
ment-information centric social network. The LD is conceived as a web service for
storing, sharing, relating and discovering knowledge in documents, research papers in
this case. The framework is heavily based on tags and a Semantic Web (SW) technol-
ogy layer making use of these tags.

From the perspective of software functionality, there are two main types of tags: i)
predefined tags, those coming from existing ontologies, and ii) user-generated tags,
those created by the community, which together mediate the interaction and provide
the semantic tissue between papers. The combination of these two types of tags also
makes it possible to build upon the knowledge contained in existing ontologies by
association with new user-defined tags. For instance, a paper in which draught toler-
ance is compared between Oryza Sativa (rice) and Barley in saline soils will have
genes, metabolic pathways, geographical locations, atmospheric conditions attached
to locations and specific periods of time, soil conditions, breeding conditions, etc.,
could be enriched with both, manual and automatic tags. Within the biomedical do-
main there are ontologies describing all these concepts; moreover, there are also data-
bases with additional relevant information.

Due to the interoperability infrastructure bioinformaticians have built, biological
DBs are highly interrelated; this makes it possible to execute crossed queries that
retrieve integrated views: thus relating, for instance, molecular markers associated to
those genes that were studied, or geographic locations to online resources such as
Google Maps. The underlying interest of the authors is then how to move from the
collected intelligence closer to the collective intelligence within life sciences. As
Berners-Lee highlights in his definition of the SW, better enabling computers and
people to work in cooperation requires an environment where information is given a
well-defined meaning [9]. For this, we assume that structured and targeted collabora-
tion is key to the realization of the SW vision. Moreover, life sciences pose an ideal

290 A. García Castro et al.

scenario for making this real as there are i) communities of practice actively engaged
in the development of their resources, ii) ontologies being used by databases for anno-
tation purposes and developed by communities of practice, iii) highly interlinked and
interrelated databases and iv) several analysis tools related to these databases. These
features make it feasible to generate a concept-centric social network where papers
more accurately define relevant interaction paths between social agents, and over
which papers can be easily linked to external resources capable of consuming those
data types forming part of the documents.

2 Related Work

Within the biomedical community the notion of community annotation has recently
started to be adopted. For instance, WikiProteins [10] delivers an environment in
which it is possible to address a biological problem: the annotation of proteins; this
allows the wider research community to directly benefit from the generation and peer-
review of knowledge at minimal cost. The more annotations the systems receives, the
better the chances are for users to interact with other researchers who share similar
interests/problems, for example working on the same motif, crystallographic method
etc. [10]. WikiProteins allows the annotation of proteins as a whole; however, anno-
tating valid biological parts of a protein is not possible—e.g. positional features.
Within the context of a paper these valid biological parts could be assimilated to
words/specialized-terminology/ontology-terms.

Another example that illustrates the usefulness of harnessing the collective intelli-
gence is BIOWiki [11]; this collaborative ontology annotation and curation frame-
work facilitates the engagement of the community with the sole purpose of improving
an ontology. Similarly to both WikiProteins and BIOWiki, myExperiment [12] pro-
vides an environment in which the community interacts on the basis of a common
problem; sharing and reusing workflows is this system’s main goal. Moreover, within
the publishing industry there has also been a series of efforts in promoting Social
Networks. BioMedExperts (BME, http://www.biomedexperts.com), for example, is a
professional network in which literature references are used to support interaction.
Although this system does not support tagging by users, it does support automatic
tagging based on a reference terminology—thus allowing the identification of re-
searchers with similar interests. Nature Network works in a similar way; however it
does not facilitate any controlled vocabulary for annotating the literature references.

Interestingly, the widely known PubMed system (http://www.ncbi.nlm.nih.gov/
pubmed) does not offer any kind of tagging system; nor does it make use of existing
ontologies to classify documents. Although highly interrelated to DBs and analysis
resources provided by the National Center for Biotechnology Information (NCBI),
PubMed does not provide a direct relationship between the data types available in the
abstracts and those NCBI resources. How semantic descriptors of resources, user
profiles and enriched metadata may improve the usability of digital libraries has
been investigated within the JeromeDL (http://www.jeromedl.org) project; this
system offers a richer retrieval system and applies Semantic Web principles to the
management of digital libraries. The Annotea project (http://www.w3.org/2001/
Annotea) enhances collaboration further via shared metadata based Web annotations,

 Annotating Atomic Components of Papers in Digital Libraries 291

bookmarks, and their combinations. The LD reuses concepts from Annotea within a
more focused scenario.

Most of the investigated sites offer tagging systems for bio-related documents; how-
ever none of their functionalities addresses the problem of tagging atomic components
of some paper within a social concept-centric network. The pattern of relationships
amongst the information contained in such papers, in particular how that information
inherently gives rise to networks of concepts across papers, which can facilitate more
accurate assessments of similarity as well as linking to external resources capable of
consuming this information, is not represented. Interestingly, within the publishing
industry in Life Sciences, publishers offer limited integration between the information
contained in published papers and the Web [13]; no automatic or semi-automatic tag-
ging systems are available, nor are there knowledge management facilities built over the
papers and consistent with the data types sitting on them. The programmatic access,
APIs that the majority of publishers offer, is restricted, as are the social network capa-
bilities built over papers. All of these deficits represent clear opportunities for more
advanced solutions, such as that we propose here.

3 The Living Document and Paper-of-a-Paper Ontology

One disappointing aspect of digital libraries is that papers, although in digital format,
are neither interconnected nor interoperate with other valid resources capable of con-
suming the data types available in papers within life sciences. Most systems limit
their functionalities to syntactic features such as: “which other papers were published
by an author”; given this, users are able to “jump” to a list of papers; also, users can
“click&jump” on bibliographic references, and then again “jump” to another paper.
These are very limited functionalities for digital documents that live on the web. The
LD goes beyond this not only by allowing researchers to define the network environ-
ment of a paper within its research context but also by predefining a network based on
existing ontologies and resources.

Papers are conceptually related to each other and to external resources. Papers have
readers, writers, images, tables, etc. and, since people have interests, papers reflect the
interests of those who write them as well as of those who read them. In order to facili-
tate the representation of the syntactic structure of a paper and the conceptual net-
works that papers support, we have created the Paper-Of-A-Paper Ontology (POAP,
http://poap-project.org). POAP represents the network of concepts and associated
external resources derived from the tagging activity. POAP has been conceived to be
interoperable with models such as the Meaning Of a Tag (MOAT) ontology [14] and
the Social Semantic Cloud of Tags (SCOT) ontology [15] as they both offer represen-
tations for the tag as well as for the social tagging activity itself. This model was care-
fully designed to play a similar role to that played by FOAF in human-centric social
networks. The intersection between POAP and FOAF facilitates accurate interaction
based on documents, in our case, research papers.

POAP extends these models in order for tags to represent networks of concepts
across papers and external resources. A simple view that illustrates some sections
of POAP and how it is interoperable with other models is presented in Fig. 1. Ulti-
mately POAP aims to support, in coordination with software such as BioMoby [2],

292 A. García Castro et al.

the discovery of services capable of consuming those valid biological data types
available in papers. For instance, for those valid biological data types relevant infor-
mation may be retrieved from BioMoby.

Fig. 1. Overview of POAP

POAP combines input from several existing ontologies in a way well suited to
supporting the functionalities intended for the LD. For example, it has classes such as
defined_material, which is being reused from the Ontology for Biomedical Investiga-
tions (OBI, http://purl.obofoundry.org/obo/obi). In this manner the biomaterial used
can be explicitly declared as well as other relevant experimental information modeled
by OBI. Citations are also being enriched by reusing the Citation Typing Ontology
(CiTO) CiTO models citations is terms of the nature or type of the citation relation-
ship (e.g. reuses, usesMethodIn). The nature or type or work, e.g. research, review, is
also considered. Authors and their affiliations are modelled by using FOAF; in this
manner, arrangements of authors, concepts and affiliations can be easily represented
as FOAF networks. Expressions relating concepts pertaining ontology classes such as
defined_material, study design, author, tag, tagger, geographical_location, isCit-
edBy, and research can be easily represented by FOAF, CiTO, EnvO (http://
environmentontology.org/) and OBI.

3.1 POAP and the LD within the Publishing Workflow

A part of the publishing workflow is usually supported by software that assists users in
the submission process. Authors usually submit manuscripts, figures, tables and, some-
times, raw data in the form of, for instance, spreadsheets, specialized generated proprie-
tary files from machines processing samples, etc. Once the article has undergone the
review process it is then published. Some publishers, such as PLOS, allow readers to
comment published papers, engage in discussions with authors and others reading the
same paper. Although authors generate metadata, the data is not improved during the
review process. Moreover, during the process of writing, ontology based metadata could
be generated as proposed by Fink et al (http://ucsdbiolit.codeplex.com)—see discussion

 Annotating Atomic Components of Papers in Digital Libraries 293

section for more information. The available metadata is, in spite of the multiple possible
stages at which it could be generated and enriched, scant. The LD and POAP aim to
support the enrichment of structured metadata so that, for instance, authors can tag fig-
ures, tables, text and raw data. Fig. 2 illustrates how both, POAP and the LD support the
overall process. FOAF networks are extracted from the information provided by authors
(names, affiliations, emails, URLs, etc). Before submitting a paper, authors can add
metadata; tools supporting such process are available, see for instance http://www.
codeplex.com/ucsdbiolit. By the same token, authors can annotate figures and tables;
furthermore, they can link text, tables and/or figures to the corresponding raw data.
Once the paper has been published automatic annotation pipelines such as WhatIZit can
easily extend the metadata; the community of readers can also add metadata. In this
manner researchers can choose the type of metadata they are most interested in, for
instance disease related metadata, metabolic pathways, combinations of controlled vo-
cabularies, etc. Equally important, the metadata thus generated can be linked to external
resources, in this manner data sets can be linked to algorithms capable of processing
them, gene and protein names can be linked to diseases or specialized databases.

Fig. 2. POAP and LD support

3.2 Architecture and Implementation

In order to support the LD functionality, we have developed a prototype that makes
use of annotation pipelines such as WhatIzIt (http://www.ebi.ac.uk/whatizit) [16, 17];

294 A. García Castro et al.

Reflect (http://reflect.ws) will soon also be incorporated. This makes it possible for
users to generate their own tags over specific sections (words, sentences) of pa-
pers/documents. There are currently over 500 papers in the system and new docu-
ments can be easily loaded. Users can share and reuse tags for better-defining queries;
it is also possible for them to specify external resources associated with tags and sec-
tions of the papers.

A general overview of the LD is presented in Fig. 3. Documents have sections (im-
ages, tables, words, phrases) and these can be tagged by users or by automatic pipe-
lines such as WhatIzIt or Reflect. Other workflows can be easily added via the LD
Application Programming Interface (API). Usually tags are consumed by an external
resource such as a database or an analysis tool. For instance, by means of WhatIzIt
users can tag the word “NADPH”; this tag has a default external resource, UniProt.
Other users could have found it important to manually tag the term “Ca Channels”
and link it to a different external resource.

Fig. 3. General overview of the Living Document

For the purposes of our prototype we have developed infrastructure for the storage,
indexing, annotation and retrieval of articles. Initially we are working with papers
from the Elsevier digital collection, but adding new data sources, such as PubMed,
DBLP (http://dblp.uni-trier.de) or any other XML based digital library, is also possi-
ble. The search and retrieval module has been developed on top of the Lucene
(http://lucene.apache.org/) project framework; this is an open-source, high-
performance, full-featured text search engine library written entirely in Java. The
system allows the user to search globally across Elsevier journals or individually in
selected resources, and filtering by authors or dates by using an advanced search.
Fig. 4 illustrates an overview of the architecture we have implemented.

 Annotating Atomic Components of Papers in Digital Libraries 295

Fig. 4. General system architecture

In order to support other digital libraries and different annotation pipelines, the ar-
chitecture supports the Service Provider Interface (SPI) paradigm for retrieval and
annotation. The SPI is a software mechanism that supports replaceable components
via a set of hooks. On top of these SPIs, we have build a semantic layer supporting
MOAT, FOAF POAP and other controlled vocabularies. This makes it possible for
new metadata to be managed so that more expressive queries can be supported.

As indicated above, we distinguish two types of tags, those generated by an auto-
matic workflow, such as WhatIzIt, and those generated by human users. The auto-
matic annotation infrastructure is built around the Monq software package
(www.ebi.ac.uk/~kirsch/monq-doc/monq); this Java library enables the processing of
text input streams based on regular expressions. The library binds regular expressions
to actions that are automatically executed whenever a match occurs in the text stream
being processed. A filter server is a computer program, also Java technology, which
accepts TCP connections on a particular port from clients across the network. Each
filter server specializes in recognizing the vocabulary of a particular terminology.
Clients connect to a filter server and send a stream of text. The server runs its embed-
ded DFA on the incoming text to recognize and tag the terminology with XML tags.

Multiple filter servers can be cascaded to form processing pipelines, whereby the
output of one filter becomes the input of the next. In this case the XML tags added by
each server carry the data needed to accomplish the tasks of complex distributed text
mining algorithms. Currently, we support the annotation of Swissprot protein/gene
names, drug names, organism names, disease names, chemical entities and Gene On-
tology terms. The pipeline considers some disambiguation based on acronym resolu-
tion and term frequency. Protein/Gene names resembling acronyms, for instance NPY
(neuropeptide Y), are analyzed in order to disambiguate whether the target name is
really a Protein/Gene name. If this is unclear, then the pipeline will assume that
names with a high frequency in the British National Corpus (http://www.natcorp.
ox.ac.uk) are common enough to be considered relevant in the biomedical field. The
result of this process is an extended XML document with the annotated information.

For instance, users can tag the paper using GO [7], as illustrated in Fig. 5; once the
set of tags has been generated users are free to add or modify the set of predefined tags.
The functionality embedded within the set of predefined tags also includes a set of pre-
defined links built over each tag. For instance, the GO term “membranes” has a direct
reference to its corresponding DB entry in AMIGO (http://amigo.geneontology.org), as

296 A. García Castro et al.

Fig. 5. Users are able to generate sets of automatically generated tags (with references to exter-
nal resources) by using existing ontologies and/or annotation pipelines

illustrated in the middle of Fig. 5. By default these tags are automatically linked to a set
of external resources such as ENTREZ (http://www.ncbi.nlm.nih.gov/Entrez), AMIGO,
SRS (http://srs.ebi.ac.uk) and others. Both the ontologies being used to support the
automatic tagging, and the corresponding external resources being used by default, can
readily be increased.

Adding new external resources, such as URIs capable of either consuming tags as
input data types or just providing additional information is currently achieved by
typing the information into a text field. By adding new tags and external resources,
the clouds of tags are constantly being updated for each paper. Furthermore, users can
use the clouds of tags in order to find more information and build more expressive
and accurate queries, as suggested in Fig. 6. In addition, users can identify tags that
are associated with two or more documents. This tag association is a measure that
indicates, based on the tags, and how closely related the documents are. More impor-
tantly, users can browse through the surrounding area of the tags so that they can
contextually discover how valid the coincidence in tags may be. For instance, two
documents may share the user-generated tag “<X>” but this coincidence alone may
not be an indicator that both documents are actually related because one tag may have
multiple meanings or be applied in different contexts.

Fig. 6. Using tags to refine queries

 Annotating Atomic Components of Papers in Digital Libraries 297

An interesting side effect of social tagging is the semi-automatic generation of social
trust rankings. As users tag documents, these tags are easily identified by ownership; in
this way any user can ask for someone else’s tags without including in the cloud of tags
those generated by anybody else. Experts know who the experts are in their field. A user
can select only those tags generated for a given paper by user X, Y, and W; people tend
to trust those tags generated by particular members of the community.

4 Discussion, Conclusions and Future Work

We have developed a web prototype that allows the ontology-based or user-generated
tagging of atomic components within the structure of scientific papers in life sciences.
The prototype also makes it possible for users to use tags in order to better filter
search results; users can always refine their searches by adding terms from the cloud
of tags. Finding related papers is supported not only by those available tags, but also
by the prototype’s use of eTBlast (http://invention.swmed.edu/etblast); thus allowing
the user to input an entire paragraph and receive MEDLINE abstracts that are similar
to it. The LD enables authors to easily add scientific hyperlinks to their documents
and research papers as semantic annotations, drawn from ontologies or provided by
their peers; this has the additional function of linking their papers to the Web in a
meaningful way. The LD is complementary to the MS Word Add On (http://
ucsdbiolit.codeplex.com) recently released (May 11/09); however it goes one step
further as it involves a massive collaboration in the process of generating semantic
annotations; furthermore, it is appropriate for existing digital libraries.

An informal controlled experiment was conducted; our collaborators in this evaluation
were plant biologists, Researchers A and B, see Fig. 7. Both were requested to independ-
ently tag some of the papers we gave them. Once they had tagged the papers these were
exchanged, allowing each researcher to see the other’s tags. Interestingly, via the gener-
ated tags they discovered how two of these papers were related. More importantly, it was
clear how tags made it easier for Researcher A to find information that could have taken
longer for him to gather – external bibliographic references and links to DBs. Also, and
equally important, was the use Researcher A made of some tags when further construct-
ing queries. Researcher A made combined tags from both clouds, as our system uses
query previews only combinations of tags with non-empty results sets were allowed.

We requested from another plant biologist (Researcher C) to tag between 3 to 5
papers. The main interest for this researcher was hormones involved in defensive
responses to pathogens. Researcher C tagged without any controlled vocabulary.
Initially, he tagged and then identified external resources for most of the generated
tags. Some interesting outcomes arose from this exercise: i) synonymies not previ-
ously reported. These had to be found manually by establishing the relationship be-
tween the concept as reported in the paper and that stored in the DB. For instance,
flg22 is a motif that belongs to the N-terminal conserved domain of bacterial flagel-
lin; this was not explicit in the papers nor was it clears in any of the DBs –PFAM,
UniProt, AMIGO, AraCyc. ii) Researcher C manually tagged genes, protein families
and metabolic pathways. Once the tags were generated, it became clear for Researcher
C how the clouds of tags could facilitate the construction of more targeted queries
such as “genes involved in signaling pathways in response to different pathogens”,
“specific genes for each pathogen” and “genes involved in pathway cross talking”.

298 A. García Castro et al.

Fig. 7. An initial test for LD

Interestingly, for those papers we used in our tests the recommendations given by
the original digital library were not always consistent with the papers discovered by
the generated tags. The tag-based recommendation was more accurate. The axes, tag,
tagged_object, and tagger, over which the tagging process was happening were con-
sistent with those described by MOAT and SCOT; such simple models proved to be
easily extendible so that semantic and syntactic components of a scientific paper
could be represented by POAP and coherently orchestrated with MOAT, SCOT and
other existing tag-related models as well as biomedical ontologies. Although POAP
does not support the modeling of rhetorical structures within the paper and the pub-
lishing workflow, it has been conceived to interoperate with such ontologies.

Folksonomies have recently gained attention from the research community [18],
partly because of their rapid and spontaneous growth and partly because of the need
for structuring and classifying information. Although social tagging is widely used, as
demonstrated in numerous applications, clouds of tags per se are not formal classifi-
cation systems; rather, they are a complement for organization systems. For the task
of finding information, taxonomies tend to be rigid and purely text-based search is not
optimal. By contrast, tags introduce distributed human intelligence into the system
[19]; also, tags are axes over which collaboration is supported.

When researchers collaborate, the structure of the collaboration is based upon simi-
larities in their work; an aspect of this similarity may be defined by the literature that
researchers are reading. It has been observed that if two researchers use similar literature
they are working on similar or conceptually related problems. Bibliographic references,
keywords and abstracts are therefore a valuable starting point for supporting information
retrieval across large digital libraries and interaction based on similar interests. How-
ever, they do not offer the possibility for establishing networks of associated concepts

 Annotating Atomic Components of Papers in Digital Libraries 299

across papers (NACAP), nor do they offer the facility for linking concepts from the
paper to external resources (P2ext).

Both of these features, NACAP and P2ext, are central to the structure of real col-
laboration amongst researchers. Extending support for this interaction by using social
tagging over entire documents augments the support for the collaboration based on
similar research interests. Moreover, the metadata thus generated can help researchers
to retrieve an article when descriptive elements are not known. The main function of
these tags is not then to support a fixed taxonomical classification, but a dynamic one
[9], allowing the relevance and content of articles to keep pace with the evolution of
scientific discovery. This dynamic annotation is the serendipity that may allow re-
searchers to find other researchers working on similar areas as they find papers via
generated tags. Providing a platform where both NACAP and P2ext can be exploited,
both at the time of authoring the paper and post-publication, will greatly enhance
social networking and information retrieval in life sciences. This enhancement allows
knowledge to be discovered more expediently and facilitates the formation of sub-
networks of collaboration over specific knowledge units, defined by tags. Social
tagging provides direct insight into the knowledge conveyed within the body of the
scientific paper.

Ideally social networks and ontologies should help in offering an environment in
which researchers can take advantage of collective knowledge. In principle, efforts
such as Delicious and Connotea facilitate both, social interaction and harvesting the
collective intelligence. Delicious offers a collective annotation facility for bookmarks
in which the community interacts via the annotations they generate over their own
bookmarks; the community as a whole benefits from everybody’s knowledge as it is
always possible to access everybody’s annotations. Connotea is a more targeted envi-
ronment in which users share their bibliographic references as well as those annota-
tions that describe the shared set of references. The Connotea approach relies on the
assumption that users with similar interests should have bibliographic references in
common. The limitation of Connotea is that it assumes that an annotation, independ-
ently from the nature of the annotated object, always has a structure similar to that of
a bibliographic reference. In order to offer insights into papers, systems similar to
Connotea facilitate the manipulation of abstracts. However, abstracts per se do not
provide a full summary of the work described in some document, nor do they offer
any way to integrate the document into existing knowledge. Connotea and similar
systems do not support the entire structure of collaboration that is usually found
within and across communities of researchers.

An approach similar to the one presented in this paper is Concept Web Linker
(http://conceptweblinker.wikiprofessional.org/, CWL); both approaches assume a
document deeply interconnected with other documents and with the Web. However,
unlike CWL, the LD approach embraces a generative technology so users can actively
generate the tools they need for the kind of information they want to manage. Fur-
thermore Concept Web Linker does not allow users to better-define queries based on
available tags; thus limiting the usability of the cloud of tags. The generative capacity
of a system should be understood as “its capacity to produce unanticipated change
through unfiltered contributions from broad and varied audiences” [20]. Currently, the
generative capacities in the Concept Web Linker are limited; for instance it is not
possible to add annotation pipelines. More importantly, Concept Web Linker does not

300 A. García Castro et al.

make use of social networking technology. Generative technology enables an open
market for which specialized plug-ins can be developed; in this way better and more
specialized mining tools will be built over digital libraries.

Loading XSLT files is supported by our prototype; this flexibility was deliberately
designed into the LD as we are planning to load PubMed and DBLP for further
testing. We are also carrying out more detailed evaluations not only concerning the
tagging and its related operations but also regarding the added valued required for
communities to adopt and actively participate in scientific oriented folksonomies. An
important aspect we are currently improving is better scoping of POAP; we are nar-
rowing POAP so it models only conceptual relationships across papers. The Structural
Ontology for Document Annotation (SODA) should represent the other aspects.
SODA incorporates rhetoric, tagging, and document structure, and inherits the inter-
play with biomedical ontologies; SODA is inspired by the Semantic Annotation of
Latex (SALT, http://salt.semanticauthoring.org/ontologies.html) ontology. Our inter-
est is the same, the intersection between the SW and the Social Web in life sciences.

An interesting aspect that arose from our work with biologists was the need for in-
telligent interfaces —those consistent with the information they are delivering; we are
consequently redesigning our interfaces to cater to this requirement. Support for
browsers other than IE as well as the release of the project to the source-forge com-
munity is also on our to-do list. And finally, we are conducting further research into
the relationship between ontologies and tagsonomies.

Acknowledgments. Funding: Alexander Garcia acknowledges the financial support
of the EU: Project OASIS Integrated Project, Grant Agreement # 215754.

References

1. Wright, M., Sumner, T., Moore, R., Koch, T.: Connecting digital libraries to eScience: the
future of scientific scholarship. International Journal of Digital Libraries, 1–4 (2007)

2. Wilkinson, M.: BioMOBY: an open-source biological web services proposal. Briefings In
Bioinformatics 3, 331–341 (2002)

3. Bindelli, S., Criscione, C., Curino, C.A., Drago, M.L., Eynard, D., Orsi, G.: Improving
search and navigation by combining ontologies and social tags. In: Meersman, R., Tari, Z.,
Herrero, P. (eds.) OTM-WS 2008. LNCS, vol. 5333, pp. 76–85. Springer, Heidelberg
(2008)

4. Chen, M., Liu, X., Qin, J.: Semantic Relation Extraction from Socially-Generated Tags: A
methodology for Metadata Generation. In: Proc. Int’l Conf. on Dublin Core and Metadata
Applications (2008)

5. Hunter, J., Khan, I., Gerber, A.: HarvANA - Harvesting Community Tags to Enrich Col-
lection Metadata. In: Pittsburgh, P., USA (ed.) ACM IEEE Joint Conference on Digital
Libraries, JCDL 2008, Pittsburgh, PA (2004)

6. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American (2001)
7. Ashburner, M., Ball, C., Blake, J., Botstein, D., Butler, H., Cherry, J., Davis, A., Dolinski,

K., Dwight, S., Eppig, J., Harris, M., Hill, D., Issel, T.L., Kasarskis, A., Lewis, S., Matese,
J., Richardson, J., Ringwald, M., Rubin, G., Sherlock, G.: Gene Ontology: tool for the uni-
fication of biology. The Gene Ontology Consortium. Nature Genetics 25, 25–29 (2000)

 Annotating Atomic Components of Papers in Digital Libraries 301

8. Mehrian-Shai, R., Chen, C.D., Shi, T., Horvath, S., Nelson, S.F., Reichardt, J.K.V., Saw-
yers, C.L.: Insulin growth factor-binding protein 2 is a candidate biomarker for PTEN
status and PI3K/Akt pathway activation in glioblastoma and prostate cancer. PNAS 104,
5563–5568 (2007)

9. Gendarmi, D., Abbattista, F., Lanubile, F.: Fostering knowledge evolution through com-
munity-based participation. In: 16th International World Wide Web Conference, Banff,
Alberta, Canada (2007)

10. Mons, B., Ashburner, M., Chichester, C., Van Milligen, E., Weeber, M., den Dunnen, J.,
Bairoch, A.: Calling on a million minds for community annotation in WikiProteins. Ge-
nome Biology (2008)

11. Backhaus, M., Kelso, J.: BIOWiki - a collaborative annotation and ontology curation
framework. In: 16th International World Wide Web Conference, Banff, Alberta, Canada
(2007)

12. De Roure, D., Goble, C., Aleksejevs, S., Bechhofer, S., Bhagat, J., Cruickshank, D.,
Michaelides, D., Newman, D.: The myExperiment Open Repository for Scientific Work-
flows. Open Repositories Atlanta, Georgia, US (2009)

13. Shotton, D., Portwin, K., Klyne, G., Miles, A.: Adventures in Semantic Publishing: Exem-
plar Semantic Enhancements of a Research Article. PLOS Computational Biology 5
(2009)

14. Passant, A.: The Meaning Of A Tag (2008), http://moat-project.org/
15. Kim, L.-H., Breslin, J., Scerri, S., Deker, S., Kim, H., Yang, S.-K.: SCOT Ontology Speci-

fication (2008), http://scot-project.org/scot/
16. Rebholz-Schuhmann, D., Arregui, M., Gaudan, M., Kirsch, H., Jimeno, A.: Text process-

ing through Web Services: Calling Whatizit. Bioinformatics 24 (2007)
17. Labarga, A., Franck, V., Anderson, M., Lopez, R.: Web Services at the European Bioin-

formatics Institute. Nucleic Acid Research 35 (2007)
18. Kim, L.-H., Scerri, S., Breslin, J., Decker, S., Kim, H.: The state of the Art in Tag Ontolo-

gies: A Semantic Model for Tagguing and Folksonomies. In: International Conference on
Dublin Core and Metadata Applications, Berlin, Germany (2008)

19. Gruber, T.: Ontology of Folksonomy: a Mash-up of apples and Oranges. International
Journal of Semantic Web and Information Systems 3 (2005)

20. Zittrain, J.: The Future of the Internet and how to stop it. Yale Universoty Press, New
Heaven (2008)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 302–316, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Web Navigation Sequences Automation in
Modern Websites

Paula Montoto, Alberto Pan, Juan Raposo, Fernando Bellas, and Javier López

Department of Information and Communication Technologies, University of A Coruña
Campus de Elviña s/n 15071 A Coruña, Spain

{pmontoto,apan,jrs,fbellas,jmato}@udc.es

Abstract. Most today’s web sources are designed to be used by humans, but
they do not provide suitable interfaces for software programs. That is why a
growing interest has arisen in so-called web automation applications that are
widely used for different purposes such as B2B integration, automated testing
of web applications or technology and business watch. Previous proposals as-
sume models for generating and reproducing navigation sequences that are not
able to correctly deal with new websites using technologies such as AJAX: on
one hand existing systems only allow recording simple navigation actions and,
on the other hand, they are unable to detect the end of the effects caused by an
user action. In this paper, we propose a set of new techniques to record and exe-
cute web navigation sequences able to deal with all the complexity existing in
AJAX-based web sites. We also present an exhaustive evaluation of the pro-
posed techniques that shows very promising results.

Keywords: Web automation, web integration, web wrappers.

1 Introduction

Web automation applications are widely used for different purposes such as B2B
integration, web mashups, automated testing of web applications or business watch.
One crucial part in web automation applications is to allow easily generating and
reproducing navigation sequences. We can distinguish two stages in this process:

− Generation phase. In this stage, the user specifies the navigation sequence to repro-
duce. The most common approach, cf. [1,9,11], is using the ‘recorder’ metaphor:
the user performs one example of the navigation sequence using a modified web
browser, and the tool generates a specification which can be run by the execution
component. The generation environment also allows specifying the input parame-
ters to the navigation sequence.

− Execution phase. In this stage, the sequence generated in the previous stage and the
input parameters are provided as input to an automatic navigation component
which is able to reproduce the sequence. The automatic navigation component can
be developed by using the APIs of popular browsers (e.g. [9]). Other systems like
[1] use simplified custom browsers specially built for the task.

 Web Navigation Sequences Automation in Modern Websites 303

Most existing previous proposals for automatic web navigation systems (e.g. [1,9,11])
assume a navigation model which is now obsolete to a big extent: on one hand, the
user actions that could be recorded were very restrictive (mainly clicking on elements
and filling in form fields) and, on the other hand, it was assumed that almost every
user action caused a request to the server for a new page.

Nevertheless, this is not enough for dealing with modern AJAX-based websites,
which try to replicate the behavior of desktop applications. These sites can respond to
a much wider set of user actions (mouse over, keyboard strokes, drag and drop…) and
they can respond to those actions executing scripting code that manipulates the page
at will (for instance, by creating new graphical interface elements on the fly). In addi-
tion, AJAX technology allows requesting information from the server and repainting
only certain parts of the page in response.

In this paper, we propose a set of new techniques to build an automatic web navi-
gation system able to deal with all this complexity. In the generation phase, we also
use the ‘recorder’ metaphor, but substantially modified to support recording a wider
range of events; we also present new methods for identifying the elements participat-
ing in a navigation sequence in a change-resilient manner.

In the execution phase, we use the APIs of commercial web browsers to implement
the automatic web navigation components (the techniques proposed for the recording
phase have been implemented using Microsoft Internet Explorer (MSIE) and the exe-
cution phase has been implemented using both MSIE and Firefox); we take this op-
tion because the approach of creating a custom browser supporting technologies such
as scripting code and AJAX requests is effort-intensive and very vulnerable to small
implementation differences that can make a web page to behave differently when
accessed with the custom browser. In the execution phase, we also introduce a method
to detect when the effects caused by a user action have finished. This is needed be-
cause one navigation step may require the effects of the previous ones to be com-
pleted before being executed.

2 Models

In this section we describe the models we use to characterize the components used for
automated browsing. The main model we rely on is DOM Level 3 Events Model [3].
This model describes how browsers respond to user-performed actions on an HTML
page currently loaded in the browser. Although the degree of implementation of this
standard by real browsers is variable, the key assumptions our techniques rely on are
verified in the most popular browsers (MSIE and Firefox). Therefore, section 2.1
summarizes the main characteristics of this standard that are relevant to our objec-
tives. Secondly, section 2.2 states additional assumptions about the execution model
employed by the browser in what regards to scripting code, including the kind of
asynchronous calls required by AJAX requests. These assumptions are also verified
by current major browsers.

2.1 DOM Level 3 Events Model

In the DOM Level 3 Events Model, a page is modelled as a tree. Each node in the tree
can receive events produced (directly or indirectly) by the user actions. Event types

304 P. Montoto et al.

exist for actions such as clicking on an element (click), moving the mouse cursor over
it (mouseover) or specifying the value of a form field (change), to name a few. Each
node can register a set of event listeners for each event type. A listener executes arbi-
trary code (typically written in a script language such as Javascript). Listeners have
the entire page tree accessible and can perform actions such as modifying existing
nodes, removing them, creating new ones or even launching new events.

The event processing lifecycle can be summarized as follows: The event is dis-
patched following a path from the root of the tree to the target node. It can be handled
locally at the target node or at any target's ancestors in the tree. The event dispatching
(also called event propagation) occurs in three phases and in the following order:
capture (the event is dispatched to the target’s ancestors from the root of the tree to
the direct parent of the target node), target (the event is dispatched to the target node)
and bubbling (the event is dispatched to the target's ancestors from the direct parent of
the target node to the root of the tree). The listeners in a node can register to either the
capture or the bubbling phase. In the target phase, the events registered for the capture
phase are executed before the events executed for the bubbling phase. This lifecycle is
a compromise between the approaches historically used in major browsers (Microsoft
IE using bubbling and Netscape using capture).

The order of execution between the listeners associated to an event type in the
same node is registration order. The event model is re-entrant, meaning that the exe-
cution of a listener can generate new events. Those new events will be processed
synchronously; that is, if li, li+1 are two listeners registered to a certain event type in a
given node in consecutive order, then all events caused by li execution will be proc-
essed (and, therefore, their associated listeners executed) before li+1 is executed.

 n1

n2

n3

n4

e1 {lc311, lc312, lc313} {lb311, lb312}

e1 {lc211} {lb211}

e1 {lc111, lc112} {lb111}

e2 {lc421, lc422} {lb421, lb422}

 function lc313() {
 n4.fireEvent("e2")
 }

{lc111, lc112, lc211, lc311, lc312, lc313, {lc421, lc422, lb421, lb422}, lb311, lb312 lb211, lb111}

Fig. 1. Listeners Execution Example

Example 1: Fig. 1 shows an excerpt of a DOM tree and the listeners registered to the
event types e1 and e2. The listeners in each node for each event type are listed in regis-
tration order (the listeners registered for the capture phase appear as lcxyz and the ones
registered for the bubbling phase appear as lbxyz). The figure also shows what listeners
and in which order would be executed in the case of receiving the event-type e1 over
the node n3, assuming that the listener on the capture phase lc313 causes the event-type
e2 to be executed over the node n4.

DOM Level 3 Events Model provides an API for programmatically registering new
listeners and generating new events. Nevertheless, it does not provide an introspection

 Web Navigation Sequences Automation in Modern Websites 305

API to obtain the listeners registered for an event type in a certain node. As we will
see in section 3.1, this will have implications in the recording process in our system.

2.2 Asynchronous Functions and Scripts Execution Model

In this section we describe the model we use to represent how the browser executes
the scripting code of the listeners associated to an event. This model is verified by the
major commercial browsers.

The script engine used by the browser executes scripts sequentially in single-thread
mode. The scripts are added to an execution queue in invocation order; the script
engine works by sequentially executing the scripts in the order specified by the queue.

When an event is triggered, the browser obtains the listeners that will be triggered
by the event and invokes its associated scripts, causing them to be added to the execu-
tion queue. Once all the scripts have been added, execution begins and the listeners
are executed sequentially.

The complexity of this model is slightly increased because the code of a listener
can execute asynchronous functions. An asynchronous function executes an action in
a non-blocking form. The action will run on the background and a callback function
provided as parameter in the asynchronous function invocation will be called when
the action finishes.

The most popular type of asynchronous call is the so-called AJAX requests. An
AJAX request is implemented by a script function (i.e. in Javascript, a commonly
used one is XMLHTTPRequest) that launches an HTTP request in the background.
When the server response is received, the callback function is invoked to process it.

Other popular asynchronous calls establish timers and the callback function is in-
voked when the timer expires. In this group, we find the Javascript functions setTime-
out(ms) (executes the callback function after ms milliseconds) and setInterval(ms)
(executes the callback function every ms milliseconds). Both have associated cancel-
lation functions: clearTimeout(id) and clearInterval(id).

It is important to notice that, from the described execution model, it is inferred the
following property:

Property 1: The callback functions of the asynchronous calls launched by the listen-
ers of an event will never be executed until all other scripts associated to that event
have finished.

The explanation for this property is direct from the above points: all the listeners
associated to an event are added to the execution queue first, and those listeners are
the ones invoking the asynchronous functions; therefore, the callback functions will
always be positioned after them in the execution queue even if the background action
executed by the asynchronous call is instantaneous.

3 Description of the Solution

In this section we describe the proposed techniques for automated web navigation.
First, we deal with the generation phase: section 3.1 describes the process used to
record a navigation sequence in our approach. Section 3.2 deals with the problem of
identifying the target DOM node of a user action: this problem consists in generating

306 P. Montoto et al.

a path to the node that can be used later at the execution phase to locate it in the page
and section 3.3 deals with the execution phase.

3.1 Recording User Events

The generation phase has the goal of recording a sequence of actions performed by
the user to allow reproducing them later during the execution phase.

A user action (e.g. a click on a button) causes a list of events to be issued to the
target node, triggering the invocation of the listeners registered for them in the node
and its ancestors, according to the execution model described in the previous section.
Notice that each user action usually generates several events. For instance, the events
generated when the user clicks on a button include, among others, the mouseover
event besides of the click event, since in order to click on an element it is previously
required to place the mouse over it. Recording a user action consists in detecting
which events are issued, and in locating the target node of those events.

Fig. 2. Recording Method

In previous proposals, cf. [1,6,9], the user can record a navigation sequence by per-
forming it in the browser in the same way as any other navigation. The method used
to detect the user actions in these systems is typically as follows: the recording tool
registers its own listeners for the most common events involved in navigations
(mainly clicks and the events involved in filling in form fields) in anchors and form-
related tags. This way, when a user action produces one of the monitored event-types
e on one of the monitored nodes n, the listener for e in n is invoked, implicitly identi-
fying the information to be recorded.

Nevertheless, the modern AJAX-based websites can respond to a much wider set
of user actions (e.g. placing the mouse over an element, producing keyboard strokes,
drag and drop…); in addition, virtually any HTML element, and not only traditional
navigation-related elements, can respond to user actions: tables, images, texts, etc.

Extending the mentioned recording process to support AJAX-based sites would in-
volve registering listeners for every event in every node of the DOM tree (or, alterna-
tively, registering listeners for every event in the root node of the page, since the
events execution model ensures that all events reach to the root). Registering listeners

 Web Navigation Sequences Automation in Modern Websites 307

for every event has the important drawback that it would “flood” the system by
recording unnecessary events (e.g. simply moving the mouse over the page would
generate hundreds of mouseover and mouseout events); recall that, as mentioned in
section 2, it is not possible to introspect what events a node has registered a listener
for; therefore, it is not possible to use the approach of registering a listener for an
event-type e only in the nodes that already have other listeners for e.

Therefore, we need a new method for recording user actions. Our proposal is
letting the user explicitly specify each action by placing the mouse over the target
element, clicking on the right mouse button, and choosing the desired action in the
contextual menu (see Fig. 2). If the desired action involves providing input data into
an input element or a selection list, then a pop-up window opens allowing the user to
specify the desired value (see Fig. 2). Although in this method the navigation re-
cording process is different from normal browsing, it is still fast and intuitive: the user
simply changes the left mouse button for the right mouse button and fills in the value
of certain form fields in a pop-up window instead of in the field itself.

This way, we do not need to add any new listener: we know the target element by
capturing the coordinates where the mouse pointer is placed when the action is speci-
fied, and using browser APIs to know what node the coordinates correspond to. The
events recorded are implicitly identified by the selected action.

Our prototype implementation includes actions such as click, mouseover, mouse-
out, selectOption (selecting values on a selection list), setText (providing input data
into an element), drag and drop. Since each user action actually generates more than
one event, each action has associated the list of events that it causes: for instance, the
click action includes, among others, the events mouseover, click and mouseout; the
setText action includes events such as keydown and keyup (issued every time a key is
pressed) and change (issued when an element content changes).

This new method has a problem we need to deal with. By the mere process of ex-
plicitly specifying an action, the user may produce changes in the page before we
want them to take place. For instance, suppose the user wishes to specify an action on
a node that has a listener registered for the mouseover event; the listener opens a pop-
up menu when the mouse is placed over the element. Since the process of specifying
the action involves placing the mouse over the element; the page will change its state
(i.e. the pop-up menu will open) before the user can specify the desired action. This is
a problem because the process of generating a path to identify the target element at
the execution phase (described in detail in section 3.2) cannot start until the action has
been specified. But, since the DOM tree of the page has already changed, the process
would be considering the DOM tree after the effects of the action have taken place
(the element may even no longer exist because the listeners could remove it!).

We solve this problem by deactivating the reception of user events in the page dur-
ing the recording process. This way, we can be sure that no event alters the state of
the page before the action is specified. Once the user has specified an action, we use
the browser APIs to generate on the target element the list of events associated to the
action; this way, the effects of the specified action take place in the same way as if the
user would have performed the action, and the recording process can continue.

Another important issue we need to deal with is ensuring that a user does not
specify a new action until the effects caused by the previous one have completely
finished. This is needed to ensure that the process for generating a path to identify at

308 P. Montoto et al.

the execution phase the target element of the new action has into account all the
changes in the DOM tree that the previous action provokes. Detecting the end of the
effects of an action is far from a trivial problem; since it is one of the crucial issues at
the execution phase, we will describe how to do it in section 3.3.

3.2 Identifying Elements

During the generation phase, the system records a list of user actions, each one per-
formed on a certain node of the DOM tree of the page. Therefore, we need to generate
an expression to uniquely identify the node involved in each action, so the user action
can be automatically reproduced at the execution phase.

An important consideration is that the generated expression should be resilient to
small changes in the page (such as the apparition in the page of new advertisement
banners, new data records in dynamically generated sections or new options in a
menu), so it is still valid at the execution stage.

To uniquely identify a node in the DOM tree we can use an XPath [15] expression.
XPath expressions allow identifying a node in a DOM tree by considering informa-
tion such as the text associated to the node, the value of its attributes and its ancestors.
For our purposes, we need to ensure that the generated expression on one hand identi-
fies a single node, and on the other hand it is not too specific to be affected by the
formerly mentioned small changes. Therefore, our proposal tries to generate the less
specific XPath expression possible that still uniquely identifies the target node. The
algorithm we use for this purpose is presented in section 3.2.1.

In addition, the generated expressions should not be sensible to the use of session
identifiers, to ensure that they will still work in any later session. Section 3.2.2 pre-
sents a mechanism to remove session identifiers from the generated expressions.

3.2.1 Algorithm for Identifying Target Elements
This section describes the algorithm for generating the expression to identify the tar-
get element of a user action.

As it has already been said, the algorithm tries to generate the less specific XPath
expression possible that still uniquely identifies the target node. More precisely, the
algorithm first tries to identify the element according to its associated text (if it is a
leaf node) and the value of its attributes. If this is not enough to uniquely identify the
node, its ancestors (and the value of their attributes) will be recursively used. The
algorithm to generate the expression for a node n consists of the following steps:

0) Initialize X{n} (the variable that will contain the generated expression) to the
empty string. Initialize the variable ni to the target node n.

1) Let m be the number of attributes of ni, Tni be the tag associated to ni and tni
be its associated text. Try to find a minimum set of r attributes
{ani1,…,anir}r<=m, of ni such that the following expression (‘+’ represents the
concatenation of two strings):

“//” + Tni [@ani1=vni1 and… and @anir=vnir and @text()=tni] + X{n}+”/”
uniquely identify n. (NOTE:The fragment and text()=tni of the expression would
only be added if ni is a leaf node, since only leaf nodes have associated text).
2) If the set is found then

2.1) return the expression from step 1.
else

 Web Navigation Sequences Automation in Modern Websites 309

2.2) Let {ani1,…,anim} be the set of all attributes of ni. Set X{n} = “/”+Tni
[@ani1=vni1 and… and @anim=vnim and @text()=tni] + X{n}; that is, we add condi-
tions by all the attributes of ni to the expression.
3) If ni is not the root of the DOM tree then

3.1) Set ni=parent(ni) and go to step 1
 else

3.2) Obtain the relative position j of n in the page with respect to all the
nodes verifying the current expression X{n}. Return “/”+ X{n}+ [j] + “/”.

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

TR

TD

A

DIV

DIV

DIV

A

TD

text = "More Info"
atrbs = {class= "c1"}

attrbs = {href= "#"}

attrbs = {id= "id1"}

attrbs (attributes) = {}

attrbs = {}

attrbs = {href="#"}

attrbs = {id="id2",
class= "c2"}

text() = "More Info"
attrbs = {class="c1"}

First Iteration:
X{n} = /DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Second Iteration:
X{n} = /A[@href="#"]/DIV[@class="c1" and text()="More Info"]
(/X{n}/ does not identify the grayed element)

Third Iteration:
X{e} = /TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info“]
(/X{n}/ identifies the grayed element)

Result:
//TD[@id="id1"]/A[@href="#"]/DIV[@class="c1“ and text()="More Info"]/

Fig. 3. Algorithm for Identifying Target Elements Example

Fig. 3 shows an example sub-tree and the X{n} value in each iteration of the algo-
rithm to generate the XPath expression to identify the grayed DIV node.

Now, we provide further detail about some of the steps. The step 1 of the algorithm
tries to identify the minimum set of attributes of the currently considered node ni, that
allow completing the identification of n. To do this, we add attributes one by one until
either n is uniquely identified or all the attributes of ni, have been added. To decide
the order in which we add the attributes, we have defined an order for the attributes of
each HTML tag based on its estimated selectivity (that is, how much they contribute
to narrow the selection). For instance, we consider the id and name attributes highly
selective for all HTML tags and the href attribute highly selective for the A tag, while
we consider the class attribute as of low selectivity.

Step 3.2 considers the case when the algorithm reaches the root, and the generated
expression still does not uniquely identify n. In that case, the algorithm adds to the
XPath expression the relative position in the page of n with respect to the rest of ele-
ments identified by the expression.

3.2.2 Removing Session IDs
Many websites use session identifiers in URL attributes to track user sessions. In
these sites, the values of attributes containing URLs may vary in each session. Since
our method to identify target elements at the execution phase relies on attribute val-
ues, this causes a problem for our approach.

Our prototype implementation recognizes the main standard formats for including
session identifiers in URLs. Unfortunately, many websites do not use any standard,
but include the session identifier using arbitrary query parameters.

310 P. Montoto et al.

Therefore, we propose an algorithm to generalize the value of attributes containing
URLs. The algorithm is based on two observations: 1) a query parameter acting as
session identifier must take the same value in all the URLs of the page in which it
appears; 2) if a query parameter takes the same value in all URLs with the same host
and query parts, then it is irrelevant for the purpose of identifying an element in the
DOM tree by the value of its attributes.

The basic idea of the algorithm derives directly from the above observations: find
all the query parameters that take the same value in all the URLs in which they appear
and ignore their values for identification purposes. Although some of the identified
query parameters may not be session identifiers, according to observation 2 it is safe
to ignore their values anyway.

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

//A[matches(@href,"listById?id=1&order=[^&=]+&sid=[^&=]+")]/

DIV

A

A

DIV

{href="listById?id=1&order=T&sid=ac456s"}

{href="listById?id=3&order=T&sid=ac456s"}

A

{href="listAll?order=F&sid=ac456s"}

Fig. 4. Removing Session IDs Example

Fig 4 shows a simple example of the algorithm where n is the grayed node in the
figure. The query parameters named order and sid take the same value in all the
URLs with the same path (in the example the page does not contain other URLs with
the same path). Therefore, they are considered irrelevant for node identification pur-
poses. (NOTE: matches() is XPath function for applying regular expressions).

3.3 Execution Phase

The generation phase generates a program capturing the navigation sequence recorded
by the user. The execution phase runs the program in the automatic navigation
component.

A first consideration is that we opt to use the APIs of commercial web browsers to
implement the automatic web navigation components instead of building a simplified
custom-browser. The main reason for taking this option is that web 2.0 sites make an
intensive use of scripting languages and support a complex event model. Creating a
custom browser supporting those technologies in the same way as commercial brows-
ers is very effort-intensive and, in addition, is extremely vulnerable to small imple-
mentation differences that can make a web page to behave differently when accessed
with the custom browser than when accessed with a “real” browser. Our techniques
for the execution phase have been implemented in both MSIE and Firefox.

To reproduce an action in the navigation sequence, there are three steps involved:

1. Locating the target node in the DOM tree of the page.
2. Generating the recorded event (or list of events) on the identified node.

 Web Navigation Sequences Automation in Modern Websites 311

3. Wait for the effects of the events to finish. This is needed because the following
action can need the effects of the previous ones to be completed (e.g. the action
n+1 can generate an event on a node created in the action n).

The implementation of 1) and 2) is quite straightforward using browser APIs and
given the output of the recording process. Step 1) uses the XPath expression produced
by the process described in section 3.2, and step 2) uses the events recorded in the
process described in section 3.1.

In turn, step 3) is difficult because browser APIs do not provide any way of detect-
ing when the effects on the page of issuing a particular event have finished. These
effects can include dynamically creating or removing elements in the DOM tree,
maybe also having into account the response to one or several AJAX requests to the
server. Previous works have addressed this problem by establishing a timer after the
execution of an event before continuing execution. This solution has the usual draw-
backs associated to a fixed timeout in a network environment: if the specified timeout
is short, then when the response to an asynchronous AJAX request is slower than
usual (or even if the machine is very heavily loaded), the sequence may fail. If, in
turn, we use a higher timeout valid even in those circumstances, then we are introduc-
ing an unnecessary delay when the server is responding normally.

The remaining of this section explains the method we propose to detect when the
effects caused directly or indirectly by a certain event have finished. This way, the
system waits the exact time required. The correctness of the method derives from the
assumptions stated in section 2, which are verified by the major commercial browsers.

The method we use to detect when the effects of an event-type e generated on a
node n have finished consists of the following steps:

1. We register a new listener l to capture the event e in n. The code of the listener l
invokes an asynchronous function specifying the callback function cf. What asyn-
chronous function is actually invoked in l is mainly irrelevant; for instance, in
Javascript, we can simply invoke setTimeout(cf,0). Notice that as consequence of
property 1 in section 2, it is guaranteed that cf will be executed after all the listen-
ers triggered by the execution of e have finished. Therefore, if the listeners had not
made any other asynchronous call, then the control arriving to cf would indicate
that the effects of e had finished and the navigation sequence execution could con-
tinue. Nevertheless, since the listeners can actually execute other asynchronous
calls, this is not enough.

2. To be notified of every asynchronous call executed by the listeners triggered by e,
we redefine those asynchronous functions providing our own implementation of
them (for instance, in Javascript we need to redefine setTimeout, setInterval and
the functions used to execute AJAX requests such as XMLHTTPRequest). The
template of our implementation of each function is shown in Fig 5. The function
maintains a counter that is increased every time the function is invoked (the
counter is maintained as a global variable initialized to zero for every emitted
event). After increasing the counter, the function calls the former standard imple-
mentation of the asynchronous function provided by the browser but substituting
the received callback function by a modified one (the new_cf function created in
Figure 5). This new callback function invokes the original callback function and

312 P. Montoto et al.

then decreases the counter. This way, the counter always takes the value of the
number of currently active calls.

3. When the callback function cf from step 1 is executed, it polls the counters associ-
ated to the asynchronous functions. When they are all 0, we know the asynchro-
nous calls have finished and execution can proceed.

4. There may be some cases where the effects of e actually never finish. This is for
instance the case when the setInterval function is used. This function executes the
callback function at specified time intervals and, therefore, its effects last indefi-
nitely unless the function clearInterval is used. In the generation-phase, if the set-
Interval calls are not cleared after a certain timeout, the system notifies it to the
user so she/he can specify the desired action, which can be to wait a fixed time or
wait for a certain number of intervals to complete.

Fig. 5. Asynchronous Function Redefinition

In addition of the possible effects of an event in the current page, the event can also
make the browser (or a frame inside the page) navigate to a new page. When the new
page/frame is loaded (this can be detected using browser APIs), the load event is
generated; this event has as target the body element of the page. Before continuing the
execution of the navigation sequence, we need to wait until the end of the effects of
the load event have finished, using the same technique used for the rest of events.

4 Evaluation

To evaluate the validity of our approach, we tested the implementation of our tech-
niques with a wide range of AJAX-based web applications. We performed two kinds
of experiments:

1. We selected a set of 75 real websites making extensive use of scripting code and
AJAX technology. We used the prototype to record and reproduce one navigation
sequence on each site. The navigation sequences automated the main purpose of
the site. For instance, in electronic shops we automated the process of searching
products; in webmail sites we automated the process required to access e-mails.

old_asyncFunction = standardAsyncFunction;
new_asyncFunction = new function(param1,param2,…,paramn,cf) {
 counter++; //counter is a global variable
 new_cf = new function() {
 result = cf();
 counter--;
 if (counter==0) {
 notifyEndAsyncFunctions();
 }
 return result;
 };
 old_asyncFunction(param1,param2,…,paramn,new_cf);
 };
standardAsyncFunction = new_asyncFunction;

 Web Navigation Sequences Automation in Modern Websites 313

2. Some of the main APIs for generating AJAX-based applications such as Yahoo!
User Interface Library (YUI) [16] and Google Web Toolkit (GWT) [4] include a
set of example websites. At the time of testing, GWT included 5 web applications
and YUI included 300 examples. We recorded and executed 12 navigation se-
quences in the web applications from GWT ensuring that every interface element
from the applications was used at least once. In the case of YUI, we recorded 40
sequences in selected examples (choosing the more complex examples). This sec-
ond group of tests is useful because many real websites use those toolkits.

Table 1. Experimental Results

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

Website Played Website Played Website Played

www.a9.com/java www.fidelityasap.com www.optize.es

www.abebooks.com www.fnac.es www.paginasamarillas.es

www.accorhotels.com www.gmail.com www.penguin.co.uk

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.addall.com www.gongdiscos.com people.yahoo.com

www.voyages-sncf.com www.hotelopia.es code.jalenack.com/periodic

www.alitalia.com/ES_ES/ www.hotelsearch.com www.pixmania.com

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.allbooks4less.com www.iberia.com www.planethome.de

www.amadeus.net www.iit.edu www.priceline.com

www.amazon.com www.imdb.com/search www.renault.es

store.apple.com www.infojobs.net www.renfe.es

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com

www.atrapalo.com www.jet4you.com www.reuters.com

autos.aol.com www.laborman.es www.rumbo.es

www.balumba.es www.landrover.com www.shop-com.co.uk

www.barnesandnoble.com www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.es.lastminute.com www.sparkassen-immo.de

www.bookdepository.co.uk www.marsans.es www.sterling.dk

www.booking.com www.meridiana.it www.ticketmaster.com

www.carbroker.com.au www.msnbc.msn.com tudulist.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com

www.casadellibro.com www.muchoviaje.com www.tuifly.com/es

www.cervantesvirtual.com www.musicstore.com es.venere.com

www.cia.gov www.myair.com www.viajar.com

controlp.com www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.mymusic.com www.vuelosbaratos.es

www.digitalcamerareview.com www.es.octopustravel.com www.webpagesthatsuck.com

www.ebay.es www.ofertondelibros.com news.search.yahoo.com/news/advanced

www.edreams.es www.okipi.com news.yahoo.com

www.elcorteingles.es vols.opodo.fr mail.yahoo.com

The techniques proposed for the recording phase have been implemented using

MSIE and the execution phase has been implemented using both MSIE and Firefox.
In each group of experiments, we recorded the navigation sequences on MSIE and
executed them using both MSIE and Firefox. The execution on MSIE allows us to
measure the effectiveness of our techniques in both the recording and execution
phases. We execute the sequences in Firefox to check that the algorithm presented in
section 3.3 is valid in both browsers. Since MSIE and Firefox usually build different
DOM trees for the same pages, in some cases the XPath expression generated by the
recording in MSIE were manually modified to fit the DOM tree in Firefox. Notice
that this is not a limitation of our approach: it only highlights the issue that the
browser used for the recording and execution phase should be the same.

The results of the evaluation were encouraging (see Table 1). In the first set of ex-
periments (real websites), 74 of 75 sequences were recorded and executed fine.

314 P. Montoto et al.

In the case of news.yahoo.com, the XPath expression generated to identify an ele-
ment used an URL with a query parameter which changed every time the page was
reloaded. This parameter is not a session identifier since it changes its value during
the same session. If the recorded XPath expression is modified manually to ignore the
value of this parameter, then the sequence works correctly. To solve problems like
this, we could include redundant localization information; this way, if an element
cannot be identified using the “minimal” expression, then we can still use the other
information to search the nearest match in the page ([1] uses a similar idea that could
be extended to deal with these cases, although they do not use other necessary infor-
mation, such as hierarchical information). Another option is allowing the user to pro-
vide several examples of the same sequence for detecting those parameters.

The second group of tests was completely successful in GWT applications, while
in the YUI case only one sequence could not be recorded. The problem was that the
blur event was not being generated with the setText action. Once this was corrected,
the sequence could be recorded.

5 Related Work

WebVCR [1] and WebMacros [11] were pioneer systems for web navigation se-
quences automation using the “recorder metaphor”. Both systems were only able to
record a reduced set of events (clicks and filling in form fields) on a reduced set of
elements (anchors and form-related elements). In the execution phase they relied on
HTTP clients that lacked the ability to execute scripting code or to support AJAX
requests. Furthermore, the techniques they used for identifying the target elements of
user actions were based on the text associated to the elements and the value of some
specific pre-configured attributes (e.g. href for A tags and src for FORM tags).

Wargo [9] introduced using a commercial browser as execution component, thus
supporting websites using scripting languages and guaranteeing that the websites will
behave in the execution phase in the same way as when a human user accesses it.
Nevertheless, it still showed the remaining previously mentioned problems.

Instead of using the “recorder” metaphor, in SmartBookmarks [6] the macros are
generated retroactively; when the user reaches a page and bookmarks it, the system
tries to automatically find the starting point of the macro. In order to do this, Smart-
Bookmarks permanently monitors the user actions. As it was explained in section 3.1,
recording user actions in the browser as the user navigates forces to either restrict the
set of monitored events or suffering from an “event-flooding” problem. SmartBook-
marks only supports the events click, load and change. Another drawback is that it
relies on timeouts to determine when to continue executing the sequence. HtmlUnit
[5] is an open-source tool for web applications unit testing. HtmlUnit does not pro-
vide a recording tool; instead, the user needs to manually create the navigation se-
quences using Java coding. In addition HtmlUnit uses its own custom browser instead
of relying on conventional browsers. Although their browser has support for many
Javascript and AJAX functionalities, this is vulnerable to small implementation dif-
ferences that can make a web page to behave differently when accessed with the cus-
tom browser.

 Web Navigation Sequences Automation in Modern Websites 315

Selenium [13] is a suite of tools to automate web applications testing. Selenium
uses the recorder metaphor through a toolbar installed in Firefox. It is only able to
record a reduced set of events. To identify elements, Selenium uses a system based on
the text or generates an XPath expression that does not try to be resilient to small
changes. Another drawback is that Selenium does not detect properly the end of the
effects caused by a user action in the recording process.

Sahi [12] is another open-source tool for automated testing of web applications.
Sahi includes a navigation recording system and it allows the sequences to be exe-
cuted in commercial browsers. To use Sahi, the user configures its navigator to use a
proxy. Every time the browser requests a new page, the proxy retrieves it, adds listen-
ers for monitoring user actions, and returns the modified page. Using a proxy makes
the recording system independent of the web browser used. Nevertheless, using a
proxy does not allow using approaches where the user explicitly indicates the actions
to record; therefore, as discussed previously, it forces to choose between either moni-
toring only a reduced set of events or suffering from “event flooding”. Sahi only sup-
ports recording events such as click and change. Other events such as mouseover can
be used at the execution phase if the user manually codes the navigation scripts. An-
other drawback is that they do not detect the end of the effects caused by a user ac-
tion, using timeouts instead.

In the commercial software arena, QEngine [10] is a load and functional testing
tool for web applications. QEngine also uses the recorder metaphor through a toolbar
installed in MSIE (also used as execution component). In addition of the most typical
events supported by the previously mentioned systems, QEngine also supports a form
of explicitly specifying mouseover events on certain elements, consisting in placing
the mouse over the target element for more than a certain timeout (avoiding this way
the “flooding” problem). Nevertheless, they do not capture other events such as
mouseout or mousemove. To identify elements, they use a simple system based on the
text, attributes and relative position of the element. While this may be enough for
application-testing purposes where changes are controlled, it is not enough to deal
with autonomous web sources. In addition, as previous systems, QEngine does not
detect the end of the effects of an action. iOpus [7] is another web automation tool
that uses the recorder metaphor. Their drawbacks with respect to our proposal are
almost identical to those mentioned for QEngine.

Kapow [8] is yet another web automation tool oriented to the creation of mashups
and web integration applications. Kapow uses its own custom browser. Therefore, in
our evaluation it showed to be vulnerable to the formerly mentioned drawback: small
implementation differences can make a web page to behave differently. For instance,
from the set of 12 sequences from Google Web Toolkit we used in our tests, the Ka-
pow browser could only successfully reproduce 1 of them. To identify the target ele-
ments, Kapow generates an XPath expression that tries to be resilient to small
changes, although the details of the algorithm they use have not been published.

With respect to the algorithm to identify target elements, [2,14] have also ad-
dressed the problem of generating change-resilient XPath expressions. In those ap-
proaches, the user provides several example pages identifying the target element; and
the system generalizes the expression by examining the differences between them. In
our case, that would force the user to record the navigation sequence several times.
We believe that process would be much more cumbersome to the user.

316 P. Montoto et al.

6 Conclusions

We have presented a set of new techniques to record and execute web navigation
sequences in AJAX-based websites. Previous proposals show important limitations in
the range of user actions that they can record and execute, the methods they use for
identifying the target elements of user actions and/or how they wait for the effects of a
user action to finish. Our techniques have been successfully implemented using both
MSIE and Firefox. Our main contributions are a new method for recording navigation
sequences able to scale to a wider range of events and a novel method to detect when
the effects caused by a user action (including the effects of scripting code and AJAX
requests) have finished, without needing to use inefficient timeouts. We have also
evaluated our approach with more than 100 web applications, obtaining a high degree
of effectiveness.

References

1. Anupam, V., Freire, J., Kumar, B., Lieuwen, D.: Automating web navigation with the
WebVCR. In: Proceedings of WWW 2000, pp. 503–517 (2000)

2. Davulcu, H., Yang, G., Kifer, M., Ramakrishnan, I.V.: Computational Aspects of Resilient
Data Extraction from Semistructured Sources. In: Proc. of ACM Symposium on Principles
of Database Systems (PODS), pp. 136–144 (2000)

3. Document Object Model (DOM) Level 3 Events Specification,
http://www.w3.org/TR/DOM-Level-3-Events/

4. Google Web Toolkit, http://code.google.com/webtoolkit/
5. HtmlUnit, http://htmlunit.sourceforge.net/
6. Hupp, D., Miller, R.C.: Smart Bookmarks: automatic retroactive macro recording on the

web. In: Proc. of ACM Symposium on User Interface Software and Technology, UIST
2007 (2007)

7. iOpus, http://www.iopus.com
8. Kapow, http://www.openkapow.com
9. Pan, A., Raposo, J., Álvarez, M., Hidalgo, J., Viña, A.: Semi automatic wrapper-

generation for commercial web sources. In: Proc. of IFIP WG8.1 Working Conference on
Engineering Information Systems in the Internet Context 2002, pp. 265–283 (2002)

10. QEngine, http://www.adventnet.com/products/qengine/index.html
11. Safonov, A., Konstan, J., Carlis, J.: Beyond Hard-to-Reach Pages: Interactive, Parametric

Web Macros. In: Proc. of the 7th Conference on Human Factors & the Web (2001)
12. Sahi, http://sahi.co.in/w/
13. Selenium, http://seleniumhq.org/
14. Lingam, S., Elbaum, S.: Supporting End-Users in the Creation of Dependable Web Clips.

In: Proc. of WWW 2007, pp. 953–962 (2007)
15. XML Path Language (XPath), http://www.w3.org/TR/xpath
16. Yahoo! User Interface Library (YUI), http://developer.yahoo.com/yui

Supporting Personal Semantic Annotations in
P2P Semantic Wikis

Diego Torres1, Hala Skaf-Molli2, Alicia Dı́az1, and Pascal Molli2

1 LIFIA, Facultad de Informática,
Universidad Nacional de La Plata, Argentina

{diego.torres,alicia.diaz}@lifia.info.unlp.edu.ar
2 LORIA – INRIA Nancy-Grand Est

Nancy Université, France
{skaf,molli}@loria.fr

Abstract. In this paper, we propose to extend Peer-to-Peer Semantic
Wikis with personal semantic annotations. Semantic Wikis are one of
the most successful Semantic Web applications. In semantic wikis, wikis
pages are annotated with semantic data to facilitate the navigation, infor-
mation retrieving and ontology emerging. Semantic data represents the
shared knowledge base which describes the common understanding of
the community. However, in a collaborative knowledge building process
the knowledge is basically created by individuals who are involved in a so-
cial process. Therefore, it is fundamental to support personal knowledge
building in a differentiated way. Currently there are no available semantic
wikis that support both personal and shared understandings. In order
to overcome this problem, we propose a P2P collaborative knowledge
building process and extend semantic wikis with personal annotations
facilities to express personal understanding. In this paper, we detail the
personal semantic annotation model and show its implementation in P2P
semantic wikis. We also detail an evaluation study which shows that per-
sonal annotations demand less cognitive efforts than semantic data and
are very useful to enrich the shared knowledge base.

1 Introduction

Semantic Wikis [1,2,3,4] are one of the most successful Semantic Web applica-
tions. They are widely used for collaborative knowledge building. In semantic
wikis [1,3], wikis pages are annotated with semantic data to facilitate the naviga-
tion, the information retrieving and ontology emerging. Semantic data represents
the shared knowledge base which describes the common understanding of the
community. The knowledge base is built collaboratively through an iterative and
social process.

However, collaborative knowledge building is basically a spiraled process
where knowledge first emerges at individual context and then is socialized [5,6].
This process [7,6] involves externalization, publication, internalization and reac-
tion. Most of semantic wikis only support the knowledge socialization, but it is

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 317–331, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

318 D. Torres et al.

fundamental to support personal knowledge building too [8]. Personal Seman-
tic Wikis [8,9] provide an easy way to manage personal knowledge often with-
out collaborative functionality. However, to carry out a collaborative knowledge
building activity, user needs to manage and combine both shared and personal
knowledge.

Existing collaborative knowledge building systems support partially or com-
pletely this process. For instance, [10,11,12] are collaborative knowledge build-
ing systems, however, they are more oriented towards collaborative ontology
development rather than ontology emerging. Other systems like semantic wikis
[1,2,3,4,8] are more appropriate to support collaborative knowledge emerging,
however, they do not provide functionalities to manage combined personal and
shared understandings. For example, Semantic MediaWiki (SMW) only enables
shared knowledge building. On the other hand, SemperWiki [9] only supports
personal knowledge building. Currently, there are no semantic wikis that help
people to combine and manage in a usable way both kind of knowledge.

The goal of this work is to propose an innovative semantic wiki approach
that supports both personal and shared knowledge building. In this approach,
the shared knowledge is unique and accessible to everyone, while the personal
knowledge is only accessible by its owner and represents the user private view
(perspective) of the shared one. Personal knowledge can differ from the shared
one, but it can also have overlapped parts.

For the emerging of shared knowledge, we follow the same approach as SMW
where shared semantic annotations are embedded in the wiki text by using a
suitable syntaxis. For the personal knowledge, we propose Personal Semantic
Annotations to externalize personal understanding. Personal semantic annota-
tions are associated to the wiki page and they are only accessed by the owner
user. For the end-user, the personal semantic annotations look like tags, however
they are semantically richer: they support categories and individuals.

We believe that the addition of Personal Semantic Annotations to semantic
wikis enables:

– To support the individual understanding in the collaborative knowledge
building process [6]

– To provide personalized knowledge retrieving, structuring and navigation.
– To enable a combined personal and shared knowledge retrieving.
– To enrich the shared semantic annotations and to augment, therefore, the

shared knowledge base.

Moreover, adding personal semantic annotations and shared ones involve com-
plementary activities. Whereas adding a shared semantic annotation seems to
be suitable during editing activity, adding a personal one seems to be more suit-
able during browsing activity. In order to validate these hypothesis, we have
conducted an evaluation study.

In this paper, we introduce a peer to peer semantic wiki called P-Swooki
that supports both personal and shared knowledge building. P-Swooki extends
a peer-to-peer semantic wiki Swooki [3] by adding personal knowledge building.

Supporting Personal Semantic Annotations in P2P Semantic Wikis 319

We choose to validate our approach in a peer to peer semantic wiki because
in a P2P architecture information dissemination is easily controlled i.e. shared
annotations are broadcasted and integrated by all peers while personal semantic
annotations remain local.

The paper is organized as follows. The next section 2 gives a brief background
about collaborative knowledge building process. Section 3 introduces a P2P col-
laborative knowledge building process and discusses the personal annotations
problematic. Sections 4 and 5 present the implementation and architecture of
P-Swooki. Section 6 details a usage study which shows that personal annota-
tions demand less cognitive efforts than the shared one and they are very useful
to enrich the shared knowledge base. The last section concludes the paper and
points further works.

2 Background: Collaborative Knowledge Building

The majority of works on knowledge management focus on organizational knowl-
edge management [13,14]. Many of them follow the traditional KM approach [5]
to creates large centralized knowledge repositories, in which corporate knowledge
is collected, represented and organized, according to a single - shared - concep-
tual schema [15]. In [16], the authors noted that ”This centralized approach -and
its underling objectivist epistemology- is one of the reasons why so many KM sys-
tems are deserted by users”. In [13,16], the authors propose a P2P organizational
knowledge management in order to make organizational memory more flexible.
However, this approach is more suitable to knowledge discovery and propagation
rather than collaborative and personal knowledge building.

Collaborative knowledge building focuses on understanding as a learning pro-
cess where personal understanding can not be built internally without social in-
teraction. People need to participate in a social process and create new knowledge
collaboratively. Gerry Stahl in [6] proposes a conceptual collaborative knowledge
building model which shows the ”mutual constitution of the individual and the
social knowledge building as a learning process”, as depicted in the figure 1. This
process should be adapted to the P2P semantic wikis context.

Stahl’s process starts with the description of the personal understanding by
specifying personal beliefs, which are tacit. Then, they can be articulated in
a ”language” and enters into a social process of interaction with other people
and their shared understanding. Later, this shared knowledge enters again in
the personal understanding and provokes a change in personal beliefs, motiva-
tions and concerns. When this happens, these modifications become a new tacit
understanding and will be the new starting point for future understanding and
further learning. In [7], the authors reinterpreted this process and proposed a
four steps spiral process for centralized knowledge sharing.

– knowledge externalization where knowledge goes from tacit to explicit. This
is an individual activity.

– Knowledge publication where the knowledge goes from individual context
to share context. This produces a new shared knowledge contribution.

320 D. Torres et al.

– Knowledge internalization where knowledge goes from explicit to tacit and
from the shared to the individual context.

– Reaction is the act of opening a discussion and argumentation linked to
previous shared contribution to achieve a consensus. A reaction always involves
a externalizations and an eventual publication.

In this work, we will adapt the simplified version of Stahl’s process to the
context of P2P semantic wikis.

Fig. 1. Stahl’s Collaborative Knowledge Building Process

3 P2P Collaborative Knowledge Building Approach

In this work, we extend P2P semantic wikis by supporting personal understand-
ing building. In addition to shared semantic annotations embedded in the wiki
text, users can also associate personal semantic annotations to semantic wiki
pages. These private annotations express personal understanding of the users.
For example, if a user was navigating to the semantic wiki page ”Semantic Wiki”
as it is shown in the figure 2, eventually, she would like to annotate this page
as ”Collaborative Tool”, ”Web” and ”Semantic Wiki”. If these annotations only
express personal understanding, they should be private. Other annotations as
”Semantic Web” or ”Wiki” are shared, they could be defined by the same user
or by other users. We can notice that users manage simultaneously both shared
and personal semantic annotations.

We adapt the collaborative knowledge building process to P2P settings as it
is detailed in the next section.

Supporting Personal Semantic Annotations in P2P Semantic Wikis 321

Fig. 2. Adding Personal Semantic Annotation in Semantic Wiki

3.1 P2P Collaborative Knowledge Building Process

A P2P collaborative knowledge building process is a continuous spiraled process
which involves externalization, publication, internalization and reaction, where
externalization and publications steps had to be redefined to support P2P set-
tings. Internalization and Reactions are not modified.

Besides, users manage in a well-differentiated way both, personal and shared
understandings. Every user needs to manage in separated spaces the personal
and shared annotations. We define two repositories: the personal understanding
repository and the shared understanding repository respectively. In a P2P setting,
we consider that every user works in one peer and has both repositories. The
shared understanding repositories will be eventually identical for all users due to
the synchronization algorithms [17].

Our P2P collaborative knowledge building process redefines the externaliza-
tion and publications steps as:

– Externalization where personal knowledge goes from tacit to explicit. Users
use personal semantic annotations to externalize their own knowledge. This is an
individual activity, this knowledge remains private in the context of the personal
understanding space.

– Publication where the knowledge goes from the individual context to the
shared one. As a result, a personal semantic annotation becomes a shared one. In
other words, this involves to move a personal semantic annotation from a given
user’s personal understanding repository to the shared one. This step involves
to replicate the annotation to every user as a shared annotation.

For example, in the figure 3 the ”user1” externalizes ”Collaborative Tool”
personal annotation on her personal repository. Then, when she performs a pub-
lication this personal annotation should be disseminated to every user, even

322 D. Torres et al.

to herself. After the publication, the semantic annotation ”Collaborative Tool”
should appear in every shared understanding repository as a shared annotation.

Consequently, personal understanding building is achieved by supporting the
separation of both knowledge repositories (personal and shared) and the exter-
nalization step.

Fig. 3. P2P Collaborative Knowledge Building Process

This P2P collaborative knowledge building approach has several advantages:

– Personal navigation: the system allows the users to have simultaneously
personal and shared navigation on the the same content. Shared navigation is
the traditional navigation supported by any semantic wiki. Personal navigation
is a new kind of navigation, it is personal and it is the consequence of the personal
semantic annotations. The user has an instant gratification after adding personal
semantic annotations.

– Enrichment of shared knowledge: the user can make public her personal
semantic annotations. Consequently, the shared knowledge is enriched.

– Improve system usability: adding shared semantic annotations and personal
semantic ones involves complementary activities. Whereas adding shared seman-
tic annotations seems to be suitable during the editing activity, adding personal
annotations seems to be more suitable during reading activity.

3.2 Personal Semantic Annotations: Individuals and Categories

Every semantic wiki page could be tagged with several personal semantic anno-
tations as it was shown above. A personal semantic annotation can be a category
or an individual.

Supporting Personal Semantic Annotations in P2P Semantic Wikis 323

Categories define a family of elements. For example, in the previous example
(figure 2), the annotation ”Semantic Wiki” was underlined in order to indicate
that this wiki page is a Semantic Wiki category definition.

Individuals denote elements that fall at least in one category. Semantic Me-
diawiki is an individual that fall in the category Semantic Wiki. An Individual
can belong to many categories.

A semantic wiki page can be annotated with many annotations. For example,
a user personally would like to annotate the wiki page ”Swooki” as a ”Semantic
Wiki” and as ”P2P application”.

Currently, the annotation model is simple, it only considers categories and
individuals. In the near future, we will enrich it in order to support relationships
and attributes.

4 P-Swooki: P2P Collaborative Knowledge Building
System

We have developed P-Swooki, a P2P collaborative knowledge building system
that extends the P2P semantic wiki Swooki with personal semantic annotations.

Shared semantic annotations are already supported by Swooki as detailed in
the section 4.1. Therefore, we had only to add personal annotations functional-
ities to Swooki. In sections 4.2, 4.3 and 4.5, we detail the personal annotations
management, the data model and its associated operations.

4.1 Shared Semantic Annotation Management

In Swooki every peer hosts a copy of all wiki pages and the shared understanding
repository. When a peer updates its local copy of data, it generates a correspond-
ing operation. This operation is processed in four steps:

1. It is executed immediately against the local replica of the peer,
2. it is broadcasted through the P2P network to all other peers,
3. It is received by the other peers,
4. it is integrated to their local replica. If needed, the integration process

merges this modification with concurrent ones, generated either locally or re-
ceived from a remote server.

To synchronize data, Swooki [18] implements a modified version of the P2P
synchronization algorithm detailed in [17]. Swooki synchronization algorithm
ensures the convergence on the wiki text and the shared understanding repository
i.e. when the system is idle, all copies are identical.

4.2 Personal Semantic Annotations Management

In P-Swooki, personal semantic annotations are hosted locally. When a user
updates her personal semantic annotations, she generates a corresponding oper-
ation. The operation is executed locally against the user personal understanding
repository. This operation is not broadcasted to other peers.

324 D. Torres et al.

The process to annotate a wiki page is simple as it was explained above.
The system enables users to annotate a wiki page as a new category or as an
individual of an existing category.

In order to handle personal semantic annotations, we extended Swooki’s data
model and defined new editing operations.

4.3 P-Swooki Data Model

The data model is an extension of Swooki [18,19] data model. Therefore, each
semantic wiki peer has assigned a global unique identifier named NodeID.

As in any wiki system, the basic element is a wiki page, therefore every wiki
page has assigned a unique identifier PageID, which is the name of the page. The
name is set the page is created. If several servers create concurrently pages under
the same name, their content will be directly merged by the synchronization
algorithm. Notice that a URI can be used to unambiguously identify the concept
described in the page. The URI must be global and location independent in order
to ensure load balancing. For the sake of simplicity, in this paper, we use a string
as page identifier.

The figure 4 describes the personal semantic annotations data model. This
data model is described by the Ontology Definition Meta-model (ODM) [20].

Fig. 4. Personal Semantic Annotation Data Model

4.4 Personal Semantic Annotation Storage Model

RDF is the standard data model for encoding semantic data. In P-Swooki, every
peer has two local RDF repositories : Personal Statements and Shared State-
ments. They implement the personal understanding repository and the shared
understanding repository respectively.

– The Shared Statements contains a set of RDF statements which were ex-
tracted from the wikis pages. A statement is defined as a triple (Subject, Pred-
icate, Object) where the subject is the name of the page, the predicates (or
properties) and the objects are related to the concept involved in the page.

– The Personal Statements contains personal semantic annotations which are
represented as personal RDF statements. A personal RDF statement is defined
as a triple (Subject, Predicate, Object) where the subject is the wiki page and

Supporting Personal Semantic Annotations in P2P Semantic Wikis 325

the predicate annotates the page as a personal semantic annotation type as
described in the next section.

We define two operations on the RDF repositories:

– insertRDF(R,t): adds a statement t to the Personal Statements or Shared
Statements repository R.

– deleteRDF(R,t): deletes a statement t from the Personal Statements or
Shared Statements repository R.

These operations are not manipulated directly by the end-user, they are called
implicitly by the editing operations as it is shown in the following section.

4.5 Editing Operations

There are four editing operations for editing personal semantic annotations:
addIndividual, addCategory, delIndividual and delCategory. An update is con-
sidered as a delete of old value followed by an insert of a new value.

1. addCategory(PageID, CategoryName): where PageID is the identifier of
the semantic wiki page. CategoryName is the name of the new category.

This operation sets the wiki page PageId as a category in the user personal
repository. This operation calls the insertRDF(Personal Statements,(PageId,
RDF.Type, CategoryName)) function to add a new triplet into the personal
RDF repository.

2. addIndividual(PageID, CategoryName): sets the wiki page PageID as a
member of the category CategoryName. If CategoryName does not exist, it is
added automatically to the Personal Statements repository by calling the oper-
ation addCategory and then the operation automatically annotates the PageId
as member of the CategoryName.

During this operation an RDF statement is added to the personal repository by
calling insertRDF(Personal Statements, (PageId, belongsTo, CategoryName))
where belongsTo is a predicate to associate an individual to a category.

3. delIndividual(PageID, CategoryName: eliminates the PageID as member
of the category CategoryName from the personal RDF repository by calling
DeleteRDF(Personal Statements, (PageId, RDF.Type, CategoryName)).

4. delCategory(PageID,CategoryName: first, calls the delIndividual oper-
ation for each member of the category CategoryName, and then deletes the
category CategoryName from the personal RDF repository by calling the Dele-
teRDF operation.

5 P-Swooki Architecture

P-Swooki is implemented as an extension of Swooki. Swooki is a P2P semantic
wiki which is implemented in Java as servlets in a Tomcat Server and uses Sesame
2.0 as RDF repository.

P-Swooki is developed over a Swooki architecture using one peer per user.
A P-Swooki peer is compound by the following components (see figure 5). The

326 D. Torres et al.

Fig. 5. P-Swooki Architecture

Fig. 6. P-Swooki Interface

grey boxes are Swooki components whereas the white ones are the P-Swooki
components.

User Interface. The P-Swooki UI component is composed by the Swooki wiki
editor and it incorporates the functionalities to make personal annotations. This
basically divides the wiki page into two areas: the shared and private annotation
spaces. The shared space is defined by a regular wiki editor supported by Swooki
functionality. The private annotation one includes a box to add personal semantic
annotations and to visualize them (see figure 6).

Swooki Manager. The Swooki manager implements the synchronizing algo-
rithm.

Sesame Engine. We use a multi-set [18] extension of Sesame 2.0 [21] as RDF
repository. Sesame is controlled by the Swooki manager for storing and retrieving

Supporting Personal Semantic Annotations in P2P Semantic Wikis 327

RDF statements. P-Swooki stores the private annotations using a different name
space. This allows to reuse the storing and retrieving facilities already imple-
mented by Swooki.

Diffusion Manager. The diffusion manager is in charge of maintaining the
membership of the unstructured network and to implement a reliable broadcast
for the shared repositories.

6 Evaluation

In this section, we present the evaluation of our approach. We have conducted
two separate experiments, one in France and another one in Argentina. The total
number of participants were 15 people. The participants ranged in age from 25
to 45. All participants were involved in computer science, all were familiar with
wikis and 5 of them were familiar with semantic wikis and have some experience
in ontology building. The participants were in different rooms and they were not
allowed to communicate to each other during the experience.

We started the first experience in France by a short explanation about se-
mantic wikis, shared knowledge and personal knowledge. We asked participants
to develop a semantic wiki by using both kinds of annotations. They started
with a non empty wiki. In fact, there were created in advance 2 semantic wikis
pages; one about Semantic Wiki and another one about Semantic Web. We also
suggested participants to use a special syntax in order to control vocabulary
explosion as it occurs in folksonomies [22].

In order to consolidate the first experience, we have repeated the same expe-
rience in Argentina which confirmed the results previously obtained in France.
These experiences show a preliminary evidence of the contribution of our ap-
proach regarding the usability of personal semantic annotations and their com-
plementarity with the shared knowledge. In the following we show the results of
these experiences. As both experiences showed the same outcome, we will only
present the results from France.

The tables 1 and 2 show the type (individual or category) and the amount
of personal semantic annotations that each each participant has added to the
Semantic Wiki and Semantic Web wiki pages respectively.

The Semantic Wiki page was annotated by all the participants. They anno-
tated this page as individual 17 times and as category 15 times. The most active
participant added 11 personal semantic annotations to this page. The average
number of annotations per participant was 4.5. The average without the most
active participant was 3.5.

The Semantic Web page was annotated by all the participants. They anno-
tated this page as individual 8 times and as category 9 times. The most active
participant added 11 personal semantic annotations to this page. The average
number of annotations per participant was 2.5. The average without the most
active participant was nearly 1.

328 D. Torres et al.

Table 1. Personal Semantic Annotation for Semantic Wiki Page

User Individual Category Total
1 1 1 2
2 1 0 1
3 2 5 7
4 6 5 11
5 2 1 3
6 4 3 7
7 1 0 1

Table 2. Personal Semantic Annotation for Semantic Web Page

User Individual Category Total
1 0 1 1
2 1 0 1
3 0 2 2
4 6 5 11
5 1 1 2
6 1 0 1
7 1 0 1

The results above confirm our initial hypothesis about the usefulness of the
personal semantic annotations because all the participants have added personal
annotations.

The table 3 shows the shared and personal semantic annotations used by the
participants for the Semantic Wiki page.

Table 3. Personal and Shared Semantic Annotation for Semantic Wiki Page

Shared annotations Individual Category
Category: PersonalInformationManagement ResearchTopic SemanticWiki (4)

Category: KnowledgeManagement SemanticWeb (4) Wiki(2)
Category: SemanticWeb CollaborativeTool(2) SemanticWeb

Category:FormalLanguage Web Web (2)
KindOf: Wiki NoDelete CollaborativeTool
has: FactBox Semantics WebOfData

limitation : fault-tolerance KnowledgeWeb NoUndoTag
limitation : scalability Something WWW
limitation : censorship Wiki (3) CSCW

Web Semantic

The column Shared annotations regroups the shared semantic annotations. At
the beginning of the experience, it was empty. This page could be annotate as
a category such as Category: PersonalInformationManagement or as an object
property such as limitation : scalability.

Supporting Personal Semantic Annotations in P2P Semantic Wikis 329

The second and third columns regroup all the personal semantic annotations.
Notice that in some cases many users used the same semantic annotation. For
instance, four users used SemanticWeb annotations and two users used Wiki
annotations.

We can observe that the total number of semantic annotations is increased.
Therefore, personal semantic annotations could be useful to augment the shared
knowledge.

With this evaluation we learn the following lessons:

– Every participant used both personal and shared semantic annotations;
– Most participants said that it is easy to use personal semantic annotations,

because it is not necessary to embed them into the text.
– Some participants had difficulties to distinguish between a category and an

individual.
– All participants have manifested the importance to have a good user-

interface to facilitate personal navigation.
– For some participants personal annotations were useful to structure their

own navigational map according to their personal taxonomy.
– Personal annotations were easier for people not familiar with semantic wikis

whereas someone familiar with semantic wikis did not see exactly the added value
of personal semantic annotations.

– One participant did not understand the difference between personal and
shared semantic annotations.

– For most participants, it was easier to add personal annotations when they
were browsing and to add shared annotations when they were editing the wiki
pages.

– Most participants found that combining both kind of annotations could help
them to make better knowledge retrieving.

Although, it is premature, the average of personal annotations shows a ten-
dency: people feel comfortable using personal annotations and adding personal
annotations is a complementary activity in semantic wiki.

These first results encourage us to continue in this direction, however, we need
to conduct large scale experiences to consolidate these results.

7 Conclusion and Further Work

In this paper, we have introduced an approach to manage personal and shared
knowledge in P2P semantic wikis. Shared knowledge is managed as in any seman-
tic wiki. On the other hand, personal knowledge is defined as personal semantic
annotations.

We have designed a P2P collaborative knowledge building process by basically
supporting personal understanding. Personal annotations is the mechanism we
have proposed to support personal understanding. Personal semantic annota-
tions are private and appear in the context of the wiki page. This approach
involves personal, shared or personal and shared navigation and retrieving. In

330 D. Torres et al.

this research, we have adopted a P2P approach because it is the more suitable to
control personal knowledge. We have implemented P-Swooki as an extension of
the P2P semantic wiki, Swooki. As our approach is general, it could by applied
to any semantic wiki, such as Semantic MediaWiki.

The evaluation of P-Swooki has confirmed our hypothesis that the usability of
semantic wiki system can be improved by adding personal knowledge manage-
ment. Most of the participants have used personal annotations. To consolidate
these results, we plan to conduct more experimentations.

For instant, the personal annotation model is simple, it only considers cat-
egories and individuals. In the near future, we will enrich it in order to sup-
port relationships and attributes. Shared knowledge could be also enriched by
publishing personal annotations. Therefore, it is needed to extend the current
approach with a mechanism to ”easily integrate” personal annotations in the
shared repository and also in the wiki text.

From the experience, we also noticed that many users have defined the same
personal semantic annotations. Although, these knowledge means a common
understanding, they were not in the shared knowledge base. In the future, we
plan to use discovering knowledge techniques to enrich the shared knowledge
base.

Acknowledgments

This work was partially funded by the ”P2P Semantic Wikis for large-scale
distributed knowledge management and large community integration” project,
which is sponsored by the MinCyT, Argentina and INRIA-CNRS, France.

References

1. Völkel, M., Krtözsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.
Journal of Web Semantics 5(4) (2007)

2. Schaffert, S.: Ikewiki: A semantic wiki for collaborative knowledge management.
In: WETICE, pp. 388–396. IEEE Computer Society, Los Alamitos (2006)

3. Rahhal, C., Skaf-Molli, H., Molli, P.: Swooki: A peer-to-peer semantic wiki. In:
The 3rd Workshop: ’The Wiki Way of Semantics’-SemWiki, co-located with the
5th Annual European Semantic Web Conference (ESWC), Tenerife, Spain (2008)

4. Buffa, M., Erétéo, G., Faron-Zucker, C., Gandon, F., Sander, P.: SweetWiki: A Se-
mantic Wiki. Journal of Web Semantics, special issue on Web 2.0 and the Semantic
Web 6(1) (2008)

5. Nonaka, I., Takeuchi, H.: The Knowledge - Creating Company: How Japanese
Companies Create the Dynamics of Innovation. Oxford University Press, Oxford
(1995)

6. Stahl, G. (ed.): Group cognition: Computer support for building collaborative
knowledge. MIT Press, Cambridge (2006)

7. Dı́az, A., Baldo, G., Canals, G.: A framework for collaborative knowledge sharing
with divergence. IADIS Int. Journal on WWW/Internet 5(2), 86–99 (2007)

Supporting Personal Semantic Annotations in P2P Semantic Wikis 331

8. Oren, E., Völkel, M., Breslin, J.G., Decker, S.: Semantic wikis for personal knowl-
edge management. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS,
vol. 4080, pp. 509–518. Springer, Heidelberg (2006)

9. Oren, E.: Semperwiki: a semantic personal wiki. In: Proc. of 1st Workshop on
The Semantic Desktop - Next Generation Personal Information Management and
Collaboration Infrastructure, Galway, Ireland (2005)

10. Dı́az, A., Baldo, G., Canals, G.: Co-protégé: Collaborative ontology building with
divergences. In: DEXA Workshops, pp. 156–160. IEEE Computer Society, Los
Alamitos (2006)

11. Tudorache, T., Noy, N.F., Tu, S.W., Musen, M.A.: Supporting collaborative on-
tology development in protégé. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M.,
Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp.
17–32. Springer, Heidelberg (2008)

12. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., Wenke, D.: OntoEdit:
Collaborative ontology development for the semantic web. In: Horrocks, I., Hendler,
J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 221–235. Springer, Heidelberg (2002)

13. Bonifacio, M., Cuel, R.: Knowledge nodes: the building blocks of a distributed
approach to knowledge management. J. of Universal Computer Science 8 (2002)

14. Lee, H., Choi, B.: Knowledge management enablers, processes, and organizational
performance: An integrative view and empirical examination. Journal of Manage-
ment Information Systems 20(1), 179–228 (2003)

15. Malhotra, Y.: Why knowledge management systems fail? enablers and constraints
of knowledge management in human enterprises. In: Holsapple, C. (ed.) Hand-
book on Knowledge Management. International Handbook on Information Sys-
tems, vol. 1. Springer, Heidelberg (2002)

16. Bonifacio, M., Bouquet, P., Mameli, G., Nori, M.: Peer-mediated distributed knowl-
edge management. In: van Elst, L., Dignum, V., Abecker, A. (eds.) AMKM 2003.
LNCS, vol. 2926, pp. 31–47. Springer, Heidelberg (2004)

17. Oster, G., Urso, P., Molli, P., Imine, A.: Data Consistency for P2P Collaborative
Editing. In: Proceedings of the ACM Conference on Computer-Supported Cooper-
ative Work - CSCW 2006, Banff, Alberta, Canada. ACM Press, New York (2006)

18. Skaf-Molli, H., Rahhal, C., Molli, P.: Peer-to-peer semantic wiki. In: Verlag, S.
(ed.) DEXA 2009: 20th International Conference on Database and Expert Systems
Applications (2009)

19. Weiss, S., Urso, P., Molli, P.: Wooki: a p2p wiki-based collaborative writing tool.
In: Web Information Systems Engineering, Nancy, France. Springer, Heidelberg
(2007)

20. Gaaevic, D., Djuric, D., Devedzic, V., Selic, B.: Model Driven Architecture and
Ontology Development. Springer, Secaucus (2006)

21. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

22. Sen, S., Lam, S.K., Rashid, A.M., Cosley, D., Frankowski, D., Osterhouse, J.,
Harper, F.M., Riedl, J.: Tagging, communities, vocabulary, evolution. In: CSCW
2006: Proceedings of the 2006 20th anniversary conference on Computer supported
cooperative work, pp. 181–190. ACM, New York (2006)

OrdPathX: Supporting Two Dimensions of Node
Insertion in XML Data

Jing Cai and Chung Keung Poon

Department of Computer Science,
City University of Hong Kong

Tylor.Cai@student.cityu.edu.hk, ckpoon@cs.cityu.edu.hk

Abstract. We introduce a novel XML labeling scheme called OrdPathX
which supports both leaf and internal node insertions for XML data.
Dynamic XML labeling has been studied for years. However almost all
labeling schemes allow only leaf node insertions. Inspired by the careting-
in technique of OrdPath [7], we propose a new labeling algorithm which
supports internal node insertions gracefully without relabeling. We will
describe the labeling algorithm and the associated operations for various
inter-node relationship determination. Experimental results show that
OrdPathX can handle internal node insertions efficiently.

1 Introduction

Nowadays XML is a standard language for information representation and ex-
change over the Internet. An XML document comprises of hierarchically nested
elements and can be naturally modeled as an ordered tree. Designing efficient
labeling schemes for the nodes to support the determination of various struc-
tural relations has attracted much attention recently. In the past decade, many
labeling schemes have been proposed, including interval-based schemes (e.g.,
[10,12,6,4]), prefix-based schemes (e.g. [8,7]) and others (e.g. [11]). However, most
of them cannot handle internal node insertions efficiently.

In this paper we propose a new prefix-based scheme that can handle internal
node insertion with a good performance. This is of particular interest as many
academic and commercial applications employ prefix-based schemes as the un-
derlying labeling scheme. They are used for XML maintenance [13,14], DBMS
systems [15,16,7] and XML data indexing [17]. E.g., OrdPath is implemented in
Microsoft SQL Server 2005 for execution plan optimization [9]. In the latest re-
lease of Microsoft SQL Server 2008, OrdPath is internally used by a new DBMS
data type called HierarchyID which models the hierarchy of tree structured data
[1,2].

Our labeling scheme, OrdPathX, is inspired by the “careting-in” technique
of OrdPath and can handle both internal and leaf node insertions efficiently.
Internal nodes updating is a common operation that may occur to an XML tree.
Suppose we have the XML tree shown in Figure 1 which models a typical Linux
based file directory structure. Any file/directory creation or deletion represents

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 332–339, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

OrdPathX: Supporting Two Dimensions of Node Insertion in XML Data 333

a change to this XML tree in which internal/leaf node insertion/deletion take
place. Therefore, how to handle the internal nodes and leaf nodes updating
efficiently is of great importance.

/

/bin /etc /usr/tmp

/local

/data

/lib

...

/share

Fig. 1. Typical File Structure

The rest of this paper is organized as follows. We explain our new labeling
scheme and the associated algorithms for inter-node relation determination in
Section 2 and 3 respectively. In Section 4, we turn to the technical issue of
encoding the labels efficiently and present our experimental evaluation as well.
Section 5 concludes this paper.

2 The OrdPathX Labeling Scheme

We first describe the key ideas of the OrdPath labeling scheme. In the OrdPath
scheme, the initial tree is labelled similar to a Dewey scheme but only positive
odd numbers are used. To insert a node v as a child of u with label L, there
are several cases. If v is the first child of u, then label v as L.1. Otherwise, if v
is inserted as the rightmost (resp. leftmost) child of u and its left (resp. right)
sibling v′ has label L.x, then v has label L.x+ 2 (resp. L.x− 2). Finally, if v is
inserted between two consecutive children, v1 and v2, of u and their labels are
L.x and L.x+ 2 respectively, then label v as L.x+1.1. This is the essence of the
“careting-in” technique in OrdPath.

Note that when x is an odd number, x+ 1 is even. Thus, the label of a newly
inserted node may contain sequences of even components but each such sequence
will be followed by an odd component. More generally, an OrdPath label can be
partitioned into a sequence of chunks, each chunk consisted of zero or more even
components followed by an odd component. We can express the labels of v1 and
v2 as L.C1 and L.C2 where C1 (resp. C2) is the last chunk of the label of v1
(resp. v2) and C1 is lexicographically smaller than C2. Then the new node v is
labelled as L.C′ where C′ = caretin(C1, C2) is a label generated by the caret-in
function that takes C1 and C2 as input and returns a label lexicographically in
between C1 and C2.

334 J. Cai and C.K. Poon

Now, in the OrdPathX scheme, the label consists of an Augmented OrdPath
(AO), possibly followed by a Parent Height (PH):

OrdPathX = AO.PH

where an AO is a sequence of chunks and between each pair of consecutive chunks
there may exist an Incremental Height (IH). The IH and PH (to be explained)
are themselves OrdPath labels. The initial assignment of labels to nodes are the
same as that in the OrdPath scheme. Note that in the initial assignment, no
labels will contain any IH and PH.

To facitilitate our discussions, we call those nodes present in the initial tree
initial nodes and those inserted as leaves and parents of existing nodes leaf-
insertion nodes and parent-insertion nodes respectively.

2.1 An Illustrating Example

Suppose the initial tree contains a node v with parent v′ (Figure 2(a)) and we are
to insert nodes u1, u2, u3 between them. At the end, we have created a sequence
of parent-insertion nodes between v and v′ and we call it a Parent Insertion
Chain (PIC). See Figure 2(d).

First, consider the insertion of u1. We label u1 as L.(1).C where “(1)” is an
Incremental Height. See Figure 2(b). The presence of an IH between the last two
chunks of a label indicates that u1 is a parent-insertion node. We refer to this IH
as the Significant Incremental Height (SIH). (The IHs between other chunks are
not called SIH as their presence do not imply that the node is a parent-insertion
node.) An SIH of “(1)” indicates that it is the first node inserted along the PIC
between two non parent-insertion nodes (i.e., v′ and v in this case). Moreover,
we relabel v as L.C.[1] where “[1]” is the Parent Height of v’s label. It indicates
that v has a parent-insertion node above it. In general, the PH of a node is set

Fig. 2. An Example

OrdPathX: Supporting Two Dimensions of Node Insertion in XML Data 335

to be identical to the SIH of its parent’s label. The absence of PH implies that
no node has been inserted as its parent.

Next, we insert u2 as the new parent of u1. Note that u1 and u2 are both
parent-insertion nodes along the PIC between v′ and v. We will make use of
their SIH to encode their relative order along this PIC so that a higher node on
the PIC will have a larger SIH. Thus, we label u2 as L.(3).C. Since u1 now has a
parent-insertion node above it, we also relabel u1 as L.(1).C.[3]. See Figure 2(c).
Finally we insert node u3 between u1 and u2. The concept of "Caret-in" is
applied and so the SIH of u3 is set as (2.1). See Figure 2(d).

In summary, the IH of the new node is assigned using the OrdPath scheme
while the other parts of the AO are the same as its child.

2.2 Detail Procedures

Parent Node Insertions. Suppose we insert a node u as the parent of an
existing node v. Let v′ be the original parent of v.

(Case 1: both v′ and v are not parent-insertion nodes.) Let their labels be
L and L.C respectively where C is the last chunk of v’s label. Then node u is
labelled as L.(1).C. As the parent of v is now u instead of v′, we modify the
label of v as L.C.[1].

(Case 2: v is a parent-insertion node while v′ is not.) Let the label of v′ be
L and that of v be L.(ih).C. Then label u as L.(ih′).C where ih′ is the next
OrdPath label larger than ih. Also, label v as L.(ih).C.[ih′].

(Case 3: v is not a parent-insertion node while v′ is.) We need to distinguish
whether v′ was previously inserted as parent of v or v was appended as a child
of v′. Let the label of v′ be L.(ih).C.[ph] where ph can be empty. (Subcase a)
The label of v is L.(ih).C.D. Then the AO part of v′ is a prefix of the label of v
(and D is the last chunk generated when v was appended as a child of v′). In this
case, u is the first parent-insertion node between v′ and v. As in case 1, we label
u as L.(ih).C.(1).D and modify the label of v to L.(ih).C.D.[1]. (Subcase b) The
label of v is L.C.[ih]. Then u is inserted as the last parent-insertion node along
the PIC from some ancestor of v′ to v. This PIC increases its length by 1 since
u is inserted. So, we label u and v as L.(ih′).C.[ih] and L.C.[ih′] respectively
where ih′ is the next OrdPath label smaller than ih.

(Case 4: both v and v′ are parent-insertion nodes.) Let the label of v′ and v
be L.(ih2).C.[ph] and L.(ih1).C.[ih2] respectively. Note: ph can be empty and
ih1 is lexicographically smaller than ih2. Then label u and v as L.(ih).C.[ih2]
and L.(ih1).C.[ih] respectively where ih = caretin(ih1, ih2).

Leaf Node Insertions. Suppose we insert node u as a child of v so that u
becomes a leaf. Basically, we will append a chunk to the label of v according
to the OrdPath scheme. Specifically, let the label of v be L.(ih).C.[ph] where ih
and ph can be empty.

If v is not a parent-insertion node (i.e., ih is empty), then all its children
are inserted after v and we label u as L.C.D where D is computed using the
OrdPath scheme, taking into account the relative position between u and the

336 J. Cai and C.K. Poon

other child(ren) of v. Note that u does not inherit its parent’s PH since that PH
is merely used to keep the parent information of the parent of u and has nothing
to do with u.

If v is a parent-insertion node (i.e., ih is non-empty), then one of its chil-
dren, say w, was present before v was inserted. The label of w has the form
L.(ih1).C.[ih] where ih1 can be empty. If u is inserted on the left of w, we label
u as L.(ih).C.−0.D where D is a chunk computed using the OrdPath scheme so
that it encodes the order of u among those siblings on the left of w. Similarly, if
u is inserted on the right of w, we label u as L.(ih).C.+0.D where D, computed
by OrdPath, encodes the order of u among those siblings on the right of w. As
we will see in Section 3, this +/-0 allows us to tell the relative order between u
and w (as well as other siblings) easily. A “+0” (resp. ‘-0”) component indicates
that node is on the right (resp. left) side of w.

Figure 3 shows a sample tree with leaf insertions.

L

L.(1).3.[3]

L.(3).3.[5]

L.(5).3L.1 L.5

L.(3).3.-0.-3
L.(3).3.-0.-1 L.(3).3.+0.1

L.(3).3.+0.3

L.3.[1]

Initial Node Parent-Insertion Node Leaf-Insertion Node

Fig. 3. Appending a child node

3 Determination of Inter-node Relationships

Parent-Child Relation. Consider a node u with label L.(ih).C.[ph]. We can
deduce the AO part of u’s parent as follows. If ph is non-empty, then the AO
part is L.(ph).C. Otherwise, if ph is empty, then the AO part is L. Note that it
is impossible to deduce the PH component of the parent.

To verify if a node v is the parent of u, we just apply the above algorithm on
the label of u and see if the AO part thus generated matches the AO part of v’s
label.

Ancestor-Descendant Relation. To determine if two given nodes u and v
are ancestor-descendant of each other, we consider two cases. (Case 1) If the AO
part of v’s label is a prefix of u’s label, then v is ancestor of u. (Case 2) If u and
v have the same sequence of components except for the SIH and PH, then v is
an ancestor of u if and only if the SIH of v is lexicographically larger than the
SIH of u. Note that in this case, v is a node inserted above u.

OrdPathX: Supporting Two Dimensions of Node Insertion in XML Data 337

Sibling Relation. To determine if two nodes u and v are siblings, we check
if they have the same parent. It suffices to deduce the AO part of their parent
labels. To extend it to detect preceding/following sibling relation, we consider
two cases.

(Case 1) If both u and v do not have a PH in their labels, then both do not
have nodes inserted as their parents. In that case, we just compare their last
chunks in lexicographic order.

(Case 2) If either u or v has a PH component, then the node (say u) with a PH
component has one or more nodes inserted above it. We treat u as having “order
0” among its siblings. Note that v must not have a PH component. (Otherwise
there would be another node inserted above v and this node is not the same
as the node inserted above u.) If v has -0 in its first even component after the
second last chunk, then v precedes u. Otherwise, v must have a +0 and so v
follows u.

4 Implementation and Experimental Evaluation

Note that the use of dots and brackets in our labels are just for readers’ easy
reading. In the actual encoding, we employ the variable-length bit string repre-
sentation (as used in OrdPath). Specifically, each component is encoded using
the IiLiOi format where Ii is the component type indicating whether the com-
ponent is an OrdPath, IH or PH. Li is a prefix-free encoding [7] of the length of
Oi, which in turn encodes the integer in binary. Note that we need 2 bits for Ii
since we have three different types of label components.

We tested our scheme with both real world (Shakespeare’s Play and TreeBank)
and synthetic dataset (XMark of size 30MB and 336,244 nodes). The results show
that OrdPathX behaves similarly on different datasets. Due to space limitation,
we only present the results of XMark here.

In the experiment, we perform random parent insertions. We randomly pick
a number of nodes (i.e., 10%, 20%, 40%, 60% and 80% of the total nodes) from

6.1646

6.2435

6.3677

6.4606

6.533

6.5942 6.6028 6.608 6.6091 6.6098

5.9

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

0.1 0.2 0.4 0.6 0.8

Average Label size of All Nodes

Average Label Size of Parent Insertion Nodes

Percentage of Randomly Selected Nodes

A
ve

ra
ge

 L
ab

el
 S

iz
e

(B
yt

e)

Fig. 4. Random Parent Inserion

338 J. Cai and C.K. Poon

33624

67248

134497

201746

268995

0.059511064 0.054113133 0.052506747 0.052898199 0.056982472
0

50000

100000

150000

200000

250000

300000

0.1 0.2 0.4 0.6 0.8

Total Processing Time Processing Time per Node

Percentage of Randomly Selected Nodes

Ti
m

e
us

ed
 (

m
s)

Fig. 5. Random Parent Inserion

the tree and insert one parent for each selected node. Figure 4 shows that the
average label size of all nodes increases linearly as the proportion of selected
nodes increases linearly while that of the inserted nodes always maintains at the
same level regardless of how many parent insertions happen.

Figure 5 shows the total time as well as time per node to process parent inser-
tions. Again, the total time increases linearly while the time per node remains
relatively constant.

5 Conclusions and Future Work

Dynamic XML labeling has been studied for years. However, none of the existing
labeling schemes avoid relabeling a large number of nodes when inserting a new
parent node. In this paper, we extend the "careting-in" technique of OrdPath
and propose a new labeling scheme called OrdPathX that supports both internal
and leaf node insertions efficiently. In the future, we will investiagte the extension
of OrdPathX to more generalized environment such as graph labeling. This could
be useful in some fields such as Internet routing and graphical navigation.

References

1. http://www.microsoft.com/sqlserver/2008/en/us/whats-new.aspx
2. http://download.microsoft.com/download/3/4/C/

34C25092-D2A1-4E56-83CF-923EF53BD390/SQLServer2008.pdf
3. Amagasa, T., Yoshikawa, M., Uemura, S.: A robust numbering scheme for XML

documents. In: 19th International Conference on Data Engineering, pp. 705–707
(2003)

4. Cohen, E., Kaplan, H., Milo, T.: Labeling dynamic XML trees. In: Proceedings of
the 21st Annual ACM Symposium on Principles of Database Systems, pp. 271–281
(2002)

5. Li, C., Ling, T.W., Hu, M.: Efficient updates in dynamic XML data: from binary
string to quaternary string. The VLDB Journal 17, 573–601 (2008)

http://www.microsoft.com/sqlserver/2008/en/us/whats-new.aspx
http://download.microsoft.com/download/3/4/C/34C25092-D2A1-4E56-83CF-923EF53BD390/SQLServer2008.pdf
http://download.microsoft.com/download/3/4/C/34C25092-D2A1-4E56-83CF-923EF53BD390/SQLServer2008.pdf

OrdPathX: Supporting Two Dimensions of Node Insertion in XML Data 339

6. Li, Q., Moon, B.: Indexing and querying XML data for regular path expressions.
In: Proceedings of the 27th International Conference on Very Large Data Bases,
pp. 361–370 (2001)

7. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-friendly XML node labels. In: Proceedings of the 2004 ACM SIGMOD Con-
ference on the Management of Data, pp. 903–908 (2004)

8. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and querying ordered XML using a relational database system. In:
Proceedings of SIGMOD, pp. 204–215 (2002)

9. Sans, V., Laurent, D.: Prefix based numbering schemes for XML: techniques, ap-
plications and performances. In: Proceedings of the 35th International Conference
on Very Large Data Bases, August 2008, pp. 23–28 (2008)

10. Santoro, N., Khatib, R.: Labeling and implicit routing in networks. The Computer
Journal 28, 5–8 (1985)

11. Wu, X., Lee, M.L., Hsu, W.: A prime number labeling scheme for dynamic ordered
XML trees. In: 20th International Conference on Data Engineering, pp. 66–78
(2004)

12. Yoshikawa, M., Amagasa, T., Shimura, T., Uemura, S.: XRel: a path-based ap-
proach to storage and retrieval of XML documents using relational databases.
ACM Transactions on Internet Technology 1(1), 110–141 (2001)

13. Deschler, K., Rundensteiner, E.: MASS: A Multi-axis Storage structure for Large
XML Documents. In: Proc. Conf. on Information and Knowledge Management,
pp. 520–523 (2003)

14. Dang-Ngoc., T.T., Sans, V., Laurent, D.: Classifying XML Materialized views for
their maintenance on distributed Web sources. In: Proc EGC Conf., RNTI, pp.
433–444 (2005)

15. Khaing, A., Thein, N.L.: A Persistent Labeling Scheme for Dynamic Ordered XML
Trees. In: Proc. Conf. on Web Intelligence, pp. 498–501 (2006)

16. Gabillon, A., Fansi, M.: A persistent labelling scheme for XML and tree databases.
In: Proc. SITIS Conf., pp. 110–115 (2005)

17. Duong, M., Zhang, Y.: LSDX: A New Labeling Schema for Dynamically Updating
XML Data. In: Proc. ADC Conf., pp. 185–193 (2005)

XQSuggest: An Interactive XML Keyword Search
System

Jiang Li and Junhu Wang

School of Information and Communication Technology,
Griffith University, Gold Coast, Australia

Jiang.Li@student.griffith.edu.au, J.Wang@griffith.edu.au

Abstract. Query suggestion is extensively used in web search engines
to suggest relevant queries, which can help users better express their
information needs. In this paper, we explore the application of query
suggestion in xml keyword search and propose a novel interactive xml

query system XQSuggest, which mainly targets non-professional users
who roughly know the contents of the database. Our system extends
conventional keyword search systems by instantly suggesting several un-
derstandable semantic strings after each keyword is typed in, so that
the users can easily select their desired semantic string, which represents
a specific meaning of the keyword, to replace the ambiguous keyword.
We provide a novel algorithm to compute the final results. Experimental
results are provided to verify the better effectiveness of our system.

1 Introduction

Keyword search has long been used to retrieve information from collections of
text documents. Recently, keyword search in xml databases re-attracted atten-
tion of the research community because of the convenience it brings to users -
there is no need for users to know the underlying database schema or complicated
query language. Until now, a lot of research (e.g., XRank [2], SLCA [5], XSeek [3]
and MaxMatch [4]) focuses on how to efficiently and meaningfully connect key-
word match nodes and generate informative and compact results, but this only
solves one side of the problem. The returned answers may be meaningful, but
they may not be desired by the users. Therefore, the other side of the problem
is how to accurately acquire the user’s real intention, which is a difficult task
because the keywords are inherently ambiguous. We use the following example
to illustrate this problem.

Example 1. Suppose a user is interested in the population of all countries, and
he submits the query {country, population} over the data tree in Fig. 1, which
comes from Mondial data set [1]. However, every province and city element also
has country and population attributes. In other words, the keywords country
and population appear in different types of nodes. The systems can not know
exactly which one is desired by the user just from the keywords. As a result, the
irrelevant answers province (0.4) and city (0.4.4) will also be returned.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 340–347, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

XQSuggest: An Interactive XML Keyword Search System 341

country
0

name
0.1

capital
0.2

population
0.3

province
0.4

France
0.1.0

f0_1510
0.2.0

58317448
0.3.0

id
0.4.4.0

province
0.4.4.3

f0_2420
0.4.4.0.0

city
0.4.4

name
0.4.4.1

country
0.4.4.2

Strasbourg
0.4.4.1.0

f0_213
0.4.4.2.0

population
0.4.4.4

id
0.4.0

name
0.4.1

country
0.4.2

population
0.4.3

Alsace
0.4.1.0

f0_17485
0.4.0.0

id
0.0

f0_213
0.4.2.0

1624000
0.4.3.0

f0_213
0.0.0

f0_17485
0.4.4.3.0

252338
0.4.4.4.0

Fig. 1. Data tree t

Fig. 2. A screen shot of query suggestion in XQSuggest

The example above shows the weakness of existing xml keyword search sys-
tems on returning relevant results when the submitted keywords have multiple
meanings. In practice, most users of keyword search would roughly know the
contents of the data and the meaning of each keyword they pose. They want to
unambiguously express their needs but the keywords alone can not help them to
do so. In this paper, we propose to solve the problem of ambiguity using query
suggestion: When a keyword is typed in, the system can instantly suggest several
understandable and distinct semantic strings. Then the user can select one to
replace the ambiguous keyword. Fig. 2 shows a screen shot of query suggestion
in our interactive xml keyword search system XQSuggest.

Our main contribution includes: (1) a fully implemented interactive xml key-
word search system, XQSuggest, which allows for query suggestion and enables
users to express their queries more clearly; (2) a novel algorithm for finding query
results based on the semantic strings; (3) two optimization techniques that help
to speed-up query processing; (4) experiments that verify the better effectiveness
and usability of our system over conventional xml keyword search systems.

The rest of the paper is organized as follows. Section 2 provides background
knowledge. Query suggestion technique is presented in Section 3. Section 4 then
provides our new algorithm for finding the query results. Experimental studies
are presented in Section 5. We conclude the paper in Section 6.

2 Preliminaries

An xml document is modeled as an unordered tree, called the data tree. Each
internal node (i.e., non-leaf node) has a label, and each leaf node has a value. The
internal nodes represent elements or attributes, while the leaf nodes represent
the values of elements or attributes. Each node v in the data tree has a unique
Dewey code, which represents the position of that node in the data tree. With

342 J. Li and J. Wang

this coding scheme, ancestor-descendant relationship can be easily identified: for
any two nodes v1, v2 in data tree t, v1 is an ancestor of v2 iff v1 is a prefix of v2.
Fig. 1 shows an example data tree.

Entity nodes. Most xml documents in reality are well designed and conform
to a pre-defined schema. Therefore, even though an xml document is modeled
as a tree, it is actually a container of related entities in the real world. Consider
the data tree in Fig. 1, which is actually a collection of country, province and
city entities. These entities are joined together through the ancestor-descendant
relationship. We use an approach similar to that of [3] to identify entity nodes.

Definition 1. Let t be a data tree. A node u in t is said to be a simple node if
it is a leaf node, or has a single child which is a leaf node. A node u represents
an entity node if: (1) it is root(t), or it corresponds to a *-node or +-node in
the DTD (if DTD exists), or has siblings with the same label as itself (if DTD
does not exist), and (2) it is not a simple node.

Definition 2. Let e1 and e2 be two entity nodes in t. If e1 and e2 have the
same label, we say e1 and e2 are of the same entity-type. The entity-type will be
referred to with the label name.

Keyword query. A keyword query is a finite set of keywords K = {k1, . . . , kn}.
Given a keyword k and a data tree t, the search of k in t will check both the
labels of internal nodes and values of leaf nodes for possible occurrence of k.

3 Query Suggestion

3.1 Semantic String

The basic idea of query suggestion is to replace each keyword with a seman-
tic string, which has a more specific meaning than the keyword. Next we will
precisely define the semantic strings associated with a keyword.

Definition 3. Let t be the data tree and k be a keyword that occurs in t. A
semantic string of k is a colon-separated sequence of labels l1 : l2 : · · · : ln such
that there is a path u1.u2. · · · .un in t, where un is a node whose label or value
contains k, u1 is the only entity node in the path (in other words, either un is
an entity node and u1 = un, or u1 is the closest entity node above un), and li
is the label of ui for i ∈ [1, n]. The length of a semantic string is the number of
labels in the path. The type of a semantic string is the same as the entity-type
of its corresponding entity node.

In some cases, a keyword can exist in both the element name and the value.
In order to differentiate these two cases, if the keyword appears in the value, it
will be double quoted in the semantic string. We call semantic strings that have
double quoted keywords predicates.

Note: Each keyword occurring in the data tree has at least one semantic string.
For the keyword in the label name of an entity node, its semantic string is the
label name.

XQSuggest: An Interactive XML Keyword Search System 343

3.2 Boolean Operators

Sometimes, the user will specify more than one predicates within the same con-
text. For the system, it is very difficult to judge the relationship between these
predicates. Therefore, if the system allows the user to specify boolean operators
(AND or OR) between semantic strings, the users will be able to express their
queries more clearly. In our current implementation, the boolean operators can
only be placed between the predicates of the same entity-type. If there are more
than one predicates of the same entity-type in a query but no boolean operators
are specified, the default boolean operator AND will apply.

3.3 Result of Query

When the ambiguous keywords are replaced with the semantic strings, each
keyword has an exact meaning and is associated with a specific entity-type.
We call the new query a semantic string query. Each semantic string will appear
within some entity nodes, and we can join such entity nodes together as the result
of the query. Note: the “join” here means concatenating entity nodes where the
semantic strings appear and where an ancestor-descendant relationship exists.
A more precise definition of a query result is given in Definition 4.

In the following, a subtree T of data tree t refers to a tree that can be obtained
from t by erasing some entity nodes and all of their descendants. We say a
semantic string s appears in an entity node v ∈ T (and v contains s) if there is
a path from v which is isomorphic to s. We say s appears in subtree T (and T
contains s) if s appears in some entity node in T .

Definition 4. A result of a semantic string query K is a subtree T of t with
the following properties: (1) the root of T is an entity node in t, (2) every entity
node in T contains at least one semantic string, (3) T contains all semantic
strings in K, but no lower subtree of T contains all semantic strings in K, (4)
if two predicates of the same entity-type have logic AND relationship, they must
appear in the same entity node. We call such a result tree a joined entity-node
tree (JET).

4 Algorithm

4.1 Notations

Given a semantic string query K = {s1, ..., sn}, for each semantic string si, there
is a stream, Si, consisting of all the nodes which have the corresponding semantic
string si. The nodes (i.e.,the Dewey codes) in each stream Si are arranged in
lexicographic order. The system needs to instantly suggest semantic strings
after a keyword is typed in, so the performance of retrieving semantic strings
of a keyword is very important. We build a B+-tree on all of the words in t,
each word ki in the leaf of the B+-tree points to the list of the corresponding
semantic strings. It should be noted that there do not exist duplicates in a list.

344 J. Li and J. Wang

The results of the algorithm are stored in the list RL. Each item in the list
is a pointer which points to a list of entity nodes, which represents a JET to be
returned to the user.

In order to facilitate keyword containment check and logical relationship
check, we introduce four additional attributes flag, pattern, isEntity and logic
for each semantic string during processing. The flag attribute is a n-bit binary
number, which indicates which keywords are contained in the sub-tree rooted
at a node. The pattern attribute is also a n-bit binary number, which presents
which predicates of the same semantic string type are involved into a boolean
formula. If the ith bit is set to 1, it means the semantic string si is involved into
the boolean formula within the corresponding context.

We use the function GetMinDewey(Si) to get the smallest Dewey code
(in lexicographic order) among the streams of semantic strings. The function
GetClosestEntityCode returns the Dewey code of the entity node associated
with a semantic string, given the Dewey code and length of the semantic string.

4.2 The Stack-Based Algorithm

Our stack-based algorithm is shown in Algorithm 1.
Now, we explain the algorithm for evaluating queries. As mentioned earlier, we

represent results using the joined tree of entity nodes (JET) associated with each
semantic string, so after the minimal Dewey code of a semantic string is retrieved
(line 5), the Dewey code of its entity node should be computed immediately for
further processing (line 6), and this can be easily achieved with the length of
the semantic string. After a node is popped up from the stack DS, if this node
is an entity node, the algorithm first needs to perform a boolean logic check.
If the desired boolean logic between the predicates of the same entity type is
OR and any predicate is satisfied (line 12-13), the algorithm will modify the
flag value to indicate all of the predicates are satisfied (line 14). After that, the
algorithm will check whether it contains all the keywords (line 15). If a node
is an entity node but does not contain all the keywords or it is not an entity
node, the algorithm needs to copy the flag value to the top entry of the stack
(line 20 and 22). Whether the unprocessed entity nodes exist is determined by
the value of DS.NumofEntityNode, which is maintained by the algorithm to
indicate how many entity nodes associated with the selected semantic strings
exist in the stack DS (line 11 and 30).

4.3 Optimization Techniques

The performance of query evaluation can be seriously affected by the frequency
of the keywords. If the keyword in the query is contained in the element names,
there can be a large number of match nodes to be processed. First, given a
query K = {s1, ..., sn}, if sm is a sub-string of sn, the sm can be removed from
K. This is because sn can guarantee the satisfaction of sm. Second, given a query
K = {s1, ..., sn}, for the semantic strings with the same type, the algorithm can
remove the semantic strings of the element or attribute, which at least occur

XQSuggest: An Interactive XML Keyword Search System 345

Algorithm 1. EvaluateQuery(K, S)
Input: Query K = {s1, ..., sn}, a set S of streams
Output: Result List RL

1: Create an empty result list RL
2: Create an empty list ListItem
3: Create an empty stack DS
4: while DS �= ∅ OR ¬isEnd(S1) ∧ ... ∧ ¬isEnd(Sn) do
5: smin = GetMinDewey(Si)
6: emin = GetCloestEntityCode(smin, Smin.SemanticStringSize)
7: Get longest common prefix lcp such that DS[i].id = emin[i] (1 ≤ i ≤ lcp)
8: while DS.size > lcp do
9: stackentry = DS.pop()
10: if stackentry.isEntityNode = true then
11: DS.NumofEntityNode − −
12: if stackentry.logic = OR then
13: if stackentry.flag&stackentry.pattern! = 0 then
14: stackentry.flag = stackentry.flag|stackentry.pattern

15: if ContainAllKws(stackentry) then
16: Append current Dewey code in stack DS into the list ListItem
17: RL.append(ListItem)
18: Empty the list ListItem
19: else
20: CopyFlags(DS, stackentry)
21: else
22: CopyFlags(DS, stackentry)
23: for i = lcp + 1 to emin.length do
24: DS.push(emin[i])
25: if DS is not empty then
26: SetF lag(DS[DS.size].flag, min)
27: DS[DS.size].pattern = Smin.pattern;
28: DS[DS.size].logic = Smin.logic

29: if lcp! = emin.length then
30: DS.numofEntityNode + +
31: procedure CopyFlags(DS,child)
32: if DS.NumofEntityNode > 0 then
33: if child.flag&child.pattern = child.pattern then
34: DS[DS.size].flag| = child.flag

35: if child.isEntityNode = true then
36: Append current Dewey code in stack DS into the list ListItem

once as a child of another element. This can be achieved by exploring the DTD
file. The two optimization techniques work well because the time spent on
processing semantic strings before query evaluation is much less than processing
the keyword match nodes with a high frequency.

5 Experiments

All the experiments were performed on a 1.6GHz laptop with 1G RAM. We
used the data sets WSU, SigmodRecord and Mondial obtained from [1], and
selected five keyword queries for each data set. The queries are listed in Table 1.
The corresponding semantic string queries are also listed in this table.

5.1 Reduction of Irrelevant Nodes

As we stated earlier, the multiple meanings of a keyword may cause a lot of
irrelevant nodes to be processed. This can seriously influence the effectiveness

346 J. Li and J. Wang

Table 1. Keyword queries and semantic string queries

WSU
QW1 course,Lab course,course:place:room:“lab”
QW2 CAC, 101 course:title:“cac” AND course:crs:“101”
QW3 instructor, MCELDOWNEY course:instructor:”mceldowney”
QW4 ECON,bldg course:title:“econ”,course:place:bldg
QW5 ACCTG, times, place course:prefix:“acctg”,course:times,course:place
SigmodRecord
QS1 Karen, title article:authors:author:“karen”,article:title
QS2 Anthony, Data article:authors:author:“anthony” AND article:title:“data”
QS3 volume, 11, article issue:volume:“11”,article
QS4 article,data,John article, article:title:“data” OR article:authors:author:“john”
QS5 database, volume,number article:title:“database”,issue:volume,issue:number
Mondial
QM1 country,population country:population
QM2 muslim,country country:religions:“muslim”, country
QM3 Belarus, population country:name:“belarus”, country:population
QM4 Ethnicgroups,Chinese,Indian,Capital country:ethnicgroups:“chinese”

OR country:ethnicgroups:“indian”,country:capital
QM5 Turin, longitude, latitude city:name:“turin”, city:longitude,city:longitude

Table 2. Reduction of irrelevant nodes

Query Keyword frequency semantic string frequency reduction frequency after optimization reduction
QW1 7925 3930 50.4% 6 99.9%
QW2 351 286 18.5% 286 0%
QW3 3932 6 99.8% 6 0%
QW4 4001 3942 1.5% 18 99.6%
QW5 7880 7880 0 32 99.6%
QS1 1506 1506 0 2 99.8%
QS2 185 185 0 185 0%
QS3 1603 1507 6.0% 1507 0
QS4 1713 1713 0 209 88.3%
QS5 481 478 1% 411 14.6%
QM1 18205 231 98.7% 231 0%
QM2 13476 324 97.6% 93 71.3%
QM3 4598 232 95.0% 2 99.1%
QM4 2070 281 86.4% 50 82.2%
QM5 2969 2793 5.9% 2793 0%

and efficiency of query. We compared the number of nodes that need to be pro-
cessed before and after query suggestion (represented by keyword frequency and
semantic string frequency), and calculated the reduction percentage. In addi-
tion, we also list the semantic string frequency of XQSuggest after applying the
optimization techniques. The results are listed in Table 2.

5.2 Search Quality

We compared the search quality of XQSuggest with the most recent xml key-
word search system MaxMatch [4], which claims better effectiveness than previous
systems. The data sets we chose for comparison are Mondial and SigmodRecord.
We evaluate the effectiveness of XQSuggest and MaxMatch based on precision,
recall and F-Measure [4].

The comparisons of precision, recall and F-Measure over Mondial are illus-
trated in Fig. 3. As shown in the figure, XQSuggest achieves higher precision,
recall and F-Measure than MaxMatch. This is mainly because the submitted

XQSuggest: An Interactive XML Keyword Search System 347

(a) Precision (b) Recall (c) F-Measure

Fig. 3. Precision, Recall and F-Measure on Mondial Data Set

(a) Precision (b) Recall (c) F-Measure

Fig. 4. Precision, Recall and F-Measure on SigmodRecord Data Set

keywords exist in different types of nodes and the user can eliminate the irrele-
vant meanings with our system. Fig. 3 (c) presents the F-Measure of the queries
with α = 0.5, 1 and 2. It is shown that XQSuggest outperforms MaxMatch. The
comparisons of Precision, Recall and F-Measure over SigmodRecord are illus-
trated in Fig. 4. On the SigmodRecord data set, the advantages of XQSuggest is
not that obvious because most keywords in the data set have unique meanings.

6 Conclusion

In this paper, we explored the application of query suggestion in xml keyword
search. Our system XQSuggest suggests several semantic strings after each key-
word is typed in, which significantly reduces keyword ambiguity and facilitates
the use of Boolean operators. We proposed an algorithm to find the results of
the transformed query. Two optimization techniques were used in our algorithm
in order to improve performance.

References

1. http://www.cs.washington.edu/research/xmldatasets

2. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword search
over XML documents. In: SIGMOD Conference, pp. 16–27 (2003)

3. Liu, Z., Chen, Y.: Identifying meaningful return information for XML keyword
search. In: SIGMOD Conference, pp. 329–340 (2007)

4. Liu, Z., Chen, Y.: Reasoning and identifying relevant matches for xml keyword
search. PVLDB 1(1), 921–932 (2008)

5. Xu, Y., Papakonstantinou, Y.: Efficient keyword search for smallest lcas in XML
databases. In: SIGMOD Conference, pp. 527–538 (2005)

http://www.cs.washington.edu/research/xmldatasets

A Prüfer Based Approach to Process Top-k
Queries in XML

Ling Li, Mong Li Lee, Wynne Hsu, and Han Zhen

School of Computing, National University of Singapore
{leeml,whsu,hanzhen}@comp.nus.edu.sg

Abstract. Top-k queries in XML involves retrieving approximate match-
ing XML documents. Existing techniques process top-k queries in XML
by applying one or more relaxations on the twig query. In this work, we
investigate how Prüfer sequence can be utilized to process top-k queries
in XML. We design a method called XPRAM that incorporates the relax-
ations into the sequence matching process. Experiment results indicate
that the proposed approach is efficient and scalable.

1 Introduction

Top-k queries arise naturally in many database applications and has been ex-
tended to XML [2,3,7]. [2] introduces the notion of query relaxation. The struc-
ture of a query can be relaxed using edge generalization, leaf node deletion and
subtree promotion and any combination of them. An XML document has both
the content and structural aspects. For the former, an IR-based tf*idf paradigm
is employed for text-search at each element level. For the latter, relaxation using
edge generalization, leaf deletion and subtree promotion is applied (recursively).
For example, the XML query in Figure 1(a) returns all the XML documents con-
taining person element who has a phone and there is a profile to record his/her
gender and age. The corresponding relaxations are shown in Figures 1(b) to 1(d).

person

phone profile

gender age
(a) XML Query

person

contact profile

gender agephone email
(b) Generalize Edge

person

profile

gender age
(c) Delete

Leaf

person

contact profile

gender

age

phone email
(d) Promote Subtree

Fig. 1. Example Query and Its Relaxations

Two systems, FleXPath [3] and Whirlpool [7], have been developed for top-k
queries in XML. FleXPath [3] gradually relax the query pattern until it returns
at least k answers. Whirlpool [7] consider query relaxation with different join
orders to prune the lower-ranked documents as early as possible.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 348–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Prüfer Based Approach to Process Top-k Queries in XML 349

In this work, we investigate another approach to answer top-k queries in XML.
The works in [8] and [9] utilize Prüfer sequences for XML indexing and query pro-
cessing. XML documents are transformed into labeled sequences. A twig query
is also mapped to a sequence and subsequence matching is performed to find all
the occurrences of a query. The advantage of using Prüfer sequence is that it
allows holistic processing of a twig pattern without decomposing the twig into
root-to-leaf paths. However, these works are focused on finding exact answers
using Prüfer sequences and not top-k queries.

Based on the Prüfer sequence approach, we design a solution that relax the
matching process instead of the naive way of generating exponential relaxations
of a query. We call the proposed solution XPRAM (PRüfer sequences for Ap-
proximate Matching in XML). This approach incorporates edge generalization,
leaf deletion and subtree promotion during the matching process to find top-k
answers. We also extend Prüfer sequences with the preorder and postorder num-
bering of XML nodes to facilitate the containment relationship test. We carry
out a set of experiments to demonstrate that the proposed approach is efficient
and scalable, and outperforms existing approaches.

2 Preliminaries

The Prüfer sequence of an XML tree is constructed using a node removal method.
Given a labeled tree Tn with n nodes labeled from 1 to n, usually in postorder,
we delete the leaf node with the smallest label to form a smaller tree Tn−1 and
record a1, which is the tag of the deleted node’s parent. This process is repeated
until only one node is left. The sequence LPS = (a1 a2 . . . an−1) is called the
Prüfer sequence of tree Tn. In this sequence, the tag of each leaf node appears
once and the tag of each branch node appears as many times as the number
of its child nodes in the tree. We further augment the Prüfer sequence with
the preorder and postorder numbering of an XML tree to facilitate checking
of the containment relationship between any two XML nodes and call it Prüfer
Sequence+ (LPS+). Figure 2 shows an example XML tree and its corresponding
augmented Prüfer sequence.

Definition 1 (Q-connected tree of T). Given an XML tree T (VT , ET) and
a query pattern Q(VQ, EQ), a Q-connected tree of T , denoted by TQ(V,E), is
given by

1. V = VT ∩ VQ

2. E = E′ ∪ E′′ where E′ = {(ni, nj) | (ni, nj) ∈ ET and ni, nj �∈ VT − V }
and E′′ = {(parent(n), child(n)) | n ∈ VT − V }

Consider the query Q in Figure 3. Figure 4 shows a Q-connected XML tree of
T 1 in Figure 2. Note that nodes with tags E, F and G do not occur in the
Q-connected tree since they do not occur in Q. Further, the parent of each node
that has been removed is connected to each of its child nodes with an AD axis.
The Prüfer sequence+ of a Q-connected tree of T is called the Q-connected LPS+
of T , denoted by LPS+

connect(T,Q). It can be obtained directly from LPS+(T).

350 L. Li et al.

A

LPS(T1) = C D B C B G A C B D E B F D B F A

G F

B

D

C

C

B B

C E

D

D

1 13

2 5

3 4

4 2

5 1

36

7 12

8 9

9 6 10 8

11 7

13 10

12 11

LPS+(T1) = C(5, 1) D(4,2) B(3,4) C(6,3) B(3,4) G(2,5) A(1,13) C(9,6) B(8,9)
 D(11,7) E(10,8) B(8,9) F(7,12) D(13,10) B(12,11) F(7,12) A(1,13)

Fig. 2. Example XML document T1

A

B

C D

 1 1 1
 LPS(Q) = C(3,1) B(2,3) D(4,2) B(2,3) A(1,4)

 LPS(Q) = C B D B A

1

2

3 41 2

3

4

Fig. 3. Query pattern Q

A

B

D

C

C

B B

C D D

1 13

3 4

4 2

5 1

36

8 9

9 6 11 7 13 10

12 11

LPSconnect+(T1, Q) = C(5, 1) D(4,2) B(3,4) C(6,3) B(3,4) A(1,13) C(9,6) B(8,9)
 D(11,7) B(8,9) A(1,13) D(13,10) B(12,11) A(1,13)

Fig. 4. Q-connected XML tree of T1

Definition 2 (Q-conform sequence). Given a tree T and a query Q, and
their corresponding Prüfer sequence+ LPS+(T) and LPS+(Q), a subsequence
s of LPS+(T) is a Q-conform sequence if s is a subsequence of LPS+(Q) and
the corresponding tree structure of s can be obtained from Q by applying a com-
bination of edge generalization, leaf node deletion and subtree promotion.

A Q-conform sequence s is called a maximal Q-conform sequence of LPS+(T)
if there does not exist another Q-conform sequence of LPS+(T), s′, such that
s′ subsumes s. For example, both the subsequences s1 = (D (13, 10) B (12, 11)
A (1, 13)) and s2 = (C (6, 3) (D (13, 10) B (12, 11) A (1, 13)) of LPS+(T 1)
conform to Q. However, only s2 is a maximal Q-conform subsequence.

Definition 3 (Q-conform substring). Given an XML document T and a
query pattern Q, let s denote a substring of LPS+(T), and s’ be a string ob-
tained by extracting only the tags from s. We say that s is a Q-conform substring,
denoted by LPS+

substr(T,Q), if

1. s′ is a substring of sconnect where sconnect is obtained from LPS+
connect(T,Q)

by extracting only the tags.
2. s′ is a substring of LPS(Q).

A Prüfer Based Approach to Process Top-k Queries in XML 351

3. each pair of nodes in V conforms to Q, where V is a set of nodes corre-
sponding to the elements in s.

A Q-conform substring s of LPS+(T) could be extended to the longest Q-
conform substring of LPS+(T) if we insert the element which is the previous
element of the first element of s in LPS+(T), in front of s, or if we append the
element which is the next element of the last element of s in LPS+(T).

For example, a subsequence s1, (D (11,7) B (8,9) A (1,13)) of LPS+(T 1) is a
LPS+

substr(T 1, Q), and another subsequence s2, (C(9,6) B(8,9) D(11,7) B(8,9)
A (1,13)), which can be obtained from s1 by inserting two elements in the
front, is a longest Q-conform substring since it could not be further appended
or inserted.

Given a Q-conform substring s and an element e, if we want to determine
whether the string s + e is a Q-conform substring, we need to check whether
the nodes corresponding to s and each element in s conform to Q. However, the
following property allows us to restrict the test to just the nodes corresponding
to e and the last element in s. The proof is provided in [10].

Property 1. Let T and Q denote an XML document and a query pattern re-
spectively. Let s = (ei, . . ., ej) be a subsequence of LPS+(T) such that s is a
Q-conform substring. Let ej+1 denote the element after ej in LPS+(T). If the
nodes corresponding to the elements ej and ej+1 conform to Q, then the nodes
corresponding to the elements ej+1 and any element in s conform to Q.

3 XPRAM

The input to XPRAM is a set of XML documents and a query pattern Q. The
output is a set of top-k documents. The main steps are:

1. Retrieve a set of longest Q-conform substrings of LPS+(T) for each input
XML document T .

2. Concatenate the longest Q-conform substrings to get the maximal Q-conform
sequences of LPS+(T).

3. Rank each document based on its maximal Q-conform sequences, and output
the top-k documents.

3.1 Extract Longest Q-Conform Substrings

Given a query pattern Q issued over a set of XML documents, we need to retrieve
the longest Q-conform substrings of LPS+(T) for each XML document T . Each
element e in LPS+

connect(T,Q) is tested to see if it can be appended to s to form
a substring of LPS(Q) and a Q-conform substring. When the longest substring
is obtained, an output is generated and the scanning process restarts from the
next element in LPS+

connect(T,Q).
Suppose we issue query Q in Figure 3 over T 1 in Figure 2. The set of longest

Q-conform substrings of LPS+(T 1) extracted by this step is str1 = (C(5,1)),
str2 = (C(6,3) B(3,4)), str3 = (C(9,6) B(8,9) D(11,7) B(8,9) A(1,13)), str4 =
(D(4,2) B(3,4)), str5 = (D(13,10) B(12,11) A(1,13)), str6 = (A(1,13))

352 L. Li et al.

3.2 Find Maximal Q-Conform Sequences

Next, we find the maximal Q-conform sequences of LPS+(T). We group the
Q-conform substrings by its first element to avoid redundant computations, and
use dynamic programming to process them. Algorithm 1 shows the details.

Algorithm 1. Find Maximal Q-conform Sequences
1: Input: set of longest Q-conform substrings Sstr and query pattern Q
2: Output: Smax - a set of maximal Q-conform sequences of LPS+(T);
3: initialize Smax = Sstr;
4: let A denote a sequence of tags obtained from elements in LPS+(Q) which are

sorted by the postorder numbers in descending order;
5: for each tag a in A do
6: for each sequence sa in Smax such that the tag of the first element is a do
7: let l = the tag of the last element in sa;
8: for each tag b from l to the last tag in A do
9: let S = set of sequences in Smax where the tag of its first element is b;

10: for each sequence sb in S do
11: let s′a = concatenate(sa, sb);
12: if s′a != sa then
13: replace sa with s′a in Smax;
14: end if
15: end for
16: end for
17: end for
18: end for
19: return Smax;

Function concatenate(sa, sb)
20: let eb = first element of sb and ea = last element of sa;
21: if ea.tag == eb.tag && eb is identical to ea then
22: return sa - ea + sb;
23: else
24: let n1 and n2 be the elements of ea and eb respectively;
25: if n1 and n2 conform to Q then
26: return sa + sb;
27: else
28: let nanc be the nearest ancestor of n2 such that its element is in sb;
29: while nanc != null do
30: if n1 and nanc conform to Q then
31: return sa + sb;
32: else
33: nanc be the nearest ancestor of nanc such that its element is in sb;
34: end if
35: end while
36: end if
37: end if
38: return sa;

A Prüfer Based Approach to Process Top-k Queries in XML 353

In this algorithm, maximal Q-conform sequences are gradually concatenated
from the initial longest Q-conform substrings. Function concatenate is called to
determine if two sequences can be concatenated. From the preorder and pos-
torder numbers of the elements, we check if the corresponding nodes n1 and
n2 conform to Q. Otherwise, without loss of generality, we check if n1 and the
ancestor of n2 conform to Q. This tests for the case of subtree promotion. This
process continues until all the longest Q-conform substrings have been processed.

To illustrate, let us consider the set of longest Q-substrings obtained in Section
3.1. We can concatenate str4 with str6 to form s1 = (D(4,2) B(3,4) A(1,13))
since the corresponding nodes of elements B(3,4) and A(1,13) conform to Q.
Similarly, str2 and str5 can be concatenated since the corresponding nodes of
B(3,4) and A(1,13) conform to Q. Note that when we first check the nodes
of B(3,4) and D(13,10), they do not conform to Q. The function concatenate
will proceed to check the nodes of B(3,4) and B(12,11). Again, these nodes
do not conform to Q too. The function continues to check the nodes of B(3,4)
and A(1,13), and they conform to Q, hence str2 and str5 can be concatenated.
When we examine the structure consisting of the nodes of the elements in str2
+ str5, we find two XML fragments that can be mapped to Q with a subtree
promotion. The result is s2 = (C(5,1) D(4,2) B(3,4) A(1,13)), s3 = (C(5,1)
D(13,10) B(12,11) A(1,13)), s4 = (C(6,3) B(3,4) D(4,2) B(3,4) A(1,13)), s5
= (C(6,3) B(3,4) D(13,10) B(12,11) A(1,13)), s6 = (C(9,6) B(8,9) D(11,7)
B(8,9) A(1,13)). Note that s1 is not in the final result, since it is subsumed by
s2 and s4 and is not a maximal Q-conform sequence.

The XML documents retrieved can be ranked using existing ranking schemes
that take into consideration the content [5] and/or path expressions [1,4,6].
Proofs of the soundness and completeness of XPRAM are given in [10].

4 Experiment Evaluation

We use the XMark data generator1 to create the experimental dataset and vary
three parameters to test the performance of XPRAM: size of the input docu-
ments, value of k and query complexity. The size of the dataset ranges from 1MB
to 100MB. Edge generalization is provided by recursive nodes such as parlist in
the XMark DTD. Leaf deletion is enabled by the optional nodes such as incate-
gory, while subtree promotion is allowed by nodes such as text.

We run the same three queries as FleXPath [3] which have increasing com-
plexity in terms of depth and fanout:

Q1: //item[./description/parlist]
Q2: //item[./description/parlist and ./mailbox/mail/text]
Q3: //item[./description/parlist/listitem and ./mailbox /mail
/text[./bold and ./keyword and ./emph] and ./name and ./incategory]

All the experiments were carried out on a 2.58GHz Pentium 4 PC with 1.00
GB RAM, running WinXP. Each experiment is repeated 5 times, and the average
time taken is recorded.
1 http://monetdb.cwi.nl/xml/index.html

354 L. Li et al.

0

5

10

15

20

25

30

35

40

45

10 20 40 60 80 100

Document Size (MB)

R
es

p
o

n
se

 T
im

e
(s

ec
s)

Q1 Q2 Q3

(a) E1. Varying document size and
query complexity (k = 500)

0

5

10

15

20

25

30

35

40

45

100 200 300 400 500 600

k

R
es

p
o

n
se

 T
im

e
(s

ec
s)

10MB 100MB

(b) E1. Varying k

0

2

4

6

8

10

12

14

16

18

20

Q1 Q2 Q3

Query Complexity

R
es

p
o

n
se

 T
im

e
(s

ec
s)

XPRAM PRIX

(c) E2. Varying query complexity
(DocSize = 1MB)

0

50

100

150

200

250

300

350

400

10 20 40 60 80 100

Document Size (MB)

R
es

p
o

n
se

 T
im

e
(s

ec
s)

XPRAM PRIX

(d) E2. Varying Document Size (k =
500)

0

1

2

3

4

5

6

7

8

9

Q1 Q2 Q3

Query Complexity

R
es

p
o

n
se

 T
im

e
(s

ec
s)

XPRAM FleXPath

(e) E3. Varying k (DocSize = 10MB)

0
10
20
30
40
50
60
70
80
90

10 20 40 60 80 100
Document Size (MB)

R
es

p
o

n
se

 T
im

e
(s

ec
s)

XPRAM FleXPath

(f) E3. Varying Document Size (k =
500)

Fig. 5. Xpram Experiments

The first set of experiments (E1) examines the time taken to process top-k
queries. Figure 5(a) and Figure 5(b) show the result and confirm the scalability
of XPRAM with increasing document size and k.

In the second set of experiments (E2), we modify the PRIX method to process
top-k queries and compare it with XPRAM. The main modifications are:

1. For each document T and query pattern Q, we retrieve all the subsequences
from LPS(T) which are subsequences of LPS(Q).

2. For each subsequence, we check the containment relationship specified in T .
3. The set of documents retrieved are ranked and the first k documents are

returned.

A Prüfer Based Approach to Process Top-k Queries in XML 355

In Figure 5(c) and Figure 5(d), we observe that as the query complexity or
document size increases, the difference in the runtime of the two methods also
increases. This is because the increase in the length of the Prüfer sequence results
in a large number of subsequences retrieved for PRIX. The proposed XPRAM
outperforms the PRIX approach.

The third set of experiments (E3) compares XPRAM with the Hybrid method
in FleXPath [3]. Figure 5(e) shows the results of the time taken by both meth-
ods to process queries of increasing complexity, while Figure 5(f) shows the time
taken as the sizes of the input documents vary. We observe that XPRAM out-
performs FleXPath, indicating that relaxing the matching process instead of
relaxing the query pattern is a faster approach.

5 Conclusion

Motivated by the growing importance of top k queries with the increasing XML
repositories, we develop XPRAM, a Prüfer based approach for approximate
matching in XML. The proposed solution increases the query performance in
two ways. First, it is based on Prüfer sequence which provides for the holistic
processing of twig queries. Second, instead of relaxing the query to retrieve ap-
proximate matches, XPRAM incorporates the relaxations (edge generalization,
leaf node deletion and subtree promotion) into the matching process so that
lower-ranked documents are quickly pruned off. Experiment results indicate that
the proposed approach is efficient and scalable, and outperforms FleXPath.

References

1. Al-Khalifa, S., Yu, C., Jagadish, H.V.: Querying structured text in an xml database.
In: ACM SIGMOD (2003)

2. Amer-Yahia, S., Koudas, N., Marian, A.: Structure and content scoring for xml.
In: VLDB (2005)

3. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: Flexpath: Flexible structure and
full-text querying for xml. In: ACM SIGMOD (2004)

4. Botev, C., Shanmugasundaram, J., Amer-Yahia, S.: A texquery-based xml full-text
search engine. In: ACM SIGMOD (2004)

5. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: Xrank: Ranked keyword
search over xml documents. In: ACM SIGMOD (2003)

6. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the inte-
gration of structure indexes and inverted lists. In: ACM SIGMOD (2004)

7. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive processing of
top-k queries in xml. In: IEEE ICDE (2005)

8. Rao, P., Moon, B.: Prix: Indexing and querying xml using prufer sequences. In:
IEEE ICDE (2004)

9. Tatikonda, S., Parthasarathy, S., Goyder, M.: Lcs-trim: Dynamic programming
meets xml indexing and querying. In: VLDB (2007)

10. Zhen, H., Lee, M.L., Hsu, W.: Answering top-k queries in xml (submitted, 2009)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 356–363, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Bottom-Up Evaluation of Twig Join Pattern Queries in
XML Document Databases

Yangjun Chen

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9
y.chen@uwinnipeg.ca

Abstract. Since the extensible markup language XML emerged as a new stan-
dard for information representation and exchange on the Internet, the problem
of storing, indexing, and querying XML documents has been among the major
issues of database research. In this paper, we study the twig pattern matching
and discuss a new algorithm for processing ordered twig pattern queries. The
time complexity of the algorithm is bounded by O(|D|⋅|Q| + |T|⋅leafQ) and its
space overhead is by O(leafT⋅leafQ), where T stands for a document tree, Q for a
twig pattern and D is a largest data stream associated with a node q of Q, which
contains the database nodes that match the node predicate at q. leafT (leafQ)
represents the number of the leaf nodes of T (resp. Q). In addition, the algorithm
can be adapted to an indexing environment with XB-trees being used.

1 Introduction

The Extensible Markup Language (XML) is an emerging standard for data representa-
tion and exchange on the Internet. Tree pattern matching is one of the most important
types of XML queries to extract information from XML sources. Normally, an XML
document T is represented as a tree structure and typically a query Q specifies pat-
terns of selection predicates on multiple elements that also have some specified tree
structured relations. For instance, the XPath expression:

book[title = ‘Art of Programming’]//author[fn = ‘Donald’ and ln = ‘Knuth’]

asks for all those author elements that (i) have a child subelement fn with content
‘Donald’, (ii) have a child subelement ln with content ‘Knuth’, and are descendants of
book elements that have a child title subelement with content ‘Art of Programming’.
It can be represented as a tree structure. So the query evaluation in XML document
databases is essentially a tree matching problem.

We distinguish between two kinds of tree matchings. One is the so-called unordered
tree matching, by which the order of siblings is not significant. The other is the ordered
tree matching, by which the order of siblings should be taken into account. In the
following definitions, u → v in Q stands for a child edge (/-edge) for a parent-child rela-
tionship; and u ⇒ v for a descendant edge (//-edge) for an ancestor-descendant relation-
ship. We also use label(v) to represent the name tag (i.e., symbol ∈∑∪{*}) or the string
associated with v.

 Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases 357

Definition 1 (unordered tree matching). An embedding of a twig (small tree) pattern
Q into an XML document T is a mapping f: Q → T, from the nodes of Q to the nodes
of T, which satisfies the following conditions:

(i) Preserve node label: For each u ∈ Q, label(u) = label(f(u)).

(ii) Preserve parent-child/ancestor-descendant relationships: If u → v in Q, then f(v)
is a child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q can be imbedded into T, or say,
T contains Q. Notice that an embedding could map several nodes with the same tag
name in a query to the same node in a database. It also allows a tree mapped to a path,
by which the order of siblings is totally unconsidered. This definition is a little bit dif-
ferent from the ordered twig matching defined below.

Definition 2 (ordered tree matching). An embedding of a twig pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to the nodes of T, which sat-
isfies the following conditions:

(i) same as (i) in Definition 1.
(ii) same as (ii) in Definition 1.
(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q and v2 ∈ Q, if v1 is to the

left of v2, then f(v1) is to the left of f(v2) in T.

v1 is said to be to the left of v2 if they are not related by the ancestor-descendant re-
lationship and v2 follows v1. This kind of tree mappings is useful in practice. For ex-
ample, an XML data model was proposed by Catherine and Bird [1] for representing
interlinear text for linguistic applications, used to demonstrate various linguistic prin-
ciples in different languages. For the purpose of linguistic analysis, it is essential to
preserve the linear order between the words in a text [1]. In addition to interlinear
text, the syntactic structure of textual data should be considered, which breaks a sen-
tence into syntactic units such as noun clauses, verb phrases, adjectives, and so on.
These are used by the language TreeBank [2] to provide a hierarchical representation
of sentences. Therefore, by the evaluation of a twig pattern query against the Tree-
Bank, the order between siblings should be considered [2, 3].

In 2003, Wang et al. [4] proposed a first index-based method, called ViST, for han-
dling ordered twig pattern queries, by which the XML data are transformed into struc-
ture-encoded sequences and stored in a disk-based virtual trie using B+-trees. One of
the problems of this method is that the query processing strategy by straightforward
sequence matching may result in false alarms. Another problem, as pointed out in [3],
the size of indexes is higher than linear in the total number of elements in an XML
document. Such problems are removed by a method, called PRIX, discussed in [3].
This method constructs two Prüfer sequences to represent an XML document: a num-
bered Prüfer sequence and a labeled Prüfer sequence. For all the labeled Prüfer se-
quences, a virtual trie is constructed, used as an index structure. In this way, the size
of indexes is dramatically reduced to O(|T|). But it suffers from very high CPU time
overhead according to the following analysis. The method consists of a string match-
ing phase and several so-called refinement phases, for which O(k|Q|log|Q|) time is
needed (see page 328 in [3]), where k is the number of subsequences of a labeled
Prüfer document sequence, which match Q’s labeled Prüfer sequence. However, by

358 Y. Chen

the string matching defined in [3], a query pattern string can match non-consecutive
segments within a document target string (see Definition 4.1 in [3], page 306). So in
the worst case k is in the order of O(|T||Q|) since for each position i (in the target)
matching the first element in the pattern string the second element of the pattern can
match possibly at |T| - i - 1 positions; and for each position j matching the second
element in the pattern, the third element in the pattern can possibly match at |T| - j - 1
positions, and so on. As an example, consider the following Prüfer string:

A … ab … bc … cd …d

in which each substring containing the same characters is of length n/4. Assume that
the Prüfer string for a query is abcd. Then, there are O(n4) matching positions. For
each of them, a tree embedding will be examined. (We note that if the string matching
is restricted to consecutive segments, there is at most one matching for each position,
at which the first element in the pattern matches. But it is not the case discussed in [3].)

In this paper, we propose a new method for processing ordered twig pattern que-
ries. The main idea behind it is an algorithm for reconstructing tree structures from
data streams as well as a new tree labeling technique for queries to represent left-to-
right relationships. The new algorithm runs in O(|D|⋅|Q| + |T|⋅leafQ) time and
O(leafT⋅leafQ) space, where leafT (leafQ) represents the number of the leaf nodes of T
(resp. Q), and D is a largest data stream associated with a node q of Q, which contains
the database nodes that match the node predicate at q.

The remainder of the paper is organized as follows. In Section 2, we restate the tree
encoding [5], which can be used to facilitate the recognition of different relationships
among the nodes of trees. In Section 3, we discuss our algorithm for evaluating or-
dered twig pattern queries. The paper concludes in Section 4.

2 Tree Labeling

In [5], an interesting tree encoding method was discussed, which can be used to iden-
tify different relationships among the nodes of a tree. Let T be a document tree. We
associate each node v in T with a quadruple α(v) = (d, l, r, ln), where d is the docu-
ment identifier (DocId), l = LeftPos, r = RightPos, and ln = LevelNum. Here, LeftPos
and RightPos are generated by counting word numbers from the beginning of the doc-
ument until the start and end of the element, respectively. By using such a data struc-
ture, the structural relationship between the nodes in an XML database can be simply
determined [5]:

(i) ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1) is an ancestor of
another node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2.

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is the parent of another
node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1.

(iii) from left to right: a node v1 associated with (d1, l1, r1, ln1) is to the left of another
node v2 with (d2, l2, r2, ln2) iff d1 = d2, r1 < l2.

(See Fig. 3(a) for illustration.) In the rest of the paper, if for two quadruples α1 =
(d1, l1, r1, ln1) and α2 = (d2, l2, r2, ln2), we have d1 = d2, l1 < l2, and r1 > r2, we say that
α2 is subsumed by α1. For convenience, a quadruple is considered to be subsumed by

 Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases 359

itself. If no confusion is caused, we will use v and α(v) interchangeably. We can also
assign LeftPos and RightPos values to the query nodes in Q for the same purpose as
above. Finally we use T[v] to represent a subtree rooted at v in T.

3 Main Algorithm

In this section, we describe our method. First, we discuss a kind of data stream trans-
formation in 3.1, which provides the input to our main procedure. Then, in 3.2, the
main algorithm is described in great detail.

3.1 Data Stream Transformation

As with TwigStack [4], each node q in a twig pattern (or say, a query tree) Q is associ-
ated with a data stream B(q), which contains the positional representations (quadru-
ples) of the database nodes v that match q (i.e., label(v) = label(q)). All the quadruples
in a data stream are sorted by their (DocID, LeftPos) values. Therefore, iterating
through the stream nodes in sorted order of their LeftPos values corresponds to access
of document nodes in preorder. However, our algorithm needs to visit them in postor-
der (i.e., in sorted order of their RightPos values). For this reason, we maintain a
global stack ST to make a transformation of data streams using the following algo-
rithm. In ST, each entry is a pair (q, v) with q ∈ Q and v ∈ T (v is represented by its
quadruple.)

Algorithm. stream-transformation(B(qi)’s)
input: all data streams B(qi)’s, each sorted by LeftPos.
output: new data streams L(qi)’s, each sorted by RightPos.
begin
1. repeat until each B(qi) becomes empty
2. { identify qi such that the first element v of B(qi) is of the minimal LeftPos
 value; remove v from B(qi);
3. while ST is not empty and ST.top is not v’s ancestor do
4. { x ← ST.pop(); Let x = (qj, u);
5. put u at the end of L(qi); }
7. ST.push(qi, v);
8. }
end

In the above algorithm, ST is used to keep all the nodes on a path until we meet a
node v that is not a descendant of ST.top. Then, we pop up all those nodes that are not
v’s ancestor; put them at the end of the corresponding L(qi)’s (see lines 3 - 4); and
push v into ST (see line 7.) The output of the algorithm is a set of data streams L(qi)’s
with each being sorted by RightPos values. However, we remark that the popped
nodes are in postorder. So we can directly handle the nodes in this order without ex-
plicitly generating L(qi)’s. But for ease of explanation, we assume that all L(qi)’s are
completely generated in the following discussion. We also note that the data streams
associated with different nodes in Q may be the same. So we use q to represent the set
of such query nodes and denote by L(q) (B(q)) the data stream shared by them. With-
out loss of generality, assume that the query nodes in q are sorted by their RightPos

360 Y. Chen

values. We will also use L(Q) = {L(q1), ..., L(ql)} to represent all the data streams with
respect to Q, where each qi (i = 1, ..., l) is a set of sorted query nodes that share a
common data stream.

3.2 Main Procedure

First of all, we notice that iterating through L(q1), ..., L(ql), i.e., the data streams sorted
in increasing RightPos values, we navigate T in postorder. So, our algorithm works
bottom-up. For the purpose of checking ordered tree embedding, we will first search
Q in the breadth-first fashion, generating a number (called a breadth-first number) for
each node q in Q, denoted as bf(q), which can be used to represent the left-to-right or-
der of siblings in a simple way (See Fig. 1(a) for illustration). Then, we use inter-
val(q) to represent an interval covering all the breadth-first numbers of q’s children.
For example, for Q shown in Fig. 1(a), we have interval(q1) = [2, 3] and interval(q2) =
[4, 5]. In the following, we will use q and bf(q) interchangeably.

Next, we associate each q with a tuple g(q) = <bf(q), interval(q), LeftPos(q), Right-

Pos(q), LevelNum(q)>, as shown in Fig. 1(b). We say, a q is subsumed by a pair (L,
R) if L ≤ LeftPos(q) and R ≥ RightPos(q). When checking the tree embedding of Q in
T, we will associate each generated node v in T with a linked list Av to record what
subtrees in Q can be embedded in T[v]. Each entry in Av is a quadruple e = (q, inter-
val, L, R), where q is a node in Q, interval = [a, b] ⊆ interval(q) (for some a ≤ b), L =
LeftPos(a) and R = RightPos(b). Here, we use a and b to refer to the nodes with the
breadth-first numbers a and b, respectively. Therefore, such a quadruple represents a
set of subtrees (in Q[q]) rooted respectively at a, a + 1, ..., b (i.e., a set of subtrees
rooted at a set of consecutive breadth-first numbers.) See Fig. 2 for illustration. In ad-
dition, the following two conditions are satisfied:

i) For any two entries e1 and e2 in Av, e1.q is not subsumed by (e2.L, e2.R), nor is e2.q
subsumed by (e1.L, e1.R). In addition, if e1.q = e2.q, e1.interval ⊄ e2.interval and
e2.interval ⊄ e2.interval.

ii) For any two entries e1 and e2 in Av with e1.interval = [a, b] and e2.interval = [a’,
b’], if e1 appears before e2, then RightPost(e1.q) < RightPost(e2.q) or Right-
Post(e1.q) = RightPost(e2.q) but a < a’. Condition (i) is used to avoid redundancy
due to the following lemma.

Lemma 1. Let q be a node in Q. Let [a, b] be an interval. If q is subsumed by (Left-
Pos(a), RightPos(b)), then there exists an integer 0 ≤ i ≤ b - a such that bf(q) is equal
to a + i or q is an descendant of a + i.

3 2 q2 B B q5

q3 C

Q:

5

bf(q1) = 1

4
<4, φ, 3, 3, 3>

A q1

q2 B B q5

q3 C C q4

Q: <1, {2, 3}, 1, 7, 1>

<2, {4, 5}, 2, 5, 2> <3, φ, 6, 6, 2>

<5, φ, 4, 4, 3>

...

q

a b
... ...

(a) (b)C q4

A q1

Fig. 1. Illustration for L(qi)’s Fig. 2. Subtrees in Q

 Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases 361

Then, by imposing condition (i), Av keeps only quadruples which represent pair-
wise non-covered subtrees. Condition (ii) is met if the nodes in Q are checked along
their increasing RightPos values. It is because in such an order the parents of the
checked nodes must be non-decreasingly sorted by their RightPos values. Since we
explore Q bottom-up, condition (ii) is always satisfied.

See Fig. 3 for a better understanding.

In Fig. 3(a), we show a document tree T. Fig. 3(b) shows the linked list created for

v5 in T when it is generated and checked against q3 and q4 in Q shown in Fig. 1(a).
Since both q3 and q4 are leaf nodes, T[v5] is able to embed either Q[q3] or Q[q4] and so
we have two entries e1 and e2 in

5vA . Note that bf(q3) = 4 and bf(q3) = 5. So we set

their intervals to [4, 4] and [5, 5], respectively. In addition, each of them is a child of
q2. Thus, we have e1.q = e2.q = q2. In Fig. 3(c), we show the linked list for v4. It con-
tains three entries e1’, e2’ and e3’. Special attention should be paid to e1’. Its interval is
[4, 5], showing that T[v4] is able to embed both Q[q3] and Q[q4]. In this case, e1’.L is
set to 3 and e1’.R to 4. However, since e1’.q = q2 is subsumed by (e2’.L, e2’.R) = (2, 5),
the entry will be removed, and the linked list is reduced to a data structure shown in
Fig. 3(d). With the linked lists associated with the nodes in T, the embedding of a sub-
tree Q[q] in T[v] can be checked very efficiently. First, we define a simple operation
over two intervals [a, b] and [a’, b’], which share the same parent:

 [a, b] Δ [a’, b’]=
⎩
⎨
⎧

undefined,

][b' a,

otherwise.

 1, if b' b b a' a <+≤≤

For example, in
5vA , we have an entry (q2, [4, 4], 3, 3). In

6vA (which is exactly

the same as
5vA), we have an entry (q2, [5, 5], 4, 4). We can merge these two entries

to form another entry (q2, [4, 5], 3, 4), which can be used to facilitate checking
whether T[v4] embeds Q[q2].

The general process to merge two linked list is described below.

1. Let A1 and A2 be two linked list associated with the first two child nodes of a node
v in T, which is being checked against q with label(v) = label(q).

2. Scan both A1 and A2 from the beginning to the end. Let e1 (from A1) and e2 (from
A2) be the entries encountered. We will perform the following checkings.

– If RightPos(e2.q) > RightPos(e1.q), e1 ← next(e1).
– If RightPos(e2.q) < RightPos(e1.q), then e2’ ← e2; insert e2’ into A1 just before

e1; e2 ← next(e2).

(1, 3, 3, 3)

(1, 2, 9, 2)

(d)(b)

q2 [4, 4] 3 3

q2 [5, 5] 4 4

e1

e2

Av5
:

q1 [2, 2] 2 5

q1 [3, 3] 6 6

Av4
:

q1 [3, 3] 6 6

q1 [2, 2] 2 5e2’

e3’

Av4
:

q2 [4, 5] 3 4e1’

(c)

A v1

v2 B B v8

v3 C B v4

C v6 D v7 C v5

(1, 1, 11, 1)

(1, 5, 5, 4) (1, 6, 6, 4)

(1, 4, 8, 3)

(1, 7, 7, 4)

(a)

Fig. 3. Illustration for linked lists

362 Y. Chen

– If RightPos(e2.q) = RightPos(e1.q), then we will compare the intervals in e1 and
e2. Let e1.interval = [a, b]. Let e2.interval = [a’, b’].
If a’ > b + 1, then e1 ← next(e1).
If a ≤ a’ ≤ b + 1 and b < b’, then replace e1.interval with [a, b] Δ [a’, b’] in A1;
e1.RightPost ← RightPos(b’); e1 ← next(e1); e2 ← next(e2).
If [a’, b’] ⊆ [a, b], then e2 ← next(e2).
If a’ < a, then e2’ ← e2; insert e2’ into A1 just before e1; e2 ← next(e2).

3. If A1 is exhausted, all the remaining entries in A2 will be appended to the end of A1.
The result of this process is stored in A1, denoted as merge(A1, A2). We also define

 merge(A1, ..., Ak) = merge(merge(A1, ..., Ak-1), Ak),

where A1, ..., Ak are the linked lists associated with v’s child nodes: v1, ..., vk, respec-
tively. If in merge(A1, ..., Ak) there exists an e such that e.interval = interval(q), T[v]
embeds Q[q].

For the merging operation described above, we require that the entries in a linked
list are sorted. That is, all the entries e are in the order of increasing RightPos(e.q)
values; and for those entries with the same RightPos(e.q) value their intervals are
‘from-left-to-right’ ordered. Such an order is obtained by searching Q bottom-up (or
say, in the order of increasing RightPos values) when checking a node v in T against
the nodes in Q. Thus, no extra effort is needed to get a sorted linked list. Moreover, if
the input linked lists are sorted, the output linked lists must also be sorted.

The above merging operation can be used only for the case that Q contains no /-
edges. In the presence of both /-edges and //-edges, the linked lists should be slightly
modified as follows.

i) Let qj be a /-child of q with bf(qj) = a. Let Ai be a linked list associated with vi (a
child of v) which contains an entry e with e.interval = [c, d] such that c ≤ a and a
≤ d.

ii) If label(qj) = label(vi) and vi is a /-child of v, e needn’t be changed. Otherwise, e
will be replaced with two entries:

– (e.q, [c, a - 1], LeftPos(c), LeftPos(a - 1)), and
– (e.q, [a + 1, d], LeftPos(a + 1), LeftPos(d)).

In terms of the above discussion, we give our algorithm for evaluating ordered twig
pattern queries. In the process, we will generate left-sibling links from the current
node v to the node u generated just before v if u is not a child (descendant) of v. How-
ever, in the following description, we focus on the checking of tree embedding and
that part of technical details is omitted.

Algorithm. tree-embedding(L(Q))
Input: all data streams L(Q).
Output: Sv’s, with each containing those query nodes q such that T[v] contains Q[q].
begin
1. repeat until each L(q) in L(Q) become empty
2. {identify q such that the first element v of L(q) is of the minimal RightPos value; remove v

from L(q);
3. generate node v; Av ← f;
4. let v1, ..., vk be the children of v.

 Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases 363

5. B ← merge(
1vA , ...,

kvA);

6. for each q ∈ q do { (*nodes in q are sorted.*)
7. if q is a leaf then {Sv ← Sv ∪ {q};}
8. else (*q is an internal node.*)
9. { if there exists e in B such that e.interval = interval(q)
10. then Sv ← Sv ∪ {q};}
11. }
12. for each q ∈ Sv do {
13. append (q’s parent, [bf(q), bf(q)], q.LeftPos, q.RightPos to the end of Av;}
14. Av ← merge(Av, B); Scan Av to remove subsumed entries;
15. remove all

jvA ’s;}

16. }
end

In Algorithm tree-embedding(), the nodes in T is created one by one. For each
node v generated for an element from a L(q), we will first merge all the linked lists of
their children and store the output in a temporary variable B (see line 5). Then, for
each q ∈ q, we will check whether there exists an entry e such that e.interval = inter-
val(q) (see lines 8 - 9). If it is the case, we will construct an entry for q and append it
to the end of the linked list Av (see lines 12 - 13). The final linked list for v is estab-
lished by executing line 14. Afterwards, all the

jvA ’s (for v’s children) will be re-

moved since they will not be used any more (see line 15).

Proposition 2. Algorithm tree-embedding() computes the entries in Av’s correctly.

4 Conclusion

In this paper, we have discussed a new method to handle the ordered tree matching in
XML document databases. The main idea is the concept of intervals, which enables us
to efficiently check from-left-to right ordering. The time complexity of the algorithm
is bounded by O(|D|⋅|Q| + |T|⋅leafQ) and its space overhead is by O(leafT⋅leafQ), where
T stands for a document tree, Q for a twig pattern and D is a largest data stream asso-
ciated with a node q of Q, which contains the database nodes that match the node
predicate at q. leafT (leafQ) represents the number of the leaf nodes of T (resp. Q).

References

[1] Catherine, B., Bird, S.: Towards a general model of Interlinear text. In: Proc. of EMELD
Workshop, Lansing, MI (2003)

[2] Müller, K.: Semi-automatic construction of a question tree bank. In: Proc. of the 4th Intl.
Conf. on Language Resources and Evaluation, Lisbon, Portual (2004)

[3] Rao, P., Moon, B.: Sequencing XML Data and Query Twigs for Fast Pat-tern Matching.
ACM Transaction on Data base Systems 31(1), 299–345 (2006)

[4] Wang, H., Meng, X.: On the Sequencing of Tree Structures for XML Indexing. In: Proc.
Conf., Data Engineering, Tokyo, Japan, April 2005, pp. 372–385 (2005)

[5] Zhang, C., Naughton, J., Dewitt, D., Luo, Q., Lohman, G.: on Supporting containment
queries in relational database management systems. In: Proc. of ACM SIGMOD (2001)

Query Rewriting Rules for Versioned XML
Documents

Tetsutaro Motomura1, Mizuho Iwaihara2,
and Masatoshi Yoshikawa1

1 Department of Social Informatics, Kyoto University
2 Graduate School of Information, Production, and Systems, Waseda University

Abstract. Shared and/or interactive contents such as office documents
and wiki contents are often provided with both the latest version and all
past versions. It is necessary to add version axes to XPath in order to
trace version histories of fine-grained subdocuments of XML. Although
research has been done on the containment and equivalence problems for
XPath, which is a basic property of optimizing queries, there has been no
research in the case for XPath extended with version axes. In this paper,
we will propose query rewriting rules which can exchange between doc-
ument axes and version axes, and prove that they are preserving query
semantics. The rewriting rules enable us to swap path subexpressions
between document axes and version axes to optimize queries.

1 Introduction

Structured documents having past versions are rapidly growing, especially among
the area of wiki contents and office documents. Contents such as wiki are shared
among many users and modified by them. Update history (change log) is also
provided for examining creation processes and information sources. Old versions
are compared with the latest version to check changed parts, and in cases of edit
failures and malicious updates, an old version is recovered.

Version retrieval is essential for utilizing versioned contents. Through great
contributions from a vast number of authors and by hundreds administrators,
who can delete articles, Wikipedia1 is rapidly growing and popular articles of
Wikipedia contain more than one thousand of versions. Authors often browse
version histories of their contributions to see how their articles have been aug-
mented and updated by others. General users sometimes check version histories
for data recency and provenance. However, version retrieval of Wikipedia offers
quite limited functionalities. Since articles are the only unit of versions, users
have to execute document-wise difference operation many times until desired
results are obtained. Subversion2 is a widely-used version control system for
software resources. Subversion offers version retrieval, but users can specify only

1 http://en.wikipedia.org/wiki
2 http://subversion.tigris.org/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 364–371, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Query Rewriting Rules for Versioned XML Documents 365

Fig. 1. (a) Delta version graph and (b) Element version graph

files as a unit of versions, so that again users need to take a number of file
differences to track changes of specific parts of a file.

XML is a widely-accepted standard for structured documents, and used in
many domains such as office documents and digital subscription. If we regard
an office document or wiki content as an XML document tree, each paragraph
corresponds to a node of the XML tree. XPath [1] is a W3C standard for query-
ing XML documents. An XPath query is represented by a path expression and
extracts a set of result nodes matching the expression from the node set of an
XML document. Therefore, we can utilize XPath for retrieving and extracting
information from XML documents. However, XPath provides no function for
performing fine-grained version retrieval of tracing an update history of a doc-
ument node. XVerPath [2] is a query language for versioned XML documents
where XPath is extended with version axes, such as version parent/ancestor and
version child/descendant. Fine-grained query functionalities over versioned XML
have many applications, such as defining views on node-level history. Views on
versioned XML can be defined based on users’ interests and security require-
ments such as access control, where unnecessary or unauthorized subdocuments
will be filtered out from the view.

Example 1. In Fig. 1, document d3 is created from d1 by inserted node t2 as a
child of u2. Then document d4 is created by replacing node v4 with document
d2. Figure 1(a) is called a delta version graph, whose nodes represent documents
and each edge corresponds to an update operation. Figure 1(b) is an element
version graph, in which node-level version relationship is calculated from the
delta version graph and represented by version edges, where each version edge
is labeled with ‘n’, ‘r’, ‘u’ representing update types ‘no-change’, ‘replace’ and

366 T. Motomura, M. Iwaihara, and M. Yoshikawa

‘(content) update’, respectively. The document version d4 is created by replacing
v4 in document d3 with the subtree rooted at t1. Let us now assume that we
would like to retrieve the previous version of the nodes labeled as ‘f’ in d4. We
may first select all nodes labeled with ‘f’ in d4, and then obtain the previous
version of each node. On the other hand, we can obtain the same result by
retrieving the nodes labeled with ‘f’ from d3.

