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Abstract. Many algorithmic methods in mathematics can be seen as
constructing canonical reduction systems for deciding membership prob-
lems. Important examples are the Gauss elimination method for linear
systems, Euclid’s algorithm for computing greatest common divisors,
Buchberger’s algorithm for constructing Gröbner bases, or the Knuth-
Bendix procedure for equational theories. We explain the basic concept
of a canonical reduction system and investigate the close connections
between these algorithms.

1 Introduction

The biological theory of evolution exhibits many instances of similar solutions
having been developed for similar problem; examples are the wings of insects,
birds, and bats, or the different realizations of light sensitive organs such as eyes.
The same phenomenon can be observed in the development of the sciences, and
also in particular in mathematics. Many algorithmic methods in different fields
of mathematics, e.g. linear algebra, commutative algebra, or logic, can be seen
as constructing canonical reduction systems for deciding membership problems.
Important examples are the Gauss elimination method for linear systems, Eu-
clid’s algorithm for computing greatest common divisors, Buchberger’s algorithm
for constructing Gröbner bases, or the Knuth-Bendix procedure for equational
theories. Here we continue the work started in [4], where we have demonstrated
the relations between Buchberger’s algorithm for the construction of Gröbner
bases and the Knuth-Bendix procedure for the construction of canonical term
rewriting systems. We explain the basic concept of canonical reduction systems
and investigate the close connections between these algorithms.

1.1 Canonical Reduction Relations and Systems

Canonical reduction systems (see also [5], Chapter 8) are supposed to solve the
following kind of problem:

• given a mathematical structure S and a congruence relation ∼= on S (i.e. ∼=⊆
S2) defined by a finite set of generators G = {(li, ri) | li ∼= ri for 1 ≤ i ≤ n}
(i.e. ∼= = ∼=G),
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• we want to construct a new set of generators Ĝ for this congruence relation,
which makes it easy to decide, for any given s, t ∈ S, whether s ∼=G t.

In order to solve such decision problems we introduce a reduction relation
−→G ⊆ S × S. So, to start with, −→G is simply a binary relation on S. But
we will want this relation to have certain properties. Let us first introduce the
following notation: for any binary relation −→ we denote

by ←− the inverse,
by −→∗ the reflexive transitive closure, and
by ←→∗ the reflexive symmetric transitive closure

of −→. We will want −→G to have the following properties:

• ∼=G = ←→∗
G , i.e. the symmetric reflexive transitive closure of −→G is equal

to the congruence generated by G, and
• −→G is terminating or Noetherian, i.e. every reduction chain

s0 −→G s1 −→G · · · is finite.

In addition to being Noetherian, the reduction relation −→G might also be
Church-Rosser, i.e. s ←→∗

G t implies the existence of a common successor u
s.t. s −→∗

G u←−∗
G t. In particular this means that two irreducible elements s, t

are congruent if and only if they are syntactically equal.
In case−→G is both Noetherian and Church-Rosser, we call−→G a canonical

reduction relation and we call G a canonical reduction system for the
congruence ∼=.

A canonical reduction system yields the following decision procedure for the
underlying congruence ∼= = ←→∗

G: in order to decide whether s ∼= t for s, t ∈ S,

• reduce s and t to (any) irreducible s′ and t′ s.t.

s = s0 −→G s1 −→G · · · −→G sm = s′,
t = t0 −→G t1 −→G · · · −→G tn = t′

(s′ and t′ are called normal forms of s and t, respectively);
• check whether s′ = t′; if so then s ∼=G t, otherwise not.

1.2 Generating Canonical Reduction Systems

In general a given set of generators G (or its corresponding reduction relation
−→G) for a congruence ∼= will not have the Church-Rosser property. So our goal
now becomes to transform G into an equivalent canonical system Ĝ. It turns out
that the Church-Rosser property is equivalent to the simpler property of con-
fluence, meaning that if s, t have a common predecessor in finitely many steps,
s ↑∗G t, then they also have a common successor, s ↓∗G t. Furthermore, under
the assumption of Noetherianity, confluence is equivalent to local confluence,
meaning that if s, t have a common predecessor in a single step, s ↑G t, then they
also have a common successor, s ↓∗G t. In many interesting cases, such as the
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algorithms discussed in this paper, the test for local confluence can be reduced
to the test of finitely many critical pairs. These are pairs (s, t) s.t. s ↑G t,
and all other such situations can be regarded as specializations of critical pairs.
So if we can prove that for all critical pairs there are common successors, then
we have a canonical reduction system. Otherwise we take normal forms s′ 
= t′

of s, t, respectively, and add the pair (s′, t′) to G. Since obviously s′ ←→∗
G t′,

we also have s′ ∼= t′; so the addition of this new pair to G will not violate the
requirement ∼= =←→∗

