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Abstract. This tutorial provides an overview of the process algebra ACP.

1 Introduction

The term “process algebra” was coined in 1982 by Jan Bergstra and Jan Willem Klop,
originally in the sense of universal algebra, to refer to a structure satisfying a particular
set of axioms. Nowadays it is used in a more general sense for algebraic approaches to
describe and study concurrent processes. In the late 70’s, Robin Milner and Tony Hoare
largely independently developed the process algebras CSS and CSP, respectively. In the
early 80’s, Bergstra and Klop developed a third process algebra called ACP.

System behaviour generally consists of processes and data. Processes are the control
mechanisms for the manipulation of data. While processes are dynamic and active, data
is static and passive. System behaviour tends to be composed of several processes that
are executed concurrently, where these processes exchange data in order to influence
each other’s behaviour. Fundamental to process algebra is a parallel operator, to break
down systems into their concurrent components. A set of equations is imposed to derive
whether two terms are behaviourally equivalent. In this framework, non-trivial proper-
ties of systems can be established in a rigorous and elegant fashion. For example, it may
be possible to equate an implementation of a system to the specification of its required
input/output relation. A variety of automated tools have been developed to facilitate the
derivation of such properties in a process algebraic framework.

Abstract data types (see, e.g., [5]) offer a framework in which also the data can be
specified by means of equations. μCRL [10] is a specification language, supported by
verification tools, that combines process algebra with equational specification of data
types. In this tutorial we will however mainly focus on processes.

Applications of process algebra exist in diverse fields such as safety-critical sys-
tems, network protocols, and biology. In the educational vein, process algebra has been
recognised to teach skills to deal with complex concurrent systems, by representing and
reasoning about such systems in a mathematically clear and precise manner.

Recommended textbooks are [15] for CCS, [17] for CSP, and [8] for ACP. Jos Baeten
[2] presented a detailed account on the history of process algebra. Here I will focus on
the process algebra ACP; this tutorial is based on [8].

This tutorial is structured as follows. Section 2 explains the general framework. Sec-
tion 3 introduces the basic process algebra BPA. Section 4 extends the framework with
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parallelism, communication and encapsulation. Section 5 adds recursion to express in-
finite behaviour. Section 6 introduces the silent step τ , and abstraction operators to hide
internal behaviour. Finally, Section 7 presents a process algebraic specification and ver-
ification of the Alternating Bit Protocol.

2 The General Framework

Process graphs As starting point, we assume that system behaviour is represented as
a process graph. It basically consists of a set of nodes together with a set of labelled
edges between these nodes. A node represents a system state, while a labelled edge
represents a transition from one system state to the next. That is, if the process graph
contains an edge s

a→ s′, then the process graph can evolve from state s into state s′ by
the execution of action a. One state is selected to be the root state, i.e., the initial state
of the process.

Behavioural equivalences. The states in process graphs are distinguished by some
behavioural equivalence. For example, such an equivalence may relate two process
graphs if and only if their root states can execute exactly the same strings of actions.
This tutorial focuses on bisimilarity, which is the finest of all known process equiv-
alences. Bisimilarity requires not only that two process graphs can execute the same
strings of actions, but also that they have the same branching structure. Bisimilarity is
widely recognised as a well-suited semantic notion when reasoning about concurrent
processes.

Process algebra terms. For the purpose of mathematical reasoning it is often convenient
to represent process graphs algebraically in the form of terms. Process algebra focuses
on the specification and manipulation of process terms as induced by a collection of
operator symbols. This symbolic notation facilitates manipulation by a computer. Most
process algebras contain basic operators to build finite processes, communication oper-
ators to express concurrency, and some notion of recursion to capture infinite behaviour.
Moreover, it is convenient to introduce two special constants: the deadlock enables us
to force actions into communication, while the silent step allows us to abstract away
from internal computations.

Structural operational semantics. Transition rules, which are inductive proof rules, pro-
vide each process term with its intended process graph (see, e.g., [1]). We are going to
present the process algebra ACPτ with recursion in several steps, starting from the ba-
sic process algebra BPA. With every extension we need to check that it is conservative,
meaning that the transition rules for the new operators do not influence the behaviour of
the “old” process algebra terms. This can be checked by inspecting the syntactic form
of the transition rules. Moreover, the process algebraic operators should be a congru-
ence with respect to bisimilarity, meaning that if two process terms are bisimilar, then
they are also bisimilar under any context. Again this can be checked by inspecting the
syntactic form of the transition rules.
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Equational logic. The crux of process algebra is that it imposes an equational logic
on process terms that is sound and complete. Soundness means that if two process
terms can be equated then their process graphs are behaviourally equivalent. Vice versa,
completeness means that if two process terms have behaviourally equivalent process
graphs, then they can be equated.

3 Basic Process Algebra

We start with describing a basic process algebra, denoted by BPA.

3.1 Syntax of BPA

The core for process algebra consists of the following operators.

– First of all, we assume a non-empty set A of (atomic) actions, representing indivis-
ible behaviour (such as reading a datum, or sending a datum). Each atomic action
a is a constant that can execute itself, after which it terminates successfully:

a

a

√

The predicate
a→ √

represents successful termination after the execution of
action a.

– Moreover, we assume a binary operator + called alternative composition. The term
t1 + t2 represents the process that executes the behaviour of either t1 or t2. In other
words, the process graph of t1 + t2 is obtained by joining the process graphs of t1
and t2 at their root states:

t1 t2

– Finally, we assume a binary operator · called sequential composition. The term
t1·t2 represents the process that executes first the behaviour of t1, and then the
behaviour of t2. In other words, the process graph of t1·t2 is obtained by replacing
each successful termination s

a→ √
in in the process graph of t1 by a transition

s
a→ s′, where s′ is the root of the process graph of t2:

t1

t2
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Example 1. Let a, b, c and d be actions. The basic process term ((a+ b)·c)·d represents
the following process graph, with the root state presented at the top:

√
d

c

a b

Each finite process graph can be represented by a process term that is built from the
set A of atomic actions, +, and ·. Such terms are called basic process terms, and the
collection of all basic process terms is called basic process algebra, abbreviated to BPA.

3.2 Transition Rules of BPA

We have provided a syntax for basic process terms, together with some intuition for the
process graph that belongs to such a term. This relationship has to be made formal in or-
der for it to become really meaningful. For this purpose we apply structural operational
semantics. This involves giving a collection of transition rules, which define transitions
t

a→ t′ to express that term t can evolve into term t′ by the execution of action a, and
predicates t

a→ √
to express that term t can terminate successfully by the execution of

action a.
Table 1 presents the transition rules that constitute the structural operational seman-

tics of BPA. The variables x, x′, y and y′ in the transition rules range over the collection
of basic process terms, while v ranges over the set A of atomic actions.

The transition rules of BPA provide each basic process term with a process graph,
according to the intuition that was presented in the previous section:

– the first transition rule says that each atomic action v can terminate successfully by
executing itself;

– the next four transition rules express that t + t′ behaves as either t or t′;

Table 1. Transition rules of BPA

v
v→ √

x
v→ √

x + y
v→ √ x

v→ x′

x + y
v→ x′

y
v→ √

x + y
v→ √ y

v→ y′

x + y
v→ y′

x
v→ √

x·y v→ y

x
v→ x′

x·y v→ x′·y
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– the last two transition rules express that t·t′ executes t until successful termination,
after which it proceeds to execute t′.

Example 2. The transition rules in Table 1 provide the basic process term ((a + b)·c)·d
with the following process graph (cf. Example 1):

√
d

d

c

c · d

((a + b) · c) · d

a b

For instance, the transition ((a + b)·c)·d b→ c·d can be proved from the transition rules
in Table 1 as follows:

b
b→ √

(
v

v→ √ , v := b)

————–

a + b
b→ √

(
y

v→ √

x + y
v→ √ , v := b, x := a, y := b)

——————

(a + b)·c b→ c (
x

v→ √

x·y v→ y
, v := b, x := a + b, y := c)

————————–

((a + b)·c)·d b→ c·d (
x

v→ x′

x·y v→ x′·y , v := b, x := (a + b)·c, x′ := c, y := d)

At the right-hand side, the transition rules are displayed that are applied in the consec-
utive proof steps, together with the substitutions that are applied to them.

