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Abstract. We assign to each positive variety V and each natural number
k the class of all (positive) Boolean combinations of the restricted poly-
nomials, i.e. the languages of the form L0a1L1a2 . . . a�L�, where � ≤ k,
a1, . . . , a� are letters and L0, . . . , L� are languages from the variety V.
For this polynomial operator we give a certain algebraic counterpart
which works with identities satisfied by syntactic (ordered) monoids of
languages considered. We also characterize the property that a variety
of languages is generated by a finite number of languages. We apply
our constructions to particular examples of varieties of languages which
are crucial for a certain famous open problem concerning concatenation
hierarchies.
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1 Introduction

The polynomial operator assigns to each positive variety of languages V the class
of all (positive) Boolean combinations of the languages of the form

L0a1L1a2 . . . a�L� , (∗)

where A is an alphabet, a1, . . . , a� ∈ A, L0, . . . , L� ∈ V(A) (i.e. they are over
A). Such operators on classes of languages lead to several concatenation hier-
archies. Well-known cases are the Straubing-Thérien and the group hierarchies.
Concatenation hierarchies has been intensively studied by many authors – see
Section 8 of the Pin’s Chapter [8]. The main open problem concerning concate-
nation hierarchies, which is in fact one of the most interesting open problem in
the theory of regular languages, is the membership problem for the level 2 in the
Straubing-Thérien hierarchy, i.e. the decision problem whether a given regular
language can be written as a Boolean combination of polynomials over languages
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from level 1 in that hierarchy. It is known that a language is of this type if and
only if it is a Boolean combination of polynomials with languages Li = B∗

i where
each Bi ⊆ A (i = 0, . . . , �). So this instance of polynomial operator is the most
important case to study.

In the restricted case we fix a natural number k and we allow only � ≤ k in
(∗). This operator was considered mainly in the case that V is the trivial variety
by Simon in [10], in a series of papers by Blanchet-Sadri, see for instance [4],
and in a recent paper by the authors [6].

The basic question both for general and restricted polynomial operator is to
translate the construction on languages to the corresponding pseudovarieties of
(ordered) monoids. A crucial tool is the Schützenberger product of (ordered)
monoids (see Pin [9]). Other important questions for varieties resulting by the
polynomial operator concern the existence of finite basis of (pseudo)identities
for the corresponding pseudovarieties of (ordered) monoids and the possibility
to generate such pseudovariety by a single monoid (see Volkov [11]).

In the present paper we continue our research from [6]. We concentrate here on
identity problems for corresponding pseudovarieties and on the question whether
they are generated by a single (ordered) monoid. In our basic examples the class
V(A) equals to {∅, A∗} or to finite unions of B∗, B ⊆ A or to finite unions of
B, B ⊆ A where B is the set of all words over A containing exactly the letters
from B.

In the next section we recall the necessary background and we introduce
there four examples which we will follow thorough the whole paper. We show
in Section 3 that the locally finite positive varieties of languages (i.e. such that
each V(A) is finite) correspond to the so-called finite characteristics which are
certain relations on {x1, x2, . . . }∗. Section 4 contains the main result which ef-
fectively translates the polynomial operation on languages to an operator on
finite characteristics. The last section studies the varieties of languages which
are generated by a finite number of languages. In fact, this is equivalent to the
property that corresponding pseudovariety of (ordered) monoids is generated by
a single monoid. We transfer this property to finite characteristics. We conclude
here to by investigating this “finiteness condition” on our basic examples.

2 Preliminaries

For a relation ρ on a set S we define its dual relation ρd = { (v, u) ∈ S × S |
(u, v) ∈ ρ }. A quasiorder ρ on a set S is a reflexive and transitive relation. Let
ρ̂ = ρ ∩ ρd be the corresponding equivalence relation.

An ordered monoid is a structure (M, ·,≤) where (M, ·) is a monoid and ≤ is
a compatible order on (M, ·), i.e. a ≤ b implies both a · c ≤ b · c, c · a ≤ c · b, for
all a, b, c ∈M . Morphisms of ordered monoids are isotone monoid morphisms.

Let (M, ·,≤) be an ordered monoid and let � be a compatible quasiorder on
(M, ·) satisfying ≤ ⊆ �. Then the relation ≤� defined by

â� ≤� b̂� if and only if a � b, for all a, b ∈M
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is a compatible order on (M/̂�, ·) and the mapping a 	→ â� is a morphism of
(M, ·,≤) onto (M/̂�, ·,≤�).