G. Of course we have to ensure that by this modification
of the reduction system G the Noetherianity of −→G is preserved. In general
this is hard, indeed undecidable in some cases such as term rewriting systems
(cf. [1],[2]). In any case, we keep considering critical pairs, adding new pairs to
the set of generators G, and in this way creating more critical pairs. So the
question is whether this process will ever terminate and deliver a canonical re-
duction system. Indeed, for the cases of Gauss elimination, Euclid’s algorithm,
and Gröbner bases, such a canonical system will finally be produced. But in the
case of the Knuth-Bendix procedure for term rewriting systems, the completion
process might not yield such a canonical system in finitely many steps.

Let us now demonstrate this approach for the cases listed above.

2 Gauss Elimination in Linear Algebra

We consider the following setting:

• the mathematical structure S is a finite dimensional vector space V over a
field K; w.l.o.g. V = Kn;
• as the generating elements for the congruence we take a basis B for a sub-

vectorspace W = span(B);
• now the equivalence relation is v1

∼=W v2 ⇐⇒ v1 − v2 ∈ W ; and ∼=W is
generated by b ∼=W 0 for b ∈ B.

The central problem then is to decide whether, for given v ∈ V ,

v ∼=W 0 , i.e. v ∈ span(B) = W .

Every basis B of W generates this congruence; simply let v be congruent w.r.t.
B to w if v − w is a linear combination of B. We write ∼=B for this congruence,
and we observe that ∼=B=∼=W for every basis B of W .

If the basis B (considered as lines of a matrix) is triangular, then this central
problem becomes easily decidable. The triangulation or elimination method of
Gauss transforms B into such a triangular basis. Let us see that what Gauss
elimination does is exactly the construction of a canonical reduction system.

The basis B induces a reduction relation −→B on V as follows:

• for a non-zero vector b = (0, . . . , 0, bi, . . . , bn) with bi 
= 0 we say lead(b) = i;
• now the reduction relation −→b by a single vector b is

c = (c1, . . . , ci 
= 0, . . . , cn) −→b c− ci

bi
· b
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and for a finite set B we say

c −→B d ⇐⇒ ∃b ∈ B : c −→b d .

It is not hard to see that for every B the reduction relation−→B has the following
properties:

• −→B is terminating
• v ←→∗

B w if and only if v ∼=B w.

But −→B in general is not confluent. Consider the following example: let

B = {(1, 0, 0)
︸ ︷︷ ︸

b1

, (1, 1, 1)
︸ ︷︷ ︸

b2

}

be a basis for a subvectorspace W = span(B) of Q3. Then

w1 = (0, 2, 2)←−b1 (1, 2, 2) = v −→b2 (0, 1, 1) = w2

and both reduction results are irreducible. So w1 and w2 are congruent, w1
∼=B

w2, but this cannot be determined by reduction w.r.t B.
So what can we do in order to transform −→B into a confluent reduction

relation? Well, according to Gauss elimination, we consider the elements of B as
lines in a matrix (also denoted by B) and transform the matrix

B =

⎛

⎝

b1

· · ·
bm

⎞

⎠

to row echelon form. This means we look at situations, where the component of
a vector can be reduced by (at least) two different generators bj and bk. Clearly
we can simplify this situation to a situation of critical pairs, where a unit vector

ei = (0, . . . , 0, 1
︸︷︷︸

i−th position

, 0, . . . , 0) ,

can be reduced by two different generators bj and bk. This means that lead(bj) =
i = lead(bk), and

ei − bj ←−bj ei −→bk
ei − bk

(here we have assumed, w.l.o.g., that the components of both bj and bk at their
leading positions are 1). These reduction results are congruent w.r.t. ∼=B, so their
difference bm+1 := bj − bk is in W . If bm+1 = 0, then there was no divergence
anyway; otherwise we add bm+1 to the basis B, thereby enforcing this particular
divergence of reduction to converge:

either ei − bj −→bm+1 ei − bk

or ei − bk −→bm+1 ei − bj

Observe that this represents exactly a step in the formation of the row echelon
form of the matrix (basis) B.
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This process terminates and yields a set of generators B̂ s.t.