From now on, as binding convention we assume that · binds stronger than +. For exam-
ple, a·b + a·c represents (a·b) + (a·c). Occurrences of · are often omitted from process
terms; that is, st denotes s·t.

3.3 Bisimulation

In the previous section, each basic process term has been provided with a process graph
using structural operational semantics. Processes have been studied since the early 60’s,
first to settle questions in natural languages, later on to study the semantics of pro-
gramming languages. These studies originally focused on so-called trace equivalence,
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in which two processes are said to be equivalent if they can execute exactly the same
strings of actions. However, for system behaviour this equivalence is not always satis-
factory, which is shown by the following example.

Example 3. Consider the two processes below:

√√ √√
write2(d)

read(d)

write1(d)write1(d) write2(d)

read(d) read(d)

The first process reads datum d, and then decides whether it writes d on disc 1 or on disc
2. The second process makes a choice for disc 1 or disc 2 before it reads datum d. Both
processes display the same strings of actions, read(d)write1(d) and read(d)write2(d),
so they are trace equivalent. Still, there is a crucial distinction between the two pro-
cesses, which becomes apparent if for instance disc 1 crashes. In this case the first pro-
cess always saves datum d on disc 2, while the second process may get into a deadlock
(i.e., may get stuck).

Bisimilarity, defined below, is more discriminative than trace equivalence. Namely, if
two processes are bisimilar, then not only they can execute exactly the same strings of
actions, but also they have the same branching structure. For example, the two processes
in Example 3 are not bisimilar.

A bisimulation relation B is a binary relation on states in process graphs such that:

1. if sB t and s
a→ s′, then t

a→ t′ with s′ B t′;
2. if sB t and t

a→ t′, then s
a→ s′ with s′ B t′;

3. if sB t and s
a→ √

, then t
a→ √

;
4. if sB t and t

a→ √
, then s

a→ √
.

Two states s and t are bisimilar, denoted by s ↔ t, if there is a bisimulation relation B
such that sB t.

Example 4. (a + a)b ↔ ab + a(b + b).
A bisimulation relation that relates these two basic process terms is defined by (a + a)
bB ab + a(b + b), bB b, and bB b + b. This bisimulation relation can be depicted as
follows:

b b + b

b

a

b

a

(a + a)b ab + a(b + b)

√ √b

a a

bb

Bisimilarity is a congruence with respect to BPA. That is, if s ↔ s′ and t ↔ t′, then
s + t ↔ s′ + t′ and s·t ↔ s′·t′. This follows from the fact that the transition rules in
Table 1 are in the so-called path format [21].
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3.4 Axioms for BPA

Checking whether the process graphs of two basic process terms are bisimilar requires
hard labour. First these process graphs have to be computed, and next a bisimulation
relation has to be established between their root states. This section introduces an ax-
iomatisation for BPA, to equate bisimilar basic process terms. This avoids the com-
putation of process graphs and bisimulation relations altogether. The axioms have the
additional advantage that they can be used in automated reasoning, so that they facilitate
a mechanised derivation that two basic process terms are bisimilar.

We are after an axiomatisation such that the induced equality relation = on basic
process terms characterises bisimilarity over BPA in the following sense:

1. the equality relation is sound, meaning that if s = t holds for basic process terms s
and t, then s ↔ t;

2. the equality relation is complete, meaning that if s ↔ t holds for basic process
terms s and t, then s = t.

Soundness ensures that if terms can be equated, then they are in the same bisimilarity
class, while completeness ensures that bisimilar terms can always be equated.

Table 2. Axioms for BPA

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)

Table 2 presents an axiomatisation for BPA modulo bisimilarity. The equality re-
lation on basic process terms induced by this axiomatisation is obtained by taking
the set of substitution instances of A1-5, and closing it under equivalence and
contexts.

The axiomatisation A1-5 is sound for BPA modulo bisimilarity. Since bisimilarity is
both an equivalence and a congruence for BPA, it suffices to check the soundness of the
individual axioms.

Moreover, the axiomatisation is complete for BPA modulo bisimilarity, meaning
that s ↔ t implies s = t. This can be proved by directing axioms A3-5 from left
to right, so that we obtain a term rewriting system (see, e.g., [20]). One can show
that bisimilar basic process terms reduce to the same normal form, modulo the axioms
A1,2.

From now on, process terms are considered modulo associativity of the +, and we
often write t1 + t2 + t3 instead of (t1 + t2) + t3 or t1 + (t2 + t3).
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4 Algebra of Communicating Processes

Atomic actions and the operators alternative and sequential composition from the pre-
vious section provide relatively primitive tools to construct a process graph. In general,
the size of a basic process term is comparable to the size of the related process graph.
This section introduces operators to express parallelism and concurrency, which en-
able us to capture a large process graph by means of a comparatively small process
term.

4.1 Parallelism and Communication

In practice, process behaviour is often composed of several processors that are exe-
cuted in parallel, where these separate entities may influence each other’s execution.
One could say that the processors are the building blocks that make up the complete
system, cemented together by mutual communication actions. In order to model such
concurrent systems, we introduce the merge, which is a binary operator that executes
the two process terms in its arguments in parallel. That is, s‖t can choose to execute an
initial transition of s (i.e., a transition s

a→ s′ or s
a→ √

) or an initial transition of t.
This is formalised by four transition rules for the merge:

x
v→ √

x‖y v→ y

x
v→ x′

x‖y v→ x′‖y
y

v→ √

x‖y v→ x

y
v→ y′

x‖y v→ x‖y′

Moreover, s‖t can choose to execute a communication between initial transitions of
s and t. For this purpose we assume a communication function γ : A × A → A,
which produces for each pair of atomic actions a and b their communication γ(a, b).
This communication function is required to be commutative and associative; that is, for
a, b, c ∈ A,

γ(a, b) ≡ γ(b, a)
γ(γ(a, b), c) ≡ γ(a, γ(b, c)).

The next four transition rules for the merge express that s‖t can choose to execute a
communication of initial transitions of s and t:

x
v→ √

y
w→ √

x‖y γ(v,w)→ √
x

v→ √
y

w→ y′

x‖y γ(v,w)→ y′

x
v→ x′ y

w→ √

x‖y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x‖y γ(v,w)→ x′‖y′

Example 5. Let the communication of two atomic actions from {a, b, c} always result
in c. The process graph of the process term (ab)‖(ba) is depicted below.

This example shows that the merge of two simple process terms produces a relatively
large process graph. This partly explains the strength of a theory of communicating
processes, as this theory makes it possible to draw conclusions about the full system by
studying its separate concurrent components.



Process Algebra: An Algebraic Theory of Concurrency 55

(ab)‖(ba)

b‖a

√
a

√ √

b

a bc

c ab

a b

b‖(ba)

ab‖a ba

√

√
a

bb c

ba

a

a

√
ba

√√

b c

ba

b b‖aab

√

√
b

a ac

a

b

b b

√
a b

√ √
ba

c

(ab)‖a

a

4.2 Left Merge and Communication Merge

Moller [16] proved that there does not exist a sound and complete finite axiomatisation
for BPA extended with the merge, modulo bisimilarity. This problem is overcome by
defining two extra operators, called left merge and communication merge, which both
capture part of the behaviour of the merge.

The left merge s t takes its initial transition from the process term s, and then be-
haves as the merge ‖. This is expressed by two transition rules for the left merge, which
correspond with the first two transition rules for the merge:

x
v→ √

x y
v→ y

x
v→ x′

x y
v→ x′‖y

The communication merge s|t executes as initial transition a communication between
initial transitions of the process terms s and t, and then behaves as the merge ‖. This
is expressed by four transition rules for the communication merge, which correspond
with the last four transition rules for the merge:

x
v→ √

y
w→ √

x|y γ(v,w)→ √
x

v→ √
y

w→ y′

x|y γ(v,w)→ y′

x
v→ x′ y

w→ √

x|y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x|y γ(v,w)→ x′‖y′

As binding convention we assume that ‖, , and | bind stronger than +. For example,
a b + a‖c represents (a b) + (a‖c). We refer to BPA extended with the three parallel
operators ‖, , and | as PAP (for process algebra with parallelism).

The left and communication merge together cover the behaviour of the merge, in the
sense that s‖t ↔ (s t+ t s)+s|t. Namely, s‖t can execute either an initial transition
of s or t, which is covered by s t or t s, respectively, or a communication of initial
transitions of s and t, which is covered by s|t.