Let Y ∗ be the set of all words over an alphabet Y including the empty one,
denoted by λ. For a word u ∈ Y ∗, let

cont(u) = { y ∈ Y | u = u′yu′′ for some u′, u′′ ∈ Y ∗ } .

For a set Z ⊆ Y , let Z = { u ∈ Y ∗ | cont(u) = Z }. Let |u|y be the number of
occurrences of a letter y ∈ Y in u ∈ Y ∗.

An ideal I of an ordered set (M,≤) is a subset ofM satisfying b ≤ a ∈ I implies
b ∈ I, for all a, b ∈M . For a ∈ M , we write (a] = { b ∈M | b ≤ a }. A language
L over an alphabet A is recognized by a finite ordered monoid (M, ·,≤) if there
exist a morphism φ : A∗ →M and an ideal I of (M,≤) such that L = φ−1(I).

We recall now some basic facts about Eilenberg-type theorems. The Boolean
case was invented by Eilenberg [5] and the positive case was introduced by
Pin [7].

A Boolean variety of languages V associates to every finite alphabet A a class
V(A) of regular languages over A in such a way that

– V(A) is closed under finite unions, finite intersections and complements (in
particular ∅, A∗ ∈ V(A) ),

– V(A) is closed under derivatives, i.e.
L ∈ V(A), u, v ∈ A∗ implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

– V is closed under inverse morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies f−1(L) = { v ∈ B∗ | f(v) ∈ L } ∈ V(B).

To get the notion of a positive variety of languages, we use in the first item only
intersections and unions (not complements). In fact in this paper we consider
mainly positive varieties and the Boolean ones are treated as special cases.

The meaning of V ⊆ W is that V(A) ⊆ W(A), for each finite alphabet A.
Similarly,

⋃

i∈I Vi means that (
⋃

i∈I Vi)(A) =
⋃

i∈I Vi(A), for each finite A
and arbitrary set I.

A pseudovariety of finite monoids is a class of finite monoids closed under
taking submonoids, morphic images and products of finite families. Similarly for
ordered monoids (see [8]). When defining a variety of (ordered) monoids we use
arbitrary products.

For a regular language L ⊆ A∗, we define the relations ∼L and �L on A∗ as
follows: for u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) ,

u �L v if and only if ( ∀ p, q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

The relation ∼L is the syntactic congruence of L on A∗. It is of finite index (i.e.
there are only finitely many classes) and the quotient structure M(L) = A∗/∼L

is called the syntactic monoid of L.
The relation �L is the syntactic quasiorder of L and we have ̂�L = ∼L. Hence

�L induces an order on M(L) = A∗/∼L, namely: u∼L ≤ v ∼L if and only if
u �L v. Then we speak about the syntactic ordered monoid of L and we denote
the structure by O(L).
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Result 1 (Eilenberg[5], Pin[7].) Boolean varieties (positive varieties) of lan-
guages correspond to pseudovarieties of finite monoids (ordered monoids). The
correspondence, written V ←→ V (P ←→ P), is given by the following relation-
ship: for L ⊆ A∗ we have

L ∈ V(A) if and only if M(L) ∈ V ( L ∈ P(A) if and only if O(L) ∈ P ) .

The pseudovarieties of ordered monoids can be characterized by pseudoidentities
(see e.g. [1]). The pseudovarieties we consider here are equational – they are given
by identities. For the set X = {x1, x2, . . . }, an identity is a pair u = v (u ≤ v) of
words overX , i.e. u, v ∈ X∗. An identity u = v (u ≤ v, respectively) is satisfied in
a monoid M (ordered monoid (M,≤)) if for each morphism φ : X∗ →M we have
φ(u) = φ(v) (φ(u) ≤ φ(v)). In such a case we write M |= u = v (M |= u ≤ v),
and for a set of identities Π , we define ModΠ = {M | ( ∀ π ∈ Π ) M |= π }. For
a class M of ordered monoids, the meaning of M |= Π is that, for each M ∈M,
we have M |= Π . Let IdV be the set of all identities which are satisfied in a
variety of ordered monoids V. Let FinV denote the class of all finite members
of a class V.

For a fixed A and L ⊆ A∗, let Lc = A∗ \ L be the complement of L. For a
class V of languages, we define Vc by Vc(A) = {Lc | L ∈ V(A) }. The following
is obvious.

Lemma 1. For a positive variety V the following holds.
(i) Vc is a positive variety.
(ii) Let V ∨Vc be the smallest positive variety containing both V and Vc. Then

(V ∨ Vc)(A) consists of all positive Boolean combinations of the languages from
V(A) ∪ Vc(A).