In the above example, the reason why there are two ways of retrieving version
parents of the node is that there are multiple paths of version and document
edges to reach the query targets. Such exchangability between document axis
and version axis has not been discussed in the literature. For instance, research
has been done on the containment and equivalence problem of XPath, which is a
basic property for optimizing queries. A result in Milo and Suciu [3] showed that
the containment problem for a fragment of XPath which consists of node tests,
the child axis (/), the descendant axis (//), wildcards (∗), which is denoted
as XP {//,∗}, is in PTIME. The containment problem is co-NP complete for
XP {//,∗,[]}, which is a fragment of XPath consisting of node tests, /, //, ∗,
and predicates ([]) [4]. Since the size of versioned XML documents is very large
because of its history information, it is necessary to optimize XVerPath queries
in order to reduce search space and improve performance. However, we need to
take a different approach from traditional XPath query processing to deal with
multiple navigation paths of versioned XML documents.

The existence of multiple navigation paths allows us to swap evaluation order
of document-axis and version-axis. However, such swapping of axes is not always
possible. Thus, we need to investigate query rewriting rules and conditions for
preserving query semantics under these rewriting rules.

In this paper, we consider queries in XV P {//,∗,[],vpar}, a fragment of XPath
consisting of node tests, /, //, ∗ and [], extended with version parent function
vpar. In our versioned XML model, document versions are created by update
operation delete, insert, replace and (content) update. We show a collection of
query rewriting rules and their preconditions. For each update operation, a rule
denoting exchangeability of vpar with either // or ∗ is presented. Due to the
space limitation, rewriting rules with regarded to insert, update, and replace,
and all the proofs of this paper are omitted.

Versioned XML has been studied as space-efficient representation using refer-
ences [5], lifespan [6] and deltas [7], and efficient retrieval of a specified version or
a timestamp is discussed. For efficient detection of changes, structural difference
of XML documents have been also studied [8] [9] [10], where structural differ-
ence is represented as a sequence of updates on an XML tree. While these works
assume document-wise version retrieval or difference, our focus is on node-wise
version retrieval. Version ancestors or descendants of a node or subdocument
are queried in node-wise version retrieval, which is essential in handling large
documents or views. We discuss basic tools for algebraic optimizations of queries
involving intermixed navigation on document and version axes.

The rest of the paper is organized as follows: In Section 2, we define models
of XML documents and version graphs, and query languages. In Section 3, we

Query Rewriting Rules for Versioned XML Documents 367

show a catalogue of query rewriting rules. In Section 4, we discuss formal prop-
erties of rewriting rules regarding delete. In Section 5, we show an application
of elimination query redundancies using the rewriting rules shown in this paper.
Section 6 is a conclusion.

2 Data Model and Query Languages

In this section, we introduce definitions of XML documents and version graphs,
XPath and XVerPath queries, and their semantics.

In this paper, we model XML documents as unordered and labeled trees. An
XML document is denoted as d < N,E, r >, where N is a labeled node set, E is
a set of document edges, and r ∈ N is the document root. Each node n ∈ N has
a content denoted by content(n), which is a text containing element or attribute
tag name from an infinite alphabet Σ. The label of node n from Σ is represented
by n.label.

Let d < N,E, r > be an XML document and let a and b in N , respectively.
Then a is a document ancestor of b if a is an ancestor of b in the labeled tree
of d.

2.1 Version Graphs

First, we give a definition of update operations for XML documents.

Definition 1. (Update Operations). We define the following basic update oper-
ations on XML documents.

1. delete(x):delete the subtree with root node x from the document. Here, we
represent the subtree with root x as subtree(x) = (//∗)(x), and represent the
deleted set of nodes is represented as subtree(x).

2. insert(x, y):insert a new subtree(y) as a child of node x.
3. update(x, c):update the content of node x with content(x) = c.
4. replace(x, y):replace the subtree(x) by a new subtree(y).

Next, we model a document-level update history satisfying the two properties:
(1)a new document version is created by applying δ to a document, where δ is
any update operation defined above, and (2)let D be a set of documents, then a
document d1 in D is obtained from another document d2 in D by δ. This model is
represented by a delta version graph Gd < Vd, Ed >, where is a directed acyclic
graph such that the node set Vd corresponds to the document set D and the
edge set Ed consists of the version edges edge(d1, δ, d2), such that edge(d1, δ, d2)
exists if document d2 is created from document d1 by delta δ. We say that d2 is
a child version of d1, and d1 is a parent version of d2.

Fig. 1 (a) shows an example of a delta version graph. For example, the version
edge edge(d1, delete(u3), d3) means that the new document d3 is generated by
deleting the node u3 from document d1.

Now we define an element version graph for representing document node-level
update history. An element version graph Ge < Ve, Ee > is computed from a

368 T. Motomura, M. Iwaihara, and M. Yoshikawa

delta version graph Gd and a set of XML documents D, where Ve is a set of
labeled document nodes and Ee is a set of labeled version edges. There are three
edge labels n, u, r, meaning no-change, update, and replace, respectively. Let
u and v be any nodes in Ve. Then a version edge (u, n, v) with label n means
that v is a version child of u, but the content of v is not changed from u. A
version edge (u, u, v) with label u means that v is a version child of u and v is
updated from u by delta that created the document version of v. A version edge
(u, r, v) with label r means that v is a version child of u and v is obtained by
replacing the subtree rooted at u with the subtree rooted at v. The non-root
nodes in a subtree newly introduced by an insert or replace operation does not
have a version parent. There is a straightforward algorithm to create a unique
element version graph from a delta version graph and document node set D, as
described in [2]. Figure 1(b) illustrates an element version graph. For example,
each node in the document d1 except u3 has a version child in the document d3,
because u3 is deleted. Moreover, the content of v1 is identical to the content of
u1 when d3 created because u1 is not change by the delete, and it is indicated
by the label ‘n’ (‘n’ means no-change) of the version edge between u1 and v1.

Note that representing fully materialized versions are space-consuming and
keeping only differences between versions are advantageous. Such difference-
based representation of element version graphs is shown in [2]. However, the
rewriting rules of this paper are independent from these physical representa-
tions of element version graphs.

2.2 Query Languages

In this section, we define query languages used in this paper. First, we define a
fragment of XPath [1], the W3C standard query language for addressing parts
of an XML document.

Definition 2. (XPath Queries). We consider a subclass of XPath, consisting of
expressions given by the following grammar.

p→ ε | l | ∗ | p/p | p//p | p[q]

Here, ε is the empty path, ‘l’ is a label. ‘∗’ is a wildcard which selects an arbitrary
label. The symbol ‘/’ denotes the child axis selecting children of the context
node, and ‘//’ denotes the descendant-or-self axis that selects descendants of the
context node and the context node itself. ‘[]’ denotes a predicate which filters a
node set and its grammar is given as follows:

q → p | p θ c
Here, c is a constant, p is an expression defined above, and θ is a comparison
operator in {<,≤,=,≥, >}.

Let q be an XPath query and d < N,E, r > be an XML document. We
represent q(r) the result of evaluating q on r. A query q is said to contain a
query q

′
, denoted by q ⊆ q

′
, if q(R) ⊆ q

′
(R) holds for any set of nodes R. Two

Query Rewriting Rules for Versioned XML Documents 369

queries q and q
′

are equivalent, denoted by q ≡ q
′
, if and only if q ⊆ q

′
and

q
′ ⊆ q hold.
Next, we define XVerPath [2] as XP {//,∗,[]} extended with version axes.

Definition 3. (XVerPath Queries). We define XVerPath{pc} as XP {//,∗,[]}

augmented with the following constructs:

p→ vpar(el) | vchild(el)
el→ ε | ell
ell→ n | u | r | ell , ell

Here, vpar stands for the version parent function and vchild stands for the
version child function. The symbol el is a possibly empty list of version edge
labels in {n, u, r}. If el is empty, it is regarded as an arbitrary label. Let Ge be
an element version graph and v be a context node in Ge, and q be a query in
{vpar(el), vchild(el)}. The semantics of q(v) is defined as follows:

(vpar(el))(v) = { u | edge(u, el, v) ∈ Ge}
(vchild(el))(v) = { w | edge(v, el, w) ∈ Ge}

In the following, we often denote el as a subscript. Namely, vparn is the same as
vpar(n). Note that the original XVerPath [2] includes the version ancestor-or-
self axis (vanc) and the version descendant-or-self axis (vdesc). Query rewriting
rules involving these axes are out of the scope of the paper. Let q be an arbitrary
XVerPath{pc} query, Gd be a delta version graph, R be a subset of nodes in Gd.
Then q(R,Gd) is the result nodes of q evaluated over Gd and R. Here, since Gd

contains all the versions and can be fixed, we omit Gd from the query expression
and simply denote the query as q(R). Containment and equivalence for XVerPath
are defined in the same manner as for XPath.

3 Query Rewriting Rules

In this section, we present query rewriting rules which can be applied when an
update operation δ is deletion. In Sections 4, we discuss formal properties of
these rules.

In the following, let V be a node set belonging to a same version, and U be the
node sets of the version parents of V . Also, let t0 be the target node of an update
operation δ which creates the version of V . For instance, if δ = delete(t0), V is
created by deleting the subtree rooted at t0 from U .

In the following rewriting rule, rules are presented as a pair of a precondition
and equivalent queries. Also the name of each rule is given in the format as
‘update operation name – version axis – XPath operation’. For example, ‘DEL-
VPAR-∗’ means that the vpar function and a wildcard (∗) can be interchanged
when the update operation is delete.

370 T. Motomura, M. Iwaihara, and M. Yoshikawa

In the following, q is either ‘∗’ or ‘//’, and ‘\’ is the set difference.

Rule 1. DEL-VPAR-∗ and Rule 2. DEL-VPAR-//
Precondition: subtree(t0) is deleted and V is created.
Rewriting rule: (/q/vparn)(V) = (/vparn/q)(V) \subtree(t0)

4 Rewriting Rules Regarding Delete

In this section, we discuss how each query rewriting rule holds.
Let us assume that a deletion δ = delete(t0) creates a document version

Tv from Tu, and consider the possibility of swapping the evaluation order of
an XVerPath query q(Tv) and the version parent function vpar. Since the new
XML document Tv is created by deleting the subtree rooted at t0 from Tu, Tv =
Tu \ subtree(t0) holds. We consider the situation whether q can be interchanged
with the set difference ‘\’ so that q(Tv) = q(Tu) \ q(subtree(t0)) holds. This
property holds if q is either ‘∗’ or ‘//’.

Theorem 1. (DEL-VPAR-∗). Let Ge be an element version graph and V be a
node set belonging to a same version, and delete(t0) be a delete operation that
creates V . Then we have the following:

(/ ∗ /vparn)(V) = (/vparn/∗)(V) \ subtree(t0)

The outline of the proof of Theorem 1 is as follows: first we show that the theorem
holds for the case when the node set V is singleton, and extend the result using
the following distribution law:

Theorem 2. (Distribution). Let V1, V2 be any node sets and q be an arbitrary
query in XV P {//,∗,[],vpar,vchild}. Then we have the following:

q(V1 ∪ V2) = q(V1) ∪ q(V2)

The above query rewriting also holds for the descendant-or-self query ‘//’.

Theorem 3. (DEL-VPAR-//). Let Ge be an element version graph, V be a node
set belonging to a same version, delete(t0) be a delete operation that creates V ,
and q be any query in XP {//,∗,[]}. Then we have the following:

(//vparn/q)(V) = (/vparn//q)(V) \ subtree(t0)

Theorem 1 and Theorem 3 enable us to swap ‘∗’ (or ‘//’) and vpar. If a
deleted subtree and a node set applied by vpar have a non-empty intersection
vparn(V)∩ subtree(t0) �= ∅, the adjustment ‘\subtree(t0)’ is required to remove
the intersection. Otherwise, the equality holds in a simpler form without the
adjustment: (/ ∗ /vparn)(V) = (/vparn/∗)(V).

Query Rewriting Rules for Versioned XML Documents 371

5 Application of Rewriting Rules

In this section, we demonstrate elimination of redundant subqueries as an ap-
plication of the query rewriting rules of this paper.

Example 2. Let us assume that document tree d4 is created as the latest version
by the update operation shown in Fig. 1. Also let us consider two queries such
that q1 = /a/vchildn,r and q2 = / ∗ /vparn,r,u.

Now we create a new query q3 = /a/vchildn,r/ ∗ /vparn,r,u by composing q1
and q2. Now consider evaluation of q3(v1), where v1 is the root node of document
d3: (/a/vchildn,r/∗/vparn,r,u)(v1). Query q3 can be transformed into the follow-
ing equivalent query by Theorem 1: (/a/vchildn,r/vparn,r,u/∗)(v1)\subtree(u3).
Since the subquery vchildn,r/vparn,r,u is an identity mapping (label ‘u’ is irrel-
evant here), the subquery can be eliminated, and we can obtain a query q4:
(/a/∗)(v1) \ subtree(u3). As a result, we can rewrite q3 into q4.

6 Conclusion

In this paper, we showed two query rewriting rules which can equivalently inter-
change between version axes and document axes for queries over versioned XML
documents. We observe that more types of rules can be discovered by enumer-
ating all possible interchangeable cases. The rewriting rules of the paper give
us an interesting insight that querying over versions generated by a sequence of
updates can be optimized by strategically choosing evaluation order of version
and document axes.

References

1. Clark, J., DeRose, S.: XML Path Language(XPath) version 1.0 (1999),
http://www.w3.org/TR/xpath/

2. Iwaihara, M., Hayashi, R., Chatvichienchai, S., Anutariya, C., Wuwongsue, V.:
Relevancy-based access control and its evaluation on versioned XML documents.
ACM Transactions on Information and System Security 10(1), 1–31 (2007)

3. Milo, T., Suciu, D.: Index structures for XPath expressions. In: ICDT, pp. 277–295
(1999)

4. Miklau, G., Suciu, D.: Containment and equivalence for a fragment of XPath.
Journal of the ACM 51, 2–45 (2004)

5. Chien, S.Y., Tsotras, V.J., Zaniolo, C.: Efficient management of multiversion doc-
uments by object referencing. In: VLDB, pp. 291–300 (2001)

6. Chien, S.Y., Tsotras, V.J., Zaniolo, C., Zhang, D.: Supporting complex queries on
multiversion XML documents. ACM Trans. Internet Techn. 6(1), 53–84 (2006)

7. Marian, A., Abiteboul, S., Cobena, G., Mignet, L.: Change-centric management of
versions in an XML warehouse. In: VLDB, pp. 581–590 (2001)

8. Chawathe, S.S.: Comparing hierarchical data in external memory. In: VLDB, pp.
90–101 (1999)

9. Wang, Y., DeWitt, D.J., Cai, J.Y.: X-diff: An effective change detection algorithm
for XML documents. In: ICDE, pp. 519–530 (2003)

10. Leonardi, E., Bhowmick, S.S.: Xanadue: a system for detecting changes to XML
data in tree-unaware relational databases. In: SIGMOD, pp. 1137–1140 (2007)

http://www.w3.org/TR/xpath/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 372–381, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Querying XML Data with SPARQL*

Nikos Bikakis, Nektarios Gioldasis, Chrisa Tsinaraki,
and Stavros Christodoulakis

Technical University of Crete, Department of Electronic and Computer Engineering
Laboratory of Distributed Multimedia Information Systems & Applications (TUC/ MUSIC)

University Campus, 73100, Kounoupidiana Chania, Greece
{nbikakis,nektarios,chrisa,stavros}@ced.tuc.gr

Abstract. SPARQL is today the standard access language for Semantic Web
data. In the recent years XML databases have also acquired industrial impor-
tance due to the widespread applicability of XML in the Web. In this paper
we present a framework that bridges the heterogeneity gap and creates an inter-
operable environment where SPARQL queries are used to access XML data-
bases. Our approach assumes that fairly generic mappings between ontology
constructs and XML Schema constructs have been automatically derived or
manually specified. The mappings are used to automatically translate SPARQL
queries to semantically equivalent XQuery queries which are used to access the
XML databases. We present the algorithms and the implementation of
SPARQL2XQuery framework, which is used for answering SPARQL queries
over XML databases.

Keywords: Semantic Web, XML Data, Information Integration, Interoperabil-
ity, Query Translation, SPARQL, XQuery, SPARQL2XQuery.

1 Introduction

The Semantic Web has to coexist and interoperate with other software environments
and in particular with legacy databases. The Extensible Markup Language (XML), its
derivatives (XPath, XSLT, etc.), and the XML Schema have been extensively used to
describe the syntax and structure of complex documents. In addition, XML Schema
has been extensively used to describe the standards in many business, service, and
multimedia application environments. As a result, a large volume of data is stored
and managed today directly in the XML format in order to avoid inefficient access
and conversion of data, as well as avoiding involving the application users with more
than one data models. The database management systems offer today an environment
supporting the XML data model and the XQuery access language for managing XML
data. In the Web application environment the XML Schema acts also as a wrapper to
relational content that may coexist in the databases.

Our working scenario assumes that users and applications of the Semantic Web
environment ask for content from underlying XML databases using SPARQL. The

* An extended version of this paper is available at [14].

 Querying XML Data with SPARQL 373

SPARQL queries are translated into semantically equivalent XQuery queries which
are (exclusively) used to access and manipulate the data from the XML databases in
order to return the requested results to the user or the application. The results are
returned in RDF (N3 or XML/RDF) or XML [1] format. To answer the SPARQL
queries on top of the XML databases, a mapping at the schema level is required. We
support a set of language level correspondences (rules) for mappings between
RDFS/OWL and XML Schema. Based on these mappings our framework is able to
translate SPARQL queries into semantically equivalent XQuery expressions as well
as to convert XML Data in the RDF format. Our approach provides an important
component of any Semantic Web middleware, which enables transparent access to
existing XML databases.

The framework has been smoothly integrated with the XS2OWL framework [9],
thus achieving not only the automatic generation of mappings between XML Schemas
and OWL ontologies, but also the transformation of XML documents in RDF format.

Various attempts have been made in the literature to address the issue of accessing
XML data from within Semantic Web Environments [2, 4, 5, 6, 7, 8, 9, 10, 11, 12].
An extended overview of related work can be found at [13].

The rest of the paper is organized as follows: The mappings used for the translation
as well as their encoding are described in Section 2. Section 3 provides an overview
of the query translation process. The paper concludes in section 4.

2 Mapping OWL to XML Schema

The framework described here allows XML encoded data to be accessed from Seman-
tic Web applications that are aware of some ontology encoded in OWL. To do that,
appropriate mappings between the OWL ontology (O) and the XML Schema (XS)
should exist. These mappings may be produced either automatically, based on our
previous work in the XS2OWL framework [9], or manually through some mapping
process carried out by a domain expert. However, the definition of mappings between
OWL ontologies and XML Schemas is not the subject of this paper. Thus, we do not
focus on the semantic correctness of the defined mappings. We neither consider what
the mapping process is, nor how these mappings have been produced.

Such a mapping process has to be guided from language level correspondences.
That is, the valid correspondences between the OWL and XML Schema language
constructs have to be defined in advance. The language level correspondences that
have been adopted in this paper are well-accepted in a wide range of data integration
approaches [2, 4, 9, 10, 11]. In particular, we support mappings that obey the follow-
ing language level correspondence rules: A class of O corresponds to a Complex Type
of XS, a DataType Property of O corresponds to a Simple Element or Attribute of XS,
and an Object Property of O corresponds to a Complex Element of XS.

Then, at the schema level, mappings between concrete domain conceptualizations
have to be defined (e.g. the employee class is mapped to the worker complex type)
following the correspondences established at the language level.

At the schema level mappings a mapping relationship between O and an XS is a bi-
nary association representing a semantic association among them. It is possible that
for a single ontology construct more than one mapping relationships are defined. That
is, a single source ontology construct can be mapped to more than one target XML

374 N. Bikakis et al.

Schema elements (1:n mapping) and vice versa, while more complex mapping rela-
tionships can be supported.

The mappings considered in our work are based on the Consistent Mappings Hy-
pothesis, which states that for each mapped property Pr of O:

a. The domain classes of Pr have been mapped to complex types in XS that
contain the elements or attributes that Pr has been mapped to.

b. If Pr is an object property, the range classes of Pr have been mapped to
complex types in XS, which are used as types for the elements that Pr has been
mapped to.

2.1 Encoding of the Schema Level Mappings

Since we want to translate SPARQL queries into semantically equivalent XQuery
expressions that can be evaluated over XML data following a given (mapped)
schema, we are interested in addressing XML data representations. Thus, based on
schema level mappings for each mapped ontology class or property, we store a set of
XPath expressions (“XPath set” for the rest of this paper) that address all the corre-
sponding instances (XML nodes) in the XML data level. In particular, based on the
schema level mappings, we construct:

 A Class XPath Set XC for each mapped class C, containing all the possible
XPaths of the complex types to which the class C has been mapped to.
 A Property XPath Set XPr for each mapped property Pr, containing all the possi-
ble XPaths of the elements or/and attributes to which Pr has been mapped.

For ontology properties, we are also interested in identifying the property domains
and ranges. Thus, for each property we define the XPrD and XPrR sets, where:

 The Property Domains XPath Set XPrD for a property Pr represents the set of the
XPaths of the property domain classes.
 The Property Ranges XPath Set XPrR for a property Pr represents the set of the
XPaths of the property ranges.

Example 1. Encoding of Mappings

Fig. 1 shows the mappings between an OWL Ontology and an XML Schema.

ns:N
ick_N

am
e

ns
:F

ir
st

_N
am

e

n
s

:S
u

r_N
a

m
e

n
s

:In
c

o
m

e

n
s:

e-
m

ai
l

ns:H
as_P

erson

Fig. 1. Mappings Between OWL & XML

 Querying XML Data with SPARQL 375

To better explain the defined mappings, we show in Fig. 1 the structure of the
XML documents that follow this schema. The encoding of these mappings in our
framework is shown in Fig.2.

Fig. 2. Mappings Encoding

XPath Set Operators. For XPath Sets, the following operators are defined in order to
formally explain the query translation methodology in the next sections:

 The unary Parent Operator P, which, when applied to a set of XPaths X (i.e. (X)P),
returns the set of the distinct parent XPaths (i.e. the same XPaths without the leaf
node). When applied to the root node, the operator returns the same node.

Example 2. Let Χ={ /a , /a/b , /c/d , /e/f/g , /b/@f } then (Χ)P={ /a , /a , /c , /e/f , /b }.

 The binary Right Child Operator ®, which, when applied to two XPath sets X and Y
(i.e. X®Y), returns the members (XPaths) of the right set X, the parent XPaths of
which are contained in the left set Y.

Example 3. Let X={ /a , /c/b } and Y={ /a/d , /a/c , /c/b/p , c/a/g } then
X ®Y = { /a/d , /a/c , /c/b/p }.

 The binary Append Operator /, which is applied on an XPath set X and a set of node
names N (i.e. X / N), resulting in a new set of XPaths Y by appending each member
of N to each member of X.

Example 4. Let X={/a, /a/b} and N={c, d} then Y = X / N = {/a/c, /a/d, /a/b/c, a/b/d }.

XPath Set Relations. We describe here a relation among XPath sets that holds
because of the Consistent Mapping Hypothesis described above. We will use this
relation later on in the query translation process, and in particular in the variable
bindings algorithm (subsection 3.1):

Domain-Range Property Relation: () () Property Pr and X
Pr Pr PrD Pr Pr

P P

X X X X
R R

∀ ⇒ = = =

The Domain-Range Property Relation can be easily understood taking into account
the hierarchical structure of XML data as well as the Consistent Mappings Hypothe-
sis. It describes that for a single property Pr:

 the XPath set of its ranges is equal to its own XPath set (i.e. the instances of its
ranges are the XML nodes of the elements that this property has been mapped to).
 the XPath set of its domain classes is equal to the set containing its parent XPaths
(i.e. the XPaths of the CTs(Complex Types) that contain the elements that this
property has been mapped to).

376 N. Bikakis et al.

3 Overview of the Query Translation Process

In this section we present in brief the entire translation process using a UML activity
diagram. Fig. 3 shows the entire process which starts taking as input the given
SPARQL query and the defined mappings between the ontology and the XML
Schema (encoded as described in the previous sections). The query translation process
comprises of the activities outlined in the following paragraphs.

act SPARQL2?QUERY

Mappings SPARQL GraphPattern
Normalization

SPARQL
Query

Solution Sequence
Modifiers Translation

Query Form Based
Translation

Union-Free GraphPattern Processing

Determination of
Variable Types

Processing
Onto-Triples

UF-GP2XQuery

Variables
Binding

BGP2XQuery

Union Operator
Translation

[Else]

[SSMs Exist][Else]

[Else]

[Type Conflicts]
[Onto-Triples
Exist]

[Else] [More GPs]
[More U-F GPs]

[More BGPs]

Fig. 3. Overview of the SPARQL Translation Process

SPARQL Graph Pattern Normalization. The SPARQL Graph Pattern Normalization
activity re-writes the Graph-Pattern (GP) of the SPARQL query in an equivalent normal
form based on equivalence rules. The SPARQL GP normalization is based on the GP
expression equivalences proved in [3] and re-writing techniques. In particular, each GP
can be transformed in a sequence P1 UNION P2 UNION P3 UNION…UNION Pn,
where Pi (1≤i≤n) is a Union-Free GP (i.e. GPs that do not contain Union operators).
This makes the GP translation process simpler and more efficient.

Union-Free Graph Pattern (UF-GP) Processing. The UF-GP processing translates
the constituent UF-GPs into semantically equivalent XQuery expressions. The UF-
GP Processing activity is a composite one, with various sub-activities. This is actually
the step that most of the “real work” is done since at this step most of the translation
process takes place. The UF-GP processing activity is decomposed in the following
sub-activities:

– Determination of Variable Types. For every UF-GP, this activity initially iden-
tifies the types of the variables used in order to detect any conflict arising from the
user’s syntax of the input as well as to identify the form of the results for each vari-
able. We define the following variable types: The Class Instance Variable Type
(CIVT), The Literal Variable Type (LVT), The Unknown Variable Type (UVT), The

 Querying XML Data with SPARQL 377

Data Type Predicate Variable Type (DTPVT), The Object Predicate Variable Type
(OPVT), The Unknown Predicate Variable Type (UPVT).

We also define the following sets: The Data Type Properties Set (DTPS), which
contains all the data type properties of the ontology. The Object Properties Set
(OPS), which contains all the object properties of the ontology. The Variables Set
(V), which contains all the variables that are used in the UF-GP. The Literals Set
(L), which contains all the literals referenced in the UF-GP.

The determination of the variable types is based on a set of rules applied itera-
tively for each triple in the given UF-GP. Below we present a subset of these rules,
which are used to determine the type (TX) of a variable X:

Let S P O be a triple pattern.

1. If P є OPS and Ο є V ⇒ TO = CIVT. If predicate is an object property and
object is a variable, then the type of the object variable is CIVT.

2. If Ο є L and P є V ⇒ TP = DTPVT. If the object is a literal value, then the
type of the predicate variable is DTPVT.

– Processing Onto-Triples. Onto-Triples actually refer to the ontology structure
and/or semantics. The main objective of this activity is to process Onto-Triples
against the ontology (using SPARQL) and based on this analysis to bind (i.e. assign-
ing the relevant XPaths to variables) the correct XPaths to variables contained in the
Onto-Triples. These bindings are going to be used in the next steps as input to the
Variable Bindings activity.
– UF-GP2XQuery. This activity translates the UF-GP into semantically equivalent
XQuery expressions. The concept of a GP, and thus the concept of UF-GF, is de-
fined recursively. The BGP2XQuery algorithm translates the basic components of a
GP (i.e. Basic Graph Patterns - BGPs which are sequences of triple patterns and fil-
ters) into semantically equivalent XQuery expressions (see subsection 3.2). To do
that a variables binding (see subsection 3.1) step is needed. Finally, BGPs in the
context of a GP have to be properly associated. That is, to apply the SPARQL op-
erators among them using XQuery expressions and functions. These operators are:
OPT, AND, and FILTER and are implemented using standard XQuery expressions
without any ad hoc processing.

Union Operator Translation. This activity translates the UNION operator that ap-
pears among UF-GPs in a GP, by using the Let and Return XQuery clauses in order
to return the union of the solution sequence produced by the UF-GPs to which the
Union operator applies.

Solution Sequence Modifiers Translation. This activity translates the SPARQL
solution sequence modifiers using XQuery clauses (Order By, For, Let, etc.) and
XQuery built-in functions (you can see the example in subsection 3.3.). The modifiers
supported by SPARQL are Distinct, Order By, Reduced, Limit, and Offset.

Query Forms Based Translation. SPARQL has four forms of queries (Select, Ask,
Construct and Describe). According to the query form, the structure of the final result
is different. The query translation is heavily dependent on the query form. In particu-
lar, after the translation of any solution modifier is done, the generated XQuery is
enhanced with appropriate expressions in order to achieve the desired structure of the
results (e.g. to construct an RDF graph, or a result set) according to query form.

378 N. Bikakis et al.

3.1 Variable Bindings

This section describes the variable bindings activity. In the translation process the
term “variable bindings” is used to describe the assignment of the correct XPaths to
the variables referenced in a given Basic Graph Pattern (BGP), thus enabling the
translation of BGP to XQuery expressions. In this activity, Onto-Triples are not taken
into account since their processing has taken place in the previous step.

Definition 1 : A triple pattern has the form (s,p,o) є(I U B U V) x (I U V U B)
x (I U B U L U V), where I is a set of IRIs, B is a set of Blank Nodes, V is a set of
Variables, and L the set of RDF Literals. In our approach, however, the individuals in
the source ontology are not considered at all (either they do not exist, or they are not
used in semantic queries).

Definition 2 : A variable contained in a Union Free Graph Pattern is called a
Shared Variable when it is referenced in more than one triple patterns of the same
Union-Free Graph Pattern regardless its position in those triple patterns.

Variable Bindings Algorithm. When describing data with the RDF triples (s,p,o),
subjects represent class individuals (RDF nodes), predicates represent properties
(RDF arcs), and objects represent class individuals or data type values (RDF nodes).
Based on that, and the domain-range property relation of Xpaths sets relations section
we have: a) Xs = XpD = (XpR)P = (Xp)

P b) Xp = XpR and c) Xo = XpR .

Thus it holds that: Χs = ΧpD = (ΧpR)P = (Χp)
P = (Χo)

P ⇒ Χs = (Χp)
P = (Χo)

P (Subject-
Predicate-Object Relation)

This relation holds for every single triple pattern. Thus, the variable bindings algorithm
uses this relation in order to find the correct bindings for the entire set of triple patterns
starting from the bindings of any single triple pattern part (subject, predicate, or object).

In case of shared variables, the algorithm tries to find the maximum set of bindings
(using the operators for XPath sets) that satisfy this relation for the entire set of triple
patterns (e.g. the entire BGP). Once this relation holds for the entire BGP we have as
a result that all the instances (in XML) that satisfy the BGP have been addressed.

The variable bindings algorithm in case of shared variables of LVT type it doesn’t
determine the XPaths for this kind of variable, since literal equality is independent of
the XPaths expressions. Thus, the bindings for variables of this type cannot be defined
at this step (mark as “Not Definable” at variable bindings rules). Instead, they will be
handled by the BGP2XQuery (subsection 3.2) algorithm (using the mappings and the
determined variables bindings).

The algorithm takes as input a BGP as well as a set of initial bindings and the types
of variables as these are determined in the “Determination of Variable Type” activity.
These initial bindings are the ones produced by the Onto-Triple processing activity
and initialize the bindings of the algorithm. Then, the algorithm performs an iterative
process where it determines, at each step, the bindings of the entire BGP (triple by
triple). The determination of the bindings is based on the rules described below. This
iterative process continues until the bindings for all the variables found in the succes-
sive iterations are equal. This means that no further modifications in the variable
bindings are to be made and that the current bindings are the final ones.

Variable Bindings Rules. Based on the possible combinations of S, P and O, there
are four different types of triple patterns (the ontology instance are not yet supported

 Querying XML Data with SPARQL 379

by our framework): Type 1 : S є V, P є I ,O є L. Type 2 : S, O є V, P є I . Type 3 : S, P є V,
O є L. Type 4 : S, P, O є V.

According to the triple pattern type, we have defined a set of rules for the variable
bindings. In this section we present a sub-set of these rules due to space limitations.

In what follows the symbol ′ in XPath sets denotes the new bindings assigned to
the set at each iteration, while the symbol ← denotes the assignment of a new value to
the set. All the XPath sets are considered to be initially set to null. In that case, the
intersection operation is not affected by the null set. E.g. Χ={ null } and Υ= {/a/b ,
d/e} then X ∩ Y ={ /a/b , d/e }. The notation “Not Definable” is used for variables of
type LVT as explained above. Consider the triple S P O:

 If the triple is of Type 1 ⇒ XS′ ← XPD ∩ XS
 If the triple is of Type 2 ⇒ XS′ ← XPD ∩ XS ∩ (XO)P
− If P є OPS ⇒ XO′ ← XS′ ® XO
− If P є DTPS ⇒ XO′ Non Definable (as explained in previously)
 If the triple is of Type 3 ⇒ XS′ ← XPD ∩ XS and XP′ ← XS′ ® XP
 If the triple is of Type 4 ⇒ XS′ ← XPD ∩ XS ∩ (XO)P and XP′ ← XS′ ® XP
− If TO = CIVT or TO = UVT ⇒ XO′ ← XP′ ∩ XO
− If TO = LVT ⇒ XO′ Non Definable (as explained previously)

XPath Set Relations for Triple-Patterns. Among XPath sets of triple patterns there
are important relations that can be exploited in the development of the XQuery
expressions in order to correctly associate data that have been bound to different vari-
ables of triple patterns. The most important relation among XPath sets of triple pat-
terns is that of extension:

Extension Relation: An XPath set A is said to be an extension of an XPath set B if all
XPaths in A are descendants of the XPaths of B.

As an example of this relation, consider the XPath A′ produced when applying the
append (/) operator to an original XPath set A with a set of nodes.

The extension relation holds for the results of the variable bindings algorithm (Sub-
ject-Predicate-Object Relation) and implies that the XPaths bound to subjects are
parents of the XPaths bound to predicates and objects of triple patterns.

3.2 Translating BGPs to XQuery

In this section we describe the translation of BGPs to semantically equivalent XQuery
expressions. The algorithm manipulates a sequence of triple patterns and filters (i.e. a
BGP) and translates them into semantically equivalent XQuery expressions, thus al-
lowing the evaluation of a BGP on a set of XML data.

Definition 3 : Return Variables (RV) are those variables for which the given
SPARQL Query would return some information. The set of all Return Variables of a
SPARQL query constitutes the set RV ⊆ V.

The BGP2XQuery Algorithm. We briefly present here the BGP2XQuery algorithm for
translating BGPs into semantically equivalent XQuery expressions. The algorithm takes
as input the mappings between the ontology and the XML schema, the BGP, the deter-
mined variable types, as well as the variable bindings. The algorithm is not executed

380 N. Bikakis et al.

triple-by-triple for a complete BGP. Instead, it processes subjects, predicates, and ob-
jects of all the triples separately. For each variable included in the BGP, the
BGP2XQuery it creates a For or Let XQuery clause using the variable bindings, the
input mappings, and the Extension Relation for triple-patterns (see subsection 3.1), in
order to bound XML data into XQuery variables. The choice between the For and the
Let XQuery clauses is based on specific rules so as to create a solution sequence based
on the SPARQL semantics. Moreover, in order to associate bindings from different
variables into concrete solutions, the algorithm uses the Extension Relation. For literals
included in the BGP, the algorithm is using XPath predicates in order to translate them.
Due to the complexity that a SPARQL filter may have, the algorithm translates all the
filters into XQuery where clauses, although some “simple” of them (e.g. condition on
literals) could be translated using XPath predicates. Moreover, SPARQL operators
(Built-in functions) included in filter expressions are translated using built-in XQuery
functions and operators. However, for some “special” SPARQL operators (like same-
Term, lang, etc.) we have developed native XQuery functions that simulate them.

Finally, the algorithm creates an XQuery Return clause that includes the Return
Variables (RV) that was used in the BGP.

There are some cases of share variables which need special treatment by the algo-
rithm in order to apply the required joins in XQuery expressions. The way that the
algorithm manipulates these cases depends on which parts (subject-predicate-object)
of the triples patterns these shared variables refer to.

3.3 Example

We demonstrate in this example the use of the described framework in order to allow
a SPARQL query to be evaluated in XML Data (based on Example 1). Fig. 4 shows
how a given SPARQL query is translated by our framework into a semantically
equivalent XQuery.

Fig. 4. SPARQL Query Translation Example

 Querying XML Data with SPARQL 381

4 Conclusions

We have presented a framework and its software implementation that allows the
evaluation of SPARQL queries over XML data which are stored in XML databases
and accessed with the XQuery language. The framework assumes that a set of map-
pings between the OWL ontology and the XML Schema exists which obey to certain
well accepted language correspondences.

The SPARQL2XQuery framework has been implemented as a software service
which can be configured with appropriate mappings (between some ontology and
XML Schema) and translates input SPARQL queries into semantically equivalent
XQuery queries that are answered over the XML Database.

References

1. Beckett, D. (ed.): SPARQL Query Results XML Format. W3C Recommendation, January,
15, http://www.w3.org/TR/rdf-sparql-XMLres/

2. Bohring, H., Auer, S.: Mapping XML to OWL Ontologies. In: Leipziger Informatik-Tage
2005, pp. 147–156 (2005)

3. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I.,
Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L.M.
(eds.) ISWC 2006. LNCS, vol. 4273, pp. 30–43. Springer, Heidelberg (2006)

4. Rodrigues, T., Rosa, P., Cardoso, J.: Mapping XML to Exiting OWL ontologies. In: Inter-
national Conference WWW/Internet 2006, Murcia, Spain, October 5-8 (2006)

5. Farrell, J., Lausenq, H.: Semantic Annotations for WSDL and XML Schema. W3C Rec-
ommendation, W3C (August 2007), http://www.w3.org/TR/sawsdl/

6. Groppe, S., Groppe, J., Linnemann, V., Kukulenz, D., Hoeller, N.: C.-t. Reinke: Embed-
ding SPARQL into XQuery/XSLT. In: SAC 2008, pp. 2271–2278 (2008)

7. Akhtar, W., Kopecký, J., Krennwallner, T., Polleres, A.: XSPARQL: Traveling between
the XML and RDF worlds – and avoiding the XSLT pilgrimage. In: Bechhofer, S.,
Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp.
432–447. Springer, Heidelberg (2008)

8. Droop, M., Flarer, M., et al.: Embedding XPATH Queries into SPARQL Que-ries. In:
Proc. of the 10th International Conference on Enterprise Information Systems

9. Tsinaraki, C., Christodoulakis, S.: Interoperability of XML Schema Applications with
OWL Domain Knowledge and Semantic Web Tools. In: Proc. of the ODBASE (2007)

10. Cruz, I.R., Xiao, H., Hsu, F.: An Ontology-based Framework for XML Seman-tic Integra-
tion. In: Database Engineering and Applications Symposium (2004)

11. Christophides, V., Karvounarakis, G., et al.: The ICS-FORTH SWIM: A Powerful Seman-
tic Web Integration Middleware. In: Proc. of the SWDB 2003, pp. 381–393 (2003)

12. Amann, B., Beeri, C., Fundulaki, I., Scholl, M.: Querying XML Sources Using an Ontol-
ogy-Based Mediator. In: CoopIS/DOA/ODBASE 2002, pp. 429–448 (2002)

13. Bikakis, N., Gioldasis, N., Tsinaraki, C., Christodoulakis, S.: Semantic Based Access over
XML Data. In: Proc. of 2nd World Summit on Knowledge Society 2009, WSKS 2009
(2009)

14. Bikakis, N., Gioldasis, N., Tsinaraki, C., Christodoulakis, S.: The SPARQL2XQuery
Framework, http://www.music.tuc.gr/reports/SPARQL2XQUERY.PDF

Progressive Evaluation of XML Queries for
Online Aggregation and Progress Indicator

Cheng Luo1, Zhewei Jiang2, Wen-Chi Hou2, and Gultekin Ozsoyoglu3

1 Department of Mathematics and Computer Science in Coppin State University,
2500 West North Avenue, Baltimore, MD, 21216, U.S.A.

cluo@coppin.edu
2 Computer Science Department in Southern Illinois University Carbondale,

Carbondale, IL 62901, U.S.A.
{zjiang,hou}@cs.siu.edu

3 Electrical Engineering and Computer Science Department in Case Western
Reserve University, Cleveland, OH 44106, U.S.A.

tekin@eecs.cwru.edu

Abstract. With the rapid proliferation of XML data, large-scale online
applications are emerging. In this research, we aim to enhance the XML
query processors with the ability to process queries progressively and
report partial results and query progress continually. The methodology
lays its foundation on sampling. We shed light on how effective samples
can be drawn from semi-structured XML data, as opposed to flat-table
relational data. Several innovative sampling schemes on XML data are
designed. The proposed methodology advances XML query processing
to the next level - being more flexible, responsive, user-informed, and
user-controllable, to meet emerging needs and future challenges.

1 Introduction

The demand for an efficient and effective exploration method for large-scale XML
repositories is more urgent than ever. There has been much research [1,17] de-
voted to designing efficient query processing techniques for XML data. However,
due to the large size of the data and inherently complex nature of XML queries,
many queries can still take hours or even days to complete [21]. Moreover, query
results are generally reported after all the data (relevant to the queries) have been
processed. No information about the query, such as partial results, approximate
answers, or progress of query evaluation, is reported during the process, which
may not be desirable for applications like OLAP, decision-support querying, and
long-running transaction processing.

The deployments of OLAP, decision-support, and data mining systems in
the future crucially hinge on their ability to provide timely feedbacks to users’
queries. In this research, we aim to equip XML query processors with the power
to timely display partial results, provide estimates, and report progresses of
evaluation to meet the needs of emerging XML applications.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 382–395, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Progressive Evaluation of XML Queries 383

Sampling presents an efficient and effective alternative to study data of large
sizes. By processing only a small amount of sample data, approximate query an-
swers can be derived quickly, responsively, and flexibly. It is well suited for appli-
cations like selectivity estimation, online analytical processing, decision-support
querying, and long-running transaction processing. Indeed, there has been much
researchon sampling in relationaldatabases during the past twodecades [8,13,4,5].
While sampling has enjoyed somuch success in relationaldatabases, there has been
virtually no or little work on sampling in XML databases. In this research, we show
how informative samples can be drawn from XML documents.

Recently, research efforts have been put on continually providing estimates
and reporting progress of evaluation in relational databases. For example, Heller-
stein et al. [6] proposed processing aggregation queries incrementally and report
estimates continually for online aggregation. Other work in progressive query
evaluation includes [10,19]. There has also been some work on enhancing a sys-
tem with a progress indicator by continually displaying the remaining query
processing time [2,17,16]. Nevertheless, all this work is done in the context of
relational databases rather than XML databases.

In this paper, we initiate the research of sampling on XML data and pro-
gressive evaluation of XML queries. We aim to enhance XML query processors
with the ability to process both aggregation and non-aggregation queries pro-
gressively (or incrementally) and report results and progress of evaluation con-
tinually. The methodology lays its foundation on sampling. Several innovative
sampling schemes on XML data are proposed. By continuously sampling from
the database, queries are evaluated incrementally. For regular (non-aggregation)
queries, the system continuously returns newly found query matches; for ag-
gregation queries, it reports running estimates with confidence intervals. The
progress of query processing is also reported continually. We have implemented
and experimented with this methodology. The experimental results show that
with only small amounts of sample data, we can accurately estimate aggregation
queries and query processing time. The results also confirm that our sampling
schemes are effective and well suited for progressive evaluation of XML queries.

The rest of the paper is organized as follows. Section 2 is the preliminaries.
Section 3 introduces the framework for progressive evaluation of XML queries
using sampling. Section 4 discusses the derivation of running estimates and their
associated confidence intervals. Section 5 reports the experimental results and
Section 6 concludes the paper.

2 Preliminaries

In this section, we introduce the notation and terminology that are used in the
later parts of this paper.

XML Data Model. An XML document is generally modelled as a node-
labelled, ordered tree T = (VT , ET), where VT is the set of vertices in the tree
and ET the set of edges. Each node v ∈ VT corresponds to an element or an
attribute in the document. Each directed edge e = (u, v) ∈ ET represents an

384 C. Luo et al.

element-subelement or element-attribute relationship between nodes u and v. If
there is a directed edge from u to v, u is said to be a parent of v; if v is reachable
from u via directed edges, u is said to be an ancestor of v.

Region coding has been adopted in much of the XML research [1,11,14]. In
this scheme, each node in the tree is assigned a unique 3-ary tuple: (leftPos,
rightPos, LevelNo), which represents the left, right positions, and level number
of the node, respectively. The codes can be used easily to determine the structural
relationships between nodes in the tree.

Twig Queries. Due to the tree-structured nature of XML data, XML queries
are often expressed as path expressions, consisting of simple linear path expres-
sions that describe linear paths without branches and complex path expressions
that describe branched paths. The latter, commonly known as twig queries [1],
represent a more general and complicated form of the XML queries.

Bruno, et al. [1] have designed an efficient twig query evaluation algorithm,
called TwigStack. It has become the foundations of many other algorithms
[14,15]. In this research, we will use it, with some minor modifications, as our
underlying query evaluation algorithm.

XML Aggregation Queries. The XML query language provides syntax for
computing summary information for a group of related document elements. Typ-
ical aggregation functions include COUNT, SUM, and AVERAGE.

Progress Indicators. Progress indicators report the progress of query evalua-
tion on the fly [2,17]. The progress is usually measured by the fraction of work
completed or, if possible, the remaining time. A progress bar is generally dis-
played to show the query execution progress. Users have the option to terminate
the query evaluation when they feel that the estimation is sufficiently accurate.

3 Progressive Evaluation of Queries

3.1 Assumptions

TwigStack [1] is the underlying query processing algorithm for this research. In
TwigStack, data nodes having the same label name are stored in ascending order
by their left positions in a linear list, called a stream. Each stream is assumed
to be indexed properly for direct access.

3.2 Progressive Evaluation Framework

The algorithm in Figure 1 outlines the progressive evaluation of an aggregation
query. The process stops when a terminating condition is met, which can be a
desired precision, a time constraint, or eof (i.e., all sampling units have been
processed). For simplicity, the algorithm in Figure 1 assumes the terminating
conditions are a desired precision represented by a specified confidence interval ε
or eof. N is the population size. The function SRWOR(1, N) returns a number
i, 1 ≤ i ≤ N or NULL (if all number are taken) using simple random sampling
without replacement.

Progressive Evaluation of XML Queries 385

ProgressiveEvaluation()

begin
confInterval=+∞;
while ((confInterval > ε) and (i = SRWOR(1, N)! = NULL)) do

sampleunit range=PopulationTable[i];
queryResults+=EvalTwig(sampleunit range);
(estimate,confInterval)=calEstimate(queryResults, ++sampleSize);
Display(estimate,confInterval);

end
end

Fig. 1. Progressive Evaluation of Queries

A sampling unit in this research is generally a sub-range of the document’s
region code domain, encompassing a sub-tree or a set of sub-trees of the data tree,
depending upon the different sampling schemes (to be discussed later). Sampling
units, represented by their region code ranges, are stored in a table, called the
PopulationTable, for easy accesses. The function EvalTwig() uses TwigStack
to find matches in the given sampling unit. Note that a slight modification to
the TwigStack is needed so that each time it evaluates only a sub-range of
the document’s coding domain (i.e., only a sampling unit). This can be easily
accomplished by using the range of a sample unit as the starting/terminating
condition in the TwigStack. Besides displaying the newly found matches on the
fly for non-aggregation queries, EvalTwig() also returns interesting aggregate
values for the newly found matches. The computations of the running estimates
and associated confidence intervals of the aggregation queries, indicated by the
function calEstimate() in the algorithm, will be discussed in Section 4.

Desirable Properties of Progressive Evaluation. Sampling units are drawn
continuously from the data tree and evaluated against the query in a progressive
manner. Two basic properties are desirable of such a progressive evaluation.

Property 1. The progressive evaluation of a query must generate the complete
set of query matches once the entire set of sampling units has been processed in
some order.

Property 2. No duplicate query match is generated in the process of a progres-
sive evaluation of sampling units.

3.3 Sampling from an XML Tree

There is a long history of using sampling for approximate aggregation query
processing in relational databases [4,8,9,13]. Unfortunately, these techniques,
applied generally to relational model’s flat-table data, are not directly applica-
ble to XML’s semi-structured data. Naive sampling schemes, such as randomly
sampling nodes from an XML tree or from individual node sets (i.e., groups of
nodes of the same type) [20] can generally yield large variance in estimation, as

386 C. Luo et al.

Fig. 2. An XML Data Tree

demonstrated by the multi-join estimation in relational databases. Consequently,
one may have to resort to external index files for more effective matching [20],
which unfortunately can be quite expensive. To the best of our knowledge, there
has been no research that utilize the semi-structured nature of XML data to
design effective XML sampling schemes.

We observe that to form informative and effective samples, relevant nodes
must be drawn together as a unit, instead of independently like the naive sam-
pling methods. In what follows, we discuss how to draw samples that preserve
correlations of data nodes. Preserving correlations makes a sample informative
and effective.

Before formally introducing the sampling schemes, let us first consider an
example of what constitutes a sampling unit. For ease of exposition, we use the
XML data tree and twig query in Figures 2 and 3, respectively, as an example.
For a better demonstration of the structural relationships, Figure 4 shows the
coverage of A nodes in the data tree.

For a given twig query, an XML data tree can be viewed as a set of sub-
trees rooted at individual query root nodes. For example, the query root node
of the query in Figure 3 is A and the XML data tree can be viewed as a set
of sub-trees rooted at a1, a2, a6, and a7 as far as the query is concerned. The
set of sub-trees constitutes the population from which individual sub-trees are
drawn as sampling units. By continuously drawing sub-trees rooted at query
root nodes, query evaluation can be accomplished progressively. We assume that
simple random sampling without replacement [3] is the underlying technique
used for drawing sub-trees from a sub-tree set.

Note that we do not materialize in any form the sub-trees. Drawing a sub-tree
only means to retrieve nodes of the sub-tree from the respective streams. Since
each sub-tree can be uniquely determined by its root node, we shall for simplicity
represent a sub-tree by its root node. For instance, the aforementioned sub-tree
set is represented by {a1, a2, a6, a7}.

Queries having the same root node type can use the same sub-tree set as their
populations. Consequently, we only need to construct a sub-tree set for each node
type (that could potentially become a query root node of some queries), and the
total number of sub-tree sets to accommodate all possible queries is no greater
than the number of node types in the data tree.

Progressive Evaluation of XML Queries 387

Fig. 3. A Sample XML Twig Query Fig. 4. Coverage of A Nodes

3.4 Sampling Schemes

The set of sub-trees can be viewed as a partitioning of the data tree. The quan-
tities of interesting statistics generally vary from sub-tree to sub-tree in a parti-
tioning. If the distributions of the interested statistics are highly skewed among
the sub-trees, estimates can have large variance. In this research, we design three
partitioning schemes to form sub-tree sets that can be evaluated with ease and
generate estimates with high accuracy.

We differentiate two types of query root nodes. As shown in Figure 2, there
are A nodes like a1, a2, a6, and a7 that are not descendants of any other A
nodes, and there are also A nodes like a3, a4, and a5 that are descendants of
some other A nodes. We shall call the former top query root (or top A) nodes
and the latter non-top query root (or non-top A) nodes. Our goal is to construct
sets of query root nodes (and thus sub-trees) that are suitable for progressive
evaluation.

Top Query Root Node Sampling. In this scheme, only the top query root
nodes are selected into the sub-tree set for sampling. That is, only those sub-
trees rooted at top query root nodes are eligible for sampling. Consider Figure 2
again. The previously discussed sub-tree set {a1, a2, a6, a7} is indeed the result
of this partitioning scheme for all queries rooted at A. The rationale behind
this scheme is that the top query root nodes cover disjoint ranges of the coding
domain. Thus, no non-top query root nodes under a specific top query root node
can form a query match with another top query root node. That is, no B and
C nodes under a specific top A node can form a query match with another top
A node. In addition, every non-top A node, e.g., a3, a4, or a5, is covered by one
and only one top A node. Consequently, data nodes will be retrieved from their
respective streams at most once in the entire query processing process.

Fig. 5. Population Table for Top A
Node

Fig. 6. Population Table for Hybrid
Scheme

To facilitate sampling, we build a population table for each node type (that
could potentially become a query root node type) to store the top nodes of the
corresponding sub-trees. Figure 5 shows the population table for A nodes. Each
cell in the table stores the left region code of a top A node for identification

388 C. Luo et al.

purpose. The right region code is not needed as it can be found once we locate
the node in the respective stream.

Once a query root node is drawn from the population table, we evaluate the
query against the sub-tree rooted at it. Evaluating a sub-tree is accomplished by
examining the nodes of interest falling in the range of the sub-tree root node in
the respective streams. For example, if a2 is sampled, then we examine a2, a3,
a4, and a5 from stream A, b1 and b2 from stream B, and c1 and c2 from stream
C. In other words, all A, B, C nodes that fall in the range covered by a2 are
evaluated. Clearly, a progressive evaluation over this sub-tree set possesses the
two desirable properties mentioned earlier.

Various index files can be used to locate and retrieve the desired nodes from
the respective streams directly. But, for simplicity, we will not focus on this issue
here. Interested readers are referred to [11] for details of such index files on XML
data.

Again, we do not physically build any sample sub-tree. Instead, we just use
the index files to locate the nodes of the sample sub-tree in the streams and
direct them to TwigStack for evaluation in the normal way.

This method is very simple and should work well when the coverage of the
query root nodes is roughly uniform and the tree structure is spread widely.
However, if there are few top query root nodes, such as a2, that cover large ranges
of the coding domain, imbalanced workload and large variance in estimation can
be expected. To remedy this problem, we devise two other sampling schemes in
the following.

All Query Root Node Sampling. In this scheme, all query root nodes are
included in the (sub-tree) set for sampling. For example, {a1, a2, a3, a4, a5, a6,
a7} form the sub-tree set for all queries rooted at A. Since a non-top query root
node, such as a3, a4, or a5, falls in the ranges of its ancestors, in this case a2,
it may be evaluated multiple times. In order not to generate duplicate query
matches, no query root node should be evaluated unless it is directly sampled.
For example, when a2 is drawn, we evaluate only a2 from the A stream and,
as usual, b1 and b2 from the B stream, and c1 and c2 from the C stream. Note
that a3 and a4 are not evaluated here since they are not sampled directly. This
schemes requires a little more modifications to the TwigStack than the previous
sample scheme. Clearly, a progressive evaluation over this scheme generates the
complete query results once all the nodes in the set are evaluated (Property 1),
and no duplicate results are generated in the process (Property 2) due to the
provision.

Note that some non-query-root nodes may be evaluated multiple times be-
cause they are covered by multiple query root nodes. For example, b1 will be
retrieved and evaluated twice if both a2 and a3 are sampled; similarly, c1, c2,
and b2 will also be retrieved twice if both a2 and a4 are sampled. This is due
to the overlapping of the coding ranges of query root nodes, such as a2 and
a3, and a2 and a4. This scheme can incur substantial overhead if the data are
highly nested. In contrast, top query root node sampling scheme never retrieves

Progressive Evaluation of XML Queries 389

or evaluates non-query root nodes more than once. However, this scheme does
not require population tables. Samples can be drawn directly from the streams.

A Hybrid Sampling Scheme. The two aforementioned schemes each has its
strengths and weaknesses. Here, we devise another sampling scheme to strike a
balance between the variance and overhead. We attempt to combine (if possible)
small consecutive query root nodes into a larger sampling unit, while extract (if
possible) query root nodes nested in large query root nodes to form additional
sampling units. Here, small/large nodes refer to nodes that have small/large
coding ranges,respectively.

Two thresholds, an upper threshold and a lower threshold, are set up to
guide the merge and extraction of the query root nodes. The upper threshold
is used to constrain the size of the sample units, while the lower threshold is
used to guard against forming too small sample units when extracting sampling
units from large ones. There is no strict rule for setting up the upper/lower
thresholds. Based on our experience, dividing the entire domain into several
hundred subregions should be enough to yield good estimation even for a complex
dataset like TreeBank. For example, one can set the upper bound to 0.5% of the
entire range and lower bound to 0.25% (half the upper bound) to divide the data
into roughly 1/((0.5%+0.25%)/2)=267 subregions.

We attempt to combine as many consecutive small query root nodes that
spread out over a range no greater than the upper threshold into a single sam-
pling unit. On the other hand, if a query root node has a coverage greater than
the upper bound, we look to extract its consecutive descendent query root nodes
whose combined ranges are between the lower bound and the upper bound to
form new sampling units. Note that if the consecutive nodes nested in a large
node are too small (i.e., smaller than the lower threshold) to form sampling
units, we will leave them alone as they are already covered by (or nested in)
their ancestor nodes and will be sampled with them. By restraining the sizes
of hopefully the majority of the sampling units between the lower and upper
thresholds, this scheme is expected to yield estimates with small variance.

To ensure that no duplicate query matches are generated, we require that
an extracted sampling unit be excluded from the evaluation of its ancestors. In
addition, a non-top query root node is evaluated with its nearest ancestor query
root node that is a sample unit. An example of using the hybrid sampling scheme
can be found in the full version of the paper [12].

4 Running Estimates and Confidence Intervals

Because of the space limit, below is a brief discussion. A more detailed analysis
can be found in [12].

4.1 Aggregation Queries

COUNT and SUM Queries. Let N be the total number of sampling units
in the population table or the population size, and n the number of units drawn

390 C. Luo et al.

from the table or the sample size till now. Let f = n
N be the sampling fraction.

Let yi, 1 ≤ i ≤ n, be the quantity of interest associated with the ith randomly
drawn sampling unit from the table. Let Y be the true result of the COUNT or
SUM query, and Ŷ = N

n

∑n
i=1 yi an estimator of Y derived based on a simple

random sampling without replacement sample of size n from the population
table. The following properties hold following the theorems in [3].

Theorem 1. Ŷ is a consistent and unbiased estimator of Y .

Theorem 2. Let s2 = 1
n−1

∑n
i=1(yi− ȳ)2, where ȳ= 1

n

∑n
i=1 yi. v(Ŷ)= N2s2

n (1−
f) is an unbiased estimator of the variance of Ŷ .

AVG Queries. AVG is computed as the ratio of the results of the respective
SUM to COUNT queries, i.e., SUM / COUNT. Let y and x be the values of inter-
est in the SUM and COUNT queries, respectively. Let Â =

∑n
i=1 yi/

∑n
i=1 xi be

an estimator of AVG. Â is usually a slightly biased estimator for AVG when the
sample size is small. In large samples, the distribution of Â tends to normality
and the bias becomes negligible [3].

An estimator for the variance of Â, denoted v(Â), can be derived [3] as

v(Â) =
1− f

nx̄2 ·
∑n

i=1 y
2
i − 2Â

∑n
i=1 yixi + Â2 ∑n

i=1 x
2
i

n− 1
(1)

where x̄ =
∑n

i=1 xi.
If the sample size is large enough, for a given confidence probability p, based

on the Central Limit Theorem, the associated confidence interval can be derived
in the same way as those for the COUNT and SUM queries as Â ± ε, where

ε = zp

√
v(Â).

5 Performance Evaluation

In this section, we report the experimental results of the proposed sampling
schemes on progressive evaluation of queries. Three datasets, DBLP, XMark,
and TreeBank, are used in the experiments to measure the performance of these
methods in estimating aggregation queries and progress indicators.

5.1 Experimental Setting

The proposed sampling schemes are incorporated into the TwigStack algorithm
[1] for progressive evaluation of queries. All algorithms are implemented in C++
and experiments are performed on a linux workstation with a 3.4GHz CPU and
1GB RAM.

We choose the datasets whose structural complexities range from simple to
complex for experimental purposes. DBLP exhibits rather simple and uniform

Progressive Evaluation of XML Queries 391

structures. It contains 3,332,130 elements, totaling 133 M bytes. XMark bench-
mark is a synthetic dataset generated based on an internet auction website
database. It also exhibits very simple structures like DBLP but with a light
degree of recursions. The dataset used in our experiments is around 116 MB. It
has 79 labels and 1,666,315 elements. Another synthetic dataset TreeBank has
complex and deep structures with a high degree of recursions. The dataset is
around 86 MB with 250 labels and 2,437,666 elements. The depth of TreeBank
document is as large as 36.

Queries with different structural characteristics and selectivity ratios are cho-
sen for experiments. More than 50 twig queries are tested for each of the datasets.

The (absolute) relative error is used to measure the estimation errors of the
methods for aggregation queries and progress indicators. We tested more than
50 different queries, each of which was run 5 times. The averages of the relative
errors are reported.

5.2 Experimental Results

For simplicity, we shall call the top query root node sampling, the all query
root node sampling, and the hybrid sampling the Sampling1, Sampling2, and
Sampling3, respectively, in the following discussions.

DBLP Dataset Selectivity Estimation. Figure 7 shows the performance of
the sampling methods on the DBLP dataset. As observed, the average relative
errors of using only 5% samples are already less than 6% for Sampling1 and
Sampling2 methods, and around 8% for the Sampling3. The errors decrease to
around 3% when the sampling fractions increase to 25%.

The good performance of these methods is partly due to the uniformity of the
dataset. Another factor that contributes to the good performance is the large
numbers of sample units in the dataset, e.g., tens of thousands or hundreds of
thousands in Sampling1 and Sampling2, for many queries. Consequently, even
for a small sampling fraction, such as 5%, there are large numbers of sample
units selected for evaluation, which help to form good representatives of the
population and yield good estimates.

Sampling3 is able to form sample units of desired sizes by setting the up-
per/lower bounds. We have purposely constructed larger sample units (and thus
less numbers of sample units) to observe the changes in estimation errors. In the
experiments, the numbers of sample units in Sampling3 are around 10% of those
in Sampling1 and Sampling2. As expected, Sampling1 and Sampling2 perform
better than Sampling3 because their larger numbers of sample units tend to
smooth out the variance better. In fact, Sampling3 could have performed just as
well as the Sampling1 and Sampling2 if we had used smaller sample units. We
will discuss more about Sampling3 when discussing the TreeBank dataset.
Progress Indicator. Due to the uniform tree structure of the dataset, all three
sampling schemes are able to predict the execution time precisely (Figure 8).
With 5% of the population sampled, the relative errors of the estimated execution
time are 3.54%, 6.03%, and 4.63% for Sampling1, Sampling2, and Sampling3,

392 C. Luo et al.

Fig. 7. Selectivity Estimation on DBLP Fig. 8. Running Time Estimation on
DBLP

Fig. 9. Query Execution Time on DBLP Fig. 10. Selectivity Estimation on XMark

Fig. 11. Running Time Estimation on
XMark

Fig. 12. Query Execution Time on
XMark

Fig. 13. Selectivity Estimation on Tree-
Bank

Fig. 14. Running Time Estimation on
TreeBank

Progressive Evaluation of XML Queries 393

respectively. The relative errors decease quickly to 1.78%, 2.43%, and 1.50%
when 25% of the data sampled. The relatively steady system workload also
contributes to the good performance.

Figure 9 shows the query processing time of the three methods. We measured
the time after each batch of 5% sample units is processed. As observed, the
processing time increases almost linearly with amount of samples processed.
This implies that approximately the same amount of time is consumed on each
batch of samples, which also explains the small errors of the execution time
estimation in Figure 8. All three methods spend nearly the same amount of time
in processing. The minor difference in execution time we believe is more related
to the system loads than others. We also observe that the average overhead of a
progressive evaluation is around 19.43%. That is, it takes 19.43% more time to
evaluate the entire dataset in the progressive manner than the normal way.
Xmark Dataset Selectivity Estimation. The experimental results of XMark
dataset are quite similar to those for DBLP because they both have quite uniform
structures. In Figure 10, with only 5% samples taken, the relative errors of
Sampling1, Sampling2, and Sampling3 are already as small as 2.70%, 2.43% and
3.16%, respectively. When the sampling fraction increases to 25%, the relative
error decreases to 1.01%, 0.73%, 1.22%. Sampling1 and Sampling2 outperform
Sampling3 because there are often tens or hundreds of thousands sampling units
in Sampling1 and Sampling2 while there are only hundreds in Sampling3.
Progress Indicator. All three methods have very high accuracies. As shown in
Figure 11, the relative errors of the execution time estimation with 5% samples
are 6.76%, 1.21%, and 4.41% for Sampling1, Sampling2, and Sampling3, respec-
tively. When the sampling fraction increase to 25%, the relative error decrease
to 3.77%, 0.14% and 3.13%. Sampling2 seems to perform a little better than
the other two. We attribute its success to the larger numbers of small sample
units in the populations. The query processing time of three sampling methods
on XMark dataset is shown in Figure 12. Again, due to the uniformity of the
XMark dataset, the query processing time increases at a near-linear rate with
sampling fraction.The average overhead of a progressive evaluation is 15.29%.

TreeBank Dataset Selectivity Estimation. The TreeBank dataset exhibits
a complex structure and a high degree of recursions. As expected, Sampling1

Fig. 15. Query Execution Time on TreeBank

394 C. Luo et al.

does not perform nearly as well as Sampling2. This is due to the highly recur-
sive nature of the structure that increases the variability of the number of query
matches in Sampling1. But, still all these methods perform very well. No signifi-
cant degradation is found when compared with the results of DBLP and XMark.
We attribute this result to there being large enough numbers of sample units in
these schemes to even out the variability.

We use two sets of upper and lower bounds in Sampling3 to construct sample
units, one has 100 units and the other has 1,000 units. Note that these num-
bers are much smaller than the tens of thousands and hundreds of thousands
sample units in the Sampling1 and Sampling2, respectively. As expected the
100-sample-unit Sampling3 does not perform as well as the others due to the
too small number of sample units. But the 1,000-sample-unit Sampling3 outper-
forms the others, even though it also has a much smaller number of sample units
(compared to the Sampling1 and Sampling2). It demonstrates the effectiveness
of the measures taken to merge small subtrees and decompose large subtrees,
which help smooth out the variability.

Progress Indicator. Again, all these methods provide accurate execution time
estimation. As shown in Figure 14, with 5% samples, all methods yield estimates
with less than 3% relative error. Sampling3 (with 1,000 sample units) is the best
due to its “even-size” sample units and reasonably large numbers of sample
units. Like other experiments, the processing time of all these methods increases
almost linearly with sampling fraction, as shown in Figure 15. This indicates
that all these schemes can smooth out the variability effectively and give good
estimate of the execution time as demonstrated in Figure 14.

6 Conclusions

In this paper, we initiate the research of sampling on XML data and progressive
evaluation of XML queries. We aim to enhance XML query processors with the
ability to process both aggregation and non-aggregation queries progressively
(or incrementally) and report the results and progress continually. Several in-
novative sampling schemes on XML data are proposed. Empirical studies show
that all three sampling schemes are able to provide accurate estimation on ag-
gregation query and progress indicators. The proposed methodology advances
the XML query processing to the next level, being more flexible, responsive, and
informative.

References

1. Bruno, N., Koudas, N., Srivastava, D.: Holistic twig joins: optimal xml pattern
matching. In: Proceedings of the 2002 ACM SIGMOD international conf. on Man-
agement of data, pp. 310–321 (2002)

2. Chaudhuri, S., Narasayya, V., Ramamurthy, R.: Estimating progress of long run-
ning sql queries. In: Proc. ACM SIGMOD Conf., pp. 803–814 (2004)

3. Cochran, W.G.: Sampling Techniques. Wiley, Chichester (1977)

Progressive Evaluation of XML Queries 395

4. Ganguly, S., Gibbons, P., Matias, Y., Silberschatz, A.: Bifocal sampling for skew-
resistant join size estimation. In: Proceedings of the 1996 ACM SIGMOD interna-
tional conf. on Management of data, pp. 271–281 (1996)

5. Hass, P., Naughton, J., Seshadri, S., Stokes, L.: Sampling-based estimation of the
number of distinct values of an attribute. In: Proc. 21st Intl. Conf. on Very Large
Data Bases, pp. 311–322 (1995)

6. Hellerstein, J., Haas, P., Wang, H.: Online aggregation. In: Proc. ACM SIGMOD
Conf., pp. 171–182 (1997)

7. Hoeffding, W.: Probability inequality for sums of bounded random variables. Jour-
nal of Amer. Statist. Assoc. (58), 13–30 (1964)

8. Hou, W.-C., Ozsoyoglu, G., Taneja, B.: Statistical estimators for relational algebra
expression. In: Proc. 7th ACM Symp. on Principles of Database Systems, pp. 276–
287 (1988)

9. Hou, W.-C., Ozsoyoglu, G., Taneja, B.: Processing aggregate relational queries
with hard time constraints. In: Proc. ACM SIGMOD International Conf. on Man-
agement of Data, pp. 68–77 (1989)

10. Jermain, C., Dobra, A., Arumugam, S., Jashi, S., Pol, A.: A disk-based join with
probabilistic guarantees. In: Proc. ACM SIGMOD Conf., pp. 563–574 (2005)

11. Jiang, H., Lu, H., Wang, W., Ooi, B.C.: Xr-tree: Indexing xml data for efficient
structural joins. In: ICDE, pp. 253–264 (2003)

12. Jiang, Z., Luo, C., Hou, W., Ozsoyoglu, G.: Progressive Evaluation of XML
Queries for Online Aggregation and Progress Indicator (Technical Report),
http://www.cs.siu.edu/~zjiang/dexa08.pdf

13. Lipton, R.J., Naughton, J.F., Schneider, D.A.: Practical selectivity estimation
through adaptive sampling. In: Proceedings 1990 ACM SIGMOD Intl. Conf. Man-
agment of Data, pp. 1–11 (1990)

14. Lu, J., Chen, T., Ling, T.W.: Efficient processing of xml twig patterns with parent
child edges: A look-ahead approach. In: Proceedings of CIKM, pp. 533–542 (2004)

15. Lu, J., Ling, T.W., Chan, C.-Y., Chen, T.: From region encoding to extended
dewey: on efficient processing of xml twig pattern matching. In: Proceedings of the
31st international conf. on very large data bases (2005)

16. Luo, G., Naughton, J., Ellmann, C., Watzke, M.: Toward a progress indicator for
database queries. In: Proc. ACM SIGMOD Conf., pp. 791–802 (2004)

17. Luo, G., Naughton, J., Ellmann, C., Watzke, M.: Increasing the accuracy and
coverage of sql progress indicators. In: Proc. ACM SIGMOD Conf., pp. 853–864
(2005)

18. Ross, S.: Introduction to Probability Models, 2nd edn. Academic Press, London
(1980)

19. Tan, K., Goh, C., Ooi, B.: Progressive evaluation of nested aggregate queries.
VLDB Journal (9), 261–278 (2000)

20. Wang, W., Jiang, H., Lu, H., Yu, J.X.: Containment join size estimation: models
and methods. In: Proceedings of the 2002 ACM SIGMOD International Conference
on Management of Data, pp. 358–369 (2003)

21. Zhang, N., Ozsu, M.T., Aboulnaga, A., Ilyas, I.F.: Xseed: Accurate and fast cardi-
nality estimation for xpath queries. In: Proc. 22nd Intl. Conf. on Data Engineering
(2006)

http://www.cs.siu.edu/~zjiang/dexa08.pdf

Dynamic Query Processing for P2P Data
Services in the Cloud

Pawel Jurczyk and Li Xiong

Emory University, Atlanta GA 30322, USA
{pjurczy,lxiong}@emory.edu

Abstract. With the trend of cloud computing, data and computing are
moved away from desktop and are instead provided as a service from
the cloud. Data-as-a-service enables access to a wealth of data across
distributed and heterogeneous data sources in the cloud. We designed
and developed DObjects, a general-purpose P2P-based query and data
operations infrastructure that can be deployed in the cloud. This paper
presents the details of the dynamic query execution engine within our
data query infrastructure that dynamically adapts to network and node
conditions. The query processing is capable of fully benefiting from all
the distributed resources to minimize the query response time and max-
imize system throughput. We present a set of experiments using both
simulations and real implementation and deployment.

1 Introduction

With the trend of cloud computing1,2, data and computing are moved away from
desktop and are instead provided as a service from the cloud. Current major
components under the cloud computing paradigm include infrastructure-as-a-
service (such as EC2 by Amazon), platform-as-a-service (such as Google App
Engine), and application or software-as-a-service (such as GMail by Google).
There is also an increasing need to provide data-as-a-service [1] with a goal of
facilitating access to a wealth of data across distributed and heterogeneous data
sources available in the cloud.

Consider a system that integrates the air and rail transportation networks
with demographic databases and patient databases in order to model the large
scale spread of infectious diseases (such as the SARS epidemic or pandemic
influenza). Rail and air transportation databases are distributed among hundreds
of local servers, demographic information is provided by a few global database
servers and patient data is provided by groups of cooperating hospitals.

While the scenario above demonstrates the increasing needs for integrating
and querying data across distributed and autonomous data sources, it still re-
mains a challenge to ensure interoperability and scalability for such data services.

1 http://en.wikipedia.org/wiki/Cloud computing
2 http://www.theregister.co.uk/2009/01/06/year ahead clouds/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 396–411, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Dynamic Query Processing for P2P Data Services in the Cloud 397

To achieve interoperability and scalability, data federation is increasingly becom-
ing a preferred data integration solution. In contrast to a centralized data ware-
house approach, a data federation combines data from distributed data sources
into one single virtual data source, or a data service, which can then be accessed,
managed and viewed as if it was part of a single system. Many traditional data
federation systems employ a centralized mediator-based architecture (Figure 1).
We recently proposed DObjects [2, 3], a P2P-based architecture (Figure 2) for
data federation services. Each system node can take the role of either a mediator
or a mediator and wrapper at the same time. The nodes form a virtual system
in a P2P fashion. The framework is capable of extending cloud computing sys-
tems with data operations infrastructure, exploiting at the same time distributed
resources in the cloud.

Mediator

Wrapper . . .

Client

DB

Client Client

. . .

Wrapper

DB

Wrapper

DB

Fig. 1. Typical Mediator-Based Architecture

Mediator

Client

DB

Client Client

. . .

DB DB

Mediator/WrapperMediator/Wrapper

Mediator

Fig. 2. P2P-Based Architecture

Contributions. In this paper we focus on the query processing issues of DOb-
jects and present its novel dynamic query processing engine in detail. We present
our dynamic distributed query execution and optimization scheme. In addition
to leveraging traditional distributed query optimization techniques, our opti-
mization is focused on dynamically placing (sub)queries on the system nodes
(mediators) to minimize the query response time and maximize system through-
put. In our query execution engine, (sub)queries are deployed and executed on
system nodes in a dynamic (based on nodes’ on-going knowledge of the data
sources, network and node conditions) and iterative (right before the execution
of each query operator) manner. Such an approach guarantees the best reaction
to network and resource dynamics. We experimentally evaluate our approach
using both simulations and real deployment.

2 Related Work

Our work on DObjects and its query processing schemes was inspired and in-
formed by a number of research areas. We provide a brief overview of the relevant
areas in this section.
Distributed Databases and Distributed Query Processing. It is impor-
tant to distinguish DObjects and its query execution component from the many
existing distributed database systems. At the first glance, distributed database
systems have been extensively studied and many systems have been proposed.
Earlier distributed database systems [4], such as R* and SDD-1, share mod-
est targets for network scalability (a handful of distributed sites) and assume

398 P. Jurczyk and L. Xiong

homogeneous databases. The focus is on encapsulating distribution with ACID
guarantees. Later distributed database or middleware systems, such as Garlic [5],
DISCO [6] or TSIMMIS [7], target large-scale heterogeneous data sources. Many
of them employ a centralized mediator-wrapper based architecture (see Figure 1)
to address the database heterogeneity in the sense that a single mediator server
integrates distributed data sources through wrappers. The query optimization
focuses on integrating wrapper statistics with traditional cost-based query op-
timization for single queries spanning multiple data sources. As the query load
increases, the centralized mediator may become a bottleneck. More recently, In-
ternet scale query systems, such as Astrolabe [8] and PIER [9], target thousands
or millions of massively distributed homogeneous data sources with a peer-to-
peer (P2P) or hierarchical network architecture. However, the main issue in such
systems is how to efficiently route the query to data sources, rather than on in-
tegrating data from multiple data sources. As a result, the query processing in
such systems is focused on efficient query routing schemes for network scalability.

The recent software frameworks, such as map-reduce-merge [10] and Hadoop3,
support distributed computing on large data sets on clusters of computers and
can be used to enable cloud computing services. The focus of these solutions,
however, is on data and processing distribution rather than on data integration.

While it is not the aim of DObjects to be superior to these works, our system
distinguishes itself by addressing an important problem space that has been
overlooked, namely, integrating large-scale heterogeneous data sources with both
network and query load scalability without sacrificing query complexities and
transaction semantics. In spirit, DObjects is a distributed P2P mediator-based
system in which a federation of mediators and wrappers forms a virtual system
in a P2P fashion (see Figure 2). Our optimization goal is focused on building
effective sub-queries and optimally placing them on the system nodes (mediators)
to minimize the query response time and maximize throughput.

The most relevant to our work are OGSA-DAI and its extension OGSA-
DQP [11] introduced by a Grid community as a middleware assisting with access
and integration of data from separate sources. While the above two approaches
share a similar set of goals with DObjects, they were built on the grid/web
service model. In contrast, DObjects is built on the P2P model and provides
resource sharing on a peer-to-peer basis.

Data Streams and Continuous Queries. A large amount of efforts was
contributed to the area of continuous or pervasive query processing [12,8,13,14,
15, 16, 17]. The query optimization engine in DObjects is most closely related
to SBON [18]. SBON presented a stream based overlay network for optimizing
queries by carefully placing aggregation operators. DObjects shares a similar set
of goals as SBON in distributing query operators based on on-going knowledge of
network conditions. SBON uses a two step approach, namely, virtual placement
and physical mapping for query placement based on a cost space. In contrast, we
use a single cost metric with different cost features for easy decision making at

3 http://hadoop.apache.org/core/

http://hadoop.apache.org/core/

Dynamic Query Processing for P2P Data Services in the Cloud 399

individual nodes for a local query migration and explicitly examine the relative
importance of network latency and system load in the performance.
Load Balancing. Past research on load balancing methods for distributed
databases resulted in a number of methods for balancing storage load by man-
aging the partitioning of the data [19,20]. Mariposa [21] offered load balancing
by providing marketplace rules where data providers use bidding mechanisms.
Load balancing in a distributed stream processing was also studied in [22] where
load shedding techniques for revealing overload of servers were developed.

3 DObjects Overview

In this section we briefly describe DObjects framework. For further details we
refer readers to [2, 3]. Figure 3 presents our vision of the deployed system. The
system has no centralized services and thus allows system administrators to
avoid the burden in this area. It also uses a P2P resource sharing substrate as
a resource sharing paradigm to benefit from computational resources available
in the cloud. Each node serves as a mediator that provides its computational
power for a query mediation and results aggregation. Each node can also serve
as a data adapter or wrapper that pulls data from data sources and transforms
it to a uniform format that is expected while building query responses. Users can
connect to any system node; however, while the physical connection is established
between a client and one of the system nodes, the logical connection is between
a client node and a virtual system consisting of all available nodes.

DObjects node

(Mediator)

Client Client

Oracle

PostgreSQL
Data stream

Data

adapters

(Wrappers)

DObjects

node

(Mediator)

DObjects

node

(Mediator)

DObjects node

(Mediator)

Fig. 3. System architecture

select c.name, r.destination,

f.flightNumber, p.lastName

from CityInformation c, c.lRails r, c.lFlights f,

f.lPassengers p

where c.name like „San%” and p.lastName=„Adams”

Fig. 4. Query example

4 Query Execution and Optimization

In this section we focus on the query processing issues of DObjects, present
an overview of the dynamic distributed query processing engine that adapts
to network and resource dynamics, and discuss details of its cost-based query
placement strategies.

4.1 Overview

As we have discussed, the key to query processing in our framework is to have a
decentralized and distributed query execution engine that dynamically adapts to
network and resource conditions. In addition to adapting ”textbook” distributed

400 P. Jurczyk and L. Xiong

query processing techniques such as distributed join algorithms and the learning
curve approach for keeping statistics about data adapters, our query processing
framework presents a number of innovative aspects. First, instead of generating
a set of candidate plans, mapping them physically and choosing the best ones as
in a conventional cost based query optimization, we create one initial abstract
plan for a given query. The plan is a high-level description of relations between
steps and operations that need to be performed in order to complete the query.
Second, when the query plan is being executed, placement decisions and physical
plan calculation are performed dynamically and iteratively. Such an approach
guarantees the best reaction to changing load or latency conditions in the system.

1: generate high-level query plan tree
2: active element ← root of query plan tree

3: choose execution location for active ele-
ment

4: if chosen location �= local node then
5: delegate active element and its sub-

tree to chosen location
6: return
7: end if
8: execute active element;
9: for all child nodes of active element do
10: go to step 2
11: end for
12: return result to parent element

Alg. 1. Local algorithm for query pro-
cessing

Join City Information with

referential attributes

Merge City

Information

from different

locations

Select City

Information from

different locations

Prepare

referential

attributes

Prepare Flights

(join it with

Passengers)

Select Railroad

Connections

Merge

Railroad

Connections

from different

loctions

Fig. 5. Example of high-level query plan

It is important to highlight that our approach does not attempt to optimize
physical query execution performed on local databases. Responsibility for this is
pushed to data adapters and data sources. Our optimization goal is at a higher
level focusing on building effective sub-queries and optimally placing those sub-
queries on the system nodes to minimize the query response time.

Our query execution and optimization consists of a few main steps. First, when
a user submits a query, a high-level query description is generated by the node
that receives it. An example of such a query plan is presented in Figure 5. The
plan corresponds to the query introduced in Figure 4 that queries for cities along
with related referential attributes: railroad connections and flights. In addition,
each flight will provide a list of passengers. Note that each type is provided by
a different physical database. The query plan contains such elements as joins,
horizontal and vertical data merges, and select operations that are performed
on data adapters. Each element in the query plan has different algorithms of
optimization (see Section 4.2).

Next, the node chooses active elements from the query plan one by one in a
top-down manner for execution. Execution of an active element, however, can
be delegated to any node in the system in order to achieve load scalability. If the
system finds that the best candidate for executing current element is a remote
node, the migration of workload occurs. In order to choose the best node for the

Dynamic Query Processing for P2P Data Services in the Cloud 401

execution, we deploy a network and resource-aware cost model that dynamically
adapts to network conditions (such as delays in interconnection network) and
resource conditions (such as load of nodes) (see Section 4.3). If the active element
is delegated to a remote node, that node has a full control over the execution
of any child steps. The process works recursively and iteratively, therefore the
remote node could decide to move child nodes of submitted query plan element
to other nodes or execute it locally in order to use the resources in the most
efficient way to achieve good scalability. Algorithm 1 presents a sketch of the
local query execution process. Note that our algorithm takes a greedy approach
without guaranteeing the global optimality of the query placement. In other
words, each node makes a local decision on where to migrate the (sub)queries.

4.2 Execution and Optimization of Operators

In previous section we have introduced the main elements in the high-level query
plan. Each of the elements has different goals in the optimization process. It is
important to note that the optimization for each element in the query plan is
performed iteratively, just before given element is executed. We describe the
optimization strategies for each type of operators below.
Join. Join operator is created when user issues a query that needs to join data
across sites. In this case, join between main objects and the referenced objects
have to be performed (e.g., join flights with passengers). The optimization is
focused on finding the most appropriate join algorithm and the order of branch
executions. The available join algorithms are nested-loop join (NLJ), semi-join
(SJ) and bloom-join (BJ) [4]. In case of NLJ, the branches can be executed in
parallel to speedup the execution. In case of SJ or BJ algorithms, the branches
have to be executed in a pipeline fashion and the order of execution has to
be fixed. Our current implementation uses a semi-join algorithm and standard
techniques for result size estimations. There is also a lot of potential benefits
in parallelization of the join operator execution using such frameworks as map-
reduce-merge [10]. We leave this to our future research agenda.
Data Merge. Data merge operator is created when data objects are split among
multiple nodes (horizontal data split) or when attributes of an object are located
on multiple nodes (vertical data split). Since the goal of the data merge opera-
tion is to merge data from multiple input streams, it needs to execute its child
operations before it is finished. Our optimization approach for this operator tries
to maximize the parallelization of sub-branch execution. This goal is achieved
by executing each sub-query in parallel, possibly on different nodes if such an
approach is better according to our cost model that we will discuss later.
Select. Select operator is always the leaf in our high-level query plan. Therefore,
it does not have any dependent operations that need to be executed before it fin-
ishes.Moreover, this operationhas tobe executed on locations that provide queried
data. The optimization issues are focused on optimizing queries submitted to data
adapters for a faster response time. For instance, enforcing anorder (sort) toqueries
allows us to use merge-joins in later operations. Next, response chunks are built

402 P. Jurczyk and L. Xiong

in order to support queries returning large results. Specifically, in case of heavy
queries, we implement an iterative process of providing smaller pieces of the final
response. In addition to helping to maintain a healthy node load level in terms of
memory consumption, such a feature is especially useful when building a user in-
terface that needs to accommodate a long query execution.

4.3 Query Migration

The key of our query processing is a greedy local query migration component for
nodes to delegate (sub)queries to a remote node in a dynamic (based on current
network and resource conditions) and iterative (just before the execution of each
element in the query plan) manner. In order to determine the best (remote) node
for possible (sub)query migration and execution, we first need a cost metric for
the query execution at different nodes. Suppose a node migrate a query element
and associated data to another node, the cost includes: 1) a transmission delay
and communication cost between nodes, and 2) a query processing or computa-
tion cost at the remote node. Intuitively, we want to delegate the query element
to a node that is ”closest” to the current node and has the most computational
resources or least load in order to minimize the query response time and max-
imize system throughput. We introduce a cost metric that incorporates such
two costs taking into account current network and resource conditions. Formally
Equation 1 defines the cost, denoted as ci,j , associated with migrating a query
element from node i to a remote node j:

ci,j = α ∗ (DS/bandwidthi,j + latencyi,j) + (1 − α) ∗ loadj (1)

where DS is the size of the necessary data to be migrated (estimated using
statistics from data sources), bandwidthi,j and latencyi,j are the network band-
width and latency between nodes i and j, loadj is the current (or most recent)
load value of node j, and α is a weighting factor between the communication
cost and the computation cost. Both cost terms are normalized values between
0 and 1 considering the potential wide variances between them.

To perform query migration, each node in the system maintains a list of
candidate nodes that can be used for migrating queries. For each of the nodes,
it calculates the cost of migration and compares the minimum with the cost
of local execution. If the minimum cost of migration is smaller than the cost of
local execution, the query element and its subtree is moved to the best candidate.
Otherwise, the execution will be performed at the current node. To prevent a
(sub)query being migrated back and forth between nodes, we require each node
to execute at least one operator from the migrated query plan before further
migration. Alternatively, a counter, or Time-To-Live (TTL) strategy, can be
implemented to limit the number of migrations for the same (sub)query. TTL
counter can be decreased every time a given (sub)tree is moved, and, if it reaches
0, the node has to execute at least one operator before further migration. The
decision of a migration is made if the following equation is true:

minj{ci,j} < β ∗ (1− α)loadi (2)

Dynamic Query Processing for P2P Data Services in the Cloud 403

where minj{ci,j} is the minimum cost of migration for all the nodes in the node’s
candidate list, β is a tolerance parameter typically set to be a value close to 1
(e.g. we set it to 0.98 in our implementations). Note that the cost of a local
execution only considers the load of the current node.

Fig. 6. Setup for Optimization Illustration

Illustration. To illustrate our query optimization algorithm, let us consider a
query from Figure 4 with a sample system deployment as presented in Figure 6.
Let us assume that a client submits his query to Node 5 which then generates
a high-level query plan as presented in Figure 5. Then, the node starts a query
execution. The operator at the root of the query plan tree is join. Using the
equation 1 the active node estimates the cost for migrating the join operator.
Our calculations will neglect the cost of data shipping for simplicity and will use
α = 0.3 and β = 1.0. The cost for migrating the query from Node 5 to Node 1
is: c5,1 = 0.3 ∗ (50/50) + (1 − 0.3) ∗ 0.54 = 0.68. Remaining migration costs are
c5,2 = 0.671, c5,3 = 0.635 and c5,4 = 0.33. Using the equation 2 Node 5 decides
to move the query to Node 4 (c5,4 < 1.0 ∗ (1 − 0.3) ∗ 1.0). After the migration,
Node 4 will start execution of join operator at the top of the query plan tree. Let
us assume that the node decides to execute the left branch first. CityInformation
is provided by only one node, Node 1, and no data merge is required. Once the
select operation is finished on Node 1, the right branch of join operation can be
invoked. Note that Node 4 will not migrate any of the sub-operators (besides
selections) as the cost of any migration exceeds the cost of local execution (the
cost of migrations: c4,1 = 0.558, c4,2 = 0.611, c4,3 = 0.695 and c4,5 = 0.82; the
cost of local execution: 0.21).

4.4 Cost Metric Components

The above cost metric consists of two cost features, namely, the communication
latency and the load of each node. We could also use other system features (e.g.
memory availability), however, we believe the load information gives a good esti-
mate of resource availability at the current stage of the system implementation.
Below we present techniques for computing our cost features efficiently.
Latency between Nodes. To compute the network latency between each pair
of nodes efficiently, each DObjects node maintains a virtual coordinate, such that
the Euclidean distance between two coordinates is an estimate for the communi-
cation latency. Storing virtual coordinates has the benefit of naturally capturing

404 P. Jurczyk and L. Xiong

latencies in the network without a large measurement overhead. The overhead of
maintaining a virtual coordinate is small because a node can calculate its coordi-
nate after probing a small subset of nodes such as well-known landmark nodes or
randomly chosen nodes. Several synthetic network coordinate schemes exist. We
adopted a variation of Vivaldi algorithm [23] in DObjects. The algorithm uses
a simulation of physical springs, where each spring is placed between any two
nodes of the system. The rest length of each spring is set proportionally to cur-
rent latency between nodes. The algorithm works iteratively. In every iteration,
each node chooses a number of random nodes and sends a ping message to them
and waits for a response. After the response is obtained, initiating node calcu-
lates the latency with remote nodes. As the latency changes, a new rest length of
springs is determined. If it is shorter than before, the initiating node moves closer
towards the remote node. Otherwise, it moves away. The algorithm always tends
to find a stable state for the most recent spring configuration. An important
feature about this algorithm is that it has great scalability which was proven by
its implementation in some P2P solutions (e.g. in OpenDHT project [24]).

2

4

1

3

60ms

60ms

70ms

2

4

1

3

100ms

30ms

2

4

1

3

100ms

60ms

30ms

New latency

Fig. 7. Illustration of Virtual Coordinates Computation for Network Latency

Figure 7 presents an example iteration of the Vivaldi algorithm. The first
graph on the left presents a current state of the system. New latency informa-
tion is obtained in the middle graph and the rest length of springs is adjusted
accordingly. As the answer to the new forces in the system, new coordinates are
calculated. The new configuration is presented in the rightmost graph.
Load of Nodes. The second feature of our cost metric is the load of the nodes.
Given our desired goal to support cross-platform applications, instead of depend-
ing on any OS specific functionalities for the load information, we incorporated
a solution that assures good results in a heterogeneous environment. The main
idea is based on time measurement of execution of a predefined test program
that considers computing and multithreading capabilities of machines [25]. The
program we use specifically runs multiple threads. More than one thread assures
that if a machine has multiple CPUs, the load will be measured correctly. Each
thread performs a set of predefined computations including a series of integer as
well as floating point operations. When each of the computing threads finishes,
the time it took to accomplish operations is measured which indicates current
computational capabilities of the tested node. In order to improve efficiency of
our load computation method, we can dynamically adjust the interval between
consecutive measurements. When a node has a stable behavior, we can increase
this interval. On the other hand, if we observe rapid change in the number of
queries that reside on a given node, we can trigger the measurement.

Dynamic Query Processing for P2P Data Services in the Cloud 405

After the load information about a particular node is obtained, it can be prop-
agated among other nodes. Our implementation builds on top of a distributed
event framework, REVENTS4, that is integrated with our platform for an effi-
cient and effective asynchronous communication among the nodes.

5 Experimental Evaluation

Our framework is fully implemented with a current version available for down-
load5. In this section we present an evaluation through simulations as well as a
real deployment of the implementation.

5.1 Simulation Results

We ran our framework on a discrete event simulator that gives us an easy way
to test the system against different settings. The configuration of data objects
relates to the configuration mentioned in Section 4 and was identical for all the
experiments below. The configuration of data sources for objects is as follows:
object CityInformation was provided by node1 and node2, object Flight by node3
and node4, object RailroadConnection by node1 and finally object Passenger by
node2. All nodes with numbers greater than 4 were used as computing nodes.
Load of a node affects the execution time of operators. The more operators were
invoked on a given node in parallel, the longer the execution time was assumed.
Different operators also had different impact on the load of nodes. For instance,
a join operator had larger impact than merge operator. In order to evaluate the
reaction of our system to dynamic network changes, the communication latency
was assigned randomly at the beginning of simulation and changed a few times
during the simulation so that the system had to adjust to new conditions in order
to operate efficiently. The change was based on increasing or decreasing latency
between each pair of nodes by a random factor not exceeding 30%. Table 1 gives
a summary of system parameters (number of nodes and number of clients) and
algorithmic parameter α with default values for different experiments.

Table 1. Experiment Setup Parameters

Test Case Figure # of Nodes # of Clients α
(Mediators)

α vs. Query Workloads 8 6 14 *
α vs. # of Nodes 9 * 32 *
α vs. # of Clients 10 6 * *
Comparison of Query Optimization Strategies 11 6 14 0.33
System Scalability 12, 13 20 * 0.33
Impact of Load of Nodes 14 * 256 0.33
Impact of Network Latencies 15 6 14 0.33
* - varying parameter
4 http://dcl.mathcs.emory.edu/revents/index.php
5 http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

http://dcl.mathcs.emory.edu/revents/index.php
http://www.mathcs.emory.edu/Research/Area/datainfo/dobjects

406 P. Jurczyk and L. Xiong

0

1000

2000

3000

4000

5000

6000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
e

p
o

c
h

]

Alpha value

Small query

Medium query

Heavy query

Fig. 8. Parameter Tuning -
Query Workloads

0

500

1000

1500

2000

2500

3000

3500

4000

0.0 0.33 0.66 1

A
v
e
ra

g
e
 e

x
e
c
u

ti
o

n
 t

im
e
 [

e
p

o
c
h

]

Alpha value

4 nodes

8 nodes

16 nodes

32 nodes

Fig. 9. Parameter Tuning -
Number of Nodes

0

500

1000

1500

2000

2500

0.0 0.33 0.66 1

A
v
e

ra
g

e
 e

x
e

c
u

ti
o

n
 t

im
e

 [
e

p
o

c
h

]

Alpha value

4 clients

8 clients

16 clients

32 clients

Fig. 10. Parameter Tuning -
Number of Clients

Parameters Tuning - Optimal α. An important parameter in our cost metric
(introduced in equation 1) is α that determines the relative impact of load and
network latency in the query migration strategies. Our first experiment is an
attempt to empirically find optimal α value for various cases: 1) different query
workloads, 2) different number of nodes available in the system, and 3) different
number of clients submitting queries.

For the first case, we tested three query workloads: 1) small queries for City-
Information objects without referential attributes (therefore, no join operation
was required), 2) medium queries for CityInformation objects with two referen-
tial attributes (list of Flights and RailroadConnections), and 3) heavy queries
with two referential attributes of CityInformation of which Flight also had a
referential attribute. The second case varied the number of computational nodes
and used the medium query submitted by 32 clients simultaneously. The last
case varied a number of clients submitting medium queries.

Figure 8, 9 and 10 report average execution times for different query loads,
varying number of computational nodes, and varying number of clients respec-
tively for different α. We observe that for all three test cases the best α value
is located around the value 0.33. While not originally expected, it can be ex-
plained as follows. When more importance is assigned to the load, our algorithm
will choose nodes with smaller load rather than nodes located closer. In this case,
we are preventing overloading a group of close nodes as join execution requires
considerable computation time. Also, for all cases, the response time was better
when only load information was used (α = 0.0) compared to when only distance
information was used (α = 1.0). For all further experiments we set the α value
to be 0.33.

Comparison of Optimization Strategies. We compare a number of varied
optimization strategies of our system with some baseline approaches. We give
average query response time for the following cases: 1) no optimization (a naive
query execution where children of current query operator are executed one by one
from left to right), 2) statistical information only (a classical query optimization
that uses statistics to determine the order of branch executions in join opera-
tions), 3) location information only (α = 1), 4) load information only (α = 0),
and 5) full optimization (α = 0.33).

Dynamic Query Processing for P2P Data Services in the Cloud 407

0

1000

2000

3000

4000

5000

6000

Small query Medium

query

Heavy query

A
v

e
ra

g
e

 e
x

e
c

u
ti

o
n

 t
im

e
 [

e
p

o
c

h
]

Query type

No optimization

Statistical information only

Location information only

Load information only

Full optimization

Fig. 11. Comparison of Dif-
ferent Query Optimization
Strategies

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 2 4 8 16 32 64 128 256 512

N
u

m
b

e
r

o
f

q
u

e
ri

e
s

Number of clients

Small query

Medium query

Heavy query

Fig. 12. System Scalability
(Throughput) - Number of
Clients

1

10

100

1000

10000

100000

1 2 4 8 16 32 64 128 256 512

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

e
p

o
c
h

s
]

Number of clients

Small query

Medium query

Heavy query

Fig. 13. System Scalability
(Response Time) - Number
of Clients

0

5000

10000

15000

20000

25000

30000

35000

10 16 32 64 128 256 512

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

e
p

o
c
h

s
]

Number of nodes

Small query

Medium query

Heavy query

Fig. 14. Impact of Compu-
tational Resources

0

1000

2000

3000

4000

5000

6000

7000

Fast speed

network

Medium

speed

network

Slow speed

network

A
v

e
ra

g
e

 r
e

s
p

o
n

s
e

 t
im

e
 [

e
p

o
c

h
]

Type of network

Small query

Medium query

Heavy query

Fig. 15. Impact of Network
Latency

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4

A
v
e
ra

g
e
 r

e
s
p

o
n

s
e
 t

im
e
 [

m
s
]

Number of clients

Small query - full optimization

Small query - no optimization

Medium query - full optimization

Medium query - no optimization

Fig. 16. Average Response
Time in Real System

The results are presented in Figure 11. They clearly show that, for all types of
queries, the best response time corresponds to the case when full optimization is
used. In addition, the load information only approach provides an improvement
compared to the no optimization, statistical information only, and location in-
formation only approaches (the three lines overlap in the plot). The performance
improvements are most manifested in the heavy query workload.

System Scalability. An important goal of our framework is to scale up the
system for number of clients and load of queries. Our next experiment attempts
to look at the throughput and average response time of the system when different
number of clients issue queries. We again use three types of queries and a similar
configuration to the above experiment.

Figures 12 and 13 present the throughput and average response time for dif-
ferent number of clients respectively. Figure 12 shows the average number of
queries that our system was capable of handling during a specified time frame
for a given number of clients. As expected, the system throughput increases as
the number of clients increases before it reaches its maximum. However, when
the system reaches a saturation point (each node is heavily loaded), new clients
cannot obtain any new resources. Thus, the throughput reaches its maximum
(e.g., around 3950 queries per specified time frame for the case of small queries

408 P. Jurczyk and L. Xiong

at 64 clients). Figure 13 reports the average response time and shows a linear
scalability. Please note that the figure uses logarithmic scales for better clarity.

Impact of Available Computational Resources. In order to answer the
question how the number of nodes available in the system affects its perfor-
mance, we measured the average response time for varying number of available
system nodes with 256 clients simultaneously querying the system. The results
are provided in Figure 14. Our query processing effectively reduces the average
response time when more nodes are available. For small queries, 10 nodes appears
to be sufficient as an increase to 16 nodes does not improve the response time
significantly. For medium size queries 16 nodes appears to be sufficient. Finally,
for heavy queries we observed improvement when we used 32 nodes instead of
16. The behavior above is not surprising and quite intuitive. Small queries do
not require high computational power as no join operation is performed. On the
other hand, medium and heavy queries require larger computational power so
they benefit from a larger number of available nodes.

Impact of Network Latency. Our last experiment was aimed to find the
impact of a network latency on the performance. We report results for three
network speeds: a fast network that simulates a Fast Ethernet network offering
speed of 100MBit/s, a medium network that can be compared to an Ethernet
speed of 10MBit/s, and finally a slow network that represents speed of 1MBit/s.

The result is reported in Figure 15. The network speed, as expected, has a
larger impact on the heavy query workload. The reason is that the amount of
data that needs to be transferred for heavy queries is larger than medium and
small queries, and therefore the time it takes to transfer this data in slower
network will have much larger impact on the overall efficiency.

5.2 Testing of a Real Implementation

We also deployed our implementation in a real setting on four nodes started on
general-purpose PCs (Intel Core 2 Duo, 1GB RAM, Fast Ethernet network con-
nection). The configuration involved three objects, CityInformation (provided by
node 1), Flight (provided by nodes 2 and 3) and RailroadConnection (provided
by node 3). Node 4 was used only for computational purposes. We ran the exper-
iment for 10,000 CityInformation, 50,000 Flights (20,000 in node 2 and 30,000
in node 3) and 70,000 RailroadConnections. The database engine we used was
PostgreSQL 8.2. We measured the response time for query workloads including
small queries for all relevant CityInformation and medium queries for all objects
mentioned above. We used various number of parallel clients and α = 0.33.

Figure 16 presents results for small and medium queries. It shows that the
response time is significantly reduced when query optimization is used (for both
small and medium queries). The response time may seem a bit high at the first
glance. To give an idea of the actual overhead introduced by our system, we in-
tegrated all the databases used in the experiment above into one single database
and tested a medium query from Java API using JDBC and one client. The
query along with results retrieval took an average of 16s. For the same query,

Dynamic Query Processing for P2P Data Services in the Cloud 409

our system took 20s that is in fact comparable to the case of a local database.
While the overhead introduced by DObjects cannot be neglected, it does not
exceed reasonable boundary and does not disqualify our system as every mid-
dleware is expected to add some overhead. In this deployment, the overhead
is mainly an effect of the network communication because data was physically
distributed among multiple databases. In addition, the cost of distributed com-
puting middleware and wrapping data into object representation also add to
the overhead which is the price a user needs to pay for a convenient access to
distributed data. However, for a larger setup with larger number of clients, we
expect our system to perform better than centralized approach as the benefit
from distributed computing paradigm and load distribution will outweigh the
overhead.

6 Conclusion and Future Work

In this paper we have presented the dynamic query processing mechanism for
our P2P based data federation services to address both geographic and load scal-
ability for data-intensive applications with distributed and heterogeneous data
sources. Our approach was validated in different settings through simulations as
well as real implementation and deployment. We believe that the initial results
of our work are quite promising. Our ongoing efforts continue in a few directions.
First, we are planning on further enhancement for our query migration scheme.
We are working on incorporating a broader set of cost features such as location
of the data and dynamic adjustment of the weight parameter for each cost fea-
ture. Second, we plan to extend the scheme with a dynamic migration of active
operators in real-time from one node to another if load situation changes. This
issue becomes important especially for larger queries which last longer time in
the system. Finally, we plan to improve the fault tolerance design of our query
processing. Currently, if a failure occurs on a node involved in execution of a
query, such query is aborted and error is reported to the user. We plan to ex-
tend this behavior with possibility of failure detection and allocation of a new
node to continue execution of the operator that was allocated to the failed node.

Acknowledgement

We thank the anonymous reviewers for their valuable feedback. The research
is partially supported by a Career Enhancement Fellowship by the Woodrow
Wilson Foundation.

References

1. Logothetis, D., Yocum, K.: Ad-hoc data processing in the cloud. Proc. VLDB
Endow. 1(2), 1472–1475 (2008)

2. Jurczyk, P., Xiong, L., Sunderam, V.: DObjects: Enabling distributed data services
for metacomputing platforms. In: Proc. of the ICCS (2008)

410 P. Jurczyk and L. Xiong

3. Jurczyk, P., Xiong, L.: Dobjects: enabling distributed data services for metacom-
puting platforms. Proc. VLDB Endow. 1(2), 1432–1435 (2008)

4. Kossmann, D.: The state of the art in distributed query processing. ACM Comput.
Surv. 32(4) (2000)

5. Carey, M.J., Haas, L.M., Schwarz, P.M., Arya, M., Cody, W.F., Fagin, R., Flick-
ner, M., Luniewski, A.W., Niblack, W., Petkovic, D., Thomas, J., Williams, J.H.,
Wimmers, E.L.: Towards heterogeneous multimedia information systems: the Gar-
lic approach. In: Proc. of the RIDE-DOM 1995, Washington, USA (1995)

6. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Heterogeneous Databases and the
Design of Disco. In: ICDCS (1996)

7. Chawathe, S., Garcia-Molina, H., Hammer, J., Ireland, K., Papakonstantinou, Y.,
Ullman, J.D., Widom, J.: The TSIMMIS project: Integration of heterogeneous
information sources. In: 16th Meeting of the Information Processing Society of
Japan, Tokyo, Japan (1994)

8. van Renesse, R., Birman, K.P., Vogels, W.: Astrolabe: A robust and scalable tech-
nology for distributed system monitoring, management, and data mining. ACM
Trans. Comput. Syst. 21(2) (2003)

9. Huebsch, R., Chun, B.N., Hellerstein, J.M., Loo, B.T., Maniatis, P., Roscoe, T.,
Shenker, S., Stoica, I., Yumerefendi, A.R.: The architecture of pier: an internet-
scale query processor. In: CIDR (2005)

10. Yang, H.c., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified
relational data processing on large clusters. In: SIGMOD 2007: Proceedings of the
2007 ACM SIGMOD international conference on Management of data, pp. 1029–
1040. ACM, New York (2007)

11. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A.A.A.,
Sakellariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applica-
tions for the grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS,
vol. 3458, pp. 13–24. Springer, Heidelberg (2005)

12. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: Tag: A tiny aggregation
service for ad-hoc sensor networks. In: OSDI (2002)

13. Yalagandula, P., Dahlin, M.: A scalable distributed information management sys-
tem. In: SIGCOMM (2004)

14. Trigoni, N., Yao, Y., Demers, A.J., Gehrke, J., Rajaraman, R.: Multi-query opti-
mization for sensor networks. In: DCOSS (2005)

15. Huebsch, R., Garofalakis, M., Hellerstein, J.M., Stoica, I.: Sharing aggregate com-
putation for distributed queries. In: SIGMOD (2007)

16. Xiang, S., Lim, H.B., Tan, K.L., Zhou, Y.: Two-tier multiple query optimization
for sensor networks. In: Proceedings of the 27th International Conference on Dis-
tributed Computing Systems, Washington, DC. IEEE Computer Society Press, Los
Alamitos (2007)

17. Xue, W., Luo, Q., Ni, L.M.: Systems support for pervasive query processing. In:
Proceedings of the 25th IEEE International Conference on Distributed Computing
Systems (ICDCS 2005), Washington, DC, pp. 135–144. IEEE Computer Society,
Los Alamitos (2005)

18. Pietzuch, P.R., Ledlie, J., Shneidman, J., Roussopoulos, M., Welsh, M., Seltzer,
M.I.: Network-aware operator placement for stream-processing systems. In: ICDE
(2006)

19. Aberer, K., Datta, A., Hauswirth, M., Schmidt, R.: Indexing data-oriented overlay
networks. In: Proc. of the VLDB 2005, pp. 685–696 (2005)

Dynamic Query Processing for P2P Data Services in the Cloud 411

20. Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned
data with applications to peer-to-peer systems. Technical report, Stanford U.
(2004)

21. Stonebraker, M., Aoki, P.M., Devine, R., Litwin, W., Olson, M.A.: Mariposa: A
new architecture for distributed data. In: ICDE (1994)

22. Tatbul, N., Çetintemel, U., Zdonik, S.B.: Staying fit: Efficient load shedding tech-
niques for distributed stream processing. In: VLDB, pp. 159–170 (2007)

23. Dabek, F., Cox, R., Kaashoek, F., Morris, R.: Vivaldi: A decentralized network
coordinate system. In: Proceedings of the ACM SIGCOMM 2004 Conference (2004)

24. Sean Rhea, B.G., Karp, B., Kubiatowicz, J., Ratnasamy, S., Shenker, S., Stoica,
I., Yu, H.: Opendht: A public dht service and its uses. In: SIGCOMM (2005)

25. Paroux, G., Toursel, B., Olejnik, R., Felea, V.: A java cpu calibration tool for load
balancing in distributed applications. In: ISPDC/HeteroPar (2004)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 412–426, 2009.
© Springer-Verlag Berlin Heidelberg 2009

A Novel Air Index Scheme for Twig Queries in
On-Demand XML Data Broadcast

Yongrui Qin1, Weiwei Sun1,*, Zhuoyao Zhang1, Ping Yu2, Zhenying He1,
 and Weiyu Chen1

1 School of Computer Science, Fudan University
 220 Handan Road, Yangpu District, Shanghai 200433, China

{yrqin,wwsun,zhangzhuoyao,zhenying,chwy}@fudan.edu.cn
2 Distance Education College & e-Educational System Engineering Research Center,

East China Normal University
 3363 Zhongshan Road (N.) Shanghai 200062, China

pyu@dec.ecnu.edu.cn

Abstract. Data broadcast is an efficient way for information dissemination in
wireless mobile environments, and on-demand XML data broadcast is one of
the most important research issues in this area. Indexing XML data on wireless
channel is critical for this issue since energy management is very important in
wireless mobile environments. Previous works have focused on air index
schemes for single path queries. In this paper, we propose a novel air index
scheme that builds concise air indexes for twig queries in on-demand XML data
broadcast. We adopt the Document Tree structure as the basic air index
structure for twig queries and propose to prune redundant structures of the basic
Document Tree indexes to reduce the energy consumption. Then we propose to
combine all the pruned indexes into one which can eliminate structure
redundancy among the indexes to further reduce the energy consumption. Our
preliminary experiments show that our air index scheme is very effective and
efficient, as it builds concise air indexes and supports twig queries without
losing any precision.

Keywords: XML, data broadcast, on-demand, air index, twig query.

1 Introduction

With the rapid development of wireless network technologies, users with mobile
devices can access a large amount of information at anytime from anywhere. Data
broadcast, as an efficient way for public information delivery to a large number of
mobile users, offers great scalability, good power consumption, and efficient
bandwidth utilization [1][2].

There are two typical broadcast modes for data broadcast [2]:

Broadcasting Mode. Data is periodically broadcast on the downlink channel. Clients
only “listen” to that channel and download data they are interested in.

* Corresponding author.

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 413

On-Demand Mode. The clients send their requests to the server through uplink
channel and the server considers all pending requests to decide the contents of next
broadcast cycle.

Access efficiency and power conservation are two important issues in wireless data
broadcast system. Accordingly, two critical metrics, access time and tuning time are
used to measure the system’s performance [1][2][3]. Air indexing techniques have
also been studied in [1][2]. They introduce some auxiliary data structures in broadcast
to indicate the arrival time of each data item. As a result, mobile clients know the
arrival time of the requested data items in advance and can switch to the energy-
saving mode (doze mode) during waiting. Therefore, the advantage of air index is
reducing tuning time and thus a longer battery life can be attained. However, after
introducing air index in broadcast, the broadcast cycles are lengthened and the access
latency is increased. Therefore, concise indexes are always more preferable.

On-demand broadcast is an important topic in data broadcast research [2][4][5].
Most of the current broadcast researches are focusing on broadcasting data items with
unique key values. The requests are key-based queries and the indexing methods are
also key-based [1]. To retrieve information from the broadcast, users must know the
item key in advance.

Besides the traditional structured information, such as records in relational
databases, more and more information turn out to be semi-structured over the past few
years. XML has rapidly gained popularity as a standard to represent semi-structured
information, and also an effective format for data transmission and exchange.

XML data broadcast is a new research issue. In this paper, we focus on designing
air index scheme for twig queries which are more powerful and accurate to express
user interests in XML data than single path queries. Most of the air index schemes of
traditional data broadcast are key-based [1] and are only suitable to index data items
with unique key values. These index schemes can not be applied to XML data
broadcast since XML data are semi-structured. Moreover, traditional XML index
schemes for twig queries which are designed for efficient XPath/XQuery query
processing are usually very large and even need to be stored in disks [7][8]. Since the
bandwidth of a wireless channel is usually very limited and the storage capacity of
mobile users is very low as well, these disk-based or large memory-based index
schemes can not be applied to XML data broadcast as well.

In this paper, we adopt Document Tree structure as the basic air index structure. In
order to reduce the size of the basic air index, we apply pruning technique on the
Document Tree indexes of all XML documents to eliminate redundant structures and
then combine the pruned indexes into one. In summary, the main contributions of this
paper are:

 We adopt Document Tree structure as the basic air index structure for twig
queries in on-demand XML data broadcast. This basic index structure can
support twig queries in small space.

 We propose a novel index pruning technique to cut out redundant structures
which do not satisfy any user requests. The total size of the air index is
greatly reduced after pruned, while it still can support twig queries effectively
without losing any precision.

 We put forward an efficient heuristic algorithm for the problem of pruning
redundant structures of the air index.

414 Y. Qin et al.

 We propose to combine the pruned Document Tree indexes into one single
index to further reduce the size of the air index.

We proceed with related works in Section 2. Section 3 describes our air index
scheme that supports twig queries and the problems of pruning and combining
Document Tree indexes. Section 4 presents an experimental study that evaluates the
performance of our solution and Section 5 concludes this paper.

2 Related Works

Emerging as a new research issue, a lot of works dealing with the construction of air
index for XML data broadcast have appeared recently. Some studies address the
performance optimization of query processing of XML streams in wireless broadcast
[9][10][11]. Several kinds of internal index structures are introduced so that clients
can skip the irrelevant parts of data in evaluation. Firstly, based on these schemes, the
client does not have any knowledge of how many documents actually satisfy his
current request and has to monitor the stream all the while to retrieve the interesting
parts of data. Secondly, these approaches index each document separately which
prolongs the broadcast cycle and hence weakens the adaptability of on-demand mode.
Moreover, they mainly focus on designing index schemes for single path queries.

Other works study the aggregation of the content of XML documents. Ref. [12]
designs a new structure called RoxSum to describe the summary of the structure
information of multiple XML documents. The VA-RoxSum [13] is also proposed to
aggregate both structure and values information of multiple XML documents. These
works consider only single path queries. Due to the loss of most branching
information, they can not apply to twig queries directly.

3 Air Index Scheme for Twig Queries

In on-demand XML data broadcast, the broadcast server first collects mobile users’
queries which request some XML data on the server, and then schedules the content
to be broadcasted on the wireless channel according to the collected queries and
builds an air index of the broadcasted content. In this section, we discuss the novel air
index scheme for twig queries in detail.

3.1 The Basic Index Structure: Document Tree

Similar to DataGuide[6], the Document Tree structure keeps only the tree structure
information of an XML document and removes all values and other content. The
difference is Document Tree reserves all the original branching structure information
which is necessary for processing twig queries while DataGuide keeps only single
path structure information. Fig.1 shows examples of the Document Tree structure DT
and its corresponding DataGuide DG.

Due to the loss of branching structure information, the DataGuide structure can not
support twig queries. For example, given two twig queries {q1:/a/c[b]/b,
q2:/a/b[c]/d}, according to DT, it is obvious that the original XML document of Fig.1
satisfies q1 but does not satisfy q2 since DT contains complete structure information
of the original XML document. However, according to DG, q1 is not satisfied while

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 415

q2 is satisfied. Therefore, the DataGuide structure can not support twig queries and
we should adopt Document Tree as the basic air index structure. As all the values and
other contents have been removed, the Document Tree structure is usually much
smaller than the original XML document and is much smaller than the index
structures proposed in [7][8].

 (a) (b)

Fig. 1. Examples of document tree(DT) and DataGuide(DG)

3.2 Pruning Redundant Structures of Document Tree

The Document Tree index structure keeps all the branching structure information of
the original XML document and can support twig queries effectively. However,
according to a given set of mobile users’ queries, there exist redundant structures in
the complete Document Tree. The reasons are: 1) Every query only requests a small
part of the original XML document and thus only matches a small part of structure of
the Document Tree; 2) Since the twig queries contain branching structure constraints,
the number of successful matching between the queries and the Document Tree
decreases; 3) The queries has less possibility that they successfully match the deeper
element nodes than that they successfully match the shallower element nodes.
Therefore, we need to prune redundant structures of the Document Tree of an original
XML document to reduce the size.

Fig.2 shows the examples of pruned Document Trees for two user queries. There is
a set of two Document Trees with identifiers DT1, DT2 in the figure. A set of two
mobile users’ queries {/a//b, /a/*[c]/c}, namely Q is also shown in the figure.
According to query set Q, the pruning results are PDT1 and PDT2. First, we prune
redundant structures of DT1 according to Q. Because DT1 only satisfies query q1 in
set Q but does not satisfy q2, we only reserve the necessary part of structure of DT1
for q1. The pruning result is PDT1 which reserves only the path prefix {/a/b} and
prunes the unnecessary deep element nodes. Note that, the three label paths {/a/b/c,
/a/b/d, /a/b/d} all satisfy q1 but we only reserve the necessary prefix that already
satisfies q1. Furthermore, the two longer label paths {/a/c/b, /a/c/b} also satisfies q1,
but in order to further reduce the size of the air index, we abandon the longer paths.
Then we prune redundant structures of DT2 according to Q. DT2 satisfies both q1 and
q2. We only reserve the left subtree of DT2 that satisfies q2. Moreover, this structure
already satisfies q2, thus we prune all the rest part of DT2. The pruning result is
PDT2. The two pruning results only reserve the necessary part of structures of DT1
and DT2. Obviously, they are concise and accurate since we can get the correct
matching results from the pruned structures.

416 Y. Qin et al.

Fig. 2. Examples of pruned document trees

In general, each twig query matches more than one branch because the twig queries
contain branching structure constraints. For a given set of twig queries, the queries
may possibly share some branches that satisfy different branching structure
constraints of them at the same time. For example, given two twig queries q1 and q2
and a Document Tree index has five branches {b1, b2, b3, b4, b5}. Suppose that
branch groups {b1, b2} and {b2, b3} both can completely satisfy q1, while branch
groups {b1, b3} and {b4, b5} both can completely satisfy q2. In this case, {b2, b3, b4,
b5} is a set of necessary branches that completely satisfies q1 and q2, because after
removing any one branch in it, it can not completely satisfy both q1 and q2. However,
it is not optimal, and the optimal set of necessary branches is {b1, b2, b3} as it can
completely satisfy q1 and q2 and includes the least branches.

We put forward a heuristic algorithm to prune redundant structures efficiently in
the following. Our algorithm visits the element nodes in the Document Tree index DT
in a breadth-first-search (BFS) way, and checks the path from root node to the current
visiting node to see if the path can satisfy some single path queries or partially satisfy
some branching structure constraints of some twig queries in Q. If some single path
queries are satisfied by the current path, we mark all the element nodes of the current
path as “reserved”, which means all these nodes will not be pruned. And then we
mark the satisfied queries as “satisfied” and will not process these queries any more.
If some branching structure constraints of some twig queries are satisfied, we need to
cache the current path first. The reason is that the twig queries contain several
branching structure constraints and we can not check whether all the constraints have
been satisfied only according to the current path. Then we check if any twig queries
can be completely satisfied by the cached paths. If a twig query is completely satisfied
by the cached paths, we mark all the element nodes of the corresponding paths as
“reserved”, and mark the satisfied twig query as “satisfied”. After all element nodes
in DT have been visited, all the element nodes that have been marked as “reserved”
will not be pruned, while other element nodes are redundant and should be pruned.
The pruning result is PDT. Similarly, the queries that have been marked as “satisfied”
can be satisfied by DT, while other queries can not be satisfied by DT. Since all

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 417

necessary structures are reserved by our algorithm, the pruning result PDT contains
enough structure information to index the original XML document for the given query
set Q. Particularly, because the algorithm visits and processes the element nodes in
DT in a BFS way, we can guarantee that we have reserve the shortest paths that
satisfy or partially satisfy some queries in Q. We also reserve the paths that satisfy the
most branching structure constraints of twig queries (Step 10). Therefore, we always
reserve the more desirable paths and thus can prune more redundant structures.

If the Document Tree index DT has n element nodes, then the computing
complexity of our pruning algorithm is O(n).

 Pruning Algorithm:

3.3 Combining Pruned Document Tree Indexes

Note that, the Document Tree indexes of different original XML documents usually
share many prefixes. As a result, if we broadcast these indexes one by one, mobile
users need to process the same prefixes many times in different indexes to find out if
their queries can be satisfied by any XML documents on the wireless channel. Based
on this observation, we propose to combine the separate pruned indexes for each
original XML document in order to eliminate the redundancy among the indexes.

Fig.3 shows an example of a combined index which combines the two pruned
Document Tree indexes PDT1 and PDT2 shown in Fig.2. Since the two pruned
indexes share the prefix {/a/b}, we should represent the prefix only one time in the

Input: Document Tree index DT; user query set Q.
Output: Document Tree index after pruned PDT.
Algorithm:

1. visit nodes in DT in a breadth-first-search way;
2. for each node e not marked “reserved” in DT
3. if the path root-to-e satisfies any single path queries in Q which have not

been marked “satisfied”, then
4. mark all nodes of the path as “reserved”;
5. mark the satisfied single path queries as “satisfied”;
6. if any twig queries in Q which have not been marked as “satisfied” are

partially satisfied by the path root-to-e, then
7. cache all the path root-to-e;
8. check all cached paths;
9. if there are any twig queries are completely satisfied by the cached

paths, then
10. mark all the element nodes of the corresponding path as

“reserved”; if there are more than one cached paths that satisfy the same
branching structure constraints of a twig query, mark all the element nodes of the
path that satisfies the most branching structure constraints as “reserved”;
otherwise, randomly mark all the element nodes of one of the paths as
“reserved”;

11. mark the satisfied twig queries as “satisfied”;
12. prune all nodes in DT that have not been marked as “reserved”; the

pruning result is PDT.

418 Y. Qin et al.

combined index. Note that, as described in [12], identifying the leaf nodes of all the
root-to-leaf paths with a document ID is enough to imply all internal path nodes of
that document. We adopt the same labeling method to identify all the leaf nodes in
the combined index in our solution. Suppose that DT1 and DT2 shown in Fig.2 are the
indexes of the original XML documents D1 and D2, and then the labeling result of the
combined index can be shown in Fig.3. Obviously, the total number of document IDs
in the combined index equals to the total number of leaf nodes in all separate pruned
structure indexes.

The query {q1:/a//b} shown in Fig.2 needs to process the prefix {/a/b} in the
combined index only one time in order to get the matching result. In this example,
the prefix {/a/b} satisfies query q1, therefore, according the labeling scheme of the
combined index, both XML documents D1 and D2 satisfy query q1.

Fig. 3. Combined index of PDT1 and PDT2 in Fig.2

The combining process of pruned Document Tree indexes is different from that of
RoxSum which is described in [12] because we must reserve all the branching
structure contained in the separate pruned indexes to support twig queries. In this
section, we discuss the problem of how to combine the pruned Document Tree
indexes optimally.

First, in order to simplify our discussion, we only consider the simpler structures
that only contain single paths from the root node to leaf nodes without any other
branches, that is all nodes has at most one child except for the root node. We show
that this kind of structure indexes can be equivalently converted to complete weighted
bipartite graphs.

An example of this kind of special structure indexes is shown in Fig.4. Index DT1
and DT2 are two special structure indexes to be combined. They both have three single
path branches, namely p1, p2, p3 and p4, p5, p6, respectively. The matching results
between p1, p2, p3 and p4, p5, p6 can be converted to a weighted complete weighted
bipartite graph. The weight of each edge of the bipartite graph equals to the number of
matching nodes between the related single path branches. For example, the number of
matching nodes between p1 and p5 is 3 and hence the weight of edge (p1, p5) in the
bipartite graph is 3 as well. The right part of Fig.4 shows the result of the converted
complete weighted bipartite graph. Its maximum matching of given weight is shown as
the bold and grey edges. This maximum matching also indicates that the optimal
combination of index DT1 and DT2 is: p1 combining with p5, p2 combining with p6, and
p3 combining with p4.

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 419

The best known strongly polynomial time bound algorithm for weighted bipartite
matching is the classical Hungarian method presented in [14], which runs in
O(|V|*(|E|+|V|*log|V|)) time. As to complete weighted bipartite graph, suppose the
numbers of nodes in the two vertex sets are m, n, respectively, then we have |V|=m+n,
|E|=m*n and the maximum matching of given weight in complete bipartite graph has a
computing complexity of O(m2*n+m*n2). In other words, if two structure indexes
which contains only single paths from root node to leaf nodes and the numbers of
single paths in the two indexes are m, n, respectively, the optimal combination can be
found in O(m2*n+m*n2) running time. Particularly, if the numbers of single paths in
the two indexes are both n, then the running time will be O(n3).

Fig. 4. Examples of single path structure indexes

Nevertheless, the general combining process of the pruned indexes is a little more
complicated than the special cases. When combining single paths indexes, we can get
the number of matching nodes of two single paths easily by comparing element nodes
of them from the root node one by one. However, when combining some branching
structures, we need to find out the largest number of matching nodes of their subtree
structures first. For example, in Fig.5, if we want to find out the optimal combinations
of the five subtrees of two root nodes “a” in the figure (these subtrees have been
labeling with numbers from 1 to 5), we need to find out the optimal combinations of
subtrees of the nodes in Layer2. In this example, the approach to find out the optimal
combinations of subtrees of the nodes in Layer2 is exact the same as the single paths
structures shown in Fig.4 because all nodes in Layer2 are single paths. In other words,
we can use Hungarian method to find out the optimal combinations between nodes 1,
2, 3 and nodes 4, 5 in Layer2. According to these combining results, the root nodes in
Layer1 now can use Hungarian method to find out the optimal combinations as well.
The optimal combinations are: the two root nodes in Layer1 will be combined; and in
Layer2, node 2 will be combined with node 4, and node 3 will be combined with node
5; finally, in Layer3, the child node c of node 2 will be combined with the child node
c of node 4 and similarly, the child nodes d of node 3 will be combined with the child
nodes of node 5.

420 Y. Qin et al.

Fig. 5. Two Document Tree indexes to be combined

Therefore, we can find out the optimal combination of two given Document Tree
indexes by recursively using the classical Hungarian method and then computing the
optimal combinations of subtree structures in the Bottom-up way.

3.4 Two-Tier Structure of Air Index

Generally, traditional air indexes are one-tier structures. They index the
corresponding data items based on key-based values. The keys and the data items are
one-to-one relationships and thus the one-tier structures are efficient. However, in
XML data broadcast, XML data are semi-structured and the air indexes are not key-
based but structure-based. One-tier structures are inefficient because the combined air
index and the XML documents on the wireless channel are one-to-many relationships.
Based on this observation, we propose the two-tier structure to optimize the combined
air index. Fig.6 shows examples of the one-tier structure and the two-tier structure.

As shown in the Fig.6(a), the one-tier structure uses the offsets to indicates the
positions of XML documents on the wireless channel. O1 and O2 are the offsets of the
two XML documents which will be broadcasted on the wireless channel. According to
the air index and the offsets, mobile users can get position information of the required
XML documents and then switch to doze mode until the documents arrive. Fig.6(b)
shows an example of the two-tier structure of air index. In Fig.6(b), D1 and D2 are the
document IDs of the XML documents on the wireless channel, and similarly, O1 and
O2 are the offsets of the two XML documents. Mobile users can get the document IDs
of the XML documents which satisfy their queries from the first tier. Then mobile users
can get the offsets in the second tier according to the document IDs.

Note that, the length of the offset limits the maximum length of the XML documents
which can be indexed by an air index. When the length of the offset is 3 bytes, an air
index can index up to the maximum length of 16M bytes and when the length of the
offset is 4 bytes, an air index can index up to 4G bytes which is quite enough for a
wireless broadcast system. Therefore, the preferable length of the offset should be 4
bytes. On the other hand, when the length of document ID is 2 bytes, the maximum
number of XML documents is up to 64K. Generally, this is enough to represents all the
XML documents on the broadcast server. Based on this assumption, the total size of
offsets of the air index in Fig.6(a) is 9*4=36(bytes) and the total size of offsets including
the document IDs of the air index in Fig.6(b) is 9*2+2*(2+4)=30(bytes). Therefore, the
two-tier structure can further reduce the total size of the air index and thus reduce
energy consumption.

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 421

(a) One-tier Structure of air index

(b) Two-tier Structure of air index

Fig. 6. One-tier structure vs. Two-tier structure

In theory, in a wireless broadcast system, suppose there are Ndoc XML documents
that will be broadcasted on the wireless channel, the total number of leaf nodes in the
pruned Document Tree indexes is Nleaf_node, the length of an offset is LO bytes, and the
length of a document ID is LD bytes, then the total size of offsets in the one-tier
structure is Nleaf_node* LO, and the total size of offsets including the document IDs in
the two-tier structure is Nleaf_node* LD + Ndoc * (LD+ LO). By comparing these two sizes
we can infer that when we have

>
doc

nodeleaf

N

N _

DO

DO

LL

LL

−
+

the total size of two-tier structure is smaller than one-tier structure. Generally, we
have LO=4(bytes), LD=2(bytes), then as long as we have

3_ >
doc

nodeleaf

N

N

the total size of two-tier structure is smaller than one-tier structure. Note that, this
condition is easily satisfied since in our experiments, we have

20_ >
doc

nodeleaf

N

N

in most cases. Hence, the two-tier structure is more efficient.

422 Y. Qin et al.

3.5 Accessing XML Data on Wireless Channel

On the mobile client end, the client first downloads the air index. Then it can find out
which documents satisfy its queries and when it can download them. Since the air
index supports the current submitted user queries without losing any precision, the
mobile clients can correctly find out all the documents they require.

Due to the combining process, the matching process between the combined index
on air and user queries on the mobile client ends is a little different from traditional
query processing. First, for single path queries, the mobile clients need to confirm that
which documents can satisfy their requests. The reason is that the internal path nodes
of the combined index can only be identified by their corresponding leaf nodes and
the mobile clients need to follow the prefixes of the combined index that satisfy their
queries to finally get the corresponding document IDs. Second, for twig queries, the
mobile clients need to check whether all the satisfying paths of a twig query belong to
the same documents, because all branching structure constraints of a twig query
should be satisfied by the branches from the same XML document; otherwise, the
twig query has not been completely satisfied.

4 Experimental Evaluation

In this section, we first describe the experimental setup of our experiments and then
study the performance of the pruning technique and the combining technique for the
Document Tree index structure. We also study the comparison between two-tier
structure and one-tier structure. Finally, we study the overall performance of our air
index scheme.

4.1 Experimental Setup

In our experiments, synthetic XPath queries are generated using the generator in [15].
Experiments are run on a synthetic data set: News Industry Text Format (NITF) DTD,
and 500 XML documents are generated. The average depth of all documents is about
8. Experiments on another synthetic data set on NASA DTD are also performed. We
just report the previous ones, as the results for NASA are similar.

Two parameters are varied in the experiments: the number of queries (NQ), and the
probability of nested paths (PNP). The descriptions of them are shown in the following
Table 1.

Table 1. Workload parameters for our experiments

Parameter Range
Default
Value

Description

NQ 100 to 1 000 500 Number of queries

PNP 0 to 30% 10% Probability of a nested path
occurring at a location step

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 423

4.2 The Performance of Pruning Algorithm

We first define Pruning Ratio(PR) as follows:

%100
indexair original of size

prunedafter index air of size -index air original of size ×=PR

therefore, if the PR is higher, we will prune more redundant structures and the
performance of our pruning algorithm will be better; otherwise we will prune fewer
redundant structures.

Fig.7 depicts the effect of NQ. As the NQ increases, the PR decreases because more
and more structures are needed by the user queries. When NQ =100, PR=80% and
when NQ =1 000, PR=63%. Therefore, our pruning algorithm can prune a large part
of the original air index. Moreover, the PR decreases not so fast when NQ is larger
since the user queries share more and more structures with the other user queries.

Fig.8 shows the effect of PNP. As the PNP increases, the PR increases as well. This
is because the selectivity of user queries decreases as PNP increases and fewer user
queries are satisfied and fewer structures are needed by the user queries. When
PNP=0%, PR=59%; and when PNP=30%, PR=68%. As a result, our pruning algorithm
can support twig queries efficiently.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100 200 300 400 500 600 700 800 900 1000

N Q

PR

Fig. 7. Effect of NQ

54%

56%

58%

60%

62%

64%

66%

68%

70%

0% 10% 20% 30%

P NP

PR

Fig. 8. Effect of PNP

4.3 The Performance of Combining Algorithm

We first define Combining Ratio(CR) as follows:

%100
indexair pruned of size

indexair combined of size -index air pruned of size ×=CR

424 Y. Qin et al.

therefore, if the CR is higher, we will combine more sharing prefixes and the
performance of our combining algorithm is better; otherwise we will combine fewer
sharing prefixes. The combining algorithm is applied to the pruned indexes directly.

Fig.9 depicts the effect of NQ. Similar to Fig.7, as the NQ increases, the CR
decreases. More structures are needed as NQ increases, and then they likely share
more prefixes. Thus the CR decreases not as fast as the PR compared with Fig.7.
When NQ =100, CR=91% and when NQ =1 000, CR=78%. Therefore, our combining
algorithm can eliminate redundancy among the separate air indexes effectively.
Similarly, the CR decreases not so fast when NQ is larger since the user queries share
more and more structures with the other user queries.

Fig.10 shows the effect of PNP. As the PNP increases, the CR increases as well.
Similarly, this is because the selectivity of user queries decreases as PNP increases.
Thus, fewer user queries are satisfied and fewer structures are needed by the user
queries. When fewer user queries are satisfied, it also indicates that the needed
structures of air index share more prefixes. When PNP=0%, CR=78%; and when
PNP=30%, CR=85%. Therefore, our combining algorithm can support twig queries
efficiently.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400 500 600 700 800 900 1000

N Q

CR

Fig. 9. Effect of NQ

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 10% 20% 30%

P NP

CR

Fig. 10. Effect of PNP

4.4 The Comparison between Two-Tier Structure and One-Tier Structure

Fig.11 shows the comparison between two-tier structure and one-tier structure. As the
NQ increases, more structures are needed and thus Nleaf_node, which has been discussed
in Section 3.4, increases as well. As a result, the sizes of both structures increase. As

 A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast 425

can be seen from the figure, two-tier structure is smaller than one-tier structure. When
NQ =100, two-tier structure is 25% smaller than one-tier structure and when NQ =1
000, two-tier structure is 30% smaller than one-tier structure. Therefore, two-tier
structure is more preferable.

0

20

40

60

80

100

120

100 200 300 400 500 600 700 800 900 1000

N Q

si
ze

 (
K

B
)

One-tier

Two-tier

Fig. 11. Effect of NQ

4.5 The Performance of Our Air Index Scheme

We have tested 500 XML documents in our experiments of which the total size is
6200K bytes. From Fig.11, we can see that our air index scheme builds only tens of K
bytes indexes which are only about 1% of the original XML documents. Moreover, the
total size of the complete Document Tree indexes of the original XML documents is
about 665K bytes in our experiments. In other words, after using our air index scheme
to prune redundant structures and to combine sharing prefixes, the final air index is only
about 9% of the complete structure indexes. As a result, our air index scheme is quite
effective and efficient and can reduce energy consumption significantly.

5 Conclusions

In this paper, we focus on designing effective and efficient air index scheme for twig
queries in on-demand XML data broadcast. Twig queries are more powerful and more
accurate to express user interests in XML data than single path queries. We have
adopted the Document Tree structure as the basic air index structure for twig queries.
We have proposed to prune redundant structures of the basic Document Tree indexes
of all XML documents to reduce the energy consumption and have designed an
efficient heuristic algorithm to prune redundant structures of indexes. We have also
proposed to combine the sharing prefixes of the pruned indexes to further eliminate
structure redundancy among the indexes.

In our experiments, the pruning algorithm can prune more than one half of the original
Document Tree indexes in most cases and our combining algorithm shows great
effectiveness as well since the combining ratio is usually larger than 80%. Our
preliminary experiments show that our air index scheme is quite effective and efficient,
as it builds comparatively small indexes and supports twig queries without losing any
precision. In most cases, our scheme builds indexes that only reserve 9% of the complete
structures information or only 1% of the original XML documents information.

426 Y. Qin et al.

Acknowledgments

This research is supported in part by the National Natural Science Foundation of
China (NSFC) under grant 60503035, 60703093, and the National High-Tech
Research and Development Plan of China under Grant 2006AA01Z234 and SRF for
ROCS, SEM.

References

1. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on Air: Organization and Access.
IEEE Transactions on Knowledge and Data Engineering 9(3) (1997)

2. Xu, J., Lee, D., Hu, Q., Lee, W.C.: Data Broadcast. In: Handbook of Wireless Networks
and Mobile Computing. John Wiley & Sons, Chichester (2002)

3. Acharya, S., Alonso, R., Franklin, M., Zdonik, S.: Broadcast disks: Data management for
asymmetric communications environments. In: SIGMOD (1995)

4. Acharya, S., Muthukrishnan, S.: Scheduling On-Demand Broadcasts: New Metrics and
Algorithms. In: MOBICOM 1998 (1998)

5. Sun, W., Shi, W., Shi, B., Yu, Y.: A Cost-Efficient Scheduling Algorithm of On-Demand
Broadcasts. ACM Journal of Wireless Networks 9(3) (2003)

6. Goldman, R., Widom, J.: DataGuides: enabling query formulation and optimization in
semistructured databases. In: VLDB 1997 (1997)

7. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.: Covering indexes for branching
path queries. In: SIGMOD Conference, pp. 133–144 (2002)

8. Wang, W., Wang, H., Lu, H., Jiang, H., Lin, X., Li, J.: Efficient Processing of XML Path
Queries Using the Disk-based F&B Index. In: VLDB 2005, pp. 145–156 (2005)

9. Park, C., Kim, C., Chung, Y.: Efficient Stream Organization for Wireless Broadcasting of
XML Data. In: Grumbach, S., Sui, L., Vianu, V. (eds.) ASIAN 2005. LNCS, vol. 3818,
pp. 223–235. Springer, Heidelberg (2005)

10. Park, S., Choi, J., Lee, S.: An effective, efficient XML data broadcasting method in a
mobile wireless network. In: Bressan, S., Küng, J., Wagner, R. (eds.) DEXA 2006. LNCS,
vol. 4080, pp. 358–367. Springer, Heidelberg (2006)

11. Chung, Y., Lee, J.: An indexing method for wireless broadcast XML data. Information
Sciences 177(9), 1931–1953 (2007)

12. Vagena, Z., Moro, M.M., Tsotras, V.J.: RoXSum: Leveraging Data Aggregation and Batch
Processing for XML Routing. In: ICDE (2007)

13. Vagena, Z., Moro, M.M., Tsotras, V.J.: ValueAware RoXSum: Effective Message
Aggregation for XMLAware Information Dissemination. In: WebDB 2007 (2007)

14. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Research Logistics
Quarterly, 83–97 (1955)

15. Diao, Y., Altinel, M., Franklin, M.J., Zhang, H., Fischer, P.: Path Sharing and Predicate
Evaluation for High-Performance XML Filtering. TODS 28(4) (2003)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 427–434, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Semantic Fields: Finding Ontology Relationships

Ismael Navas-Delgado, Maria del Mar Roldán-García, and José F. Aldana-Montes

E.T.S.I. Informática. Computer Languajes and Computing Science Department,
Boulevard Louis Pasteur 35, 29071 Málaga, Spain

{ismael,mmar,jfam}@lcc.uma.es

Abstract. This paper presents the Semantic Field concept which enables the
global comparison of ontologies. This concept uses the results obtained from
ontology matching tools to estimate the global similarity between ontologies. It
has been used in a tool called the Semantic Field Tool (SemFiT). A demo tool
is provided (http://khaos.uma.es/SFD).

Keywords: Ontology Alignment, Ontology Distance.

1 Introduction

In the Semantic Web, the notion of ontology as a form of representing a particular
universe of discourse (or some part of it) is very important. Ontology alignment is a key
aspect of knowledge exchange in the Semantic Web; it allows organizations to model
their own knowledge without having to stick to a specific standard. In fact, there are two
good reasons why most organizations are not interested in working with a standard for
modeling their knowledge: (a) it is very difficult or expensive for them to reach an
agreement about a common standard, and (b) standards reached do not often fit in with
the specific needs of the all participants in the standardization process.

Ontology alignment is perhaps the best way to solve the problems of heterogeneity.
There are a lot of techniques for accurately aligning ontologies, but experience tells us
that the complex nature of the problem to be solved makes it difficult for these
techniques to operate satisfactorily for all kinds of data, in all domains, and as all
users expect. This problem has been studied in several works [1][2][3].

Thus, interoperability relies on the ability to reconcile different existing ontologies,
which may have overlapping or closely related domains. This reconciliation depends
on the existence of ontology relationships, to relate terms in different possibly
multiple ontologies in overlapping or related domains. However, to obtain the best
results, we need to know how the ontologies overlap so that we can align them
appropriately, or merge them into a new ontology.

In this context, we have proposed the concept of Semantic Field, which goes a step
further in the search for ontology relationships. This concept uses the results obtained
from ontology matching tools to estimate the global similarity between ontologies.
Thus, users and applications can discover the global configuration of relationships
between existing ontologies.

In this paper we present the Semantic Field concept through a framework for
searching ontology relationships: the Ontology Matching and Alignment Framework

428 I. Navas-Delgado, M. del Mar Roldán-García, and J.F. Aldana-Montes

(OMAF). This framework has been instantiated as a tool called the Semantic Field
Tool (SemFiT, http://khaos.uma.es/SFD), to facilitate ontology alignment in the
Semantic Web. It uses MaF (Matching Framework, http://khaos.uma.es/maf) to find
mappings between ontologies and allows the insertion of existing matching
algorithms. Finally, we have studied several application types that have been
developed as real applications to validate this tool: the Ontology Search Engine
(OSE) and the Semantic Web Services Automatic Composition and Matchmaking
(SWS-ACoM) [4].

2 OMAF: The Ontology Mapping and Alignment Framework

The reuse of these ontologies enables the development costs of Semantic Web
applications to be kept to a minimum. In this context it is necessary to use a
mechanism to reduce the number of ontologies that a software developer, a software
agent or a Semantic Web application have to review. In this section we present the
concept of Semantic Field applied to the Semantic Web context, in which we will
identify the ontologies related with our needs. Semantic Fields can be used in
semantic Web applications to relate ontologies, and their application can help to
reduce the search space required to find ontologies useful for solving user requests.
Thus, users will be able to calculate which ontologies are useful in a specific domain
and how they are related to enable semantic Web application interoperability.

2.1 Definitions

The Semantic Neighbourhood of an ontology, namely the pivot ontology, is not
exactly a set of aligned ontologies. It is neither a set of integrated ontologies nor a
new ontology obtained from the merging process of a set of ontologies. Rather, the
Semantic Neighbourhood of an ontology is a set of ontologies, which is built based on
the distance from the pivot ontology to the other known ontologies. Depending on the
perspective (the pivot ontology) and the radio (maximum distance from the pivot
ontology to all the ontologies in the semantic neighbourhood), the semantic
neighbourhood will be composed of different ontologies (see example shown in

Figure 1 right). Figure 1 (right) represents the neighbourhood,
Y
OX

SN , of the ontology
X with a radio Y. Furthermore, ontologies can belong to different neighbourhoods,
depending on their distance to pivot ontologies.

The Semantic Field is a more specific concept based on the user perspective and it is
derived from the Semantic Neighbourhood. Ontologies from outside the Semantic
Neighbourhood can be included in the user Semantic Field by means of concepts defined
as relevant for a specific user (or user community). However, ontologies from the
Semantic Neighbourhood cannot be excluded from the Semantic Field, because of the way
in which the Semantic Field has been defined and then calculated. Thus, several
ontologies that are not in the user's Semantic Neighbourhood are included in the Semantic
Field if the concepts relevant for the user are related to these ontologies (see an example in
Figure 1 left). This figure shows how an ontology can be part of a Semantic Field for a set
of relevant concepts and/or roles of the ontology OX (Q) and a Radio (Y), Y

Q X
SFΟ

.

Therefore, the Semantic Field is a set of relevant ontologies for the user semantic focus.

 Semantic Fields: Finding Ontology Relationships 429

Fig. 1. The Semantic Neighbourhood and Semantic Field Concept examples

2.2 SemFiT

This section presents the instantiation of the Ontology Matching and Alignment
Framework (OMAF) as a final tool (the Semantic Field Tool, SemFiT). SemFiT has
two main target users: ontology (and mapping) providers and final users. Ontology
providers have as their main goal to make their ontologies publicly available. On the
other hand, final users will make use of the registered information to locate ontologies
and their relationship with other similar ontologies. Semantic Field can be calculated
without determining which concepts are relevant for the user, but the best way to
benefit from Semantic Fields is to set the relevant ontology and its relevant concepts.

In order to calculate the Semantic Field a matrix of mappings is required between
registered ontologies (O1, … , Os). Thus, both the implementations of the Semantic Field
concept and its main interface require including mechanisms to calculate relationships
between pairs of ontologies. The process of calculating these mappings could be manual,
semi-automatic or automatic (it uses MaF [5]). Using this matrix the tool calculates the
distance between pairs of ontologies. The target of the ontology distance is to find a
global measurement to compare ontologies, based on concept to concept similarities.

The use of different formulas to calculate the Semantic Field will produce different
results, from a detailed point of view (ontology to ontology distance), but there will
be fewer differences when comparing a lot of ontologies, and when the user needs to
locate ontologies by reducing the search-space. In our proposal the distance has been

430 I. Navas-Delgado, M. del Mar Roldán-García, and J.F. Aldana-Montes

calculated using the following formulas (these formulas has produced promising
results in previous tests [6]):

•
),(max(

)(#
),(

)(
j

OConceptsc

i
ji Ocmappings

OConcepts
OODD

i

Σ
∈

=

•)),(),,(min(),(ijjiji OODDOODDOOD =

The distance values provide hints of the mappings that can be found between
ontologies, so the use of different formulas will affect the distance between two
ontologies but it will not affect the global selection of ontologies (in as much as all
the distances have been calculated in the same way).

At query time, it is possible for the user to define relevant concepts from the pivot
ontology. In this case we can calculate the weight-based ontology distance, making
use of ontology distance measurements which use this knowledge. Thus, the
mappings involving these relevant concepts will reduce the distance between the
registered ontologies. In this way the directed distance (DD) can be re-defined as:

•
∑ ∈

=
)(

),(*)(max(

)(#
),(

iOConceptsc jF

i
ji OcmappingscR

Oconcepts
OODD

This formula is based on a relevance factor (RF(c)), which indicates the relevance
of each concept (set up by the user to indicate his/her preferences), and it should be
noted that the distance formula is not changed. Non-relevant concepts will have
RF(c)=1 and relevant concepts will have RF(c)>1. Thus, if we establish a factor value
of 2, then the relevant concepts will be twice as important in the calculation. For
example (Figure 2), given two ontologies twelve elements and three elements
respectively, in which only one pair of concepts is similar (similarity value of 0.9), the
directed distances are:

• 3.3
9.0

3
),(21 ==OODD

• 3.13
9.0

12
),(12 ==OODD

If we use Formula 2, then:

• 3.3),(),(1221 == OODOOD

However, if one of the pairs of concepts that is similar is relevant (RF = 2), then the
directed distances are smaller:

• 6.1
8.1

3
),(21 ==OODD

• 6.6
8.1

12
),(12 ==OODD

 Semantic Fields: Finding Ontology Relationships 431

And, for this case:

6.1),(),(1221 == OODOOD

0.9

Fig. 2. Alignment Example

2.3 SemFiT Demo Tool

In order to show the capabilities of Semantic Field we have developed a demo tool for
using the terms described in this section with a set of pre-calculated ontologies
(available at http://khaos.uma.es/SFD/index.jsp).

Once registered (registration is free and is only used to trace the use of the demo
tool), and logged into the system, users can view all the registered ontologies and
their distances or select one of them as his/her relevant ontology and can also view all
the others (Figure 3 top-left). Visualization of all the ontologies involves a view of the
lines indicating distances between them (Figure 3).

However, the initial visualization of all the ontologies is not clear when we have
a large set of ontologies. Thus, the visualization tool provides an option for selecting a
threshold to create groups of ontologies (those that are at a distance less than a
particular threshold), so it is easy to know which ontologies are more closely related
(Figure 3 top-right).

The next step that a user can perform to locate an ontology is to select one of those
registered as his/her relevant ontology, and filter ontologies outside its semantic
neighbourhood. Once the relevant ontology has been selected (Figure 3) the user has a
new item to be used, "View Neighbourhood", which will return a graph with a
reduced number of ontologies.

432 I. Navas-Delgado, M. del Mar Roldán-García, and J.F. Aldana-Montes

Fig. 3. SemFiT demo tool. The demo tool shows all the registered ontologies (top-left), and
they can be organized in clusters (top-right). However, the main functionality is to calculate the
semantic field for a given ontology, a radius and a set of relevant concepts (down).

The last step for selecting the ontologies related with the user preferences is to use
the Semantic Field by selecting those concepts in the relevant ontology that are most
important to the user. This will mean that the distance between some pairs of
ontologies will be reduced (lower part of Figure 3). In this case the concepts chosen
are related to all the ontologies, so all the distances have been reduced.

The example presented in this section provides a view of the potential use of
Semantic Fields to locate ontologies, as a demo tool publicly available at
http://khaos.uma.es/SFD/index.jsp. This tool shows how the use of Semantic
Neighbourhood and Semantic Field concepts will produce a view of the available
ontologies in which the user can easily locate ontologies.

3 Discussion

The use of ontologies for annotating information in Web documents and Semantic
Web applications makes it necessary to locate existing ontologies in order to reuse

 Semantic Fields: Finding Ontology Relationships 433

them. The problem of finding a useful ontology for an application is that if such an
ontology cannot be found, a new ontology will have to be developed (which is a
costly process). Thus, several tools have been proposed for searching ontologies
based on keyword searches, such as Swoogle and OntoKhoj [7]. However, the
increasing number of available ontologies will produce longer lists of ontologies for
each search (as for Google searches). In this way, other proposals like AKTiveRank
[8], introduce the concept of ontology ranking into these searches. So, each search
will produce a list of ontologies with a ranking number in order to help the user to
decide which ontology is most useful for their requirements. The most sophisticated
approach is Watson [9], which is a Semantic Web gateway that provides a single
access to semantic information. It provides an API for finding Web documents,
metadata, and entities inside these documents.

Ontology searches and ranking proposals do not take user knowledge in the
domain into account. Thus, our proposal is to take advantage of the Semantic Fields
to improve ontology searches. Semantic Fields can help in two contexts: when the
user knows an ontology in the target domain and/or the user is able to express his/her
knowledge as a simple ontology. In both cases the user can select the set of relevant
concepts for his/her application.

In this paper we have also described how a dynamic, user-query centered concept
(Semantic Field) has been implemented as a practical tool, SemFiT, for discovering
ontology relationships in the Semantic Field of a user query related to a specific
pivoting ontology. Semantic Fields can be used in different kinds of applications,
such as ontology clustering and for ontology searches and location. SemFiT has been
implemented to be parallelizable and with the aim of reducing the amount of calculus
done at query time (when calculating the Semantic Field of a user query).

The calculation of a Semantic Field with a specific tool depends on being able to
calculate mappings automatically. The use of different matching tools can provide
different results. However, all the possible solutions will share the same
characteristic: the Semantic Field provided is an indicator of the mappings that can be
found. Furthermore, mappings that produce the Semantic Field could also be offered
to the users.

Previously we asserted that using the Semantic Field benefits users by providing
them with the ability to reduce the search-space in large sets of ontologies. In this
context, the use of manual or semi-automatic mechanisms is not feasible because of
the time required to produce or revise mappings. Thus, the methods proposed for
registering ontologies assume that mappings will be automatically calculated by a
mapping tool. However, in domains in which manual or semi-automatic mappings
have been calculated previously, it is possible to add new methods to the interface to
define the mappings for two registered ontologies (overwriting the automatic ones).

4 Conclusions

In this paper we have presented OMAF, a framework for developing tools based on
the ontology relationships. This framework includes the use of the Semantic Field
concept for measuring the ontology semantic distance (dissimilarity) between
ontologies. The framework has been instantiated as a tool (SemFiT) that enables the

434 I. Navas-Delgado, M. del Mar Roldán-García, and J.F. Aldana-Montes

global comparison of ontologies. This tool is available as a service for being used in
application. Besides, we have provided an environment to test the Semantic Field
concept using a graphical demo tool.

In SemFiT we have used MaF as a matching tool for calculating individual
relationships between ontology concepts, and the information provided is used by the
tool to calculate the ontology semantic distance (http://khaos.uma.es/maf).

The implementation of SemFiT is based on the use of a database for storing the
information, so the calculation of Semantic Fields is a scalable process (thanks to the
scalability of the relational database used).

Acknowledgments. Supported by TIN2008-04844 (Spanish Ministry of Education
and Science), and the Junta de Andalucía project P07-TIC-02978.

References

1. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A.,
Benjamins, V.R. (eds.) EKAW 2002. LNCS, vol. 2473, pp. 251–263. Springer, Heidelberg
(2002)

2. Ehrig, M., Sure, Y.: Ontology mapping - an integrated approach. In: Bussler, C.J., Davies,
J., Fensel, D., Studer, R. (eds.) ESWS 2004. LCNS, vol. 3053, pp. 76–91. Springer,
Heidelberg (2004)

3. Euzenat, J., et al.: State of the art on ontology alignment. Deliverable D2.2.3, Knowledge
web NoE (2004)

4. Brogi, A., Corfini, S., Aldana, J.F., Navas, I.: Automated discovery of compositions of
services described with separate ontologies. In: Dan, A., Lamersdorf, W. (eds.) ICSOC
2006. LNCS, vol. 4294, pp. 509–514. Springer, Heidelberg (2006)

5. MaF: the Matching Framework, http://khaos.uma.es/maf/
6. Navas, I., Sanz, I., Aldana, J.F., Berlanga, R.: Automatic generation of semantic fields for

resource discovery in the semantic web. In: Andersen, K.V., Debenham, J., Wagner, R.
(eds.) DEXA 2005. LNCS, vol. 3588, pp. 706–715. Springer, Heidelberg (2005)

7. Patel, C., et al.: Ontokhoj: a semantic web portal for ontology searching, ranking and
classification. In: Proceedings of the 5th ACM international workshop on Web information
and data management, pp. 58–61. ACM Press, New York (2003)

8. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with aktiverank. In: Proceedings
of the International Semantic Web Conference, pp. 1–15 (2006)

9. Allocca, C., d’Aquin, M., Motta, E.: Finding equivalent ontologies in watson. In:
Proceedings of the International Semantic Web Conference, Posters & Demos (2008)

Complete OWL-DL Reasoning Using Relational
Databases

Maria del Mar Roldan-Garcia and Jose F. Aldana-Montes

University of Malaga, Departamento de Lenguajes y Ciencias de la Computacion
Malaga 29071, Spain

{mmar,jfam}@lcc.uma.es
http://khaos.uma.es

Abstract. Real Semantic Web applications, such as biological tools, use
large ontologies, that is, ontologies with a large number (millions) of in-
stances. Due to the increasing development of such applications, it is
necessary to provide scalable and efficient ontology querying and reason-
ing systems. DBOWL is a Persistent and Scalable OWL reasoner which
stores ontologies and implements reasoning using a relational database.
In this paper we present an extension of DBOWL that implements all
inference rules for OWL-DL. Furthermore, we describe briefly the rea-
soning algorithms and their completeness proofs.

1 Introduction

Semantic Web applications, such as biological tools, use large ontologies, that is,
ontologies with a large number (millions) of instances. Description logic based
tools, like Pellet [1] or RACER [2] allow us to manage OWL ontologies, but
not very large ones. Reasoning algorithms are not scalable and are usually main
memory oriented. These reasoners are highly optimized for reasoning on the
ontology structure (Tbox reasoning in Description Logic nomenclature), but
have problems when dealing with reasoning on instances (Abox reasoning). It
is logical to think that applications in the Semantic Web will need to infer
new knowledge from the explicit knowledge defined not only in the Tbox but
especially in the Abox. The complex reasonings that should be implemented
for the Semantic Web applications will need an optimal storage model, disk
oriented, in order to be efficient and scalable. In the past few years there has
been a growing interest in the development of systems for storing, querying
and reasoning on large ontologies in the Semantic Web. Firstly, these systems
were oriented to RDF storage [3] [4]. Nowadays, research is oriented to massive
OWL storage. Several alternative approaches using relational technology have
been presented. However, these proposals have some problems. On one hand,
they are not complete with respect to OWL-DL reasoning. On the other hand,
the performance and scalability of these tools is not satisfactory in some cases,
particularly those which implement reasoning by means of datalog rules. Finally,
the best tools are commercial tools, and users must pay to make use of them.
In order to solve these problems, we have developed DBOWL, a persistent and

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 435–442, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

436 M. del Mar Roldan-Garcia and J.F. Aldana-Montes

scalable reasoner for very large OWL-DL ontologies. A preliminary version of
DBOWL was presented in [5]. In this paper we present an updated version, which
is more complete than the previous one. We also describe briefly the reasoning
algorithms and their completeness proofs.

2 DBOWL

DBOWL [5] is a persistent and scalable OWL reasoner. It stores the OWL-DL
ontologies in a relational database, and supports Tbox queries (queries on the
ontology structure), Abox inferences (reasoning on the ontology instances) and
ECQ (Extended Conjunctive Queries) queries [6]. Currently we are finishing a
SPARQL query engine for DBOWL. In order to create the relational database
for ontology storage, a Description Logic Reasoner is used. Thus, the consistency
of the ontology as well as the inferences about the ontology structure is delegated
to this reasoner and DBOWL focuses on reasoning on instances (large numbers
of them). Both, Tbox queries and ECQ queries are implemented by translation
to SQL [6]. Abox inferences are implemented by java functions and SQL views.

2.1 Storage in a Relational Database

DBOWL stores the OWL-DL ontologies in a relational database. We define
a specific relational schema for our tool. Tables are categorized into 4 types:
ontology information tables, Tbox tables, Abox tables, and descriptions tables.

Ontology information tables include ontology index and uri index, which store
the ID and the URL of all ontologies and the ID and the URI of all instances in
the database respectively. Tbox tables store the subclass, subproperty, equivalent
class and equivalent property relationships, the disjoint classes and the properties
characteristics. This information is provided by the Description Logic reasoner.
The hierarchy table stores all class/subclass pairs while the Hierarchyprops ta-
ble stores all property/subproperty pairs. On the other hand, the equivalents
table stores all class/equivalent class pairs while equivalentprops stores all pair
property/equivalent property pairs. Finally, the disjoint table stores all pairs of
disjoint classes and the propertytypes table stores if the property is transitive,
symmetric or functional, if it is the inverse of another property and also its do-
main and range. Using these tables we can easily obtain the class and property
hierarchies and the equivalent classes/properties of a specific class/property.

Furthermore, all the information needed for evaluating Abox inferences is also
in the database. There is at least one table for each kind of possible class de-
scription in the ontology: enumeration (enumeration table), value restrictions
(all, some, hasvalue tables), cardinality restriction (max and min tables), in-
tersection (intersec table), union (union table) and complement (complement
table). These tables will be used to implement the Abox inference rules.

Finally, we create one Abox table for each class and each property in the
ontology. The name of this table is the same as the class or property. These
tables contain the IDs of instances explicitly defined as instances of the class or

Complete OWL-DL Reasoning Using Relational Databases 437

property. Tables representing classes contain only one column (ID) while tables
representing properties contain two columns (SUBJECT, OBJECT).

2.2 Tbox Retrieval

Tbox retrieval can be evaluated directly using the query language. Currently,
DBOWL supports all the Tbox queries implemented by RACER. In order to
implement them, the information obtained from the DL reasoner is stored in the
corresponding tables at load time. For example, we store the equivalent classes
for each class in the database. Thus, we only need to query the database to
evaluate the Tbox reasoning which evaluates if two classes are equivalent to
each other or if they are the equivalent classes of a specific class. We also use the
DL reasoner to obtain the properties domain and range, which are sometimes
not explicitly asserted by the ontology, but they can be inferred. At query time,
this information will be obtained by querying the database with a simple SQL
query. Obviously, the performance of these Tbox reasonings, being sound and
complete, is much better than in a description logic base reasoner which evaluate
the reasoning each time in main memory.

2.3 Abox Inferences

The Abox inference rules currently supported by DBOWL cover OWL-DL com-
pletely. They are implemented as java functions using only the information stored
in the database. We define views for each class and property in the ontology.
These views define the set of instances of the corresponding class or property,
i.e. instances explicitly asserted by the ontology plus instances inferred by the
Abox inference rules.

In order to implement the Abox reasoning, we divided inferences rules into
4 groups, i.e. (1) rules which use instances of properties and produce instances
of properties, (2) rules which use instances of properties and produce instances
of classes, (3) rules which use instances of classes and properties and produce
instances of classes, and (4) rules which use instances of classes and produce
instances of properties. Examples of rules in group 1 are those for implementing
the subpropertyOf and the transitivePropery rules. Group 2 contains those rules
for inferences of domain and range. Rules for reasoning on descriptions are in
group 3. The only rules in group 4 are the hasvalue2 and hasvalue3 rules. In
order to create the views for each class and property in the ontology, rules in
group 1 are evaluated in a fix-point algorithm. After that, rules in group 2 are
evaluated. Rules in group 3 have the same treatment as rules in group 1. Finally,
rules in group 4 are evaluated. In the case where these rules produce new results,
all groups are reevaluated. This means that we evaluated a fix-point algorithm
for all groups which is controlled using the group 4 rules.

When this algorithm finishes, views are created, which will be used by DBOWL
queries in order to obtain complete results. Therefore, the computation of the in-
ferred instances is doing at query time.

438 M. del Mar Roldan-Garcia and J.F. Aldana-Montes

Fig. 1. subClassOf reasoning algorithm

2.4 Inference Rules Algorithms

Figure 1 shows, as an example, one algorithm for evaluating Abox inference rules,
the subclassOf algorithm. It obtains a list of all classes in the ontology ordered
according to its the level in the class hierarchy. This means that first classes in
the list will be those without subclasses and all subclasses for a given class will
be in a previous position in the list. The algorithms use the Oracle connect by
clause to create this list. Then, views for each class are defined following the
order in the list. Thus, a view for a class will be defined using the definition of
the view for all its subclasses.

3 Related Works

DBOWL is an OWL reasoner. As OWL is based on DL, we must also study
DL reasoners. Of these, RACER [2] is the most relevant and one of the most
complete, and implements both Tbox and Abox reasoning. Furthermore, it pro-
vides its own query language, which allows simple conjunctive queries to be
evaluated. It is not persistent however, and reasoning is implemented by reduc-
ing it to satisfiability. This means that large ontologies (with a large number
of instances) cannot be loaded. PELLET [1] provides the same functionality as
RACER but also has the same problems. In the past few years there has been
a growing interest in the development of systems for storing large amounts of
knowledge in the Semantic Web. Firstly, these systems were oriented to RDF
storage [3] [4]. Nowadays, research is oriented to massive OWL storage. Several
alternative approaches using relational technology have been presented. Instance
Store [7] uses a DL reasoner for inferring Tbox information and storing it in a re-
lational database. However, the ontology definition language does not allow the
definition of binary relationships. From our point of view, this is an important
expressiveness limitation. Moreover, Instance Store only evaluates subsumption
of concepts and equivalent classes by reducing them to terminological reasonings
and evaluates them using a DL reasoner. On the other hand, the QuONTO [8]
system reduces the ontology definition language to DL-Lite [9], a description
logic which is a subset of OWL-DL. Therefore, the soundness and completeness
of the reasonings is ensured. It evaluates subsumption of concepts and conjunc-
tive queries. The queries are rewritten using the Tbox information and they are

Complete OWL-DL Reasoning Using Relational Databases 439

translated to SQL. DLDB-OWL [10] extends a relational database with OWL
inferences. This proposal uses a DL reasoner as Instance Store does, but the
database schema is more complex. In its public distribution only the subsump-
tion of concepts is implemented, but it is implemented using only the information
stored in the database. BigOWLIM [11] is a commercial tool that stores DL-Lite
and RDFS ontologies on disk by means of binary files. BigOWLIM reasoning
is evaluated by TRREE, its own inference engine. This is the most complete
current reasoner. Finally, Minerva [12] also stores the ontology in a relational
database, but uses a DL reasoner for evaluating Tbox reasonings and a rule en-
gine to evaluate Abox reasonings covering OWL-DL partially. In other words, it
combines relational technology with logic rules. Minerva also evaluates SPARQL
queries. Our proposal aims to subsume all these results, providing a persistent
and scalable tool for querying and reasoning on OWL ontologies. To do this, we
provide an optimized storage model which is efficient and scalable; we implement
reasoning on top of a relational database and combine reasoning and querying.

4 DBOWL Performance and Completeness

In order to demonstrate the completeness and evaluate the performance of our
tool we use UOB [13], a well known benchmark to compare repositories in the
Semantic Web. This benchmark is intended to evaluate the performance of OWL
repositories with respect to extensional queries over a large data set that commits
to a single realistic ontology. Furthermore, the benchmark evaluates the system
completeness and soundness with respect to the queries defined. This benchmark
provides tree ontologies, i.e. a 20, 100 and 200 Megabyte ontologies and the
queries results for each one. This first experiment is conducted on a PC with
Pentium IV CPU of 2.13 GHz and 2G memory, running on a Windows XP
service pack 2 with Java JRE 1.4.2 Release 16.

4.1 Performance

With respect to performance, figure 2 shows the response time of each benchmark
query expressed in seconds for the 20MB and 100MB ontology. These ontology
contains around 200.000 and 1.000.000 individuals respectively. Current results
suggest that we are working in the right direction. Our highest response time is
28 miliseconds for the 100 MB ontology and the results also show that DBOWL
scales well. We asume that real applications dealing with very big ontologies
will require the use of better computers. We believe that in those environments
DBOWL will return very good performance results.

4.2 Completeness

In order to check the completeness of DBOWL, two tests (empirical and theo-
retical) were carried out. First, we evaluated the UOB queries for the 100MG
ontology in DBOWL and obtained the correct results for all queries. We also

440 M. del Mar Roldan-Garcia and J.F. Aldana-Montes

Fig. 2. DBOWL response times for the 20MG and 100MG ontologies

evaluated the UOB queries in several related tools, in order to prove that only
DBOWL obtains the complete results for all of them. Figure 3 shows the number
of instances returned by the tools and the UOB results. As we can see, DBOWL
and UOB return different results for queries 11, 13 and 15. We check the UOB
results for these queries and we believe that they are not correct, maybe because
this part of the benchmark was never evaluated. For queries 11 and 15 DBOWL
returns more results than UOB. This is because some synonymous of instances
are not in the UOB result but instances are. For query 13 DBOWL returns less
instances than UOB. This is because UOB result includes instances of all de-
partments, but query 13 asks only for instances in the department0. Therefore,
DBOWL results are the correct ones.

Some tools (Minerva, Jena2) cannot deal with the 100MB ontology because
of its size (around 1.000.000 individuals), others, such as Instance Store do not
support OWL-DL ontologies. As we can observe in Figure 3, BigOWLIM obtains
good results, but it is not complete for OWL-DL. It only supports DL-Lite.
Therefore, it cannot obtain complete results for several queries. With this test
we demonstrate empirically that DBOWL can deal with very big ontologies
obtaining complete results. On the other hand, we provide some theoretical
proofs for every Abox inference rule algorithm, DBOWL returns the correct set
of results. This is proof by contradiction. We present here the theoretical proof
for the algorithms shown in section 2.4.

Lemma 1. Let D be a subclass of C. Let Vd be the last view created for the
class D. Let Vc be the last view created for the class C. Let Vc S be the view
created by the subClassOf algorithm for the class C. If < x > is a tuple in Vd,
then < x > is a tuple in Vc S .

Proof. Suppose that < x > is a tuple in Vd and < x > is a NOT a tuple in Vc S .
As D is a subclass of C, the subClassOf algorithm defines a view Vc S for the

class C as πid(lastviewfor(C))∪πid(lastviewfor(D)). That is πid(Vc)∪πid(Vd)
(by premises).

As < x > is a tuple in Vd then < x > is a tuple in πid(Vd) (by definition of π
in the relational algebra).

Complete OWL-DL Reasoning Using Relational Databases 441

Fig. 3. Number of instances returned by different tools (100MG ontology). Benchmark
number of instances for marked (*) queries are explained in section 4.2.

Thus < x > is a tuple in Vc S (by definition of ∪ in the relational algebra).
This produces a contradiction.

5 Conclusions and Future Work

This paper presents DBOWL, a tool for querying and reasoning on OWL-DL
ontologies. It stores the ontologies in a relational database, using a description
logic reasoner for pre-computing the class and property hierarchies, which are
also stored in the database. DBOWL supports both Tbox and Abox reasoning
and Extended Conjunctive Queries (ECQ). Reasonings are encapsulated by java
functions making it possible to configure the tool according to the reasoning
needs of the applications. In order to test our proposal we have used a benchmark
and compared the results with several related tools. We also provided algorithms
for evaluating Abox inference rules covering OWL-DL and their theoretical proof
of completeness. The results obtained suggest that DBOWL is a promising OWL
reasoner. Currently, DBOWL supports much bigger ontologies than traditional
DL systems and it is being used in some applications in the System Biology
domain, where particularly large ontologies are used, like the Gene Ontology
(http://www.geneontology.org/) or TAMBIS (http://www.ontologos.org). It is
also in use in some research projects such as the Spanish Ministry of Science and
Innovation research project ICARIA (TIN2008-04844) or the Applied Systems
Biology Project, P07-TIC-02978 (Innovation, Science and Enterprise Ministry
of the regional government of the Junta de Andaluca). DBOWL is currently
being used in real tools for Knowledge-Based Analysis in Systems Biology as
KA-SB [14], obtaining very good results.

As future work, we plan to implement a SPARQL query engine for DBOWL.
We also are studying some optimization techniques (like database indexes, par-
allel computation and incremental reasoning) in order to improve the response
time of the queries.

442 M. del Mar Roldan-Garcia and J.F. Aldana-Montes

Acknowledgements

This work has been funded by the Spanish MEC Grant (TIN2008-04844). We
wish to thank Oscar Corcho for his suggestions about the theoretical proofs.

References

1. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A practical OWL-
DL reasoner. Journal of Web Semantics 5(2) (2007)

2. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS, vol. 2083, p. 701. Springer, Heidelberg
(2001)

3. Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A generic architecture for
storing and querying RDF and RDF schema. In: Horrocks, I., Hendler, J. (eds.)
ISWC 2002. LNCS, vol. 2342, p. 54. Springer, Heidelberg (2002)

4. KAON. The Karlsruhe Ontology and Semantic Web Framework. Developer’s Guide
for KAON 1.2.7 (January 2004),
http://km.aifb.uni-karlsruhe.de/kaon2/Members/rvo/KAON-Dev-Guide.pdf

5. Roldán-Garćıa, M.M., Aldana-Montes, J.F.: DBOWL: Towards a Scalable and Per-
sistent OWL reasoner. In: The Third International Conference on Internet and Web
Applications and Services. ICIW 2008, Athens, Greece, June 8-13 (2008)

6. Roldán-Garćıa, M.M., Molina-Castro, J.J., Aldana-Montes, J.F.: ECQ: A Simple
Query Language for the Semantic Web. In: 7th International Workshop on Web
Semantics, WebS 2008. DEXA 2008, Turin, Italy, September 1-5 (2008)

7. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The Instance Store: Description Logic
Reasoning with Large Numbers of Individuals (2004)

8. Acciarri, A., Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Palmieri,
M., Rosati, R.: QuOnto: Querying Ontologies. In: Proceedings of the National
Conference on Artificial Intelligence 2005, Part 4, vol. 20, pp. 1670–1671 (2005)

9. Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R., Vetere, G.: DL-Lite:
Practical reasoning for rich DLs. In: Proceedings of DL 2004. CEUR Electronic
Workshop Proceedings (2004), http://ceur-ws.org/Vol-104/

10. Pan, Z., Heflin, J.: DLDB: Extending Relational Databases to Support Semantic
Web Queries. In: Workshop on Practical and Scaleable Semantic Web Systems,
ISWC 2003 (2003)

11. Kiryakov, A., Ognyanov, D., Manov, D.: OWLIM – a Pragmatic Semantic Repos-
itory for OWL. In: Proc. of Int. Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS 2005), WISE 2005, New York City, USA, November 20 (2005)

12. Zhou, J., Ma, L., Liu, Q., Zhang, L., Yu, Y., Pan, Y.: Minerva: A scalable OWL
ontology storage and inference system. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia,
F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 429–443. Springer, Heidelberg (2006)

13. Ma, L., Yang, Y., Qiu, Z., Xie, G.T., Pan, Y., Liu, S.: Towards a complete OWL on-
tology benchmark. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011,
pp. 125–139. Springer, Heidelberg (2006)

14. del Roldan-Garcia, M.M., et al.: KASBi: Knowledge-Based Analysis in Systems
Biology. In: International Workshop on Semantic Web Applications and Tools for
Life Sciences, SWAT4LS 2008 (2008)

http://km.aifb.uni-karlsruhe.de/kaon2/Members/rvo/KAON-Dev-Guide.pdf
http://ceur-ws.org/Vol-104/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 443–450, 2009.
© Springer-Verlag Berlin Heidelberg 2009

FRESG: A Kind of Fuzzy Description Logic Reasoner

Hailong Wang, Z.M. Ma, and Junfu Yin

School of Information Science & Engineering, Northeastern University
 Shenyang 110004, China

zongmin_ma@yahoo.com

Abstract. Based on the fuzzy description logic F-ALC(G), we design and
implement a fuzzy description logic reasoner, named FRESG1.0. FRESG1.0
can support the representation and reasoning of fuzzy data information with
customized fuzzy data types and customized fuzzy data type predicates. We
briefly introduce the reasoning services provided by FRESG1.0. Then, we
particularize the overall architecture of FRESG1.0 and its design and
implementation of the major components. In the paper, we pay more attention
to illustrate the features of the reasoner as well as the algorithms and
technologies adopted in the implementations.

Keywords: Fuzzy description logic, F-ALC(G), reasoner, customized data type.

1 Introduction

In recent years, great progress have been made on the study of classic DL reasoners
and many reasoners have been put forward, such as FaCT, RACER, Pellet, Jena,
KAON2. For the goal to express and reason imprecise and uncertain information
which widely exists in human knowledge and natural language, and as an attempt to
process fuzzy data information, some fuzzy reasoners have been put forward, such as
FiRE [1], GURDL [2], DeLorean [3], GERDS [4], YADLR [5], FuzzyDL [6]. All of
these reasoners support fuzzy Description Logic. However, it has been pointed that
most of these reasoners have limitations on expressing and reasoning fuzzy data type
information. Furthermore, all of them, including FuzzyDL, cannot express and reason
the customized data types and predicates [7].