• ←→∗
B = ∼=W = ←→∗

B̂
,

• −→B̂ is both Noetherian and confluent.

So we can decide the membership problem for W by reduction w.r.t. B̂.
For our example above this means the following:

B = {b1, b2} : b1 = (1, 0, 0)
b2 = (1, 1, 1)
−−− −−−−−
b3 = (0, 1, 1)

→ B̂ = {b1, b2, b3}

Now B̂ spans the same vector space W , and we can use the reduction w.r.t.B̂
to decide membership in W :

(1, 2, 2) −→b1 (0, 2, 2) −→b3 (0, 0, 0)
(1, 2, 2) −→b2 (0, 1, 1) −→b3 (0, 0, 0)

The vector (1, 2, 2) is indeed in W .
In the end we can clean up the basis by keeping only one element with the

same lead; in a confluent system we would never need the others, because in
every reduction in which we might want to use one of these basis elements, we
might instead use the one we keep. Such an interreduced basis B̂ is basically the
Hermite matrix associated to B.

3 Euclid’s Algorithm for gcds of Univariate Polynomials

We consider the following setting:

• the mathematical structure S is K[x], the ring of polynomials over a field K;
• as the generating elements for the congruence we take two (or finitely many)

non-zero polynomials F = {f1(x), f2(x)} ⊂ K[x], generating an ideal I =
〈F 〉 in K[x]; F is called a basis for the ideal I;
• now the equivalence relation is h1 ≡I h2 ⇐⇒ h1 − h2 ∈ I .

The central problem then is to decide whether, for given h ∈ K[x],

h ≡I 0 , i.e. h ∈ 〈F 〉 = I .

If g is the greatest common divisor (gcd) of f1 and f2, then 〈g〉 = I = 〈f1, f2〉,
and the central question can be easily decided as

h ≡I 0 ⇐⇒ g|h .

The Euclidean algorithm computes exactly this gcd, by a sequence of remainders.
W.l.o.g. assume that the degree of f1 is at least as high as the degree of f2. We
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let r1 := f1, r2 := f2 be the first two remainders in our sequence; an ri+2 is then
simply the remainder of ri on division by ri+1. Throughout the algorithm we
always have

gcd(f1, f2) = gcd(ri, ri+1) .

It is easy to see that this process of remaindering must terminate with, say,
rk 
= 0, but rk+1 = 0. Then we have

gcd(f1, f2) = gcd(rk, 0) = rk .

Throughout the Euclidean algorithm the ideal I remains unchanged, since all
these remainders clearly are in I.

An ideal basis F induces a reduction relation −→F on K[x] as follows:

• for a non-zero polynomial f(x) = fnxn + · · · f1x + f0 with fn 
= 0 we say
lead(f) = deg(f) = n;
• now the reduction relation −→f by a single polynomial f is

p = pmxm + · · ·+ pi
︸︷︷︸

�=0

xi + · · ·+ p0 −→f p − pi

fn
xi−nf(x), if i ≥ n

and for a finite basis F we say

p −→F q ⇐⇒ ∃f ∈ F : p −→f q .

It is not hard to see that for every F the reduction relation −→F has the
following properties:

• −→F is terminating, and
• p←→∗

F q if and only if p ≡I q.

But −→F in general is not confluent. Consider the following example: let

F = {x5 + x4 + x3 − x2 − x− 1
︸ ︷︷ ︸

f1

, x4 + x2 + 1
︸ ︷︷ ︸

f2

}

be a polynomial basis for the ideal I = 〈f1, f2〉. Then

−x3 + x2 + x + 2
︸ ︷︷ ︸

q1

←−f2 −x4 − x3 + x + 1←−f1 x5 − x2

︸ ︷︷ ︸

p

−→f2 −x3 − x2 − x
︸ ︷︷ ︸

q2

and both reduction results are irreducible. So q1 and q2 are congruent, q1 ≡I q2,
but this cannot be determined by reduction w.r.t. F .