(iii) The class V ∨ Vc is a Boolean variety.

Next we define the positive varieties of languages T , S+, S, Am. We will return
to them several times in our paper again.

Example 1. 1. Let T (A) = {∅, A∗} for each finite set A.
2. Let S+(A) be the set of all finite unions of the languages of the form B∗,

where B ⊆ A, for each finite set A.
3. Let S(A) be the set of all finite unions of the languages of the form B,

where B ⊆ A, for each finite set A.
4. Let m be a fixed natural number and let Am(A) be the set of all Boolean

combinations of the languages of the form L(a, r) = { u ∈ A∗ | |u|a ≡ r
(mod m) }, where a ∈ A and 0 ≤ r < m, for each finite set A.

Notice that the classes T , S, Am are Boolean varieties. Moreover, for the
corresponding pseudovarieties of (ordered) monoids consist of finite members of
the following varieties:

T = Mod(x = y ), S+ = Mod(x2 = x, xy = yx, 1 ≤ x ),

S = Mod(x2 = x, xy = yx ), Am = Mod(xy = yx, xm = 1 ) .
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The names for the (ordered) monoids of the varieties T, S+, S, Am are triv-
ial monoids, semilattices with the smallest element 1, semilattices and Abelian
groups of index m, respectively – see Pin [8].

3 Locally Finite Varieties of Languages

In this paper we concentrate on positive varieties of languages which correspond
to locally finite pseudovarieties of ordered monoids. Each such pseudovariety is
formed by the finite members of locally finite variety of ordered monoids (i.e.
finitely generated ordered monoids are finite), and consequently such a variety
of languages can be described by a fully invariant compatible quasiorder on the
monoid X∗ which has locally finite index; more precisely:

Definition 1. A relation γ on X∗ is a finite characteristic if it satisfies the
following conditions:

(i) γ is a quasiorder on X∗;
(ii) γ is compatible with the multiplication, i.e. for each u, v, w ∈ X∗ we have

u γ v implies uw γ vw, wu γ wv ;

(iii) γ is fully invariant, i.e. for each morphism ϕ : X∗ → X∗ and each
u, v ∈ X∗ we have

u γ v implies ϕ(u) γ ϕ(v) ;

(iv) for each finite subset Y of the set X, the set Y ∗ intersects only finitely
many classes of X∗/ γ̂.

For each finite alphabet A, we define the natural adaptation γA of a finite char-
acteristic γ in the following way. For u, v ∈ A∗, we have

u γA v if and only if ( ∀ ϕ : A∗ → X∗ ) ϕ(u) γ ϕ(v) . (†)

It follows from the property (iii) in Definition 1 that in (†) we can use just one
morphism given by a fixed injective mapping φ : A → X . In particular, if A
is a finite subset of X then γA is a restriction of γ on A∗. The condition (iv)
from Definition 1 means that γA (more precisely γ̂A) has a finite index (i.e. the
quotient set A∗/ γ̂A is finite).

A relation γ on X∗ satisfying the conditions (i) – (iii) is called a fully invariant
compatible quasiorder. It determines a variety Vγ of ordered monoids; namely
γ can be considered as a set of identities and Vγ = Mod γ. Basics of universal
algebra, see [3] and [2], give that Id and Mod are mutually inverse bijections
between varieties of ordered monoids and fully invariant compatible quasiorders
on X∗. Moreover, for each Y ⊆ X , the ordered monoid Y ∗/γY is a free ordered
monoid in Vγ over Y . The condition (iv) says that the finitely generated free
ordered monoids in Vγ are finite. In this case the variety Vγ is locally finite,
which means that all finitely generated ordered monoids are finite.
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The pseudovariety FinVγ of all finite members from Vγ corresponds to the
positive variety Vγ of languages by

L ∈ Vγ(A) if and only if O(L) ∈ FinVγ , for all finite A .

We say that γ is a finite characteristic of a class of languages V if γ is a finite
characteristic and for every finite alphabet A we have

L ∈ V(A) if and only if γA ⊆ �L .

The following lemma explains the universal algebra point of view.

Lemma 2. Let V be a class of languages and γ be a finite characteristic of V.
Then

(i) V equals to the positive variety of languages Vγ = Fin Mod γ;
(ii) if V is the pseudovariety of finite ordered monoids corresponding to V

then γ = IdV;
(iii) γd is a finite characteristic of the positive variety Vc;
(iv) γ̂ is a finite characteristic of the Boolean variety V ∨ Vc.