For the reasons above, few efforts have been done for the representation and
reasoning of customized fuzzy data types and predicates. In [8], the fuzzy data type
group G is introduced into fuzzy description logic F-ALC [9] and the fuzzy
description logic F-ALC(G) is prompted. This paper gives the ABox consistency
checking algorithm of F-ALC(G), introduces a reasoning framework [7] supporting
the reasoning services of fuzzy data type information, and designs a reasoning
algorithm with fuzzy data types. In order to verify the correctness of F-ALC(G)
reasoning algorithm and provide a testing platform for future extensions to fuzzy
description logic F-ALC(G) [8], this paper designs and implements a fuzzy
description logic reasoner, named FRESG, which can provide reasoning services for
customized fuzzy data types and customized fuzzy data type predicates.

444 H. Wang, Z.M. Ma, and J. Yin

2 FRESG1.0 as a Fuzzy DL Reasoner

FRESG (Fuzzy Reasoning Engine Supporting Fuzzy Data Type Group) is a prototype
reasoner, which is based on the ABox consistency checking algorithm of the fuzzy DL
F-ALC(G) [8]. The current version of FRESG is named FRESG1.0. FRESG1.0 can
support the consistency checking of a KB with empty TBox, and the future versions
will provide supports for the consistency checking of a KB with simple TBox and
general TBox restrictions. In fact, the consistency checking of a KB with empty TBox
(equivalent to ABox) is the most basic reasoning problem in DL because the other
inference services can be reduced to this case [9]. FRESG1.0 provides the following
“standard” set of inference services, including:

 ABox consistency checking, which is used to check whether an ABox is
“consistent” or “inconsistent”;

 Concept satisfiability, which checks if it is possible for a concept to have any
instances;

 Entailment. It is said that an interpretation I satisfies (is a model of) a KB K iff
I satisfies each element in K [8]. A KB K entails an assertion α (denoted by K |= α) iff
every model of K also satisfies α. The problem of determining if K |= α holds is
called entailment problem;

 Retrieval. According to the given query conditions, FRESG1.0 returns all the
instances satisfying the conditions;

 Realization. Given an ABox A and a concept C, to find all the individuals a
such that 〈a: C, ⋈, k〉 ∈ A.

Furthermore, the other important reasoning services, like subsumption and
classification, can be reduced to the consistency checking of the corresponding ABox.

FRESG1.0 is a reasoner based on fuzzy DL F-ALC(G), so its grammatical forms
are in correspondence with the F-ALC(G) abstract syntax. Users can define their ABox
according to the syntax of FRESG1.0 and then use FRESG1.0 reasoner to reason or
query over the ABox. The detailed FRESG1.0 syntax can be referred to FRESG1.0
user manual. The following example 1 shows an ABox A1 described in valid
FRESG1.0 syntax.

Example 1. (instance x (some R D) >= 0.7);
(instance x (all R C) >= 0.4);
(instance y C >= 0.2);
(instance y D >= 0.3);
(related x y R >= 0.5);
(instance x (some R (and C D)) < 0.5);
(instance y (dtsome T1, (dtor p1 p2)) >= 0.7);
(instance y (dtatleast 3, T2 T3, p3) >= 0.6);
(instance y (dtall T2, p1) >= 0.9);|

Its corresponding DL KB described in F-ALC(G) abstract syntax is as follows: A1’
= {〈x: ∃ R.D, ≥, 0.7〉, 〈x:∀R.C, ≥, 0.4〉, 〈y:C, ≥, 0.2〉, 〈y:D, ≥, 0.3〉, 〈(x,y):R, ≥, 0.5〉, 〈x:
∃R.(C⊓D), <, 0.5〉, 〈y: ∃T1.p1∨ p2, ≥, 0.7〉, 〈y: ≥3T2,T3.p3, ≥, 0.6〉, 〈y:∀T2.p1, ≥, 0.9〉}.

Here x, y are individuals; C, D are concepts; R is an abstract role; T1, T2, T3 are
fuzzy data type roles; p1, p2, p3 are fuzzy data type predicates based on base data type
xsd: integer. Then, FRESG1.0 can provide reasoning services over the compiled A1’.

 FRESG: A Kind of Fuzzy Description Logic Reasoner 445

3 FRESG1.0 Architecture and Design

The core of FRESG1.0 is a Tableaux reasoner and a fuzzy data type reasoner. The
former is implemented based on the F-ALC(G) ABox consistency checking algorithm
[8], and the latter is used to decide the satisfiability of fuzzy data type predicates
conjunctions [8].

The main design goal of FRESG1.0 is that it has a small core reasoning engine,
which is able to reason with customized fuzzy data type predicates and is suitable for
extensions. Based on this goal, FRESG1.0 has the overall architecture shown in Fig.1.
In the design, it requires that the fuzzy data type reasoner is independent of the
Tableaux reasoner. On the other hand, if users want to add the construction operators
of fuzzy data type expressions [8], they only need to modify the fuzzy data type
manager, without having to change the Tableaux reasoner; If users want to add some
basic data types supported by the reasoner, they only need to add the corresponding
fuzzy data type checkers on the base of the current fuzzy data type reasoner. Such a
design philosophy makes FRESG1.0 have highly modular structure and be easy
extended. As a result, a solid foundation is laid for implementing more expressive DL
reasoner and the further research. If the expression capacity of a certain part (e.g., the
Tableaux reasoner, fuzzy data type manager or fuzzy data type checker) is amended
and strengthened independently, a new fuzzy DL reasoner is formed, which is suitable
for applications in different backgrounds.

Reasoning conversion

Fig. 1. The architecture of FRESG1.0 reasoner

The Tableaux reasoner checks the consistency of an ABox. The FRESG1.0
compiler translates the ABox described in FRESG1.0 syntax into the file described in
abstract F-ALC(G) syntax which can be identified by the Tableaux reasoner. The
Tableaux reasoner conducts the decision or query over the compiled file according to
the "ABox consistency checking" command, or the query requirements converted by
the unit of “Reasoning conversion”. If there are some sub-queries about the
customized fuzzy data type predicates in the query, the Tableaux reasoner invokes the
fuzzy data type reasoner to decide the satisfiability of the fuzzy data type predicate
conjunctions, and finally returns the corresponding results.

3.1 Tableaux Reasoner

The Tableaux reasoner has only one function: checking the consistency of an ABox.
According to the model-theoretic semantics, an ABox is consistent if there is an

446 H. Wang, Z.M. Ma, and J. Yin

interpretation that satisfies all the assertions in it. Such an interpretation is called a
model of the ABox. The tableaux reasoner searches for such a model according to the
ABox consistency checking algorithm [8].

In the process of implementation, the Tableaux reasoner firstly starts by
constructing an initial forest FA for ABox. There are two kinds of nodes in the
constructed forest FA: abstract nodes (the normal labeled nodes) and data type nodes
(unlabeled leaves of FA). Each abstract node x is labeled by a set of triples and each

triple is in the form of 〈C, ⋈, k〉, which indicates the membership that the individual x
belongs to C ⋈ k. The edges in the forest FA represent the relationship between nodes.
An edge between two abstract nodes represents a fuzzy abstract role, and an edge
between an abstract node and a data type node represents a fuzzy data type role. The
initial forest FA is shown in “Initial Status” window in the form of tree.

According to the ABox consistency checking algorithm, the Tableaux reasoner
repeatedly applies the tableaux expansion rules until a clash is detected in the label of
a node, or until a clash-free forest is found, to which no more rules are applicable.
FRESG1.0 applies F-ALC(G) Tableaux expansion rules in the following order:

1) For an abstract node, F-ALC-rules are used first and then G-rules are used [8];

2) F-ALC-rules are used according to the order of ¬⋈-, ⊔▷-, ⊓◁-, ⊓▷-, ⊔◁-, ∃▷-, ∀◁-,

∀▷-, and ∃◁-rules；

3) G-rules are used according to the order of ∃
p▷-, ∀

p◁-, ≥
p▷-, ≤

p◁-, ∀
p▷-, ∃

p◁-, ≤
p▷-,

and ≥
p◁-rules；

As a result of the use of uncertainty rules ⊔▷- and ⊓◁-, a number of complete forest
FA1, FA2,…, FAn(n ≥ 1) may be yielded. Finally, the Tableaux reasoner checks if these
forests contain clashes or not. If one of these forests does not contain any clashes,
there is a model about ABox and the input ABox is "consistent". If all these forests
contain clashes, there is no model for ABox and the input ABox is "inconsistent".
When the Tableaux reasoner checks the satisfiability of the forests, if there are some
queries related to fuzzy data type, the Tableaux reasoner invokes the fuzzy data type
reasoner to decide the satisfiability of the conjunction queries with fuzzy data type
expression. The Tableaux reasoner returns the final results according to the results
returned by fuzzy data type reasoner.

3.2 Fuzzy Data Type Reasoner

The fuzzy data type reasoner is used to decide the satisfiability of the conjunction
query with fuzzy data type. In other words, the tableaux reasoner calls the fuzzy data
type reasoner for the satisfiability of the fuzzy data type expression conjunction. The
fuzzy data type reasoner includes one fuzzy data type manager and two fuzzy data
type checkers. Among them, one checker is based on the basic data type xsd: integer
and another one is based on the basic data type xsd: string.

The fuzzy data type manager works between the tableaux reasoner and the two
fuzzy data type checkers. The design of the fuzzy data type manager is based on the
algorithms in [8]. The Tableaux reasoner reduces the fuzzy data information in ABox
to the form of fuzzy data type expressions conjunctions [8] using Tableaux expansion

 FRESG: A Kind of Fuzzy Description Logic Reasoner 447

rules, and then call the fuzzy data type reasoner to check the satisfiability of the
conjunction. The fuzzy data type manager decomposes the conjunction into
disjunctions of fuzzy data type predicate conjunctions and then divides each of the
predicates conjunction into two sub-conjunctions. One of the sub-conjunctions is
based on xsd: integer and another one is based on the basic data type xsd: string.
Then, the fuzzy data type manager sends these two sub-conjunctions to appropriate
fuzzy data type checkers to decide their satisfiabilities. If the two sub-conjunctions
of a fuzzy predicate conjunction are satisfiable, it is satisfiable. If any one of the
fuzzy predicate conjunction is satisfiable, the input fuzzy data type expressions
conjunctions is satisfiable.

The fuzzy data type checkers decide the satisfiability problem of fuzzy data type
predicate conjunctions, where the fuzzy data type predicates are defined over a base
data type in a fuzzy data type group. If some new base data types are needed to add
into FRESG1.0, only corresponding fuzzy data type checkers are need to add. The
design of the fuzzy data type checker is based on the algorithms in [8].

3.3 Reasoning Conversion

FRESG1.0 reasoning engine is designed to transform other reasoning tasks into ABox
consistency checking tasks. The current version of FRESG provides not only ABox
consistency checking services, but also the reasoning services such as concepts
satisfaction checking, entailment reasoning function and querying. The FRESG1.0
provides these three kinds of reasoning services through transforming them into ABox
consistency checking.

Firstly, it is easy to transform concepts satisfaction checking into ABox consistency
checking. If users want to check the satisfaction of the F-ALC(G)-concept C,
FRESG1.0 transforms it into checking consistency of the fuzzy ABox {(x: C) > 0},
and calls the Tableaux reasoner to decide its consistency (x is an abstract individual).

Secondly, the entailment reasoning function can also be transformed into ABox
consistency checking task [9].

Thirdly, according to the query definition, FRESG1.0 returns all the individuals
satisfying the query condition (C ⋈ k), so it is only required to do entailment
reasoning for each individual x in the current ABox A. If A |≈ 〈x: C, ⋈, k〉, x satisfies
the querying condition and the result is displayed in the “Result Window”. Otherwise,
x does not satisfy the querying conditions. FRESG1.0 needs to decide every
individual in ABox when querying, so the querying is inefficient. How to make the
querying tasks more efficient is one of our future works.

4 Testing and Performance

All reasoning tasks that follow the FRESG1.0 syntax can be processed by the
FRESG1.0. In order to verify the correctness of FRESG1.0, we provide two testing
cases in this paper, which are designed to verify FRESG1.0 in two aspects, including
ABox consistency checking and concepts satisfiability.

Example 2. In order to check the consistency of ABox A1 in Example 1, we can run it in
FRESG1.0, and the result is partly shown in Fig.2. According to the Tableaux
expansion rules, the "Reasoning Details" window shows how the FA is extended into
four different kinds of completion-forests by the Tableaux reasoner. Then, the Tableaux

448 H. Wang, Z.M. Ma, and J. Yin

reasoner calls the fuzzy data type reasoner, which checks the satisfiability of the
conjunction query with customized fuzzy data type predicates. As a result, the first and
second situations are satisfiable, but the third and fourth situations are unsatisfiable. So
the “Final Result” window gives “The ABox A1 is consistent” as a conclusion.

Fig. 2. The running results of FRESG1.0 reasoner

Example 3. Now we check the satisfiability of the concept (and (some R (all S (and C
D))) (some S (dtsome T1 T2 T3, (dtand E1 E2)))). Firstly, FRESG1.0 compiler
transforms the concepts that follow the FRESG1.0 syntax into the concepts that
follow the F-ALC(G) syntax, i.e., (∃R.(∀S.(C⊓D))) ⊓ (∃S.(∃T1,T2,T3.(E1∧E2))).
Secondly, using the unit of “reasoning conversion”, FRESG 1.0 transforms the task
that checks the satisfiability of concepts into the task that checks the consistency of
the ABox A2: {x : (∃R.(∀S.(C⊓D)))⊓(∃S.(∃T1,T2,T3.(E1∧E2))) > 0}.

We can get useful information from the results: the initial forest that corresponds
to A2 is shown in the “Initial States” window. The "reasoning detail" window shows
how FA is expanded to a complete forest by the Tableaux reasoner. Then the Tableaux
reasoner calls the fuzzy data type reasoner to check the satisfiability of the
conjunction query with customized fuzzy data type predicates. Finally, because no
clash is contained in the complete forest, A2 is "consistent", and the “Final Result”
window also gives the corresponding conclusion.

From the examples mentioned above, it can be seen that the customized fuzzy data
type information can be expressed and reasoned in the FRESG1.0.

FRESG1.0 is open source (around 15000 lines of codes) and has complete documents
and lots of testing cases. All of these can be obtained by emailing to the authors.

We have tested performance of the FRESG1.0 reasoner by checking the
consistencies of different ABoxes with different sizes (as shown in Fig.3). The size of
ABox is measured in instance number (both concept instances and role instances). In
the logarithmic graph, the reasoning time is in scale to the ABox size.

 ABox1 ABox2 ABox3 ABox4 ABox5 ABox6 ABox7 ABox8 ABox9 ABox10

ABox size 100 200 300 400 500 600 700 800 900 1000
Time cost(s) 0.015 0.047 0.063 0.110 0.157 0.218 0.296 0.375 0.484 0.640

 FRESG: A Kind of Fuzzy Description Logic Reasoner 449

Fig. 3. Performance of the FRESG1.0 reasoner

5 Related Work

With the extensive and in-depth application of intelligent systems, the processing of
fuzzy and uncertain information in the real world is becoming an essential part of
intelligent systems [1-6, 8, 9]. It is imperative to develop fuzzy reasoners which can
process the fuzzy Ontology and fuzzy DL. Table 1 lists some existing reasoners that
can support the processing of fuzzy and uncertain information.

Table 1. The Comparisons of the Current Fuzzy Description Logic Reasoners

Reasoner Supporting DL Features
FiRE fKD-SHIN A first fuzzy DL prototype reasoner, supporting

GUI.
GURDL f-ALC expanding the optimization technology in classic

DL, improving the performance of fuzzy reasoner
DeLorean f-SHOIN Converting the reasoning problems of fKD-SHOIN to

classic SHOIN to solve
GERDS f-ALC adding inverse role, top role, and bottom role on the

base of f-ALC
YADLR SLG algorithm Not only supporting the membership in assertions is

a constant, but also supporting it is a variable
FuzzyDL f-SHIF(D) Not only supporting fuzzy Lukasiewicz norms, but

also supporting other fuzzy norms

Through comparison of the reasoners in Table 1, we find that all of the reasoners in

Table 1 cannot support the representation and reasoning of customized fuzzy data
type and predicates, which is very important in some intelligent systems [7, 8].
FRESG1.0 can support not only the representation and reasoning of fuzzy concept
knowledge, but also fuzzy data information with customized fuzzy data types and
predicates. The relationship of the reasoning capacity among these fuzzy reasoners
(including FRESG1.0) is shown in Fig.4. In Fig.4, U means human knowledge. The
dotted circle, solid circle and dotted & solid circle in Fig.4 denote FRESG1.0 reasoner
and two fuzzy reasoner 1 & 2, respectively. In Fig.4, C stands for f-ALC that all fuzzy
reasoners can support; E stands for the DLs that support fuzzy data type D [6], such
as FuzzyDL in Table 5; F stands for the DLs that support customized fuzzy data type
and customized fuzzy data type predicates; B stands for the remaining part with the
same reasoning abilities of reasoner 1 and reasoner 2 in addition to f-ALC; A and D

450 H. Wang, Z.M. Ma, and J. Yin

stands for the unique part of reasoner 1 and 2 in reasoning capacity, respectively. In
Fig.4, F stands for the reasoning ability that the other fuzzy DL reasoners do not have,
which is the unique part of FRESG1.0.

Fig. 4. The relationships among fuzzy description logic reasoners

6 Conclusion and Future Work

In this paper, we design and implement the fuzzy DL reasoner FRESG1.0 based on
the fuzzy DL F-ALC(G). It can support not only the representation and reasoning of
fuzzy concept knowledge, but also fuzzy data information with customized fuzzy data
types and customized fuzzy data type predicates.

FRESG1.0 reasoner is in constant update. In the near future, we are planning to
extend the reasoner in three directions:

1) Improving the robustness and reliability through a large number of test examples
and trying to improve its performance;

2) Further expanding its representation and reasoning abilities (e.g., the expansion
of transitive role axioms (S), inverse roles (I), and number restrictions (N) etc.);

3) Expanding DIG standard interface so that it can be invoked by other reasoners.

References

1. Stoilos, G., Nikos, S., Stamou, G.: Uncertainty and the Semantic Web. J. IEEE Transaction
on Intelligent Systems 21, 83–87 (2006)

2. Haarslev, V., Pai, H.I., Shiri, N.: Optimizing tableau reasoning in ALC extended with
uncertainty. In: Proc. of the 2007 Int Workshop on Description Logics, pp. 307–314 (2007)

3. Bobillo, F., Delgado, M., Romero, J.: Optimizing the crisp representation of the fuzzy
description logic SROIQ. In: Proc. of the 3rd ISWC Workshop on Uncertainty Reasoning
for the Semantic Web (2007)

4. Habiballa, H.: Resolution strategies for fuzzy description logic. In: Proc. of the 5th
Conference of the European Society for Fuzzy Logic and Technology, pp. 27–36 (2007)

5. Stasinos, K., Georgios, A.: Fuzzy-DL Reasoning over Unknown Fuzzy Degrees. In: Proc. of
the 3rd Int Workshop on Semantic Web and Web Semantics, pp. 1312–1318 (2007)

6. Bobillo, F., Straccia, U.: fuzzyDL: An Expressive Fuzzy Description Logic Reasoner. In:
Proc. of the 2008 IEEE Int. Conf. on Fuzzy Systems, pp. 923–930 (2008)

7. Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web. J. IEEE
Transaction on Knowledge and Data Engineering 19, 246–260 (2007)

8. Wang, H.L., Ma, Z.M.: A Decidable Fuzzy Description Logic F-ALC(G). In: Proc. of the
19th Int Conf on Database and Expert Systems Applications, pp. 116–123 (2008)

9. Straccia, U.: Reasoning within fuzzy description logics. J. Journal of Artificial Intelligence
Research 14, 137–166 (2001)

Extracting Related Words from Anchor Text Clusters by
Focusing on the Page Designer’s Intention

Jianquan Liu, Hanxiong Chen, Kazutaka Furuse, and Nobuo Ohbo

Department of Computer Science, Graduate School of Systems and Information Engineering,
University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki-ken, 305-8577, Japan

{ljq,chx,furuse,ohbo}@dblab.is.tsukuba.ac.jp

Abstract. Approaches for extracting related words (terms) by co-occurrence
work poorly sometimes. Two words frequently co-occurring in the same doc-
uments are considered related. However, they may not relate at all because they
would have no common meanings nor similar semantics. We address this problem
by considering the page designer’s intention and propose a new model to extract
related words. Our approach is based on the idea that the web page designers
usually make the correlative hyperlinks appear in close zone on the browser. We
developed a browser-based crawler to collect “geographically” near hyperlinks,
then by clustering these hyperlinks based on their pixel coordinates, we extract
related words which can well reflect the designer’s intention. Experimental re-
sults show that our method can represent the intention of the web page designer
in extremely high precision. Moreover, the experiments indicate that our extract-
ing method can obtain related words in a high average precision.

Keywords: Related word extraction, Anchor text, Clustering, Design intent.

1 Introduction

To search the Web, we must specify some keywords which can summarize our seeking
purpose. Specifying appropriate keywords towards the seeking target makes the search-
ing more effective. Apparently, extracting and suggesting related words, and analyzing
similarity of words become important research topics.

Directly to survey the conventional methods, such as Google and Yahoo!, they
suggest user related words by query log. However, their suggestions are less effective
because search purposes are very different among the users. Then some studies use co-
occurrence to extract and suggest related words. Nevertheless, high co-occurrence does
not guarantee the semantic relatedness. Therefore, other studies follow contextual rela-
tion to analyze semantics, or derive context by analyzing the tag hierarchy of HTML
page. However, the real context frequently changes with the dynamic layout, due to the
widely use of CSS (Cascade Style Sheet). Two words in the same context of HTML
structure will be divided by the real CSS layout. In other words, they are no longer
related.

To address this problem of extracting related words, we challenge to extract the
words that are considered correlative by the web page designers. For this purpose, we
stand on the designer’s side to consider the layout design. When designing a web page,

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 451–459, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

452 J. Liu et al.

the first thing coming up to their mind should be “How do I display the layout of the
page?”. Generally speaking, they would like to organize the related contents and put
them in the same area on the page. Especially, hyperlink is one of the most important
components of a page. Thus, they often put the related hyperlinks into the same zone
on the page, which are identified by some associated anchor texts. It is natural to be-
lieve that all the hyperlinks appearing in the same area are certainly related. They would
be related in contents, contexts, meanings or semantics in the designers’ mind. Conse-
quently, a method that can reflect or represent such a design intent based on the web
page designer is highly desired. Analyzing such contents enables us to extract the re-
lated words and to provide the users with helpful search suggestion. Our novel approach
is given in the following sections.

2 Related Works

Related works in this field can be roughly classified into two technical methods. One
is to predict the related words by computing the similarity of words based on their
co-occurrence frequencies in the documents. The other is to consider the semantic sim-
ilarity by analyzing contextual texts, tag tree structures, or search results returned from
search engines. Explanations of related works in each technical method, as well as their
known problems, are presented as follows.

(1) Co-occurrence Similarity

Sato et al. [1] proposed a method of collecting a dozen terms that are closely related to
a given seed term based on the occurrence frequencies. Their collection depends on the
search results returned by search engine, without taking semantic similarity into con-
sideration. Moreover, there are a number of attempts incorporating semantic knowledge
into co-occurrence analysis [2], [3]. However, these methods are still highly dependent
on co-occurrence frequency. In addition, Kraft et al. proposed a method for automati-
cally generating refinements or related terms to the queries by mining the anchor texts
for a large hypertext document collection [4]. This method is essentially dependent on
occurrence frequency as well.

All these related works concentrate on the co-occurrence frequencies of related
words and suffer from well known limitations, mostly due to their inability to exploit
semantic similarity between terms: documents sharing terms that are different but se-
mantically related will be considered as unrelated [5].

(2) Semantic Similarity

There is an approach which inferred the semantic similarity of a pair of single words
from a corpus [5]. Sahami et al. introduced a novel method for measuring the simi-
larity between short text snippets by leveraging web search results to provide greater
context for the short texts [6]. Following this web-based kernel, Bollegala et al. [7] pro-
posed a stronger method to compute semantic similarity using automatically extracted
lexicon-syntactic patterns from text snippets. However, they strictly depend on contex-
tual correlation of search results returned by search engines. Furthermore, there are a

Extracting Related Words from Anchor Text Clusters 453

<HTML>
<BODY width=400>
<DIV width=400>

<DIV width=200 style="float:left; text-align:left" >
Left text link1

</DIV>
<DIV width=200 style="float:right;text-align:right">

Right text link1
</DIV>
<DIV width=200 style="float:left; text-align:left;

margin: 20px 0 0 -117px;">
Left text link2

</DIV>
<DIV width=200 style="float:right;text-align:right;

margin:20px -128px 0 0;">
Right text link2

</DIV>
</DIV>
</BODY>
</HTML>

Fig. 1. An example: the HTML source (left) and its appearance on web browser (right)

number of researches focusing on semantic similarity based on analysis of contextual
texts or tag tree structure [8], [9]. Additionally, the literature [10,11] give details on
how to extract data information from HTML tag hierarchy. [10] tells us that the link
blocks can help users to identify relevant zones on a multi-topic page. It indicates that
the page designer often puts the relevantly semantic information together in the same
link block. However, Hattori [12] pointed out that the content-distance based on the
order of HTML tags does not always correspond to the intuitional distance between
content elements on the actual layout of a web page. For instance, in Figure 1, analysis
on HTML source may conclude that the four links are in the same link block, which is
different from the real appearance. Rather, it is natural to consider that the four links
belong to two blocks: the left one and the right one.

Observing the above related works, we mainly take on the following challenges
in this paper: a) overcome the well known limitations of the methods based on co-
occurrence frequency; b) keep consideration on semantic similarity of related words; c)
solve the problems of page layout involved by CSS style in the page; d) extract related
words by representing designer’s intention.

3 Our Approach and Implementation

To address the challenges mentioned above, we propose a new analysis model named
“BBCECI”, as shown in Figure 2, which is composed of four modules. They are
Browser-Based Crawling module, Link-based Extracting module, Coordinate-based
Clustering module and Cluster-based Indexing module. The process flow is continu-
ous in the BBCECI model. Its input are the pages crawled from the web space, and the
output is an index database of related words.

Firstly, the Browser-based Crawling module, which is implemented as an extension
to Mozilla Firefox, fetches the pages from the web space via a browser-based crawler.
During the crawl process, the Link-based Extracting module extracts the values of the x-
coordinate and y-coordinate, and the anchor text for each hyperlink from a page to com-
pose a tuple (x,y,anchortext). The extracting process launches after loading the page,
which ensures that all the extracted information is based on the real appearance on the
browser.

454 J. Liu et al.

Fig. 2. Overview of BBCECI model Fig. 3. Collection of anchor text clusters

Secondly, the Coordinate-based Clustering module treats each tuple (x,y,anchortext)
as a point in the 2-dimensional Euclidean space, taking the string of anchortext as the
label of each point. Then, it carries out the clustering for all points of each page us-
ing the well known DBSCAN algorithm [13]. After that, all the labels are assigned to
certain clusters, where anchor texts (labels) in the same cluster are considered to be
relevant.

Lastly, the Cluster-based Indexing module splits all anchor texts in the same cluster
into single words, with stopword elimination and stemming. We consider all the words
related to each other, so we weight them in each cluster respectively. In each cluster, the
words are sorted by their weight values in descending order, and we create an entry of
the index for each word. If there are duplicate entries of the same word, we merge them
into one entry to make sure that all the entries in the database are unique.

This process results in a global index database. Consequently, we can provide users
with related words while they search the Web. In the following subsections, we describe
the details of implementation for each module.

3.1 Browser-Based Crawling

We propose a new browser-based crawling method to simulate the user browsing, with-
out analyzing the HTML tag hierarchy at the background. The crawler is implemented
as an extension to Mozilla Firefox browser. In order to achieve high-quality pages,
we apply the BFS strategy to crawl the web [14]. Our browser-based crawler starts to
visit URLs given by looking up the configuration file. Then it fetches all the accessible
links in a page and extract their URL addresses embedded in the <A> tag by running a
Javascript program. For example, against the following link, it fetches the value of href
property as a new URL address. Here, the href is http://www.acm.org/, and “ACM Site”
is the anchor text.

ACM Site

The crawler will append the URL into the configuration file, as soon as it removes
the duplicates. The crawler repeats the same extracting operation until it reaches the
defined maximal number of URL addresses. During the crawling, the link information
(u,v) denoting the hyperlink from page u to v, is stored as well.

Extracting Related Words from Anchor Text Clusters 455

3.2 Link-Based Extraction

The link-based extracting model runs after the crawling to extract the pixel coordi-
nate information and anchor text of each link. Our extracting method is different from
the conventional analysis based on HTML tag hierarchy. A simple Javascript function
fetches all the DOM objects by the tag name <A> as follows.

var Aobjs = document.getElementsByTagName(’A’);

Using the variable Aobjs, we can achieve the coordinate value, the value of the href
attribute, and the anchor text for each hyperlink. We define tuple (x,y,anchortext) to
denote each extracted link, and store all the tuples.

3.3 Coordinate-Based Clustering

For this phase, we propose a coordinate-based clustering method to recognize the link
blocks in a page, so that we can represent the intentions of page designers as clearly as
possible. The well known DBSCAN algorithm [13] is introduced for clustering. After
the clustering process, all the points in a page will be divided into some certain clusters.
Then, we gather all the labels in the same cluster to form an anchor text cluster accord-
ing to the result of clustering. When we complete the process for all the crawled pages,
a large number of anchor text clusters will be formed as shown in Figure 3.

3.4 Cluster-Based Indexing

For each cluster shown in Figure 3, we split each anchor text into single words, elimi-
nate the stopwords and process stemming. Then we compose all words from the same
cluster into the same word set, believing that all the words in the same set are semanti-
cally related. We then weight the relatedness wi for each word ki in the word set S by
the Formula 1.

wi =
Count(ki)∑S

ki∈S Count(ki)
(1)

w′
i = PR(p)× wi (iff ki is extracted from page p) (2)

Referring to the anchor text clusters in Figure 3, we create an index table for each
word set as shown in Table 1 and Table 2. All the related words associated with the
indexed word are sorted in descending order of their relatedness values wi.

Lastly, to make sure that all the index entries in the database are unique, we scan all
the index tables and merge duplicates, weighting the word by Formula 2. To determine
the relationship between two index entries of the same word, we cite the well known
PageRank [15]. It is the merging idea that the word ki extracted from page p is more
important if the PR(p) value is higher. In our study, for computing PR(p), we deter-
mine the damping factor as a constant which is often assumed to be 0.85. For instance,
“calendar” in Table 1 and Table 2 should be merged. Suppose the words in Table 1 are
extracted from page u, and Table 2 from page v. As we have saved the link information
(u,v) during the crawling, we can compute PR(u) and PR(v) immediately by those
link information. Assume that PR(u)=0.25, PR(v)=0.5 after computation, then the two
entries of “calendar” are merged to one as shown in Table 3.

456 J. Liu et al.

Table 1. Indexing table of set1

Entries Related words

award calendar(1
5), honor(1

5), job(1
5), month(1

5)

calendar award(1
5), honor(1

5), job(1
5), month(1

5)

honor award(1
5), calendar(1

5), job(1
5), month(1

5)

job award(1
5), calendar(1

5), honor(1
5), month(1

5)

month award(1
5), calendar(1

5), honor(1
5), job(1

5)

Table 2. Indexing table of set2

Entries Related words

academic education(2
5), calendar(1

5), overview(1
5)

calendar education(2
5), academic(1

5), overview(1
5)

education academic(15), calendar(1
5), overview(1

5)

overview education(2
5), academic(1

5), calendar(1
5)

Table 3. Merged result

Entries Related words

calendar education(0.2), academic(0.1), overview(0.1), award(0.05), honor(0.05), job(0.05), month(0.05)

4 Experimental Evaluations

We performed experiments to evaluate the BBCECI model. The key idea of our ap-
proach is to represent the design intent of web page designer as much as possible,
which guarantees that we can extract the relevant even semantically related words from
the link blocks. Therefore, the precision of representing the designer’s intention be-
comes an important evaluation criterion. We thus evaluated the precision in partitioning
the link blocks based on different websites. Certainly, the most important one is that
the precision of related words extracted by BBCECI model, therefore we evaluated it
as well.

Precision =

∑K
i=1

|{relevant links}|
|{links∈Clusteri}|

K
(3)

4.1 Evaluation Based on Different Websites

In this section, we performed the evaluation based on different websites. To apply DB-
SCAN algorithm, we set 1-dist as the appropriate k-dist condition to determine the
paratemeters MinPts and Eps by experimental preparation. The precision is calculated
using Formula 3 where K is the number of clusters divided by DBSCAN. To make
the evaluation as fair as possible, the websites are collected from the Open Directory
Project1. They are referred to four different categories, education, news, computer or-
ganization and data engineering, which are summarized in Table 4.

The browser-based crawler visited the websites in Table 4 following the BFS strategy
to crawl 100 pages for each website. The DBSCAN algorithm was carried out to do
clustering on the 100 pages for each website independently. According to the formula
3, the average precisions of partitioning link blocks for these websites were computed
separately. After computation, the radar chart was plotted to visualize the results in the
pellucid Figure 4. As shown in the radar chart, all the average precisions of partitioning
link blocks are almost over 0.90 except the precision of Stanford-U. It is confident that

1 http://www.dmoz.org/

Extracting Related Words from Anchor Text Clusters 457

Table 4. Summary of different websites

Short name Description URL address Category
Tokyo-U Tokyo University http://www.u-tokyo.ac.jp/ Education
Stanford-U Stanford University http://www.stanford.edu/ Education
BBC BBC News http://news.bbc.co.uk/ News
CNN Cable News Network http://www.cnn.com/ News
BCS British Computer Society http://www.bcs.org/ Computer Org.
CRA Computing Research Association http://www.cra.org/ Computer Org.
SIGMOD ACM Special Interest Group on MOD http://www.sigmod.org/ Data Eng.
SIGKDD ACM Special Interest Group on KDD http://www.sigkdd.org/ Data Eng.

our BBCECI model can represent the link blocks in the extremely high precision, which
is well reflecting the page designer’s intention.

4.2 Precision of Related Words by BBCECI Model

Concerning to the focus of extracting related words, whether the words and the word of
index entry are related should be examined manually. For this purpose, we performed
experiments to evaluate the the precision of related words that are extracted by the
BBCECI model, according to the results of examination.

Firstly, we drove the browser-based crawler to visit the website of Tsukuba Univer-
sity (http://www.tsukuba.ac.jp/english/), and crawled totally 200 pages following the
BFS strategy. From the 200 pages, the link-based extracting module extracted 3,526
hyperlinks. Then we applied the DBSCAN algorithm to execute clustering for each
page independently. As soon as the clustering process finished, all the hyperlinks were
divided into 1,190 different anchor text clusters. Finally, we preprocessed all the anchor
texts by doing tokenization, stemming and stopword elimination, achieving 4,647 single
words as the output. By applying cluster-based indexing method, we totally extracted
801 related words and created an index table containing 801 index entries correspond-
ing to their related words. All the index entries are unique by merging the duplicates

Fig. 4. Average precisions of partitioning link
blocks based on different websites

 0.5

 0.6

 0.7

 0.8

 0.9

 1

agriculture
blind
cyber
degree
exercise
fukuda
graduate
hum

an-care
interview
japan
kokusai
m

onbukagakusho
orientation
psychology
regard
secure
short-term
visual
w

ebsite
yadokari

P
re

ci
si

on
 o

f r
el

at
ed

 w
or

ds

Entry of index

Precision
Average (0.853)

Fig. 5. Precision of related words extracted by
BBCECI model

458 J. Liu et al.

Table 5. Output data of each process module

Process Output Quantity
Browser-based crawling web pages 200
Link-based extraction hyperlinks 3526
Coordinate-based clustering clusters 1190
Cluster-based indexing single words 4647

related words 801
index entries 801

using the method mentioned in the BBCECI model. The output data of each process
module is summarized in Table 5.

As we known, if the size of experimental data is larger, the evaluation would be
more accurate and reliable. However, manually evaluating the precisions on all the 801
entries in the index table is not impossible but an inefficient job. Therefore, we carried
out the evaluation by sampling. We randomly selected 20 entries from the index table,
and manually evaluated the precision of the top 20 related words for each entry.

The result of evaluation is shown in Figure 5. It is clear that all the precisions are
almost over 0.8 except the entry of “psychology”. It is more confident that the BBCECI
model proposed in this paper can provide related words in a high average precision
about 0.853. With such an index table of related words in hand, implementing a server
to suggest related words to support the Web search will become an easy job.

5 Conclusions and Future Works

In this paper, we proposed the BBCECI model to extract related words, keeping
consideration on their semantic similarities. The browser-based crawling module and
link-based extracting module solve the problem arisen because of CSS style. The
coordinate-based clustering module recognizes the link blocks in extremely high preci-
sion, which largely reflect the intention of page designer. The experimental evaluations
indicate that the BBCECI model can extract related words in a high average precision
over 0.90.

The main modules have been implemented, thus as the future work, we are planning
to implement a keyword suggestion server, which provides users with related words to
their queries when they search the Web. From an search engine combined with such a
server, a user can receive helpful suggestion.

Besides, we are planing to carry out more experimental evaluations to compare our
BBCECI model and the suggestion server with other related works that are focusing on
the extraction of related words.

References

1. Sato, S., Sasaki, Y.: Automatic collection of related terms from the web. In: The Companion
Volume to the Proceedings of 41st ACL, pp. 121–124 (2003)

2. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. J. Intell. Inf. Syst. 18(2-
3), 127–152 (2002)

Extracting Related Words from Anchor Text Clusters 459

3. Terra, E., Clarke, C.L.A.: Scoring missing terms in information retrieval tasks. In: Proceed-
ings of the 13th CIKM, pp. 50–58 (2004)

4. Kraft, R., Zien, J.Y.: Mining anchor text for query refinement. In: Proceedings of the 13th
WWW, pp. 666–674 (2004)

5. Kandola, J.S., Shawe-Taylor, J., Cristianini, N.: Learning semantic similarity. In: Proceedings
of Advances in Neural Information Processing Systems 15 (NIPS), pp. 657–664 (2002)

6. Sahami, M., Heilman, T.D.: A web-based kernel function for measuring the similarity of
short text snippets. In: Proceedings of the 15th WWW, pp. 377–386 (2006)

7. Bollegala, D., Matsuo, Y., Ishizuka, M.: Measuring semantic similarity between words using
web search engines. In: Proceedings of the 16th WWW, pp. 757–766 (2007)

8. Pant, G.: Deriving link-context from html tag tree. In: Proceedings of the 8th SIGMOD
workshop DMKD, pp. 49–55 (2003)

9. Hung, B.Q., Otsubo, M., Hijikata, Y., Nishida, S.: Extraction of anchor-related text and its
evaluation by user studies. In: Proceedings Part I of the 12th HCI, pp. 446–455 (2007)

10. Chakrabarti, S.: In: Mining The Web: Discovering Knowledge from Hypertext Data, pp.
227–233. Elsevier, USA (2003)

11. Liu, B.: In: Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, pp. 323–
379. Springer, Heidelberg (2007)

12. Hattori, G., Hoashi, K., Matsumoto, K., Sugaya, F.: Robust web page segmentation for mo-
bile terminal using content-distances and page layout information. In: Proceedings of the
16th WWW, pp. 361–370 (2007)

13. Ester, M., Kriegel, H.P., Sander, J., Xu, X.: A density-based algorithm for discovering clus-
ters in large spatial databases with noise. In: Proceedings of the 2nd KDD, pp. 226–231
(1996)

14. Najork, M., Wiener, J.L.: Breadth-first crawling yields high-quality pages. In: Proceedings
of the 10th WWW, pp. 114–118 (2001)

15. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proceed-
ings of the 7th WWW, pp. 107–117 (1998)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 460–470, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Evolution of Query Optimization Methods: From
Centralized Database Systems to Data Grid Systems*

Abdelkader Hameurlain

Institut de Recherche en Informatique de Toulouse IRIT, Paul Sabatier University
 118, Route de Narbonne, 31062 Toulouse Cedex, France

Tel.: 33 (0) 5 61 55 82 48; Fax: 33 (0) 5 61 55 62 58
hameur@irit.fr

Abstract. The purpose of this talk is to provide a comprehensive state of the art
concerning the evolution of query optimization methods from centralized data-
base systems to data Grid systems through parallel, distributed and data integra-
tion systems. For each environment, we try to describe synthetically some
methods, and point out their main characteristics.

Keywords: Query Optimization, Relational Database Systems Parallel and Dis-
tributed Database Systems, Data Integration Systems, Large Scale, Data Grid
Systems.

1 Introduction

Query processing involves three steps: decomposition, optimization and execution.
The first step decomposes a relational query (a SQL query) using logical schema into
an algebraic query. During this step syntactic, semantic and authorization are done.
The second step is responsible for generating an efficient execution plan for the given
SQL query from the considered search space. The third step consists in implementing
the efficient execution plan (or operator tree) [36]. In this talk, we focus only on query
optimization methods. We consider multi-join queries without “group” and “order by”
clauses.

Work related to the relational query optimization goes back to the 70s, and began
mainly with the publications of Wong et al. [97] and Selinger et al. [80]. These papers
motivated a large part of the database scientific community to focus their efforts on
this subject. The optimizer’s role is to generate, for a given SQL query, an optimal (or
close to the optimal) execution plan from the considered search space. The optimiza-
tion goal is to minimize response time and maximize throughput while minimizing
optimization costs. An optimizer can be decomposed into three elements [26]: search
space, search strategy, and cost model.

Several approaches, methods and techniques of query optimization have been pro-
posed for various Database Management Systems DBMS (i.e. relational, deductive,
distributed, object, parallel). The quality of query optimization methods depends

* An extended version of this paper will appear in the International Journal “Transactions on

Large Scale Data and Knowledge Centered Systems”, LNCS, Springer, Sept. 2009.

 Evolution of Query Optimization Methods 461

strongly on the accuracy on the efficiency of cost models [1, 27, 28, 46, 70, 100].
There are two types of query optimization methods [17]: static and dynamic. Execu-
tion plans generated by a static optimizer can be sub-optimal, due to several causes
[69]: estimation errors and unavailability of resources. In order to detect and modify
the sub-optimal execution plans at run-time, dynamic optimization methods have been
proposed in different environments: uni-processor, distributed, parallel and large scale
[3, 7, 17, 38, 51, 53, 68, 75, 88, 99].

The purpose of this talk is to provide a state of the art concerning the evolution of
query optimization methods in different environments. For each environment, we try
to describe synthetically some methods, and to point out their main characteristics
[69], especially, the nature of decision-making (centralized or decentralized), the type
of modification (re-optimization or re-scheduling), the level of modification (intra-
operator and/or inter-operator), and the type of event (estimation errors, delay, user
preferences).

2 Uni-processor Relational Query Optimization

In the uni-processor relational systems, the query optimization process [13, 54, 63]
consists of two steps: (i) logical optimization which consists in applying the classic
transformation rules of the algebraic trees to reduce the manipulated data volume, and
(ii) physical optimization which has roles of [63]: (a) determining an appropriate join
method for each join operator, and (b) generating the order in which the joins are per-
formed [48, 60] with respect to a cost model.

In the literature, we distinguish, generally, two classes of search strategies to solve
the problem of the join scheduling: (i) Enumerative strategies, and (ii) Random strate-
gies. Enumerative strategies are based on the generative approach. They use the
principle of dynamic programming (e.g. optimizer of System R). The enumerative
strategies are inadequate in optimizing complex queries because the number of execu-
tion plans quickly becomes too large [87]. To resolve this problem, random strategies
are used. The transformational approach characterizes this kind of strategies. Several
rules of transformation (e.g.; Swap, 3Cycle, Join commutativity) were proposed [48,
49, 85] where the validity depends on the nature of the considered search space [61].

The description of the principles of the search strategies leans on the generic
search algorithms described in [60] and on the comparative study between the random
algorithms proposed by [48, 49, 61, 85, 86]. Indeed, in [85, 86] and [48, 49], the authors
concentrated their efforts on the performance evaluation of the random algorithms for
Iterative Improvement and the Simulated Annealing. However, the difference of their
results underlines the difficulty of such evaluation. In fact, for Swami and Gupta [85, 86],
the Simulated Annealing algorithm is never superior to the Iterative Improvement what-
ever the time dedicated to the optimization is, while for Ioannidis and Cha Kong [48, 49],
it is better than the Iterative Improvement algorithm after some optimization time.

According to the results in [47, 48, 49, 60, 85, 86], it is difficult to conclude about
the superiority of a search strategy with regard to the one another.

The search strategies find the optimal solution more or less quickly according to their
capacity to face the various problems. They must be adaptable to queries of diverse
sizes (simple, medium, complex) and in various types of use (i.e. ad-hoc or repetitive)

462 A. Hameurlain

[59]. A solution to this problem is the parameterization and the extensibility of query
optimizers [9, 50, 59] possessing several search strategies, each being adapted for a type
of queries.

3 Parallel and Distributed Query Optimization

Parallel relational query optimization methods [39] can be seen as an extension of
relational query optimization methods developed for the centralized systems, by inte-
grating the parallelism dimension [21, 37, 42, 63, 88, 94]. Indeed, the generation of an
optimal parallel execution plan (or close to optimal), is based on either a two-phase
approach [41, 44], or on a one-phase approach [15, 61, 79]. A two-phase approach
consists in two sequential different steps: (i) generation of an optimal sequential exe-
cution plan, and (ii) resource allocation to this plan. The last step consists, at first, in
extracting the various sources of parallelism, then, to assign the resources to the op-
erations of the execution plan by trying to meet the allocation constraints (i.e. data
locality, and various sources of parallelism). As far as the one-phase approach, the
steps (i) and (ii) are packed into one integrated component [63].

We provide an overview of some static and dynamic query optimization methods
in a parallel relational environment [39].
In a static context [39], the most advanced works are certainly those of Garofalakis
et al. [29, 30]. They extend elegantly the propositions of [14, 26, 41] where the algo-
rithms of parallel query are based on a uni-dimensional cost model. Furthermore, [30]
tackle the scheduling problem (i.e. parallelism extraction) and the resource allocation
in a context, which can be multi-query by considering a multidimensional model of
used resources (i.e. preemptive, and non-preemptive). The proposals of [30] seem to
be the richest in terms of categories of considered resources, exploited parallelisms,
and various allocation constraints. In a dynamic context, the majority of proposed
methods [12, 38, 57, 68, 77] point out the importance of: (i) the determination of the
join parallelism degree and the resource allocation method, (ii) the introduction of a
dynamic re-optimization algorithm which detects and corrects sub-optimality of the
execution plan produced by the optimizer at compile time. The basic idea of this algo-
rithm is founded on the collection of the statistics in some key-points during the query
execution. The collected statistics correspond to the real values (observed during the
execution), where the estimation is subject to error at compile time. These statistics
are used to improve the resource allocation or by changing the execution plan of the
remainder of the query (the part of the query, which is not executed yet). Obviously,
the re-optimization process will be engaged only in case of estimation errors really
bringing sub-optimality besides of the execution plan.

As far as the distributed query processing [58], the optimization process is com-
posed of two steps: a global optimization step and a local optimization step [73]. The
global optimization consists of: (i) determining the best execution site for each local
sub-query considering data replication; (ii) finding the best inter-site operator sched-
uling, and (iii) placing these last ones. As for local optimization, it optimizes the local
sub-queries on each site which are involved to the query evaluation.

There are two types of distributed query optimization: static and dynamic. Static
query optimization methods [16, 64, 81, 84] are focused mainly on the optimization

 Evolution of Query Optimization Methods 463

of inter-site communication costs, by reducing the data volume transferred between
sites. The introduction of a new operator, semi-join based join [8, 16, 93], provides
certainly more flexibility to optimizers. However, it increases considerably the size of
search space.

Dynamic query optimization methods [22, 72] are based on dynamic scheduling
(or re-scheduling) of inter-site operators to correct the sub-optimality due to the inac-
curacies of estimations and variations of available resources.

4 Query Optimization in Large Scale Data Integration Systems

Data integration systems extend [89, 96, 98] the distributed database approach to mul-
tiple, autonomy, and heterogeneous data sources by providing uniform access. Het-
erogeneity and autonomous of data sources characterize data integration systems.
Sources might be restricted due to the limitation of their query interface or certain
attribute must be hidden due to privacy reasons. To handle the limited query capabili-
ties of data sources, new mechanisms have been introduced [31, 66], such as, De-
pendant Join Operator which is asymmetric in nature. This asymmetric propriety
causes the search space to be restricted and raises the issue of capturing valid execu-
tion plans [65, 66, 98].

As for the optimization methods, the community quickly noticed that the central-
ized optimization methods [3, 6, 11, 51, 52, 53, 56] could not be scaled up for the
following reasons: (i) the number of messages which is relatively important on a net-
work with low bandwidth and strong latency, and (ii) the bottleneck that forms the
optimizer. Hence, the decentralized dynamic optimization methods [91, 92] correct
the sub-optimality of execution plans by decentralizing the control.

Centralized and decentralized dynamic optimization methods can be classified ac-
cording to the modification level of execution plans. This modification can be taken
either on the intra-operator level, or on the inter-operator (sub-query) level.

Furthermore, in a large scale environment it becomes very convenient to make the
query execution autonomous and self-adaptable. In this perspective, two close ap-
proaches have been investigated: the broker approach [18], and the mobile agent ap-
proach [5, 55, 97, 71, 78]. The second approach consists in using a programming
model based on mobile agents [25], knowing that at present the mobile agent plat-
forms supply only migration mechanisms, but they do not offer proactive migration
decision policy.

5 Query Optimization in Data Grid Systems

Large scale and dynamicity of nodes characterize the grid systems. Large scale envi-
ronment means [40]: (i) high numbers of data sources (e.g. databases, xml files), us-
ers, and computing resources (i.e. CPU, memory, network and I/O bandwidth) which
are heterogeneous and autonomous, (ii) the network bandwidth presents, in average, a
low bandwidth and strong latency, and (iii) huge volumes of data. Dynamicity of
nodes means that a node can join, leave or fail at any time.

Recently, the grid computing [24], intended initially for the intensive computing,
open towards the management of voluminous, heterogeneous, and distributed data on

464 A. Hameurlain

a large-scale environment. Grid data management [74] raises new problems and pre-
sents real challenges such as resource discovery and selection, query processing and
optimization, autonomic management, security, and benchmarking. To tackle these
fundamental problems [74], several methods have been proposed [4, 20, 33, 34, 45,
67, 82, 90]. A very good and complete overview addressing the most above funda-
mental problems is described in [74].

In this talk, we are interesting only in query processing and optimization methods
proposed in data grid systems.

Several approaches have been proposed for distributed query processing (DQP) in
data grid environments [2, 4, 33, 34, 35, 45, 82, 95]. Smith et al. [82] discuss the role
of DQP within the Grid and determine the impact of using Grid for each step of DQP.
The properties of grid systems such as flexibility and power make grid systems suit-
able platforms for DQP [82].

Convergence between grid technologies and web services leads researchers to de-
velop standardized grid interfaces. Open Grid Services Architecture OGSA [23] is
one of the most well known standards used in grids. OGSA-DQP [2] is a high level
data integration tool for service-based Grids. It is built on a Grid middleware named
OGSA-DAI [4] which provides a middleware that assists its users by accessing and
integrating data from separate sources via the Grid. Wohrer et al. [95] describe the
concepts that provide virtual data sources on the Grid and that implement a Grid data
mediation service which is integrated into OGSA-DAI [4].

By analyzing the DQP approaches on the Grid, the research community focused on
the current adaptive query processing approaches [6, 32, 43, 53] and proposed exten-
sions in grid environments [19, 33, 35]. These studies achieve query optimization, by
providing efficient resource utilization, without considering parallelization.

As far as parallelism dimension integration, many authors have re-studied DQP in
order to be efficiently adopted by considering the properties (e.g.; heterogeneity) of
grids. Several methods are proposed in this direction [10, 20, 34, 62, 76, 83] which
define different algorithms for parallel query processing in grid environments. The
proposed methods consider different forms of parallelism (e.g. pipelined parallelism),
whereas all of them consider also resource discovery and load balancing.

6 Conclusion

Because of the importance and the complexity of the query optimization problem, the
database community has proposed approaches, methods and techniques in different
environments. In this talk, we wanted to provide a survey related to evolution of
query optimization methods from centralized relational database systems to data grid
systems through parallel and distributed database systems and data integration (me-
diation) systems. For each environment, we described some query optimization meth-
ods, and pointed out their main characteristics which allow comparing them.

Acknowledgement

We would like to warmly thank Professor Roland Wagner for his kind invitation to
give this talk.

 Evolution of Query Optimization Methods 465

References

1. Adali, S., Candan, K.S., Papakonstantinou, Y., Subrahmanian, V.S.: Query Caching and
Optimization in Distributed Mediator Systems. In: Proc. of ACM SIGMOD Intl. Conf.
on Management of Data, pp. 137–148. ACM Press, New York (1996)

2. Alpdemir, M.N., Mukherjee, A., Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakel-
lariou, R., Watson, P., Li, P.: Using OGSA-DQP to support scientific applications for the
grid. In: Herrero, P., S. Pérez, M., Robles, V. (eds.) SAG 2004. LNCS, vol. 3458, pp. 13–
24. Springer, Heidelberg (2005)

3. Amsaleg, L., Franklin, M., Tomasic, A.: Dynamic query operator scheduling for wide-
area remote access. Distributed and Parallel Databases 6(3), 217–246 (1998)

4. Antonioletti, M., et al.: The design and implementation of Grid database services in
OGSA-DAI. Concurrency and Computation: Practice & Experience 17, 357–376 (2005)

5. Arcangeli, J.-P., Hameurlain, A., Migeon, F., Morvan, F.: Mobile Agent Based Self-
Adaptive Join for Wide-Area Distributed Query Processing. Jour. of Database Manage-
ment 15(4), 25–44 (2004)

6. Avnur, R., Hellerstein, J.-M.: Eddies: Continuously Adaptive Query Processing. In: Proc.
of the ACM SIGMOD, vol. 29, pp. 261–272. ACM Press, New York (2000)

7. Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: Second Bien-
nial Conf. on Innovative Data Systems Research, CIDR 2005, pp. 238–249 (2005)

8. Bernstein, P.A., Goodman, N., Wong, E., Reeve, C.L., Rothnie Jr.: Query Processing in a
System for Distributed Databases (SDD-1). ACM Trans. Database Systems 6(4), 602–
625 (1981)

9. Bizarro, P., Bruno, N., DeWitt, D.J.: Progressive Parametric Query Optimization. IEEE
Transactions on Knowledge and Data Engineering 21(4), 582–594 (2009)

10. Bose, S.K., Krishnamoorthy, S., Ranade, N.: Allocating Resources to Parallel Query
Plans in Data Grids. In: Proc. of the 6th Intl. Conf. on Grid and Cooperative Computing,
pp. 210–220. IEEE CS, Los Alamitos (2007)

11. Bouganim, L., Fabret, F., Mohan, C., Valduriez, P.: A dynamic query processing archi-
tecture for data integration systems. Journal of IEEE Data Engineering Bulletin 23(2),
42–48 (2000)

12. Brunie, L., Kosch, H., Wohner, W.: From the modeling of parallel relational query proc-
essing to query optimization and simulation. Parallel Processing Letters 8, 2–24 (1998)

13. Chaudhuri, S.: An Overview of Query Optimization in Relational Systems. In: Sympo-
sium in Principles of Database Systems PODS 1998, pp. 34–43. ACM Press, New York
(1998)

14. Chekuri, C., Hassan, W.: Scheduling Problem in Parallel Query Optimization. In:
Sympo. in Principles of Database Systems PODS 1995, pp. 255–265. ACM Press, New
York (1995)

15. Chen, M.S., Lo, M., Yu, P.S., Young, H.S.: Using Segmented Right-Deep Trees for the
Execution of Pipelined Hash Joins. In: Proc. of the 18th VLDB Conf., pp. 15–26. Mor-
gan Kaufmann, San Francisco (1992)

16. Chiu, D.M., Ho, Y.C.: A Methodology for Interpreting Tree Queries Into Optimal Semi-
Join Expressions. In: Proc. of ACM SIGMOD, pp. 169–178. ACM Press, New York
(1980)

17. Cole, R.L., Graefe, G.: Optimization of dynamic query evaluation plans. In: Proc. Of
ACM SIGMOD, vol. 24, pp. 150–160. ACM Press, New York (1994)

466 A. Hameurlain

18. Collet, C., Vu, T.-T.: QBF: A Query Broker Framework for Adaptable Query Evaluation.
In: Christiansen, H., Hacid, M.-S., Andreasen, T., Larsen, H.L. (eds.) FQAS 2004.
LNCS, vol. 3055, pp. 362–375. Springer, Heidelberg (2004)

19. Cybula, P., Kozankiewicz, H., Stencel, K., Subieta, K.: Optimization of distributed que-
ries in grid via caching. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM-WS 2005.
LNCS, vol. 3762, pp. 387–396. Springer, Heidelberg (2005)

20. Da Silva, V.F.V., Dutra, M.L., Porto, F., Schulze, B., Barbosa, A.C., de Oliveira, J.C.:
An adaptive parallel query processing middleware for the Grid. Concurrence and Com-
putation: Practice and Experience 18, 621–634 (2006)

21. Dewitt, D.J., Gray, J.: The Future of High Performance Database Systems. Communica-
tion of the ACM, 85–98 (1992)

22. Evrendilek, C., Dogac, A., Nural, S., Ozcan, F.: Multidatabase Query Optimization. Jour-
nal of Distributed and Parallel Databases 5(1), 77–113 (1997)

23. Foster, I.: The Grid: A New Infrastructure for 21st Century Science. Physics To-
day 55(2), 42–56 (2002)

24. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, San Francisco (2004)

25. Fuggetta, A., Picco, G.-P., Vigna, G.: Understanding Code Mobility. IEEE Transactions
on Software Engineering 24(5), 342–361 (1998)

26. Ganguly, S., Hasan, W., Krishnamurthy, R.: Query Optimization for Parallel Execution.
In: Proc. of the 1992 ACM SIGMOD, vol. 21, pp. 9–18. ACM Press, San Diego (1992)

27. Ganguly, S., Goel, A., Silberschatz, A.: Efficient and Accurate Cost Models for Parallel
Query Optimization. In: Symposium in Principles of Database Systems PODS 1996, pp.
172–182. ACM Press, New York (1996)

28. Gardarin, G., Sha, F., Tang, Z.-H.: Calibrating the Query Optimizer Cost Model of IRO-
DB, an Object-Oriented Federated Database System. In: Proc. of 22th VLDB, pp. 378–
389. Morgan Kaufmann, San Francisco (1996)

29. Garofalakis, M.N., Ioannidis, Y.E.: Multi-dimensional Resource Scheduling for Parallel
Queries. In: Proc. of ACM SIGMOD, pp. 365–376. ACM Press, New York (1996)

30. Garofalakis, M.N., Ioannidis, Y.E.: Parallel Query Scheduling and Optimization with
Time- and Space - Shared Resources. In: Proc. of the 23rd VLDB Conf., pp. 296–305.
Morgan Kaufmann, San Francisco (1997)

31. Goldman, R., Widom, J.: WSQ/DSQ: A practical approach for combined querying of da-
tabases and the web. In: Proc. of ACM SIGMOD, pp. 285–296. ACM Press, New York
(2000)

32. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Adaptive query process-
ing: A survey. In: Eaglestone, B., North, S.C., Poulovassilis, A. (eds.) BNCOD 2002.
LNCS, vol. 2405, pp. 11–25. Springer, Heidelberg (2002)

33. Gounaris, A., Paton, N.W., Sakellariou, R., Fernandes, A.A.A.: Adaptive Query Process-
ing and the Grid: Opportunities and Challenges. In: Proc. of the 15th Intl. Dexa Work-
hop, pp. 506–510. IEEE CS, Los Alamitos (2004)

34. Gounaris, A., Sakellariou, R., Paton, N.W., Fernandes, A.A.A.: Resource Scheduling for
Parallel Query Processing on Computational Grids. In: Proc. of the 5th IEEE/ACM Intl.
Workshop on Grid Computing, pp. 396–401 (2004)

35. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.:
Adapting to Changing Resource Performance in Grid Query Processing. In: Pierson, J.-
M. (ed.) VLDB DMG 2005. LNCS, vol. 3836, pp. 30–44. Springer, Heidelberg (2006)

36. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Computing Sur-
vey 25(2), 73–170 (1993)

 Evolution of Query Optimization Methods 467

37. Hameurlain, A., Morvan, F.: An Overview of Parallel Query Optimization in Relational
Systems. In: 11th Intl Worshop on Database and Expert Systems Applications, pp. 629–
634. IEEE Computer Society Press, Los Alamitos (2000)

38. Hameurlain, A., Morvan, F.: CPU and incremental memory allocation in dynamic paral-
lelization of SQL queries. Journal of Parallel Computing 28(4), 525–556 (2002)

39. Hameurlain, A., Morvan, F.: Parallel query optimization methods and approaches: a sur-
vey. Journal of Computers Systems Science & Engineering 19(5), 95–114 (2004)

40. Hameurlain, A., Morvan, F., El Samad, M.: Large Scale Data management in Grid Sys-
tems: a Survey. In: IEEE Intl. Conf. on Information and Communication Technologies:
from Theory to Applications, pp. 1–6. IEEE CS, Los Alamitos (2008)

41. Hasan, W., Motwani, R.: Optimization Algorithms for Exploiting the Parallelism -
Communication Tradeoff in Pipelined Parallelism. In: Proc. of the 20th int’l Conf. on
VLDB, pp. 36–47. Morgan Kaufmann, San Francisco (1994)

42. Hasan, W., Florescu, D., Valduriez, P.: Open Issues in Parallel Query Optimization. SIG-
MOD Record 25(3), 28–33 (1996)

43. Hellerstein, J.M., Franklin, M.J.: Adaptive Query Processing: Technology in Evolution.
Bulletin of Technical Committee on Data Eng. 23(2), 7–18 (2000)

44. Hong, W.: Exploiting Inter-Operation Parallelism in XPRS. In: Proc. Of ACM SIGMOD,
pp. 19–28. ACM Press, New York (1992)

45. Hu, N., Wang, Y., Zhao, L.: Dynamic Optimization of Sub query Processing in Grid Da-
tabase, Natural Computation. In: Proc of the 3rd Intl Conf. on Natural Computation,
vol. 5, pp. 8–13. IEEE Computer Society Press, Los Alamitos (2007)

46. Hussein, M., Morvan, F., Hameurlain, A.: Embedded Cost Model in Mobile Agents for
Large Scale Query Optimization. In: Proc. of the 4th Intl. Symposium on Parallel and
Distributed Computing, pp. 199–206. IEEE CS, Los Alamitos (2005)

47. Ioannidis, Y.E., Wong, E.: Query Optimization by Simulated Annealing. In: Proc. of the
ACM SIGMOD Intl. Conf. on Management of Data, pp. 9–22. ACM Press, New York
(1987)

48. Ioannidis, Y.E., Kang, Y.C.: Randomized Algorithms for Optimizing Large Join Queries.
Proc. of ACM SIGMOD 19, 312–321 (1990)

49. Ioannidis, Y.E., Christodoulakis, S.: On the Propagation of Errors in the Size of Join Re-
sults. In: Proc. of the ACM SIGMOD, pp. 268–277. ACM Press, New York (1991)

50. Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In:
18th Intl. Conf. on VLDB, pp. 103–114. Morgan Kaufmann, San Francisco (1992)

51. Ives, Z.-G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An adaptive query exe-
cution system for data integration. In: Proc. of the ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp. 299–310. ACM Press, New York (1999)

52. Ives, Z.-G., Levy, A.Y., Weld, D.S., Florescu, D., Friedman, M.: Adaptive query proc-
essing for internet applications. Journal of IEEE Data Engineering Bulletin 23(2), 19–26
(2000)

53. Ives, Z.-G., Halevy, A.-Y., Weld, D.-S.: Adapting to Source Properties in Processing
Data Integration Queries. In: Proc. of the ACM SIGMOD, pp. 395–406. ACM Press,
New York (2004)

54. Jarke, M., Koch, J.: Query Optimization in Database Systems. ACM Comput.
Surv. 16(2), 111–152 (1984)

55. Jones, R., Brown, J.: Distributed query processing via mobile agents (1997),
http://www.cs.umd.edu/~rjones/paper.html (Found 14 November 2002)

56. Kabra, N., Dewitt, D.J.: Efficient Mid - Query Re-Optimization of Sub-Optimal Query
Execution Plans. In: Proc. of the ACM, pp. 106–117. ACM Press, New York (1998)

468 A. Hameurlain

57. Kosch, H.: Managing the operator ordering problem in parallel databases. Future Genera-
tion Computer Systems 16(6), 665–676 (2000)

58. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing
Surveys 24(24), 422–429 (2000)

59. Lanzelotte, R.S.G.: OPUS: an extensible Optimizer for Up-to-date database Systems. Ph-
D Thesis, Computer Science, PUC-RIO, avail. INRIA, Rocquencourt, n° TU-127 (1990)

60. Lanzelotte, R.S.G., Valduriez, P.: Extending the Search Strategy in a Query Optimizer.
In: Proc. of the Int’l Conf. on VLDB, pp. 363–373. Morgan Kaufmann, San Francisco
(1991)

61. Lanzelotte, R.S.G., Valduriez, P., Zaït, M.: On the Effectiveness of Optimization Search
Strategies for Parallel Execution Spaces. In: Proc. of VLDB, pp. 493–504 (1993)

62. Liu, S., Karimi, H.A.: Grid query optimizer to improve query processing in grids. Future
Generation Computer Systems 24(5), 342–353 (2008)

63. Lu, H., Ooi, B.C., Tan, K.-L.: Query Processing in Parallel Relational Database Systems.
IEEE CS Press, Los Alamitos (1994)

64. Mackert, L.F., Lohman, G.M.: R* Optimizer Validation and Performance Evaluation for
Distributed Queries. In: Proc. of the 12th Intl. Conf. on VLDB, pp. 149–159 (1986)

65. Manolescu, I.: Techniques d’optimisation pour l’interrogation des sources de données
hétérogènes et distribuées, Ph-D Thesis, Versailles Univ., France (2001)

66. Manolescu, I., Bouganim, L., Fabret, F., Simon, E.: Efficient querying of distributed re-
sources in mediator systems. In: Meersman, R., Tari, Z., et al. (eds.) CoopIS 2002, DOA
2002, and ODBASE 2002. LNCS, vol. 2519, pp. 468–485. Springer, Heidelberg (2002)

67. Marzolla, M., Mordacchini, M., Orlando, S.: Peer-to-Peer for Discovering resources in a
Dynamic Grid. Jour. of Parallel Computing 33(4-5), 339–358 (2007)

68. Mehta, M., Dewitt, D.J.: Managing Intra-Operator Parallelism in Parallel Database Sys-
tems. In: Proc. of the 21th Intl. Conf. on VLDB, pp. 382–394 (1995)

69. Morvan, F., Hameurlain, A.: Dynamic Query Optimization: Towards Decentralized
Methods. Intl. Jour. of Intelligent Information and Database Systems, Inderscience Pub-
lishers (in press, 2009)

70. Naacke, H., Gardarin, G., Tomasic, A.: Leveraging Mediator Cost Models with Hetero-
geneous Data Sources. In: Proc. of the 14th Intl. Conf. on Data Engineering, pp. 351–
360. IEEE CS, Los Alamitos (1998)

71. Ozakar, B., Morvan, F., Hameurlain, A.: Mobile Join Operators for Restricted Sources.
Mobile Information Systems: An International Journal 1(3), 167–184 (2005)

72. Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac, A.: Dynamic query optimization
in multidatabases. Data Engineering Bulletin CS 20(3), 38–45 (1997)

73. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 2nd edn. Pren-
tice-Hall, Englewood Cliffs (1999)

74. Pacitti, E., Valduriez, P., Mattoso, M.: Grid Data Management: Open Problems and
News Issues. Intl. Journal of Grid Computing 5(3), 273–281 (2007)

75. Paton, N.W., Chávez, J.B., Chen, M., Raman, V., Swart, G., Narang, I., Yellin, D.M.,
Fernandes, A.A.A.: Autonomic query parallelization using non-dedicated computers: an
evaluation of adaptivity options. VLDB Journal 18(1), 119–140 (2009)

76. Porto, F., da Silva, V.F.V., Dutra, M.L., Schulze, B.: An adaptive distributed query proc-
essing grid service. In: Pierson, J.-M. (ed.) VLDB DMG 2005. LNCS, vol. 3836, pp. 45–
57. Springer, Heidelberg (2006)

77. Rahm, E., Marek, R.: Dynamic Multi-Resource Load Balancing in Parallel Database Sys-
tems. In: Proc. of the 21st VLDB Conf., pp. 395–406 (1995)

 Evolution of Query Optimization Methods 469

78. Sahuguet, A., Pierce, B., Tannen, V.: Distributed Query Optimization: Can Mobile
Agents Help? (2000),

 http://www.seas.upenn.edu/~gkarvoun/dragon/publications/
 sahuguet/ (Found December 11, 2003)

79. Schneider, D., Dewitt, D.J.: Tradeoffs in Processing Complex Join Queries via Hashing
in Multiprocessor Database Machines. In: Proc. of the 16th VLDB Conf., pp. 469–480.
Morgan Kaufmann, San Francisco (1990)

80. Selinger, P.G., Astrashan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection
in a Relational Database Management System. In: Proc. of the 1979 ACM SIGMOD
Conf. on Management of Data, pp. 23–34. ACM Press, New York (1979)

81. Selinger, P.G., Adiba, M.E.: Access Path Selection in Distributed Database Management
Systems. In: Proc. Intl. Conf. on Data Bases, pp. 204–215 (1980)

82. Smith, J., Gounaris, A., Watson, P., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.:
Distributed query processing on the grid. In: Parashar, M. (ed.) GRID 2002. LNCS,
vol. 2536, pp. 279–290. Springer, Heidelberg (2002)

83. Soe, K.M., New, A.A., Aung, T.N., Naing, T.T., Thein, N.L.: Efficient Scheduling of
Resources for Parallel Query Processing on Grid-based Architecture. In: Proc. of the 6th
Asia-Pacific Symposium, pp. 276–281. IEEE Computer Society Press, Los Alamitos
(2005)

84. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu,
A.: Mariposa: A Wide-Area Distributed Database System. VLDB Jour. 5(1), 48–63
(1996)

85. Swami, A.N., Gupta, A.: Optimization of Large Join Queries. In: Proc. of the ACM SIG-
MOD Intl. Conf. on Management of Data, pp. 8–17. ACM Press, New York (1988)

86. Swami, A.N.: Optimization of Large Join Queries: Combining Heuristic and Combinato-
rial Techniques. In: Proc. of the ACM SIGMOD, pp. 367–376 (1989)

87. Tan, K.L., Lu, H.: A Note on the Strategy Space of Multiway Join Query Optimization
Problem in Parallel Systems. SIGMOD Record 20(4), 81–82 (1991)

88. Taniar, D., Leung, C.H.C., Rahayu, J.W., Goel, S.: High Performance Parallel Database
Processing and Grid Databases. John Wiley & Sons, Chichester (2008)

89. Tomasic, A., Raschid, L., Valduriez, P.: Scaling Access to Heterogeneous Data Sources
with DISCO. IEEE Trans. Knowl. Data Eng. 10(5), 808–823 (1998)

90. Trunfio, P., et al.: Peer-to-Peer resource discovery in Grids: Models and systems. Future
Generation Computer Systems 23(7), 864–878 (2007)

91. Urhan, T., Franklin, M.: XJoin: A reactively-scheduled pipelined join operator. IEEE
Data Engineering Bulletin 23(2), 27–33 (2000)

92. Urhan, T., Franklin, M.: Dynamic pipeline scheduling for improving interactive query
performance. In: Proc. of 27th Intl. Conf. on VLDB, pp. 501–510. Morgan Kaufmann,
San Francisco (2001)

93. Valduriez, P.: Semi-Join Algorithms for Distributed Database Machines. In: Proc. of the
2nd Intl. Symposium on Distributed Databases, pp. 22–37. North-Holland, Amsterdam
(1982)

94. Valduriez, P.: Parallel Database Systems: Open Problems and News Issues. Distributed
and Parallel Databases 1, 137–165 (1993)

95. Wohrer, A., Brezany, P., Tjoa, A.M.: Novel mediator architectures for Grid information
systems. Future Generation Computer Systems, 107–114 (2005)

96. Wiederhold, G.: Mediators in the Architecture of Future Information Systems. Journal of
IEEE Computer 25(3), 38–49 (1992)

470 A. Hameurlain

97. Wong, E., Youssefi, K.: Decomposition: A Strategy for Query Processing. ACM Trans-
actions on Database Systems, 223–241 (1976)

98. Yerneni, R., Li, C., Ullman, J.D., Garcia-Molina, H.: Optimizing Large Join Queries in
Mediation Systems. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
348–364. Springer, Heidelberg (1998)

99. Zhou, Y., Ooi, B.C., Tan, K.-L., Tok, W.H.: An adaptable distributed query processing
architecture. Data & Knowledge Engineering 53(3), 283–309 (2005)

100. Zhu, Q., Motheramgari, S., Sun, Y.: Cost Estimation for Queries Experiencing Multiple
Contention States in Dynamic Multidatabase Environments. Journal of Knowledge and
Information Systems Publishers 5(1), 26–49 (2003)

Reaching the Top of the Skyline: An Efficient Indexed
Algorithm for Top-k Skyline Queries

Marlene Goncalves and Marı́a-Esther Vidal

Universidad Simón Bolı́var, Departamento de Computación, Apartado 89000
Caracas 1080-A, Venezuela

{mgoncalves,mvidal}@usb.ve

Abstract. Criteria that induce a Skyline naturally represent user’s preference
conditions useful to discard irrelevant data in large datasets. However, in the pres-
ence of high-dimensional Skyline spaces, the size of the Skyline can still be very
large, making unfeasible for users to process this set of points. To identify the best
points among the Skyline, the Top-k Skyline approach has been proposed. Top-k
Skyline uses discriminatory criteria to induce a total order of the points that com-
prise the Skyline, and recognizes the best or top-k objects based on these criteria.
Different algorithms have been defined to compute the top-k objects among the
Skyline; while existing solutions are able to produce the Top-k Skyline, they may
be very costly. First, state-of-the-art Top-k Skyline solutions require the com-
putation of the whole Skyline; second, they execute probes of the multicriteria
function over the whole Skyline points. Thus, if k is much smaller than the car-
dinality of the Skyline, these solutions may be very inefficient because a large
number of non-necessary probes may be evaluated. In this paper, we propose the
TKSI, an efficient solution for the Top-k Skyline that overcomes existing solu-
tions drawbacks. The TKSI is an index-based algorithm that is able to compute
only the subset of the Skyline that will be required to produce the top-k objects;
thus, the TKSI is able to minimize the number of non-necessary probes. We have
empirically studied the quality of TKSI, and we report initial experimental results
that show the TKSI is able to speed up the computation of the Top-k Skyline in at
least 50% percent w.r.t. the state-of-the-art solutions, when k is smaller than the
size of the Skyline.

Keywords: Preference based Queries, Skyline, Top-k.

1 Introduction

Emerging technologies, such as the Semantic Web, Semantic Grid, Semantic Search and
Peer to Peer, have made available a huge number of publicly very large data sources.
For example, Google has indexed between ten and thirteen billion of Web pages by
the time this paper has been written [19]. This exorbitant grow of data has impacted
the performance of tasks whose complexity depends on the size of the input datasets,
even when a large volume of these data may be irrelevant for solving some of these
tasks. Particularly, the task of evaluating queries based on users preferences may be
considerably affected by this situation. Thus, users have to be aware that a possibly

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 471–485, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

472 M. Goncalves and M.-E. Vidal

large subset of input dataset may be useless, and criteria to efficiently discard irrelevant
data need to be applied.

Skyline approaches have been successfully used to naturally express user’s prefer-
ence conditions useful to characterize relevant data in large datasets. However, in the
presence of high-dimensional Skyline spaces, the size of the Skyline can still be very
large, making unfeasible for users to process this set of points. To identify the best Sky-
line points, the Top-k Skyline has been proposed. Top-k Skyline uses discriminatory
criteria to induce a total order of the Skyline points, and recognizes the top-k objects
based on these criteria.

Several algorithms have been defined to compute the Top-k Skyline, but they may
be very costly. First, they require the computation of the whole Skyline; second, they
execute probes of the multicriteria function over the whole Skyline points. Thus, if k is
much smaller than the cardinality of the Skyline, these solutions may be very inefficient
because a large number of non-necessary probes may be evaluated, i.e., at least Skyline
size minus k performed probes will be non-necessaries.

In this paper, we address the problem of computing Top-k Skyline queries efficiently.
Given a multicriteria functionm, a score function f and a set of objectsDO which may
be distributed among several data sources, we propose algorithms to identify the top-k
objects from the Skyline, while probes of functions m and f are minimized.

Lets consider a government agency which offers a number of fellowships to the best
three graduate students that apply to this grant. Applicants must submit their resumes,
providing information on their academic and professional performance, which include
recommendation letters and a statement of purpose. The summarized information is
organized in the Candidate relational table, where fellowship candidates are described
by an identifier, degrees, publications, GPA, and two ranking scores that denote the
quality of the recommendation letters and the statement of purpose:

Candidate(Id,Degree,Publication,GPA,Recommendation, Statement)

Suppose the agency has received applications from ten candidates; Table 1 illustrates
information of these candidates. Since the agency only can grant three fellowships, it
has to select among the ten candidates, the top-3 that best meet its requirements.

According to the agency policy, all criteria are equally important and relevant; hence,
either a weight or a score function cannot be assigned. A candidate can be chosen for
granting a fellowship, if and only if, there is no other candidate with a higher degree,
number of publications, and GPA. To nominate a candidate, the agency employees must
identify the set of all the candidates that are non-dominated by any other candidate in
terms of these criteria. Thus, tuples in table Candidate must be selected in terms of
the values of: Degree, Publication, and GPA. For example, the candidate a dominates
the candidates g and h because he has worse values in the Degree, Publication and
GPA attributes. Following these criteria, the nominates are computed, and presented in
Table 2.

To select the top-3 among the nominated graduate students, the average of the rec-
ommendation letter and statement of purpose score is used; therefore, three candidates
are the new nominates: e, b and a.

Intuitively, to select the granted graduate students, queries based on user preferences
have been posted against the table Candidate. There are several databases languages

Reaching the Top of the Skyline 473

Table 1. Candidates for three fellowships

Id Degree Publication GPA Recommendation Statement

e MsC 1 5.0 4.8 4.5

a MsC 9 4.1 4.7 4.6

g BEng 8 4.0 4.5 4.4

h BEng 7 4.1 4.4 4.3

b MsC 5 4.9 4.9 4.9

c BEng 4 4.5 4.7 4.6

i BEng 4 4.7 4.5 4.5

f BEng 3 4.8 3.0 3.0

d BEng 2 4.9 2.8 3.1

j MsC 6 4.8 4.5 4.6

Table 2. Nominate Candidates for three fellowships

Id Degree Publication GPA Recommendation Statement

e MsC 1 5.0 4.8 4.5

a MsC 9 4.1 4.7 4.6

b MsC 5 4.9 4.9 4.9

j MsC 6 4.8 4.5 4.6

to express preference queries. Skyline and Top-k are two user preference languages
that could be used to identify some of the top-3 students. However, none of them will
provide the complete set, and post-processing will be needed to identify all the students.

Skyline offers a set of operators to build an approximation of a Pareto curve or set
of points that are non-dominated by any other point in the dataset. In consequence, by
using Skyline, one could just obtain the nominated candidates.

Top-k approaches allow referees to implement a score function and filter some of
the winners in terms of the score. In order to choose the top graduate students, top-k
query engines compute the score for each tuple without checking dominance relation-
ship among tuples in the dataset. However, it is not always possible to define such score
function, because all criteria are equally important. Thus, the problem of selecting the
granted students, corresponds to the problem of identifying the top-k elements in a par-
tially ordered set.

Additionally, Skyline query engines construct a partially ordered set induced by the
equally important criteria. Nevertheless, Top-k query engines select the top-k elements
in terms of a score function that induces a totally ordered set. Therefore, to identify the
granted students, a hybrid approach that combines the benefits of Skyline and Top-k is
required. In this way, tuples in the answer will be chosen among the Skyline induced
by a multiple criteria and then, ties will be broken using user-defined functions that
eventually induce a total order.

474 M. Goncalves and M.-E. Vidal

Time complexity for answering preference queries is high and it depends on the
dataset size and the number of probes performed. On one hand, in general, the problem
of computing the Skyline is O(n2), where n is the number of tuples to be scanned.
This is because all the n tuples need to be compared against themselves to probe the
multicriteria functionm1. On the other hand, the time complexity of selecting the top-k
objects is O(n log n) because in the worst case, the whole input set has to be ordered2.
Since a Top-k Skyline query engine needs to stratify the input data until the top-k objects
are produced, time complexity of this task is O(n2). To decrease the processing time,
Top-k Skyline query engines must implement efficient mechanisms to reduce the score
and multicriteria function probes. To achieve this goal, we propose a query evaluation
algorithm that minimize the number of non-necessary probes, i.e., this algorithm is able
to identify the top-k objects in the Skyline, for which there are not k better Skyline
objects in terms the score function f .

The paper is comprised of five sections. In Section 2 we define our Top-k Skyline
approach; section 3 illustrates a description of state-of-the-art algorithms to compute
Skyline queries. In Section 4 we propose the TKSI, an index based algorithm that is
able to compute only the subset of the Skyline that will be required to produce the top-k
objects. Section 5 reports the results of our experimental study. Section 6 summarizes
existing related approaches. Finally, in Section 7, the concluding remarks and future
work are pointed out.

2 Top-k Skyline

Given a set DO = {o1, . . . , on} of database objects, where each object oj is character-
ized by p attributes (A1, . . . , Ap); r different score functions s1, . . . , sq, . . . , sr defined
over some of the p attributes, where each si : O → [0, 1], 1 ≤ i ≤ r ; a score function
f defined on some scores si, which induces a total order of the objects in DO; a mul-
ticriteria function m defined over some of the score functions s1, . . . , sq , which rises a
partial order of the objects in DO; r sorted indexes I1, . . . , Ir containing the identifier
of all database objects in descending order by each score function si, respectively; and
random access for each object from any index to the other indexes.

For simplicity, we suppose that scores related to the multicriteria function need to be
maximized, and the score functions s1, . . . , sq, . . . , sr respect a natural ordering over p
attributes. We define the Skyline S according to a multicriteria function m as follows:

S =

{
oi ∈ DO/¬∃oj ∈ DO : (s1(oi) ≤ s1(oj) ∧ · · · ∧ sq(oi) ≤ sq(oj)∧

∃x ∈ {1, ..., q} : sx(oi) < sx(oj))

}
(1)

The conditions to be satisfied by the answers of a Top-k Skyline query w.r.t. to the
functions m and f , are described as follows:

ξ<m,f,k> =
{

oj ∈ DO/oj ∈ S ∧ ¬(∃k−|S|ol ∈ S : (f(ol) > f(oj)))
}

(2)

where, ∃t means that exists at most t elements in the set.
1 A study of complexity Skyline problem is presented in [9].
2 First the score function is probed for each instance, then data are ordered and finally, the top-k

instances are returned.

Reaching the Top of the Skyline 475

Finally, the probes of the functions m and f required to identify the top-k objects in
the Skyline correspond to necessary probes, i.e., a probe p of the functions m or f is
necessary if and only if p is performed on an object o ∈ ξ<m,f,k>. In this work, we de-
fine an algorithm that minimizes the number of non-necessary probes, while computing
the Top-k Skyline objects with respect to the functions m and f .

3 Background

In this section we illustrate the functionalities of state-of-the-art Skyline algorithms,
and how they can be used to compute the Top-k Skyline. For simplicity we assume that
data are stored in relational databases. Particularly, each column of a table is accessed
by means of an index structure and each index contains object identifiers and their
scores. An object may be retrieved considering two types of accesses over the indexes:
a sequential access retrieves an object o from a sorted index I , while a random access
returns the score s from a given object identifier id.

First, we explain the Basic Distributed Skyline (BDS) defined by Balke et al. [2].
BDS computes a Skyline in two stages: in the first phase BDS constructs a Skyline su-
perset in terms of a final object or the first object whose attributes have been completely
recovered. In the second phase, BDS discards the dominated points from this superset.

Second, we describe the algorithm known as Basic Multi-Objective Retrieval
(BMOR) proposed by Balke and Güntzer [1]. BMOR relies the computation of the
Skyline on the construction of a virtual object which is comprised of the worst values
of the multicriteria function seen so far; thus, a point in the Skyline corresponds to a
seen object that dominates the virtual object. To compute the Top-k Skyline we extend
BDS and BMOR in order to handle index structures, and we called these extensions Ba-
sic Distributed Top-k Skyline (BDTKS) and Basic Multi-Objective Retrieval for Top-k
Skyline (BMORTKS), respectively.

Similarly to BDS and BMOR, the algorithms BDTKS and BMORTKS iteratively
construct a superset of the Skyline S, and then, they probe the function f for the objects
in this set. Elements are considered respecting the order induced by m.

BDTKS and BMORTKS assume that the values of each attribute Ai are indexed
by Ii. All these indexes are scanned in a round robin fashion and only one object is
recovered during each access. The virtual object is built with the worst seen values in
each index Ii. If an object in the Skyline dominates the virtual object, then it is not
necessary to continue looking for non-dominated objects. This is because the virtual
object will dominate any unseen object, and any unseen object has worse value in each
dimension of f than the virtual object. Similarly, the final object is built accessing each
list Ii in a round robin fashion, and because the final object will dominate any unseen
object, it is not required to look for more non-dominated objects.

To illustrate the behavior of BDTKS and BMORTKS, consider a projection of the
relational table Candidate. Publication, GPA and Recommendation are collected from
three different indexes as can be seen in Table 3. Indexes are sorted by Publication, GPA
or Recommendation. Also, suppose that the agency is interested in those candidates
with maximum number of publications and GPA.

To evaluate this query, BDTKS performs sorted access on the dataset in a round robin
fashion in order to build a Skyline superset as it is shown in Table 4. Once BDTKS

476 M. Goncalves and M.-E. Vidal

Table 3. Datasets exported by indexes I1, I2 and I3

I1

Id Publication

a 9

g 8

h 7

j 6

b 5

c 4

i 4

f 3

d 2

e 1

I2

Id GPA

e 5.0

b 4.9

d 4.9

j 4.8

f 4.8

i 4.7

c 4.5

h 4.1

a 4.1

g 4.0

I3

Id Recommendation

b 4.9

e 4.8

a 4.7

c 4.7

i 4.5

g 4.5

j 4.5

h 4.4

f 3.0

d 2.8

completely sees the object j (the final object), it stops, and the Skyline superset is
comprised of the objects a, e, g, b, h, d, j and f . BDTKS can stop at this point, because
data are ordered in the indexes and any unseen object will be worse than j in each
attribute. Then, BDTKS performs random access to retrieve the unseen scores from
a, e, g, b, h, d, j and f ; using all these values, it discards dominated objects from the
Skyline superset. Finally, BDTKS outputs the Skyline which is composed of the objects
a, e, j and b. Top-k objects are selected from there.

Table 4. Data accessed by BDTKS and BMORTKS

BDTKS

id Publication/GPA Source

a 9 I1

e 5.0 I2

g 8 I1

b 4.9 I2

h 7 I1

d 4.9 I2

j 6 I1

j 4.8 I2

b 5 I1

f 4.8 I2

BMORTKS

id Publication/GPA Source Virtual Object

a 9 I1 (9,)

e 5.0 I2 (9,5.0)

g 8 I1 (8,5.0)

b 4.9 I2 (8,4.9)

h 7 I1 (7,4.9)

d 4.9 I2 (7,4.9)

j 6 I1 (6,4.9)

j 4.8 I2 (6,4.8)

b 5 I1 (5,4.8)

f 4.8 I2 (5,4.8)

c 4 I1 (5,4.8)

i 4.7 I2 (5,4.8)

Reaching the Top of the Skyline 477

BMORTKS scans the same objects than BDTKS, but it constructs the virtual object.
A virtual object contains the worst values seen in each sequential access. For each
seen object, the BMORTKS performs random access for retrieving unseen values and it
compares pair-wise the seen objects against the updated virtual object. Table 4 presents
the list of virtual objects produced, where each pair represents the worst values seen
for the indexes I1 and I2. At this point, the seen objects b and j dominates the last
virtual object (5, 4.8); thus, a Skyline superset is constructed because the objects b and
j dominates any unseen object, and BMORTKS discards dominated objects producing
the same Skyline than BDTKS.

Suppose that only one fellowship can be granted, i.e., a top-1 needs to be retrieved,
then, both algorithms have performed ten and twelve probes to compute the Skyline,
while only six of them are necessary. In the next section, we will describe the TKSI
algorithm which is able to minimize the number of non-necessary probes.

4 TKSI – An Index-Based Algorithm to Compute Top-k Skyline
Queries

In this section we propose the Top-k SkyIndex (TKSI) algorithm. TKSI is presented in
the Figure 1. TKSI is an index-based solution able to compute a subset of the Skyline

INPUT:

– DO: Data Set; m: Multicriteria Function; f : Score Function; k: Integer;
– I = {I1, . . . , Iq, . . . , Ir}: Set of indexes on attributes in m and f ;
– s1, . . . , sq, . . . , sr: Score Functions;

OUTPUT:

– ξ<m,f,k>: Top-k Skyline Objects

1) INITIALIZE:
a) ξ<m,f,k> ← ∅; i ← 1; cont ← 1;
b) min1 ← 1.0, . . . , minr ← 1.0; /*The Highest Scores*/

2) SEARCH TOP-K SKYLINE: While (cont < k and ∃ o ∈ DO)
a) Select the following object ot from the index Ir by sequential access;
b) minr ← sr(ot);
c) Perform all random accesses to retrieve scores of object ot using indexes I − {Ir};
d) i ← number of the index with the minimum value among the values:

(min1 − s1(ot)), . . . , (minr−1 − sr−1(ot));
e) If exists an object o between the first object and the object ot in Ii, and o dominates to ot

i) Discard the object ot

f) If ot is incomparable /*it is a Top-k Skyline Object*/
i) Add ot to ξ<m,f,k>;

ii) cont ← cont + 1;
g) mini ← si(ot)

3) EXIT Return the Top-k Skyline objects

Fig. 1. The TKSI Algorithm

478 M. Goncalves and M.-E. Vidal

Table 5. Normalized indexes and the TKSI Algorithm Execution

I1

Id Publication

a 0.9

g 0.8

h 0.7

j 0.6

b 0.5

c 0.4

i 0.4

f 0.3

d 0.2

e 0.1

I2

Id GPA

e 1.00

b 0.98

d 0.98

j 0.96

f 0.96

i 0.94

c 0.90

h 0.82

a 0.82

g 0.80

I3

Id Recommendation

b 0.98

e 0.96

a 0.94

c 0.94

i 0.90

g 0.90

j 0.90

h 0.88

f 0.60

d 0.56

TKSI Execution

Id Publication/GPA/Experience Index

b 0.98 I3

e 1.00 I2

b 0.98 I2

d 0.98 I2

j 0.96 I2

required to produce the top-k objects; thus, TKSI minimizes the number of probes of the
multicriteria and score functions and provides an efficient solution to the Top-k Skyline
problem.

First, we illustrate the behavior of the TKSI with an example. Consider indexed val-
ues of Table 3 are normalized into range of [0,1] in Table 5 and the following query:
the top-1 candidates with maximum experience among those candidates with maximum
number of publications and GPA. To answer this query, Top-k SkyIndex accesses the
objects from I3 sequentially. For each accessed object o from I3, TKSI verifies that o
is a Top-k Skyline object. I1 and I2 contain the objects sorted descendantly. Because
objects are sorted, it is very likely that any object with the higher values in each index
of function m dominates the next objects in the indexes. For this reason, TKSI must
select one of the indexes I1 or I2 in order to minimize the necessary probes over the
multicriteria function m. The objects could be accessed in a round robin fashion. How-
ever, in order to speed up the computation, TKSI determines what is the index whose
distance with respect to o is the lowest, i.e., the index that will avoid the access of more
non-necessary objects. To do this, TKSI computes the distance D1 as the difference
between the last seen value from I1 and the value for Publication of o (min1 − s1(o)),
and D2 as the difference between the last seen value from I2 and the value for GPA
of o (min2 − s2(o)). Next, TKSI selects the minimum value between D1 and D2. To
compare the distances, the values of the attributes Publication and GPA are normalized.

Initially, TKSI accesses the first object b from I3, and their values for Publication and
GPA randomly (Step 2a-c)). Because of the objects from I1 and I2 have not been seen
yet, TKSI assumes the last seen value is the maximum value possible for the attribute
(Step 1c)). Therefore, the best distance betweenD1 = 1.0−0.5 andD2 = 1.0−0.98 is
calculated (Step 2d)). In this case, I2 has the minimum distance. Note that b is placed in
the index I2 in a lower position than the same object in I1. Successively, the distances
are calculated, and the objects e, b, d, and j from I2 are accessed until the object j with
a value lower in GPA is found. All these objects are compared against b to verify if some

Reaching the Top of the Skyline 479

of them dominates it. Since, none of the objects e, b, d or j dominates b, the object b
is a Top-k Skyline object (Step 2f)). If some object indexed by I2 dominates b, a new
object from I3 is accessed. However, the algorithm decides to stop here because the
objects behind j have worse values in Publication than b, and they may not dominate
b. Moreover, the Top-1 Skyline object has been already found and only six of ten and
twelve probes performed by BDTKS and BMORTKS were necessary. The detailed
TKSI execution is showed in Table 5.

The TKSI algorithm is presented in Figure 1. In the first step (INITIALIZE), TKSI
initializes the Top-k Skyline ξ<m,f,k>; the minimum seen values for each index are in
min1,. . .,minr; finally, the variables i, and cont are used as counters.

In step 2 (SEARCH TOP-K SKYLINE), TKSI identifies the Top-k Skyline objects.
In the step 2a-c), the object ot from Ir is accessed completely, andminr is updated with
the value of sr(ot). In the step 2d), the index with the minimum distance to the object
ot is selected and scanned.

If ot is dominated by some seen intermediate object in the selected index, then in
step 2e) the object ot is discarded. If the object ot is non-dominated with respect the
seen objects, then in step 2f) the object ot is a Top-k Skyline object and it is inserted
into ξ<m,f,k>.

Thus, the algorithm continues until k objects have been found.

4.1 Properties of the TKSI Algorithm

The following property establishes that the TKSI algorithm is correct, i.e., TKSI com-
putes the Top-k objects among the Skyline points.

Property 1 (The Best non-dominated objects). Let b an object added by the TKSI
algorithm to the ξ<m,f,k> set. Then, there exists not object b′ ∈ DO, s.t., b′ is incom-
parable with b and f(b′) > f(b).

Finally, the following theorem provides a lower-bound in the number probes that the
algorithm TKSI can perform.

Theorem 1. Let DO be a dataset. Let Ii, . . . , Ir−1 be a set of indexes; each index
is defined over one of the attributes of the multicriteria function m and it is ordered
according to the m function. Let s be a score function defined over one attribute which
is indexed by Ir and ordered according to m and s. To retrieve the top-k objects w.r.t.
s in the Skyline induced by m, the TKSI algorithm performs at least 2k probes of the
multicriteria function m.

Proof
Suppose the Top-k Skyline objects are the top-k elements in the index Ir and that to
compute them, each of these k objects only needs to be compared against the best of
one index Ii on the attributes of the multicriteria function. To verify that an object ot

in Ir is a Top-k Skyline, ot has to be pairwise compared against the best in one of the
indexes Ii. Thus, the minimum number of probes required is 2k. "

480 M. Goncalves and M.-E. Vidal

5 Experimental Study

We have conducted an experimental study to empirically analyzed the quality of the
TKSI algorithm w.r.t. the indexed-based algorithms BDTKS and BMORTKS.

5.1 Experimental Design

Datasets and Queries. The study was conducted on three relational tables populated
with 100,000 tuples randomly generated. Each table contained an identifier and twelve
columns that represent the score; values range from 0.0 to 1.0. The last six columns are
highly correlated to the first six columns,i.e., the correlation between the i-th and (i+6)-
th columns is higher than 90 %. A column may have duplicated values. The attribute
values were generated following three data distributions:

– Uniform: Attributes are independent of each other and their values are generated
uniformly.

– Gaussian:Attributes are independent of each other and their values are generated
from five overlapping multidimensional Gaussian bells.

– Mixed: Attributes are independent of each other. Data are divided into two groups
of three columns: one group was generated using a Uniform distribution and the
other, using a Gaussian distribution.

We randomly generated sixty queries characterized by the following properties: (a) only
one table in the FROM clause; (b) the attributes in the multicriteria function and the
score function were chosen randomly among the attributes of the table, following a
Uniform distribution; (c) directives for each attribute of the multicriteria function were
selected randomly considering only maximizing and minimizing criteria; (d) the num-
ber of attributes of the multicriteria function is six; (e) the number of attributes of the
score function is one; (f) the argument of score function was chosen randomly follow-
ing a Uniform distribution; and (g) k vary from 1%, 0.5%, 0.01%, 0.005%, 0.001% and
0.0001% of data size.

The average size of Skyline for sixty queries in each data distribution is reported in
Table 6.

The experiments were evaluated on a SunFire V440 machine equipped with 2 pro-
cessors Sparcv9 of 1.281 MHZ, 16 GB of memory and 4 disks Ultra320 SCSI of 73 GB
running on SunOS 5.10 (Solaris 10). The BDTKS, BMORTKS, and TKSI algorithms
were implemented in Java (64-bit JDK version 1.5.0 12).

TKSI implementation. The BDTKS, BMORTKS, and TKSI algorithms were devel-
oped on top of Oracle 9i. A set of sorted queries are executed for each criterion of the

Table 6. Average Skyline Size for each data distribution

Data Distribution Average Skyline Size

Uniform 2,405

Gaussian 2,477

Mixed 2,539

Reaching the Top of the Skyline 481

multicriteria and the score functions, and the resultsets are stored on indexes. The re-
sultsets are sorted ascendant or descendantly according to the criteria MIN or MAX of
the multicriteria function. The resultset corresponding to the score function is sorted
descendantly because the best k objects need to be retrieved. Each resultset is accessed
on-demand.

Furthermore, a set of hash maps are built, one for each index. These hash maps are
comprised of objects accessed by each index. Also, a variable for each index is updated
with the last value seen in that index. Initially, these variables are set with the best
values. Lately, they are updated according to the last object accessed by each index.

Thus, TKSI accesses the first object o from the index over the score function. It
selects which is the index Ii that has the lowest gap with respect to o. The resultset of
the selected index Ii is scanned until some object from Ii dominates o or none of the
objects better than o in the attribute i dominates to o. If o is incomparable, then o is a
Top-k Skyline object and it is added in the set of answers. This process continues until
computing the top k objects.

Metrics. We report on the metrics: number of probes, seen-objects, sequential accesses,
random accesses and total time. These metrics are defined as follows:

– Number of probes: Number of the multicriteria and the score function evaluations
performed by the algorithm.

– Seen-objects: Number of different objects accessed by the algorithm.
– Sequential accesses: Number of sequential accesses performed by the algorithm.
– Random accesses: Number of random accesses performed by the algorithm.
– Accesses: Random accesses plus sequential accesses.
– Total time: Time of algorithm’s evaluation. This metric is measured by using the

time Solaris command.

5.2 Performance of the TKSI, BDTKS and BMORTKS Algorithms

We study the performance of the TKSI, BDTKS and BMORTKS algorithms. We com-
puted the average of: number of probes, seen-objects, accesses, and total time, using the
three algorithms. We selected and executed ten of the sixty generated queries in order to
compare the three algorithms. This is because BMORTKS takes 8 hours approximately
to finish the execution of ten queries.

Table 7 shows the results for the three algorithms. We confirm that the highest
number of probes are performed by the BMORTKS algorithm. This may be because
BMORTKS has to compare all the objects with the virtual object and then, once this
condition is satisfied, the algorithm has to compare all these objects with themselves to
determine which of them are non-dominated. Thus, probing with respect to the virtual
object increases the number of comparisons of the BMORTKS algorithm. Additionally,
the number of accesses and seen objects is similar among BMORTKS and BDTKS.
Both results indicate that the number of probes affects evaluation time due to the num-
ber of probes was much higher for BMORTKS.

Finally, TKSI had the best performance because it does not build the Skyline com-
pletely, it only added necessary objects to the answer.

482 M. Goncalves and M.-E. Vidal

Table 7. Results for the algorithms TKSI, BDTKS and BMORTKS

TKSI BDTKS BMORTKS

Number of Probes 412,049.8 23,749,796.4 27,201,876.5

Accesses 48,019.2 207,914.1 240,610.5

Seen-Objects 13,748.6 57,219.3 57,206.7

Total Time(sec) 185.88 339.47 27,870.81

Impact of the top-k in the performance of the TKSI algorithm. We study the perfor-
mance of the TKSI and BDTKS, and the impact of k in the quality of TKSI. BMORTKS
is not considered because as it was shown in the previous section, this algorithm is more
expensive than TKSI and BDTKS. In this experiment, we executed sixty queries vary-
ing k.

Figure 2 reports the average of number of probes, the average of seen-objects, the
average of sequential accesses, the average of random accesses and the average of total
time used by TKSI and BDTKS algorithms. In general, we can observe that:

1) The number of probes and seen-objects is lower for the TKSI algorithm. This is
because this algorithm builds the Skyline partially until finds the Top-k Skyline ob-
jects. On the other hand, the algorithm BDTKS constructs the Skyline completely
and then, they perform non-necessary probes considering all objects in the superset
of the Skyline.

(a) Probes (b) Number of Seen Objects

(c) Accesses (d) Time

Fig. 2. Results for the algorithms TKSI and BDTKS

Reaching the Top of the Skyline 483

Table 8. t-test for average of Probes, Accesses, Seen Objects and Time

Probes Sequential Random Seen-Objects Total
Accesses Accesses Time (sec)

Domain TKSI BDTKS TKSI BDTKS TKSI BDTKS TKSI BDTKS TKSI BDTKS

Uniform 1,904,018.55 23,749,796.40 5,688.45 80,804.90 14,324.15 335,023.30 2,864.83 57,219.30 209.06 2,036.78

Gaussian 1,726,737.80 25,703,896.00 5,251.67 83,788.80 13,210.13 342,259.90 2,642.03 58,447.50 186.21 2,162.61

Mixed 1,600,389.02 25,096,788.60 4,989.17 84,168.80 12,533.92 347,550.10 2,506.78 59,362.40 175.78 2,179.75

Average 1,743,715.12 24,850,160.33 5,309.76 82,920.83 13,356.06 341,611.10 2,671.21 58,343.07 190.35 2,126.38
t-test p-value=0.00039 p-value=0.00013 p-value=0.00008 p-value=0.00008 p-value=0.00040

2) The TKSI algorithm requires fewer sequential accesses and random accesses. This
might be because, the algorithm avoids seeing unnecessary objects and does not
create the Skyline completely when k is lower than the Skyline size.

3) Due to TKSI algorithm makes fewer probes and accesses, its time execution is the
lowest.

4) TKSI executes a number of probes and accesses similar to BDTKS when k =
1000 because of this k value is close to Skyline size. In this case, TKSI builds the
Skyline almost completely and therefore, it has similar performance with respect to
BDTKS.

Impact of the data distribution in the performance of the TKSI algorithm. The
objective of this experiment was to study the impact of the data properties on the per-
formance of TKSI algorithm. We compare the values of the metrics: number of probes,
accesses, seen-objects and total time for TKSI and BDTKS. Table 8 shows the results
for the t-test. As this analysis shows, the differences for the number of probes, seen
objects, accesses and total time are highly significant (at least 99.99% level).

6 Related Work

Different preference-based query languages have been defined to express user-
preference criteria for a certain collection of data. These languages can be grouped
into three paradigms: order-based, score-based and hybrid. The challenge of the order-
based approaches is to identify the Skyline or set of objects that are non-dominated
by any other object, and different techniques have been proposed to efficiently achieve
this goal [1,2,3,9,14,15]. While these techniques could be used to construct the Skyline
required to identify the top-k objects, they may be inefficient because they completely
compute all the non-dominated points. Score-based techniques accomplish the problem
of computing the top-k objects from an ordered set of points; although the number of
seen objects is minimized during the top-k computation, the non-dominance relation-
ship among the retrieved objects is not considered[5,6,8].

Finally, hybrid approaches compute the top-k objects among the ordering induced by
a multicriteria function [4,7,10,11,12,13,16,17,18]; although existing solutions are able
to identify the top-k objects, they may be inefficient because they rely on the construc-
tion of the complete Skyline. In [18] the top-k objects among a set of non-dominated
points are identified in terms of the link-based metric PageRank that runs on a Sky-
line graph; this graph represents the dominance relationship between the points in the

484 M. Goncalves and M.-E. Vidal

Skyline when only sub-sets of the ranking parameters are considered. Similarly, the
authors in [7,12,13] take into account the different dominance relationships among the
Skyline points; users preference information and the Skyline frequency and the k rep-
resentative Skyline metrics are used to distinguish the top-k objects, respectively. These
approaches may be required if the score function to break the ties between the Skyline
points is unknown. However, since [7,13] compute the whole Skyline and then, all the
different Skyline sub-spaces, they may be very costly and inefficient when the differ-
ence between k and the size of the Skyline is large. Additionally, [12] only achieves
an exact solution for a 2d-space. In [4,11] scanned-based approaches are proposed to
compute the Top-k Skyline; the proposed techniques compute the top-k among a par-
tially ordered set which is stratified into subsets of non-dominated objects, and are able
to produce the top-k objects when the Skyline size is smaller than k. The main draw-
back of these approaches is that the skyline or strata have to be completely built. In this
paper we also consider the Top-k Skyline problem, but our approach differs from the
previous works in the following issues: first, we assume that a score function is pro-
vided by the users to break the ties between the non-dominated points; second, each
of the attributes needed to compute the Skyline and the top-k objects are indexed and
random access is available; third, the top-k score function is precomputed and stored in
an index; and finally, Skyline size is greater or equal than k. These assumptions pro-
vided the basic of our TKSI algorithm, allowing to identify the top-k objects at the time
the non-dominance relationship among some of the Skyline points is verified. Thus, the
TKSI is able to minimize the number of non-necessary probes, when k is smaller than
the size of the Skyline.

7 Conclusions and Future Work

In this work, the TKSI algorithm has been proposed and its performance has been em-
pirically compare to extensions of the state-of-the-art algorithms: BDS and BMORS.
The first, BDS, is based on the computation of a final object whose scores have been
completely seen. The second, BMORS, computes a virtual object which is comprised
of the minimum scores seen so far. Both algorithms are sound, but, they rely on the
computation of a superset of the Skyline to identify the Top-k Skyline. On the other
hand, TKSI builds the Skyline until it has computed the k objects. Initial experimental
results show that TKSI computes the Top-k Skyline performing less number of probes
and consuming less time, when k is smaller than the size of the Skyline.

We have not considered that there may exist several execution plans for a given Top-
k Skyline query. Considering preference criteria during the query optimization might
help to identify better execution plans. In the future, we plan to integrate Top-k Sky-
line techniques into a relational engine to select optimal execution plans that take into
account decision criteria.

References

1. Balke, W.-T., Güntzer, U.: Multi-objective Query Processing for Database Systems. In: Pro-
ceedings of the International Conference on Very Large Databases (VLDB), Canada, pp.
936–947 (2004)

Reaching the Top of the Skyline 485

2. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient distributed skylining for web information
systems. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis,
M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 256–273. Springer, Hei-
delberg (2004)

3. Börzönyi, S., Kossman, D., Stocker, K.: The Skyline operator. In: Proceedings of the Inter-
national Conference on Data Engineering (ICDE), Germany, pp. 421–430 (2001)

4. Brando, C., Goncalves, M., González, V.: Evaluating top-k skyline queries over relational
databases. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp.
254–263. Springer, Heidelberg (2007)

5. Carey, M., Kossman, D.: On saying “Enough already!” in SQL. In: Proceedings of the ACM
SIGMOD Conference on Management of Data, vol. 26(2), pp. 219–230 (1997)

6. Chang, K., Hwang, S.-W.: Optimizing access cost for top-k queries over Web sources: A
unified cost-based approach. Technical Report UIUCDS-R-2003-2324, University of Illinois
at Urbana-Champaign (2003)

7. Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On high dimensional sky-
lines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm,
K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495.
Springer, Heidelberg (2006)

8. Fagin, R.: Combining fuzzy information from multiple systems. Journal of Computer and
System Sciences (JCSS) 58(1), 216–226 (1996); Proceedings of the Conference on Very
Large Data Bases (VLDB), Norway, pp. 229–240 (2005)

9. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data Sets
10. Goncalves, M., Vidal, M.-E.: Preferred skyline: A hybrid approach between sQLf and sky-

line. In: Andersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588,
pp. 375–384. Springer, Heidelberg (2005)

11. Goncalves, M., Vidal, M.E.: Top-k Skyline: A Unified Approach. In: Proceedings of OTM
(On the Move) 2005 PhD Symposium, Cyprus, pp. 790–799 (2005)

12. Lee, J., You, G.-w., Hwang, S.-w.: Telescope: Zooming to interesting skylines. In: Kotagiri,
R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS,
vol. 4443, pp. 539–550. Springer, Heidelberg (2007)

13. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative Sky-
line operator. In: Proceedings of the International Conference on Data Engineering (ICDE),
Turkey, pp. 86–95 (2007)

14. Lo, E., Yip, K., Lin, K.-I., Cheung, D.: Progressive Skylining over Web-Accessible Database.
Journal of Data and Knowledge Engineering 57(2), 122–147 (2006)

15. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline computation in database sys-
tems. ACM Transactions Database Systems 30(1), 41–82 (2005)

16. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the Best Views of Skyline: A semantic Approach
Based on Decisive Subspaces. In: Proceedings of the Very Large Databases (VLDB), Nor-
way, pp. 253–264 (2005)

17. Tao, Y., Xiao, X., Pei, J.: Efficient Skyline and Top-k Retrieval in Subspaces. IEEE Transac-
tions on Knowledge and Data Engineering 19(8), 1072–1088 (2007)

18. Vlachou, A., Vazirgiannis, M.: Link-based ranking of Skyline result sets. In: Proc. of 3rd
Multidiciplinary Workshop on Advances in Preference Handling (2007)

19. http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.
html

http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html
http://googleblog.blogspot.com/2008/07/we-knew-web-was-big.html

Energy Efficient and Progressive Strategy for
Processing Skyline Queries on Air

JongWoo Ha1, Yoon Kwon2, Jae-Ho Choi1, and SangKeun Lee1

1 College of Information and Communication,
Korea University, Seoul, Republic of Korea

{okcomputer,redcolor25,yalphy}@korea.ac.kr
2 Air Force Operations Command,

R.O.K.A.F, Republic of Korea
unikwon@korea.ac.kr

Abstract. Computing skyline and its variations is attracting a lot of
attention in the database community, however, processing the queries in
wireless broadcast environments is an uncovered problem despite of its
unique benefits compared to the other environments. In this paper, we
propose a strategy to process skyline queries for the possible expansion of
current data broadcasting services. For the energy efficient processing of
the skyline queries, the Sweep space-filling curve is utilized based on the
existing DSI structure to generate broadcast program at a server side.
The corresponding algorithms of processing skyline queries are also pro-
posed for the mobile clients. Moreover, we extend the DSI structure based
on a novel concept of Minimized Dominating Points (MDP) in order to
provide a progressive algorithm of the queries. We evaluate our strategy
by performing a simulation, and the experimental results demonstrate
the energy efficiency of the proposed methods.

Keywords: Data broadcasting, skyline, energy efficient, progressive.

1 Introduction

In a multi-dimensional space, a data point p dominates another point p′ if and
only if, the attributes of p on all dimensions are smaller than or equal to those
of p′. Given the notion of dominance relationship among data points, a sky-
line is defined as a set of data points, which is not dominated by any other data
points. Computing skyline and its variations is attracting a lot of attention in the
database community, mainly due to its importance for applications associated
with multi-criteria decision making. Currently, the demand for the processing
of skyline queries is expanding from conventional databases to various environ-
ments, including data streaming [13][19], the Web [15], mobile ad-hoc networks
[7], and wireless sensor networks [10]. However, processing the queries in wireless
broadcast environments is an uncovered problem despite of its unique benefits
compared to the other environments; processing queries on air can be an at-
tractive strategy for a server to support an arbitrary number of mobile clients
without additional cost, as demonstrated in previous studies [12][20].

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 486–500, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Energy Efficient and Progressive Strategy 487

Fig. 1. Skyline Queries Processing in Wireless Broadcast Environments

In wireless broadcast environments, we focus on the problem of processing
the original and constrained skyline queries1, for which we suggest that three
requirements should be satisfied: 1) the processing should terminate effectively
within a broadcast cycle; 2) the processing of the constrained skyline query
should minimize the energy consumption of the mobile clients; 3) the processing
should be progressive. The first and second requirements consider the predomi-
nant issues associated with the access time and tuning time in wireless broadcast
environments [8], while the third requirement originates from the desired prop-
erties of the processing methods for skyline queries. We describe the motivations
for each of the suggested requirements as follows.

1. We can adopt the existing methods of disk-based processing of skyline
queries, however, they will not comply with the first requirement. The meth-
ods are based on random access to the data, therefore, backtracking in a
broadcast program, which leads mobile clients to tune in the next broad-
cast cycle, is inevitable. This fundamental disagreement with the sequential
characteristics in wireless broadcast environments will introduce unbounded
performance in terms of the access time [12][20].

2. A simple method to avoid this problem is to process skyline queries by tuning
the entire data in a broadcast cycle and performing consecutive dominance
test. In Figure 1, a client can obtain the original skyline, E, F, and H, by
tuning into the data from A to H. However, in this case, the client would ex-
perience the worst-case performance in terms of the tuning time. Therefore,
any strategies, which need to scan each of the data such as stream processing
methods, does not satisfy the second requirement.

3. The progressive characteristic is desired in the context of processing skyline
queries [9][15][17][18]. A progressive algorithm for processing skyline queries
can immediately and effectively return skyline points as they are identified.
Otherwise, the client has to wait until the processing terminates to obtain
even a single skyline point. However, the progressive characteristic is not easy

1 The original skyline query can be defined as an constrained skyline query by setting
the entire space as the given constrained region.

488 J.W. Ha et al.

to satisfy, since a data point can be either a skyline point or not according
to the given constrained region. In Figure 1, for example, if a client sets the
entire space to be a constrained region, the skyline will be identical to the
original skyline. If another client sets the gray constrained region, then the
skyline is B and D.

To deal with the problem of processing constrained skyline queries in a manner
which satisfies all three requirements, we propose a strategy, referred to as sky-
line on air, for the possible expansion of current broadcasting services, including
T-DMB [2] and 1seg [1]. First, we identify the benefits of the Sweep space-filling
curve (SFC) [16] in the context of skyline query processing. Based on the Sweep
SFC embedded in the distributed spatial index (DSI) [12], we design the region-
based pruning and point-based pruning algorithms, which satisfy both the first
and second requirements. Further, we observed that a processing algorithm can
comply with the third requirement, if the index structure provides knowledge
of the minimized dominating points (MDP). We propose the Extended-DSI to
embed the MDP into our base index structure. Finally, we propose the cor-
responding progressive point-based pruning algorithm, which satisfies all three
requirements.

The contributions of this paper include the following.

– We identify the benefits of the Sweep SFC and the MDP in the context of
processing skyline queries.

– We propose an index structure, Extended-DSI, and processing algorithms,
which allow our strategy to be energy efficient and progressive.

– Experiments are performed to evaluate the performance of skyline on air,
and the results demonstrate the energy efficiency of the proposed methods.

To the best of our knowledge, this is the first attempt to process skyline queries in
wireless broadcast environments. To make this initial study feasible, we assume
that there is no update and no transmission errors of data.

The remainder of this paper is organized as follows. We discuss related re-
search in Section 2, and Section 3 describes the proposed methods of processing
constrained skyline queries in wireless broadcast environments. The experimen-
tal evaluation of the proposed methods is presented in Section 4, and Section 5
summarizes this paper and describes future works.

2 Related Work

In centralized databases, most of the existing methods of processing skyline
queries share the same goal to improve the performance, i.e., minimizing the
number of dominance tests in order to reduce the computational overhead and
I/O cost. Block-Nested Loop (BNL) [3] conducts dominance tests for each data
point in the dataset with every other data point. If it is not dominated by
any other points, BNL returns the data as a skyline point. Divide-and-Conquer
(D&C) [3] divides a given dataset into several regions each of which can be

Energy Efficient and Progressive Strategy 489

loaded in the main memory for processing. Then, it computes and merges the
skyline candidates in each of the regions. Sort-Filter-Skyline (SFS) [5] introduces
a monotonic scoring function which returns an ordering of dataset. This ordering
guarantees that a data point is not dominated by other preceding data points
and, therefore, it can safely ignore the corresponding dominance tests. However,
the BNL, D&C, and SFS methods need to scan the whole dataset, and this
will clearly lead to poor performance in terms of the tuning time in wireless
broadcast environments.

To avoid the exhaustive scanning of the dataset, index-based methods were
proposed. In [18], the first progressive strategy of computing skyline is intro-
duced with Bitmap and Index. Nearest Neighbor [9] computes the skyline on
an R-tree based on the observation that the nearest neighbor from the origin
is always a skyline point. Branch-and-Bound [17] also utilizes an R-tree, and
more importantly, this method guarantees the minimum I/O for a given R-tree.
Based on the benefit of Z-order in processing skyline and k -dominant skyline
queries, ZSearch is proposed in [11]. However, processing algorithms, which are
based on random access to the data with tree indexing, will produce unbounded
performances in terms of the access time, as demonstrated in [12][20].

As well as in centralized databases, current research of computing skyline
deals with problems originating in various environments [7][10][13][15][19]. These
studies also consider the characteristics of the environments and the progressive
behavior of processing skyline queries. For example, the primary goal in [10] is to
reduce the energy consumption of the wireless sensor nodes, and the importance
of the progressive characteristic in the Web is also demonstrated in [15].

3 Proposed Methods

3.1 Sweep Space-Filling Curve with DSI

We first review the index structure, DSI, which is proposed for the efficient
processing of location-dependent queries in wireless broadcast environments [12].
To take advantages of its linear and distributed characteristics, we adopt the DSI
as our base index structure. Then, we identify the benefit of the Sweep SFC in
the context of processing skyline queries.

In Figure 2, we show an example of DSI from the example dataset in Figure 1.
In DSI, each data p has its own order, denoted by p.order, which is encoded based
on the attributes of the data according to the Hilbert SFC [6]. For example, the
data, E, which has attributes (2, 2) in Figure 1, has an order 8. The dataset is
divided into nF frames, and an index table is stored together with the data in
each frame. The index table consists of logr nF number of index table entries,
where r is the exponential base called the index base. In the example, nF and r
are set to 8 and 2, respectively. Therefore, each index table contains 3 index table
entries. Each ith index table entry has a pair of order and pointer for a data.
The data pointed to by the pointer in the ith index table entry will be broadcast
after an interval of ri from the current frame, where 0 ≤ i ≤ logr nF − 1. For
example, frame 8 in Figure 2 contains three index table entries to point to frames

490 J.W. Ha et al.

Fig. 2. An Example of DSI

(a) Sweep SFC (b) Hilbert SFC

Fig. 3. Example Dataset Varying Space-Filling Curves

22, 28, and 36, which are separated from the frame by intervals of 1, 2, and 4,
respectively.

By default, the Hilbert SFC is adopted in DSI to assign an order to each data
point. However, we employ the Sweep SFC to take advantages of its superiority
compared to the Hilbert SFC for processing skyline queries, as descried below.

First, we can safely avoid a lot of pairwise dominance tests while guaranteeing
the effectiveness of the query processing. In Figure 3(a), our example dataset is
encoded in Sweep SFC. As shown in the figure, it is guaranteed that a data point
p is not dominated by a data point q, if and only if, p.order is less than or equal
to q.order. Therefore, to test whether an example point D is a skyline point or
not, we only need to conduct dominance tests against those data points with a
smaller order value than that of D, i.e., F, E, and B.

Second, by adopting the Sweep SFC, it becomes an easy task to encode a
multi-dimensional point into an order and to decode an order into a multi-
dimensional point. Given an n-dimensional data point, p = (a1, a2, ..., an), we can
easily encode the data point, p.order =

∑n
i=1(ai×wi−1), where 0 ≤ ai < w. The

decoding is also done with a few arithmetic operations by taking the encoding
process inversely. However, it is still a challenge to map multi-dimensional points
efficiently with the Hilbert SFC. Moreover, the performance of the mapping
becomes worse as the number of dimensions increases [4][14].

Energy Efficient and Progressive Strategy 491

3.2 Region-Based Pruning Algorithm

Based on the Sweep SFC in DSI, we present the region-based pruning (RBP) al-
gorithm in Algorithm 1. For the sake of simplicity, we assume that the attribute
values of all dimensions are integer types. To describe the RBP, a running exam-
ple is illustrated in Figure 4. In this example, the constrained region is set to be
the entire space. Table 1 specifies the states of the variables at each stage of the
tuning buckets (the smallest logical unit of broadcast). For the sake of simplicity,
we assume that a bucket contains one frame in DSI, i.e., a single data and its
corresponding index structure is stored in a bucket, throughout the paper.

The basic idea of RBP is that we initially set the search space with the
given constrained region, and reduce the search space based on the dominant
regions and empty regions. In Figure 4, the dominant region of a data point
35 is represented with the gray region. Since any data points in the region is
not a skyline point, we safely remove the region from the search space. Basically,
removing dominant regions from the search space is for selectively tuning buckets
to reduce the tuning time. The empty region, induced by analyzing the broadcast
program, is a region in which there exists no data point. For example, RBP can
identify the two empty region, [36, 42] and [44, 45], from the index table of
bucket 35; there exists no data point between any two adjacent buckets in the
broadcast program. Since the RBP terminates when the search space becomes
empty, removing the empty regions is necessary to remove those regions, which
are not dominated by any data points in the search space, e.g., [0, 17].

Fig. 4. An Example of Processing Skyline Query

Table 1. Running States of Region-Based Pruning Algorithm

Bucket Program Analyzer Skyline Search Space
(...) ∅ [0, 63]

35 (35, 43, 46, \0, 57, ...) 35 [0, 34], [48, 50], [56, 57]
46 (35, 43, 46, 52, 57, \0, 18, ...) ∅ [0, 18], [24, 25], [32, 33], [57, 57]
57 (35, 43, 46, 52, 57, 15, 18, \0) 57 [15, 15], [18, 18], [24, 25], [32, 33]
15 (35, 43, 46, 52, 57, 15, 18, 21) 57, 15 [18, 18]
18 (35, 43, 46, 52, 57, 15, 18, 21) 57, 15, 18 ∅

492 J.W. Ha et al.

Algorithm 1. Region-Based Pruning Algorithm
Input: ConstrainedRegion; Output: Skyline;
Variable: searchSpace, bucket, pAnalyzer, newPoints, prunedRegion;
01: Skyline = ∅;
02: searchSpace = getTargetSegmentsSet(ConstrainedRegion);
03: while (searchSpace != ∅)
04: if (bucket == null)
05: bucket = initialProbe();
06: else
07: bucket = getNextBucket(pAnalyzer, searchSpace);
08: newPoints = getNewlyFoundPoints(pAnalyzer, bucket, ConstrainedRegion);
09: pAnalyzer = updateProgramAnalyzer(pAnalyzer, bucket, newPoints);
10: searchSpace −= getEmptyRegion(pAnalyzer);
11: prunedRegion = getPrunedRegion(searchSpace, newPoints);
12: for (data ∈ Skyline)
13: if (data.order ∈ prunedRegion)
14: Skyline −= data;
15: searchSpace −= prunedRegion;
16: if (bucket.data ∈ searchSpace)
17: Skyline += bucket.data;
18: searchSpace −= bucket.data;

We now describe the RBP in detail with the running example. First, RBP sets
the Skyline to be an empty set (∅), and the search space to be the constrained
region (line 01-02). When tuning the first bucket, RBP knows that the current
bucket is 35, and that buckets 43, 46, and 57 will be broadcast after 1, 2, and
4 intervals, repectively. The bucket that will be broadcast after 3 interval is
unknown, and is denoted by ‘\0’ at the moment. This is maintained in a program
analyzer to decide the next bucket to be tuned (line 04-09). By analyzing the
index table, RBP discovers the two empty region, [36, 42] and [44, 45]. They are
removed from the search space (line 10). Next, based on each of the newly found
points from the current bucket (underlined in Table 1), it calculates the dominant
region of each of the newly found data points (line 11). If the dominated region
includes any data points in the Skyline, RBP drops the data from the Skyline,
since it is actually not a skyline point (lines 12-14). After that, RBP removes
the dominant region from the search space (lines 15). Note that data point 35
does not dominate itself. Since the reduced search space still includes the data in
the current bucket, the algorithm adds the data to the Skyline. Then, it removes
data point 35 from the search space (line 16-18).

RBP continues looping through lines 04-18 until the search space becomes
empty. If not, it consults the program analyzer to decide the next bucket to be
tuned (line 7). Since the search space does not include buckets 43 and 46 (They
are included in the pruned region dominated by data point, 35), RBP does
not need to tune these buckets. However, since there is an unknown data point
between 46 and 57, it needs to tune bucket 46 to identify the unknown data point
for effective processing. To get the pointer for the unknown bucket, the program

Energy Efficient and Progressive Strategy 493

Table 2. Running States of Point-Based Pruning Algorithm

Bucket Program Analyzer Candidates Skyline
(...) ∅ ∅

35 (35, 43, 46, \0, 57, ...) 35, 57 35
46 (35, 43, 46, 52, 57, \0, 18, ...) 57, 18 ∅
57 (35, 43, 46, 52, 57, 15, 18, \0) 57, 18, 15 57
15 (35, 43, 46, 52, 57, 15, 18, 21) 57, 18, 15 57, 15
18 (35, 43, 46, 52, 57, 15, 18, 21) 57, 18, 15 57, 15, 18

analyzer decides to tune bucket 46. In our example, the processing terminates
when it tunes bucket 18, and produces access and tuning time performances of
7 and 5 buckets, respectively.

The RBP algorithm provides an efficient way to selectively tune buckets,
since it safely ignores pruned buckets. However, this algorithm may not be a
feasible solution for mobile clients due to the extremely expensive cost of line 12
in algorithm 1, as we demonstrate in Section 4.2 by measuring the number of
dominance tests. This is because of the fact that the algorithm applies dominance
tests over the entire search space, and the search space grows exponentially as
the dimension of the dataset increases.

3.3 Point-Based Pruning Algorithm

We propose an alternative point-based pruning (PBP) algorithm, to deal with
the problem posed by RBP. The PBP significantly reduces the number of domi-
nance tests so that the mobile client can reduce its energy consumption accord-
ingly. To selectively tune buckets, RBP checks whether a bucket is included in
the current search space or not. However, PBP algorithm utilizes a shortcut in
order to have the same effect of tuning buckets selectively. The basic idea is
that we can apply dominance tests directly to the data points. Based on pairwise
dominance tests among every datas points found at the present moment, we can
maintain a set of candidates, which is the target of the next tuning buckets. This
process continues until every bucket containing candidates is tuned.

Algorithm 2 specifies the PBP algorithm. We describe PBP with the same
running example of Figure 4, and depict only the differences between the PBP
and RBP, due to space limitations. Table 2 specifies each stage of running the
PBP algorithm. Note that the states of the program analyzer are identical to
those of the previous RBP algorithm in Table 1, because they are identical in
terms of the tuning of the next buckets. However, the PBP algorithm does not
need to keep a search space. It only maintains a set of candidates in order to
conduct dominance tests efficiently. When the algorithm initiates processing by
tuning into bucket 35, it knows that data points 43 and 46 have no possibility be-
ing skyline points since they are dominated by point 35 (lines 06-09). Compared
to the previous algorithm, PBP adds and drops Skyline based on the candidates
(lines 10-14). PBP terminates when it discovers every point in the constrained

494 J.W. Ha et al.

Algorithm 2. Point-Based Pruning Algorithm
Input: ConstrainedRegion; Output: Skyline;
Variable: bucket, newPoints, pAnalyzer, candidates;
01: Skyline = ∅;
02: bucket = initialProbe();
03: while (bucket != null)
04: newPoints = getNewlyFoundPoints(pAnalyzer, bucket, ConstrainedRegion);
05: pAnalyzer = updateProgramAnalyzer(pAnalyzer, bucket, newPoints);
06: for (order ∈ newPoints)
07: if (orderIsANewCandidate(order, candidates) == true)
08: candidates –= getDropedCandidates(candidates, order);
09: candidates += order ;
10: for (data ∈ Skyline)
11: if (data.order /∈ candidates)
12: Skyline –= data;
13: if (bucket.data ∈ candidates)
14: Skyline += bucket.data;
15: bucket = getNextBucket(pAnalyzer, candidates, ConstrainedRegion);

region and tunes into every candidate. In the example of Figure 4, PBP produces
access and tuning time performances of 7 and 5 buckets, respectively.

While the PBP significantly reduces the number of dominance tests, it does
not provide the progressive characteristic when processing constrained skyline
queries. For example, in Table 2, data 35 is set to be a skyline point when
tuning bucket 35, however, it is not actually a skyline point. Next, we present our
observation on how we can design a progressive algorithm to process constrained
skyline queries.

3.4 Progressive Algorithm with Extended-DSI

A progressive algorithm for processing constrained skyline queries should be able
to effectively detect whether a data in a currently tuned bucket is a skyline point
or not, even if not every data point in the dataset has been found. This is not an
easy problem, since a data point can be either a skyline point or not depending
on the given constrained region.

We first present a naive solution with full dominating points (FDP). The FDP
of a data point p, denoted by p.fdp is defined as a set of data points, which dom-
inate p. In Figure 5, for example, the C(46).fdp is {E(18), B(21), D(35), A(43)}.
Given an arbitrary constrained region, p is always a skyline point, if and only if,
the constrained region includes p and does not include every data point in p.fdp.
In Figure 5, we illustrate two example constrained regions, CR1 and CR2. The
data point C is not a skyline point in the CR1, since there exists those points,
which dominate the C. In the CR2, the data point C is a skyline point, because
there are no such points, which dominates the C. Therefore, by checking the
FDP of a data point, it is easily done to test that the data point is whether a
skyline point or not.

Energy Efficient and Progressive Strategy 495

Fig. 5. An Example of Processing Constrained Skyline Query

Table 3. Running States of Progressive Point-Based Pruning Algorithm

Bucket Program Analyzer Candidates Skyline
(...) ∅ ∅

35 (35, 43, 46, \0, 57, ...) (18:\0) 35 35
57 (35, 43, 46, \0, 57, 15, 18, \0) 35 35
18 (35, 43, 46, \0, 57, 15, 18, 21) 35, 21 35
21 (35, 43, 46, 52, 57, 15, 18, 21) 35, 21 35, 21

To enhance the above solution, we propose an alternative method with min-
imized dominating points (MDP). In the MDP, all the unnecessary data points
for the progressive processing of skyline queries is removed from the PDP. The
MDP of a data point p, denoted by p.mdp, is defined as a set of data points,
which are included in p.fdp and do not dominate other data points in p.fdp. For
example, in Figure 5, the C.mdp is {B,A}, in which E and D are removed from
the C.pdp. Given an arbitrary constrained region, which contains p and does
not contain any points in p.mdp, the data p is always a skyline point because
there exist no such points that dominate p in the given constrained region. For
example, we can see that a data point C is a skyline point for any constrained
regions that include C and do not include both the B and A in Figure 5.

By embedding the MDP of a data point into the index structure, we can design
a progressive algorithm for processing constrained skyline queries. However, our
base index structure, DSI, has no slot to add the MDP. Therefore, we generalize
the DSI and propose an index structure, Extended-DSI, which has sufficient ad-
ditional space to store arbitrary information, called an appendix. This appendix
is attached to each of the frames in the DSI. In this way, the original DSI [12] is
an Extended-DSI with empty appendix. We show an example of the Extended-
DSI on the right side of Figure 5. Note that we only need to insert the orders of
the data points in p.mdp.

Finally, we propose the progressive point-based pruning (P-PBP) algorithm
specified in Algorithm 3. We describe the P-PBP with an example in Figure 5.
This example involves the processing of a constrained skyline query given the gray
constrained region. As the algorithm tunes the first bucket, 35, it immediately

496 J.W. Ha et al.

Algorithm 3. Progressive Point-Based Pruning Algorithm
Input: ConstrainedRegion; Output: Skyline;
Variable: bucket, newPoints, pAnalyzer, candidates;
01: Skyline = ∅;
02: bucket = initialProbe();
03: while (bucket != null)
04: if (bucket.order ∈ ConstrainedRegion)
05: if (every point in bucket.mdp /∈ ConstrainedRegion)
06: Skyline += bucket.data;
07: newPoints = getNewlyFoundPoints(pAnalyzer, bucket);
08: pAnalyzer = updateProgramAnalyzer(pAnalyzer, bucket);
09: for (order ∈ newPoints)
10: if (orderIsNewCandidate(order, candidates) == true)
11: candidates –= getDropedCandidates(candidates, order);
12: candidates += order ;
13: bucket = getNextBucket(pAnalyzer, candidates, ConstrainedRegion);

detects that the data in the bucket is a skyline point (lines 04-07). Note that the
P-PBP does not need to drop false selection in the Skyline, because every data in
the Skyline is guaranteed to be a skyline point. Since the appendix contains or-
ders (without pointers) of data points for the corresponding MDP, the algorithm
utilize them for pruning data points. As illustrated with (18:\0) in Table 3, the
appendix of bucket 35 is stored without a pointer. This information is also used in
the candidate tests in lines 09-12, and it will introduce another sequence of tuning
buckets and another list of pruned points compared to PBP algorithm. Therefore,
the tuning time performance of P-PBP, and generally, P-PBP performs better as
demonstrated in Section 4.2.

After tuning bucket 35, the next bucket to be tuned is bucket 57. Since the
given constrained region does not include any data points between 46 and 57,
the algorithm safely ignores the unknown data points between 46 and 57 (line
13). Note that this is also applied in the previous RBP and PBP algorithms in
line 8 and line 16, respectively.

4 Experimental Evaluation

4.1 Simulation Environment

To evaluate the proposed methods, we conducted a simulation by modeling a
server, a broadcast channel, and an arbitrary number of mobile clients. Basically,
our simulation environment is similar to that employed in [12]. Table 4 shows the
default and detailed simulation parameters. We generate the datasets syntheti-
cally from 2D to 10D. Each attribute is uniformly assigned in a [0, 1023] space,
which is similar to the indep dataset in [3]. ServerDBSize (number of buckets) is
set to 1,000 similar to that in [8] for a feasible simulation with data broadcasting
services (The server tend to keep the broadcast program as small as possible to
increase the overall performance of the access time.) We specify the size of the

Energy Efficient and Progressive Strategy 497

Table 4. Simulation Parameters

Parameters Contents (Default)
ServerDBSize (N) 1000

Dimension (D) 2 to 10
Constrained Ratio (rc) 1.0 to 0.5

Index Base (r) 2

Table 5. Analysis of Dataset

Dimension 2 3 4 5 6 7 8 9 10
Number of Skyline Points (rc = 1.0) 11 30 87 181 274 422 484 699 739
Number of Skyline Points (rc = 0.5) 7 20 20 15 12 9 4 3 1
Average Number of Points in FDP 245.0 124.7 62.4 30.9 15.1 7.5 4.1 1.7 1.2
Average Number of Points in MDP 5.0 12.0 16.1 14.7 10.3 6.2 3.7 1.6 1.1

skyline in the dataset in Table 5, because it has a clear relationship with the
performances of the proposed methods. Table 5 also demonstrates that the size
of MDP is quite smaller compared to the FDP. The object factor no is set to 1
in generating the Extended-DSI. In this setting, each bucket contains one frame,
and this directly provides the knowledge of how many index tables are needed to
process the query. The mobile clients set a constrained region to initiate query
processing with the parameter rc. When a clients set rc to 0.5, for example, the
attributes of the corresponding constrained region is set to [0, 511] for all D.
If rc is set to 1.o, then the client processes the original skyline queries. In the
experiments, we measure the tuning time and access time [8] and the number
of dominance test. The tuning time and the number of dominance tests imply
the energy consumption originated from the communication and computational
costs, respectively.

As well as the proposed algorithms, i.e., RBP, PBP, and P-PBP, we evaluate
two additional algorithms, the Naive and Optimal, to acquire baseline perfor-
mances. The Naive merely tunes every bucket in a broadcast cycle, conducting
consecutive dominance tests, and it does not utilize the benefit of Sweep SFC for
the dominance tests. On the other hand, Optimal is the ideal one. The Optimal
knows every orders of the skyline points before processing, and it merely per-
forms consecutive calls to getNextBucket(pAnalyzer, Skyline.orders) to acquire
the index tables towards the given orders of the skyline points and to tune in
the bucket containing the skyline points.

4.2 Experimental Results

We illustrate the tuning time performance in Figures 6 and 7. The tuning time of
Naive is straightforward, as expected. The performance of Optimal has a strong
relationship with the number of skyline points in the dataset. Optimal tunes
buckets: 1) to acquire the actual skyline points; 2) to get the index tables to-
wards the given orders of the skyline points. The difference in the tuning time

498 J.W. Ha et al.

Fig. 6. Tuning Time (rc = 1.0) Fig. 7. Tuning Time (rc = 0.5)

Fig. 8. No. Dominance Tests (rc = 1.0) Fig. 9. No. Dominance Tests (rc = 0.5)

performances between Optimal and the proposed algorithms originates from tun-
ing more buckets in order to: 3) resolve unknown data points during processing;
4) acquire candidates, which are not actually skyline points. As D increases,
the number of tuning buckets for 3) and 4) is reduced, therefore, the differences
in the performance of the proposed algorithms becomes smaller compared with
the optimal algorithm. Note that the performance of P-PBP is close to that of
Optimal beyond 6D. The difference between Figures 6 and 7 originates from the
volume of the constrained region set by rc. When the constrained region does
not include a data point, the proposed algorithms can safely ignore tuning the
corresponding bucket for 3). Therefore, the tuning time performance gets better
as rc decreased.

Figures 8 and 9 illustrate the number of dominance tests during processing,
which imply the energy consumptions for CPU operations. As discussed in sec-
tion 3.2, RBP conducts a huge amount of dominance tests, due to its inefficiency
of region-based pruning. The energy consumption of CPU operations is known to
be less than that of the communication (i.e. tuning buckets), however, this huge
amount of computation can reduce the battery life compared to that obtained
with the alternative PBP algorithm. Note that even Naive performs moderately
well compared to the RBP algorithm. Basically, the algorithms perform a larger
number of dominance tests when the dataset has more skyline points and the

Energy Efficient and Progressive Strategy 499

Fig. 10. Access Time (rc = 1.0) Fig. 11. Access Time (rc = 0.5)

constrained region includes more data points. The difference in performance be-
tween Naive and PBP algorithms originates from: 5) the characteristics of the
Sweep SFC; 6) the false selections of candidates. The difference in performance
between PBP and P-PBP arises from the MDP, which gives more opportunity
for pruning data points. In Figure 9, the performance in 4D is better that that
in 3D, although both datasets has the same number of skyline points. This is
because of the fact that the impact of 6) is larger for 3D than for 4D, since the
constrained region in 3D includes more data points than that in 4D.

Figures 10 and 11 illustrate the access time performance of the proposed
methods. To process the original skyline query, the proposed algorithms should
resolve every unknown data point in a broadcast cycle to guarantee the effec-
tiveness of processing. Therefore, the access time is close to the length of the
broadcast cycle in Figure 10. However, the proposed algorithms do not produce
an access time of more than a broadcast cycle, thus satisfying the second re-
quirements in the problem statement. Note that even Optimal also produces
an access time performance close to the length of the broadcast cycle beyond
5D, since the number of skyline points is large. In Figure 11, the access time
steadily decreases as the constrained regions get smaller. This is because of the
fact that the proposed algorithms only need to discover data points included in
the constrained regions.

5 Conclusions

In this paper, we propose skyline on air as an energy efficient and progressive
strategy for processing skyline queries for current data broadcasting services. We
design an efficient algorithm in terms of the tuning time, based on the Sweep
space-filling curve in DSI. With an efficient pruning method and the identified
benefits of the Sweep SFC, we provide more opportunities for mobile clients to
reduce their energy consumption by significantly reducing the number of domi-
nance tests required for computing the skyline. Further, we propose Extended-
DSI and the corresponding progressive point-based pruning algorithm, which
enables the skyline on air to be a progressive strategy. The experimental evalu-
ations demonstrate that the performance of proposed methods approaches that

500 J.W. Ha et al.

of the optimal one in terms of the tuning time as the dimension of the dataset
increases. In future works, we plan to study the impact of transmission errors
on the processing of skyline queries.

Acknowledgements. This study was supported by the Seoul Research and
Business Development Program (10561), Seoul, Korea.

References

1. Digital broadcasting and 1seg, http://www.dpa.or.jp/
2. Terrestrial digital multimedia broadcasting (T-DMB), http://www.t-dmb.org/
3. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp.

421–430 (2001)
4. Chenyang, L., Hong, Z., Nengchao, W.: Fast n-dimensional hilbert mapping algo-

rithm. In: ICCSA, pp. 507–513 (2008)
5. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with presorting. In: ICDE,

pp. 717–816 (2003)
6. Gotsman, C., Lindenbaum, M.: On the metric properties of discrete space-filling

curves. IEEE Trans Image Process 5(5), 794–797 (1996)
7. Huang, Z., Jensen, C.S., Lu, H., Ooi, B.C.: Skyline queries against mobile

lightweight devices in manets. In: ICDE, p. 66 (2006)
8. Imielinski, T., Viswanathan, S., Badrinath, B.R.: Data on air: Organization and

access. IEEE Trans. Knowl. Data Eng. 9(3), 353–372 (1997)
9. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm

for skyline queries. In: VLDB, pp. 275–286 (2002)
10. Kwon, Y., Choi, J.H., Chung, Y.D., Lee, S.: In-network processing for skyline

queries in sensor networks. IEICE Transactions 90-B(12), 3452–3459 (2007)
11. Lee, K.C.K., Zheng, B., Li, H., Lee, W.C.: Approaching the skyline in z order. In:

VLDB, pp. 279–290 (2007)
12. Lee, W.C., Zheng, B.: Dsi: A fully distributed spatial index for location-based

wireless broadcast services. In: ICDCS, pp. 349–358 (2005)
13. Lin, X., Yuan, Y., Wang, W., Lu, H.: Stabbing the sky: Efficient skyline computa-

tion over sliding windows. In: ICDE, pp. 502–513 (2005)
14. Liu, X., Schrack, G.F.: Encoding and decoding the hilbert order. Softw., Pract.

Exper. 26(12), 1335–1346 (1996)
15. Lo, E., Yip, K.Y., Lin, K.I., Cheung, D.W.: Progressive skylining over web-

accessible databases. Data Knowl. Eng. 57(2), 122–147 (2006)
16. Mokbel, M.F., Aref, W.G., Kamel, I.: Analysis of multi-dimensional space-filling

curves. GeoInformatica 7(3), 179–209 (2003)
17. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm

for skyline queries. In: SIGMOD Conference, pp. 467–478 (2003)
18. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient progressive skyline computation. In:

VLDB, pp. 301–310 (2001)
19. Tao, Y., Papadias, D.: Maintaining sliding window skylines on data streams. IEEE

Trans. Knowl. Data Eng. 18(2), 377–391 (2006)
20. Zheng, B., Lee, W.C., Lee, D.L.: Spatial index on air. In: PerCom, pp. 297–304

(2003)

http://www.dpa.or.jp/
http://www.t-dmb.org/

RoK: Roll-Up with the K-Means Clustering
Method for Recommending OLAP Queries

Fadila Bentayeb and Cécile Favre

Université de Lyon (ERIC - Lyon 2)
5 av. Pierre Mendès-France
69676 Bron Cedex, France

bentayeb@eric.univ-lyon2.fr,
cecile.favre@univ-lyon2.fr

http://eric.univ-lyon2.fr

Abstract. Dimension hierarchies represent a substantial part of the
data warehouse model. Indeed they allow decision makers to examine
data at different levels of detail with On-Line Analytical Processing
(OLAP) operators such as drill-down and roll-up. The granularity lev-
els which compose a dimension hierarchy are usually fixed during the
design step of the data warehouse, according to the identified analy-
sis needs of the users. However, in practice, the needs of users may
evolve and grow in time. Hence, to take into account the users’ anal-
ysis evolution into the data warehouse, we propose to integrate person-
alization techniques within the OLAP process. We propose two kinds
of OLAP personalization in the data warehouse: (1) adaptation and
(2) recommendation.

Adaptation allows users to express their own needs in terms of ag-
gregation rules defined from a child level (existing level) to a parent
level (new level). The system will adapt itself by including the new hi-
erarchy level into the data warehouse schema. For recommending new
OLAP queries, we provide a new OLAP operator based on the K-means
method. Users are asked to choose K-means parameters following their
preferences about the obtained clusters which may form a new granu-
larity level in the considered dimension hierarchy. We use the K-means
clustering method in order to highlight aggregates semantically richer
than those provided by classical OLAP operators. In both adaptation
and recommendation techniques, the new data warehouse schema allows
new and more elaborated OLAP queries.

Our approach for OLAP personalization is implemented within Oracle
10 g as a prototype which allows the creation of new granularity levels
in dimension hierachies of the data warehouse. Moreover, we carried out
some experiments which validate the relevance of our approach.

Keywords: OLAP, personalization, adaptative system, recommenda-
tion, schema evolution, clustering, K-means, analysis level, dimension
hierarchy.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 501–515, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://eric.univ-lyon2.fr

502 F. Bentayeb and C. Favre

1 Introduction

Traditional databases aim at data management, i.e., they help organizing, struc-
turing and querying data. Data warehouses have a very different vocation: ana-
lyzing data by exploiting specific multidimensional models (star, snowflake and
constellation schemas). Data are organized around indicators called measures,
and analysis axes called dimensions. Dimension attributes can form a hierarchy
which compose various granularity levels. They allow users (decision makers) to
examine data at different levels of detail by using On-Line Analytical Processing
(OLAP) tools. Indeed, OLAP allows users to acquire a dynamic manipulation of
the data contained in the data warehouse, in particular through hierarchies that
provide navigational structures to get summarized or detailed data by rolling up
or drilling down.

The main objective of data warehouses is to facilitate decision making. In order
to satisfy the whole analysis needs of the majority of the users, a promising issue
consists in considering a personalization process for OLAP analysis. By personal-
ization, we mean considering the user to be in the center of the decision system,
taking into account his or her own preferences, needs, etc. Research concerning
personalization constitutes an emerging topic for the data warehouse domain [1].

In a previous work [2], we proposed an original approach to allow schema
evolution in data warehouses independently from data sources. In this paper, we
extend this approach to support users’ analyses personalization in an interactive
way following two main techniques, namely adaptation and recommendation. We
propose then a general framework to integrate OLAP personalization in data
warehouses. The originality of our framework consists in including additional
information and/or knowledge into the data warehouse for further analysis. The
solution we propose is implemented by creating new dimension hierarchies into
the data warehouse model in order to get new OLAP queries.

In the adaptation technique, users define their additional information under
the form of aggregation rules from a child level (existing level) to a parent level
(new level). Then, the system adapts to the data warehouse schema by creating
the new granularity level in a dimension hierarchy which allows the user to get
his/her own personalized analysis.

In the recommendation technique, classical tools are designed to help users
to find items within a given domain, according to their own preferences (user
profile). The recommendation technique we propose is slightly different from
classical ones since we use data mining techniques to extract relevant clusters.
These latter possibly represent significant and more elaborated OLAP queries.
Hence, users can fix the algorithm parameters in an interactive way until the
suggestion of the system coincides with the users’ objectives, validating, there-
fore, the suggestion. We define more precisely a new Roll-up operator based on
K-means (RoK) method that creates a new (parent) level to which, a child level
rolls up in a dimension hierarchy. Our RoK operator is indeed different from
classical OLAP operators since it combines data mining and OLAP tools.

To integrate efficiently our proposition in the OLAP process, we implemented
the K-means method inside the Oracle 10g Relational DataBase Management

RoK: Roll-Up with the K-Means Clustering Method 503

System (RDBMS) under the form of a stored procedure. This allows treating
efficiently large data sets directly inside the data warehouse, like an OLAP oper-
ator. In addition, we carried out some experiments which validate the relevance
of our approach.

The rest of this paper is organized as follows. In Section 2, we present related
work regarding personalization, combining OLAP and data mining and schema
evolution in data warehouses. Then, in Section 3, we present our approach for
personalized OLAP analysis in data warehouses. To illustrate our purpose, we
provide an example from a real case study in Section 4. Section 5 details our data-
mining based approach to recommend new OLAP queries and presents the data
warehouse model evolution which supports our OLAP personalization approach.
Section 6 presents the experiments we performed to validate our approach. We
finally conclude this paper and provide some research perspectives in Section 7.

2 Related Work

Personalization in data warehouses is closely related to various research areas
that we evoke in this section.

2.1 Personalization

Personalization has been studied since many years and constitutes always a hot
topic in domains such as information retrieval (IR), databases (DB) and human-
computer interaction (HCI). The general idea is to provide pertinent answers/
adapted interfaces to the user according to his/her individual preferences [3].
Personalization is usually based on the concept of profile [4]. This profile is used
to model the user himself, his/her needs, the group he/she belongs to and so on.

This profile is not defined in a standard way. In the context of HCI, the profile
contains information that allows the adaptation of the interface according to
preferences [5]. In the context of IR, the profile can be represented as a set of
key words with ponderation [6] or a set of utility functions to express in a relative
way domains of interest [7]. In the context of DB, the profile can contain the
usual queries of a user i.e. usual predicates, or order in these predicates [8,9].
Thus, the system exploits these predicates to enrich queries and to provide more
pertinent results.

Since data warehouses are characterized by voluminous data and are based on
a user-centered analysis process, including personalization into the data ware-
housing process becomes a new research issue [1]. Works in this domain are in-
spired from those proposed for personalization in IR, DB, and HCI. For example,
selecting data for visualization, based on users’ preferences [10] or facilitating the
navigation into the data cube [11,12], or recommending some possible analyses
according to navigation of other users [13].

2.2 Combining OLAP and Data Mining

OLAP operators have a powerful ability to organize and structure data allowing
exploration and navigation into aggregated data. Data mining techniques are

504 F. Bentayeb and C. Favre

known for their descriptive and predictive power to discover knowledge from
data. Thus OLAP and data mining are used to solve different kinds of analytic
problems: OLAP provides summary data and generates rich calculations while
data mining discovers hidden patterns in data. OLAP and data mining can
complement each other to achieve, for example, more elaborated analysis.

In the context of data warehouses and OLAP, some data mining techniques
can be used as aggregation operators. Thus many works are now focused on pro-
viding more complex operators to take advantages from the analysis capabilities
of the data mining [14,15]. In our approach, we are going beyond these propos-
als by exploiting data mining not only at the final stage as OLAP operators
but also to consider the data warehouse evolution and take into account users’
preferences.

2.3 Data Warehouse Model Evolution

During OLAP analysis, business users often need to explore fact trends over
the time dimension. This requires time-variant and non-volatile data. Thus, di-
mension updates and schema evolutions are logically prohibited because they
can induce data loss or erroneous results. To deal with this problem, two cate-
gories of research emerged. The first category recommends extending the mul-
tidimensional algebra to update the model with a set of schema evolution
operators [16,17] while the second category proposes temporal multidimensional
data models [18,19]. These works manage and keep the evolutions history by
time-stamping relations.

3 Personalization in Data Warehouses

3.1 General Approach

Generally, to carry out OLAP analysis, the user generates a data cube by select-
ing dimension level(s) and measure(s) which will satisfy his/her needs. Then, the
user explores the obtained cube to detect similarities between data facts or di-
mension instances. For that, he/she explores different levels within a dimension.
To help the user in this step, we propose to personalize his/her analysis accord-
ing to his(her) individual needs and preferences. In this context, we provide a
general framework for OLAP personalization shown in Figure 1.

To achieve OLAP personalization, our key idea consists in integrating new
information or knowledge inside the data warehouse. Hence, we consider two
kinds of knowledge: (1) explicit knowledge expressed by users themselves, and
(2) knowledge extracted from the data.

In our framework, we identify four main processes: (1) knowledge acquisition
which requires either explicit information or extracted information from the data
using data mining techniques, (2) knowledge integration into the data warehouse,
(3) data warehouse schema evolution, and (4) OLAP queries personalization.

In the following, we present our approach for OLAP personalization which
is composed of two techniques, namely adaptation and recommendation. Each
technique respects the four steps of our framework mentioned above.

RoK: Roll-Up with the K-Means Clustering Method 505

Fig. 1. Framework for OLAP personalization

3.2 Adaptation-Based Personalization

Our adaptative data warehouse system aims to personalize analysis by integrat-
ing users’s knowledge into the data warehouse, providing an answer to individual
analysis needs. The user is asked to define his/her own knowledge in terms of
if-then rules representing aggregations from a child level to a parent level. These
rules are used to create a new granularity level in the considered dimension hier-
archy. The if-clause, indeed, determines conditions on the attributes of the child
level for grouping instances together forming a partition. The then-clause de-
termines aggregates of the parent level, each one corresponds to a subset of the
partition. In this case, the system is adaptative since it adapts itself by evolving
the data warehouse schema to take into account new user’s information.

3.3 Recommendation-Based Personalization

Classical OLAP operators are designed to create intuitive aggregates. However,
to help users to find non expected and relevant aggregates expressing deep rela-
tions within a data warehouse, we propose to combine data mining techniques
and OLAP. We choose to use the K-means clustering method, because of the
format of its result, which is defined as a partition. The user is asked to fix
the algorithms’ parameters in an interactive way for obtaining relevant clusters.
Then, the system recommends to the user the obtained clusters. If these latter
are validated by the user, they are integrated into the data warehouse and a new
hierarchy level is then created, allowing new OLAP queries which are proposed
to the user.

To create a new level in a dimension hierarchy, we consider only classical
hierarchies in both adaptation and recommendation techniques. In other words,
each child occurrence in a child level is linked to a unique parent occurrence in

506 F. Bentayeb and C. Favre

Fig. 2. Creation of a new granularity level

a parent level but each parent occurence can be associated with several child
occurrences as showed in Figure 2.

4 Illustrative Example

To illustrate our approach for OLAP personalization in data warehouses, we use
the example of the LCL company, which is a french bank we are collaborating
with. We focus on an extract of the data warehouse concerning the manage-
ment of accounts. We consider two measures which are the Net Banking Income
(NBI) and the COST. The NBI is the profit obtained from the management of cus-
tomers’ accounts. As its name suggests, the second measure corresponds to the
cost of customers’ accounts. These measures are observed according to several
dimensions: CUSTOMER, AGENCY and YEAR (Figure 3a). The dimension AGENCY is
organized as a hierarchy which defines the geographical commercial structure
of LCL, i.e. AGENCY is grouped into COMMERCIAL UNIT, which is grouped into
DIRECTION.

Now, let us take the case of the person in charge of student products in the
LCL french bank. He/she knows that there are three types of agencies: “student”
for agencies which gather only student accounts, “foreigner” for agencies whose
customers do not live in France, and “classical” for other agencies. However, this
information is not stored in the data warehouse and therefore it cannot be used
to carry out analysis about “student” agencies. Our adaptation-based personal-
ization approach consists then in allowing the user to integrate his specific knowl-
edge into the data warehouse. Then the system adapts itself according to this
new user’s knowledge by generating a new granularity level: AGENCIES GROUP
that corresponds to the desired level in the AGENCY dimension (Figure 3b).

Fig. 3. a) Initial LCL data warehouse. b) Personalized LCL data warehouse.

RoK: Roll-Up with the K-Means Clustering Method 507

Suppose now that the user wants to group agencies together according to the
population of the city where the agency is located (Population) and the number
of customers (CustNumber) but he/she doesn’t kwow really how. To achieve
this goal, our recommendation-based personalization approach consists then in
extracting knowledge automatically from the data warehouse to provide possibly
relevant clusters of agencies by using an unsupervised learning method, namely
K-means. The system is then in charge of recommending to the user a new
granularity level AGENCIES GROUP (Figure 3b) based on the obtained agencies
clusters. The AGENCIES GROUP granularity level allows more elaborated OLAP
queries. For instance, one may observe the evolution of ACCOUNTS MANAGEMENT
(NBI) by CUSTOMER (Segmentation), YEAR (Year) and AGENCIES GROUP (Agen-
ciesGroupName).

In the following, we detail our approach to recommend new OLAP queries
based on the K-means method.

5 Framework for Recommending OLAP Queries

5.1 Basic Definitions

A data warehouse is a multidimensional database that can be defined as follows:
μ = (δ, ϕ), where δ is a set of dimensions and ϕ is a set of facts [17].

A dimension schema is a tuple D = (L,#) where L is a finite set of levels
which contains a distinguished level named all, such that dom(all) = {all} and
is a transitive and reflexive relation over the elements of L. The relation
contains a unique bottom level called lbottom and a unique top level called all.

L = {lbottom, ..., l, ..., all | ∀ l, lbottom # l # all}
Each level l ∈ L is associated with a set of values dom(l). For each pair of

levels l and l′ such that l # l′, there exists a roll-up function f which is a partial
function so that:

f l′
l : dom(l) −→ dom(l′)

A fact table schema F is defined as follows: F = (I,M) where I is a set of
dimension identifiers and M is a set of measures. A fact table instance is a
tuple where the set of values for each identifier is unique.

To create data cubes, we use the CUBE operator [20] which is defined as
follows: for a given fact table F = (I = {l1 ∈ D1, ..., lp ∈ Dp} ,M), a set of levels
GL =

{
l′1 ∈ D1, ..., l

′
p ∈ Dp | li # l′i ∀i = 1..p

}
, and a set of measures m with

m ⊂ M , the operation CUBE(F,GL,m) gives a new fact table F ′ = (GL,m′)

where m′ is the result of aggregation (with roll-up functions f l′1
l1
, ..., f

l′p
lp

) of the
set of measures m from I to GL.

5.2 K-Means

K-means is known as a partitional clustering method that allows to classify a
given data set X through k clusters fixed a priori [21,22]. The main idea is to

508 F. Bentayeb and C. Favre

define k centroids, one for each cluster, and then assign each point to one of the
k clusters so as to minimize a measure of dispersion within the clusters. The
algorithm is composed of the following steps:

1. Place k initial points into the space represented by the data set X;
2. Assign each object xi to the group that has the closest centroid cj (the prox-

imity is often evaluated with the euclidian metric);
3. Recalculate the positions of the k centroids when all objects have been as-

signed ;
4. Repeat Steps 2 and 3 until the centroids no longer move.

The best grouping is the partition of the data set X that minimizes the sum of
squares of distances between data and the corresponding cluster centroid.

We chose the K-means method for the following reasons: (1) its result format
which is a partition that corresponds to the building process of the aggregation
level in a dimension hierarchy, and (2) its low and linear algorithmic complex-
ity which is crucial in the context of OLAP to provide the user with quick
results.

5.3 Formalization

The K-means method enables us to classify instances of a level l, either on its
own attributes, or on measure attributes in the fact table of the data warehouse.
We exploit then the K-means clustering results to create a new level lnew and a
roll-up function which relates instances of the child level l with the domain of
the parent level lnew.

Roll-up with Generalize operator. An operator called Generalize is proposed
in [17]. This operator creates a new level lnew, to which a pre-existent level
l rolls up. A function f must be defined from the instance set of l, to the
domain of lnew. We can summarize the formal definition of this operator as
follows: given a dimension D = (L = {lbottom, ..., l, ..., all} ,#), two levels
l ∈ L, lnew /∈ L and a function f lnew

l : instanceSet(l) −→ dom(lnew).
Generalize(D, l, lnew, f

lnew

l) is a new dimension D′ = (L′,#′) where
L′ = L ∪ {lnew} and #′=# ∪{(l → lnew), (lnew → All)}, according to the
roll-up function f lnew

l .

Example. Consider the dimension AGENCY (Figure 3) and the roll-up function:

fPOTENTIAL GROUP
AGENCY = ((Charpennes, Big), ..., (Aubenas, Small), ..., (Lyon La

Doua, Average), ...).

Then, Generalize(AGENCY, AGENCY, POTENTIAL GROUP, fPOTENTIAL GROUP
AGENCY)

adds a new level called POTENTIAL GROUP in the AGENCY dimension.
Hence, AGENCY → POTENTIAL GROUP constitutes another hierarchy for the

AGENCY dimension.

RoK: Roll-Up with the K-Means Clustering Method 509

Roll-up with RoK operator. In our case, the f lnew

l function is represented by
our “RoK” (Roll-up with K-means) operator. Assume a positive integer k, a
population X = {x1, x2, ..., xn} composed by n instances and a set of k classes
C = {C1, ..., Ck}. By using the K-means algorithm described in section 5.2,
RoK(X, k) calculates the set C = {c1, ..., ck | ∀i = 1..k, ci = barycenter(Ci)}
and returns the roll-up function:

f c
x = {(xj → Ci) |∀j = 1..n and ∀m = 1..k, dist(xj , ci) ≤ dist(xj , cm)}

Example. Let X = {x1 = 2, x2 = 4, x3 = 6, x4 = 20, x5 = 26} and C = {C1, C2}.
RoK(X, 2) returns the set C = {c1 = 4, c2 = 23} with the roll-up function
f c

x = {(x1 → C1), (x2 → C1), (x3 → C1), (x4 → C2), (x5 → C2)}
Discussion. Comparing with the Generalize operator, our RoK operator gener-
ates automatically the new roll-up function. Our RoK operator is then more than
a conceptual operator and provides a way to deal not only with the structure of
the hierarchy, but also with the data of this hierarchy.

5.4 Algorithm

We present in the following the input parameters and the different steps of the
personalization algorithm for the recommendation system.

– A dimension D = (L,#), a level l ∈ L, a set of measure m ∈M (if required),
– A level name lnew /∈ L,
– A positive integer k ≥ 2 which will be the modality number of lnew,
– A variable dataSource that can take two values: ‘F’ (for fact) or ‘D’ (for

dimension).

Step 1. Construction of the learning set Xl: This first step generates a learning
set Xl from the instances of the pre-existing analysis level l. We consider
a variable called dataSource. If the value of the variable equals to ‘D’, the
population Xl is described by a part of attributes of the dimension D chosen by
the user. Otherwise, Xl is generated by executing the operation CUBE(F, l,m)
whose parameters are also fixed by the user.

Example. Let us consider the two examples presented previously about the
creation of the POTENTIAL GROUP and the COST GROUP levels.

Let us consider that one user needs to create a new level POTENTIAL
GROUP from the AGENCY level. If the dataSource parameter equals to ‘D’,
each agency will be described by a part of its descriptors in the data warehouse
chosen by the user. For instance, the user can choose the CustNumber and the
Population attributes for the reasons presented before (Figure 4a).

Now, let us suppose that the user needs to create a new level COST GROUP
from the CUSTOMER level. If the dataSource parameter equals to ‘F’, our
algorithm performs the operator CUBE (ACCOUNTS MANAGEMENT, CUS-
TOMER, COST) according to the choice of the user. Thus, we obtain the learn-
ing set described in Figure 4b.

510 F. Bentayeb and C. Favre

Fig. 4. a) The AGENCY analysis level described by a part of its own attributes. b) The
CUSTOMER analysis level described by a measure.

Step 2. Clustering: During this step, the algorithm applies the RoK operator to
the learning set Xl. If, for example, the parameter k equals to 2, the operation
RoK on the Figure 4a gives the set C = {C1(82.5; 9000), C2(7; 140)} and the roll-
up function:

fPOTENTIAL GROUP
AGENCY =((Charpennes; C1), (Aubenas; C2),

(Lyon La Doua; C1),(Annonay; C2)).

Step 3. Creation of the new level: This step implements the new analysis level
lnew in the data warehouse model. It is done after the validation of the user.
To do this operation, our algorithm performs a Generalize operation on the
dimension D, from the level l by using the roll-up function f lnew

l generated
during the previous step.

Example. To materialize the POTENTIAL GROUP level in the AGENCY dimension,
our algorithm performs the operator Generalize:

Generalize(AGENCY, AGENCY, POTENTIAL GROUP, fPOTENTIAL GROUP
AGENCY).

5.5 Feature Selection

To apply the K-means clustering method onto the data warehouse, we propose
two strategies for the feature selection. The first one uses directly attributes that
describe the level l to be classified while the second one uses measure attributes
on the fact table aggregated over the level l. We are going to illustrate these two
proposals with examples extracted from the LCL case study presented previously.

Proposal 1. K-means based on the dimension level features. Let us consider
the next analysis objective: Is it necessary to close agencies which make little
income? And is it necessary to open new agencies in places which make a lot of
income?

To try to answer these questions, the user is going to study the NBI through
the AGENCY dimension (Figure 3). To improve his/her analysis, the user can feel
the need to aggregate agencies according to their potential. For that purpose,
our operator allows the user to classify instances of the AGENCY level according
to the population of the city where the agency is located in and the customer
number of the agency. The objective is to create a new level which groups the
instances of the AGENCY level in small, average or big potential (Figure 5).

RoK: Roll-Up with the K-Means Clustering Method 511

Fig. 5. LCL data warehouse model after addition of “COST GROUP” and
“POTENTIAL GROUP” levels

Proposal 2. K-means based on data fact measures. Assume that the analysis
objective of the user is to identify a customer grouping according to the costs.
The idea is that a customer can cost much compared to an average cost but also
bring much more than an average and vice versa. Thus it would be interesting to
analyse the NBI according to groups of customer costs. With our proposal, the
user can concretize this need with a new level in the CUSTOMER dimension. For
that, our operator will summarize COST measure on the CUSTOMER level of the
dimension. K-means is then performed to the result of this aggregation operation.
After this clustering, the creation of the new level allows analysis according to
groups of costs (Figure 5).

5.6 Data Warehouses Model Evolution for OLAP Personalization

Before the effective creation of the level, a validation phase by the user is re-
quired, since we are in a context of recommendation. The validation is given
by the user only if the proposed level is an answer to his/her analysis needs.
Note that, this personalization process provides the user with expressing his/her
needs in terms of giving the value of the number of classes he/she wants and
specifying the attributes involved in the K-means process.

Creating new granularity levels does not affect the integrity of existing data.
The data warehouse is updated, allowing to share the new analysis possibilities
with all decision makers, without requiring versions management.

6 Implementation and Experiments

We developped our approach inside the Oracle 10g RDBMS. Thus, we im-
plemented the k-prototypes algorithm by using PL/SQL stored procedures.
K-prototypes is a variant of the K-means method allowing large datasets clus-
tering with mixed numeric and categorical values [23]. In our implementation,
datasets are stored within a relational table. After the clustering process, the

512 F. Bentayeb and C. Favre

YEAR
PK_YEAR
YEAR QUARTER

PK_QUARTER SALES COUNTRY
QUARTER MONTH PK_SALES PK_COUNTRY
YEAR PK_MONTH WEEK CITY COUNTRY

MONTH PRODUCT PK_CITY
QUARTER WEEK STORE CITY

PK_WEEK COUNTRY
WEEK SALESINCOME STORE AREA
MONTH SOLDQUANTITY PK_STORE POPULATION

STORE
CITY

PRODUCT
PK_PRODUCT
PRODUCT
CATEGORY
PRICE

CATEGORY
PK_CATEGORY
CATEGORY
FAMILY

FAMILY
PK_FAMILY
FAMILY

Fig. 6. Schema of the “Emode” data warehouse

“Product” level

Product Price Sales C1 C2 Average priceRangeClass

Scenario1: “price range” analysis level

Scenario2: “products according to the sales” analysis level

RangeDescriptionClass

products

products

products

product

Fig. 7. Results of the two scenarios

model evolution is performed by using SQL operators: the new level is created
with the CREATE TABLE command and the roll-up function is established
with a primary key/foreign key association between the new and the existing
levels.

We carried out some experiments under the “Emode” data warehouse. Emode
is an e-trade data warehouse which is used as a demonstration database for the
tool “BusinessObject 5.1.6”. We standardized the schema of this data warehouse
compared to the diagram of Figure 6.

The sales fact table stores 89200 records and the article level of the product
dimension contains 213 instances. According to our two proposals for “feature
selection”, we envisaged two scenarios:

RoK: Roll-Up with the K-Means Clustering Method 513

Fig. 8. Analysis results of the two scenarios

1. Creation of an article price grouping level which classifies the 213 articles
according to their price,

2. Creation of another level article sales grouping which groups the articles
according to the sales income.

Figure 7 shows the results of the two scenarios.
We created the article price grouping level with three possible values. With

this level, we can analyse the influence of the prices on sales. Figure 8 shows
the quantity sold for the 3 price categories. For instance, we can conclude that
the products of the lower price (category 3) are those that are sold in larger
quantities.

For the article sales grouping level, we obtain a level allowing to gather articles
into four classes of sales income. Figure 8 shows the quantity sold according to
the sales income information. Thus we can for instance affirm that the products
that are the subject of the best sales (category 2) are not sold in the lowest
quantities. Such a created level allows to confirm or deny the 80-20 rule.

We mention that a drill down allows to know more about the products com-
posing the various created classes.

7 Conclusion and Perspectives

In this paper, we proposed a general framework to integrate knowlegde inside
a data warehouse in order to allow OLAP personalization. Our personalization
approach is supported by the data warehouse model evolution, independently of
the data sources, and it provides to the users new analysis possibilities.

We exploit two types of knowledge: explicit knowledge which is directly ex-
pressed by users and implicit knowledge which is extracted from the data. In the
first case, the system adapts itself by creating a new granularity level according

514 F. Bentayeb and C. Favre

to the user’s needs. In the second case, the system recommends to the user a new
analysis axis based on automatically extracted clusters from the data warehouse.
If the user validates the proposition, a new granularity level is creatad in the
dimension hierarchy.

Our recommendation system is based on a definition of a new OLAP operator,
called RoK based on a combination between the K-means clustering method
and a classical roll-up operator. RoK operator computes significant and more
elaborated OLAP queries than the classical ones.

To validate our approach for OLAP personalization, we developed a proto-
type within the Oracle 10g RDBMS and carried out some experiments which
showed the relevance of our personalized data warehouse system. We mainly
implemented the RoK operator in the form of a stored procedure using PL/SQL
language.

This work opens several promising issues and presents new challenges in the
domain of personalization in data warehouses. Firstly, instead of recommending
to the user to create only one hierarchy level, we plan to generalize our recom-
mendation approach to be able to recommend a fully dimension hierarchy by
using for example the Agglomerative Hierarchical Clustering. The user will be
asked to choose a number of classes after the learning process. In this case, the
number of classes is not an input parameter. Secondly, we plan to refine the
recommendation process. A promising issue consists in combining data mining
and the concept of user profile for personalization. Hence, we suggest to consider
users’ analysis sessions which are composed of a set of queries. For each user pro-
file, our key idea is to use frequent itemset mining methods for extracting the
frequently asked queries. These latter are recommended to the user according to
his/her profile. Finally, as a consequence of our data warehouse personalization
and evolution approach, it is interesting to evaluate the performance of material-
ized views maintenance. In other words, once a new level is created, how existing
materialized views are updated and what is the cost?

References

1. Rizzi, S.: OLAP Preferences: A Research Agenda. In: DOLAP 2007, pp. 99–100
(2007)

2. Bentayeb, F., Favre, C., Boussaid, O.: A User-driven Data Warehouse Evolu-
tion Approach for Concurrent Personalized Analysis Needs. Journal of Integrated
Computer-Aided Engineering 15(1), 21–36 (2008)

3. Domshlak, C., Joachims, T.: Efficient and Non-Parametric Reasoning over User
Preferences. User Modeling and User-Adapted Interaction 17(1-2), 41–69 (2007)

4. Korfhage, R.R.: Information storage and retrieval. John Wiley & Sons, Inc., Chich-
ester (1997)

5. Manber, U., Patel, A., Robison, J.: Experience with personalization of yahoo! Com-
munications of the ACM 43(8), 35–39 (2000)

6. Pretschner, A., Gauch, S.: Ontology Based Personalized Search. In: ICTAI 1999,
Chicago, Illinois, USA, pp. 391–398 (1999)

7. Cherniack, M., Galvez, E.F., Franklin, M.J., Zdonik, S.B.: Profile-Driven Cache
Management. In: ICDE 2003, Bangalore, India, pp. 645–656 (2003)

RoK: Roll-Up with the K-Means Clustering Method 515

8. Chomicki, J.: Preference Formulas in Relational Queries. ACM Transactions on
Database Systems 28(4), 427–466 (2003)

9. Koutrika, G., Ioannidis, Y.: Personalized Queries under a Generalized Preference
Model. In: ICDE 2005, Tokyo, Japan, pp. 841–852 (2005)

10. Bellatreche, L., Giacometti, A., Marcel, P., Mouloudi, H., Laurent, D.: A Person-
alization Framework for OLAP Queries. In: DOLAP 2005, pp. 9–18 (2005)

11. Ravat, F., Teste, O.: Personalization and OLAP Databases. Annals of Information
Systems, New Trends in Data Warehousing and Data Analysis (2008)

12. Jerbi, H., Ravat, F., Teste, O., Zurfluh, G.: Management of context-aware prefer-
ences in multidimensional databases. In: ICDIM 2008, pp. 669–675 (2008)

13. Giacometti, A., Marcel, P., Negre, E.: A Framework for Recommending OLAP
Queries. In: DOLAP 2008, pp. 73–80 (2008)

14. BenMessaoud, R., Boussaid, O., Rabaseda, S.: A new OLAP aggregation based on
the AHC technique. In: DOLAP 2004, pp. 65–72 (2004)

15. Kaya, M.A., Alhajj, R.: Extending OLAP with Fuzziness for Effective Mining of
Fuzzy Multidimensional Weighted Association Rules. In: Li, X., Zäıane, O.R., Li,
Z.-h. (eds.) ADMA 2006. LNCS, vol. 4093, pp. 64–71. Springer, Heidelberg (2006)

16. Blaschka, M., Sapia, C., Höfling, G.: On Schema Evolution in Multidimensional
Databases. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp.
153–164. Springer, Heidelberg (1999)

17. Hurtado, C., Mendelzon, A., Vaisman, A.: Maintaining Data Cubes under Dimen-
sion Updates. In: ICDE 1999, pp. 346–355 (1999)

18. Morzy, T., Wrembel, R.: Modeling a Multiversion Data Warehouse: A Formal Ap-
proach. In: ICEIS 2003, vol. 1, pp. 120–127 (2003)

19. Vaisman, A., Mendelzon, A.: Temporal Queries in OLAP. In: VLDB 2000, pp.
242–253 (2000)

20. Gray, J., Bosworth, A., Layman, A., Pirahesh, H.: Data Cube: A Relational Ag-
gregation Operator Generalizing Group-By, Cross-Tab, and Sub-Total. In: ICDE
1996, pp. 152–159 (1996)

21. Forgy, E.: Cluster Analysis of Multivariate Data: Efficiency versus Interpretability
of Classification. Biometrics 21

22. MacQueen, J.: Some Methods for Classification and Analysis of Multivariate Ob-
servations. In: Vth Berkeley Symposium, pp. 281–297 (1967)

23. Huang, Z.: Clustering Large Data Sets with Mixed Numeric and Categorical Values.
In: PAKDD 1997 (1997)

On Index-Free Similarity Search
in Metric Spaces

Tomáš Skopal1 and Benjamin Bustos2

1 Department of Software Engineering, FMP, Charles University in Prague,
Malostranské nám. 25, 118 00 Prague, Czech Republic

skopal@ksi.mff.cuni.cz
2 Department of Computer Science, University of Chile,

Av. Blanco Encalada 2120 3er Piso, Santiago, Chile
bebustos@dcc.uchile.cl

Abstract. Metric access methods (MAMs) serve as a tool for speeding
similarity queries. However, all MAMs developed so far are index-based;
they need to build an index on a given database. The indexing itself is
either static (the whole database is indexed at once) or dynamic (inser-
tions/deletions are supported), but there is always a preprocessing step
needed. In this paper, we propose D-file, the first MAM that requires
no indexing at all. This feature is especially beneficial in domains like
data mining, streaming databases, etc., where the production of data is
much more intensive than querying. Thus, in such environments the in-
dexing is the bottleneck of the entire production/querying scheme. The
idea of D-file is an extension of the trivial sequential file (an abstraction
over the original database, actually) by so-called D-cache. The D-cache
is a main-memory structure that keeps track of distance computations
spent by processing all similarity queries so far (within a runtime ses-
sion). Based on the distances stored in D-cache, the D-file can cheaply
determine lower bounds of some distances while the distances alone have
not to be explicitly computed, which results in faster queries. Our exper-
imental evaluation shows that query efficiency of D-file is comparable to
the index-based state-of-the-art MAMs, however, for zero indexing costs.