The transition rules of PAP constitute a conservative extension of the ones of BPA,
meaning that they do not influence the process graphs of basic process terms. That is, an
initial transition of a basic process term is derivable from the transition rules of PAP if
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and only if this transition can be derived from the transition rules of BPA. This follows
from the fact that this extension adheres to the syntactic restrictions of the conservative
extension format from [11].

Bisimilarity is a congruence with respect to PAP. Again this follows from the fact
that the transition rules of PAP are in the path format.

4.3 Axioms for PAP

Table 3 presents the axioms for the three parallel operators modulo bisimilarity. We
already noted that the merge can be split into the left merge and the communication
merge; this is exploited in axiom M1. Axioms LM2-4 and CM5-10 enable us to elim-
inate occurrences of the left merge and the communication merge from process terms.
The axioms for PAP are added to the ones for BPA.

Table 3. Axioms for merge, left merge, and communication merge

M1 x‖y = (x y + y x) + x|y

LM2 v y = v·y
LM3 (v·x) y = v·(x‖y)
LM4 (x + y) z = x z + y z

CM5 v|w = γ(v, w)
CM6 v|(w·y) = γ(v, w)·y
CM7 (v·x)|w = γ(v, w)·x
CM8 (v·x)|(w·y) = γ(v, w)·(x‖y)
CM9 (x + y)|z = x|z + y|z
CM10 x|(y + z) = x|y + x|z

It can be proved that the resulting axiomatisation is sound and complete for PAP
modulo bisimilarity. Again, the completeness proof is based on a term rewriting analy-
sis, in which the axioms are directed from left to right.

4.4 Deadlock and Encapsulation

If two atomic actions are able to communicate, then often we only want these actions
to occur in communication with each other, and not on their own. For example, let the
action send(d) represent sending a datum d into one end of a channel, while read(d)
represents receiving this datum at the other end of the channel. Furthermore, let the
communication of these two actions result in transferring the datum d through the chan-
nel by the action comm(d). For the outside world, the actions send(d) and read(d)
never appear on their own, but only in communication in the form comm(d).

In order to enforce communication in such cases, we introduce a special constant δ
called deadlock, which does not display any behaviour. The communication function γ



Process Algebra: An Algebraic Theory of Concurrency 57

is extended by allowing that the communication of two atomic actions results in δ, i.e.,
γ : A × A → A ∪ {δ}. This extension of γ enables us to express that two actions a
and b do not communicate, by defining γ(a, b) ≡ δ. Furthermore, we introduce unary
encapsulation operators ∂H for sets H of atomic actions, which rename all actions in
H into δ. PAP extended with deadlock and encapsulation operators is called the algebra
of communicating processes (ACP).

Since the deadlock does not display any behaviour, there is no transition rule for
this constant. Furthermore, since the communication of actions can result in δ, the last
four transition rules for the merge and the four transition rules for the communication
merge need to be supplied with the requirement γ(v, w) 	≡ δ. Finally, the behaviour of
the encapsulation operators is captured by the following transition rules, which express
that ∂H(t) can execute those transitions of t that have a label outside H :

x
v→ √

∂H(x) v→ √ v 	∈ H
x

v→ x′

∂H(x) v→ ∂H(x′)
v 	∈ H

We give an example of the use of encapsulation operators.

Example 6. Suppose a datum 0 or 1 is sent into a channel, which is expressed by the
process term send(0) + send(1). Let this datum be received at the other side of the
channel, which is expressed by the process term read(0) + read(1). The communi-
cation of send(d) and read(d) results in comm(d) for d ∈ {0, 1}, while all other
communications between actions result in δ. The behaviour of the channel is described
by the process term

∂{send(0), send(1), read(0), read(1)}((send(0) + send(1))‖(read(0) + read(1)))

The encapsulation operator enforces that the action send(d) can only occur in commu-
nication with the action read(d), for d ∈ {0, 1}.

Beware not to confuse a transition of the form t
a→ δ with a transition of the form

t
a→ √

; intuitively, the first transition expresses that t gets stuck after the execution of
a, while the second transition expresses that t terminates successfully after the execution
of a. A process term t is said to contain a deadlock if there are transitions t

a1→ t1
a2→

· · · an→ tn such that the process term tn does not have any initial transitions (i.e., tn↔δ).
In general it is undesirable that a process contains a deadlock, because it represents
that the process gets stuck without producing any output. Experience learns that non-
trivial specifications of system behaviour often contain a deadlock. For example, the
third sliding window protocol in [19] contained a deadlock; see [14, Stelling 7]. It can,
however, be very difficult to detect such a deadlock, even if one has a good insight into
such a protocol. Automated tools have been developed to help with the detection of
deadlocks in a process algebraic framework.

ACP is a conservative extension of PAP, meaning that the transition rules for the
encapsulation operators do not influence the process graphs belonging to process terms
in PAP. Again this follows from the fact that this extension adheres to the syntactic
restrictions of the conservative extension format. Moreover, bisimilarity is a congruence
with respect to ACP, because the transition rules of ACP are in the path format.
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Table 4. Axioms for deadlock and encapsulation

A6 x + δ = x
A7 δ·x = δ

D1 v �∈ H ∂H(v) = v
D2 v ∈ H ∂H(v) = δ
D3 ∂H(δ) = δ
D4 ∂H(x + y) = ∂H(x) + ∂H(y)
D5 ∂H(x·y) = ∂H(x)·∂H(y)

LM11 δ x = δ
CM12 δ|x = δ
CM13 x|δ = δ

Table 4 presents axioms A6,7 for the deadlock, axioms D1-5 for encapsulation, and
axioms LM11 and CM12,13 to deal with the interplay of the deadlock with left and
communication merge.

It can be proved that the resulting axiomatisation is sound and complete for ACP
modulo bisimilarity. Again, the completeness proof is based on a term rewriting analy-
sis, in which the axioms are directed from left to right.

5 Recursion

Up to now we have focused on finite processes. However, systems can often exhibit
infinite traces. In this section it is shown how such infinite behaviour can be specified
using recursive equations.

5.1 Guarded Recursive Specifications

Consider the process that alternately executes actions a and b until infinity, with the root
node presented at the top:

b a

Since ACP can only specify finite behaviour, there does not exist a process term in ACP
with this (or a bisimilar) process graph. The process above can be captured by means
of two recursive equations:

X = aY
Y = bX.

Here, X and Y are recursion variables, which intuitively represent the two states of the
process in which it is going to execute a or b, respectively.
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In general, a recursive specification consists of a finite set of recursive equations

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

where the left-hand sides Xi are recursion variables, and the ti(X1, . . . , Xn) at the
right-hand sides are process terms in ACP with possible occurrences of the recursion
variables X1, . . . , Xn.

Process terms s1, . . . , sn are said to be a solution for a recursive specification {Xi =
ti(X1, . . . , Xn) | i ∈ {1, . . . , n}} (with respect to bisimilarity) if si ↔ ti(s1, . . . , sn)
for all i ∈ {1, . . . , n}.

A recursive specification should represent a unique process graph, so we want its
solution to be unique, modulo bisimilarity. That is, if s1, . . . , sn and s′1, . . . , s

′
n are

two solutions for the same recursive specification, then si ↔ s′i for i ∈ {1, . . . , n}.
However, there exist recursive specifications that allow more than one solution modulo
bisimilarity. We give some examples.

Example 7. Let a ∈ A.

1. All process terms are a solution for the recursive specification {X=X}.
2. All process terms s that can execute an initial transition s

a→ √
are a solution for

the recursive specification {X=a+X}.
3. All process terms that cannot terminate successfully are a solution for the recursive

specification {X=Xa}.

The following example features recursive specifications that do have a unique solution
modulo bisimilarity.

Example 8. Let a, b ∈ A.

1. The only solution for {X=aY, Y =bX}, modulo bisimilarity, is X ↔ abab · · · and
Y ↔ baba · · ·.

2. The only solution for {X=Y, Y =aX}, modulo bisimilarity, is X ↔ aaa · · · and
Y ↔ aaa · · ·.

3. The only solution for {X=(a+b) X}, modulo bisimilarity, is X ↔ (a+b)(a+b)
(a + b) · · ·.

A recursive specification allows a unique solution modulo bisimilarity if and only if it
is guarded. A recursive specification

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

is guarded if the right-hand sides of its recursive equations can be adapted to the form

a1·s1(X1, . . . , Xn) + · · · + ak·sk(X1, . . . , Xn) + b1 + · · · + b�
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with a1, . . . , ak, b1, . . . , b� ∈ A, by applications of the axioms of ACP and replacing
recursion variables by the right-hand sides of their recursive equations. The process
term above is allowed to have zero summands (i.e., k and � can both be zero), in which
case it represents the deadlock δ.