So what can we do in order to transform −→F into a confluent reduction
relation? Well, we consider terms of least degree which can be reduced by two
different polynomials. All other diverging reductions can be seen as derived from
such divergences. W.l.o.g. we may assume that all polynomials in our remainder
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sequence are monic; instead of the actual remainder, we simply take its monic
associate. If di = deg(fi), then xdi can be reduced both by fi and fi+1:

xdi − fi ←−F xdi −→F xdi − xdi−di−1 · fi+1 .

If these reduction results are the same, then this divergence of reduction con-
verges, and we are done. Otherwise we add the difference fi−xdi−di+1fi+i to the
basis; this obviously leaves the ideal I unchanged. In fact we might as well reduce
both sides to normal forms, and then add their difference to the basis. What we
have done is simply a step in the division algorithm. In this way we consider all
pairs of polynomials in the basis (it can be demonstrated that considering sub-
sequent remainders is sufficient); i.e. we compute a remainder sequence starting
with f1, f2:

F = {f1, f2} : f1

f2

−−−
f3 := rem(f1, f2)
...
fk (
= 0)
fk+1 (= 0) F̂ = {f1, f2, . . . , fk}

This process terminates and yields a set of generators F̂ containing fk =
gcd(f1, f2). In fact we have

• ←→∗
F = ≡I = ←→∗

F̂
, and

• −→F̂ is both Noetherian and confluent.

So we can decide the membership problem for I by reduction w.r.t. F̂ :

h ∈ 〈F 〉 ⇐⇒ fk|h ⇐⇒ h −→F̂ 0 .

For our example above this means the following:

F = {f1, f2} : f1 = x5 + x4 + x3 − x2 − x− 1
f2 = x4 + x2 + 1
−−− −−−− −
f3 = x4 − x2 − 2x− 1 = f1 − x · f2

f4 = x2 + x + 1 = 1
2 (f2 − f3)

f5 = 0 = f3 − (x2 − x− 1)f4

→ F̂ = {f1, . . . , f4}

Now F̂ generates the same ideal I, and we can use the reduction w.r.t. F̂ to
decide membership in I:

0←−f3 −x3 + x2 + x + 2←−f1,f2 x5 − x2 −→f2 −x3 − x2 − x −→f3 0 .

So x5 − x2 ∈ I.
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In the end we can again interreduce the elements in the confluent reduction
system F̂ . Whenever we might want to use a basis polynomial different from fk

in a reduction, we might as well use fk. So since our reduction system is now
confluent, we don’t need the other basis polynomials any more; we simply keep
F̂ = {fk}.

4 Gröbner Bases in Multivariate Polynomial Rings

We consider the following setting:

• the mathematical structure S is K[x1, . . . , xn], the ring of multivariate poly-
nomials over a field K;
• as the generating elements for the congruence we take finitely many non-zero

polynomials F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] generating an ideal I = 〈F 〉
in K[x1, . . . , xn];
• now the equivalence relation is h1 ≡I h2 ⇐⇒ h1 − h2 ∈ I .

The central problem then is to decide whether, for given h ∈ K[x1, . . . , xn],

h ≡I 0 , i.e. h ∈ 〈F 〉 = I .

As in the case of univariate polynomials we would like to introduce a reduction
w.r.t. a basis F , and then add certain polynomials to the basis in order to make
the corresponding reduction relation confluent. Such an ideal basis we will then
call a Gröbner basis. Buchberger’s algorithm for the construction of Gröbner
bases does exactly that.

For introducing a reduction relation −→F , we first have to linearly order the
multivariate terms xe1

1 · · ·xen
n . In the univariate case we did not have any choice;

the only reasonable ordering is induced by the degree. But in the multivariate
case we have much more freedom. We need to choose an ordering respecting the
multiplicative structure of the set of terms, called an admissible ordering; i.e.

– 1 = x(0,...,0) ≤ s for every term s, and
– if s ≤ t and u any term, then s · u ≤ t · u.

There is an abundance of such admissible orderings; e.g. lexicographic order-
ings, graduated lexicographic orderings, and many others. Admissible orderings
are completely classified. Once we have chosen an admissible ordering < of the
terms, every non-zero polynomial f has a well-defined leading term lead(f)
(the highest term in the ordering appearing with non-zero coefficient in f) and
a non-zero leading coefficient lc(f), the coefficient of lead(f). By le(f) we
denote the exponent (vector) of lead(f).