1 Introduction

The majority of problems in the area of database systems concern the efficiency
issues – the performance of DBMS. For decades, the number of accesses to disk
required by I/O operations was the only important factor affecting the DBMS
performance. Hence, there were developed indexing structures [16,2], storage
layouts [4], and also disk caching/buffering techniques [7]; all of these designs
aimed to minimize the number of physical I/Os spent during a database trans-
action flow. In particular, disk caching is extremely effective in situations where
repeated access to some disk pages happens within a single runtime session.

In some modern databases, like multimedia DBs (MMDBs), DNA DBs, time
series DBs, etc., we need to use a similarity function δ(·, ·) which serves as a
relevance measure, saying how much a DB object is relevant to a query object. To

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 516–531, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Index-Free Similarity Search in Metric Spaces 517

speedup similarity search in MMDBs, there have been many indexing techniques
developed, some being domain-specific and some others more general. The new
important fact is that the performance of MMDBs is more affected by CPU costs
than by I/O costs. In particular, in MMDBs community a single computation of
similarity value δ(·, ·) is employed as the logical unit for indexing/retrieval cost,
because of its dominant impact on overall MMDB performance [18,5] (algorithms
computing δ(·, ·) are often super-linear in terms of DB object size). Thus, the I/O
costs are mostly regarded as a minor component of the overall cost because of the
computational complexity of similarity measures. The number of computations
δ(·, ·) needed to answer a query or to index a database is referred to as the
computation costs.

1.1 Metric Access Methods

Among the similarity search techniques, metric access methods (MAMs) are suit-
able in situations where the similarity measure δ is a metric distance (in mathe-
matical meaning). The metric postulates – reflexiveness, positiveness, symmetry,
triangle inequality – allow us to organize the database within classes that rep-
resent some occupied partitions of the underlying metric space. The classes are
usually organized in a data structure (either persistent or main-memory), called
index, that is created during a preprocessing step (the indexing).

The index is later used to quickly answer typical similarity queries – either a
k nearest neighbors (kNN) query like “return the 3 most similar images to my
image of horse”, or a range query like “return all voices more than 80% simi-
lar to the voice of nightingale”. In particular, when issued a similarity query1,
the MAMs exclude many non-relevant classes from the search (based on metric
properties of δ), so only several candidate classes of objects have to be sequen-
tially searched. In consequence, searching a small number of candidate classes
turns out in reduced computation costs of the query.

There were developed many MAMs so far, addressing various aspects –
main-memory/database-friendly methods, static/dynamic indexing, exact/
approximate search, centralized/distributed indexing, etc. (see [18,12,5,11]). Al-
though various MAMs often differ considerably, they all share the two following
properties:

1. MAMs are all index-based. For a given database, an index must exist in
order to be able to process queries. Hence, the first query must be always
preceded by a more or less expensive data preprocessing which results in an
index (either main-memory or persistent).

2. Once its index is built, a MAM solves every query request separately, that is,
every query is evaluated as it would be the only query to be ever answered.
In general, no optimization for a stream of queries is considered by MAMs
up to date. Instead, enormous research has been spent in “materializing” the
data-pruning/-structuring knowledge into the index file itself.

1 A range or kNN query can be viewed as a ball in the metric space (centered in query
object Q with radius of the range/distance to kNN), so we also talk about query ball.

518 T. Skopal and B. Bustos

In the following, we consider three representatives out of dozens of existing
MAMs – the M-tree, the PM-tree, and GNAT.

M-tree. The M-tree [6] is a dynamic (easily updatable) index structure that
provides good performance in secondary memory, i.e., in database environments.
The M-tree index is a hierarchical structure, where some of the data objects are
selected as centers (also called references or local pivots) of ball-shaped regions,
while the remaining objects are partitioned among the regions in order to build
up a balanced and compact hierarchy of data regions.

PM-tree. The idea of PM-tree [13,14] is to enhance the hierarchy of M-tree
by using information related to a static set of p global pivots Pi. In a PM-tree’s
non-leaf region, the original M-tree-inherited ball region is further cut off by
a set of rings (centered in the global pivots), so the region volume becomes
smaller. Similarly, the PM-tree leaf entries are extended by distances to the
pivots, which are also interpreted as rings due to quantization. Each ring stored
in a non-leaf/leaf entry represents a distance range bounding the underlying data
with respect to a particular pivot. The combination of all the p entry’s ranges
produces a p-dimensional minimum bounding rectangle, hence, the global pivots
actually map the metric regions/data into a “pivot space” of dimensionality p.

GNAT. The Geometric Near-Neighbor Access Tree (GNAT) [3] is a metric
access method that extends the Generalized-Hyperplane Tree [15]. The main idea
behind GNAT is to partition the space into zones that contain close objects. The
root node of the tree contains m objects selected from the space, the so-called
split-points. The rest of the objects is assigned to their closest split-point. The
construction algorithm selects with a greedy algorithm the split-points, such that
they are far away from each other. Each zone defined by the selected split-points
is partitioned recursively in the same way (possibly using a different value for
m), thus forming a search hierarchy. At each node of the tree, a O(m2) table
stores the range (minimum and maximum distance) from each split-point to each
zone defined by the other split-points.

1.2 Motivation for Index-Free Similarity Search

As mentioned earlier, the existing MAMs are all index-based. However, there
emerge many real and potential needs for access methods that should provide
index-free similarity search. We briefly discuss three cases where any data pre-
processing (like indexing) is undesirable:

“Changeable” databases. In many applications, there are databases which
content is intensively changing over time, like streaming databases, archives,
logs, temporal databases, where new data arrives and old data is discarded fre-
quently. Alternatively, we can view any database as “changeable” if the propor-
tion of changes to the database exceeds the number of query requests. In highly
changeable databases, the indexing efforts lose their impact, since the expen-
sive indexing is compensated by just a few efficient queries. In the extreme case

On Index-Free Similarity Search in Metric Spaces 519

(e.g., sensory-generated data), the database could have to be massively updated
in real time, so that any indexing is not only slow but even impossible.

Isolated searches. In complex tasks, e.g., in data mining, a similarity query
over a single-purpose database is used just as an isolated operation in the chain
of all required operations to be performed. In such case, the database might
be established for a single or several queries and then discarded. Hence, index-
based methods cannot be used, because, in terms of the overall costs (index-
ing+querying), the simple sequential search would perform better.

Arbitrary similarity function. Sometimes, the similarity measure is not de-
fined a priori and/or can change over the time. This includes learning, user-
defined or query-defined similarity, while in such case any indexing would lead
to many different indexes, or it is not possible at all.

1.3 Paper Contribution

In this paper, we propose the D-file, an index-free MAM employing a main-
memory structure – the D-cache. The D-cache (distance cache) stores distances
computed during querying within a single runtime session. Hence, the aim of
D-file is not to use an index, but to amortize the query costs by use of D-
cache, similarly like I/O-oriented access methods amortize the I/O costs using
disk cache. As in the case of simple sequential search, querying the D-file also
means a sequential traversal of the entire database. However, whenever a DB
object is to be checked against a query, instead of computing the DB object-
to-query object distance, we request the D-cache for its tightest lower bound.
This lower-bound distance is subsequently used to filter the DB object. Since
many distances could have been computed during previous querying (for other
query objects, of course), the lower bounds could be transitively inferred from
the D-cache “for free”, which results in reduced query costs.

2 Related Work

In this section, we briefly discuss existing index-free attempts to metric similarity
search. In fact, to the best of our knowledge, there exist just one non-trivial
approach applicable directly to the index-free metric search, as mentioned in
Section 2.2. But first, in the following section we discuss the simple sequential
scan – in a role of trivial index-free MAM.

2.1 Simple Sequential Scan

If no index structure is provided, the only way of answering a similarity query in
metric spaces is to perform a sequential search of the database. By this approach,
for both range and k-NN queries the search algorithm computes the distances
between the query object and all objects in the database. With the computed
distances it is trivial to answer both types of queries. This approach has, of

520 T. Skopal and B. Bustos

course, the advantage that neither space nor preprocessing CPU time is required
to start performing similarity queries. It follows that the cost of a sequential scan
is linear in the size of the database. This, however, may be already prohibitively
expensive, for example if the database is too large, e.g., it contains tens of millions
of objects, or if the distance function is expensive to compute, e.g., the edit
distance between strings is O(nm) for sequences of lengths n and m.

For the particular case of vector spaces, the VA-file [17] is a structure that
stores compressed feature vectors, providing thus an efficient sequential scan of
the database. At query time, an approximation of the distances between query
objects and compressed features are computed, discarding at this filtering step
as many objects as possible. The search algorithm refines this result by com-
puting the real distances to database objects only for the non-discarded vectors.
While this approach could be a good alternative to the plain sequential scan, it
only works in vector spaces and cannot be easily generalized to the metric case.
Moreover, though the idea is based on sequential search, it is not index-free
approach, because the compressed vectors form a persistent index – the VA-file.

2.2 Query Result Caching

Recently, the concept of metric cache for similarity search was introduced, pro-
viding a caching mechanism that prevents any underlying MAM (i.e., also simple
sequential scan) to process as many queries as possible [8,9]. Basically, the metric
cache stores a history of similarity queries and their answers (ids and descrip-
tors of database objects returned by the query). When a next query is to be
processed, the metric cache either returns the exact answer in case the same
query was already processed in the past and its result still sits in the cache. Or,
in case of a new query, such old queries are determined from the metric cache,
that spatially contain the new query object inside their query balls. If the new
query is entirely bounded by a cached query ball, a subset of the cached query
result is returned as an exact answer of the new query. If not, the metric cache
is used to combine the query results of spatially close cached queries to form an
approximate answer of the new query. In case the approximated answer is likely
to exhibit a large retrieval error, the metric cache gives up and forwards the
query processing to the underlying retrieval system/MAM (updating the metric
cache by the query answer afterwards).

We have to emphasize that metric cache is a higher-level concept that can be
combined with any MAM employed in a content-based retrieval system. Hence,
metric cache is just a standalone front-end subpart in the whole retrieval system,
while the underlying MAM alone is not aware of the metric cache. On the other
hand, the proposal of D-cache in the following text is a low-level concept that
plays the role of integral part of a metric access method (the D-file, actually).

3 D-File

We propose an index-free metric access method, the D-file, which is a set of
methods extending simple sequential search over the database. Unlike the

On Index-Free Similarity Search in Metric Spaces 521

VA-file mentioned earlier, we emphasize that D-file is just an abstraction above
the original database, hence, there is no additional “file” materialized along-
side the database, that is, no additional persistent data structure is maintained,
nor any preprocessing is performed. In other words, the D-file is the original
database file equipped by a set of querying methods. Instead, the D-file uses
a main-memory structure called D-cache (described in the next section). The
D-cache has a simple objective – to gather (cache) distances already computed
between DB and query objects within a single runtime session. Based on the
stored distances, the D-cache can be asked to cheaply infer lower bound of some
distance between a query object and a DB object. The D-file’s query algorithms
then use these lower bounds when filtering DB objects, see Algorithms 1 and 2.

Algorithm 1. (D-file kNN query)

set kNNQuery(Q, k) {
Dcache.StartQueryProcessing(Q)
let NN be array of k pairs [Oi, δ(Q, Oi)] sorted asc. wrt δ(Q, Oi), initialized to NN = [[−,∞], ..., [−,∞]]
let rQ denotes the actual distance component in NN[k]
for each Oi in database do

if Dcache.GetLowerBoundDistance(Q, Oi) ≤ rQ then // D-cache filtering
compute δ(Q, Oi); Dcache.AddDistance(Q, Oi, δ(Q, Oi))
if δ(Q, Oi) ≤ rQ then insert [Oi, δ(Q, Oi)] into NN // basic filtering

return NN as result }

Algorithm 2. (D-file range query)

set RangeQuery(Q,rQ) {
Dcache.StartQueryProcessing(Q)
for each Oi in database do

if Dcache.GetLowerBoundDistance(Q, Oi) ≤ rQ then // D-cache filtering
compute δ(Q, Oi); Dcache.AddDistance(Q, Oi, δ(Q, Oi))
if δ(Q, Oi) ≤ rQ then add Oi to the query result } // basic filtering

4 D-Cache

The main component of D-file is the D-cache (distance cache) – a non-persistent
(memory resident) structure, which tracks distances computed between query
objects and DB objects, considering a single runtime session, i.e., contiguous
sequence of queries. The track of distance computations is stored as a set of
triplets, each of the form [id(Qi), id(Oj), δ(Ri, Oj)], where Qi is a query object,
Oj is a DB object, and δ(Qi, Oj) is their distance computed during the current
session. We assume query as well as DB objects are uniquely identified.

Instead of considering a set of triplet entries, we can view the content of
D-cache as a sparse matrix

D =

⎛
⎜⎜⎜⎝

O1 O2 O3 . . . On

Q1 d12 d13 . . .
Q2 d21 . . . d2n

Q3 . . .
.
Qm dm1 dm3 . . .

⎞
⎟⎟⎟⎠

522 T. Skopal and B. Bustos

where the columns refer to DB objects, the rows refer to query objects, and the
cells store the respective query-to-DB object distances. Naturally, as new DB
objects and query objects arrive into D-cache during the session, the matrix gets
larger in number of rows and/or columns. Note that at the beginning of session
the matrix is empty, while during the session the matrix is being filled. However,
at any time of the session there can still exist entirely empty rows/columns.

Note that query objects do not need to be external, that is, a query object
could originate from the database. From this point of view, an object can have
(at different moments) the role of query as well as the role of DB object, however,
the unique identification of objects ensures the D-cache content is correct.

Because of frequent insertions into D-cache, the matrix should be efficiently
updatable. Moreover, due to operations described in the next subsection, we
have to be able to quickly retrieve a cell, column, or row values. To achieve this
goal, we have to implement the matrix by a suitable data structure(s).

4.1 D-Cache Functionality

The desired functionality of D-cache is twofold:
– First, given a query object Q and a DB object O on input (or even two

DB objects or two query objects), the D-cache should quickly determine the
exact value δ(Q,O), provided the distance is present in D-cache.

– The second functionality is more general. Given a query object Q and a DB
object O on input, the D-cache should determine the tightest possible lower
bound of δ(Q,O) without the need of an explicit distance computation.

Both of the functionalities allow us to filter some non-relevant DB objects from
further processing, making the search more efficient. However, in order to fa-
cilitate the above functionality, we have to feed the D-cache with information
about the involved objects. To exploit the first functionality, the current query
object could have to be involved in earlier queries either as query object or as
DB object the distance of which was computed against another query object.

To exploit the second functionality, we need to know distances to some past
query objects DPQ

i which are very close to the current query Q. Suppose for a
while we know δ(Q,DPQ

1), δ(Q,DPQ
2), . . . – these will serve as dynamic pivots

made-to-measure to Q. Since the dynamic pivots are close to Q, they should be
very effective when pruning as they provide tight approximations of δ(Q,Oi).
Having the dynamic pivots DPQ

i , we can reuse some distances δ(DPQ
i , O) still

sitting in the D-cache matrix, where they were inserted earlier during the current
session. Then, with respect to the pivots and available distances δ(DPQ

i , O) in
the matrix, the value maxDP Q

i
{δ(DPQ

i , O) − δ(DPQ
i , Q)} is the tightest lower-

bound distance of δ(Q,O). Similarly, minDP Q
i
{δ(DPQ

i , O) + δ(DPQ
i , Q)} is the

tightest upper-bound distance of δ(Q,O). See the situation in Figure 1a.

4.2 Determining Dynamic Pivots

In principle, we consider two ways to obtain k dynamic pivots out of (all) pre-
viously processed queries:

On Index-Free Similarity Search in Metric Spaces 523

Fig. 1. (a) Lower/upper bounds to δ(Q, O). (b) Internal selection of dynamic pivot
(k = 1) by closeness approximation (Q1

old is the winner).

(a) Recent. We choose k past query objects immediately, that is, before the cur-
rent query processing actually starts. More specifically, we choose the k recently
processed (distinct) query objects.

(b) Internal. When the current query processing is started, the first x distance
computations of δ(Q,Oi) are used just to update D-cache, that is, the D-cache
is still not used for filtering. After insertion of the respective x triplets into D-
cache, the D-cache could be requested to select the k most promising dynamic
pivots out of the past query objects Qi

old.
The reason for computing x triplets is based on an expectation, that there

could appear so-called mediator objects in D-cache, that is, objects Om for which
distances δ(Q,Om) and δ(Om, Qj) will appear in D-cache. Such mediator objects
provide an indirect distance approximation of δ(Q,Qj) (remember that because
of the triangle inequality δ(Q,Qj) ≤ δ(Q,Om)+ δ(Qm, Rj)). The mediators can
be used for selection of dynamic pivots as follows:

A dynamic pivot DPj is chosen as DPj ∈ {Qi
old|∃Om(δ(Q,Om) + δ(Om,

Qi
old) ≤ k-minOl

{δ(Q,Ol)+δ(Ol, Q
i
old))}}. The k-minOl

{·} is the kth minimum
value; with respect to any Ol for which D-cache stores distances δ(Q,Ol) and
δ(Ol, Q

i
old). This means that an old query object will be selected as a dynamic

pivot if its associated smallest “through-mediator approximation” of δ(Q,DPj)
is within the k smallest among all old query objects.

Figure 1b shows an example for k = 1. The really closest pivot Q4
old was not

selected because the mediator O3 is an outlier, while no better mediator for Q4
old

was found in D-cache. Also note that for Q3
old there is no mediator at all.

After we determine the dynamic pivots, we compute their distances to Q.
Note that this is the only place where we explicitly compute some extra distance
computations (not computed when not employing D-cache).

4.3 D-Cache Implementation

The D-cache is initialized by D-file when the session begins. Besides this global
initialization, the D-cache is also notified by D-file that a query has been started

524 T. Skopal and B. Bustos

(method StartQueryProcessing). At that moment, a new query object is being
processed so the current dynamic pivots have to be dismissed. Every time a dis-
tance δ(Q,Oi) value is explicitly computed, the triplet [id(Q), id(Oi), δ(Q,Oi)]
is inserted into the D-cache (method AddDistance).

Besides the retrieval of the hopefully available exact distance between ob-
jects Q, Oi (method GetDistance(Q, Oi)), the main functionality is operated by
method GetLowerBoundDistance, see Algorithm 3.

Algorithm 3. (GetLowerBoundDistance)

double GetLowerBoundDistance(Q, Oi) {
let x be the number of computations ignored
let k be the number of pivots to use
let DP be the set of dynamic pivots and their distances to Q
mComputed = mComputed + 1 // mComputed=0 initialized at query start
value = 0
if mComputed ≤ x and determineMethod = internal then { // internal pivot selection

value = compute δ(Q, Oi)
AddDistance(Q, Oi, value)
if mComputed = x then

DP = DeterminePivotsByMediatorDistances(Q, k)
} else { // lower bound construction/update

for each P in DP do
if cell(P, Oi) is not empty then

value = max(value, cell(P, Oi) − δ(Q, P)) }
return value }

The structure of D-cache itself is implemented by two substructures – the
CellCache and the RowCache:

CellCache Structure. As the main D-cache component, the CellCache stores
the distance matrix as a set of triplets (id1, id2, δ(Qid1, Oid2)) in a hash ta-
ble, and provides retrieval of individual triplets. As a hash key, (min(id1, id2),
max(id1, id2)) is used. When applying the recent dynamic pivot selection, as
defined in Section 4.2, the CellCache is the only D-cache component. Naturally,
the hash-based implementation of CellCache is very fast (constant access time).

RowCache Structure. However, when applying internal selection of dynamic
pivots, we need to retrieve rows from the distance matrix. This cannot be effi-
ciently accomplished by CellCache, hence, we use the RowCache as a redundant
data structure. In particular, the RowCache aims at efficiently computing the
dynamic pivots to be used with the current query object. Thus, it must deter-
mine the mediator objects and compute the intersection between rows of the
D-cache. It could also be used to obtain bounds of the distances between objects
as with the CellCache, however the CellCache may be more efficient than the
RowCache for this particular function.

The RowCache is implemented as a main-memory inverted file. Each row
of this cache stores all the computed distances for a single query, and it is
implemented as a linked list. Each time a distance between the query and an
object from the database is computed, a node is added to the list. When a new
query object is inserted in the cache, the algorithm creates a new row and stores
there the computed distances to the new query object.

On Index-Free Similarity Search in Metric Spaces 525

To compute the best dynamic pivots for a given query object, the RowCache
determines firstly its mediator objects. That is, given two query objects, the cur-
rent one and one from the cache, it returns the intersection of the corresponding
rows in the RowCache. This is repeated for all query objects in the cache. Once
the mediator objects are found, the algorithm determines the best dynamic piv-
ots by selecting the k query objects with smallest indirect distance (i.e., obtained
through a mediator) to the current query (see Algorithm 4). This algorithm can
be efficiently implemented with a priority queue (max-heap), that keeps the k
best pivots found so far, and replaces the worst of them when a better pivot
is found. With our actual implementation of RowCache2, in the worst case this
algorithm takes O(A ∗ log(A) +A ∗C +A ∗ log(k)) time, where A is the number
of rows in the RowCache, C is the maximum number of cells per row, and k is
the number of pivots. In practice, however, there are usually only a few valid
mediators per query objects, thus the average cost is closer to O(log(k)).

Algorithm 4. (DeterminePivotsByMediatorDistances)

set DeterminePivotsByMediatorDistances(Q,k) {
old = the set of past query objects Qi

old
winners = ∅ // set of k pairs [object, distance] ordered ASC on distance

for each Qi
old in old do

// determine mediators, i.e. objects having distance to both Q and Qi
old in D-cache

// row(·) ∩ row(·) stands for all DB objects having defined both values on their position in the rows

mediators = row(Qi
old) ∩ row(Q)

for each M in mediators do
update winners by [Qi

old, cell(Q, M) + cell(Qi
old, M)]

return [winners, computed distances δ(Q, winners(i))] }

The CellCache and RowCache are not necessarily synchronized, that is, both
caches may not contain the distances for the same pair of objects. However, if a
query is deleted from the CellCache this is also reflected in the RowCache.

Distance Replacement Policies. Since the storage capacity of D-cache is
limited, the hash table of CellCache as well as the inverted list of RowCache
are of user-defined size (in bytes, usually equally divided between CellCache and
RowCache3). Once either of the structures has no space to accommodate a new
distance, some old distance (near to the intended location) has to be released.
We consider two policies for distance replacement:

LRU. A distance is released, which has been least recently used (read). The
hypothesis is that keeping just the frequently used distances leads to tighter
distance lower/upper bounds, thus to better pruning.

2 The depicted implementation of the RowCache structure is not optimized. However,
in the experimental evaluation we will show that the effectiveness of the “internal
pivot determination” is worse than the simple “recent query objects”, anyways.

3 If the internal dynamic pivot selection (and RowCache) is not used, the entire
D-cache capacity is given to CellCache.

526 T. Skopal and B. Bustos

Smallest distance. The hypothesis is an anticipation that small distances be-
tween queries and DB objects represent overlapped query and data regions; in
such case (even the exact) small distance is useless for pruning, so we release it.

5 Experimental Evaluation

We have extensively tested the D-file, while we have compared its performance
with M-tree, PM-tree, and GNAT. We have observed just the computation costs,
that is, the number of distance computations spent by querying. For the index-
based MAMs, we have also recorded the construction costs in order to give an
idea about the indexing/querying trade-off.

5.1 The Testbed

We used 3 databases and 3 metrics (two continuous and one discrete):

– A subset of Corel features [10], namely 65,615 32-dimensional vectors of color
moments, and the L1 distance (the sum of the difference of coordinate values
between two vectors). Note: L2 is usually used with color histograms, but from
the indexing point of view any Lp norm (p ≥ 1) gives similar results.
– A synthetic Polygons set; 500,000 randomly generated 2D polygons varying in
the number of vertices from 10 to 15, and the Hausdorff distance (maximum
distance of a point set to the nearest point in the other set). This set was
generated as follows: The first vertex of a polygon was generated at random; the
next one was generated randomly, but the distance from the preceding vertex
was limited to 10% of the maximum distance in the space. Since we have used
the Hausdorff distance, one could view a polygon as a cloud of 2D points.
– A subset of GenBank file rel147 [1], namely 50,000 protein sequences of
lengths from 50 to 100, and the edit distance (minimum number of insertions,
deletions, and replacements needed to convert a string into another).

Index-based MAM settings. The databases were indexed with M-tree and
PM-tree, while GNAT was used to index just Corel and Polygons. For (P)M-tree,
the node size was set to 2kB for Corel, and to 4kB for Polygons and GenBank
databases (the node degree was 20–35). The PM-tree used 16 (static) pivots in
inner nodes and 8 pivots in leaf nodes. Both M-tree and PM-tree used mM RAD
node splitting policy and the single-way object insertion. The GNAT arity (node
degree) was set to 50 for Corel and to 20 for Polygons. For most querying ex-
periments, we have issued 1,000 queries and averaged the results.

D-file settings. Unless otherwise stated, the D-cache used 100 MB of main
memory and unlimited history of query objects’ ids, i.e., we keep track of all
the queries issued so far (within a session). The recent and internal dynamic
pivot selection techniques were considered. Concerning internal selection, the
number of initial fixed distance computations was set to x = 1, 000. The smallest
distance replacement policy was used in all tests. Furthermore, unless otherwise
stated, the D-file used 100 dynamic pivots. The D-cache was reset/initialized
before every query batch was started.

On Index-Free Similarity Search in Metric Spaces 527

Table 1. Index construction costs (total distance computations)

index Corel Polygons GenBank

M-tree 4,683,360 38,008,305 3,729,887
PM-tree 7,509,804 55,213,829 6,605,421
GNAT 60,148,055 497,595,605 n/a
D-file 0 0 0

5.2 Indexing

The first experiment was focused on indexing – the results are summarized in
Table 1. Because of its static nature, note that GNAT is an order of magnitude
more expensive than (P)M-tree. By the way, due to the expensive construction
and the expensive edit distance, we could not index GenBank by GNAT.

5.3 Unknown Queries

The second set of tests was focused on the impact of D-file on querying when
considering “unknown” queries, that is, query objects outside the database. It
has to be emphasized that for unknown queries the D-file cannot take advantage
of the trivial method GetDistance, because for an arriving query object there
cannot be any record stored within D-cache at the moment the query starts.
Thus, D-file can effectively use just the D-cache’s non-trivial method GetLower-
BoundDistance.

First, for the Corel database we have sampled queries with “snake distribu-
tion” – for an initially randomly sampled query object, its nearest neighbor was
found, then the nearest neighbor’s nearest neighbor, and so on. The intention for
snake distribution was led by an anticipation that processing of a single “slowly
moving” query will benefit from D-cache (which might provide tighter lower
bounds). Because the D-cache should benefit from a long sequence of queries,
we were interested in the impact of growing query batch size, see Figure 2a. As
we can see, this assumption was not confirmed, the D-file costs generally follow

(a) (b)

Fig. 2. Unknown 10NN queries on Corel: (a) queries only (b) indexing + queries

528 T. Skopal and B. Bustos

the other MAMs – the performance gain of D-file queries is rather constant.
Although in this test the query performance of D-file is not very good when
compared to the other MAMs, in Figure 2b the situation takes into account also
indexing costs. When just a small- or medium-sized query batch is planned for
a database, the costs (total number of distance computations spent on indexing
+ all queries) show the D-file beats GNAT and PM-tree considerably. Note that
in Figure 2b the costs are not averaged per query but total (because of correct
summing with indexing costs).

The second “unknown” set of queries (randomly sampled range queries having
radius r = 5) was performed on the GenBank database, considering growing
number of D-cache’s dynamic pivots, see Figure 3a. The costs decrease with
growing number of pivots, the D-file shows a reduction of costs by 45%, when
compared to the sequential search. The recent dynamic pivot selection is the
winning one. In Figure 3b the situation is presented in indexing + querying costs
(total costs for 100 queries were considered).

5.4 Database Queries

For the third set of experiments, we have considered database (DB) queries. As
opposed to unknown queries, the DB queries consisted of query objects randomly
sampled from the databases and having also the same ids as in the database. Al-
though not as general as unknown queries, the DB queries are legitimate queries
– let us bring some motivation. In a typical general-purpose image retrieval sce-
nario, the user does not have the perfect query image (s)he wants. Instead, (s)he
issues any available “yet-satisfactory” image query (being an unknown query)
and then iteratively browses (navigates) the database by issuing subsequent DB
queries given by an image from the previous query result.

The browsing is legitimate also for another reason. Even if we have the right
query image, the similarity measure is often imperfect with respect to the spe-
cific user needs, and so the query result may be unsatisfactory. This could be
compensated by further issuing of DB queries matching the user’s intent better.

(a) (b)

Fig. 3. Unknown range queries on GenBank: (a) queries only (b) indexing + queries

On Index-Free Similarity Search in Metric Spaces 529

(a) (b)

Fig. 4. (a) DB 10NN queries on Corel. (b) DB range queries on GenBank.

(a) (b)

Fig. 5. DB 10NN queries on Polygons: (a) queries only (b) indexing + queries

For DB queries, we have anticipated much greater impact of D-cache, because
distances related to a newly arriving query (being also DB object) could reside
within D-cache since previous query processing. Consequently, for DB queries
also the trivial GetDistance method can effectively take advantage, so that we
could obtain an exact distance for filtering, rather than only a lower bound.

In Figure 4a, the results of 1NN queries on Corel are presented, considering
varying D-cache storage capacity (we actually performed 2NN search, because
the query object is DB object). We observe that a small D-cache is rather an
overhead than a benefit, but for growing D-cache size the D-file costs dramati-
cally decrease (to 6% of seq. search). At 10–20 MB the D-cache is large enough
to store all the required distances, so beyond 20 MB the performance gain stag-
nates. However, note that there is a significant performance gap between D-files
employing recent and internal pivot selection. This should be an evidence that
exact distances retrieved from D-cache are not the dominant pruning factor even

530 T. Skopal and B. Bustos

for DB queries, because the GetDistance method is pivot-independent. Hence, the
effect of non-trivial “lowerbounding” is significant also for DB queries.

In the fourth experiment, see Figure 4b, the growing GenBank database was
queried on range. Here, the D-file performance approaches M-tree, while the
performance scales well with the database growth. In the last experiment, see
Figure 5a, we tested the effect of the number of dynamic pivots on the largest
database – Polygons. For D-file, the costs fell down to 1.7% of sequential search,
while they were decreasing with the increasing number of D-cache’s dynamic
pivots. In Figure 5b, the total indexing + querying costs are presented for 100
10NN queries, beating the competitors by up to 2 orders of magnitude.

6 Conclusions

In this paper, we presented the D-file – the first index-free metric access method
for similarity search in metric spaces. The D-file operates just on the original
database (i.e., it does not use any indexing), while, in order to support effi-
cient query processing, it uses lower bound distances cheaply acquired from the
D-cache structure. The D-cache is a memory-resident structure which keeps track
of distances already computed during the actual runtime session.

The experiments have shown that D-file can compete with the state-of-the-
art index-based MAMs (like M-tree, PM-tree, GNAT). Although in most cases
the separate query costs are higher for D-file, if we consider the total index-
ing+querying costs, the D-file performs better for small- and middle-sized query
batches. Thus, the usage of D-file could be beneficial either in tasks where only a
limited number of queries is expected to be issued, or in tasks where the indexing
is inefficient or not possible at all (e.g., highly changeable databases).

Future Work. In the future, we would like to employ the D-cache also by the
index-based MAMs, since its ability to provide lower/upper bounds to distances
is not limited just to D-file. Moreover, by using D-cache the index-based MAMs
could take advantage not only from the improved query processing, but also
from an increased performance of indexing.

Acknowledgments

This research was supported by Czech Science Foundation project no. 201/09/
0683 (first author), and by FONDECYT (Chile) Project 11070037 (second
author).

References

1. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Rapp, B.A., Wheeler,
D.L.: Genbank. Nucleic Acids Res. 28(1), 15–18 (2000)

2. Böhm, C., Berchtold, S., Keim, D.: Searching in High-Dimensional Spaces – Index
Structures for Improving the Performance of Multimedia Databases. ACM Com-
puting Surveys 33(3), 322–373 (2001)

On Index-Free Similarity Search in Metric Spaces 531

3. Brin, S.: Near neighbor search in large metric spaces. In: Proc. 21st Conference
on Very Large Databases (VLDB 1995), pp. 574–584. Morgan Kaufmann, San
Francisco (1995)

4. Carson, S.D.: A system for adaptive disk rearrangement. Software - Practice and
Experience (SPE) 20(3), 225–242 (1990)

5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An Efficient Access Method for Simi-
larity Search in Metric Spaces. In: VLDB 1997, pp. 426–435 (1997)

7. Effelsberg, W., Haerder, T.: Principles of database buffer management. ACM
Transactions on Database Systems (TODS) 9(4), 560–595 (1984)

8. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: A metric cache for
similarity search. In: LSDS-IR 2008: Proceeding of the 2008 ACM workshop on
Large-Scale distributed systems for information retrieval, pp. 43–50. ACM Press,
New York (2008)

9. Falchi, F., Lucchese, C., Orlando, S., Perego, R., Rabitti, F.: Caching content-based
queries for robust and efficient image retrieval. In: EDBT 2009: Proceedings of the
12th International Conference on Extending Database Technology, pp. 780–790.
ACM Press, New York (2009)

10. Hettich, S., Bay, S.: The UCI KDD archive (1999), http://kdd.ics.uci.edu
11. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces. ACM

Trans. Database Syst. 28(4), 517–580 (2003)
12. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan

Kaufmann, San Francisco (2006)
13. Skopal, T.: Pivoting M-tree: A Metric Access Method for Efficient Similarity

Search. In: Proceedings of the 4th annual workshop DATESO, Desná, Czech Re-
public, ISBN 80-248-0457-3, also available at CEUR, vol. 98, pp. 21–31 (2004) ISSN
1613-0073, http://www.ceur-ws.org/Vol-98

14. Skopal, T., Pokorný, J., Snášel, V.: Nearest Neighbours Search Using the PM-Tree.
In: Zhou, L.-z., Ooi, B.-C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp.
803–815. Springer, Heidelberg (2005)

15. Uhlmann, J.: Satisfying general proximity/similarity queries with metric trees. In-
formation Processing Letters 40(4), 175–179 (1991)

16. Vitter, J.S.: External memory algorithms and data structures: dealing with massive
data. ACM Computing Surveys 33(2), 209–271 (2001)

17. Weber, R., Schek, H.-J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: VLDB 1998: Proceed-
ings of the 24rd International Conference on Very Large Data Bases, pp. 194–205.
Morgan Kaufmann Publishers Inc., San Francisco (1998)

18. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach (Advances in Database Systems). Springer, Secaucus (2005)

http://kdd.ics.uci.edu
http://www.ceur-ws.org/Vol-98

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 532–546, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Approximation Algorithm for Optimizing Multiple
Path Tracking Queries over Sensor Data Streams

Yao-Chung Fan1 and Arbee L.P. Chen2,*

1 Department of Computer Science, National Tsing Hua University, Taiwan, R. O. C.
2 Department of Computer Science, National Chengchi University, Taiwan, R. O. C.

d938318@oz.nthu.edu.tw, alpchen@cs.nccu.edu.tw

Abstract. Sensor networks have received considerable attention in recent years
and played an important role in data collection applications. Sensor nodes have
limited supply of energy. Therefore, one of the major design considerations for
sensor applications is to reduce the power consumption. In this paper, we study
an application that combines RFID and sensor network technologies to provide
an environment for moving object path tracking, which needs efficient join
processing. This paper considers multi-query optimization to reduce query
evaluation cost, and therefore power consumption. We formulate the multi-
query optimization problem and present a novel approximation algorithm which
provides solutions with suboptimal guarantees. In addition, extensive experi-
ments are made to demonstrate the performance of the proposed optimization
strategy.

Keywords: Query Processing, Sensor Network, Query Optimization, and Dis-
tributed Database.

1 Introduction

Sensor networks have received considerable attention in recent years. A sensor net-
work consists of a large number of sensor nodes. In general, sensor nodes are
equipped with the abilities of sensing, computing, and communicating.

One of the features for sensor networks is resource limitation. Sensor nodes typi-
cally are limited in computing power, network bandwidth, storage capability, and
energy supply. Resource conservation therefore becomes a major consideration when
devising sensor applications.

Sensor networks provide a new way of data collection and create new needs for in-
formation processing in a variety of scenarios. In this paper, we introduce a new ap-
plication that combines RFID (Radio Frequency Identification) and sensor network
technologies for customer path tracking. In the application, efficient join processing is
critical to its performance. We consider multi-query optimization to reduce the cost of
join processing, and therefore power consumption.

* To whom all correspondence should be sent.

 An Approximation Algorithm 533

Application. Consider a set of sensor nodes deployed in a shopping mall, as shown in
Figure 1. The sensor nodes are equipped with an RFID reader. Moreover, the custom-
ers who enter the monitoring area are equipped with a RFID tag. When a customer
passes through a sensor node, the sensor node detects the event and generates a tuple
of data. This tuple of data contains the customer identification number (CID), the
timestamp when the tuple was generated (TID), and the sensor identification number
(SID). The sensor nodes inherently generate data streams if customers keep entering
the area.

Such RFID and sensing platform provides an environment to infer customer activi-
ties from the sensor readings. For example, the shopping mall manager may want to
know the customers who walk through nodes A, B, C, and D in the mall. Having such
information, the manager may be able to infer that the customers are looking for
something, and then make suitable assistances or recommendations to the customers.
The manager may issue the following query Q1:

Q1: Select CID
From A, B, C, D
Where A.CID = B.CID = C.CID = D.CID
AND A.TID < B.TID < C.TID < D.TID
Window = 10 minutes
Action = Service1 (UID)

 Q2: Select CID
 From A, B, D, E

 Where A.CID = B.CID = E.CID = D.CID
 AND A.TID < B.TID < E.TID < D.TID

 Window = 10 minutes
 Action = Service2 (CID)

In the query, “Select” clause specifies the customer identification numbers, “From”

clause indicates the sensor data streams, “Where” clause joins the readings among the
indicated streams with suitable predicates, “Window” clause specifies the valid time
constraint for the customers along the path, and “Action” clause indicates the proper
action of providing some service to the qualified customers. We refer to such a query
as a path tracking query.

To process the query, a naïve approach is to ask nodes A, B, C, and D to send the
tuples within the window to a base station to perform the evaluations [1]. However,
this approach suffers from high communication cost as each node transmits all the
data to the base station regardless of whether the data contribute to the query results.
This approach will be inefficient when the join selectivity is low. Therefore, in this
paper we consider in-network query processing strategy as follows.

Take Q1 as an example. Each node keeps a buffer to store tuples generated in the
past ten minutes. Since we require D.TID to be the largest among the four time-
stamps, the query processing starts at node D. When a new tuple ΔD of node D is
generated, node D routes ΔD to the other nodes to probe for matching according to a
given execution plan, which describes the order the probing of ΔD is perfomed in the

ΔD A B C
(a) An execution plan for Q1

ΔD E A B
(b) An execution plan for Q2

ΔD A B E
(c) Another execution plan for Q2

ΔD A

B C Q1

E B Q2
 (e) A compromising plan

A B C

F E D

H G I

 Fig. 1. Motivating Scenario

ΔD A B

C Q1

E Q2
 (d) Common task sharing

Fig. 2. Execution Plans

534 Y.-C. Fan and A.L.P. Chen

other nodes. For example, Figure 2(a) shows an execution plan ΔD A B C for
Q1, which indicates that ΔD is firstly sent to node A, and if ΔD fails to match, the
processing terminates. Otherwise, ΔD A is processed and the result routed to B for
further probing. A tuple that matches all the nodes produces a join result, which is
then returned to the base station.

Note that the efficiency of the query processing depends on the order of the prob-
ing. This is because a newly generated tuple that is dropped by one of the nodes can-
not produce a join result. Therefore, a worst case of the processing will be that a tuple
matches all the nodes except the last one. In this case, no result is produced and all
prior processing efforts are wasted. However, if we swap the last node with the first
one for the probing, the tuple will get dropped in the first probe rather than in the last
probe. Therefore, choosing a probing order is critical to the query processing effi-
ciency. In the following discussion, we refer to the strategy that optimizes query proc-
essing by choosing probing orders as the join order optimization (JOO) strategy.

In addition to the JOO strategy, another opportunity for improving the efficiency is
the common-task-sharing optimization (CTSO) strategy. The basic idea behind the
CTSO strategy is to share common tasks among queries when multiple queries are
present. For example, assume now that in addition to Q1, the manager poses another
query Q2. In such a case, the two queries have two tasks in common, i.e. probing for
node A and node B. To avoid redundant execution, we can plan Q1 to be
ΔD A B C and Q2 to be ΔD A B E to share the probing for node A and
node B. Figure 2(d) shows the resulting plan.

Note that we refer to routing a tuple or an intermediate result to some node to
probe for matching as a task. For example, the processing of Q1 has three tasks, i.e.,
probing ΔD with node A, node B, and node C for matching. For ease of discussion,
we denote the tasks by {A, B, C}.

Challenge. Both the JOO strategy and the CTSO strategy reduce the cost for process-
ing queries. However, the combination of the two strategies brings an interesting
tradeoff to study. In some cases, the two strategies complement each other. For exam-
ple, assume the plans in Figure 2(a) and Figure 2(c) are suggested by the JOO strat-
egy, we can further share the common tasks between the two plans to have a
combined plan, as shown in Figure 2(d).

Nevertheless, the two strategies generally are conflicting to each other. For exam-
ple, assume the JOO strategy suggests the plan in Figure 2(b) instead of the one in
Figure 2(c). In this case, when planning Q1 and Q2, if we choose to use the JOO strat-
egy, we lose the opportunities of further using the CTSO strategy.

On the other hand, if we choose CTSO, we need to adopt the plan in Figure 2(c). If
the cost saved by the CTSO strategy is less than the cost incurred from the violation
of the JOO strategy, sharing common tasks will be a bad decision, and vice versa.

An important thing to note about is that there are many options for combining the
two strategies. For example, we can plan Q2 to be ΔD A E B to share {A} with
Q1. Figure 2(e) shows the resulting plan. In this case, the plan for Q2, i.e.
ΔD A E B, may be a suboptimal result in terms of the JOO strategy. However,
using this plan may be more beneficial to the overall cost than using the plan that
exclusively uses the JOO strategy or the CTSO strategy. Therefore, the challenge lies
in how to balance the two optimization strategies such that the overall cost for query
processing can be minimized.

 An Approximation Algorithm 535

This paper presents a framework for efficiently combining the two strategies. We
first formulate the search space of finding an optimal combination, and then show the
complexity of finding the optimal combination. Furthermore, we propose a novel
approximation algorithm, which provides solutions with sub-optimal guarantees.

The rest of the paper is organized as follows. Section 2 discusses the cost model for
the query processing. Section 3 presents the optimization strategies. The experiment
results are provided in Section 4. Section 5 provides related works. Finally, we con-
clude the paper in Section 6 and give some directions for future research.

2 Cost Model

We first provide the terminology and the assumptions we use through this paper. We
consider a sensor network as one which consists of a set of sensor nodes {N1, N2, ...,
Nn} and a base station which has no energy and memory limitations. The sensor
nodes are well-synchronized. The base station keeps the network topology and there
are no communication delays in the sensor network. The sensor nodes generate a set
of data streams Φ = {S1, S2, ..., Sn}.

A path-tracking query Q joins stream Sj with some other streams in Φ. We denote
this subset of Φ as θ, and use the notation Q(O) to refer to the execution of Q follow-
ing a given join order O. A join order O is a permutation O = <SO1, SO2, ..., SO|θ|> of
the elements in θ. We use Cost(Q(O)) to denote the expected cost for processing ΔSj
using Q(O).

All path-tracking queries are posed at the base station, from which the queries are
planned and disseminated into the sensor network. All join results are collected at the
base station. In this paper, we focus on the in-network join processing of the queries.
The further processing of join results, such as making recommendations, take places
at the base station, and are beyond the scope of this paper. In this study, we assume
that all path-tracking queries have the same window specification. Further Relaxation
of this assumption can be a future direction to proceed.

Cost Model. In the following, we elaborate on the mechanism of processing a path-
tracking query Q in a sensor network, and present a cost model for the processing of
the path-tacking query. The model helps us to make a decision on choosing a good
join order. We use ΔSj to denote the newly generated tuple from Sj.

In processing ΔSj using a given join order O = <SO1, SO2, ..., SO|θ|>, the expected
cost of the query processing is given by

Cost(Q(O)) = | | ()1 1
i

i ji jdθ γ σ= =⋅ ⋅∑ ∑ ,

where iσ stands for the probability of ΔSj ... SOi-1 being dropped by SOi, di denotes
the minimum number of hop distance between NOi and NOi-1, and γ is the cost for one
hop transmission. Note that NO0=Nj.

Example 1. We use Q1 to illustrate the cost model. Assume Q1 uses O = < B, C, A>,
and the routing topology is as shown in Figure 3. Assume that γ = 100, σ1 = 0.3, σ2 =
0.1, and σ3 = 0.5. In processing ΔD using O = < B, C, A>, there are four cases to
consider:

536 Y.-C. Fan and A.L.P. Chen

Case 1: ΔD is dropped by node B.
In this case, the cost for processing ΔD is 0.3·(1·100)=30 since if ΔD dropped by
node B, only one transmission is performed.

Case 2: ΔD B is dropped by node C.
In this case, the cost for the processing is 0.1·((1+1)·100)=20.

Case 3: ΔD B C is dropped by node A.
In this case, the cost for the processing is 0.5·((1+1+2)·100)=200, since four trans-

missions has been performed.
Case 4: ΔD B A C is produced.

The processing cost is 0.1·(4·100)=40.
Thus, the total cost is 30+20+200+40= 290. ■

Optimization Goal. Given a set of queries W = {Q1, Q2, ..., Qm} at node Nj, the goal

is to minimize ()).m
i 1 i (Cost Q O=∑

Toward this goal, the JOO strategy aims to reduces Cost(Qi(O)) for each query,
and the CTSO optimization aims to avoid redundant executions among multiple que-
ries. Our goal is to combine and balance the two strategies for maximal benefits.

3 Multi-query Optimization

This section presents optimization strategies for processing multiple path tracking
queries. In the following discussion, we refer to the plan for processing a query indi-
vidually as a local plan, and use the term global plan to refer to a plan that provides a
way to compute results for multiple queries.

3.1 Join Order Optimization

The first option for improving efficiency is to optimize the queries individually by
choosing their join order. A naive method for finding an optimal join order is to enu-
merate all possible orders. Nevertheless, such approach results in the complexity of
O(|θ|!). In general, finding an optimal join order without independent assumptions [2] is
a NP-hard problem. Therefore, heuristic approaches are often adopted to find good join
orders. There are many interesting works, and we refer the reader to the survey in [2].

In this study, we greedily choose the stream that drops the maximum number of
tuples with a minimum cost at each step to determine a join order. The basic idea is
that if a tuple ΔSj eventually gets dropped, it is better that it gets dropped as early as
possible. Therefore, when choosing SOi, 1 < i < |θ|, the stream which most likely drops
ΔSj ... SOi-1 should be chosen. However, if the chosen stream is far away from NOi-1,
the execution will instead incur a great deal of message traffics. Therefore, we further
consider the communication cost. That is, the join orders are chosen by balancing the
two factors. That is, we choose the stream that most likely drops ΔSj ... SOi-1 and
that needs as few hop transmissions as possible to reach. Our idea is best seen by an
example. Again, we use Q1 to illustrate how we choose the join orders.

Example 2. Assume that the probability that ΔD is dropped by A is 0.5, the probabil-
ity of ΔD is dropped by B is 0.3, and the probability of ΔD is dropped by C is 0.1.
The routing topology is as shown in Figure 3. For ease of illustration, we assume the
probabilities are independent.

 An Approximation Algorithm 537

A

B

C

D

ΔB

C D A Q1

D E Q2

A F E

C EF

C

Q3

Q4

ΔB

A Q1

D
E Q2

C

Q3

Q4

A F E

C EF

ΔB

A Q1

D
E Q2

C

Q3

Q4

A

E
C

F

(a) A simple plan (b) A naïve sharing plan (c) Another sharing plan

Fig. 3. A Topology Fig. 4. Execution Plans

Our approach for choosing join orders proceeds as follows. First, node B is chosen
to be SO1 because it provides an expectation of 0.3/1=0.3 (the expected number of ΔD
to be dropped per number of hop transmissions) while node A only provides an ex-
pectation of 0.5/2=0.25 and node C only provides an expectation of 0.1/2=0.05. Then,
node A is chosen to be SO2 since it provides an expectation of 0.5 to drop ΔD B
while node C only provides an expectation of 0.1. Finally, node C is chosen to be SO3
and the order O = <B, A, C> is outputted. ■

3.2 Naïve Sharing Strategy

Having described the JOO strategy, we now turn to the problem of optimizing multi-
ple queries. Let us first consider an example for optimizing multiple queries.

Example 3. Given a set of queries W = {Q1, Q2, Q3, Q4} at node B, with θ1 = {A, C, D},
θ2 = {C, D, E}, θ3 = {A, E, F}, and θ4 = {F, C, E}. For ease of discussion, we assume
that the JOO strategy suggests the four locally optimized plans, as shown in Figure 4(a).
Note that no common tasks between the four plans are shared in Figure 4(a).

One straightforward method to further improve the global plan in Figure 4(a) is to
combine the locally optimized plans which have common prefixes. For example, we
can combine the plans for Q1 and Q2 in Figure 4(a) to produce a global execution plan
as shown in Figure 4(b). This execution plan is more efficient than the plan in Figure
4(a), because the redundant tasks are avoided and the plan does not violate the opti-
mized join orders. We refer to this strategy as the naïve sharing strategy.

However, the naïve sharing strategy restricts the scope of optimizations. The main
problem with the naïve sharing strategy is that more than one possible local plan can
be used to process a query. The naïve sharing strategy, however, only considers the
locally optimized plans. For example, although there is no common prefix between
the locally optimized plans of Q3 and Q4, we still can plan Q3 to be <F, E, A> and Q4
to be <F, E, C> such that the common tasks {F, E} can be shared. Figure 4(c) shows
the resulting plan, which may be more efficient than the one shown in Figure 4(b). In
fact, in addition to sharing {F, E}, the queries have other tasks in common, and the
naïve sharing strategy does not consider them to be shared, potentially missing further
optimization opportunities.

3.3 Hybrid Optimization Strategy

In this section, we study the problem of combining the JOO strategy and the CTSO
strategy for maximal benefits. We first discuss the construction of the search space for
combining the two strategies (Section 3.3.1), and then propose a randomized algo-
rithm for finding the optimal combination (Section 3.3.2).

538 Y.-C. Fan and A.L.P. Chen

3.3.1 Search Space
We first state two definitions for the subsequent discussions. The definitions are used
to describe elements in the search space.

Given a set of queries W = {Q1, Q2, ..., Qm} at node Nj. In the following discussion,
we refer a set of tasks as a task-set. We say a query Q contains a task-set if the task-
set is contained in θ. The count of a task-set is the number of queries of W having the
task-set. For example, {C, D} is a task-set of Q1 and the count for {C, D} is two in
Example 3.

Definition 1. We say a task-set is a common task-set, CTS, among W = {Q1,

Q2, ...,Qm} if and only if the count of the task-set is equal to or larger than two, i.e. at
least two queries in W contain the task-set.

Definition 2. For a given CTS, we call a subset wCTS of W whose elements all contain
the CTS as the sharing set of the CTS.

In Example 3, {C, D} is a CTS and w{C, D}= {Q1, Q2} is the sharing set of {C, D}. An
important thing to note is that a sharing set wCTS represents some execution way to
share the CTS for the queries in the sharing set. For example, w{C,D}={Q1, Q2} repre-
sents the execution that shares {C, D} for Q1 and Q2, i.e. the upper plan shown in
Figure 4(b).

The first step for finding a global optimal plan is to enumerate all possible execu-
tions for processing queries. Note that all the enumerated executions form the search
space for a global optimal plan. For a given set of queries W, the algorithm for con-
structing the search space proceeds as follows.

The first step is to derive all CTS from W. The process of finding CTS amounts to
the process of deriving the frequent item-set [4] with count ≥ 2 from {θ1, θ2, ..., θm}
because only the task-set with count ≥ 2 are the CTS for queries in W.

Second, for each CTS derived from W, we enumerate the associated sharing sets.
Note that there is more than one sharing set for a CTS. By definition, any subset S of a
sharing set with | | 2S ≥ is also a sharing set. In Example 3, the subsets {Q1, Q2}, {Q1,
Q4} and {Q2, Q4} of w{C} = {Q1, Q2, Q4} are also sharing sets, because if the queries
can share {C}, then any combination of the queries definitely can share the common
task {C}.

Third, for each sharing set wCTS, we represent the wCTS by a vector aCTS∈{0, 1}m
whose component ai equals to one if Qi∈ wCTS, and zero otherwise. In Example 3, a{C}

= (1, 1, 0, 1) describes that Q1, Q2, and Q4 share {C}.
Fourth, the above steps find all possible executions sharing common tasks for que-

ries. However, there are also possibilities that queries share nothing. That is, the que-
ries use their locally optimized plans given by the JOO strategy. Therefore, we also
include the options that the queries are individually executed.

To establish the search space, we combine the vectors, which represent the sharing
sets, into a matrix A (column wise) and their associated sharing costs into a cost vector c.

The search space for the problem can be then formulated as

{ , },i

Minimize
Subject to ,
 x 1 0 i 1, ..., n

⋅
⋅ =

∈ =

c x
A x e

 An Approximation Algorithm 539

The vector x contains components xi, i = 1, ..., n, which equals to 1 if Ai is chosen,
and 0 otherwise, and e denotes the vector whose components all equal to one. A vec-
tor x satisfying ⋅ =A x e is called a feasible solution. Note that each feasible solution
corresponds to a global execution plan for processing W. Therefore, our goal now is
to find a vector x* with subject to A with minimal cost *⋅c x . Theorem 1 shows the
complexity of the problem.

Theorem 1. Given a set of queries W = {Q1, Q2, ..., Qm}, the problem of selecting one

join order for each query with the goal of minimizing ())m
i 1 (iCost Q O=∑ is NP-

Complete.

Proof. By showing the equivalence between a set partition [3], a well-known NP-
Complete problem, and our problem, we shows that no polynomial time algorithm is
expected to exist. ■

{ , } { , } { , } { } { } { } { } { } { } { } { } { } { } { } {} {} {} {}
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0 0 1 1 1 1 1 0 1 0 0 0 0 0 1 0 0 0
1 0 1 0 1 1 0 1 1 1 1 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 1 0
1 1 0 0 1 0 1 1 0 1 0 1 1 1 0 0 0 1
C E E F C D A C C C C D E E E E F
c c c c c c c c c c c c c c c c c c

Fig. 5. The search space for W

Example 4. The search space for W in Example 3 is constructed as follows.

Step1: Find CTSs from W. We have {C, E}, {E, F}, {C, D}, {A}, {C}, {D}, {E} and
{F}.

Step2: For each CTS, we enumerate the associated sharing sets and then generate a
vector and a sharing cost to represent each enumerated sharing set. For {C, E},
we have the sharing vector a1=(0, 1, 0, 1) and the sharing cost c1 with respect
to the sharing set w{C, E} ={ Q2, Q4 }. Likewise, we have a2=(0, 0, 1, 1) and c2 for
{E, F}, a3=(1, 1, 0, 0) and c3 for {C, D}, and a4=(1, 0, 1, 0), and c4 for {A}.
Note that, for {C}, we will have a5=(1, 1, 0, 1), a6=(1, 1, 0, 0), a7=(1, 0, 0, 1),
and a8=(0, 1, 0, 1) with respect to the combinations of the sharing set w{C}, i.e.
{Q1, Q2, Q4} {Q1, Q2}, {Q1, Q4} and {Q2, Q4}. Likewise, for {D}, we have
a9=(1, 1, 0, 0). For {E}, we have a10=(0, 1, 1, 1), a11=(0, 1, 1, 0), a12=(0, 1, 0,
1), and a13=(0, 0, 1, 1) with respect to the combinations of the sharing set w{E}.
For {F}, we have a14=(0, 0, 1, 1)

Step3: For the options of the individual executions for the queries, we have a15=(1, 0,
0, 0), a16=(0, 1, 0, 0), a17=(0, 0, 1, 0), a18=(0, 0, 0, 1), and the associated shar-
ing costs.

Step4: Finally, we have a 4×18 matrix A and the corresponding cost vector c, where
Ai = ai and ci =ci , i = 1, ..., 18.

Figure 5 shows the search space for W, where columns describe all possible execu-
tions and the associated CTSs. For example, the first column describes the execution
that shares {C, E} between Q2 and Q4 with cost c1. ■

540 Y.-C. Fan and A.L.P. Chen

3.3.2 ε-Approximation Solution
We consider approximation solutions for combining the JOO strategy and the CTSO
strategy due to the prohibitive complexity of finding an optimal combination. We
propose a novel randomized algorithm, named RARO, based on the linear program-
ming rounding technique [5].

Definition 4. We say an algorithm is an ε-approximation algorithm for a minimization
problem with optimal cost opt, if the algorithm runs in polynomial time and returns a
feasible solution with cost opt+, such that opt+ ≤ (1 + ε)·opt, for any ε >0. We refer the
solution as an ε-approximation solution.

For solving the problem: minimizing xc ⋅ subject to exA =⋅ and x∈ {0, 1}n formu-
lated in Section 3.3.1, the basic idea behind Algorithm RARO is as follows.

First, we solve the relaxed version of the given problem, in which the original inte-
grality constraint (xi∈{0, 1}, i = 1, ..., n) is replaced by (xi = [0, 1], i = 1, ..., n). That
is, we allow xi to take real values between 0 and 1. The relaxed problem can be solved
in polynomial time [5]. Let x+={x+

1, ..., x
+

n} be the solution of the relaxed problem.
Note that the components of x+ might not be integral but fractional, meaning that x+ is
not a feasible solution for our problem.

To obtain a feasible solution, we then randomly round these fractional values.
More precisely, we treat x+ as a probability vector, and, for i =1, …, n, set xi to one
with probability x+

i. After this rounding process, we obtain a solution whose compo-
nents take values from {0, 1}, which probably is a feasible solution for the problem.
We then verify whether the solution is feasible. The condition whether a solution is
feasible can be verified in polynomial time. In case the solution is not fulfilled, we
repeat the rounding process to obtain another one.

The probability to obtain a feasible solution can be small. However, if we keep re-
peating the rounding process, the possibility to obtain a feasible solution grows. Algo-
rithm RARO is based on such principle. More specifically, Algorithm RARO runs
Procedure Rounding g(ε) times and returns xmin with a minimal cost ⋅ minc x as the final

solution to the given problem, where g(ε) = ln / ln((/) (/))310 1 1 1 1 1me ε− − − − .
Theorem 2 shows the probability for Procedure Rounding in Figure 6 to output a

feasible solution satisfying approximation guarantees. Theorem 3 shows the probabil-
ity that Algorithm RARO fails to output an ε-approximation solution is at most 0.001.
Lemma 1. With probability at least (/)1 1 me− , Procedure Rounding returns a feasible
solution.

Proof. In a rounding process, the probability that a query Qi is not planned is: Pr[Qi is
not planned] = ()

i
k

k
k:A 1

1 x+

=
−∏ . Let ni be the number of ways to execute Qi, that is, the

number of A’s column whose the i-th component equals to 1. Since
i

k
k

k:A 1
x 1+

=
=∑ , it is

clear that Pr[Qi is not planned] is maximized when +
kx = 1/ ni.

Therefore, we get Pr[Qi is not planned] = () (/) /i

i
k

n
k i

k: A 1
1 x 1 1 n 1 e+

=
− ≤ − ≅∏ .

Conversely, Pr[Qi is planned]= /1 1 e− .

Therefore, the probability of the event all queries are planned is (/)1 1 me− . ■

 An Approximation Algorithm 541

Algorithm RARO
Input: A search space A and the paramter
Output: A solution xmin for our problem
1. Solve A x e , where xj= [0, 1], nj
2. Treat the solution x+={x+

1, …, x
+

n} as a probability vector
3. Set G = ln / ln((/) (/))310 1 1 1 1 1me
4. Set xmin and mincost =
5. For i = 1 to G
6. Set x = 0
7. x = Rounding (x+)
8. If (minc x < mincost and A x e)
9. xmin = x
10. EndIF
11. End
12. Return xmin

Procedure Rounding
Input: a probability vector x+

Output: a decision vector x, x {0, 1}n, initially are all zero.
1. For i = 1 to n
2. Set xi to 1 with probability x+

i

3. EndFor
4. Return x

Fig. 6. Algorithm RARO

Lemma 2. For 1>ε , with probability at least ε/11− , Procedure Rounding returns a
solution with a cost lower than ε·opt, where opt denotes the optimal cost for our op-
timization problem.

Proof. Let x+ be the solution returned by Procedure Rounding. For the expected cost
of ⋅ +c x , we have E[⋅ +c x] = n

i 1 i ic x +
= ⋅∑ , which is the same as the optimal cost to the

relaxed problem. We denote the optimal cost for the relaxed problem as optf . Note
that opt ≥ optf.

Applying the Markov’s Inequality to ⋅ +c x , we have

Pr[foptε⋅ ≥ ⋅+c x] (/) /1f fopt optε ε≤ ⋅ ≤ .

Equivalently, Pr[foptε⋅ < ⋅+c x] /1 1 ε> − . As we note that opt ≥ optf, we have

Pr[fopt optε ε⋅ < ⋅ ≤ ⋅c x] ε/11−> . ■

Theorem 2. With probability at least (/) (/),1 1 1 1me ε− − Procedure Rounding pro-
duces an ε-approximation solution to the given problem.

Proof. By Lemma 1 and Lemma 2. ■

Theorem 3. The probability that Algorithm RARO fails to output an ε-approximation
solution is at most 0.001.

Proof. The event S that Algorithm RARO fails to output an ε-approximation solution
occurs only when all the calls of Procedure Rounding fails to produce an ε-
approximation solution. Therefore, we proceed with the proof by showing that the
probability of S is at most 0.001.

542 Y.-C. Fan and A.L.P. Chen

First, let us consider the probability of the event that calling Procedure Rounding x
times and none of them produce an ε-approximation solution. Obviously, this prob-
ability is (1 – (/) (/))1 1 1 1m xe ε− − by Theorem 2.

Then, note that Procedure Rounding is called ln / ln((/) (/))310 1 1 1 1 1me ε− − − − times in

Algorithm RARO. Therefore, the probability of the event S is given by
 Prob(S) = ln / ln((/) (/))((/) (/))

310 1 1 1 1 11 1 1 1 1
mm ee εε

− − − −− − − .

By taking the natural logarithm of both sides of the above equation, we have

 ln(Prob(S)) = ln() / ln((/) (/)) (ln((/) (/)))310 1 1 1 1 1 1 1 1 1 1m me eε ε− − − − ⋅ − − − .
Rewriting the equation, we obtain
 Prob(S) = 0.001. ■

4 Performance Evaluation

4.1 Prototyping Experiences

We have completed an initial implementation for the path tracking application by adopt-
ing Tmotesky nodes and SkyeRead-M1-Mini RFID reader. All programs in the base
station are coded using Java, and the sensor network is programmed by Maté [6]. The
plans of the given queries are optimized at the base station (BS), and then are dissemi-
nated into the network by Maté. The dissemination begins with the broadcast of Maté
capsules from the root of the network. As each node hears the capsules, it decides if the
Maté capsules should be installed locally or need to be flooded to its children or both.
Our queries successfully run on this environment. We have nine Tmotesky nodes
equipped with M1-Mini Reader in our implementation. However, this implementation is
too small in its scale to measure the performances of our strategies. Consequently, the
experiment results in this section are based on a simulation.

4.2 Experiment Setup

In J-sim, a sensor network consists of three types of nodes: sensor nodes (detect
events), target nodes (generate events), and sink nodes (utilize and consume the senor
information). In our setting, we create a monitoring area in which a regular 13*14
grid with 36 sensor nodes is simulated. The sensor nodes are assumed to have a 2*2
grid of monitor radius. The sink node is on the left-upper corner of the grid. Figure 7
shows this setting. In addition, we generate 6000 target nodes that simulate customers
with RFID tags. The target nodes are assumed to enter the area from the entrance and
leave from the exits of the area. We use random walk [5] to simulate the customers’
moving behavior: the target nodes on the area move to every possible direction with
equal probability, and stop its move process when it reaches the exits. When a target
node enters the monitor region of a sensor node, the sensor node generates a tuple
(5bytes) containing the sensor ID (1byte), the target node ID (3bytes), and the time-
stamp (1byte). As mentioned earlier, if target nodes keep entering the area, the sensor
nodes generate data streams. We process the streams by the proposed strategies, and
compare the performance of the strategies in this environment. In all experiments we
show the average value of 100 runs.

 An Approximation Algorithm 543

Exit
Entrance

EntranceEntrance

Exit
Entrance

EntranceEntrance

Sink Node Target Node Sensor Node Query

Fig. 7. Experiment setup

4.3 Evaluation

Basic Comparison. In the first set of experiments, we evaluate the performance of
the presented optimization techniques. Join-order optimizations (JOO): all queries are
individually optimized by the join-order optimizations. Common-task-sharing optimi-
zations (CTSO): the queries are optimized by only considering share common tasks
among queries. Naïve sharing strategy (NSS): all the queries are firstly optimized by
JOO and then share the common prefix among queries. Hybrid Optimization (HO):
the queries are optimized by the HO optimization with parameter ε = 2.

We pose eight queries on the simulated environment, as shown in Figure 7. The
average selectivities for the queries are 0.2104. Figure 8 shows the experiment results,
where y-axis shows the energy consumption for processing the given queries. We can
see that HO significantly outperforms the other strategies.

Effect of In-network Processing. This experiment demonstrates the benefits of in-
network processing against the centralized processing (all data are collected and
evaluated in a BS). We mainly compare the centralized processing (CP) with JOO (as
a representative of in-network processing). Two query sets are used to evaluate the
performance, one with higher selectivities (average selectivity = 0.6115) of joining
three streams (n=3) and the other with lower selectivities of joining five streams
(0.3116, n=5). We vary the level of nodes at which the execution plans are installed to
observe the performance of the strategies. Figure 9 shows the results, where x-axis is
the level of nodes (the sink node at level 0) and y-axis is the number of transmissions
involved in the query processing.

Note that the poor performance of CP comes from the fact that CP transmits all
data to BS regardless of whether the data contribute to the query results. This effect
can be observed from the selectivity factor. When the selectivity is 0.3116, JOO obvi-
ously outperforms CP, because most of tuples get dropped during execution. From
this experiment, we know that CP is only good for the query processing that is close
to the sink, with very high selectivity, and few streams involved in queries.

Effect of Low Sharing Opportunity. This experiment studies the effect of low sharing
opportunity. We consider a query set where each query only has one common task with
others. Even under this restriction, HO still has good results, as shown in Figure 10.
This is because if no common task exists, HO will degenerate to JOO, i.e., all queries

544 Y.-C. Fan and A.L.P. Chen

will be optimized individually. One thing to note in this experiment is that JOO outper-
forms CTSO. As we mentioned, blindly sharing the common tasks is not always benefi-
cial to the query processing. In this experiment with low sharing opportunity, the poor
performance of CTSO comes from the fact that the tasks saved by sharing are less than
the cost incurred from the violation of the individual optimizations.

Effect of Number of Queries. This experiment studies the effect of the number of
queries involved in the processing. Figure 11 shows our results, where x-axis is the
number of the queries involved in the processing and y-axis is the energy consump-
tion. We vary the number of queries to observe the performance of the strategies. We
can see that HO always outperforms the other strategies and shows advantages as the
number of queries increases, since when the number of queries increases, the sharing
opportunities also increase.

5 Related Work

The problem of processing multiple queries in a data stream environment has been
studied in several fronts [7][9][10][11][12][13].

Hammad et al.[7] study the problem of sharing executions of queries that that have
different join window specification, where the proposed techniques are only capable
of handling two-way join queries. The approach proposed in [9] address the problem
of optimizing multiple group-by queries in GigaScope [8], where the queries can only
differ in the grouping attributes.

In addition to sharing query plans, another alternative for processing multiple que-
ries is to use the query predicate index. The main idea for query predicate index
[10][11][12] is to decompose queries into operators and use an index structure to
simultaneously evaluate multiple queries. One concern for these approaches is the
intuition that the sharing among queries always benefits the overall query processing.
However, this intuition does not always hold. In order to enable sharing, some execu-
tions, such as selection and projection, may need to be postponed, which can result in
a significant increase in the size of intermediate results. Moreover, if the operators are
with high selectivity, executing the queries individually can be more beneficial to the
overall cost.

Krishnamurthy et al.[12] address sharing executions of the multiple aggregates
with different window specification and different selection predicates over single data
stream. The idea is to fragment input tuples into disjoint sets with respect to the query
predicates and then on-the-fly answer queries with the associated disjoint sets.

All the above-mentioned works [7][9][10][11][12] use the same framework where
massive data streams are collected and sent to a central processing engine where the
data are processed. As reported in our experiments, such frameworks are not efficient
for processing the streams formed by a sensor network due to power considerations.

Huebsch et al. [13] extends the idea of fragmenting tuples [12] to processing mul-
tiple aggregation-queries over distributed data streams, where the queries are assumed
to differ in their selection predicates. Both [12][13] focus on the aggregate queries,
but none of them permit join processing.

 An Approximation Algorithm 545

0

2000

4000

6000

8000

10000

JOO CTSO NSS HO

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

0

20000

40000

60000

80000

100000

1 2 3 4 5

Level

N
um

.o
f

T
ra

ns
m

is
si

on
s

CP (n=3, Avg. Selec.=0.61)

JOO (n=3, Avg. Selec.=0.61)

CP (n=5, Avg. Selec.=0.31)

JOO (n=5, Avg. Selec.=0.31)

 Fig. 8. Performance comparison Fig. 9. Effect of in-network processing

0

2000

4000

6000

8000

10000

12000

JOO CTSO NSS HO

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

0

3000

6000

9000

12000

15000

18000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of Queries

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J)

CTSO

NSS

JOO

HO

 Fig. 10. Effect of low sharing opportunity Fig. 11. Effect of number of queries

The in-network query processing systems for sensor networks, including Tinydb

[16], TAG [15], and Cougar [14], support simultaneous multiple query executions.
However, none of them addresses the problem of optimizing multiple join-queries.

The recent works [17][18][19] propose multiple query optimization techniques for
sensor networks. However, the proposed techniques all focus on optimizing multiple
aggregation or selection queries, which are orthogonal to the problem we solve.
Müller et al. [18] considers the problem of optimizing multiple aggregation queries
for sensor networks, while the work [17][19] addresses the problem of merging mul-
tiple selection queries which request different data at different acquisition rates.

6 Conclusion and Future Work

In this paper, we investigate the problem of efficiently evaluating path tracking
queries in a sensor network application. We consider exploiting multi-query optimiza-
tions. We formulate the problem of the multi-query optimization and show the com-
plexity of finding the optimal solution. We propose an efficient algorithm, which
provide solutions with sub-optimal guarantees. The experiment result shows that our
strategies ensure scalability, minimize the message traffic, and therefore reduce en-
ergy consumption.

In this study, we consider scalability issues of processing path-tracking queries.
However, in stream environments, the adaptivity issues are also critical when dealing
with the dynamic nature of data streams. If the data distribution of streams fluctuates
over time, an adaptive approach to execute the queries is therefore essential for a good
performance.

546 Y.-C. Fan and A.L.P. Chen

In addition, we are currently implementing the path tracking application in a large
sensor network. This raises some practical problems at the system level, such as com-
munication scheduling, etc. We plan to explore these issues as a part of our future work.

References

[1] Viglas, S., Naughton, J.F., Burger, J.: Maximizing the output rate of multi-way join que-
ries over streaming information sources. In: Proc. of the Intl. Conf. on Very Large Data
Bases, pp. 285–296 (2003)

[2] Babu, S., et al.: Adaptive ordering of pipeline stream filters. In: Proc. of the ACM SIG-
MOD Conf. on Management of Data, pp. 407–418 (2004)

[3] Balas, E., Padberg, M.: Set partition: a survey. SIAM review (18), 710–760 (1976)
[4] Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San

Francisco (2001)
[5] Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge Press (1995)
[6] Levis, P., Gay, D.: Maté: a tiny virtual machine for sensor networks. In: Proc. of Intl.

Conf. on Architectural Support for Programming Languages and Operating Systems, pp.
85–95 (2002)

[7] Hammad, M.A., et al.: Scheduling for shared window joins over data streams. In: Proc. of
the Intl. Conf. on Very Large Data Bases, pp. 297–308 (2003)

[8] Cranor, C.D., et al.: Gigascope: a stream database for network application. In: Proc. of the
ACM SIGMOD Conf. on Management of Data, pp. 647–651 (2003)

[9] Srivastava, D., et al.: Multiple aggregations over data streams. In: Proc. of the ACM
SIGMOD Conf. on Management of Data, pp. 299–310 (2005)

[10] Chandrasekaran, S., Franklin, M.J.: Streaming Queries over Streaming Data. In: Proc. of
the Intl. Conf. on Very Large Data Bases, pp. 203–214 (2002)

[11] Madden, S., et al.: Continuously Adaptive Continuous Queries over Streams. In: Proc. of
the ACM SIGMOD Conf. on Management of Data, pp. 49–60 (2002)

[12] Krishnamurthy, S., et al.: On-the-fly sharing for streamed aggregation. In: Proc. of the
ACM SIGMOD Conf. on Management of Data, pp. 623–634 (2006)

[13] Huebsch, R., et al.: Sharing aggregate computation for distributed queries. In: Proc. of the
Intl. Conf. on Very Large Data Bases (2007)

[14] Yao, Y., Gehrke, J.: Query processing in sensor networks. In: Proc. of Intl. Conf. on In-
novative Data Systems Research (2003)

[15] Madden, S., et al.: TAG: a tiny aggregation service for ad-hoc sensor networks. In: Proc.
of Annual Symps. on Operating System Design and Implementation, pp. 131–146 (2002)

[16] Madden, S., et al.: TinyDB: an acquisitional query processing system for sensor net-
works. ACM Trans. on Database Systems 30(1), 122–173 (2005)

[17] Trigoni, N., et al.: Multi-query optimization for sensor networks. In: Proc. of Intl. Conf.
on Distributed Computing in Sensor Systems, pp. 301–321 (2005)

[18] Müller, R., Alonso, G.: Efficient sharing of sensor networks. In: Proc. of Intl. Conf. on
Mobile Ad-hoc and Sensor Systems, pp. 101–118 (2005)

[19] Xian, S., et al.: Two-Tier Multiple query optimization for sensor networks. In: Proc. of
the IEEE Intl. Conf. Distributed Computing System, pp. 39–47 (2007)

A Versatile Record Linkage Method by Term
Matching Model Using CRF

Quang Minh Vu, Atsuhiro Takasu, and Jun Adachi

National Insitute of Informatics, Tokyo 101-8430, Japan
{vuminh,takasu,adachi}@nii.ac.jp

Abstract. We solve the problem of record linkage between databases
where record fields are mixed and permuted in different ways. The so-
lution method uses a conditional random fields model to find matching
terms in record pairs and uses matching terms in the duplicate detec-
tion process. Although records with permuted fields may have partly
reordered terms, our method can still utilize local orders of terms for
finding matching terms. We carried out experiments on several well-
known data sets in record linkage research, and our method showed its
advantages on most of the data sets. We also did experiments on a syn-
thetic data set, in which records combined fields in random order, and
verified that it could handle even this data set.

1 Introduction

Information on the web is growing at an explosive rate [10], and information
about an object may appear in several places. To retrieve such information ef-
fectively, we need to merge all the spread out information on the same object.
Some of the previous studies have dealt with collecting information about com-
panies, people, etc. [16,1,3]. In this study, we tried to collect information about
journal papers from different data resources. An application is extraction of in-
formation about papers from publication lists posted on the web and matching
them with records in research paper databases. Since databases and publica-
tion lists are different resources, the field orders and field permutations might
be different; this makes linkage a more challenging task. We devised a versatile
method for linking records that can work well with field-reordered records.

Most of the previous studies on record linkage targeted databases with records
that have similar field orders [4,13,8]. For example, some focused on field seg-
mentation records, where two sets of fields in two databases are the same. The
methods that were developed in these studies work well with long string combi-
nations from the same set of fields and when the fields are combined in the same
order. Hereafter, we call such field segmentation records and field combination
string records segmentation records and string records, for short. For these kinds
of records, the previous studies built matching models based on the string edit
distance to find common information between two records and to find differ-
ent information that is inserted/deleted to/from one record. Although methods
based on the string edit distance are effective for records with the same field

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 547–560, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

548 Q.M. Vu, A. Takasu, and J. Adachi

order, they are of limited benefit when the records are from different databases
and have different field orders. For example, in these two records: “Four Seasons
Grill Room, 854 Seventh Ave., New York City” and “854 Seventh Ave., New
York City, Four Seasons Grill Room”, the common text “Four Seasons Grill
Room” appear at the head of one record but at the tail of the other record, and
the string edit distance method will regard this text as being deleted from both
records. This fault may degrade the duplicate detection performance.

There is another record linkage method that builds bags of words for records
and measures the weights of common terms [4]. This method can find record
pairs that have different field orders, but it neglects the term orders in a string.
Therefore, it is difficult to detect overlapping phrases, and this drawback may
degrade the duplicate detection performance.

To detect duplications in records that have different field orders, we tried to
find matching information at the term level and combine the matching informa-
tion for the duplicate detection process. Our approach uses a labeling method to
find matching terms. Terms in one record are used as labels for matching terms
in another record. We solve this labeling problem by using a conditional random
fields (CRF)[11,15] model. CRF is usually used to solve the sequence labeling
problem. For example, we applied CRF to bibliographic information extraction
from title pages of academic articles where term sequences appearing in title
pages are labeled with bibliographic components [14]. Unlike standard CRF ap-
plications including our previous study [14], here we use CRF to align terms in
a pair of bibliographic records. Our way of CRF application is similar to the
study [13], where CRF was used to measure the costs of a learnable string edit
distance. However, their model suffers when the term orders of the compared
strings are different. Our CRF model is analogous to a CRF model which aligns
terms in machine translation [5]. Our model detects reordered terms in different
records, while their model [5] detects terms having the same meaning in two
languages.

The rest of this paper is organized as follows. Section 2 summarizes the related
studies on record linkage. Section 3 presents our term matching model that is
based on the CRF model and our duplicate detection classifier that is based on
the support vector machine (SVM) method [7]. Section 4 shows experimental
results on several well-known data sets and compares them with the results of
previous research. Section 5 discusses the advantages of our model and compares
it with other CRF models in other applications so that the reader can better
understand the characteristics of our approach. Finally, Section 6 concludes this
research.

2 Related Work

In [9,4,13], the string edit distance method is used to detect duplicate parts and
different parts of two records. The authors carefully considered edit operations,
so that they could be used to recognize important text changes that help to
differentiate two distinct records. To recognize important text changes, they
used an SVM model in [4] and a CRF model in [13]. However, these approaches

A Versatile Record Linkage Method by Term Matching Model Using CRF 549

Record XFour Seasons Grill Room, 854 Seventh Avenue, New York City

Record YFour Seasons Grill Room854 Seventh Avenue,New York City,

1 2 3 4 5 6 7 8 9 10 Position of terms
in Record X

8 9 10 5 6 7 1 2 3 4 Mapping L

Fig. 1. Example of term matching using the proposed model

have trouble handling records with different field orders. If the fields of the two
records are not aligned or their field combinations are in different orders, there
are no reasonable edit operations to transform one record into another record.

In [4], the authors also used bags of words of records to find duplications.
They improved the term frequency-inverse document frequency (tf-idf) weighting
scheme [2,12] in the traditional vector space model by using a model to learn
important words that are strongly related to a specific database. This method
can be applied to records that have different data field orders. However, since the
bag-of-words approach ignores term orders in a string, it can not recognize terms’
consecutiveness, and therefore, it can not utilize matching phrases in records.

3 Term Matching CRF Model

3.1 Application of CRF to Term Matching Problem

Let us define the notations used in this paper. For a sequence X, |X| denote the
length of the sequence. For a set S and integer l, Sl denotes a set of sequences of
elements of S whose length is l. We detect identical record pairs by performing
the following two steps:

1. term mapping: map terms in a pair of records using CRF, and
2. resolution: decide the identity of the pair based on the term mapping using

SVMs.

Let us consider the pair of records in Section 2. Figure 1 shows a term mapping
between the pair of records X and Y . Note that the mapping does not preserve
the order of terms.

A record is denoted by a sequence X = (x1,x2, ...,xn), where each element xi

represents a term in the record. For a segmentation record, we encode the field
type and field ID together with the spelling of the term in order to utilize them as
features in CRF. Therefore, each term xi contains three pieces of information:
xi = (xspell

i , xfield
i , xid

i), where xspell
i is the term spelling, xfield

i type of field
where xi exists, and xid

i the field ID. For example, the field type of the first to
third terms of the record X in Fig. 1 is restaurant name, whereas the field type

550 Q.M. Vu, A. Takasu, and J. Adachi

of the 8th to the 10th terms is city name. Records often contain multiple values
for a field such as the authors of the article. The field ID is used to discriminate
fields of the same type. For example, regarding a term xi for the first author
and a term xj for the second author, their field types are the same, but their
field IDs are different: i.e., xfield

i = xfield
j and xid

i �= xid
j . Since a string record

does not have any field information, we introduce an imaginary field type string
and assign it to all terms, i.e., x̂i = (xspell

i , string, 1) for any ith term in a string
record, where the field ID of all terms is 1.

We denote a mapping between terms in record X and Y as a list m ≡
(m1,m2, · · · ,m|Y |) of positions of terms in X where mi denotes the position of
the term in X that is mapped to the ith term in Y . For example, the mapping
in Fig. 1 is represented with (8, 9, 10, 5, 6, 7, 1, 2, 3, 4) by which, for instance, the
first term “New” in record Y is mapped to the 8th term “New” in record X.

To handle the term mapping by using a linear chain CRF model, for each pair
of records (X ,Y), we use the terms in one record as labels and assign one of
them to each term in the other record. Formally, we initially set a null position
0 that means that there is no corresponding term in X . For a pair of records
(X,Y), we use LX ≡ {0, 1, 2, · · · , |X|} as the set of labels for terms in Y .
The term mapping between a record X and Y is defined as a label sequence
m ∈ L

|Y |
X .

As in the linear chain CRF model, we assume that the mapping of term yi

is determined by the mapping of yi−1 and yi itself. Then, the probability that
m = (m1,m2, · · · ,m|Y |) ∈ L

|Y |
X is a mapping between a record X and Y is

given by

p(m | X,Y ,θ)

∝ exp

⎛
⎝ |Y |∑

i=1

∑
k

λkfk(xmi ,yi) +
|Y |∑
i=2

∑
h

μhgh(xmi−1 ,xmi ,yi−1,yi)

⎞
⎠ (1)

where fk(xmi ,yi) and gh(xmi−1 ,xmi ,yi−1,yi) are feature functions discussed
in the next section; λk and μh are parameters of the proposed term matching
CRF model; and θ denotes the parameters {λk}k ∪ {μh}h. The optimal term
mapping for a record X and Y is obtained by solving the optimization problem

argmax
m∈L

|Y |
X

p(m | X,Y ,θ) . (2)

3.2 Parameter Learning Algorithm

Given a set of training data {(X1,Y 1,m1), (X2,Y 2,m2), · · · , (Xn,Y n,mn)},
we have to find an optimal set of parameters θ = {λk}k ∪ {μl}l that best mod-
els the learning data. The object function is the summary of likelihoods of all
training data, as follows.

A Versatile Record Linkage Method by Term Matching Model Using CRF 551

Φ(θ) =
n∑

i=1

log p(mi|Y i,Xi) (3)

CRF uses regularization to avoid overfitting: it gives a penalty to weight vectors
whose norm is too large. The penalty used is based on the Euclidean norm of
θ and on a regularization parameter 1/2σ2 that determines the strength of the
penalty. Therefore, the object function becomes.

Φ(θ) =
n∑

i=1

log p(mi|Y i,Xi)−
∑

k

λ2
k

2σ2 −
∑

l

μ2
l

2σ2 (4)

To maximize Φ(θ), CRF uses the LBFGS algorithm[6] to update parameters θ
iteratively so that Φ(θ) approaches the global maximum point. At each itera-
tion step, the LBFGS algorithm uses partial differential coefficients ∂Φ

∂λk
, ∂Φ

∂μl
to

update parameters. See [15] for details about calculating these coefficients.

3.3 Label Assigning Algorithm

To find term associations between two records, we have to maximize p(m |
X,Y ,θ) which is equivalent to the following optimization problem.

m = argmax
m

⎛
⎝ |Y |∑

i=1

∑
k

λkfk(xmi ,yi) +
|Y |∑
i=2

∑
h

μhgh(xmi−1 ,xmi ,yi−1,yi)

⎞
⎠

= argmax
m

⎛
⎝ |Y |∑

i=1

∑
k

φ(xmi−1 ,xmi ,yi−1,yi)

⎞
⎠ (5)

where φ(xmi−1 ,xmi ,yi−1,yi) =
∑

k λkfk(xmi ,yi) + μhgh(xmi−1 ,xmi ,yi−1,yi)
Let ψ(l,ml) be

∑l
i=1 φ(xmi−1 ,xmi ,yi−1,yi), where ml = (m1,m2, · · · ,ml).

Then, we have ψ(l + 1,m) = ψ(l,m) + φ(xml
,xml+1 ,yl,yl+1). We also have

max
ml+1

ψ(l + 1,ml,ml+1) = max
ml+1

(
max
ml−1

ψ(l,ml−1,ml) + φ(xml
,xml+1 ,yl,yl+1)

)
(6)

Using Eq. (6), we can solve maxml+1 ψ(l + 1,ml,ml+1) consecutively in a dy-
namic programming manner, which starts at maxm0 ψ(0, ·,m0) = 0, where m0
is a dummy mapping. When we finish at l = |Y |, we get the optimal solution of
Eq. (5).

3.4 Feature Functions for Term Matching Model

We use a linear chain graph for our term matching model and build feature
functions for nodes and edges as follows.

552 Q.M. Vu, A. Takasu, and J. Adachi

Node Feature Functions. A node feature function fk(x,y) is defined for each
field type t and measures the similarity of terms x and y. It is defined as

fk(x,y) =

{
σ(xspell , yspell) if xfield = yfield = t

0 otherwise
(7)

where σ(xspell , yspell) is one of the following string similarities:

– Full matching function: σ(xspell , yspell) = 1 if xspell = yspell; otherwise, it is
0.

– Abbreviation matching function: σ(xspell , yspell) = 1 if xspell is the abbrevi-
ated form of yspell or yspell is the abbreviated form of xspell. Otherwise it is
0.

– Close string matching function: σ(xspell , yspell) is the edit distance between
xspell and yspell.

– Close number matching function: σ(xspell , yspell) = 1 if both xspell and yspell

are numeric and |xspell − yspell| is less than a threshold. This function is
used to measure the similarity of numeric fields, such as year published in
bibliographic records.

Since the string record does not have any field information, we introduce a wild
card General of the field type that matches any field xfield and yfield in eq.
(7);, i.e., a node feature function for the type General returns σ(xspell , yspell)
independent of the field types xfield and yfield.

Edge Feature Functions. An edge feature function gh(xmi−1 ,xmi ,yi−1,yi)
is defined for each field type type and a mapping m. It measures the similarity
of two consecutive terms. It is defined as

gh(xmi−1 ,xmi ,yi−1,yi)

=

⎧⎪⎨
⎪⎩
σ(xspell

mi−1
, yspell

i−1) · σ(xspell
mi

, yspell
i) if xfield

mi−1
= xfield

mi
= yfield

i−1 = yfield
i = type,

xid
mi−1

= xid
mi
, yid

i−1 = yid
i

0 otherwise

(8)

where σ(xspell , yspell) is same as the node feature function.

3.5 Feature Vectors for Resolution by SVM

For resolution by SVM, we have to build feature vectors to represent records’
similarity and use these feature vectors to separate duplicate pairs from non-
duplicates. We create two feature values as follows.

Feature Values Derived from CRF Feature Functions. For each feature
function in the CRF model, we summarize its values across all nodes and nor-
malize it by the record length. Let m∗ = (m∗

1,m
∗
2, · · · ,m∗

|Y |) denote the optimal

A Versatile Record Linkage Method by Term Matching Model Using CRF 553

mapping obtained by solving the problem (2). For records X and Y , the feature
f̂k derived from the node feature function fk(·, ·) is

f̂k =
1
|Y |

|Y |∑
i=1

fk(xm∗
i
,yi) . (9)

Similarly, for a record X and Y , the feature ĝh derived from the edge feature
function gh(·, ·, ·, ·) is

ĝh =
1
|Y |

|Y |−1∑
i=1

gh(xm∗
i−1

,xm∗
i
,yi−1,yi) . (10)

Heuristic Feature Values. In addition to feature values described in the
previous subsection, we also create the following heuristic features from matching
terms that are useful for duplicate detection.

1. Number of terms to be deleted/inserted: Since the CRF model only calculates
features from matching terms, we created this feature to take into account
different terms for the duplicate detection process.

2. Number of consecutive terms to be deleted/inserted: this feature can put
more penalty points on deleted/inserted phrases.

3. Position of terms to be deleted/inserted: For journal citation records, in-
formation such as author name often appears at the beginning of strings,
whereas venue information often appears at the end. We use these features
to differentiate term importance on the basis of position.

4 Experiments

4.1 Experimental Methods

Data sets. We carried out experiments on three well-known data sets that have
been used in previous studies. The first data set contains records on restaurant
information. We use four fields in this data set: name, address, city and cuisine.
The second and the third data sets are the Cora and Citeseer data sets, and

Table 1. Number of records and duplications in the data sets

Data set Number of records Duplications
Restaurant 864 112 duplicate pairs
Cora 1295 122 unique papers
Citeseer Reasoning 514 196 unique papers
Citeseer Face 349 242 unique papers
Citeseer Reinforcement 406 148 unique papers
Citeseer Constraint 295 199 unique papers

554 Q.M. Vu, A. Takasu, and J. Adachi

they contain citations of papers. In the Cora dataset, citations are segmented
into fields, and we used five fields in our experiments: author, title, venue, year,
and page number. As for the Citeseer data set, we used the same subset as in
[13] that consists of papers about four topics: Reasoning, Face, Reinforcement,
and Constraint. Citations in this data set are long string records whose fields
are not segmented. Details regarding the number of records and the number of
duplications are shown in Table 1.

Table 2. Feature functions for segmentation records of citations in CRF term matching
model

Feature type Field type Label difference Matching type 1 Matching type 2
Edge Author 1 Full Full
Edge Author 1 Abbreviation string Full
Edge Author 1 Full Abbreviation string
Edge Author 1 Abbreviation string Abbreviation string
Edge Author -1 Full Full
Edge Author -1 Abbreviation string Full
Edge Author -1 Full Abbreviation string
Edge Author -1 Abbreviation string Abbreviation string
Node Author Full
Edge Title 1 Full Full
Edge Title 1 Full Abbreviation string
Edge Title 1 Abbreviation string Full
Edge Title 1 Full Close string
Edge Title 1 Close string Full
Node Title Full
Edge Venue 1 Full Full
Edge Venue 1 Abbreviation string Full
Edge Venue 1 Full Abbreviation string
Node Venue Full
Node Page Full
Node Page Close number
Node Year Full
Node Year Close number

Feature Functions in the CRF Term Matching Model. In our CRF term
matching model, feature functions are used to find the best way to match terms
between record pairs. Tables 2 and 3 list examples of feature functions used
for citation segmentation records and restaurant string records, respectively. In
these tables, the “label difference” column means the difference between the
positions of two labels. The “matching type 1” and “matching type 2” columns
mean the string matching functions used to match node terms and label terms
at the current position and at the previous position, respectively. The notation
“Full”, “Abbreviation string”, “Close string”, and “Close number” mean two
terms match exactly, one term is abbreviation of another, two terms have small
string edit distance, and two term numbers have a small difference in value.

A Versatile Record Linkage Method by Term Matching Model Using CRF 555

Table 3. Feature functions for string records of restaurant information in CRF term
matching model

Feature type Field type Label difference Matching type 1 Matching type 2
Edge General 1 Full Full
Edge General 1 Abbreviation string Full
Edge General 1 Full Abbreviation string
Edge General 1 Close string Full
Edge General 1 Full Close string
Node General Full
Node General Abbreviation string

Parameter Learning for the CRF Term Matching Model. Our CRF
term matching model requires the parameters of the feature functions to be
tuned. To find an optimal set of parameters, we prepared a set of duplicate
records and annotated matching terms in record pairs. These duplicate records
are from a neutral resource other than the restaurant data set, the Citeseer data
set, and the Cora data set. We then ran the traditional CRF parameter learning
algorithm to find the optimal parameters.

SVM Classifier Learning. We used an SVM classifier to decide the identity of
each pair of records. In this experiment, we used the SVMlight tool.1 We created
training and test data for the SVMs as follows. First, we group records into
clusters of duplicates. When making pairs of records even from these clusters, the
data is imbalanced; i.e., it contains only a few positive pairs and many negative
pairs. Therefore, we do sampling to prepare training data. The sampling method
affects the observed. Hence, we used the following sampling methods that are
similar to those of the previous studies [4,13].

1. Selection of negative pairs from the top
In [4], the authors roughly grouped records into overlapping clusters and
selected all pairs of records in the same cluster for their experiments. This
way of sampling resulted in most of the positive pairs and negative pairs
with high similarity being selected. Our first sampling method was similar
to this method. For positive pairs, we selected all positive pairs in the data
set. For negative pairs, we first measured their similarities using the tf-idf
vector space model and ranked pairs by their similarities. We then selected
negative pairs from the top so as to get k times more negative pairs than
positive pairs. We call this sampling method similarity sampling.

2. Selection of negative pairs by random sampling
In [13], the authors selected all positive pairs in the data set. Next, they
removed negative pairs which were too different and sampled the rest of the
negative pairs randomly. They selected ten times more negative pairs than
positive pairs. Our second method of pair selection is similar to this one.
For positive pairs, we select all positive pairs in the data set. For negative

1 http://svmlight.joachims.org

556 Q.M. Vu, A. Takasu, and J. Adachi

pairs, we first measure the similarities of the record pairs by using the tf-idf
vector space model. Then, we choose negative pairs with the top similarities
to get 2k times as many negative pairs as positive pairs. From these negative
pairs, we randomly sampled pairs to get half of them. In the end, the number
of remaining negative pairs was k times larger than the number of positive
pairs. We call this sampling method random sampling.

These two ways of sampling create two data sets that have different character-
istics. We set k = 10 in the experiments with the restaurant data set and the
four subsets in the Citeseer data set. Regarding the Cora data set, the duplicate
clusters are large, so the number of positive pairs is also large. Therefore, we set
k = 3 in the experiments with the Cora data set.

Evaluation Metrics. As in the previous studies, we sorted the record pairs
by referring to the scores obtained by the SVM classifier and calculated the
precision, recall, and f-measure values from the sorted results. We recorded the
maximum f-measure value in each test. We used a 50/50 training/test split of
data and repeated the random split process 10 times and did cross validations.
Then, we took the average of the maximum f-measure values across all tests.

4.2 Experiments on Traditional Data Sets

We carried out experiments on the restaurant data set, Cora data set, and Cite-
seer data set. We carried out three experiments on the restaurant data set, using
name only, address only, and four fields of name, address, city, and cuisine. We
carried out one experiment on the Cora data set by using five fields of author,
title, venue, year, and page and four experiments on four subsets of the Citeseer
data: Reasoning, Face, Reinforcement, and Constraint.

Comparison with Bilenko’s Method. We generated the training data and
test set by using similarity sampling. Since it is similar to the selection method
in [4], it allows us to compare Bilenko’s approach directly. The results are shown
in Table 4, where Bilenko’s results are copied from [4]. As can be seen in Table
4, our approach outperforms Bilenko’s approach on six of the eight sets.

Fig. 2 shows the precisions and f-measures for each recall. Graphs (a), (b) and
(c) respectively show the performances for the restaurant data set when using
the field name only, the field address only, and four fields. Graph (d) shows the
performance for Cora data set. As shown in this graph, the proposed method
keeps high precision until high recall.

Comparison with McCallum’s Method. In this experiment, we generated
training and test data by random sampling. Since it is similar to the selection
method in [13], and it allows us to compare our method with McCallum’s ap-
proach directly. The results are shown in Table 5, where McCallum’s results
are copied from [13]. As can be seen, our approach outperforms McCallum’s
approach on all six sets.

A Versatile Record Linkage Method by Term Matching Model Using CRF 557

Table 4. Comparison with Bilenko’s approach

Data set Restaurant Cora Citeseer

Name, Author,
Fields / topic Name Address address, title, Reason- Face Reinforce- Constr-

city, venue, ing ment aint
cuisine page, year

Bilenko’s approach 43.3% 71.2% 92.2% 86.7% 93.8% 96.6% 90.7% 94.1%
Our approach 86.2% 74.7% 90.16% 87.4% 95.6% 94.4% 94.9% 96.9%

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pre F-val
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pre F-val

(a) Restaurant name (b) Restaurant address

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pre F-val
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Recall

Pre F-val

(c) Restaurant data set using four fields (d) Cora data set

Fig. 2. Relationship between recall and precision

4.3 Experiments on Synthetic Data Sets

We carried out two experiments on synthetic data sets whose records had their
fields permuted. Records in the Cora data set are segmented into fields. We
combined fields in random order to create record pairs with different field orders.
The two experiments are as follows. In the first experiment, we combined fields
in only one record to create a pair between one segmentation record and one
string record. In the second experiment, we combined fields in both records to
create a pair of string records. These two combinations created record pairs with
permuted orders, and they have not been used in previous research. The results
are listed in Table 6. As can be seen, the first experiment produced results that
are equivalent to those for the records with same field orders. This outcome
can be explained by arguing that the term matching results are the equivalent
to those in the previous experiment and information about field types can be

558 Q.M. Vu, A. Takasu, and J. Adachi

Table 5. Comparison with McCallum’s approach

Data set Restaurant Citeseer

Field / topic Name Address Reasoning Face Reinforcement Constraint

McCallum’s approach 44.8% 78.3% 96.4% 91.8% 91.7% 97.6%
Our approach 88.4% 79.6% 96.5% 95.4% 96.6% 97.8%

Table 6. Experimental results on the synthetic data set created from the Cora data set

Experiment method Performance
Pairs of one field record and one string record 87.5%

Pairs of two string records 83.9%

exploited from the field segmentation records in this experiment. In the second
experiment, the performance slightly deteriorates, but the result is reasonable.
In this experiment, the information on field types was removed from both records
in each pair, and this was the main cause of degradation. Fig. 3 is an example
alignment output of a pair of re-ordered records. As can be seen, our approach
can detect consecutive matched terms and calculate a good mapping result.

An Introduction

1 2 3 4 5 6 7 8 9 10

7

to Computational Learning Theory 1994 Kearns M. and Vazirani U.

11 12

An Introduction to Computational Learning Theory1994 KearnsM. and VaziraniU.

Record X

J. V.

Record Y

Posi�on of terms in Record X

Mapping L

1 2 3 4 5 6 9 10 12 118 N N

Fig. 3. An alignment result on a pair of string records

5 Discussion

Duplicate detection of records that have different field orders is more difficult
than duplicate detection of records that have the same field order because words
are partly reordered in records. To detect duplicate records effectively, the link-
age method must be robust to this reordering. Furthermore, although record
fields are in different orders, the terms in the same field still keep their order
across duplicate records. Therefore, an effective linkage method should be able
to recognize this local order for the matching process. Neither the string edit
distance approach, nor the bag-of-words approach satisfies both requirements.
The string edit distance can recognize local orders but it is weak when faced

A Versatile Record Linkage Method by Term Matching Model Using CRF 559

with field reordering. On the other hand, the bag of words approach is robust
to field reordering but it is weak in regard to recognition of terms’ local orders.
Our approach, on the other hand, satisfies both requirements. It encodes each
term by one node in a chain graph, and the algorithm to label pairs of match-
ing terms is robust to field reordering. Our approach can also capture the local
order of terms, since it creates feature functions on edges between two consecu-
tive nodes and outputs matching weights for consecutive matching terms. The
improvements on most data sets, in particular, on the restaurant name data set
and the citation data sets, confirm the advantages of our approach. The results
on synthetic records whose fields were randomly ordered are the same as on
records that have the same field order. This fact shows that although the fields
are randomly reordered, our approach can still utilize terms’ local orders to de-
tect consecutive matching terms between duplicate records. This is the main
advantage of our approach in comparison with the previous ones. Compared
with previous approaches, our method is little more expensive: There is a small
cost to prepare term alignments in the training phase. The training dataset is
independent from test datasets, so the trained model can be used with different
test datasets. In our experiment, we used a training set of 58 aligned pairs. We
updated the parameters 1000 times by using the LBFGS algorithm, and it took
32 minutes on a four 3.2Ghz CPU, 8GB memory machine.

In [4,13], the authors consider the details of string edit operations by deter-
mining which letters or terms are deleted/inserted. Our approach, on the other
hand, only considers the weights of matching terms. However, it can be extended
to consider deleted/inserted terms in detail. For example, from the output of the
CRF term matching model, we can create features on deleted/inserted terms and
use an SVM model to differentiate the importance of deleted/inserted terms.

The proposed term matching model allows many-to-one mappings between a
record X and Y , as shown in the definition of the mapping. That is, different
terms in the record Y may be mapped to the same term in the record X. This
feature of the term matching model is not preferable. However, each term in the
record Y tends to mapped to different term in the record X because of the edge
feature functions.

6 Conclusions

We proposed a new method for solving the problem of record linkage between
different databases. Our method can find duplicate records from databases that
have permuted field orders. We built a term matching model based on the CRF
method to find matching terms in records. After extracting the matching terms,
we built matching vectors for the record pairs and used an SVM classifier to
separate duplicate pairs from non-duplicate pairs.

We experimented on traditional data sets, and our approach showed improve-
ments in comparison with the previous approaches that used either the string edit
distance method or the vector space model method. Our method has the good
point of the string edit distance method as well as the good points of the vector
space model method. That is, it can utilize term orders inside the same field, and it

560 Q.M. Vu, A. Takasu, and J. Adachi

can cope well with field reordering among databases. We also created a synthetic
data set by reordering record fields in a random manner, and the results on this
synthetic data set were equivalent to those for well-aligned record fields.

References

1. Asano, Y., Nishizeki, T., Toyoda, M., Kitsuregawa, M.: Mining communities on the
web using a max-flow and a site-oriented framework. IEICE - Trans. Inf. Syst. E89-
D(10), 2606–2615 (2006)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
Longman Publishing (1999)

3. Bhattacharya, I., Getoor, L.: A latent dirichlet model for unsupervised entity res-
olution. In: SDM (2006)

4. Bilenko, M., Mooney, R.J.: Adaptive duplicate detection using learnable string
similarity measures. In: KDD 2003: Proceedings of the ninth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, pp. 39–48. ACM
Press, New York (2003)

5. Blunsom, P., Cohn, T.: Discriminative word alignment with conditional random
fields. In: ACL-44: Proceedings of the 21st International Conference on Computa-
tional Linguistics and the 44th annual meeting of the Association for Computa-
tional Linguistics, Morristown, NJ, USA, pp. 65–72. Association for Computational
Linguistics (2006)

6. Byrd, R.H., Nocedal, J., Schnabel, R.B.: Representations of quasi-newton matrices
and their use in limited memory methods. Math. Program. 63(2), 129–156 (1994)

7. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and
Other Kernel-based Learning Methods. Cambridge University Press, Cambridge
(2000)

8. Hernandez, M.A., Stolfo, S.J.: Real-world data is dirty: Data cleansing and the
merge/purge problem. Data Mining and Knowledge Discovery 2(1), 9–37 (1998)

9. Jaro, M.A.: Advances in record-linkage methodology as applied to matching
the 1985 census of tampa, florida. Journal of the American Statistical Associa-
tion 84(406), 414–420 (1989)

10. Kitsuregawa, M.: ’Socio Sense’ and ’Cyber Infrastructure’ for information explosion
era’: Projects in japan. In: DASFAA, pp. 1–2 (2007)

11. Lafferty, J., Mccallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proc. 18th International
Conf. on Machine Learning, pp. 282–289. Morgan Kaufmann, San Francisco (2001)

12. Manning, C.D., Schutze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (2003)

13. Mccallum, A., Bellare, K., Pereira, F.: A conditional random field for
discriminatively-trained finite-state string edit distance. In: Conference on Uncer-
tainty in AI, UAI (2005)

14. Ohta, M., Yakushi, T., Takasu, A.: Bibliographic element extraction from scanned
documents using conditional random fields. In: Proc. 3rd International Conf. on
Digital Information Management, pp. 99–104 (2008)

15. Sutton, C., Mccallum, A.: An introduction to conditional random fields for rela-
tional learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Rela-
tional Learning. MIT Press, Cambridge (2007)

16. Vu, Q.M., Takasu, A., Adachi, J.: Improving the performance of personal name dis-
ambiguation using web directories. Inf. Process. Manage. 44(4), 1546–1561 (2008)

On-the-Fly Integration and Ad Hoc Querying of
Life Sciences Databases Using LifeDB�

Anupam Bhattacharjee1, Aminul Islam1, Mohammad Shafkat Amin1,
Shahriyar Hossain1, Shazzad Hosain1, Hasan Jamil1, and Leonard Lipovich2

1 Department of Computer Science, Wayne State University, USA
2 Center for Molecular Medicine and Genetics, Wayne State University, USA
{anupam,aminul,shafkat,shah h,shazzad,hmjamil,llipovich}@wayne.edu

Abstract. Data intensive applications in Life Sciences extensively use
the hidden web as a platform for information sharing. Access to these
heterogeneous hidden web resources is limited through the use of prede-
fined web forms and interactive interfaces that users navigate manually,
and assume responsibility for reconciling schema heterogeneity, extract-
ing information and piping, transforming formats and so on in order to
implement desired query sequences or scientific work flows. In this paper,
we present a new data management system, called LifeDB, in which we
offer support for currency without view materialization, and autonomous
reconciliation of schema heterogeneity in one single platform through a
declarative query language called BioFlow. In our approach, schema het-
erogeneity is resolved at run time by treating the hidden web resources as
a virtual warehouses, and by supporting a set of primitives for data inte-
gration on-the-fly, extracting information and piping to other resources,
and manipulating data in a way similar to traditional database systems
to respond to application demands.

1 Introduction

Data and application integration in Life Sciences play an important and essen-
tial role. In traditional approaches, data and tools for interpreting them from
multiple sources are warehoused in local machines, and applications are designed
around these resources by manually resolving any existing schema heterogeneity.
This approach is reliable, and works well when the application’s resource need,
or the data sources do not change often, requiring partial or full overhauling.
The disadvantage is that the warehouse must be synchronized constantly with
the sources to stay current leading to huge maintenance overhead. The alterna-
tive has been to write applications by dedicated communication with the data
sources, again manually mediating the schema. While this approach removes the
physical downloading of the source contents and buys currency, it still requires
manual mediation, coping with changes in the source, and writing source specific

� Research supported in part by National Science Foundation grants CNS 0521454
and IIS 0612203, and National Institutes of Health NIDA grant 1R03DA026021-01.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 561–575, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

562 A. Bhattacharjee et al.

glue codes that cannot be reused. The basic assumption here is that the sources
are autonomous and offers a “use as you see” and hands off support. That means
that the application writer receives no support in any form or manner from the
sources other than the access.

There has been a significant effort to alleviate the burden on the application
writers for this alternative approach by developing libraries in popular scripting
languages such as Perl and PHP for accessing and using popular resources such as
GenBank, UCSC, PDB, etc. These sources can change their structures without
invalidating these libraries, and we have to necessarily write applications using
the sources for which tested scripts are available. Consequently, applications that
demand change, access to new resources, are transient or ad hoc, and are not
ready to commit to significant maintenance overhead as in the former approach
still remain ill served. In this paper, we propose a new approach to on-the-
fly autonomous information integration that removes several of the hurdles in
accessing Life Sciences resources at a throw away cost, and without any need for
strict coupling or dependence among the sources and the applications.

We have developed a new data management system called LifeDB offering a
third alternative that combines the advantages of the previous two approaches
– currency and reconciliation of schema heterogeneity, in one single platform
through a declarative query language called BioFlow. In our approach, schema
heterogeneity is resolved at run time by treating the hidden web resources as
a virtual warehouse, and by supporting a set of primitives for data integration
on-the-fly, to extract information and pipe to other resources, and to manipulate
data in a way similar to traditional database systems. At the core of this system
are the schema matching system OntoMatch [3], the wrapper generation sys-
tem FastWrap [1], and a visual editor called VizBuilder [10], using which users
are able to design applications using graphical icons without the need for ever
learning BioFlow for application design. In BioFlow, we offer several language
constructs to support mixed-mode queries involving XML and relational data,
workflow materialization as processes and design using ordered process graphs,
and structured programming using process definition and reuse. We introduce
LifeDB’s architecture, components and features in subsequent sections. How-
ever, we will not discuss FastWrap, OntoMatch and VizBuilder in any detail
although they are integral components of LifeDB. We refer interested readers to
the respective articles in the literature that are now published.

1.1 A Motivating Application: BioFlow by Example

To illustrate the capabilities of LifeDB, we adapt a real life Life Sciences appli-
cation discussed in [8] which has been used as a use case for many other systems
and as such can be considered a benchmark application for data integration. A
substantial amount of glue codes were written to implement the application in
[8] by manually reconciling the source schema to filter and extract information
of interest. Our goal in this section is to show how simple and efficient it is to
develop this application in LifeDB.

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 563

miRNA chromosome

hsa-mir-10a ch 17

hsa-mir-205 ch 1

geneID miRNA targetSites

FLJ36874 hsa-mir-10a 10

FLJ36874 hsa-mir-10b 3

RUNDC2C hsa-mir-205 8

microRNA geneName pValue

hsa-mir-10a FLJ36874 0.004

hsa-miR-196b MYO16 0.009

(a) genes

(c) micrornaRegulation

(b) sangerRegulation

(d) proteinCodingGene

Gene p63Binding

FLJ36874 Y

RUNDC2C Y

MYO16 N

geneID miRNA targetSites pValue

FLJ36874 hsa-mir-10a 10 0.004

FLJ36874 hsa-mir-10b 3 null

RUNDC2C hsa-mir-205 8 null

MYO16 hsa-miR-196b null 0.009

(e) regulation

(f) proteinCodingGeneRegulation

geneID miRNA targetSites pValue p63Binding

FLJ36874 hsa-mir-10a 10 0.004 Y

FLJ36874 hsa-mir-10b 3 null Y

RUNDC2C hsa-mir-205 8 null Y

MYO16 hsa-miR-196b null 0.009 N

Fig. 1. User tables and data collected from microRNA.org and microrna.sanger.ac.uk

The query, or workflow, the user wants to submit is the hypothesis: “the
human p63 transcription factor indirectly regulates certain target mRNAs via
direct regulation of miRNAs”. If positive, the user also wants to know the list
of miRNAs that indirectly regulate other target mRNAs with high enough con-
fidence score (i.e., pV alue ≤ 0.006 and targetSites ≥ 2), and so he proceeds
as follows. He collects 52 genes along with their chromosomal locations (shown
partially in figure 1(a) as the table genes) from a wet lab experiment using the
host miRNA genes and maps at or near genomic p63 binding sites in the human
cervical carcinoma cell line ME180. He also has a set of several thousand direct
and indirect protein-coding genes (shown partially in figure 1(d) as the table
proteinCodingGenes) which are the targets of p63 in ME180 as candidates. The
rest of the exploration thus proceeds as follows.

He first collects a set of genes (geneIDs) for each of the miRNAs in the table
genes, from the web site www.microrna.org by submitting one miRNA at a time
in the window shown in figure 2(a), that returns for each such gene, a set of
gene names that are known to be targets for that miRNA. The site returns the
response as shown in figure 2(b), from which the user collects the targetSites
along with the gene name partially shown as the table micrornaRegulation in
figure 1(c). To be certain, he also collects the set of gene names for each miRNA
in table genes from microrna.sanger.ac.uk in a similar fashion partially shown in
table sangerRegulation in figure 1(b). Notice that this time the column targetSites
is not available, so he collects the pValue values. Also note that the scheme for
each of the tables are syntactically heterogeneous, but semantically they are
similar (i.e., miRNA ≡ microRNA, geneName ≡ geneID, and so on). He does
so because the data in the two databases are not identical, and there is a chance
that querying only one site may not return all possible responses. Once these
two tables are collected, he then takes a union of these two sets of gene names (in
micrornaRegulation and sangerRegulation), and finally selects the genes from the
intersection of the tables proteinCodingGene (that bind to p63, i.e., p63Binding
= ‘N’) and micrornaRegulation ∪ sangerRegulation as his response.

To compute his answers in BioFlow using LifeDB, all he will need to do is ex-
ecute the following script that fully implements the application. It is interesting
to note that in this application, the total number of data manipulation state-
ments used are only seven (statements numbered (2) through (8)). The rest of

564 A. Bhattacharjee et al.

(a) microRNA.org input form. (b) microRNA.org returned page.

Fig. 2. Typical user interaction interface at microRNA.org site

the statements are data definition statements needed in any solution using any
other system. We will describe shortly what these data manipulation sentences
mean in this context. For now, a short and intuitive explanation is in order while
we refer interested readers to [12,11] for a more complete exposition.

process compute_mirna (1)

{

open database bioflow_mirna;

drop table if exists genes;

create datatable genes {

chromosome varchar(20), start int, end int, miRNA varchar(20) };

load data local infile ‘/genes.txt’

into table genes fields terminated by ’\t’

lines terminated by ‘\r\n’;

drop table if exists proteinCodingGene;

create datatable proteinCodingGene {

Gene varchar(200), p63binding varchar(20) };

load data local infile ‘/proteinCodingGene.txt’

into table proteinCodingGenes fields terminated by ‘\t’

lines terminated by ‘\r\n’;

drop table if exists micrornaRegulation;

create datatable micrornaRegulation {

mirna varchar(200), targetsites varchar(200), geneID varchar(300) };

define function getMiRNA

extract mirna varchar(100), targetsites varchar(200),

geneID varchar(300)

using wrapper mirnaWrapper in ontology mirnaOntology

from "http://www.microrna.org/microrna/getTargets.do"

submit(matureName varchar(100), organism varchar(300)); (2)

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 565

insert into micrornaRegulation

call getMiRNA select miRNA, ‘9606’ from genes ; (3)

drop table if exists sangerRegulation;

create datatable sangerRegulation {

microRNA varchar(200), geneName varchar(200), pvalue varchar(200) };

define function getMiRNASanger

extract microRNA varchar(200), geneName varchar(200),

pvalue varchar(30)

using wrapper mirnaWrapper in ontology mirnaOntology

from "http://microrna.sanger.ac.uk/cgi-bin/targets/v5/hit_list.pl/"

submit(mirna_id varchar(300), genome_id varchar(100)); (4)

insert into sangerRegulation

call getMiRNASanger select miRNA, ‘2964’ from genes ; (5)

create view regulation as

combine micrornaRegulation, sangerRegulation

using matcher OntoMatch identifier gordian; (6)

create view proteinCodingGeneRegulation as

link regulation, proteinCodingGene

using matcher OntoMatch identifier gordian; (7)

select *

from proteinCodingGeneRegulation

where pValue <= 0.006 and targetSites >= 2 and p63binding=‘N’; (8)

close database bioflow_mirna;

}

In the above script, the statements numbered (1) through (7) are most in-
teresting and unique to BioFlow. The define function statements (2) and (4)
essentially declare an interface to the web sites at URLs in the respective from
clauses, i.e., microrna.org and microrna.sanger.ac.uk. The extract clause
specifies what columns are of interest when the results of computation from the
sites are available, whereas the submit clauses say what inputs need to be sub-
mitted. In these statements, it is not necessary that the users supply the exact
variable names at the web site, or in the database. The wrapper (FastWrap) and
the matcher (OntoMatch) named in the using clause and available in the named
ontology mirnaOntology, actually establish the needed schema correspondence
and the extraction rules needed to identify the results in the response page. Es-
sentially, the define function statement acts as an interface between LifeDB
and the web sites used in the applications. This statement was first introduced
in [5] as the so called remote user defined function for databases where the input
to the function is a set of tuples to which the function returns a table. However,
the construct in [5] was too rigid and too mechanistic with the user needing to

566 A. Bhattacharjee et al.

supply all the integration instructions. Actually, it could not use a wrapper or
a schema matcher. The user needed to supply the exact scheme and exact data
extraction rules. In BioFlow, it is now more declarative and intuitive.

To invoke the form functions and compute queries at these sites, we use call
statements at (3) and (5). The first statement calls getMiRNA for every tuple
in table genes, while the second call only sends one tuple to getMiRNASanger
to collect the results in tables micrornaRegulation and sangerRegulation.
The statements (6) and (7) are also new in BioFlow. They capture respec-
tively the concepts of vertical and horizontal integration in the literature. The
combine statement collects objects from multiple tables possibly having con-
flicting schemes into one table. To do so, it also uses a key identifier (such as
gordian [15]) to recognize objects across tables. Such concepts have been inves-
tigated in the literature under the titles record linkage or object identification.
For the purpose of this example, we adapted GORDIAN [15] as one of the key
identifiers in BioFlow. The purpose of using a key identifier is to recognize the
fields in the constituent relations that essentially make up the object key1, so
that we can avoid collecting non-unique objects in the result. The link state-
ment, on the other hand, extends an object in a way similar to join operation in
relational algebra. Here too, the schema matcher and the key identifier play an
important role. Finally, the whole script can be stored as a named process and
reused using BioFlow’s perform statement. In this example, line (1) shows that
this process is named compute mirna and can be stored as such for later use.
We will take up these issues again in section 2.2 when we discuss BioFlow.

1.2 Related Research

Before we introduce LifeDB more formally, we would like to mention how LifeDB
stands relative to its predecessors. There are several well known data integra-
tion systems in the literature. We single out only a few more recent ones, simply
because they improve upon many older ones, and are close to LifeDB in spirit
than many others. BioKleisli [7] and Biopipe [9] are two such data integration
systems for Life Sciences that help define workflows and execute queries. While
they are useful, they actually fall into the second category of application design
approaches that we discussed in section 1. As such, they are very tightly coupled
with the source databases because they directly interact with them using the
services supported by the sources. The scripting language just eases the tedious-
ness of developing applications. Schema mediation remains user responsibility
and they do not deal with hidden web resources, or ad hoc data integration.
One of the systems, ALADIN [2] (ALmost Automatic Data INtegration), falls
into the first category and supports integration by locally creating a physical
relational database warehouse manually. However, it uses technologies such as
key identification and record linkage to mediate schema heterogeneity, applying
domain and application specific knowledge and thus having limited application.

1 Note that object key in this case is not necessarily the primary keys of the partici-
pating relations.

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 567

In LifeDB, integration is declarative, fully automatic and does not rely on a
local copy of the resources (it uses virtual warehousing). Neither does it depend
on application or domain specific knowledge. For all queries, workflows and data
integration requests, the schema mediation, wrapper generation and information
extraction are carried out in real time. One of the recent integration systems,
MetaQuerier [4], has features similar to LifeDB. It integrates hidden web sources,
and uses components similar to LifeDB. But MetaQuerier integrates the com-
ponents using glue codes making it resistant to change. In LifeDB on the other
hand, we focus on a framework where no code writing will be necessary for the
development of any application regardless of the sites or resources used. In addi-
tion, the application will never require specialized site cooperation to function.

(a) Populating genes table (b) and proteinCodingGenes table

(c) A complete write statement (d) read with a conditional join

Fig. 3. Partial miRNA application script development using VizBuilder

LifeDB stands out among all the systems in two principal ways. First, it ex-
tends SQL with automatic schema mediation, horizontal and vertical integration,
hidden web access, and process definition primitives. Apart from the fact that for
the purpose of programming convenience, it retains a few non-declarative lan-
guage constructs such as assignment and loop statements, it is almost entirely
declarative. It separates system aspects from the language, making it possi-
ble to change the underlying system components as newer and better technolo-
gies become available, and improves its functionality without compromising the

568 A. Bhattacharjee et al.

semantics of its query language, BioFlow. Second, it successfully avoids physical
warehousing without sacrificing autonomy of the sources – in other words, it does
not depend on specialized services from the source databases such as option to
run stored scripts, access to the server to submit scripts for execution and so on,
the way BioKleisli or Biopipe require. Yet, it supports declarative integration at
a throw away cost. Unlike ALADIN and MetaQuerier, it is also fully automatic,
and no user intervention or glue code writing is required to enable integration
and access.

Finally, LifeDB goes one step further by supporting a graphical query builder
front-end which interested readers may find in [10]. Using this query builder,
it is possible to write the miRNA application just described, visually (without
even knowing BioFlow) and execute it right from the front end. Almost all
the sequence of VizBuilder panels used to write the miRNA application script
discussed in section 1.1 is shown in figure 3.

2 LifeDB and BioFlow

2.1 Integration Model

The successful development of a declarative statement for hidden web access,
schema mediation, and horizontal and vertical integration can be largely at-
tributed to the integration model adopted in LifeDB, as shown in figure 4. In
this abstract model, web forms are viewed roughly as functions to which a set
of arguments can be passed to get a table as a returned value. In the process of
sending the values, a match function μ determines the schema correspondence
to map arguments accordingly. An extraction function η also isolates the table
from the response page. These attributes are captured in the using clause of
the define function statement discussed in section 1 as wrapper and matcher
options. The submission and extraction commences when the call statement is
executed (i.e., statement (3)).

In our abstract model, we assume that we have at our disposal a set of func-
tions for a set of specific operations. For automatic integration, we need to some-
how transform a hidden web form into a relation. We also recognize that a web
form itself is a function ϕ that returns a relation in response to a set of submit-
ted parameter, a mapping in essence. The transform function thus takes three
different functions such as matching function (μ ∈ Σ), form function (ϕ ∈ Υ),
extract function (η ∈ Ξ) and the output schema S as parameters to convert the
hidden web form into a relation. The whole transformation can be written as

τμ
ϕ,η,S(r) = πμ

S(η(ϕμ(r)))

Another feature the model supports is vertical and horizontal integration. In this
view, data sets (or tables) from various sources can be extracted using η and col-
lected in a set using a set union type operation, called combine (χ) and expressed

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 569

as r ← η(di)χμ
κη(dj), or a join type operation, called link2 (λ) and written

analogously as r ← η(di)χμ
κη(dj). Both these operations require reconciliation of

schema heterogeneity using a match function μ, and object identification using
a key discovery/identifier function κ. In the BioFlow statements (6) and (7),
these two implementations are shown where a matcher has been used to map
the schema, and additionally, a key identifier has been used to disambiguate the
objects in the data sets. Notice that unlike the define function statements,
the wrapper option is missing. The reason for this is that wrappers have already
been applied to these data sets during the call statement execution that possibly
created these sets. Given that these constructs are modular, it is now possible to
mix and match them to create arbitrarily complex sequence of statements that
can mimic any application within the model’s semantic scope.

Fig. 4. BioFlow abstract data integration model

2.2 The BioFlow Language Basics

Like many others [6,14], we too abstract the web as a set of relations (flat or
nested). This view establishes a clean correspondence between web documents
containing tables, and database relations3. This view also makes it possible to
treat web documents the same way as relations once they are converted (such
as using the extraction function η) into tables4. Thus, from a single database
point of view, the classical theories of relational data model hold and the no-
tion of functional dependencies and keys carry over immediately to our data
model. However, due to the presence of heterogeneity and the need for semantic
integration, we need to equip the traditional model with additional machineries.

Semantic Equivalence. To model schema mapping, and the notions of hori-
zontal and vertical integration, and to understand what to expect from BioFlow,
we introduce the concept of semantic equivalence using term similarity (∼),

2 In the literature it is also known as data fusion or aggregation operation.
3 Documents that do not contain tables, are considered empty relations.
4 By making this assumption we are in a way assuming that for the rare set of hidden

web databases that produce information in a form other than tables, our model will
not be appropriate.

570 A. Bhattacharjee et al.

attribute equivalence (%), value and object equivalence that are part of our
database functions μ (match)5, κ (key identifier)6 and η (extraction)7.

For example, for two attribute names miRNA and microRNA, and two values
ch17 and ch-17, the relationships miRNA ∼ microRNA (attribute name simi-
larity) and ch17 ∼ ch-17 (value similarity) hold. In this example, miRNA % mi-
croRNA holds since miRNA ∼ microRNA holds and type(miRNA) =
type(microRNA) holds. The value hsa-mir-10a in figure 1(b) is equivalent to
hsa-mir-10a in figure 1(c) since miRNA % microRNA and hsa-mir-10a ∼ hsa-
mir-10a hold. Finally, for the entity sets micrornaRegulation in figure 1(b) and
sangerRegulation in figure 1(c), microRNA or miRNA could be considered as
their candidate keys. So, objects <FLJ36874, hsa-mir-10a, 10> and <hsa-mir-
10a, FLJ36874, 0.004> are equivalent even though they have a heterogeneous
set of attributes.

2.3 A Tour of BioFlow

We have already discussed some of the features and statements of BioFlow in
section 1 in the context of the miRNA application in [8]. Since a complete dis-
cussion on BioFlow is not within the scope of this paper, we only discuss a few
interesting features of this language in this section and refer the reader to [12,11]
for a complete exposition. At a very high level, BioFlow consists of five types of
statements: resource description, control and structuring, data integration, work-
flow and data manipulation statements. Resource description statements include
table definitions and remote user defined functions such as define function
statements. Tables in BioFlow can be relational tables or XML documents which
are stored, managed and processed in their native form without translation in
local or remote storage. It is easy to see that the define function construct can
also be used to include application tools (not only databases) in the workflows
or queries in the same way we use and access hidden web databases. Largely,
the semantics of tables resemble the semantics of approximate or inaccurate
databases in the literature with the additional property that in BioFlow, at-
tributes are also inaccurate or approximate. This is so because we also deal with
schema heterogeneity. The notions of various types of similarities introduced in
section 2.2 play a major role in the BioFlow semantics. For example, consider
the query below in the context of the table genes in figure 1(a).

select microRNA from genes where allele="ch-17";

This query will return a relation with a single column called microRNA with only
one row having the value “hsa-mir-10a”. Although the table genes does not have
5 The match function μ takes two relational schemes as input and returns the schema

correspondences as a list of pairs of equivalent attributes.
6 Given a relation instance as input, the κ function discovers all candidate keys in a

relation that hold on that instance.
7 The extraction function η converts a given web page to a set of relations if, and only

if, the page contains regular patterns that can be identified as objects. In a sense,
this function implements the definition of wrappers after Laender [13].

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 571

a column named microRNA, the query succeeds because microRNA % miRNA
(edit distance similarity), chromosome % allele (synonym similarity), and ”ch-
17” % ”ch 17” (value similarity), hold. The consequence of such a powerful
feature is that users no longer have to be aware of exact terms in BioFlow
and can design their applications without the full knowledge of the underlying
databases, a feature that comes handy in the presence of schema heterogeneity
in large and open databases on the internet. The match functions defined earlier
make all these possible.

Control and structuring statements in BioFlow include assignment statements,
branching statements (if then else), looping statements (repeat until), and
stored process reuse statement include. Their semantics parallel the traditional
semantics in programming languages and hence require no additional discussion.
These programming statements are incorporated in BioFlow for the completeness
ofworkflowdefinitions andprogramming ease even though someof these constructs
arenon-declarative innature.Datamanipulation statementson theother hand,are
purely declarative and include call statements, select from where statements,
and update statements such as insert and delete. The only difference from tra-
ditional SQL is that call statements behave like a select statement and can be
used where a select can be used. Also, in select statements, we allownested data
item expressions such as in XQuery or XPath to be able to refer to nested attributes
in a table8.

The last two categories of statements are particularly unique to BioFlow. The
data integration statements link and combine, and the dual role of call as a
data integration statement deserves a short discussion. Two tables in BioFlow
can be combined into one (vertical integration) table if they share a candi-
date key. For example, the tables micrornaRegulation and sangerRegulation are
combine compatible since they share the keys miRNA and microRNA (and mi-
croRNA % miRNA holds). The resultant scheme of a combine operation is de-
termined according to the following definition.

Definition 2.1 (Combined Schema). Let r and s be two relations over the
schemes R(A1, A2, . . . , Am), and S(B1, B2, . . . , Bn) respectively, and μ be any
match function. Also let A = A1, A2 . . . , Ap, and B = B1, B2 . . . , Bp, where p ≤
min(m,n), be all the attributes in R and S such that < Ai, Bi >∈ μ(R,S), i =
1, . . . , p holds. Then the combined schema of R and S will be (R ∪ (S −B)).

Consider, the following combine statement in the context of the relations in
figure 1.

combine sangerRegulation, micrornaRegulation
using matcher OntoMatch, identifier gordian;

8 In the current version of BioFlow, although we allow relational tables and XML docu-
ments to be intermixed, we do not allow nested relational tables. All nested relations
are stored in XML documents by default. But the select statements uniformly use
nested expressions to refer to data items and distinguishes the table types based on
the context it is used.

572 A. Bhattacharjee et al.

In this example, μ(micrornaRegulation, sangerRegulation) returns {<geneID,
geneName>, <miRNA, microRNA>} as match pairs, and hence the combined
scheme {geneID, miRNA, targetSites, pValue} may be produced for the ta-
ble regulation (figure 1(e)). However, the content of regulation will be the set
of distinct “objects” that appear in any one of these relations. In this exam-
ple, the matcher OntoMatch establishes the schema correspondence ({<geneID,
geneName>, <miRNA, microRNA>}) and the key identifier function GOR-
DIAN returns miRNA and microRNA as candidate keys. Consequently, the
regulation instance will have four objects because one object, hsa-mir-10a, is
common. Since each of these source tables is missing a few attributes of the
other tables, these columns are padded with nulls as shown. The important
point here is that the two schemes need not be union compatible as in relational
model counterpart. It is also distinct from outer union operations since objects
are selected using the notion of keys in combine and generally are not equivalent.

Differently from combine, link requires that two relations share a candidate
key and foreign key relationship in a one to many fashion, giving an impression
of a one to many join in traditional databases. But unlike join, and similar
to combine, the link operation is dependent upon a match function μ and key
discovery function κ, to establish correspondence and identify objects for join.
The results of the link operation below is shown in figure 1(f).

link regulation, proteinCodingGene
using matcher OntoMatch, identifier gordian;

Finally, workflow statements in BioFlow include the process definition state-
ment, perform statement and wait statement. A process in BioFlow is a self
contained unit of computation. In other words, a complete BioFlow program
can be compiled, executed and stored separately, and when needed, can be re-
trieved or included in other programs or processes within the same database.
Thus, each process is uniquely named, has its own associated resource descrip-
tion and data manipulation components, and executes in separate independent
process threads9. However, they follow BioFlow’s global resource definition prin-
ciple and so duplicate resource definition, and variable naming or block naming
are not allowed10. It should be apparent that complex processes can be created
using the constructs allowed in BioFlow. The general structure of a process is as
follows.

process P statements/blocks;

Processes cannot be nested, and thus, a process cannot contain another pro-
cess. However, a process may include another process and use it as part of its
9 Note that process descriptions are part of the resource description component of

each BioFlow program. When a process is included as part of another program, it is
assumed that all resources needed to execute the process is already included in the
parent program’s resource description section. Failure to do so may result in a run
time error.

10 The difference between a statement block and a process should be clear. A process
is a self contained reusable BioFlow program, whereas statement blocks are not.

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 573

computational task. This also means, processes may call each other in mutually
recursive manner, but cannot include self recursion. The execution of processes
can be fairly sophisticated, and using the powerful constructs, extremely ex-
pressive workflows can be described and executed. In BioFlow, processes can
be executed in a graph like fashion using the following constructs. A process
execution statement can appear anywhere a statement can appear in a BioFlow
program.

perform [parallel] p1 . . . , pn [after q1 . . . , qk] [leave];

The parallel option creates n number of processes to execute the named pro-
cesses in the list simultaneously. This feature becomes handy when submitting
several processes to multiple sites is needed, and running them in tandem with-
out waiting for any of the sites in a serial fashion to save time is necessary. The
after option allows the processes to be performed only after the named processes
are all completed, thus giving a wait on feature to sequence processes. The leave
option allows the system to move to the next statement once the perform state-
ment is scheduled to be executed, without waiting for its completion. In order to
check if a process scheduled has already completed execution, we provide a func-
tion called pending(p) where p is a process name. This function returns true if the
process is still executing, otherwise it returns false. The wait on statement below
also uses pending(p) to check the status of processes in order to halt processing
of the subsequent statements until the list of processes finished execution.

wait on p1 . . . , pk;

2.4 LifeDB Architecture

The architecture of the current implementation of LifeDB is shown in figure 5
in which we show its essential components. Aside from the usual components,
the following deserve special mention – the visual query interface VizBuilder,

W
or

kf
low

 E
xe

cu
tio

n E
ng

ine

Source 1 Source 2 Source n

Resource Manager

Resource Discoverer

Wrapper Manager

Wrapper Generator

Syntax
Checker

Resource

Repository
Description

MatcherIntegrator
Key

Identifier
Mapper

Repository

Wrapper
Repository

KB

Work Flow Composer Query InterfaceUI

W
or

k F
low

 R
ep

os
ito

ry

Integrated View of the Web

Web

Extractor

Fig. 5. LifeDB system architecture

574 A. Bhattacharjee et al.

wrapper generator FastWrap, and schema matcher OntoMatch. In the current
implementation, we did not include the Resource Discoverer component, and the
knowledgebase component for the storage of wrappers and schema maps. The
purpose of the knowledgebase, called the ontology, is to reuse these information
when available and not redo the extraction function generation or matching
schema at run time. We have used monetDB [16] as our storage system and
underlying query processor due to its support for both XML and relational
data. As discussed before, we have also used GORDIAN as our key identification
function for link and combine operators.

3 Summary and Future Plans

Our goal in this paper was to present LifeDB, a highly adaptive middleware sys-
tem for Life Sciences data integration on-the-fly. It combined the existing inte-
gration technologies automatically using a declarative language called BioFlow.
The BioFlow language continues to evolve as we gain more experience with
LifeDB and BioFlow, and we expect it to be so for the near future. In our future
release, we plan to include automatic resource discovery, which will be used as a
mechanism to generate ontologies involving the wrapper definitions and schema
matching information per site to facilitate reuse and improve efficiency. Once
implemented, this module will also help separate the user model of application
from the real world scenarios making the user more independent of the changes
or disparities in the real world.

Current implementation of FastWrap does not generate column names of ex-
tracted table, forcing a compilation step to generate the attribute names through
user intervention when the column names are missing in the source pages. Al-
though we have a fairly good method for addressing this issue in such situations,
it is still manual. We plan to remove this limitation in our next release. Although
in our current release, we support a combination of data types – tables and XML
documents – they are processed separately. This is because the back end data
management system monetDB does not allow mixing relational data with XML
documents in the same query. We are working to remove this limitation in our
future versions of LifeDB.

References

1. Amin, M.S., Jamil, H.: FastWrap: An efficient wrapper for tabular data extrac-
tion from the web. In: IEEE International Conference on Information Reuse and
Integration, Las Vegas, Nevada (August 2009)

2. Bauckmann, J.: Automatically Integrating Life Science Data Sources. In: VLDB
PhD Workshop (2007)

3. Bhattacharjee, A., Jamil, H.: OntoMatch: A monotonically improving schema
matching system for autonomous data integration. In: IEEE International Con-
ference on Information Reuse and Integration, Las Vegas, Nevada (August 2009)

4. Chang, K., He, B., Zhang, Z.: Toward large scale integration: Building a MetaQue-
rier over databases on the web. In: CIDR Conference (2005)

On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases 575

5. Chen, L., Jamil, H.M.: On using remote user defined functions as wrappers for bio-
logical database interoperability. International Journal of Cooperative Information
Systems 12(2), 161–195 (2003)

6. Chu, E., Baid, A., Chen, T., Doan, A., Naughton, J.F.: A relational approach to
incrementally extracting and querying structure in unstructured data. In: VLDB
2007, Vienna, Austria, pp. 1045–1056 (2007)

7. Davidson, S.B., Overton, G.C., Tannen, V., Wong, L.: BioKleisli: A digital library
for biomedical researchers. International Journal on Digital Libraries 1(1), 36–53
(1997)

8. Gusfield, D., Stoye, J.: Relationships between p63 binding, DNA sequence, tran-
scription activity, and biological function in human cells. Mol. Cell. 24(4), 593–602
(2006)

9. Hoon, S., Ratnapu, K.K., Chia, J.-M., Kumarasamy, B., Juguang, X., Clamp, M.,
Stabenau, A., Potter, S., Clarke, L., Stupka, E.: Biopipe: A flexible framework for
protocol-based bioinformatics analysis. Genome Research 13(8), 1904–1915 (2003)

10. Hossain, S., Jamil, H.: A visual interface for on-the-fly biological database inte-
gration and workflow design using VizBuilder. In: 6th International Workshop on
Data Integration in the Life Sciences, Manchester, UK (July 2009)

11. Jamil, H., El-Hajj-Diab, B.: BioFlow: A web-based declarative workflow language
for Life Sciences. In: 2nd IEEE Workshop on Scientific Workflows, Honolulu,
Hawaii, pp. 453–460. IEEE Computer Society Press, Los Alamitos (2008)

12. Jamil, H., Islam, A.: The power of declarative languages: A comparative exposition
of scientific workflow design using BioFlow and Taverna. In: 3rd IEEE Workshop on
Scientific Workflows, Los Angeles, CA, July 2009, IEEE Computer, Los Alamitos
(2009)

13. Laender, A., Ribeiro-Neto, B., da Silva, A.S.: DEByE - date extraction by example.
Data Knowl. Eng. 40(2), 121–154 (2002)

14. Minton, S.N., Nanjo, C., Knoblock, C.A., Michalowski, M., Michelson, M.: A het-
erogeneous field matching method for record linkage. In: ICDM, November 2005,
vol. 27 (2005)

15. Sismanis, Y., Brown, P., Haas, P.J., Reinwald, B.: GORDIAN: efficient and scalable
discovery of composite keys. In: VLDB 2006, pp. 691–702 (2006)

16. Zhang, Y., Boncz, P.: XRPC: interoperable and efficient distributed XQuery. In:
VLDB, pp. 99–110 (2007)

Analyses and Validation of Conditional
Dependencies with Built-in Predicates

Wenguang Chen1, Wenfei Fan2,3, and Shuai Ma2

1 Peking University, China
2 University of Edinburgh, UK

3 Bell Laboratories, USA

Abstract. This paper proposes a natural extension of conditional func-
tional dependencies (cfds [14]) and conditional inclusion dependencies
(cinds [8]), denoted by cfd

ps and cind
ps, respectively, by specifying pat-

terns of data values with
=,<,≤, > and ≥ predicates. As data quality
rules, cfd

ps and cind
ps are able to capture errors that commonly arise

in practice but cannot be detected by cfds and cinds. We establish two
sets of results for central technical problems associated with cfd

ps and
cind

ps. (a) One concerns the satisfiability and implication problems for
cfd

ps and cind
ps, taken separately or together. These are important

for, e.g., deciding whether data quality rules are dirty themselves, and
for removing redundant rules. We show that despite the increased ex-
pressive power, the static analyses of cfd

ps and cind
ps retain the same

complexity as their cfds and cinds counterparts. (b) The other concerns
validation of cfd

ps and cind
ps. We show that given a set Σ of cfd

ps
and cind

ps on a database D, a set of sql queries can be automatically
generated that, when evaluated against D, return all tuples in D that
violate some dependencies in Σ. This provides commercial dbms with an
immediate capability to detect errors based on cfd

ps and cind
ps.

1 Introduction

Extensions of functional dependencies (fds) and inclusion dependencies (inds),
known as conditional functional dependencies (cfds [14]) and conditional in-
clusion dependencies (cinds [8]), respectively, have recently been proposed for
improving data quality. These extensions enforce patterns of semantically related
data values, and detect errors as violations of the dependencies. Conditional de-
pendencies are able to capture more inconsistencies than fds and inds [14,8].

Conditional dependencies specify constant patterns in terms of equality (=).
In practice, however, the semantics of data often needs to be specified in terms of
other predicates such as �=, <,≤, > and ≥, as illustrated by the example below.

Example 1. An online store maintains a database of two relations: (a) item for
items sold by the store, and (b) tax for the sale tax rates for the items, except
artwork, in various states. The relations are specified by the following schemas:

item (id: string, name: string, type: string, price: float, shipping: float,
sale: bool, state: string)

tax (state: string, rate: float)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 576–591, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Analyses and Validation of Conditional Dependencies 577

id name type price shipping sale state
t1: b1 Harry Potter book 25.99 0 T WA
t2: c1 Snow White CD 9.99 2 F NY
t3: b2 Catch-22 book 34.99 20 F DL
t4: a1 Sunflowers art 5m 500 F DL

(a) An item relation

state rate
t5: PA 6
t6: NY 4
t7: DL 0
t8: NJ 3.5
(b) tax rates

Fig. 1. Example instance D0 of item and tax

where each item is specified by its id, name, type (e.g., book, cd), price, shipping
fee, the state to which it is shipped, and whether it is on sale. A tax tuple specifies
the sale tax rate in a state. An instance D0 of item and tax is shown in Fig. 1.

One wants to specify dependencies on the relations as data quality rules to
detect errors in the data, such that inconsistencies emerge as violations of the
dependencies. Traditional dependencies (fds, inds; see, e.g., [1]) and conditional
dependencies (cfds, cinds [14,8]) on the data include the following:

cfd1: item (id → name, type, price, shipping, sale)
cfd2: tax (state → rate)
cfd3: item (sale = ‘T’ → shipping = 0)

These are cfds: (a) cfd1 assures that the id of an item uniquely determines the
name, type, price, shipping, sale of the item; (b) cfd2 states that state is a key for
tax, i.e., for each state there is a unique sale tax rate; and (c) cfd3 is to ensure
that for any item tuple t, if t[sale] = ‘T’ then t[shipping] must be 0; i.e., the store
provides free shipping for items on sale. Here cfd3 is specified in terms of patterns
of semantically related data values, namely, sale = ‘T’ and shipping = 0. It is to
hold only on item tuples that match the pattern sale = ‘T’. In contrast, cfd1 and
cfd2 are traditional fds without constant patterns, a special case of cfds. One
can verify that no sensible inds or cinds can be defined across item and tax.

Note that D0 of Fig. 1 satisfies cfd1, cfd2 and cfd3. That is, when these de-
pendencies are used as data quality rules, no errors are found in D0.

In practice, the shipment fee of an item is typically determined by the price
of the item. Moreover, when an item is on sale, the price of the item is often in
a certain range. Furthermore, for any item sold by the store to a customer in a
state, if the item is not artwork, then one expects to find the sale tax rate in the
state from the tax table. These semantic relations cannot be expressed as cfds
of [14] or cinds of [8], but can be expressed as the following dependencies:

pfd1: item (sale = ‘F’ & price ≤ 20 → shipping = 3)
pfd2: item (sale = ‘F’ & price > 20 & price ≤ 40 → shipping = 6)
pfd3: item (sale = ‘F’ & price > 40 → shipping = 10)
pfd4: item (sale = ‘T’ → price ≥ 2.99 & price < 9.99)
pind1: item (state; type �= ‘art’) ⊆ tax (state; nil)

Here pfd2 states that for any item tuple, if it is not on sale and its price is in the
range (20, 40], then its shipment fee must be 6; similarly for pfd1 and pfd3. These
dependencies extend cfds [14] by specifying patterns of semantically related

578 W. Chen, W. Fan, and S. Ma

data values in terms of predicates <,≤, >, and ≥. Similarly, pfd4 assures that
for any item tuple, if it is on sale, then its price must be in the range [2.99, 9.99).
Dependency pind1 extends cinds [8] by specifying patterns with �=: for any item
tuple t, if t[type] is not artwork, then there must exist a tax tuple t′ such that
t[state] = t′[state], i.e., the sale tax of the item can be found from the tax relation.

Using pfd1–pfd4 and pind1 as data quality rules, we find that D0 of Fig. 1 is
not clean. Indeed, (a) t2 violates pfd1: its price is less than 20, but its shipping
fee is 2 rather than 3; similarly, t3 violates pfd2, and t4 violates pfd3. (b) Tuple
t1 violates pfd4: it is on sale but its price is not in the range [2.99, 9.99). (c) The
database D0 also violates pind1: t1 is not artwork, but its state cannot find a
match in the tax relation, i.e., no tax rate for WA is found in D0. �

None of pfd1–pfd4 and pind1 can be expressed as fds or inds [1], which do not
allows constants, or as cfds [14] or cinds [8], which specify patterns with equality
(=) only. While there have been extensions of cfds [7,18], none of these allows
dependencies to be specified with patterns on data values in terms of built-in
predicates �=, <,≤, > or ≥. To the best of our knowledge, no previous work has
studied extensions of cinds (see Section 6 for detailed discussions).

These highlight the need for extending cfds and cinds to capture errors
commonly found in real-life data. While one can consider arbitrary extensions,
it is necessary to strike a balance between the expressive power of the extensions
and their complexity. In particular, we want to be able to reason about data
quality rules expressed as extended cfds and cinds. Furthermore, we want to
have effective algorithms to detect inconsistencies based on these extensions.

Contributions. This paper proposes a natural extension of cfds and cinds,
provides complexity bounds for reasoning about the extension, and develops
effective sql-based techniques for detecting errors based on the extension.

(1) We propose two classes of dependencies, denoted by cfd
ps and cind

ps, which
respectively extend cfds and cinds by supporting �=, <,≤, >,≥ predicates. For
example, all the dependencies we have encountered so far can be expressed as
cfd

ps or cind
ps. These dependencies are capable of capturing errors in real-

world data that cannot be detected by cfds or cinds.

(2) We establish complexity bounds for the satisfiability problem and the impli-
cation problem for cfd

ps and cind
ps, taken separately or together. The satisfia-

bility problem is to determine whether a set Σ of dependencies has a nonempty
model, i.e., whether the rules in Σ are consistent themselves. The implication
problem is to decide whether a set Σ of dependencies entails another dependency
ϕ, i.e., whether the rule ϕ is redundant in the presence of the rules in Σ. These
are the central technical problems associated with any dependency language.

We show that despite the increased expressive power, cfd
ps and cind

ps do
not increase the complexity for reasoning about them. In particular, we show
that the satisfiability and implication problems remain (a) np-complete and
conp-complete for cfd

ps, respectively, (b) in O(1)-time (constant-time) and
exptime-complete for cind

ps, respectively, and (c) are undecidable when cfd
ps

and cind
ps are taken together. These are the same as their cfds and cinds

Analyses and Validation of Conditional Dependencies 579

counterparts. While data with linearly ordered domains often makes our lives
harder (see, e.g., [21]), cfd

ps and cind
ps do not complicate their static analyses.

(3) We provide sql-based techniques to detect errors based on cfd
ps and cind

ps.
Given a set Σ of cfd

ps and cind
ps on a database D, we automatically generate

a set of sql queries that, when evaluated on D, find all tuples in D that violate
some dependencies in Σ. Further, the sql queries are independent of the size
and cardinality of Σ. No previous work has been studied error detection based
on cinds, not to mention cfd

ps and cind
ps taken together. These provide the

capability of detecting errors in a single relation (cfd
ps) and across different

relations (cind
ps) within the immediate reach of commercial dbms.

Organizations. Sections 2 and 3 introduce cfd
ps and cind

ps, respectively.
Section 4 establishes complexity bounds for reasoning about cfd

ps and cind
ps.

Section 5 provides sql techniques for error detection. Related work is discussed
in Section 6, followed by topics for future work in Section 7.

2 Incorporating Built-in Predicates into CFDs

We now define cfd
ps, also referred to as conditional functional dependencies, by

extending cfds with predicates (�=, <,≤, >,≥) in addition to equality (=).
Consider a relation schema R defined over a finite set of attributes, denoted

by attr(R). For each attribute A ∈ attr(R), its domain is specified in R, denoted
as dom(A), which is either finite (e.g., bool) or infinite (e.g., string). We assume
w.l.o.g. that a domain is totally ordered if <,≤, > or ≥ is defined on it.

Syntax. A cfd
p ϕ on R is a pair R(X → Y, Tp), where (1) X,Y are sets of

attributes in attr(R); (2) X → Y is a standard fd, referred to as the fd embedded
in ϕ; and (3) Tp is a tableau with attributes in X and Y , referred to as the pattern
tableau of ϕ, where for each A in X ∪ Y and each tuple tp ∈ Tp, tp[A] is either
an unnamed variable ‘ ’ that draws values from dom(A), or ‘op a’, where op is
one of =, �=, <,≤, >,≥, and ‘a’ is a constant in dom(A).

If attribute A occurs in both X and Y , we use AL and AR to indicate the
occurrence of A in X and Y , respectively, and separate the X and Y attributes
in a pattern tuple with ‘‖’. We write ϕ as (X → Y, Tp) when R is clear from
the context, and denote X as LHS(ϕ) and Y as RHS(ϕ).
Example 2. The dependencies cfd1–cfd3 and pfd1–pfd4 that we have seen in
Example 1 can all be expressed as cfd

ps. Figure 2 shows some of these cfd
ps:

ϕ1 (for fd cfd2), ϕ2 (for cfd cfd3), ϕ3 (for pfd2), and ϕ4 (for pfd4). �

Semantics. Consider cfd
p ϕ = (R : X → Y, Tp), where Tp = {tp1, . . . , tpk}.

A data tuple t of R is said to match LHS(ϕ), denoted by t[X] & Tp[X], if for
each tuple tpi in Tp and each attribute A in X , either (a) tpi[A] is the wildcard ‘ ’
(which matches any value in dom(A)), or (b) t[A] op a if tpi[A] is ‘op a’, where
the operator op (=, �=, <,≤, > or ≥) is interpreted by its standard semantics.
Similarly, the notion that t matches RHS(ϕ) is defined, denoted by t[Y] & Tp[Y].

Intuitively, each pattern tuple tpi specifies a condition via tpi[X], and t[X] &
Tp[X] if t[X] satisfies the conjunction of all these conditions. Similarly, t[Y] &
Tp[Y] if t[Y] matches all the patterns specified by tpi[Y] for all tpi in Tp.

580 W. Chen, W. Fan, and S. Ma

(1) ϕ1 = tax (state → rate, T1) (2) ϕ2 = item (sale → shipping, T2)
state rate

T1:
sale shipping

T2: = T = 0

(3) ϕ3 = item (sale, price →shipping, T3) (4) cfd
p ϕ4 = item (sale → price, T4)

sale price shipping
= F > 20 = 6

T3: = F ≤ 40 = 6

sale price
= T ≥ 2.99

T4: = T < 9.99

Fig. 2. Example cfd
ps

An instance I of R satisfies the cfd
p ϕ, denoted by I |= ϕ, if for each pair

of tuples t1, t2 in the instance I, if t1[X] = t2[X] & Tp[X], then t1[Y] = t2[Y] &
Tp[Y]. That is, if t1[X] and t2[X] are equal and in addition, they both match
the pattern tableau Tp[X], then t1[Y] and t2[Y] must also be equal to each other
and they both match the pattern tableau Tp[Y].

Observe that ϕ is imposed only on the subset of tuples in I that match LHS(ϕ),
rather than on the entire I. For all tuples t1, t2 in this subset, if t1[X] = t2[X],
then (a) t1[Y] = t2[Y], i.e., the semantics of the embedded fds is enforced; and
(b) t1[Y] & Tp[Y], which assures that the constants in t1[Y] match the constants
in tpi[Y] for all tpi in Tp. Note that here tuples t1 and t2 can be the same.

An instance I of R satisfies a set Σ of cfd
ps, denoted by I |= Σ, if I |= ϕ for

each cfd
p ϕ in Σ.

Example 3. The instance D0 of Fig. 1 satisfies ϕ1 and ϕ2 of Fig. 2, but neither
ϕ3 nor ϕ4. Indeed, tuple t3 violates (i.e., does not satisfy) ϕ3, since t3[sale] = ‘F’
and 20 < t3[price] ≤ 40, but t3[shipping] is 20 instead of 6. Note that t3 matches
LHS(ϕ3) since it satisfies the condition specified by the conjunction of the pattern
tuples in T3. Similarly, t1 violates ϕ4, since t1[sale] = ‘T’ but t1[price] > 9.99.
Observe that while it takes two tuples to violate a standard fd, a single tuple
may violate a cfd

p. �

Special Cases. (1) A standard fd X → Y [1] can be expressed as a cfd

(X → Y, Tp) in which Tp contains a single tuple consisting of ‘ ’ only, without
constants. (2) A cfd (X → Y, Tp) [14] with Tp = {tp1, . . . , tpk} can be expressed
as a set {ϕ1, . . . , ϕk} of cfd

ps such that for i ∈ [1, k], ϕi = (X → Y, Tpi), where
Tpi contains a single pattern tuple tpi of Tp, with equality (=) only. For example,
ϕ1 and ϕ2 in Fig. 2 are cfd

ps representing fd cfd2 and cfd cfd3 in Example 1,
respectively. Note that all data quality rules in [10,18] can be expressed as cfd

ps.

3 Incorporating Built-in Predicates into CINDs

Along the same lines as cfd
ps, we next define cind

ps, also referred to as condi-
tional inclusion dependencies. Consider two relation schemas R1 and R2.

Syntax. A cind
p ψ is a pair (R1[X ; Xp] ⊆ R2[Y ; Yp], Tp), where (1) X,Xp and

Y, Yp are lists of attributes in attr(R1) and attr(R2), respectively; (2) R1[X] ⊆
R2[Y] is a standard ind, referred to as the ind embedded in ψ; and (3) Tp

is a tableau, called the pattern tableau of ψ defined over attributes Xp ∪ Yp,

Analyses and Validation of Conditional Dependencies 581

(1) ψ1 = (item [state; type] ⊆ tax [state; nil], T1),

(2) ψ2 = (item [state; type, state] ⊆ tax [state; rate], T2)

T1:
type nil

= art
T2:

type state rate

= art = DL = 0

Fig. 3. Example cind
ps

and for each A in Xp or Yp and each pattern tuple tp ∈ Tp, tp[A] is either an
unnamed variable ‘ ’ that draws values from dom(A), or ‘op a’, where op is one
of =, �=, <,≤, >,≥ and ‘a’ is a constant in dom(A).

We denote X ∪ Xp as LHS(ψ) and Y ∪ Yp as RHS(ψ), and separate the Xp

and Yp attributes in a pattern tuple with ‘‖’. We use nil to denote an empty list.

Example 4. Figure 3 shows two example cind
ps: ψ1 expresses pind1 of Exam-

ple 1, and ψ2 refines ψ1 by stating that for any item tuple t1, if its type is not
art and its state is DL, then there must be a tax tuple t2 such that its state is
DL and rate is 0, i.e., ψ2 assures that the sale tax rate in Delaware is 0. �

Semantics. Consider cind
p ψ = (R1[X ; Xp] ⊆ R2[Y ; Yp], Tp). An instance

(I1, I2) of (R1, R2) satisfies the cind
p ψ, denoted by (I1, I2) |= ψ, iff for each

tuple t1 ∈ I1, if t1[Xp] & Tp[Xp], then there exists a tuple t2 ∈ I2 such that t1[X]
= t2[Y] and moreover, t2[Yp] & Tp[Yp].

That is, if t1[Xp] matches the pattern tableau Tp[Xp], then ψ requires the
existence of t2 such that (1) t1[X] = t2[Y] as required by the standard ind

embedded in ψ; and (2) t2[Yp] must match the pattern tableau Tp[Yp]. In other
words, ψ is “conditional” since its embedded ind is applied only to the subset
of tuples in I1 that match Tp[Xp], and moreover, the pattern Tp[Yp] is enforced
on the tuples in I2 that match those tuples in I1. As remarked in Section 2, the
pattern tableau Tp specifies the conjunction of patterns of all tuples in Tp.

Example 5. The instance D0 of item and tax in Fig. 1 violates cind
p ψ1. Indeed,

tuple t1 in item matches LHS(ψ1) since t1[type] �= ‘art’, but there is no tuple t in
tax such that t[state] = t1[state] = ‘WA’. In contrast, D0 satisfies ψ2. �

We say that a database D satisfies a set Σ of cinds, denoted by D |= Σ, if
D |= ϕ for each ϕ ∈ Σ.

Safe CINDps. We say a cind
p (R1[X ; Xp] ⊆ R2[Y ; Yp], Tp) is unsafe if there

exist pattern tuples tp, t′p in Tp such that either (a) there exists B ∈ Yp, such
that tp[B] and t′p[B] are not satisfiable when taken together, or (b) there exist
C ∈ Y,A ∈ X such that A corresponds to B in the ind and tp[C] and t′p[A] are
not satisfiable when taken together; e.g., tp[price] = 9.99 and t′p[price] ≥ 19.99.

Obviously unsafe cind
ps do not make sense: there exist no nonempty database

that satisfies unsafe cind
ps. It takes O(|Tp|2)-time in the size |Tp| of Tp to decide

whether a cind
p is unsafe. Thus in the sequel we consider safe cind

p only.

Special Cases. Observe that (1) a standard cind (R1[X] ⊆ R2[Y]) can be
expressed as a cind

p (R1[X ; nil] ⊆ R2[Y ; nil], Tp) such that Tp is simply a

582 W. Chen, W. Fan, and S. Ma

empty set; and (2) a cind (R1[X ; Xp] ⊆ R2[Y ; Yp], Tp) with Tp = {tp1, . . . , tpk}
can be expressed as a set {ψ1, . . . , ψk} of cind

ps, where for i ∈ [1, k], ψi =
(R1[X ; Xp] ⊆ R2[Y ; Yp], Tpi) such that Tpi consists of a single pattern tuple
tpi of Tp defined in terms of equality (=) only.

4 Reasoning about CFDps and CINDps

The satisfiability problem and the implication problem are the two central tech-
nical questions associated with any dependency languages. In this section we
investigate these problems for cfd

ps and cind
ps, separately and taken together.

4.1 The Satisfiability Analysis

The satisfiability problem is to determine, given a set Σ of constraints, whether
there exists a nonempty database that satisfies Σ.

The satisfiability analysis of conditional dependencies is not only of theoretical
interest, but is also important in practice. Indeed, when cfd

ps and cind
ps are

used as data quality rules, this analysis helps one check whether the rules make
sense themselves. The need for this is particularly evident when the rules are
manually designed or discovered from various datasets [10,18,15].

The Satisfiability Analysis of CFDps. Given any fds, one does not need to
worry about their satisfiability since any set of fds is always satisfiable. However,
as observed in [14], for a set Σ of cfds on a relational schema R, there may not
exist a nonempty instance I of R such that I |= Σ. As cfds are a special case
of cfd

ps, the same problem exists when it comes to cfd
ps.

Example 6. Consider cfd
p ϕ = (R : A→ B, Tp) such that Tp = {(‖= a), (‖�=

a)}. Then there exists no nonempty instance I of R that satisfies ϕ. Indeed, for
any tuple t of R, ϕ requires that both t[B] = a and t[B] �= a. �

This problem is already np-complete for cfds [14]. Below we show that it has
the same complexity for cfd

ps despite their increased expressive power.

Proposition 1. The satisfiability problem for cfd
ps is np-complete. �

Proof sketch: The lower bound follows from the np-hardness of their cfds
counterparts [14], since cfds are a special case of cfd

ps. The upper bound is
verified by presenting an np algorithm that, given a set Σ of cfd

ps defined on
a relation schema R, determines whether Σ is satisfiable. �

It is known [14] that the satisfiability problem for cfds is in ptime when the
cfds considered are defined over attributes that have an infinite domain, i.e., in
the absence of finite domain attributes. However, this is no longer the case for
cfd

ps. This tells us that the increased expressive power of cfd
ps does take a toll

in this special case. It should be remarked that while the proof of Proposition 1
is an extension of its counterpart in [14], the result below is new.

Theorem 2. In the absence of finite domain attributes, the satisfiability problem
for cfd

ps remains np-complete. �

Analyses and Validation of Conditional Dependencies 583

Proof sketch: The problem is in np by Proposition 1. Its np-hardness is shown
by reduction from the 3SAT problem, which is np-complete (cf. [17]). �

The Satisfiability Analysis of CINDps. Like fds, one can specify arbitrary
inds or cinds without worrying about their satisfiability. Below we show that
cind

ps also have this property, by extending the proof of its counterpart in [8].

Proposition 3. Any set Σ of cind
ps is always satisfiable. �

Proof sketch: Given a set Σ of cind
ps over a database schema R, one can

always construct a nonempty instance D of R such that D |= Σ. �

The Satisfiability Analysis of CFDps and CINDps. The satisfiability prob-
lem for cfds and cinds taken together is undecidable [8]. Since cfd

ps and cind
ps

subsume cfds and cinds, respectively, from these we immediately have:

Corollary 4. The satisfiability problem for cfd
ps and cind

ps is undecidable.�

4.2 The Implication Analysis

The implication problem is to determine, given a set Σ of dependencies and
another dependency φ, whether or not Σ entails φ, denoted by Σ |= φ. That is,
whether or not for all databases D, if D |= Σ then D |= φ.

The implication analysis helps us remove redundant data quality rules, and
thus improve the performance of error detection and repairing based on the rules.

Example 7. The cfd
ps of Fig. 2 imply cfd

ps ϕ = item (sale, price→ shipping, T),
where T consists of a single pattern tuple (sale =‘F’, price = 30 ‖ shipping = 6).
Thus in the presence of the cfd

ps of Fig. 2, ϕ is redundant. �

The Implication Analysis of CFDps. We first show that the implication
problem for cfd

ps retains the same complexity as their cfds counterpart. The
result below is verified by extending the proof of its counterpart in [14].

Proposition 5. The implication problem for cfd
ps is conp-complete. �

Proof sketch: The lower bound follows from the conp-hardness of their cfds
counterpart [14], since cfds are a special case of cfd

ps. The conp upper bound
is verified by presenting an np algorithm for its complement problem, i.e., the
problem for determining whether Σ �|= ϕ. �

Similar to the satisfiability analysis, it is known [14] that the implication analysis
of cfds is in ptime when the cfds are defined only with attributes that have
an infinite domain. Analogous to Theorem 2, the result below shows that this is
no longer the case for cfd

ps, which does not find a counterpart in [14].

Theorem 6. In the absence of finite domain attributes, the implication problem
for cfd

ps remains conp-complete. �

Proof sketch: It is in conp by Proposition 5. The conp-hardness is shown by
reduction from the 3SAT problem to its complement problem, i.e., the problem
for determining whether Σ �|= ϕ. �

584 W. Chen, W. Fan, and S. Ma

Table 1. Summary of complexity results

General setting Infinite domain only
Σ

Satisfiability Implication Satisfiability Implication

cfds [14] np-complete conp-complete ptime ptime

cfd
ps np-complete conp-complete np-complete conp-complete

cinds [8] O(1) exptime-complete O(1) pspace-complete
cind

ps O(1) exptime-complete O(1) exptime-complete
cfds + cinds [8] undecidable undecidable undecidable undecidable
cfd

ps + cind
ps undecidable undecidable undecidable undecidable

The Implication Analysis of CINDps. We next show that cind
ps do not

make their implication analysis harder. This is verified by extending the proof
of their cinds counterpart given in [8].

Proposition 7. The implication problem for cind
ps is exptime-complete. �

Proof sketch: The implication problem for cinds is exptime-hard [8]. The
lower bound carries over to cind

ps since cind
ps subsume cinds. The exptime

upper bound is shown by presenting an exptime algorithm that, given a set
Σ ∪ {ψ} of cind

ps over a database schema R, determines whether Σ |= ψ. �

It is known [8] that the implication problem is pspace-complete for cinds defined
with infinite-domain attributes. Similar to Theorem 6, below we present a new
result showing that this no longer holds for cind

ps.

Theorem 8. In the absence of finite domain attributes, the implication problem
for cind

ps remains exptime-complete. �

Proof sketch: The exptime upper bound follows from Proposition 7. The
exptime-hardness is shown by reduction from the implication problem for cinds
in the general setting, in which finite-domain attributes may be present; the
latter is known to be exptime-complete [8]. �

The Implication Analysis of CFDps and CINDps. When cfd
ps and cind

ps
are taken together, their implication analysis is beyond reach in practice. This is
not surprising since the implication problem for fds and inds is already undecid-
able [1]. Since cfd

ps and cind
ps subsume fds and inds, respectively, from the

undecidability result for fds and inds, the corollary below follows immediately.

Corollary 9. The implication problem for cfd
ps and cind

ps is undecidable. �

Summary. The complexity bounds for reasoning about cfd
ps and cind

ps are
summarized in Table 1. To give a complete picture we also include in Table 1 the
complexity bounds for the static analyses of cfds and cinds, taken from [14,8].
The results shown in Table 1 tell us the following.

(a) Despite the increased expressive power, cfd
ps and cind

ps do not complicate
the static analyses: the satisfiability and implication problems for cfd

ps and
cind

ps have the same complexity bounds as their counterparts for cfds and
cinds, taken separately or together.

Analyses and Validation of Conditional Dependencies 585

(b) In the special case when cfd
ps and cind

ps are defined with infinite-domain
attributes only, however, the static analyses of cfd

ps and cind
ps do not get

simpler, as opposed to their counterparts for cfds and cinds. That is, in this
special case the increased expressive power of cfd

ps and cind
ps comes at a price.

5 Validation of CFDps and CINDps

If cfd
ps and cind

ps are to be used as data quality rules, the first question we have
to settle is how to effectively detect errors and inconsistencies as violations of
these dependencies, by leveraging functionality supported by commercial dbms.
More specifically, consider a database schema R = (R1, . . . , Rn), where Ri is a
relation schema for i ∈ [1, n]. The error detection problem is stated as follows.

The error detection problem is to find, given a set Σ of cfd
ps and cind

ps
defined on R, and a database instance D = (I1, . . . , In) of R as input, the
subset (I ′1, . . . , I

′
n) of D such that for each i ∈ [1, n], I ′i ⊆ Ii and each tuple in

I ′i violates at least one cfd
p or cind

p in Σ. We denote the set as vio(D,Σ),
referred to it as the violation set of D w.r.t. Σ.

In this section we develop sql-based techniques for error detection based on
cfd

ps and cind
ps. The main result of the section is as follows.

Theorem 10. Given a set Σ of cfd
ps and cind

ps defined on R and a database
instance D of R, where R = (R1, . . . , Rn), a set of sql queries can be automat-
ically generated such that (a) the collection of the answers to the sql queries in
D is vio(D,Σ), (b) the number and size of the set of sql queries depend only
on the number n of relations and their arities in R, regardless of Σ. �

We next present the main techniques for the query generation method. Let Σi
cfdp

be the set of all cfd
ps in Σ defined on the same relation schema Ri, and Σ

(i,j)
cindp

the set of all cind
ps in Σ from Ri to Rj , for i, j ∈ [1, n]. We show the following.

(a) The violation set vio(D,Σi
cfdp) can be computed by two sql queries. (b)

Similarly, vio(D,Σ(i,j)
cindp) can be computed by a single sql query. (c) These sql

queries encode pattern tableaux of cfd
ps (cind

ps) with data tables, and hence
their sizes are independent of Σ. From these Theorem 10 follows immediately.

5.1 Encoding CFDps and CINDps with Data Tables

We first show the following, by extending the encoding of [14,7]. (a) The pattern
tableaux of all cfd

ps in Σi
cfdp can be encoded with three data tables, and (b) the

pattern tableaux of all cind
ps in Σ

(i,j)
cindp can be represented as four data tables,

no matter how many dependencies are in the sets and how large they are.

Encoding CFDps. We encode all pattern tableaux in Σi
cfdp with three ta-

bles encL, encR and enc �=, where encL (resp. encR) encodes the non-negation
(=, <,≤, >,≥) patterns in LHS (resp. RHS), and enc �= encodes those negation
(�=) patterns. More specifically, we associate a unique id cid with each cfd

ps in
Σi

cfdp , and let encL consist of the following attributes: (a) cid, (b) each attribute

586 W. Chen, W. Fan, and S. Ma

(1) encL (2) encR (3) enc�=
cid sale price price> price≤
2 T null null null
3 F 20 40
4 T null null null

cid shipping price price≥ price<

2 0 null null null
3 6 null null null
4 null 2.99 9.99

cid pos att val

Fig. 4. Encoding example of cfd
ps

A appearing in the LHS of some cfd
ps in Σi

cfdp , and (b) its four companion at-
tributes A>, A≥, A<, and A≤. That is, for each attribute, there are five columns
in encL, one for each non-negation operator. Similarly, encR is defined. We use
an enc �= tuple to encode a pattern A �= c in a cfd

p, consisting of cid, att, pos,
and val, encoding the cfd

p id, the attribute A, the position (‘LHS’ or ‘RHS’),
and the constant c, respectively. Note that the arity of encL (encR) is bounded
by 5 ∗ |Ri|+ 1, where |Ri| is the arity of Ri, and the arity of enc�= is 4.

Before we populate these tables, let us first describe a preferred form of cfd
ps

that would simplify the analysis to be given. Consider a cfd
p ϕ= R(X → Y, Tp).

If ϕ is not satisfiable we can simply drop it from Σ. Otherwise it is equivalent to
a cfd

p ϕ′ = R(X → Y, T ′
p) such that for any pattern tuples tp, t′p in T ′

p and for
any attribute A in X ∪Y , (a) if tp[A] is op a and t′p[A] is op b, where op is not �=,
then a = b, (b) if tp[A] is ‘ ’ then so is t′p[A]. That is, for each non-negation op
(resp.), there is a unique constant a such that tp[A] = ‘op a’ (resp. tp[A] =) is
the only op (resp.) pattern appearing in the A column of T ′

p. We refer to tp[A]
as T ′

p(op, A) (resp. T ′
p(, A)), and consider w.l.o.g. cfd

ps of this form only. Note
that there are possibly multiple tp[A] �= c patterns in T ′

p,
We populate encL, encR and enc �= as follows. For each cfd

p ϕ = R(X →
Y, Tp) in Σi

cfdp , we generate a distinct cid idϕ for it, and do the following.

– Add a tuple t1 to encL such that (a) t[cid] = idϕ; (b) for each A ∈ X , t[A]
= if T ′

p(, A) is ‘ ’, and for each non-negation predicate op, t[Aop] = ‘a’ if
T ′

p(op, A) is ‘op a’; (c) we let t[B] = ‘null’ for all other attributes B in encL.

– Similarly add a tuple t2 to encR for attributes in Y .
– For each attribute A ∈ X ∪ Y and each �= a pattern in Tp[A], add a tuple t

to enc �= such that t[cid] = idϕ, t[att] = ‘A’, t[val] = ‘a’, and t[pos] = ‘LHS’
(resp. t[pos] = ‘RHS’) if attribute A appears in X (resp. Y).

Example 8. Recall from Fig. 2 cfd
ps ϕ2, ϕ3 and ϕ4 defined on relation item.

The three cfd
ps are encoded with tables shown in Fig. 4: (a) encL consists of

attributes: cid, sale, price, price> and price≤; (b) encR consists of cid, shipping,
price, price≥ and price<; those attributes in a table with only ‘null’ pattern values
do not contribute to error detection, and are thus omitted; (c) enc�= is empty
since all these cfd

ps have no negation patterns. One can easily reconstruct these
cfd

ps from tables encL, encR and enc�= by collating tuples based on cid. �

Encoding CINDps. All cind
ps in Σ

(i,j)
cindp can be encoded with four tables enc,

encL, encR and enc �=. Here encL (resp. encR) and enc �= encode non-negation

Analyses and Validation of Conditional Dependencies 587

(1) enc (2) encL (3) encR (4) enc�=
cid stateL stateR

1 1 1
2 1 1

cid type state
1 null
2 DL

cid rate
1 null
2 0

cid pos att val
1 LHS type art
2 LHS type art

Fig. 5. Encoding example of cind
ps

patterns on relation Ri (resp. Rj) and negation patterns on relations Ri or Rj ,
respectively, along the same lines as their counterparts for cfd

ps. We use enc to
encode the inds embedded in cind

ps, which consists of the following attributes:
(1) cid representing the id of a cind

p, and (2) those X attributes of Ri and Y

attributes of Rj appearing in some cind
ps in Σ

(i,j)
cindp . Note that the number of

attributes in enc is bounded by |Ri|+ |Rj |+ 1, where |Ri| is the arity of Ri.
For each cind

p ψ = (Ri[A1 . . . Am; Xp] ⊆ Rj [B1 . . . Bm; Yp], Tp) in Σ
(i,j)
cindp ,

we generate a distinct cid idψ for it, and do the following.
– Add tuples t1 and t2 to encL and encR based on attributes Xp and Yp,

respectively, along the same lines as their cfd
p counterpart.