The recursive specifications in Example 7 are all unguarded; that is, their right-hand
sides cannot be brought into the desired form presented above. The recursive specifica-
tions in Example 8 are all guarded.

5.2 Transition Rules for Guarded Recursion

If E is a guarded recursive specification, and X a recursion variable in E, then intu-
itively 〈X |E〉 denotes the process that has to be substituted for X in the solution for
E. For instance, if E is {X=aY, Y =bX}, then 〈X |E〉 represents the process abab · · ·,
while 〈Y |E〉 represents the process baba · · ·; see the first recursive specification in Ex-
ample 8. We extend ACP with the constants 〈X |E〉, for guarded recursive specifications
E and recursion variables X in E.

Assume that the guarded recursive specification E is of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

Guarded recursion is captured by two transition rules which express that the behaviour
of the solutions 〈Xi|E〉 for the recursion variables Xi in E, for each i ∈ {1, . . . , n}, is
exactly the behaviour of its right-hand side ti(X1, . . . , Xn):

ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ √

〈Xi|E〉 v→ √
ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ y

〈Xi|E〉 v→ y

Example 9. Let E denote {X=aY, Y =bX}. The process graph of 〈X |E〉 is

〈X|E〉

〈Y |E〉

b a

The transition 〈X |E〉 a→ 〈Y |E〉 can be derived from the transition rules as follows:

a
a→ √

(
v

v→ √ , v := a)

———————–

a〈Y |E〉 a→ 〈Y |E〉 (
x

v→ √

xy
v→ y

, v := a, x := a, y := 〈Y |E〉)
———————–

〈X |E〉 a→ 〈Y |E〉 (
a〈Y |E〉 v→ y

〈X |E〉 v→ y
, v := a, y := 〈Y |E〉)



Process Algebra: An Algebraic Theory of Concurrency 61

ACP with guarded recursion is a conservative extension of ACP, because this extension
adheres to the syntactic restrictions of the conservative extension format. Moreover,
bisimilarity is a congruence with respect to ACP with guarded recursion, because the
transition rules of guarded recursion are in the path format.

As an example of the use of guarded recursion we consider the bag process over the
set {0, 1}.

Example 10. We specify a process that can put elements 0 and 1 into a bag, and sub-
sequently collect these elements from the bag in arbitrary order. The actions in(0) and
in(1) represent putting a 0 or 1 into the bag, respectively. Similarly, the actions out(0)
and out(1) represent collecting a 0 or 1 from the bag, respectively. All communica-
tions between actions result in δ. Initially the bag is empty, so that one can only put an
element into the bag. The process graph below depicts the behaviour of the bag over
{0, 1}, with the root state placed in the leftmost uppermost corner. Note that this bag
process consists of infinitely many non-bisimilar states.

in(0)

out(0)

out(1) out(1)

in(0)

in(0) in(0)

in(0)

in(0) in(0)

in(0)

in(0)

out(0) out(0)

out(0) out(0) out(0)

out(0)out(0)out(0)

out(1)

out(1)

in(1) in(1) in(1)

in(1)
out(1)

in(1) in(1)

in(1)
out(1)

in(1)in(1)

out(1)

out(1)

out(1)

...
...

...

· · ·

· · ·

· · ·

The bag over {0, 1} can be specified by a single recursive equation, using the merge ‖.
Let E denote the guarded recursive specification

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1)).

The process graph of 〈X |E〉 is bisimilar with the behaviour of the bag over {0, 1}
as depicted above. Namely, initially 〈X |E〉 can only execute an action in(d) for d ∈
{0, 1}. The subsequent process term 〈X |E〉‖out(d) can put elements 0 and 1 in the
bag and take them out again (by means of the parallel component 〈X |E〉), or it can at
any time take the initial element d out of the bag (by means of the parallel component
out(d)).
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5.3 Recursive Definition and Specification Principles

As before, we want to fit guarded recursion into an axiomatic framework. Table 5 con-
tains two axioms for guarded recursion, the recursive definition principle (RDP) and
the recursive specification principle (RSP). The guarded recursive specification E in
the axioms is assumed to be of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

Intuitively, RDP expresses that 〈X1|E〉, . . . , 〈Xn|E〉 is a solution for E, while RSP
expresses that this is the only solution for E modulo bisimilarity.

Table 5. Recursive definition and specification principles

RDP 〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉) (i ∈ {1, . . . , n})

RSP If yi = ti(y1, . . . , yn) for all i ∈ {1, . . . , n}, then

yi = 〈Xi|E〉 (i ∈ {1, . . . , n})

The resulting axomatisation is sound for ACP with guarded recursion modulo bisim-
ilarity. However, it is not complete. For instance, the following two symmetric guarded
recursive specifications of the bag over {0, 1} (see Example 10) are bisimilar, but cannot
be proved equal by means of the axioms:

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1))

Y = in(0)·(out(0)‖Y ) + in(1)·(out(1)‖Y ).

(In this particular case, this could be remedied by adding a commutativity axiom for the
merge.)

One can prove that the axiomatisation is complete for the subclass of linear recursive
specifications. A recursive specification is linear if its recursive equations are of the
form

X = a1X1 + · · · + akXk + b1 + · · · + b�

with a1, . . . , ak, b1, . . . , b� ∈ A. (The empty sum represents δ.) Note that a linear re-
cursive specification is by default guarded.

A regular process, which by definition consists of finitely many states and transitions,
can always be described by a linear recursive specification. Namely, each state s in the
regular process can be represented by a recursion variable Xs. If state s can evolve into
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state s′ by the execution of an action a, then this is expressed by a summand aXs′ at
the right-hand side of the recursive equation for Xs. Moreover, if state s can terminate
successfully by the execution of an action a, then this is expressed by a summand a
at the right-hand side of the recursive equation for Xs. The result is a linear recursive
specification E, and 〈Xs|E〉 ↔ s for all states s in the regular process. Vice versa, a
linear recursive specification always gives rise to a regular process.

6 Abstraction

If a customer asks a programmer to implement a product, ideally this customer is able
to provide the external behaviour of the desired program. That is, he or she is able to tell
what should be the output of the program for each possible input. The programmer then
comes up with an implementation. The question is, does this implementation really
display the desired external behaviour? To answer this question, we need to abstract
away from the internal computation steps of the program.

6.1 Rooted Branching Bisimulation

In order to abstract away from internal actions, we introduce a special constant τ , called
the silent step. Intuitively, a τ -transition represents a sequence of internal actions that
can be eliminated from a process graph. As any atomic action, the constant τ can ex-
ecute itself, after which it terminates successfully. This is expressed by the transition
rule

τ
τ→ √

From now on, v and w in the transition rules and the axioms of ACP with guarded re-
cursion range over A ∪ {τ}. (So the transition rule for atomic actions in Table 1 yields
the transition rule for the silent step τ presented above.) The domain of the communi-
cation function γ is extended with the silent step, γ : A ∪ {τ} × A ∪ {τ} → A ∪ {δ},
by defining that each communication involving τ results in δ.

In the presence of the silent step τ , bisimilarity is no longer a satisfactory process
equivalence. Namely, if process terms s and t are equivalent, and s can execute an action
τ , then it need not be the case that t can simulate this τ -transition of s by the execution
of an action τ . The intuition for the silent step, that it represents an internal computation
in which we are not really interested, asks for a new process equivalence. The question
that we must pose ourselves is:

which τ -transitions are truly silent ?

The obvious answer to this question, “all τ -transitions are truly silent”, turns out to
be incorrect. Namely, this answer would produce an equivalence relation that does not
preserve deadlock behaviour.

As an example of an action τ that is not truly silent, consider the process terms
a + τδ and a. If the τ in the first term were truly silent, then these two terms would be
equivalent. However, the process graph of the first term contains a deadlock, a+τδ

τ→ δ,
while the process graph of the second term does not. Hence, the τ in the first term is not
truly silent. In order to describe this case more vividly, we give an example.