Proof. “(i)” Let A be a finite alphabet. We have to show that L ∈ V(A) is
equivalent to L ∈ Vγ(A). The statement on the left hand side is equivalent to
γA ⊆ �L which is equivalent to the fact that O(L) is a morphic image of A∗/γA.
The last is equivalent to O(L) ∈ FinVγ , which means L ∈ Vγ(A).

“(ii)” Notice that Vγ is generated by its finitely generated free ordered
monoids which are in FinVγ .

“(iii)” The statement follows from the fact that �Lc = (�L)d.
“(iv)” It follows from Lemma 1. ��

We present the finite characteristics for our four basic examples.

Example 2. (A continuation of Example 1.)
1. IdT = X∗ ×X∗.
2. IdS+ = { (u, v) ∈ X∗ ×X∗ | cont(u) ⊆ cont(v) }.
3. IdS = { (u, v) ∈ X∗ ×X∗ | cont(u) = cont(v) }.
4. IdAm = { (u, v) ∈ X∗ ×X∗ | (∀ x ∈ X ) |u|x ≡ |v|x (mod m) }.

Proposition 1. Let V be a positive variety of languages and V be the corre-
sponding pseudovariety of ordered monoids. Then the following conditions are
equivalent.

(i) For each finite alphabet A, the set V(A) is finite.
(ii) The pseudovariety of ordered monoids V is locally finite, i.e. each finitely

generated submonoid of an arbitrary product of ordered monoids from V is finite.
(iii) There exists a finite characteristic of V.

Proof. “(i) =⇒ (ii)” Let (Mi)i∈I be an arbitrary family of ordered monoids
from the class V. Let A be a finite set, let φ : A∗ → M ′ =

∏

i∈I Mi be a
morphism, and let πi : M ′ → Mi be the i-th projection (i ∈ I). We want to
show that M = φ(A∗) is finite.
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For each m ∈M , we have φ−1((m]) =
⋂

i∈I Li where Li = (πiφ)−1((πi(m)]).
We have Li ∈ V(A) as Li is recognized by Mi. Since we have only finitely
many languages in V(A) we intersect only finitely many languages. Consequently
φ−1((m]) ∈ V(A). For different m,n ∈M , the languages φ−1((m]) and φ−1((n])
are different. Now the finiteness of V(A) gives that M is finite.

“(ii) =⇒ (iii)” Let W = 〈V〉 = HSPV be the variety of ordered
monoids generated by the pseudovariety V. We claim that the variety W is
locally finite. Indeed, let M be an ordered submonoid of

∏

i∈I Mi where each
Mi ∈ V, and let φ be a surjective morphism of M onto an ordered monoid N
with a finite generating set G. We need to show that N is finite. Let F ⊆M be
a finite set such that φ(F ) = G. By assumption (ii), the set F generates in M a
finite ordered monoid and N is its image.

It follows that γ = IdW is a finite characteristic for V .
“(iii) =⇒ (i)” Let γ be a finite characteristic for V . Then L ∈ V(A) implies

that L is a union of classes of A∗/γA. Since the set A∗/γA is finite there are only
finitely many possibilities for L. ��

A positive variety V is called locally finite if it satisfies (i) of Proposition 1.

4 Polynomial Operators of Bounded Length

Let V be a positive variety of languages and let k be a natural number. We define
the class PPolkV of positive polynomials of length at most k of languages from
the class V . Namely, for a finite alphabet A, PPolkV(A) consists of finite unions
of finite intersections of the languages of the form

L0a1L1a2 . . . a�L�, where � ≤ k, a1, . . . , a� ∈ A, L0, . . . , L� ∈ V(A) . (∗)

Similarly, we define the classes BPolkV of Boolean polynomials using all fi-
nite Boolean combinations of languages of the form (∗). Clearly, it holds that
PPolkV ⊆ PPolk′V for k ≤ k′ and the same for BPol’s. We denote the union of
all PPolkV ’s by PPolV . Similarly for BPolkV ’s.

Example 3. (A continuation of Examples 1 and 2.)
1. The case V = T was studied in [6]. Notice only that PPolT is the 1/2-level

of the Straubing-Thérien hierarchy and BPol T is the first level, i.e. the class of
all piecewise testable languages.

2. and 3. One can show that PPolS+ = PPolS is the 3/2-level and BPolS+ =
BPolS is the second level – see Theorem 8.8 in [8].

Lemma 3. If V is a positive variety of languages then PPolkV is a positive
variety of languages and BPolkV is a Boolean variety of languages.