– Add tuples to enc�= in the same way as their cfd
p counterparts.

– Add tuple t to enc such that t[cid] = idψ. For each k ∈ [1,m], let t[Ak] =
t[Bk] = k, and t[A] = ‘null’ for the rest attributes A of enc.

Example 9. Figure 4 shows the coding of cind
ps ψ1 and ψ2 given in Fig. 3.

We use stateL and stateR in enc to denote the occurrences of attribute state in
item and tax, respectively. In tables encL and encR, attributes with only ‘null’
patterns are omitted, for the same reason as for cfd

ps mentioned above. �

Putting these together, it is easy to verify that at most O(n2) data tables are
needed to encode dependencies in Σ, regardless of the size of Σ. Recall that n
is the number of relations in database R.

5.2 SQL-Based Detection Methods

We next show how to generate sql queries based on the encoding above. For
each i ∈ [1, n], we generate two sql queries that, when evaluated on the Ii table
of D, find vio(D,Σi

cfdp). Similarly, for each i, j ∈ [1, n], we generate a single sql

query Q(i,j) that, when evaluated on (Ii, Ij) of D, returns vio(D,Σ(i,j)
cindp). Putting

these query answers together, we get vio(D,Σ), the violation set of D w.r.t. Σ.
Below we show how the sql query Q(i,j) is generated for validating cind

ps in
Σ

(i,j)
cindp), which has not been studied by previous work. For the lack of space we

omit the generation of detection queries for cfd
ps, which is an extension of the

sql techniques for cfds discussed in [14,7].
The query Q(i,j) for the validation of Σ(i,j)

cindp is given as follows, which capital-
izes on the data tables enc, encL, encR and enc �= that encode cind

ps in Σ
(i,j)
cindp .

select Ri.∗
from Ri, encL L, enc�= N

588 W. Chen, W. Fan, and S. Ma

where Ri.X � L and Ri.X � N and not exists (
select Rj .∗
from Rj , enc H , encR R, enc�= N
where Ri.X = Rj .Y and L.cid = R.cid and L.cid = H .cid and

Rj .Y � R and Rj .Y � N)

Here (1) X = {A1, . . . ,Am1} and Y = {B1, . . . ,Bm2} are the sets of attributes of
Ri and Rj appearing in Σ

(i,j)
cindp , respectively; (2) Ri.X & L is the conjunction of

L.Ak is null or Ri.Ak = L.Ak or (L.Ak = ‘ ’
and (L.Ai> is null or Ri.Ak > L.Ai>) and (L.Ai≥ is null or Ri.Ak ≥ L.Ak≥)
and (L.Ak< is null or Ri.Ak < L.Ak<) and (L.Ai≤ is null or Ri.Ak ≤ L.Ai≤))

for k ∈ [1,m1]; (3) Rj .Y & R is defined similarly for attributes in Y ; (4) Ri.X &
N is a shorthand for the conjunction below, for k ∈ [1,m1]:

not exists (select ∗ from N where L.cid = N.cid and N.pos = ‘LHS’ and
N.att = ‘Ak’ and Ri.Ak = N.val);

(5) Rj .Y & N is defined similarly, but with N.pos = ‘RHS’ ; (6) Ri.X = Rj .Y
represents the following: for each Ak (k ∈ [1,m1]) and each Bl (l ∈ [1,m2]),
(H.Ak is null or H.Bl is null or H.Bl �= H.Ak or Ri.Ak = Rj .Bl).

Intuitively, (1) Ri.X & L and Ri.X & N ensure that the Ri tuples selected
match the LHS patterns of some cind

ps in Σ
(i,j)
cindp ; (2) Rj .Y & R and Rj .Y & N

check the corresponding RHS patterns of these cind
ps on Rj tuples; (3) Ri.X =

Rj .Y enforces the embedded inds; (4) L.cid = R.cid and L.cid = H .cid assure
that the LHS and RHS patterns in the same cind

p are correctly collated; and
(5) not exists in Q ensures that the Ri tuples selected violate cind

ps in Σ
(i,j)
cindp .

Example 10. Using the coding of Fig. 5, an sql query Q for checking cind
ps ψ1

and ψ2 of Fig. 3 is given as follows:

select R1.∗ from item R1, encL L, enc�= N
where (L.type is null or R1.type = L.type or L.type = ‘ ’) and not exist (

select * from N
where N.cid = L.cid and N.pos = ‘LHS’ and N.att = ‘type’)
and (L.state is null or R1.state = L.state or L.state = ‘ ’) and not exist (
select * from N
where N.cid = L.cid and N.pos = ‘LHS’ and N.att = ‘state’ and R1.state =N.val)

and not exists (
select R2.∗ from tax R2, enc H, encR R
where (H.stateL is null or H.stateR is null or H.stateL! = H.stateR or

R2.state = R1.state) and L.cid = H.cid and L.cid = R.cid and
(R.rate is null or R2.rate = R.rate or R.rate = ‘ ’) and not exist (
select * from N
where N.cid =R.cid and N.pos= ‘RHS’ and N.att = ‘rate’ and R2.rate =N.val))

The sql queries generated for error detection can be simplified as follows. As
shown in Example 10, when checking patterns imposed by enc, encL or encR,

Analyses and Validation of Conditional Dependencies 589

the queries need not consider attributes A if t[A] is ‘null’ for each tuple t in
the table. Similarly, if an attribute A does not appear in any tuple in enc �=, the
queries need not check A either. From this, it follows that we do not even need
to generate those attributes with only ‘null’ patterns for data tables enc, encL

or encR when encoding cind
ps or cfd

ps. �

6 Related Work

Constraint-based data cleaning was introduced in [2], which proposed to use
dependencies, e.g., fds, inds and denial constraints, to detect and repair errors
in real-life data (see, e.g., [11] for a comprehensive survey). As an extension of
traditional fds, cfds were developed in [14], for improving the quality of data.
It was shown in [14] that the satisfiability and implication problems for cfds
are np-complete and conp-complete, respectively. Along the same lines, cinds
were proposed in [8] to extend inds. It was shown [8] that the satisfiability and
implication problems for cinds are in constant time and exptime-complete,
respectively. sql techniques were developed in [14] to detect errors by using
cfds, but have not been studied for cinds. This work extends the static analyses
of conditional dependencies of [14,8], and has established several new complexity
results, notably in the absence of finite-domain attributes (e.g., Theorems 2, 6,
8). In addition, it is the first work to develop sql-based techniques for checking
violations of cinds and violations of cfd

ps and cind
ps taken together.

Extensions of cfds have been proposed to support disjunction and nega-
tion [7], cardinality constraints and synonym rules [9], and to specify patterns
in terms of value ranges [18]. While cfd

ps are more powerful than the extension
of [18], they cannot express disjunctions [7], cardinality constraints and synonym
rules [9]. To our knowledge no extensions of cinds have been studied. This work
is the first full treatment of extensions of cfds and cinds by incorporating built-
in predicates (�=, <,≤, >,≥), from static analyses to error detection.

Methods have been developed for discovering cfds [10,18,15] and for repairing
data based on either cfds [13], traditional fds and inds taken together [5], denial
constraints [4,12], or aggregate constraints [16]. We defer the treatment of these
topics for cfd

ps and cind
ps to future work.

A variety of extensions of fds and inds have been studied for specifying
constraint databases and constraint logic programs [3,6,19,20]. While the lan-
guages of [3,19] cannot express cfds, constraint-generating dependencies (cgds)
of [3] and constrained tuple-generating dependencies (ctgds) of [20] can express
cfd

ps, and ctgds can also express cind
ps. The increased expressive power of

ctgds comes at the price of a higher complexity: both their satisfiability and im-
plication problems are undecidable. Built-in predicates and arbitrary constraints
are supported by cgds, for which it is not clear whether effective sql queries
can be developed to detect errors. It is worth mentioning that Theorems 2 and 6
of this work provide lower bounds for the consistency and implication analyses
of cgds, by using patterns with built-in predicates only.

590 W. Chen, W. Fan, and S. Ma

7 Conclusions

We have proposed cfd
ps and cind

ps, which further extend cfds and cinds,
respectively, by allowing patterns on data values to be expressed in terms of
�=, <,≤, > and ≥ predicates. We have shown that cfd

ps and cind
ps are more

powerful than cfds and cinds for detecting errors in real-life data. In addition,
the satisfiability and implication problems for cfd

ps and cind
ps have the same

complexity bounds as their counterparts for cfds and cinds, respectively. We
have also provided automated methods to generate sql queries for detecting
errors based on cfd

ps and cind
ps. These provide commercial dbms with an

immediate capability to capture errors commonly found in real-world data.
One topic for future work is to develop a dependency language that is capable

of expressing various extensions of cfds (e.g.,cfd
ps, ecfds [7] and cfd

cs [9]),
without increasing the complexity of static analyses. Second, we are developing
effective algorithms for discovering cfd

ps and cind
ps, along the same lines as

[10,18,15]. Third, we plan to extend the methods of [5,13] to repair data based
on cfd

ps and cind
ps, instead of using cfds [13], traditional fds and inds [5],

denial constraints [4,12], and aggregate constraints [16].

Acknowledgments. Fan and Ma are supported in part by EPSRC E029213/1.
Fan is a Yangtze River Scholar at Harbin Institute of Technology. Chen is spon-
sored by Chinese grants 006BAH03B03 and 2007AA01Z159.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS (1999)

3. Baudinet, M., Chomicki, J., Wolper, P.: Constraint-Generating Dependencies.
J. Comput. Syst. Sci. 59(1), 94–115 (1999)

4. Bertossi, L.E., Bravo, L., Franconi, E., Lopatenko, A.: The complexity and approx-
imation of fixing numerical attributes in databases under integrity constraints. Inf.
Syst. 33(4-5), 407–434 (2008)

5. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

6. Bra, P.D., Paredaens, J.: Conditional dependencies for horizontal decompositions.
In: ICALP (1983)

7. Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional
functional dependencies without extra complexity. In: ICDE (2008)

8. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: VLDB
(2007)

9. Chen, W., Fan, W., Ma, S.: Incorporating cardinality constraints and synonym
rules into conditional functional dependencies. IPL 109(14), 783–789 (2009)

10. Chiang, F., Miller, R.J.: Discovering data quality rules. In: VLDB (2008)
11. Chomicki, J.: Consistent query answering: Five easy pieces. In: ICDT (2007)
12. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple

deletions. Inf. Comput. 197(1-2), 90–121 (2005)

Analyses and Validation of Conditional Dependencies 591

13. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB (2007)

14. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-
dencies for capturing data inconsistencies. TODS 33(2) (2008)

15. Fan, W., Geerts, F., Lakshmanan, L.V., Xiong, M.: Discovering conditional func-
tional dependencies. In: ICDE (2009)

16. Flesca, S., Furfaro, F., Parisi, F.: Consistent query answers on numerical databases
under aggregate constraints. In: Bierman, G., Koch, C. (eds.) DBPL 2005. LNCS,
vol. 3774, pp. 279–294. Springer, Heidelberg (2005)

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, New York (1979)

18. Golab, L., Karloff, H.J., Korn, F., Srivastava, D., Yu, B.: On generating near-
optimal tableaux for conditional functional dependencies. In: VLDB (2008)

19. Maher, M.J.: Constrained dependencies. TCS 173(1), 113–149 (1997)
20. Maher, M.J., Srivastava, D.: Chasing Constrained Tuple-Generating Dependencies.

In: PODS (1996)
21. Van der Meyden, R.: The complexity of querying indefinite data about linearly

ordered domains. JCSS 54(1) (1997)

Discovering Sentinel Rules
for Business Intelligence

Morten Middelfart1 and Torben Bach Pedersen2

1 TARGIT A/S�

Aalborgvej 94, 9800 Hjørring, Denmark
morton@targit.com

2 Aalborg University – Department of Computer Science
Selma Lagerløfs Vej 300, 9220 Aalborg Ø, Denmark

tbp@cs.aau.dk

Abstract. This paper proposes the concept of sentinel rules for multi-
dimensional data that warns users when measure data concerning the
external environment changes. For instance, a surge in negative blogging
about a company could trigger a sentinel rule warning that revenue will
decrease within two months, so a new course of action can be taken.
Hereby, we expand the window of opportunity for organizations and fa-
cilitate successful navigation even though the world behaves chaotically.
Since sentinel rules are at the schema level as opposed to the data level,
and operate on data changes as opposed to absolute data values, we are
able to discover strong and useful sentinel rules that would otherwise be
hidden when using sequential pattern mining or correlation techniques.
We present a method for sentinel rule discovery and an implementation
of this method that scales linearly on large data volumes.

1 Introduction

The Computer Aided Leadership and Management (CALM) concept copes with
the challenges facing managers that operate in a world of chaos due to the glob-
alization of commerce and connectivity [7]; in this chaotic world, the ability to
continuously act is far more crucial for success than the ability to long-term fore-
cast. The idea in CALM is to take the Observation-Orientation-Decision-Action
(OODA) loop (originally pioneered by “Top Gun”1 fighter pilot John Boyd in the
1950s [6]), and integrate business intelligence (BI) technologies to drastically in-
crease the speed with which a user in an organization cycles through the OODA
loop. Using CALM, any organization can be described as a set of OODA loops
that are continuously cycled to fulfill one or more Key Performance Indicators
(KPI’s). One way to improve the speed from observation to action is to expand
the “horizon” by allowing the user to see data from the external environment,
� This work was supported by TARGIT A/S. The experiments were assisted by lead-

programmers Jan Krogsgaard and Jakob Andersen.
1 Colonel John Boyd was fighter instructor at Nellis Air Force Base in Nevada, the

predecessor of U.S. Navy Fighter Weapons School nicknamed “Top Gun”.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 592–602, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Discovering Sentinel Rules for Business Intelligence 593

and not only for the internal performance of the organization. Another way is to
give early warnings when factors change that might influence the user’s KPI’s,
e.g., revenue. Placing “sentinels” at the outskirts of the data available harness
both ways of improving reaction time and thus organizational competitiveness.

A sentinel rule is a relationship between two measures, A and B, in an OLAP
database where we know, that a change in measure A at one point in time affects
measure B within a certain warning period, with a certain confidence. If such a
relationship exists, we call measure A the source measure, and measure B the
target measure. Usually, the target measure is, or contributes to, a KPI. The
source measure ideally represents the external environment, or is as close to the
external environment as possible.

The idea that some actions or incidents are interlinked has been well ex-
plored in association rules [1]. In general, association rule mining seeks to find
co-occurrence patterns within absolute data values, whereas our solution works
on the relative changes in data. In addition, association rule mining typically
works on categorical data, i.e., dimension values, whereas our solution works on
numerical data such as measure values. Sequential pattern mining introduces a
sequence in which actions or incidents take place, with the intention of predicting
one action or incident based on knowing another one. This adds to the complex-
ity of association rules which makes the Apriori approach even more costly [3],
thus new approaches to improving the performance of mining sequential patterns
have emerged [5,9,12,10], and have also given rise to multi-dimensional pattern
mining [11]. Sequential pattern mining allows a time period to pass between the
premise and the consequent in the rule, but it remains focused on co-occurrence
patterns within absolute data values for categorical data. Furthermore, our so-
lution generates rules at the schema level, as opposed to the data level, using a
contradiction elimination process. The combination of schema-level rules based
on relative changes in data allows us to generate fewer, more general, rules that
cannot be found with neither association rules nor sequential pattern mining. In
the full paper [8] we specifically demonstrate why sequential pattern mining does
not find any meaningful rules in our running example presented in Section 2.

Other approaches to interpreting the behavior of data sequences are vari-
ous regression [2] and correlation [4,13] techniques which attempt to describe a
functional relationship between one measure and another. In comparison, we can
say that sentinel rules are a set of “micro-predictions” that are complementary
to regression and correlation techniques. Sentinel rules are useful for discover-
ing strong relationships between a smaller subset within a dataset, and thus
they are useful for detecting warnings whenever changes (that would otherwise
go unnoticed) in a relevant source measure occur. In addition, regression and
correlation techniques do not support uni-directional relationships such as our
solution. Regression and correlation based techniques, on the other hand, are
useful for describing the overall trends within a dataset. In the full paper [8], we
specifically provide a concrete, realistic example where nothing useful is found
using correlation, while sentinel rules do find an important relationship within
a subset of the data.

594 M. Middelfart and T.B. Pedersen

The novel contributions in this paper include the sentinel rule concept, and
an algorithm that discover sentinel rules on multi-dimensional data that scales
linearly on large volumes of synthetic and real-world data. We give a formal
definition of sentinel rules, and we define the indication concept for rules and
for source and target measures. In this context, we provide a contradiction elim-
ination process that allows us to generate more general rules that are easy to
interpret. We also provide a useful notation for sentinel rules. We believe that we
are the first to propose the concept of sentinel rules, and to provide an algorithm
and implementation for discovering them.

The next section presents the formal definition, Section 3 presents an al-
gorithm for discovering sentinel rules. Section 4 presents implementation and
experiments, and Section 5 presents conclusion and future work.

2 Problem Definition

Running Example: Imagine a company that sells products world-wide, and
that we, in addition to the traditional financial figures such as revenue, Rev,
have been monitoring the environment outside our organization and collected
that information in three measures. The measure NBlgs represents the num-
ber of times an entry is written on a blog where a user is venting a negative
opinion about our company or products. The measure CstPrb represents the
number of times a customer contacts our company with a problem related to
our products. The measure WHts represents the number of hits on our web-
site, and this figure has been cleansed in order to represent human contact

Table 1. Example dataset

T : D2: M1: M2: M3: M4:
Time Region NBlgs CstPrb WHts Rev

2007-Q1 Asia 20 50 1,000 10,000
2007-Q2 Asia 21 45 1,500 9,000
2007-Q3 Asia 17 33 2,000 11,000
2007-Q4 Asia 15 34 2,500 13,000
2007-Q1 EU 30 41 3,000 20,000
2007-Q2 EU 25 36 3,500 25,000
2007-Q3 EU 22 46 4,000 28,000
2007-Q4 EU 19 37 4,500 35,000
2007-Q1 USA 29 60 5,000 50,000
2007-Q2 USA 35 70 5,500 55,000
2007-Q3 USA 40 72 6,500 45,000
2007-Q4 USA 39 73 7,500 40,000

exclusively, eliminating traffic by robots
etc. In Table 1 we see a subset from our
database, representing each quarter in
year 2007 across three geographical re-
gions. It should be noted that a subset
like Table 1 can easily be extracted from
a multi-dimensional database, i.e., if the
desired data are the base level of the
database no processing is needed, if the
desired levels are higher than the base
level, the data might or might not be
preaggregated. However, both extraction
and aggregation are typically basic built

in functions of any multi-dimensional database. The three measures: NBlgs, Cst-
Prb and WHts, representing the external environment around our company, have
been presented along with the internal measure, Rev, representing our Revenue.

We are interested in discovering whether we can use any of the external mea-
sures to predict a future impact on the internal Revenue measure; in other words
we are looking for sentinel rules where one of the measures M1...M3 can give us
an early warning about changes to M4. To distinguish between which measures
are “causing” the other, we call the measures M1...M3 source measures and the
measure M4 is called the target measure.

Discovering Sentinel Rules for Business Intelligence 595

Formal Definition: Let C be a multi-dimensional data cube containing a set
of dimensions: D = {D1, D2...Dn} and a set of measures: M = {M1,M2...Mp}.
We denote the members of the dimensions in D by d1, d2...dn and we denote
the corresponding measure values for any combination of dimension members
by m1,m2...mp. A measure value is a function, Mi, that returns the value of
a given measure corresponding to the dimension members it is presented with.
We will now provide a series of definitions that define a source measure, A, is
a sentinel for a target measure, B, i.e., a guarded watchtower from which we
monitor A in order to know about changes ahead of time to B. The sentinel rule
between A and B is denoted A � B. We assume, without loss of generality, that
there is only one time dimension, T , in C, and that T = D1, and subsequently
t = d1. The formal definitions are listed in Formulae 1 to 10 below.

A fact, f , in C is defined in Formula (1). Given a fact f , the measure Mi

is a function Mi(t, d2, d3...dn) = mi. The “dimension” part of f , (t, d2, d3...dn),
is called a cell. The shifting of a fact f , f ′, is a fact with the same non-time
dimension values (d2...dn) as f , but for time period t+ o, if it exists in C, i.e., a

f = (t, d2, d3...dn, m1, m2...mp) (1)

Shift(C, f, o) = f ′ = (t + o, d2, d3...dn, m′
1, m

′
2...m

′
p) if f ′ ∈ C (2)

Diff (C, f, o) = (t, d2, d3...dn,
m′

1 − m1

m1
,
m′

2 − m2

m2
...

m′
p − mp

mp
)

where f = (t, d2, d3...dn, m1, m2...mp) ∧ f ∈ C ∧
f ′ = Shift(C, f, o) = (t + o, d2, d3...dn, m′

1, m
′
2...m

′
p) ∧ f ′ ∈ C

(3)

x = (t, d2, d3...dn,
m′

1 − m1

m1
, ...,

m′
i − mi

mi
, ...,

m′
p − mp

mp
) ∧ |m

′
i − mi

mi
| � α (4)

ST (C, o, w) = {(Diff (C, f, o), Diff (C,Shift(C, f, w), o))|f ∈ C} (5)

ContraRule(IndRule) = IndPrem(IndRule) → IndCons(IndRule) (6)

ElimSupp(IndRule) = IndSuppIndRule − IndSuppContraRule(IndRule) (7)

MaxRule =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{IndRulei | IndRulei ∈A → B ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B >= IndSuppA→inv(B),

{IndRulei | IndRulei ∈A → inv(B) ∧ ElimSupp(IndRulei) > 0}
if IndSuppA→B < IndSuppA→inv(B).

(8)

SentSuppA�B =

⎧⎪⎨
⎪⎩

IndSuppA� if A� → B∗
∈ MaxRule,
IndSuppA� if A� → B∗
∈ MaxRule,
IndSuppA� + IndSuppA� otherwise.

(9)

ConfA�B =

∑
IndRulei∈MaxRule ElimSupp(IndRulei)

SentSuppA�B
(10)

596 M. Middelfart and T.B. Pedersen

period of o members later on the time dimension. We denote the offset, o, and
define Shift as shown in Formula (2). Since we are interested in the change in
data, we introduce the measure difference function, Diff. With Diff, we find the
relative changes to each of the measures during the time period specified by the
offset. Diff is defined as shown in Formula (3). Given a threshold, α, we say that
x ∈ Diff (C, f, o) is an indication on a measure, Mi, if Formula (4) holds. We
say that an indication on Mi, x, is positive, denoted Mi�, when m′

i−mi

mi
> 0 and

consequently that an indication, x, is negative, denoted Mi�, when m′
i−mi

mi
< 0.

We define a wildcard, ∗, meaning that Mi∗ can be either Mi� or Mi�.
In our running example, when assessing whether a relationship exists, we are

not concerned with minor fluctuations, so we define a threshold of 10%, mean-
ing that a measure has to change at least 10% up or down in order to be of
interest. Furthermore, given the dataset we have, we are interested in seeing the
changes that occur over quarters as presented in Table 1. This means that we
set the threshold α = 10% and then the offset o = 1 Quarter. In Table 2, we
have calculated the changes from each quarter to the next and subjected each
change to an evaluation against the threshold of 10% change. We denote positive
indications by � and subsequently negative by �, if a change is less than 10%
in either direction it is deemed “neutral”. Please note that since we are dealing
with changes between periods, we naturally get one less row for each region.

A Source-Target Set, ST as seen in Formula (5), is defined as paired indi-
cations of changes over time, where the source and target measures have been
shifted with the offset, o. The target measures have additionally been shifted
with a warning period, w, which is the timeframe after which we should expect
a change on a target measure, after an indication on a source measure has oc-
curred. We say that (x, x′) ∈ ST (C, o, w) supports the indication rule A� → B�
if x is an indication of A� and x′ is an indication of B�. In this case, we also
say that x supports A� and x ′ supports B�. The support of an indication rule
is the number of (x, x′) ∈ ST (C, o, w) which supports the rule. The support of
indication rules A� → B�, A� → B� and A� → B� as well as the support
for indications A� and B� are defined similarly. We denote the support of an
indication and an indication rule by IndSupp followed by the name of the indi-
cation or indication rule, respectively, e.g., IndSuppA� and IndSuppA�→B�.

A sentinel rule is an unambiguous relationship between A and B, thus we
must first eliminate contradicting indication rules, if such exist, before we have

Table 2. Indications between quarters

T : D2: M1: M2: M3: M4:
Time Region NBlgs CstPrb WHts Rev

’07:Q1→Q2 Asia neutral M2� M3� M4�
’07:Q2→Q3 Asia M1� M2� M3� M4�
’07:Q3→Q4 Asia M1� neutral M3� M4�
’07:Q1→Q2 EU M1� M2� M3� M4�
’07:Q2→Q3 EU M1� M2� M3� M4�
’07:Q3→Q4 EU M1� M2� M3� M4�
’07:Q1→Q2 USA M1� M2� M3� M4�
’07:Q2→Q3 USA M1� neutral M3� M4�
’07:Q3→Q4 USA neutral neutral M3� M4�

Table 3. Target and source measure
comparison

T : D2: M1: M2: M3: M ′
4:

Time Region NBlgs CstPrb WHts Rev
’07:Q1→Q2 Asia neutral M2� M3� M ′

4�
’07:Q2→Q3 Asia M1� M2� M3� M ′

4�
’07:Q1→Q2 EU M1� M2� M3� M ′

4�
’07:Q2→Q3 EU M1� M2� M3� M ′

4�
’07:Q1→Q2 USA M1� M2� M3� M ′

4�
’07:Q2→Q3 USA M1� neutral M3� M ′

4�

Discovering Sentinel Rules for Business Intelligence 597

a sentinel rule. We refer to this process as the contradiction elimination pro-
cess, and we use it to remove indication rules with the same premise, but a
different consequent, and vice versa, e.g., if both A� → B� and A� → B�
or if both A� → B� and A� → B� are supported. To eliminate such contra-
dictions, we pair the indication rules in two sets that do not contradict each
other, and we denote these sets by A → B and A → inv (B), as follows:
A → B = {A� → B�, A� → B�} and A → inv(B) = {A� → B�, A� →
B�}. Here inv indicates an inverted relationship between the indications on A
and B, e.g. if A� then B�, and vice versa. For the purpose of being able to
deduct the support of the indication rule(s) we eliminate, we define functions
for returning the premise and the consequent indication, IndPrem and IndCons,
from an indication rule A� → B� as follows: IndPrem(A� → B�) = A� and
IndCons(A� → B�) = B�. Furthermore, we define the complement of an indi-
cation as follows: A� = A� and A� = A�. We can now define a contradicting
indication rule as a function, ContraRule, for an indication rule, IndRule, as
shown in Formula (6). The support after elimination, ElimSupp, of an indica-
tion rule, IndRule, where the support of the contradicting indication rule, Con-
traRule(IndRule), has been eliminated is calculated as shown in Formula (7).

MaxRule is the set of indication rule(s), IndRulei , in the set (A → B or
A → inv(B)) with the highest IndSupp and where ElimSupp(IndRulei) > 0.
With MaxRule, we have identified the best indication rule(s) for a sentinel rule
that represents an unambiguous relationship between A and B, i.e., the non-
contradicting indication rules with the highest ElimSupp. In other words, we
have eliminated the contradicting indication rules where the premise contra-
dicts the consequent, as well as the orthogonal indication rules where different
premises have the same consequent. If the MaxRule set consists of only one in-
dication rule, we refer to the sentinel rule based on this as a uni-directional rule.

We denote the support of a sentinel rule by SentSupp, followed by the name
of the sentinel rule, e.g., SentSuppA�B . For a potential sentinel rule, A � B,
we define SentSupp as the sum of the support of source measure indications for
the indication rule(s) contained in the sentinel rule as shown in Formula (9). We
note the difference between the support of an indication rule, IndSupp, and a sen-
tinel rule, SentSupp. Specifically, when calculating the support of a sentinel rule,
SentSuppA�B , we only consider the support of indications on the source mea-
sure (the premise), A� and A�. With indication rules, both indications on the
source and target measure needs to occur. The reason is, that the consequential
support of indications on the target measure, B� or B�, is taken into consid-
eration when calculating the confidence of the sentinel rule in Formula (10). In
the case of a uni-directional rule (the two first cases) we only consider the sup-
port of indications on the source measure that have the same direction as the
one indication rule in MaxRule; this is done in order not to penalize otherwise
good uni-directional rules in terms of confidence. We denote confidence by Conf,
and define the confidence for a sentinel rule, A � B, as follows shown in
Formula (10). The minimum threshold for SentSupp is denoted β, and the min-
imum threshold for Conf is denoted γ. With these definitions, we say that a

598 M. Middelfart and T.B. Pedersen

sentinel rule, A � B, with an offset, o, and a warning period, w, exists in C when
SentSuppA�B � β and ConfA�B � γ. α, β, γ, o, and w are provided by the
user, and typically set iteratively based on the user’s experience.

To express sentinel rules with easy readability, we use � to show that there
is a sentinel rule between a source measure, A, and a target measure, B. In the
case, where a bi-directional rule represents an inverted relationship between the
source and the target measure, we add inv to the target measure. In the case
where the rule is uni-directional, we add � or � to both the source and the
target measure to express the direction of the sentinel rule.

In our running example, we limit ourselves to investigating whether sentinel
rules exist between any of the source measures M1...M3 and the target measure
M4. We now need to compare the changes in M1...M3 to changes in M4 at a
later time. In this case, we choose the timeframe of 1 quarter again, meaning
that warning period w = 1 Quarter. In Table 3, we show the comparison between
the source measure indications and the target measure indication one quarter
later. The measure M4 is basically moved one line up -or as shown in Table 3;
one quarter back. This means that all source measures for Asia changing 2007:
Q2→Q3 as shown in the left column are now compared on the same line, within
the same row, to the change on the target measure, M4, for Asia changing 2007:
Q3→Q4 and so on. The shift of M4 shown in the row with data for the period
one quarter earlier is denoted M ′

4. Please note that we get one less row for each
geographical region since we are looking at changes between the periods.

Based on Table 3, we count the support for each combination of indication
changes, the indication rules, for each potential sentinel rule; in addition, we can
count the support of the relationship overall, basically the support means count-
ing all rows that do not have a “neutral” change on the source measure since we

Indication rule and sentinel rule support

Table 4. M1 � M4

M1 M ′
4 IndSupp

M1� M ′
4� 0

M1� M ′
4� 0

M1� M ′
4� 2

M1� M ′
4� 3

SentSuppM1�M4 = 5

Table 5. M2 � M4

M2 M ′
4 IndSupp

M2� M ′
4� 1

M2� M ′
4� 0

M2� M ′
4� 1

M2� M ′
4� 3

SentSuppM2�M4 = 3

Table 6. M3 � M4

M3 M ′
4 IndSupp

M3� M ′
4� 4

M3� M ′
4� 0

M3� M ′
4� 2

M3� M ′
4� 0

SentSuppM3�M4 = 6

Table 7. M1 � M4

M1 M ′
4 ElimSupp

M1� M ′
4� 2

M1� M ′
4� 3

SentSuppM1�M4 = 5
ConfM1�M4 = 5

5
= 100%

Conformance: ok

Table 8. M2 � M4

M2 M ′
4 ElimSupp

M2� M ′
4� 3

SentSuppM2�M4 = 3
ConfM2�M4 = 3

5
= 100%

Conformance: ok

Table 9. M3 � M4

M3 M ′
4 ElimSupp

M3� M ′
4� 2

SentSuppM3�M4 = 6
ConfM3�M4 = 2

6
= 33%

Conformance: failed

Discovering Sentinel Rules for Business Intelligence 599

define indications as being either positive or negative. For example, we see sum-
marized in Table 4, that the indication rule M1� →M ′

4� is supported 3 times in
the dataset shown in Table 3; we say that the indication rule M1� →M ′

4� has
a support of 3, and the sentinel rule M1 � M4 has a support of all indication
rule combinations which in this case is 5. Table 4 through 6 lists the indication
rules for each potential sentinel rule with their respective support (Formula (9)).

As mentioned earlier, the ideal sentinel rule describes changes bi-directionally
so that it can “predict” both positive and negative changes on the target mea-
sure. However, the relationship also needs to be non-contradictory in order to
be useful as a sentinel rule. To do this, we eliminate the indications that con-
tradict each other as described in Formulae 6 and 7. In Table 5 we find the a
uni-directional rule where the two contradicting indication rules have equal sup-
port, thus we disregard these indications completely (Formula (9)) and therefore
SentSuppM2�M4=3. In Table 6 the contradiction elimination process does not
eliminate both indication rules, it reduces the two indication rules to one and
decreases ElimSupp (Formula (7)) in the calculation of confidence. In order to
identify the best sentinel rules, we set the thresholds β = 3 and γ = 60%. Table 7
through 9 show the sentinel rules from our running example and their respective
conformance to the thresholds we have set. As seen in Table 8 and 9, we end
up having uni-directional sentinel rules, since the indication rules M2� →M ′

4�
and M2� → M ′

4�, as shown in Table 5, contradict each other and have equal
support. In addition, the indication rules M3� → M ′

4� and M3� → M ′
4� con-

tradict each other in Table 6. Of these, M3� → M ′
4� is strongest and “wins”

the elimination process (Formula (8)) as seen in Table 9.
In this example, we have found two sentinel rules that can provide our com-

pany with an early warning. If we monitor the changes to M1, the number of
negative blog entries, we will know one quarter in advance whether to expect
an increase or a decrease in M4 Revenue. If we monitor the number of times a
customer contacts our company with a problem related to our products, M2, we
will know one quarter ahead whether to expect an increase in Revenue. Using
the notation defined earlier in this section, we can express the rules found in our
running example as follows: NBlgs � inv(Rev) and CstPrb� � Rev�.

3 The FindSentinels Algorithm

The following algorithm has been implemented in SQL on a Microsoft SQL
Server 2005. The actual SQL code can found in the full paper [8]. We assume
without loss of generality that of the p measures in the dataset, C, M1...Mp−1
are the source measures and Mp is the target measure.

Step 1 creates a temporary table where each unique value of t, is sorted
in ascending order and assigned an integer, Id, growing by 1 for each t. This
temporary table will allow us to select values of t for comparison with a given
distance in periods, regardless of the format of the period field, t, in the database.
To optimize performance, we create an index on the period table. By joining 4
copies of each of the original dataset and the period table (one for each of the

600 M. Middelfart and T.B. Pedersen

periods: t, t + o, t + w, and t + w + o), we create a Source-Target set (Formula
(5)) and calculate indications (Formulae (3) and (4)) for our selected p-1 source
measures and one target measure. We calculate these indications for each cell
(dimension combination) in the dataset, and return -1, 0, or 1 depending on
whether the indication is negative, neutral or positive against the threshold α.

Table 10. The FinalResult table

SentinelRule SentSupp Conf

NBlgs->inv(Rev) 5 100

CstPrb dec->Rev inc 3 100

Step 2 counts the number of pos-
itive and negative indications on the
source measure, and for each of these
source measure indications, it sum-
marizes the indications on the target
measure. Since the indications are ex-

pressed as -1, 0 or 1, our contradiction elimination process can be carried out
using sum.

Step 3 retrieves the potential rules from previous output, meaning that a
source measure needs to have at least one indication with a consequential in-
dication on the target measure, i.e., ElimSupp<> 0. For each of these rules,
we calculate the sum of the support of source measure indications, SentSupp,
the sum of absolute indications on the target measure, AbsElimSupp, as well as
MaxElimSupp which is max(ElimSupp). In addition, we calculate the Direction
of the relationship between source and target measure where 1 is straightforward
and -1 is inverted. The nature of Direction also helps us eliminate orthogonal
rules since these will always have Direction=0. This is true because an orthogo-
nal relationship means that both positive and negative indications on the source
measure leads to only one type of indication on the target measure. Finally,

Algorithm FindSentinels
Input: A dataset, C, an offset, o, a warning period, w, a threshold for indications, α,
a minimum SentSupp threshold, β, and a minimum Conf threshold, γ.
Output: Sentinel rules with their respective SentSupp and Conf.
Method: Sentinel rules are discovered as follows:
1. Scan the dataset C once and retrieve unique values of t into an indexed subset.

Use the subset to reference each cell (t, d2, ... ,dn) ∈ C with the corresponding
cells for {t + o, t + w, t + w + o} ∈ C. Output a Source-Target set (Formula (5))
for each cell, (t, d2, ... ,dn), where the indications (Formulae (3) and (4)) on source
measures, M1...Mp−1, are calculated using {t, t + o} and the indications on target
measure, Mp, is calculated using {t + w, t + w + o}.

2. For each positive and negative source measure indication, MiInd , in the output
from Step 1, count the number of source measure indications as IndSuppi and sum
the target measure indications as ElimSuppi .

3. Retrieve from the output from Step 2, each source measure, Mi ∈
M1...Mp−1, where ElimSupp<> 0. For each of these source measures,
calculate: SentSupp=sum(IndSupp), AbsElimSupp=sum|ElimSupp|, MaxElim-
Supp=max(ElimSupp), Direction=avg(sign(Mi Ind)*sign(ElimSupp)), and In-
dRuleCount as the number of different indications (positive, negative). Output the
rules where SentSupp >= β and Conf = AbsElimSupp

SentSupp
>= γ, use IndRuleCount=2

to identify bi-directional rules and Direction to describe whether the relationship is
straight-forward or inverted. For uni-directional rules (IndRuleCount= 1) use the
combinations of Direction and sign(MaxElimSupp) to describe the relationship.

Discovering Sentinel Rules for Business Intelligence 601

we calculate the number of indication rules, IndRuleCount, in the potential sen-
tinel rule. This information is used to distinguish between bi- and uni-directional
rules. Using this information, we can now identify the sentinel rules that comply
with the criteria of SentSupp >= β and Conf >= γ. In addition, we can use
the values of IndRuleCount, Direction, and MaxElimSupp to describe the sen-
tinel rule in accordance with our notation. We store the output in a table called
FinalResult.

Upon execution of the algorithm, FindSentinels, with the dataset from our
running example as C, we get the output table named FinalResult as seen in
Table 10. We note that the result is similar to that of Tables 7 & 8.

4 Implementation and Experiments

In the full paper [8] we conclude that the FindSentinels algorithm has O(n)
computational complexity, where n is the size of C, and the algorithm thus
scales linearly. We implemented the algorithm on a Microsoft SQL Server and
experimentally validated that our SQL implementation does indeed scale linearly
up to 10 million rows of realistic data that was synthetically generated, modeled
after our running example.

5 Conclusion and Future Work

We have proposed a novel approach for discovering so-called sentinel rules in
a multi-dimensional database for business intelligence. The sentinel rules were
generated at schema level, which means that they are more general and cleansed
for contradictions, and thus easy to interpret. We provided an algorithm for
sentinel discovery that scales linearly on large volumes of data. With regards to
novelty, we specifically demonstrated that sentinel rules are different from se-
quential pattern mining, since sentinel rules operate at the schema level and use
a contradiction elimination process to generate fewer, more general rules. Fur-
thermore, we found sentinel rules to be complementary to correlation techniques
by discovering strong relationships between a smaller subset within a dataset
that would otherwise be “hidden in the average” using correlation techniques.

For future work, the algorithm could be extended with the ability to automat-
ically fit α, β, γ, o, and w, and to seek for rules with multiple source measures
In addition, the algorithm could be extended to exploit multi-dimensionality.

References

1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of
items in large databases. In: Proc. of ACM SIGMOD, pp. 207–216 (1993)

2. Agrawal, R., Lin, K.I., Sawhney, H.S., Shim, K.: Fast similarity search in the
presence of noise, scaling, and translation in timeseries databases. In: Proc. of
VLDB, pp. 490–501 (1995)

602 M. Middelfart and T.B. Pedersen

3. Agrawal, R., Srikant, R.: Mining Sequential Patterns. In: Proc. of ICDE, pp. 3–14
(1995)

4. Han, J., Kamber, M.: Data Mining Concepts and Techniques, 2nd edn. Morgan
Kaufmann Publishers, San Francisco (2006)

5. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: FreeSpan: fre-
quent pattern-projected sequential pattern mining. In: Proc. of KDD, pp. 355–359
(2000)

6. Lind, W.S.: Maneuver Warfare Handbook. Westview Press (1985)
7. Middelfart, M.: CALM: Computer Aided Leadership & Management - How Com-

puters can Unleash the Full Potential of Individuals and Organizations in a World
of Chaos and Confusion. iUniverse (2005)

8. Middelfart, M., Pedersen, T.B.: Discovering Sentinel Rules for Business Intelli-
gence. DB Tech Report no. 24, dbtr.cs.aau.dk

9. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
PrefixSpan: Mining Sequential Patterns by Prefix-Projected Growth. In: Proc. of
ICDE, pp. 215–224 (2001)

10. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.: Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach.
IEEE TKDE 16(11), 1424–1440 (2004)

11. Pinto, H., Han, J., Pei, J., Wang, K., Chen, Q., Dayal, U.: Multi-Dimensional
Sequential Pattern Mining. In: Proc. of CIKM, pp. 81–88 (2001)

12. Srikant, R., Agrawal, R.: Mining Sequential Patterns: Generalizations and Per-
formance Improvements. In: Apers, P.M.G., Bouzeghoub, M., Gardarin, G. (eds.)
EDBT 1996. LNCS, vol. 1057, pp. 3–17. Springer, Heidelberg (1996)

13. Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data
Streams in Real Time. In: Proc. of VLDB, pp. 358–369 (2002)

14. Zurawski, R., Jensen, C.S., Pedersen, T.B. (eds.): The Industrial Information Tech-
nology Handbook. Multidimensional Databases and OLAP. CRC Press, Boca Ra-
ton (2005)

dbtr.cs.aau.dk

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 603–610, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Discovering Trends and Relationships among Rules

Chaohai Chen, Wynne Hsu, and Mong Li Lee

School of Computing, National University of Singapore
{chaohai,whsu,leeml}@comp.nus.edu.sg

Abstract. Data repositories are constantly evolving and techniques are needed
to reveal the dynamic behaviors in the data that might be useful to the user. Ex-
isting temporal association rules mining algorithms consider time as another
dimension and do not describe the behavior of rules over time. In this work, we
introduce the notion of trend fragment to facilitate the analysis of relationships
among rules. Two algorithms are proposed to find the relationships among
rules. Experiment results on both synthetic and real-world datasets indicate that
our approach is scalable and effective.

1 Introduction

With the rapid proliferation of data, applying association rule mining to any large
dataset would lead to the discovery of thousands of associations, many of which are
neither interesting nor useful. In a dynamic environment where changes occur fre-
quently, often over short periods, it is important to discover the evolving trends.

Table 1 lists the association rules discovered for a sample dataset. At first glance,
none of the rules seems interesting. However, on closer examination of the rules, we
observe that the confidence of the rule “beer ⇒ chip” is 20% in 1997, 40% in 1998,
and 80% in 1999. In other words, there is an increasing trend in the confidence values
of “beer ⇒ chip” from 1997 to 1999. This could be a useful piece of information.

Further, when we examine the rules “toothbrush A ⇒ toothpaste C” and
“toothbrush B ⇒ toothpaste C” over each individual year, we observe that the confi-
dence of the rule “toothbrush A ⇒ toothpaste C” decreases from 1997 to 1999, that is,
it drops from 100% to 80% to 60%. In contrast, the confidence of the rule “toothbrush
B ⇒ toothpaste C” increases from 60% in 1997 to 80% in 1998 and 100% in 1999.
These two rules seem to exhibit a negative correlation. This may indicate that they
have a competing relationship. That is, customers who buy toothbrush A or B tend to
buy toothpaste C; however, over the years, customers who buy toothbrush B are more
likely to buy toothpaste C, whereas customers who buy toothbrush A are less likely to
buy toothpaste C. As such, if toothpaste C is the key product and the company wants
to increase the sale of toothpaste C, it could produce more toothbrush B rather than A
as a promotion for buying toothpaste C.

On the other hand, suppose the confidence of “toothbrush A ⇒ toothpaste C” de-
creases from 60% in 1997 to 50% in 1998 to 40% in 1999, and the confidence of
“toothbrush B ⇒ toothpaste C” also decreases from 70% in 1997 to 60% in 1998 to
50% in 1999. However, the confidence of “toothbrush A, toothbrush B ⇒ toothpaste C”

604 C. Chen, W. Hsu, and M.L. Lee

increases from 50% in 1997 to 70% in 1998 to 90% in 1999. The relationship among
these three rules could be interesting since it is counter-intuitive. It could indicate that
the combined effect of toothbrush A and toothbrush B is opposite to that of toothbrush
A and B individually. As such, the company could sell toothbrush A and B together
rather than individually if it wants to increase the sell of toothpaste C.

Motivated by the above observations, we investigate the dynamic aspect of
association rules. There has been some research to analyze the dynamic behavior of
association rules over time and detect emerging pattern or deviation between two
consecutive datasets. Baron et al. [1] consider a rule as a time object, and design a
model to capture the content, statistical properties and time stamp of rules. Subse-
quent works [2-4] use the model to monitor the statistical properties of a rule at dif-
ferent time points in order to detect interesting or abnormal changes in a rule. Liu et
al. [5] also examine the temporal aspect of an association rule over time to discover
trends. Statistical methods such as the chi-square tests are used to analyze the interest-
ingness of an association rule over time, and a rule is classified as a stable rule, or
exhibits increasing or decreasing trend. In Chen et al. [6], the authors identify con-
tiguous intervals during which a specific association rule holds, as well as the perio-
dicity of the rule. Dong et al. [7] design an algorithm to discover emerging patterns
whose supports increase significantly over two time points.

To date, no work has been done to discover the relationships about the changes of
the rules over time. In this paper, we propose four types of relationships among rules
based on the correlations in their statistical properties. The contributions of this work
are summarized as follows:

1. Propose four types of relationships among rules over time
2. Design algorithms to discover such relationships
3. Verify the efficiency and effectiveness of the proposed approaches with both

synthetic and real-world datasets.

Table 1. Association Rules Discovered in a Sample Dataset

beer chip

toothbrush A toothpaste C

toothbrush B toothpaste C

Rule Confidence
beer chip 50%
chip beer 63%
beer toothpaste C 85%
cake toothpaste C 77%
chip toothpaste C 72%
toothbrush A toothpaste C 76%
toothbrush B toothpaste C 76%
toothpaste C toothbrush A 55%
toothpaste C toothbrush B 55%
toothbrush A, toothbrush B toothpaste C 66%
toothpaste C => beer 52%
toothbrush A => cake 66%
toothpaste C => chip 78%
toothbrush B => beer 62%
…. ….

Year Confidence
1997 20%
1998 40%
1999 80%

Year Confidence
1997 100%
1998 80%
1999 60%

Year Confidence
1997 60%
1998 80%
1999 100%

 Discovering Trends and Relationships among Rules 605

2 Preliminaries

We model a rule’s confidence over time as a time series, denoted as {y1, y2, …., yn}.

Definition 1 (Strict Monotonic Series). A time series {y1, y2, …., yn} is a strict
monotonic series if

a) yi – yi+1 > 0 ∀ i∈[1, n-1] (monotonic decreasing) or
b) yi – yi+1 < 0 ∀ i∈[1, n-1] (monotonic increasing)

Definition 2 (Constant Series). A time series {y1, y2, …., yn}. is a constant series if ∀
i∈[1, n -1], |yi – yi+1| < ε where 0 < ε << 1.

Definition 3 (Inconsistent Sub-Series). Given a time series {y1, y2, …., yn}, we say
that {yi, …, yj} , 1 ≤ i < j ≤ n, is an inconsistent sub-series in {y1, y2, …., yn} if by
removing {yi, …, yj}, we obtain a strict monotonic or constant time series {y1,…, yi-1,
yj+1, …,yn}.

Definition 4 (Trend Fragment). Suppose T = {y1, y2, …., yn} is a time series with k
inconsistent sub-series S1, S2, …, Sk. Let |Si| denote the number of time points in sub-
series Si. We call T a trend fragment if

a) |Si| < max_inconsistentLen, 1 ≤ i ≤ k;
b) n – ∑i |Si| > min_fragmentLen

where min_fragmentLen and max_inconsistentLen are user-specified parameters
denoting the minimum length of a trend fragment and the maximum length of an
inconsistent series respectively.

Based on the definition of trend fragment, we define the relationships among rules
over time. These rules have the same consequent C and their relationships are based
on the confidence correlations. We use the Pearson correlation coefficient [8] to
measure the confidence correlation:

, 2 2 2 2

() () ()

() () () ()
X Y

E XY E X E Y

E X E X E Y E Y
ρ −=

− −

(1)

where X and Y are two confidence series and E is the expected value operator.
Suppose we have three rules: R1: α ⇒ C, R2: β ⇒ C, R3: α ∪ β⇒ C with the same

consequent C, α ⊄ β, β ⊄ α. Let CS1, CS2, CS3 be the confidence values of R1, R2, R3
over the period [t1, t2] in which CS1, CS2, CS3 are trend fragments and let δ be a user-

defined tolerance. Depending on the values of ρCSi, CSj, we have the following types of
relationships.

Definition 5 (Competing Relationship). Suppose CS1 and CS2 are monotonic trend
fragments. We say R1 : α ⇒ C and R2 : β ⇒ C (α ∩ β = φ) have a competing relation-

ship in [t1, t2] if ρCS1, CS2 < -1 + δ.

Definition 6 (Diverging Relationship). Suppose CS1, CS2 and CS3 are monotonic
trend fragments. We say R1 : α ⇒ C and R2 : β ⇒ C have a diverging relationship
with R3: α ∪ β ⇒ C in [t1, t2] if

a) ρCS1, CS2 > 1 - δ,

b) ρCS1, CS3 < -1 + δ, or ρCS2, CS3 < -1 + δ

606 C. Chen, W. Hsu, and M.L. Lee

Definition 7 (Enhancing Relationship). Suppose CS1 and CS3 are monotonic trend
fragments while CS2 is a constant trend fragments. We say R1 : α ⇒ C and R2 : β ⇒
C have an enhancing relationship with R3: α ∪ β ⇒ C in [t1, t2] if

a) ρCS1, CS3 < -1 + δ
b) CS1 is monotonic decreasing and CS3 is monotonic increasing

Definition 8 (Alleviating Relationship). Suppose CS1 and CS3 are monotonic series
while CS2 is a constant series. We say R1 : α ⇒ C and R2 : β ⇒ C have an alleviating
relationship with R3: α ∪ β ⇒ C in [t1, t2] if

a) ρCS1, CS3 < -1 + δ
b) CS1 is monotonic increasing and CS3 is monotonic decreasing

3 Proposed Approach

We first partition the original dataset according to some time granularity and mine the
association rules for each partition. Next, we scan the confidence series of a rule from
left to right and group the values into consistent sub-series. We merge the adjacent
sub-series if the gap between the two series is less than max_inconsistentLen and the
merged series is strictly monotonic or constant. The merged sub-series, with lengths
greater than min_fragmentLen, are identified as trend fragments. Finally, we find the
relationships among rules over time.

Algorithm 1. FindRelAmongRules RBF

Input: all rules with trend fragments; Output: relationships among rules
1. For each pair rules ri and rj
2. Let TFSi and TFSj be the sets of trend fragments of ri and rj respectively.
3. For each <fi, fj > ∈ TFSi × TFSj do
4. If (overlap(fi, fj) > minRatio)
5. corr = calculateCorrelation (fi, fj, overlap(fi, fj))
6. If (corr < -1 + δ and ri, rj have no common items in the antecedent)
7. Output competing relationship (ri, rj, overlap(fi, fj))
8. Find the combined rule rk
9. If (rk exists)
10. Let TFSk be the set of trend fragments of rk
11. For each <fi, fj, fk > ∈ TFSi × TFSj × TFSk do
12. If (overlap(fi, fj) > minRatio and overlap(fi, fk) > minRatio)
13. If (both fi, and fj are not stable)
14. corr = calculateCorrelation (fi, fj, overlap(fi, fj))
15. If (corr > 1 - δ) corr = calculateCorrelation (fi, fk, overlap(fi, fk))
16. If (corr < -1 + δ) Output diverging relationship (ri, rj, rk, overlap(fi, fj, fk))
17. Else if either fi, or fj is stable but not both
18. WLOG, suppose fi, is not stable and fj is stable
19. corr = calculateCorrelation (fi, fk, overlap(fi, fk))
20. If (corr < -1 + δ)
21. If (fk is increasing) Output enhancing relationship (ri, rj, rk, overlap(fi, fj, fk))
22. Else output alleviating relationship (ri, rj, rk, overlap(fi, fj, fk))

 Discovering Trends and Relationships among Rules 607

Algorithm 2. FindRelInGroups GBF

Input: groups of comparable trend fragments
Output: relationships among rules in each group

1. For each group of comparable trend fragment G
2. For each <fi, fj > ∈ G × G do
3. Let ri and rj be the rules associated with fi and fj respectively.
4. If (ri is a sub-rule of rj or vice versa)
5. WLOG, let ri be a sub-rule of rj
6. Find the other sub-rule rk such that ri is the combined rule of rj and rk
7. Rename the combined rule as rc and the two sub-rules as ri and rj.
8. Else find the combined rule rc of ri and rj
9. Find the corresponding fragment fc for rc in G
10. corr = calculateCorrelation (fi, fj, overlap(fi, fj))
11. If (corr < -1 + δ and ri, rj have no common items in the antecedent)
12. Output competing relationship (ri, rj,overlap(fi, fj))
13. If (fc is not stable)
14. If fi, and fj are not stable
15. corr = calculateCorrelation (fi, fj, overlap(fi, fj))
16. If (corr > 1 - δ)
17. corr = calculateCorrelation (fi, fc, overlap(fi, fc))
18. If (corr < -1 + δ)
19. Output diverging relationship (ri, rj, rc, overlap(fi, fj, fc))
20. Else if either fi, or fj is stable but not both
21. WLOG, suppose fi, is not stable and fj is stable
22. corr = calculateCorrelation (fi, fc, overlap(fi, fc))
23. If (corr < -1 + δ)
24. If (fc is increasing) output enhancing relationship (ri, rj, rc, overlap(fi, fj, fc))
25. Else output alleviating relationship (ri, rj, rc, overlap(fi, fj, fc))

A naïve approach is to perform pair-wise comparisons of the rules by comparing

their trend fragments. Two trend fragments are comparable if their time intervals
overlap significantly, i.e., the length of the overlap time intervals is greater than min-
Ratio. With this, we confine the correlation computation to the overlap time interval
of comparable trend fragments.

Definition 9 (Combined Rule). Suppose we have three rules ri:α⇒ C, rj:β⇒ C, rk: γ
⇒ C. If α ∪ β = γ, α ⊄ β and β ⊄ α, we say rk is the combined rule of ri and rj.

Definition 10 (Sub-Rule). Given rules ri:α⇒ C, rk: γ ⇒ C, if α ⊂ γ, then ri is a sub-
rule of rk.

Algorithm 1 (RBF) gives the details to find relationships among rules. For each pair
of rules, we find their trend fragments (Line 2). For each pair of comparable trend
fragments, we determine their correlation (lines 4-5). If they have a competing rela-
tionship, we output the rules and their overlap intervals (lines 6-7). Line 8 finds the
combined rule. Correlations are computed to determine whether the rules have a di-
verging, enhancing or alleviating relationship (line 11-22).

Note that the naive approach requires scanning all the rules even when they do
not have any comparable trend fragments. Algorithm 2 (GBF) shows an optimization
that groups comparable trend fragments and process only those rules whose trend

608 C. Chen, W. Hsu, and M.L. Lee

fragments are in the same group. The grouping of trend fragments proceeds by first
sorting the fragments in ascending order of their start times, followed by their end
times. Trend fragments with significant overlap of time intervals are placed in the
same group. For each pair of comparable trend fragments, we find the corresponding
rules as well as their combined rule (lines 2-9). Then we compute the correlation
between the rules to determine their relationships (lines 10-25).

4 Performance Study

We implemented the algorithms in C++ and carried out the experiments on a 2.33
GHz PC with 3.25 GB RAM, running Windows XP. We extend the synthetic data
generator in [10] to incorporate time and class information.

4.1 Experiments on Synthetic Dataset

We first evaluate the performance of algorithms RBF and GBF on synthetic datasets.
to find the relationships among rules. Fig.1 shows the running time of RBF and GBF
when the number of rules increases from 1000 to 10 000 and min_ratio is 0.85. We
observe that GBF outperforms RBF and is scalable. As the number of rules increases,
the running time of RBF increases faster than GBF. This is because RBF performs
pair-wise comparisons among rules, while GBF groups comparable fragments and
performs pruning to avoid unnecessary comparisons.

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Number of Rules (in thousands)

T
im

e
(s
ec

)

GBF

RBF

Fig. 1. Running Time of GBF and RBF

0

5

10

15

20

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

min_ratio

T
im

e
(s

ec
)

GBF

RBF

Fig. 2. Varying min_ratio in GBF and RBF

 Discovering Trends and Relationships among Rules 609

We also evaluate the sensitivity of RBF and GBF when min_ratio varies from 0.55
to 1. The number of rules is fixed at 5000. The performance of RBF and GBF are
shown in Fig.2. We observe that GBF is faster than RBF. As the min_ratio increases
from 0.55 to 1, the running time of GBF decreases rapidly, while the running time of
RBF remains relatively constant. The reason is that when min_ratio is large, many
combined rules do not have comparable fragments with the sub-rules and there is no
relationship among them. GBF finds pairs of combined rule and its sub-rules only if
they have fragments in the same group of comparable fragments. However, RBF finds
each pair of combined rule and its sub-rules even when the rules do not have compa-
rable fragments.

4.2 Experiments on Real World Dataset

Finally, we demonstrate the applicability of the algorithms to discover meaningful
relationships among rules in a real-world dataset. The dataset is the currency ex-
change rate dataset from Duke Statistics Data Set Collection [9]. It contains the prices
of 12 currencies relative to the US dollar from 10/9/1986 to 8/9/1996.

We transform the changes of the currency prices for each day into a transaction as
follows. We compare the price of each currency for each day with its price for the
previous day. Each increase or decrease of the price is associated with a correspond-
ing Integer item in the transaction.

Table 2 shows the number of relationships found when we target the increase of
five different currencies. Table 3 gives a sample of the relationships discovered.

Table 2. Number of Relationships in Different Categories

Currency Diverging Enhancing Alleviating Competing

France Franc 31 0 31 755
German Mark 9 0 0 548
New Zealand 286 4 0 311
SpainPeseta 107 1 78 807
Sweden Krone 319 0 28 317

Table 3. Examples of Relationships

 Relationship Rules Period
1 Competing NLG+, DEM- => ESP+↑

NZD+, JPY- => ESP+ ↓
1987-1991

2 Diverging AUD-,CAD-,FRF-,GBP-=> ESP+↑
AUD-, FRF-,GBP- => ESP+↓
CAD- => ESP+ ↓

1990-1992

3 Diverging FRF+,ESP+,AUD-,CAD- => SEK+↓
AUD-,CAD- => SEK+↑
FRF+,ESP+ => SEK+ ↑

1991-1994

4 Enhancing AUD-,FRF-,JPY-,SEK-, CHE- =>ESP+↑
AUD-,FRF-,CHE- =>ESP+↓
JPY-,SEK- =>ESP+ –

1990-1992

610 C. Chen, W. Hsu, and M.L. Lee

The symbols in Table 3 “↑,“↓”,and “–” denote that the confidence of the rule
increases, decreases and remain stable respectively. The symbols “+” and “-” on the
right to each currency symbol denote that the price of the currency increase and
decrease respectively. The diverging relationship among the three rules “UD-,CAD-
,FRF-,GBP-=> ESP+↑” “UD-, FRF-,GBP- => ESP+↓ ” and “CAD- => ESP+ ↓”
in Table 3 indicates that the confidence of “AUD-, FRF-,GBP- => ESP+” and
“CAD- => ESP+” decrease over time while the confidence of their combined rule
“AUD-,CAD-,FRF-,GBP- => ESP+” increases. This could be an important piece of
information to currency traders.

5 Conclusion

In this work, we have analyzed the dynamic behavior of association rules over time
and proposed four types of relationships among association rules. These relationships
could reveal the correlations about the effect of the conditions on the consequent over
time. We have designed two algorithms to discover the relationships among rules.
Experiments on both synthetic and real-world datasets show that our approaches are
efficient and effective.

References

1. Baron, S., Spiliopoulou, M.: Monitoring Change in Mining Results. In: 3rd International
Conference on Data Warehousing and Knowledge Discovery, pp. 51–60 (2001)

2. Baron, S., Spiliopoulou, M., Gunther, O.: Efficient Monitoring of Patterns in Data Mining
Environments. In: 7th East European Conference on Advances in Databases and Informa-
tion Systems, pp. 253–265 (2003)

3. Baron, S., Spiliopoulou, M.: Monitoring the Evolution of Web Usage Patterns. In: 1st
European Web Mining Forum Workshop, pp. 181–200 (2003)

4. Spiliopoulou, M., Baron, S., Giinther, O.: Temporal Evolution and Local Patterns. In: In-
ternational Seminar on Local Pattern Detection, pp. 190–206 (2005)

5. Liu, B., Ma, Y., Lee, R.: Analyzing the Interestingness of Association Rules from the
Temporal Dimension. In: 1st IEEE International Conference on Data Mining, pp. 377–384
(2001)

6. Chen, X., Petrounias, I.: Mining Temporal Features in Association Rules. In: 3rd European
Conference on Principles of Data Mining and Knowledge Discovery, pp. 295–300 (1999)

7. Dong, G., Li, J.: Efficient mining of emerging patterns: discovering trends and differences.
In: 5th International Conference on Knowledge Discovery and Data Mining, pp. 43–52
(1999)

8. Mann, P.S.: Introductory Statistics. John Wiley & Sons, Chichester (2003)
9. Duke Statistics Dataset.

 http://www.stat.duke.edu/
 data-sets/mw/ts_data/all_exrates.html

10. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th Interna-
tional Conference on Very Large Databases, pp. 487–499 (1994)

Incremental Ontology-Based Extraction and
Alignment in Semi-structured Documents

Mouhamadou Thiam1,3, Nacéra Bennacer2, Nathalie Pernelle1,
and Moussa Lô3

1 LRI, Université Paris-Sud 11, INRIA Saclay Ile de France
2-4 rue Jacques Monod, F-91893 Orsay Cedex, France

2 SUPELEC, 3 rue joliot- curie, F-91192 Gif-sur-Yvette cedex, France
3 LANI, Université Gaston Berger, UFR S.A.T, BP 234 Saint-Louis, Sénégal

{mouhamadou.thiam,nathalie.pernelle}@lri.fr,
nacera.bennacer@supelec.fr,

lom@ugb.sn

http://www.lri.fr/~thiam

Abstract. SHIRI 1 is an ontology-based system for integration of semi-
structured documents related to a specific domain. The system’s purpose
is to allow users to access to relevant parts of documents as answers to
their queries. SHIRI uses RDF/OWL for representation of resources and
SPARQL for their querying. It relies on an automatic, unsupervised and
ontology-driven approach for extraction, alignment and semantic anno-
tation of tagged elements of documents. In this paper, we focus on the
Extract-Align algorithm which exploits a set of named entity and term
patterns to extract term candidates to be aligned with the ontology. It
proceeds in an incremental manner in order to populate the ontology
with terms describing instances of the domain and to reduce the access
to extern resources such as Web. We experiment it on a HTML corpus
related to call for papers in computer science and the results that we
obtain are very promising. These results show how the incremental be-
haviour of Extract-Align algorithm enriches the ontology and the number
of terms (or named entities) aligned directly with the ontology increases.

Keywords: Information Extraction, Semantic Annotation, Alignment,
Ontology, Semi-structured documents, OWL, RDF/RDFS.

1 Introduction

Information available on the Web is mostly in HTML form and thus is more
or less syntactically structured. The need to automate these information pro-
cessing, their exploitation by applications and their sharing justify the interest
that research carries on the semantic Web. Because of the lack of semantic, the
querying over these resources are generally based on keywords. This is not sat-
isfying because it does not ensure answer relevance and the answer is a whole
1 Système Hybride d’Intégration et de Recherche d’Information, Digiteo labs project.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 611–618, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.lri.fr/~thiam

612 M. Thiam et al.

document. The annotation of web resources with semantic metadata should al-
low better interpretation of their content. The metadata semantics are defined
in a domain ontology through domain concepts and their relations. Neverthe-
less, manual annotation is time-consuming and the automation of annotation
techniques is a key factor for the future web and its scaling-up.

Many works belonging to complementary research fields such as machine
learning, knowledge engineering and linguistics investigate the issue of anno-
tation of such documents. Some works are based on supervised approaches or on
the existence of structure models in the input documents as in [7], [8], [10] or in
text as in [3], [12]. Generally, the assumed hypotheses are incompatible with the
heterogeneity and the great number of documents. Now, one information may
appear in different kinds of structure depending on the document forms. Some
unsupervised approaches are specialized in structured parts such as tables [15].
Moreover, one document may contain both structured and unstructured parts.

Except for named entities, instances are often drowned in text, so they are
not easily dissociable. Even advanced Natural Language Processing techniques
often adapted to very specific corpora could not succeed.

Named Entities Recognition (NER) aims to locate and classify elements in
text into predefined categories such as the names of persons, organizations, loca-
tions, dates, etc. Some unsupervised Named-entity recognition systems are based
on lexical resources ([9]), or on lexical resources built thanks to data available on
the web ([12], [2]). Some approaches use the Web as a possible corpora to apply
pattern and find terms to annotate a named entity of a resource [3]. Because
this method is time-consuming, it has to be applied when other strategies fail.

The automation of heterogeneous documents annotation can also be based on
terms that describe concepts that are not named entities. The different extraction
techniques can be categorized as linguistic, statistic or hybrid ([14], [13]).

Once a term or a named entity is extracted, it has to be compared to the
set of terms that belongs to the Ontology (concept labels or named entities).
Similarity measures that can be used to estimate a semantic similarity between
named entities or terms have been extensively studied ([6]).

SHIRI [1] can be introduced as an ontology-based integration system for semi-
structured documents related to a specific domain. The system purpose is to
allow users to access to relevant parts of HTML documents as answers to their
queries. SHIRI uses RDF/OWL standard W3C languages for representation of
resources and SPARQL for their querying. The system relies on an automatic,
unsupervised and ontology-driven approach for extraction, alignment and seman-
tic annotation of documents tagged elements. The extraction of term candidates
to be aligned with the ontology relies on a set of named entity and term patterns.
It proceeds in an incremental manner in order to populate the ontology with
terms describing domain instances and to reduce the access to extern resources
such as Web. The annotation of these terms is associated to tagged element of
the HTML document (named structural unit) [1]. Actually, terms are generally
not located in an accurate manner and may be drowned in a same structural
unit. In this paper we focus on the algorithm defined for the extraction and the

Incremental Ontology-Based Extraction and Alignment 613

alignment named Extract-Align algorithm. We experiment and validate it on a
HTML corpus related to call for papers in computer science and the results that
we obtain are very promising. These results show how the incremental behaviour
of Extract-Align algorithm enriches the ontology and how the number of terms
(or named entities) aligned directly with the ontology increases. In section 2,
we detail the extraction and alignment approach. In section 3, we present the
results of the experiments made on a corpus related to call for papers. In section
4, we conclude and give some perspectives.

2 Incremental and Semantic Alignment Approach

In this section, we focus on the terms extraction and their alignment with the
ontology. The extraction method applies a set of patterns to extract term can-
didates. It distinguishes the named entity patterns and the term patterns. The
term candidates are to be aligned with the concepts of the domain ontology. This
alignment is either directly done with the ontology or indirectly thanks to the
Web. The ontology is then populated with the aligned terms that are exploited
for the next alignments.

2.1 Ontology Description

Let O(C,R,#,S,A,LEX) be the domain ontology where C is the set of concepts,
R is the set of relations between concepts, # denotes the subsumption relation
between concepts and between relations. S defines the domain and the range
for each relation and A is a set of axioms and rules defined over concepts and
relations.
LEX (L, T , prefLabel, altLabel, hasT erm, hastermNe) defines the set L of

concept labels and the set T of terms or named entites describing the con-
cepts of the domain. Each concept c ∈ C is related to a preferred label via
prefLabel property and to alternate labels via altLabel 2 belonging to L. Each
concept c ∈ C is related to terms via hasTerm property and to named entities
via hastermNe belonging to T . We assume that the sets L and T are initialized
respectively by a set of labels and a set of terms selected by the domain expert.

Example 1. Labels and terms selected for the Topic concept c of computer sci-
ence domain include the following:

prefLabel(c, ’Topic’), altLabel(c, ’field’), altLabel(c, ’area’), altLabel(c, ’theme’),
hasTerm(c, ’communications protocol’), hasTerm(c, ’data encryption’),
hasTerm(c, ’information’), hasTerm(c, ’object-oriented programming language’)

The set of terms T is enriched by extracted terms as documents are processed.
Since this enrichment is automatic, some terms may be irrelevant, that’s why
we distinguish them from labels. If the expert decides to validate the ontology,
it is possible that some of them become labels.
2 Properties defined in SKOS: Simple Knowledge Organization System.

614 M. Thiam et al.

2.2 Extract-Align Algorithm

The SHIRI extraction and alignment approach proceeds in an incremental man-
ner. Each Extract-Align invocation processes a subset of documents. More pre-
cisely, at each invocation, the algorithm is applied to a subset of documents D
belonging to the same domain, to the ontology of this domain O, to a set of
patterns P , to a set Processed of terms handled in previous steps. The algo-
rithm distinguishes two types of patterns : syntactic named entity patterns and
syntactic term patterns. These two types of patterns are used to extract a set of
term candidates denoted I (see example in table 1). Each t ∈ I is identified by
the sequence of the numbered words according to their occurrence order in the
document. These terms are to be aligned wih the set of labels L and the set of
terms T defined in the ontology O.

At each step, the algorithm attempts to directly align terms of I with the
ontology, otherwise by using the web. Besides, each step enriches the set T of
domain terms and named entities, so the number of web invocations should be
reduced when the next documents will be processed. That is also the reason why
the set of unaligned processed terms are kept in Processed.

The function alignTerm(t) is applied to each t ∈ I and returns a set of
concepts Ct ⊂ C if it succeeds. Then, t is added to T and related to each
c ∈ Ct via hasTerm or via hastermNe relations depending on the matched
pattern (see example below). The invoked alignTerm(t) function uses similarity
measures that are appropriate to compare two named entities or two terms.

The unaligned terms are submitted to the Web like in CPankow approach [3]:
lexico-syntactic Hearst patterns for hyponymy [5] are used to construct queries
containing the unaligned term t. These queries are submitted to a search engine
in order to find a set of label candidates Lt. For each l ∈ Lt, the function
webAlign(l) is applied and returns a set of concepts Ct ⊂ C. If webAlign(l)
succeeds, then, l and t are added to T . t is related to each c ∈ Ct via hasTerm or
via hastermNe relations depending on the matched pattern. l is related to each
c ∈ Ct via hasTerm relation. Since l is extracted automatically it is considered
as a term.

In addition, the term candidates I are also processed in an incremental man-
ner from the longest to the shortest. We assume that a term is more precise
and meaningful than the terms it contains. For example distributed databases
is more precise than databases. But for a term such as Interoperability of data
on the Semantic Web, the alignment will fail very probably. We denote a term
of length k occurring at position i in the document as a sequence of k words:
tki = wiwi+1...wi+k−1, where wi+j denote the word at position i+j, j ∈ [0, k−1].
We note Ik = {tki , i ∈ [1, N]} the set of extracted terms of length k varying from
len to 1 (len is the maximal length).

At iteration k, the algorithm proceeds terms of Ik and I =
⋃k

i=1 Ik. We say
that tk2

i2
is included in tk1

i1
if k2 < k1 and i2 ∈ [i1, i1 + k1 − 1]. When the system

aligns a term x ∈ Ik then ∀y ∈ ⋃k−1
i=1 Ii such that y is included in x, y is deleted

from I.

Incremental Ontology-Based Extraction and Alignment 615

Table 1. An example of extracted terms

Original Text Extracted Terms

..Areas71 of72 interest73 are74 distributed75

databases76 and77 artificial78 intelligence79 .
The80 workshop81 SEMMA82 focuses83
also84 on85 databases86. Intelligence87

areas88..

..[Areas71] of72 interest73 are74

[distributed75 [databases76]] and77

[artificial78 [intelligence79]]. The80

[workshop81] SEMMA82 focuses83
also84 on85 [databases86]. [Intelligence87]
[areas88]..

Example: Given the text in table 1 and the two patterns P 1
t = JN and P 2

t = N
where J denotes an adjective and N a name, the extracted terms are the follow-
ing: In this example, I1 = {Areas71, databases76, intelligence79, workshop81,
databases86, Intelligence87, areas88} and I2 = {distributed75 databases76,
artificial78 intelligence79}. The terms [distributed75 databases76] and [artificial78
intelligence79] are aligned with the concept [Topic]. So, we delete databases76,
Intelligence79 from I1.

Three kinds of outputs result from the Extract-Align invocation: (1) rdf triples
which enrich the ontology with terms or named entities describing the concepts
(hasTerm and hastermNe relations), (2) rdf triples refering the structural units
of the documents, the concepts these units contain (containInstanceOf) and the
values of corresponding terms or named entities (hasV alueInstance) and (3) the
set of all processed terms.

3 Validation of Extract-Align Algorithm

Let O be the domain ontology of Call for Papers for Computer Science Confer-
ences. The named entities are the events (i.e. conferences, workshops), the per-
sons, their affiliations (i.e. team, laboratory and/or university), and the locations
(university, city or country) of the events. Each concept is described by a pre-
ferred label and a set of alternative labels. For example, scientist andpeople are
related to the Person concept. The expert has also exploited Wordnet to select
a set of 353 domain terms such as {Communications protocol, data encryption,
information, ...} that are related to Topic concept via hasTerm property. The
corpus we collect is composed of a set of 691 HTML documents (250542 words
after pre-processing).

Named entities are automatically extracted from the document collection us-
ing Senellart specialized technique [2] which exploits DBLP (Digital Bibliography
and Library Project) to identify accurately person names and dates. We also use
the set of C-Pankow syntactic patterns to extract other named entities instances.
Terms are extracted using the patterns defined in [4].

To retrieve web label candidates, a set of queries is constructed for each term
or named entity. The queries are constructed like in C-Pankow approach using
: hearst patterns, copula and definites (noun phrase introduced by the defi-
nite determiner The). The web labels are selected when the confidence measure

616 M. Thiam et al.

value is over 0.2. For the alignment of the term candidates or web labels, we
use Taxomap tool [11]. Its aim is to discover correspondences between concepts
of two taxonomies. It relies on terminological and structural techniques applied
sequentially and performs an oriented alignment from a source ontology to a
target ontology. We only exploit the terminological strategies of Taxomap i.e.
syntactic-based similarity measures applied on concept labels and terms (term
inclusion, n-gram similarity,...). For the alignment of named entities, the simi-
larity is strictly the equality between terms.

For example, in our experiments, the term reinforcement learning is directly
aligned with the Topic concept thanks to the term learning. The term World
Wide Web has not been aligned directly with O. One of the web label candi-
date is information ressources, Taxomap aligns it with information term related
to Topic concept. Reinforcement learning, information ressources, World Wide
Web are then added to T and related to Topic concept via hasTerm property.

Table 2. Results for Named Entity and Term Pattern

Named Entity Patterns Term Patterns
Aligned Using Precision Precision with Recall Aligned Precision Recall
With O the Web incomplete NE With O

Affiliation 0 1317 84.18% 86.07% 70.83% 165 96.97% 91.95%
Location 0 1097 98.53% 99.02% 91.86% 143 80.42% 78.77%
Person 745 362 89.47% 90.85% 79.5% 206 63.59% 59.01%
Event 0 741 64.35% 86.13% 84.47% 80 65.00% 65.00%
Date 456 0 97.58% 97.58% 74.17% - - -
Topic - - - - - 276 65.58% 59.34%

Table 2 shows the results we obtain for named entity patterns. We present the
precision and recall measures for named entites that are aligned either directly
or using the Web label candidates. Since the granularity of the Shiri-Annot an-
notation is the structural unit, we consider that a named entity is incomplete but
correct if the complete name appears in the structural unit where it is extracted.
For instance, International Conference is incomplete but the structural unit con-
tains the whole name which is International Conference on Web Services. The
Web allows to align approximatively 74 % of all the aligned named entities. All
the affiliations, events and locations are found thanks to the Web. Furthermore,
the table shows that by taking into account incomplete named entities the pre-
cision increases especially for events. These named entities are often partially
extracted due to their length and their complexity. Table 2 shows that thanks
to term patterns, the concept Topic is enriched of 78% de terms. Other named
entities have been also found with good precision and recall for affiliations which
are often described using complex terms. Table 3 shows that a lot of terms occurs
many times since all documents talk about the same domain. Obviously, most
of them are not aligned with the ontology. Moreover, those which are included
in aligned terms are not processed.

Incremental Ontology-Based Extraction and Alignment 617

Table 3. Number of Extracted Terms by Length

Length 1 2 3 4 5 7 Sum

Extracted Terms 101430 32712 17912 5704 966 104 158828
Extracted Terms (distinct) 14413 15806 10020 3797 602 48 44680

Fig. 1. Extracted terms, Web calls versus the number of documents (by ten)

Figure 1 shows: (1) the evolution of the number of terms extracted according
to the number of documents (by ten) (2) the evolution of the number of web
calls according to the number of documents (by ten). The results show that the
number of Web invocations decreases with the number of processed documents.
This explains by the incremental behaviour of Extract-Align algorithm : (1)
the more the ontology is populated by new terms, the more a term candidate
can be directly aligned and (2) all term web alignements which fail are stored
(Processed data).

4 Conclusions and Future Works

In this paper, we have presented an automatic, unsupervised and ontology-driven
approach for extraction, alignment and semantic annotation of tagged elements
of documents. The Extract-Align algorithm proceeds in an incremental manner
in order to populate the ontology with terms describing instances of the domain
and to reduce the access to extern resources such as Web.

We experiment and validate our approach on a HTML corpus related to call
for papers in computer science and the results are promising. These results show
how the ontology is enriched and how the number of terms (or named entities)
aligned directly with the ontology increases. The constructed ontology can be
validated by a domain expert in order to select among the terms those to be
removed or those to become concept labels.

A short-term perspective is the exploitation of the annotation model to refor-
mulate domain queries in order to adapt them to the various levels of precision

618 M. Thiam et al.

of the annotations. A further perspective is to study how a quality measure can
be associated to each annotation triple. We also plan to apply our approach to
other domains like e-commerce web sites.

References

1. Thiam, M., Pernelle, N., Bennacer, N.: Contextual and Metadata-based Approach
for the Semantic Annotation of Heterogeneous Documents. In: ESWC-SeMMA
workshop, Tenerife, Spain (2008)

2. Senellart, P.: Understanding the Hidden Web. PHD Thesis, University of Paris
(December 11, 2007)

3. Cimiano, P., Handschuh, S., Staab, S.: Gimme’The Context: Context Driven Au-
tomatic Semantic Annotation With C-PANKOW. In: WWW conference (2005)

4. Arppe, A.: Term Extraction from unrestricted Text. In: The Nordic Conference on
Computational Linguistics, NoDaLiDa (1995)

5. Hearst, M., Marti, A.: Automatic acquisition of hyponyms from large text corpora.
In: Proceedings of the 14th International conference on Computational linguistics,
1992, France, pp. 539–545 (1992)

6. Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance
metrics for name-matching tasks. In: IIWeb, pp. 73–78 (2003)

7. Crescenzi, V., Mecca, G., Merialdo, P.: RoadRunner: Towards Automatic Data
Extraction from Large Web Sites. In: Very Large Data Bases Conference, VLDB
(2001)

8. Davulcu, H., Vadrevu, S., Nagarajan, S.: OntoMiner: Automated Metadata and
instance Mining from News Websites. The International Journal of Web and Grid
Services (IJWGS) 1(2), 196–221 (2005)

9. Borislav, P., Atanas, K., Angel, K., Dimitar, M., Damyan, O., Miroslav, G.: KIM -
Semantic Annotation Platform. Journal of Natural Language Engineering 10(3-4),
375–392 (2004)

10. Baumgartner, R., Flesca, S., Gottlob, G.: Visual Web Information Extraction with
Lixto. The VLDB Journal, 119–128 (2001)

11. Hamdi, F., Zargayouna, H., Safar, B., Reynaud, C.: TaxoMap in the OAEI 2008
alignment contest. In: Ontology Alignment Evaluation Initiative (OAEI) 2008
Campaign - Int. Workshop on Ontology Matching (2008)

12. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence 165(1), 91–134 (2005)

13. Navigli, R., Velardi, P.: Learning Domain Ontologies from Document Warehouses
and Dedicated Web Sites. Computational Linguistics 30(2), 151–179 (2004)

14. Drouin, P.: Term extraction using non-technical corpora as a point of leverage.
Terminology 9(1), 99–117 (2003)

15. Cafarella, M.J., Halevy, A., Zhe Wang, D.: Uncovering the relational web. In:
Proceedings of WebDB, Canada, (2008)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 619–628, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Tags4Tags: Using Tagging to Consolidate Tags

Leyla Jael Garcia-Castro1, Martin Hepp1, and Alexander Garcia2

1 E-Business and Web Science Research Group, Universität der Bundeswehr München,
D-85579 Neubiberg, Germany

leyla.garcia@unibw.de, mhepp@computer.org
2 Department of Computational Linguistics, University of Bremen,

D-28359 Bremen, Germany
cagarcia@uni-bremen.de

Abstract. Tagging has become increasingly popular and useful across various
social networks and applications. It allows users to classify and organize re-
sources for improving the retrieval performance over those tagged resources.
Within social networks, tags can also facilitate the interaction between mem-
bers of the community, e.g. because similar tags may represent similar interests.
Although obviously useful for straightforward retrieval tasks, the current meta-
data model underlying typical tagging systems does not fully exploit the poten-
tial of the social process of finding, establishing, challenging, and promoting
symbols, i.e. tags. For instance, the social process is not used for establishing an
explicit hierarchy of tags or for the collective detection of equivalencies, syno-
nyms, morphological variants, and other useful relationships across tags. This
limitation is due to the constraints of the typical meta-model of tagging, in
which the subject must be a Web resource, the relationship type is always
hasTag, and the object must be a tag as a literal. In this paper, we propose a
simple yet effective extension for the current meta-model of tagging systems in
order to exploit the potential of collective tagging for the emergence of richer
semantic structures, in particular for capturing semantic relationships between
tags. Our approach expands the range of the object of tagging from Web re-
sources only to the union of (1) Web resources and (2) pairs of tags, i.e., users
can now use arbitrary tags for expressing typed relationships between a pair of
tags. This allows the user community to establish similarity relations and other
types of relationships between tags. We present a first prototype and the results
from an evaluation in a small controlled setting.

Keywords: Social Web, folksonomy, tagging, meta-model, emergent seman-
tics, conceptual graphs, Semantic Web, Web 2.0.

1 Introduction

Nowadays social tagging systems (STS), and the resulting knowledge structures
known as folksonomies [1], are widely used on the Web. Tagging typically works
by assigning short lexical elements to resources in a collaborative environment,
mainly for document retrieval. Popular sites focus on tagging Web resources (e.g.
Delicious, http://www.delicious.com/, and Connotea, http://www.connotea.org/), im-
ages (e.g. Flickr, http://www.flickr.com/), or blogs and other user-generated content

620 L.J. Garcia-Castro, M. Hepp, and A. Garcia

(e.g. Technorati, http://www.technorati.com/). Recently, respective technology has
also been used in corporate networks such as the Electricité de France Intranet [2],
where tags were used in blogs to promote knowledge sharing inside the organization.

It can be assumed that the popularity of tagging is not only due to the simplicity of
the tagging operation itself, but also because tags effectively facilitate search and
navigation over tagged resources [3]. From the technical perspective, there are several
attractive features of tagging systems that create added value for users: First, the use
of URIs for resources provides reliable, unique identifiers for documents, which al-
lows for the consolidation of meta-data. Second, the sites provide a collaborative en-
vironment with an explicit representation of users, which allows discovering implicit
relationships, e.g. networks of users with similar skills, tasks, or interests. Third, tag-
ging systems provide simple yet effective support for the emergence of consensus on
(i) the exact lexical form of a tag and (ii) the appropriateness of a tag for a certain
resource based on collaborative filtering and recommendations. This helps to avoid
orphaned tags and reduces lexical or morphological variations; at the same time, it
keeps up with the high agility and the good coverage of rare but still relevant ele-
ments, i.e. such that are on the long tail. Centralized approaches, including classical
ontology-based solutions often lag behind in their coverage of novel or specific do-
main elements [4]. Furthermore, as tags work like bookmarks or indexes, they help
to reduce spam-induced noise in search engines and enable text-based queries over
elements like images [5]. Moreover, tagging does not impose rigid categories or a
controlled vocabulary on users but gives to users the possibility to freely create and
associate terms, i.e., descriptors, to resources.

Although tagging has proven to provide significant benefits, there are also relevant
limitations of the current state of technology. Typical problems are (i) tag ambiguity,
(ii) missing links between multiple synonyms, spelling variants, or morphological
variants, and (iii) variation in the level of granularity and specificity of the tags used
caused by differences in the domain expertise of agents [2, 3, 6, 7]. These limitations
are problematic for e.g. (i) developing intelligent user interfaces for annotations, (ii)
improving navigation and querying based on annotations, and (iii) integrating content
from diverse and heterogeneous data sources [6].

Additional formal structures may help to overcome some of problems mentioned
above [5, 8, 9]. A main question, however, is whether such formal structures are im-
posed explicitly in the tagging stage or derived implicitly by mining tagging data.

While there exist many proposals for the latter approach, we propose to expand the
underlying meta-model of tagging systems from attaching tags to resources only to
attaching tags to resources and arbitrary pairs of tags, i.e., pairs of the form (tag,
tag). Our motivation is to exploit the positive technical and social effects of tagging
for the construction and the management of more powerful conceptual structures in
information systems and on the Web.

Some of the expected advantages of this model are: (i) supporting the emergence
of explicit relationships between tags, (ii) adding meaning to numerical tags, (iii)
building a “tagsonomy”, i.e., a conceptual graph of tags, including relationships be-
tween them, and (iv) improving the basis for adding formal semantics to tags by min-
ing techniques.

We expect this to improve the retrieval performance of tagging systems and to help
building conceptual graphs from a set of tags. This may turn STS into true sources of

 Tags4Tags: Using Tagging to Consolidate Tags 621

collective intelligence. Such likely requires the aggregation and recombination of data
collected from annotations in order to create new knowledge and new ways of learn-
ing that individual humans cannot achieve by themselves [10].

This paper is organized as follows. Section 2 introduces our model and motivates our
approach. Section 3 summarizes our preliminary evaluation by means of a controlled
experiment on establishing relations between tags. Section 4 summarizes related work
and discusses our contribution. Section 5 sketches future directions for research.

2 A Vision to Expand the Scope of Taggable Objects

Currently, STS allow agents (A), i.e. users, to add tags (T) to resources (R); each re-
spective activity is called tagging (TA). This simple setting already allows a high de-
gree of variation as presented in Fig. 1.

Some of the strengths of STS arise from those combinations such as promoting
serendipity, facilitating convergence, and supporting collaboration by means of filters
and recommendations based on existing tags. Since users can share their tags with the
community, they are building not only a knowledge representation for themselves but
are also helping others to discover associations that were not previously known. This
increases the collectively available expertise [11] and supports the social reinforce-
ment by means of enabling social connections based on common interests [8]. In
other words, the aggregation of many individual user contributions can by itself create
an added value in STS [10].

Fig. 1. Variations in tagging resources

A STS can be represented as a graph where agents (A), resources (R), and tags (T)
are the vertices (V) and tagging activities (TA) are the edges. The predominant tagging
meta-model relies mainly on a triple of (i) agents, i.e. users, (ii) resources, and (iii) tags.
It is also possible to include the system where the tagging took place and a polarity to
assign negative or positive values to tags as Gruber proposes [5]. Some authors add
relations between tags such us relatedTo and equivalentTo which are taken from New-
man’s model [12]. The typical meta-model used today can be formalized as follows:

STS = <V, TA > | V = A ∪ T ∪ R and TA ⊂ {(A, T, R)} (1)

Although tagging has proven to provide significant benefits, there are also important
limitations. Several of these limitations are caused by the constraints in the current
meta-model, as the subject of the tagging must be a Web resource, the relationship
type is always hasTag, and the object must be a tag.

622 L.J. Garcia-Castro, M. Hepp, and A. Garcia

Often, social tagging suffers from a lack of structure and contextualization. For ex-
ample, we often do not know for which purpose a particular user attached a certain
tag to a certain resource. The assignment may e.g. be relevant or valid only in the
context of a particular task. Since all tags are organized in a shallow way, the naviga-
tion, querying, and retrieval of resources is limited [2, 6] and free relations between
tags cannot be established by the same social process. Also, it has been observed that
people need to contextualize communication with other people because that fosters
the creation of new knowledge [10]. Being able to tag other agents’ previous tagging
activities would support that.

The key motivation for our approach is to keep the simplicity and popularity of
tagging while using them on richer conceptual structures, instead of solely trying to
derive those structures from tagging data by mining techniques. In our opinion, the
current meta-model does not fully exploit the potential of tagging for finding, estab-
lishing, challenging and promoting symbols in a community. For instance, the social
convergence in STS is not used for establishing an explicit hierarchy of tags or for the
collective detection of equivalencies, synonyms, morphological variants, and other
useful relationships across tags.

We propose to expand the current meta-model by opening up the range of taggable
objects from resources only to resources and relations between tags. We aim at relat-
ing entities from this expanded set in a semantic manner by means of that approach.
Our model is shown in Fig 2.

Fig. 2. Expanding the scope of taggable objects

A STS to support our model can be still represented as a graph. As before, agents
(A), Web resources (R), and tags (T) are the vertices (V) and tagging activities (TA)
are the edges. One new vertex is required in order to represent relations between tags
(RT). It can be formalized as follows:

STS = <V, TA> | V = A ∪ T ∪ R ∪ RT and RT ⊂ {T x T} (2)

Our model intends to widen the scope of social tagging. The subject of the tagging
remains an agent and the predicates remains a tag, but the object now can be either a
Web resource or a type of relation between tags. The relationship type can still be
hasTag but it is also possible to add new relation types between any pair of tags. This
minimal change should facilitate the usage of our new model by users familiar with

 Tags4Tags: Using Tagging to Consolidate Tags 623

Table 1. Summary of possible tagging activities with Tags4Tags

Subject Predicate Object Example
Resource (agent1, travel,

http://vacations.com) Agent Tag
(Tag, Tag) (agent1, englishToSpanish,

(tag:travel, tag:viaje))

traditional tagging. A summary of possible tagging scenarios with our extended
model is shown in Table 1.

Since our model is based on the current meta-model, it will likely be possible to
adapt and apply (i) existing approaches to derive formal structures from tagging data
such as FLOR [6] and SCARLET [13], (ii) normalization and disambiguation tech-
niques such as [14-16], (iii) the addition of meaning to tags by using URIs [9], and
(iv) techniques and tools for the tag data consolidation among platforms [8].

With the proposed extension, we basically allow people to build and maintain con-
ceptual graphs based on tagging and complement this by social mechanisms for con-
vergence. The resulting networks can be an important starting point to allow better
retrieval and more sophisticated processing, and will likely allow more powerful ap-
proaches for deriving formal structures.

3 Prototype and Implementation

In order to evaluate our model, we developed a first prototype with the main goal of
analyzing how well people are able to relate objects by tags representing the type of
relationship. The model was initially populated with resources, agents, and tags re-
lated to “travel”, which we collected via the Connotea API (http://www.connotea.org/
wiki/WebAPI), and relationships which we collected from participants by means of a
Java Web-based application. The architecture of our prototype is presented in Fig. 3.

In order to capture relationships between taggable objects, we provide two col-
umns: The left-hand side corresponds to the subject of the relationship and right-hand
side corresponds to the object. The prototype was presented as a game where partici-
pants had to find as many relations as they could in a given period of time. The tool
provides a set of recommended tags for likely relationships as well as suggestions
based on existing tags in the system, see Fig. 4. Note that the predefined relations like
isPartOf are also just tags. A formal meaning can be associated to those based on the
outcome of the social tagging process.

The prototype was implemented as a Web-based application using Java 1.6 as the
development language, the Spring Framework (http://www.springsource.org/) and Ve-
locity 1.4 (http://velocity.apache.org/) to manage the Model-View-Controller architec-
ture; ExtJS (http://extjs.com/), BoxOver (http://boxover.swazz.org/ example.html), and
Autosuggest BSN (http://www.brandspankingnew.net/specials/ ajax_autosuggest/ajax_
autosuggest_autocomplete.html) libraries for the user interface, Direct Web Remoting
(http://directwebremoting.org/) for AJAX, and Jena (http://jena.sourceforge.net/) as the
underlying Semantic Web framework.

624 L.J. Garcia-Castro, M. Hepp, and A. Garcia

Fig. 3. Prototype architecture

Fig. 4. A screenshot of the prototype to relate taggable objects

4 Evaluation

The prototype described in the previous section was used to test whether the T(T, T)
pattern, i.e. tags attached to pairs of tags, can be used to consolidate tag sets and to
elicit useful relationships between tags. Those could be used for more powerful tag-
based retrieval. Thus the main goal was to find out whether our approach is a feasible
way of gathering user input to capture equivalencies and relationships, such as nar-
rower and broader relations. We wanted to evaluate whether (i) average computer
users are able to grasp our idea and employ it with minimal instructions, and whether
(ii) the collected data is of sufficient quality to be useful.

4.1 Methodology

We recruited ten individuals from our university, both employees and students, and
asked them to spot and enter as many relations as they could in a predefined period of
time. All participants, seven bachelor students, one PhD student, and two researchers,
had experience using the Web and some of them using tagging systems.

 Tags4Tags: Using Tagging to Consolidate Tags 625

A set of 92 tags related to “travel” was randomly selected via the Connotea API as
the initial data. We only considered tags longer than four characters and resources
with titles longer than five characters. Once our model was populated with the data,
we developed the Web-based prototype to allow people to relate tags easily. The
prototype, already presented in the previous section, was build with Eclipse
(http://www.eclipse.org) and was tested manually.

Participants were asked independently to take part in the experiment and they
received brief oral instructions only. The experiment was conducted in a sequential
order on a single machine. All data was collected in an RDF file, and relations estab-
lished by the participants were automatically loaded as part of the initial data for the
following participants. This happens because relations are established by means of
tags, thus they become part of the set of tags as well.

4.2 Results

All participants used the application with ease and established multiple different rela-
tions between tags. We observed that the task was harder for the first participants
since they had only the initial data, and it got increasingly easier for the later partici-
pants since they could reuse relationships previously collected.

The relations between similar tags were quite consistent among users instead of the
use of different tags, see Fig. 5. For instance, people attached similar tags such as
“canbereachedby” and “canbevisitedby” to relate places like Berlin and Antigua to
the tag “airline”. Another example is the relation between “vacations” and “vacation”
with tags such as “singular” and “isLexicalVariationOf”. Someone with more experi-
ence in triples construction could have added a tag “isSubSetOf” between “singular”
and “isLexicalVariationOf”, i.e. (“isSubSetOf”, (singular, isLexicalVariationOf)), in
order to consolidate data.

Fig. 5. Some of the results found

In order to achieve a better use of some of the recommended relationships such as
“isA” and “isPartOf” as well as others proposed by users themselves, it could be nec-
essary to identify the domain or context of taggable objects. It could also be useful to
understand the meaning of some tags such as “avianFlu”. This particular tag was re-
lated to the tag “airline” with the tag “isA”, i.e. (“isA”, (avianFlu, airline)), by one of
the participants; however this tag was initially attached to a resource related to a virus
known as “avian influenza”. Additionally, background and education are also impor-
tant to understand some tags; a biologist or a medical doctor would hardly have mis-
understood the meaning of “avianFlu”. We assume that in Web-wide tagging systems
based on our approach, the increased mass of tagging data will simplify filtering out
noise and contradictions more easily.

626 L.J. Garcia-Castro, M. Hepp, and A. Garcia

5 Discussion and Related Work

5.1 Related Work

There are different approaches to improve social tagging by means of structured
meta-models and ontologies. Approaches in this vein can be classified into five main
groups: (i) modeling tagging [12], (ii) augmenting the user-contributed data [5], (iii)
adding meaning to tags [9, 17], (iv) adding meta-data in order to improve retrieval,
information exchange and knowledge reuse [18], and (v) enhancing sharing and reuse
of social tagging data through different platforms [8].

Newman [12] proposes an ontology to “model the relationship between an agent, an
arbitrary resource, and one or more tags”. His model represents tags, agents, resources
and tagging activities as classes and relates them via object properties; some relations
between tags such as relatedTo and equivalentTo are also modeled. A tagging activity is
defined as a triple, which corresponds to a resource tagged by an agent with an associ-
ated tag. The conceptual approach of Newman’s ontology is based on the theoretical
work by Gruber [5] and is taken as the baseline for other models because of its simple
but comprehensive nature. Gruber’s approach [5] is broader than Newman’s because it
includes other elements rather than tags, agents, and resources. Hence Gruber works
with a quintuple; this quintuple incorporates information about (i) the system where the
tagging took place and (ii) a polarity to represent positive and negative tags. Gruber’s
ontology is part of the TagCommon project (http://tagcommons.org/).

MOAT [9] is one of the models that extends Newman’s ontology. Its aim is to se-
mantically enrich content from free tagging by means of providing a way for users to
attach meanings to their tags. A MOAT meaning refers to a Web resource and is part
of the tagging; for instance, users could attach a meaning from DBPedia
(http://dbpedia.org/) or any other resource they choose. Another approach to add
meanings to tags, Extreme Tagging, is presented in [17]. Since a tag can have differ-
ent meanings in different contexts, tagging tags is used in that approach to disambigu-
ate the respective contexts. The underlying meaning of a tag can be revealed by
means of another tag. Kim et al. [8] propose a system named SCOT, a semantic cloud
of tags to represent the structure and semantics of tagging data and to allow the im-
port and export among different platforms. Tagging activities are represented as a tag
cloud, which includes user-tag and tag-tag relations. SCOT uses SIOC to describe site
information, FOAF to represent agents (both humans and machines), and SKOS to
represent tags and allow semantic relations among them.

Oren et al. [18] explore the meaning of semantic annotations but do not propose an
explicit model. According to them, tagging expresses an unspecified relation between
the resource and the tag. Thus, according to their position, making a complex state-
ment about the real world is not possible, but only assigning tags, because of the lack
of context.

5.2 Findings and Results

Our proposal builds mainly upon the work of Gruber [5] and Passant & Laublet [9].
While our approach is different from all other ones we are aware of, it remains widely
compatible with existing algorithms and tools. Currently, we do not yet explore the
problem of import and export of tagging data across platforms as done by Kim et al.

 Tags4Tags: Using Tagging to Consolidate Tags 627

[8]. Our proposal allows tagging tags same as in the work by Tanasescu & Streibel
[17], and defining hierarchical relationships as e.g. offered by Bibsonomy
(http://www.bibsonomy.org/). In contrast to existing approaches, our model expands
the scope of taggable objects to a much broader set than described in any previous
work, and uses this expansion to support the collective construction of conceptual
graphs involving relationships between tags. Furthermore, by means of these net-
works, we expect to facilitate the disambiguation of tags in a similar way than Yeung,
Gibbins & Shadbolt [16] propose.

Through the experiments described in the evaluation section, we gained prelimi-
nary evidence that our approach can be used with minimal instruction by average us-
ers familiar with traditional tagging systems. Also, we can see that a relatively simple
expansion of the current tagging meta-model facilitates (i) the construction of concep-
tual graphs and (ii) the inference of a hierarchy of tags and other meaningful relation-
ships such as synonyms and antonyms based on standard mining techniques, which
will be immediately useful for query expansion and disambiguation.

6 Conclusions and Future Work

We have proposed a minimal yet fundamental expansion of the meta-model of
tagging in order to empower the construction of richer conceptual structures while
keeping the ease and popularity of free tagging. Our model adds a semantic level to
free-tagging in order to improve search and retrieval by means of the addition of new
elements in the tagging operation. Such can be used to (i) build complex conceptual
graphs that represent the underlying relations between tags, (ii) improve those net-
works by social mechanisms for convergence, (iii) use those networks to disambigu-
ate tag meanings and for query expansion, and (iv) reduce the gap for deriving formal
structures from tagging data for other purposes.

Our model proved to be feasible, even though the first prototype needs to be im-
proved and complemented in order to be able to collect more data about tagging ac-
tivities in agents, tags, and relationships other than just pairs of tags. Additionally,
more tests are required to determine more precisely how our model can be used (i) to
improve search and retrieval in STS and social convergence mechanisms, and (ii) to
derive formal structures from tagging.

According to the results of the evaluation, some improvements are needed and
would be useful to derive formal structures and improve search and retrieval:

• Semi-automatic consolidation of data, i.e., tags and relationships, by means of nor-
malization and disambiguation techniques to reduce lexical variations and suggest
hypernyms and synonyms.

• Contextualization of taggable objects to avoid misinterpretations such as taking
“avianFlu” as an airline instead of a disease. It would be also useful to collect more
meaningful relationships.

• Allowing the characterization of relationships (such as symmetry and transitivity)
could be very useful. However, instructing average users to use this feature prop-
erly could be very difficult as well.

In a nutshell, we hope that our expanded model will help to improve the performance of
tagging systems while keeping up with their popularity and ease of use on a Web scale.

628 L.J. Garcia-Castro, M. Hepp, and A. Garcia

References

1. VanDerWal, T., Folksonomy.: (2007),
http://www.vanderwal.net/folksonomy.html (retrieved April 2, 2009)

2. Passant, A.: Using Ontologies to Strengthen Folksonomies and Enrich Information Re-
trieval in Weblogs: Theoretical background and corporate use-case. In: International Con-
ference on Weblogs and Social Media, USA (2007)

3. Specia, L., Motta, E.: Integrating folksonomies with the semantic web. In: Franconi, E., Kifer,
M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 624–639. Springer, Heidelberg (2007)

4. Hepp, M.: E-business vocabularies as a moving target: Quantifying the conceptual dynam-
ics in domains. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS, vol. 5268, pp.
388–403. Springer, Heidelberg (2008)

5. Gruber, T.: Ontology of Folksonomy: A Mash-up of Apples and Oranges. International
Journal on Semantic Web & Information Systems 3(2) (2007)

6. Angeletou, S., Sabou, M., Motta, E.: Semantically Enriching Folksonomies with FLOR.
In: Proceedings of the European Semantic Web Conference - Worshop on Colletive Intel-
ligence and the Semantic Web, Spain (2008)

7. Golder, S.A., Huberman, B.A.: Usage patterns of collaborative tagging systems. Journal of
Information Science 32(2), 198–208 (2006)

8. Kim, H.-L., Breslin, J.G., Yang, S.-K., Kim, H.-G.: Social semantic cloud of tag: Semantic
model for social tagging. In: Nguyen, N.T., Jo, G.-S., Howlett, R.J., Jain, L.C. (eds.) KES-
AMSTA 2008. LNCS, vol. 4953, pp. 83–92. Springer, Heidelberg (2008)

9. Passant, A., Laublet, P.: Meaning Of A Tag: A Collaborative Approach to Bridge the Gap
Between Tagging and Linked Data. In: International World Wide Web Conference -
Linked Data on the Web Workshop, China (2008)

10. Gruber, T.: Collective Knowledge Systems: Where the Social Web meets the Semantic
Web. Web Semantics: Science, Services and Agents on the World Wide Web (2007)

11. Lemieux, S.: Social Tagging and the Enterprise: Does Tagging Work at Work?,
http://www.semanticuniverse.com/
articles-social-tagging-and-enterprise-does-tagging-work-work.
html (retrieved February 10, 2009)

12. Newman, R.: Tag Ontology Design (2004),
http://www.holygoat.co.uk/projects/tags/
(retrieved February 16, 2009)

13. Sabou, M., d’Aquin, M., Motta, E.: SCARLET: SemantiC relAtion discoveRy by harvest-
ing onLinE onTologies. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M.
(eds.) ESWC 2008. LNCS, vol. 5021, pp. 854–858. Springer, Heidelberg (2008)

14. Gracia, J., et al.: Querying the Web: A Multi-ontology Disambiguation Method. In: Inter-
national Conference on Web Engineering, USA (2006)

15. Sabou, M., d’Aquin, M., Motta, E.: Using the Semantic Web as Background Knowledge
for Ontology Mapping. In: International Semantic Web Conference - Workshop on Ontol-
ogy Matching, Grecia (2006)

16. Yeung, C.A., Gibbins, N., Shadbolt, N.: Understanding the Semantics of Ambiguous Tags
in Folksonomies. In: International Workshop on Emergent Semantics and Ontology Evolu-
tion, Korea (2007)

17. Tanasescu, V., Streibel, O.: Extreme Tagging: Emergent Semantics through the Tagging of
Tags. In: International Workshop on Emergent Semantics and Ontology Evolution, Korea
(2007)

18. Oren, E., et al.: What are Semantic Annotations (2006)

Detecting Projected Outliers in High-Dimensional Data
Streams

Ji Zhang1, Qigang Gao2, Hai Wang3, Qing Liu1, and Kai Xu1

1 CSIRO ICT Center, Hobart, TAS, Australia
{ji.zhang,q.liu,kai.xu}@csiro.au
2 Dalhousie University, Halifax, NS, Canada

qggao@cs.dal.ca
3 Saint Mary’s University, Halifax, NS, Canada

hwang@smu.ca

Abstract. In this paper, we study the problem of projected outlier detection
in high dimensional data streams and propose a new technique, called Stream
Projected Ouliter deTector (SPOT), to identify outliers embedded in subspaces.
Sparse Subspace Template (SST), a set of subspaces obtained by unsupervised
and/or supervised learning processes, is constructed in SPOT to detect projected
outliers effectively. Multi-Objective Genetic Algorithm (MOGA) is employed as
an effective search method for finding outlying subspaces from training data to
construct SST. SST is able to carry out online self-evolution in the detection stage
to cope with dynamics of data streams. The experimental results demonstrate the
efficiency and effectiveness of SPOT in detecting outliers in high-dimensional
data streams.

1 Introduction

Outlier detection is an important research problem in data mining that aims to find ob-
jects that are considerably dissimilar, exceptional and inconsistent with respect to the
majority data in an input database [9]. In recent years, we have witnessed a tremendous
research interest sparked by the explosion of data collected and transferred in the for-
mat of streams. Outlier detection in data streams can be useful in many fields such as
analysis and monitoring of network traffic data, web log, sensor networks and financial
transactions, etc.

A key observation that motivates our work is that outliers existing in high-dimensional
data streams are embedded in some lower-dimensional subspaces. Here, a subspace
refers to as the data space consisting of a subset of attributes. These outliers are termed
projected outliers in the high-dimensional space. The existence of projected outliers is
due to the fact that, as the dimensionality of data goes up, data tend to become equally
distant from each other [1]. As a result, the difference of data points’ outlier-ness will
become increasingly weak and thus undistinguishable. Only in moderate or low dimen-
sional subspaces can significant outlier-ness of data be observed.

The problem of detecting projected outliers from high-dimensional data streams can
be formulated as follows: given a ϕ-dimensional data streamD, for each data point pi =
{pi1, pi2, . . . , piϕ} in D, the projected outlier detection method performs a mapping as

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 629–644, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

630 J. Zhang et al.

f : pi → (b, Si, Scorei). b is a Boolean variable indicating whether or not pi is a
projected outlier. pi is a project outlier (i.e., b = true) if there is one or more subspaces
where pi is an outlier. These subspaces are called the outlying subspaces of pi. In this
case, Si is the set of outlying subspaces of pi and Scorei is the corresponding outlier-
ness score of pi in each subspace of Si. The users have the discretion to pick up the
top k projected outliers that have the highest outlier-ness. In contrast, the traditional
definition of outliers does not explicitly present outlying subspaces of outliers in the
final result as outliers are detected in the full or a pre-specified data space that is known
to users before outliers are detected.

In this paper, we present a new technique, called Stream Projected Outlier deTector
(SPOT), to approach the problem of outlier detection in high-dimensional data streams.
The major technical contributions of this paper can be summarized as follows:

– SPOT constructs the novel Sparse Subspace Template (SST) to detect projected
outliers. SST consists of a number of mutually supplemented subspace groups that
contribute collectively to an effective detection of projected outliers. SPOT is able
to perform supervised and/or unsupervised learning to construct SST, providing a
maximum level of flexibility to users. The strategy of self-evolution of SST has
also been incorporated into SPOT to greatly enhance its adaptability to dynamics
of data streams;

– Unlike most other outlier detection methods that measure outlier-ness of data points
based on a single criterion, SPOT adopts a more flexible framework allowing for
the use of multiple measures for outlier detection. Employing multiple measures is
generally more effective than a single measure. SPOT utilizes the Multi-Objective
Genetic algorithm (MOGA) as an effective search method to find subspaces that
are able to optimize these criteria for constructing SST;

– We show that SPOT is efficient and outperforms the existing methods in terms of
effectiveness through experiments on both synthetic and real-life data sets.

The rest of this paper is organized as follows. The basic concepts and definitions used
in SPOT will be presented in Section 2. In Section 3, we dwell on algorithms of SPOT,
with an emphasis on the learning and detection stages of SPOT. Experimental results of
SPOT are reported in Section 4. The final section concludes this paper.

2 Concepts and Definitions

2.1 Data Space Partitioning

To facilitate the quantification of data synopsis for outlier detection, a hypercube is
superimposed and equi-width partition of domain space is performed. Each attribute
of the data is partitioned into a few number of non-overlapping equal-length intervals.
The cells in hypercube can be classified into two categories, i.e., the base and projected
cells. A base cell is a cell in the full data space (with the finest granularity in hypercube).
The dimensionality (i.e., number of attributes) of a base cell is equal to ϕ, where ϕ is
the dimension of the data stream. A projected cell is a cell that exists in a particular
subspace. The dimensionality of a projected cell is smaller than ϕ.

Detecting Projected Outliers in High-Dimensional Data Streams 631

2.2 Data Synopsis

Based on the hypercube structure, we employ two data synopsis, called Base Cell Sum-
mary (BCS) and Projected Cell Summary (PCS), to capture the major underlying charac-
teristics of the data stream for detecting projected outliers. They are defined as follows.

Definition 1. Base Cell Summary (BCS): The Base Cell Summary of a base cell c

in the hypercube is a triplet defined as BCS(c) = {Dc,
→
LSc,

→
SSc), where Dc,

→
LSc

and
→
SSc denote the number of points in c, the sum and squared sum of data values in

each dimension of points in c, respectively, i.e.,
→
LSc=

∑ →
p i and

→
SSc=

∑ →
p

2

i , for pi

located in c, 1 ≤ i ≤ ϕ.
BCS features two desirable properties, i.e., additivity and incremental maintainabil-

ity [21], that can be used to compute data synopsis for projected cells in subspaces.

Definition 2. Projected Cell Summary (PCS): The Projected Cell Summary of a cell
c in a subspace s is a triplet defined as PCS(c, s) = (RD, IRSD, IkRD), whereRD,
IRSD and IkRD are the Relative Density, Inverse Relative Standard Deviation and
Inverse k-Relative Distance of data points in c of s, respectively.
RD, IRSD and IkRD are three effective measures to represent the overall data

sparsity of each projected cell from different perspectives. They are used together in
SPOT to achieve a good measurement of data outlier-ness. They are all defined as
ratio-type measures in order to achieve statistical significance in measurement. The
outlier-ness thresholds defined based on ratio-type measures are also intuitive and easy
to specify.

Definition 3. Relative Density (RD): Relative Density of a cell c in subspace s mea-
sures the relative density of c w.r.t the expected level of density of non-empty cells
in s. If the density of c is significantly lower than the average level of cell density in
the same subspace, then the data in c can be labeled as outliers. RD is calculated as
RD(c, s) = Dc

E(Ds) , where Dc and E(Ds) represent the density (i.e., number of points)

in c and the expected density of all the cells in s. Since E(Ds) = N
δ|s| , where N cor-

responds to the effective stream length (the decayed total number of data points at a

certain time), thus, RD(c, s) = Dc·δ|s|
N , p ∈ c.

Definition 4. Inverse Relative Standard Deviation (IRSD): Inverse Relative Standard
Deviation of a cell c in subspace s is defined as inverse of the ratio of standard deviation
of c in s against the expected level of standard deviation of non-empty cells in s. Under a
fixed density, if the data in a cell features a remarkably high standard deviation, then the
data are distributed more sparsely in the cell and the overall outlier-ness of data in this

cell is high. IRSD(c, s) is computed as IRSD(c, s) =
[

σc

E(σs)

]−1
, where σc denotes

the standard deviation of c and E(σs) denotes the expected standard deviation of cells
in subspace s. Since σc is larger than 0 but does not exceed the length of the longest
diagonal of the cell in subspace s, which is

√|s|l, where |s| is the dimensionality of
s and l is the side length of each interval, thus E(σs) can be estimated as E(σs) =
0+
√

|s|l
2 =

√
|s|l
2 .

632 J. Zhang et al.

Definition 5. Inverse k-Relative Distance (IkRD): Inverse k-Relative Distance for a
cell c in a subspace s is the inverse of ratio of the distance between the centroid of c and its
nearest representative points in s against the average level of such distance in s for all the
non-empty cells. A high IkRD value of c indicates that c is noticeably far from the dense
regions of the data in s, thus the outlier-ness of data in c is high. The IkRD is defined as

IkRD(c, s, k) =
[

k dist(c,s)
average k dist(ci,s)

]−1
, k dist(c, s) is the sum of distances between

the centroid of c and its k nearest representative points in s and average k dist(ci, s)
is the average level of k dist(ci, s) for all the non-empty cells in s.

3 Stream Projected Outlier Detector (SPOT)

An overview of SPOT is presented in Figure 1. SPOT can be broadly divided into two
stages: the learning stage and the detection stage. SPOT can further support two types of
learning, namely offline learning and online learning. In the offline learning, Sparse Sub-
space Template (SST) is constructed using either the unlabeled training data (e.g., some
available historic data) and/or the labeled outlier examples provided by domain experts.
SST is a set of subspaces that features a higher data sparsity/outlier-ness than others.
It casts light on where projected outliers are likely to be found in the high-dimensional
space. SST consists of three groups of subspaces, i.e., Fixed SST Subspaces (FS), Un-
supervised SST Subspaces (US) and Supervised SST Subspaces (SS), where FS is
a compulsory component of SST while US and SS are optional components. SST is
mainly constructed in an unsupervised manner where no labeled examples are required.
However, it is possible to use the labeled outlier exemplars to further improve SST. As
such, SPOT is very flexible and is able to cater for different practical applications that
may or may not have available labeled exemplars. Multiobjective Genetic Algorithm
(MOGA) is used for outlying subspace search in constructing US and SS .

When SST is constructed, SPOT can start to screen projected outliers from constantly
arriving data in the detection stage. The arriving data will be first used to update the data
summaries (i.e., PCSs) of the cell it belongs to in each subspace of SST. This data will
then be labeled as a projected outlier if PCS values of the cell where it belongs to are
lower than some pre-specified thresholds. The detected outliers are archived in the so-
called Outlier Repository. Finally, all or only a specified number of the top outliers in
Outlier Repository will be returned to users when the detection stage is finished.

During the detection stage, SPOT can perform online learning periodically. The on-
line learning involves updating SST with new sparse subspaces that SPOT finds based
on the current data characteristics and the newly detected outliers. Online learning im-
proves SPOT’s adaptability to dynamic of data streams.

3.1 Learning Stage of SPOT

Since the number of subspaces grows exponentially with regard to data dimensionality,
evaluating each streaming data in each possible subspace becomes prohibitively expen-
sive. As such, we only evaluate each point in SST alternatively, in an effort to render
this problem tractable. The central task of the offline learning stage is to construct SST.

Detecting Projected Outliers in High-Dimensional Data Streams 633

Fig. 1. An overview of SPOT

Construction of SST. It is desired that SST can contain one or more outlying subspaces
for as many projected outliers in the streams as possible. To do this, SST is designed to
contain a few groups of subspaces that are generated by different underlying rationales.
Different subspace groups supplement each other towards capturing the right subspaces
where projected outliers are hidden. This helps enable SPOT to detect projected out-
liers more effectively. Specifically, SST contains the following three subspace groups,
Fixed SST Subspaces (FS), Unsupervised SST Subspaces (US) and Supervised SST
Subspaces (SS), respectively.

• Fixed SST Subspaces (FS)
Fixed SST Subspaces (FS) contains all the subspaces in the full lattice whose maxi-
mum dimension is MaxDimension, where MaxDimension is a user-specified pa-
rameter. In other words, FS contains all the subspaces with dimensions of 1, 2, · · · ,
MaxDimension.FS satisfies that ∀s, we have |s| ≤MaxDimension if and only if
s ∈ FS . Construction of FS does not require any learning process.

• Unsupervised SST Subspaces (US)
Unsupervised SST Subspaces (US) are constructed through an unsupervised offline
learning process. We assume that a set of historical data is available for this unsuper-
vised learning. All the training data are scanned and assigned into one (and only one)
cell in the hypercube. The BCS of each occupied cell in H are maintained during this
data assignment process. Multi-Objective Genetic Algorithm (MOGA) is then applied
on the whole training data to find the subspaces that feature a higher number of outliers.
These subspaces will be added to US .

Once we have obtained the initial US , we can further procure more useful subspaces
for US . We can find the outlying subspaces of the top training data that have the highest
overall outlying degree. The selected training data are more likely to be considered as
outliers and they can be potentially used to detect more similar outliers in the stream.
The overall outlying degree of the training data is computed in an unsupervised manner
by employing clustering analysis.

As the distance between two data points may vary significantly in different sub-
spaces, we therefore expect the distance metric used in the clustering to be able to well

634 J. Zhang et al.

reflect the overall distance of data points in difference subspaces, especially those where
outliers are likely to be detected. To achieve this, we employ a novel distance metric,
called Outlying Distance(OD), for clustering training data. It is defined as the average
distance between two points in top sparse subspaces of the whole training data obtained
by MOGA, i.e., OD(p1, p2) =

∑m
i=1 dist(p1,p2,si)

m , where m is the number of top sparse
subspaces returned by MOGA and si is the ith subspaces in this set.

We utilize lead clustering method, also called the fixed-width clustering, to cluster
the whole training data into a few clusters. Lead clustering method is a highly efficient
clustering method that adopts an incremental paradigm to cluster data. For each data
p in the data set that has yet been clustered, it will be assigned to the cluster c′ such
that OD(p, c′) < dc and ∀ci �= c′, OD(p, c′) ≤ OD(p, ci). The centriod of c′ will be
updated upon the cluster assignment of p. If ∀ci, we have OD(p, ci) ≥ dc, then a new
cluster is initiated and p becomes the centroid of this new cluster. These steps will be
repeated until all the data in the data set have been clustered.

Due to its incremental nature, lead clustering method features a promising linear
scalability with regard to number and dimensions of training data. However, its result
is sensitive to the order in which the training data are clustered. To solve this problem,
we perform lead clustering in multiple runs under different data orders. Even though
an outlier may be assigned into different clusters in different runs, the chance that it is
assigned to a small cluster is relatively high. Hence, the outlying degree of a training
data can be measured by the average size of clusters it belongs to in different runs.

• Supervised SST Subspaces (SS)
In some applications, a small number of outlier exemplars may be provided by domain
experts or are available from some earlier detection process. These outlier exemplars
can be considered as carriers of domain knowledge that are potentially useful to improve
SST for better a detection effectiveness. MOGA is applied on each of these outlier
exemplars to find their top sparse subspaces. There subspaces are called Supervised SST
Subspaces (SS). Based on SS , example-based outlier detection [22] can be performed
that effectively detects more outliers that are similar to these outlier examples.

Computing PCS of a Projected Cell. In MOGA, PCS of projected cells need to be
computed. The central components required for quantifying RD, IRSD, IkRD of PCS
for a projected cell c are the density (Dc), mean (μc) and standard deviation (σc) of
data points in c and the representative points in the subspace where c exists. Fortu-
nately, as shown in [21],Dc, μc and σc can be efficiently obtained using the information
maintained in BCS. Thus, we only show how representative points can be obtained for
computing IkRD here. The representative points of a subspace s are the centroids of a
selected set of non-empty cells in s. This selected set of cells are termed coverage cells.
A rule-of-thumb in selecting coverage cells in a subspace s is to select a specified num-
ber of the most populated cells in s such that they cover a majority of data in s, such as
90%. It is noted that the initial representative data for different subspaces are obtained
offline before outlier detection is conducted, thus it is not subject to the one-pass scan
and time-criticality requirements of data stream applications.

Figure 2 and 3 present the algorithms of the unsupervised and the supervised learning
in SPOT.

Detecting Projected Outliers in High-Dimensional Data Streams 635

Algorithm. SPOT Unsupervised Learning (DT , dc, Nruns)

Input: Training data DT , clustering distance threshold dc, number of clustering runs Nruns;
Output: Unsupervised SST subspaces;
1. US ← ∅;
2. MOGA(DT);
3. US ← US∪ top sparse subspaces of DT ;
4. FOR i=1 to Nruns DO
5. Cluster(DT , US, dc);
6. ComputeOF(DT);
7. FOR each top training data p DO {
8. MOGA(p);
9. US ← US∪ top sparse subspaces of p; }
10. SST ← US;
11. Return(SST);

Fig. 2. Unsupervised learning algorithm of SPOT

Algorithm. SPOT Supervised Learning (OE)

Input: Set of outlier examplars OE;
Output: Supervised SST subspaces;
1. SS ← ∅;
2. FOR each outlier examplar o in OE DO {
3. MOGA(o);
4. SS ← SS∪ top sparse subspaces of o; }
5. SST ← SS;
6. Return(SST);

Fig. 3. Supervised learning algorithm of SPOT

3.2 Multi-Objective Genetic Algorithm (MOGA)

In the offline learning stage, we employ Multi-Objective Genetic Algorithm (MOGA)
to search for subspaces whose RD, IRSD and IkRD objectives can be minimized in
construction of SST. MOGA conducts search of good subspaces through a number of
generations each of which has a population containing a specific number of individuals
(i.e., subspaces). The subspaces in the first generation are typically generated randomly,
while the subspaces in the subsequent generations are generated by applying search op-
erators such as crossover and mutation on those subspaces in their preceding generation.
In a multi-objective minimization problem, subspaces in the population of each gener-
ation can be positioned on different trade-off surfaces in the objective function space.
The subspaces located on a surface closer to the origin is better than the one far from the
origin. The superiority (or inferiority) of the subspaces on the same surface are not dis-
tinguishable. The surface where the optimal subspaces are located is called Pareto Front.
The goal of MOGA is to gradually produce an increasing number of optimal subspaces,

636 J. Zhang et al.

located in the Pareto Front, from non-optimal subspaces as evolution proceeds. MOGA
provides a good general framework for dealing with multi-objective search problems.
However, we still need to perform ad-hoc design of MOGA in SPOT for outlying sub-
space search, including individual representation, objective functions, fitness function,
selection scheme and elitism.

Individual Representation. In SPOT, all individuals are represented by binary strings
with fixed and equal length ϕ, where ϕ is the number of dimensions of the dataset.
Each bit in the individual will take on the value of ”0” and ”1”, respectively, indicating
whether or not its corresponding dimension is selected for a particular subspace.

Objective Functions. We need to define objective functions for subspaces w.r.t two
types of data. The first type of data is a single data point. This applies to each top
training data and each outlier exemplar. For a single data point, we have f(p, s) =
f(c, s), meaning that the objective function of subspace s w.r.t data point p is the data
sparsity (measured by RD, IRSD, IkRD) of the cell c in s where p belongs to. The
second type of data is the whole training data Dt. The objective function of s for Dt

is defined as the percentage of data points in Dt with low PCS in s. Its calculation
involves summing up the densities of projected cells in s with lower PCS. Note that the
objective functions for both types of data are 3-dimensional function vectors.

Fitness Function. The fitness of a subspace s in SPOT is defined based upon its Pareto-
count in the whole population. The Pareto-count of s is the number of subspaces that
are inferior to s in the population, i.e., fitness(s) = |{si : s ' si}|. si is inferior to
s, denoted as s ' si, if none of the objective function values of si is better than or as
good as s.

Selection Scheme. Pareto-based selection scheme is used to select fitter solutions in
each step of evolution. It is a stochastic selection method where the selection probability
of a subspace is proportional to its fitness value, i.e., Pr(s) = fitness(s)∑P

i=1 fitness(si)
, where

P is the population size.

Elitism. Elitism is the effort to address the problem of losing those potentially good
solutions during the optimization process because of the randomness of MOGA. If
no special measures are taken, MOGA cannot guarantee the individuals obtained in a
newer generation always outperform those in the older one. In SPOT, we use the elitism
method that directly copies the best or a few best subspaces in the population of one
generation to the next one, in an attempt to achieve a constantly improving population
of subspaces.

3.3 Detection Stage of SPOT

The detection stage of SPOT performs outlier detection for arriving streaming data. As
streaming data arrive continuously, the data synopsis PCS of the projected cell where
the streaming data belongs to in each subspace of SST are first updated in order to cap-
ture new information of the arriving data. Hash function is employed here to quickly
map a data into the cell it is located in any subspace. Then, the data is labeled as a
projected outlier on the fly if RD, IRSD or IkRD of the cell it belongs to in one or more

Detecting Projected Outliers in High-Dimensional Data Streams 637

SST subspaces falls under the pre-specified outlier-ness thresholds. These subspaces are
the outlying subspaces of this outlier. All the outliers, together with their outlying sub-
spaces and PCS of the cell they belong to in these outlying subspaces, are output to the
Outlier Repository. All or a specified number of the top outliers in Outlier Repository
are retuned to users in the end.

Updating PCS of a Projected Cell. The detection stage of SPOT involves the update
of PCS of projected cells as data in the stream are being processed. In this subsection,
we will demonstrate the incremental property of PCS, based on which PCS can be self-
maintainable without using BCS.

• Update RD of PCS. Suppose that the latest snapshot of PCS of c is created at time T
with an effective stream length N , then we can update RD in PCS of c incrementally
when a new data point arrives at c at the time T ′ (T ≤ T ′) with an effective stream
length N ′ as follows:

RD(c, s)T ′
=

[df(T ′ − T)RD(c,s)T ·N
δ|s| + 1] · δ|s|

N ′ (1)

where RD(c,s)T ·N
δ|s| is the density of c at time T and df(T ′ − T)RD(c,s)T ·N

δ|s| + 1 is thus
the new density of c at time T ′. After simplifying Eq. (1), we can get

RD(c, s)T ′
= df(T ′ − T)

N

N ′ RD(c, s)T +
δ|s|

N ′ (2)

From Eq. (2) we can see that, for incremental maintenance of RD, we need to only
additionally maintain, for each non-empty cell in the subspace, the effective stream
length N when PCS of this cell is updated last time.

• Update IRSD of PCS. Suppose the density of cell c is m and let IRSD(c, s)T be the
IRSD of cell c in subspace s at time T , which can be computed as follows based on the
definition of IRSD(c, s)T :

IRSD(c, s)T =

√|s|l
2σ(c)

=

√|s|l
2

√
m − 1∑m

i=1 Dist(pi, μc)2
(3)

where pi is located in c. Based on Eq. (3), we can get

m∑
i=1

Dist(pi, μc)2 =
|s|l2(m − 1)

4(IRSD(c, s)T)2
(4)

The IRSD(c, s) after the (m + 1)th point is assigned into c at time T ′ (T ≤ T ′) is
computed as

IRSD(c, s)T ′
=

√|s|l
2

√
df(T ′ − T)(m − 1) + 1

df(T ′ − T)
∑m

i=1 Dist(pi, μ′
c)2 + Dist(pm+1, μ′

c)2
(5)

where μ′
c denotes the new mean of points in c when the (m+1)th point is inserted into

c.

638 J. Zhang et al.

Algorithm. SPOT Detection (SST, t, Ncan, top k)

Input: SST, self-evolution time period t and number of new subspaces generated Ncan in
self-evolution of SST;
Output: Outlier Repository where outliers detected are stored.
1. SST Candidate← ∅;
2. WHILE NOT (end of stream) DO {
3. IF a new data p in the stream arrives THEN {
4. Update BCS(p);
5. Update PCS(p, SST, SST Candidate);
6. IF (Outlier Detection(p, SST)=True) THEN
7. Insert(Outlier Repository, p); }
8. IF ((Curent time–Start time) mod t=0) THEN {
9. SST← SST Evolution(SST, SST Candidate);
10. SST Candidate ← Generate SST Candidate(SST, Ncan);
11. For each new outliers o added to Outlier Repository DO{
12. MOGA(o);
13. SST← SST ∪ top sparse subspaces of o; } } }
14. Return(top k outliers(Outlier Repository, top k));

Fig. 4. Detection algorithm of SPOT

• Update Representative Points in a Subspace. To ensure a quick computation of IkRD
for a new data in the stream, we need to obtain the current set of coverage cells ef-
ficiently. To solve this problem, we devise the following heuristics to minimize the
number of re-sorting of projected cells:

1. If a new data falls into one of the coverage cells in a subspace, then there is no need
to update the current set of coverage cells in this subspace;

2. Both the total coverage and the minimum density of the current set of coverage
cells in each subspace s of SST are maintained, denoted by Cov and Denmin,
respectively. If a new data falls into a non-coverage cell c′ in s, then there is no
need to update the current set of coverage cells in s either if we have Cov′ > q
and den(c′) ≤ Den′

min, where Cov′ and Den′
min correspond respectively to the

decayed Cov and Denmin after the new data is processed, and q denotes the cov-
erage ratio required for the coverage cells. Both Cov′ and Den′

min can be updated
efficiently.

The detection algorithm of SPOT is presented in Figure 4.

4 Experimental Results

We use both synthetic and real-life datasets for performance evaluation. All the experi-
mental evaluations are carried out on a Pentium 4 PC with 512MB RAM.

Synthetic Data Sets. The synthetic data sets are generated by two high-dimensional
data generators. The first generator SD1 is able to produce data sets that generally ex-
hibit remarkably different data characteristics in different subspaces. The number, loca-
tion, size and distribution of the data in different subspaces are generated randomly. This

Detecting Projected Outliers in High-Dimensional Data Streams 639

generator has been used to generate high dimensional data sets for outlying subspace
detection [20][18][19]. The second synthetic data generator SD2 is specially designed
for comparative study of SPOT and the existing methods. Two data ranges are defined
asR1 = (a, b) andR2 = (c, d), where b+ l < c, l is the length of a partitioning interval
in each dimension. This ensures that the data points in R1 and R2 will not fall into the
same interval for each dimension. In SD2, we first generate a large set of normal data
points D, each of which will fall into R1 in ϕ − 1 dimensions and into R2 in only one
dimension. We then generate a small set of projected outliers O. Each projected outlier
will be placed into R2 for all the ϕ dimensions. Given the large size of D relative to
O, no projected outliers will exist in D. An important characteristic of SD2 is that the
projected outliers appear perfectly normal in all 1-dimensional subspaces.

Real Data Sets. We also use 4 real-life multi- and high-dimensional datasets in our
experiments. The first two data sets come from the UCI machine learning repository.
They are called Letter Image (RD1, 17-dimensions) and Musk (RD2, 168-dimensions),
respectively. The third real-life data set is the KDD-CUP’99 Network Intrusion Detec-
tion stream data set (RD3, 42 dimensions). RD3 has been used to evaluate the cluster-
ing quality for several stream clustering algorithms [4][5]. The fourth real-life data set
is the MIT wireless LAN (WLAN) data stream (RD4, 15 dimensions), which can be
downloaded from http://nms.lcs.mit.edu/ mbalazin/wireless/.

4.1 Scalability Study

The scalability study investigates the scalability of SPOT (both learning and detection
processes) w.r.t length N and dimensionality ϕ of data streams. The learning process
we study here refers only to the unsupervised learning that generates US of SST. Due
to its generality, SD1 with different N and ϕ is used in all scalability experiments.

Scalability of Learning Process w.r.t N . Figure 5 shows the scalability of unsuper-
vised learning process w.r.t number of training data N . The major tasks involved in the
unsupervised learning process are multi-run clustering of training data, selection of top
training data that have highest outlying degree and application of MOGA on each of
them to generate US of SST. The lead clustering method we use requires only a sin-
gle scan of the training data, and the number of top training data we choose is usually
linearly depended on N . Therefore, the overall complexity of unsupervised learning
process scales linearly w.r.t N .

Scalability of Learning Process w.r.t ϕ. Since the construction of FS in SST does
not need any leaning process, thus the dimension of training data ϕ will only affect the
complexity of learning process in a linear manner, provided that a fixed search workload
is specified for MOGA. As confirmed in Figure 6, we witness an approximately linear
growth of execution time of learning process when ϕ is increased from 20 to 100 under
a fixed search workload in MOGA.

Scalability of Detection Process w.r.t N . In Figure 7, we present the scalability result
of detection process w.r.t stream length N . In this experiment, the stream length is
set much larger than the number of training data in order to study the performance of
SPOT in coping with large data streams. Figure 7 shows a promising linear behavior

640 J. Zhang et al.

2 3 4 5 6 7 8 9 10

x 10
4

20

40

60

80

100

120

140

Number of data

E
x
e
c
u
ti
o
n
 t
im

e
 (

S
e
c
.)

Fig. 5. Scalability of learning
process w.r.t data number

20 30 40 50 60 70 80 90 100
20

40

60

80

100

120

140

Number of dimensions

E
x
e
c
u
ti
o
n
 t
im

e
 (

S
e
c
.)

Fig. 6. Scalability of learning
process w.r.t data dimension

1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
5

50

100

150

200

250

300

350

Number of data

E
x
e
c
u
ti
o
n
 t
im

e
 (

S
e
c
.)

Fig. 7. Scalability of detection
process w.r.t data number

of detection process when handing an increasing amount of streaming data. This is
because that the detection process needs only one scan of the arriving streaming data.
In addition, since BCS and PCS are both incrementally maintainable, detection process
of SPOT thus becomes very efficient. This leads to a high throughput of SPOT and
enables it to deal with fast data streams.

Scalability of Detection Process w.r.t ϕ. ϕ affects the size of FS that is used in de-
tection process. When MaxDimension is fixed, the size of FS is in an exponen-
tial order of ϕ, which is usually much larger than that of US and OS. This causes
FS to dominate the whole SST. As such, the execution time of detection process is
expected to grow exponentially w.r.t ϕ. We typically set lower MaxDimension val-
ues for data streams with higher dimensionality to prevent an explosion of FS. We
first use MaxDimension = 3 for data streams of different dimensions and we can
see an exponential behavior of the detection process. Then, we use variable values for
MaxDimension to adjust the size of FS. We set MaxDimension = 4 for data sets
with dimension of 20 and 40, set MaxDimension = 3 for data sets with dimension of
60 and finally set MaxDimension = 2 for data sets with dimension of 80 and 100. If
this strategy is used, we will witness an irregularly-shaped, rather than an exponential,
curve of the detection process. The results are presented in Figure 8.

4.2 Effectiveness Study

Convergence Study of MOGA. We first study the convergence of MOGA in terms of
optimizing RD, IRSD and IkRD. Convergence of MOGA is crucial to outlying sub-
spaces search in SPOT. We investigate the average of RD, IRSD and IkRD of the top
10 subspaces in the population of each generation of MOGA. This experiment is con-
ducted on SD1, RD1, RD2, RD3 and RD4. Only the results of RD3 (KDD-CUP’99
data stream) are presented (see Figure 9). Similar results are obtained for other datasets.
Generally speaking, the criteria are being improved (minimized) as more generations
are performed in MOGA. This indicates a good convergence behavior of MOGA in
searching outlying subspaces. However, there are some abrupt increase of optimizing
criteria values in the search process. The underlying reason is that, when elitism is not
used, there is a higher chance of occurrence of degrading generations in the evolution.
This is due to the randomized nature of MOGA that likely renders good solutions in one

Detecting Projected Outliers in High-Dimensional Data Streams 641

20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

Number of dimensions

E
x
e
c
u
ti
o
n
 t
im

e
 (

S
e
c
.)

Fixed MaxDimension
Variable MaxDimension

Fig. 8. Scalability of detection
process w.r.t data dimension

10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Number of generations

R
e
la

ti
v
e
 o

b
je

c
ti
v
e
 f
u
n
c
ti
o
n
 v

a
lu

e
s

RD (no elitism)
IRSD (no elitism)
IkRD (no elitism)
RD (with elitism)
IRSD (with elitism)
IkRD (with elitism)

Fig. 9. Convergence study of
MOGA

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of data that have been processed

P
e
r
c
e
n
ta

g
e
 o

f
id

e
n
ti
c
a
l
s
u
b
s
p
a
c
e
s
 i
n
 S

S
T SD1

RD1
RD2
RD3
RD4

Fig. 10. Evolution of SST

generation to be lost in the next one by crossover or mutation operations. When elitism
is employed, we can achieve a better optimization of RD, IRSD and IkRD.

Detection Performance of SST. The three sub-groups of SST work collectively to
detect outliers from data streams. Their respective contribution in outlier detection is
not identical though. This experiment aims to study the percentage of outliers that can
be detected by using each of the sub-groups of SST alone. The experimental results
indicate that by using FS alone, which covers the full low-dimensional space lattice,
we can detect as many as 80-90% of the total outliers that exist, while US and SS can
further help the system detect another 10-20% of the outliers.

Evolution of SST. One of the important features of SPOT is its capability of self-
evolution. This is a very useful feature of SPOT to cope with the fast-changing data
streams. In this experiment, we investigate the evolution of SST as an informative in-
dicator of concept drift of data streams. The setup is as follows. We keep the initial
version of SST (i.e., the SST obtained after 1000 data points are processed) and record
the versions of SST when every 1000 data (up to 10,000) are processed afterwards.
Self-evolution is activated at every 1000-data interval. We compare different SST ver-
sions with the initial one and calculate the percentage of identical subspaces. SD1, RD1,
RD2, RD3 and RD4 are used for this experiment. The results are shown in Figure 10.
We find that an increasing number of subspaces in the initial SST have disappeared in
the later SST versions as more data points are processed. We use the same seeds in
MOGA, ruling out the randomness in individual generation for different self-evolution
sessions. Therefore, the change of SST is due to the varying characteristics of the data
stream and outliers we detect in different stages.

Comparative Study. Since there is little research conducted in projected outlier detec-
tion for high-dimensional data streams, we cannot find the techniques tackling exactly
the same problem as SPOT does for comparison. However, there are some related ex-
isting approaches for detecting outlier detection from data streams that we can compare
SPOT with. They can be broadly categorized as methods using histogram, Kernel den-
sity function, distance-based function and clustering analysis, respectively.

Histogram technique creates bins for each dimension of the data stream. The density
of each bin of the histogram are recorded. The sparsity of a bin in the histogram can be
quantified by computing the ratio of the density of this bin against the average density

642 J. Zhang et al.

Fig. 11. Comparative study results

of all the bins in the histogram for this dimension. A data point is considered as outlying
in a dimension if it falls into an excessively sparse bin. Kernel density function models
local data distribution in a single or multiple dimensions of space. A point is detected as
an outlier if the number of values that have fallen into its neighborhood is less than an
application-specific threshold. The number of values in the neighborhood can be com-
puted by the kernel density function. Distance-based function draws on some distance
metrics to measure the local density of data in order to find outliers. A major recent
distance-based method for data stream is called Incremental LOF [15]. Clustering anal-
ysis can also be used to detect outliers from those data that are located far apart from
data clusters. HPStream [5] is the representative method for finding subspace clusters
in high-dimensional data streams.

The performance of all the methods are measured by detection rate (DR) and false
positive rate (FPR). The results are summarized in Figure 11. To facilitate result anal-
ysis, two selection rules are devised based on DR and FPR. They are R1 : DR >
90% and FPR < 5%, R2 : DR > 85% and FPR < 10%. Obviously, R1 is more
desirable than R2 in terms of detection performance. We highlight the cells in the table
that satisfy R1 using red colour and those that satisfy R2 using purple colour, respec-
tively. After colouring, it becomes much easier for us to see, from a macro scale, that
SPOT and Incremental LOF (SST) achieve the best performance overall for the three
data sets, followed by Kernel density function (SST), Kernel density function (random
multi subspaces) and Incremental LOF (random multi subspaces). Histogram, Kernel
density function (random single subspace), Incremental LOF (random single subspace)
and HPStream bottom the list, which does not contain any colored (DR, FPR) pairs.
Compared with other competitive methods, SPOT is advantageous that it is equipped
with subspace exploration capability, which contributes to a good detection rate. More-
over, using multiple criteria enables SPOT to deliver much more accurate detection
which helps SPOT to reduce its false positive rate.

5 Related Work

There have been abundant research in outlier detection in the past decade. Most of the
conventional outlier detection techniques are only applicable to relatively low dimen-
sional static data [7][10][11][13][17][14]. Because they use the full set of attributes for
outlier detection, thus they are not able to detect projected outliers. They cannot han-
dle data streams either. Recently, there are some emerging work in dealing with outlier

Detecting Projected Outliers in High-Dimensional Data Streams 643

detection either in high-dimensional static data or data streams. However, there have
not been any reported concrete research work so far for exploring the intersection of
these two active research directions. For those methods in projected outlier detection
in high-dimensional space [3][22][20][18][19], they can detect projected outliers that
are embedded in subspaces. However, their measurements used for evaluating points’
outlier-ness are not incrementally updatable and many of the methods involve multiple
scans of data, making them incapable of handling data streams. For instance, [3][22]
use the Sparsity Coefficient to measure data sparsity. Sparsity Coefficient is based on
an equi-depth data partition that has to be updated frequently in data stream. This will
be expensive and such updates will require multiple scan of data. [20][18][19] use data
sparsity metrics that are based on distance involving the concept of kNN. This is not
suitable for data streams either as one scan of data is not sufficient for retaining kNN
information of data points. One the other hand, the techniques for tackling outlier de-
tection in data streams [12][2][16] rely on full data space to detect outliers and thus
projected outliers cannot be discovered by these techniques.

6 Conclusions

In this paper, we propose SPOT, a novel technique to deal with the problem of
projected outlier detection in high-dimensional data streams. SPOT is equipped with
incrementally updatable data synapses (BCS and PCS) and is able to deal with fast
high-dimensional streams. It is flexible in allowing for both supervised and unsuper-
vised learning in generating the detecting template SST. It is also capable of handling
dynamics of date streams. The experimental results demonstrate the efficiency and ef-
fectiveness of SPOT in detecting outliers in high-dimensional data streams.

References

1. Aggarwal, C.C., Yu, P.S.: An effective and efficient algorithm for high-dimensional outlier
detection. VLDB Journal 14, 211–221 (2005)

2. Aggarwal, C.C.: On Abnormality Detection in Spuriously Populated Data Streams. In: SDM
2005, Newport Beach, CA (2005)

3. Aggarwal, C.C., Yu, P.S.: Outlier Detection in High Dimensional Data. In: SIGMOD 2001,
Santa Barbara, California, USA, pp. 37–46 (2001)

4. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A Framework for Clustering Evolving Data
Streams. In: VLDB 2003, Berlin, Germany, pp. 81–92 (2003)

5. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A Framework for Projected Clustering of High
Dimensional Data Streams. In: VLDB 2004, Toronto, Canada, pp. 852–863 (2004)

6. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: Elomaa, T.,
Mannila, H., Toivonen, H. (eds.) PKDD 2002. LNCS, vol. 2431, pp. 15–26. Springer, Hei-
delberg (2002)

7. Breuning, M., Kriegel, H.-P., Ng, R., Sander, J.: LOF: Identifying Density-Based Local Out-
liers. In: SIGMOD 2000, Dallas, Texas, pp. 93–104 (2000)

8. Guttman, A.: R-trees: a Dynamic Index Structure for Spatial Searching. In: SIGMOD 1984,
Boston, Massachusetts, pp. 47–57 (1984)

9. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufman Publishers,
San Francisco (2000)

644 J. Zhang et al.

10. Knorr, E.M., Ng, R.T.: Algorithms for Mining Distance-based Outliers in Large Dataset. In:
VLDB 1998, New York, NY, pp. 392–403 (1998)

11. Knorr, E.M., Ng, R.T.: Finding Intentional Knowledge of Distance-based Outliers. In: VLDB
1999, Edinburgh, Scotland, pp. 211–222 (1999)

12. Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Distributed deviation detec-
tion in sensor networks. SIGMOD Record 32(4), 77–82 (2003)

13. Ramaswamy, S., Rastogi, R., Kyuseok, S.: Efficient Algorithms for Mining Outliers from
Large Data Sets. In: SIGMOD 2000, Dallas Texas, pp. 427–438 (2000)

14. Papadimitriou, S., Kitagawa, H., Gibbons, P.B., Faloutsos, C.: LOCI: Fast Outlier Detection
Using the Local Correlation Integral. In: ICDE 2003, Bangalore, India, p. 315 (2003)

15. Pokrajac, D., Lazarevic, A., Latecki, L.: Incremental Local Outlier Detection for Data
Streams. In: CIDM 2007, Honolulu, Hawaii, USA, pp. 504–515 (2007)

16. Subramaniam, S., Palpanas, T., Papadopoulos, D., Kalogeraki, V., Gunopulos, D.: Online
Outlier Detection in Sensor Data Using Non-Parametric Models. In: VLDB 2006, Seoul,
Korea, pp. 187–198 (2006)

17. Tang, J., Chen, Z., Fu, A.W.-c., Cheung, D.W.: Enhancing effectiveness of outlier detections
for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS,
vol. 2336, p. 535. Springer, Heidelberg (2002)

18. Zhang, J., Lou, M., Ling, T.W., Wang, H.: HOS-Miner: A System for Detecting Outlying
Subspaces of High-dimensional Data. In: VLDB 2004, Toronto, Canada, pp. 1265–1268
(2004)

19. Zhang, J., Gao, Q., Wang, H.: A Novel Method for Detecting Outlying Subspaces in High-
dimensional Databases Using Genetic Algorithm. In: ICDM 2006, Hong Kong, China, pp.
731–740 (2006)

20. Zhang, J., Wang, H.: Detecting Outlying Subspaces for High-dimensional Data: the New
Task, Algorithms and Performance. In: Knowledge and Information Systems (KAIS), pp.
333–355 (2006)

21. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: An Efficient Data Clustering Method for
Very Large Databases. In: SIGMOD 1996, Montreal, Canada, pp. 103–114 (1996)

22. Zhu, C., Kitagawa, H., Faloutsos, C.: Example-Based Robust Outlier Detection in High Di-
mensional Datasets. In: ICDM 2005, Houston, Texas, pp. 829–832 (2005)

Significance-Based Failure and Interference Detection in
Data Streams

Nickolas J.G. Falkner and Quan Z. Sheng

School of Computer Science, The University of Adelaide
Adelaide, SA 5005, Australia

{jnick,qsheng}@cs.adelaide.edu.au

Abstract. Detecting the failure of a data stream is relatively easy when the
stream is continually full of data. The transfer of large amounts of data allows for
the simple detection of interference, whether accidental or malicious. However,
during interference, data transmission can become irregular, rather than smooth.
When the traffic is intermittent, it is harder to detect when failure has occurred
and may lead to an application at the receiving end requesting retransmission
or disconnecting. Request retransmission places additional load on a system and
disconnection can lead to unnecessary reversion to a checkpointed database, be-
fore reconnecting and reissuing the same request or response. In this paper, we
model the traffic in data streams as a set of significant events, with an arrival rate
distributed with a Poisson distribution. Once an arrival rate has been determined,
over-time, or lost, events can be determined with a greater chance of reliability.
This model also allows for the alteration of the rate parameter to reflect changes
in the system and provides support for multiple levels of data aggregation. One
significant benefit of the Poisson-based model is that transmission events can be
deliberately manipulated in time to provide a steganographic channel that con-
firms sender/receiver identity.

1 Introduction

The extensive use of sensor networks and distributed data gathering systems has in-
creased both the rate and quantity of data that is delivered to receiving and processing
nodes. Rather than processing a finite number of static records at a computationally-
convenient time, data streams represent the fluctuating and potentially continuous flow
of data from dynamic sources [1,2,3]. Data streams provide a rich and challenging
source of data, with pattern identification and structure extraction providing important
business knowledge for scientific, financial and business applications.

Several challenges occur when processing a data stream. Current data stream man-
agement techniques focus on a continuously generated stream of information and project
analysis windows onto this stream, based on time intervals. While this works for a large
number of applications, applications that wish to minimise onwards transmission based
on the importance of data values may produce a data stream that appears discontinuous
or fragmented. While a stream may be seen to never terminate, with a continuous flow
of data, at a given time there may be no transmission activity within the data stream. Al-
though the data stream may represent an abstract continuous data feed, it is implemented

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 645–659, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

646 N.J.G. Falkner and Q.Z. Sheng

as a flow of data packets. Given that a data stream is composed of individual data pack-
ets, all data streams are, at a network level, non-continuous but, within the database and
sensing world, the stream is considered to be a continuous source of data from establish-
ment to disconnection. Analysing this stream often requires a Data Stream Management
System (DSMS) [4] that will place a set of expectations upon the performance charac-
teristics of the data stream. The DSMS then provides an ability to query the stream, in
an irregular, periodic or continuous manner. While data traffic on two data streams can
be irregularly spaced or presented out-of-order [5,6], there is, however, an assumption
that packets in a single stream will arrive at an, explicitly or implicitly defined, arrival
rate that meets the expectations of both producer and consumer. Some challenges that
we must address to provide the widest applicable model for data streams include:

– Relaxing rigid time constraints: The assumption that a data stream is both con-
tinuous and regularly periodic is a useful assumption, except where it is incorrect.
For wireless sensor networks, with low energy budgets and aperiodic transmission
profiles, a requirement to conform to a near-continuous transmission schedule will
drain their resources rapidly. A requirement to conform to centralised time con-
straints places a synchrony burden on the system that requires specialised hardware
or time poll updates to minimise drift.

– Managing significant data as a separate class of values: In any stream of data,
some values will be of more significance than others. We wish to be able to process
significant events in a timely fashion, potentially in a large collection of insignifi-
cant values. Without a classification model that allows the separation of the values
in a data stream into distinct sets of significant events, we must deal with all values
in the stream at the same level of priority for analysis and onwards transmission.

– Failure detection without constant polling: We wish to be able to detect failure
and, preferably, interference or tampering without having to send a continuous set
of data packets. Unless they are significant, continuous data packets only add to the
amount of traffic that must be discarded at the sink, reducing effective bandwidth
and consuming resources.

Consider two important applications for data stream interpretation: determining similar
subsequences between data streams and determining skyline elements within a data
stream. The subsequence problem requires the identification of elements of the data
stream that are sufficiently characteristic to be identified in another stream, and the
skyline problem requires us to find dominant elements in the stream, either across the
entire stream or within a sliding window. In both cases, we are moving beyond a naive
description of the stream it is now a stream of significant events, where this significance
and its definition are key to our ability to mine the data stream while it is still being
produced. Without an ongoing, and potentially evolvable, definition of significance, we
cannot begin processing until we are sure that we have received all of the data and can
now conduct our comparisons or selections with absolute certainty. This is, obviously,
not a workable solution.

Our contribution is to provide a statistically-based model that can provide multiple
views of the same data stream, with significance thresholds and arrival expectations de-
fined for each view. By communicating expected rate information and comparing with

Significance-Based Failure and Interference Detection in Data Streams 647

actual rate information, we can detect failure and interference, and, in addition, exploit
the statistical characteristics to provide an out-of-band communications channel. In this
paper, we will provide a description of a significant event data stream that defines the
nature of significance, the impact of the significance on the interpretation of the stream,
and the expectation of the inter-arrival time in a way that allows the consumer and
producer to agree upon a given rate, without being required to enforce a synchronous
schedule.

The remaining sections of the paper are organized as follows. Section 2 presents
the related work in this area. Section 3 introduces our model and provides the key
definitions. Section 4 presents the failure detection model. The Out-of-band encoding
mechanism is described in Section 5, with the results of experiments conducted to verify
the work presented in Section 6. Finally, Section 7 provides some concluding remarks.

2 Related Work

Within data stream research, there are many examples of the application of an implied
significant event stream over a continuous data stream. Dynamic Time Warping (DTW)
[5] allows for the measurement of the similarity of two data sequences by allowing for
a non-linear warping of the time scale on the measurements to provide a measurement
of similarity between distinct events, regardless of their position in the data sequence.
This does not, however, provide any estimates as to the constraining window that con-
tains events of likely similarity. Other work has used Poisson-distributed test data to
measure performance with well-established characteristics [7,8], but does not separate
these Poisson streams for analysis, nor take the cumulative stream characteristics into
account when multiple streams merge.

Streaming pattern discovery in multiple time-series (SPIRIT) [6] is an approach that
employs principal component analysis to allow the location of correlations and hid-
den variables that are influencing the reported readings. SPIRIT is designed to allow
the rapid incorporation of received events into dynamic weights, rather than detecting
when a predicted event has not been received. SPIRIT can provide a reliable estimate
by applying forecasting techniques to the hidden variables derived from the data stream
and can use these to estimate missing data in the xt data set, based on the xt−1 data set.
However, this assumes continuous and regular data intervals. SPIRIT assumes period-
icity in the data stream, rather than an irregular data stream or a data stream where the
significant events are not spaced regularly in time.

StatStream [9] allows for the real-time analysis of large volumes of data, employing
the Discrete Fourier Transform and a three-tiered time interval hierarchy. StatStream
does assume that the data stream cannot be regarded as having a terminating point, and
works on the data stream continuously, in order to meet real-time requirements. To be
explicit, a data stream is regarded as a sequence, rather than a set. StatStream provides a
basis for stating that any statistic present in the data stream at time t will be reported at
time t+v, where v is a constant and is independent of the size and duration of the stream
[9]. StatStream establishes three time periods: i) timepoints - the system quantum, ii)
basic window - a consecutive subsequence of time points which comprise a digest, and
iii) sliding window - a user-defined consecutive subsequence of basic windows that will
form the basis for the time period over which a query may be executed.

648 N.J.G. Falkner and Q.Z. Sheng

While this provides a great deal of flexibility in dealing with intervals, StatStream
expects to have at least one value per timepoint and, if one is not present, an interpolated
value is used. This does not accommodate two possibilities. The first is that there is
a reading but it is not sufficiently important to report at that time, where the system
is filtering the result. The second is that there is no sensor reading to report at that
point because the size of the time interval and the expected number of events leads
to an event/interval ratio less than 1. More importantly, interpolation in the face of
missing data may insert a false reading into the network. To explain this, it is first
important to realise that, in the event of multiple values being reported in one timepoint,
StatStream will provide a summary value. The reported arrival of an event in an adjacent
interval can result in the preceding time interval being reported incorrectly, with the next
interval providing a summary value that is also artificially high. While the synthesis of
summary values will, over time, produce the same stream characteristics, there is no
clear indication that an irregularity has occurred, nor can action take place to rectify the
mistake. This summarisation can also obscure the point where a value, or set of values,
has crossed the significance threshold.

There is a great deal of existing work in the field of sensor networks pertaining to
more efficient use of resources through filtering, the discarding of insignificant data, and
aggregation of significant data for more efficient upstream transmission. There is very
little work that addresses the modelling of the implicit stream of significant events that
these networks generate. Gu et al. [10] discuss a lightweight classification scheme for
wireless sensor networks employing a hierarchical classification architecture but do not
address statistical detection of node failure. Solis and Obraczka [11] discuss several ag-
gregation mechanisms for power-efficiency but use temporal aggregation mechanisms
and do not address node failure. Ye et al. [12] propose a statistical filtering process
for injected false data but do not address statistical mechanisms for determining sensor
operation.

3 Traffic Modelling in Intermittent Data Streams

Formally, a data stream is an ordered pair (s, δ) where s is a sequence of tuples of the
form (ξ0, ξ1...ξN), representing the data values contained in a single data packet, and δ
is a sequence of time intervals where ∀i, δi > 0.

In a regular, continuous data stream, the deviation from the average arrival time for
each i is much smaller than the average arrival time (Equation 1). When data starts to
arrive in an irregular fashion, the deviation can be of the same order of magnitude as
the average time with a multiplier k, where k may be a fixed bound or may vary with
time (Equation 2). The interpacket time interval, δi, must be sufficiently small that the
client’s expectation of continuity is not contradicted, otherwise the stream no longer
appears continuous, i.e., it appears to be composed of irregular packets.

|δaverage − δi| < ε, ∀i, ε(δaverage (1)

|δaverage − δi| <= kε, ∀i, ε ≈ |δaverage| (2)

Significance-Based Failure and Interference Detection in Data Streams 649

A user’s expectation of continuity of a stream is only satisfied if k is sufficiently small
that the δi values have an acceptable upper bound, δmax (Equation 3). However, de-
termining a reasonable expectation for δmax is difficult, where data inter-arrival is ir-
regular, as it may require a great deal of observation that is potentially only valid for
one producer and consumer pair, or for one connection at a given time. This problem
becomes more complex when we seek to place additional structure into the ongoing
interpretation of a data stream.

∀i, δi < δmax, δmax >= δaverage (3)

3.1 Definition of the Model

Definition 1. A significant event data stream, SED, is an ordered tuple (L, E , ΔL, λL)
where:

– A tuple (ξ0, ξ1...ξN) in the sequence s is significant if the removal or alteration
of the tuple will have a significant and discrete impact on the result of a specified
computation that depends on s.

– L is a unique label, identifying this SED.
– E is a sequence of tuples, such that E ⊆ s and all tuples in E are significant.
– ΔL is a sequence of time intervals where ∀i,ΔL > 0 and ΔL ∼ Pois(λL).
– λL is the expected arrival rate of Ei ∈ E .
– Any SED is a subsequence of an existing data stream, S : (s, δ) where (si, δi) ∈

(E , Δ) �⇒ (si+1, δi+1) ∈ (E , Δ). �

Definition 2. A SED Implementing Model (SEDIM) for a data stream is defined as
follows:

– The data stream S is an ordered pair (s, δ) as defined previously,
– Within S, there exists a set of significant event data streams, Ŝ : (Ŝ0...Ŝi), i ≥ 0.
– A significant event E in (Ŝi) is defined such ∀Ei ∈ E , Vloweri ≤ Ei ≤ Vupperi ,

where Vupperi and Vloweri represent the bounds of significance for the SED Ŝi.
– The set Λ : (λL0 ...λLn) is a set of independent rate parameters for the expected

arrival rate of significant data in the SEDs Ŝ.
– tnow is defined as the current time in the system.
– twindow is defined as the time to the expiry of the current sliding window associated

with a user query. An ongoing query may generate many subqueries, all of which
have their own sliding window.

– The received setR is the set of all events that have been consumed in order to meet
the requirements of the current query. The event ER is the last event that has been
received and the event ER+1 is the next event that will occur, regardless of the SED
or stream that generates it. All events ER+1 have an associated time intervalΔR+1

and, by definition,
∑R+1

j=0 Δj > tnow. �

650 N.J.G. Falkner and Q.Z. Sheng

3.2 Rationale

We must first justify that a data stream can be regarded as continuous, and still have
the potential for irregular and insignificant data packet transfer. Many data stream ap-
plications make a similar assumption to StatStream, namely that there exists a system
quantum and that events will arrive, at a roughly equal spacing, at a rate determined by
the size of this quantum. For example, if the quantum is a second, the expected arrival
rate is one event per second. This does, however, immediately provide the possibility of
a continuous stream that can be viewed in such a way as to appear non-continuous in
transmission. Consider a system with a one second timepoint and then, without chang-
ing the rate of arrival, change the timepoint to 0.1 seconds. Now the arrival rate is 1
event in every 10 timepoints and this, originally continuous and 100% utilised, data
stream is now occupied 10% of the time. Considering the impact of pragmatic network-
ing considerations on the transmission of data, given that it takes a finite non-zero time
to transfer a network packet, there must exist a timepoint, Tε, such that any data stream
may be regarded non-continuous, regardless of the regularity of data transmission.

A more complex problem arises when, rather than managing regular transmission in
a non-continuous data stream, we must consider the effect of irregularly spaced data,
whether this is due to an absence of data or the insignificance of the data being trans-
mitted. In the previous example, non-continuous data only constitutes a problem if the
receiver fails to define their own aggregation or summary operations correctly for a
given query in a sliding window. For example, if the value 10 is sent once per 10 time-
points, is the average over time 10 or 1? This will have an impact on the final answer
delivered in response to the query “What is the average value over the sliding window
from ti to ti+x?”. As previously illustrated in the discussion of StatStream, a value that
is incorrectly placed into a different timepoint can have a significant impact on the result
of queries that span a subsequence, and this extends to the boundaries of sliding win-
dows if they are purely timebased, rather than taking into account the possibility that an
interval does not contain the same number of events. The query “What is the average
value of the significant events received over the sliding window from ti to ti+x?” is an
unambiguous query and, in the example above, would result in the value 10.

A data stream that is intermittently active may or may not have an associated sequence
of significant events, given that the definition of significance is associated primarily with
the consumer. However, if a significant event sequence exists within a data stream, the
sequence may have a regular period that allows simple prediction of inter-event time,
as the data stream can be composed of ongoing data combined with a regularly inserted
significant element. It is, however, far more likely that events of significance will be
more randomly distributed, unless what is being monitored for significance is naturally
periodic or has been defined to be so.

We have employed the Poisson distribution to model the behaviour of significant
event sequences arriving over data streams. The Poisson distribution is used where a
number of discrete events occur within a given time-interval. Where an approximation
can be made to the arrival rate, the Poisson distribution can be used to establish the inter-
arrival time and also determine when it is likely that an event is lost or non-existent,
rather than late. A significant advantage of the Poisson distribution is that, among other
benefits, the combination of Poisson processes is another Poisson process with a rate

Significance-Based Failure and Interference Detection in Data Streams 651

parameter that is the sum of the composing processes. Changing the arrival rate allows
the immediate alteration of the expectation of the arrival rate and inter-arrival rate of
future events, without requiring the storage of previous event and time pairs.

The Poisson distribution, for rate λ, has a mean of λ. Thus, once an arrival rate has
been established for a given interval, λ, we would expect λ events per interval. Given
that we wish to be able to predict arrival and, hence, failure to arrive, we need to be able
to predict the inter-arrival time. If the number of arrivals in a time interval [ti...ti+x]
follows the Poisson distribution, with rate parameter λ, then the lengths of the inter-
arrival times are defined as I ∼ Exponential(λ), with a mean inter-arrival time of 1

λ .
This is an important result as it clearly shows that the Poisson distribution will correctly
model a continuous, regularly spaced data stream but it also gives us the ability to model
a non-continuous, irregularly spaced data stream.

3.3 An Example

Wireless sensor network applications may employ multiple sensors in an observation
domain, on the same node or by combining the results of several nodes [13,14]. This
example illustrates a surveillance application, with a widespread WSN constructed of
nodes that employ vibration sensors, photosensors and acoustic sensors. This WSN is
spread over a large geographical range and has a lifespan measured in months. Main-
tenance is limited, due to the cost and time involved in travelling to the sensor nodes.
With the sensor nodes ground-mounted, the vibration sensors report ground movement
in the vicinity of the sensor, photosensors report an interruption to a light beam pro-
jected at the node from a nearby position and the acoustic sensors provide a measure
of the acoustic pressure in the region. These three sensors display the range of possible
sensor event generation. The vibration sensor will be continuously reading small vibra-
tions in the ground, the photosensor is effectively boolean in that the light beam is either
striking it or it is interrupted, and the acoustic sensor is more likely to manifest a com-
bination of the previous two, as sound pressures can easily drop below the detectable
level but have a continuous distribution once detected.

At each sensor node, a sequence of tuples, s, is generated each time transmission
occurs. The sensor readings are only a subset of this tuple as the (ξ0...ξN) in s also
include information such as source and destination, as well as any other system-specific
information. The sensor reading tuple takes the form (η0, η1, η2, η3), where:

– η0 is the timepoint at which the data was sensed,
– η1 is the vibration reading,
– η2 is the photosensor reading,
– η3 is the acoustic pressure

The sensor nodes employ both filtering and aggregation to limit upstream transmission
but, given their remote location, each node must transmit sufficiently often to prevent
unneeded maintenance visits [11]. In this example, the nodes employ local significance
filtering, but no aggregation. Aggregation is carried out at a regional level, with filtering
also employed on the aggregates where necessary, and may take a number of forms
[15,16]. Such aggregation and filtering is vital because there is a maximum capacity

652 N.J.G. Falkner and Q.Z. Sheng

SED t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

VIB: 10 10 4 6 4 100 10 10 4 6 4 100
PS: 1 1 1 1
AP: 120 120

INSIG: 2 2 2 2 1 3 1 3 1 2 2 1 2 3 1 2

Fig. 1. Sample data stream decomposition

for a given sensor network, not just because of the information that each node wishes
to send, because of the requirement for nodes to route information for other nodes.
Ultimately, any sensor network has a maximum throughout, based on the number of
nodes and their available bandwidth [17]. It is essential to keep bandwidth use below
this threshold.

The significance thresholds for instantaneous readings on each sensor are Sigvib,
Sigps and Sigap, reflecting the level that separates filtered events from unfiltered events.

Defining Significant Event Streams. Within this SEDIM, there are four SEDs. These
are:

– (V IB, E : η1 >= Sigvib, ΔV ib, λV ib)
– (PS, E : η2 >= Sigps, Δps, λps)
– (AP, E : η3 >= Sigap, Δap, λap)
– (INSIG, E �∈ [V IB, PS,AP], Δinsig , λinsig)

and the corresponding data model is SE , where

– SE : [V IB, PS,AP, INSIG]
– Λ : [λV ib, λps, λap, λinsig]

Given that the events in SE are the tuples (ξ0...ξN), where each ξ is composed of trans-
mission headers and footers and the sensor reading tuple (η0, η1, η2, η3), we can now
model an individual SED as a set of events that meet the SED criteria. This allows us to
provide sample data streams for each SED, which would be interspersed in the true data
stream, and analyse them separately at any node that can carry out filtering, aggregation
and analysis.

The Sample Streams. This example presents tuples containing the sample data de-
tected by the sensor node. Each tuple entry represents one poll of the sensors and all
tuples are defined to be in synchrony. Each tuple entry is a timestamp (η0) and the asso-
ciated value (i.e., η1, η2, or η3). The INSIG SED contains the cardinality of insignificant
values, rather than the values themselves, although this is an implementation decision.
Figure 1 shows a decomposed data stream, with the values allocated to the SEDs and
insignificant values shown as cardinalities in the INSIG SED.

If we define t0 as the time at the start of interval Δi and tnow as t15, then we can
regard each ti as a discrete tick within the time interval. For the purposes of the example,
the range [t0..tnow] is divided between time intervals Δi and Δi+1.

The estimated arrival rates (EAR), defined by previous observation and established
as system baselines, for each SED are given in Figure 2 along with the Time Interval

Significance-Based Failure and Interference Detection in Data Streams 653

SED EAR TIAAR (Δi, Δi+1) AAR (Δi, Δi+1) Interval
VIB 6 (6,6) (6,6) 8 ticks
PS 2 (1,3) (2,2) 8 ticks
AP 1 (2,0) (1,1) 8 ticks

Fig. 2. Estimated arrival rates

SED Transmission times (ticks)
VIB t8 and t16
PS t9 and t16
AP t16 (first transmission)

Fig. 3. Transmission times

Aligned Arrival Rate (TIAAR), the Actual Arrival Rate (AAR) and the interval over
which the rate is measured. TIAAR shows the rate that would be returned by a naive
interpretation of the data stream on strict time boundaries, while AAR gives the arrival
rate adjusted for the relaxation implicit in accepting data within the Poisson noise. Both
TIAAR and AAR are given as a pair of values, one for each time interval.

The INSIG stream is continuous, as the cardinality of events is continuously gener-
ated. However, this SED is for internal reference only, and is not transmitted to other
nodes (although a summary may be requested by a superior node).

The AAR values match the EAR values because ‘late’ events can be accepted within√
EAR, in terms of the fraction of the previous interval that the collection window is

still considered to be opened. Importantly, events accepted as part of a previous window
cannot be counted as part of a subsequent window and, in the case of SEDPS , the
second interval has the range [t9..t15], as the t8 tick has been included in the previous
window. While not shown in Figure 1, t16 is the next tick that will occur after t15 and
denotes the start of the next interval.

The delay introduced by this scheme can be seen by displaying the transmission
times, as a given tick ti, where the tuple is encapsulated and sent to the network as a
significant packet. These transmissions times are shown in Figure 3.

The AP delay is the most significant, as we must wait an entire interval to ensure that
the event at t7 is an advanced event from Δi + 1 (within the noise parameter), rather
than an additional event from interval Δi. As the λAP is 1, and

√
1 is 1, we can wait an

entire interval before receiving the packed that was supposed to have occurred in Δi.
However, this is the worst case situation - the maximum delay inserted is one interval
length in the rare situation that we are only expecting one event per interval.

4 Failure Detection

Failure detection in a continuous, regular data stream is relatively straight forward: the
data stops. In a SED, a missing event poses a more complex problem as there are dif-
ferent possibilities:

654 N.J.G. Falkner and Q.Z. Sheng

1. Events are still arriving but are below the significance threshold of a given SED.
2. An event will be sent but it will arrive slightly after the deadline.
3. The event is actually lost.

In terms of the data stream S, we can describe each of these possibilities as equations.

∃Ŝi : ∀Ei ∈ E , Ei �∈ [Vloweri ...Vupperi], Δi >= tnow (4)

∃Ŝi : ∃(ER+1, ΔR+1), ΔR+1 > twindow (5)

� ∃Ŝi : ∃(ER+1, ΔR+1) (6)

In S, equation 4 only constitutes failure in the SED that has the restrictive range of
significance. In this case, it does not constitute a stream failure but indicates that no
significant events are arriving. This may indicate that there are no significant events to
report or that there is a mis-reporting of events. There are several possible reactions:

1. After a given time, adjust the range of significance to reflect increased knowledge
of the data stream contents. This is referred to as rate relaxation.

2. The producer can generate a system message that provides evidence that, should
a significant event occur, it will be generated and passed on. We refer to this as
significance exchange.

3. If test equipment is in place, an artificially significant event is generated and sent
upstream, to be discarded by the consumer. We refer to this as significance verifi-
cation.

4. Ignore it and drop this SED from S. This may also be considered equivalent to a
rate relaxation to a parameter of zero - we expect nothing significant to occur in an
interval.

5. Report it.

Rate relaxation increases the time over which events may be detected. As the Poisson
distribution may only take integer valued parameters, the minimum non-zero rate is one
event per interval. Once the rate has been relaxed to one event per interval, the only
further relaxation possible is the extension of the interval and this is carried out by
doubling the interval size, to a maximum value of 1 calendar year, although it may be
smaller for a more short-lived system. Once relaxation has occurred to the occurrence
and time limit, any further relaxation will set the rate parameter to zero, effectively
terminating the expectation of arrivals in this SED. This is equivalent to reaction 4.

Significance exchange requires both producer and consumer to be able to exchange
meta-values that describe the context or value ranges expected for the values. XML,
provided that there is a contextual basis such as RDF or OWL-XML in place describing
the shared context, may be used to exchange system messages that are not interpreted
as events but contain information that confirm what both parties consider significance
to be. These messages can piggy back onto events, if the events are wrapped in XML
and are tagged by the producer as significant or insignificant. However, by choosing the

Significance-Based Failure and Interference Detection in Data Streams 655

lowest value x : x > Vloweri and sending this as a test, the producer clearly indicates
where the threshold is.

Significance verification requires that the producer be capable of injecting a signifi-
cant event into the data stream and reporting on it, while labelling it in such a way that it
is not treated as a significant event elsewhere. This is also a system, or test, message but,
instead of simulating event handling, the test event is injected prior to detection. This
requires a comprehensive test harness if physical sensors are being employed. Where
data is not being acquired directly through physical sensors, we can separate the net-
work reading component and data processing component of the producer and insert a
data injection mechanism between the two. This also relies upon the ability of both
producer and consumer to agree upon what constitutes a test message, and to be able to
send and receive meta-values, rather than a composite stream of values, parsed from a
purely structural perspective into a value stream with no type or context information.

Equation 5 may cause problems in a system with a synchronous time requirement,
from the movement of values into adjacent cells potentially leading to incorrect sum-
marisation, but is manageable within a SED. This is due to key properties of the Poisson
distribution. The Poisson distribution has a mean of λ but also has a variance of λ. For
a given interval, the number of observed arrivals fluctuates about the mean λ with stan-
dard deviation of

√
λ, where these fluctuations are referred to as the Poisson noise.

Poisson noise, or shot noise, describes the statistical fluctuation observed from the
arrival of finite, discrete events. This effect is seen in electronic applications, photon
counters and particle simulations. The Poisson noise increases as the rate of arrival
increases, but at a slower rate. For any number of events sampled, where the sample has
a Poisson distribution, the average number of events does not reflect that true number of
events detected in that interval but the actual result will be distributed about the average
with a Poisson distribution.

Similar to StatStream, we now have a time interval within which we will have been
able to detect the vast majority of failures and it is a fixed time, given by the arrival rate
λ and the time interval, TI . We declare likely failure in Δi for a rate λ if, for a given
interval [Δi...(Δi+1/

√
λ)], the cardinality of events Ei in the interval is less than λ.

Fail(Δi, λ) : card(Ei ∈ [Δi...(Δi+1/
√
λ)]) < λ (7)

We have now presented the way of dealing with possibilities contained in equations 5
and 6. If an event is merely delayed, waiting for a pre-determined period beyond the
original deadline will capture the event and there is no need to handle the event as lost
or carry out any adjustments to the rate parameters. However, if the event doesn’t arrive,
even within the noise interval, then we have successfully detected a failure event and
we can now take actions as outlined in the solution to equation 4.

A useful result of equation 7 is that it is immediately apparent that the higher the
rate of arrival, the shorter the proportion of an interval that is required to detect failure.
In a system with a high rate of arrival and short interval, this means that failure can be
detected in very short time. Conversely, a system with low rate of arrival has a corre-
spondingly long time to failure detection.This immediately motivates the need for the
use of an artificially high significance rate, employing test data to keep the rate high,

656 N.J.G. Falkner and Q.Z. Sheng

while not requiring a high rate of actual events. Significance verification or significance
testing can both be used to achieve these aims.