64 W. Fokkink

Example 11. Consider a protocol that first receives a datum d via channel 1, and then
communicates this datum via channel 2 or via channel 3. If the datum is communicated
through channel 2, then it is sent into channel 4. If the datum is communicated through
channel 3, then it gets stuck, as the subsequent channel 5 is broken. So the system gets
into a deadlock if the datum d is transferred via channel 3. This deadlock should not
disappear if we abstract away from the internal communication actions via channels 2
and 3, because this would cover up an important problem of the protocol.

2

3

4

1

5

The system, which is depicted above, is described by the process term

∂{s5(d)}(r1(d)·(c2(d)·s4(d) + c3(d)·s5(d)))
D1,2,4,5

= r1(d)·(c2(d)·s4(d) + c3(d)·δ)
where si(d), ri(d), and ci(d) represent a send, read, and communication action of the
datum d via channel i, respectively. Abstracting away from the internal actions c2(d)
and c3(d) in this process term yields r1(d)·(τ ·s4(d)+τ ·δ). The second τ in this process
term cannot be deleted, because then the process would no longer be able to get into a
deadlock. Hence, this τ is not truly silent.

As a further example of a τ -transition that is not truly silent, consider the process terms
a + τb and a + b. We argued previously that the process terms ∂{b}(a + τb) = a + τδ
and ∂{b}(a+b) = a are not equivalent, because the first term contains a deadlock while
the second term does not. Hence, a + τb and a + b cannot be equivalent, for else the
envisioned equivalence relation would not be a congruence.

Problems with deadlock preservation and congruence can be avoided by taking a
more restrictive view on abstracting away from silent steps. A correct answer to the
question

which τ -transitions are truly silent ?

turns out to be

those τ -transitions that do not lose possible behaviours !

For example, the process terms a + τ(a + b) and a + b are equivalent, because the τ in
the first process term is truly silent: after execution of this τ it is still possible to execute
a. In general, process terms s + τ(s + t) and s + t are equivalent for all process terms
s and t. By contrast, in a process term such as a + τb the τ is not truly silent, since
execution of this τ means losing the option to execute a.

The intuition above is formalised in the notion of branching bisimilarity. Let the pro-
cess terms s and t be branching bisimilar. If s

τ→ s′, then t does not have to simulate this
τ -transition if it is truly silent, meaning that s′ and t are branching bisimilar. Moreover,
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a non-silent transition s
a→ s′ need not be simulated by t immediately, but only after a

number of truly silent τ -transitions: t
τ→ · · · τ→ t0

a→ t′, where s and t0 are branching
bisimilar (to ensure that the τ -transitions are truly silent) and s′ and t′ are branching
bisimilar (so that s

a→ s′ is simulated by t0
a→ t′). A special termination predicate ↓ is

needed in order to relate branching bisimilar process terms such as aτ and a.
Assume a special termination predicate ↓, and let

√
represent a state with

√ ↓. A
branching bisimulation relation B is a binary relation on states in process graphs such
that:

1. if sB t and s
a→ s′, then

- either a ≡ τ and s′ B t;
- or there is a sequence of (zero or more) τ -transitions t

τ→ · · · τ→ t0 such that
sB t0 and t0

a→ t′ with s′ B t′;
2. if sB t and t

a→ t′, then
- either a ≡ τ and sB t′;
- or there is a sequence of (zero or more) τ -transitions s

τ→ · · · τ→ s0 such that
s0 B t and s0

a→ s′ with s′ B t′.
3. if sB t and s ↓, then there is a sequence of (zero or more) τ -transitions t

τ→ · · · τ→
t0 such that sB t0 and t0 ↓;

4. if sB t and t ↓, then there is a sequence of (zero or more) τ -transitions s
τ→ · · · τ→

s0 such that s0 B t and s0 ↓.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching
bisimulation relation B such that sB t.

Example 12. a + τ(a + b) ↔b τ(a + b) + b.
A branching bisimulation relation that relates these two process terms is defined by
a + τ(a + b)B τ(a + b) + b, a + bB τ(a + b) + b, a + τ(a + b)B a + b, a + bB a + b,
and

√B√
. This relation can be depicted as follows:

a τ τ b

a a
a + b

√
a + b

a + τ(a + b) τ(a + b) + b

√
b b

It is left to the reader to verify that this relation satisfies the requirements of a branching
bisimulation relation.

Branching bisimilarity satisfies a notion of fairness. That is, if an exit from a τ -loop
exists, then no infinite execution sequence will remain in this τ -loop forever. The intu-
ition is that there is zero chance that no exit from the τ -loop will ever be chosen. For
example, it is not hard to see that 〈X |X = τX + a〉 and a are branching bisimilar.

Branching bisimilarity preserves a large class of interesting properties (including
deadlock behaviour) [7]. See [13] for an exposition on why branching bisimilarity con-
stitutes a sensible equivalence relation to abstract away from internal computations.
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Branching bisimilarity is an equivalence relation; see [4]. However, it is still not a
congruence with respect to BPA. For example, b and τb are branching bisimilar, but we
already argued that a + b and a + τb are not branching bisimilar. This problem can be
overcome by adding a rootedness condition: initial τ -transitions are never truly silent.
In other words, two states are considered equivalent if they can simulate each other’s
initial transitions, such that the resulting states are branching bisimilar. This leads to the
notion of rooted branching bisimilarity.

A rooted branching bisimulation relation B is a binary relation on states in process
graphs such that:

1. if sB t and s
a→ s′, then t

a→ t′ with s′ ↔b t′;
2. if sB t and t

a→ t′, then s
a→ s′ with s′ ↔b t′;

3. if sB t and s ↓, then t ↓;
4. if sB t and t ↓, then s ↓.

Two states s and t are rooted branching bisimilar, denoted by s ↔rb t, if there is a
rooted branching bisimulation relation B such that sB t.

Since branching bisimilarity is an equivalence relation, it is not hard to see that rooted
branching bisimilarity is also an equivalence relation. Branching bisimilarity includes
rooted branching bisimilarity, which in turn includes bisimilarity:

↔⊂↔rb ⊂↔b .

In the absence of τ (for example, in ACP), bisimilarity and branching bisimilarity in-
duce exactly the same equivalence classes. In other words, two process terms in ACP
are bisimilar if and only if they are branching bisimilar.

6.2 Guarded Linear Recursion Revisited

Assume a recursive specification E that consists of linear recursive equations Xi =
ti(X1, . . . , Xn) for i ∈ {1, . . . , n}. Since from now on we consider process terms in
the setting of rooted branching bisimilarity, process terms s1, . . . , sn are said to be a
solution for E (with respect to rooted branching bisimilarity) if si ↔rb ti(s1, . . . , sn)
for i ∈ {1, . . . , n}.

In the setting with the silent step, the notion of guardedness, which aims to classify
those recursive specifications that have a unique solution modulo the process equiva-
lence under consideration, needs to be adapted. For example, all process terms τs are
solutions for the recursive specification X = τX , because τs ↔rb ττs holds for all
process terms s. Hence, we consider such a recursive specification to be unguarded. The
notion of guardedness is extended to linear recursive specifications that involve silent
steps by requiring the absence of τ -loops.

A recursive specification is linear if its recursive equations are of the form

X = a1X1 + · · · + akXk + b1 + · · · + b�

with a1, . . . , ak, b1, . . . , b� ∈ A ∪ {τ}. A linear recursive specification E is guarded
if there does not exist an infinite sequence of τ -transitions 〈X |E〉 τ→ 〈X ′|E〉 τ→
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〈X ′′|E〉 τ→ · · ·. The guarded linear recursive specifications are exactly the linear recur-
sive specifications that have a unique solution, modulo rooted branching bisimilarity.

ACP with silent step guarded linear recursion constitutes a conservative extension of
ACP with linear recursion, because this extension adheres to the syntactic restrictions
of the conservative extension format. Moreover, rooted branching bisimilarity is a con-
gruence with respect to ACP silent step and guarded linear recursion. This follows from
the fact that the transition rules are in the RBB cool format from [9].

Table 6 presents the axioms B1,2 for the silent step, modulo rooted branching
bisimilarity.