Now we are ready for defining the reduction relation −→F on K[x1, . . . , xn]
(for the fixed admissible term ordering <): for a non-zero polynomial

p = ple(p)x
le(p) + · · ·+ pex

e=(e1,...,en) + · · · , with pe 
= 0

we define p −→f p− pe

lc(f)
xe−le(f)f(x), if e−le(f) ∈ Nn
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and p −→F q ⇐⇒ ∃f ∈ F : p −→f q .

Again, as in the univariate case, one can prove that −→F has the following
properties:

• −→F is terminating, and
• p −→∗

F q if and only if p ≡I q.

But −→F in general is not confluent. Consider the following example: let

F = {x2y2 + y − 1
︸ ︷︷ ︸

f1

, x2y + x
︸ ︷︷ ︸

f2

}

be a basis for the polynomial ideal I = 〈f1, f2〉. Then

q1 = −y + 1←−f1 p = x2y2 −→f2 −xy = q2

and both results are irreducible. So q1 and q2 are congruent, q1 ≡F q2, but this
cannot be determined by reduction w.r.t. F .

So what do we do in order to transform −→F into a confluent reduction rela-
tion? Well, as in the previous cases (Gauss elimination, Euclidean algorithm) we
investigate the “smallest” situations in which something can be reduced in es-
sentially two different ways. We look at terms xe which can be reduced w.r.t. two
different generators fj , fk. This means that lead(fj)|xe and also lead(fk)|xe. The
(finitely many) smallest such situations occur when xe = lcm(lead(fj), lead(fk))
(least common multiple), and all the other cases are instantiations of such basic
situations (see [5] for details). We reduce xe both modulo fj and fk, getting
some gj and gk, respectively. gj and gk may be further reduced modulo −→F to
normal forms g′j and g′k, respectively:

g′j ←−∗
F gj ←−fj xe = lcm(lead(fj), lead(fk)) −→fk

gk −→∗
F g′k

Actually we reduce gj − gk, the so-called S-polynomial of fj and fk, to a
normal form h. If h = 0, then this divergence of reduction converges, and we are
done. Otherwise we observe that h ∈ I. So if we add h to the basis F , then this
divergence can be resolved, and the ideal remains unchanged.

Of course, now we have a new element in the basis, and there are more S-
polynomials to be considered. But this process terminates and yields a set of
generators F̂ s.t.

• ←→∗
F = ≡I = ←→∗

F̂
, and

• −→F̂ is both Noetherian and confluent.

So we have computed a Gröbner basis F̂ for the ideal I w.r.t. the term ordering
<. With the Gröbner basis F̂ for I, we can decide the membership problem for
I by reduction w.r.t. F̂ . If in the end we interreduce the elements in F̂ , we get
a minimal Gröbner basis for the ideal I.
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For our example above this means the following. We choose an admissible
term ordering, say graduated lexicographic with x < y. Then we consider S-
polynomials and reduce them to normal forms. This leads to the following se-
quence of polynomials being added to the basis:

F : f1 = x2y2 + y − 1
f2 = x2y + x
−−− −−−−−
f3 = −xy + y − 1 = f1 − y · f2

f4 = y − 1 = f2 + (x + 1)f3

f5 = −x = f3 + (x− 1)f4

→ F̂ = {f1, . . . , f5}

Now F̂ generates the same ideal I, and we can use the reduction w.r.t. F̂ to
decide membership in I:

x2y2 −→f1 −y + 1 −→f4 0
x2y2 −→f2 −xy −→f5 0

So x2y2 ∈ I. The minimal Gröbner basis for I is {x, y − 1}.

5 The Knuth-Bendix Procedure for Term Rewriting
Systems

We consider the following setting:

• a term algebra T (Σ, V ) over a signature Σ and variables V ;
• E = {si = ti | i ∈ I} a set of equations over T generating an equational

theory =E ;
• now the equivalence relation is s ≡E t ⇐⇒ s = t ∈=E .

The equational theory =E is the set of all equations which can be derived from
E by reflexivity, symmetry, transitivity, substitution, and replacing equals by
equals; confer [1], [2].

The central problem then is to decide whether, for given s, t ∈ T (Σ, V ),

s =E t .