Where interest is primarily on the waiting time to a given event somewhere in the
stream, the Gamma (Γ) distribution is a family of continuous probability distributions
with two paramers, k and θ, that is used for modelling waiting times. With integer k, the
Γ distribution is the Erlang distribution and is the probability distribution of the waiting
time until the k-th event in a Poisson process with rate 1/θ. Rather than monitoring
every event to determine failure, which is energy intensive, we can now observe a k-th
event to determine if the waiting times are meeting our estimates.

5 Encoding Information within the Poisson Noise

One of the advantages of allowing events to be legitimately “placed” within an interval,
or within the Poisson noise of the interval, is that this information can be used as an
additional communications channel. In a continuous, regular data stream, varying the
regularity deliberately can be used to indicate out-of-band information that allows com-
munication between producer and consumer, without placing an additional data burden
on the main channel. In a sensor network this is vital as the smaller the data stream
is, the less power is consumed in all parts of the network for transmission and pro-
cessing. Examples of out-of-band channel use in the real world range from the use of
tone in spoken language to signify additional meaning, such as questioning, sarcasm or
dubiety, when the semantic content of the written form does not need to capture this.

Encoding information within the Poisson noise requires either that the producer and
consumer have a synchronous communication channel, where deliberate movement is
detectable, or have the ability to embed timestamps into their data streams to indicate
the point at which they planned to send the data.

In a continuous, synchronous channel environment, producer and consumer will ex-
change λ events per interval. The simplest encoding available in the Poisson noise is to
vary the arrival time of the final event and to reduce or increase the inter-arrival time.
If we encode 0 as an unlikely reduction in arrival time and 1 as an unlikely increase in
inter-arrival time, then it is possible to send binary messages from producer to consumer
at the rate of 1 bit per event. This, however, does rely upon the channel in question being
highly reliable, with a well-defined rate of arrival.

Where we cannot assume regularity, we must use timestamps, to allow the producer
to indicate to the consumer that they had planned to send the data at time t, but actually
did so at time t+x. Whatever x is, it must still fall within the Poisson noise interval but,
in this case, we now have a greater range of possible value representations available, as
the reference timestamp is within the stream.

One application of this is in non-continuous, irregularly reporting low-power sensors
such as wireless surveillance sensor nodes. If these nodes only report periodically, how
do we know that they haven’t been tampered with in the interim? One approach is
to provide a pseudo-random number generator of known and very large period, or a
set of pre-generated pseudo-random numbers, to both producer and consumer and to
offset the producer’s messages by an interval based on these numbers. This reduces
both the predictability of the event transmission and provides a low-power identification

Significance-Based Failure and Interference Detection in Data Streams 657

mechanism for a node. By choosing a generator with a large period, determining the
sequence of numbers by observations is infeasible. If the seed, or the pre-generated
sequence, are physically protected within the node, then an intruder is limited in how
they can bypass a node, as they cannot replace it without losing the identification out-of-
band channel, and disabling the sensor will, after some interval, generate a Fail(Δi, λ)
event, which will also constitute a reportable warning event.

6 Experimental Results

We used a number of simulated test environments to test classification, failure detection
reliability and the time to detection of our approach. Due to space constraints, we dis-
cuss one here, a statistical simulation based on event queues, with randomised failure.

In the experiment, a SEDIM entity (SEDIMent) was constructed as a set of simulated
data streams, composed of data from three sensors. The time interval was set to 3600
seconds and λ increased from 1 event per interval to 30 events per interval. The SED-
based classification was used to classify the cumulative data stream into VIB, PS, AP
and INSIG SEDs. Stream transmission rates were monitored at the transmitting node
and at upstream nodes. The experiment was designed to test: i) the correct detection of
event loss when events fell outside of the Poisson noise interval, ii) the correct estimates
of the rates of individual SEDs for determining failure of an individual sensor, iii) the
correct estimates of total node failure in upstream nodes, iv) maintaining node liveness
through the use of injected test data, implementing significance exchange and signif-
icance verification, as described in Section 4, and finally v) node identification using
variation in the Poisson noise.

Experiments were run with failure rates ranging from 0 to 50% of nodes, with 1000
iterations of each experimental configuration. The failure of an individual event to arrive
was detected within one time interval with a cumulative success rate 89.2%. Where no
errors occurred in contiguous intervals, the probability of success increased to 99.6%.
This established successful detection of event loss. The time taken to detect failure was
proportional to 1

λ , as expected.
The removal of INSIG data streams from transmission, and the calculation of indi-

vidual arrival rates for all other SED, was tested at the event injecting node and at the
simulated sink node. Transmitted events maintained their TIAAR across the system and
measurements of failure detection and arrival rate were consistent with the EAR for the
decomposed streams across all experiments.

The simulated sink node calculated the cumulative arrival rate, ΛEAR, for all sim-
ulated sensor nodes. Individual nodes maintained a counter of the number of events
where INSIG was the only active SED. In any interval where INSIG was the only active
SED for the entirety of the interval, a test packet was injected into the data stream, giv-
ing the EAR for the node’s active SEDs and an example classification of significance. If
received at the sink, the node continued to be marked live and the classification condi-
tion was checked. Total node failure was simulated by setting all significance thresholds
to the maximum value and disabling test packet injection. In this case, total node failure
was detected at sink nodes within ((1 + (1

λ))δi).
Finally, node identification was tested by dividing the first Poisson noise interval

within a time interval into millisecond intervals, and encoding the transmission time

658 N.J.G. Falkner and Q.Z. Sheng

Failure rate 0.00 0.05 0.10 0.15 0.20 0.25
MoS 0.00 0.724 2.641 15.277 99.142 194.905

Failure rate 0.30 0.35 0.40 0.45 0.50
MoS 271.944 337.732 393.982 446.978 498.445

Fig. 4. Measure of Suspicion metrics for increasing failure rates

as marked-up XML data, accompanying the data stream. This transmission time was
moved within the available slots by employing a fixed-period rotating set of random
numbers, with the sequence known to both an individual node and the sink. In the
event of an event being labelled as failed, due to falling outside of the expected range,
the random number that would have matched the offset is discarded at the sink. This
automatically causes the rejection of the packet, should it arrive late. A Measure of
Suspicion (MoS) is kept at the sink node, increasing monotonically for every packet
that either fails to arrive, or arrives with an unexpected offset. The MoS is decreased
by one for every 10 packets that arrive with the expected offset. In testing, the average
MoS for the system was 0.00 for experiments without synthetic failure and all events
arriving within the intervals, as expected. Figure 4 shows the MoS for higher failure
rates with a thousand individual trials of one thousand events.

It is of little surprise that higher failure rates have higher levels of uncertainty as a
large number of the confirmation numbers will be dropped from the queue. At failure
rates above 10%, the reduction in MoS is dominated by the ongoing increase, and ap-
proaches the failure rate multiplied by the number of events, 1000 in this case. However,
for low failure rate data stream producing networks, a MoS threshold of 1 allows for
the detection of increasing failure rates and the possibility of compromised nodes.

7 Conclusions

We have provided a model for the flow of significant events in data streams, in terms
of the rate of arrival of these events, and the distribution of these events. This model
is suitable for the modelling of both regular and irregular data streams, and is event-
focused, rather than time-focused. By employing this model, it is possible to detect
failure in the data stream, where this failure is a failure of transmission, or an absence
of significant events.

Our experimental results clearly show that this model adapts to change, as well as
reducing network overhead due to i) a minimisation of polling or liveness information,
and ii) a well-defined expectations of network behaviour. We have also shown a simple
application of our approach, which allows additional use of a channel without having
to alter time boundaries or expected arrival rates.

We have already developed three simulation models, one statistical, one software
based as a node level simulation and one grounded in the TinyOS Simulation (TOSSIM)
[18] environment for power consumption.We are further developing an implementation
of SEDIM in a WSN environment, and ad-hoc networking environment on hand-held
computing devices. The power consumption in a mobile and distributed environment
is further constrained by the requirement to support ad-hoc routing protocols and route

Significance-Based Failure and Interference Detection in Data Streams 659

discovery. In this role, the SEDIM approach will provide significant power savings, that
will allow more aggressive route discovery and maintenance, supporting stream-based
communication over ad-hoc networks, as well as packet-based communication.

References

1. Golab, L., Özsu, M.T.: Issues in data stream management. SIGMOD Rec. 32(2), 5–14 (2003)
2. Gaber, M.M., Zaslavsky, A., Krishnaswamy, S.: Mining Data Streams: A Review. SIGMOD

Rec. 34(2), 18–26 (2005)
3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data Stream

Systems. In: PODS 2002: Proc. of the 21st ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 1–16. ACM, New York (2002)

4. Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Rec. 30(3), 109–120
(2001)

5. Berndt, D.J., Clifford, J.: Using Dynamic Time Warping to Find Patterns in Time Series. In:
AAAI 1994 Workshop on Knowledge Discovery in Databases, pp. 359–370. AAAI Press,
Menlo Park (1994)

6. Papadimitriou, S., Sun, J., Faloutsos, C.: Streaming Pattern Discovery in Multiple Time-
series. In: VLDB 2005: Proc. of the 31st Intl. Conference on Very Large Data Bases, pp.
697–708. ACM, New York (2005)

7. Bai, Y., Wang, F., Liu, P.: Efficiently filtering RFID data streams. In: CleanDB: The First
International VLDB Workshop on Clean Databases, pp. 50–57. ACM, New York (2006)

8. Wei, Y., Son, S.H., Stankovic, J.A.: RTSTREAM: Real-Time Query Processing for Data
Streams. In: 9th IEEE International Symposium on Object/component/service-oriented Real-
Time Distributed Computing, pp. 141–150 (2006)

9. Zhu, Y., Shasha, D.: StatStream: Statistical Monitoring of Thousands of Data Streams in Real
Time. In: VLDB 2002: Proc. of the 28th Intl. Conference on Very Large Data Bases, VLDB
Endowment, pp. 358–369 (2002)

10. Gu, L., Jia, D., Vicaire, P., Yan, T., Luo, L., Tirumala, A., Cao, Q., He, T., Stankovic, J.A.,
Abdelzaher, T., Krogh, B.H.: Lightweight Detection and Classification for Wireless Sensor
Networks in Realistic Environments. In: SenSys 2005: Proc. of the 3rd Intl. Conference on
Embedded Networked Sensor Systems, pp. 205–217. ACM, New York (2005)

11. Solis, I., Obraczka, K.: In-Network Aggregation Trade-offs for Data Collection in Wireless
Sensor Networks. Intl. Journal of Sensor Networks 1(3–4), 200–212 (2007)

12. Ye, F., Luo, H., Lu, S., Zhang, L.: Statistical En-Route Filtering of Injected False Data in Sen-
sor Networks. IEEE Journal on Selected Areas in Communications 23(4), 839–850 (2005)

13. Pottie, G.J., Kaiser, W.J.: Wireless Integrated Network Sensors. Commun. ACM 43(5), 51–
58 (2000)

14. Feng, J., Koushanfar, F., Potkonjak, M.: Sensor Network Architecture. Number 12 in III. In:
Handbook of Sensor Networks. CRC Press, Boca Raton (2004)

15. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation Service
for Ad-hoc Sensor Networks. SIGOPS Oper. Syst. Rev. 36(SI), 131–146 (2002)

16. Petrovic, M., Burcea, I., Jacobsen, H.A.: S-ToPSS: Semantic Toronto Publish/Subscribe Sys-
tem. In: VLDB 2003: Proc. of the 29th Intl. Conference on Very Large Data Bases, VLDB
Endowment, pp. 1101–1104 (2003)

17. Gupta, P., Kumar, P.R.: The Capacity of Wireless Sensor Networks. IEEE Trans. Info. The-
ory 46(2) (2000)

18. Levis, P., Lee, N., Welsh, M., Culler, D.: TOSSIM: Accurate and Scalable Simulation of
Entire TinyOS Applications. In: SenSys ’03: Proc. of the 1st Intl. Conference on Embedded
Networked Sensor Systems, pp. 126–137. ACM, New York (2003)

Incremental and Adaptive Clustering Stream
Data over Sliding Window

Xuan Hong Dang1, Vincent C.S. Lee1, Wee Keong Ng2, and Kok Leong Ong3

1 Monash University, Australia
{xhdang,vincent.lee}@infotech.monash.edu
2 Nanyang Technological University, Singapore

awkng@ntu.edu.sg
3 Deakin University, Australia

leong@deakin.edu.au

Abstract. Cluster analysis has played a key role in data stream under-
standing. The problem is difficult when the clustering task is considered
in a sliding window model in which the requirement of outdated data
elimination must be dealt with properly. We propose SWEM algorithm
that is designed based on the Expectation Maximization technique to ad-
dress these challenges. Equipped in SWEM is the capability to compute
clusters incrementally using a small number of statistics summarized
over the stream and the capability to adapt to the stream distribution’s
changes. The feasibility of SWEM has been verified via a number of ex-
periments and we show that it is superior than Clustream algorithm, for
both synthetic and real datasets.

1 Introduction

In recent years, we are seeing a new class of applications that changed the tra-
ditional view of databases as a static store of information. These applications
are commonly characterized by the unbounded data streams they generate (or
receive), and the need to analyze them in a continuous manner over limited com-
putation resources [10, 3,8]. Further, stream data can be lost under high speed
conditions, become outdated in the analysis context, or intentionally dropped
through techniques like sampling [4] or load shedding [16]. This makes it imper-
ative to design algorithms that compute answers in a continuous fashion with
only one scan over stream data whilst operating under the resource limitations.

Among various data mining tasks, clustering is one of the most important
tasks that widely helps to analyze and uncover structures in the data. Research in
data stream clustering reported so far has mostly focused on two mining models,
the landmark window [12,2,18] and the forgetful window [7,8]. In the former one,
clustering results are computed based on the entire data elements generated so
far in the stream. In the latter model, they are also discovered from the complete
stream history; however, the weight (or importance) of each data instance is
decreased with time by using a fading function. While these two mining models
are useful in some data stream applications, there is a strong demand to devise

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 660–674, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Incremental and Adaptive Clustering Stream Data over Sliding Window 661

novel techniques that are able to cluster the data stream in a sliding window
model. For example, in network intrusion monitoring, the changes of stream
characteristics in the past several hours are much more valuable compared to
those happened in days ago [11]. Moreover, it has also been shown that [19]
performing a stream mining or querying task in the sliding window model is
the most general and the most challenging work since it further deals with the
problem of outdated data elimination.

In this paper, we propose SWEM algorithm (clustering data streams in a time-
based Sliding Window with Expectation Maximization technique) to address the
above challenges. Compared to other stream clustering algorithms relying on k-
means [13,12,2,1], an EM-based algorithm is a soft clustering method and thus,
it has some properties that are desirable for stream environments such as ro-
bustness to noise or the ability to handle missing data (as clearly shown in [18]).
Furthermore, it has a strong statistical basis and theoretically guarantees opti-
mal convergence. The SWEM algorithm consists of two stages which are strictly
designed to address the problem of constrained memory usage and one-pass pro-
cessing over data streams. In the first stage, SWEM scans data records arriving
in the stream and summarizes them into a set of micro components where each
one is characterized by a small number of statistics. These small amount of infor-
mation in turns are effectively used in the second stage of SWEM to approximate
the set of global clusters. Most importantly, in order to address the problem of
characteristics changing in stream environments, we develop a method to adap-
tively split and merge micro components. Such an approach provides a flexible
technique to re-distribute micro components across the data space and thus effi-
ciently approximates the stream’s evolving distribution. Experiments on various
data streams have empirically shown that SWEM is very effective in finding
clusters from a time-based sliding window. It is not only able to process data
streams in an incremental fashion with confined memory space, its clustering
qualities are high and close to those of a conventional EM (working without
any stream’s limits). In addition, the algorithm also outperforms the well-known
CluStream algorithms [2] both in time performance and clustering qualities.

2 Related Work

Previous work on clustering data streams focused on developing space-efficient
and one-pass algorithms. STREAM is one of the first algorithms that addresses
the problem in a landmark window model [13]. It is a divide-and-conquer al-
gorithm that builds clusters incrementally and hierarchically using bicriterion
approximation algorithms. In [6,15], this approach is extended in that both the
approximation factor and the storage memory are improved. It is also expanded
for stream clustering in a sliding window model [5]. Unfortunately, in order to
deal with the issue of finding clusters in window sliding mode, their algorithm
simply re-clusters all summarized data points. Hence, there is no incremental
work for the process of computing global clusters. Also, there is no experimental
work to report the accuracy and effectiveness of the algorithm. Furthermore,

662 X.H. Dang et al.

by adopting the exponential histogram [9] as the framework for summarizing
data, their algorithm can only work with count-based sliding window where the
number of data records arriving in the window must be fixed in advance.

Recently, CluStream [2], DenStream [7] and D-Stream [8] are representative
algorithms focusing on evolving data stream clustering. In CluStream [2], it
divides the clustering process into online and offline components. The online
component is designed to quickly update raw data into a set of micro clusters
and the offline component is developed to compute clustering results based on
snapshots captured at different times on the micro clusters’ set. To address the
issue of confined memory space, CluStream stores snapshots at various levels
of granularity with recent ones stored at finer granularity. This technique is
then later extended in HPStream [1] where the concept of projected clusters is
introduced to cluster high dimensional data streams. DenStream [7] is another
algorithm proposed to address the issue of clustering evolving data streams. The
authors extended the DBSCAN method to the online-offline framework proposed
in Clustream [2]. A fading function is also used to gradually reduce the weight
of each micro cluster with time. The DBSCAN with the concept of density
connectivity is then applied to the set of micro clusters to derive global clustering
results. D-Stream [8] is another density-based algorithm for stream clustering.
It divided the data space into a set of disjointed grids. Then, data instances are
mapped into corresponding grids based on their dimensional values. Similar to
DenStream, a fading function is used in D-Stream to reduce the weight of each
grid over time. The final clustering results are obtained based on the density
and the grids’ connectivity. Motivated by the drawbacks of the hard clustering
techniques (e.g., based on k-means) applied on various stream environments,
CluDistream [18] has recently been proposed to cluster data streams based on the
Expectation Maximization technique. Although this algorithm has been shown
to provide significant results over other methods (especially in distributed stream
environments where data could be noised or missed due to transmission), it
only addressed the clustering problem in a landmark window where each EM
algorithm is simply implemented at each node of the distributed network.

3 Problem Formulation

We consider a data stream as a time ordered series of data points DS={x1, x2, ...,
xn, ...} where each xi has the form xi = {x1

i , x
2
i , ..., x

d
i } in d-dimensional space.

We focus on the time-based sliding window model. In this model, let TS0, . . . ,
TSi−b+1, . . . , TSi denote the time periods elapsed so far in the stream. Each time
period contains multiple data records arriving in that interval. Given an integer
b, the time-based sliding window is defined as the set of data records arriving in
the last b time periods and denoted by SW = {TSi−b+1, . . . , TSi−1, TSi}. TSi

is called the latest time slot and TSi−b is called the expiring one in the sliding
window. When the time shifts to the new slot TSi, the effect of all records in
TSi−b will be eliminated from the clustering model.

In our sliding window model, once data points in a time slot are processed,
they cannot be retrieved for further computation at a later time (unless their

Incremental and Adaptive Clustering Stream Data over Sliding Window 663

summarized statistics are explicitly stored in memory). The amount of memory
available is assumed to be limited. In particular, it is sub-linear in the window’s
size. As such, approaches that require storing the entire data points in the sliding
window are not acceptable in this model. We also assume that streaming data
evolve with time and records are generated as a result of a dynamic statistical
process that consists of k mixture models (or components). Each model corre-
sponds to a cluster that follows a multivariate normal distribution. Consequently,
any cluster Ch, 1 ≤ h ≤ k, is characterized by a parameter: φh = {αh, μh, Σh}
where αh, μh, Σh are respectively the weight, vector mean(determining the cen-
ter), and covariance matrix (determining the shape) of the cluster.

Accordingly, we define our problem as follows: Given the number of time slots
b of the sliding window, our goal is to cluster the data stream incrementally by
identifying a set of parameters ΦG = {φ1, ..., φk} that optimally fit the current
set of data points arriving in the last b time periods of the stream.

4 Algorithm Description

4.1 Initial Phase

We compute m distributions (also called micro components) modelling the data
within each time slot of the sliding window. Let ΦL be the set of parameters
of these local components, i.e., ΦL = {φ1, ..., φm}, where each micro component
MC�, 1 ≤ ! ≤ m, is also assumed to follow a multivariate Gaussian distribution
characterized by three parameters φ� = {α�, μ�, Σ�}. For the initial phase where
SW = {TS0}, the initial values for these parameters will be randomly chosen.
We clarify the following concepts and assumptions.

In our model, each data point belongs to all components yet with different
probability. Given x, its probability in component !th is computed based on the
Bayes rule: p(φ�|x) = α� × p�(x|φ�)/p(x) = α� × p�(x|φ�)/

∑m
i=1 αi × pi(x|φi), in

which p�(x|φ�) = 1
(2π)d/2|Σ�|1/2 exp

[− 1
2 (x− μ�)TΣ−1

� (x− μ�)
]
, where μ� is the

d-dimensional mean vector and Σ� is the covariance d×d matrix. |Σ�| and (Σ�)−1

are respectively the determinant and inverse matrix of Σh.
Since we assume each attribute is independent of one another, Σ� is a diagonal

variance matrix. Its determinant and inverse matrix can thus be easily computed:
|Σ�| =

∏d
i=1(σ

i
�)

2 and Σ−1
� =

(
1/(σ1

�)2 1/(σ2
�)2 . . . 1/(σd

�)2
)
I, where σi

� is
the variance at dimension i of MC� and I is the identity matrix.

As we assume data points in the stream are generated independently, the
probability of n data records arriving in TS0 is computed by the product:

p(TS0|ΦL) =
∏

xi∈TS0

p(xi|ΦL) =
n∏

i=1

m∑
�=1

α� × p�(xi|φ�)

Since this probability is small, we typically work with its log likelihood form.
We define the average log likelihood measure which is used to evaluate how well
the set of micro components approximates the stream within this time period
by: Q(ΦL) = 1

|TS0| log
∏

x∈TS0

∑m
h=1 α� × p�(xi|φ�).

664 X.H. Dang et al.

In its first stage, SWEM maximizes this quantity by beginning with an ini-
tial estimation of ΦL and iteratively updates it until |Q(Φt+1

L) − Q(Φt
L)| ≤ ε.

Specifically, SWEM updates ΦL, it at iteration t+ 1 as follows:

In the E-step: p(φ�|x) = α
(t)
� ×p�(x|μ(t)

� ,Σ
(t)
�)∑

i α
(t)
i ×pi(x|μ(t)

i ,Σ
(t)
i)

In the M-step: α
(t+1)
� = 1

n

∑
x∈TS0

p(φ�|x); μ
(t+1)
� =

∑
x∈TS0

p(φ�|x)
n�

× x;

Σ
(t+1)
� =

∑
x∈TS0

p(φ�|x)
n�

× (x− μ
(t+1)
�)(x − μ

(t+1)
�)T

where n� =
∑

x∈TS0
p(φ�|x).

When convergence, these micro components are approximated by only keeping
a triple T� = {N�, θ�, Γ�} for each MC�. Essentially, let S� be the set of records
assigned to MC� (to which they have the highest probability), then N� = |S�| is
the cardinality of the set S�; θ� = Σxi∈S�

xi is the linear summation of the data
points in the set S�; and Γ� = Σxi∈S�

xix
T
i is the squared summation of these

points.
The important property of T� is that it is sufficient to compute the mean and

covariance of MC�. Concretely, μ� = N−1
� θ� and Σ� = N−1

� Γ� − N−2
� θ� × θT

� .
Furthermore, its additive property ensures that the mean and covariance of a
merged component can be computed from the values of each member component:
T� = {N�1 + N�2 , θ�1 + θ�2 , Γ�1 + Γ�2} given two member components T�1 =
{N�1, θ�1 , Γ�1} and T�2 = {N�2 , θ�2 , Γ�2}.

Therefore, SWEM treats these triples as the sufficient statistics summarizing
the information regarding the data points within the first time slot of the stream.
They are then used in the second stage of the algorithm to compute the k global
clusters. For each φh ∈ ΦG, SWEM updates its parameters as follows:

E-step: p(φh|T�) =
α

(t)
h ×ph(1

N�
θ�|μ(t)

h ,Σ
(t)
h)∑

k
i=1 α

(t)
i ×pi(1

N�
θ�|μ(t)

i ,Σ
(t)
i)

M-step: α
(t+1)
h = 1

n

∑m
�=1N� × p(φh|T�); μ

(t+1)
h = 1

nh

∑m
�=1 p(φh|T�)× θ�;

Σ
(t+1)
h = 1

nh

[∑m
�=1 p(φh|T�)Γ� − 1

nh

∑m
�=1

(
p(φh|T�)θ�

)(
p(φh|T�)θ�

)T
]

where nh =
∑m

�=1N� × p(φh|T�).

4.2 Incremental Phase

This phase is incrementally applied when data in a new time slot arrive at the
system. Nonetheless, different from the initial phase where SWEM has to ran-
domly choose initial parameters for micro components, in this phase it utilizes
the converged parameters in the previous time slot as the initial values for the
mixture models. The rationale behind is that we expect the stream’s character-
istics between two consecutive time slots only change slightly. Thus, inheriting
the converged parameters of the previous time slot can minimize the number of
iterations for the next one.

Essentially, after the first iteration on the data points arriving in the new
time slot, SWEM compares the quantity Q(ΦL) with the converged one in the
previous time slot. If two values are not much different, it is safe to say that the
distribution in the new time interval is similar to the previous one. Otherwise,

Incremental and Adaptive Clustering Stream Data over Sliding Window 665

(a) Before and after splitting (b) Before and after merging

Fig. 1. Split and merge components

the stream distribution has changed and it is necessary to adapt the set of micro
components accordingly in order to avoid the local maximal problem [17]. We
therefore develop in SWEM two split and merge operations to discretely re-
distribute components across the entire data space.

Figure 1(a) illustrates the idea of SWEM’s split operation. A micro component
is chosen for dividing if it is large enough and has the highest variance sum
(i.e., its data are mostly spread). An MC� is considered large if its weight α� >
2
m

∑
i αi and the dimension for the split is the one having the maximum variance.

Let e be such dimension, then the new means and variances for e in two new
micro components MC�1 and MC�2 are approximated as follows:

μe
�1 =

∫ μe
�

μe
�
−3σe

�

x × p�,e(x|φ�)dx; μe
�2 =

∫ μe
�+3σe

�

μe
�

x × p�,e(x|φ�)dx

(σe
�1)

2 =
∫ μe

�

μe
�
−3σe

�

x2×p�,e(x|φ�)dx−(μe
�1)

2; (σe
�2)

2 =
∫ μe

�+3σe
�

μe
�

x2×p�,e(x|φ�)dx−(μe
�2)

2

For other dimensions, their means and variances are kept unchanged. The above
computations are derived given the observation that each dimension is to follow
a Gaussian distribution in which 99.7% of data are within μ±3σ. Therefore, the
integrals with lower and upper bounds chosen in this range can approximately
cover all component’s data points projecting on that dimension.

On the other hand, as illustrated in Figure 1 (b), two components are selected
for merging if they are small and close enough. An MC� is considered small if
its weight α� < 1

2m

∑
i αi and the distance, which is measured based on the

Mahalanobis distance, between two components are closed enough. Notice that
compared to the Euclidean distance, the Mahalanobis works more effectively in
SWEM since it takes into account the covariance matrix (actually describing
the spread of component). We define the average squared Mahalanobis distance
between two components as follows: Avg(Di,j) = 1

2 [(μi − μj)TΣ−1
j (μi − μj) +

(μj − μi)TΣ−1
i (μj − μi)].

Given MC�1 and MC�2 to be merged, SWEM computes parameters for their
merging component MC� based on the additive property:

α� = α�1 + α�2 ; μ� = α�1
α�1+α�2

× μ�1 + α�2
α�1+α�2

× μ�2 ; Σ� = Γ�

n(α�1+α�2) −
θ�×θT

�

(n(α�1+α�2))2 . In that,

θ� = n× (α�1 ×μ�1 +α�2 ×μ�2); Γ� = n[α�1(Σ�1 +μ�1μ
T
�1

)+α�2(Σ�2 +μ�2μ
T
�2

)].

666 X.H. Dang et al.

When SWEM converges to the optimal solution, m micro components are again
summarized into m triples. Then, k global clusters are updated with these new
statistics. This second stage of the algorithm is analogous to the second stage
of the initial phase. Nonetheless, SWEM derives the k global models from only
(m+ k) components in this incremental phase.

4.3 Expiring Phase

We apply this phase of the SWEM algorithm when the window slides and the
oldest time slot is expiring from the mining model. As such, it is necessary
to update ΦG = {φ1, . . . , φk} by subtracting the statistics summarized in the
local model ΦL = {φ1, φ2, ..., φm} of the expiring time slot. SWEM controls
this process by using a fading factor λ (0 < λ < 1) to gradually remove these
statistics. The closer to 1 the λ is, the smaller the amount of the reducing weights
being eliminated at each iteration of the algorithm. Thus, this factor provides
us a method to prevent the effect of each expiring component from reducing too
fast or too slow, which would cause the local optimal convergence in SWEM.
Essentially, at each iteration t of the algorithm, SWEM reduces the weight of
each expiring MC� by N (t)

� = λ(t)N�. This also means that the reducing amount,
denoted by r

(t)
� , is:

r
(t)
� = (1− λ)λ(t−1)N� (1)

The following theorem guarantees that the number of iterations t can be any
arbitrary integer while the total reducing weights on each expiring component
approaches (but never exceeds) its original value.

Theorem 1. Let t be an arbitrary number of iterations used by the SWEM
algorithm. Then for each expiring micro component MC�: limt→∞

∑
t r

(t)
� = N�.

Proof. At the first iteration, N (1)
� = λN�. Thus the reducing amount is r(1)� =

N� − λN� = (1 − λ)N�. At the second iteration, N (2)
� = λN

(1)
� = λ2N� and

r
(2)
� = N

(1)
� − λN

(1)
� = (1− λ)λN�.

By induction, at the iteration t, the reducing weight is r(t)� = (1−λ)λ(t−1)N�.
Therefore, the total reducing amount so far is:∑

t

r
(t)
� = (1 − λ)N� + (1− λ)λN� + ...+ (1− λ)λ(t−1)N�

= (1 − λ)N�[1 + λ++ λt−1]

It is clear that:
limt→∞(1 − λ)[1 + λ++ λt−1] = limt→∞(1− λt) = 1 since λ < 1. �

Given the factor λ to progressively remove out-dated statistics, the E-step com-
putes the posterior probability for each expiring component by:

p(φh|T�) =
α

(t)
h × ph(1

N�
θ�|μ(t)

h , Σ
(t)
h)∑k

i=1 α
(t)
i × pi(1

N�
θ�|μ(t)

i , Σ
(t)
i)

Incremental and Adaptive Clustering Stream Data over Sliding Window 667

and at the M-step, these posterior probabilities is subtracted from the global
models. Specifically, the number of data points in the sliding window nG is
updated by: n(t+1)

G = n
(t)
G − ∑m

�=1 r
(t+1)
� , in that the amount

∑m
�=1 r

(t+1)
� is

the total number of data points removed when applying Equation 1 at t + 1.
Subsequently, the weight of each global model φh is simply updated by:

α
(t+1)
h =

n
(t+1)
h

n
(t+1)
G

where n
(t+1)
h = α

(t)
h × n

(t)
G −

m∑
�=1

p(φh|T�)× r
(t+1)
�

The first factor α(t)
h × n

(t)
G is the estimated number of data points belonging to

the global model φh while the second factor is its total number of data points
(weighed by the posterior probability) now expiring at t+ 1.

To update new value for μh and Σh of each global model φh, SWEM first
computes: θ

(t+1)
h = θ

(t)
h −∑m

�=1 p(φh|T�) × r
(t+1)
� × θ�/N�, in that θ�/N� ac-

tually is the vector mean of the expiring micro component (which does not
change during this process). Then μ

(t+1)
h and Σ

(t+1)
h are computed by:μ(t+1)

h =
θ
(t+1)
h

n
(t+1)
h

; Σ
(t+1)
h = 1

n
(t+1)
h

[
Γ

(t+1)
h − 1

n
(t+1)
h

θ
(t+1)
h θ

(t+1)
h

T
]

where Γ (t+1)
h = Γ

(t)
h −∑m

�=1

[
p(φh|T�)× r

(t+1)
� × θ�

N�

] [
p(φh|T�)× r

(t+1)
� × θ�

N�

]T

and Γ
(t)
h = n

(t)
h

[
Σ

(t)
h + μ

(t)
h μ

(t)
h

T
]

During this process, whenever any global model has weight becoming too
small, it is safe to remove it from the mining results. This happens if a global
model was formed by only the data points arriving in the expiring time slot.
Thus, when this time interval is beyond the window, such a global model is
eliminated as well. When a global model is deleted, another one which has the
highest summation on variances should be split in order to keep the number
of global clusters unchanged. The computation for a global model splitting is
similar to the case with splitting micro components presented in Section 4.2.

Finally, the memory space of SWEM is guaranteed by the following theorem.

Theorem 2. The memory space consumption of SWEM is O(n + (d2 + d +
1)(mb + k)), where n is the maximal number of data points arriving in a time
slot and b is the number of time slots within a sliding window.

Proof. The memory consumption includes two parts. The first part is the data
buffer storing the new data points. We assume that n is the maximal number
of data points that can arrive in one time slot. The second part is the space
for recording the parameters of the mixture Gaussian models at each time slot
as well as the entire sliding window. For a Gaussian mixture model of k global
components, the memory consumption includes k weights αh, k d-dimensional
mean vectors μh, and k d × d covariance matrices. At each time slot of the
sliding window, the memory space needs to maintain m micro components, each
characterized by a weight N�, a d-dimensional vector sum θ� and a d× d matrix
of squared sum Γ�. There are b time slots in the sliding window and therefore in
total, the memory consumption of SWEM is O(n+ (d2 + d+ 1)(mb+ k)). �

668 X.H. Dang et al.

Table 1. Average log likelihood returned by stdEM, SWEMw/oG and SWEM

D2.K10.N100k D4.K5.N100k D10.K4.N100k
TS stdEM w/oG SWEM stdEM w/oG SWEM stdEM w/oG SWEM

2 -10.436 -10.512 -10.512 -19.252 -19.276 -19.276 -47.846 -47.869 -47.869
4 -10.427 -10.446 -10.446 -19.192 -19.215 -19.215 -47.933 -48.010 -48.010
6 -10.451 -10.604 -10.716 -19.164 -19.220 -19.326 -47.702 -47.712 -47.726
8 -10.444 -10.700 -10.735 -19.188 -19.226 -19.245 -47.859 -47.884 -47.886

10 -10.439 -10.523 -10.579 -19.202 -19.247 -19.258 -47.759 -47.820 -47.873

5 Experimental Results

5.1 Experimental Setup

We implement three algorithms, our SWEM technique, a standard EM algorithm
denoted by stdEM1, and CluStream algorithm [2] using Microsoft Visual C++
version 6.0. All experiments are conducted on a 1.9GHz Pentium IV PC with
1GB memory space running on the Windows XP platform. In the following, to
describe a dataset we use D to denote its dimensions, K to denote its number
of clusters, and N to its size in terms the number of data records. We first
evaluate the clustering quality of SWEM based on the results returned by the
standard EM technique. Then, its sensibility to various parameter settings is
verified. Finally, the performance of SWEM is compared with that of CluStream
algorithm.

5.2 Clustering Quality Evaluation

Using the method described in [18], we generate three datasets each with 100,000
data records and the number of dimensions and clusters are varied from 2 to
10. The data points of each dataset follow a series of Gaussian distributions.
To simulate the evolution of the stream over time, we generate new Gaussian
distribution for every 20k points by probability of 10%. With the above no-
tations, three datasets are respectively denoted D2.K10.N100k, D4.K5.N100k
and D10.K4.N100k. Unless otherwise indicated, we set the sliding window equal
to 5 time slots and use the following parameters: the number of micro compo-
nents m = 6K (where K is the number of global clusters), the error bound on
average log likelihood ε = 0.001, the merging threshold based on Mahalanobis
distance Avg(Di,j) = 1 and the fading factor λ = 0.8. Similar to other cluster-
ing algorithms relying on the EM technique [17, 18], the clustering qualities of
SWEM and stdEM are evaluated by using the average log likelihood measure.

Table 1 shows the results returned by our algorithms where datasets are
divided into 10 time intervals, each with 10k of data points. The results are
reported after each of 2 time slots. This table also presents the outputs of
SWEMw/oG, a variation of SWEM2. It can be seen that in all cases, our SWEM
1 stdEM works without any constraint of stream environments.
2 SWEMw/oG differs from SWEM in the expiring phase where it derives the global

models by simply re-clustering all sets of micro components maintained.

Incremental and Adaptive Clustering Stream Data over Sliding Window 669

Table 2. Clustering means on D4.K5.N100k and D4.K5.N100k with 5% noise

D4.K5.N100k D4.K5.N100k with noise
TM stdEM w/oG SWEM stdEM w/oG SWEM

C1 Dim 1 -165 -165.861 -165.618 -165.930 -163.054 -161.716 -162.050
Dim 2 281 282.269 282.597 282.797 280.152 279.594 276.758
Dim 3 -114 -114.070 -113.65 -113.800 -112.744 -110.741 -109.878
Dim 4 175 175.863 176.609 176.471 172.770 172.969 172.368

C2 Dim 1 124 122.275 122.365 121.860 123.955 123.915 123.539
Dim 2 -127 -125.064 -125.412 -125.454 -115.209 -116.539 -122.902
Dim 3 188 188.376 188.3 188.527 179.520 177.993 186.276
Dim 4 92 91.753 91.9252 91.523 89.571 91.093 97.919

C3 Dim 1 -3 -1.918 -1.90395 -1.745 -3.732 -2.686 -2.377
Dim 2 224 223.657 223.699 223.446 222.349 222.635 222.477
Dim 3 -53 -52.288 -52.2454 -52.113 -52.760 -51.036 -50.682
Dim 4 -176 -175.382 -175.045 -175.102 -175.299 -174.635 -174.607

C4 Dim 1 295 297.043 297.839 297.536 295.111 294.120 296.555
Dim 2 155 155.647 155.704 156.406 154.611 153.671 154.623
Dim 3 276 275.964 275.681 275.236 275.875 274.569 274.624
Dim 4 -73 -72.912 -73.3848 -73.182 -73.159 -75.363 -77.620

C5 Dim 1 245 246.302 246.922 246.851 245.685 245.970 243.827
Dim 2 11 10.4482 8.990 9.525 11.182 14.011 9.430
Dim 3 -154 -152.044 -152.077 -152.012 -155.230 -153.562 -152.924
Dim 4 153 152.852 153.947 153.555 153.428 153.834 152.462

and SWEMw/oG algorithms almost obtain the accuracy close to that of the st-
dEM. It is important to note that SWEM and SWEMw/oG process these data
streams incrementally whilst stdEM clusters entire data points appearing in
the sliding window at once and without any streaming constraints. It is further
to observe that the clustering results of SWEM are not much different from
SWEMw/oG which clearly indicating that the technique of gradually reducing
weights of expiring components from global clusters works effectively in SWEM.
Notice that the number of data points SWEM has to compute at the expiring
phase is fixed and only (k+m) while that of SWEMw/oG is b×m and dependent
on the window’s size b.

In Table 2, we provide more details on our algorithms where the true means
(TM column) and the approximate ones of each cluster are reported for the
dataset D4.K5.N100k (at its last time slot). We also further add 5% of random
noise to this dataset and the corresponding results are reported in the last three
columns of the table. It is observed that the approximate means returned by
SWEM and SWEMw/oG remain very close to those of the true clusters despite
the noise appearance.

To further simulate significant changes in the stream distribution, we ran-
domly generate two completely different distributions (D = 4, K = 5, and ran-
dom noise remains 5%), each with 50k data points. Consequently, the dataset
D4.K5.N100k.AB is formed by merging two distributions. In the following

670 X.H. Dang et al.

-19.3

-19.25

-19.2

-19.15

-19.1

-19.05

-19

2K 4K 6K 8K 10K
Number of micro components

A
vg

 lo
g

lik
el

ih
oo

d

LLH

Fig. 2. Micro Compo-
nents vs. Accuracy

19.5

19.45

19.4

19.35

19.3

19.25

19.2
0.2 0.5 1 1.5 2 2.5 3

Merging threshold

A
vg

 lo
g

lik
el

ih
oo

d

LLH

Fig. 3. Merging threshold
Avg(Di,j) vs. Accuracy

-20

-19.8

-19.6

-19.4

-19.2

-19

0.2 0.4 0.6 0.8 0.9

Fading factor lambda

A
vg

 lo
g

lik
el

ih
oo

d

0

20

40

60

80

100

N
um

be
r

of
 it

er
at

io
ns

LLH

Iters

Fig. 4. Fading Factor vs.
Accuracy

sections, we test the sensitivity of SWEM on various parameter settings by using
this dataset.

Varying Number of Micro Components: It is obvious that the number of micro
components should be larger than the number of natural clusters in order to
obtain a clustering of good quality. Nevertheless, a very large number of micro
components is inefficient in terms of running time and memory storage since
the complexity of the SWEM’s first stage increases linearly with the number of
micro components maintained. In order to observe how this parameter affects
the accuracy of our algorithm, we run SWEM with D4.K5.N100k.AB where
the ratio between the number of micro components and the natural clusters is
varied from 2 to 10. Figure 2 reports the experimental results where we com-
pute the average accuracy on all time slots. From the figure we observe that if
the number of micro components is close to the number of global clusters, the
clustering quality is poor. This is because a very small number of micro com-
ponents is harder to approximate the characteristics of the stream, especially in
the situation where the distribution changes considerably. A poor approximation
often causes worse in later phases where the SWEM needs to remove expiring
information. When the number of micro components increases, the average log
likelihood increases as well. However, we realize that this value becomes stable
when the number of micro components is set around m = 6K. This indicates
that we do not need to set the number of micro components too large, yet still
able to achieve a high clustering accuracy.

Varying Merging Threshold: Recall that the merging and splitting operations
are invoked to re-distribute micro components when SWEM detects a significant
change happened in the stream’s distribution. Furthermore, since SWEM always
maintains a set of m micro components at each time slot, when two components
are merged, another one with biggest summation in variances will be split. We
report the clustering results when the merging threshold Avg(Di,j) is varied.
Figure 3 reports our results at the time slot 6 at which the algorithm detects
a significant change in the data distribution. From the figure, it is observed
that when the merging threshold is either too small or too large, the average
log likelihood results are poor. The reason is that when Avg(Di,j) is set too
small, there are almost no micro components being merged (although they are
close to each other). In the other extreme when Avg(Di,j) is set too large, many

Incremental and Adaptive Clustering Stream Data over Sliding Window 671

1.0E+07

1.6E+08

3.1E+08

4.6E+08

6.1E+08

7.6E+08

9.1E+08

1.1E+09

TS5 TS15 TS25 TS35 TS45

Time slot index

S
u

m
 o

f
S

q
u

ar
ed

 D
is

ta
n

ce
s

S
S

Q
CluStream

SWEM

Fig. 5. Clustering quality comparison on
real-world Network Intrusion dataset

1.0E+07

7.0E+07

1.3E+08

1.9E+08

2.5E+08

3.1E+08

3.7E+08

4.3E+08

TS2 TS4 TS6 TS8 TS10

Time slot index

S
u

m
 o

f
S

q
u

ar
ed

 D
is

ta
n

ce
s

S
S

Q

CluStream

SWEM

Fig. 6. Clustering quality comparison on
D10.K4.N100k dataset

micro components are frequently merged and split; this causes a poor result
on clustering analysis. The highest average log likelihood is achieved when this
merging threshold is set to be round 1.

Varying Fading Factor: The last parameter that may impact the clustering
quality of SWEM is the fading factor λ. Figure 4 shows the relationship between
the fading factor, the number of iterations used in the expiring phases, and the
average log likelihood quality. The results are reported at the time slot 10 where
the last interval of the first distribution in D4.K5.N100k.AB is eliminated from
the sliding window. As expected, when λ is set closer to 1, the algorithm reduces
the weight of each expiring micro component slowly and needs more iterations.
Accordingly, the quality of the clustering results is better (indicating by the
larger average log likelihood value). In order to achieve high quality of clustering
results, the best value of λ can be set between 0.8 and 0.9. It is also worth noting
that since this expiring step is executed in the second stage where SWEM works
only with micro components and global clusters (which actually are only a small
number of weighted data points), the large number of iterations utilizing in this
stage is therefore generally acceptable.

5.3 Comparison with CluStream

As presented in Section 2, CluStream [2] is an algorithm proposed to cluster
entire data streams. Nonetheless, it is possible to modify CluStream for working
in the window model. Specifically, instead of storing the snapshots at different
levels of granularity, we let CluStream maintain each snapshot precisely at every
time slot and those expiring from the sliding window will be deleted immediately.
The time horizon in CluStream is chosen equal to the size of the sliding window.
Furthermore, we keep the factor 2 for the root mean square (RMS) deviation as
indicated in [2], this value produces the best CluStream’s results.

It is also important to note that, in CluStream, only data points arriving in
the first time slot are clustered until the k-means method converges. For the rest
of the stream, each arriving point is clustered online by absorbing it to one micro
cluster or forming itself as a new micro cluster. Hence, the convergence of CluS-
tream is not guaranteed after the first time slot. We experimentally realize that

672 X.H. Dang et al.

such a process is only effective when the stream distribution is relatively stable
over time. When the stream distribution remarkably changes, CluStream’s qual-
ities reduce considerably. Thus in the following experiments, we let CluStream
run until its convergence at each time slot. This compromises the processing
time but improves CluStream’s clustering. We compare SWEM and CluStream
on their clustering quality (measured in sum of squared distances SSQ) and ex-
ecution time. Figures 5 and 6 report the SSQ values of two algorithms on the
KDD-CUP’99 Network Intrusion Detection dataset and D10.K4.N100k (with
5% of random noise). As observed from the figures, the SSQ value of SWEM
is always smaller than that of CluStream in both these real-world and artificial
datasets. For example, at time slot 25 of the network intrusion dataset, the SSQ
of SWEM is 35% smaller than that of CluStream. This explicitly indicates that
the data points in each of the clusters obtained by SWEM are more similar and
compact than those obtained by CluStream. To explain for these results, note
that CluStream computes micro clusters based on Euclidean distance and it does
not take into account clusters’ shapes in identifying closest center for each data
point. Furthermore, the hard assignment (due to using K-means) is highly sen-
sitive to the noise and outliers since a small number of noise data can influence
the computation of the clusters’ means substantially [14,18]. On the other hand,
both micro clusters’ centers and shapes are effectively utilized in SWEM. The
using of a Mahalanobis-based distance has improved the SWEM’s capability in
identifying correct cluster centers. Additionally, SWEM is less affected by the
noise data due to the advantage of soft assignment of the EM technique. Its
approximate micro components are therefore usually produced in better quality
and consequently the global clusters are also derived more accurately.

In order to provide more insights, we observe the clustering quality of two al-
gorithms on D4.K5.N100k.AB dataset. Figure 7 shows the clustering results in
which we set the window’s size equal to 4. As observed, the SSQ values of both
SWEM and CluStream are linearly increased in the first four time slots and slightly
changed in the fifth one (since data are generated from the same distribution).
However, the clustering quality of CluStream is remarkably worse than that of
SWEM at time slot 6 and subsequent ones. This can be understood by the design
of CluStream, when a new instance is determined too far from the set of micro clus-
ters and cannot be absorbed by any, CluStream simply creates a new micro cluster
for it and merges other ones. As such, some new micro clusters have only one or
a few points whereas the others have many. This causes the clusters’ weights very
imbalance and usually leads to poor approximation on new changing distribution.
On the contrary, SWEM re-distributes the set of micro components by applying
the merging and splitting operations. A large component having the highest vari-
ance sum will be split whilst two small ones will be merged if they are sufficiently
close. Such operations not only discretely re-distribute micro components in the
entire data space but also manage to make the weight of each component not much
different from one another. Consequently, new evolving changes in the stream can
be essentially approximated by SWEM. As in Figure 7, the SSQ value reported
at the last time slot of SWEM is only 180k whereas that of CluStream is 233k.

Incremental and Adaptive Clustering Stream Data over Sliding Window 673

1.E+07

6.E+07

1.E+08

2.E+08

2.E+08

3.E+08

3.E+08

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

Time slot index

S
u

m
 o

f
S

q
u

ar
ed

 D
is

ta
n

ce
s

S
S

Q
CluStream

SWEM

Fig. 7. Clustering quality comparison on
D4.K5.N100k.AB

0

10

20

30

40

50

60

TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10

Time slot index

N
u

m
b

er
 o

f
it

er
at

io
n

s

CluStream

SWEM

Fig. 8. Execution time comparison on
D4.K5.N100k.AB

In order to evaluate the execution time of two algorithms, we continue using
D4.K5.N100k.AB. The maximal number of iterations of both algorithms is set
to 50 and the execution time is measured in terms of this value. Figure 8 reports
the performance of two algorithms at each time slot. At the first time inter-
val, SWEM uses a slightly more number of iterations than Clustream. For the
next four ones, the number of iterations of both algorithms reduces considerably
since the dataset’s distribution is steady. At the critical time slot 6, both algo-
rithms reach the maximum value due to the change in distribution. However, it
is interesting to observe the results in the subsequent intervals. While SWEM’s
iterations reduces sharply, that number of CluStream remains very high. This
is attributed to the fact that SWEM computes a set of micro components for
each time slot separately; yet it always uses the converged models of the previous
time slot as the initial parameters for the next one. This approach usually makes
the converged parameters to be quickly achieved if the stream distribution does
not significantly change between two consecutive time slots. On the other hand,
CluStream always tries to update new data instances into a set of micro clusters
maintained so far in the stream (regardless of how much the current distribution
is different or similar from the past one). Consequently, CluStream often needs
more time to converge even in the case the distribution is stable between time
intervals. As observed from Figure 8, the difference in execution time of two
algorithms is clearly reflected in the last four time slots of the stream.

6 Conclusions

In this paper, we have addressed the problem of clustering data streams in a
sliding window, one of the most challenging mining model. We proposed SWEM
algorithm that is able to compute clusters in a strictly single scan over the
stream and work within confined memory space. Importantly, two techniques of
splitting and merging components have been developed in SWEM in order to
address the problem of time-varying data streams. The feasibility of our proposed
algorithm was also verified via a number of experiments. Moreover, SWEM has
a solid mathematical background as it is designed based on the EM technique.
Such a mathematically sound tool has been shown to be stable and effective in

674 X.H. Dang et al.

many domains despite the mixture models it employs being assumed to follow
multivariate Gaussian distributions.

References

1. Charu, C.A., Jiawei, H., Yu, P.S.: A framework for projected clustering of high
dimensional data streams. In: VLDB conference, pp. 852–863 (2004)

2. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: A framework for clustering evolving
data streams. In: VLDB Conference, pp. 81–92 (2003)

3. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in
data stream systems. In: PODS, pp. 1–16 (2002)

4. Babcock, B., Datar, M., Motwani, R.: Sampling from a moving window over stream-
ing data. In: SODA, pp. 633–634 (2002)

5. Babcock, B., Datar, M., Motwani, R., O’Callaghan, L.: Maintaining variance and
k-medians over data stream windows. In: PODS (2003)

6. Moses, C., Liadan, O., Better, R.P.: Streaming algorithms for clustering problems.
In: ACM symposium on Theory of computing, pp. 30–39 (2003)

7. Cao, F., Ester, M., Qian, W., Zhou, A.: Density-based clustering over an evolving
data stream with noise. In: SDM (2006)

8. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: SIGKDD
Conference, pp. 133–142 (2007)

9. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining stream statistics over
sliding windows. In: SODA, pp. 635–644 (2002)

10. Garofalakis, M., Gehrke, J., Rastogi, R.: Querying and mining data streams: you
only get one look a tutorial. In: SIGMOD Conference (2002)

11. Giannella, C., Han, J., Pei, J., Yan, X., Yu, P.S.: Mining Frequent Patterns in Data
Streams at Multiple Time Granularities. Next Generation Data Mining (2003)

12. Guha, S., Meyerson, A., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering Data
Streams: Theory and Practice. IEEE TKDE 15 (2003)

13. Guha, S., Mishra, N., Motwani, R., O’Callaghan, L.: Clustering Data Streams. In:
Proc. Symp. on Foundations of Computer Science (November 2000)

14. Han, J., Kamber, M.: Data mining: concepts and techniques (2001)
15. Liadan, O., Nina, M., Sudipto, G., Rajeev, M.: Streaming-data algorithms for high-

quality clustering. In: ICDE (2002)
16. Nesime, T., Ugur, Ç., Stanley, B.Z., Michael, S.: Load shedding in a data stream

manager. In: VLDB, pp. 309–320 (2003)
17. Ueda, N., Nakano, R.: Deterministic annealing em algorithm. Neural Netw. 11(2),

271–282 (1998)
18. Aoying, Z., Feng, C., Ying, Y., Chaofeng, S., Xiaofeng, H.: Distributed data stream

clustering: A fast em-based approach. In: ICDE Conference, pp. 736–745 (2007)
19. Zhu, Y., Shasha, D.: Statstream: Statistical monitoring of thousands of data

streams in real time. In: VLDB Conference (2002)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 675–688, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Alignment of Noisy and Uniformly Scaled Time Series

Constanze Lipowsky, Egor Dranischnikow, Herbert Göttler, Thomas Gottron,
Mathias Kemeter, and Elmar Schömer

Institut für Informatik, Johannes Gutenberg-Universität Mainz
55099 Mainz, Germany

{lipowsky,dranisch,goettler,gottron,
schoemer}@informatik.uni-mainz.de, kemeter@gmail.com

Abstract. The alignment of noisy and uniformly scaled time series is an
important but difficult task. Given two time series, one of which is a uniformly
stretched subsequence of the other, we want to determine the stretching factor
and the offset of the second time series within the first one. We adapted and
enhanced different methods to address this problem: classical FFT-based
approaches to determine the offset combined with a naïve search for the
stretching factor or its direct computation in the frequency domain, bounded
dynamic time warping and a new approach called shotgun analysis, which is
inspired by sequencing and reassembling of genomes in bioinformatics. We
thoroughly examined the strengths and weaknesses of the different methods on
synthetic and real data sets. The FFT-based approaches are very accurate on
high quality data, the shotgun approach is especially suitable for data with
outliers. Dynamic time warping is a candidate for non-linear stretching or
compression. We successfully applied the presented methods to identify steel
coils via their thickness profiles.

Keywords: Time series, linear time warping, alignment, stretching factor, offset,
FFT, bounded dynamic time warping, shotgun analysis, linear regression.

1 Introduction

Given two time series X and Y , where Y is a subsequence of X in the sense that,
for a human observer, Y looks similar to a part of X , we want to find an alignment
of X and Y . However, compared to X the values of Y are more or less distorted.
What makes the problem worse is the fact that Y is either stretched or compressed
relative to its corresponding part of X . Now, our aim is to align the two data series
automatically, that means to find the counterpart of Y within X in spite of distortion
and stretching or compression. To achieve this, we need to determine the offset and
the stretching or compression factor of Y relative to X . Figure 1 illustrates this situ-
ation: The two plotted data series look similar but are not easy to compare by a com-
puter because the thinner, brighter one is stretched relative to the thicker, darker one.

This problem is highly relevant in practice, e.g., in steel production where the
problem was posed and our test data comes from. All our methods can also deal with
overlapping data series. The assumption that the second time series is part of the first
one is not necessary but is true for the following practical example.

676 C. Lipowsky et al.

In the production of steel, coils are important (semi-finished) goods. A coil is a flat
wound up steel strip of a certain width and thickness and varying length from a few
hundred up to several thousand meters. During the production process a coil passes
through different machines and steps. It is repeatedly unwounded, lumbered, cut into
pieces, welded together with parts of other coils and wound up again. In between the
production steps the coils are stored in the company’s interim storage facility. In order
to control the whole process and to retrace the origin of a certain piece of steel, it is
important to be able to follow a coil and/or pieces of it throughout the whole
production process. Therefore, the company iba AG in Fürth, Germany came up with
the idea to derive a unique identification of each coil via its thickness profiles, the so
called “fingerprints” [1], similar to the fingerprints which are unique for humans. The
thickness of each coil is measured in certain fixed time intervals before and after each
production step (e.g. every 10 ms). The varying throughput speed during this process
is measured through the varying velocity of the rollers. So, it is possible to convert the
time based data to locations on the steel strip – an information which is more interes-
ting in the context of quality control. Based on these measures the thickness of the
coil at certain positions or in certain discrete distances (typically every ten centi-
meters) is calculated by linear interpolation. Two fingerprints of the same coil after
one and before the next production step are always similar but not identical. Diffe-
rences arise due to different measuring devices, measuring inaccuracies, failure of
measuring devices and the generally difficult circumstances of the production process
(dirt, steam, large temperature differences and changes in the material). Surprisingly,
some particular production steps (e.g. galvanization) do not change the fingerprint too
much, so it is still possible to recognize the coil afterwards with our techniques.

Inaccuracies in thickness measuring lead to vertical errors, inaccuracies in speed
measurement cause horizontal displacements. Because of the latter ones, it is not
possible to find the optimal starting position of the second fingerprint within the first
one by simply minimizing the mean squared error between the values of the two data
series. As can be seen in figure 1, it is necessary to stretch one of the two fingerprints
like an elastic band before it is possible to calculate a good alignment of the two data
series.

Our main aim was to develop algorithms to align two fingerprints of the same coil
after one and before the following production step. Therefore, we have to deal with
vertical and horizontal errors as described above. In order to be able to compare the
two data series, we consider one fingerprint as fixed (we will refer to it as the “fixed
coil”) and transform the other coil (the “align coil”) onto the same scale. The
necessary stretching/compression of the align coil corresponds to a horizontal scaling.
An additional difficulty is that in most production steps short pieces of the coil are cut
off at the beginning and at the end, because they have been damaged or are
inhomogeneous (head and tail scrap). Hence, we also have to find the starting position
of the align coil within the fixed coil. This corresponds to a positive offset. So, the
assumption holds that the second data series is an inner part of the first one.

Even though all described methods have been developed, adapted or/and chosen to
solve the described problem for thickness profiles of steel coils, they can also be
applied to other data sets. We successfully used them on width profiles of steel coils
and made some promising experiments on sea shell data. Like trees, sea shells form

 Alignment of Noisy and Uniformly Scaled Time Series 677

a)

b)

Fig. 1. Two fingerprints of the same coil after one and before the next production step: a) the
two profiles below each other, b) the two profiles in the same window: Obviously, there are
similarities but those similarities are not easy to detect automatically when comparing the two
series straight away because of the horizontal stretching/compression

annual “rings”1 which can be compared in order to recognize particular environmental
influences (e.g., extremely warm and cold years or the eruption of a volcano) or to
reconstruct a chronology.

In general, there are two different approaches: Either to calculate/estimate the
horizontal scaling first and figure out the offset in a second step or to calculate these
two parameters simultaneously. We developed methods for both variants, implemen-
ted them in Java and examined them on different real and synthetic data sets.

The rest of the paper is organized as follows: In section 2 we briefly deal with
related work. In particular, we will explain some algorithms and ideas which
motivated our approaches to solve the task of estimating a horizontal scaling and an
offset in time series. We then formally describe the problem in section 3 and describe
some aspects of the data we worked with. In section 4 we explain the different
algorithms and approaches we used. The results and evaluation methodology of our
experiments are listed in section 5, before we conclude the paper in section 6 with a
discussion of our findings and a look at future work.

1 In sea shells, these structures are not circular but differences in the annual rates of shell

growth show up as lines with different distances and can be measured, too.

678 C. Lipowsky et al.

2 Related Work

Our problem is a special form of time series analysis. There are similar problems in
image processing, automatic speech recognition, dendrochronology and bioinfor-
matics. We took the following approaches into account, modified and enhanced them
where necessary and applied them to our data.

2.1 Calculation of Offset and Scaling Based on Fast Fourier Transform (FFT)

To find an alignment of two data series with the same scaling, a naïve approach is to
calculate the mean squared error for each possible offset. More precisely, we place the
align coil at the starting position of the fixed coil first and slide it point by point to the
right afterwards. The mean squared error between the time series is calculated for
each possible position. The best match comes with the least error and its starting
position is the offset. The whole procedure can be accelerated by carrying out the
necessary operations via FFT, which reduces the quadratic run time to)log(nnO ⋅ for

the calculation of the correlation (for details see section 4.1).
We can repeat this process for every possible scaling and finally pick the

combination of scaling and offset which delivers the least mean squared error over all
possible combinations (see section 3.1 and section 4.1).

Furthermore, it is even possible to determine the scaling factor directly by using
FFT [2]. It shows up as an impulse in the frequency domain (see section 4.2).

2.2 Dynamic Time Warping (DTW)

Dynamic time warping [3,4] is used for pattern-recognition through comparison of
two data series, e.g., for image retrieval, handwriting retrieval, speech recognition and
to determine the age of a given piece of wood by comparing its annual rings’ structure
to the reconstructed dendrochronology of wood for thousands of years [5,6,7]. The
order of the data points stays unchanged, but each value in the second sequence is
associated with the “best fitting value” at an allowed position in the first one. Several
points in the second data series can be mapped onto the same point within the first
sequence and vice versa, as long as the order within each series remains unchanged.
Another restriction is that each point of the second data series has to be mapped on a
point of the first one. The entire process corresponds to finding a path in the matrix of
all possible point assignments, which minimizes the squared error. This optimization
problem can be solved via dynamic programming.

Run time and space of the so far described algorithm are quadratic. It is possible to
adapt the Hirschberg algorithm [8] to this task so that space becomes linear by only
doubling the run time. However, methods with quadratic run time are not suitable for
long data series as in our steel coil example where the series can have up to 30,000
data points. Since we figured out that the horizontal scaling of our data series is
always between 0.9 and 1.1, we can restrict the matrix to a corridor around the
diagonal, which reduces the run time to)(nbO ⋅ where b is the width of the corridor

and thus, speed up the process a lot [5,9]. This variation of DTW is called Bounded
Dynamic Time Warping (BDTW, see section 4.3).

 Alignment of Noisy and Uniformly Scaled Time Series 679

2.3 Shotgun Alignment

Bioinformatics deals with alignment problems, too [10,11]. At first glance, these
problems are quite different from our problem because there it is the aim to calculate
an optimal or at least a good alignment of two DNA or protein sequences which are
represented as strings over a finite alphabet. But, when a coil consists of parts which
were welded together, our problem looks in a way similar to alignment-problems of
pieces of DNA in bioinformatics. So, we had the idea to get inspiration from this field
of research. Instead of calculating an alignment of two DNA or protein sequences, we
have to calculate an alignment of two different but similar discrete data series. An
important difference is that, in our case, we have no fixed character set but different
discrete numbers/thicknesses. We can deal with this difference by comparing the
interpolated thicknesses at certain positions itself instead of using weights for each
possible pair of characters. A second difference is that gaps in the middle of a coil do
not occur or are at least extremely rare.

An additional problem is to calculate the horizontal scaling, which can be
addressed by the following idea: Venter et al. [12] were the first to use the shotgun
sequencing method to figure out the DNA-sequence of the human genome. Their idea
was to produce several copies of the human genome, to cut each copy of the huge
human chromosomes randomly into very small pieces, to sequence these pieces and to
reassemble them automatically by using the overlaps. This process was much faster
than the techniques used in the public Human Genome Project and only in highly
repetitive regions less accurate (see section 4.4).

3 The Data Series

3.1 Definition of the Alignment-Problem

Given two data series X = 0x , 1x , 2x , …, 1−nx and Y = 0y , 1y , 2y , …, 1−my we

want to minimize the mean squared error of the overlapping part.
The problem is that it is not possible to compare the given data points directly

because of a different horizontal scaling. This scaling is assumed to be constant for
each pair of data series. According to our studies, this delivers good results for the
alignments of coil fingerprints. In other practical examples, we might have to cut the
data series into smaller pieces and to calculate a scaling for each piece separately.

If we calculate the scaling s first, keep one data series unchanged (the fixed coil)
and adapt the other data series (the align coil) by linear interpolation

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦)()(~
1 isisisi yyisisyy ⋅+⋅⋅ −⋅⋅−⋅+=

we can calculate the mean squared error for each possible starting position of the

modified second data series Y
~

 = 0
~y , 1

~y , 2
~y , …, 1

~
−ry with ⎣ ⎦msr ⋅= within the

first data series X .
As explained before, in steel production a coil is at most trimmed between two

production steps. So, the second fingerprint should be found completely inside the
first one. Hence, we can use the following formula to calculate the mean squared error

680 C. Lipowsky et al.

∑
−

=
+ −⋅=

1

0

2)~(
1 r

i
iit yx

r
MSE

where 0≥t is the offset and 0≥r is the length of the corresponding part of Y
within X .

It is necessary to transform the second data series vertically first, so that the mean
values of both data series are equal, because MSE as distance measure is influenced
by different values.

3.2 Uniqueness of the Fingerprints

Before actually aligning thickness profiles, we wanted to make sure that such a profile
is really characteristic for a certain coil/piece of steel in a sense that it satisfies the
fingerprint idea. Therefore, we wanted to know, how long a piece has to be to
determine its origin or – in other words – how many values we need to make a deci-
sion. Since we had only a limited set of real data, we additionally generated and exa-
mined synthetic data to get a more general idea. As we figured out, our example data
series can be modeled as a damped random walk, in our case as a discrete Ornstein-
Uhlenbeck-process [13]. The measuring point 1+ix can be calculated as follows

zxx ii +⋅=+ α1

where α is a damping factor and the random variable),0(2σNz
d
= is normally

distributed with mean 0 and standard deviation σ .
We estimated the parameters α and σ of this damped random walk from our data

sets to generate synthetic data series. Visually those artificial data series could not be
distinguished from a real data series by experts from the iba AG (“Turing test”). Then,
we generated random walk series with 1,000,000 values, copied pieces of a given
length by chance, added some realistic noise to those pieces and tried to locate their
starting position within the original data series. We figured out that the noise is
normally distributed and, thus, can be modeled as white noise (with different
intensities in decibel).

Our experiments showed that it is extremely unlikely to find two corresponding
fingerprints by chance: Pieces of 1,500 points were located correctly in 99.8% of all
test. Data series of 3,000 points or more can be considered as unique. As for the steel
coils we usually have more than 8,000 data points, their thickness profiles can
definitely be seen as fingerprints.

4 Algorithms

In this section we describe several algorithms we developed, adapted or simply
applied to solve the task of aligning noisy and uniformly scaled time series.

4.1 Naïve Alignment (Without and With FFT)

The simplest approach is to calculate the optimal position of the align coil within the
fixed coil by directly minimizing the mean squared error. As we found out empirically,

 Alignment of Noisy and Uniformly Scaled Time Series 681

the horizontal scaling always varies only between 0.9 and 1.1, we try every possible
scaling in between (the number is limited because our data sets are discrete, so it is
sufficient to try each scaling that maps at least one point of the align coil onto a different
one of the fixed coil). We then choose the parameters for scaling and offset that produced
the smallest mean squared error. Obviously, this process is quadratic for each possible
scaling and therefore quite time consuming, but it can be accelerated through the use of a
fast Fourier transform as follows. The calculation of the mean squared error can be split
into three sums

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⋅⋅−⋅=−⋅= ∑ ∑∑∑

−

=

−

=
+

−

=
+

−

=
+

1

0

1

0

2
1

0

2
1

0

2 ~~2
1

)~(
1 r

i

r

i
iiit

r

i
it

r

i
iit yyxx

r
yx

r
MSE

where the first one varies only by one value when the offset is moved one step further,
the second one is the correlation and can be calculated simultaneously for all possible
offsets in the frequency domain with a variation of the common FFT-based
calculation of the convolution [14] and the third one is constant for all offsets.

4.2 Calculation of the Scaling in the Frequency Domain

It is also possible to calculate the scaling directly in the frequency domain. The idea
comes from the field of image processing. We followed the course of action proposed
in [2] and slightly optimized it for the one dimensional data.

Given a function)(1 tf and its scaled and translated replica)()(12 hstftf += , their

corresponding Fourier transforms 1F and 2F will be related by

xshiexsF
s

xF
121

12)(
1

)(
−−−= π

Therefore the following relation for the magnitudes of 1F and 2F (1m and 2m

respectively) holds after converting the x-axis to the logarithmic scale

)(
1

)(12 aym
s

ym −=

where xy log= and sa log= .

Thus the scaling is reduced to a translational movement and can be found by the
phase correlation technique, which uses the cross-power spectrum

zaie
zMzM

zMzM
zC π2

21

21

)()(

)()(
)(−

∗

∗
=

⋅
⋅=

where 1M denotes the Fourier transform of 1m and *
2M denotes the complex

conjugate of the Fourier transform of 2m .

By taking inverse Fourier transform on the cross-power spectrum, we will have an
impulse, which is approximately zero everywhere except at the sought-after
displacement a. After scaling the data, we can use the same phase correlation
technique for finding the offset h .

682 C. Lipowsky et al.

Although the described theory can be applied to our problem, there are some
subtleties which must be considered in order to get good results in practice. The
problems arise because the assumption that one function is a replica of another is not
entirely true due to noise and other errors. On the other hand, we use the discrete
Fourier transform for concrete computation and this can be a source of further errors
due to aliasing and other effects.

The following course of action seems to yield the best results:

1. Not the magnitude spectra iM but log-magnitude spectra iMlog should be used.

2. Because of the fact, that the Fourier spectrum is conjugate symmetric for real
sequences, only one half of the spectrum should be used.

3. Only a small window in the middle of the logarithmic scale can be used for our
purposes. This is due to the fact, that the first points on the logarithmic scale are
calculated by means of the linear interpolation from only very few data points in
the original lattice and thus contain not much information. On the other hand, it
seems as if the higher frequencies were the consequence of the noise and do not
comprise any useful information. Experiments have shown that the choice of the
right window is the most crucial.

The complexity of this approach is dominated by the costs of getting the Fourier
transforms and therefore is of time complexity)log(nnO ⋅ when using the fast Fourier

transform.
The sensitive spot of this technique is the determination of the right scaling. The

noise in the data has a negative impact on the correctness of the result yielded by the
algorithm. Using the FFT accelerated approach described in 4.1 to determine the
horizontal scaling gives better results, but is also susceptible to extreme noise.

This technique is a good choice for time series with little noise, since the
probability of an incorrect matching rises with the level of the noise.

4.3 Bound Dynamic Time Warping with Regression Analysis

As mentioned before, BDTW can be used to align two given coils, as well. Each point
of the align coil is mapped on the best fitting point of the fixed coil while maintaining
the order in both series. Then, each pair of mapped indices)|(ii lk , i.e., data point

ikx

of the fixed coil has been mapped on data point
il

y of the align coil, is interpreted as

a point in a two dimensional coordinate system. Then, the best linear approximation
bkmkf +⋅=)(of all those points is calculated by regression analysis. Therefore, the

squared error

∑
−

=

−=
1

0

2))((
p

i
ii kflSE

is minimized which can be easily done by solving a system of linear equations.
Above, m is an estimation for the horizontal scaling of the align coil, b is an

estimation for the offset. Figure 2 shows a mapping illustrating the alignment.

 Alignment of Noisy and Uniformly Scaled Time Series 683

Fig. 2. BDTW shown at the example of two coils

4.4 Shotgun Analysis (Without and With Regression Analysis)

The method of shotgun sequencing and reassembling the parts afterwards was
invented by Celera Genomics in the Human Genome Project [12] and inspired us for
another approach: The shorter the align coil, the less impact has the usually small
horizontal scaling on the alignment. Hence, our idea was to cut the align coil into
pieces of a certain length sm (e.g., of 50 meters = 500 values) and to locate these

snippets within the fixed coil by a normal naïve alignment where no horizontal
scaling is taken into account. Figure 3 gives an impression how the method works.

The median of the differences between the calculated starting positions of every
pair of subsequent snippets divided by the length of the snippets can be used as
horizontal scaling between the two data series. After an interpolation step as described
in 3.1 the offset of the whole align coil can be calculated naïvely by minimizing the
mean squared error.

Fig. 3. The “best” positions of the different snippets of the second coil within the first one are
shown by boxes. As you can see, the first four snippets are positioned extremely good, while
the positions of some other snippets are inconsistent.

The naïve alignment at the end is not necessary. It is possible to calculate scaling
and offset simultaneously by linear regression: The expected and the found starting
position of each snippet is interpreted as a point in a two dimensional coordinate

684 C. Lipowsky et al.

system (ik is the expected starting position, il is the found starting position). Again

the best linear approximation bkmkf +⋅=)(of all those points is calculated, where m

is an estimation for the horizontal scaling of the align coil and b is an estimation for
the offset. The computation time is quadratic or more precisely)(nmcO s ⋅⋅ where c

is the number of the snippets and sm is the length of each snippet.

One problem is that the order of the pieces can be inconsistent, especially when a
piece seems to fit well on different positions inside the fixed coil, what can be true for
quite a number of them. To avoid this, we used only characteristic snippets to
construct the regression line. A snippet is assumed to be characteristic, if the error at
its best fitting position is considerably lower than at any other position.

Obviously, this is a heuristic approach. On high quality data, it might be less
accurate than the algorithms described before (even though it still produces good
results that cannot be distinguished from the other results visually in most cases). Its
main advantage is that it is very tolerant to noise and local outliers. This occurs quite
often in practice because of measurement failures and/or dirt on a coil. Extremely bad
fitting snippets can simply be ignored.

4.5 Alternative Quality Criteria

Instead of the mean squared error two other quality criteria can be used, the (ordinary)
correlation or the coefficient of parallel variation2 [15]. The latter can be seen as a
signum function on the differences between data points. An advantage of the correlation
is that it implies a normalization of the data. It is tolerant to different means and to a
vertical scaling of the data. The coefficient of parallel variation is even more tolerant to
noise, as it merely considers the direction of a change what makes it especially helpful
for the naïve approach on bad data. It can also be calculated via our FFT algorithm.

5 Experiments

To analyze the quality of the different algorithms which we described in section 4, we
ran several experiments. They had different aims, provided insights in different
aspects of the algorithms’ performance and reflected different tasks in our application
scenario of steel coil tracking.

The time complexity of all algorithms has been explained above. In practice, they
all need 0.5 to 3 seconds to construct an alignment of two data series with 5,000 to
8,000 measuring points. It is hard to compare their run time exactly because it
depends on length and structure of the data series.

5.1 Determination of the Horizontal Scaling

Since the horizontal scaling was unknown for all practical examples, we used syn-
thetic data to show that the developed methods are able to determine it correctly.
Therefore, we created “coil data” with head and tail scrap artificially: We first created

2 In related literature, we also encountered the German technical term “Gleichläufigkeitskoeffizient”

quite often.

 Alignment of Noisy and Uniformly Scaled Time Series 685

1,000 time series modeled by a damped random walk (the “fixed coils”). Then, we
scaled and trimmed a copy of these data and added some white noise to produce cor-
responding “align coils”. Since, for these data, we know the scaling (and the offset),
they are perfectly suitable for our tests (a gold standard). The average difference
between real and calculated scaling was less then 4105 −⋅ for all our methods, which
means that all methods have an average accuracy of more than three decimal places.

5.2 Recognition of Head and Tail Scrap

The intention of this experiment was to analyze the capability of the algorithms to
estimate the parameters for offset and scaling. If head and tail scrap are calculated
correctly, also the scaling must have been determined correctly. This is clear because
our methods calculate only scaling and offset. The ending position is computed from
these two parameters afterwards.

We used different data series for this test. On the one hand, we used real world data
of coil thickness profiles recorded during steel production at the end of the first and
before the second production step. On the other hand, we used again synthetic data.

5.2.1 Real World Data
As mentioned before, the real world data is noisy under several aspects: First of all, the
devices measuring the thickness are based on different technologies and, therefore, have
a different resolution and accuracy. Second, the speed of the steel strip while passing
through the production plant is measured indirectly and at a different point than the
thickness. This setup causes the observed differences in the horizontal scaling in the
data. In the beginning of the research project the steel mill voestalpine AG in Linz,
Austria provided us with information on 20 coils. We had two data series for each coil,
one measured after the hot rolling mill and one right before the next production step, the
cold rolling mill. In addition, we knew the real length of the coil along with the amount
of steel cut off at the beginning and at the end of the coil before the second production
step (head and tail scrap). This information should have been sufficient to use it as a
gold standard to compare our calculated results – assumed the data were precise enough.
Unfortunately, the production conditions did not allow a correct measurement of the
parts that had been cut off, so the values given to us finally turned out to be only rough
estimates. A visual analysis of the alignments revealed that our methods delivered far
more accurate results. Such an alignment is shown in figure 4.

Fig. 4. An alignment of two fingerprints of the coil already shown in figure 1

686 C. Lipowsky et al.

5.2.2 Artificial Data
To run tests on a larger scale and to be able to evaluate the results, we again used the
artificial data described in 5.1. Apart from white noise, scaling and trimming of a coil
at the beginning and the end we observed other, more rare and particular noise in real
world coil data. The devices to measure and record the thickness might temporarily
fail. In this case the data series contains a long period (several hundred data points) of
zero values. Another problem is dirt, pieces of steel or holes in the coil. They cause
extremely short (1 to 5 data points) peaks in the time series. This kind of noise is
difficult to handle.

To analyze how robust the algorithms are towards these phenomena we created
further artificial data which contained also this kind of noise. The results of our test
on synthetic data are shown in table 1 and 2.

Table 1. Accuracy of the different methods using MSE as quality criterion: Fraction of
correctly aligned data series: An alignment was classified as correct when the real and the
calculated starting and ending position of the second data series within the first one where no
more than 5 points away from each other (equal to half a meter)

method normal with 3 peaks with 3 zero
lines

with both

Alignment with FFT 1.0 0.659 1.0 0.634
BDTW with Regression 1.0 0.117 0.546 0.107
Shotgun Analysis 0.952 0.953 0.96 0.945

Table 1 shows e.g., that in all “simple” cases the second data series was aligned

correctly to the first one with the FFT-based approach described in section 4.1 and
with the BDTW method described in 4.3, whereas the Shotgun Analysis described in
4.4 achieves comparably better results on data series with errors (e.g., still 94.5%
correct alignments of all data series with zero lines and peaks).

Table 2. Accuracy of the different methods using MSE as quality criterion: Average difference
(in data points) between real and found starting and ending position of the second data series
within the first

Method normal with 3 peaks with 3 zero
lines

with both

Alignment with FFT 0.51|0.20 17.95|17.89 0.51|0.19 19.73|19.65
BDTW with Regression 1.62|1.15 119.85|119.88 7.79|7.72 115.20|115.26
Shotgun Analysis 1.64|1.55 1.72|1.64 1.72|1.61 6.60|6.54

In table 2, you can see the average difference of “real” and calculated head and tail

scrap. The first number stands for the average difference in head scrap, the second
one for the average difference in tail scrap. Here, it becomes clear that the Shotgun
Analysis is only slightly less accurate than for example BTDW with Regression on
good data. The result in table 1 seems worse because there, an alignment is
categorised as wrong if its starting or ending position differs 6 or 7 instead of the
allowed maximal 5 points from the “real” starting or ending position. This difference
can hardly be noticed by visual inspection.

 Alignment of Noisy and Uniformly Scaled Time Series 687

5.3 Searching a Database for Fitting Pairs of Fingerprints

The last test comprised again the fingerprint idea. For this analysis, we were provided
with data of about 1,000 hot rolled strips and 191 cold rolled strips. The latter ones
were the values of 191 coils among the 1,000 whose thickness was measured again at
the beginning of the next production step. Here, we had a gold standard from the steel
producers database, providing unique numerical identifiers for the coils. Our task was
to identify the 191 among the 1000. Even with the simplest approach described in 4.1,
we achieved the very high accuracy of 98%, that means, given the fingerprint of a coil
from the beginning of the second production step, we where able to identify the
corresponding one from the end of the first production step in most cases.

To accelerate the process and as for this matching task we do not need highly
precise alignments, it is possible to compress the data by a method called piecewise
aggregate approximation (PAA). Here, e.g. 30 consecutive points are mapped onto
one new point by calculating their mean value. This way one gets a compression
factor of 30. This gives a considerable speed-up since many candidate coils can be
excluded fast. On the compressed data, we got an even higher accuracy of 100%
because small inaccuracies are smoothened through the averaging. In this way, it is
possible to identify the corresponding hot rolled strip to a given cold rolled strip
within 1,000 candidates in less than 5 seconds.

6 Conclusions and Future Work

As illustrated above, the different methods have different strengths and weaknesses:
Exact methods are more precise on good data sets but less robust to noise and errors.
Therefore, for the practical use, it would be a good idea to have an automated choice
of the alignment method based on the peculiarities of the involved data series.
Another idea is to manipulate the data in a way that extreme outliers are “smoothed”
before the alignment. We already made some experiments and got promising results
but have not yet tested them systematically.

In some (exceptional) case, there can be gaps within a data series (e.g., because an
erroneous part has been cut out). It is already possible to deal with those cases by
cutting such a data series into two pieces and then aligning each piece. The shotgun
method is in principle able to ignore the missing parts and to calculate the scaling
only for the segments that can be found in both data series. An additional task would
be to detect such gaps automatically and to calculate two different offsets and scalings
for the two parts.

So far, our methods are restricted to a linear/constant horizontal scaling, which
might not be true in all practical examples. Some of our methods (especially the ideas
described in 4.3 and 4.4) have the potential to overcome this limitation, e.g., by
replacing the linear regression by more sophisticated methods.

An alternative in practice is to compute alignments based on width profiles instead
of thickness profiles which is also possible with the described methods. Besides, the
described methods can basically be used to align any two data series of numerical
values. Another practical example we are dealing with is the alignment of annual sea
shell growth measurements to obtain a chronology as described above (see section 1).
Therefore, it would be good to allow the alignment of more than two data series.

688 C. Lipowsky et al.

Acknowledgements

We want to thank the voestalpine AG in Linz, Austria for the allocation of real world
fingerprint data from steel coils and the iba AG in Fürth, Germany for good and
interesting cooperation.

Remarks

A selection of the methods described in this paper has been integrated into the freely
available tool iba-Analyzer which can be found at the website of the iba AG at
http://www.iba-ag.com/.

References

[1] Anhaus, H.: Verfahren und Vorrichtung zur Identifizierung eines Teilstücks eines
Halbzeugs, Patentblatt DE102006006733B3 (August 23, 2007)

[2] Reddy, B.S., Chatterji, B.N.: An FFT-Based Technique for Translation, Rotation, and
Scale-Invariant Image Registration. IEEE Transaction on Image Processing 5(8) (1987)

[3] Toyoda, M., Sakurai, Y., Ichikawa, T.: Identifying similar subsequences in data streams.
In: Bhowmick, S.S., Küng, J., Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 210–
224. Springer, Heidelberg (2008)

[4] Chu, S., Keogh, E., Hart, D., Pazzani, M.: Iterative Deepening Dynamic Time Warping
for Time Series. In: Proceedings of the Second SIAN International Conference on Data
Mining (2002)

[5] Ratanamahatana, C.A., Keogh, E.: Everything you know about Dynamic Time Warping
is Wrong. In: 3rd Workshop on Mining Temporal and Sequential Data, in conjunction
with 10th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (KDD
2004), Seattle, WA (2004)

[6] Euachongprasit, W., Ratanamahatana, C.A.: Efficient multimedia time series data
retrieval under uniform scaling and normalisation. In: Macdonald, C., Ounis, I.,
Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 506–
513. Springer, Heidelberg (2008)

[7] Wenk, C.: Algorithmen für das Crossdating in der Dendrochronologie, diploma thesis,
Freie Universität Berlin (1997)

[8] Hirschberg, D.S.: A Linear Space Algorithm for Computing Maximal Common
Subsequences. Commun. ACM 18(6), 341–343 (1975)

[9] Salvador, S., Chan, P.: Fast DTW: Toward Accurate Dynamic Time Warping in Linear
Time and Space. Intelligent Data Analysis 11(5), 561–580 (2007)

[10] Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for
similarities in the amino acid sequence of two proteins. Journal of Molecular Biology 48,
443–453 (1970)

[11] Smith, T.F., Waterman, M.S.: Identification of common molecular subsequence. J. Mol.
Biol. 147, 195–197 (1981)

[12] Venter, L.C., et al.: The Sequence of the Human Genome. Science 291, 1304–1351 (2001)
[13] Uhlenbeck, G.E., Ornstein, L.S.: On the theory of Brownian Motion. Phys. Rev. 36, 823–

841 (1930)
[14] Vetterling, W.T., Teukolsky, S.A., Press, W.A., Flannery, B.P.: Numerical Recipes in C,

2nd edn. Cambridge Univ. Press, Cambridge (1999)
[15] Kemeter, M.: Effizientes Alignment von Stahlband-Fingerprints, diploma thesis,

Johannes Gutenberg-Universität Mainz (2008)

Extracting Decision Correlation Rules

Alain Casali1 and Christian Ernst2

1 Laboratoire d’Informatique Fondamentale de Marseille (LIF),
CNRS UMR 6166, Aix Marseille Université

IUT d’Aix en Provence, Avenue Gaston Berger,
13625 Aix en Provence Cedex, France

alain.casali@lif.univ-mrs.fr
2 Ecole des Mines de St Etienne, CMP - Georges Charpak

880 avenue de Mimet, 13541 Gardanne
ernst@emse.fr

Abstract. In this paper, two concepts are introduced: decision correla-
tion rules and contingency vectors. The first concept results from a cross
fertilization between correlation and decision rules. It enables relevant
links to be highlighted between sets of patterns of a binary relation and
the values of target items belonging to the same relation on the twofold
basis of the Chi-Squared measure and of the support of the extracted pat-
terns. Due to the very nature of the problem, levelwise algorithms only
allow extraction of results with long execution times and huge memory
occupation. To offset these two problems, we propose an algorithm based
both on the lectic order and contingency vectors, an alternate represen-
tation of contingency tables.

1 Introduction and Motivation

An important field in data mining is related to the detection of links between
values in a binary relation with reasonable response times. In order to solve this
problem, Agrawal et al. (1996) have introduced levelwise algorithms which allow
the computation of association rules. Those express directional links (X → Y
for example), based on the support-confidence platform. While introducing liter-
alsets, Wu et al. (2004) propose computing positive and/or negative association
rules, with the aim of extracting rules such as ¬X → Y or ¬X → ¬Y or
X → ¬Y .

A literal is a pattern XY in which X is also called the positive part and Y
the negative part. To compute such rules, the authors always use the support-
confidence platform by redefining the support of a literal: the number of trans-
actions of the binary relation including X and containing no 1-item (item of
cardinality 1) of Y . Brin et al. (1997) propose the extraction of correlation rules,
where the platform is no longer based on the support or the confidence of the
rules, but on the Chi-Squared statistical measure, written χ2. The use of χ2 is
well-suited for several reasons:

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 689–703, 2009.
� Springer-Verlag Berlin Heidelberg 2009

690 A. Casali and C. Ernst

1. It is a more significant measure in a statistical way than an association rule;
2. The measure takes into account not only the presence but also the absence

of the items; and
3. The measure is non-directional, and can thus highlight more complex existing

links than a “simple” implication.

The crucial problem, when computing correlation rules, is the memory usage
required by levelwise algorithms. For a pattern X , the computation of the χ2

function is based on a table including 2|X| cells. Thus, at level i, we have to
generate the Ci

|I| candidates, in the worst case scenario, and to store them, as
well as the equivalent number of tables. If each cell is encoded over 2 bytes, at
the 3rd level, a levelwise algorithm thus requires for the storage of the tables,
still in the worst case scenario, 2.5 GB of memory, and 1.3 TB at the 4th level.
This is why Brin et al. (1997) compute only correlations between two values of a
binary relation. Using a given threshold MinCor, Grahne et al. (2000) show that
the constraint “χ2(X) ≥MinCor” is a monotone constraint. Consequently, the
set of rules resulting is a convex space (Vel, 1993). This set can be represented
by its minimal border, noted L (Hirsh, 1994). In the latter paper, the author
proposes a levelwise algorithm to compute this border. The deduction of the χ2

value for a pattern which belongs to the convex space is carried out by using an
approximation according to the values of the χ2 of the patterns for L included
in the current pattern.

On the other hand, when applying APC1 approaches in semiconductor manu-
facturing, it is important to highlight correlations between parameters related to
production in order to rectify possible drifts of the associated processes. Within
this framework, in collaboration with STMicroelectronics and ATMEL, our cur-
rent work is focused on the detection of the main parameters having an impact
on the yield. The analysis is based on CSV files of measurements associated with
production lots, whose characteristics are to have a huge number of columns (na-
ture of the measurements) with regard to the number of rows (measures). We
want to highlight correlations between the values of some columns and those of
a target column (a particular column of the file, the yield).

To solve these problems, we introduce in this article the concept of decision
correlation rules, a restriction of correlation rules containing a value of one target
column. In order to compute these rules:

1. We use the lectic order (Ganter and Wille, 1999) to browse the powerset
lattice;

2. We propose the concept of contingency vector: a new approach to the con-
tingency tables;

3. We show how to build the contingency vector of a pattern with a cardinality
i with the contingency vector of one of its subsets with a cardinality i − 1
(which is impossible with contingency tables); and

4. We take advantage of the lectic order, the contingency vectors and the re-
cursing mechanisms of construction to propose the LHS-Chi2 Algorithm.

1 Advanced Process Control.

Extracting Decision Correlation Rules 691

Finally, we carry out experiments on relations provided by the above mentioned
manufacturers, and compare our results with a levelwise approach proposed in
(Casali and Ernst, 2007).

The paper is organized as follows: in Section 2, the bases of correlation rules
and of the lectic order are recalled. Section 3 describes the concepts used for
mining decisional correlation rules and our algorithm. Experiments are detailed
in Section 4. As a conclusion, we summarize our contributions and outline some
research perspectives.

2 Related Work

In this section, the concepts of correlation rules (Brin et al., 1997) and of lectic
order (Ganter and Wille, 1999) are first recalled. We also introduce the Ls Al-
gorithm (Laporte et al., 2002), which allows the powerset lattice for a given set
of items to be enumerated, according to the lectic order.

2.1 Correlation Rules

Let r be a binary relation (a transaction database) over a set of items R = I∪T .
In our approach, I represents the values (or the items) of the binary relation
used as analysis criteria and T is a target attribute. For a given transaction,
the target attribute does not necessarily have a value. The computation of the
value for the χ2 function for an item X ⊆ R is based on its contingency table.
In order to simplify the notation, we introduce, in a first step, the lattice of the
literalsets associated with a pattern X ⊆ R. This set contains all the literalsets
that can be built up given X , and with a cardinality |X |.
Definition 1 (Literalset Lattice). Let X ⊆ R be a pattern, we denote by
P(X) the literalset lattice associated with X. This set is defined as follows:
P(X) = {Y Z such that X = Y ∪ Z and Y ∩ Z = ∅} = {Y Z such that Y ⊆
X and Z = X\Y }.
Example 1. The literalset lattice associated with X = {A,B,C} contains the
following elements: {ABC,ABC,ACB,BCA,ABC,BAC,CAB,ABC}.
Definition 2 (Contingency Table). For a given pattern X, its contingency
table, noted CT (X), contains exactly 2|X| cells. Each cell yields the support
of a literalset Y Z belonging to the literalset lattice associated with X, i.e. this
number represents the number of transactions of the relation r including Y and
containing no 1-item of Z.

Example 2. With the relation example r given in Table 1, Table 2 shows the
contingency table of pattern BC.

In a second step, for each cell Y Z of the contingency table associated with X ,
we compute its expectation value (or average). In other words, we measure the

692 A. Casali and C. Ernst

Table 1. Relation example r

Tid Item Target

1 BCF t1
2 BCE t1
3 BCF t2
4 BC -
5 BD t1
6 B -
7 ACF t1
8 AC -
9 AE t1

10 F t2

Table 2. Contingency table of pattern BC

B B
∑

raw

C 4 2 6
C 2 2 4∑

column 6 4 10

theoretical frequency in case of independence of the 1-items included in Y Z, see
formula (1).

E(Y Z) = |r| ∗
∏
y∈Y

Supp(y)
|r| ∗

∏
z∈Z

Supp(z)
|r| (1)

In order to compute the value of the χ2 function for a pattern X , for each
item Y Z belonging to its literalset lattice, we measure the difference between
the square of the support of Y Z and its expectation value, and divide by the
average of Y Z. Finally, all these values are summed (see formula (2)).

χ2(X) =
∑

Y Z∈P(X)

(Supp(Y Z)− E(Y Z))2

E(Y Z)
(2)

Brin et al. (1997) show that there is a single degree of freedom between the items.
A table giving the centile values in function of the χ2 value for X (Spiegel, 1990)
can be used in order to obtain the correlation rate for X .

Example 3. Continuing our example, the χ2 value for the pattern BC can be de-
veloped in a simple way: χ2(BC) = (4−6∗ 6

10)2

6∗ 6
10

+ (2−4∗ 6
10)2

4∗ 6
10

+ (2−6∗ 4
10)2

6∗ 4
10

+ (2−4∗ 4
10)2

4∗ 4
10

%
0.28. This value corresponds to a correlation rate of about 45%.

Unlike association rules, a correlation rule is not represented by an implication
but by the patterns for which the value of the χ2 function is larger than or equal
to a given threshold.

Definition 3 (Correlation Rule). Let MinCor (≥ 0) be a threshold given by
the end-user and X ⊆ R a pattern. If the value for the χ2 function for X is
larger than or equal to MinCor, then this pattern represents a valid correlation
rule.

Moreover, in addition to the previous constraint, many authors have proposed
some criteria to evaluate whether a correlation rule is semantically valid (Moore,

Extracting Decision Correlation Rules 693

1986). Generally, the Cochran criteria are used: all literalsets of a contingency
table must have an expectation value not equal to zero and 80% of them must
have a support larger than 5% of the whole population. This last criterium has
been generalized by Brin et al. (1997) as follows: MinPerc of the literalsets of
a contingency table must have a support larger than MinSup, where MinPerc
and MinSup are thresholds specified by the user.

Example 4. Let MinCor = 0.25, then the correlation rule materialized by the
pattern BC is valid (χ2(BC) % 0.28). However, the correlation rule represented
by the pattern Bt1 is not valid (χ2(Bt1) % 0.1).

2.2 Lectic Order

The lectic order, denoted by <lec, makes it possible to enumerate all the subsets
of an itemset I. This order allows the closed lattice of a binary relation (Ganter
and Wille, 1999) to be computed, or to serve as a basis for the computation of
the Partition Cube (Laporte et al., 2002): a lossless reduction of the (iceberg)
data cube. The definition of the lectic order is given below:

Definition 4 (Lectic Order). Let I be a set of items. Let us suppose that
the items are totally ordered and therefore comparable two by two via an order
denoted by #. If X and Y ⊆ I, then we have: X <lec Y ⇔ max�(X\(X∩Y)) #
max�(Y \(X ∩ Y)). In other words, we deprive X and Y of their common part,
and we see whether the last element of X is smaller (according to the # order)
than the last one of Y .

Example 5. Let us consider the set I = {A,B,C} totally ordered according to
the lexicographic order. The enumeration of the subsets of I, according to the
lectic order, produces the following result: ∅ <lec A <lec B <lec AB <lec C <lec

AC <lec BC <lec ABC.

In order to enumerate all the subsets of I according to the lectic order, the Lec-
tic Subset Algorithm, noted Ls (Laporte et al., 2002), is used. The associated
execution tree is a balanced tree, and is based on a double recursive call. Being
given a node of the tree (representing a pattern X ⊆ I,) the left sub-tree gen-
erates sub-patterns of X not containing max�(X), whereas the right sub-tree
leads to sub-patterns of X containing max�(X).

Algorithm 1 provides a pseudo code for Ls. The first call to this algorithm is
done with X = ∅ and Y = I.

Example 6. Figure 1 shows the execution tree of the Ls Algorithm for I =
{A,B,C}.
The following proposition expresses the fact that the lectic order is compati-
ble with the anti-monotone constraints. Consequently, we can modify the Ls

Algorithm to take into account a conjunction of anti-monotone constraints.

Proposition 1. Let be X, Y ⊆ I two itemsets. If X ⊂ Y , then X <lec Y
(Ganter and Wille, 1999).

694 A. Casali and C. Ernst

Alg. 1. Algorithm Ls

Input: X and Y two itemsets
Output: Powerset lattice of X
1. if Y = ∅ then Output X
2. A := max(Y)
3. Y := Y \{A}
4. LS(X, Y)
5. Z := X ∪ {A}
6. LS(Z, Y)

Fig. 1. Execution tree of Ls for I = {A, B, C}

3 The LHS-Chi2 Algorithm

The contingency vectors are another representation of the contingency tables.
We show that, for a given pattern X∪A (X ⊆ R, A ∈ R\X), the computation of
its contingency vector is possible using the contingency vector ofX and the list of
the row identifiers of the relation containing A. Then, we introduce the concept
of decision correlation rule: a restriction of correlation rules, in such a way that
the only rules containing a value of the target attribute are kept. Finally, the
LHS-Chi2 Algorithm is used in order to compute the decision correlation rules
based on the contingency vectors.

3.1 Contingency Vectors

A literal Y Z, belonging to the literalset lattice associated with a pattern X , is
represented in machine with vectors of |X | bits. For a 1-item x ∈ X , the value
of the vector of bits has a value of 1 if x ∈ Y (the 1-item belongs to the positive
part of the literal), and 0 otherwise. Thus, comparing two literals Y1Z1 and
Y2Z2 belonging to the literalset lattice associated with the pattern X , consists
in comparing each integer corresponding to the binary value of the associated
vector of bits. Such a comparison is equivalent to extending the definition of the

Extracting Decision Correlation Rules 695

lectic order to the literalset one. A literalset precedes another literalset, according
to the lectic order, if and only if the positive part of the first literal precedes,
according to the lectic order, the positive part of the second literal. This order
makes it possible to totally order the whole literalset lattice associated with the
pattern X .

Definition 5 (Lectic order for a literalset). Let X ⊆ R be a pattern, Y1Z1
and Y2Z2 two elements of the literalset lattice associated with the pattern X. The
definition of the lectic order is extended over the literalsets as follows: Y1Z1 <lec

Y2Z2 if and only if Y1 <lec Y2.

Example 7. The literalset lattice associated with the pattern X = {A,B,C}
according to the lectic order is the following: ABC <lec ABC <lec BAC <lec

ABC <lec CAB <lec ACB <lec BCA <lec ABC.

Definition 6 (Equivalence Class associated with a literal). Let Y Z be
a literal. Let us denote by [Y Z] the equivalence class associated with the literal
Y Z. This class contains the set of transaction identifiers of the relation includ-
ing Y and containing no value of Z (i.e., [Y Z] = {i ∈ T id(r) such that Y ⊆
T id(i) and Z ∩ T id(i) = ∅}).
Example 8. With our relation example (see Table 1), we have [BC] = {5, 6}.
Proposition 2. Let X ⊆ R be a pattern. The union of the equivalence classes
[Y Z] of the literalset lattice associated with X is a partition (Laurent and Spyra-
tos, 1988) of the identifiers of relation r. In other words:⋃

Y Z∈P(X)

[Y Z] = T id(r)

Proof. Let [Y1Z1] and [Y2Z2] two equivalence classes belonging to the same lit-
eralset lattice associated with X . We show that a single transaction i can only
belong to a single equivalence class. Let us suppose that i belongs to both equiv-
alence classes. From the definition of an equivalence class, we have:

1. ∀y1 ∈ Y1, y ∈ T id(i)
2. ∀y2 ∈ Y2, y ∈ T id(i)

Since Y1Z1 and Y2Z2 belong to the same literalset lattice associated with X , we
have two possibilities to build Y2Z2 up from Y1Z1 :

1. There is at least one 1-item y1 ∈ Y1 such that y1 ∈ Z2, then Z2 ∩ T id(i) �= ∅
and, as a consequence: i �∈ [Y2Z2]

2. There is at least one 1-item y2 ∈ Y2 such that y2 ∈ Z1, then Z1 ∩ T id(i) �= ∅
and, as a consequence: i �∈ [Y1Z1]

We deduce that a single transaction i can only belong to a single equivalence
class. ��

696 A. Casali and C. Ernst

Definition 7 (Contingency Vector). Let X ⊆ R be a pattern. The contin-
gency vector of X, denoted CV (X), regroups the set of the literalsets equivalence
classes belonging to P(X) and ordered according to the lectic order.

Proposition 2 ensures that a single transaction identifier belongs only to one sin-
gle equivalence class. Consequently, for a given pattern X , its contingency vector
is an exact representation of its contingency table. To derive the contingency ta-
ble from a contingency vector, it is enough to compute the cardinality of each
of its equivalence classes. If the literalsets, related to the equivalence classes of
a contingency vector, are ordered according to the lectic order, it is possible to
know, because of the binary coding used, the literal relative at a position i of a
contingency vector (i ∈ [0; |X | − 1]). This is because the literal and the integer
i have the same binary coding.

Example 9. With our example relation (see Table 1), the contingency vector
associated with the pattern BC is the following: CV (BC) = {[BC], [BC], [CB],
[BC]} = {{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}.
The following proposition is the main result of our paper. It shows how to com-
pute the contingency vector of the pattern X ∪ A given the contingency vector
of X and the set of identifiers of the relation containing pattern A.

Proposition 3. Let X ⊆ R be a pattern and A ∈ R\X a 1-item. The contin-
gency vector of the pattern X ∪A can be computed given the contingency vectors
of X and A as follows:

CV (X ∪A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A]) (3)

However, for a 1-item A, and by definition, the contingency vector of A contains
respectively the set of the identifiers of the relation which does not contain A and
the set of the identifiers of the relation which contains A. Moreover, we have:
T id(A) = T id(r)\T id(A); as a consequence, formula (3) can be rewritten as
follows:

CV (X ∪A) = (CV (X) ∪ (T id(r)\T id(A))) ∪ (CV (X) ∩ T id(A)) (4)

Proof. From the definition of a contingency vector, we have:

CV (X ∪A) =
⋃

Y Z∈P(X∪A)

[Y Z] =
⋃

Y Z∈P(X)

[Y AZ] ∪
⋃

Y Z∈P(X)

[AY Z] (a)

Moreover:

– [Y AZ] = {i ∈ T id(r) such that Y ⊆ T id(i) and ZA ∩ T id(i) = ∅}
= {i ∈ T id(r) such that Y ⊆ T id(i) and Z ∩ T id(i) = ∅} ∩ T id(A)
= [Y Z] ∩ [A] (b)

– [AY Z] = {i ∈ T id(r) such that AY ⊆ T id(i) and Z ∩ T id(i) = ∅}
= {i ∈ T id(r) such that Y ⊆ T id(i) and Z ∩ T id(i) = ∅} ∩ T id(A)
= [Y Z] ∩ [A] (c)

Extracting Decision Correlation Rules 697

By pushing intermediate results (b) and (c) into (a), we get:

CV (X ∪A) = (
⋃

Y Z∈P(X)

[Y Z] ∩ [A]) ∪ (
⋃

Y Z∈P(X)

[Y Z] ∩ [A])

Which can be simplified as follows: CV (X ∪ A) = (CV (X) ∩ [A]) ∪ (V C(X)
∩ [A]). ��
Example 10. With the example relation (see Table 1), we haveCV (B) = {{7, 8, 9,
10}, {1, 2, 3, 4, 5, 6}} and CV (C) = {{5, 6, 9, 10}, {1, 2, 3, 4, 7, 8}}. By applying
Proposition 3, and by ordering the literalsets of the literalset lattice associated
with BC according to the lectic order, the contingency vector ofBC is the follow-
ing: CV (BC) = {{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}. Thus, we retrieve the result
of Example 9.

Algorithm 2 is used, given the contingency vector of a pattern X and the set of
the transaction identifiers containing a 1-item A, to build the contingency vector
of the pattern X∪A sorted according to the lectic order over the literalset lattice
P(X ∪A).

Alg. 2. CREATE CV Algorithm
Input: CV (X) contingency vector of X, T id(A)
Output: contingency vector of X ∪ A sorted according to the lectic order
1. CV (Z) := {∅}
2. for all Equivalence class [Y Z] ∈ P(X) according to the lectic order do
3. CV (Z) := CV (Z) ∪ ([Y Z] ∩ (T id(r)\(T id(A)))∪ ([Y Z] ∩ T id(A))
4. end for
5. return CV (Z)

The computation of a CV needs one database scan, and the following transi-
tion to the associated CT another one (overheads are ignored). This leads to a
complexity of 2∗|r|, or O(|r|) whatever the number of cells of the CT . A classical
computation of a CT at level i also needs one database scan; but here, in the
worst case, each of the CT ’s cells is involved in one operation, which globally
forces 2i ∗ |r| operations. Because 2i is generally much smaller in comparison to
|r|, the complexity is also of O(|r|). But when going into detail, the difference
between the two methods is 2i−1 ∗ |r| operations. With a database containing for
example 500 transactions, this difference for a single CT computation is 4000
operations at level 4.

3.2 Decision Correlation Rules

Definition 8 (Decision Correlation Rules). Let X ⊆ R be a pattern, and
MinCor a given threshold. The pattern X represents a valid decisional correla-
tion rule if and only if:

698 A. Casali and C. Ernst

1. X contains a value of the target attribute T ;
2. χ2(X) ≥MinCor.

Example 11. With our relation example (see Table 1), if MinCor = 0.25, the
decision correlation rule materialized by the pattern BCt1 is a valid rule because:

1. t1 ∈ T and t1 ∈ BCt1;
2. χ2(BCt1) % 0.28 (≥MinCor).

The Lectic Hybrid Subset-Chi2 Algorithm, or LHS-Chi2, makes it possible to
extract the whole set of decision correlation rules for a relation r satisfying the
threshold constraint MinCor for the χ2 function. This algorithm is an adapta-
tion of the Ls Algorithm to our context. This adaptation helps, among other
things, to take into account contingency vectors. Moreover, we have added sev-
eral monotone and anti-monotone constraints in order to prune the search space
(Grahne et al., 2000). These constraints are:

1. A value of the target attribute must be present in the extracted pattern
(monotone constraint);

2. As the χ2 computation has no significance for a 1-item, we make sure that the
cardinality of an examined pattern is larger than or equal to two (monotone
constraint);

3. Since the χ2 function is an increasing function, we impose a maximum car-
dinality, noted MaxCard, on the number of patterns to examine which,
usually, does not exceed 8 (anti-monotone constraint);

4. All literalsets of a contingency table must have an expectation value not
equal to zero (anti-monotone constraint).

5. Because the obtained rules must have a semantics on the relation, at least
MinPerc of the cells of the contingency table must have a support larger
than or equal to MinSup. This constraint is expressed by the predicate Ct-
Perc in our algorithm. This predicate has three parameters: the contingency
vector, MinPerc and MinSup (anti-monotone constraint).

Laporte et al. (2002) have modified the Ls Algorithm in order to compute ice-
berg data cubes. The authors take into account an anti-monotone constraint
threshold from which the satisfiability is evaluated before the second recursive
call of the Algorithm Ls (line 6). The authors use a pruning step with the neg-
ative border (Mannila and Toivonen, 1997) in order to only examine the most
“interesting” cuboids (patterns in our context). In the same spirit, we modify
the Ls Algorithm in order to take into account the five constraints above and to
compute the χ2. The result is an algorithm requiring, in the worst case, 2∗|R|+1
contingency vectors in memory: we need |R| contingency vectors for the 1-items,
the height of our tree is bounded by |R|, and we need an additional contingency
vector for the current node computation. This number has to be compared to
the number of contingency tables to be computed at each level using a levelwise
algorithm (Ci

|R|).

Extracting Decision Correlation Rules 699

Proposition 1 justifies the integration of these constraints in our algorithm.
However, we do not carry out pruning using the negative border. Instead, we
use the positive one (Mannila and Toivonen, 1997) relating to the predicate
CtPerc. The use of the positive border is justified on the basis of the experiments
carried out by Flouvat et al. (2005). The authors show that the positive border
is of highly reduced cardinality by comparison with the negative border. As a
consequence, the satisfiability tests of the anti-monotone constraints are faster
when the positive border is used. In our context, we make sure that the pattern
Z, used as a parameter within the second recursive call of the algorithm, has
all its direct subsets included in one of the elements of the positive border (line
8). Let us emphasize that this test is carried out in the AprioriGen function
(Agrawal et al., 1996) during the generation of the candidates of level i+1 using
the frequent patterns for level i. If pattern Z is a candidate, then we compute its
contingency vector by making sure that the literalsets relating to the classes of
equivalence are sorted according to the lectic order (line 9) by calling Algorithm
2. If the pattern satisfies the anti-monotone constraints (line 10), we update
the positive border (line 11), and then carry out the second recursive call of
the algorithm (line 12). The set of the monotone constraints is evaluated on
the leaves of the execution tree (line 1). By convention, we consider that we
have CV (∅) = {T id(R), ∅}. The positive border is initialized with {∅}. The
pseudo code of LHS-Chi2 is provided in Algorithm 3. The first recursive call to
LHS-Chi2 is carried out with X = ∅ and Y = R.

Alg. 3. LHS-Chi2 Algorithm
Input: X and Y two patterns
Output: {itemset Z ⊆ X such that χ2(Z) ≥ MinCor}
1. if Y = ∅ and |X| ≥ 2 and ∃c ∈ C : c ∈ X and χ2(X) ≥ MinCor then
2. Output X, χ2(X)
3. end if
4. A := max(Y)
5. Y := Y \{A}
6. LHS-Chi2(X,Y)
7. Z := X ∪ {A}
8. if ∀z ∈ Z,∃W ∈ BD+ : {Z\z} ⊆ W then
9. VC(Z) := CREATE CV(CV(X),Tid(A))

10. if |Z| ≤ MaxCard and CtPerc(CV (Z), MinPerc, MinSup) then
11. BD+ := max⊆(BD+ ∪ Z)
12. LHS-Chi2(Z,Y)
13. end if
14. end if

Example 12. The results of LHS-Chi2 with the thresholds MinSup = 0.2,
MinPerc = 0.25 and MinCor = 0.25 for our relation example (see Table 1)
are shown in Table 3.

700 A. Casali and C. Ernst

Table 3. Results of the LHS-Chi2 algorithm over Table1 with the thresholds of Ex-
ample 12

Decision Correlation Rule χ2 Value

At1 0.48
BCt1 0.28
BFt1 0.28

4 Experimental Analysis

Some representative results of the LHS-Chi2 algorithm are presented below.
The comparison is made with a standard levelwise algorithm, hereafter called
Levelwise, based on the same monotone and anti-monotone constraints as those
used in LHS-Chi2. The main difference is that the Levelwise method does not
use contingency vectors but uses standard computation of contingency tables.
Such an implementation of Levelwise was presented in (Casali and Ernst,
2007), as well as the “cleaning” aspects of the files analyzed in input, summarized
first of all for the sake of clarity.

As emphasized in Section 1, the experiments were done on different CSV
files of real value measures supplied by STMicroelectronics (STM) and ATMEL
(ATM). These files have between 800 and 1500 columns, about 300 rows (con-
taining null values), and one or more target columns. To carry out pre-processing
and transformation of these files in the form of a base of transactions, we have,
in a practical way (Pyle, 1999):

1. Launched a stage of column pre-processing by eliminating the ones poorly
significant through adequate thretholds: doubles, columns having few differ-
ent values or presenting too many null values, etc; then

2. Discretized the values of the residual columns: for each one, we standardized
its values, then cut out the obtained values in intervals, and finally allocated
a code interval to each value: 2 identical values of 2 different columns are
thus differently coded out, and cannot interfere in the analysis. As with
other items, absent values are treated as an item, but are not looked for
correlations.

All experiments were conducted on an HPWorkstation (1.8 GHz processor with
a RAM of 2Go), and the software was developed in C language.

The results of the experiments are presented on Figures 2 through 4. They
are associated with an analysis of 2 files supplied by the two manufacturers. The
first (STM) contains 1241 columns, 296 lines and a target attribute. The second
(ATM) consists of 749 columns, 213 lines, and 3 target columns.

Figures 2 and 3 show the evolution of the execution times for both methods
for the two files when MinSup varies and MinPerc and MinCor are fixed.
The STM (resp. ATM) file contains 3384 (resp. 1136) items after carrying out
cleanings. As the graphs show, the answer times of the LHS-Chi2 method are
between 30% and 70% better than Levelwise, even if they remain very large

Extracting Decision Correlation Rules 701

Fig. 2. Execution time with MinPerc =
0.34, MinCor = 1.6 (STM file - target1)

Fig. 3. Execution time with MinPerc =
0.24, MinCor = 2.8 (ATM file - target2)

Fig. 4. Execution time with MinSup =
0.24, MinCor = 6.9 (STM file - target1)

Fig. 5. Results with MinSup = 0.38,
MinPerc = 0.24 (ATM file - target3)

when using very small thresholds. In each of the cases, an increasing windowing
of the results is provided for consequent sub-intervals of MinSup.

Figure 4 shows the execution times for the STM file (using the same configura-
tion as the experiment of Figure 2) when MinSup and MinCor are constant and
when MinPerc varies. The curve in staircases thus explains: a CT associated
with a i-pattern containing 2i cells, to say that MinPerc of its cells must have
the support means that *2i ∗MinPerc+ cells must have it. So for a 3-pattern,
defining a value for MinPerc varying between 0% and 12.49% means specifying
that one single cell of the CT has to have the support, etc.... The proposed scale
is logarithmic, because answer times for small values of MinPerc are very large
(more than 13 hours for LHS-Chi2, and about 69 hours for Levelwise with
MinPerc = 0.12). No result is returned when MinPerc is defined beyond 50%.

Figure 5 shows the number of extracted rules (identical for both methods)
after the search when MinPerc and MinSup are fixed with suitable values and
when MinCor varies. In that particular case (an ATM file with a different target
from the one used in the first test), execution times are identical whatever the
value ofMinCor, but are of the order of 2 minutes with LHS-Chi2, and about 17
minutes for Levelwise. This means that the MinCor threshold only has small

702 A. Casali and C. Ernst

effect on performance. We recall that a value of 2.71 for MinCor corresponds to
a correlation of 90%.

Finally, let us emphasize that the experimental sets used in the first three
cases produce decision correlation rules with a cardinality of 4. This is the kind
of information that is of interest for semiconductor manufacturers, as well as the
possible crossings between rules of cardinality 3 and 4.

5 Conclusion and Future Work

In this paper, we have introduced two concepts:

– Decision correlation rules, i.e. restricted correlation rules containing a value
of a target attribute, and

– Contingency vectors, i.e. an alternative representation of contingency tables,
which are more concise and offer better properties related to performance.
We have also proposed an algorithm based on the lectic order to go through
the literalset lattice.

The LHS-Chi2 algorithm uses the inference property of the contingency vector
of a pattern given the contingency vector of one of its direct subsets. The exper-
iments show that the proposed method computes rules faster than those offered
by levelwise algorithms. The implementation approach enabled us to discover
new correlations between the parameters of the files that have been studied:
approximately 25% of the correlation rules determined by the first experiment
were unknown to STM, and the quasi-totality of the results obtained has been
experimentally validated.

To continue our work, we intend: To enlarge done experimentations in order
to produce more relevant results both considering space occupation and algo-
rithmic complexity; To optimize the processing stages upstream of the algorithm
(aggregation of attributes, merging of intervals) while safeguarding the context
in order to obtain a greater number of rules and / or more significant results;
and To widen the correlation rules extraction problem on items to that of com-
putation of correlation rules for literalsets.

Acknowledgments

This work was supported by Research Project “Rousset 2003-2008”, financed by
the Communauté du Pays d’Aix, Conseil Général des Bouches du Rhône and
Conseil Régional Provence Alpes Côte d’Azur.

References

Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery
of Association Rules. In: Advances in Knowledge Discovery and Data Mining, pp.
307–328 (1996)

Extracting Decision Correlation Rules 703

Brin, S., Motwani, R., Silverstein, C.: Beyond market baskets: generalizing association
rules to correlations. In: Proceedings of the International Conference on Management
of Data, SIGMOD, pp. 265–276 (1997)

Casali, A., Ernst, C.: Extracting correlated sets using the chi-squared measurement
within n-ary relations: An implementation. In: 8th European Advanced Equipement
Control / Advanced Process Control, AEC/APC, 4 p. (2007)

Flouvat, F., De Marchi, F., Petit, J.M.: A thorough experimental study of datasets
for frequent itemsets. In: Proceedings of the 5th International Conference on Data
Mining, ICDM, pp. 162–169 (2005)

Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer,
Heidelberg (1999)

Grahne, G., Lakshmanan, L., Wang, X.: Efficient Mining of Constrained Correlated
Sets. In: Proceedings of the 16th International Conference on Data Engineering,
ICDE, pp. 512–524 (2000)

Hirsh, H.: Generalizing version spaces. Machine Learning 17(1), 5–46 (1994)
Laporte, M., Novelli, N., Cicchetti, R., Lakhal, L.: Computing full and iceberg dat-

acubes using partitions. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y.
(eds.) ISMIS 2002. LNCS, vol. 2366, pp. 244–254. Springer, Heidelberg (2002)

Laurent, D., Spyratos, N.: Partition semantics for incomplete information in relational
databases. In: Proceedings of the International Conference on Management of Data,
SIGMOD, pp. 66–73 (1988)

Mannila, H., Toivonen, H.: Levelwise Search and Borders of Theories in Knowledge
Discovery. Data Mining and Knowledge Discovery 1(3), 241–258 (1997)

Moore, D.S.: Tests of chi-squared type. In: D’Agostino, R.B., Stephens, M.A. (eds.)
Goodness-of-Fit Techniques, pp. 63–95. Marcel Dekker, New York (1986)

Pyle, D.: Data Preparation for Data Mining. Morgan Kaufmann, San Francisco (1999)
Spiegel, M.R.: Théorie et applications de la statistique, Schaum (1990)
Vel, M.: Theory of Convex Structures. North-Holland, Amsterdam (1993)
Wu, X., Zhang, C., Zhang, S.: Efficient mining of both positive and negative association

rules. ACM Trans. Inf. Syst. 22(3), 381–405 (2004)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 704–718, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Maintaining the Dominant Representatives on Data
Streams*

Wenlin He1,2, Cuiping Li1,2, and Hong Chen1,2

1 Key Labs of Data and Knowledge Engineering, Ministry of Education, China

2 School of Information, Renmin University of China, Beijing, China
{hewl,licuiping,chong}@ruc.edu.cn

Abstract. It is well known that traditional skyline query is very likely to return
over many but less informative data points in the result, especially when the
querying dataset is high-dimensional or anti-correlated. In data stream applica-
tions where large amounts of data are continuously generated, this problem
becomes much more serious since the full skyline result cannot be obtained ef-
ficiently and analyzed easily. To cope with this difficulty, in this paper, we pro-
pose a new concept called Combinatorial Dominant relationship to abstract
dominant representatives of stream data. Based on this concept, we propose
three novel skyline queries, namely basic convex skyline query (BCSQ), dy-
namic convex skyline query (DCSQ), and reverse convex skyline query (RCSQ),
combining the concepts of convex derived from geometry and the traditional
skyline for the first time. These queries can adaptively abstract the contour of
skyline points without specifying the size of result set in advance and promote
information content of the query result. To efficiently process these queries and
maintain their results, we design and analyze algorithms by exploiting a mem-
ory indexing structure called DCEL which is used to represent and store the ar-
rangement of data in the sliding window. We convert the problems of points in
the primal plane into those of lines in dual plane through dual transformation,
which helps us avoid expensive full skyline computation and speeds up the
candidate set selection. Finally, through extensive experiments with both real
and synthetic datasets, we validate the representative capability of CSQs, as
well as the performance of our proposed algorithms.

1 Introduction

Skyline is based on a relationship called dominate whose definition is as follows.

Definition 1. Dominate (p q≺). Assume 1{ ,..., }nD D D= is an N-dimensional set.

For each of the dimension iD , we define an order iD≺ . We say that p is better than

q in dimension iD (denoted as i ip q≺) if ip comes before iq based on iD≺ or

conversely, iq is worse than ip (also denoted as i iq p≺). If ip and iq are equal, we

* This research is supported by National 863 Hi-Tech R & D Plan of China under Grant No.

2008AA01Z120, NSFC under Grant Nos. 60673138, 60603046, Program for New Century
Excellent Talents in University and Union Project with BMEC on industry-study-research.

 Maintaining the Dominant Representatives on Data Streams 705

denote them as i ip q= . A point p is said to dominate q if p is better or equal to q in all

dimensions, and is better than q in at least one of the dimensions.

Under this concept, skyline query is used to retrieve a set of multi-dimensional data
points not dominated by any other in the querying dataset. For example, a CarDB
storing multi-dimensional car instances is available. Eight tuples with two dimen-
sions, mileage and price, are selected as Fig. 1(a) shows. Thus the traditional (full)
skyline points of these tuples are {

1p ,
2p ,

3p ,
5p ,

6p } (Fig. 1(b)). Most existing

methods of computing skyline focus on the applications with relatively static envi-
ronments. In highly dynamic applications like data stream, it is challenging to evalu-
ate skyline queries due to: (i) the quantity of the stream data is considerably large; (ii)
stream data are generated with continuous, unpredictable manner.

 (a) Dataset Example (b) Skyline of 2D Points

Fig. 1. Example of Skyline

A big problem of traditional skyline queries is that it is very likely to retrieve over
many but less informative points. Referring back to the example above, we can easily
find that 5/8 tuples of the dataset are skyline points. Theoretically, in the cases where
dataset is anti-correlated or high dimensional, the amount of skyline points could be
very large. The problem becomes much more serious in data stream applications,
since the real-time characteristic and effectiveness will be affected to retrieve full
skyline result. Thus a concise and more informative result is desired. Paper [12] in-
vestigated the problem of computing k skyline points such that the total number of
(distinct) data points dominated by one of the k skyline points is maximized. The
points in the result are called “top-k representative skyline points”. Similar problems
are studied in paper [7]. In this paper, we study the problem of reducing the amount of
skyline points and abstracting the representative ones. The primary difference be-
tween our work and the existing ones is that they quantify the number of skyline
points, say K, in advance, while we don’t specify this value in query but adaptively
select sufficient points to represent the dominant situation of querying dataset. For
example, the set {

3p ,
5p ,

6p } (the dark colored points set in Fig.1(b)) are our desired

ID Mileage Price

1p 27k 20k

2p 54k 8k

3p 68k 2k

4p 90k 7.5k

5p 16k 25k

6p 32k 13k

7p 68k 25k

8p 80k 16k

706 W. He, C. Li, and H. Chen

dominant representatives. They are better than full skyline points, since they are more
succinct and stand to lose little dominant information compared to full skyline result.
And we will adaptively get sufficient representatives rather then specify the amount,
e.g. 3 in the example. From geometry view, these representative skyline points com-
prise the low part of convex hull. Based on this observation, this query is denoted as
Basic Convex Skyline Query (BCSQ). For another two significant skyline queries,
namely Dynamic Skyline Query [10] and Reverse Skyline Query [5], we present their
corresponding convex skyline queries as well. This paper focus on efficiently solving
these novel skyline queries over the sliding window in data stream applications, and
its contributions are summarized as follows:

1. We propose a novel dominate relationship called combinatorial dominate. Based
on it, Convex Skyline Queries (CSQs) are formally stated to get the dominant
representatives for the first time, making the general skyline result more concise
and informative;

2. We present approaches to index points in the sliding window for data stream
applications and give CSQs’ geometric representations; We design algorithms
and make use of pruning technique to efficiently solve CSQs by employing an
arrangement representation called DCEL;

3. We present elaborative experiments to evaluate the performance and efficiency
of our algorithms to answer CSQs.

The rest of this paper is organized as follows. In section 2, we give problem defini-
tions of new dominate relationships and CSQs; section 3 introduces preliminaries
about arrangement and DCEL employed in our algorithms. In section 4, we propose
and analyze algorithms to efficiently answer BCSQ by using DCEL. In section 5, we
first introduce an algorithm to retrieve globally convex skyline (GCS) to obtain a
candidate set, then we develop algorithms to answer DCSQ and RCSQ based on GCS.
Section 6 conducts a series of experiments to verify the efficiency of proposed algo-
rithms. Section 7 surveys the related work and finally in section 8, we conclude this
paper and give the research direction of our future work.

2 Background

2.1 Problem Definition

To obtain the dominant representatives of dataset, we introduce concepts called com-
binatorial dominate and dynamic combinatorial dominate for the first time. Based on
these concepts, we state CSQs problems.

Definition 2. Combinatorial Dominate (1, , d Cp p q… ≺). Given a d-dimensional

data set D, if there exists at least one combination

1 1 1 1* , 0 1,...,0 1, 1d d d dp p p whereα α α α α α= + + ≤ ≤ ≤ ≤ + + = , dominating q .

Then we say that 1, , dp p… combinatorial dominate q , or q is combinatorial domi-

nated by 1, , dp p… .

 Maintaining the Dominant Representatives on Data Streams 707

Problem 1: Basic Convex Skyline Query (BCSQ). Given a d-dimensional data set D,
BCSQ retrieves all data points that are not combinatorial dominated by any combina-
tion of other points in D. Its result is denoted as BCS.

In 2D space where each point contains two attributes, all the possible combinations of
two distinct points constitute a line connecting them; in 3D space, the combinations of
three distinct points constitute a triangular area; More general, for d-dimensional
(d>3) dataset, the combinations of d points constitute a d-vertices region in hyper-
space. Figure 2 (a) shows an example of Combinatorial Dominate. In traditional sky-
line query, 1 2A A∪ is 1cs 's dominant area, namely any point locating in this area is

dominated by 1cs ; 1 4A A∪ is that of 2cs 's. Having the concept of combinatorial domi-

nate, any point besides traditional skylines locating in A3 is combinatorial dominated
by 1 2,cs cs . Thus in Figure 1(b), 1p and 2p are skyline points not BCS, since they are

combinatorial dominated by 5 6,p p and 3 6,p p respectively.

6p

5p

1p

2p

3p
4p

2p′

1p′

rpY

1cs

2cs

 (a) (b)

Fig. 2. (a) Combinatorial Dominate (b) Dynamic Convex Skyline

Definition 3. Dynamically Combinatorial Dominate (1, , d DCp p q… ≺). Given a d-

dimensional data set D and a reference point rp, assume p′ is the mapping point of

point p to rp’s 1st quadrant. If 1,..., dp p′ ′ combinatorial dominate q , then we say that

1,..., dp p dynamically combinatorial dominate q , or q is dynamically combinatorial

dominated by 1,..., dp p .That means there exists at least one combina-

tion 1 1 1 1* , 0 1,...,0 1, 1d d d dp p p whereα α α α α α= + + ≤ ≤ ≤ ≤ + + = , which

satisfies

1). for all {1,..., } : | * | |i i i ii d p rp q rp∈ − ≤ − |

2). at least one {1,..., } : | * | | |j j j jj d p rp q rp∈ − < − .

Problem 2: Dynamic Convex Skyline Query (DCSQ). Given a d-dimensional data
set D and a reference point rp, DCSQ relative to rp retrieves all data points in D that
are not dynamically combinatorial dominated by any combination of other points. Its
result is denoted as DCS.

708 W. He, C. Li, and H. Chen

Figure 2 (b) demonstrates rp ’s DCS comprised of 1p and 2p , while its dynamic sky-

line points are 1 2 6{ , , }p p p .

Problem 3: Reverse Convex Skyline Query (RCSQ). Given a d-dimensional data set
D and a reference point rp, RCSQ according to rp retrieves a set denoted as P , that
for each point p P∈ , rp is a dynamic convex skyline point of p . Its result is denoted

as RCS.

For example in figure 2(b), 1p is one of rp ’s RCS since rp is 1p ’s DCS. Note

RCSQ could return 0 point, which means the reference point is not any point’s DCS
of the given dataset.

2.2 Challenges for CSQs

A naïve brute-force approach to solve BCSQ could include two steps: 1) full skyline
calculation; 2) BCS refining. The first step can be simply accomplished by any exist-
ing techniques; the second step checks whether skyline point is combinatorial domi-
nated by any combination of other distinct two points (actually, they must be skyline
points too). However, this approach is too expensive for data stream application. In
term of space cost, it solely depends on the adopted technique. Moreover, we have to
take into consideration the update of utilized index.

To solve problems 2 and 3, similar methods could be considered. For example, to
answer DCSQ, according to its definition, all points will firstly be mapped to the
reference point’s 1st quadrant in a transformed space where the reference point be-
comes the new origin. After this transformation, DCSQ is converted to BCSQ, and we
can issue a BCSQ to get the answer. The primary weakness of this approach is that
since a transformed space with the same size as the original space is needed to con-
struct for each ad hoc query, the space cost is unbearable huge.

3 Preliminaries

In this section, we briefly present duality, arrangement and DCEL, which will be
employed in our algorithms to evaluate CSQs.

3.1 Duality and Arrangement

Duality and arrangement often combined to solve complex computational geometry
problems and applied in many scientific areas such as Robotics and Computer Graph-
ics etc [1, 2, 3]. In 2D space, point-line duality is a symmetric transformation for
exchanging points and lines. Through the dual transformation, a point in the original
plane (primal plane) is converted into a line in another plane called dual plane. Prop-
erties in the dual plane can be used to solve those in primal plane. Based on duality
transformation, we present the definition of arrangement in dual plane.

Definition 4. Arrangement(L). Let L is a set of n line in 2 , L subdivides 2 into
several regions, which are called faces or cells. The edges of subdivision are line
segments or half edge; the vertices are the intersecting points of two lines of L. Under

 Maintaining the Dominant Representatives on Data Streams 709

this subdivision, arrangement of L is the adjacent relation between vertices, edges
and cells, denoted A(L).

Fig. 3(a) illustrates a 2D arrangement including 3 lines, 6 points and 12 faces (1 outer
face and 11 inner faces). The combinatorial complexity of A(L) is the overall number
of vertices, edges and faces in A(L). Further, it can be proved that an arrangement of n
Lines contains at most 2()O n vertices, 2()O n edges and 2()O n faces [3]. Thus the total

complexity of an arrangement is 2()O n .

One of the most important theorems in arrangement study to our study is zone the-
ory [4]. It guarantees that the time complexity of inserting a line into (or deleting a
line from) an arrangement with n existing lines is ()O n .

1ε
2ε

3ε

 (a) (b)

Fig. 3. (a) 2D Arrangement (b) DCEL

3.2 Double-Connected-Edge-List (DCEL)

DCEL is a data structure of representing and storing arrangement which was first intro-
duced in [2]. Fig. 3 (b) illustrates a DCEL constructed by three dual lines 1 2 3, ,ε ε ε whose

corresponding points in primal plane are 1 2 3(1,4), (3,1), (4,2)p p p respectively. DCEL is

comprised of three core sub structures as follows.

 halfedge. It’s a directed segment of dual line, and maintains a pointer to its twin
halfedge. A halfedge and its twin edge share the same end vertices but have op-
posite directions, e.g. e1 and e6. A halfedge maintains pointers to its end vertices
and associative incident face.

 vertex. Its incident edges are circularly maintained.
 face. It maintains the halfedge list constructing itself (e.g. edge list of face f1 is

1 2 3 4 5 1e e e e e e→ → → → →). The halfedges in the lists constitute a doublely

connected circular, which make it feasible to traverse the face by both clockwise
and counter-clockwise patterns.

Some other useful structures used to explain our algorithms are listed as follows:

 bounding box. It is the minimum rectangle including all possible intersecting
vertices of dual lines. Notice we only consider the situation in 1st quadrant of the
plane.

710 W. He, C. Li, and H. Chen

 bottom edge. It is the half edge on X axes, whose source vertex is the origin
point. In the arrangement figure 3(b) shows, the bottom edge is 9e .

 bottom face. It is the face containing the bottom edge, e.g., f2 in fig. 3 (b).
 the first outer edge. 1st half edge on Y axes in the outer face, i.e., 0e in fig. 3(b).

4 Using DCEL to Answer BCSQ

In this section, we firstly introduce the relationship between skyline and top-k queries,
and then explain how to index points in the sliding window by using DCEL; based on
this structure, we describe and analyze our first algorithm to answer BCSQ.

4.1 Skyline vs. Top-k

A Top-k query retrieves the k highest scoring tuples from a dataset with respect to a
scoring function defined on the attributes of a tuple. Some techniques for solving top-
k problem can be utilized to answer skyline queries [6]. Here, we present a meaning-
ful property about their relationship, which helps answer CSQs.

Property 1. For any linear scoring function 1 1 d df w x w x= + + , where d is the di-

mensionality of data set, ,1iw i d≤ ≤ is the weight of dimension i , all top-1 points

must lie on the skyline. However, not all skyline points can be top-1 under certain
weight 1{ , }dW w w= .

Based on property 1, we have the following important corollary:

Corollary 1. A convex skyline point is a top-1 point with respect to certain

1{ , }dW w w= . Any non top-1 skyline point cannot be top-1 point to anyW and is

combinatorial dominated by the combination of convex skyline points.

Inspired by this corollary and the approach to answer top-k queries in [6], we use
arrangement to handle BCSQ. More specifically, we first construct and maintain
DCEL indexing of data in the sliding window; at any instances when the window
update, we retrieve all top-1 points to answer BCSQ.

4.2 Construct Arrangement to Index Points in the Sliding Window

The dual transformation is not unique, and could be determined according to the user’s
purpose. In our algorithms, we use y Yx X= + to map a point in primal plane to a line in

dual plane, where X and Y are the horizontal and vertical coordinates respectively. To
adapt data stream environment, we employ the method to incrementally construct and
maintain DCEL from [4]. Figure 3 (b) depicts a DCEL including three point’s dual
lines. Now we assume the forth point enters. It is first mapped to a dual line
(denoted newl). The insertion starts from 0e and continues until one edge on X axis inter-

secting with newl . Then the traverse turn to the intersecting edge’s twin edge. The first

intersecting vertex 1iv is recorded for later face split processing. Then we enter into the

face which the twin edge belongs to and continues traversal until newl intersects with a

 Maintaining the Dominant Representatives on Data Streams 711

new edge. Now the second interesting vertex 2iv is obtained. We connect 1iv and 2iv to

generate a new halfedge twin. Besides, two new faces 1, 2new newf f are created to replace

the old one oldf . The original half edges of oldf and the new created half edges are real-

located to 1, 2new newf f . Other sub structures of DCEL are adjusted if necessary. The tra-

versal and insertion terminate until the boundary of the bounding box is reached. When
a point is removed, its dual line needs to be deleted in the arrangement. Since the dele-
tion processing is similar to the insertion, we omit the description for simplicity. The
time complexity of incrementally constructing DCEL including n lines is 2()O n [4].

4.3 Answer Basic Convex Skyline Query

Theorem 1. Given the arrangement with the dual transformation: y Yx X= + , the

points whose dual line shares face with the bottom half edge belong to BCS.

Proof. Assume the point q satisfies the condition but it is not a convex skyline. Ac-
cording to the definition of BCS, there must be at least two points (denoted p1, p2)
combinatorial dominating q. However, through the transformation: y Yx X= + , the

dual lines of p1 and p2 will prevent that of q from sharing face with the bottom face
edge. Thus it conflicts with the assumption.

Thus, we just need to abstract these half edges of the bottom face, and use their original
points to answer BCS. Algorithm 1 represents the complete processing: lines 3-5 shows
the processing of counter-clockwise traversing from the half edges of bottom face on the
bounding box. Lines 6-9 add dual lines’ corresponding points into the result. In figure
4(b), to answer BCSQ, 9e and 10e are firstly visited and ignored; then 6e and 7e are

visited, meanwhile their corresponding points are added to BCS. When 8e , a half edge

on X axis also on bounding box, is reached, the algorithm terminates and final BCS are
obtained.

Algorithm 1. Convex skyline retrieval algorithm BCSQ(A)

Input: the arrangement indexing the points in the sliding
window A
Output: BCS of data points in the sliding window

01: BCS ={}
02: edge = bottome

03: while edge.onBoundingBox() == true do
04: edge=edge.next()
05: end while
06: while edge.onBoundingBox() == false do
07: BCS.add(edge.getPoint())
08: edge=edge.next()
09: end while
10: return BCS;

Since in the extreme case, all points belong to BCS, the time complexity of algorithm
1 is ()O n .

712 W. He, C. Li, and H. Chen

5 Handle DCSQ and RCSQ

In this section, we cope with DCSQ and RCSQ. Globally Convex Skyline (GCS) is
introduced for obtaining a candidate set of DCSQ and RCSQ; then we develop algo-
rithms to answer DCSQ and RCSQ based on GCS.

5.1 Global Convex Skyline Query Processing

To overcome difficulties mentioned in section 2, we introduce a new concept called
global convex skyline inspired by a notation called global skyline introduced in [5].
The authors proved the global skyline is the super set of the reverse skyline. This
property helps to prune unqualified points and thus decrease the computation cost.
However, the approach in [5] cannot be directly applied to our problems, since their
index structure is R-tree, different from ours. Interestingly, we find that the GCS can
be used to prune unqualified points effectively and easily evaluated by using
arrangement.

Definition 6. Globally Combinatorial Dominate(1, , d GCp p q… ≺). In a d-

dimensional dataset, given a reference point rp. If 1,, , dq p p… locate in the same

quadrant according to rp, and q is combinatorial dominated by 1, , dp p… then we say

1, , dp p… globally combinatorial dominate q relative to rp, or q is globally combina-

torial dominated by 1, , dp p… relative to rp.

Based on this definition, given a d-dimensional dataset and a reference point rp ,

Global Convex Skyline Query (GCSQ) retrieves a set of points which are not globally
combinatorial dominated by any combination of other points relative to rp (denoted

as GCS(rp)). Figure 4(a) illustrates an example: 3p and 5p globally convex domi-

nate 4p in rp ’s 3rd quadrant; 6p and 9p globally combinatorial dominate 7p and

8p in rp ’s 4th quadrant. The global convex skyline of rp is the union of partial re-

sults in four quadrants, i.e. { 1p , 3p , 5p , 6p , 9p , 10p , 11p , 12p }.

pr
ic
e

RP′

1P′

2P ′

3P ′

4P ′
5P ′

6P ′
7P ′

8P ′
9P ′

10P ′ 11P ′

12P ′

pr
ic
e

 (a) (b)

Fig. 4. (a) Globally Combinatorial Dominate (b) SST Example

 Maintaining the Dominant Representatives on Data Streams 713

To answer DCSQ and RCSQ, we present two important lemmas as follows.

Lemma 1. Let rp be the reference point and GCS(rp) be rp’s global convex skyline
points, DCS(rp) be rp’s dynamic convex skyline, and RCS(rp) be the set of reverse
convex skyline, then () ()DCS rp GCS rp⊆ and () ()RCS rp GCS rp⊆ .

Lemma 2. Given a reference point rp and dual transformation y Yx X= + , GCS(rp)

of rp’s 1st and 3rd quadrants are such points that their dual lines share face with rp’s
dual line.

In Figure 4 (a), 3p , 4p and 5p all locate in 3rd quadrant of the reference point.

4p doesn’t belong to GCS since it is globally combinatorial dominated by 3p and 5p .

Figure 5(a) shows their dual line relationship. Both intercept and slope of 4()pε are

between those of 3()pε and 5()pε , which prevent 4()pε from sharing face with

()rpε in the arrangement. Besides, 3()pε and 5()pε share face with ()rpε as the

shadowed area indicates, therefore GCS(rp) in 3rd quadrant.

 Y

 X

()RPε
(5)Pε
(4)Pε
(3)Pε

 Y

X

(9)Pε
(8)Pε
(7)Pε
(6)Pε
()RPε

 (a) (b)

Fig. 5. (a) Dual lines of points in Q3 (b) Dual lines of points in Q4

However, this lemma is not applicable for 2nd and 4th quadrants. For example,
though dual lines of 7p and 8p , i.e. 7()pε and 8()pε , share face with ()rpε (Fig.5 (b)),

but 7p and 8p are globally combinatorial dominated by 6p and 9p (Fig.4 (a)).To make

use of lemma 2, we introduce Symmetric and Shifting Transformation as follow.

Definition 7. Symmetric and Shifting Transformation (SST). Given a
point (,)p x y , SST generates a mapped point (,)ip MAX x y′ − for p , where iMAX is

the maximum value of dimension i.

Figure 4(b) indicates the result after SST is applied to original points in figure 4 (a).
After SST, we convert the problem to get GCS(rp) in 2nd and 4th quadrants in the
original space to getting GCS(rp) in 1nd and 3th quadrants in SST space where lemma
2 is in effect. Based on lemma 1 and SST, we develop an algorithm called DA_GCSQ
using double arrangements to evaluate GCSQ. These arrangements index the original
and SSTed points respectively. Through face-sharing checking in two arrangements,

714 W. He, C. Li, and H. Chen

we get partial GCS(rp) in different quadrants and merge them to form the result of
GCS. DA_GCSQ takes several more steps than simple inserting a dual line, but they
have the same order, i.e., ()O n . For space limitation, the algorithm is omitted.

5.2 Answer DCSQ

After the reference point’s GCS is obtained, points belonging to GCS are uniformly
mapped into the 1st quadrant of the reference point; then face-sharing checking is
invoked to determine which points belong to DCS. These processes are straightfor-
ward and simple. However, a big problem arises: where to place these new dual lines
of mapped points? It’s not a reasonable approach to place them in the original ar-
rangement for two reasons: 1) data in the sliding window are changing in a rapid rate,
which makes the update of original arrangements is frequent; 2) CSQs are ad hoc.
Hence this approach would complicate arrangements maintenance and affect the in-
dependence of ad-hoc queries.

To overcome this difficulty, our method is to use partial sub space transformation:
we create an empty sub arrangement for each reference point, and insert points in
GCS into it rather on the original full arrangements. This is much clear since the op-
erations of arrangement update caused by data and queries are distinguished. More-
over, having the lemma 1, the search space of DCS and RCS are greatly reduced
through GCS evaluation. The space and computation costs of partial space transfor-
mation are therefore relatively low. Algorithm 2 gives the complete processes.

Algorithm 2. Dynamic convex skyline retrieval algorithm SA_DCSQ(1A , 2A , rp)

Input : arrangements indexing the original and SSTed points
Output: DCS of rp in the sliding window
01: SA=createDCEL() //create an empty arrangement for rp
02: GCS=DA_GCSQ(1A , 2A ,rp) // get the rp’s GCS first

03: for each point p in GCS do
04: mp=map(p, rp) // map point into rp’s 1st quadrant
05: SA.insert(mp)
06: end for
07: DCS=BCSQ(SA) // retrieve the BCS of SA
08: return DCS

Since the time complexity of DA_GCSQ is ()O n and constructing an arrangement

takes
2()O n running time, the overall time complexity of SA_DCSQ

is
2(| () |)O n GCS rp+ . Moreover, since the maximum of | () |GCS rp is n, the time

complexity of SA_DCSQ is
2()O n .

5.3 Answer Reverse Convex Skyline Query

Similar to SA_DCSQ, we design an algorithm called SA_RCSQ to retrieve RCS of a
reference point rp in algorithm 3. The algorithm is based on lemma 2. When a RCSQ
is issued, GCS of the reference point is firstly retrieved (line 2). Then for each point p
in GCS(rp), its own GCS denoted GCS(p) is similarly calculated(line 4). With the

 Maintaining the Dominant Representatives on Data Streams 715

guarantee of lemma 2, we can make a preliminary pruning (line 5). The point is
pruned if rp doesn’t belong to its GCS. Otherwise, the point’s DCS is calculated to
inspect whether rp is in this result set (lines 5-10). If yes, the checking point p is
added to RCS(rp)(lines 7-9).

Algorithm 3. Reverse convex skyline retrieval algorithm SA_RCSQ(1A , 2A ,rp)

Input : arrangements indexing the original and SSTed points
Output: RCS dynamic convex skyline points relative to rp in the
sliding window
01: RCS={}
02: GCS(rp)= DA_GCSQ(1A , 2A ,rp) // get GCS(rp) first

03: for each point p∈GCS do

04: GCS(p)= DA_GCSQ(1A , 2A ,p)
05: if rp∈ GCS(p) then // prune p if rp is not its GCS

06: DCS(p)=SA_DCSQ(1A , 2A ,p)

07: if rp belongs to DCS(p) then
08: RCS.add(p)
09: end if
10: end if
11: end for
12: return RCS

The running time of SA_RCSQ mainly depends on the following three factors: 1) the
size of GCS(rp); 2) the time complexity of DA_GCSQ; 3) the time complexity of
SA_DCSQ. The maximum value of GCS(rp) is equal to the window size, in the case
when all points in the sliding window belong to GCS(rp). As discussed above, the
time complexities of DA_GCSQ and SA_DCSQ are ()O n and 2()O n respectively,

and max(| () |)GCS rp n= , the overall time complexity of SA_RCSQ is thereaf-

ter 3()O n . However, since in common cases | () |GCS rp is small, the overall time cost

is relatively low.

6 Performance Evaluation

In this section, we introduce experiments to evaluate our proposed algorithms. They
were implemented by using MS Visual C++ 6.0, and conducted on a PC with Intel
Pentium 4 2.4GHz CPU, 1G main memory and 160G hard disk, running MS Win-
dows XP Professional Edition. We conducted experiments on both synthetic and real
life datasets. However, due to space limitation, we only report results on synthetic
datasets here. Results from real life datasets mirror the result of the synthetic datasets
closely. Three synthetic datasets with different distribution, Correlated(C), Anti-
correlated(A) and Equally(E) respectively, were produced by the data generator in
[15] and employed. Each dataset contains 100000 points (tuples). We used a cyclic
buffer to represent the sliding window (SW), and set its size with 100, 200, 300 and
400 in every experiment. For comparison, we used BBS algorithm to get the full sky-
line result first and then calculate three convex skylines by adding a refinement phase,
we denoted this method as BBCS and ours as ARR.

716 W. He, C. Li, and H. Chen

6.1 Effectiveness

The first experiment was conducted to evaluate the capability of CSQs to abstract
dominant representatives from skyline points. We used a metric called Dominant
Representatives Ratio (DRR) to quantify this estimation. For a dataset D,

| () |

100%
| () |

CSQ D
DRR

FSQ D
= × (1)

where |CSQ(D)| and |FSQ(D)| represent the counts of skyline points of convex skyline
and full skyline respectively. As SW was totally updated, we issued CSQs and re-
corded the count of points in the result. Moreover, we used 100 reference points to
query DCS and RCS. And the average value of partial DRRs was used to represent
the final DDR. Figure 6 shows the effectiveness result of different CSQs. In Fig. 6(a),
DRR of anti-correlated data is the lowest (26.2%), while that of correlated is highest
(97.0%). The reason is correlated dataset contains few points (85% skyline queries
return less than 3 points, 42% queries return only 1 point) in its skyline result, which
gives few opportunities for BCSQ to prune such skyline that is combinatorial domi-
nated by others. The result of anti-correlated dataset is promising, we can clear get
that BCSQ greatly reduces the amount of skyline results as expected. Fig. 6 (b) and
(c) demonstrate that the DRRs of DCSQ and RCSQ respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A C E

D
R
R

BCS

BS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A C E

D
R
R

DCS

DS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A C E

D
R
R

RCS

RS

 (a) (b) (c)

Fig. 6. (a) BCSQ’s DRR (b) DCSQ’s DRR (c) RCSQ’s DRR

6.2 Efficiency

In this experiment, we evaluated ARR to answer CSQs and compared them with
BBCS. To answer DCSQ, BBCS first maps points in the sliding window into refer-
ence point rp’s 1st quadrant, and then calculates the basic skyline result in the trans-
formed space; to answer RCSQ, each point in the sliding window firstly retrieves its
DCS. If its DCS contains the reference point rp, it will be added into rp’s RCSQ re-
sult. Notice the time of constructing indexes (arrangement and R-tree) is not taken
into consideration for both methods. Since BBCS will spend huge time to retrieve
RCSQ as the window size increases, we chose a relative small SW size 100 in this
experiment. The results are presented in figure 7.

Figure 7 shows that our proposed algorithms outperform BBCS. Having lemma 1,
the candidate sets of result can be easily obtained by sharing face checking over both
the original and the SSTed arrangements in ARR. By contrary, BBCS has to retrieve
the full skyline result first and then checks whether a skyline line is combinatorial
dominated by other skylines in refinement phase, which is time-consuming.

 Maintaining the Dominant Representatives on Data Streams 717

0

5

10

15

20

25

A C E

Q
u
e
r
y

T
i
m
e
(
m
s
)

ARR BBCS

0

5

10

15

20

25

30

35

40

45

50

A C E

Q
u
e
r
y

T
i
m
e
(
m
s
)

ARR BBCS

0

50

100

150

200

250

300

350

400

450

500

A C E

Q
u
e
r
y

T
i
m
e
(
m
s
)

ARR BBCS

 (a) (b) (c)

Fig. 7. (a) BCSQ Time Cost (b) DCSQ Time Cost (c) RCSQ Time Cost

7 Related Work

The skyline computation originates from the maximal vector problem in computa-
tional geometry, proposed by Kung et al. [24]. Borzsonyi et al. first introduce the
skyline operator over large databases [15] and also propose a divide-and-conquer
method. The method based on [24, 2] partitions the database into memory-fit parti-
tions. The partial skyline objects in each partition is computed using a main-memory-
based algorithm [25, 26], and the final skyline is obtained by merging the partial
results. In [11], the authors proposed two progressive skyline computing methods.
The current most efficient method is BBS (branch and bound skyline), proposed by
Papadias et al., which is a progressive algorithm to find skyline with optimal times of
node accesses [10, 23]. Balke et al. [18] in their paper show how to efficiently per-
form distributed skyline queries for querying Web information systems.

Arrangement, a concept from computation geometry, has many applications [3,4].
For instance, [6] uses it to answer ad top-k query. To our knowledge, [5] is the most
relevant work to ours. It focuses on efficiently answer reverse skyline query. In that
paper, the authors firstly expand the well-know BBS algorithm [11, 23] as BBRS to
retrieve reverse skyline with respect to arbitrary reference points. To reduce the com-
putational cost for determining whether a point belongs to the reverse skyline, an
enhanced algorithm called RSSA are proposed.

8 Conclusion

In this paper, we investigate the problem of maintaining dominant representatives in
data stream applications. Without specifying the number of representatives, we adap-
tively abstract sufficient points to represent the dominant situation of data in the slid-
ing window. To prune less informative points in full skyline result, we introduce a
novel dominate relationship called Combinatorial Dominate; based on it, we propose
three novel convex skyline queries (CSQs). We design algorithms to efficiently an-
swer CSQs by employing a geometry structure called arrangement for indexing data.
By using this structure, we prune unqualified points to generate the candidate set for
CSQs, which greatly improve the efficiency of our algorithms. We prove our algo-
rithms can effectively get the dominant representatives of data stream by both theory
and extensive experiments. The extension to high dimensional space of proposed
methods and the optimization for sharing results is our future work.

718 W. He, C. Li, and H. Chen

References
1. Agarwal, P., Erickson, J.: Geometric Range Searching and Its Relatives. In: Advances in Dis-

crete and Computational Geometry, Contemporary Mathematics, vol. 223, pp. 1–56 (1999)
2. Preparata, F.P., Shamos, M.I.: Computational geometry: An introduction. Springer, Hei-

delberg (1985)
3. Agarwal, P.K., Sharir, M.: Arrangements and Their Applications. In: Handbook of Com-

putational Geometry, ch. 2, pp. 49–119. Elsevier, Amsterdam (2000)
4. De Berg, M., Cheong, O., Van Kreveld, M., Overmars, M.: Computational Geometry:

Algorithms and Applications (March 2008)
5. Dellis, E., Seeger, B.: Efficient Computation of Reverse Skyline Queries. In: VLDB (2007)
6. Das, G., Gunopulos, D.: Ad hoc Top-k Query Answering for Data Streams. In: VLDB (2007)
7. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: Finding k-dominant sky-

lines in high dimensional space. In: SIGMOD (2006)
8. Chan, C.Y., Jagadish, H.V., Tan, K.L., Tung, A.K.H., Zhang, Z.: On high dimensional

skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M.,
Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–
495. Springer, Heidelberg (2006)

9. Ramsak, F., Kossmann, D., Rost, S.: Shooting stars in the sky: An online algorithm for
skyline queries. In: VLDB (2002)

10. Fu, G., Papadias, D., Tao, Y., Seeger, B.: An optimal and progressive algorithm for skyline
queries. In: SIGMOD (2003)

11. Tan, K., et al.: Efficient progressive skyline computation. In: VLDB (2001)
12. Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting stars: The k most representative skyline

operator. In: ICDE (2007)
13. Morse, M., Patel, J., Jagadish, H.V.: Efficient skyline computation over low-cardinality

domains. In: VLDB (2007)
14. Pei, J., Jin, W., Ester, M., Tao, Y.: Catching the best views of skyline: a semantic approach

based on decisive subspaces. In: VLDB (2005)
15. Kossmann, D., Borzsonyi, S., Stocker, K.: The skyline operator. In: ICDE (2001)
16. Sharifzadeh, M., Shahabi, C.: The spatial skyline queries. In: VLDB Conference (2006)
17. Anthony, K.H., Tung, L., Wang, X.S., Ooi, B.C.: Efficient skyline query processing on

peer-to-peer networks. In: ICDE (2007)
18. Zheng, J.X., Balke, W.-T., Guntzer, U.: Efficient distributed skylining for web information

systems. In: EBDT (2004)
19. Wang, W., Lin, X., Yuan, Y., Lu, H.: Stabbing the sky:efficient skyline computation over

sliding windows. In: ICDE (2005)
20. Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q.: Efficient computation of the

skyline cube. In: VLDB (2005)
21. Kossmann, D., Ramsak, F., Rost, S.: Shooting stars in the sky: An online algorithm for

skyline queries. In: Proc. of the Int’l Conf. in VLDB (2002)
22. Li, H.J., Tan, Q.Z., Lee, W.C.: Efficient progressive processing of skyline queries in peer-

to-peer systems. In: Proc. of the 1st Int’l Conf., In INFOSCALE (2006)
23. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive skyline computation in database sys-

tems. ACM Trans. Database Syst. 30(1), 41–82 (2005)
24. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors.

JACM 22(4) (1975)
25. Stojmenovic, I., Miyakawa, M.: An optimal paralle lalgorithm for solving the maximal

elements problem in the plane. In: Parallel Computing (1988)
26. Matousek, J.: Computing dominances in en. Inf. Process. Lett. (1991)

Modeling Complex Relationships

Mengchi Liu and Jie Hu

School of Computer, Wuhan University,
Hubei, China, 430072

Abstract. Real world objects have various natural and complex rela-
tionships with each other and via these relationships, objects play various
roles that form their context and then have the corresponding context-
dependent properties. Existing data models such as object-oriented mod-
els and role models cannot naturally and directly represent such complex
relationships and context-dependent properties. In this paper, we present
a method to provide such natural and direct support.

Keywords: Information modeling, complex relationships, context-
dependent properties.

1 Introduction

Object-oriented models [1,2,3,4,5,6] have been proposed to model the real world
objects and their relationships. They are mainly concerned about the static
aspects of objects and normally require an object to be an instance of a most
specific class. Thus they are not well suitable to modeling dynamic situations.
To overcome these limitations, various role models [7,8,9,10,11,12,13,14] have
been proposed to captures evolutionary aspects of real-world objects. The main
problem with role models is that they just focus on roles of objects independently
rather than the roles that objects play in the context of complex relationships.

In our view, real world objects have various natural and complex relationships
with each other and via these relationships, objects play various roles that form
their context, and then have the corresponding context-dependent properties.
Existing data models oversimplify and ignore the complex relationships and
context-dependent properties.

In this paper, we attempt to solve this problem by proposing a new method
that can naturally and directly support complex relationships and context-
dependent representation and access to object properties. It allows us to group
not only static but also dynamic and context-dependent properties regarding
objects into instances.

This paper is organized as follows. Section 2 discusses the related work. Sec-
tion 3 proposes our method. Section 4 shows hierarchies and inheritance in our
method. In Section 5, we conclude and comment on our future plans.

2 Related Work

Now let us consider company information modeling. A company involves several
kinds of people such as customers, managers, department managers, and project

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 719–726, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

720 M. Liu and J. Hu

Age:Int

Company:String
PromYear:IntCustomer

ProjManager

Person

Manager
Company:String
CNo:String

DeptManager

Age:45

Company:IBM

Sam

MSam

DMSam
Company:IBM
CNo:001

Company:SAP
CNo:002

CBevCSam

Bev Age:30

PromYear:2006

object instance role instance roleOf attribute

Project

ResProjDevProj

Manage
ManagedBy

relationship

PMBev

MBev

ProjA

ManagedBy

Manage

Company:SAP

PromYear:2001

Dan Age:40

PMDan

MDan

ProjB

ManagedBy

Manage

Company:IBM

PromYear:2004

Budget:Int

Budget:50Budget:100

object class role class attributeISA relationship

Fig. 1. Modeling Company Application in Role Model

managers. A manager has promotion year and is specialized into project man-
ager and department manager; a project manager manages projects. Inversely, a
project may be managed by a project manager. Also, a project may have a bud-
get and is specialized into development project and research project. A customer
has a customer number.

In object models, there are two kinds of classes: static class and dynamic class.
They behave differently with respect to object migration. Instances of static
subclass will never migrate but instances of dynamic subclasses can migrate.
For example, if DevProj is a static subclass of Project, then a project that is not
a development project will never migrate to DevProj subclass. If Customer is a
dynamic subclass of Person, then a person that is not a customer may migrate to
Customer subclass. In both cases, an instance of the subclass is also an instance of
the superclass. That is, the instances of DevProj and Customer are also instances
of their superclasses Project and Person respectively.

In role models, dynamic subclasses are modeled as role subclasses. If Customer
is modeled as a role subclass of Person, then every customer differs from every
person, but a Person instance can acquire one or more Customer instance as roles.
Fig. 1 shows the schema and instance in role models for this application.

In the schema in Fig. 1-A, Person, Project, DevProj, and ResProj denoted
graphically with rectangles are object classes. Customer, Manager, DeptManager,

Modeling Complex Relationships 721

and ProjManager denoted graphically with ellipses are role classes. Object class
Person has attribute Age of type Int and is specialized into two role subclass
hierarchies Customer and Manager → {DeptManager, ProjManager}. Object class
Project is specialized into subclasses DevProj and ResProj. Role class Customer
has attributes Company and CNo of type String, Manager has attributes Company
and PromYear of type String, ProjManager has relationship Manage with Project.
Inversely, Project has relationship ManagedBy with ProjManager. Also, Project
has attribute Budget of type Int.

The instance shown in Fig. 1-B contains five object instances identified by Dan,
Sam, Bev, ProjA, and ProjB and eight role instances identified by MDan, PMDan,
CSam, MSam, DMSam, CBev, MDev, and PMBev. Among them, Dan, Sam, Bev
are instances of class Person, ProjA instance of class ResProj, ProjB instance of
class DevProj, CSam and CBev instances of class Customer, MDan, MSam, and
MDev instances of class Manager, DMSam instance of class DeptManager, PMDan
and PMBev instances of class ProjManager.

Dan has value 40 for attribute Age and acquires two instances MDan and
PMDan as roles. Role MDan has value IBM for attribute Company and PMDan has
value 2004 for attribute PromYear and relationship Manage with ProjB. Inversely,
ProjB has relationship ManagedBy with PMDan. Also, ProjB has value 100 for
attribute Budget. Sam has value 45 for attribute Age and acquires three instances
CSam, MSam, and DMSam as roles. Role CSam has values SAP for attribute
Company and 002 for attribute CNo, MSam has value IBM for attribute Company,
and DMSam has value 2006 for attribute PromYear. Similarly, Bev has value 30
for attribute Age and acquires three role instances CBev, MDev, and PMBev as
roles. Role CBev has values IBM for attribute Company and 001 for attribute
CNo, MDev has value SAP for attribute Company, and PMBev has value 2001
for attribute PromYear and relationship Manage with ProjA. Inversely, ProjA
has relationship ManagedBy with PMBev. Also, ProjA has value 50 for attribute
Budget.

Note that role models just treat Customer, Manager, DeptManager, and Proj-
Manager as independent role subclasses of Person, the context such as Company
just as attribute. They thus just support simple context representation. Also,
the information about a person is scattered in a hierarchy of objects such as one
Person instance Sam and three role instances CSam, MSam and DMSam, rather
than a single object.

3 Our Method

In our method, we treat Company and Person as object classes, Customer, Man-
ager, DeptManager, and ProjManager as role relationships from Company to Per-
son. Project, DevProj, and ResProj are same as in Fig. 1, see Fig. 2-A.

The main novel feature of our method is the introduction of role relationships
and novel mechanisms to represent complex relationships between objects and
the context-dependent properties, and reflect the temporal, dynamic and many-
faceted aspects of real-world objects in a natural and direct way.

722 M. Liu and J. Hu

Fig. 2. Modeling Company Application with Our Method

A role relationship r represents the relationship from object class cs to object
class ct, where cs and ct are called source class and target class of r respectively.
It can have role sub-relationships and thus can form hierarchies in which every
role relationship can have attributes and non-role relationships. For example,
Manager→{DeptManager, ProjManager} forms a role relationship hierarchy from
Company to Person. Also, every role relationship in the hierarchy has the same
attributes and non-role relationships as in Fig. 1. The main difference is that we
treat Company as the source class rather than attribute.

Like an object class that denotes a set of instances with common properties,
a role relationship r also induces a set of instances of its target class that partic-
ipate in the role relationship. We thus overload r to represent the class for this
set of instances called role relationship class that is the subclass of target class
ct and automatically generate its properties based on the properties on the role
relationship.

For example, Customer denoted graphically with ellipse in Fig. 2-A is a role
relationship from Company to Person. Customer thus induces a set of instances

Modeling Complex Relationships 723

of Person such as Sam and Bev participating in the role relationship Customer.
So we overload Customer denoted graphically with round rectangle in Fig. 2-B
to represent a role relationship class that is the subclass of Person and automat-
ically generate property such as CNo. Thus, Sam and Bev are direct instances
of role relationship class Customer. Similarly, Manager→{DeptManager, ProjMan-
ager} denoted graphically with ellipses in Fig. 2-A is a role relationship hierarchy
from Company to Person. They thus induce a set of instances of Person such as
Dan, Sam, and Bev participating in the role relationship hierarchy. We overload
Manager→{DeptManager, ProjManager} denoted graphically with round rectan-
gles in Fig. 2-B to represent the corresponding role relationship class hierarchy
in which properties such as PromYear and Manage are generated automatically
based on the properties specified on corresponding role relationship. Thus, Dan
and Bev are direct instances of role relationship class ProjManager, Sam is a
direct instance of role relationship class DeptManager, and they are all indirect
instances of role relationship class Manager.

A role relationship r has two functions. On one hand, it is a directed relation-
ship to connect objects in cs to objects in ct and may have inverse relationship
from ct to cs as in ODMG [6]. On the other hand, it is a role that objects in
ct plays in objects in cs and may have identification. Through specifying in-
verse relationship and identification on r, the context of the corresponding role
relationship class can be directly and naturally represented.

For example, the inverse relationship worksIn and identification position spec-
ified on role relationship DeptManager in Fig. 2-A can generate the context of
the corresponding role relationship class DeptManager as follows:

class DeptManager [worksIn:Company[position:DeptManager]]

However, role relationship Customer just specifies identification status and in-
verse relationship is omitted. The context of the corresponding role relationship
class Customer can be represented as follows:

class Customer [status: Company.Customer]

Note that both inverse relationship and identification are optional and when they
are both omitted, the corresponding role relationship class does not have context.
Suppose role relationship Customer does not have any inverse relationship and
identification, the corresponding role relationship class Customer does not have
context. In this case, it is reduced to object-oriented models.

Moreover, attributes and non-role relationships of a role relationship class are
allowed to be nested into the context to generate context-dependent properties
and can be inherited, see Section 4. For example, considering the properties Man-
age and CNo on role relationship classes ProjManager and Customer respectively,
context-dependent properties can be represented as follows:

class ProjManager [worksIn:Company[position:ProjManager[Manage:Project]]]
class Customer [status:Company.Customer[@CNo:String]]

Suppose Customer does not have context, context-dependent properties of role
relationship class Customer can be represented as:

724 M. Liu and J. Hu

class Customer [@CNo:String]

Based on the schema, the instance shown in Fig. 2-C contains four object in-
stances identified by IBM, SAP, ProjB, and ProjA and three role relationship
instances identified by Dan, Sam, and Bev. Among them, IBM and SAP are
instances of class Company, ProjA instance of class ResProj, ProjB instance of
class DevProj, Bev and Sam instances of class Customer, Sam instance of class
DeptManager, and Dan and Bev instances of class ProjManager. Also, three role
relationship instances Dan, Sam, and Bev can be represented as follows:

ProjManager Dan [
@age:40,
worksIn:IBM[position:ProjManager[@PromYear:2004, Manage:ProjB]]]

DeptManager,Customer Sam [
@age:45,
worksIn:IBM[position:DeptManager[@PromYear:2006]],
status:SAP.Customer[@CNo:02]]

ProjManager,Customer Bev [
@age:30,
worksIn:IBM[position:ProjManager[@PromYear:2001, Manage:ProjA]],
status:IBM.Customer[@CNoR:01]]

Note that on one hand, when a role relationship class does not have any context,
properties of corresponding role relationship instances are directly under the
instances. On the other hand, even if a role relationship class has context and its
properties are nested into the context. At instance level, the context of its role
relationship instance can be omitted if we do not know its context. In this case, it
is also reduced to object-oriented models. For example, if role relationship class
Customer does not have context or we don’t know the context of its instance
Sam, then Sam can just be represented as:

DeptManager,Customer Sam [
@age:45,
worksIn:IBM[position:DeptManager[@PromYear:2006]],
@CNo:02]

4 Hierarchies and Inheritance

In our method, both object classes and role relationship classes can form dis-
joint class hierarchies. The role relationship class hierarchies are induced by role
relationship hierarchies.

We first discuss object class inheritance. Object classes correspond to static
classes and can have class hierarchies and inherit attributes and relationships
from their superclasses as in object models and role models. For example, ob-
ject class Project in Fig 2 is specialized into subclasses DevProj and ResProj.
Therefore, DevProj and ResProj inherit Budget, ManagedBy from their super-
class Project.

Modeling Complex Relationships 725

Now we consider the role relationship class inheritance including the inheri-
tance between the target class and its role relationship subclasses and the inher-
itance between role relationship classes.

As mentioned in Section 3, a role relationship class denotes a subset of in-
stances of the target class participating in the corresponding role relationship in
the context of source class. It is thus induced by the corresponding role relation-
ship and is a subclass of the target class. Therefore, the role relationship class
inherits the properties from its target class. For example, in Fig. 2, Customer is
a role relationship class which is induced by role relationship Customer and the
target class of role relationship Customer is Person. Therefore, Customer is the
subclass of Person and inherits the attribute Age from Person.

As mentioned in Section 1, our method can naturally and directly support
context-dependent representation and access to object properties. The context
of a role relationship class is generated through the inverse relationship and iden-
tification specified on the corresponding role relationship. Role relationships can
be specialized into role relationship hierarchies and can have a set of attributes
and non-role relationships. Therefore, the role relationship subclass in a role re-
lationship class hierarchy that is induced by a corresponding role relationship
hierarchy inherits or overrides the context, attributes, and non-role relationships
from its role relationship superclass. Moreover, the mechanism allows attributes
and non-role relationships to be nested into the context to represent the context-
dependent properties of a role relationship class.

For example, Manager→{DeptManager, ProjManager} denoted graphically
with round rectangle in Fig. 2-B is a role relationship class hierarchy in which
DeptManager and ProjManager are subclasses of Manager. DeptManager and Pro-
jManager overrides the context but inherit the attribute PromYear from Man-
ager. The context of Manager, DeptManager, ProjManager are worksIn:Company,
worksIn:Company[position:DeptManager], worksIn:Company[position:ProjManager]
respectively. For the above three role relationship classes, the context-dependent
properties which is generated by nesting attributes and non-role relationships
into the context can be represented as:

class Manager [worksIn:Company[@PromYear:Int]]
class DeptManager [worksIn:Company[position:DeptManager[@PromYear:Int]]]
class ProjManager [worksIn:Company[position:ProjManager[@PromYear:Int,

Manage:Project]]]

5 Conclusion

In this paper, we have discussed limitations of existing data models such as
object-oriented data models and role models in terms of complex relationship
and context-dependent information representation and proposed our solutions
to overcome these limitations.

Our method is suitable to deal with data having complex relationship and
context-dependent information. With this method, the data modeling process
can be greatly simplified. Every object in the real world is uniquely identified

726 M. Liu and J. Hu

with its object identifier and is associated with exactly one instance that contains
complete information about this object via all kinds of relationships. Context-
dependent access to object properties is straightforward and the evolutionary,
dynamic and many-faceted nature of real-world objects can be naturally reflected
with this mechanism.

Due to space limitation, our presentation is concise and sketchy. We are work-
ing on a novel data model based on the method proposed here and would like to
systematically implement a database management system based on this model
and apply it in various areas.

References

1. Albano, A., Ghelli, G., Orsini, R.: A relationship mechanism for a strongly
typed object-oriented database programming language. In: Proceedings of VLDB,
Barcelona, Catalonia, Spain, September 1991, pp. 565–575 (1991)

2. Abiteboul, S., Bonner, A.: Objects and views. In: Proceedings of ACM SIGMOD,
Denver, Colorado, May 1991, pp. 238–247 (1991)

3. Su, J.: Dynamic constraints and object migration. In: Proceedings of VLDB,
Barcelona, Catalonia, Spain, September 1991, pp. 233–242 (1991)

4. Bancilhon, F., Delobel, C., Kanellakis, P.C. (eds.): Building an Object-Oriented
Database System, The Story of O2. Morgan Kaufmann, San Francisco (1992)

5. Bertino, E., Guerrini, G.: Objects with multiple most specific classes. In: Olthoff,
W. (ed.) ECOOP 1995. LNCS, vol. 952, pp. 102–126. Springer, Heidelberg (1995)

6. Cattell, R., Barry, D., Berler, M., Eastman, J., dan, D.J., Russel, C., Schadow,
O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0. Morgan
Kaufmann Publishers, San Francisco (2000)

7. Richardson, J., Schwartz, I.: Aspects: Extending objects to support multiple, in-
dependent roles. In: Proceedings of ACM SIGMOD, Denver, Colorado, May 1991,
pp. 298–307 (1991)

8. Wieringa, R.J., Jonge, W.D., Spruit, P.: Using dynamic classes and role classes to
model object migration. Theory and Practice of Object Systems 1(1), 61–83 (1995)

9. Gottlob, G., Schrefl, M., Röck, B.: Extending object-oriented systems with roles.
ACM Transaction on Office Information Systems 14(3), 268–296 (1996)

10. Wong, R.K., Chau, H.L., Lochovsky, F.H.: A data model and semantics of objects
with dynamic roles. In: Proceedings of ICDE, Birmingham U.K, April 1997, pp.
402–411 (1997)

11. Chu, W.W., Zhang, G.: Associations and roles in object-oriented modeling. In:
Proceedings of ER, Los Angeles, California, November 1997, pp. 257–270 (1997)

12. Steimann, F.: On the representation of roles in object-oriented and conceptual
modelling. Data Knowledge Engineering 35(1), 83–106 (2000)

13. Dahchour, M., Pirotte, A., Zimányi, E.: A generic role model for dynamic objects.
In: Pidduck, A.B., Mylopoulos, J., Woo, C.C., Ozsu, M.T. (eds.) CAiSE 2002.
LNCS, vol. 2348, pp. 643–658. Springer, Heidelberg (2002)

14. Cabot, J., Raventós, R.: Roles as entity types: A conceptual modelling pattern. In:
Proceedings of ER, Shanghai, China, November 2004, pp. 69–82 (2004)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 727–734, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Intuitive Visualization-Oriented Metamodeling

Dirk Draheim2, Melanie Himsl1, Daniel Jabornig1, Werner Leithner1,
Peter Regner1, and Thomas Wiesinger1

1 FAW-Institute, Johannes Kepler University, Linz, Austria
{mhimsl,djabornig,wleithner,pregner,twiesinger}@faw.at

2 ZID, University of Innsbruck, Austria
draheim@acm.org

Abstract. In this article we present a metamodeling tool that is strictly oriented
towards the needs of the working domain expert. The working domain expert
longs for intuitive metamodeling features. In particular this concerns rich capa-
bilities for specifying the visual appearance of models. In these efforts we have
identified an important design rationale for metamodeling tools that we call vis-
ual reification – the notion that metamodels are visualized the same way as their
instances. In our tool we support both, standard metamodeling features and new
metamodeling features that are oriented towards the visual reification principle.
We will start an unbiased discussion of the pragmatics of metamodeling tools
against the background of this design rationale.

1 Introduction

In successful projects of today’s enterprises we see modeling activities in business
reengineering, logistics, supply chain management, industrial manufacturing and so
on. Models foster the communication between stakeholders, because they enforce a
certain standardization of the respective domain language. Therefore, they speed up
requirement elicitation and then serve as a long-time documentation of system analy-
sis efforts. Modeling is here to stay. Even if models are not intended as blueprints in
software development projects they add value. For example, we currently see huge
business process redocumentation projects in major enterprises. Research in model-
driven engineering is important. In these efforts we have a different focus on model-
ing than model-driven engineering. We have a look at the working domain [12]
expert. Often, it is necessary to adapt the modeling method and, in particular, to adapt
the used modeling language to the current needs of the domain. It may become neces-
sary to introduce new modeling elements, to deprecate an existing model element, to
add attributes to an existing modeling element, to detail the semantics or to change the
appearance of a model element.

2 Motivation and Requirements for a Visualization-Oriented
Meta- and Instance Modeling Tool

Unlike most of the research done in domain specific modeling, metamodeling and
model transformation we can place the origin of this work in the area of business or

728 D. Draheim et al.

corporate modeling. In numerous projects from business process management to en-
terprise-wide IT architectures, modeling is an essential prerequisite for success.
Moreover, it is hardly possible to achieve sustainable improvements without an ap-
propriate abstraction of the real corporate structures and processes. This is where
modeling has to take place. But on the other hand modeling must not become an end
in itself. It has to be strongly focused on things that need to be analyzed. Otherwise it
will be nearly impossible to maintain the results, considering that corporate structures
and processes are frequently subject of changes.

As consequence of organizational changes the model repository and even modeling
methods may have to be adapted to keep them suitable. This adaptation process is more
than a tool function; it is moreover an organizational process that has to be implemented.
We will discuss this organizational integration [1] in more depth later (see also [1]).

An important issue is that most popular corporate modeling tools do not allow the
creation or adaptation of metamodels. This is quite interesting if we consider how
much effort has been taken in “inventing” metamodeling methods and if we look at
the list of tools supporting these metamodeling methods. Especially well-established
(Meta)-CASE Tools [9][5][4] offer metamodeling features and the most recent devel-
opments like Eclipse GMF [21] and Microsoft DSL [22] offer outstanding possibili-
ties to create domain specific languages.