Proof. One can prove the statements directly. For locally finite varieties it also
immediately follows from Theorem 1. ��
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Let k be a fixed natural number and α be a finite characteristic. Let A be a fixed
set; in particular, A can be a finite alphabet or the set X .

For a word u ∈ A∗, we say that

f = (u0, a1, . . . , a�, u�)

is a factorization of u of length � if u0, u1, . . . , u� ∈ A∗, a1, a2, . . . , a� ∈ A and
u0a1u1 . . . a�u� = u. The set of all factorizations of length at most k of the word
u is denoted by Factk(u). For a factorization f = (u0, a1, . . . , a�, u�) of a word
u ∈ A∗ and a factorization g = (v0, b1, v1, . . . bm, vm) of a word v ∈ A∗, we write

f ≤α g

if � = m, ai = bi for every i ∈ {1, . . . , �} and ui αA vi for every i ∈ {0, 1, . . . , �}.
We define the relation (pk(α))A on the set A∗ as follows: for u, v ∈ A∗, we have

u (pk(α))A v if and only if (∀ g ∈ Factk(v) ) (∃ f ∈ Factk(u) ) f ≤α g .

We show in Theorem 1 that the relation (pk(α))X is a finite characteristic and
therefore the relation (pk(α))A is equal to ((pk(α))X)A as defined after Defini-
tion 1. We write pk(α) instead of (pk(α))X . Further we denote bk(α) = ̂pk(α).

Theorem 1. Let V be a locally finite positive variety of languages and α be
the finite characteristic of V. Then PPolkV is a locally finite positive variety
of languages with the finite characteristic pk(α) and BPolkV is a locally finite
Boolean variety of languages with the finite characteristic bk(α).

Proof. We prove that pk(α) is a finite characteristic of PPolkV . The rest follows
from Lemma 1 and Lemma 2.

We have to check the properties (i) – (iv) from Definition 1 and also the
property

(v) L ∈ PPolkV(A) if and only if (pk(α))A ⊆ �L.

“(i)” The reflexivity of the relation pk(α) is trivial. The transitivity follows
from the transitivity of the relation ≤α.

“(ii)” Let u, v, w ∈ X∗ be such that (u, v) ∈ pk(α). We want to show that
(uw, vw) ∈ pk(α). Let g ∈ Factk(vw) be an arbitrary factorization of length at
most k of the word vw, i.e. g = (v0, a1, v1, . . . , a�, v�), where � ≤ k, a1, . . . , a� ∈
X , v0, . . . , v� ∈ X∗ and there exist 0 ≤ i ≤ � and v′i, v

′′
i ∈ X∗ such that v′iv

′′
i = vi

and
v = v0a1v1 . . . aiv

′
i , w = v′′i ai+1 . . . a�v� .

From the assumption (u, v) ∈ pk(α) we know that there is a factorization f of
the word u such that f ≤α (v0, a1, v1, . . . , ai, v

′
i), i.e. f = (u0, a1, u1, . . . , ai, u

′
i)

such that u0 α v0, . . . , u′i α v′i. Since α is a compatible quasiorder we have
u′iv

′′
i α v′iv

′′
i . Hence

h = (u0, a1, u1, . . . , ai, u
′
iv

′′
i , ai+1, . . . , a�, v�)
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is a factorization of uw such that h ≤α g. This implies (uw, vw) ∈ pk(α).
The proof of the implication “(u, v) ∈ pk(α) =⇒ (wu,wv) ∈ pk(α)” is

similar.

“(iii)” Let u, v ∈ X∗ be such that (u, v) ∈ pk(α) and ϕ : X∗ → X∗ be an
arbitrary morphism. We want to show that (ϕ(u), ϕ(v)) ∈ pk(α). So, let

g′ = (v0, a1, v1 . . . , a�, v�) ∈ Factk(ϕ(v))

where � ≤ k, vi ∈ X∗, ai ∈ X and v0a1v1 . . . a�v� = ϕ(v). We consider a fac-
torization g = (w0, b1, w1, . . . , bm, wm) of v where the occurrences of the letters
b1, . . . , bm are such that the corresponding occurrences of ϕ(b1), . . . , ϕ(bm) in
ϕ(v) contain all ai’s in the factorization g′. Note that m ≤ � as ϕ(bj) can
contain more than one ai. Now (u, v) ∈ pk(α) and there exists a factoriza-
tion f of u such that f ≤α g, i.e. f = (t0, b1, t1 . . . , bm, tm) where ti α wi for
i ∈ {0, . . . ,m}. Since α is a finite characteristic we have ϕ(ti) α ϕ(wi). Hence
ϕ(u) = ϕ(t0)ϕ(b1)ϕ(t1) . . . ϕ(bm)ϕ(tm) has a factorization f ′ such that f ′ ≤α g

′.
We can conclude that (ϕ(u), ϕ(v)) ∈ pk(α).