Table 6. Axioms for the silent step

B1 v·τ = v
B2 v·(τ ·(x + y) + x) = v·(x + y)

The resulting axiomatisation is sound for ACP with silent step and guarded linear
recursion, modulo rooted branching bisimilarity. Moreover, it can be shown that the
axiomatisation is complete, see [12].

6.3 Abstraction Operators

We introduce unary abstraction operators τI , for subsets I of A, which rename all
atomic actions in I into τ . The abstraction operators enable us to abstract away from
the internal computation steps of an implementation. The behaviour of the abstraction
operators is captured by the following transition rules, which express that in τI(t) all
labels of transitions of t that are in I are renamed into τ :

x
v→ √

τI(x) v→ √ v 	∈ I
x

v→ x′

τI(x) v→ τI(x′)
v 	∈ I

x
v→ √

τI(x) τ→ √ v ∈ I
x

v→ x′

τI(x) τ→ τI(x′)
v ∈ I

ACP extended with silent step and abstraction operators is denoted by ACPτ .
ACPτ once again constitutes a conservative extension of ACP, because this extension

adheres to the syntactic restrictions of the conservative extension format. Moreover,
rooted branching bisimilarity is a congruence with respect to ACPτ with guarded linear
recursion, because the transition rules are in the RBB cool format.

Table 7 presents axioms for the abstraction operators, modulo rooted branching
bisimilarity.

The resulting axiomatisation is sound for ACPτ with guarded linear recursion mod-
ulo rooted branching bisimilarity. However, to obtain a complete axiomatisation, we
need one more proof principle.
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Table 7. Axioms for abstraction operators

TI1 v �∈ I τI(v) = v
TI2 v ∈ I τI(v) = τ
TI3 τI(δ) = δ
TI4 τI(x + y) = τI(x) + τI(y)
TI5 τI(x·y) = τI(x)·τI(y)

6.4 Cluster Fair Abstraction Rule

Although τ -loops are prohibited in guarded linear recursive specifications, they can be
constructed using an abstraction operator. For example, τ{a}(〈X |X=aX〉) can only
execute τ ’s until infinity. This observation motivates the following distinction between
specifiable and constructible regular processes:

– specifiable regular processes are the process graphs belonging to process terms in
ACP with silent step and guarded linear recursion;

– constructible regular processes are the process graphs belonging to process terms
in ACPτ with guarded linear recursion.

τττ · · · is the simplest example of a regular process that is constructible, being the
process graph of τ{a}(〈X |X=aX〉), but not specifiable. In general, a constructible
regular process is specifiable if and only if it is free of τ -loops. One extra axiom is
needed to equate process terms of which the regular process graphs are constructible
but not specifiable. For example,

τ{a}(〈X |X=aX〉) ↔rb τ{a,b}(〈Y |Y =aZ, Z=bY 〉)

because both process terms execute τ ’s until infinity. However, these process terms
cannot be equated by means of the axioms, due to the guardedness restriction on RSP,
which is essential for the soundness of this axiom. In order to get rid of τ -loops, we
introduce the notion of fair abstraction. For example, let E denote the following guarded
linear recursive specification:

X1 = aX2 + s1

...
Xn−1 = aXn + sn−1

Xn = aX1 + sn

for some a ∈ A. The process term τ{a}(〈X1|E〉) executes τ -transitions that are the
result of abstracting away from the occurrences of a in front of the recursion vari-
ables Xi, until it exits this τ -loop by executing one of the process terms τ{a}(si) for
i ∈ {1, . . . , n}. Note that the transitions in the τ -loop are all truly silent, because they
do not lose possible behaviours; after the execution of such a τ , it is still possible to
execute any of the process terms τ{a}(si) for i ∈ {1, . . . , n}. Fair abstraction says
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that τ{a}(〈X1|E〉) does not stay in the τ -loop forever, so that at some time it will start
executing a τ{a}(si). Hence,

τ{a}(〈X1|E〉) ↔rb τ{a}(s1 + τ(s1 + · · · + sn)).

Namely, initially τ{a}(〈X1|E〉) can execute either τ{a}(s1) or τ . In the latter case, this
initial (so non-silent) τ -transition is followed by the execution of a series of truly silent
τ ’s in the τ -loop, until one of the process terms τ{a}(si) for i ∈ {1, . . . , n} is executed.

We now present an axiom to eliminate a cluster of τ -transitions, so that only the exits
of such a cluster remain. First, a precise definition is needed of a cluster and its exits.

Let E be a guarded linear recursive specification, and I ⊆ A. Two recursion variables
X and Y in E are in the same cluster for I if and only if there exist sequences of transi-

tions 〈X |E〉 b1→ · · · bm→ 〈Y |E〉 and 〈Y |E〉 c1→ · · · cn→ 〈X |E〉 with b1, . . . , bm, c1, . . . , cn

∈ I ∪ {τ}.
a or aX is an exit for the cluster C if and only if:

1. a or aX is a summand at the right-hand side of the recursive equation for a recur-
sion variable in C; and

2. in the case of aX , either a 	∈ I ∪ {τ} or X 	∈ C.

Table 8 presents an axiom called cluster fair abstraction rule (CFAR) for guarded lin-
ear recursive specifications. CFAR allows us to abstract away from a cluster of actions
that are renamed into τ , after which only the exits of this cluster remain. In Table 8, E
is a guarded linear recursive specification. Owing to the presence of the initial action
τ at the left- and right-hand side of CFAR, the initial τ -transitions of τI(〈X |E〉) can
be truly silent. If the set of exits is empty, then the empty sum at the right-hand side of
CFAR represents δ.

Table 8. Cluster fair abstraction rule

CFAR If in E, X is in a cluster for I with exits {v1Y1, . . . , vmYm, w1, . . . , wn}, then

τ ·τI(〈X|E〉) = τ ·τI(v1〈Y1|E〉 + · · · + vm〈Ym|E〉 + w1 + · · · + wn)

The resulting axiomatisation (the axioms for ACPτ together with RDP, RSP and
CFAR) is sound and complete for ACPτ with guarded linear recursion modulo rooted
branching bisimilarity, see [8].

7 Alternating Bit Protocol

So far we have presented a standard framework ACPτ with guarded linear recursion for
the specification and manipulation of concurrent processes. Summarising, it consists of
basic operators (A, +, ·) to define finite processes, communication operators (‖, , |)
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to express parallelism, deadlock and encapsulation (δ, ∂H ) to force atomic actions into
communication, silent step and abstraction (τ , τI ) to make internal computations invisi-
ble, and guarded linear recursion (〈X |E〉) to capture regular processes. These constructs
form a solid basis for the analysis of a wide range of systems.

In particular, the framework is suitable for the specification and verification of net-
work protocols. For such a verification, the desired external behaviour of the protocol is
represented in the form of a process term that is in general built from the basic operators
of BPA together with linear recursion. Moreover, the implementation of the protocol is
represented in the form of a process term that involves the basic operators, the three
parallel operators, and linear recursion. Next, the internal send and read actions of the
implementation are forced into communication using an encapsulation operator, and the
internal communication actions are made invisible using an abstraction operator, so that
only the input/output relation of the implementation remains. If the two process terms
can be equated by the axioms, then this proves that the process graphs belonging to the
desired external behaviour and to the input/output relation of the implementation are
rooted branching bisimilar.

An alternative to an equational correctness proof is to verify that the states in the
process graph above satisfy desirable properties, expressed in some temporal logic
(see, e.g., [18]). Such automated techniques to analyse process graphs are called model
checking. μCRL [6,10] is a toolset for analysing process algebraic specifications in
ACP combined with abstract data types; it supports equational proofs with a theorem
prover, as well as generation of process graphs and model checking.

7.1 Specification of the ABP

As an example, we show how the Alternating Bit Protocol (ABP) [3] can be specified
in this framework. Suppose two armies have agreed to attack a city at the same time.
The two armies reside on different hills, while the city lies in between these two hills.
The only way for the armies to communicate with each other is by sending messengers
through the hostile city. This communication is inherently unsafe; if a messenger is
caught inside the city, then the message does not reach its destination. The paradox is
that in such a situation, the two armies are never able to be 100% sure that they have
agreed on a time to attack the city. Namely, if one army sends the message that it will
attack at say 11am, then the other army has to acknowledge reception of this message,
army one has to acknowledge the reception of this acknowledgement, et cetera.