To provide metamodeling features for the business domain and directly to end-
users, we have seen that the first order principle is inituitivity. This may be the main
reason why user-enabled metamodeling is de-facto currently not existent in business
modeling tools. Methods like OMG’s MOF [23] or proprietary methods implemented
by e.g. (Meta)-CASE tools [24] are hardly accepted by users in this domain. Never-
theless, metamodeling features would add substantial value when applied in a user-
friendly intuitive style.

In this work we are going to introduce a metamodeling methodology, which is
strongly focused on the visual representation, in order to support what we coined the
visual reification principle. With visual reification metamodeling is no longer an ab-
stract visualization independent task, it is now intuitive WYSIWYG modeling.

3 Visual Reification

We discuss our tool against the background of a design rationale that we have coined
‘visual reification’. Visual reification is the principle that the visual representation of
the metamodel is at the same time also a visual representation of a model that adheres
to the metamodel. Or to say it differently, in painting a metamodel the user also paints
a correct and in particular a visually correct model. This design rationale is at the core
of end-user oriented metamodeling targeted by our efforts. The basic argument is that
metamodeling becomes more intuitive and less complex if the model specification
mechanism, i.e., the metamodeling capability, is oriented towards the appearance of
the model. The principle is so natural that meta case designers of leading meta case
tools like MetaEdit+ [8][9], Atom3 [6][7], Kent [5], Moses[3], GME [20][2][10] have
implicitly applied it with respect to a single most important concept, i.e., the meta
association. Here is a choice between using the meta association as a specification of
visual model elements or using it as a specification of connections between visual

 Intuitive Visualization-Oriented Metamodeling 729

model elements. It is fair to say, that the latter one is the specification style found in
the UML metamodel but all of the above tools have taken the first option.

In our tool we make the visual reification principle a first class citizen. We are not
biased in favor of the visual reification principle. We rather want to understand under
which circumstances and for which features it adds value. Therefore we make it
available in our tool in order to make it available to sophisticated investigation and
empirical evaluation in particular. We think that the visual reification principle is a
contribution in its own right, because it helps to start a systematic discussion of the
pragmatics of metamodeling features and their alternatives. We will delve into some
example topics, i.e., meta associations, reference copies and abstract classes in the
sequel. Furthermore, we will see that the principle is an ideal that we are sometimes
tempted to violate in order to have the appropriate expressive metamodeling power
and pragmatics at hand. All the available metamodeling tools somehow use the prin-
ciple as a design rationale; however, they use it only implicitly. With our tool the
design rationale becomes explicit.

4 Implementation

The concept has been implemented in a modeling platform by the use of open-source
technologies from the Eclipse Project, Apache Software Foundation and Hibernate.
The described intuitive and flexible metamodel definition language was integrated to
allow either conceptual or visual-true graphical definition of metamodels and to sup-
port the iterative modeling process. The tool integrates a model adaptation engine for
the adaptation of instances after metamodel changes and to enable model evolution.

A meta-layer is implemented for textual or graphical definition of metamodels and to
enable the creation of metamodel instances an instance-layer has been developed on top
of the meta-layer. For metamodel-based analysis on the repository of meta- and instance
models an analysis and reporting module is available on a vertical analysis-layer.

All layers are integrated as modules within the platform and can be optionally re-
moved to create either only a metamodeling- or instance modeling or analysis tool.
Beside that the access to each module is role dependent and can be restricted by an
administration module that manages roles, users and user groups.

The role specific access to modules and the central metamodel repository prevent
from the decentralized definition or adaptation of metamodels by unauthorized users.

Right from the start it was always an issue to support a simple integration into a
company’s IT-infrastructure. This was the main reason to develop platform independ-
ent and to use JAVA technologies. Moreover relational databases are still de-facto
standard in today’s enterprises. To take this into account the persistence layer was
designed generic to support different data stores. At the current state of development
an implementation for relational databases using the object relational framework
Hibernate is integrated. Nevertheless, other implementations like XMI flatfiles are
possible.

Fig. 1 shows a screenshot of the tool’s meta layer where metamodels can be cre-
ated. As example, an organizational metamodel (organigram) is defined. The first
(left) editor shows the metamodel in the conceptual style. The second editor visualizes
the same metamodel but here the visual reification principle is applied. It is obvious

730 D. Draheim et al.

Fig. 1. Conceptual style vs. visual reification

that both metamodeling styles are structurally equal. In the first editor the MetaCon-
nection “has Skill” is selected. You can see that there are two visual representations,
created as reference copies. Instances of “has Skill” can now be drawn between in-
stances of “Actor” and “Skill” as well as between instances of “Role” and “Skill”.
Multiplicities are defined for both reference copies and will be interpreted for each
separately.

Fig. 2 demonstrates the use of MetaObjects to specify visual compartments (or
container, compositions). The MetaObject acts as a container for child MetaObjects.
For example we assume that an “Actor” can now be visually a child of an “Organiza-
tional Unit”. Moreover we introduce the new MetaObject “Facility” and define that an
“Actor” can be a child of a “Facility”. The left editor once again shows the conceptual
notation. You can see that it is possible to define that a MetaObject can be a child of
several parent MetaObjects by the use of reference copies. The visual reification prin-
ciple is applied in the second editor. Both visualizations are structurally equal. For the
container layout the xy-layout is used, which allows to place child figures free inside
its parent figure’s bounds. Nevertheless, also stack layout, border layout and toolbar
layout algorithms are available. The latter one can be used e.g. to define UML com-
partments like “Classes”, “Attributes” and “Methods”.

In Fig. 3. you can see a screenshot of the tool’s instance layer where instance mod-
els based on metamodels are created. The editor visualizes a minimal process for an
incoming order. For every selected element available attributes are shown in a prop-
erty view. You can find the property view for the selected element “Calculate Capac-
ity” in the lower part of the screen. Values and references to other model elements can
be defined here. In this example references to incoming/outgoing information objects
and documents have been created.

 Intuitive Visualization-Oriented Metamodeling 731

Fig. 2. Visual reification with compartments

Fig. 3. Instance of a process model

5 Related Work

Adaptivity of modeling languages is a major driving issue in the community of
Model-Driven Architecture [13][14] (MDA), which is the current automatic pro-
gramming [15][16] metaphor. Modeling is pervasive in modern enterprises; however,
it is so without automatic programming metaphor. Of course, modeling, and visual

732 D. Draheim et al.

modeling in particular, is used in software development projects. With respect to
software development, there are different opinions about the role and the importance
of modeling. For example, the Rational Unified Process (RUP) [17] is based on mod-
eling – it is model-driven. On the other hand, in agile processes like Extreme Pro-
gramming (XP) [18] modeling is de-emphasized. Despite that we see severe modeling
efforts in companies, in both vertical and horizontal projects, not only software devel-
opment projects but projects [19] in general. That is why the current focus of our
efforts is the working domain expert rather than model engineering. However, the
techniques developed in the MDA community, i.e., model transformation techniques
[11], are important, because model migration is an issue considered by us.

Related projects to the research area of this work are:

1. GME: GME (Generic Modeling Environment) is a toolkit used for domain specific
modeling and program synthesis environments [20].

2. Atom3: Atom3 is a tool for multi-paradigm modeling with the two main tasks
meta-modeling and model-transformation [6].

3. MetaEdit+ DSM environment: The MetaEdit+ DSM environment consists of two
parts, the MetaEdit+ workbench and the tool MetaEdit+. It is used in the area of
domain specific modeling [8][9]0.

4. META CASE [25][26].
5. KMF: The Kent Modeling Framework (KMF) is used in the area of model driven

software development [5].
6. MOSES: Moses is a modeling and simulation environment [4].
7. Microsoft DSL: Microsoft’s Domain Specific Modeling Tools are part of Visual

Studio and allow developers to create their own graphical designers and code gen-
eration tools for domain specific languages [22].

8. Eclipse GMF: The Eclipse Graphical Modeling Framework is an Eclipse project
that allows the creation of editors for domain specific languages based on the
Eclipse EMF (Eclipse Modeling Framework) and GEF (Graphical Editing Frame-
work) projects [21].

6 Conclusion

Our research institute has conducted many complex modeling projects with its com-
pany and research partners, for example in the domains of Business Process Manage-
ment, IT-Service Management, IT-Architectures and IT-Landscapes. Based on our
experience we can state:

• Modeling is here to stay in enterprises. A lot of modeling efforts exist even without
model-driven approach. Models serve as intuitive system and process description
at all levels of the enterprise. Metamodeling is always an issue, again also without
a model-driven approach, and so is meta-model based model transformation, for
example in order to deal with model migration.

• Without appropriate support for adaptivity, modeling projects lack agility and
suffer the risk of a maintenance nightmare of their work products. Metamodeling
enables adaptivity of modeling approach and therefore empowers modeling
projects.

 Intuitive Visualization-Oriented Metamodeling 733

On basis of the above insights we have contributed a graphical modeling tool that
is strictly oriented towards the pragmatics of dealing, i.e., defining and managing,
visual artifacts. In this article we discussed the following:

• The requirements for a graphical metamodeling tool that meets the above objec-
tives.

• The concrete features and modeling capabilities of our tool.
• The context of adaptive modeling and how it motivates our tool.

References

[1] Himsl, M., Jabornig, D., Leithner, W., Draheim, D., Regner, P., Wiesinger, T., Küng, J.:
A Concept of an Adaptive and Iterative Meta- and Instance Modeling Process. In: Pro-
ceedings of DEXA 2007 - 18th International Conference on Database and Expert Systems
Applications, September 2007. Springer, Heidelberg (2007)

[2] Agrawal, A., Karsai, G., Ledeczi, A.: An End-to-End Domain-Driven Development
Framework, Domain-driven development track. In: 18th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, Ana-
heim, California, October 26 (2003)

[3] Janneck, J.: Graph-type definition language (GTDL)—specification, Technical report,
Computer, Engineering and Networks Laboratory, ETH Zurich (2000)

[4] Essar, R., Janneck, J., Naedele, M.: The Moses Tool Suite - A Tutorial. Version 1.2,
Computer, Engineering and Networks Laboratory, ETH Zurich (2001)

[5] Kent, S., Patrascoiu, O.: Kent Modelling Framework Version – Tutorial, December 2002.
Computing Laboratory, University of Kent, Canterbury (2002)

[6] Lara, J., Vangheluwe, H.: Using AToM as a Meta CASE Tool. In: 4th International Con-
ference on Enterprise Information Systems, Universidad de Castilla-La Mancha, Ciudad
Real (Spain), April 3-6 (2002)

[7] Lara, J., Vangheluwe, H.: Computer Aided Multi-Paradigm Modeling to Process Petri-
Nets and Statecharts. In: 1st International Conference on Graph Transformation, Barce-
lona (Spain), October 7-12 (2002)

[8] MetaCase. ABC To Metacase Technology - White Paper. MetaCase Consulting, Finland
(August 2000)

[9] MetaCase. Domain-Specific Modelling: 10 Times Faster Than UML. White Paper,
MetaCase Consulting, Finland (January 200)

[10] Sprinkle, J., Karsai, G.: Model Migration through Visual Modeling, OOPSLA, Anaheim,
CA, October 26 (2003)

[11] OMG, MOF 2.0 Query / Views / Transformations RFP (2002)
[12] Bjorner, D.: On Domains and Domain – Engineering Prerequisites for Trustworthy Soft-

ware – A Necessity for Believable Project Management. Domain Engineering and Digital
Rights Group (April 2006)

[13] Atkinson, C., Kühne, T.: The Role of Metamodeling in MDA. In: Proceedings of
WISME@UML 2002 – International Workshop in Software Model Engineering (2002)

[14] Soley, R.: Model Driven Architecture, white paper formal/02-04-03, draft 3.2, Object
Management Group (November 2003)

[15] Parnas, D.L.: Software Aspects of Strategic Defense Systems. In: Software Engineering
Notes, ACM Sigsoft, October 1985, vol. 10(5). ACM Press, New York (1985)

734 D. Draheim et al.

[16] Czarnecki, K., Eisenecker, U.W.: Generative Programming – Methods, Tools, and Appli-
cations. Addison-Wesley, Reading (2000)

[17] Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Ad-
dison-Wesley, Reading (1999)

[18] Beck, K.: Extreme Programming Explained – Embrace Change. Addison-Wesley, Read-
ing (2000)

[19] Duncan, W.R. (ed.): A Guide to the Project Management Body of Knowledge. Project
Management Institute (1996)

[20] Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J., Thomason IV, C., Nordstrom,
G., Sprinkle, J., Volgyesi, P.: The Generic Modeling Environment, Workshop on Intelli-
gent Signal Processing, accepted, Budapest, Hungary, May 17 (2001)

[21] Eclipse Graphical Modeling Framework (GMF), http://www.eclipse.org/gmf/
[22] Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain Specific Development with Visual

Studio DSL Tools. Addison-Wesley, Reading (2007)
[23] MOF, OMG’s MetaObject Facility, http://www.omg.org/mof/
[24] Kelly, S.: GOPRR Description. PhD. dissertation, Appendix 1 (1997)
[25] Ebert, J., et al.: Meta-CASE in Practice: A Case for KOGGE. In: Proc. of CaiSE 1997

(1997)
[26] Costagliola, G., et al.: Constructing Meta-CASE Workbenches by Exploiting Visual Lan-

guage Generators. IEEE TSE 32(3) (2006)

PISA: Federated Search in P2P Networks with
Uncooperative Peers

Zujie Ren, Lidan Shou, Gang Chen, Chun Chen, and Yijun Bei

Zhejiang University, China
renzju@gmail.com, {should,cg,chenc}@zju.edu.cn,

alphabyj@yahoo.com.cn

Abstract. Recently, federated search in P2P networks has received much atten-
tion. Most of the previous work assumed a cooperative environment where each
peer can actively participate in information publishing and distributed document
indexing. However, little work has addressed the problem of incorporating unco-
operative peers, which do not publish their own corpus statistics, into a network.
This paper presents a P2P-based federated search framework called PISA which
incorporates uncooperative peers as well as the normal ones. In order to address
the indexing needs for uncooperative peers, we propose a novel heuristic query-
based sampling approach which can obtain high-quality resource descriptions
from uncooperative peers at relatively low communication cost. We also propose
an effective method called RISE to merge the results returned by uncooperative
peers. Our experimental results indicate that PISA can provide quality search re-
sults, while utilizing the uncooperative peers at a low cost.

Keywords: Federated search, P2P network, uncooperative peers.

1 Introduction

Federated search in peer-to-peer networks, as an alternative to centralized search en-
gine, has attracted a lot of attention in the research community. Recent years have
witnessed a number of systems for federated search in peer-to-peer(P2P) networks
[1,2,3,4,5]. Typically, a P2P-based federated search engine consists of a number of au-
tonomous and distributed peers, each of which contains a collection of documents, and
responds to queries based on its local index.

Almost all P2P federated search systems assume a two-phase paradigm (or a varia-
tion) as described in the following. In the first phase, which is often referred to as the
directory construction phase, each peer in the system publishes a number of resource
description entries to some other peers in the P2P overlay. In the second phase, namely
the resource selection phase, the distributed index structure is retrieved and the query
is forwarded to a number of promising peers. In the latter case, the query is executed in
the selected peers and the results are returned to the querying peer.

It is however important to note that the directory construction phase in the above
may not be applicable to all peers. Specifically, the previous works assume that all
peers are “cooperative” in the sense that they publish accurate resource descriptions of
their own document repositories, most probably in the form of a list of terms (or some

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 735–744, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

736 Z. Ren et al.

more detailed structures). However, this assumption is not always valid in real applica-
tions. For example, despite its document-querying (and sharing) service, a hidden Web
site such as an online digital library, may not be able to release accurate description
information of its own archive. A more significant example is the majority of almost
all commercial websites which provide local search services. If these websites are re-
garded as “peers”, it simply seems to be impractical to request for resource descriptions
from them via any peer-to-peer protocols. Such peers, which can answer queries but do
not provide any resource descriptions to their own repositories, are often referred to as
uncooperative peers in the literature. Regarding the massive quantity and coverage of
such uncooperative peers in the Web, we would emphasize that the problem of incor-
porating uncooperative peers into a P2P search system is potentially significant but has
been overlooked unfortunately in the past.

In this paper we shall look at novel techniques which integrate uncooperative peers
into a P2P search system. Although the problem of handling uncooperative informa-
tion sources has been addressed in the literature of distributed information retrieval(IR)
[6,7,8], it is much more challenging in the context of P2P search and requires additional
studies due to the P2P characteristics, such as the absence of centralized broker, limited
bandwidth resource.

2 Related Work

A number of solutions to P2P search rely upon P2P networks. Lu et al. [1] propose
a hybrid network model for federated search on digital libraries. Peers with similar
contents connect to the same super-peer, called hub, to form a content-based cluster.
Hubs are connected in an unstructured overlay, where each hub maintains connections
to hubs covering similar content areas and to those serving dissimilar content areas.
However, we argue that if P2P network adopts an unstructured overlay, it could be
tolerant to churn, but its lack of direction in search could be a major barrier for the
search effectiveness. Their research efforts mainly focus on how to improve the search
accuracy and efficiency for federated digital libraries.

Si et al. [9] propose the SSL merging approach which relies on the overlap between
the retrieved results and a centralized sampled database containing all samples for each
peer. The SSL algorithm utilizes the documents in the overlap to train a linear regres-
sion model for each query. Then, the linear regression model is used to transform the
local (peer-specific) scores into global (peer-independent) scores for each retrieved doc-
ument. However, a centralized sample database is not available in PISA because the
sampled documents are distributed on cooperative peers rather than being kept in a cen-
tral broker. Moreover, we cannot assume all uncooperative peers in PISA system will
return their results with the relevance scores. The only assumption is that they can pro-
vide ordered search results. In other words, the only information that we can utilize to
merge results is the ranking of the results.

3 Structure of PISA

In PISA system, we assume each peer has its own document collection and a local
search engine. In addition, each peer can accept a query issued from other peers and

PISA: Federated Search in P2P Networks with Uncooperative Peers 737

retrieve a set of document identifiers as results to be returned. All peers (both cooper-
ative and uncooperative ones) are interconnected via a DHT network. Without loss of
generality, we use Chord [10] as the overlay structure of PISA. For a cooperative data
peer, it generates its own posts to be published, from its local inverted index, and pub-
lishes them into the DHT network, thereby populating the global index directory. A hash
function is applied to every term to determine the responsible index peer respectively.

An uncooperative peer neither publishes its own resource description nor takes the
responsibility of index directory maintenance. To utilize the search service provided by
uncooperative peers, we propose a heuristic query-based sampling technique to estimate
their resource description. We will discuss the details of this technique in Section 4.

4 Acquiring Resource Description of Uncooperative Peers
In this section, we will focus on how to acquire resource description of uncooperative
peers. To acquire the resource description of an uncooperative peer Pu, the following
steps should be performed: 1)first, we employ a query-based sampling mechanism to
obtain a few samples of the documents stored in it. The term statistics of these samples
can then be computed as sampled resource description; 2)second, the sampled resource
description is scaled by a factor to ensure fairness between uncooperative and coopera-
tive peers during query resolving.

Step 1: Heuristic query-based sampling: When an uncooperative peer Pu joins PISA,
another peer Ps (a cooperative peer with the smallest ID no less than the one of Pu)
will attempt to transfer a subset of index directory to Pu. If Ps do not receive Accept
response from Pu, it can detect that the joining peer Pu is uncooperative. Then, Ps uses
the Query-Based Sampling (QBS) technique [6] to acquire an approximate resource
description of Pu, which works as follows:

(1) Ps initializes a query dictionary Q and randomly select a single-term q from Q.
(2) Ps issues the query q to Pu, which returns the IDs of relevant documents as results.
(3) Ps downloads the top m documents and adds them into the sample. (4) Ps updates
Q with the terms in downloaded documents. (5) If a stopping criterion has not yet been
reached, Ps selects a new query and go to step (2).

In the traditional QBS approach, the stopping criterion is that the number of sampled
documents reaches a threshold (250 in our case). Callan et al. claimed in [6] that QBS
can provide high-quality sampled resource descriptions. However, a sampling method
using fixed stopping criterion will always suffer from either under-sampling or over-
sampling problems when peer sizes have skewed distribution. A large threshold causes
over-sampling for small scale peers, while a small one causes under-sampling for large
peers.

To tackle the above problem, we propose a heuristic stopping criterion that au-
tomatically adjusts the sample size. Ideally, if we issue a sequence of queries
Q={q1, q2, . . . , qi, . . . , qn} to an uncooperative peer Pu, we can observe a sequence
of answer sets {D1, D2, . . . , Dn}. If we compute a sequence KLS={KL(D1, Dfull),
KL(D2, Dfull), . . . , KL(Dn, Dfull) ,. . .}, KL(Dn, Dfull) should converge to zero,
where KL(Di, Dj) represents the Kullback-leibler divergence of Di and Dj . We call
this sequence direct K-L divergence. Figure 1(a) shows the averageKLS sequence val-
ues of 200 uncooperative peers, each of which owns a document set extracted from

738 Z. Ren et al.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500

di
re

ct
 K

-L
 d

iv
er

ge
nc

e

Number of sampled documents

(a) direct KL divergence

0

0.05

0.1

0.15

0.2

0 100 200 300 400 500

di
ffe

re
nt

ia
l K

-L
 d

iv
er

ge
nc

e

Number of sampled documents

(b) differential KL divergence

Fig. 1. Convergence of direct and differential KL divergence

TREC WT10g. Each simulated peer contains multiple collections, ranging from 1 to
2000 collections in the dataset. The results indicate that KLS values can be used as
stopping criterion for the sampling process.

Unfortunately, the full description Dfull is not available in real environment. Thus,
we cannot use direct K-L divergence to determine when to stop sampling. Instead, we
can compute sequence KLS

′
={KL(D1, D2), KL(D2, D3), . . . , KL(Dn−1, Dn)},

which also converges to zero, as shown in Figure 1(b). We call sequence KLS
′

the
differential K-L divergence. Differential K-L divergence indicates the difference be-
tween two consecutive samples. Small differential K-L divergence implies that the cor-
responding samples are similar, which indicates that the sample becomes stable and has
a good coverage of the actual vocabulary.

We propose a heuristic stopping criterion to keep query-based sampling until the dif-
ferential K-L divergence becomes less than a predefined threshold. More specifically,
after each query qi probing step, the differential K-L divergence KL(Di−1, Di) be-
tween Di−1 and Di is measured. If the differential K-L divergences become less than a
threshold τ for m consecutive sampling queries, the sampling process will be stopped.
Using this stopping criterion, the number of samples becomes non-uniform for dif-
ferent peers, but generally in proportion to the peer size, which will minimize both
over-sampling and under-sampling cases.

Step 2: Scaling the sampled resource description: The above heuristic query-based
sampling method is designed to obtain a sampled resource description from an unco-
operative peer. Remember that PISA needs to handle cooperative peers as well. If the
sampled resource description generated from sampling is published to the DHT network
indiscriminatively, a problem may arise as the sampled document frequencies (dfs) for
each sampled term are usually much smaller than the actual values. As a result, an un-
cooperative peer is much less likely than a cooperative one to be selected during the
process of peer selection.

For fairness in peer selection, we need to estimate the document frequencies for each
term with respect to the whole collection in Pu. Si et al. [9] introduce a scale factor,
which are defined as the ratio of estimated peer size and the sample size, to estimate the
actual document frequencies. Influenced by their work, we decide to scale up the dfs

for each sampled term by a factor of F , which is also defined as the ratio of estimated
peer size and the number of sampled documents. For a given term t,

PISA: Federated Search in P2P Networks with Uncooperative Peers 739

df (t, Pu) = dfs (t, Pu) · |Pu|
|Sample(Pu)|

where: df (t, Pu) is the estimated number of documents in Pu that contain t; dfs (t, Pu)
is number of documents in the sample of Pu that contain t; |Pu| is the size of peer
Pu, which can be estimated using the Sample-Resample method proposed in [9];
|Sample(Pu)| is the number of documents in the sample of peer Pu.

5 Query Processing in PISA

Query processing in PISA involves three steps: First the query is resolved and a number
of peers are selected to process the query; second, the query is executed in the selected
peers; third, the query results from each peer are returned to the querying peer, where
the final results are to be merged and ranked. We mainly focus on the query resolving
and result merging/ranking techniques.

Query Resolving: In the process of query resolving, a certain number of peers need to
be selected based on their relevance with the query. There are a lot of collection selec-
tion approaches proposed in distributed IR, including CORI [11], DTF[12]. CORI uses
a Bayesian inference network model with an adapted Okapi term frequency normaliza-
tion formula to rank available collections. DTF makes a collection selection decision
that achieves a minimal overall cost, including retrieval accuracy and time consump-
tion. PISA is not restricted to any particular peer selection method. We apply CORI
algorithm in our PISA system due to its high performance and simplicity.

Merging Score-Absent Results: Merging the results returned from uncooperative
peers is more complicated. Some of the uncooperative peers may return ranked results
with no local relevance scores. Therefore, the result merging methods that rely on local
relevance scores, such as CORI merging [11] and SSL [9] algorithm, are not applicable
in PISA. In order to handle such results, we propose a novel scheme called Result merg-
Ing method in Score-absence Environments (RISE), in which the peer-local relevance
scores of retrieved results are not available.

The RISE method involves three steps:(1) Selectively download a limited number of
documents as training data and calculate the relevance score of each downloaded doc-
ument; (2) Train a regression model for each peer using the ranks and relevance scores
of the downloaded documents; (3) Employ the trained regression model to approximate
the relevance score of each retrieved document.

Downloading training data at limited cost: To obtain the training data for the regres-
sion model, we have to download a small fraction of the retrieved documents from an
uncooperative peer in order to calculate the relevance score. In order to restrict network
resource consumption, our algorithm must selectively download a limited number of
documents only.

There are two issues to be addressed in the downloading process. One is that we
should decide which documents to download. The other is that we should determine
when to stop the downloading process. As most users are only interested in top-k re-
sults, our merging algorithm only concerns the relevance scores of the top-k result
candidates. Firstly, the querying peer merges and reorders the results returned by the

740 Z. Ren et al.

cooperative peers, if any, producing R̂. We assume the cooperative peers can provide
necessary statistical information for each retrieved document. Merging the results of
cooperative peers can be implemented with some existing algorithm, such as TF*IDF
[13] or language modeling [9]. Due to space limit, we do not include the details here.
We will only describe in detail the process of merging results returned by uncooperative
peers in the rest of this section.

If R̂ contains more than k results, a relevance threshold T is set to the relevance
score of the k-th document in R̂. Otherwise, the querying peer iteratively downloads
documents ranked at 2θ(θ = 0,1,2,· · ·) from each uncooperative peers respectively, until

2θ ∗ |U | +
∣∣∣R̂∣∣∣>k, where |U | is the number of uncooperative peers that have returned

results, and
∣∣∣R̂∣∣∣ indicates the number of results in R̂. The querying peer calculates the

relevance score of downloaded document and uses them to estimate relevance score of
the relevance score of the remaining documents for each peer. The documents ranged
from 1 to 2θ of each peer will be merged into R̂ and T is set to the relevance score of
the k-th document in R̂.

The aim of the threshold score is to control the downloading process and therefore
limit the number of downloaded documents. Using the T as a threshold, the querying
peer continues to download the 2θ-th document from each peer and calculates the cor-
responding relevance scores. As θ increments by one each time, this loop continues
until the relevance score of the 2θ-th document is less than the threshold T . For each
uncooperative peer Pu, the querying peer uses the relevance scores of the documents
downloaded from Pu as training data, to build a regression model for Pu. Using this
regression model, the querying peer estimates the relevance score of all the documents
returned by Pu and merge them into R̂. Finally, the top-k documents in R̂ are results.

Estimating the relevance scores: In this section, we will describe how to utilize the
downloaded documents as training data to build a regression model for each peer, which
are used for estimating the relevance score of all retrieved documents.

Regression is an efficient and effective mathematical tool for mapping ranks to rel-
evance score. Inspired by the work in [14], we find that the correlation between the
rank of a document and relevance score can be represented by a logistic function as
following:

Y =
eα+β∗ln(X)

1 + eα+β∗ln(X) (1)

where ln(X) indicates the natural logarithm (noted ln) of the rank X for a retrieved
document and Y indicates the corresponding relevance score. Equation 1 can be trans-
formed as follows.

ln(
Y

1− Y
) = logit(Y) = α+ β ∗ ln(X) (2)

In Equation 2, we can see that this equation is a linear one, as this equation can be
represented in another form:

Ŷ = α+ β ∗ X̂ (3)

where Ŷ is logit(Y) and X̂ is ln (X).

PISA: Federated Search in P2P Networks with Uncooperative Peers 741

Therefore, this problem is transformed into a linear regression analysis. In order
to fit the actual X̂ - Ŷ line, we need to estimate parameters α and β in the above
equation using the training data. For a peer Pu and its results list RL, the training data
includes the pairs of the rank x and the relevance score y of the downloaded documents
in RL. The purpose of this model is to estimate parameter α and β that minimize the
deviation, which represents the difference between the observed values of Ŷ and the
ones estimated Ŷ (denoted as Ŷ e). More specifically, we aim at obtaining the values of
parameter, which can make the sum of squared residuals S minimum:

S =
n∑

θ=1

(
Ŷk − Ŷ e

k

)2

where n indicates the number of training documents and k represents 2θ.
The regression over all training data from a selected peer can be shown in following

equation. ⎡
⎢⎢⎢⎢⎣

ln(x1) 1
ln(x2) 1
ln(x4) 1
· · ·

ln(x2n) 1

⎤
⎥⎥⎥⎥⎦ ∗ [α, β]T =

⎡
⎢⎢⎢⎢⎣
logit(y1)
logit(y2)
logit(y4)
· · ·

logit(y2n)

⎤
⎥⎥⎥⎥⎦ (4)

We denote these matrices as M (the first item on the left side of Equation 4, which
is constructed from natural logarithm of ranks and constants), and N (the item on the
right of Equation 4, which is the set of logit function on relevance score). The best way
to calculate [α, β] is to employ the least (or minimum) square method (LSM). Using
LSM, the optimal estimation for parameter α and β that minimize the S is given by:

[α, β]T = (MTM)−1(MTN) (5)

Using the Equation 5 with the relevance score and ranks of downloaded documents, we
can obtain the values of α and β and construct a regression model for each peer, to map
the ranks into relevance scores for each retrieved document. According to the estimated
relevance scores, all the retrieved documents from each peer are merged into a single
sorted list R̂. The top-k documents in R̂ are produced as the final results for the query.

6 Experimental Results

The experiments are conducted in three groups for studying 1) the effectiveness of
HQBS. 2) the accuracy of RISE. 3)the performance of PISA system. Before presenting
the results, we shall look at the experiment settings and the evaluation methodology.

Experiment Settings: We use the TREC WT10g collection for our experiments as it
has also been used by a previous study in [1]. Each simulated peer contains n document
collections, where n ranges from 1 to 2000. We randomly select 1000 queries from the
query set1, which is created by J. Callan and his colleagues based on WT10g data [1],

1 http://boston.lti.cs.cmu.edu/callan/Data/P2P/trecwt10g-query-bydoc.v1.txt.gz

742 Z. Ren et al.

as our query set. In our experiments, the default number of requested results for each
query is 50. In addition, we choose the following default parameter values: τ=0.01 and
m=3 for our heuristic query-based sampling process.

Evaluation Method: The search performance of PISA system is measured by search
accuracy as well as efficiency. The average precision at given document cut-off values
is standard rank-based measure commonly used to evaluate the accuracy of full-text
ranked retrieval in distributed information retrieval, which computes the average preci-
sion over a set of queries when the 5, 10, 15, 20, 30 top-ranked documents have been
seen for each query[11]. Besides precision, recall [15] is also chosen to evaluate the
overall percentage of relevant documents that have been retrieved.

As described above, both precision and recall require a relevant answer set for each
given query. We choose to use the retrieval results from a centralized search engine as
the relevant documents. The centralized search engine is built on a single large collec-
tion, which aggregates all documents in the network. The top-k documents retrieved
from this centralized search engine are treated as the set of “relevant” documents for
the query. In our experiments, we use 50 as the default value for k.

Results of acquiring resources descriptions: In this paragraph, we will compare the
effectiveness and efficiency of our proposed method for acquiring the resource descrip-
tions to the traditional QBS on 200 uncooperative peers. The sampling process used by
the traditional QBS technique will stop when the sample size reaches 250. However,
in the proposed method, we employ HQBS to do the sampling, as well as the scaling
techniques.

Figure 2(a) shows the results of search accuracy using different sampling techniques.
The x-axis indicates the percentage of selected peers participating in each query. The
y-axis indicates the average precision and recall of all queries. The results indicate
that HQBS with the default parameters(τ=0.01 andm=3) outperforms the conventional
QBS in both precision and recall is effective in improving search accuracy. Table 1 dis-
plays the sampling cost of QBS and HQBS. Figure 2(b) describes the results of search
accuracy using HQBS with different stopping conditions. The parameters τ and m of
HQBS for controlling the sample process are selected to (0.01,3), (0.01,5) and (0.1,3) in
this evaluation. In one aspect, we can see that the more stricter is the stopping condition
(lower τ and higherm), the higher search accuracy is performed by PISA, as the quality
of samples is generally better. In the other aspect, the sampling cost (measured by num-
ber of sample documents) is also increased with the stopping condition becoming strict,
as presented in Table 1. In a real system, tuning both parameters τ andm can be applied
to obtain an optimal tradeoff between the search accuracy and the sampling cost.

Table 1. The number of sample documents using QBS and HQBS

Sum Max Min Avg
QBS (250 samples documents) 50000 250 250 250
HQBS(default:τ=0.01,m=3) 42000 450 60 210

HQBS(τ=0.01,m=5) 53000 500 85 265
HQBS(τ=0.1,m=3) 10000 120 30 50

PISA: Federated Search in P2P Networks with Uncooperative Peers 743

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 a

nd
 R

ec
al

l

Percentage of the selected providers

Precision(HQBS)
Precision(QBS)
Recall(HQBS)

Recall(QBS)

(a) Search accuracy using different sampling
techniques.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 a

nd
 R

ec
al

l

Percentage of the selected providers

Precision(t=0.01,m=5)
Precision(t=0.01,m=3)

Recall(t=0.01,m=5)
Recall(t=0.01,m=3)

Precision(t=0.1,m=3)
Recall(t=0.1,m=3)

(b) Search accuracy using HQBS with different
stopping conditions.

Fig. 2. Search accuracy comparison

Results of merging: We evaluate the performance of our proposed result merging al-
gorithm, namely RISE, on 200 uncooperative peers. We perform the same experiment
on a well-known result merging algorithm called CORI [11], which has been shown to
be effective in previous studies.

Figure 3 shows the results of accuracy for CORI and RISE. From the figure we see
that RISE outperforms CORI in both precision and recall. The improvement achieved
by RISE is slight compared to CORI. However, it is crucial to note that the most signif-
icant advantage of RISE is the applicability in score-absent environments.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 a

nd
 R

ec
al

l

Percentage of selected providers per query

Precision(RISE)
Precision(CORI)

Recall(RISE)
Recall(CORI)

Fig. 3. Comparison of merging algorithms

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6 7 8 9 10

P
re

ci
si

on
 a

nd
 R

ec
al

l

Percentage of selected providers for query

Precision
Recall

Fig. 4. Search accuracy of PISA

Performance of PISA: Finally, we study the performance of a simulated PISA pro-
totype which consists of 200 uncooperative peers and 800 cooperative ones. Figure
4 shows the results of search accuracy in PISA when different numbers of peers are
selected to process queries. Note that the ratio between the number of uncooperative
and cooperative peers is kept to be 2:8. We can see that the accuracy of PISA system
increases as the number of selected peers grows.

744 Z. Ren et al.

7 Conclusion

In this paper, we presented a P2P-based federated search framework called PISA. PISA
allowed the utilization of search service provided by uncooperative peers. The peers in
PISA were interconnected via a Chord ring. We proposed an effective heuristic query-
based sampling method (HQBS) to handle skewed data when acquiring approximate
resource description from different uncooperative peers. We also presented a novel al-
gorithm to merge results returned by uncooperative peers in absence of local relevance
scores. Our extensive experiments showed that the proposed techniques were effective
in supporting queries which involved both uncooperative and cooperative peers.

References

1. Lu, J.: Full-Text Federated Search in Peer-to-Peer Networks. PhD thesis, Carnegie Mellon
University (2007)

2. Nejdl, W., Wolpers, M., Siberski, W., Schmitz, C.: Super-peer based routing and clustering
strategies for rdf-based peer-to-peer networks. In: WWW, pp. 536–543 (2003)

3. Nottelmann, H., Fischer, G., Titarenko, A., Nurzenski, A.: An integrated approach for search-
ing and browsing in heterogeneous peer-to-peer networks. In: ACM SIGIR WorkShop Het-
ergeneous and Distributed Information Retrieval (2006)

4. Suel, T., et al.: Odissea: A peer-to-peer architecture for scalable web search and information
retrieval. In: WebDB, pp. 67–72 (2003)

5. Renda, M.E., Callan, J.: The robustness of content-based search in hierarchical peer to peer
networks. In: CIKM, pp. 562–570 (2004)

6. Callan, J., Connell, M.: Query-based sampling of text databases. ACM Transaction of Infor-
mation System, 97–130 (2001)

7. Craswell, N., Hawking, D., Thistlewaite, P.: Merging results from isolated search engines.
In: Australasian Database Conference, pp. 189–200 (1999)

8. Thomas, P., Hawking, D.: Evaluating sampling methods for uncooperative collections. In:
SIGIR, pp. 503–510 (2007)

9. Si, L.: Federated Search of Text Search Engines in Uncooperative Environments. PhD thesis,
Carnegie Mellon University (2006)

10. Stoica, I., Morris, R., Karger, D., Kaashoek, F., Balakrishnan, H.: Chord: A scalable peer-to-
peer lookup service for internet applications. In: ACM SIGCOMM, pp. 149–160 (2001)

11. Callan, J.: Distributed information retrieval. Advances in Information Retrieval (2000)
12. Nottelmann, H., Fuhr, N.: Decision-theoretic resource selection for different data types in

mind. In: Distributed Multimedia Information Retrieval (2003)
13. Kirsch, S.T.: Distributed search patent. U.S. Patent 5,659,732 (1997)
14. Calv, A.L., Savoy, J.: Database merging strategy based on logistic regression. Information

Process Manage (2000)
15. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading

(1999)

Analysis of News Agencies’ Descriptive Features
of People and Organizations

Shin Ishida, Qiang Ma, and Masatoshi Yoshikawa

Department of Social Informatics, Graduate School of Informatics,
Kyoto University Yoshidahonmachi, Sakyo-ku,

Kyoto, 606-8501 Japan
ishida@db.soc.i.kyoto-u.ac.jp,

{qiang,yoshikawa}@i.kyoto-u.ac.jp

Abstract. News agencies report news from different viewpoints and
with different writing styles. We propose a method to extract charac-
teristic descriptions of a news agency written about people and organi-
zations. To extract the characteristic descriptions of a given person or
organization, we analyze words which appear in the same sentence on
the basis of their SVO roles. We then extract a description that is often
used by the news agency but not commonly used by the others. The
experimental results show that our method can elucidate the different
features of each agency’s writing style.

1 Introduction

News articles are widely available on the Web from diverse sources of infor-
mation, and news agencies are main sources. They report news from different
viewpoints and styles of writing. To ensure that readers are not biased by what
they read, they need to be aware of the views and styles of the agency. However,
developing this awareness is difficult. There is therefore a need for a service that
helps readers to understand the relationship between content and the position
of the agency.

A news agency may reveal its lack of impartiality in its descriptions of people
and organizations. For example, we find that a news agency, P, presents mostly
positive descriptions of politician Z while almost all those of Q news agency are
negative. We extracted typical characteristics of a news agency’s descriptions of
people and organizations to analyze the bias of news agencies. These character-
istics can be used to ascertain the extent to which an article was written in the
usual way or not. Intuitively, a news article having different description style is
remarkable.

To extract the characteristic descriptions of a given person or organization
by a news agency, we analyzed words which appear in the same sentence on
the basis of whether they are a subject (S), object (O), or verb (V). When a
given person or organization name appears in a sentence as S or O, the words of
the other roles (O,V or S,V) are defined as descriptions of the given person or
organization. We call such a description as a p-description (person-description).

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 745–752, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

746 S. Ishida, Q. Ma, and M. Yoshikawa

We then found a p-description that is prevalent in articles from a given news
agency by comparing how frequently it appears in content from other agencies.
To do this, we computed the appearance ratio and the inverse agency frequency
of the p-description. We multiplied the appearance ratio by the inverse site
frequency to obtain the feature score of the p-description. The p-description
which has high feature score is the characteristic description of a given person
or organization.

To estimate the effectiveness of our method, we carried out an experiment by
using the articles of three major Japanese newspaper agencies. The experimental
results show that our method can be used to elucidate the features of each agency.

2 Related Work

The major result from recent studies has been to show that there is bias and
diversity in news contents.

NewsCube[1] presents multiple classified viewpoints (aspects) of a news event.
It extracts the viewpoints of articles based on keyword selection and weight cal-
culation considering the number of occurrences of keyword and the locations of
occurrences. It then searches the elements of aspects by recognizing significant
keywords and extracts the aspects of articles. Finally, NewsCube classifies these
aspects regarding the similarity and present users multiple aspects of a news.
Users can effectively compare diverse viewpoints and understand the event pro-
foundly by using NewsCube. The Comparative Web Browser (CWB)[2], which
is a system that allows users to concurrently browser different news articles for
comparison, has been proposed. It discovers related contents from diverse infor-
mation source based on a topic structure consisting of topic and content terms for
comparison. TVBanc[3] is a tool to present bias and diversity of news contents
by comparing topics and viewpoints presented in different articles. It extracts
topics and viewpoints based on the structure of news articles: the topic is repre-
sented by the whole text while the viewpoint is often described in the conclusion
part of a news article. Sentiment map[4] presents the emotional impact on the
reader of news stories. It calculates the emotional impact of keywords in news
content. Aoki et al[5] propose a method of extracting author intentions based on
the peculiarity parts in related news contents. This work focuses on paragraphs
having a peculiarity that is above a given threshold.

These studies deal with the bias and diversity of news contents; however, they
are not concerned with ascertaining the features of different news in a long time
span. To the best of our knowledge, writing style is not yet well studied for
difference mining of news content. Our purpose is to mitigate bias caused by
news agencies’ distinct viewpoints based on the analysis of writing style.

3 Extraction of Descriptive Feature

We are concerned with the features of different news agencies, such as differing
viewpoints or writing styles. Especially, in our current work, we focus on the

Analysis of News Agencies’ Descriptive Features of People and Organizations 747

descriptions of people and organizations as they often bring out the typical
features of a news agency. In this section, we introduce our method to extract
news agencies’ characteristic descriptions of people and organizations.

3.1 SVO Structure

We define “SVO structure” as the structure in which subject, object, and verb
make up a sentence. The description of a person or organization is constructed
on the basis of this structure, in which the name of the person or organization is
either a subject or object. We define such a description as p-description (person-
description). The SVO structure has six patterns as follows.

1. Person is subject.
– S-V structure (person-verb)
– S-O structure (person-object)
– S-O-V structure (person-object-verb)

2. Person is object.
– O-S structure (person-subject)
– O-V structure (person-verb)
– O-S-V structure (person-subject-verb)

P-description is constructed by using these six patterns. Each of them represents
a sentence pattern.

– The S-O and the O-S structure represents people or organizations or events
which are often written with a given person or organization.

– The S-V and the O-V structure represents activities of a given person or
organization.

– The S-O-V and the O-S-V structure represents people or organization and
activities of a given person or organization.

3.2 Extracting the Characteristic Description

To extract p-descriptions, we collect articles in which a person or organization
name appears. We extract the characteristic p-descriptions in period or in topic.
A topic is an event or an affair related to a given person or organization. By
extracting the characteristics in topic, we can elucidate how they change through
various topics. We cluster articles by using keywords (person and organization
names, etc.) and published time, related to a given person or organization in a
predefined period will be grouped together.

To extract the characteristic p-description, we analyze the structure of each
sentence of articles and acquire the SVO structure for each one. We then get
the SVO structure in which the name of a person or an organization appears.
We divide SVO structure into 6 patterns (as described in 3.1). As the meaning
of a description varies from pattern to pattern, we extract the characteristic
p-description per pattern based on computing the local and global features.

748 S. Ishida, Q. Ma, and M. Yoshikawa

Local Feature of p-description. The description that often appears in the
news agency represents the way that the agency typically reports the news.
Such a feature is a local feature of the description and computed by the ratio
rx. The ratio rx of p-description di(p, x) in topic t written by news agency Nj

is computed as

rx(Nj , t, di(p, x)) =
freqx(Nj , t, di(p, x))

nx∑
i=0

freqx(Nj , t, di(p, x))
(1)

where p stands for a person or organization name and x denotes a pattern of SVO
structure. nx is the total number of p-descriptions in x. The freqx(Nj , t, di(p, x))
is how frequently p-description di(p, x) occurs in pattern x.

It is very likely that a description which has a high rx value is characteristic.

Global Feature of p-description. The characteristics of descriptions of a
news agency do not often appear in those of other agencies. This is a global fea-
ture of the news agency. We estimate how a news agency is distinct by comparing
it’s articles with other news agencies. The peculiarity of a description of a news
agency by comparison with the others is computed by using the iaf (Inverse
Agency Frequency). The iaf of p-description di(p, x) in a topic t written about
by news agency Nj is computed as

iaf(Nj, t, di(p, x)) =
rx(Nj , t, di(p, x))

m∑
j=0

rx(Nj , t, di(p, x))
(2)

where m stands for the total number of news agencies.

Extracting the characteristic p-description. The feature score f of p-
description di(p, x) in topic t written by news agency Nj is computed by using
rx and iaf as follows.

f(Nj, t, di(p, x)) = rx(Nj , t, di(p, x))× iaf(Nj, t, di(p, x)) (3)

This formula is similar to tf-idf. We rank the p-description by using the feature
score f per pattern. We define a p-description in the high rank in a certain
pattern as a characteristic description of person p written by the news agency.

3.3 Presentation of Characteristic Descriptions

We propose a way of presenting the characteristic descriptions of different news
agencies. The characteristic descriptions of a topic is represented by a graph
such as Figure 1. A center node represents a given person or organization name,
while a surrounding node represents 5 descriptions that have a high rank in a
certain pattern. The example of Figure 1 shows the characteristic description of
Abe1 at the House of Councilors in Japan written by the Asahi Shimbun.
1 Shinzo Abe: The ex-prime minister of Japan.

Analysis of News Agencies’ Descriptive Features of People and Organizations 749

Fig. 1. The characteristic description of Shinzo Abe at the House of Councilors in
Japan

4 Experimental Results

To evaluate the effectiveness of our method, we carried out experiments by using
the articles of the Asahi, Yomiuri, and Mainichi Shimbun. We used articles for
three months from January to March in 2007 and cluster them in a week period.
We used Syncha [6] to analyze the Japanese morphology and extract the SVO
structure. We then analyzed the description given by each agency of the following
people and organizations: 1) Shizo Abe2 , 2) the LDP3, 3) Ichiro Ozawa4 , and
4) Kitachosen5.

To examine whether we could extract a unique description of each agency re-
spectively, we estimate how accurately the extraction was by using the descrip-
tion coverage described below. The description coverage of person p in pattern
x is computed as

cov(p, x) =
1
n
×

n∑
k=1

|ck(p, x)|
|Dk(p, x)| (4)

where n is the number of articles in a topic or period (in this experiment, n is the
number of articles in a week). Dk(p, x) is the sets of characteristic descriptions
of all agencies of person e in pattern x in cluster k, and ck(p.x) is the over-
lapped descriptions among them. If the description coverage is low, descriptions
of each agency overlap less, and we can say that a unique description is extracted
respectively.
2 We input “Abe”.
3 The Liberal Democratic Party.
4 Japanese politician. We input “Ozawa”.
5 North Korea.

750 S. Ishida, Q. Ma, and M. Yoshikawa

Table 1. The description coverage

SV SO OV OS SOV OSV
Abe 0.08 0.05 0.06 0.04 0.04 0.03

the LDP 0.1 0.05 0 0.01 0.03 0
Ozawa 0.02 0.01 0.06 0.03 0.02 0

Kitachosen 0.08 0.11 0.03 0 0.03 0

Table 2. The extractive precision

SV SO OV OS SOV OSV
Abe 0.27 0.16 0.28 0.46 0.33 0.47

the LDP 0.26 0.28 0.3 0.58 0.29 0.72
Ozawa 0.21 0.23 0.11 0.39 0.22 0.42

Kitachosen 0.28 0.45 0.23 0.47 0.41 0.58
Average 0.255 0.28 0.23 0.475 0.313 0.548

The description coverage of each agency is shown in Table 1.
As shown in Table 1, the description coverage is less than 0.1 with the excep-

tion of that of Kitachosen in pattern S-O. The description of each agency overlaps
by about one-tenth and we can say the unique descriptions are extracted.

To estimate how much the extracted descriptions express the style of news
agencies, we calculated the extractive precision. The extractive precision of per-
son p in topic t in pattern x is computed as

precision(N, t, p, x) =
|Ds(N, t, p, x) ∩Du(N, t, p, x)|

|Ds(N, t, p, x)| (5)

where Ds(N, t, p, x) stands for the set of the characteristic descriptions which
the system outputs. Du(N, t, p, x) stands for the set of the descriptions which
we judged to express the features of news agencies.

As shown in Table 2, The average precision is various. The average precision
is high in the OSV and the OS pattern, while low in the SV and OV ones. This
is because proper nouns such as a person or organization name, which represents
the features of a news agency tend to appear in the OSV and the OS pattern,
and a general verb which does not represent the feature tends to appear in the
SV and the OV pattern. We will discuss this tendency in near future.

We then analyzed whether the extracted description of each agency is char-
acteristic.

We first analyzed the extracted description of Abe. The results of the analysis
of descriptions of Abe are shown in Table 3. When analyzing the description
about education like[Abe(S)-education(O)] or [Abe(S)-teacher(O)], P agency’s
had 9 descriptions in January 2007 , more than other agencies. However, there
were gradually fewer, and, in March 2007, there were six descriptions from Q
agency which is more than those of P agency. There were few descriptions from
agency R . It turns out the that time and degree that a news agency picks up
Abe and education differ from agency to agency.

When we analyzed negative descriptions, such as [Abe(O)-criticize(V)] or
[Abe(O)-excuse(V)], we found that there were 15 such descriptions from P
agency, a number that is significantly higher than those of the others’. The num-
ber of appearances of the word [criticize] in P descriptions is obviously larger
than those of the others’. This is the feature of P agency to Abe.

Analysis of News Agencies’ Descriptive Features of People and Organizations 751

Table 3. The descriptions to Abe

Descriptions about education
January February March

P agency 9 1 0
Q agency 1 1 6
R agency 1 2 1

Negative descriptions
January February March

P agency 2 7 6
Q agency 0 2 0
R agency 1 0 2
Number of person, organization, country names

January February March
P agency 9 15 25
Q agency 5 12 0
R agency 12 16 4

Finally, we analyzed the names of people, e.g., “Aso”6, organizations, “the
LDP” and countries, e.g., “Kitachosen” that appeared in descriptions with Abe.
As shown in Table 3, P agency had the highest number with 41 while Q agency
had the least with 17. Ozawa and Fukushima7, head of a opposition party, appear
for agency P, while relatively unknown people appear in reports for Q agency
and Nakagawa secretary-general appears in R agency’ reports.

It was possible to indicate the characteristic description of each news agency
for descriptions of Abe in the way described above. We also analyzed the de-
scriptions of other people and organizations. As a result, features of descriptions
of each agency are seen in descriptions of Abe and the LDP and Kitachosen.

We can see both the consistent feature of descriptions and small difference
between agencies. This is caused by the tendency for a news agency to write
about the same topic for over a week. We mention several problems below and
will discuss them in our future work.

– Meaningless descriptions are partly extracted [Abe appreciates Abe] and
[Abe likes home]. This is because SVO structures are not precisely extracted.
We should improve our method of analyzing a sentence.

– In our feature calculation technique, descriptions which have the same mean-
ings are ranked more highly, such as [Abe responsibility] and [Abe has re-
sponsibility]. We should consider the inclusion of relations between the SVO
structure patterns.

5 Conclusion

We propose a way of extracting characteristic description of a news agency. We
used SVO structure to extract characteristic description of a person or orga-
6 Taro Aso: Japanese minister.
7 Mizuho Fukushima: Japanese politician.

752 S. Ishida, Q. Ma, and M. Yoshikawa

nization. We used local and global features to measure how much description
differs from others. The experimental results show that our method can be used
to elucidate the different of each agency’s style.

Our future work is to carry out further experiments that include the names of
many entities and check how effective our method is. We should study on more
effective and visual presentation method. We should let users find out how well
our method helps them to ascertain the features of news agencies. In addition,
opinion mining and sentiment analysis technologies will be studied in near future.

Acknowledgments

This research is partly supported by the research for the grant of Scientific Re-
search (No.20700084, 20300042) made available by MEXT, Japan. This work is
also supported in part by the National Institute of Information and Communica-
tions Technology, Japan. This work is in part supported by the Asahi Shimbun,
the Mainichi Shimbun, and the Yomiuri Shimbun.

References

1. Souneil, P., Seungwoo, K., Sangyoung, C., Junehwa, S.: NewsCube: Delivering Mul-
tiple Aspects of News to Mitigate Media Bias. In: Proc. of the 27th international
conference on Human factors in computing systems, pp. 443–452 (2009)

2. Nadamoto, A., Tanaka, K.: A comparative web browser (CWB) for browsing and
comparing web pages. In: Proc. of the 12th international conference on World Wide
Web, pp. 727–735 (2003)

3. Ma, Q., Yoshikawa, M.: Topic and Viewpoint Extraction for Diversity and Bias
Analysis of News Contents. In: APWebWAIM 2009. LNCS, vol. 5446, pp. 152–160.
Springer, Heidelberg (2009)

4. Hamasuna, Y., Kawai, Y., Kumamoto, T., Tanaka, K.: Using a Sentiment Map
for Visualization of Web Site Distinction (in Japanese). In: Proceedings of Data
Engineering Workshop, B6–B4 (2008)

5. Aoki, S., Yumoto, T., Sumiya, K., Nii, M., Takahashi, Y.: Extracting Author Inten-
tion based on Peculiarity Parts in Related News Articles (in Japanese), 2008-DBS-
146, pp. 187–192 (2008)

6. syncha, http://cl.naist.jp/ryu-i/syncha/

http://cl.naist.jp/ryu-i/syncha/

Analyzing Document Retrievability in
Patent Retrieval Settings

Shariq Bashir and Andreas Rauber

Institute of Software Technology and Interactive Systems,
Vienna University of Technology, Austria
{bashir,rauber}@ifs.tuwien.ac.at

http://www.ifs.tuwien.ac.at

Abstract. Most information retrieval settings, such as web search, are
typically precision-oriented, i.e. they focus on retrieving a small num-
ber of highly relevant documents. However, in specific domains, such as
patent retrieval or law, recall becomes more relevant than precision: in
these cases the goal is to find all relevant documents, requiring algorithms
to be tuned more towards recall at the cost of precision. This raises im-
portant questions with respect to retrievability and search engine bias:
depending on how the similarity between a query and documents is mea-
sured, certain documents may be more or less retrievable in certain sys-
tems, up to some documents not being retrievable at all within common
threshold settings. Biases may be oriented towards popularity of doc-
uments (increasing weight of references), towards length of documents,
favour the use of rare or common words; rely on structural information
such as metadata or headings, etc. Existing accessibility measurement
techniques are limited as they measure retrievability with respect to all
possible queries. In this paper, we improve accessibility measurement
by considering sets of relevant and irrelevant queries for each document.
This simulates how recall oriented users create their queries when search-
ing for relevant information. We evaluate retrievability scores using a
corpus of patents from US Patent and Trademark Office.

1 Introduction

In several information retrieval applications such as web search, e-commerce,
scientific literature, patent applications etc., growing emphasis is put on the
measurement of accessibility and retrievability of documents given an underlying
information retrieval system [1,2]. In recent years measurement concepts like
document ”retrievability”, ”searchability” and ”findability” emerged [1]. These
concepts measure, how retrievable each individual document is in the retrieval
system, i.e. how likely it is that a document can be found at all given a specific set
of queries. Any retrieval system is inherently biased towards certain document
characteristics. This results in the risk that a certain number of documents
cannot be found in the top-n ranked results via any query terms that they would
actually be relevant for, which ultimately decreases the usability of the retrieval
system [10]. This is specifically critical in recall oriented application scenarios,
such as patent retrieval, or legal settings. In these cases, the focus of a system

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 753–760, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.ifs.tuwien.ac.at

754 S. Bashir and A. Rauber

is not so much on providing the best document to answer a specific information
need (as e.g. in Web search settings), but to retrieve all documents that are
relevant [9]. Thus, all documents should at least potentially be retrievable via
correct query terms.

In recent years, emphasis is put on designing retrieval systems for recall ori-
ented tasks such as patent or legal documents search [4,9]. Before designing a new
or using an existing retrieval system for recall oriented applications one needs to
analyze the effects of the retrieval system bias as well as the overall retrievability
of all documents in the collection using the retrieval function at hand.

In this paper, we take a closer look at document retrievability measurements
particularly for patent retrieval applications. Section 2.1 and 2.2 introduce both
the standard way of measuring retrievability as well as three novel, more fine-
grained measures for assessing retrievability. Section 2.3 explains how queries
are constructed, forming the basis for the experiments reported in this paper.
Section 3 presents the experiments performed on the dentistry category of the US
Patent and Trademark Office database, with conclusions as well as an outlook
on future work being provided in Section 4.

2 Measuring Retrievability

2.1 Standard Retrievability Measurement

Given a retrieval system RS and a collection of documents D, the concept of
retrievability [1,2] is to measure how much each and every document d ∈ D is
retrievable in top-n rank results of all queries, if RS is presented with a large
set of queries q ∈ Q. Defined in this way, the retrievability of a document is
essentially a cumulative score that is proportional to the number of times the
document can be retrieved within that cut-off c over the set Q. A retrieval
system is called best retrievable, if each document d ∈ D has nearly the same
retrievability score. More formally, retrievability r(d) of d ∈ D can be defined as
follows.

r(d) =
∑
q∈Q

f(kdq, c) (1)

Here, f(kdq, c) is a generalized utility/cost function, where kdq is the rank of
d in the result set of query q, c denotes the maximum rank that a user is willing
to proceed down the ranked list. The function f(kdq, c) returns a value of 1 if
kdq ≤ c, and 0 otherwise.

The work of Leif et al. [1] is pioneering in this regard. In their experiments
using collections of news and government web documents, they analyze docu-
ment retrievability, differentiating between highly retrievable and less retrievable
documents.

2.2 Limitations of Standard Retrievability Measure

In this paper we argue that analyzing document retrievability using a single re-
trievability measure [1,2] has several limitations in terms of interpretability. For

Analyzing Document Retrievability in Patent Retrieval Settings 755

example, when using a single retrievability curve we cannot analyze accurately
how large a gap exists between an optimal retrievable system and the current
system; or what the effect of the query set is that is used for retrievability mea-
surement. Other issues to be analyzed include whether highly retrievable docu-
ments are really highly retrievable, or whether they are simply more accessible
from many irrelevant queries rather than from relevant queries.

Motivated by these limitations of existing retrievability measurement, the
focus of our paper lies in understanding the following aspects: We identify four
retrievability measurements rather than using just a single descriptor. These are

– How retrievable is each document using all queries, as done in [1]
– From how many relevant queries out of all queries each document is retriev-

able
– From how many irrelevant queries out of all queries each document d ∈ D is

retrievable, and
– What is the total number of relevant queries for each document.

The last measure provides an upper bound for by how much we can increase
the retrievability score of all documents. The one but last indicates where we
can decrease the relevance score of highly retrievable documents and thus poten-
tially increase the relevance score of the other documents. In [1] queries used for
retrievability measurements were selected using a sampling approach [3] with-
out considering what type of queries are relevant and irrelevant to individual
documents. From our experiments we learned that there is a significant differ-
ence in retrievability if queries are selected randomly or considering relevant and
irrelevant queries seperately.

2.3 Query Generation Techniques

Clearly, it is impractical to calculate the absolute r(d) scores because the set Q
would be extremely large and require a significant amount of computation time
as each query would have to be issued against the index for a given retrieval
system. So, in order to perform the measurements in a practical way, a subset of
all possible queries is commonly used that is sufficiently large and contains rela-
tively probable queries. For generating reproducible and theoretically consistent
queries, we try to reflect the way how patent examiners generate queries sets in
patent invalidity search problems [5,8]. In invalidity search, the examiners have
to find out all existing patent specifications that describe the same invention for
collecting claims to make a particular patent invalid. In this search process, the
examiners extract relevant query terms from a new patent application, partic-
ularly from the Claim sections for creating query sets [6,7]. We first extract all
those frequent terms that are present in the Claim sections of each patent doc-
ument and have a support greater than a certain threshold. Then, we combine
the single frequent terms of each individual patent document into two and three
terms combinations. After creating the query set, individual query terms of Q
which appear in the claim section of a patent document d ∈ D are separated for
representing its relevant queries Q̂, and all those query terms which do not exist
in the claim section of d are used for representing their irrelevant queries.

756 S. Bashir and A. Rauber

2.4 Retrievability Measurement Using Relevant Queries

For analyzing the above factors, in this paper we conduct our retrievability mea-
surements considering relevant queries for each document. In our approach, a set
of relevant queries q ∈ Q̂ for each document contains those terms or combina-
tions of terms, that are considered most important for an individual document’s
accessibility. In our measurements, as a first step, we extract all possible rele-
vant queries from the Claim sections of every document. The number of queries
in Q̂, can be considered as an upper bound for the retrievability score. If any
document exhibits a much lower retrievability value than Q̂, then it is called less
retrievable.

In step two, relevant queries of all documents are used for constructing a single
query set Q. In step three, using query sets Q and Q̂ retrievability measurements
are computed for every document according to Equation 1. Document retriev-
ability in set Q minus document retrievability in set Q̂, helps in determining the
main cause behind low retrievability. It also identifies the list of queries, where
we may be able to decrease the relevance of those documents which are wrongly
listed in the top rank results set, for increasing the relevance of less retrievable
documents. In short, rather than analyzing document retrievability from a single
perspective we analyze retrievability using four factors.

(a) Document retrievability r(d) in query set Q (Equation 1);
(b) Document retrievability r̂(d) in relevant queries Q̂ (Equation 2);
(c) Document retrievability in irrelevant queries r̄(d) (Equation 3); and
(d) Total number of relevant queries for each document ‖Q̂‖.

r̂(d) =
∑
q∈Q̂

f(kdq, c) (2)

r̄(d) =
∑
q∈Q

f(kdq, c)−
∑
q∈Q̂

f(kdq, c) (3)

3 Experiments

3.1 Experiment Set-Up

For our experiments we use a collection of patents freely available from the US
Patent and Trademark Office, downloaded from (http://www.uspto.gov/).
We collected all patents that are listed under United States Patent Classification
(USPC) class 433 (Dentistry Domain). For query generation we consider only
the Claim section of every document as this is the section that most professional
patent searchers use as their basis for query formulation. However, for retrieval
we index the full text of all documents (Title, Abstract, Claim, Description).
This reflects the default setting in a standard full-text retrieval engine. Some
basic statistical properties of the data collection used are listed in Table1.

Four standard IR models are used for evaluating the retrievability bias. These
are tf-idf, the OKAPI retrieval function (BM25) [11], the OKAPI field retrieval

Analyzing Document Retrievability in Patent Retrieval Settings 757

Table 1. Properties of Patent Collection used for Retrievability Measurements

Total Docu-
ments

Unique Terms Average Doc-
ument Length
(words)

Average
Title Sec-
tion Length
(words)

Average
Abstract Sec-
tion Length
(words)

Average
Claim Sec-
tion Length
(words)

Average De-
scription Sec-
tion Length
(words)

7213 62343 2888 7.65 35.32 878.5 2234.5

Table 2. Query Collection Approaches

Approach Total
Queries

Average Retrievability
Score

Average Relevant Queries/Doc-
ument

Query Expansion (2-Terms) 67735 317.6 135
Query Expansion (3-Terms) 337200 248 150

function (BM25F) [12], and the exact match model. Before indexing, we remove
stop words and apply stemming. For indexing and querying we use Apache
LUCENE1 IR toolkit. Eachmeasurement graphdepicts the four document retriev-
ability indicators (cf. Section 2.4). (1) Document retrievability across all queries,
(2) Document retrievability via relevant query set, (3) Document retrievability in
irrelevant query set, and (4) Total number of relevant queries for each document
in collection, correlating with the length of the respective Claim section.

In query generation approach we select all the single terms which are present
in the Claim section of every document that have a term frequency greater than
2 minimum support threshold. There are a total of 9, 751 single term queries
extracted from all documents in the collection, with an average 25 terms per
patent document. For creating longer length queries, we expand all the single
term queries with two and three terms combinations, again extracted from the
Claim sections. For documents which contain large number of single frequent
terms, the different co-occurring term combinations of size two and three can
become very large. Therefore, for generating similar number of queries for every
document, we put an upper bound of 200 queries generated for every patent
document. On average there are 135 queries per each document in two terms
combinations, and 150 queries in three terms combinations. For generating the
complete query set Q we remove all duplicate queries which are present in multi-
ple documents. After generating these query sets for retrievability measurement,
these were subdivided into relevant and irrelevant query sets for each document,
depending on whether the query terms originated from the respective document.
Table 2 shows the main properties of these query sets. For all experiments, the
cut-off factor c is set to the top-35 documents in the ranked list, following the
experiment set-up in [1].

3.2 Retrievability Results

Figures 1 and 2 show retrievability measurements on different types of query sets
for the four different retrieval models. Following the presentation in [1], docu-
ments are sorted in ascending order in terms of overall retrievability. From all

1 http://lucene.apache.org/java/docs/

758 S. Bashir and A. Rauber

 0.1

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

 0.1

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

(BM25) (BM25F)

 0.1

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

(TF-IDF) (Exact Model)
L1: Retrievability in all Queries, L2: Retrievability in Relevant Queries, L3:

Retrievability in Irrelevant Queries, L4: Total Relevant Queries

Fig. 1. Retrievability Measurement Results using Two Pairs Query Expansion Ap-
proach

graphs it is clear, that there is a high difference in overall document retrievabil-
ity scores between less and highly retrievable documents when using all queries
(blue line / square symbols). This effect increases as the size of the query set ‖Q‖
increases, specifically with the two and three terms query expansion approaches.

When using only the set of relevant queries per document (purple line / rhombus
symbols), retrievability is almost constant, irrespective of document length or of
the overall retrievability of documents across all queries. In most cases an overall
high retrievability score is owed to high retrievability of documents via irrelevant
queries (light blue line, triangular symbols). This means that most documents are
frequently retrieved not because of high matches in the Claim section, as would be
desired by patent retrieval experts, but via matches in other sections of the patent
- at the cost of missing relevant matches in the Claim section for other documents.
(Figures 1 and 2). Due to the bias of the given retrieval models, highly retrievable
documents are not really highly accessible on their relevant queries, but on the
other side decrease the accessibility of other documents.

The measurements depicted in Figures 1 and 2 show, that there is sufficient
space for improving retrievability of less retrievable documents based on the
number of potentially relevant queries (green line / circular symbols), which is

Analyzing Document Retrievability in Patent Retrieval Settings 759

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

(BM25) (BM25F)

 0.1

 1

 10

 100

 1000

 10000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 1400 2800 4200 5600 7000

R
et

ri
ev

ab
ili

ty
 S

co
re

Docs. ordered by r(d)

L1
L2
L3
L4

(TF-IDF) (Exact Model)
L1: Retrievability in all Queries, L2: Retrievability in Relevant Queries, L3:

Retrievability in Irrelevant Queries, L4: Total Relevant Queries

Fig. 2. Retrievability Measurement Results using Three Pairs Query Expansion Ap-
proach

closer to the retrievability values on relevant queries for the highly retrievable
documents on the right side of the graphs. When comparing different retrieval
models, we see that the exact match model shows the worst performance on all
query generation approaches. There are very few documents which are retrieved
for almost all of their relevant queries (the optimal case). On the other hand,
22% of the documents cannot be retrieved by any of the queries they would be
relevant for, result sets there being dominated by irrelevant documents in terms
of query term presence in the Claim section. There is little difference between
the BM25 and BM25F (which considers individual sections) retrieval models.
On almost all measurements they show comparable performance.

4 Conclusions

We use retrieval systems in order to access information. Therefore, it is important
to measure how much different retrieval systems restrict us in accessing different
information. Document Retrievability is a measurement, used for this purpose in
order to analyze how much a given retrieval system makes individual documents

760 S. Bashir and A. Rauber

in a collection easier to find ranked within top-n results. Existing document
Retrievability (Findability) measurement techniques, which measure document
accessibility with single factor analysis, are not suitable for understanding the
complex aspects involved in documents retrievability. In this paper, we evaluate
document retrievability by considering retrieval both for relevant and irrelevant
query sets. Rather than taking random queries, we first model how expert users
formulate their queries, identifying the Claim section as the relevant source of
query terms. Extensive experiments reveal that 90% of documents which are
highly retrievable considering all types of queries, are not highly retrievable on
their relevant query sets. Furthermore, retrievability is rather constant across
all documents when considering only relevant queries, as opposed to the rather
large differences encountered when considering all potential queries. The number
of relevant queries may also serve as a kind of upper bound of retrievability
performance for every document. Further analysis is required to understand the
effect of different query selection approaches and query expansion techniques as
well as the characteristics hat make documents more or less retrievable under
certain systems.

References

1. Azzopardi, L., Vinay, V.: Retrievability: An evaluation measure for higher order
information access tasks. In: Proc. of CIKM 2008, Napa Valley, CA, USA, pp.
561–570 (2008)

2. Azzopardi, L., Vinay, V.: Accessibility in Information Retrieval. In: Macdonald,
C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS,
vol. 4956, pp. 482–489. Springer, Heidelberg (2008)

3. Callen, J., Connell, M.: Query-based sampling of text databases. ACM Transac-
tions on Information Systems 19(2), 97–130 (2001)

4. Fujii, A., Iwayama, M., Kando, N.: Introduction to the special issue on patent pro-
cessing. Information Processing and Management: an International Journal 43(5),
1149–1153 (2007)

5. Fujita, S.: Technology survey and invalidity search: An comparative study of dif-
ferent tasks for Japanese patent document retrieval. Information Processing and
Management: an International Journal 43(5), 1154–1172 (2007)

6. Itoh, H., Mano, H., Ogawa, Y.: Term distillation in patent retrieval. In: Proc. of
ACL 2003, Sapporo, Japan, pp. 41–45 (2003)

7. Konishi, K., Kitauchi, A., Takaki, T.: Invalidity patent search system at NTT data.
In: NTCIR 2004: Proceedings of NTCIR-4 Workshop Meeting, Tokyo, Japan (2004)

8. Konishi, K.: Query terms extraction from patent document for invalidity search. In:
NTCIR 2005: Proceedings of NTCIR-5 Workshop Meeting, Tokyo, Japan (2005)

9. Kontostathis, A., Kulp, S.: The Effect of normalization when recall really matters.
In: Proc. of IKE 2008, Las Vegas, Nevada, USA, pp. 96–101 (2008)

10. Baeza-Yates, R.: Applications of web query mining. In: Losada, D.E., Fernández-
Luna, J.M. (eds.) ECIR 2005. LNCS, vol. 3408, pp. 7–22. Springer, Heidelberg (2005)

11. Robertson, S., Walker, S.: Some simple effective approximations to the 2-Poisson
model for probabilistic weighted retrieval. In: Proc. of SIGIR 1994, Dublin, Ireland,
pp. 345–354 (1994)

12. Robertson, S., Zaragoza, H., Taylor, M.: Simple BM25 extension to multiple
weighted fields. In: Proc. of CIKM 2004, Washington, D. C., USA, pp. 42–49 (2004)

Classifying Web Pages by Using Knowledge
Bases for Entity Retrieval

Yusuke Kiritani, Qiang Ma, and Masatoshi Yoshikawa

Department of Social Informatics, Graduate School of Informatices, Kyoto University
Yoshidahonmachi, Sakyo-ku, Kyoto 606–8501, Japan

y.kiritani@db.soc.i.kyoto-u.ac.jp,

{qiang,yoshikawa}@i.kyoto-u.ac.jp

Abstract. In this paper, we propose a novel method to classify Web
pages by using knowledge bases for entity search, which is a kind of
typical Web search for information related to a person, location or orga-
nization. First, we map a Web page to entities according to the similar-
ities between the page and the entities. Various methods for computing
such similarity are applied. For example, we can compute the similar-
ity between a given page and a Wikipedia article describing a certain
entity. The frequency of an entity appearing in the page is another fac-
tor used in computing the similarity. Second, we construct a directed
acyclic graph, named PEC graph, based on the relations among Web
pages, entities, and categories, by referring to YAGO, a knowledge base
built on Wikipedia and WordNet. Finally, by analyzing the PEC graph,
we classify Web pages into categories. The results of some preliminary
experiments validate the methods proposed in this paper.

1 Introduction

Currently, there are many Web pages related to people, organizations and loca-
tions. Many users search for information related to these people, organizations,
and locations by using search engines. Some statistics suggest that such searches
account for as much as 5-10% of all search queries [1]. In other words, many Web
pages describe certain entities, and many people search for these entities.

Conventional search engines return a list of Web pages ranked according to
their estimated likelihood of relevance to the query, or according to an impor-
tance score computed by using the link structures in the search results. Users
then have to judge whether a given page describes the desired entities by check-
ing the page’s URL, title, and snippet. It is still difficult, however, to find a
suitable page among a large number of search results. Although users can try to
modify their queries to improve the relevance of search results, it is not easy yet
for them to specify their precise intentions by query modification to find relevant
information. As one of many possible solutions, classification of Web pages has
been widely studied.

Web directories(e.g., Open Directory Project1) are used for Web page catego-
rization. A Web directory is a hand-crafted index that hierarchically categorizes
1 Open Directory Project: http://www.dmoz.org/

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 761–768, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

762 Y. Kiritani, Q. Ma, and M. Yoshikawa

hierarchically Web pages in advance. The directory categorization is correct but
has problems such as high maintenance cost and low coverage of Web pages. In
addition, because these categorizations are not based on entities, they are still
not effective in helping searches for people and organizations.

Recently, Wikipedia, a free encyclopedia on the Internet, is attracting at-
tention because it has much information about entities and those categories.
Knowledge bases (e.g., YAGO[2]) are built on this information and WordNet.

In this paper, we propose an approach to classify Web pages by using knowl-
edge bases to support entity search. Concretely, we apply the following procedure
(see also Figure 1).

Step 1. Web pages are mapped to entities according to a correspondence degree
expressing how strongly a page relates to an entity. We can use methods based
on the following four factors in order to compute the correspondence degree. (a)
the similarity between the body text of the page and a Wikipedia article about
the entity, (b) the similarity between the title and snippet of the page and the
Wikipedia article about the entity, (c) the frequency of the entity in the body
text of the page; and (d) the frequency of the entity in the title and snippet of
the page.

Step 2. We construct a graph (called a PEC graph) based on the pages, entities,
classes, and their relations, as obtained from the knowledge base YAGO.

Step 3. By analyzing the graph, the pages are classified into classes according to
a correspondence degree expressing how strongly a page corresponds to a class.

Fig. 1. Processing flow

The remainder of this paper is structured as follows. Related work is in-
troduced in Section 2. The methods for mapping Web pages to entities and
classifying pages into classes are introduced in Sections 3 and 4, respectively.
Our preliminary experiment results are given in Section 5, and we conclude this
paper in Section 6.

Classifying Web Pages by Using Knowledge Bases for Entity Retrieval 763

2 Related Work

Among studies of automated Web page classification, some have proposed, in
addition to general document classification methods, methods using the distinct
properties of Web documents, such as HTML structures and the anchor texts
of hyperlinks[3]. In [4], Chakrabarti et al. proposed an approach using the link
structures of Web pages, which increased the precision of classification by con-
sidering the contexts of the linked documents. Approaches using ontologies have
also been proposed[5][6].

In constract, we propose an approach focusing on entities appearing in Web
pages in order to support entity retrieval. Our approach applies classification
focused on searching for entities by using the similarity for a Wikipedia page
describing a certain entity or by using the frequency of the entity.

As for other approaches, the NAGA[7] knowledge base, which is a semantic
search engine using YAGO, performs a ranked search of entities by using graph-
based queries.

Shirakawa et al. proposed concept vectorization methods [8]. A vector value be-
tween two nodes on the a graph, consisting of the category network in Wikipedia,
is defined according to the number of paths and the length of each path. In our
study, on the other hand, the value between two nodes on a graph is constructed
according to the relations among Web pages, entities, and categories.

3 Mapping of Web Pages and Entities

3.1 PE Correspondence Degree

Suppose that we have a Web page set P and an entity set E. The PE (page-
entity) correspondence degree, PE(p, e) indicates that how much a Web page
p(∈ P) corresponds to an entity e(∈ E). Web pages are mapped to entities
according to the degree. If p is similar to a text describing e or e frequently
appears in p, p is a document describing e. Therefore, PE(p, e) is computed as
the similarity between the body text of p and a Wikipedia article describing e,
or as the frequency with which e appears in the body text of p. In addition, to
reduce time complexity, in each of two computation methods, we also approach
methods using the title and snippet of p instead of the body text of p.

Then, the PE correspondence degree PE(p, e) between a Web page p(∈ P)
and an entity e(∈ E) is computed by one of the following four methods. Here,
we let sim(a, b) be the cosine similarity between the tf-idf vectors of a and b; let
wikip(e) be the text of a Wikipedia article describing e; let text(p) be the body
text, and summary(p) the title and snippet of p; let ef(p, e) be the number
of occurrences e appears in p; and let idf(e, P) be the idf(inverse document
frequency) of e for document set P .

S-TW Method: PE(p, e) = sim(text(p), wikip(e)); PE(p, e) is computed as
the cosine similarity between the tf-idf vector of the body text of p and that of
the text of a Wikipedia article describing e.

764 Y. Kiritani, Q. Ma, and M. Yoshikawa

S-SW Method: PE(p, e) = sim(summary(p), wikip(e)); PE(p, e) is computed
as the cosine similarity between the tf-idf vector of the title and snippet of p and
the text of a Wikipedia article describing e.

F-TE Method: PE(p, e) = ef(text(p), e)× idf(e, P); PE(p, e) is computed by
multiplying the frequency of e in the body text of p by the idf of e for document
set P .

F-SE Method: PE(p, e) = ef(summary(p), e) × idf(e, P); PE(p, e) is com-
puted by multiplying the frequency of e in the title and snippet of p by the idf
of e for document set P .

The mapping results vary greatly according to whether the similarity or the
frequency is used. Using the similarity (S-TW, S-SW), the depth and accuracy of
content in Wikipedia influence the precision of this mapping. Using the frequency
(F-TE, F-SE), the entity term frequency influences the precision of the mapping.
Also, using the title and snippet of a page, rather than the body text, requires
less processing time; the precision of the mapping, however, will also decrease.
In Section 5.1, we describe an experiment comparing these methods.

3.2 Mapping of Web Pages and Entities

Using the PE correspondence degree and two parameters, α ≥ 1 and K ≥ 1, we
map Web page to entities as follows: (1) The PE correspondence degrees of p
and each entity in E are listed in descending order as PE1, PE2, · · · , PEm. (2)
For each k-th degree and (k + 1)-th degree, the minimum integer k satisfying
PEk/PEk+1 ≥ α, is chosen. (3) If k > K, then k = K is set. (4) p is mapped to
entities whose PE correspondence degree is ranked in the top k degrees.

We determine the number of mapped entities by adjusting α and K: α is the
threshold value for reaching get a point where degrees vary greatly, while K is
the maximum value limiting this number.

4 Classification of Web Pages

4.1 PEC Graph

To classify Web pages into classes, a PEC graph is constructed, based on the
relations among pages, entities, and classes. The PEC graphGPEC is constructed
from three sub-graphs: GPE , GEC , and GC . These are constructed as follows.
GPE: Given that a Web page set P , an entity set E, and a correspondence
relation between a page and an entity, RPE ⊆ P ×E, a bipartite graph GPE =
(P,E,RPE) is constructed. The left part in Figure 2 shows an example of this
graph. Each of four Web pages is mapped to one or more entities.
GEC: Given an entity set E, we obtain a set of classes C0, and a type relation
between an entity and a class, REC ⊆ E × C0, from knowledge base YAGO.
Then, a bipartite graph GEC = (E,C,REC) is constructed from the sets and
the type relation. The middle part in Figure 2 shows an example of this graph.

Classifying Web Pages by Using Knowledge Bases for Entity Retrieval 765

The four entities are those in GPE . The four classes, which are the types of each
entity, are obtained from knowledge bases.
GC: Given an entity set E, we obtain a class set C(⊇ C0) and a subclass
relation between two classes, RCC ⊆ C × C, from knowledge base information
indicating that one class is a child class of another. Then, a tree GC = (C,RCC)
is constructed from the sets and the subclass relation. The right part in Figure
2 shows an example of this tree. The four classes that are the leaves of the tree
are those in GEC . The other three classes are obtained from knowledge bases.
GPEC: A graph G = (P,E,C,RPE , REC , RCC), called a PEC graph, is con-
structed by integrating the three graphs GPE , GEC , and GC . Figure 2 shows an
example of a PEC graph constructed from the graphs shown above.

Fig. 2. Example of a PEC graph

Note that in knowledge base YAGO, some classes have relations to many other
entities and classes, but these are invisible in the PEC graph. For example, as
pictured in Figure 3, the class person has more than two relations that are not
pictured in Figure 2. Let a sub-node of node n be a node with a relation to n,
and let a super-node of n be a node with a relation from n.

4.2 Classification by PC Correspondence Degree

We compute the PC correspondence degree PC(p, c) by analyzing a PEC graph
constructed as described in the previous subsection. Here, PC(p, c) indicates
that how much a Web page p corresponds to a class c. We classify Web pages
into classes according to the PC correspondence degree.

The PC correspondence degree is computed from three factors as follows: (1)
The sum of all PC (PE) correspondence degrees between p and a class (entity)
that is a sub-node of c. The higher this sum, the greater the PC correspondence
degree; (2) The ratio rc of a class (entity) related to p to the sub-nodes of c. We
decided that the more p related to c, the greater the PC correspondence degree.
This ratio expresses the coverage of p with respect to c. The more p covers c,
the higher the ratio; (3) The ratio rp of pages not related to c to P . We decided

766 Y. Kiritani, Q. Ma, and M. Yoshikawa

that the more p is identified by c, the greater the PC correspondence degree.
This ratio expresses the distinguishability of p from other pages in terms of c.
The fewer pages c relates to, the higher the ratio.

Concretely, the PC correspondence degree PC(p, c) for p ∈ P is computed
according to the following equations. Let subNode(c) be a node set whose ele-
ments are sub-nodes of c; let subNode ∗ (c) be a node set whose elements are
either sub-nodes of c or sub-nodes of a node in subNode∗(c); let superNode∗(p)
be a node set whose elements are either super-nodes of p or super-nodes of a
node in superNode ∗ (p); and let |S| be the size of set S. Then, we have

PC(p, c) =
(∑

x∈subNode(c) PX(p, x)
)
× rc × rp

where PX(p, x) is PE(p, x) if x is an entity and PC(p, x) if x is a class, rc =
|subNode(c)∩superNode∗ (p)|/ log |subNode(c)|, which is the ratio obtained by
dividing the intersection of the sub-node set of c and the super-node* set of p
(i.e., the number of classes related to p) by the logarithm of the size of the sub-
node set of c, and rp = |P − subNode ∗ (c)|/ log |P |, which is the ratio obtained
by dividing the size of the difference between P and the sub-node* set of c (i.e.,
the number of pages not related to c) by the logarithm of the size of P .

Fig. 3. Knowledge base with nodes and edges not visible in a PEC graph

For example, PC(p1, person) in Figure 3, which is the PC correspondence
degree between page p1 and class person, is computed as follows.

PC(p1, person) = {PC(p1, actor) + PC(p1, president)} × (2/ log 5)× (1/ log 4).
Here, rc = 2/ log 5 because person has 5 sub-nodes and p1 is related to 2 nodes
(actor and president) of these sub-nodes. rp = 1/ log 4 because person is not
related to one page (p1) among Web page set.

5 Experimental Results

5.1 Experiment of Mapping Web Pages and Entities

We acquired a Web page set consisting of the top 50 search results for the search
word “washington” by using Yahoo! as the search engine. We also acquired

Classifying Web Pages by Using Knowledge Bases for Entity Retrieval 767

Table 1. Experimental results

S-TW S-SW F-TE F-SE
Mapping Precision 0.433 0.400 0.451 0.341
Classification Precision 0.80 0.55 0.74 0.48

an entity set consists of entities containing “washington” by using YAGO as
the knowledge base. Relevant results EAns were created for each Web page by
human judgment. Mapped entity sets ES−TW , ES−SW , EF−TE , and EF−SE

were created for each Web page by applying each of the proposed methods.
Based on some preliminary experimental results, we set the parameters α, k to
2.0 and 5, respectively. We then evaluated the average mapping precision for the
50 pages with each method. The mapping precision MP was computed as

MP = |EAns ∩ (the top |EAns| entities of Emethod)|/|EAns|,
where |S| is the size of set S, and Emethod is any one of ES−TW , ES−SW , EF−TE ,
and EF−SE . Table 1 lists the average mapping precisions with each of the four
kinds of mapping methods.

It takes time to acquire a Wikipedia article if S-TW or S-SW is used. On the
other hand, it takes time to acquire the body text of a Web page if S-TW or
F-TE is used. Therefore, the order of processing time length for the mapping
methods was S-TW>S-SW%F-TE>F-SE. When this time was included, F-TE
seemed better than S-SW.

S-TW and S-SW could correctly map Web pages to entities, because the
similarity increased with the co-occurrence of specific terms (e.g., a person’s
name). On the other hand, these methods often mapped incorrectly to an entity
having nothing to do with the mapped page or to an entity with little relation
to the mapped page. One factor in this problem could be Wikipedia articles
with a lack of description or an excess of description. These incorrect mappings
occurred notably in more with S-TW as compared with S-SW.

5.2 Experiment on Classification

We also performed an experiment on classification, under the same conditions
used for the above experiment on mapping. For each mapping result obtained
by each of the four kinds of mapping methods, we created a set of answer classes
by human judgment. We ranked the class sets by applying the proposed clas-
sification method and thus evaluated the average classification precision for 50
pages with each method. The classification precision CP was computed by the
binary function: CP = 1 if classification is true and CP = 0 if classification is
false. Table 1 lists the average classification precisions.

The precisions obtained by using S-TW and F-TE were better than those
obtained with S-SW and F-SE. This implies that the precision was increased
more by using body text of a Web page than by using the title and snippet,
as expected. Also, for every mapping method, the classification precision was

768 Y. Kiritani, Q. Ma, and M. Yoshikawa

higher than the mapping precision. That is, many pages was mapped incorrectly
to an entity but classified correctly.

It is necessary to use the different method to compute the PE correspondence
degree according to the applications. For example, to classify search results on-
line, F-TE method is better, while to classify Web pages in a Web directory
based application, S-TW method is better.

6 Conclusion

In this paper, we have proposed a method to classify Web pages by using a
knowledge base. To classify a page, we map it to an entity by using one of four
methods to calculate the correspondence degree between the page and various
entities. We then construct a graph based on the mapping and a knowledge base,
and calculate the correspondence degree between the page and a class. We have
also carried out some preliminary experiments to validate these methods. The
results showed that the method computing entity frequency in the body text was
the best of the methods, and it often happened that classification was correct
even when mapping was incorrect. It is necessary to use the different method to
compute the correspondence degree according to the applications.

In our future work, further experiments and evaluations are necessary, and we
plan to improve the proposed methods. Also, we develop an interface to show
the classification of search results.

Acknowledgments. This research is partly supported by the research for the
grant of Scientific Research (No.20700084 and 20300036) made available by
MEXT, Japan.

References

1. Guha, R., Garg, A.: Disambiguating People in Search. In: Proc. of WWW 2004
(2004)

2. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A Core of Semantic Knowledge.
In: Proc. of WWW 2007, pp. 697–706 (2007)

3. Sun, A., Lim, E.-P., Ng, W.-K.: Web Classification Using Support Vector Machine.
In: WIDM 2002, pp. 96–99 (2002)

4. Chakrabarti, S., Dom, B.E., Indyk, P.: Enhanced hypertext categorization using
hyperlinks. In: Proc. of the ACM SIGMOD 1998, pp. 307–318 (1998)

5. Prabowo, R., Jackson, M., Burden, P., Knoell, H.-D.: Ontology-Based Automatic
Classification for the Web Pages: Design. In: Implementation and Evaluation Proc.
of WISE 2002, pp. 182–191 (2002)

6. Song, M.-H., Lim, S.-Y., Kang, D.-J., Lee, S.-J.: Automatic Classification of Web
Pages based on the Concept of Domain Ontology. In: Proc. of APSEC 2005, pp.
645–651 (2005)

7. Kasneci, G., Suchanek, F.M., Ifrim, G., Ramanath, M., Weikum, G.: NAGA: Search-
ing and Ranking Knowledge. In: Proc. of ICDE 2008, pp. 1285–1288 (2008)

8. Shirakawa, M., Nakayama, K.: Concept Vector Extraction from Wikipedia Category
Network. In: Proc. of ICUIMC 2009, pp. 71–79 (2009)

Terminology Extraction from Log Files

Hassan Saneifar1,2, Stéphane Bonniol2, Anne Laurent1,
Pascal Poncelet1, and Mathieu Roche1

1 LIRMM - Université Montpellier 2 – CNRS
161 rue Ada, 34392 Montpellier Cedex 5, France
{saneifar,laurent,poncelet,mroche}@lirmm.fr

http://www.lirmm.fr/∼{saneifar,laurent,poncelet,mroche}
2 Satin IP Technologies,

Cap Omega, RP Benjamin Franklin, 34960 Montpellier Cedex 2, France
stephane.bonniol@satin-ip.com

http://www.satin-ip.com/

Abstract. The log files generated by digital systems can be used in
management information systems as the source of important informa-
tion on the condition of systems. However, log files are not exhaustively
exploited in order to extract information. The classical methods of infor-
mation extraction such as terminology extraction methods are irrelevant
to this context because of the specific characteristics of log files like their
heterogeneous structure, the special vocabulary and the fact that they
do not respect a natural language grammar. In this paper, we introduce
our approach Exterlog to extract the terminology from log files. We
detail how it deals with the particularity of such textual data.

1 Introduction

In many applications, automatic generated reports, known as system logs, repre-
sent the major source of information on the status of systems, products, or even
causes of problems that can occur. In some areas, such as Integrated Circuit
(IC) design systems, the log files generated by IC design tools, contain essential
information on the conditions of production and the final products. In order to
extract information from textual data, there exists the classic method of Nat-
ural Language Processing (NLP) and Information Extraction (IE) techniques.
But the particularity of such textual data (i.e. log files) raise the new challenges.
In this paper, we aim particularly at exploring the lexical structure of these log
files in order to extract the terms of domain which will be used in creation of
domain ontology. We thus study the relevance of two main methods of termi-
nology extraction within our approach Exterlog (EXtraction of TERminology
from LOGs), both of which extract co-occurrences with and without the use of
syntactic patterns.

In Sect. 2 we present the characteristics and difficulties of this context. Our
approach Exterlog is developed in Sect. 3. Section 4 describes and compares
the various experiments that we performed to extract terms from the logs. Fi-
nally, we propose a comparison of Exterlog and TermExtractor system.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 769–776, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

770 H. Saneifar et al.

2 Context

In the domain of log file analysis, some logs like network monitoring logs or
web usage logs are widely exploited [1][2]. These kinds of logs are based on
the management of events. That is, the computing systems record the system
events based on their occurring times. The contents of these logs comply with
norms according to the nature of events and their global usage (e.g., web us-
age area). However, in some areas such as IC design systems, rather than being
some recorded events, the generated log files are digital reports on configuration,
conditions and states of systems. The aim of the exploitation of these log files
is not to analyze the events but to extract information about system configu-
ration and especially about the final product’s conditions. Hence, information
extraction in log files generated by IC design tools has an attractive interest
for automatic management and monitoring of production line. However, several
aspects of these log files have been less emphasized in existing methods of infor-
mation extraction and NLP. These specific characteristics pose several challenges
that require more research.

The design of IC consists of several levels each corresponds to some design
rules. At every level, several tools can be used. Despite the fact that the logs
of the same design level report the same information, their structures can sig-
nificantly differ depending on the design tool used. Specifically, each design tool
often uses its own vocabulary to report the same information. For example, at the
so-called verification level, two log files (e.g., log “a” and log “b”) are produced
by two different tools. The information about, for example, the “Statement
coverage” will be expressed as follows in the log “a”:

TOTAL COVERED PERCENT
statements 20 21 22

But the same information in the log “b”, will be disclosed from this single line:

EC: 2.1%

As shown above, the same information in two log files produced by two different
tools is represented by different structures and vocabulary. Moreover, the evolu-
tion of design tools changes the format of data in logs. The heterogeneity of data
exists not only between the log files produced by different tools, but also within
a given log file. For example, the symbols used to present an object, such as the
header for tables, change in a given log. Similarly, there are several formats for
punctuation, the separation lines and representation of missing data. To best
generalize the extraction methods, we thus need to identify the terms used by
each tool in order to create the domain ontology. This ontology allows us to bet-
ter identify equivalent terms in the logs generated by different tools. The domain
ontology can help to reduce the heterogeneity of terms existing in logs produced
by different design tools. For instance, to check “Absence of Attributes” as
a query on the logs, one must search for the following different sentences in the
logs, depending on the version and type of design tool used:

Terminology Extraction from Log Files 771

"Do not use map to module attribute",
"Do not use one cold or one hot attributes",
"Do not use enum encoding attribute",

Instead of using several patterns, each one adapted to a specific sentence, by as-
sociating the words “map to module attribute”, “one hot attributes” and
“enum encoding attribute” to the concept “Absence of Attributes”, we
use a general pattern that expands automatically depending on the type of log.
The ontology-driven expansion of query is studied in many work [3].

Moreover, the language used in these logs is a difficulty that affects the meth-
ods of information extraction. Although the language of log files are similar to
English, the contents of these logs do not usually comply with “classic” gram-
mar. Moreover, there exist words that are often constituted from alphanumeric
and special characters.

Since the concepts used in domain ontology are the terms of log files, we aim
at extracting the terminology of the log files. However, due to the particularity
of log files described above, the methods of NLP, including the terminology
extraction, developed for texts written in natural language, are not necessarily
well suited to the log files. In this paper, we thus study these methods and their
relevance in this specific context. Finally, we propose our approach Exterlog

for extracting terminology from these log files.

3 Terminology Extraction from Log Files

The extraction of co-occurring words is an important step in identifying the
terms. We explain at first some of approaches used to identify the co-occurrences
and to extract the terminology of a corpus. Then, we introduce our approach of
terminology extraction adapted to log files.

3.1 Related Work

Some approaches are based on syntactic techniques which rely initially on the
grammatical tagging of words. The terminological candidates are then extracted
using syntactic patterns (e.g., adjective-noun, noun-noun). We develop the gram-
matical tagging of log files using our approach Exterlog in Sect. 3.2. Bigrams1

are used in [4] as features to improve the performance of the text classification.
Though, the series of three words (i.e. trigrams) or more is not always essen-
tial [5]. Exit, introduced by [6] is an iterative approach that finds the terms in
an incremental way. Xtract is a terminology extraction system, which identi-
fies lexical relations in the large corpus of English texts [7]. TermExtractor,
submitted by [8], extracts terminology consensually referred in a specific appli-
cation domain. To select the relevant terms of domain, some measures based on
entropy are used in TermExtractor. The statistical methods are generally
used for evaluating the adequacy of extracted terms [9]. In these methods, the

1 N-grams are defined as the series of any “n” words.

772 H. Saneifar et al.

occurrence frequency of candidates is a basic element. However, since the repe-
tition of words is rare in log files, these statistical methods are not well suited.
Indeed, statistical approaches can cope with high frequency terms but tend to
miss low frequency ones [10].

Most of these studies are experimented on textual data which are classical
texts written in natural language. Most of the experimented corpus are struc-
tured in a consistent way. In particular, they comply with the grammar of NL.
However, the characteristics of logs such as their non compliance with NL gram-
mar, their heterogeneous, and evolving structures (cf. Sect. 2) impose an adap-
tation of these methods to log files.

3.2 Exterlog

Our approach, Exterlog, is developed to extract the terminology in the log
files. This process involves normalisation of log files, grammatical tagging of
words and co-occurrences extraction.

Normalization. Given the specificity of our data, the normalization method,
adapted to the logs, makes the vocabulary and structure of logs more consistent.
We replace the punctuations, separation lines and the headers of the tables
by special characters to limit ambiguity. Then, we tokenize the texts of logs,
considering that certain words or structures do not have to be tokenized. For
example, the technical word “Circuit4-LED3” is a single word which should
not be tokenized into two words “Circuit4” and “LED3”. Besides, we make the
normalization method to distinguish the lines representing the header of tables
from the lines which separate the parts. This normalization makes the structure
of logs produced by different tools more homogeneous.

Grammatical Tagging. Grammatical tagging (also called part-of-speech tag-
ging) is a method of NLP used to annotate words based on their grammatical
roles. In our context, due to the particularity of log files described in Sect. 2,
there are some difficulties and limitations for applying a grammatical tagging.
Indeed, the classic techniques of POS tagging are developed and trained accord-
ing to the standard grammar of a natural language. To identify the role of words
in the log files, we use Brill rule-based part-of-speech tagging method [11]. As
existing taggers like Brill are trained on general language corpora, they give
inconsistent results on the specialized texts. [12] propose a semi-automatic ap-
proach for tagging corpora of specialty. They build a new tagger which corrects
the base of rules obtained by Brill tagger and adapt it to a corpus of spe-
cialty. In the context of log files, we also adapted Brill tagger to our context
by introducing the new contextual and lexical rules. Indeed, the classic rules of
Brill, which are defined according to the NL grammar, are not relevant to log
files. For example, a word beginning with a number is considered a “cardinal”
by Brill. However, in the log files, there are many words like 12.1vSo10 that
must not be labeled as “cardinal”. Therefore, we defined the special lexical and
contextual rules in Brill. Since the structures of log files can contribute impor-
tant information for extracting the relevant patterns in future work, we preserve

Terminology Extraction from Log Files 773

the structure of files during grammatical tagging. We introduce the new tags,
called “Document Structure Tags”, which present the different structures in log
files. For example, the tag “\TH” represents the header of tables or “\SPL”
represents the lines separating the log parts. The special structures in log files
are identified and normalized during preprocessing. Then, they are annotated
during tagging according to the new specific contextual rules defined in Brill.
We use these tagged logs in next level to extract the co-occurrences.

Extraction of Co-occurrences. We are looking for co-occurrences in the log
files with two different approaches: (1) using defined part-of-speech syntactic
patterns, (2) without using the syntactic patterns.

We call the co-occurrences extracted by the first solution “POS-candidates”2.
This approach consists of filtering words by the syntactic patterns. The syntactic
patterns determine the adjacent words with the defined grammatical roles. The
syntactic patterns are used in [9] to extract terminology. For complex terms iden-
tification, [9] defines syntactic structures which are potentially lexicalisable. As
argued in [9], the base structures of syntactic patterns are not frozen structures
and accept variations. According to the terms found in our context, the syntac-
tic patterns “\JJ - \NN” (Adjective-Noun) and “\NN - \NN” (Noun-Noun) are
used to extract the “POS-candidates” from log files.

The co-occurrences extracted by the second approach are called “bigrams”.
A bigram is extracted as a series of any two adjacent relevant words3. Bigrams
are used in NLP approaches as representative features of a text [4]. However,
the extraction of bigrams does not depend on the grammatical role of words. To
extract significant bigrams, we normalize and tokenize the logs to reduce the rate
of noise. We also eliminate the stop words existing in the logs. In this method,
we thus do not filter the words according to their grammatical roles.

4 Experiments

We experimented two different approaches for the extraction of terminology from
these logs: (1) extraction of POS-candidates and (2) extraction of bigrams. Here,
we analyze the terminological candidates obtained by each one. The log corpus
is composed of the logs of all IC design levels and its size is about 950 KB.

4.1 POS-Candidates vs. Bigrams

To analyze the performance of the two approaches chosen for the extraction of
bigrams, we must evaluate the terms extracted. To automatically evaluate the
relevance of the extracted terms, we compare the POS-candidates and bigrams
with terms extracted from the reference documents. Indeed, for each level of de-
sign of integrated circuits, we use certain documents, which explain the principles
2 POS: Part-Of-Speech.
3 The relevant words, in our context, are all words of the vocabulary of this domain

excluding the stop words like “have” or “the”.

774 H. Saneifar et al.

and the details of design tools. We use these documents as “reference experts”
in the context of an automatic validation. Indeed, if a term extracted from logs
is used in the reference documents, it is a valid term of domain. However, there
are several terms in the logs especially the technical terms that are not used in
the references. Therefore, a validation by an expert, carried out in our future
work is needed to complete the automatic validation. We note that, to extract
the domain terminology, we have to use log files and not the reference documents
because, as described above, there are some terms that do not appear in refer-
ence documents according to their nature. Hence, we could use the references as
a validation tool but not as the base of domain terminology.

Moreover, in order to select the most relevant and meaningful terms, we filter
the extracted terminological candidates based on their frequency of occurrences
in the logs. Therefore, we choose terminological candidates having a frequency of
at least 2 (i.e. pruning task). We calculate the precision and recall of extracted
candidates as shown below:

Precision = |Candidates∩Terms of ref |
|Candidates| Recall = |Candidates∩Terms of ref |

|Terms of ref |

Table 1 shows the precision and recall of POS-candidates and bigrams before
and after pruning. To evaluate the terms extracted from logs, the precision is
the most adapted measure to our context. Indeed, this measure gives a general
tendency of the quality of terms extracted by our system. Note that to calculate a
perfectly adapted precision, we should manually evaluate all the terms proposed
by Exterlog. However, this task is difficult and costly to implement. The
comparison of terminological candidates with the reference terms shows that
the terminology extraction based on syntactic patterns is quite relevant to the
context of log files. The precision of POS-candidates is indeed higher than the
precision of bigrams. Our experiments show that an effort in normalization and
tagging tasks is quite useful in order to extract quality terms. We note that
the pruning of terms does not significantly improve results. As we have already
explained, in our context, terms are not generally repeated in logs. Therefore, a
representative term does not necessarily have a high frequency.

The low recall of terminological candidates is due to the large number of
reference terms. The reference corpus is about five times larger than the logs
corpus. In addition, we found that many extracted terminological candidates that

Table 1. Precision and recall of terminological candidates before and after pruning

Level 1 Level 2 Level 3 Level 4 Level 5

POS Bigrams POS Bigrams POS Bigrams POS Bigrams POS Bigrams

Before
Precision 67.7 11.3 20.7 6.5 37.8 9.9 40.1 6.5 19.6 5.1
Recall 0.7 0.4 7.6 7.5 1.3 1.0 9.5 8.8 0.3 0.5

After
Precision 81.1 10.1 18.0 5.0 37.2 5.9 27.3 7.1 37.1 5.5
Recall 0.1 0.1 3.0 2.0 0.1 0.4 1.6 2.2 0.2 0.1

Terminology Extraction from Log Files 775

have not been validated by reference terms are technical words or abbreviations,
which are only found in the logs and not in the reference documents of domain.
That is why the recall results are not entirely representative for evaluating the
quality of Exterlog.

4.2 Validation by Experts

In order to validate the “automatic validation protocol” that we experimented
using the reference documents, we asked two domain experts to evaluate the
validated terms by our protocol. We calculate the percentage of terms extracted
by Exterlog and validated using reference documents which are also annotated
as relevant by experts. The results show that 84% to 98.1% of the terms validated
by our protocol are really relevant terms according to experts4.

4.3 Exterlog vs. TermExtractor

Here, we compare the results of our approach Exterlog with those obtained by
TermExtractor on the same corpus of logs. We chose TermExtractor be-
cause it is well configurable and is evaluated by many users in many domains [8].
To adapt TermExtractor to this context, we configured it according to char-
acteristics of log files and especially the type of terms found in this context.
Table 2 shows the results obtained by TermExtractor compared with those
obtained by Exterlog (using syntactic patterns). By analyzing the terms ex-
tracted by TermExtractor, we find that the structure of logs has influenced
the extraction of terms. That is, some terms extracted by TermExtractor

must not be considered as a term because of the position of words (used in the
term) in text of logs. Furthermore, the technical terms of domain, normally con-
stituted of special or alphanumeric characters, like “ks comp engine” or “rule
b9” are rarely found by TermExtractor. According to Table 2, our approach
Exterlog extracts more relevant terms than TermExtractor. That is due
to the special normalisation of logs and particularly due to the special contextual
and lexical rules that we have defined using Brill tagger.

Table 2. Precision and recall of terms extracted by Exterlog (Ext) and by Ter-

mExtractor (Ter)

Level 1 Level 2 Level 3 Level 4 Level 5

Ext Ter Ext Ter Ext Ter Ext Ter Ext Ter

Precision 67.7 56.1 20.7 14.0 37.8 38.1 40.1 35.2 19.6 26.3

Recall 0.7 0.3 7.6 0.3 1.3 0.4 9.5 2.5 0.3 0.1

4 This interval is due to some terms which are annotated as no idea by experts. If we
consider the no idea terms as irrelevant, 84% of terms validated by our protocol are
really relevant according to experts. If these terms are not taken into account in the
calculation, we obtain 98.1% of terms really relevant.

776 H. Saneifar et al.

5 Conclusion and Future Work

In this paper, we described a particular type of textual data: reporting log files.
These textual data do not comply with the grammar of natural language, are
highly heterogeneous and have evolving structures. To extract domain termi-
nology from the log files, we extracted the co-occurrences with two different
approaches: (1) using the syntactic patterns and (2) without syntactic patterns.
The results show that terms obtained using the syntactic patterns are more
relevant than those obtained without using syntactic patterns. Our experiments
show that our approach extracts more relevant terms than other terminology ex-
traction methods like TermExtractor. Our future work will especially focus
on the study of the more advanced protocols of automatic term evaluation.

References

1. Yamanishi, K., Maruyama, Y.: Dynamic syslog mining for network failure moni-
toring. In: KDD 2005, pp. 499–508. ACM, New York (2005)

2. Facca, F.M., Lanzi, P.L.: Mining interesting knowledge from weblogs: a survey.
Data Knowl. Eng. 53(3), 225–241 (2005)

3. Dey, L., Singh, S., Rai, R., Gupta, S.: Ontology aided query expansion for retrieving
relevant texts. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC
2005. LNCS, vol. 3528, pp. 126–132. Springer, Heidelberg (2005)

4. Tan, C.M., Wang, Y.F., Lee, C.D.: The use of bigrams to enhance text categoriza-
tion. Inf. Process. Manage. 38(4), 529–546 (2002)

5. Grobelnik, M.: Word sequences as features in text-learning. In: Proceedings of the
17th Electrotechnical and Computer Science Conference (ERK 1998), pp. 145–148
(1998)

6. Roche, M., Heitz, T., Matte-Tailliez, O., Kodratoff, Y.: Exit: Un système itératif
pour l’extraction de la terminologie du domaine à partir de corpus spécialisés. In:
Proceedings of JADT 2004, vol. 2, pp. 946–956 (2004)

7. Smadja, F.: Retrieving collocations from text: Xtract. Comput. Linguist. 19(1),
143–177 (1993)

8. Sclano, F., Velardi, P.: Termextractor: a web application to learn the shared ter-
minology of emergent web communities. In: I-ESA 2007, Funchal, Portugal (2007)

9. Daille, B.: Conceptual structuring through term variations. In: Proceedings of the
ACL 2003 workshop on Multiword expressions, Morristown, NJ, USA, pp. 9–16.
Association for Computational Linguistics (2003)

10. Evans, D.A., Zhai, C.: Noun-phrase analysis in unrestricted text for information
retrieval. In: Proceedings of the 34th annual meeting on Association for Computa-
tional Linguistics, Morristown, NJ, USA, pp. 17–24. Association for Computational
Linguistics (1996)

11. Brill, E.: A simple rule-based part of speech tagger. In: Proceedings of the Third
Conference on Applied Natural Language Processing, pp. 152–155 (1992)

12. Amrani, A., Kodratoff, Y., Matte-Tailliez, O.: A semi-automatic system for tagging
specialized corpora. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS,
vol. 3056, pp. 670–681. Springer, Heidelberg (2004)

Evaluating Non-In-Place Update Techniques for
Flash-Based Transaction Processing Systems

Yongkun Wang, Kazuo Goda, and Masaru Kitsuregawa

Institute of Industrial Science, The University of Tokyo,
4–6–1 Komaba, Meguro–ku, Tokyo 153–8505 Japan
{yongkun,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp

http://www.tkl.iis.u-tokyo.ac.jp

Abstract. Recently, flash memory is emerging as the storage device.
With price sliding fast, the cost per capacity is approaching to that
of SATA disk drives. So far flash memory has been widely deployed in
consumer electronics even partly in mobile computing environments. For
enterprise systems, the deployment has been studied by many researchers
and developers. In terms of the access performance characteristics, flash
memory is quite different from disk drives. Without the mechanical com-
ponents, flash memory has very high random read performance, whereas
it has a limited random write performance because of the erase-before-
write design. The random write performance of flash memory is compara-
ble with or even worse than that of disk drives. Due to such a performance
asymmetry, naive deployment to enterprise systems may not exploit the
potential performance of flash memory at full blast. This paper studies
the effectiveness of using non-in-place-update (NIPU) techniques through
the IO path of flash-based transaction processing systems. Our deliber-
ate experiments using both open-source DBMS and commercial DBMS
validated the potential benefits; x3.0 to x6.6 performance improvement
was confirmed by incorporating non-in-place-update techniques into file
system without any modification of applications or storage devices.

Keywords: NAND Flash Memory, SSD, LFS, Transaction Processing.

1 Introduction

Flash memory is a recently emerging storage device. With price sliding fast, the
cost per capacity of flash memory is approaching to that of low-end SATA disk
drives. So far flash memory has been widely deployed in consumer electronics
even partly in mobile computing environments. Extending the deployment of
flash memory to enterprise systems looks a natural attempt. Actually many
researchers and developers have been studying the idea of utilizing flash memory
for enterprise systems. EMC is trying to incorporate flash-based SSDs into their
enterprise-level storage products [3].

One big issue arising for deploying the flash memory to the enterprise sys-
tems is that flash memory is quite different from disk drives in terms of the

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 777–791, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://www.tkl.iis.u-tokyo.ac.jp

778 Y. Wang, K. Goda, and M. Kitsuregawa

access performance characteristics. Disk drives are mainly comprised of mechan-
ical components, thus random access performance is poor due to the seek and
rotational overheads. By contrast, flash memory is a solid-state device, without
the mechanical components, yielding high random read performance. However,
the flash memory cannot be written in place. When updating the data, the entire
erase-block containing the data must be erased before the updated data is writ-
ten there. Since such erase operations are often very time consuming compared
with read/write operations, the random write performance of flash memory is
relatively poor. Table 1 summarizes necessary time for each operation in Sam-
sung 4GB flash memory chip [19]. In recent major products, the typical latency
of random writes is several milliseconds, being comparable with or sometimes
even worse than that of the latest high-end disk drives.

Table 1. Operational flash parameters of Samsung 4GB flash memory chip

Page Read to Register (4KB) 25μs
Page Write from Register (4KB) 200μs
Block Erase (256KB) 1500μs

0

500

1000

1500

2000

2500

10 20 30 40 50

tp
m

of warehouses and users

Flash memory
Hard disk

Fig. 1. Performance comparison between disk drive and flash memory (The details are
described in Section 4.2)

Due to such a significant performance asymmetry, naive deployment of flash
memory into enterprise systems may not exploit the potential performance of
flash memory at full blast. Software components of existing enterprise systems
are often designed and optimized for disk drives. Fig. 1 shows a typical example:
we measured the obtainable throughput by the TPC-C benchmark on a commer-
cial DBMS with the disk drive and flash memory. Contrary to our expectation,
we could gain little or sometimes even lose by simply replacing the conventional
disk drive with the flash-based SSD in this case study. That is, it may not be
easy for existing enterprise system to directly enjoy the potential performance
of recent flash memory.

Evaluating NIPU for Flash-Based Transaction Processing Systems 779

Disk Drive

TPS

Flash
Memory

TPS

NIPU

TPS

Flash
Memory

(a) Disk based TPS (b) Flash based TPS (c) Flash based TPS with NIPU

Fig. 2. Comparison of transaction processing system designs

One solution is to redesign the system so that the system can be fully op-
timized for flash memory. For instance, if we were able to rewrite all the code
of database engines and operating systems specially for flash memory, the sys-
tem could derive the maximum performance. Such a solution may be possible
for limited systems. But when it comes to enterprise systems that have a va-
riety of customers, the huge cost of development may not be well accepted by
many CIOs. In addition, a variety of succeeding solid-state technologies such as
PCRAM [17] are about to emerge. Therefore, it may not be a good choice to
invest huge cost on special development only based on flash memory.

Rather, if we could derive reasonable performance improvement of a flash-
based enterprise system by simply incorporating optimization techniques into
the IO path without modifying other components of the system, as shown in
Fig. 2, it could be a good news for many CIOs even though it may not exploit
the potential performance of flash memory at 100 percent. This paper studies the
effectiveness of non-in-place update (NIPU) techniques through the IO path of
transaction processing systems. NIPU techniques can convert a stream of in-place
write operations into a stream of non-in-place write operations. Implementation
of such techniques between DBMS and flash memory can significantly reduce the
number of in-place writes, thus considerably improving the IO throughput of the
flash memory. We built an experimental system using both open-source DBMS
and commercial DBMS with a conventional hard disk drive and a flash-based
SSD and then evaluated the effectiveness of deploying the NIPU techniques into
transaction processing systems.

Our measurement-based analysis shows that x3.0 to x6.6 performance im-
provement can be expected by incorporating NIPU techniques into file systems
without any modification of applications or storage devices. To the best of our
knowledge, this finding has not yet been reported.

The rest of this paper will be organized as follows: Section 2 will briefly sum-
marize the issue of flash memory for transaction processing system. In Section 3,
we will discuss the deployment of the NIPU techniques on flash-based transac-
tion processing system. Our deliberate experiments will be described in Section
4. Section 5 will summarize the related work. Finally, our conclusion and future
work will be provided in Section 6.

780 Y. Wang, K. Goda, and M. Kitsuregawa

2 Issue of Flash Memory for Transaction Processing

Unlike the traditional hard disk, which has an approximately symmetric read and
write speed, flash memory, on the contrary, has substantial difference between
the speeds of read and write, as shown in Table 2. The average response time of
read, whatever in sequential or random mode, as well as that of the sequential
write, is about two orders of magnitude faster than that of the hard disk. By
contrast, the average response time of write in random mode, is comparable or
even worse than that of the hard disk. This is primarily because the flash memory
cannot be updated in place; a time-consuming block-erase operation has to be
performed before the write operation, as disclosed in Table 1 [19]. For the sake of
better performance, the size of erase block is usually large, about several hundred
KB, leading to an expensive time cost of erase operation compared to that of
flash read.

Table 2. Average response time of the flash memory and hard disk with the transfer
request size of 4KB. Experiment setup is the same as that in Section 4.1 except here
the hard disk and flash memory is bound as the raw device. Benchmark is Iometer
2006.07.27 [6].

Hard Disk Flash Memory
Read Write Read Write

Sequential 127μs 183μs 94μs 75μs

Random 13146μs 6738μs 106μs 8143μs

The poor random write performance of flash memory could be painful for
some transaction processing systems. In these systems, the intensive random
write is often the main stream of disk IO. Though the operating system has
an efficient buffer policy to cache the individual write operations into a bulk
update, the performance characteristics of flash memory has been hardly con-
sidered here. Therefore, it would be problematic for the existing transaction
processing systems to run on the flash memory directly, as reported in [2]. Our
experiment also illustrates this points in Section 4.2 that the performance was
not improved, even worse than that of the hard disk sometime by directly using
the flash memory as the main storage media of data, though the flash memory
has fine performance on read and sequential write. A better solution, such as
NIPU techniques, is required to fully exploit the benefit of flash memory, as
discussed in next section.

3 NIPU Techniques on Flash-Based Transaction
Processing System

To utilize the flash memory efficiently, a tactful way is to introduce the NIPU
techniques for enterprise system to improve the overall performance. Briefly, the

Evaluating NIPU for Flash-Based Transaction Processing Systems 781

NIPU techniques convert the logical in-place updates into physical non-in-place
updates, using special address table to manage the translation between logical
address and physical address. An additional process called garbage collection is
required to claw back the obsolete data blocks. A good example of the NIPU
technique is the log-structured file system described in [18], with an implemen-
tation called Sprite LFS. Instead of seeking and updating in-place for each file
and Inode, the LFS will collect all write operations and write them into a new
address space continuously, as illustrated in Fig. 3. For such a NIPU-based file
system, the principal feature is that a large number of data blocks are gath-
ered in a cache before writing to disk in order to maximize the throughput of
collocated write operations, thereby minimizing seek time and accelerating the
performance of writes to small files. Though the write performance is optimized
by some detriment of scan performance [4], this feature is greatly helpful on
flash memory to make up for the inefficient random write performance since the
random read performance is about two orders of magnitude higher than that of
erase operations. The overall write performance is hereby improved.

A B C B' A' B" C' B'" D Disk

Apply changes and write to new address

Fig. 3. Non-In-Place Update techniques

Using such techniques for transaction processing systems on flash memory
looks a good solution. In this case the flash memory is usually written sequen-
tially through all the way, with a background process reclaiming the obsolete
data blocks into the pool of available data block. On the basis of non-in-place
update, all the update operations are performed by writing the data pages into
the new flash pages, and the erase operations are not required right beforehand
as long as the free flash pages are available. Thus, the overall throughput of
transactions can be improved.

From a macro view of system, there are several possible places to implement
the NIPU techniques through the IO path between DBMS and Flash memory.
That is, the NIPU techniques can be incorporated into many places such as Flash
Translation Layer (FTL), RAID controller, logical volume manager, file system,
and database storage engine. Here arises a problem regarding which place we
should implement the NIPU techniques. We are studying on this problem and
would like to report it in another paper. In this paper, we focus on the potential
benefits of file system. It would be a good choice to load a NIPU-based file
system module to OS kernel without any changes to a variety of disk drivers,
controllers and database applications.

It is to be noted here that a concern on the NIPU techniques is the design
and settings of GC (Garbage Collection). Since the NIPU techniques consume

782 Y. Wang, K. Goda, and M. Kitsuregawa

free flash pages faster than other methods, the obsolete data pages (garbage)
should be reclaimed by fine timing policy to the pool of available data blocks to
ensure there are free pages available anytime when there are write requests. We
will discuss the influence of the GC settings in Section 4.6.

4 Experimental Evaluation

We now describe a set of experiments that validate the effectiveness of the NIPU
techniques and compare them against the traditional alternative. We use the
popular TPC-C [22] as the benchmark, though it may not exactly emulate the
real production workload [5], it discloses the general business process and work-
load, supported by the main hardware and software database system providers
in the industry.

4.1 Experiment Setup

We build a database server on the Linux system. The flash memory is connected
to the server with SATA 3.0Gbps hard drive controller as well as the hard disk
driver. Fig. 4(a) gives the view of our experimental system.

Database Server
Dell Precision™ 390 Workstation
Dual core Intel Core 2 Duo 1.86GHz,
1066MHz FSB, 4MB L2 cache
2GB dual channel DDR2 533
Memory
Integrated SATA 3.0Gbps Hard Drive
Controller with support for RAID 0,
1, 5 and 10
Seagate 7200RPM 500GB Hard
Drive
CentOS 5.2
Kernel 2.6.18

Flash Memory
MTRON MSP7535
SLC, 3.5”
SATA 3.0G
32GB

Hard Drive
Hitachi HDS72107,
3.5”, SATA 3.0G,
7200RPM,
32M Cache, 750GB

Serial ATA 3Gb/s

Serial ATA 3Gb/s

Terminal PCEthernet 100Mb/s

(a) System Configuration

Physical Database Files

Database

Flash SSD

File System (EXT2 or NILFS2)

Data File

Log File 1

Data Space

Log File 3

Log File 2

Log Space

(b) System Storage Hierarchy
on Flash Memory

Fig. 4. Experiment Setup

We choose a commercial DBMS, as well as popular open source DBMS MySQL
[13], as the database system for the TPC-C benchmark. In the commercial
database system, the buffer cache is 8MB and log buffer is 5MB, with the block
size of 4KB. This block size is set by our previous empirical experiment, in which
we performed a low-level disk IO test, with a raw device test program written
by us. We find that the optimal IO request size is 4KB for our flash memory.
For MySQL, we use InnoDB storage engine, buffer cache is 4MB and log buffer

Evaluating NIPU for Flash-Based Transaction Processing Systems 783

is 2MB, with the block size of 16KB. The block size of MySQL is different from
that of the commercial DBMS, because MySQL does not allow us to configure
the block size, although 16KB might not be optimal.

As for the incorporation of the NIPU techniques into the IO path between the
databases and devices, we choose a traditional log-structured file system, NILFS2
[16][11], a loadable kernel module without recompilation of the OS kernel, as an
intermediate layer between the DBMS and flash memory. As a comparison, we
choose the EXT2 file system as the representative of a conventional file system.

The storage hierarchy is simplified and shown in Fig. 4(b). We format the
flash memory with EXT2 file system, on which we build the database instance,
with all the related files together, such as the data files and log files, as well as
the temporary files and system files. Thus, the main IO activities of this instance
are confined within the flash memory. We refer this system as “Flash-EXT2”.
Similarly, we format the flash memory with NILFS2, on which we build the same
instance as EXT2 system. We refer this system as “Flash-NILFS2”hereafter. As
a comparison, we also build the same system on hard disk, denoted as “HDD-
EXT2” and “HDD-NILFS2” respectively.

Unlike the EXT2 file system, NILFS2 file sytem has several settings of garbage
collection. We set the interval of garbage collection to a very large value to disable
this function firstly, so as to simplify the IO pattern. The influence of garbage
collection will be discussed in Section 4.6.

4.2 Transaction Throughput

In this test, we create many threads to simulate the virtual users. Each virtual
user will have a dedicated warehouse during the execution of transactions. Unlike
the real users, virtual users in our test do not have the time for “Key and Think”,
for the purpose of getting intensive transaction workload. We gradually increase

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50

sp
ee

du
p

Number of warehouses and virtual users

HDD NILFS2 Flash EXT2 Flash NILFS2

(a) MySQL

0

1

2

3

4

5

6

7

10 20 30 40 50

sp
ee

du
p

Number of warehouses and virtual users

HDD NILFS2 Flash EXT2 Flash NILFS2

(b) Commercial Database

Fig. 5. Speedup of the transaction throughput on different systems based on “HDD-
EXT2”

784 Y. Wang, K. Goda, and M. Kitsuregawa

the number of warehouses as well as the number of virtual users to match. The
speedup of transaction throughput based on “HDD-EXT2” is shown in Fig. 5.

In Fig. 5(a) we find that speedup of “Flash-EXT2” to “HDD-EXT2” is 1.8–2.1,
which means that the naive replacement of flash memory to hard disk could have
twofold transaction throughput on MySQL. The speedup of “Flash-NILFS2”
shows that the NIPU-based flash memory system can have further improvement,
1.7–1.9 times to “Flash-EXT2”, and about 3.0–3.9 times to the “HDD-EXT2”.
As for the commercial database system shown in Fig. 5(b), it is quite exciting.1

We can find that the speedup of “Flash-EXT2” to “HDD-EXT2” is around 1.0,
showing that the transaction throughput of “Flash-EXT2” is comparable with
or sometimes even worse than that of “HDD-EXT2”, which verifies our perspec-
tive that it is not beneficial for small-size transaction-intensive applications by
directly utilizing the flash memory. Remarkably, a significant improvement can
be found for “Flash-NILFS2”; the speedup is 5.2–6.6 times to “Flash-EXT2”,
which manifests that NIPU-based transaction processing system can undergo
dramatic improvements on flash memory.

4.3 IO Performance

In our experiments regarding the IOPS, we examine the total number of transfers
per second that were issued to the specific physical device. Here a transfer is an
IO request to a physical device, and multiple logical requests can be combined
into a single IO request to the device. So a transfer is of indeterminate size.
Our trace result is shown in Fig. 6. As disclosed in Fig. 6(a) for MySQL, the IO
request per second on “Flash-” side is much higher than that of “HDD-” side,
which shows that flash memory can improve the IOPS. Meanwhile, the average
response time of IO request, as shown in Fig. 6(b), is reduced significantly.
Combined with the speedup of transaction throughput in Fig. 5(a), it implies
that the NILF2 could coalesce more blocks into a single IO on MySQL, resulting
in the higher performance. This can be confirmed in Fig. 6(c), which illustrates
IO transfer rate. We can find that the total sector per second on “Flash-NILFS2”
is about 6.2–8.4 times as many as that on “HDD-EXT2”. On the commercial
database system shown in Fig. 6(d), the total IO request per second of “HDD-
EXT2” and “Flash-EXT2” is comparable. In sharp contrast, the total IO request
per second of “Flash-NILFS2” is outstanding, and the average response time in
Fig. 6(e) is also cut down greatly. It implies that the NIPU-based system can
handle more requests at a time with shorter service time. Here the average
response time includes the time spent by the requests in queue and the time
spent servicing them. Since the response time is cut down greatly by NIPU
techniques, the OLTP applications, which is required to respond immediately
to user requests, could be benefited a lot. The number of sector per second of
commercial DBMS shown in Fig. 6(f) follows the same trend as that of the IO
request per second, except that on “Flash-NILFS2” it is about 18.6–22.2 times as

1 We need further investigation regarding the difference between MySQL and the
commercial DBMS.

Evaluating NIPU for Flash-Based Transaction Processing Systems 785

0

100

200

300

400

500

600

700

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

IO
re

qu
es

t/
s

Number of warehouses and virtual users

write request/s read request/s

(a) MySQL: Number of IO request per
second

0

20

40

60

80

100

120

10 20 30 40 50

Av
er

ag
e

Re
sp

on
se

tim
e

(m
s)

Number of warehouses and virtual users

HDD EXT2
HDD NILFS2
Flash EXT2
Flash NILFS2

(b) MySQL: Average Response Time of
IO Request

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

se
ct

or
/s

Number of warehouses and virtual users

write sector/s read sector/s

(c) MySQL: Number of sector per sec-
ond

0

500

1000

1500

2000

2500

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

IO
re

qu
es

t/
s

Number of warehouses and virtual users

write request/s read request/s

(d) Commercial DBMS: Number of IO
request per second

0

10

20

30

40

50

60

70

80

10 20 30 40 50

Av
er

ag
e

Re
sp

on
se

tim
e

(m
s)

Number of warehouses and virtual users

HDD EXT2
HDD NILFS2
Flash EXT2
Flash NILFS2

(e) Commercial DBMS: Average Re-
sponse Time of IO Request

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

se
ct

or
/s

Number of warehouses virtual users

write sector/s read sector/s

(f) Commercial DBMS: Number of sec-
tor per second

Fig. 6. IOPS and Average Response Time

786 Y. Wang, K. Goda, and M. Kitsuregawa

many as that on “HDD-EXT2”. Considered together with Fig. 6(d), the NIPU
techniques tends to use relatively large IO request with the increasing of the
number of sectors.

4.4 CPU Utilization

In this section we discuss the CPU Utilization in order to analysis the bottleneck
of our experimental system. The CPU Utilization is traced when the transactions
running in the steady state. The startup and terminate effect is eliminated.
Trace result is shown in Fig. 7, in which the CPU Utilization is divided into four
portions: %user, %system, %iowait and %idle. The main portion of CPU time
on “HDD-EXT2”, “HDD-NILFS2”, and “Flash-NILFS2”, is spent on waiting
for the completion of IO, which implies that the system is possibly “IO-Bound”.
However, the CPU Utilization of “Flash-NILFS2” contrasts strongly in the ratio
of four portions with the other cases: a uniform distribution of CPU time is
observed, caused by the cutback of the CPU time spent on IO wait, and balanced
by more CPU time moved to running the user applications, showing that “Flash-
NILFS2” can utilize CPU time more efficiently.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

CP
U

U
til

iz
at

io
n

Number of warehouses and virtual users

%idle %iowait %system %user

(a) MySQL

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

H
D

D
EX

T2
H

D
D

N
IL

FS
2

Fl
as

h
EX

T2
Fl

as
h

N
IL

FS
2

10 20 30 40 50

CP
U

U
til

iz
at

io
n

Number of warehouses and virtual users

%idle %iowait %system %user

(b) Commercial Database

Fig. 7. CPU Utilization

4.5 Disk Buffer Cache

Although we have limited the buffer cache of the database system to a very small
size, there is still some influence from the disk buffer cache, as long as we use
the file system to manage the data blocks written to the storage device. At this
moment, we cannot eliminate the influence of system buffer cache. A passive
but efficient approach is to test the system with bound physical memory. Fig. 8

Evaluating NIPU for Flash-Based Transaction Processing Systems 787

shows the result with 1GB and 512MB physical memory in the same experiment
system described in Section 4.1. The speedup is the ratio of “Flash-NILFS2”
to “Flash-EXT2”, i.e. the improvement of NIPU techniques on flash memory.
For MySQL shown in Fig 8(a), since it is memory efficient, the decreasing is not
significant. As for the commercial database shown in the Fig. 8(b), the significant
speedup is falling quickly with the very small memory size (512MB). However,
with reasonable memory size (1GB), the “Flash-NILFS2” system can gain above
fourfold.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10 20 30 40 50

sp
ee

du
p

Number of warehouses and virtual users

2GB Memory 1GB Memory 512MB Memory

(a) MySQL

0

1

2

3

4

5

6

7

10 20 30 40 50

sp
ee

du
p

Number of warehouses and virtual users

2GB Memory
1GB Memory
512MB Memory

(b) Commercial Database

Fig. 8. Performance speedup with different amount of physical memory

4.6 Influence of Garbage Collection

We now discuss the influence introduced by the different settings of GC on
NILFS2. In Section 4.2 to Section 4.5, no cleaning occurs during the execu-
tion, so the measurements represent the best-care performance. In fact, the GC
function should be turned on to ensure the free data space. Therefore, the back-
ground cleaning processes of GC will consume the CPU time and IO bandwidth,
producing some effect to the overall performance of system. A better GC strat-
egy can emulate to the upper level system that the free data blocks are always
available, with minimum cost of CPU time.

As indicated in [18], four issues must be addressed regarding the GC: (1)
Cleaning Interval (CI), (2) Number of Segments Per Clean (NSPC), (3) Which
segments to be clean, and (4) How to group the live blocks. Rosenblum and
Ousterhout [18] analyzed and addressed the issue (3) and (4). In this paper, we
will focus on analyzing the influence by (1) CI and (2) NSPC.

We can set the protection period (PP) to tell the daemon process how long
the segments can be preserved for recovery. The NSPC can also be set when
the device is mounted. With these settings, the experiment result in microscopic
view is shown in Table 3. we use tuple (PP,NSPC,CI) to denote the detailed
settings. With the GC settings shown in Table 3, there is no appreciable change in
the tpm (transactions-per-minute) and IOPS (either reads or writes) compared

788 Y. Wang, K. Goda, and M. Kitsuregawa

Table 3. Performance Metrics of NILFS2-based transaction throughput of the com-
mercial database on flash memory with GC

10 warehouses, 10 virtual users

tpm IOPS
Average

Response Time (ms)
of I/O Request

No GC 9983
reads: 406

1.02writes: 1792
total: 2198

GC(1, 2, 5) 9933
reads: 384

1.82writes: 1856
total: 2240

Fig. 9. Transaction throughput with (0, NSPC, CI) on commercial DBMS with 10
warehouses and 10 virtual users

with that without GC. The IOPS includes the IOs issued for GC, so the average
response time increases due to the additional IO added by the GC.

We set the protection period to 0, then the obsolete data blocks can be cleaned
immediately when the cleaning process is invoked. The transaction throughput
with (0, NSPC,CI) is disclosed in Fig. 9. It shows that a greedy cleaning strat-
egy (large NSPC and short CI) will have a detrimental effect to the transaction
throughput, although the cleaning is very efficient. The maximum additional IO
for GC can be roughly calculated by NSPC×SegmentSize

CI . For example, in Fig. 9,
when NSPC = 4, the CI should ≥ 30s to keep the transaction throughput
from falling heavily. We use 8MB segment size,2 thus the additional IO is about
2 We use 4KB block size for the NILFS2 file system, and number of blocks per segment

is 2048, so the segment size is 8MB.

Evaluating NIPU for Flash-Based Transaction Processing Systems 789

4×8MB
30s ≈ 1.07MB/s. We should keep the additional IO less than 1.07MB/s,

then the performance will not be degraded. Therefore, carefully choosing the
value of (NSPC,CI) and Segment Size with heuristic method would ensure the
high transaction throughput as well as the high utilization of the disk cleaned
by GC.

5 Related Work

5.1 Non-In-Place Update Techniques

Continuous data protection (CDP) [21][24] is a backup technology automatically
saving a copy of every change made to that data to a separate storage location
in an enterprise storage system. Another successful example is the Sprite LFS
[18], a log-structured file system. The LFS is designed to exploit fast sequential
write performance of hard disk, by converting the random writes into sequential
writes. However, the side effect is that the sequential reads may also be scattered
into random reads. Overall, the performance can be improved to write-intensive
applications. The LFS is also expected to improve the random write performance
of flash memory, since the fast read performance of flash memory well mitigates
the side effect. For the garbage collection of LFS, an adaptive method based
on usage patterns is proposed in [15]. Shadow paging [20] is a copy-on-write
technique for avoiding in-place updates of pages. It needs to modify indexes and
block lists when the shadow pages are submitted. This procedure may recurse
many times, becoming quite costly.

5.2 Flash-Based Technologies

By a systematical “Bottom-Up”view, the research on flash memory can be cat-
egorized as follow:

Hardware Interface. This is a layer to bridge the operating system and flash
memory, usually called FTL (Flash Translation Layer). The main function of
FTL is mapping the logical blocks to the physical flash data units, emulating
flash memory to be a block device like hard disk. Early FTL using a simple
but efficient page-to-page mapping [8] with a log-structured architecture [18].
However, it requires a lot of space to store the mapping table. In order to reduce
the space for mapping table, the block mapping scheme is proposed, using the
block mapping table with page offset to map the logical pages to flash pages
[1]. However, the block-copy may happen frequently. To solve this problem, Kim
improved the block mapping scheme to the hybrid scheme by using a log block
mapping table [10].

File System. Most of the file system designs for flash memory are based on
Log-structured file system [18], as a way to compensate for the write latency
associated with erasures. JFFS, and its successor JFFS2 [7], are journaling file
systems for flash. JFFS2 performs wear-leveling with the cleaner selecting a block

790 Y. Wang, K. Goda, and M. Kitsuregawa

with valid data at every 100th cleaning, and one with most invalid data at other
times. YAFFS [23] is a flash file system for embedded devices.

Database System. Previous design for database system on flash memory mainly
focused on the embedded systems or sensor networks in a log-structured behav-
ior. FlashDB [14] is a self-tuning database system optimized for sensor networks,
with two modes: disk mode for infrequent write, much like regular B+–tree; log
mode for frequent write, employed a log-structured approach. LGeDBMS [9], is
a relational database system for mobile phone. For enterprise database design
on flash memory, In-Page Logging [12] is proposed. The key idea is to co-locate
a data page and its log records in the same physical location.

6 Conclusion and Future Work

For transaction processing system on flash memory, we describe non-in-place
update techniques to improve the transaction throughput. In a system based
on NIPU techniques, the write operations are performed sequentially; while the
GC cleans the obsolete data in the background. This strategy greatly reduces
time-consuming erase operations for applications with intensive write operations,
thereby resulting in improved overall performance. We use a traditional log-
structured file system to build a test model for examination. We then validated
NIPU techniques with a set of experiments and showed that the NIPU-based
systems can considerably speed up the transaction throughput by x3.0 to x6.6
on flash memory.

In the near future, we plan to apply the non-in-place update technique into
different layers of the system and investigate appropriate algorithms for different
context.

References

1. Ban, A.: Flash file system. US Patent No. 5404485 (April 1995)
2. Birrell, A., Isard, M., Thacker, C., Wobber, T.: A design for high-performance flash

disks. Operating Systems Review 41(2), 88–93 (2007)
3. EMC: White Paper: Leveraging EMC CLARiiON CX4 with Enterprise Flash

Drives for Oracle Database Deployments Applied Technology (December 2008)
4. Graefe, G.: Write-Optimized B-Trees. In: VLDB, pp. 672–683 (2004)
5. Hsu, W.W., Smith, A.J., Young, H.C.: Characteristics of production database

workloads and the TPC benchmarks. IBM Systems Journal 40(3), 781–802 (2001)
6. Iometer, http://www.iometer.org
7. JFFS2: The Journalling Flash File System, Red Hat Corporation (2001),

http://sources.redhat.com/jffs2/jffs2.pdf

8. Kawaguchi, A., Nishioka, S., Motoda, H.: A Flash-Memory Based File System. In:
USENIX Winter, pp. 155–164 (1995)

9. Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.: LGeDBMS: A Small DBMS
for Embedded System with Flash Memory. In: VLDB, pp. 1255–1258 (2006)

10. Kim, J., Kim, J.M., Noh, S.H., Min, S.L., Cho, Y.: A space-efficient flash translation
layer for CompactFlash systems. IEEE J CE 48(2), 366–375 (2002)

http://www.iometer.org
http://sources.redhat.com/jffs2/jffs2.pdf

Evaluating NIPU for Flash-Based Transaction Processing Systems 791

11. Konishi, R., Amagai, Y., Sato, K., Hifumi, H., Kihara, S., Moriai, S.: The Linux
implementation of a log-structured file system. Operating Systems Review 40(3),
102–107 (2006)

12. Lee, S.W., Moon, B.: Design of flash-based DBMS: an in-page logging approach.
In: SIGMOD Conference, pp. 55–66 (2007)

13. MySQL, http://www.mysql.com/
14. Nath, S., Kansal, A.: FlashDB: dynamic self-tuning database for NAND flash. In:

IPSN, pp. 410–419 (2007)
15. Neefe, J.M., Roselli, D.S., Costello, A.M., Wang, R.Y., Anderson, T.E.: Improving

the Performance of Log-Structured File Systems with AdaptiveMethods. In: SOSP,
pp. 238–251 (1997)

16. NTT: New Implementation of a Log-structured File System,
http://www.nilfs.org/en/about_nilfs.html

17. Pirovano, A., Redaelli, A., Pellizzer, F., Ottogalli, F., Tosi, M., Ielmini, D.,
Lacaita, A.L., Bez, R.: Reliability study of phase-change nonvolatile memories.
IEEE J DMR 4(3), 422–427 (2004)

18. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-
Structured File System. ACM Trans. Comput. Syst. 10(1), 26–52 (1992)

19. Samsung: K9XXG08XXM Flash Memory Specification (2007)
20. Shenai, K.: In: Introduction to database and knowledge-base systems, p. 223. World

Scientific, Singapore (1992)
21. Strunk, J.D., Goodson, G.R., Scheinholtz, M.L., Soules, C.A.N., Ganger, G.R.:

Self-Securing Storage: Protecting Data in Compromised Systems. In: OSDI, pp.
165–180 (2000)

22. TPC: Transaction Processing Performance Council: TPC BENCHMARK C, Stan-
dard Specification,Revision 5.10 (April 2008)

23. YAFFS: Yet Another Flash File System, http://www.yaffs.net
24. Zhu, N., Chiueh, T.: Portable and Efficient Continuous Data Protection for Net-

work File Servers. In: DSN, pp. 687–697 (2007)

http://www.mysql.com/
http://www.nilfs.org/en/about_nilfs.html
http://www.yaffs.net

A Relational Encoding of a Conceptual
Model with Multiple Temporal Dimensions

Donatella Gubiani and Angelo Montanari

Department of Mathematics and Computer Science,
University of Udine, Italy

Abstract. The theoretical interest and the practical relevance of a sys-
tematic treatment of multiple temporal dimensions is widely recognized
in the database and information system communities. Nevertheless, most
relational databases have no temporal support at all. A few of them pro-
vide a limited support, in terms of temporal data types and predicates,
constructors, and functions for the management of time values (borrowed
from the SQL standard). One (resp., two) temporal dimensions are sup-
ported by historical and transaction-time (resp., bitemporal) databases
only. In this paper, we provide a relational encoding of a conceptual
model featuring four temporal dimensions, namely, the classical valid
and transaction times, plus the event and availability times. We focus
our attention on the distinctive technical features of the proposed tem-
poral extension of the relation model. In the last part of the paper, we
briefly show how to implement it in a standard DBMS.

1 Introduction

Despite the pervasiveness of temporal information, most databases (and infor-
mation systems) basically maintain information about the current state of the
world only. Temporal databases can be viewed as an attempt to overcome this
limitation, making it possible to keep track of the evolution of the domain of in-
terest (valid time dimension) and/or of the database contents (transaction time
dimension). The valid time of a fact can be defined as the time when the fact
is true in the modeled domain, while its transaction time is the time when it is
current in the database and may be retrieved. Historical (resp., transaction-time)
relational databases support the valid (resp., transaction) time dimension. Rela-
tional databases that manage both dimensions are called bitemporal databases. In
[3], two additional temporal dimensions, respectively called event and availability
time, have been proposed to remedy to some weaknesses of valid and transaction
times. The event time of a fact is defined as the pair of occurrence times of the real-
world events that respectively initiate and terminate its validity interval, while its
availability time is the time interval during which it is known and believed correct
by the information system the database belongs to (in general, such an interval
does not coincide with its transaction time interval). No effective support to these
dimensions is provided by existing temporal relational databases. A comprehen-
sive and up-to-date survey of temporal databases can be found in [6].

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 792–806, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

A Relational Encoding of a Conceptual Model 793

The contribution of this paper is part of the work done within ChronoGeo-
Graph (CGG) Project [2], which aims at developing a software framework for
the conceptual and logical design of spatiotemporal databases. The core of the
framework is the CGG model, a conceptual model that extends the classical
Enhanced Entity-Relationship model (EER) with additional constructs for spa-
tiotemporal information [5].

As for the spatial features, CGG supports a large set of representation primi-
tives for spatial data. CGG distinguishes between spatial and non spatial entities.
A spatial entity is characterized by a set of descriptive and spatial attributes plus
a geometry of a given spatial data type (CGG supports 8 different spatial data
types). Spatial attributes take their value over a spatial data type as well. A
spatial dimension can be added to relations as well. CGG supports topologi-
cal, metric and direction relations, and the relation of spatial aggregation (the
part-of relation over spatial entities). Besides the usual relation of specialization,
CGG introduces the relation of cartographic specialization, which supports dif-
ferent spatial representations of the same spatial entity. Finally, CGG supports
the field-based view of spatial information by the notion of (spatial) field and
the notion of schema territory, which defines the spatial domain over which all
spatial elements of the schema are located.

As for the temporal features, CGG allows one to temporally qualify the vari-
ous constructs by properly annotating them. One or more temporal dimensions
can be associated with the schema territory, entities, attributes, relations, and
fields. Different temporal dimensions are associated with different constructs.
Entities can be provided with an existence time (which can be viewed as the
valid time of the entity), possibly paired with a state diagram, a transaction
time, an event time, and an availability time. The other constructs can be en-
dowed with a valid time, a transaction time, an event time, and an availability
time. Furthermore, CGG introduces a distinction between snapshot and lifespan
cardinality constraints for attributes and relations. Snapshot cardinality con-
straints specify the minimum and maximum number of values that an attribute
can take (resp., of instances of a given entity that may participate in a relation)
at a given time, while lifespan cardinality constraints specify minimum and max-
imum bounds with respect to the whole existence of the entity instance (resp.,
the validity interval of the relation instance). As for attributes, CGG also allows
one to collect sets of attributes of a given entity that change in a synchronous
way (it defines a temporal collection as a set of entity attributes with a common
temporal annotation). Finally, it explicitly keeps track of the events that affect
a relevant element, e.g., events that change the state and/or the geometry of an
entity, the validity of a relation, the value of an attribute.

The paper addresses the problem of providing a relational encoding of tem-
poral information in CGG schemas. A special attention will be deserved to the
management of temporal dimensions. The distinctive features of the proposed
temporal extension of the relational model are the use of tuple timestampings,
the partition of temporal schemas (resp., instances) into a current component
and a historical one, and the development a number of constraints that guarantee

794 D. Gubiani and A. Montanari

the consistency of the values of the different temporal dimensions. In addition, we
implemented the extended temporal model in a standard DBMS, taking advan-
tage of SQL asssertions and triggers, and we developed a translation algorithm
mapping CGG schemas into temporally-extended relational ones.

The rest of the paper is organized as follows. In Section 2 we give a short
account of existing temporal relational models. In Section 3 we describe the ba-
sic features of the proposed temporal relational model supporting the temporal
dimensions of valid, transaction, event, and availability times. We first consider
the single temporal dimensions in isolation and then we analyze their interac-
tions. In Section 4 we focus our attention on the specification of temporal keys.
Section 5 provides some details about the implementation of the model in a
specific DBMS. Finally, in Section 6 we briefly illustrate the translation of CGG
schemas into the proposed model.

2 An Account of Existing Temporal Relational Models

The basic relational model only supports temporal data types, e.g., Date and
Timestamp, and predicates, constructors, and functions for the management of
time values. It provides no primitives to explicitly deal with temporal dimensions.
Various extensions to the relational model have been proposed in the literature
to support the valid and/or transaction time dimensions.

Temporal databases can be classified according to the granularityof timestamp-
ing, the nature of timestamps, and the temporal interpretation of the primary key.
All temporal databases associate one or more timestamp attributes (timestamps
for short) with facts, for every supported temporal dimension. The most common
options are associating a single timestamp with the whole tuple (tuple timestamp-
ing) and a distinct timestamp with any temporal attribute (attribute timestamp-
ing). The former preserves First Normal Form (1NF) and its implementation is
straightforward; in addition, it allows one to benefit from the standard relational
database technology. However, the resulting tables suffer from two weaknesses:
data redundancy and vertical anomaly (information about a domain object is not
recorded in a single tuple, but it is spread over various tuples). The latter is not
affected by the vertical anomaly, because it records the entire history of every do-
main object in a single tuple. However, in doing that it violates 1NF: for every tu-
ple and every temporal dimension, the value of each temporal attribute is a set of
pairs (value, timestamp). As for the nature of timestamps, three different choices
of increasing complexity have been considered: time instants, time intervals, and
temporal elements. In most cases (as an example, this is not the case with aggrega-
tions over time), time intervals are not interpreted as primitive temporal entities,
but just as (convex) sets of time instants. In its turn, temporal elements are usually
defined as a finite set of pairwise disjoint time intervals. Time intervals and tempo-
ral elements allowone to obtain a succinct representationof valid/transaction time
periods, but their manipulation is more complicate: either it requires to transform
them into time instants, to apply the necessary operations on such instants, and to
provide an encoding of the result at the time interval/temporal element level or it
imposes the introduction of additional non-trivial operations, such as coalescing.

A Relational Encoding of a Conceptual Model 795

Replacing a set of contiguous time instants with a single time interval makes it
possible to overcome the problem of tuple-timestamping (vertical anomaly and
redundancy) and attribute-timestamping (redundancy). However, these problems
show up again as soon as a single time intervals must be replaced with two or more
ones. The replacement of time intervals with temporal elements solves them, but
it involves the violation of 1NF. Finally, there exist different ways of reinterpreting
the notion of primary key in the temporal setting. Every temporal relation is ob-
tained by extending an atemporal relation with one or more timestamps. Its tem-
poral key can be defined as a set of (non-temporal) attributes which is a primary
key for every temporal snapshot, as in [8,7]. As an alternative, one can introduce
an explicit tuple identifier, which plays the same role of the object identifier in the
object-oriented model. As a third possibility, one can define the temporal key as a
combination of the primary key of the original atemporal relation and a suitable
subset of timestamps, e.g., [1].

In the following, we will describe an original temporally-extended relational
model supporting the four temporal dimensions described above. It opts for tuple-
timestamping, to preserve 1NF, it assumes temporal homogeneity for all relations
(a tuple holds over a given interval if and only if it holds at all time instants be-
longing to it), it makes use of time intervals (resp., time instants) to model valid,
transaction, and availability times (resp., event time), and it defines temporal keys
as suitable temporal extensions of the primary keys of the original atemporal rela-
tions. The closest relatives of such a model are the Time Relational Model (TiRM),
the Temporal Relational Model (TRM), and the Historical DataBase Manage-
ment System (HDBMS). Ben-Zvi’s TiRM model [1] supports three temporal di-
mensions: (i) the effective time of a fact, which corresponds to valid time, (ii) the
registration time of a fact, which is the pair of time instants at which the beginning
and ending of its effective time interval are inserted into the database, and (iii) the
deletion time of a fact, which is the time instant at which it is logically deleted (the
combination of registration and deletion times can be viewed as a counterpart of
transaction time). TiRM associates five timestamps with every tuple, namely, Tes

and Tee (for the beginning and ending of effective time), Trs and Tre (for the be-
ginning and ending of registration time), and Td (for the deletion time). Tes and
Tee are specified by the user, while Trs, Tre, and Td are generated by system. The
temporally-extended tuple is called tuple version. Tuples with the same value for
the atemporal key are called tuple version set. A temporal relation is defined as a
set of tuple version sets, rather than a set of tuples. Navathe and Ahmed’s TRM
model [10] supports one temporal dimension only, which corresponds to valid time.
It distinguishes between the set Rs of static (atemporal) relations and the set Rt

of time-varying (valid-time) relations. Every time-varying relation includes two
timestamps ts and te that record the left and right endpoints of valid-time inter-
vals, respectively. The key of a time-varying relation consists of the primary key
of its atemporal part (time-invariant key, TIK for short) and the timestamp ts
(since the value of te can be unknown, the pair (TIK,te) is not an alternative key).
Sarda’s HDBMS model [12] supports one temporal dimension only as well, called
real valid time, which corresponds to valid time. The aim of Sarda was to develop

796 D. Gubiani and A. Montanari

a temporal DBMS that receives as input a set of atemporal relation schemas and
provides a subset of them (specified by the designer) with a temporal extension.
The model allows one to distinguish between properties (historical relations) and
instantaneous events. The system automatically associates two timestamps, from
and to, with historical relation schemas, to keep track of their historical evolution,
and a single timestamp at with events, to record their occurrence time. It allows
the timestamps of different temporal relations to refer to different time granulari-
ties. The tuples of each historical relation are partitioned in two classes: the current
segment, which contains only tuples belonging to the current state (tuple whose
timestamp from has value null), and the history segment, which contains tuples
representing historical data (tuples such that from < now). New tuples are first in-
serted in the current segment and later, when their real valid interval ends, moved
to the history one. The primary key of a relation in the current segment is defined
as in the basic relational case. The key of a relation in the history fragment is de-
fined as follows: a set of (atemporal) attributes K is a key for a relationR(X), with
K ⊆ X, if for any value k of K and any time instant t there is at most one tuple in
R(X) with value k for K whose real valid interval includes t (keys are time-unique,
rather than tuple-unique as in the relational model).

3 A Relational Model with Four Temporal Dimensions

In the following, we describe a temporal extension to the relational model that
supports the temporal dimensions of valid, transaction, availability, and event
time. As a matter of fact, the resulting model can be viewed as the relation
counterpart of the spatio-temporal conceptual model ChronoGeoGraph (CGG),
a spatio-temporal model that pairs the classical features of the EER model with a
large set of spatial and temporal constructs [5]. First, we take into consideration
each temporal dimension in isolation; then, we will deal with their combination.

Valid time. The valid time of a tuple is the time when the fact it represents
is true in the modeled domain. We encode valid time intervals by means of
two distinct timestamps V T start and V T end. The extension of an atemporal
relation R(X) with valid time has the form:

R(X, V T start, V T end) (1)
Let Tg be the (discrete) temporal domain at granularity g over which times-
tamps V T start, V T end take their value. Any pair of values ts for V T start
and te for V T end identifies a time interval [ts, te) ⊂ Tg (we assume valid time
intervals, as well as transaction and availability time intervals, to be closed to
the left and open to the right). Valid time intervals consisting of a single chronon
are represented as degenerate intervals with coincident endpoints (notationally,
[ts, ts+1)). While the left endpoint V T start of a valid time interval must always
exist, its right endpoint V T end might be missing1. The intended semantics of
valid time intervals is captured by the following constraints:
1 To represent valid time intervals open to the right, most models assign to V T end

either the “value” null or the “value” until change (uc for short). Since null is used
in a variety of contexts with different meanings, we opt for the second alternative.

A Relational Encoding of a Conceptual Model 797

(i) ∃ts ∈ Tg ts = V T start
(ii) ∃te ∈ Tg te = V T end ∨ V T end = uc
(iii) V T start < V T end

(2)

Transaction time. The transaction time of a tuple is the time when the tuple
is current in the database. We represent transaction time intervals by means of
two distinct timestamps TT start and TT end. A transaction time interval is
generated whenever a database update is executed. For every interval associated
with a tuple in the database, we have that the value of TT start is less than
the current instant and that of TT end is either until change, if the tuple is
current, or less than or equal to the current instant, if the tuple is not current.
Since deletion of a tuple can never precede its insertion/modification, TT start
must obviously be less than TT end. The intended semantics of transaction time
intervals is captured by the following constraints:

(i) ∃t ∈ Tg t = TT start
(ii) TT end ≤ now ∨ TT end = uc
(iv) TT start < TT end

(3)

As in the HDBMS model, the schema (resp., instance) of every temporal relation
is partitioned into two distinct schemas (resp., instances). The first instance,
called current instance, consists of all and only the tuples which are current in
the database. It only features the timestamp TT start, whose value records the
time instant at which the tuple was added to the database (the value TT end
for all current tuples is equal to uc, and thus omitted). The second one, called
historical instance, records the tuples which have been logically deleted from the
database. It features the two timestamps TT start and TT end that respectively
record the times at which insertion and deletion take place.

R(X, TT start) and R history(X, TT start, TT end) (4)

Tuples are always inserted in the current instance. The time instant at which
insertion is executed is automatically assigned to the timestamp TT start. The
logical deletion of a tuple simply moves the tuple from the current instance to
the historical one, without changing the value of its attributes. The time instant
at which deletion is executed is automatically assigned to the new timestamp
TT end. The update of a tuple in the current instance can be described as a
logical deletion of the current tuple followed by the insertion of the updated one
(deletion/insertion times are equal to the time instant at which the update is
executed). Tuples in the historical instance cannot be deleted or updated.

There are several advantages in separating the historical schema/instance
from the current one. First, TT end can be omitted in the current schema.
Second, transaction time management is fully automatized. Third, since tuples in
the historical instance cannot be modified, constraint checking can be restricted
to tuples in the current instance (we will come back to this in Section 4). Finally,
an improvement in query performance is often achieved. Whenever a query refers
to current information only (we expect it to be the most common case), its
execution can ignore all tuples in the historical instance.

798 D. Gubiani and A. Montanari

Availability time. The availability time of a tuple is the time interval during
which the fact it represents is known and believed correct by the information
system the database belongs to. Availability time intervals are encoded by a
pair of timestamps AT start, AT end and must satisfy the same constraints
that transaction time intervals must satisfy:

(i) ∃t ∈ Tgt = AT start
(ii) AT end ≤ now ∨AT end = uc
(iii) AT start < AT end

(5)

Additional constraints are imposed on the relationships between availability and
transaction times. First, a fact can be stored in the database only if it is or was
known by the information system. Similarly, a fact can be (logically) deleted
from the database only if it is not believed correct/up-to-date by the informa-
tion system. Moreover, if a fact is known and believed correct by the information
system and it has been added to the database (AT end = uc), then the corre-
sponding tuple must belong to the current instance (TT end = uc); conversely,
it can never happen that AT end �= uc and TT end = uc. Finally, we must con-
sider the case in which the information systems acquires and discharges some
fact before its insertion in the database. Such a situation can be modeled by
letting AT end ≤ TT start (when inserted in the database, information was al-
ready out-of-date) if and only if TT start = TT end (information never became
current in the database).

(i) AT start ≤ TT start
(ii) AT end ≤ TT end
(iii) AT end = uc⇒ TT end = uc
(iv) TT end = uc⇒ AT end = uc
(v) AT end ≤ TT start⇔ TT start = TT end

(6)

Since in any realistic scenario the choice of including availability time and ex-
cluding transaction time looks meaningless, we do not consider temporal rela-
tion schemas with availability time and without transaction time. In addition,
we must find a way to deal with information that never becomes current in the
database (TT start = TT end), preserving the condition that imposes to insert
any new fact in the current instance and to move it to the historical one when
it is logically deleted. To cope with this problem, we include both the AT start
and the AT end timestamps in the current schema. As a result, we obtain the
following schema:

R(X, TT start, AT start, AT end)
R history(X, TT start, TT end, AT start, AT end) (7)

We must distinguish two different modalities of tuple insertion. The first one
provides a value for AT start, but no value for AT end. In this case, the system
assigns the specified value to AT start, it sets TT start to the current time, and
it adds the tuple to the current instance. The second one deals with the case
in which a value less than (or equal to) the current time is given to AT end.

A Relational Encoding of a Conceptual Model 799

The system assigns to AT start and AT end the specified values, it sets both
TT start and TT end to the current time (thus TT start ≥ AT end), it inserts
the tuple in the current instance, and it immediately moves it to the historical
one. Two different modalities of (logical) tuple deletion must be considered as
well, depending on the value of AT end. The first case is that of synchronous
deletion: both AT end and TT end are set to the current time and the tuple
is automatically moved from the current instance to the historical one. The
second case considers a possible delay in the registration of a deletion from the
information system: the system replaces the value uc of AT end with the deletion
time (which is less than the current time), it sets TT end to the current time, and
it automatically moves the tuple from the current instance to the historical one.

Event time. The event time of a tuple consists of the occurrence times of the
real-world events that respectively initiate and terminate the valid time interval
of the fact it represents. To model it, we add two timestamps ET start, ET end
to the relation schema. By definition, event time can be added only to relation
schemas provided with valid time. No constraints are imposed on event time.

R(X, V T start, V T end,ET start, ET end) (8)

Relations with multiple temporal dimensions. We conclude the section
with an analysis of temporal relations provided with two or more temporal di-
mensions. As a general rule, we start from an atemporal relational schema and we
add the appropriate timestamps for every supported temporal dimension. How-
ever, we cannot add available (resp., event) time without adding transaction
(resp., valid) time as well. The addition of transaction time forces the partition
of the relation schema in a current schema and a historical one. As an example,
a temporal schema with the four temporal dimensions can be obtained by an
atemporal schema R(X) as follows. First, we add valid time:

R(X, V T start, V T end) (9)

Then, we add event time:

R(X, V T start, V T end,ET start, ET end) (10)

The addition of transaction time forces the splitting of the table:

R (X, VT start, VT end, ET start, ET end, TT start)
R history (X, VT start, VT end, ET start, ET end,TT start, TT end) (11)

Finally, the addition of available time affects both schemas (in a different way):

R(X, VT start, VT end, ET start, ET end, TT start, AT start, AT end)
R history (X, VT start, VT end, ET start, ET end, TT start, TT end,

AT start, AT end)
(12)

A well-known problem in temporal databases is to assign a consistent value
to missing temporal dimensions, thus providing every relation with a temporal
interpretation with respect to all temporal dimensions. In such a way, no relations

800 D. Gubiani and A. Montanari

are ignored during (temporal) query evaluation. The assignment of a value to
missing temporal dimensions is done according to the following rules.

– Transaction time is missing. Tuples are current in the database when they
can be retrieved from it, that is, we assume the transaction time interval of
tuples to be [now, now]).

– Valid time is missing. Valid time is assimilated to transaction time: if trans-
action time is present, then valid time intervals are equal to transaction time
intervals; otherwise, tuples are valid at the time instant in which they are
retrieved from the database, that is, we assume the valid time interval of
tuples to be [now, now]).

– Event time is missing. We assume ET start = V T start and ET end =
V T end (on-time events).

– Available time is missing. We assume AT start = TT start and AT end =
TT end (no delay in registration).

Such rules can be turned into suitable projection functions (one for each temporal
dimension) that, given a relation instance, return the temporal values it explicitly
or implicitly takes on temporal dimensions. We consider transaction and valid
times; the cases of event and availability times are similar. Given a (temporal)
relation R, let rc (resp., rh) be the instance of its current (resp., historical)
schema (if transaction time is missing, R has a current schema only).

Definition 1. Let R be a (temporal) relation. If TT start, TT end ∈ R, then
πTT (rc) = [πTT start(rc), now] and πTT (rh) = [πTT start(rh), πTT end(rh)]. If
TT start, TT end �∈ R, then πTT (rc) = [now, now].

Definition 2. Let R be a (temporal) relation. If both V T start, V T end ∈ R
and TT start, TT end ∈ R, then πV T (ri) = [πV T start(ri), πV T end(ri)], for i ∈
{c, h}. If V T start, V T end ∈ R and TT start, TT end �∈ R, then πV T (rc) =
[πV T start(rc), πV T end(rc)]. If V T start, V T end �∈ R and TT start, TT end ∈
R, then πV T (rc) = πTT (rc) and πV T (rh)=πTT (rh). If both V T start, V T end �∈
R and TT start, TT end �∈ R, then πV T (rc) = πTT (rc) = [now, now].

4 Temporal Primary Keys and Functional Dependencies

In this section we deal with the problem of specifying primary key and functional
dependencies of a temporal relation. As it happens in the relational setting, there
is a close connection between them; however, the addition of multiple temporal
dimensions introduces various technical intricacies.

Both problems have been already addressed in the temporal databases lit-
erature, but there are no consensus solutions to them. As for temporal keys,
different alternatives have been proposed, which range from the addition of one
or more temporal attributes to the primary key of the atemporal schema [8] to
the introduction of explicit object identifiers that uniquely identify each tuple
in the temporal relation [14]. As for temporal functional dependencies (TFDs),
a short account of existing proposals can be found in [4]. The simplest ones

A Relational Encoding of a Conceptual Model 801

define TFDs as classical functional dependencies on the temporal snapshots of
the relation [8], the most complex ones allow TFDs to constrain the values of
(atemporal) attributes at different time points [13,14].

Our goal is to guarantee an appropriate trade-off between expressiveness and
effectiveness. In particular, we would like to maintain the notion of temporal
key and temporal dependency as simple and easy to manage as possible. The
solution we propose deals with multiple temporal dimensions retaining much
of the simplicity of the relational model. In addition, the separation between
current and historical schemas/instances makes it possible to simplify the process
of constraint checking.

As a general rule, we define TFDs as temporal generalizations of (atemporal)
functional dependencies (FDs), which are obtained by making the latter time
dependent. From a notational point of view, we replace every FD Z → Y by the
corresponding TFD Z →T Y. The role of the four temporal dimensions in TFDs
is quite different. By means of TFDs, we constrain FDs to be satisfied by pairs
of tuples at common valid time instants with respect to common transaction
or availability time instants. As availability (resp., transaction) time intervals
may start before (resp., end after) than the corresponding transaction (resp.,
availability) time intervals, this amounts to require functional dependency to be
satisfied with respect to common availability/transaction time instants belonging
to a time interval that starts when the availability interval starts and ends when
the transaction time interval ends. Event time plays no role in the definition of
TFDs.

Definition 3. Given a temporal relation R with atemporal schema R(X) and a
TDF Z →T Y, with Z,Y ⊆ X, we say that an instance r ∈ R satisfies the TFD
if and only if, for each pair of tuples a, b ∈ r, if a[Z] = b[Z], πV T (a)∩πV T (b) �= ∅
(their valid time intervals overlap), and πTT (a)∩πTT (b) �= ∅ ∨ πAT (a)∩πAT (b) �=
∅ (their transaction or availability time intervals overlap), then a[Y] = b[Y].

Missing temporal dimensions are implicitly added according to the assignment
rules given in Section 3. The notion of violation of a TFD is defined in the
obvious way. We say that two tuples are temporally inconsistent if they violate
a TFD.

Let us consider now the problem of specifying the key of a temporal relation
schema (temporal key for short). As anticipated in Section 2, we basically define
the (primary) temporal key as a temporal extension of the primary key of the
original atemporal relation. We distinguish between the current schema and
the historical schema of a temporal relation: the temporal key of the current
schema add valid time to the atemporal key, while the temporal key of the
historical schema add both valid and transaction times to the atemporal key.
If valid time is missing, the temporal key of the current schema coincides with
the atemporal one, while that of the historical schema consists of the atemporal
key extended with transaction time. The fact that we compactly represent both
valid and transaction times by means of interval timestamps, instead of instant
ones, introduces some complications. A simple example of these complications
is given in Table 1.

802 D. Gubiani and A. Montanari

Table 1. The current instance of a table Employee devoid of transaction time

SSN Salary VT start VT end
XXXNNN88HH 1000 15/10/2000 31/07/2006
XXXNNN88HH 1200 01/10/2003 31/07/2007

The two tuples belonging to the relation in Table 1 are temporally inconsis-
tent, because they assign both the value 1000 and the value 1200 to the salary of
employee XXXNNN88HH over the valid time interval [01/10/2003,31/07/2006).
Such an inconsistency can be obviously detected by replacing the interval times-
tamp (V T start, V T end) by the instant one V T , by choosing (SSN, V T) as
the temporal key, and by replacing every tuple by a set of tuples, one for each
time instant in the valid time interval. However, the resulting instance turns out
to be extremely redundant: a single tuple is replaced by a number of tuples that
only differ in their temporal value. To avoid to introduce such a redundancy, we
decided to maintain the interval timestamp. Unfortunately, in such a case, all
possible choices for the attributes of the temporal key, namely, (SSN, V T start),
(SSN, V T end), and (SSN, V T start, V T end), do not detect the inconsistency
in Table 1. As a consequence, the satisfaction of the key constraint (for any pos-
sible choice of the temporal key) does not suffice to conclude that there are
not temporal inconsistencies and thus temporal consistency must be explicitly
checked.

Table 2. Temporal keys for temporal relations: a summary

Cases Temporal keys Temporal dimensions
atemporal R(K, ...) -
valid time R(K, V T start, ...) V

V E

transaction time R(K,...) T
R history(K,TT start,...) TA

V T
valid and transaction R(K,V T start,...) V TE
times R history(K,V T start,TT start,...) V TA

V TAE

Among the three possible choices for the temporal key of the current schema,
we opt for the addition of V T start to the atemporal key. It detects more tem-
poral inconsistencies than the temporal key that includes both V T start and
V T end and, unlike V T end, V T start does not assume the “value” uc. Analo-
gously, for the historical schema we choose to add to the atemporal key V T start
and TT start. A summary of the resulting cases is given in Table 2.

In principle, constraint checking can be executed whenever a tuple is inserted
in the current database or moved from the current to the historical database
(tuples in the historical database cannot change their values). However, when a

A Relational Encoding of a Conceptual Model 803

tuple is transferred from the current to the historical database, it only changes
the value of TT end and, possibly, the value of AT end. Such changes cannot
cause any inconsistency in the historical database2. Hence, constraint checking
can be confined to insertions in the current database. When a tuple is inserted
in the current database, an inconsistency may arise with respect to both current
and historical tuples. In the former case, according to the proposed model, the
intersection of both transaction and availability time intervals associated with
current tuples is always not empty and thus the only constraint one needs to
check on the current database is:

∀a, b ∈ R(X)∀Y ⊆ X(a[K] = b[K]∧πV T (a)∩πV T (b) �= ∅ → a[Y] = b[Y]) (13)

where X is the set of atemporal attributes of R (and R history) and K is
the atemporal key of R (and R history). In the latter case, the intersection of
transaction time intervals associated with the inserted tuple and a historical one
is always empty and thus the only constraint one needs to check is:

∀a ∈ R(X) ∀b ∈ R history(X) ∀Y ⊆ X(a[K] = b[K]∧
∧πV T (a) ∩ πV T (b) �= ∅ ∧ πAT (a) ∩ πAT (b) �= ∅ → a[Y] = b[Y]) (14)

This constraint can be violated only if the relation R (and R history) includes
the three dimensions V TA. An inconsistency may occur if and only if the value of
AT start for the inserted tuple a is less than the value of TT start (if πAT (a) =
πTT (a), then the intersection of the availability time intervals for a and any
historical tuple is empty).

5 Implementation

In this section, we briefly describe an implementation of the proposed model
in the Oracle DBMS [11]. As for the definition of the relational schemas and
of data types, we use the standard SQL facilities featured by Oracle SQL [9].
To deal with timestamps, we take advantage of the timestamp data type (the
conventional value uc is represented by the null value). Temporal constraints
are encoded either as generic SQL assertions, using the SQL construct check
constraint (the simplest ones), or as triggers (the most complex ones). As a
concrete example of constraint management, we describe the triggers that rule
the transition of relation tuples from the current instance to the historical one
(for the sake of simplicity, we assume the relations to be devoid of availability
time).

When a tuple is inserted in the current instance, the trigger sets TT start to
the value systimestamp(0) (the current time of the system):

2 As a matter of fact, this implies that temporal keys for historical schemas are not
really necessary. We decided to keep them to comply with the relation model, but
they could be removed without causing any problem.

804 D. Gubiani and A. Montanari

CREATE OR REPLACE TRIGGER nameTable insertTT
BEFORE INSERT ON nameTable
FOR EACH ROW

BEGIN
SELECT systimestamp (0) INTO : new . TT start

FROM dual ;
END;

The deletion of a tuple from the current instance consists of the assignment of
the value systimestamp(0) to its TT end and of its insertion in the historical
instance:

CREATE OR REPLACE TRIGGER nameTable delete
BEFORE DELETE ON nameTable
FOR EACH ROW

DECLARE
now timestamp ;

BEGIN
SELECT systimestamp (0) INTO now

FROM dual ;
INSERT INTO nameTable history (A, TT end)

VALUES (: o ld .A, now) ;
END;

Tuple updates are implemented as a deletion followed by an insertion as usual:

CREATE OR REPLACE TRIGGER nameTable update
BEFORE UPDATE ON nameTable
FOR EACH ROW

DECLARE
now timestamp ;

BEGIN
SELECT systimestamp (0) INTO now

FROM dual ;
INSERT INTO nameTable history (A, TT end)

VALUES (: o ld .A, now) ;
: new . TT start := now ;

END;

Finally, the following trigger disallows the execution of updates or deletions on
the historical database (similar triggers have been added to prevent the user to
execute other improper actions, e.g., to operate on transaction timestamps):

CREATE OR REPLACE TRIGGER nameTable history upde
BEFORE UPDATE OR DELETE ON nameTable history
FOR EACH ROW

BEGIN
r a i s e a p p l i c a t i o n e r r o r (−20001 , ’ H i s t o r i c a l t ab l e s cannot

be updated or de l e t ed ’) ;
END;

A Relational Encoding of a Conceptual Model 805

As an alternative, one can create one or more user views that specify the priv-
ileges of (different classes of) database users, e.g., information in the historical
database can be queried, but not updated.

6 Mapping CGG Schemas into the Temporal Model

In [2] we define and implement a translation of CGG schemas into the above-
described temporal model. On the one hand, the translation algorithm revises
and extends the standard relational encoding of basic ER primitives (entities,
relations, specializations,..); on the other hand, it introduces specific rules for the
management of spatial and temporal information. Here, we briefly summarize
the treatment of CGG temporal features.

The translation introduces a set of relation schemas for every temporal entity
and relation in the CGG schema. Such a set consists of a root schema, called
kernel, that plays the role of reference schema for all relation schemas generated
by a given entity or relation. Each single relation schema is linked to the kernel
by means of a suitable foreign key as shown in Figure 1.

Fig. 1. The relational translation of a temporal entity

Let us consider the case of a temporal entity E with attributes X={k1, . . . , kn,
a1, . . . , am}, whose conceptual key is K = {k1, . . . , kn}, with n ≥ 1 (the case of
temporal relations is similar).

Fig. 2. A CGG entity with different types of attribute

The schema of the kernel consists of the key attributes k1, . . . , kn,, that is,
E kernel(k1, . . . , kn). It allows one to identify all entity instances. The temporal
features of the entity (temporal qualification of the entity, sets of synchronized

806 D. Gubiani and A. Montanari

temporal attributes, ..) are distributed over different component relations. In
addition, each component relation includes key attributes to allow one to merge
information about an entity instance. All atemporal (single-valued) attributes
{ai1 , . . . , ail

} are collected in a single component relation Eai1 ,...,ail
(k1, . . . , kn,

ai1 , . . . , ail
). A distinct component relation is then added for each group of tem-

poral attributes that change their values in a synchronous way. As an example,
consider the entity in Figure 2. Its relational translation is as follows:
Person kernel(SSN)
Person atemporalNochange(SSN, firstName, lastName)
Person work(SSN, V T start, V T end, TT start, work)
Person work history(SSN, V T start, V T end, TT start, TT end,work).

References

1. Ben-Zvi, J.: The time relational model. PhD thesis, University of California, Los
Angeles (1982)

2. ChronoGeoGraph (2009), http://dbms.dimi.uniud.it/cgg/
3. Combi, C., Montanari, A.: Data models with multiple temporal dimensions: Com-

pleting the picture. In: Dittrich, K.R., Geppert, A., Norrie, M.C. (eds.) CAiSE
2001. LNCS, vol. 2068, pp. 187–202. Springer, Heidelberg (2001)

4. Combi, C., Montanari, A., Rossato, R.: A uniform algebraic characterization of
temporal functional dependencies. In: Proc. of the 12th International Symposium
on Temporal Representation and Reasoning (TIME), pp. 91–99. IEEE Computer
Society Press, Los Alamitos (2005)

5. Gubiani, D., Montanari, A.: ChronoGeoGraph: an expressive spatio-temporal con-
ceptual model. In: Ceci, M., Malerba, D., Tanca, L. (eds.) Proc. of the 15th Italian
Symposium on Advanced Database Systems (SEBD), pp. 160–171 (2007)

6. Jensen, C.S., Snodgrass, R.T. (eds.): Temporal Database Entries for the Springer
Encyclopedia of Database Systems. Technical Report TIMECENTER TR-90
(2008)

7. Jensen, C.S., Snodgrass, R.T.: Semantics of time-varying attributes and their use
for temporal database design. In: Papazoglou, M.P. (ed.) ER 1995 and OOER 1995.
LNCS, vol. 1021, pp. 366–377. Springer, Heidelberg (1995)

8. Jensen, C.S., et al.: The consensus glossary of temporal database concepts - Febru-
ary 1998 version. In: Temporal Databases, Dagstuhl (TDB), pp. 367–405 (1997)

9. Lorentz, D., et al.: Oracle Database SQL Reference (2005)
10. Navathe, S.B., Ahmed, R.: Temporal extensions to the relational model and SQL.