“(iv)” Let Y be a finite subset of X . Since α̂Y has a finite index, there are
only finitely many factorizations of length at most k over Y when identifying the
̂≤α-related ones. Hence there are only finitely many sets of the form Factk(u) up
to ̂≤α, where u ∈ Y ∗. So, ̂pk(α)|Y has a finite index too.

“(v)” For simplicity denote the relation (pk(α))A by β.
” =⇒ ” We prove that for every language

L = L0a1L1 . . . a�L�, where � ≤ k, a1, . . . , a� ∈ A, L0, . . . , L� ∈ V(A) ,

we have β ⊆�L. This is enough because β ⊆ �L and β ⊆ �K imply β ⊆ �L∩K

and β ⊆ �L∪K , for each L,K ⊆ A∗.
Let L be such a language and let u, v ∈ A∗ satisfy u β v. We want to show

that u �L v. So, let p, q ∈ A∗ be such that pvq ∈ L. Hence pvq = v0a1v1 . . . a�v�,
where vi ∈ Li for every i ∈ {0, . . . , �}. Then there exist 0 ≤ i < j ≤ � and
v′i, v

′′
i , v

′
j , v

′′
j ∈ A∗, such that v′iv

′′
i = vi, v′jv

′′
j = vj and

p = v0a1 . . . v
′
i, v = v′′i ai+1 . . . ajv

′
j and q = v′′j aj+1 . . . a�v�

or there exist 0 ≤ i ≤ � and v′i, v
′′
i , v

′′′
i ∈ A∗ such that v′iv

′′
i v

′′′
i = vi and

p = v0a1 . . . v
′
i, v = v′′i and q = v′′′i ai+1 . . . a�v� .

In the first case we have g = (v′′i , ai+1, . . . , aj, v
′
j) a factorization of v. We as-

sumed that u β v, so there is a factorization f = (u′′i , ai+1, . . . , u
′
j) of u such that

(u′′i , v
′′
i ), (ui+1, vi+1), . . . , (u′j , v

′
j) ∈ αA. Since αA is a compatible quasiorder we

have (v′iu
′′
i , v

′
iv

′′
i ) ∈ αA and hence v′iu

′′
i �Li v

′
iv

′′
i = vi, so we have v′iu

′′
i ∈ Li.

Similarly ui+1 ∈ Li+1, . . . , uj−1 ∈ Lj−1 and u′jv
′′
j ∈ Lj . Consequently puq ∈ L.

The second case is similar and we see that u β v really implies u �L v.
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“⇐=” Let β ⊆ �L. This means that L is a finite union of languages of the
form

βv = { u ∈ A∗ | u β v }, where v ∈ A∗ .

It is enough to prove that each βv belongs to PPolkV(A). Consider all possible
factorizations of the word v of length at most k, i.e. all elements of the set
Factk(v). So, we have

g1 = (v10, a11, . . . , a1�1 , v1�1) ,

g2 = (v20, a21, . . . , a2�2 , v2�2) ,

...

gm = (vm0, am1, . . . , am�m , vm�m) ,

where for each i ∈ {1, . . . ,m} we have �i ≤ k and aij ∈ A are letters and
vij ∈ A∗ are words and {g1, g2, . . . , gm} = Factk(v). For each i ∈ {1, . . . ,m}
we consider the following language Li corresponding to the factorization gi =
(vi0, ai1, . . . , ai�i , vi�i):

Li = Li0 ai1 Li1 . . . ai�i Li�i ,

where Lij = αAvij = { u ∈ A∗ | u αA vij } ∈ V(A) for each j ∈ {0, . . . , �i}.
Then the language

K =
m
⋂

i=1

Li

belongs to PPolkV(A) and we prove that K = βv.
“⊆” If u ∈ K then u ∈ Li for each i ∈ {1, . . . ,m}. This means that for each

i ∈ {1, . . . ,m} we have
u = ui0ai1 . . . ai�iui�i ,

where (ui0, vi0), . . . , (ui�i , vi�i) ∈ αA. Therefore, there is a factorization fi of u
such that fi ≤α gi. Consequently (u, v) ∈ (pk(α))A = β, i.e. u ∈ βv.