We define a reduction relation on T (Σ, V ) by orienting the equations in E

ei : si = ti

in one of the ways (according to a reduction ordering)

ri : si −→ ti or ti −→ si

(w.l.o.g. assume ri : si −→ ti). This leads to a so-called rewrite rule system
(RRS)

R = {ri | i ∈ I} .
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The reduction −→R works in the following way: if there is a substitution σ
and a position p in the term u, such that σ applied to si equals the subterm of
u at position p, i.e. σ(si) = u|p, then this subterm of u can be replaced by σ(ti):

u −→R v ⇐⇒ ∃p, i, σ : u|p = σ(si), and v = u[p← σ(ti)] .

Here u[p ← σ(ti)] means that in u we replace the subterm at position p by the
term σ(ti).

In general the termination property is undecidabel for rewrite rule systems.
But there are several sufficient conditions; e.g. si > ti w.r.t. a reduction ordering.
For the following let us assume that the rules can be ordered w.r.t. such a
reduction ordering. Then −→R has the following properties:

• −→R is terminating, and
• ←→∗

R = =E .

But −→R in general is not confluent. Consider the example of group theory; i.e.
let G consist of the axioms

G = { (1) 1 · x = x,
(2) x−1 · x = 1,
(3) (x · y) · z = x · (y · z) } ,

which are oriented (lexicographic path ordering with −1 > · > 1) to give the
rewrite rule system

R = { (1) 1 · x −→ x,
(2) x−1 · x −→ 1,
(3) (x · y) · z −→ x · (y · z) } .

Then
x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

Both results are irreducible, they are congruent modulo =E, but they have no
common successor.

So again the goal is to transform the RRS R into an equivalent confluent RRS
R̂,

←→∗
R = ←→∗

R̂
.

As in the previous cases (Gauss elimination, Euclidean algorithm, Gröbner bases)
we investigate “smallest” situations in which a term can be reduced in essentially
two different ways. Towards this end, we consider (not necessarily different) rules

r : s −→ t , r′ : s′ −→ t′ ,

a most general unifier (substitution) σ, and a position p in the term s (s|p not
being a variable) s.t.

σ(s′) = σ(s|p) .
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In this case we get the following divergence in reduction

v = σ(t)←−r σ(s) = u −→r′ σ(s[p← t′]) = v′ .

The pair of terms (v, v′) is called a critical pair of the RRS R. The components
of the critical pair (v, v′) are obviously equal modulo =E ; so are normal forms
w and w′ to which v and v′ can be reduced, respectively. If w 
= w′, then we try
to orient them into a new rule w −→ w′ or w′ −→ w, which does not violate the
termination property of the RRS.

In contrast to the previous cases (Gauss elimination, Euclidean algorithm,
Gröbner bases), there is no guarantee that this completion process will terminate.
Critical pairs will lead to new rules, which lead to new critical pairs, which will
lead to new rules, and so on. Also we might get stuck in a situation where the
normal forms of a critical pairs, w and w′, cannot be oriented into a rule without
violating the termination property. But if this process terminates and yields a
RRS R̂ then

• ←→∗
R = =E = ←→∗

R̂
, and

• −→R̂ is both Noetherian and confluent.

So we can decide the equality modulo E by reduction w.r.t. R̂. In the end we
can interreduce the RRS R̂ and so get a minimal RRS for =E .

For the example of group theory this means that because of

x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

we add the new rule
(4) x−1 · (x · y) −→ y .

We continue to consider other critical pairs. For the case of group theory this
completion process (according to Knuth and Bendix, cf. [3]) actually terminates
and yields the following minimal rewrite rule system:

(1) 1 · x −→ x,
(2) x−1 · x −→ 1,
(3) (x · y) · z −→ x · (y · z),
(4) x−1 · (x · y) −→ y,
(5) x · 1 −→ x,
(6) 1−1 −→ 1,
(7) (x−1)−1 −→ x,
(8) x · x−1 −→ 1,
(9) x · (x−1 · y) −→ y,

(10) (x · y)−1 −→ y−1 · x−1.

So the equational theory of pure group theory can be decided by reduction
modulo this RRS. Also for many other equationally definable algebraic structures
there are canonical rewrite rule systems.
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6 Conclusion

We have seen that several key algorithms in constructive algebra and logic ac-
tually are based on the same idea; namely the formation of critical pairs and
the completion of a reduction relation. Recognition of these similarities might
lead to a better understanding of algorithms and perhaps to new application
areas. And mathematics can be seen as a more unified and interrelated field of
knowledge.
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