The ABP is a method to ensure successful transmission of data through a corrupted
channel (such as messengers through a hostile city). This success is based on the as-
sumption that data can be resent an unlimited number of times, and that eventually each
datum will be communicated through the channel successfully. The protocol layout is
depicted below.

ReceiverSender
A

B
C

D

Data elements d1, d2, d3, . . . from a finite set Δ are communicated between a Sender
and a Receiver. If the Sender reads a datum from channel A, then this datum is
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communicated through channel B to the Receiver, which sends the datum into channel
C. However, channel B is corrupted, so that a message that is communicated through
this channel can be turned into an error message ⊥. Therefore, every time the Receiver
receives a message via channel B, it sends an acknowledgement to the Sender via chan-
nel D, which is also corrupted.

In the ABP, the Sender attaches a bit 0 to data elements d2k−1 and a bit 1 to data
elements d2k, when they are sent into channel B. As soon as the Receiver reads a da-
tum, it sends back the attached bit via channel D, to acknowledge reception. If the
Receiver receives a corrupted message, then it sends the previous acknowledgement to
the Sender once more. The Sender keeps on sending a pair (di, b) as long as it receives
the acknowledgement 1 − b or ⊥. When the Sender receives the acknowledgement b,
it starts sending out the next datum di+1 with attached bit 1 − b, until it receives the
acknowledgement 1−b, et cetera. Alternation of the attached bit enables the Receiver to
determine whether a received datum is really new, and alternation of the acknowledge-
ment enables the Sender to determine whether it acknowledges reception of a datum or
of an error message.

We give a linear recursive specification of the ABP in process algebra. First, we
specify the Sender in the state that it is going to send out a datum with the bit b attached
to it, represented by the recursion variable Sb for b ∈ {0, 1}:

Sb =
∑

d∈Δ

rA(d)·Tdb

Tdb = (sB(d, b) + sB(⊥))·Udb

Udb = rD(b)·S1−b + (rD(1 − b) + rD(⊥))·Tdb

In state Sb, the Sender reads a datum d from channel A. Then it proceeds to state Tdb,
in which it sends datum d into channel B, with the bit b attached to it. However, the pair
(d, b) may be distorted by the channel, so that it becomes the error message ⊥. Next,
the system proceeds to state Udb, in which it expects to receive the acknowledgement b
through channel D, ensuring that the pair (d, b) has reached the Receiver unscathed. If
the correct acknowledgement b is received, then the system proceeds to state S1−b, in
which it is going to send out a datum with the bit 1 − b attached to it. If the acknowl-
edgement is either the wrong bit 1− b or the error message ⊥, then the system proceeds
to state Tdb, to send the pair (d, b) into channel B once more.

Next, we specify the Receiver in the state that it is expecting to receive a datum with
the bit b attached to it, represented by the recursion variable Rb for b ∈ {0, 1}:

Rb =
∑

d′∈Δ

{rB(d′, b)·sC(d′)·Qb + rB(d′, 1 − b)·Q1−b} + rB(⊥)·Q1−b

Qb = (sD(b) + sD(⊥))·R1−b

In state Rb there are two possibilities.

1. If in Rb the Receiver reads a pair (d′, b) from channel B, then this constitutes new
information, so the datum d′ is sent into channel C. Then the Receiver proceeds
to state Qb, in which it sends acknowledgement b to the Sender via channel D.
However, this acknowledgement may be distorted by the channel, so that it becomes
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the error message ⊥. Next, the Receiver proceeds to state R1−b, in which it is
expecting to receive a datum with the bit 1 − b attached to it.

2. If in Rb the Receiver reads a pair (d′, 1 − b) or an error message ⊥ from channel
B, then this does not constitute new information. So then the Receiver proceeds
to state Q1−b straight away, to send acknowledgement 1 − b to the Sender via
channel D. However, this acknowledgement may be distorted by the channel, so
that it becomes the error message ⊥. Next, the Receiver proceeds to state Rb again.

A send and a read action of the same message ((d, b), b, or ⊥) over the same internal
channel (B or D) communicate with each other:

γ(sB(d, b), rB(d, b)) ≡ cB(d, b) γ(sD(b), rD(b)) ≡ cD(b)
γ(sB(⊥), rB(⊥)) ≡ cB(⊥) γ(sD(⊥), rD(⊥)) ≡ cD(⊥)

for d ∈ Δ and b ∈ {0, 1}. All other communications between actions result in δ.
The recursive specification E of the ABP, consisting of the recursive equations for

the recursion variables Sb, Tdb, Udb, Rb, and Qb for d ∈ Δ and b ∈ {0, 1}, can easily
be transformed into linear form by introducing extra recursion variables to represent
sC(d′)·Qb for d′ ∈ Δ and b ∈ {0, 1}. In the remainder of this section, for notational
convenience, process terms 〈X |E〉 are abbreviated to X . The desired concurrent system
is obtained by putting R0 and S0 in parallel, encapsulating send and read actions over
the internal channels B and D, and abstracting away from communication actions over
these channels. That is, the ABP is expressed by the process term

τI(∂H(R0‖S0))

with

H ≡ {sB(d, b), rB(d, b), sD(b), rD(b) | d ∈ Δ, b ∈ {0, 1}}
∪ {sB(⊥), rB(⊥), sD(⊥), rD(⊥)}

I ≡ {cB(d, b), cD(b) | d ∈ Δ, b ∈ {0, 1}} ∪ {cB(⊥), cD(⊥)}.

The process graph of ∂H(R0‖S0) is depicted below. Initially, in state 1, a datum d
is read from channel A, resulting in state 2. Then an error message ⊥ is communicated
through channel B zero or more times, each time invoking an incorrect acknowledge-
ment 1 or ⊥. Finally, the pair (d, 0) is communicated through channel B, resulting
in state 4. Then datum d is sent into channel C, to reach state 5. The corrupted ac-
knowledgement ⊥ is communicated through channel D zero or more times, each time
invoking a renewed attempt to communicate the pair (d, 0) through channel B. Finally,
acknowledgement 0 is communicated through channel D, resulting in state 7. There the
same process is repeated, with the distinction that the bit 1 attached to the datum that is
communicated through channel B. Note that states 2-6 and 8-12 depend on the datum d
that is read from channel A.
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7.2 Verification of the ABP

This section sketches an equational proof that the process algebra specification of the
ABP displays the desired external behaviour; that is, the data elements that are read
from channel A by the Sender are sent into channel C by the Receiver in the same
order, and no data elements are lost. In other words, the process term is a solution for
the guarded recursive specification

X =
∑

d∈Δ

rA(d)·sC(d)·X

where action rA(d) represents “read datum d from channel A”, and action sC(d) repre-
sents “send datum d into channel C”.

First, we derive from the axioms the six equations I-VI below, which establish the
transitions between states 1-7 in the bottom half of the process graph of ∂H(R0‖S0).

I : ∂H(R0‖S0) =
∑

d∈Δ rA(d)·∂H(Td0‖R0)
II : ∂H(Td0‖R0) = cB(d, 0)·∂H(Ud0‖(sC(d)Q0)) + cB(⊥)·∂H(Ud0‖Q1)

III : ∂H(Ud0‖Q1) = (cD(1) + cD(⊥))·∂H(Td0‖R0)
IV : ∂H(Ud0‖(sC(d)Q0)) = sC(d)·∂H(Q0‖Ud0)
V : ∂H(Q0‖Ud0) = cD(0)·∂H(R1‖S1) + cD(⊥)·∂H(R1‖Td0)

VI : ∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))·∂H(Q0‖Ud0)

We start with the derivation of equation I. The process term R0‖S0 can be expanded as
follows. In each step, the subterms that are reduced are underlined.
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R0‖S0
M1= R0 S0 + S0 R0 + R0|S0

RDP= (
∑

d′∈Δ{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1} + rB(⊥)Q1) S0

+ (
∑

d∈Δ rA(d)Td0) R0

+ (
∑

d′∈Δ{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1} + rB(⊥)Q1)|(
∑

d∈Δ rA(d)Td0)

LM4,CM9,10
=

∑
d′∈Δ{(rB(d′, 0)sC(d′)Q0) S0 + (rB(d′, 1)Q1) S0}

+ (rB(⊥)Q1) S0 +
∑

d∈Δ (rA(d)Td0) R0

+
∑

d′∈Δ

∑
d∈Δ{(rB(d′, 0)sC(d′)Q0)|(rA(d)Td0) + (rB(d′, 1)Q1)|(rA(d)Td0)}

+
∑

d∈Δ (rB(⊥)Q1)|(rA(d)Td0)

LM3,CM8
=

∑
d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}

+ rB(⊥)(Q1‖S0) +
∑

d∈Δ rA(d)(Td0‖R0)
+

∑
d′∈Δ

∑
d∈Δ{δ((sC(d′)Q0)‖Td0) + δ(Q1‖Td0)}

+
∑

d∈Δ δ(Q1‖Td0)

A6,7
=

∑
d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}

+ rB(⊥)(Q1‖S0) +
∑

d∈Δ rA(d)(Td0‖R0).