“⊇” If u ∈ βv. Then for each i ∈ {1, . . . ,m}, we have some factorization fi

of u such that fi ≤α gi. This implies that u ∈ Li for each i ∈ {1, . . . ,m}, and
hence u ∈ K. ��

The following lemmas concern the preservation of aperiodicity (i.e. monoids have
only trivial subgroups).

Lemma 4. Let α be a finite characteristic and let k, n be arbitrary natural
numbers. Put m = (k + 1)(n+ 1).

(i) If (xn, xn+1) ∈ α then (xm−1, xm) ∈ pk(α).
(ii) If (xn, xn+1) ∈ α̂ then (xm−1, xm) ∈̂pk(α).
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Proof. “(i)” Let g be a factorization of xm of length � ≤ k, i.e.

g = (xi0 , x, xi1 , x, . . . , x, xi�)

where i0+i1+· · ·+i�+� = m and i0, . . . , i� are non-negative integers. Assume that
for every j ∈ {0, . . . , �} we have ij ≤ n, then i0 + i1 + · · ·+ i� + � ≤ (�+1)n+ � ≤
(k+1)n+k < (k+1)(n+1) = m a contradiction. Thus, there is j ∈ {0, . . . , �} such
that ij ≥ n+ 1, hence xij−1 α xij and consequently there exists a factorization
f of xm−1 such that f ≤α g. This proves (xm−1, xm) ∈ pk(α).

“(ii)” With respect to the part (i) it is enough to prove the implication
(xn+1, xn) ∈ α =⇒ (xm, xm−1) ∈ pk(α). This is not a direct consequence
of statement (i) since (pk(α))d �= pk(αd) but the implication can be proved in a
similar way as part (i). ��

Lemma 5. Let V be a positive variety with the finite characteristic α, such
that the corresponding pseudovariety of ordered monoids contains only aperiodic
monoids. Then, for each natural number k, the pseudovariety of ordered monoids
corresponding to the positive variety of languages PPolkV contains only aperiodic
monoids too.

Proof. Let A = {a} be an alphabet. Then A∗/αA belongs to the corresponding
pseudovariety of monoids, i.e. A∗/αA is a finite aperiodic monoid. This implies
that (an, an+1) ∈ α̂A for some natural number n and (xn, xn+1) ∈ α̂ follows.
By Lemma 4, we have (xm−1, xm) ∈ ̂pk(α) for a certain m. Hence for every
alphabet B, the monoid B∗/αB is aperiodic, and consequently the pseudovariety
of monoids corresponding to the positive variety of languages PPolkV contains
only aperiodic monoids because each of them is a morphic images of the monoid
B∗/αB for some B. ��

5 Generating Pseudovarieties by a Single Monoid

It is known (see Volkov [11] or the authors [6]) that the pseudovarieties of ordered
monoids corresponding to PPolkT , k a natural number, are generated by a single
ordered monoid. We show such result also for the positive varieties PPolkS+ and
we prove that this is not true for the positive varieties PPolkS. At first we define
a “finiteness-like” condition concerning finite characteristics.

Definition 2. Let α be a finite characteristic. We say that α is finitely deter-
mined if there is a finite alphabet A such that for every finite alphabet B and
all u, v ∈ B∗ we have:

( ( ∀ ϕ : B → A ) ϕ(u) αA ϕ(v) ) implies u αB v .

The extension of a mapping ϕ : B → A to a morphism from B∗ to A∗ is denoted
by the same symbol. Clearly, the opposite implication is always true due to
Definition 1.
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Example 4. The finite characteristic of the positive variety S+ was described
in Example 2.2. It is finitely determined since one can show that the condition
from the previous definition is satisfied for A = {a, a′}, a �= a′. Indeed, for an
arbitrary finite alphabet B and u, v ∈ B∗ such that cont(u) �⊆ cont(v) we can
consider a letter b ∈ cont(u) \ cont(v). Then we take a mapping ϕ : B → A
sending b to a and (possible) other elements of B to a′. For this ϕ we have
a ∈ cont(ϕ(u)) \ cont(ϕ(v)).

The same considerations for two element set A are true for S and for Am.

Proposition 2. The following properties for a positive variety V and the cor-
responding pseudovariety of ordered monoids V are equivalent.

(i) The positive variety V is generated by a finite number of languages.
(ii) The pseudovariety V is generated by a single ordered monoid.
(iii) There exists a finite characteristic of V which is finitely determined.

Proof. “(i) =⇒ (ii)” If V is generated by a finite number of languages then
we can take their syntactic ordered monoids and consider the product of all
of them. The resulting ordered monoid generates the pseudovariety of ordered
monoids V.