In: Uz Tansel, A., Clifford, J., Gadia, S., Jajodia, S., Segev, A., Snodgrass, R.
(eds.) Temporal Databases: theory, design, and implementation, pp. 92–109. The
Benjamin/Cummings Publishing Company (1993)

11. Oracle. Oracle 10g (2007), http://www.oracle.com
12. Sarda, N.L.: HSQL: A historical query language. In: Uz Tansel, A., Clifford, J.,

Gadia, S., Jajodia, S., Segev, A., Snodgrass, R. (eds.) Temporal Databases: theory,
design, and implementation, pp. 110–140. The Benjamin/Cummings Publishing
Company (1993)

13. Vianu, V.: Dynamic functional dependency and database aging. Journal of the
ACM 34(1), 28–59 (1987)

14. Wijsen, J.: Temporal FDs on complex objects. ACM Transactions on Database
Systems 24(1), 127–176 (1999)

http://dbms.dimi.uniud.it/cgg/
http://www.oracle.com

Three Approximation Algorithms for Energy-Efficient
Query Dissemination in Sensor Database System"

Zhao Zhang1, Xiaofeng Gao2, Xuefei Zhang2, Weili Wu2, and Hui Xiong3

1 College of Mathematics and System Sciences, Xinjiang University, P.R. China
zhzhao@xju.edu.cn

2 Department of Computer Science, University of Texas at Dallas, Richardson, USA
{xxg052000,xxz068000,weiliwu}@utdallas.edu

3 Management Science & Information Systems Department,
The State University of New Jersey, Rutgers, USA

hxiong@rutgers.edu

Abstract. Sensor database is a type of database management system which of-
fers sensor data and stored data in its data model and query languages. In this
system, when a user poses a query to this sensor database, the query will be
disseminated across the database. During this process, each sensor generates data
that match the query from its covered area and then returns the data to the original
sensor. In order to achieve an energy-efficient implementation, it will be useful
to select a minimally sufficient subset of sensors to keep active at any given time.
Thus, how to find a subset efficiently is an important problem for sensor database
system. We define this problem as sensor database coverage (SDC) problem.

In this paper, we reduce the SDC problem to connected set cover problem,
then present two approximation algorithms to select a minimum connected set
cover for a given sensor database. Moreover, to guarantee robustness and accu-
racy, we require a fault-tolerant sensor database, which means that each target in
a query region will be covered by at least m sensors, and the selected sensors will
form a k-connected subgraph. We name this problem as (k,m)-SDC problem and
design another approximation algorithm. These three algorithms are the first ap-
proximation algorithms with guaranteed approximation ratios to SDC problem.
We also provide simulations to evaluate the performance of our algorithms. We
compare the results with algorithms in [17]. The comparison proves the effi-
ciency of our approximations. Thus, our algorithms will become a new efficient
approach to solve coverage problem in sensor database systems.

Keywords: Sensor Database, Set Cover, Fault Tolerance.

1 Introduction

1.1 Background

Sensors are often deployed widely to monitor continuously changing entities such as
temperature, sound, vibration, pressure, locations of moving objects and other interests.
" This work is supported by National Natural Science Foundations of China (10671152), NSFC

(60603003), the National Science Foundation under grant CCF-0514796 and CNS-0524429.
This work was completed when Dr. Zhao Zhang visiting Department of Computer Science,
The University of Texas at Dallas.

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 807–821, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

808 Z. Zhang et al.

The sensor readings are reported to a centralized database system, and are subsequently
used to answer queries. Modern sensors not only respond to physical signals to pro-
duce data, but also embed computing and communication capabilities. They are able to
store and process their productions locally, and transfer data through database system.
Examples of monitoring applications include supervising items in a factory warehouse,
gathering information in a disaster area, or organizing vehicle traffic in a large city [4].
These applications involve a combination of stored data, and we name them as sensor
databases [2].

Sensor database system is a newly developed DBMS in recent years, which has been
discussed in many literatures such as [2, 3, 21]. In a sensor database, users can issue
database queries to one or more nodes in this database. Such process is called sensor
query, which can also be defined as an acyclic graph of relational and sequence opera-
tors [2]. For instance, in a sensor database to measure temperature at regular interval, a
typical sensor query can be shown like “Return repeatedly the abnormal temperatures
measured by all sensors” or “Every five minutes retrieve the maximum temperature
measured over the last five minutes” [2].

Sensor queries are long-running queries. During the span of a long-running query,
relations and sensor sequences might be updated. The inputs of a relational operator are
base sequences or the output of another sequence. We define R as a relation of a sensor
database, and S as a sensor sequence. An update to R can be an insert, a delete, or mod-
ifications of record in R. An update to S is the insertion of a new record associated to a
position greater than or equal to all undefined positions in S. There is a centralized real-
izations of a sensor database [6], where all data from each node in the sensor database
is sent to a designated node within the database.

When a user (or an application) poses a query to the sensor database, the query is dis-
seminated across the database. In response to this query, each node generates data that
match this query, and transmits matching data to the original sensor. Each sensor can
only generate data from its own covered area. As data routed through the database, in-
termediate sensors might apply one or more database operators. Then users can simply
query this database. Such requirement means that users can get the result by querying
at any sensor in the system. However, such process is impractical in the sensor database
if every sensor can implement queries, since it requires significant communication and
too many energy. Due to battery limitations, we need a minimally sufficient subset of
sensors which can cover the whole query region at any given time. Since we need to
transmit the query data outside the sensor network, such subset should also be con-
nected. We define this problem as sensor database coverage(SDC) problem.

By Observation, SDC problem can be reduced to a connected set cover problem,
which is proved to be NP-hard in general graph [16]. This problem can also be used in
distributed Internet measurement systems for distributed agents to periodically measure
the Internet by a tool called traceroute [5]. In this paper, we propose two approximation
algorithms to select minimum connected set cover for a given sensor database. More-
over, to guarantee robustness and accuracy, we require a fault-tolerant sensor database,
which means that each target in a query region will be covered by at least m sensors, and
the selected sensors will form a k-connected subgraph. Under such constraints, we de-
sign another approximation algorithm for (k,m)-SDC problem. To make the algorithm

Three Approximation Algorithms for Energy-Efficient Query Dissemination 809

practical, we set k = 2 specifically. Both of these algorithms are the first approximation
algorithms with guaranteed approximation ratios in general sensor database systems.
We also provide simulations to evaluate the performance of our algorithms. We com-
pare the results with algorithms in [17]. The comparison proves the efficiency of our
approximations.

1.2 Related Works

The COUGAR project at Cornell University [2] is one of the first attempts to model a
sensor database system. It focused on the interaction between the sequence data pro-
duced in sensor networks and stored data in backend relational databases. It extended
both the SEQ [8] sequence data model and the relational data model by introducing
new operators between sequence data and relational data. In [3], R. Cheng and S. Prab-
hakar presented a framework that represents uncertainty of sensor data. They proposed a
new kind of probabilistic queries called Probabilistic Threshold Query. Also, they stud-
ied techniques for evaluating queries under different details of uncertainty, and inves-
tigated the tradeoff between data uncertainty, answer accuracy and computation costs.
Recently, A lot of techniques have been introduced to solve coverage problems in sensor
networks (e.g., [10, 11, 17, 18, 19, 20, 22]). One of the commonly used approach is re-
duce sensor coverage problem into connected dominating set (CDS) problem [26]. For
k-coverage problem, literatures [9, 27] etc. proposed several greedy algorithms, but did
not regard connectivity properties. We can use these techniques to solve SDC problem.

In our paper, we use sensor database as our communication model, which is sel-
dom discussed because of the complexity of problem requirements. Actually, it is well
known that minimum set cover (SC) problem is NP-hard [16], and can not be approxi-
mated within a factor of (1− ε) lnn for any ε > 0 unless NP ⊆ DT IME(nloglogn) [15],
where n = |V |. Since SC is a special case of connect set cover (CSC) (taking G to be
a complete graph), CSC is also NP-hard and is not (1− ε) ln n-approximable. Further-
more, Shuai et.al. [23] showed that even when at most one vertex of the graph G has
degree greater than two, the CSC problem is still non-(1− ε) lnn-approximable. In the
case that the graph is a path, Shuai et.al. gave two polynomial-time algorithms. In the
case that the graph has exactly one vertex of degree greater than two, they proposed a
(1+ lnn)-approximation algorithm. For the general case, there is no known approxima-
tion algorithm with guaranteed performance ratio.

1.3 Our Contribution

In this paper, we provide three efficient approximation algorithms to solve the SDC
problem and (k,m)-SDC problem for efficient query dissemination in sensor database
systems. Those approximation algorithms are the first ones with approximation ratio
analysis. We also provide simulations to evaluate the performance of our algorithms.
We compare the results with algorithms in [17]. The comparison proves the efficiency
of our approximations. The detailed technologies can be summarized as follows.

We first define a new generalization of the connected set cover (CSC) problem that
is equivalent to the SDC problem, and give two approximation algorithms. Assume we
have a set collection S = {S1,S2, · · · ,Sk}. The goal of these two algorithms are finding

810 Z. Zhang et al.

a minimum size sub-collection R ⊆ S, such that all the target region is covered by R,
and R is connected. The approximation ratio is highly depends on a parameter Dc(G),
which can be defined as follows.

For any two sets Si,S j ∈ S, distG(Si,S j) is the length of a minimum (Si,S j)-path
in G, where length refers to the number of edges on this path. Two sets Si,S j ∈ S are
said to be cover-adjacent if Si ∩ S j �= /0. Define Dc(G) = max{distG(Si,S j) | Si,S j ∈
S and Si,S j are cover-adjacent}.

The first algorithm is a two-step algorithm. It finds an SC using an α-approximation
algorithm, and then connects them with a Steiner Minimum Tree with Minimum Num-
ber of Steiner Points (SMT-MSP) using a β -approximation algorithm. The performance
ratio of this algorithm is α + β + αβ (Dc(G)−1). The second algorithm uses a greedy
strategy, and the performance ratio is 1 + Dc(G) ·H(γ − 1), where H is the harmonic
function, and γ = max{|S| | S∈ S}. In many cases, Dc = 1. For example, if two reserves
containing a same species are regarded to be adjacent, then Dc = 1. In such cases,
the two algorithms given in this paper has performance ratio α + β and 1 + H(γ − 1)
respectively.

Then, we consider the (k,m)-SDC problem. For a SDC R, if the subgraph of G
induced by R is k-connected, and every element of V is covered by at least m sets
of R, then R is a (k,m)-connected set cover ((k,m)-CSC for short). It is obvious that
(k,m)-CSC problem is equivalent to (k,m)-SDC problem. If a reserve system takes the
form of a (k,m)-SDC, then every species is represented at at least m reserves, and the
connection among the reserves is more fault tolerant in face of disasters.

Specifically, in this paper, we present a greedy algorithm for the minimum (2,m)-
SDC problem, using a parameter PD(G). Given three vertices u,v,w in a graph G, define
the pair distance between u and {v,w}, denoted by dist(u;v,w), to be the shortest length
of a pair of disjoint (u,v)-path and (u,w)-path. In another word, it is the length of
a shortest (v,w)-path through vertex u. The pair diameter of a graph G is PD(G)=
min{dist(u;v,w), where u, v, w are three distinct vertices in V (G)}. Our algorithm has
performance ratio (PD(G)−1)(1 + H(γ−1)).

Then, we compared our algorithms to algorithms in [17] in several scenarios. We
change the number of sensors in database and the radius of the sensors to exhibit the
performance of our algorithms. The result showed that our algorithms are much better
than these naive algorithms. The sizes of solutions we obtained are much closer to the
corresponding optimum solutions.

The rest of this paper is organized as follows: Section 2 illuminates some basic con-
cepts which may used in algorithm description and performance analysis. Section 3
presents the idea and detailed steps of our approximations for SDC problem. Section 4
provides a greedy algorithm to solve (k,m)-SDC problem. Proofs and performance
analysis are also included in these two sections. Section 5 compares our performance
with various previous works. Finally, Section 6 gives a brief conclusion of our work.

2 Preliminaries

We consider our communication model under general graphs, which can reflect any type
of sensor database in practice, bringing benefits and efficiency to real-life applications.

Three Approximation Algorithms for Energy-Efficient Query Dissemination 811

Actually, we do not need to consider specific geometrical characteristics, since they are
too strict to what dimension the models are built, and based on Euclidean formula (e.g.,
some of the rules are suitable in 2-dimensional space, but incorrect in 3-dimensional
space). Therefore, our algorithm can be implemented in a wide range of environments.
The following are basic definitions that we need to use in our algorithm descriptions.

Definition 1 (Query Region). Query Region is the area of the entire sensor database
that the end user (or an application) wants to issue a query.

Definition 2 (Sensor Covering a Point). A sensor in a sensor database system S is
said to cover a point p, if the distance d(p,S) between p and S is less than RS, which is
the sensing radius of the sensor (Here we assume that each sensor has the same RS).

Definition 3 (Sensor Database Coverage (SDC)). Given a sensor database system
with sensor set S, where S = {S1, ...,Sk}. We need to find a minimum subset R of S to
cover all the query region, such that the subgraph induced by R is connected.

Definition 4 (Set Cover (SC)). Let V be a set of elements, and S be a family of subsets
of V such that

⋃
S∈S S = V. A set cover (SC) with respect to (V,S) is a sub-family R of

S such that every element v ∈V is in some set S ∈ R. We say that S covers v.

Definition 5 (Connected Set Cover (CSC)). Let G be a connected graph on vertex set
S. A connected set cover with respect to (V,S,G) (abbreviated as CSC) is a set cover R
with respect to (V,S) such that the subgraph of G induced by R is connected.

Definition 6 ((k,m)-CSC). A (k,m)-CSC is a set cover R with respect to (V,S) such
that the subgraph of G induced by R is k-connected, and every element of V is covered
by at least m sets of R, then R is a (k,m)-connected set cover ((k,m)-CSC for short).

Note that we use terminology ‘set’ and ‘vertex’ interchangeably when talking about
elements in S. Because the sensor database coverage problem is indeed a generalization
of the connected set cover problem.

Now let us discuss how to reduce SDC problem to CSC problem (so that (k,m)-
SDC is equivalent to (k,m)-CSC). SDC problem is considering cover a whole region,
while CSC problem is considering cover a set of targets. Thus, we need to reduce region
coverage into target coverage. Figure 1 is an example to illustrate this reduction.

The square in Fig. 1 is the potential region for sensoring. For each point in this
area, let A denote the set of sensors that can cover this point. Partition the area into
different parts, each with different sensor coverage set. As a consequence, area cover-
age problem can be reduced to target coverage problem when we consider each part
as a target. This problem can further reduced to a set cover problem. Consider each
small division as a target and mark it with a number from 1 to 14, and then insert cov-
ered targets into each set of sensors. Say, S1 = {7,9,11,12,13,14}, S2 = {6,9,13},
S3 = {3,6,7,8,10,13,14}, S4 = {3,4,5}, S5 = {2,1,3,4,8,12,14} and S6 = {2}. The
coverage problem can be reduced to the problem of finding a minimum set cover from
Si to cover T = {1, · · · ,14}.

Next, we will introduce our approximation algorithm for SDC problem in the next
section now.

812 Z. Zhang et al.

12

3

4 5

6

7
8

9

10
11

12

13

14

s1

s2

s3

s4
s5

s6

Fig. 1. An example to reduce region coverage to target coverage

3 Algorithm for SDC Problem

In this section, we will firstly exhibit a two-step SDC algorithm, and then give a modi-
fied greedy algorithm to deal with more general cases. In the next section, we will show
algorithm to solve a special (k,m)-SDC problem where k = 2. Performance analysis
and theory proofs are provided immediately after algorithm descriptions.

3.1 Two-Step SDC Algorithm

Firstly, let us depict the two-step algorithm as follows.

Algorithm 1. (Two-Step SDC)
Input: (V,S,G); an algorithm A computing a minimum set cover; an algorithm B computing a
Steiner tree with minimum number of Steiner points.
Output: A connected set cover R.

1: Use A to compute a set cover R1 with respect to (V,S).
2: Use B to compute a Steiner tree T in G with terminal set R1. and Steiner points R2.
3: Output R = R1∪R2.

Theorem 1. Suppose the approximation ratio of A and B are α and β respectively.
Then the approximation ratio for Two-Step SDC is α + β + αβ (Dc−1).

Proof. Let R∗ be an optimal solution to SDC, and R∗
2 be a Steiner tree of G connecting

terminal set R1 with minimum number of Steiner points. Since R∗ is also a set cover
with respect to (V,S), we have

|R1| ≤ α|R∗|. (1)

Let S be a set in R1. Suppose v is an element of V covered by S, and S∗ is a set in R∗
covering v. Then S,S∗ are cover-adjacent, and thus distG(S,S∗)≤Dc. By adding at most

Three Approximation Algorithms for Energy-Efficient Query Dissemination 813

Dc − 1 vertices of G connects S to S∗. It follows that by adding at most (Dc − 1)|R1|
vertices, all sets in R1 are connected to R∗. Since G[R∗] is connected, we have

|R∗
2| ≤ |R∗|+(Dc−1)|R1|. (2)

Combining inequalities (1) and (2) with |R2| ≤ β |R∗
2|, the approximation ratio follows.

In the Relay Node Problem, if R≥ 2r, then Dc = 1 and thus the approximation ratio
is α + β .

3.2 Best Candidate Path Algorithm (BCP) for SDC Problem

Now let us introduce the best candidate path algorithm (BCP) for SDC problem with
better performance.

Definition 7 (Candidate Path). Let R records the sets which have been chosen and U
records the set of elements of V which have been covered. For R �= /0 and a set S∈ S\R,
an R-S candidate path is a path in G such that its initial vertex is in R and its end vertex
is S.

For a shortest R-S candidate path PS, it has exactly |PS| vertices in S\R, where |PS| is
the number of edges in PS. We use C(PS) to denote the set of elements of V \U which

are covered by vertices on PS. Define e(PS) = |PS|
|C(PS)| . Then we have Algorithm 2.

Algorithm 2. (BCP Algorithm)
Input: (V,S,G).
Output: A connected set cover R.

1: Choose S1 ∈ S such that |S1| is maximum. R = {S1}, U = S1.
2: while V \U �= /0 do
3: For each S∈ S\R which is cover-adjacent with a set in R, compute a shortest R-S path PS.

Choose S such that e(PS) is minimum. Add all sets on PS except S into R, U = U ∪C(PS).
4: end while
5: Output R.

Clearly, the output R of Algorithm 2 is a connected set cover for (V,S,G). Next, we
analyze the approximation ratio.

Theorem 2. The BCP Algorithm has approximation ratio 1 + Dc(G) ·H(γ−1), where
γ = max{|S| | S ∈ S}, and H is the harmonic function.

Proof. Suppose Si is the set chosen in the ith iteration (S1 is the initial set chosen in line
1). Let Si be the set of sets added to R in the ith iteration (that is, the sets on PSi which
is not already in R). Then Rk =

⋃k
i=1 Si is the set of sets chosen after the kth iteration.

Suppose Algorithm 2 runs K rounds. Then RK is the output of the algorithm. When
Si is chosen, we assign each element v ∈ C(PSi) a weight w(v) = e(PSi) for i ≥ 2 and
w(v) = 1/|S1| for i = 1. Then each element v∈V is assigned a weight exactly once, and

∑
v∈V

w(v) =
K

∑
k=1

∑
v∈C(PSk

)
w(v) =

K

∑
k=1

∑
v∈C(PSk

)

|PSk |
|C(PSk)|

=
K

∑
k=1

|PSk |= |RK |. (3)

814 Z. Zhang et al.

Suppose R∗ = {S∗1, ...,S
∗
opt} is an optimal solution to the SDC problem. Set N1 = S∗1,

and for i = 2, ...,k, set Ni = S∗i \ (
⋃i−1

j=1 Nj). Since R∗ covers all elements of V , we see
that N1, ...,Nopt is a partition of V . It follows that

∑
v∈V

w(v) =
opt

∑
k=1

∑
v∈Nk

w(v). (4)

Next, we show that for each k ∈ {1, ...,opt},

∑
v∈Nk

w(v)≤ 1 + Dc(G) ·H(γ−1). (5)

Let n0 = |Nk|, and for i = 1, ...,k let ni be the number of elements in Nk which are not
covered after the ith iteration. For i = 1, ...,k, after the ith iteration, ni−1− ni elements
of Nk are covered and each such an element is assigned a weight

e(PSi)≤ e(PS∗k) =
|PS∗k |

|C(PS∗k)|
≤ Dc(G)

ni−1
for i≥ 2, (6)

and at most 1/(n0−n1) for i = 1. There are something to be explained about (6).
(a) It is possible that ni−1−ni > 0. But only those i’s with ni−1−ni > 0 works in the

analysis.
(b) As a consequence of the above assumption, S∗k is not chosen after the (i− 1)th

iteration since choosing S∗k covers all the elements in Nk. Furthermore, n0 − n1 > 0
implies that

S∗k is cover-adjacent with S1. (7)

Hence S∗k is a candidate to be chosen as S in the ith iteration for i≥ 2. By the choice of
Si, the first inequality of (6) holds.

(c) Also by observation (7), we have |PS∗k | ≤ Dc(G). Since choosing S∗k could cover
all the remaining elements in Nk, we have |C(PS∗k)| ≥ ni−1. The second inequality in (6)
holds.

Then by a standard analysis as in dealing with set cover problem (see for example
[14] §35.3), we have

∑
v∈Nk

w(v) ≤ (n0−n1)
1

n0−n1
+ Dc(G)

opt

∑
i=2

ni−1−ni

ni−1

≤ 1 + Dc(G)(H(n1)−H(nopt)).

Inequality (5) follows from the observation that nopt = 0 and n1 < n0 = |Nk| ≤ |S∗k | ≤ γ .
Combining inequalities (3) (4) and (5), we have

|R|=
opt

∑
k=1

∑
v∈Nk

w(v)≤ (1 + Dc(G)H(γ−1)) ·opt.

The theorem is proved.

Three Approximation Algorithms for Energy-Efficient Query Dissemination 815

4 Best Efficiency Ear Algorithm (BEE) for (2,m)-SDC Problem

In this section we provide another algorithm, best candidate ear algorithm (BEE) for
(k,m)-SDC problem with fixed parameter k = 2. To compute a (2,m)-SDC, we make
use of the ear decomposition of 2-connected graphs.

Definition 8 (Ear). An ear of a graph G is a path P in G such that all internal vertices
on P has degree two in G.

An ear is open if its two ends are different, otherwise it is closed. A cycle is a closed
ear. The ear decomposition theorem says that every 2-connected graph has an open
ear P such that the graph obtained by deleting internal vertices of P from G is still 2-
connected. In another word, a graph G is 2-connected if and only if G can be constructed
in the following way: Starting from a cycle (that is a closed ear); Iteratively adding open
ears to the graph.

The BEE Algorithm computes a (2,m)-SDC by greedy strategy. It starts from a ‘most
efficient’ cycle, then iteratively adds ‘most efficient’ open ears to it until all the cover
requirements are satisfied.

To compute the open ears, we use the concept of shortest (u,v)-cycle.

Definition 9 (Shortest (u,v)-cycle). For two distinct vertices u,v in a graph G, a short-
est (u,v)-cycle is a cycle in G through u and v such that the length of the cycle (that is,
the number of edges in the cycle) is minimum.

A shortest (u,v)-cycle can be computed by any algorithm finding shortest pair of dis-
joint paths. In fact, the union of a pair of disjoint (u,v)-paths is an (u,v)-cycle. There
are many algorithms for shortest pair of disjoint paths problem, for example, [24].

For a subgraph H of G, a shortest open ear to H through a given vertex v ∈ V (G) \
V (H) can be computed as follows: Add a new vertex s to G and connect s to every vertex
in H; Compute a shortest (v,s)-cycle in the extended graph; Then the path obtained by
deleting s from this cycle is as required.

4.1 Algorithm Description

Now let us give the detailed description of (2,m)-SDC algorithm in Algorithm 3.
In this algorithm, each element v ∈ V is assigned a label m(v) which records the

remaining number of times element v is to be covered. Initially m(v) = m for all v.
When m(v) decreases to zero, we say that the cover requirement on v is satisfied. The
total number of remaining cover requirements is recorded by M. Initially M = m|V |. Set
U is used to record the elements of V whose cover requirements has not been satisfied.

For an ear QS computed in the algorithm, we use c(QS) to denote the number of cover
requirements satisfied by adding QS to the currently constructed 2-connected subgraph.
To speak it more concretely, for each element v ∈U , let m′(v) be the number of sets in
V (QS) \R which cover v, and set m̃(v) = min{m′(v),m(v)}. Then m̃(v) is the number
of requirements newly satisfied at element v by adding QS, and c(QS) = ∑v∈U m̃(v) is
the total number of requirements newly satisfied by adding QS. Define the efficiency of
QS to be

e(QS) =
|V (QS)\R|

c(QS)
.

816 Z. Zhang et al.

Algorithm 3. (BEE Algorithm)
Input: (V,S,G), where G is 2-connected and every element in V is covered by at least m sets in
S.
Output: A (2,m)-connected set cover R.

1: Set M = m|V |, U = V , and m(v) = m for each v ∈V .
2: Choose S1 ∈ S such that |S1| is maximum. R = {S1}. For each element v ∈ S1, set m(v) =

m(v)−1. M = M−|S1|. Remove all vertices v in U with m(v) = 0.
3: if M = 0 then
4: Output R.
5: else
6: For each S ∈ S\R, compute a shortest (S1,S)-cycle QS.
7: Choose S such that e(QS) is minimum.
8: for each set R ∈V (QS)\R do
9: R = R∪{R}.

10: For each element v ∈ R∩U , m(v) = m(v)− 1, M = M− 1, and remove v from U if
m(v) = 0.

11: end for
12: end if
13: while M > 0 do
14: Construct a graph G̃ by adding a new vertex S0 and connect S0 to every vertex in R.
15: For each S ∈ S \R, compute a shortest (S0,S)-cycle in G̃. Let QS be the open ear to G[R]

obtained by deleting S0 from this cycle.
16: Choose S such that e(QS) is minimum.
17: for each set R ∈V (QS)\R do
18: R = R∪{R}.
19: For each element v ∈ R∩U , m(v) = m(v)− 1, M = M− 1, and remove v from U if

m(v) = 0.
20: end for
21: end while
22: Output R.

Line 6 to 11 is constructing the initial cycle and line 14-20 is iteratively adding open
ears. By the ear decomposition theorem, the output of Algorithm 3 is indeed a (2,m)-
SDC.

4.2 Performance Analysis

To analyze the performance ratio of the BEE Algorithm, we define the concept of pair
diameter. Given three vertices u,v,w in a graph G, define the pair distance
between u and {v,w}, denoted by dist(u;v,w), to be the shortest length of a pair of
disjoint (u,v)-path and (u,w)-path. In another word, it is the length of a shortest (v,w)-
path through vertex u. The pair diameter of a graph G is PD(G) = min{dist(u;v,w) |
u,v,w are three distinct vertices in V (G)}.

Theorem 3. The performance ratio of BEE Algorithm is PD(G)(1 + H(γ−1)), where
γ = max{|S| | S ∈ S}.

Three Approximation Algorithms for Energy-Efficient Query Dissemination 817

Proof. The proof idea is similar to that of Theorem 2. The difference lies in dealing
with the multiple covering of each element and estimating the length of added ear.

Suppose V = {v1, ...,vn} where n = |V |. Duplicate each element vi by m times. De-

note by Vi = {v(1)
i , ...,v(m)

i }, where v(1)
i , ...,v(m)

i are the duplicates of element vi. Set
V =

⋃n
i=1 Vi.

Use the notation Si, Rk as in the proof of Theorem 2. Suppose Algorithm 3 runs K
rounds. For i ≥ 2, when Si is chosen, sets in V (QSi) \R are added into R sequentially
in line 8 to line 11. When it is the turn to deal with R ∈V (QSi)\R, a vertex v ∈ R∩U
has its copy v(m(v)) assigned a weight e(QSi) (recall that 1≤ m(v)≤ m is the remaining
cover requirements on v just before R is added to R). We may regard R to cover v(m(v)).
When i = 1, each element v ∈ S1 has its copy v(m) assigned a weight 1/|S1|. Then each
element v(j) ∈ V is assigned a weight exactly once.

Suppose R∗ = {S∗1, ...,S
∗
opt} is an optimal solution to the (2,m)-SDC problem. Define

a partition N1, ...,Nopt of V as follows (write Ni =
⋃i

k=1 Nk for simplicity): Set N1 =
{v(1) | v ∈ S∗1}, and for i = 2, ...,opt, set Ni = {v(j) | v ∈ S∗i , v(m) �∈ Ni−1, j is the first
index such that v(1), ...,v(j−1) ∈Ni−1 and v(j) �∈Ni−1}. Figure 2 illustrates the partition.

S1*
v1

v2
v3

v4 v5S2* S3*

Fig. 2. An illustration of the partition. Here we have that m = 2, N1 = {v(1)
1 ,v(1)

2 ,v(1)
3 }, N2 =

{v(2)
1 ,v(2)

2 ,v(1)
4 ,v(1)

5 }, N3 = {v(2)
3 ,v(2)

4 ,v(2)
5 }.

The following proof is similar to that in Theorem 2. The only difference is using
PD(G) to upper bound |V (QS∗k)\Ri|. Note that for each k ∈ {1, ...,opt}, |Nk| ≤ γ since
each element v has at most one copy in Nk.

5 Performance Evaluation

In this section, we present tow simulations to evaluate the performance of our approxi-
mation algorithms. Since the performance of BCP is better than two-step SDC, we will
build one simulation for BCP algorithm, and another with (k,m)-SDC.

We ran our algorithms on a randomly generated sensor database system where a
certain number of sensor nodes are placed randomly in an area of 40 × 40 unit square.
We assume that the query region is the entire sensor database region. Each sensor has a
uniform sensing radius of 4 units, which means that it can only detect targets in a cycle
of 4 units with itself as the center. We vary the size n of this sensor database from 1000
to 4000 (which provides substantial redundancy), and deploy these sensors randomly.
For each fixed topology, we calculate the required subset from our algorithm. Also,

818 Z. Zhang et al.

we determine the sensing radius R of sensor nodes from 2 units to 12 units. In both
scenarios, we compare our outputs with the results calculated from K Times 1-Greedy
algorithm, which is mentioned in [17].

5.1 Result for BCP Algorithm

We plot the size of the solution by different algorithms in Figure 3 for different values
of sensor database sizes, and transmission radius. For each parameter, we run each
scenario for 1000 times and take average value as our solution to avoid abnormal cases.

Figure 3 (a) shows the solution size delivered by two algorithms with different sensor
database sizes. Note that the solution size is much smaller than the sensor database size
(102 vs. 103), which means that selecting a subset of sensors to execute sensor queries
for a sensor database do save many energy. Therefore, selecting a connected subset is
an energy-efficient method for a sensor database system to improve its performance.

From this figure we can also observe that when the size of database increases, the
solution size decreases. This is because when the target region fixed, if the density of
sensors increases, it is easier to find a connected subset to cover the whole area. More-
over, the solution size doesn’t decrease so much when the sensor database size becomes
larger, which means the solution obtained from 1000 sensors is quite close to the OPT.
It also means that the sensors database provides substantial redundancy if the size in-
creases. We can see that for a fixed sensing radius, the solution size returned by BCP
algorithm is almost the half of the solution returned by K times 1-greedy algorithm,
which proves that our algorithm can perform better results.

Figure 3 (b) shows the solution size delivered by various algorithms for different
sensing radius. Note that when the sensing radius change from 2 to 4, the solution size
has a sharp decrease, but if the sensing radius increase continuously, the solution size
stays stable. That means when the sensing radius is bigger than 4, the query region is
covered more than once. This property can guarantee robustness and accuracy. Also
note that the solution size is quit small and good enough to reach the optimum solution
when the sensing radius becomes larger.

221.39
202.57204.18209.41208.35210.91208.22

142.16

115.03107.62109.53108.24106.29107.55

0

50

100

150

200

250

1000 1500 2000 2500 3000 3500 4000

So
lu

ti
on

 s
iz

e

Database Size

K times 1-greedy
BCP algorithm

498.39

202.71
163.4 151.29 149.82 141.97

386.17

104.45 57.38 54.74 51.95 42.73

0

100

200

300

400

500

600

2 4 6 8 10 12

So
lu

ti
on

 S
iz

e

Sensor Radius

K times 1-greedy

BCP Algorithm

Fig. 3. Solution size of connected sensor cover delivered by various algorithms with different
sensor database size and transmission radius

Three Approximation Algorithms for Energy-Efficient Query Dissemination 819

5.2 Result for BEE Algorithm

We plot the size of the solution from different algorithms in Figure 4 for different values
of coverage degree. The coverage degree m denotes that each target should be covered
by at least m sensors. Similarly as previous testing, under every parameter we run each
algorithms for 1000 times, and choose the average value as our final result, so that we
will avoid extreme cases (since the topology is randomly generated).

175.37

243.51

311.79

402.16

499.17

591.26

647.86

136.72

205.1

265.04
309.45

381.29
422.01

480.59

0

100

200

300

400

500

600

700

2 3 4 5 6 7 8

So
lu

ti
on

 S
iz

e

Coverage Degree (m)

K times 1-greedy
BEE Algorithm

103.25

163.73

219.92

297.19

345.29

407.12

489.35

47.23 55.39
74.23 91.24 102.47

123.83 141.62

0

100

200

300

400

500

600

2 3 4 5 6 7 8

So
lu

ti
on

 S
iz

e

Coverage Degree (m)

K times 1-greedy

BEE Algorithm

Fig. 4. Solution size of K-cover delivered by two algorithms with different K. Here the size of
our sensor database 3000.

Figure 4 (a) shows the solution size delivered by two algorithms with different values
of coverage degrees when the sensing radius is 4 units. Note that the results returned
by each algorithm almost constitute a line in the 2-D plane. It means that to get larger
coverage degree m, we need to select more sensors. Also we can see that the slope
of BEE algorithm is much smaller than the slope of the K times 1-greedy algorithm,
which proves the efficiency of BEE algorithm. This means the BEE algorithm uses less
duplicated sensors than K times 1-greedy algorithm when the sensing radius increases.

Figure 4 (b) shows the solution size delivered by two algorithms with different values
of coverage degree when the sensing radius is 8 units. We have similar conclusion as
in Figure 4 (a). Note that the slope of BEE algorithm in (b)is smaller than in (a). From
this, we can observe that the redundancy decreases when the sensing radius increases.

5.3 Summary

From the above two figures, we can see that the BCP algorithm and BEE algorithm
did better that the K times 1-greedy algorithm for different size of the sensor database
system, different sensing radius and different value of coverage degree. By apply these
algorithms, we can have less redundant sensors in the system to guarantee an efficient,
energy-saving and robust system. We can conclude that our algorithms are really effi-
cient. Thus, our algorithms become a new approach to solve coverage problem in sensor
database.

820 Z. Zhang et al.

6 Conclusion

In this paper, to deal with coverage problem in sensor database system, we introduce
minimum connected set cover (SDC) problem and k-connected m-set cover problem
((k,m)-SDC) for fault-tolerance. Moreover, we provide two approximation algorithms
for SDC problem in general sensor database systems. Logarithm performance guar-
antee was obtained, incorporating a new parameter Dc which measures the maximum
distance between two sets covering a common element. We also give a logarithm ap-
proximation algorithm for Minimum (k,m)-SDC problem with fixed k = 2, using a new
parameter PD(G) which in fact measures the maximum length of an ear. These are the
first algorithms for SDC problems in general graphs with guaranteed performance ra-
tio. These two algorithms can become a new approach to deal with coverage problem
in sensor database.

To improve the performance ratio is one of our future directions. To study the Min-
imum (k,m)-SDC problem for k ≥ 3 is another direction. Weighted version of SDC
problem is also an interesting topic. However, the methods used in this paper can not
be generalized for that. A lot of deep insights and new ideas are needed.

References

1. Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory Envi-
ronment. Distributed and Parallel Databases 1(1), 103–128 (1993)

2. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. Mobile Data Man-
agement, 3–14 (2001)

3. Cheng, R., Prabhakar, S.: Managing Uncertainty in Sensor Database. ACM SIGMOD 32(4),
41–46 (2003)

4. Estrin, D., Govindan, R., Heidemann, J.: Embedding the Internet: Introduction. Communi-
cations of the ACM Journal 43(5), 38–41 (2000)

5. Gonen, M., Shavitt, Y.: A Θ (log n)-Approximation for the Set Cover Problem with Set
Ownership. Information Processing Letters 109, 183–186 (2009)

6. Govindan, R., Hellerstein, J.M., Hong, W., Madden, S., Franklin, M., Shenker, S.: The Sensor
Network as a Database, USC Computer Science Department Technical Report (September
2002)

7. Hellerstein, J.M., Avnur, R., Ranman, V.: Informix under CONTROL: Online Query Pro-
cessing. Data Mining and knowledge Discovery 4(4) (October 2000)

8. Seshadri, P., Livny, M., Ramaakrishman, R.: SEQ: A Model for Sequence Databases. In:
Proceedings of the 11th International Conference on Data Engineering (ICDE), pp. 232–239
(1995)

9. Abrams, Z., Goel, A., Plotkin, S.: Set k-Cover Algorithms for Energy Efficient Monitoring in
Wireless Sensor Networks. In: Proceedings of the 3rd Conference on Information Processing
in Sensor Networks, IPSN 2004 (2004)

10. Cardei, M., Wu, J.: Energy-Efficient Coverage Problems in Wireless Ad-Hoc Sensor Net-
works. Computer Communications 29(4), 413–420 (2006)

11. Cardei, M., Thai, M., Li, Y., Wu, W.: Energy-Efficient Target Coverage in Wireless Sensor
Networks. In: Proceedings of 24th Annual Joint Conference of the IEEE Computer and Com-
munication Societies (INFOCOM 2005), Miami, Florida USA, March 13-17, pp. 1976–1984
(2005)

Three Approximation Algorithms for Energy-Efficient Query Dissemination 821

12. Cardei, M., Du, D.Z.: Improving Wireless Sensor Network Lifetime through Power Aware
Organization. ACM Wireless Networks 11(3), 333–340 (2005)

13. Cerdeira, J.O., Pinto, L.S.: Requiring Connectivity in the Set Covering Problem. Journal of
Combinatorial Optimization 9, 35–47 (2005)

14. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn
(2002)

15. Feige, U.: A Threshold of lnn for Approximating Set Cover. In: Proceedings of the 28th
ACM Symposium on Theory of Computing (ACM 1996), pp. 314–318 (1996)

16. Garey, M.R., Johnson, D.S.: Computers and Intractability. W.H. Freeman and Company, New
York (1979)

17. Gupta, H., Das, S.R., Gu, Q.: Connected Sensor Cover: Self-Organization of Sensor Net-
works for Efficient Query Execution. In: Proceedings of the 4th ACM International Sympo-
sium on Mobile Ad Hoc Networking and Computing, MobiHoc 2003 (2003)

18. Huang, C.F., Tseng, Y.C.: The Coverage Problem in a Wireless Sensor Network. In: Proceed-
ings of the 2nd ACM international conference on Wireless sensor networks and applications,
pp. 115–121 (2003)

19. Jaggi, N., Abouzeid, A.A.: Energy-Efficient Connected Coverage in Wireless Sensor Net-
works. In: Proceedings of 4th Asian International Mobile Computing Conference, Kolkata,
India, pp. 77–86 (2006)

20. Li, X.Y., Wan, P.J., Frieder, O.: Coverage in Wireless Ad-Hoc Sensor Networks. IEEE Trans-
actions on Computers 52(6), 753–763 (2003)

21. Madden, S.R., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: A Tiny Aggregation Service
for Ad-Hoc Sensor Networks. In: OSDI (2002)

22. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.B.: Coverage Problems in
Wireless Ad-Hoc Sensor Networks. In: Proceedings of Twentieth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM 2001), vol. 3, pp. 1380–
1387 (2001)

23. Shuai, T.-P., Hu, X.: Connected Set Cover Problem and its Applications. In: Cheng, S.-W.,
Poon, C.K. (eds.) AAIM 2006. LNCS, vol. 4041, pp. 243–254. Springer, Heidelberg (2006)

24. Suurballe, J.W., Tarjan, R.E.: A Quick Method for Finding Shortest Pairs of Disjoint Paths.
Networks 14, 325–336 (1984)

25. Tague, P., Lee, J., Poovendran, R.: A Set-Covering Approach for Modeling Attacks on Key
Predistribution in Wireless Sensor Networks, Technical Report CACR, 41 (2005)

26. Thai, M.T., Wang, F., Du, H., Jia, X.: Coverage Problems in Wireless Sensor Networks:
Designs and Analysis. International Journal of Sensor Networks, special issue on Coverage
Problems in Sensor Networks 3(3), 191–200 (2008)

27. Zhou, Z.H., Das, S., Gupta, H.: Connected K-Coverage Problem in Sensor Networks. In: Pro-
ceedings of the 13th International Conference onComputer Communications and Networks
(ICCCN 2004), pp. 373–378 (2004)

Top-k Answers to Fuzzy XPath Queries

Bettina Fazzinga, Sergio Flesca, and Andrea Pugliese

DEIS - Università della Calabria
Via Bucci - 87036 Rende (CS) Italy

{bfazzinga,flesca,apugliese}@deis.unical.it

Abstract. Data heterogeneity in XML repositories can be tackled by giving users
the possibility to obtain approximate answers to their queries. In this setting, sev-
eral approaches for XPath queries have been defined in the literature. In particu-
lar, fuzzy XPath queries have been recently introduced as a formalism to provide
users with a clear understanding of the approximations that the query evaluation
process introduces in the answers. However, in many cases, users are not a-priori
aware of the maximum approximation degree they would allow in the answers;
rather, they are interested in obtaining the first k answers ranked according to
their approximation degrees. In this paper we investigate the problem of top-k
fuzzy XPath querying, propose a query language and its associated semantics,
and discuss query evaluation.

1 Introduction

An important issue is nowadays that of coping with heterogeneous representations of
data about a certain domain of interest. In many cases, users need to retrieve information
from a data source that adopts a schema which is not completely known. Moreover, the
increasing adoption of XML [11] as a common data model “naturally” induces different
data sources to employ their specific semi-structured schema – for instance, the first
name of an author can be represented as a firstname element which is a direct child
of an author element, or a child of a name element which, in turn, is a child of
author.

Due to these intrinsic XML features, query languages for XML provide some degree
of flexibility to resolve differences among the schema employed in a query and the one
adopted for data. For instance, XPath [11] provides the descendant axis which allows
users to select firstname elements which are direct or indirect children of author.
However, XPath still requires some knowledge of the data schema; for instance, an
XPath query must use the exact terms appearing in the data when specifying conditions
on element names.

In this paper, we consider the scenario where the user is not aware of the schema
used by the data source. The main problem to be dealt with is therefore the retrieval of
information based on the specification of some properties of the objects to be retrieved.
Several approaches have been proposed for XML querying that add flexibility to XPath
by automatically adapting queries to the available data [1,3,4,5,9,10]. In particular, the
relaxation of a tree pattern query and the use of “transformation costs” has been pro-
posed in [1,9]. In [1] the goal is to identify all answers whose score exceeds a certain

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 822–829, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Top-k Answers to Fuzzy XPath Queries 823

threshold. The evaluation algorithm works with complex join plans that embed all pos-
sible transformations. Early pruning is performed using branch-and-bound techniques
and XML queries are adaptively processed through a lockstep strategy. The querying
mechanism only supports node renamings w.r.t. fixed name hierarchies that must be
provided. In [3,4] we additionally addressed the problem of combining partial informa-
tion provided by different sources into a single representation of the objects the user is
willing to retrieve.

The proposal presented in this paper is based on the following features:

– Fuzzy querying. Our query language gives users the possibility to assign weights to
XPath steps, that express their relative importance, and an XML element can be part
of a query answer “to a certain degree” if it just satisfies some of the conditions in
the query. To model this, we employ fuzzy sets. A fuzzy set is a pair (P,m) where P
is a set andm : S → [0..1] is a membership grade function that represents to which
extent a given element belongs to the set. Thus, in our framework, the answer to a
query is a fuzzy set of XML elements whose membership grades reflect the weights
of the steps these elements satisfy.

– Top-k query answering. The semantics of our query language allows users to re-
trieve a subset of the query answers that only contains the best k answers, i.e., the
k elements which better satisfy a given query.

Consider for instance the XML documents D1 and D2 in Fig. 1. A user in-
terested in retrieving books authored by Silberschatz and not by Galvin could
pose an XPath query of the form exp = //book[//authors[/author[text() =′

Silberschatz′]]] [not(//authors[/author[text() =′ Galvin′]])] (depicted as a tree
pattern in the figure). The exact evaluation of exp against D1 and D2 yields no answer.
However, element e2 is “almost” an answer to exp, since the only mismatch is in its

Fig. 1. Example XML documents and XPath query

824 B. Fazzinga, S. Flesca, and A. Pugliese

label (volume instead of book); in element e4, the only mismatch is the absence of an
authors element between elements book and author. Thus, slightly relaxing some
of the conditions in exp allows to retrieve potentially interesting elements. Our fuzzy
evaluation of the answer to exp againstD1 and D2 can indeed return all of the elements
shown in the figure, along with information (in the form of membership grades) about
how they satisfy exp. In addition, keeping only the first k results in the answer allows
users to retrieve the highest-quality elements while enabling further optimization of the
query evaluation process.

Fuzzy XPath queries have recently proved useful as a formalism to provide users
with a clear understanding of the approximations that the XPath query evaluation pro-
cess introduces in the answers when facing heterogeneous XML data [2,6,7]. For in-
stance, [2] proposes a “deep-similar” function which aims at enhancing the typical
XPath “deep-equal” function. Membership grades of XML elements in the results are
computed by looking at edit distances (i.e., number of operations required to transform
one element into the other). The results of the deep-similar function are ranked accord-
ing to their membership grade, but all of them are always computed. The approach
in [7] explicitly addresses the computation of the best k answers through a queue-based
adaptive XML query processing technique; the main limitation of the approach is the
adoption of a fixed tf*idf scoring function.

The main contributions of this paper are a fuzzy XML query language, its associated
top-k semantics, and a general query evaluation algebra. Specifically, in Section 2 we
give syntax and semantics of the proposed language; in Section 3 we outline our alge-
bra for computing top-k answers and discuss incremental evaluation strategies; finally,
Section 4 contains concluding remarks and discusses future work.

2 Top-k Fuzzy XPath Queries

We model an XML document D as a node-labeled tree. We denote the root of D as
root(D) and the label of an element e ∈ D as label(e). A leaf element e may also
have an associated text content text(e); we will (equivalently) model text(e) as a child
element of e with label text(e). In our query language, a step is composed by an axis
(child or descendant), a node test and zero or more predicates (we restrict the node tests
to label and text content equality tests). That is, a step s is of the form s̃[p1] . . . [pn]
where s̃ is of the form axis : l, l is a label, and each pi is a predicate (whose complete
form is defined below). A simple step is a step with n = 0. In our query language,
a weighted step ws is a step of the form s̃{d0}[p1]{d1} . . . [pn]{dn}, where for each
i ∈ [0..n], di ∈ [0..1] represents the relative importance of the associated term and∑n

i=0 di = 1. In addition, the special symbol “*” can be used as a weight, to specify that
the associated term (along with its sub-predicates, if any) must be completely satisfied
by the elements to which it applies. A weighted XPath expression is an expression of the
formws1/ · · · /wsm or not(ws1/ · · · /wsm), wherews1, · · · , wsm are weighted steps.
A predicate is a weighted XPath expression.

Example 1. The weighted step ws = //book{0.6}[/author]{0.1}[/title]{0.3} (note
that we adopt the abbreviated syntax of XPath axes – we will denote the descendant-
or-self axis as ↓) expresses that an element satisfies the 60% of ws if it has la-

Top-k Answers to Fuzzy XPath Queries 825

bel book, the 10% of ws if it has an author child, and the 30% of ws if it has
a title child. Consequently, a book element with only an author child satis-
fies the 70% of ws. The same element does not satisfy a weighted step of the form
//book{0.6}[/author]{0.4}[/title]{∗}, which mandates a title child. ��
Fuzzy query evaluation permits to retrieve an element even if it just provides a certain
degree of satisfaction w.r.t. some of the conditions specified in a given XPath expres-
sion. Thus, we define a measure of the degree of satisfaction by looking at how the
conditions specified are satisfied by the element. We first introduce some notations. We
denote as semDist(l, l′) the semantic dissimilarity between two labels, which has a
value in [0..1], if l is considered “similar enough” to l′, or ∞, if l is considered “too
different” from l′. Moreover, given a simple weighted step w̃s = axis : l{d0} and two
elements e and e′, we write axSat(axis, e′, e) = δ, where δ ∈ [0..1] is equal to (i) 1,
if e is reachable from e′ through axis; (ii) d, if e is reachable from e′ through a path
corresponding to the replacement of axis with //; (iii) 0, otherwise. The value of d is
a tunable parameter of the query engine.

Let e, e′ be two elements in an XML document D and exp be a weighted XPath
expression. We define the satisfaction degree of exp both w.r.t a single element e
(sate(exp)) and w.r.t. two elements e, e′ (sate(e′, exp)). In particular, sate(exp) =
maxe′∈D sate(e′, exp), if exp is positive, and sate(not(exp)) = 1−sate(exp). More-
over sate′(e, exp) is defined as follows:

– If exp is a simple weighted step, i.e., exp = axis : l{d0}, and label(e) = le, then

sate′(e, exp) = semDist(l, le) · axSat(axis, e′, e);

– If exp is a weighted step, i.e., exp = s̃{d0}[p1]{d1} . . . [pn]{dn}, then

sate′(e, exp) = d0 · sate′(e, s̃{d0}) +
∑

i∈[1..n]

di · sate(pi);

– If exp = ws1/ · · · /wsm, then sate′(e, exp) =

max
e1,e2,...,em−1∈D

avg
(
sate′(e1, ws1), sate1(e2, ws2), . . . satem−1(e, wsm)

)
.

Example 2. A weighted XPath expression corresponding to the XPath expression
of Fig. 1 could have the following form: exp = //book{0.1}[//authors{0.2}
[/author{0.2}[text() =′ Silberschatz′]{0.8}]{0.8}]{0.4}[not(//authors{0.2}
[/author{0.2} [text() =′ Galvin′]{0.8}]{0.8})]{0.5}. Suppose we want to evalu-
ate exp on the XML documents in Fig. 1. Consider elements e1 and e2. If the semantic
distance between book and volume is 0.8, since there is no text node containing Galvin
in the subtree rooted at e2, elements e1 and e2 have the following satisfaction degrees:
satroot(D1)(e1, exp) = 0.48, satroot(D1)(e2, exp) = 0.8. Now consider elements e3
and e4. Since there is no authors node in the subtrees rooted at e3 and e4, and there
is no text node containing Galvin in the subtree rooted at e4, elements e3 and e4 have
the following satisfaction degrees: satroot(D2)(e3, exp) = 0.52, satroot(D2)(e4, exp)
= 0.84. ��

826 B. Fazzinga, S. Flesca, and A. Pugliese

We can now define the form of fuzzy queries we are interested in and their answers.

Definition 1 (Top-k fuzzy XPath query and query answer). A top-k fuzzy XPath
query is a pair q = 〈exp, k〉 where exp is a weighted XPath expression and k is a
positive integer. Let D be an XML document and E the set of elements in D. An answer
to q over D (ans(q,D)) is a set {e1, . . . , ek} ⊆ E such that for each element e ∈
E \ {e1, . . . , ek} it holds that satroot(D)(e, exp) ≤ satroot(D)(ei, exp), ∀i ∈ [1..k].

Example 3. Consider the weighted XPath expression exp of Example 2 and the XML
documents D1 and D2 of Fig. 1. The answers to the top-1 fuzzy XPath query corre-
sponding to exp over D1 and D2 are the sets {e2} and {e4}, respectively. ��

3 Query Evaluation

In this section we give a general algebra for computing answers to top-k fuzzy XPath
queries, then we discuss incremental evaluation strategies that aim at increasing the effi-
ciency of the query evaluation process. In the following, we only discuss the evaluation
of positive top-k fuzzy Xpath queries, since the evaluation of negative predicates can be
performed by first evaluating a top-1 query, taking the complement of the membership
grade of the elements in their results and then exploiting these in the evaluation of the
global query.

We start by presenting the data access model we employ. The access to XML data is
represented by the Pt predicate which identifies pairs of elements connected by a path
in an XML document (the latter is not explicitly represented). In particular, Pt(ax, f),
where ax is an XPath navigation axis and f is a node test function, is a set of el-
ement pairs 〈e1, e2〉 such that e2 is reachable from e1 following a path specified by
axis ax and e2 satisfies f . Pt admits labels, boolean values, or the special symbols
doc and siml as node test functions: doc is true for the root of the XML document,
whereas Pt(ax, siml) is the set of pairs 〈e1, e2〉 where semDist(l, label(e2)) < ∞.
Moreover, Pt predicates are annotated with a value in [0..1] whose semantics will
be explained in the following. When no subscript is specified a default value of 1 is
implied.

In our query evaluation framework, partial results are maintained in fuzzy sets
C = (PC ,mC) of pairs of XML elements whose membership grades represent the
satisfaction degree with respect to a weighted XPath expression exp, i.e., ∀〈e′, e〉 ∈
PC , mC(〈e′, e〉) = sate′(e, exp). A pair 〈e′, e〉 in Ptx(ax, f) has membership grade
x · v, where v = semDist(l, label(e)) if f is siml, and v = 1 otherwise.

The computation of an answer to a fuzzy XPath query requires to combine the ba-
sic information retrieved from the XML document in a proper way. To this end, we
introduce the following operators:

– Fuzzy left outer join: C0 �w0,w1,...,wn {C1, . . . , Cn}. Given n + 1 fuzzy sets of
partial results C0, . . . , Cn, C0 �w0,w1,...,wn {C1, . . . , Cn} returns the fuzzy set C
defined as follows:

Top-k Answers to Fuzzy XPath Queries 827

• PC = {〈e, e0〉 | 〈e, e0〉 ∈ PC0 s. t. ∀i ∈ [1..n]∃〈e0, ei〉 ∈ PCi};

• ∀〈e, e0〉 ∈ PC , mC(〈e, e0〉) =

max
(〈e0,e1〉,...,〈e0,en〉)∈ PC1

×...×PCn

(w0 · mC0 (〈e, e0〉) +
∑

i∈[1..n] wi · mCi
(〈e0, ei〉)

w0 + . . . + wn

)
.

– Fuzzy right outer join: C1 �C2. Given two fuzzy sets of partial results C1 and C2,
C1 � C2 returns the fuzzy set C defined as follows:
• PC = {〈e, e2〉 | 〈e, e1〉 ∈ PC1 , 〈e1, e2〉 ∈ PC2};

• ∀〈e, e2〉 ∈ PC ,

mC(〈e, e2〉) = max
(〈e,e1〉,〈e1,e2〉) ∈ PC1

×PC2

(
avg

(
mC1 (〈e, e1〉), mC2 (〈e1, e2〉)

))
.

– Fuzzy union:
⋃{C1, . . . , Cn}. Given n fuzzy sets of partial results C1, . . . , Cn,⋃{C1, . . . , Cn} returns the fuzzy set C defined as follows:

• PC = {〈e, e′〉 | ∃i ∈ [1..n] s. t. 〈e, e′〉 ∈ PCi};

• ∀〈e, e′〉 ∈ PC , mC(〈e, e′〉) = maxi∈[1..n]

(
mCi(〈e, e′〉)

)
.

We introduce below an algebraic expression which corresponds to every possible way
of partially evaluating the original XPath expression.

Definition 2 (Evaluation plan). Let exp be a weighted XPath expression. The evalua-
tion plan of exp, denoted as Plan(exp), is defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Plan(ws1) � . . . � Plan(wsm), if exp = ws1/ . . . /wsm;

Plan(s̃) �d0,d1,...,dn {Plan(p1), . . . , Plan(pn)}, if exp = s̃{d0}[p1]{d1} . . . [pn]{dn};

Pt(ax, l) ∪ Ptd(//, l) ∪ Pt(ax, siml)∪
Ptd(//, siml) ∪ Pt0(↓, ∗), if exp = ax : l.

It is intuitive enough that the evaluation plan of an XPath expression permits to ob-
tain every element which is in the answer of the corresponding fuzzy XPath query, as
ensured by the following proposition.

Proposition 1. Let D be an XML document, q = 〈exp, k〉 a top-k fuzzy XPath query,
and S = {e|(root(D), e) ∈ Plan(exp)}. It holds that: (i) every answer to q over D is a
subset of S; (ii) every subset of k elements of S such that there is no element in S with
higher membership grade is an answer to q over D.

3.1 Incremental Evaluation

In this section we briefly discuss an incremental evaluation technique for top-k fuzzy
XPath queries and three different evaluation strategies.

Given a query 〈exp, k〉 and an evaluation plan Plan(exp), we associate an agent α
with the (incremental) evaluation of each operator in Plan(exp). We denote the agents
devoted to the evaluation of �, �, and ∪ operators with α�, α� and α∪, respectively.

828 B. Fazzinga, S. Flesca, and A. Pugliese

The incremental evaluation of a query plan is activated by evaluation requests which
are issued to α∪ agents. Since an α∪ agent is associated with an algebraic expression of
the form Pt(ax, l)∪Ptd(//, l)∪Pt(ax, sim l)∪ Ptd(//, siml)∪Pt0(↓, ∗) in the plan, an
evaluation request is an expression of the form r(α, p), where α is the α∪ agent and p is
an integer identifying the position of the Pt predicate in the algebraic expression whose
evaluation is being requested (positions are 0-based). When an α∪ agents receives a
request r(α∪, p), it performs the following steps: (i) evaluate the Pt predicate at position
p; (ii) compute the union of the results obtained in the previous step with the previously
computed ones; (iii) propagate upwards the results of the previous step which are new
or have improved their membership grade.
α� agents are dedicated to the evaluation of algebraic expressions of the form

Plan(s̃) �d0,d1,...,dn {Plan(p1), . . . ,Plan(pn)}. An agent α� receives its inputs from
agents α0, α1, . . . , αn, which evaluate Plan(s̃), Plan(p1), . . . , Plan(pn), respectively.
New (or improved) results coming from an agent αi are denoted as Δ(αi) while exist-
ing ones are denoted as R(αi). When agent α� receives Δ(αi), it performs the follow-
ing steps: (i) join the new results with the existing ones (R(α0) � Δ(αi) if i ∈ [1..n];
Δ(α0) �i R(αi) if i = 0); (ii) if the previous step provides new (or improved) re-
sults, update the state and the statistics associated with the pairs in the result of α0 and
propagate upwards the new results.

Finally, α� agents are dedicated to the evaluation of algebraic expressions of the
form Plan(ws1) � . . . � Plan(wsm). An agent α� receives its inputs from agents
α1, . . . , αn which evaluate Plan(ws1), . . . , Plan(wsm), respectively. When an α�

agent receives new or improved results from agent αi, it performs the following steps:
(i) compute R(α0) � . . . � Δ(αi) � . . . � R(αn); (ii) if the previous step 1 provides
new (or improved) results, propagate them upwards.

The answer to a top-k fuzzy XPath query 〈exp, k〉 consists of the first k element
pairs (according to the membership grade) returned by agent α associated with exp.
The result of α is computed by executing the evaluation requests relative to the α∪
subagents of α. Clearly, the execution of evaluation requests can be terminated early if
k element pairs have already been computed and there is no chance of computing a new
pair having a higher membership grade.

We are currently studying three different incremental evaluation strategies, which
differently order evaluation requests. According to the naive strategy, the evaluation
of a top-k fuzzy XPath query is performed by ranking requests according to the im-
provement of the membership grade they could provide to the whole query result, then
activating the requests in descending order. In this strategy, the improvement that could
be provided by a request is evaluated by taking the membership grade of the elements
which result from the evaluation of the query obtained by replacing those simple step
in the exact query that are referred to by the request.

The dynamic strategy exploits the possibility of postponing the evaluation of requests
that cannot immediately produce improved results. This strategy dynamically orders the
requests according to the following ranking criterion: first it associates each request r
with the set of element pairs which (i) could be added to the answer by evaluating r
and (ii) already belonging to the answer whose membership grade may be improved
by the evaluation of r; then, r is ranked according to the best membership grade of a

Top-k Answers to Fuzzy XPath Queries 829

pair in the above set. In this strategy, the requests regarding Pt predicates corresponding
to the simple steps appearing in the exact query are executed first; then, the remaining
requests are activated in descending rank order.

Finally, the selectivity-based strategy employs an extension of the XSketch XML
data synopsis [8] to estimate the selectivity of an XPath expression, that is the number
of XML elements that could be selected by the expression. The selectivity-based strat-
egy dynamically orders the requests to α∪ agents on the basis of a rank which takes into
account both the membership grade improvement that they can provide to previously
computed element pairs (i.e., those adopted as rank in the dynamic strategy) and the
selectivity of the request w.r.t. the expression corresponding to the requests executed
so far. Similarly to the dynamic strategy, the requests regarding Pt predicates corre-
sponding to the simple steps appearing in the exact query are executed first; then, the
remaining requests are activated in descending rank order.

4 Conclusions and Future Work

In this paper we proposed the syntax and semantics of an XML query language for fuzzy
top-k querying. We provided a general query evaluation algebra and discussed possible
evaluation strategies. As our future work we plan to investigate the expected benefits
of our evaluation strategies (also combined with parallel execution) and to thoroughly
assess the performance of the techniques through an extensive experimental validation.

References

1. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree pattern relaxation. In: Jensen, C.S., Jeffery,
K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

2. Campi, A., Guinea, S., Spoletini, P.: A fuzzy extension for the xPath query language. In:
Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds.) FQAS 2006.
LNCS, vol. 4027, pp. 210–221. Springer, Heidelberg (2006)

3. Fazzinga, B., Flesca, S., Pugliese, A.: Vague queries on peer-to-peer XML databases. In:
Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 287–297.
Springer, Heidelberg (2007)

4. Fazzinga, B., Flesca, S., Pugliese, A.: Retrieving xml data from heterogeneous sources
through vague querying. ACM Trans. Internet Techn. 9(2) (2009)

5. Fuhr, N., Großjohann, K.: Xirql: An xml query language based on information retrieval con-
cepts. ACM Trans. Inf. Syst. 22(2), 313–356 (2004)

6. Kaushik, R., Krishnamurthy, R., Naughton, J.F., Ramakrishnan, R.: On the integration of
structure indexes and inverted lists. In: SIGMOD Conference, pp. 779–790 (2004)

7. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive processing of top-k queries
in xml. In: ICDE, pp. 162–173 (2005)

8. Polyzotis, N., Garofalakis, M.N.: Xsketch synopses for xml data graphs. ACM Trans.
Database Syst. 31(3), 1014–1063 (2006)

9. Schlieder, T.: Schema-driven evaluation of approximate tree-pattern queries. In: Jensen, C.S.,
Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, pp. 514–532. Springer, Heidelberg (2002)

10. Theobald, A., Weikum, G.: Adding relevance to xml. In: WebDB (Selected Papers), pp. 105–
124 (2000)

11. W3C. World wide web consortium (2007), http://www.w3.org

http://www.w3.org

Deciding Query Entailment in Fuzzy Description
Logic Knowledge Bases

Jingwei Cheng, Z.M. Ma, Fu Zhang, and Xing Wang

Northeastern University, Shenyang, 110004, China
cjingwei@gmail.com, mazongmin@ise.neu.edu.cn

Abstract. Existing fuzzy description logic (DL) reasoners either are
not capable of answering conjunctive queries, or only apply to DLs with
less expressivity. In this paper, we present an algorithm for answering
expressive fuzzy conjunctive queries, which allows the occurrence of both
lower bound and the upper bound of thresholds in a query atom, over the
relative expressive DL, namely fuzzy ALCN . Our algorithm is specially
tailored for deciding conjunctive query entailment of negative role atoms
in the form of R(x, y) ≤ n or R(x, y) < n which, to the best of our
knowledge, has not been touched on in other literatures.

1 Introduction

Description logics (DLs, for short) [1] are the logical foundation of the Semantic
Web, which support knowledge representation and reasoning by means of the
concepts and roles. However, the reasoning services that aim at accessing and
querying the data underlying ontologies, such as retrieval, realisation and in-
stantiation, are only in weak form and do not support complex queries (mainly
conjunctive queries, CQs). Conjunctive queries originated from research in re-
lational databases, and, more recently, have also been identified as a desirable
form of querying DL knowledge bases (KBs). The first conjunctive query algo-
rithm [2] over DLs was actually specified for the purpose of deciding conjunctive
query containment for DLRreg. Recently, query entailment and answering have
also been extensively studied both for tractable DLs [3][4] and for expressive
DLs[5][6].

In order to capture and reason about vague and imprecise domain knowledge,
there have been a substantial amount of work carried out in the context of fuzzy
DLs. When querying over fuzzy DL KBs, as in the crisp case, same difficulties
emerged in that existing fuzzy DL reasoners, such as fuzzyDL[7] and FiRE [8],
are not capable of dealing with CQs either. In [9], A fuzzy extension of CARIN
system[5] is provided, along with a decision procedure for answering union of
conjunctive queries. Some other work mainly focuses on querying over lightweight
ontologies, e.g. in [10][11]. However, these extensions allow only positive role
atoms in a query, while the negative atoms are not touched on.

In this paper, we thus present a very first algorithm for answering expressive
and fuzzy CQs, allowing in a query both positive atoms and negative atoms,
over the relative expressive fuzzy DL, namely f -ALCN .

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 830–837, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Deciding Query Entailment in Fuzzy Description Logic Knowledge Bases 831

2 f -ALCN
Definition 1. (syntax) Let NC , NR, and NI be countable infinite and pairwise
disjoint sets of concept, role and individual names respectively. f -ALCN con-
cepts (denoted by C and D) are formed out of concept names according to the
following abstract syntax: C,D → 0|⊥|A|C �D|C �D|¬C|∀R.C|∃R.C| ≥ pR| ≤
pR|, where A ∈ NC , R ∈ NR, p is a nonnegative integer.

An f -ALCN KB K can be partitioned into a terminological part called TBox
and an assertional part called ABox, denoted by K = (T , A). A TBox is a
finite set of general concept inclusion axioms (GCIs) of the form C � D, where
C,D are concepts. An ABox consists of fuzzy assertions of the form B(o) #$ n,
R(o, o′) #$ n, or o �= o′, where o, o′ ∈ NI , #$∈ {≥, >,≤, <}. We use 	 to denote
≥ or >, and
 to denote ≤ or <. We call ABox assertions defined by 	 positive
assertions, while those defined by
 negative assertions. Moreover, for every
operator #$, we define (i) its symmetric operator #$− as ≥−=≤, >−=<, ≤−=≥,
<−=>, and (ii) its negation operator ¬ #$ as ¬ ≥=<, ¬ >=≤, ¬ ≤=>, ¬ <=≥.

Definition 2. (semantics) The semantics of f -ALCN are provided by an in-
terpretation, which is a pair I = (ΔI ,.I). Here ΔI is a non-empty set of ob-
jects, called the domain of interpretation, and .I is an interpretation function
which maps different individual names into different elements in ΔI, concept
A into membership function AI : ΔI → [0,1], role R into membership function
RI:ΔI ×ΔI → [0,1]. The semantics of f -ALCN concepts and roles are depicted
as follows.

– 0I(o) = 1 ⊥I(o) = 0 (¬C)I(o) = 1− CI(o)
– (C �D)I(o) = min{CI(o), DI(o)} (C �D)I(o) = max{CI(o), DI(o)}
– (∀R.C)I(o) = info′∈ΔI{max{1−RI(o, o′), CI(o′)}}
– (∃R.C)I(o) = supo′∈ΔI{min{RI(o, o′), CI(o′)}}
– (≥ pR)I(o) = supo1,...,op∈ΔI minp

i=1{RI(o, oi)}
– (≤ pR)I(o) = info1,...,op+1∈ΔI maxp+1

i=1 {1−RI(o, oi)}
Given an interpretation I and an inclusion axiom C � D, I is a model of C �

D, if CI(o) ≤ DI(o) for any o ∈ ΔI , written as I |= A � C. Similarly, for ABox
assertions, I |= B(o) #$ n(resp. I |= R(o, o′) #$ n), iff BI(oI) #$ n(resp. RI(oI ,
o′I) #$ n). If an interpretation I is a model of all the axioms and assertions in a
KB K, we call it a model of K. A KB is satisfiable iff it has at least one model.
A KB K entails (logically implies) a fuzzy assertion ϕ, iff all the models of K
are also models of ϕ, written as K |= ϕ.

3 Querying Entailment Problems

3.1 Fuzzy Querying Language

Let NV be a countable infinite set of variables and is disjoint with NC , NR, and
NI . A term t is either an individual name from NI or a variable name from

832 J. Cheng et al.

NV . Let C be a concept, R a role, and t, t′ terms. An fuzzy query atom is an
expression of the form 〈C(t) #$ n〉 or 〈R(t, t′) #$ m〉, where n denotes the lower
bound (which corresponds to) or upper bound (which corresponds to
) of
membership of being the term t a member of the fuzzy set C, m denotes the
degree of membership of being the term pair (t, t′) a member of the fuzzy role
R. We refer to these two different types of atoms as fuzzy concept atoms and
fuzzy role atoms respectively. We call fuzzy query atoms defined by 	 fuzzy
positive query atoms, while those defined by
 fuzzy negative query atoms. A
fuzzy conjunctive query q is a conjunction of fuzzy query atoms which is of the
form q = 〈〉 ← ∧n

i=1〈ati #$ ni〉, where 〈ati #$ ni〉 denotes the i-th fuzzy query
atom of q. We use Var(q) to denote the set of variables occurring in q, Ind(q)
to denote the set of individual names occurring in q, and Term(q) for the set of
terms in q, where Term(q) = Var(q)∪ Ind(q).

The semantics of a fuzzy query is given in the same way as for the related
fuzzy DL by means of interpretations consisting of an interpretation domain
and a fuzzy interpretation function. Let I= (ΔI , .I) be a fuzzy interpretation of
f -ALCN , q be a fuzzy conjunctive query and t, t′ terms in q, and π : Var(q)∪
Ind(q) → ΔI a total function (also called an assignment) such that π(a) = aI

for each a ∈ Ind(q). We say I |=π 〈C(t) #$ n〉 if CI(π(t)) #$ n, I |=π 〈R(t,
t′) #$ n〉 if RI(π(t), π(t′)) #$ n. If I |=π at for all atom at ∈ q, we write I |=π q.
If there is a π, such that I |=π q, we say I satisfies q, written as I |= q. We call
such a π a match of q in I. If I |= q for each model I of a KB K, then we say K
entails q, written as K |= q. The query entailment problem is defined as follows:
given a knowledge base K and a query q, decide whether K |= q.

3.2 Deciding Query Entailment

The idea behind our algorithm is that it tries to decide fuzzy query entailment
problem by (i) constructing (a representation of) all the models of an f -ALCN
KB K, then (ii) checks each of them for a match of a given conjunctive query q.

To construct models of an f -ALCN KB, we work with a data structure called
completion forest. A completion forest consists of a labelled directed graph, each
node of which is the root of a completion tree. Each node x in a completion tree
is labelled with a set L(x) = {〈C, #$, n〉}, and each edge (x, y) is labelled with a
set L(x, y) = {〈R, #$, n〉}. A node x is called an R-predecessor of a node y (and
y is called an R-successor of x), if for some R, L(x, y) = {〈R, #$, n〉}, ancestor
is the transitive closure of predecessor.

Starting with an f -ALCN KB K = 〈T ,A〉, the completion forest F is ini-
tialized such that it contains a root node o, with L(o) = {〈C, #$, n〉 | 〈C(o) #$
n〉 ∈ A}, for each individual name o occurring in A, and an edge 〈o, o′〉 with
L(〈o, o′〉) = {〈R, #$, n〉 | 〈R(o, o′) #$ n〉 ∈ A}, for each pair 〈o, o′〉 of individual
names for which the set {R | R(o, o′) #$ n ∈ A} is non-empty.

An initial completion forest is expanded according to a set of expansion
rules(see [12] and [13] for details) that reflect the constructors allowed in f -
ALCN . The expansion stops when there is a conjugated pair, called a clash,
occurs within a node label, or when no more rules are applicable. In the latter

Deciding Query Entailment in Fuzzy Description Logic Knowledge Bases 833

case, the completion forest is called complete. Termination is guaranteed by a
cycle-checking technique called blocking. The model that we can build from a
complete and clash-free completion graph is called a canonical model. The ex-
pansion and blocking rules are such that we can build a model for the knowledge
base from each complete and clash-free completion forest.

The query can be represented as a directed, labelled graph called a query
graph. The nodes in the query graph correspond to the terms in q, and are
labelled with a triple corresponds to a related fuzzy concept atom. The edges
correspond to the role atoms in q and are labelled similarly.

In the following, we show how to check a completion forest for a match of a
query graph. The following example may be helpful in illustrating our method.
Given a query q1 = 〈〉 ← 〈C(a) ≥ n1〉 ∧ 〈R(a, y1) ≥ n2〉 ∧ 〈S(y1, y2) ≥ n3〉 ∧
〈D(y2) ≥ n4〉 and a KB K1 = {(∃R.(∃S.D) � C)(a) ≥ n} where n ≥ max({ni})
with 1≤ i ≤4. We first build completion forest for K1. Initially, there is only
one node a labelled with a triple (∃R.(∃S.D)�C,≥, n), then expansion rules are
applied to label of nodes, and lead to the completion forest depicted in Fig. 1.
The query graph of q1 is shown in Fig. 2.

a 〈∃R.(∃S.D),≥, n〉
〈C,≥, n〉

〈R,≥, n〉

x1 〈∃S.D,≥, n〉

〈S,≥, n〉

x2 〈D,≥, n〉

Fig. 1. The completion forest of K1

a 〈C,≥, n1〉

〈R,≥, n2〉
y1

〈S,≥, n3〉

y2 〈D,≥, n4〉

Fig. 2. The query graph of q1

Now, we can compare the completion forest of K1 and query graph of q1 for
a match. We start from the root node in the query graph of q1 and, at the
same time, locate in the completion forest of K1 for a node whose label (a set of
triples) is more general than the label (also a set of triples) of the node in the
query graph. We say a label l1 is subsumed by a label l2 if for every triple tr in
l1, there exists a triple tr′ in l2, s.t. (i) tr′ share the same concept or role name
with tr, (ii) and the range identified by the sign of equality and the membership
degrees in tr is more general than that of tr′. In Table 1, we list the conditions
under which tr is more general than tr′. tr is listed in the leftmost column, while
tr′ is listed in the topmost row.

Then, we traverse the query graph along the outgoing edge to the next node,
while in the completion forest we undeterministically select a branch to proceed
(if any). The algorithm terminates when the leaf node in the query graph is
encountered. In according to what they represent, we distinguish the nodes in the
completion forest and query graph into constant nodes which represent individual
names and variable nodes which represent variable names. During the traversal,

834 J. Cheng et al.

Table 1. The conditions under which tr is more general than tr′

tr′

tr (C, >, n) (C,≥, n) (C, <, n) (C,≤, n)
(C,>,m) m ≤ n m < n NULL NULL
(C,≥,m) m ≤ n m ≤ n NULL NULL
(C,<,m) NULL NULL m ≥ n m > n

(C,≤,m) NULL NULL m ≥ n m ≥ n

if (i) each constant node occurs in the query graph is mapped to a constant
node in the completion forest that represents the same individual, and (ii) the
label of every node and edge in query graph is more general than that of in the
completion forest, we say that there is a match for a query in the knowledge
base.

Given an f -ALCN knowledge base K and a query q, the algorithm answers
“K entails q” if a match for q exists in each complete and clash-free completion
forest and it answers “K does not entail q” otherwise.

The aforementioned idea is similar to the tableau algorithm for deciding f -
ALCN KB satisfiability, but there are still three main problems need to be
considered.

Firstly, for each concept C that occurs only in one of the fuzzy concept atoms
of a query but not in the knowledge base, we must introduce into the knowledge
base a concept inclusion axiom of the form C � C. Clearly, this will exert no
influence on the logical characteristics of the knowledge base, but it ensures that,
for each node x in the completion forest, either C(x) 	 n or C(x)¬ 	 n holds.

Secondly, a f -ALCN KB may have infinitely many infinite models, whereas
the tableau algorithm constructs only a subset of the finite models of the knowl-
edge base. It can be shown that inspecting only the canonical models of the
knowledge base is sufficient to decide query entailment.

Furthermore, we need to modify the standard blocking condition (for checking
KB satisfiability) to make it applicable in the context of deciding query entail-
ment. The standard blocking condition is to stop the cyclic expansion of a branch
in the completion forest. For f -ALCN KBs, if there is a pair of nodes x and y
such that x is an ancestor of y and the label of y is a subset of the label of x,
then we say that x blocks y and no further expansion rules are applied to y. In
the model obtained from the completion forest, a block corresponds to a cyclic
path that links the predecessor of the blocked node y to the blocking node x. For
query entailment, the blocking condition additionally has to take into account
the length of the longest path in the query. We illustrate this by means of an
example.

Let K2 = (T ,A) be an f -ALCN KB with T = {C � ∃R.C} and A = {C(a) ≥
n} and let q2 = 〈〉 ← 〈R(x, x) ≥ n〉 be a Boolean fuzzy conjunctive query. It
is not hard to check that K2 � q2. Figure 3 illustrates the only complete and
clash-free completion forest for K2 that the algorithm would construct. Figure 4
shows a representation of a corresponding canonical model I. The loop in the
model I occurs since the node x1 blocks the node x2 in the completion forest.

Deciding Query Entailment in Fuzzy Description Logic Knowledge Bases 835

It is not hard to check that I |= K2 and that the mapping π : x � x1 is such
that I |=π q2. Since the completion forest shown in Fig. 3 is the only completion
forest that the algorithm would construct, we would wrongly conclude that K2
entails q2.

a 〈C,≥, n〉,
〈∃R.C,≥, n〉

〈R,≥, n〉

x1 〈C,≥, n〉,
〈∃R.C,≥, n〉

〈R,≥, n〉

x2 〈C,≥, n〉,
〈∃R.C,≥, n〉

a 〈C,≥, n〉,
〈∃R.C,≥, n〉

〈R,≥, n〉

x1 〈C,≥, n〉,
〈∃R.C,≥, n〉

Fig. 3. A complete and clash-free comple-
tion forest for K2. The node x2 is blocked
by x1, indicated by the dashed line.

Fig. 4. A canonical model I for K2

Instead of using a pair of nodes x and y in the blocking definition such that
x is an ancestor of y and the label of y is a subset of the label of x, the new
blocking condition, first introduced in [5], requires two isomorphic trees (instead
of just two nodes) such that the depth of the trees is equal to the number of fuzzy
role atoms in the query. The leaves of the descendant tree are then considered
as blocked. In our example, the query contains only one role atom. Hence, the
revised blocking condition requires just two trees of depth one.

Figure 5 shows an abstraction of a complete and clash-free completion forest
using the modified blocking condition. In the canonical model that corresponds
to the completion forest (see Fig. 6), we have a cycle from the element that cor-
responds to the predecessor of the blocked node to the element that corresponds
to the blocking node.

a 〈C,≥, n〉, 〈∃R.C,≥, n〉

x1 〈C,≥, n〉, 〈∃R.C,≥, n〉

x2 〈C,≥, n〉, 〈∃R.C,≥, n〉

x3 〈C,≥, n〉, 〈∃R.C,≥, n〉

x4 〈C,≥, n〉, 〈∃R.C,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

a 〈C,≥, n〉, 〈∃R.C,≥, n〉

x1 〈C,≥, n〉, 〈∃R.C,≥, n〉

x2 〈C,≥, n〉, 〈∃R.C,≥, n〉

x3 〈C,≥, n〉, 〈∃R.C,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

〈R,≥, n〉

Fig. 5. A complete and clash-free com-
pletion forest for K2 under modified
blocking condition

Fig. 6. A canonical model I for K2 cor-
responding to the completion forest in
Fig 5

836 J. Cheng et al.

When building a model from a completion forest, one can, instead of building
a cycle, also append infinitely many copies of the blocking tree and the path
between the blocking and the blocked tree. In our example, this would result in
a model that consists of an infinite R-chain.

Thirdly, the method cannot extend directly to the case where negative query
atoms are allowed in a query. For example, given a KB K3 = {∀R.D(a) ≥
0.6, D(b) < 0.3} and a query q3 = 〈〉 ← 〈R(a, y) ≤ 0.5〉 ∧ 〈D(y) ≤ 0.4〉, we can
instinctively recognize that K3 entails q3. However, existing algorithm cannot
build a completion forest for K3, in which there exists a match of the query
graph of q3. We thus introduce two new rules for mending this. After applying
these rules, the otherwise isolated two nodes are related by a fuzzy role R.

∀�R-rule ∃�R-rule
if 1.〈∀R.C, 	, n〉 ∈ L(x), x is not blocked.

2.〈C,¬	, m〉 ∈ L(y),where m ≤ n,
3.there is no 〈R, 	−, 1 − n〉 ∈ L(x, y)

then L(x, y) → L(x, y) ∪ 〈R, 	−, 1 − n〉.

if 1. 〈∃R.C,
, n〉 ∈ L(x), x is not blocked.
2. 〈C,¬
, m〉 ∈ L(y), where m ≥ n,
3. there is no 〈R,
, n〉 ∈ L(x, y)

then L(x, y) → L(x, y) ∪ 〈R,
, n〉.

In our example, before applying ∀≥R rule, the completion forest of K3 consists
of two isolated nodes a and b labelled with (∀R.D,≥, 0.6) and (D,<, 0.3) respec-
tively. The completion forest of K3 is shown in Fig. 7. The ∀≥R rule then addi-
tionally adds an role assertion 〈R(a, b) ≤ 1− 0.6〉 (simplified as 〈R(a, b) ≤ 0.4〉)
into K2 and therefore connects the isolated a and b, resulting in the completion
forest of K′

3, which is also shown in Fig. 7. Note that the newly introduced role
is depicted in Fig. 7 as a dashed line. We can easily find a match for the query
graph of q3(Fig. 8) in the completion forest of K′

3.

a 〈∀R.D,≥, 0.6〉

〈R,≤, 0.4〉

b 〈D,<, 0.3〉

a

〈R,≤, 0.5〉

y 〈D,≤, 0.4〉

Fig. 7. The completion forest of K3 and K′
3 Fig. 8. The query graph of q3

Theorem 1. Let K be a f -ALCN KB, and K′ a KB obtained by applying the
∀≥R rule to K. The ∀≥R rule is sound if a model I of K is also a model of K′.

Proof. ∀≥R: For each I |= K, we show that I |= K′, where K′ is obtained by
applying ∀≥R rule to K, i.e. K′ = K ∪ {〈R(x, y) < 1 − n〉}. For any assertion
〈∀R.C(x) ≥ n〉 ∈ A, we have I |= 〈∀R.C(x) ≥ n〉, i.e., infx′∈ΔI{max{1 −
RI(x, x′), CI(x′)}} ≥ n. Since y ∈ ΔI , we have max{1−RI(x, y), CI(y)} ≥ n.
Since there is an additional assertion of 〈C(y) < m〉 with m ≤ n, the 1 −
RI(x, y) ≥ n (or its equivalence RI(x, y) ≤ n) holds. The ∀>R and ∃�R rules
can be proved accordingly.

Deciding Query Entailment in Fuzzy Description Logic Knowledge Bases 837

4 Conclusions

In this paper, we have presented a preliminary result of conjunctive query entail-
ment over an expressive fuzzy DL knowledge base. Further and ongoing research
will focus on the query answering or query entailment problems of more expres-
sive DLs and the complexity analysis for them.

Acknowledgments. This work was supported by the National Natural Science
Foundation of China (60873010).

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The description logic handbook: theory, implementation, and applications.
Cambridge University Press, New York (2003)

2. Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query con-
tainment under constraints. In: PODS 1998, pp. 149–158 (1998)

3. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable
reasoning and efficient query answering in description logics: The dl-lite family. J.
of Automated Reasoning 39(3), 385–429 (2007)

4. Rosati, R.: On conjunctive query answering in EL. In: DL 2007, CEUR Electronic
Workshop Proceedings (2007)

5. Levy, A.Y., Rousset, M.C.: Combining horn rules and description logics in carin.
Artif. Intell. 104(1-2), 165–209 (1998)

6. Glimm, B., Horrocks, I., Lutz, C., Sattler, U.: Conjunctive query answering for the
description logic shiq. In: IJCAI, pp. 399–404 (2007)

7. Bobillo, F., Straccia, U.: fuzzydl: An expressive fuzzy description logic reasoner.
In: FUZZ-IEEE 2008, June 2008, pp. 923–930 (2008)

8. Stoilos, G., Simou, N., Stamou, G.B., Kollias, S.D.: Uncertainty and the semantic
web. IEEE Intelligent Systems 21(5), 84–87 (2006)

9. Mailis, T., Stoilos, G., Stamou, G.: Expressive reasoning with horn rules and fuzzy
description logics. In: Marchiori, M., Pan, J.Z., Marie, C.d.S. (eds.) RR 2007.
LNCS, vol. 4524, pp. 43–57. Springer, Heidelberg (2007)

10. Straccia, U.: Answering vague queries in fuzzy dl-lite. In: IPMU 2006, pp. 2238–
2245 (2006)

11. Pan, J.Z., Stamou, G.B., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying
services over fuzzy ontologies. In: WWW, pp. 575–584 (2008)

12. Stoilos, G., Stamou, G., Pan, J., Tzouvaras, V., Horrocks, I.: Reasoning with very
expressive fuzzy description logics. JAIR 30(8), 273–320 (2007)

13. Stoilos, G., Straccia, U., Stamou, G.B., Pan, J.Z.: General concept inclusions in
fuzzy description logics. In: ECAI, pp. 457–461 (2006)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 838–846, 2009.
© Springer-Verlag Berlin Heidelberg 2009

An Optimization Technique for Multiple Continuous
Multiple Joins over Data Streams

Changwoo Byun1, Hunjoo Lee2, YoungHa Ryu2, and Seog Park2

1 Department of Computer Systems and Engineering, Inha Technical College,
Incheon, 402-752 South Korea
cwbyun@inhatc.ac.kr

2 Department of Computer Science, Sogang University,
Seoul, 121-742, South Korea

{hunz,ywenry,spark}@dblab.sogang.ac.kr

Abstract. Join queries having heavy cost are necessary to Data Stream Man-
agement System in the sensor network. In this paper, we propose an optimiza-
tion algorithm for multiple continuous join operators over data streams using a
heuristic strategy. First, we propose a solution of building the global shared
query execution plan. Second, we solve the problems of updating a window size
and routing for a join result. Our experimental results show that the proposed
protocol can provide better throughputs than previous methods.

Keywords: Data Stream, Multiple Join, Multi-Join Queries Processing.

1 Introduction

In the sensor network [1], the system collects information from various sensors with a
designated time interval, and sends the collected data to a central processing server.
Data collected from a single sensor has a limited kind of information due to its
processing capacity [2]. Thus, to obtain more general information, join operations are
performed based on a specific time or location. Hash Table-based Join operators [3],
[4], [5], Window-based Join operators [6], [7], and Hash Table-Window-based Join
operators [8], [16] are the results of such efforts. MJoin operators allowing multiple
inputs have been proposed [5]. In the processing of multiple queries, handling a single
query with a single MJoin operator may be ineffective.

(a) Queries defined with (b) Possible global query execution plans

 sliding window constraints

Fig. 1. Example for the study motive

A B C

Q1

B C

Q2Q3

D

Q4

A B C

Q1

B C

Q2Q3

D

Q4

B C A

Q2

A B

Q1Q3

D

Q4

B C A

Q2

A B

Q1Q3

D

Q4Q1=A[w11] ⋈ B[w12]

Q2=B[w21] ⋈ C[w22]

Q3=A[w31] ⋈ B[w32] ⋈ C[w33]

Q4=A[w41] ⋈ B[w42] ⋈ C[w43] ⋈ D[w44]

An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams 839

Figure 1 depicts the MJoin operators that can process the queries by sharing them.
Query Q1 can be included in Q3 and Q4 and Q2 can also be included in Q3 and Q4.

The purpose of this paper is to analyze the containment relationship among opera-
tors when multiple MJoin operators are registered to a system, to establish a globally
shared query execution plan, and to correctly perform the query execution plan. Our
processing technique of Multiple MJoins is called MMJoin.

The paper is organized as follows. In Section 2, we evaluate related works. In Section 3,
we introduce the MMJoin technique which achieves optimization in multiple MJoin opera-
tors. In Section 4, the MMJoin process performance and efficiency are analyzed through
experiments. Section 5 contains the conclusion and provides future works.

2 Related Work

In relational and deductive databases, the most popular optimization technique of mul-
tiple queries is the A* greedy technique [10]. However, in the worst case, processing
time which is proportional to the power of the number of all possible query execution
plans is required. Also, this method is not suitable to the data stream environment,
which requires constructing shared query execution plans in a prompt manner. Dynamic
Regrouping [11] is one of the techniques used to construct shared query execution plans
for continuous queries. This technique does not consider sliding window constraints.

In [12], to support the window update of the join operation result, the Negative
Tuple technique is proposed. The Negative Tuple technique removes tuples that are
identical to Negative Tuples through value-based searches. However, this technique
has accuracy issues.

In [13], to resolve the routing problem for shared join operator, the Largest Window
First (LWF) technique and the Smallest Window First (SWF) technique are proposed.
In [14], regarding the sharing of join operators, the State-Slice strategy is proposed. All
these techniques work in environments where the inputs are of original streams.

3 Optimization Technique

3.1 Approximation for Optimized Globally Shared Query Execution Plans

Sellis [10] discussed that selecting the most optimized globally shared execution plan
in multiple queries is NP-Hard. So an approximation approach which necessitates the
least processing cost shall be utilized to ensure suitability to the data stream environ-
ment. In this paper, the cost model of the join operators is defined as the following:

Definition 3.1 (Cost model). In an assumption where a certain MJoin operator uses n
number of input R = {R1, R2, …, Rn}, and ri, and Wi represent the input rate and the
window size of each Ri respectively, along with the Selectivity Factor for a join op-
eration being ƒ, the cost model is as follows:

Also, the window size of each join operation result can be expected as follows. With
this, we can evaluate the cost for upper join operators.

∑
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
∏⋅⋅∏

=
≠
=

n

k

n

ki
i

ik

iesselectivit

all
Wrf

1 1

840 C. Byun et al.

Lastly, sliding window constraints must be considered. Before operators are shared,
evaluations to see whether the following conditions are met must be conducted.

Definition 3.2 (Sharing conditional expressions). In a supposition, there are m
number of sharable queries Qi (1≤i≤m) with sharable MJoin operators, which has k
number of input stream Rj (1≤j≤k). In this supposition, each query Qi has a window
size of Wij for each input Rj, and the largest window size from window sizes defined
by all queries regarding Rj is Wj*. With the sharing of operators, the following condi-
tions must be met in order to decrease processing length.

For a simplified example, let us assume that the selectivity factor1 for all joins is 0.1,
and the window size for all input streams is 100 rows, all meeting the conditional
expressions. When join operations are provided as shown in Figure 2.

Fig. 2. Example queries

In this example, after Q1 is selected(Figure 3(a)), the selection of a set that can be
included in the other sets most frequently would be Q4, as Q4 is only included in Q5.
The return of common elements in a set, including Q4 as a set of Q4, is shown in
Figure 3(b). The remaining sets of Q2 and Q3 do not share containment relationships,
and thus would construct independent query execution plans as shown in Figure 3(c).

Q1 = {{R[100], S[100]}}

Q2 = {R[100], T[100]}

Q3 = {S[100], T[100]}

Q4 = {{R[100], S[100]},

T[100]}

Q5 = {{R[100], S[100]},
T[100], U[100]}

Q1 = {{R[100], S[100]}}

Q2 = {R[100], T[100]}

Q3 = {S[100], T[100]}

Q4 = {{R[100], S[100]}, T[100]}}

Q5 = {{{R[100], S[100]}, T[100]},
U[100]}

Q1 = {{R[100], S[100]}}

Q2 = {{R[100], T[100]}}

Q3 = {{S[100], T[100]}}

Q4 = {{R[100], S[100]}, T[100]}}

Q5 = {{{{R[100], S[100]}, T[100]}, U[100]}}

(a) The first phase (b) The second phase (c) The final phase

Fig. 3. Example after performing the algorithm

1 In most cases, the window size and selection rate are unique. It is rare to have the same evaluation

costs.

∏∏
=

⋅
n

i
i

iesselectivit

all

Wf
1

∏∑ ∏ == =
≥ k

j j

m

i

k

j ij WW
11 1

*

Q1 = R[Rows 100], S[Rows 100] = {R[100], S[100]}

Q2 = R[Rows 100], T[Rows 100] = {R[100], T[100]}

Q3 = S[Rows 100], T[Rows 100] = {S[100], T[100]}

Q4 = R[Rows 100], S[Rows 100], T[Rows 100] = {R[100], S[100], T[100]}

Q5 = R[Rows 100], S[Rows 100], T[Rows 100], U[Rows 100] = {R[100], S[100], T[100], U[100]}

An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams 841

As shown in the algorithm of Figure 4, in each phase, when the most commonly
shared sets selected are more than one, a set with the highest evaluation cost is selected.
If the selected set does fulfill the conditional expression, the selected set is included, and
parts of which the element of the selected set are located in all provided sets. These
parts return as a single set. Finally, a single element set is excluded in the following
phases as a single element set representing the query execution plan for such set is al-
ready completed. This series of tasks is iterated until all queries are excluded.

Input : a set of queries, QuerySet[]
Output : shared query plans, QuerySet[]
while QueryCount > 0
begin
 for i := 0 to QueryCount
 begin
 if Containing # of SelectedSet < Containg # of QuerySet[i] then SelectedSet := QuerySet[i]
 else if Containing # of SelectedSet = Containg # of QuerySet[i] and
 Cost of QuerySet[i] > Cost of SelectedSet then SelectedSet := QuerySet[i]
 end
 if SelectedSet satisfies CONDITION OF SHARING then
 begin
 for i := 0 to QueryCount
 begin
 Replace the elements of QuerySet[i] to common elements of SelectedSet
 end
 for i := 0 to QueryCount
 begin
 if QuerySet[i] has only one element then

 begin
 exclude QuerySet[i]
 QueryCount := QueryCount - 1
 end
 end
 end
 else exclude SelectedSet
end
return QuerySet

Fig. 4. MMJoin optimization algorithm using heuristic greedy strategy

3.2 Window Update and Routing Technique for Join Operation Result

In Figure 5, should Q1 and Q3 define 2 tuples as the windows for input A and B, and
should Q4 have 4 tuples as windows for input A and B, all resultant tuples from the
shared operators are not to be sent to Q1, Q3, and Q4. If the number of recent tuples is
higher than 2, the query results should not be directed to Q1, and Q3; instead, they
should only be sent to Q4. In operators performing join for original streams A and B,
all tuples are sorted in sequential orders, and thus routings can be performed by using
timestamps or by identifying the input sequential numbers. However, in operators
performing the join of A⋈B and C, the tuples for A⋈B cannot be performed by em-
ploying such strategy of the original streams.

842 C. Byun et al.

Fig. 5. Window update and routing in a globally shared query execution plan

In the original data stream, when a tuple is removed or routing information is add-
ed from the window update, all related resultant tuples from the join operations must
be updated as well for correct windows updates and routing. In the paper, we propose
using Purging Tuple and Dead Tuple for such purpose.

Definition 3.3 (Purging Tuple). When a tuple is removed during a window update, it
is required to remove related tuples. The tuples generated for this particular purpose
are called Purging Tuples.

Definition 3.4 (Dead Tuple). A Dead Tuple is proposed as a transport tuple for
information.

Purging Tuple generation
In Figure 6(a), PostID has three index values which represent that this tuple was in-
volved in the creation of three resultant tuples from a join operation. Also, a tuple in
Figure 6(a) does not update the window by the Purging Tuple, but it is removed when
the window is updated from an original stream. Consequently, the tuples of the upper
join operators with identical PrevID among the indexes contained in this PostID must be
removed, and the Purging Tuple has a role in routing the corresponding PostID values
to the upper tuples. A Purging Tuple has a flag value(*) in the attribute of Attrs.

 (a) Tuple removed from window update (b) Purging Tuple

Fig. 6. An example of Purging Tuple generation

Creation of a Dead Tuple
As shown in Figure 7(a), when a certain original stream tuple is added as a Dead
value of Q1, this value must be forwarded to all resultant tuples generated from this
tuple. Figure 7(b) represents a Dead Tuple generated in this instance. A Dead Tuple
has a flag value different from a Purging Tuple. Dead Tuples are indicated with
double asterisks.

A B C

Q1 Q3

D

Q4

120(3)

130(8)

120(10)

150(14)

120(1)

120(2)

140(9)

150(15)

120(4)

120(5)

120(11)

120(12)

120(6)

130(7)

120(13)

120(16)

A B

CA⋈B

120(17)

…

2 tuples
For Q1, Q3

4 tuples
For Q4

4 tuples
For Q4

2 tuples
For Q1, Q3

2 tuples
For Q3

4 tuples
For Q4?

A B C

Q1 Q3

D

Q4

A B C

Q1 Q3

D

Q4

120(3)

130(8)

120(10)

150(14)

120(1)

120(2)

140(9)

150(15)

120(4)

120(5)

120(11)

120(12)

120(6)

130(7)

120(13)

120(16)

A B

CA⋈B

120(17)

…

2 tuples
For Q1, Q3

4 tuples
For Q4

4 tuples
For Q4

2 tuples
For Q1, Q3

2 tuples
For Q3

4 tuples
For Q4?

ID1, ID2, ID3NIL…120

PostIDPrevIDAttrsKey

ID1, ID2, ID3NIL…120

PostIDPrevIDAttrsKey

ID1, ID2, ID3NIL*120

PostIDPrevIDAttrsKey

ID1, ID2, ID3NIL*120

PostIDPrevIDAttrsKey

An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams 843

 (a)A tuple with a new Dead Vector value added (b) Dead Tuple

Fig. 7. An example of Dead Tuple creation

Searching of Purging and Dead Tuple
Figure 8(a) represents a Purging Tuple and a Dead Tuple generated either by tuple remov-
al from a window update, or by a tuple with a new Dead value. When Purging Tuples and
Dead Tuples are generated and sent to higher join operators, higher join operators need to
read the PostID values of the Purging Tuple and the Dead Tuple, and remove a corres-
ponding tuple from these values or add a new Dead value. These Purging/Dead Tuples,
upon arriving at the upper join operators, need to have their PostID values extracted for the
purpose of searching for corresponding PrevID values using the Index Hash Table, as
shown in Figure 8(b). <I-Node> is the header information of the Index Hash Table, and
maintains pointers for tuples with the first and last occurring PrevIDs.

 (a) Purging Tuple and Dead Tuple (b) Searching of an Index Hash Table

Fig. 8. Index Hash Table via Purging Tuple and Dead Tuple

4 Experimental Evaluation

Both MJoin and MMJoin techniques described in the paper are implemented in Java,
operating in Pentium IV 3.0Ghz processor with 1GB DDR2 memory. For the purpose
of the experiment, 20 streams are assumed, each with the input rate of 300 tuples/sec.
In all tuples, the key value can be of an integer value from 0 to 1000, randomly. Each
query can have a maximum of 20 different input streams. The skewness for input
streams for the entire queries is applied using Zipf distribution [15]. Also, for each
input stream of each query, a window size is randomly selected in 500 tuples (rows),
1000 tuples (rows), and 1500 tuples (rows). All window sizes are generated in a uni-
form distribution. Table 1 lists the test parameters used in this test.

Table 1. Input stream and the test parameters for queries

Parameter Range Description
Q 10 to 100 The total number of distinct queries

SO 0 to 1 Skewness of input streams over queries
WS 500 to 1500 Window sizes for input stream

The first experiment is time comparison of globally shared query execution plan

construction. The parameter SO is set to 0.5. Figure 9 represents the optimization time
and the operator allocation time per independently processed Mjoin, and per MMJoin.

ID1, ID2

PostID

Q1

Dead

NIL…120

PrevIDAttrsKey

ID1, ID2

PostID

Q1

Dead

NIL…120

PrevIDAttrsKey

ID1, ID2

PostID

Q1

Dead

NIL****120

PrevIDAttrsKey

ID1, ID2

PostID

Q1

Dead

NIL****120

PrevIDAttrsKey

ID1, ID2, ID3

PostID

Q3NIL*(**)120

DeadPrevIDAttrsKey

ID1, ID2, ID3

PostID

Q3NIL*(**)120

DeadPrevIDAttrsKey

<I-Node>

120 ID0

120 ID1

120 ID2

120 ID3

120 ID4

ID3

ID2

ID1

ID0

TailIDHeadIDID

ID3

ID2

ID1

ID0

TailIDHeadIDID

844 C. Byun et al.

Measurement Unit. Let us define the operator allocation time for user-inputted que-
ries to be tassign, and the optimization time for the algorithm of Figure 4 to be toptimizing.
Here, Multiple-Query Setup Time is tassign + toptimizing.

In the MMJoin technique, as the optimization time for MMJoin is added, the num-
ber of queries increases, thus requiring more time. However, for the measurement
aspect of this test, the query optimization and the operator allocation implementation
is based on string, thus it is possible to achieve faster implementation via embedding
parsing engine within the actual data stream management systems.

Fig. 9. MQST comparison to the number of queries (SO=0.5)

The second experiment is the throughput comparison between MJoin and MMJoin.

Measurement Unit. Let us define the total number of resultant tuples sent from all
queries in a specific time period of i and to i+1 be the throughputi, the total time of
measurement to be ttotal, and the total number of queries to be Q. The average

throughput for each query AT is defined as .
In Figure 10(a), as the number of queries increases, the throughput of the MMJoin

technique increases against that of independently processing MJoin, which represents
that the probability of operators being shared is increasing as the number of queries
increases. In Figure 10(b), as the input skewness increases, so does the common part
of the queries, resulting in greater sharing and eventual increase in the relative aver-
age throughput of the MMJoin technique.

When either of the number of queries or input skewness reaches a certain point, the
improvement rate drops, representing the points where a certain number of queries or
input skewness creates an environment for sufficient sharing of operators.

(a) Throughput comparison to the number of (b) Throughput comparison to Skewness
 queries (SO=0.5) (Q=100)

Fig. 10. Comparisons of Average throughput

0

20

40

60

80

100

120

140

10 queries 10 queries
(Sharing)

50 queries 50 queries
(Sharing)

100 queries 100 queries
(Sharing)

Ti
m

e
(m

s)

Operator Assignment Optimization

)/(
0

Qtthroughput total

t

i i
total ⋅∑ =

0

200

400

600

800

1000

1200

10 50 100

The # of Queries

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(T
up

le
s/

se
c)

0

20

40

60

80

100

120

140

160

Im
pr

ov
em

en
t

(%
)MMJoin

MJoin
Improvement

0

100

200

300

400

500

600

700

800

0 0.5 1

Skewness (100 queries)

A
ve

ra
ge

 T
hr

o
ug

h
pu

t
(T

up
le

s/
se

c)

110

115

120

125

130

135

140

145

Im
p
ro

v
em

en
t

(%
)

MMJoin MJoin Improvement

An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams 845

5 Conclusion

In an environment where numerous users access a central system for information as in
a Ubiquitous environment, a system should be able to handle numerous user queries.
The MMJoin technique can prove to be useful in speeding up the processing time for
such environments. The characteristics of the MMJoin technique are as follows.

First, MMJoin performs searches based on queries and sufficiently considers slid-
ing window constraints to achieve query execution plan construction suitable for the
data streaming environment. Second, index-based search is proposed so that it can be
applied to both time-based windows and to a number of tuple-based windows. Also,
the Purging Tuple technique is proposed to support less costly searches and to main-
tain accuracy during window updates when a frame is provided. Third, a routing tech-
nique is proposed for shared query execution plans. Along with this, additional Dead
attributes are assigned for routing purposes to enhance the routing performance based
on operations.

The technique proposed in this paper mostly assumes a static environment, and
contains potential issues in re-establishing globally shared query execution plans
when additional queries are added or deleted. Future studies in achieving globally
shared query execution plans at a lesser cost in a dynamic environment are highly
desired.

Acknowledgements

This work was supported by the second stage of the Brain Korea 21 Project in 2009.

References

1. Bonnet, P., Gehrke, J., Seshadri, P.: Towards Sensor Database Systems. In: Proc. 2th Int.
Conf. on Mobile Data Management, pp. 3–14 (2001)

2. Schmidt, S., Fiedler, M., Lehner, W.: Source-aware Join Strategies of Sensor Data
Streams. In: Proc. 17th Int. Conf. on Scientific and statistical database management, pp.
123–132 (2005)

3. Wilschut, N., Apers, P.M.G.: Pipelining in query execution. In: Conf. on Database. Paral-
lel Architectures and their Applications, p. 562 (1991)

4. Urhan, T., Franklin, M.J.: XJoin: A reactively-scheduled pipelined join operator. IEEE Da-
ta Engineering Bulletin 23(2), 27–33 (2000)

5. Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing the Output Rate of Multi-Way Join
Queries over Streaming Information Sources. In: VLDB 2003, pp. 285–296 (2003)

6. Golab, L., Ozau, M.T.: Processing Sliding Window Multi-Joins in Continuous Queries
over Data Streams. In: VLDB 2003, pp. 500–511 (2003)

7. Kang, J., Naughton, J.F., Viglas, S.D.: Evaluating Window Joins over unbounded Streams.
In: ICDE 2003, pp. 341–352 (2003)

8. Ding, L., Rundensteiner, E.A.: Evaluating Window Joins over Punctuated Streams. In:
Proc. 13th ACM Int. Conf. on Information and Knowledge Management, pp. 98–107
(2004)

9. Shim, K., Sellis, T.: Multiple-query optimization. ACM Transactions on Database Sys-
tems 13(1), 23–52 (1988)

846 C. Byun et al.

10. Chen, J., DeWitt, D.J.: Dynamic Re-grouping of Continuous Queries. In: VLDB 2002, pp.
430–441 (2002)

11. Ghanem, T.M., Aref, W.G., Elmagarmid, A.K.: Exploiting Predicate-Window Semantics
over Data Streams. ACM SIGMOD Record 35(1), 555–568 (2006)

12. Hammad, M., Franklin, M., Aref, W., Elmagarmid, A.: Scheduling for Shared Window
Joins over Data Streams. In: VLDB 2003, pp. 297–308 (2003)

13. Wang, S., Rundensteiner, E., Ganguly, S., Bhatnagar, S.: State-Slice: New Paradigm of
Multi-Query Optimization of Window-Based Stream Queries. In: VLDB 2006, pp. 619–
630 (2006)

14. Krishnamurthy, S., Franklin, M.J., Hellerstein, J.M., Jacobson, G.: The Case for Precision
Sharing. In: VLDB 2004, pp. 972–986 (2004)

15. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Processing. The
MIT Press, Cambridge (1999)

16. Li, H., Chen, S., Tatemura, J., Agrawal, D., Candan, K.S., Hsiung, W.: Safety Guarantee
of Continuous Join Queries over Punctuated Data Streams. In: VLDB 2006, pp. 19–30
(2006)

17. Agarwal, P., Xie, J., Yang, J., Yu, H.: Scalable Continuous Query Processing by Tracking
Hotspots. In: VLDB 2006 (2006)

Top-k Queries
with Contextual Fuzzy Preferences

Patrick Bosc, Olivier Pivert, and Amine Mokhtari

Irisa – Enssat, University of Rennes 1
Technopole Anticipa 22305 Lannion Cedex France

{bosc,pivert,mokhtari}@enssat.fr

Abstract. This paper deals with the interpretation of database queries
with preference conditions of the form “attribute is low (resp. medium,
high)” in the situation where the user is not aware of the actual content
of the database but still wants to retrieve the best possible answers (rela-
tively to that content). An approach to the definition of the terms “low”,
“medium” and “high” in a contextual and relative manner is introduced.

1 Introduction

The last two decades have witnessed an increasing interest in expressing prefer-
ences inside database queries. Motivations for such a concern are at least twofold.
First, it has appeared to be desirable to offer more expressive query languages
that can be more faithful to what a user intends to say. Second, the introduction
of preferences in queries provides a basis for rank-ordering the retrieved items,
which is especially valuable in case of large sets of items satisfying a query.

Fuzzy-set-based approaches are founded on the use of fuzzy set membership
functions that describe the preference profiles of the user on each attribute do-
main involved in the query. Then satisfaction degrees associated with elementary
conditions are combined using a panoply of fuzzy set connectives, which go much
beyond conjunction and disjunction. It must be emphasized that fuzzy-set-based
approaches rely on a commensurability hypothesis between the satisfaction de-
grees pertaining to the different attributes taking part in a query.

Another type of approach aims at the efficient computation of non Pareto-
dominated answers, starting with the pioneering works of Bőrzsőnyi et al. [3].
Clearly, this type of approach does not require any commensurability hypothesis
between satisfaction degrees pertaining to elementary requirements. Notice that
Pareto order yields a strict partial order only, while fuzzy set-based approaches
lead to complete pre-orders. Kießling [9] has provided foundations for a Pareto-
based preference model for database systems. A preference algebra including an
operator called winnow has also been proposed by Chomicki [7].

In this paper, we deal with the situation where the user is not aware of the
content of the database that he/she wants to query, and thus is unable to de-
fine selection predicates referring explicitly to some constants from the domains.
Despite this absence of knowledge, the user may want to retrieve the best an-
swers comparatively speaking. As an example, let us consider a user who wants

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 847–854, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

848 P. Bosc, O. Pivert, and A. Mokhtari

to move to country X and would like to find the “best” cities to settle down
according to the following preferences: population between 50,000 and 100,000
(hard constraint), low average price of the square meter, low crime rate, medium
average annual temperature. We assume that the user does not have any idea of
the values taken by the attributes involved in the cities of country X but still
wants to find the best solutions relatively to the existing possibilities.

The idea that we advocate is to use the fuzzy-set-based framework and to
define the fuzzy predicates “high”, “medium” and “low” in a relative way, using
the minimal, average and maximal values of the attribute values present in the
associated query-defined context (in the example above: the cities whose popu-
lation is between 50,000 and 100,000). There is a connection between this idea
and the proposal by Tudorie et al. [10] where a fuzzy predicate can be defined
relatively to the context created by another one. For example, in a query such
as “find the inexpensive cars among the high speed ones”, the authors suggest
to adapt the definition of the fuzzy term “inexpensive” by taking into account
the price values associated with high speed cars. However, the authors do not
formalize the notion of context, while it is one of our primary aims. Even though
the approach by Agrawal et al. [1] deals with preferences and contexts, it does
not have much in common with the work presented here since: i) it deals with
preferences over categorical attributes whereas we consider numerical ones, ii) it
handles contexts and preferences which are given explicitly (and statically) by
the user in the form of a set of conditions “attribute = value”, whereas we deal
with contexts which are specified dynamically by means of a specific clause in
an extended SQL language, as well as with preferences which are expressed in
an implicit and relative way, iii) the approach proposed in [1] does not combine
contextual preferences with non-contextual ones, while the method presented
here makes it possible to do.

The remainder of the paper is organized as follows. Section 2 is devoted to a
reminder about fuzzy predicates and fuzzy queries. In Section 3, we present a
method for constructing contextual fuzzy predicates automatically and describe
different kinds of contextual fuzzy queries. Section 4 concludes the paper and
outlines some perspectives for future work.

2 Fuzzy Predicates and Queries

2.1 Fuzzy Predicates

Regular sets allow for the definition of Boolean predicates. In an analogous way,
gradual predicates (or conditions) can be associated with fuzzy sets [11] aimed
at describing classes of objects with vague boundaries.

Often, elementary fuzzy predicates correspond to adjectives of the natural
language, such as young, tall, cheap or well-paid. A fuzzy predicate P can be
modeled as a function μP (usually of triangular or trapezoidal shape) from one
(or several) domain(s) X to the unit interval. The degree μP (x) represents the
extent to which element x satisfies the vague predicate P (or equivalently the
extent to which x belongs to the fuzzy set of objects which match the fuzzy

Top-k Queries with Contextual Fuzzy Preferences 849

Fig. 1. A definition of the fuzzy predicate young

concept P). An exemple is given in Fig. 1. An elementary fuzzy predicate can
also compare two attributes using a gradual comparison operator such as “more
or less equal”. It is assumed that a fuzzy querying system includes an interface
(e.g., a GUI) that makes it possible to define his/her (non contextual) fuzzy
predicates in a user-friendly way.

It is possible to alter the meaning of a given predicate using a modifier which
is generally associated with an adverb (e.g., very, more or less, relatively). For
instance, “very cheap” is more restrictive than “cheap” and “fairly high” is less
demanding than “high”. The meaning of the predicate mod P (where mod is a
modifier) may be defined in a compositional way and different approaches have
been advocated, among which: μmodP (x) = μP (x)n (see [6]).

Atomic and modified predicates can be involved in compound predicates which
go far beyond those used in regular queries. Conjunction (resp. disjunction) is
interpreted by means of a triangular norm 0 (resp. co-norm ⊥), for instance the
minimum or the product (resp. the maximum or the probabilistic sum). As to
negation, it is interpreted as: ∀x, μ¬P (x) = 1−μP (x). Weighted conjunction and
disjunction as well as weighted mean or OWA can be used to assign a different
importance to each of the predicates (see [8] for more details).

2.2 Fuzzy Queries

The operations from the relational algebra can be straightforwardly extended to
fuzzy relations by considering fuzzy relations as fuzzy sets on the one hand and
by introducing gradual predicates in the appropriate operations on the other
hand. The definitions of these extended relational operators can be found in [4].
As an illustration, we give the definition of the fuzzy selection hereafter, where
r denotes a (fuzzy or crisp) relation and cond is a fuzzy predicate.

μsel(r, cond)(t) = 0(μr(t), μcond(t)).

The language called SQLf described in [5] extends SQL so as to support fuzzy
queries. Here, we just describe the base block in SQLf since this is all we need
for our purpose. The principal differences w.r.t. SQL affect mainly two aspects:

– the calibration of the result since it is made with discriminated elements,
which can be achieved through a number of desired answers (k), a minimal
level of satisfaction (t), or both, and

– the nature of the authorized conditions as mentioned previously.

850 P. Bosc, O. Pivert, and A. Mokhtari

Therefore, the base block is expressed as:

select [distinct] [k | t | k, t] attributes from relations where fuzzy-cond

where “fuzzy-cond” may involve both Boolean and fuzzy conditions.

3 Top-k Queries with Contextual Fuzzy Predicates

In this section, we show how conditions of the form “A is low (resp. medium,
high)” can be modeled in the framework of a fuzzy-set-based query language
such as SQLf. The basic idea is to interpret these conditions relatively to a given
context specified in the user query. First, let us clarify this notion.

Definition. A query-defined context is a referential of values returned by a
(sub)query, on which a predicate can be defined in a relative manner.

For instance, considering a relation describing employees, one may define the
predicate “young” (interpreted as “age is low”) in the context of the engineers ’
ages, or the ages of those employees whose monthly salary is less than $2500, etc.
Clearly, the relative meaning of “young” depends on the referential considered.
Let us start with the simple case where a single context is given in the query.

3.1 Queries with One Level of Context

The syntax of the basic form of SQLf queries considered is given hereafter:

select k X from r where cond1 and cfc
context {Boolean query | fuzzy query involving a threshold λ}

In this query, k denotes a desired number of answers (the best ones), X is a
set of attributes from relation r, cond1 is a selection condition which may in-
volve Boolean predicates and explicit fuzzy predicates (i.e., predicates whose
membership function is user-defined), and cfc is a contextual fuzzy condition.
Notice that contextual fuzzy terms, which form the basis of contextual condi-
tions, can be altered by means of fuzzy modifiers such as “very”, “relatively”,
etc, so as to express a great variety of nuanced contextual predicates.

The new clause introduced by the keyword “context” aims at defining the
referential of tuples that serves as a basis for constructing the fuzzy terms present
in cfc. Two possibilities are offered: one may either

– use a Boolean subquery (not only an SPJ query, but any kind)
– a fuzzy query involving a qualitative threshold λ.

The context must include attributes of the same domains as those concerned by
the contextual predicates. In the case of a fuzzy context query, the context is
made of the tuples whose membership degree to the result of the fuzzy query is
at least equal to λ. Hence, the context is always defined as a crisp set.

Top-k Queries with Contextual Fuzzy Preferences 851

Example 1. Let us consider a relation FC(name, pop, crime, temp, univ) de-
scribing some French cities. Attribute “crime” corresponds to the crime rate and
attribute “temp” to the annual average temperature in a given city, while “pop”
gives the number of inhabitants. Attribute “univ” indicates whether there is a
university in the city. Hereafter are two examples:

1. find the 10 best cities whose population is between 50,000 and 100,000, where
a university is located, and where the crime rate is low relatively to the set
of French cities in the same range of population.

select 10 name from FC where pop between 50,000 and 100,000 and
univ = “yes” and crime is low

context (select * from FC where pop between 50,000 and 100,000)

2. find the 10 best cities whose population is around 50,000, and where the
crime rate is low relatively to the set of French cities whose population fits
the fuzzy predicate around50k at a degree at least equal to 0.7. Here, the
fuzzy predicate around50k is supposed to be user-defined.

select 10 name from FC
where pop is around50k and crime is low
context (select 0.7 * from FC where pop is around50k) ♦

We propose to define the membership functions of “A is low”, “A is medium”
and “A is high” in terms of the minimum, average and maximum A-values in the
result of the Boolean query which defines the context. For interpretating “low”,
“medium” and “high”, we suggest the following default definitions (cf. Fig. 3):

– lowA decreases linearly from 1 to 0 when A moves from min(A) to avg(A).
– mediumA is represented by an isoceles triangle centered in avg(A) and whose

support is the interval [avg(A)− δ, avg(A)+ δ] where δ equals min(avg(A)−
min(A), max(A) − avg(A)). This corresponds to interpreting “medium” as
“close to the average.”

– highA increases linearly from 0 to 1 when A moves from avg(A) to max(A).

It is of course possible to argue about these definitions. One could choose for
instance to express that full satisfaction is assumed around the minimum (for

Fig. 2. Default definitions of implicit fuzzy terms

852 P. Bosc, O. Pivert, and A. Mokhtari

“low”) or the average (for “medium”) or the maximum (for “high”). In order to
make the system more user-friendly, it is of course conceivable to let the user
personalize these membership functions through an appropriate interface. Notice
that the implicit assumption which is made here is that the context includes
enough data to represent a statistically significant subset of the data (so as to
compute significant values for min, avg and max).

Example 2. Let us consider the (partial) extension of a relation FC describing
French cities represented in Table 3 and the query:

select 10 name from FC where pop between 50,000 and 100,000 and
crime is low and temp is medium

context (select * from FC where pop between 50,000 and 10,000).

Let us suppose that the minimum (resp. average, resp. maximum) value for
attribute “crime rate” over the set of cities in the specified population interval
is 0.8 (resp. 4.1, resp. 11.3) and the minimum (resp. average, resp. maximum)
value for attribute “average annual temperature” over the same set of cities is
8 (resp. 14, resp. 22). One can then define the fuzzy predicates lowcrime and
mediumtemp as described above, and the evaluation of the query on the first
tuple (Montauban) provides the degrees 0.21 (for “low crime”) and 0.75 (for
“medium temperature”). If we assume that the conjunction is interpreted as a
minimum, the first tuple gets the overall satisfaction degree 0.21. ♦

Table 1. Extension of relation FC

name pop crime temp
Montauban 53,300 4.8 20

Cannes 70,400 7.2 21
Rennes 210,200 4.3 14

Beauvais 54,100 2.4 12
Pau 82,500 5.3 18
...

Let us mention the possibility of introducing a notion of default context so as to
make the user’s task easier. Informally, the “context default” clause corresponds
to a query involving the Boolean part of the “where” clause from the original
user query (i.e., the “where” clause without its fuzzy conditions). For instance,
the query from Example 2 could be expressed more simply as:

select 10 name from FC where pop between 50,000 and 100,000 and
crime is low and temp is medium

context default.

3.2 Queries with Several Levels of Context

We now extend the approach presented above so as to consider several levels
of context. Let us consider the relations: City (#id, name, pop, crime, temp)

Top-k Queries with Contextual Fuzzy Preferences 853

and Flat (#app, #city, category, price, surface), and the query: “find the 10
best apartments of category F5 which have a medium price and are located in a
city whose population is between 50k and 100k and has a low crime rate.” The
term “low” is supposed to be defined relatively to the context of cities whose
population is between 50k and 100k, while the term “medium” is defined in the
context of the city where the apartment considered is located, for the category
considered. In SQLf, this query can be expressed as:

select 10 #app from Flat f1
where price is medium and category = ’F5’ and #city in

(select #id from City
where pop between 50,000 and 100,000 and crime is low
context default)

context (select * from Flat where #city = f1.#city and category = ’F5’).

It is also conceivable to jointly use fuzzy predicates defined on different con-
texts. For instance, let us consider a relation Emp (id, name, age, ed-level, salary)
and the query: “find every employee who has a medium education level (rela-
tively to the entire set of employees) and a high salary (relatively to the employ-
ees around his/her age at a degree ≥ 0.7).” This implies extending the “context”
clause so as to deal with different referentials. A possible formulation is:

select id, name from Emp e
where ed-level is medium and salary is high
context (medium: default;

high: (select 0.7 * from Emp where age around e.age)).

In this query, it is assumed that “around” is an explicit (i.e., user-defined) fuzzy
comparator extending the equality.

Another extension consists in using the “top-k” mechanism in a nested man-
ner. This would allow to restrict the contexts to the most relevant elements only.
For instance, in the preceding query about flats, one might choose to assess only
the flats which are located in a city which is sufficiently satisfactory (e.g., among
the 20 best) w.r.t. the criterion on crime. Still another way of introducing nesting
is to have a context clause which itself involves a context clause. Due to the lack
of space, we do not detail these cases here.

4 Conclusion

In this paper, we have considered the interpretation of top-k fuzzy queries with
preference conditions of the form “attribute is low (resp. medium, resp. high)”
in the situation where the user is not aware of the actual content of the database
but still wants to retrieve the best possible answers (relative to that content).
We have pointed out an approach to the definition of the fuzzy terms “low”,
“medium” and “high” in a contextual and relative manner.

854 P. Bosc, O. Pivert, and A. Mokhtari

Among perspectives for future work, it would be interesting to study whether
some optimization mechanisms proposed for top-k queries in a non-fuzzy frame-
work, such as those described in [2], could be adapted to the processing of top-k
queries with contextual fuzzy predicates.

References

1. Agarwal, R., Rantzau, R., Terzi, E.: Context-sensitive ranking. In: Proc. of SIG-
MOD 2006, pp. 383–394 (2006)

2. Bast, H., Majumdar, D., Schenkel, R., Theobald, M., Weikum, G.: IO-top-k: Index-
access optimized top-k query processing. In: Proc. of the VLDB 2006, pp. 475–486
(2006)

3. Bőrzsőnyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proc. of the
17th IEEE Inter. Conf. on Data Engineering, April 2001, pp. 421–430 (2001)

4. Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy Databases. In: Fuzzy Sets in
Approximate Reasoning and Information Systems – The Handbook of Fuzzy Sets
Series, pp. 403–468. Kluwer Academic Publishers, Dordrecht (1999)

5. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE
Transactions on Fuzzy Systems 3(1), 1–17 (1995)

6. Bouchon-Meunier, B., Yao, J.: Linguistic modifiers and imprecise categories. Inter-
national Journal of Intelligent Systems 7, 25–36 (1992)

7. Chomicki, J.: Preference formulas in relational queries. ACM Transactions on
Database Systems 28, 1–40 (2003)

8. Fodor, J., Yager, R.: Fuzzy-set theoretic operators and quantifiers. In: Fundamen-
tals of Fuzzy Sets – The Handbook of Fuzzy Sets Series, pp. 125–193. Kluwer
Academic Publishers, Dordrecht (1999)

9. Kießling, W., Köstler, G.: Preference SQL — design, implementation, experiences.
In: Proc. of the 2002 VLDB Conference, pp. 990–1001 (2002)

10. Tudorie, C., Bumbaru, S., Dumitriu, L.: Relative qualification in database flexible
queries. In: Proc. 3rd Int. IEEE Conf. on Intelligent Syst. (IEEE IS 2006), pp.
83–88 (2006)

11. Zadeh, L.: Fuzzy sets. Information and Control 8, 338–353 (1965)

S.S. Bhowmick, J. Küng, and R. Wagner (Eds.): DEXA 2009, LNCS 5690, pp. 855–862, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reranking and Classifying Search Results Exhaustively
Based on Edit-and-Propagate Operations

Takehiro Yamamoto, Satoshi Nakamura, and Katsumi Tanaka

Department of Social Informatics, Graduate School of Informatics, Kyoto University,
Yoshida-Honmachi, Sakyo, Kyoto 606-8501 Japan

{tyamamot,nakamura,tanaka}@dl.kuis.kyoto-u.ac.jp

Abstract. Search engines return a huge number of Web search results, and the
user usually checks merely the top 5 or 10 results. However, the user sometimes
must collect information exhaustively such as collecting all the publications
which a certain person had written, or gathering a lot of useful information
which assists the user to buy. In this case, the user must repeatedly check search
results that are clearly irrelevant. We believe that people would use a search
system which provides the reranking or classifying functions by the user’s
interaction. We have already proposed a reranking system based on the user’s
edit-and-propagate operations. In this paper, we introduce the drag-and-drop
operation into our system to support the user’s exhaustive search.

Keywords: Reranking, term-based-feedback, exhaustive search.

1 Introduction

Nowadays, many people seek information through search engines. In many
information search tasks, it is enough for users to obtain one or two related search
results, so browsing the top five or ten search results normally provides adequate
information. However, in some information search tasks the user has to browse many
search results in order to accomplish the task. For example, if the user must survey
many publications related to his research topic, he must use publication search
engines and check all the search results returned. If the user plans to buy something
expensive, such as a car or TV set, the user has to gather a lot of information about
the products to compare products in many aspects. In this work, we call this type of
information search “Exhaustive Search”.

An Exhaustive Search can usually be split into two actions, gathering and
browsing. Users perform an Exhaustive Search by combining these two actions:

Gathering: An action to create several queries and gather many search results.

Browsing: An action to browse obtained search results and judge if these search
results are relevant or not.

When the user browses search results exhaustively, there are several problems:

Accuracy: The users’ search intentions are diverse. This makes it difficult for search
engines to return good search results that properly reflect the search intentions.

856 T. Yamamoto, S. Nakamura, and K. Tanaka

Therefore, search engines often return search results that are not relevant to the user’s
intention. As a result, the user must often check search results that are not relevant.

Classification: When the user searches exhaustively, it is important to classify the
search results. The simplest classification is to classify search results into “relevant”
or “non-relevant”. Other than this classification, when surveying papers, the user may
want to classify these papers according to the genre of the paper or relevance to the
user’s research topic. However, in order to perform these classifications, the user
needs to take actions like keeping windows open, taking down notes, or learning these
classifications by heart. These actions impose a heavy burden to the user.

Because of these problems, the user needs to engage in several kinds of actions,
such as judging whether search results are relevant or not, jumping to a page by
clicking the URL, classifying search results, or creating new queries. For example,
while the user is seeking information about a certain product by using search engines,
the user creates a new query regarding another product in order to compare products,
but then he forgets which search results have already been checked.

In our past work, we have proposed and implemented a reranking system that
enables a user to rerank search results by using edit-and-propagate operations [1]. The
system enables the user to edit any portion of a browsing page of Web search results
at any time while searching. Our system detects the user’s search intention from the
editing operations. For example, if the user deletes a part of a search result, our
system guesses that “this user does not want this kind of result”. If the user
emphasizes a part of the search result, our system guesses that "this user wants more
of this kind of result". Our system propagates the user’s search intentions based on his
editing operations to all search results in order to rerank them. In this way, the user
can easily obtain optimized search results.

In this paper, we introduce a drag-and-drop operation as an edit operation and
some folders to support the Exhaustive Search. In our system, the user can increase
the accuracy of search results and classify reranked search results easily by using
three types of edit operations.

2 Exhaustive Search

We define Exhaustive Search as a series of actions performed to gather as efficiently
as possible information related to the information the user wants to obtain. For
example, collecting all the publications that a certain person has written or gathering a
lot of information about cars can be classified as Exhaustive Search tasks. We can
classify Exhaustive Search tasks into two categories: One is that tasks whose answers
can be defined independently from the user’s values. For example, in a task such as “I
want to collect all the books written by the author,” or “I have to collect all
publications written by me,” we can define the answers to these tasks. The other is
that tasks whose answers cannot be defined independently of the users’ values. Such a
task might be “I want to gather information about Kyoto’s history.”, or “I want to
compare with these cars.” The answers to these tasks differ depending the users’
values. In this type of task, we cannot define the answers objectively.

 Reranking and Classifying Search Results 857

Although there are two kinds of Exhaustive Search tasks, both the gathering and
browsing of search results exhaustively are essential to both.

The user needs to create multiple queries that will return useful search results in an
Exhaustive Search. One method of assisting users to gather many useful search results
is query expansion [2]. Query expansion creates useful queries by using user
feedback. Query expansion seems to be an effective way for users to create a useful
query automatically. In this work, we do not focus only on how to gather search
results effectively. The user inputs queries manually in our system, but it is effective
to apply methods like query expansion.

As we mentioned in Section 1, the problems in browsing search results
exhaustively are split into two groups: accuracy and classification. The most popular
method for classifying a large set of search results is clustering [3,4]. It was shown in
[5] that persons who share the same name can be separated with high accuracy.
Therefore, some clustering methods may be effective for tasks such as gathering all
publications written by a certain person. However, when the criterion for classifying
clustered publication search results is their relevance to the user’s research or to the
field of the publication, classifying by the clustering method alone would be difficult
and inadequate. Therefore, interaction between the user and the system is essential for
classifying search results according to the user’s own criteria. Moreover, we think
such interaction may improve the clustering performance. In this paper, we therefore
focus on how to support exhaustive browsing of search results.

3 Supporting an Exhaustive Search by Using Edit Operations

The interaction between our system and the user is as follows:

1. The user inputs a query to our system.
2. The system sends the query to a search engine.
3. The system receives results from the search engine and presents them to the user.
4. The user browses the search results.
5. The user uses the following three operations as necessary.

a. Delete and emphasis operations proposed in [1] to improve the accuracy of
the high ranked search results.

b. Drag-and-drop operation to classify the search results.
c. Adding a new query to the system to gather other search results.

After classifying an adequate number of search results, the user can check the

classified or non-classified search results easily and obtains the desired information.

3.1 Improve Accuracy of Search Results

In our system, the user can rerank search results using two types of edit operations:
delete operation and emphasis operation that were proposed in [1]. When the user
emphasize/delete the term t at an attribute attr (e.g. title, summary, URL, publication
year, and so on), then search results that contain term t at attr are ranked higher (or
lower), with their previous rankings preserved.

858 T. Yamamoto, S. Nakamura, and K. Tanaka

3.2 Classify Search Results

Here we describe how our system supports users to classify search results.
Popular window systems use folders to classify and organize files. Storing multiple

files in a single folder, we can handle these multiple files by manipulating the folder.
In this work, therefore, we introduce folder as a function to organize multiple search
results. In our system, the user classifies search results by using a drag-and-drop
operation which is used in many applications. Drag-and-drop is an operation to move
something to a certain proper position. For example, when we move a file to the trash
can or move contents to another position while editing documents, we use drag-and-
drop operation. We therefore introduce the drag-and-drop operation as an operation to
classify search results.

• Term: If the user puts a term into a folder, the user might want to classify search
results that contain the term in the folder.

• Search results: The user might want to classify some search results after reranking
them. In this case, the user would select these search results and drag-and-drop
them into a folder.

• Folder: A folder denotes a set of search results that the user has classified. If the
user wants to merge two folders, the user might drag-and-drop a folder to another
folder.

When the user drags-and-drops a term into a folder the classification algorithms

work the same way as the reranking algorithms do [1]. When the user drags-and-
drops a term t in an attribute attr to a folder f, the system moves search results
containing term t in attribute attr to the target folder f.

When the user directly drags-and-drops some search results into a folder, the
system moves only these search results to the destination folder. When the user drags-
and-drops a certain folder into another folder the system moves all search results
stored in the source folder to the destination folder.

4 Design and Implementation

In order to evaluate the effectiveness of our system, we implemented a prototype
system. Our system enables users to search Web pages or publications. We used
Google and GoogleScholar as Web and publication search engines.

A screenshot of our system is shown in Fig. 1. The system consists of the input
area, the display area, and the classification area.

Input Area: The user gathers search results by inputting queries to the input area.
When the user inputs a query, the system sends the query to a search engine and
receives search results. The system then stores the obtained search results into the
inbox folder, which is displayed in the top of the classification area and shows
the search results to the user. When the user inputs another query, the system adds the
obtained search results to the inbox folder, removing the search results that have
already been stored in the folder. With this function, the user can handle multiple
queries uniformly in one task.

 Reranking and Classifying Search Results 859

Display Area: In the display area, the user can rerank search results by using delete
and emphasis operations. When the user selects a term from a search result, two
buttons for delete and emphasis operations will appear near the mouse cursor position.
In the meantime, search results that contain the user-selected term will be highlighted.
This function enables the user to understand visually how many search results contain
the term. After either button is pressed, the system reranks search results accordingly.
In order for the user to understand what topics search results contain, the system also
shows TagCloud in the right side of the display area. In the TagCloud, more
frequently appearing terms are shown in larger text. The user can edit terms displayed
in TagCloud as well as terms in the search results.

Classification Area: The classification area consists of several folders. In the initial
state, there are two folders. One is the inbox folder (displayed at the top of the
classification area), which is for storing search results of the queries. The other is the
trash folder (displayed at the bottom of the classification area), which is for storing
search results that are not relevant to the user. When the user starts searching or
creates a folder explicitly, the system creates a new folder in the classification area
automatically.

The user is able to label the new folder explicitly. Meanwhile, when the user drags-
and-drops a term or search results into a folder that he has not labeled, the system
labels the folder automatically by extracting terms that appear with high frequency in
the search results in the folder. In addition, when the user hovers the cursor over a
folder, the system shows a pop up window near the cursor. This window displays a
small TagCloud that consists of about ten terms extracted from the search results
stored in the folder. These functions assist the user in appropriately understanding
what search results the folder contains.

Fig. 1. Screenshot of our system

860 T. Yamamoto, S. Nakamura, and K. Tanaka

The user can drag-and-drop a term or some search results or a folder into a folder.
When the user drags-and-drops these things into a folder, the system moves search
results from the source folder to the destination folder. If the user performs a drag-
and-drop operation with the control key pressed, the system copies search results to
the destination folder instead of moving search results. This function is used when the
user cannot classify the search results into one folder. When the user clicks a certain
folder, the system displays search results stored in the folder. The user can switch
among folders and view search results just by clicking a folder.

Fig. 2 shows a flowchart of our system in a task. The figure illustrates how a user
reranks and classifies publication search results of query “KatsumiTanaka Web”.

Fig. 2. How our system works

5 Experiments

In this section, we present the results of the experiment to evaluate the effectiveness
of classification. In this experiment, the authors themselves performed the following
task. First, the user inputed a prepared query and received its top 500 search results
from the system. Then the user classified search results into two folders according to

 Reranking and Classifying Search Results 861

prepared criteria. In this experiment, the user classified search results of a query with
multiple meanings into two folders. We prepared six queries and two classifications
for each query. The user was allowed to drag-and-drop only keywords. For each
query, the user performed drag-and-drop operation until the recall of classified search
results in a folder exceeded 90%, or until the user had performed more than nine
operations. After each drag-and-drop operation, we analyzed the precision and recall
of search results in a folder. To calculate the recall rate, we assumed that all relevant
search results were included in the top 500 search results returned by Google.

Fig. 3 shows the average of the precision and recall of the classified search results.
After eight operations, the recall rate for three classifications did not become more
than 90%. After three or four operations had been performed, many queries achieved
a recall rate of more than 80%.

Fig. 3. Precision and recall obtained after each operation

6 Discussions

As mentioned earlier, our system mainly focuses on how to browse search results
exhaustively. However, our system does not work sufficiently to support the
gathering of search results exhaustively. The problem is that our system cannot obtain
more than 1000 search results in one query because of the restrictions of Google and
GoogleScholar. Therefore, if the total number of search results of a query is more
than 1000, the system obtains only a subset of the search results. To solve this
problem, we plan to implement a semi-automatic query generation system using
query expansion or query suggestion techniques.

We found that our system may work effectively on some types of searches. The
first example is a publication search. A publication search result has many attributes,
such as author lists, publication year, and name of conference or journal. These
attributes often have a strong relationship with the publications. Using these
attributes, the user can rerank and classify publications with very high accuracy.

Another example is a recipe search. In a recipe search, the user usually uses
cooking ingredients as a query like “pork AND carrot”. By emphasizing some
favorite ingredients or dragging-and-dropping some ingredients the user dislikes to
the trash folder, the user can easily obtain good search results. In a recipe search,
ingredients or seasoning are very important, and so the kinds of terms the user may
edit are quite limited. Therefore, we think our system will work effectively on similar
types of searches where the kinds of important keywords in the search are limited.

862 T. Yamamoto, S. Nakamura, and K. Tanaka

Finally, we found that our system may work well not only on Web or publication
searches but also on other types of searches such as a product search in Amazon. In a
publication search, we found that we can rerank and classify search results with high
accuracy by editing attributes that a Web search result does not contain. This is
because attributes, such as an author’s list, conference name, and publication year,
have a strong relationship with the publication. Similar to a publication search result,
a product search result often has such attributes. For example, a search result of
electronics in Amazon has a price, manufacturer name, release date, and so on.

7 Conclusion

We have proposed a system that supports exhaustive search tasks through edit
operations. We have split the exhaustive search tasks into two categories: exhaustive
gathering and exhaustive browsing. In this paper, we focused mainly on the
exhaustive browsing and proposed a method to support it. In this system, the user can
rerank search results by using delete or emphasis operations and classify search
results by using drag-and-drop operations. We expect that we can apply this idea to
other types of websites that are generated automatically, such as online shopping sites
and bulletin boards. For example, the user will be able to rerank and classify products
by their prices or brand. Fortunately, much research has focused on automatically
extracting and detecting data from such websites. By applying these ideas to our
system, we can handle many types of websites.

Acknowledgement

This work was supported in part by Grant-in-Aid for JSPS Fellows, "Informatics
Education and Research Center for Knowledge-Circulating Society" (Project Leader:
Katsumi Tanaka, MEXT Global COE Program, Kyoto University), MEXT Grant-in-
Aid for Scientific Research on Priority Areas: "Cyber Infrastructure for the
Informationexplosion Era", "Contents Fusion and Seamless Search for Information
Explosion" (Project Leader: Katsumi Tanaka, A01-00-02, Grant#: 18049041), and by
"Design and Development of Advanced IT Research Platform for Information"
(Project Leader: Jun Adachi, Y00-01, Grant#: 18049073).

References

1. Yamamoto, T., Nakamura, S., Tanaka, K.: Rerank-by-example: Efficient browsing of web
search results. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653,
pp. 801–810. Springer, Heidelberg (2007)

2. Xu, J., Croft, W.: Query expansion using local global document analysis. In: Proc. of SIGIR
1996, pp. 4–11 (1996)

3. Hearst, M.A., Karger, D.R., Pedersen, J.O.: Scatter/Gather as a Tool for the Navigation of
Retrieval Results. In: The proceedings of the 1995 AAAI Fall Symposium on Knowledge
Navigation (1995)

4. Zeng, H., He, Q., Chen, Z., Ma, W., Ma, J.: Learning to cluster web search results. In: Proc.
of SIGIR 2004, pp. 210–217 (2004)

5. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive name
matching in information integration. IEEE Intelligent Systems 18(5), 16–23 (2003)

Author Index

Adachi, Jun 547
Afsarmanesh, Hamideh 1
Aı̈t-Bachir, Ali 229
Aldana-Montes, José F. 427, 435
Alimazighi, Zaia 263
Ameling, Michael 255
Amin, Mohammad Shafkat 561
Antonellis, Panagiotis 68
Aufaure, Marie-Aude 114

Bächle, Sebastian 38
Bashir, Shariq 753
Bateman, John A. 287
Baumann, Peter 153
Bei, Yijun 735
Bellas, Fernando 302
Bellatreche, Ladjel 263
Bennacer, Nacéra 611
Bentayeb, Fadila 501
Berlanga, Rafael 53
Bernardino, Jorge 143
Bhattacharjee, Anupam 561
Bhattacharya, Arnab 164
Bikakis, Nikos 372
Bonniol, Stéphane 769
Bosc, Patrick 847
Boukhalfa, Kamel 263
Bustos, Benjamin 516
Byun, Changwoo 838

Cai, Jing 332
Camarinha-Matos, Luis M. 1
Casali, Alain 689
Chen, Arbee L.P. 532
Chen, Chaohai 603
Chen, Chun 735
Chen, Gang 735
Chen, Hanxiong 451
Chen, Hong 704
Chen, Qiming 244
Chen, Weiyu 412
Chen, Wenguang 576
Chen, Yangjun 356
Cheng, Jingwei 830

Choi, Jae-Ho 486
Christodoulakis, Stavros 372

Dabringer, Claus 184
Dang, Xuan Hong 660
Dı́az, Alicia 317
Ding, Zhiming 173
Draheim, Dirk 727
Dranischnikow, Egor 675

Eder, Johann 184
Ernst, Christian 689

Falkner, Nickolas J.G. 645
Fan, Wenfei 576
Fan, Yao-Chung 532
Fauvet, Marie-Christine 229
Favre, Cécile 501
Fazzinga, Bettina 822
Flesca, Sergio 822
Furuse, Kazutaka 451

Gao, Qigang 629
Gao, Xiaofeng 807
Garćıa Castro, Alexander 287
Garćıa-Castro, Leyla Jael 287, 619
Gioldasis, Nektarios 372
Giraldo, Olga 287
Goda, Kazuo 777
Goncalves, Marlene 471
Göttler, Herbert 675
Gottron, Thomas 675
Gubiani, Donatella 792

Ha, JongWoo 486
Hameurlain, Abdelkader 460
Härder, Theo 38
Harth, Andreas 214
He, Wenlin 704
He, Zhenying 412
Helmer, Sven 83
Hepp, Martin 619
Himsl, Melanie 727
Hosain, Shazzad 561

864 Author Index

Hossain, Shahriyar 561
Hou, Wen-Chi 382
Hsu, Meichun 244
Hsu, Wynne 348, 603
Hu, Jie 719
Huang, Guangyan 173

Ishida, Shin 745
Islam, Aminul 561
Iwaihara, Mizuho 364

Jabornig, Daniel 727
Jamil, Hasan 561
Jiang, Zhewei 382
Jucovschi, Constantin 153
Jurczyk, Pawel 396

Kar, Purushottam 164
Karlinger, Michael 23
Kemeter, Mathias 675
Kiefer, Stephan 98
Kiritani, Yusuke 761
Kitsuregawa, Masaru 777
Kwon, Yoon 486

Labarga, Alberto 287
Laranjeiro, Nuno 271
Laurent, Anne 769
Le Grand, Bénédicte 114
Lee, Hunjoo 838
Lee, Mong Li 348, 603
Lee, SangKeun 486
Lee, Vincent C.S. 660
Leithner, Werner 727
Li, Cuiping 704
Li, Jiang 340
Li, Ling 348
Liang, Wenxin 7
Lipovich, Leonard 561
Lipowsky, Constanze 675
Litak, Tadeusz 83
Liu, Jianquan 451
Liu, Mengchi 719
Liu, Qing 629
Liu, Rui 244
Lô, Moussa 611
López, Javier 302
Lubyte, Lina 128
Luo, Cheng 382

Ma, Qiang 745, 761
Ma, Shuai 576
Ma, Z.M. 443, 830
Madeira, Henrique 271
Makris, Christos 68
Middelfart, Morten 592
Mokhtari, Amine 847
Molli, Pascal 196, 317
Montaña, César 287
Montanari, Angelo 792
Montoto, Paula 302
Motomura, Tetsutaro 364

Nakamura, Satoshi 855
Navas-Delgado, Ismael 427
Ng, Wee Keong 660

O’Neil, Kieran 287
Ohbo, Nobuo 451
Ong, Kok Leong 660
Ozsoyoglu, Gultekin 382

Pal, Manjish 164
Pan, Alberto 302
Park, Seog 838
Pedersen, Torben Bach 592
Pérez, Maŕıa 53
Pernelle, Nathalie 611
Pivert, Olivier 847
Poetzsch-Heffter, Arnd 98
Poncelet, Pascal 769
Poon, Chung Keung 332
Pugliese, Andrea 822

Qin, Yongrui 412

Rahhal, Charbel 196
Raposo, Juan 302
Rauber, Andreas 753
Regner, Peter 727
Ren, Zujie 735
Roche, Mathieu 769
Roldán-Garćıa, Maria del Mar 427, 435
Ruan, Chun 279
Ryu, YoungHa 838

Saneifar, Hassan 769
Santos, Ricardo Jorge 143

Author Index 865

Sanz, Ismael 53
Schicho, Michaela 184
Schill, Alexander 255
Schömer, Elmar 675
Schrefl, Michael 23
Sheng, Quan Z. 645
Shou, Lidan 735
Skaf-Molli, Hala 196, 317
Skopal, Tomáš 516
Soto, Michel 114
Springer, Thomas 255
Stancu-Mara, Sorin 153
Stark, Konrad 184
Sun, Weiwei 412

Takahashi, Akihiro 7
Takasu, Atsuhiro 547
Tanaka, Katsumi 855
Tessaris, Sergio 128
Thiam, Mouhamadou 611
Torres, Diego 317
Tsinaraki, Chrisa 372
Tsirakis, Nikos 68

Varadharajan, Vijay 279
Vidal, Maŕıa-Esther 471
Vieira, Marco 271
Vincent, Millist 23
Vu, Quang Minh 547

Wang, Hai 629
Wang, Hailong 443
Wang, Junhu 340
Wang, Weihong 244
Wang, Xing 830
Wang, Yongkun 777
Weiler, Gabriele 98
Wiesinger, Thomas 727
Wolf, Bernhard 255
Wu, Weili 807

Xiong, Hui 807
Xiong, Li 396
Xu, Kai 629

Yamamoto, Takehiro 855
Yin, Junfu 443
Yokota, Haruo 7
Yoshikawa, Masatoshi 364, 745, 761
Yu, Ping 412

Zhang, Fu 830
Zhang, Ji 629
Zhang, Zhuoyao 412
Zhang, Xuefei 807
Zhang, Zhao 807
Zhen, Han 348

	Title Page
	Preface
	Organization
	Table of Contents
	Invited Talk
	Management of Information Supporting Collaborative Networks
	Introduction
	Challenges in Managing the Information in CNs

	Establishing Collaborative Networks – Base Requirements
	Conclusion
	References

	XML and Databases I
	A Low-Storage-Consumption XML Labeling Method for Efficient Structural Information Extraction
	Introduction
	Related Work
	DO-VLEI Code
	ORDPATH

	C-DO-VLEICode
	Components of the DO-VLEI Code
	Definition of C-DO-VLEI Code

	Structural Information Extraction
	Using Properties of DO
	Using Code Comparison
	XPath Axis Determination Using Structural Information

	Experimental Evaluation
	Conclusions
	References

	Inclusion Dependencies in XML: Extending Relational Semantics
	Introduction
	XML Trees, Paths and Reachable Nodes
	Defining XML Inclusion Dependencies
	Extending Relational Semantics
	Reasoning about XML Inclusion Dependencies
	The Framework: Core XINDs in Complete XML Trees
	The Chase for Core XINDs in Complete Trees
	Consistency and Implication of Core XINDs in Complete Trees

	Discussion and Related Work
	References

	The Real Performance Drivers behind XML Lock Protocols
	Motivation
	The taDOM Protocol Family
	Related Work and Our Own Contribution

	Lock Manager Implementation
	Lock Services
	Cost of Lock Management
	Lower Isolation Levels Are Not Always Superior

	Prefix-Based Node Labeling Is Indispensable
	Further Performance Drivers
	Effects of Various Optimizations
	Conclusions
	References

	XML and Databases II
	XTaGe: A Flexible Generation System for Complex XML Collections
	Introduction
	Foundations of XTaGe
	Creating XML Documents from Scratch
	Transforming XML Documents

	Component-Based Framework
	Generators in XTaGe
	Transformations in XTaGe

	Prototype and Use Cases
	Generating Controlled Testing Collections

	Discussion and Conclusions
	References

	Utilizing XML Clustering for Efficient XML Data Management on P2P Networks
	Introduction
	Background and Related Work
	Paper Motivation and Contribution

	LevelEdge Representation and XEdge Clustering Algorithm
	Multi-level Bloom Filters
	Document Distribution and Index Construction
	Query Routing and Processing
	Updates Handling
	Experimental Study
	Varying Number of Peers
	Varying Number of Clusters

	Conclusions and Future Work
	References

	On the Termination Problem for Declarative XML Message Processing
	Introduction
	A Brief Introduction to Demaq
	Queues
	Rules
	Additional Features Not Covered by DemaqLite

	DemaqLiteRDL and Its Formal Semantics
	Syntax of DemaqLiteRDL vs. Demaq RDL
	Formal Semantics

	The Undecidability of the Termination Problem
	Shepherdson-Sturgis Single Register Machine (SSSRM)
	Undecidability Proof

	Related Work
	Conclusion and Outlook
	References

	Web, Semantics and Ontologies I
	Consistency Checking for Workflows with an Ontology-Based Data Perspective
	Introduction
	ObTiMA – An Ontology-Based Trial Management System
	Workflow Language
	Workflow Template
	Workflow Annotation
	Semantics of Workflow Description

	Data Inconsistencies
	Semantic Data Inconsistencies
	Data-Dependent Control Flow Inconsistencies

	Consistency Checking Algorithm
	Outline of Algorithm
	Creation of Path Ontology
	Soundness and Completeness

	Discussion
	References

	Conceptual and Spatial Footprints for Complex Systems Analysis: Application to the Semantic Web
	Introduction
	Context
	Complex Systems
	Topic Maps

	Conceptual Approach for Topic Maps Analysis
	Formal Concept Analysis and Galois Lattices
	Objects and Properties Generation
	Conceptual Distribution and Conceptual Footprint
	Automatic Objects Filtering
	Galois Lattice’s Concepts Selection

	Results
	Conceptual Footprints and Distributions
	Automatic Topic Maps Filtering
	Galois Lattice’s Concepts Selection

	Conclusion and Perspectives
	References

	Automatic Extraction of Ontologies Wrapping Relational Data Sources
	Introduction
	Formal Framework
	Relational Model, Constraints and Queries
	Ontology Language

	Ontology Extraction
	Correctness and Completeness of the Technique

	Ontology Extraction by Example
	Implementation and Case Study
	Related Work
	Conclusions and Current Work
	References

	Temporal, Spatial, and High Dimensional Databases (Short Papers)
	A Query Cache Tool for Optimizing Repeatable and Parallel OLAP Queries
	Introduction
	The Query Cache Tool
	The Query Cache Tool Data Schema
	The Query Cache Tool Algorithm

	Experimental Evaluation
	Related Work
	Conclusions and Future Work
	References

	Efficient Map Portrayal Using a General-Purpose Query Language
	Introduction
	The rasdaman Array DBMS
	Array Model and Query Language
	Array Query Processing

	Web Mapping as Database Queries
	Dynamic Compilation of WMS Queries
	Operator Node Conflation
	Dynamic CPU Compilation
	Dynamic GPU Compilation

	State of the Art
	Conclusion and Outlook
	References

	On Low Distortion Embeddings of Statistical Distance Measures into Low Dimensional Spaces
	Introduction
	Preliminaries
	The Bhattacharyya Class of Distance Measures
	Dimensionality Reduction for the Bhattacharyya Distance
	The Relaxed Triangle Inequality Technique
	Lower Bound on Distortion for Embeddings into Metric Spaces
	A Metric Embedding for the Bhattacharyya Distance

	The Kullback-Leibler Divergence
	The Asymmetry Technique
	Lower Bounds on Distortion for Embeddings into Metric Spaces
	An Embedding for the Kullback-Leibler Divergence

	The Class of Quadratic Form Distance Measures
	Conclusions
	References

	Real-Time Traffic Flow Statistical Analysis Based on Network-Constrained Moving Object Trajectories
	Introduction
	Modeling Traffic-Parameterized Road Networks and Moving Object Trajectories
	Real-Time Statistical Analysis of Traffic Parameters in NMOD-TFSA
	Trajectory Transformation Functions
	Traffic Parameter Refreshing Algorithms for ARSs and Junctions
	NMOD-TFSA Statistical Data Structure and Refreshing Method

	Performance Evaluation
	Conclusion
	References

	Invited Talk
	Data Management for Federated Biobanks
	Introduction
	WhatAreBiobanks?
	Data Integration in Biobanks
	Example Architecture – MUG Biobank
	Related Work

	Biobanking and Biomolecular Resources Infrastructure
	Use Cases in a Federation of Biobanks
	Data Sharing and Collaboration between Different Biobanks
	Lookup Data-Mart

	Working with Biobanks
	Conclusion
	References

	Web, Semantics and Ontologies II
	Peer-to-Peer Semantic Wikis
	Introduction
	Use Cases for P2P Semantic Wikis
	Related Work
	P2P Semantic Wiki Approach
	Data Model
	Editing Operations

	Correction Model
	Causality Preservation
	Intentions and Intentions Preservation
	Model for Intention Preservation

	Algorithms
	Implementation and Discussion
	Conclusion, Open Issues and Perspectives
	References

	VisiNav: Visual Web Data Search and Navigation
	Introduction
	Overview and Preliminaries
	Web Data
	Conceptual Model

	Search and Navigation Operations
	Query Operations
	Result Trees

	Architecture and Implementation
	System Architecture
	Topical Subgraphs
	Indexing and Query Processing
	Computing Prospective Choices
	Result Rendering Pipeline

	Experiments and Evaluation
	Iterative Design and Continuous Feedback
	Performance Evaluation

	Related Work
	Conclusion
	References

	Diagnosing and Measuring Incompatibilities between Pairs of Services
	Introduction
	Motivation
	Modelling Behavioural Dimension of Service Interfaces
	Detection of Differences
	Deletion of an Operation
	Modification of an Operation

	Implementation Details and Experiments
	Detection Algorithm
	Complexity of the Detection Algorithm
	Measure of Similarity
	Experimental Results

	Related Work
	Conclusion and Further Study
	References

	Database and Information System Architecture, Performance and Security (Short Papers)
	Scaling-Up and Speeding-Up Video Analytics Inside Database Engine
	Introduction
	The Problems
	The Proposed Solutions

	UDF Limitation in Supporting Video Analysis
	Support Vector Machines
	Limitations of the Current UDF Technology

	RVF and Invocation Pattern
	RVFs as Relational Operators
	RVF Invocation Patterns

	RVF Container
	Experiments
	Performance Gain in SVM Classification by Using RVF
	Support In-RVF Data-Parallel SVM Learning

	Conclusions
	References

	Experimental Evaluation of Processing Time for the Synchronization of XML-Based Business Objects
	Introduction
	Processing of Business Objects
	Structure of Business Objects
	Processing of Business Objects

	Experimental Evaluation
	Description of Experiments
	Experimental Setup
	Measurements

	Discussion
	Related Work
	Conclusions and Outlook
	References

	SimulPh.D.: A Physical Design Simulator Tool
	Introduction
	Requirements for Designing Simulator Tool
	SimulPh.D Overview
	Design Methodology of SimulPh.D
	Components of SimulPh.D

	Implementation and Validation Aspect of SimulPh.D
	Conclusion and Future Work
	References

	Protecting Database Centric Web Services against SQL/XPath Injection Attacks
	Introduction
	Security Improvement Approach
	Service Assessment
	Statement Learning
	Service Protection

	Experimental Evaluation
	Conclusion
	References

	Reasoning on Weighted Delegatable Authorizations
	Introduction
	BasicIdeas
	Syntax of Weighted Authorization Programs
	FormalSemantics
	Domain-Independent Rules
	Formal Semantics

	Conclusions
	References

	Web, Semantics and Ontologies III
	Annotating Atomic Components of Papers in Digital Libraries: The Semantic and Social Web Heading towards a Living Document Supporting eSciences
	Introduction
	Related Work
	The Living Document and Paper-of-a-Paper Ontology
	POAP and the LD within the Publishing Workflow
	Architecture and Implementation

	Discussion, Conclusions and Future Work
	References

	Web Navigation Sequences Automation in Modern Websites
	Introduction
	Models
	DOM Level 3 Events Model
	Asynchronous Functions and Scripts Execution Model

	Description of the Solution
	Recording User Events
	Identifying Elements
	Execution Phase

	Evaluation
	Related Work
	Conclusions
	References

	Supporting Personal Semantic Annotations in P2P Semantic Wikis
	Introduction
	Background: Collaborative Knowledge Building
	P2P Collaborative Knowledge Building Approach
	P2P Collaborative Knowledge Building Process
	Personal Semantic Annotations: Individuals and Categories

	P-Swooki: P2P Collaborative Knowledge Building System
	Shared Semantic Annotation Management
	Personal Semantic Annotations Management
	P-Swooki Data Model
	Personal Semantic Annotation Storage Model
	Editing Operations

	$P-Swooki$ Architecture
	Evaluation
	Conclusion and Further Work
	References

	XML and Databases III (Short Papers)
	OrdPathX: Supporting Two Dimensions of Node Insertion in XML Data
	Introduction
	The OrdPathX Labeling Scheme
	An Illustrating Example
	Detail Procedures

	Determination of Inter-node Relationships
	Implementation and Experimental Evaluation
	Conclusions and Future Work
	References

	{\tt XQSuggest}: An Interactive XML Keyword Search System
	Introduction
	Preliminaries
	Query Suggestion
	Semantic String
	Boolean Operators
	Result of Query

	Algorithm
	Notations
	The Stack-Based Algorithm
	Optimization Techniques

	Experiments
	Reduction of Irrelevant Nodes
	Search Quality

	Conclusion
	References

	A Pr\"{u}fer Based Approach to Process Top-k Queries in XML
	Introduction
	Preliminaries
	XPRAM
	Extract Longest Q-Conform Substrings
	Find Maximal Q-Conform Sequences

	Experiment Evaluation
	Conclusion
	References

	Bottom-Up Evaluation of Twig Join Pattern Queries in XML Document Databases
	Introduction
	Tree Labeling
	Main Algorithm
	Data Stream Transformation
	Main Procedure

	Conclusion
	References

	Query Rewriting Rules for Versioned XML Documents
	Introduction
	Data Model and Query Languages
	Version Graphs
	Query Languages

	Query Rewriting Rules
	Rewriting Rules Regarding Delete
	Application of Rewriting Rules
	Conclusion
	References

	Querying XML Data with SPARQL
	Introduction
	Mapping OWL to XML Schema
	Encoding of the Schema Level Mappings

	Overview of the Query Translation Process
	Variable Bindings
	Translating BGPs to XQuery
	Example

	Conclusions
	References

	Query Processing and Optimization I
	Progressive Evaluation of XML Queries for Online Aggregation and Progress Indicator
	Introduction
	Preliminaries
	Progressive Evaluation of Queries
	Assumptions
	Progressive Evaluation Framework
	Sampling from an XML Tree
	Sampling Schemes

	Running Estimates and Confidence Intervals
	Aggregation Queries

	Performance Evaluation
	Experimental Setting
	Experimental Results

	Conclusions
	References

	Dynamic Query Processing for P2P Data Services in the Cloud
	Introduction
	Related Work
	DObjects Overview
	Query Execution and Optimization
	Overview
	Execution and Optimization of Operators
	Query Migration
	Cost Metric Components

	Experimental Evaluation
	Simulation Results
	Testing of a Real Implementation

	Conclusion and Future Work
	References

	A Novel Air Index Scheme for Twig Queries in On-Demand XML Data Broadcast
	Introduction
	Related Works
	Air Index Scheme for Twig Queries
	The Basic Index Structure: Document Tree
	Pruning Redundant Structures of Document Tree
	Combining Pruned Document Tree Indexes
	Two-Tier Structure of Air Index
	Accessing XML Data on Wireless Channel

	Experimental Evaluation
	Experimental Setup
	The Performance of Pruning Algorithm
	The Performance of Combining Algorithm
	The Comparison between Two-Tier Structure and One-Tier Structure
	The Performance of Our Air Index Scheme

	Conclusions
	References

	Semantic Web and Ontologies IV (Short Papers)
	Semantic Fields: Finding Ontology Relationships
	Introduction
	OMAF: The Ontology Mapping and Alignment Framework
	Definitions
	SemFiT
	SemFiT Demo Tool

	Discussion
	Conclusions
	References

	Complete OWL-DL Reasoning Using Relational Databases
	Introduction
	DBOWL
	Storage in a Relational Database
	Tbox Retrieval
	Abox Inferences
	Inference Rules Algorithms

	Related Works
	DBOWL Performance and Completeness
	Performance
	Completeness

	Conclusions and Future Work
	References

	FRESG: A Kind of Fuzzy Description Logic Reasoner
	Introduction
	FRESG1.0 as a Fuzzy DL Reasoner
	FRESG1.0 Architecture and Design
	Tableaux Reasoner
	Fuzzy Data Type Reasoner
	Reasoning Conversion

	Testing and Performance
	Related Work
	Conclusion and Future Work
	References

	Extracting RelatedWords from Anchor Text Clusters by Focusing on the Page Designer’s Intention
	Introduction
	Related Works
	Our Approach and Implementation
	Browser-Based Crawling
	Link-Based Extraction
	Coordinate-Based Clustering
	Cluster-Based Indexing

	Experimental Evaluations
	Evaluation Based on DifferentWebsites
	Precision of RelatedWords by BBCECI Model

	Conclusions and Future Works
	References

	Invited Talk
	Evolution of Query Optimization Methods: From Centralized Database Systems to Data Grid Systems
	Introduction
	Uni-processor Relational Query Optimization
	Parallel and Distributed Query Optimization
	Query Optimization in Large Scale Data Integration Systems
	Query Optimization in Data Grid Systems
	Conclusion
	References

	Query Processing and Optimization II
	Reaching the Top of the Skyline: An Efficient Indexed Algorithm for Top-k Skyline Queries
	Introduction
	Top-k Skyline
	Background
	TKSI – An Index-Based Algorithm to Compute Top-k Skyline Queries
	Properties of the TKSI Algorithm

	Experimental Study
	Experimental Design
	Performance of the TKSI, BDTKS and BMORTKS Algorithms

	Related Work
	Conclusions and Future Work
	References

	Energy Efficient and Progressive Strategy for Processing Skyline Queries on Air
	Introduction
	Related Work
	Proposed Methods
	Sweep Space-Filling Curve with DSI
	Region-Based Pruning Algorithm
	Point-Based Pruning Algorithm
	Progressive Algorithm with Extended-DSI

	Experimental Evaluation
	Simulation Environment
	Experimental Results

	Conclusions
	References

	RoK: Roll-Up with the K-Means Clustering Method for Recommending OLAP Queries
	Introduction
	Related Work
	Personalization
	Combining OLAP and Data Mining
	Data Warehouse Model Evolution

	Personalization in Data Warehouses
	General Approach
	Adaptation-Based Personalization
	Recommendation-Based Personalization

	Illustrative Example
	Framework for Recommending OLAP Queries
	Basic Definitions
	K-Means
	Formalization
	Algorithm
	Feature Selection
	Data Warehouses Model Evolution for OLAP Personalization

	Implementation and Experiments
	Conclusion and Perspectives
	References

	Query Processing and Optimization III
	On Index-Free Similarity Search in Metric Spaces
	Introduction
	Metric Access Methods
	Motivation for Index-Free Similarity Search
	Paper Contribution

	Related Work
	Simple Sequential Scan
	Query Result Caching

	D-File
	D-Cache
	D-Cache Functionality
	Determining Dynamic Pivots
	D-Cache Implementation

	Experimental Evaluation
	The Testbed
	Indexing
	Unknown Queries
	Database Queries

	Conclusions
	References

	An Approximation Algorithm for Optimizing Multiple Path Tracking Queries over Sensor Data Streams
	Introduction
	Cost Model
	Multi-query Optimization
	Join Order Optimization
	Naïve Sharing Strategy
	Hybrid Optimization Strategy

	Performance Evaluation
	Prototyping Experiences
	Experiment Setup
	Evaluation

	Related Work
	Conclusion and Future Work
	References

	Data and Information Integration and Quality
	A Versatile Record Linkage Method by Term Matching Model Using CRF
	Introduction
	Related Work
	TermMatchingCRFModel
	Application of CRF to Term Matching Problem
	Parameter Learning Algorithm
	Label Assigning Algorithm
	Feature Functions for Term Matching Model
	Feature Vectors for Resolution by SVM

	Experiments
	Experimental Methods
	Experiments on Traditional Data Sets
	Experiments on Synthetic Data Sets

	Discussion
	Conclusions
	References

	On-the-Fly Integration and Ad Hoc Querying of Life Sciences Databases Using LifeDB
	Introduction
	A Motivating Application: BioFlow by Example
	Related Research

	LifeDB and BioFlow
	Integration Model
	The BioFlow Language Basics
	A Tour of BioFlow
	LifeDB Architecture

	Summary and Future Plans
	References

	Analyses and Validation of Conditional Dependencies with Built-in Predicates
	Introduction
	Incorporating Built-in Predicates into CFDs
	Incorporating Built-in Predicates into CINDs
	Reasoning about CFDps and CINDps
	The Satisfiability Analysis
	The Implication Analysis

	Validation of CFDps and CINDps
	Encoding CFDps and CINDps with Data Tables
	SQL-Based Detection Methods

	Related Work
	Conclusions
	References

	Data Mining and Knowledge Extraction (Short Papers)
	Discovering Sentinel Rules for Business Intelligence
	Introduction
	Problem Definition
	The FindSentinels Algorithm
	Implementation and Experiments
	Conclusion and Future Work
	References

	Discovering Trends and Relationships among Rules
	Introduction
	Preliminaries
	Proposed Approach
	Performance Study
	Experiments on Synthetic Dataset
	Experiments on Real World Dataset

	Conclusion
	References

	Incremental Ontology-Based Extraction and Alignment in Semi-structured Documents
	Introduction
	Incremental and Semantic Alignment Approach
	Ontology Description
	Extract-Align Algorithm

	Validation of Extract-Align Algorithm
	Conclusions and Future Works
	References

	Tags4Tags: Using Tagging to Consolidate Tags
	Introduction
	A Vision to Expand the Scope of Taggable Objects
	Prototype and Implementation
	Evaluation
	Methodology
	Results

	Discussion and Related Work
	Related Work
	Findings and Results

	Conclusions and Future Work
	References

	Data and Information Streams
	Detecting Projected Outliers in High-Dimensional Data Streams
	Introduction
	Concepts and Definitions
	Data Space Partitioning
	Data Synopsis

	Stream Projected Outlier Detector (SPOT)
	Learning Stage of SPOT
	Multi-Objective Genetic Algorithm (MOGA)
	Detection Stage of SPOT

	Experimental Results
	Scalability Study
	Effectiveness Study

	Related Work
	Conclusions
	References

	Significance-Based Failure and Interference Detection in Data Streams
	Introduction
	Related Work
	Traffic Modelling in Intermittent Data Streams
	Definition of the Model
	Rationale
	An Example

	Failure Detection
	Encoding Information within the Poisson Noise
	Experimental Results
	Conclusions
	References

	Incremental and Adaptive Clustering Stream Data over Sliding Window
	Introduction
	Related Work
	Problem Formulation
	Algorithm Description
	Initial Phase
	Incremental Phase
	Expiring Phase

	Experimental Results
	Experimental Setup
	Clustering Quality Evaluation
	Comparison with CluStream

	Conclusions
	References

	Data Mining Algorithms
	Alignment of Noisy and Uniformly Scaled Time Series
	Introduction
	Related Work
	Calculation of Offset and Scaling Based on Fast Fourier Transform (FFT)
	Dynamic Time Warping (DTW)
	Shotgun Alignment

	The Data Series
	Definition of the Alignment-Problem
	Uniqueness of the Fingerprints

	Algorithms
	Naïve Alignment (Without and With FFT)
	Calculation of the Scaling in the Frequency Domain
	Bound Dynamic Time Warping with Regression Analysis
	Shotgun Analysis (Without and With Regression Analysis)
	Alternative Quality Criteria

	Experiments
	Determination of the Horizontal Scaling
	Recognition of Head and Tail Scrap
	Searching a Database for Fitting Pairs of Fingerprints

	Conclusions and Future Work
	References

	Extracting Decision Correlation Rules
	Introduction and Motivation
	Related Work
	Correlation Rules
	Lectic Order

	The LHS-Chi2 Algorithm
	Contingency Vectors
	Decision Correlation Rules

	Experimental Analysis
	Conclusion and Future Work
	References

	Maintaining the Dominant Representatives on Data Streams
	Introduction
	Background
	Problem Definition
	Challenges for CSQs

	Preliminaries
	Duality and Arrangement
	Double-Connected-Edge-List (DCEL)

	Using DCEL to Answer BCSQ
	Skyline vs. Top-k
	Construct Arrangement to Index Points in the Sliding Window
	Answer Basic Convex Skyline Query

	Handle DCSQ and RCSQ
	Global Convex Skyline Query Processing
	Answer DCSQ
	Answer Reverse Convex Skyline Query

	Performance Evaluation
	Effectiveness
	Efficiency

	Related Work
	Conclusion
	References

	Data and Information Modelling
	Modeling Complex Relationships
	Introduction
	Related Work
	Our Method
	Hierarchies and Inheritance
	Conclusion
	References

	Intuitive Visualization-Oriented Metamodeling
	Introduction
	Motivation and Requirements for a Visualization-Oriented Meta- and Instance Modeling Tool
	Visual Reification
	Implementation
	Related Work
	Conclusion
	References

	Information Retrieval and Database Systems (Short Papers)
	PISA: Federated Search in P2P Networks with Uncooperative Peers
	Introduction
	Related Work
	Structure of PISA
	Acquiring Resource Description of Uncooperative Peers
	Query Processing in PISA
	Experimental Results
	Conclusion
	References

	Analysis of News Agencies’ Descriptive Features of People and Organizations
	Introduction
	Related Work
	Extraction of Descriptive Feature
	SVO Structure
	Extracting the Characteristic Description
	Presentation of Characteristic Descriptions

	Experimental Results
	Conclusion
	References

	Analyzing Document Retrievability in Patent Retrieval Settings
	Introduction
	Measuring Retrievability
	Standard Retrievability Measurement
	Limitations of Standard Retrievability Measure
	Query Generation Techniques
	Retrievability Measurement Using Relevant Queries

	Experiments
	Experiment Set-Up
	Retrievability Results

	Conclusions
	References

	Classifying Web Pages by Using Knowledge Bases for Entity Retrieval
	Introduction
	Related Work
	Mapping of Web Pages and Entities
	PE Correspondence Degree
	Mapping of Web Pages and Entities

	Classification of Web Pages
	PEC Graph
	Classification by PC Correspondence Degree

	Experimental Results
	Experiment of Mapping Web Pages and Entities
	Experiment on Classification

	Conclusion
	References

	Terminology Extraction from Log Files
	Introduction
	Context
	Terminology Extraction from Log Files
	Related Work
	{\sc Exterlog}

	Experiments
	POS-Candidates vs. Bigrams
	Validation by Experts
	Exterlog vs. TermExtractor

	Conclusion and Future Work
	References

	Database and Information System Architecture and Performance
	Evaluating Non-In-Place Update Techniques for Flash-Based Transaction Processing Systems
	Introduction
	Issue of Flash Memory for Transaction Processing
	NIPU Techniques on Flash-Based Transaction Processing System
	Experimental Evaluation
	Experiment Setup
	Transaction Throughput
	IO Performance
	CPU Utilization
	Disk Buffer Cache
	Influence of Garbage Collection

	Related Work
	Non-In-Place Update Techniques
	Flash-Based Technologies

	Conclusion and Future Work
	References

	A Relational Encoding of a Conceptual Model with Multiple Temporal Dimensions
	Introduction
	An Account of Existing Temporal Relational Models
	A Relational Model with Four Temporal Dimensions
	Temporal Primary Keys and Functional Dependencies
	Implementation
	Mapping CGG Schemas into the Temporal Model
	References

	Three Approximation Algorithms for Energy-Efficient Query Dissemination in Sensor Database System
	Introduction
	Background
	RelatedWorks
	Our Contribution

	Preliminaries
	Algorithm for SDC Problem
	Two-Step SDC Algorithm
	Best Candidate Path Algorithm (BCP) for SDC Problem

	Best Efficiency Ear Algorithm (BEE) for ($2,m$)-SDC Problem
	Algorithm Description
	Performance Analysis

	Performance Evaluation
	Result for BCP Algorithm
	Result for BEE Algorithm
	Summary

	Conclusion
	References

	Query Processing and Optimization IV (Short Papers)
	Top-k Answers to Fuzzy XPath Queries
	Introduction
	Top-k Fuzzy XPath Queries
	Query Evaluation
	Incremental Evaluation

	Conclusions and Future Work
	References

	Deciding Query Entailment in Fuzzy Description Logic Knowledge Bases
	Introduction
	$f-\mathcal{ALCN}$
	Querying Entailment Problems
	Fuzzy Querying Language
	Deciding Query Entailment

	Conclusions
	References

	An Optimization Technique for Multiple Continuous Multiple Joins over Data Streams
	Introduction
	Related Work
	Optimization Technique
	Approximation for Optimized Globally Shared Query Execution Plans
	Window Update and Routing Technique for Join Operation Result

	Experimental Evaluation
	Conclusion
	References

	Top-k Queries with Contextual Fuzzy Preferences
	Introduction
	Fuzzy Predicates and Queries
	Fuzzy Predicates
	Fuzzy Queries

	Top-k Queries with Contextual Fuzzy Predicates
	Queries with One Level of Context
	Queries with Several Levels of Context

	Conclusion
	References

	Reranking and Classifying Search Results Exhaustively Based on Edit-and-Propagate Operations
	Introduction
	Exhaustive Search
	Supporting an Exhaustive Search by Using Edit Operations
	Improve Accuracy of Search Results
	Classify Search Results

	Design and Implementation
	Experiments
	Discussions
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