Next, we expand the process term ∂H(R0‖S0).

∂H(R0‖S0) = ∂H(
∑

d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}
+ rB(⊥)(Q1‖S0) +

∑
d∈Δ rA(d)(Td0‖R0))

D4=
∑

d′∈Δ{∂H(rB(d′, 0)((sC(d′)Q0)‖S0)) + ∂H(rB(d′, 1)(Q1‖S0))}
+ ∂H(rB(⊥)(Q1‖S0)) +

∑
d∈Δ ∂H(rA(d)(Td0‖R0))

D1,2,5
=

∑
d′∈Δ{δ∂H((sC(d′)Q0)‖S0) + δ∂H(Q1‖S0)} + δ∂H(Q1‖S0)

+
∑

d∈Δ rA(d)∂H(Td0‖R0)
A6,7
=

∑
d∈Δ rA(d)∂H(Td0‖R0).

This completes the proof of equation I. Similar to equation I, we can derive the remain-
ing equations II-VI. These derivations are sketched below.

Td0‖R0 = (sB(d, 0) + sB(⊥))(Ud0‖R0)
+

∑
d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖Td0) + rB(d′, 1)(Q1‖Td0)}

+ rB(⊥)(Q1‖Td0) + cB(d, 0)(Ud0‖(sC(d)Q0)) + cB(⊥)(Ud0‖Q1)

∂H(Td0‖R0) = cB(d, 0)∂H(Ud0‖(sC(d)Q0)) + cB(⊥)∂H(Ud0‖Q1)

Ud0‖Q1 = rD(0)(S1‖Q1) + (rD(1) + rD(⊥))(Td0‖Q1)
+ (sD(1) + sD(⊥))(R0‖Ud0) + (cD(1) + cD(⊥))(Td0‖R0)

∂H(Ud0‖Q1) = (cD(1) + cD(⊥))∂H(Td0‖R0)
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Ud0‖(sC(d)Q0) = rD(0)(S1‖(sC(d)Q0)) + (rD(1) + rD(⊥))(Td0‖(sC(d)Q0))
+ sC(d)(Q0‖Ud0)

∂H(Ud0‖(sC(d)Q0)) = sC(d)∂H(Q0‖Ud0)

Q0‖Ud0 = (sD(0) + sD(⊥))(R1‖Ud0) + rD(0)(S1‖Q0)
+ (rD(1) + rD(⊥))(Td0‖Q0) + cD(0)(R1‖S1) + cD(⊥)(R1‖Td0)

∂H(Q0‖Ud0) = cD(0)∂H(R1‖S1) + cD(⊥)∂H(R1‖Td0)

R1‖Td0 =
∑

d′∈Δ

{rB(d′, 1)((sC(d′)Q1)‖Td0) + rB(d′, 0)(Q0‖Td0)}

+ rB(⊥)(Q0‖Td0) + (sB(d, 0) + sB(⊥))(Ud0‖R1)
+ (cB(d, 0) + cB(⊥))(Q0‖Ud0)

∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))∂H(Q0‖Ud0)

Note that the process term ∂H(R1‖S1) in the right-hand side of equation V is not the
left-hand side of an equation I-VI. We proceed to expand ∂H(R1‖S1). That is, similar to
equations I-VI, the following six equations VII-XII can be derived, which establish the
transitions between states 7-12 and 1 in the top half of the process graph of ∂H(R0‖S0).
The derivations of these equations are left to the reader.

VII : ∂H(R1‖S1) =
∑

d∈Δ rA(d)·∂H(Td1‖R1)
VIII : ∂H(Td1‖R1) = cB(d, 1)·∂H(Ud1‖(sC(d)Q1)) + cB(⊥)·∂H(Ud1‖Q0)

IX : ∂H(Ud1‖Q0) = (cD(0) + cD(⊥))·∂H(Td1‖R1)
X : ∂H(Ud1‖(sC(d)Q1)) = sC(d)·∂H(Q1‖Ud1)

XI : ∂H(Q1‖Ud1) = cD(1)·∂H(R0‖S0) + cD(⊥)·∂H(R0‖Td1)
XII : ∂H(R0‖Td1) = (cB(d, 1) + cB(⊥))·∂H(Q1‖Ud1)

Thus, we can derive algebraically the relations depicted in the process graph of
∂H(R0‖S0). Owing to equations I-XII, RSP yields

∂H(R0‖S0) = 〈X1|E〉 (1)

where E denotes the linear recursive specification

{ X1 =
∑

d′∈Δ rA(d′)·X2d′ , Y1 =
∑

d′∈Δ rA(d′)·Y2d′ ,
X2d = cB(d, 0)·X4d + cB(⊥)·X3d, Y2d = cB(d, 1)·Y4d + cB(⊥)·Y3d,
X3d = (cD(1) + cD(⊥))·X2d, Y3d = (cD(0) + cD(⊥))·Y2d,
X4d = sC(d)·X5d, Y4d = sC(d)·Y5d,
X5d = cD(0)·Y1 + cD(⊥)·X6d, Y5d = cD(1)·X1 + cD(⊥)·Y6d,
X6d = (cB(d, 0) + cB(⊥))·X5d, Y6d = (cB(d, 1) + cB(⊥))·Y5d

| d ∈ Δ }.
We proceed to prove that the process term τI(〈X1|E〉) exhibits the desired external

behaviour of the ABP. After application of the abstraction operator τI to the process
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term 〈X1|E〉, the loops of communication actions in the process graph of ∂H(R0‖S0)
(between states 2-3, states 5-6, states 8-9, and states 11-12) become τ -loops. These
loops can be removed using CFAR. For example, for d ∈ Δ the recursion variables
X2d and X3d form a cluster for I with exit cB(d, 0)·X4d, so

rA(d)·τI(〈X2d|E〉) CFAR= rA(d)·τI(cB(d, 0) 〈X4d|E〉)
TI2,5,B1

= rA(d)·τI(〈X4d|E〉). (2)

Similarly, CFAR together with TI2,5 and B1 can be applied to eliminate the other three
loops of communication actions. Thus, we derive the following equations:

sC(d)·τI(〈X5d|E〉) = sC(d)·τI(〈Y1|E〉) (3)

rA(d)·τI(〈Y2d|E〉) = rA(d)·τI(〈Y4d|E〉) (4)

sC(d)·τI(〈Y5d|E〉) = sC(d)·τI(〈X1|E〉). (5)

Applying RDP, TI1,4,5, and equations (2) and (3) we derive

τI(〈X1|E〉) RDP,TI1,4,5
=

∑

d∈Δ

rA(d)·τI(〈X2d|E〉)

(2)
=

∑

d∈Δ

rA(d)·τI(〈X4d|E〉)

RDP,TI1,5
=

∑

d∈Δ

rA(d)·sC(d)·τI(〈X5d|E〉)

(3)
=

∑

d∈Δ

rA(d)·sC(d)·τI(〈Y1|E〉). (6)

Likewise, applying RDP, TI1,4,5, and equations (4) and (5) we can derive

τI(〈Y1|E〉) =
∑

d∈Δ

rA(d)·sC(d)·τI(〈X1|E〉). (7)

Equations (6) and (7) together with RSP enable us to derive the following equation:

τI(〈X1|E〉) =
∑

d∈Δ

rA(d)·sC(d)·τI(〈X1|E〉).

In combination with equation (1) this yields

τI(∂H(R0‖S0)) =
∑

d∈Δ

rA(d)·sC(d)·τI(∂H(R0‖S0)).

In other words, the ABP exhibits the desired external behaviour. This finishes the veri-
fication of the ABP.
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