“(ii) =⇒ (iii)” Let the pseudovariety V be generated by a single finite
ordered monoid M . We consider the variety W = 〈V〉 = 〈M〉 generated by
the monoid M . If we take the free ordered monoid F over X in the variety W
and denote α the kernel of the projection from X∗ onto F , then this α is a
finite characteristic of V . Moreover, for a finite alphabet C, the (finite) structure
C∗/αC is a free ordered monoid over C in W.

Now we put A = M and we prove the property from Definition 2 for this
set A. At first, there is a natural morphism θ : A∗ → M which maps the word
a1a2 . . . am ∈ A∗ to the product of elements a1, a2, . . . , am ∈ A = M in M , i.e.
θ(a1a2 . . . am) = a1 · a2 · . . . · am. Note that M is a morphic image of the free
ordered monoid A∗/αA, in other words, αA is a subset of the kernel of θ.

Let B be a finite alphabet and u, v ∈ B∗ be such that for each ϕ : B → A
we have ϕ(u) αA ϕ(v). Each mapping ϕ : B → A = M determines a morphism
ϕ = θ ◦ ϕ : B∗ →M .

Recall that a free monoid over B in W can be constructed in the following
way. There are only finitely many mappings ϕ : B → M ; denote Σ the set
of all of them. Then we consider the finite product

∏

ϕ∈Σ M = MΣ and the
corresponding morphism ψ : B∗ → MΣ given by ψ(w) = (ϕ(w))ϕ∈Σ . The
image of ψ is a free monoid over B in W and αB is a kernel of ψ. Now for
each ϕ : B → A = M we have ϕ(u) αA ϕ(v). Thus ϕ(u) ≤ ϕ(v) in A∗/αA

and ϕ(u) ≤ ϕ(v) in M follows. Hence ψ(u) ≤ ψ(v) in the free ordered monoid
B∗/αB and consequently u αB v.

“(iii) =⇒ (i)” Let α be a finite characteristic of V which is finitely deter-
mined. Let A be the corresponding finite alphabet. Since αA has a finite index,
there are only finitely many languages of the form αAv = { u ∈ A∗ | u αA v }
where v ∈ A∗. We show that these languages generate V .
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Let B be an arbitrary finite alphabet and let L ∈ V(B). Since α is a finite
characteristic of V we have αB ⊆ �L. Hence L is a finite union of languages of
the form αBw = { t ∈ B∗ | t αB w }, where w ∈ B∗.

There are only finitely many mappings from B to A; denote them ϕ1, . . . , ϕm,
where m = |A||B|. Now for every u, v ∈ B∗ we have

u αB v if and only if ( ∀ i ∈ {1, . . . ,m} ) ϕi(u) αA ϕi(v) .

We show that

αBw =
m
⋂

i=1

ϕ−1
i (αAwi), where wi = ϕi(w) for i ∈ {1, . . . ,m} . (‡)

Indeed, for t ∈ B∗, it holds t ∈ αBw if and only if for each i ∈ {1, . . . ,m} we
have ϕi(t) αA ϕi(w) = wi, and this is equivalent to: for each i ∈ {1, . . . ,m} we
have t ∈ ϕ−1

i (αAwi).
Equation (‡) means that we can obtain each language of the form αBw from

the languages αAv, for v ∈ A∗, when we use inverse morphisms and the operation
of intersection. ��

Example 5. In paper [6] the authors proved that PPolkT is generated by a
language A∗a1A

∗a2 . . . akA
∗ where a1, a2, . . . , ak are pairwise different letters

and A = {a1, . . . , ak}. We show that the corresponding finite characteristic
α = pk(X∗ ×X∗) is finitely determined.

Indeed, let Subk(w) denote the set of all subwords of w ∈ X∗ of length at
most k. Then u α v if and only if Subk(v) ⊆ Subk(u). Let A′ = {a1, . . . , ak+1} be
of cardinality k+1, let B be a finite set, and let u, v ∈ B∗ satisfy ϕ(u) αA′ ϕ(v)
for each ϕ : B → A′. Suppose that u αB v does not hold. Then there exists
w ∈ B∗ of length at most k such that w ∈ Subk (v) \ Subk (u). Let C = cont(w).
Take an injective mapping ϕ : C → {a1, . . . , ak} and put ϕ(b) = ak+1 for b �∈ C.
Thus ϕ : B → A′ and ϕ(w) ∈ Subk(ϕ(v)) \ Subk(ϕ(u)) – a contradiction.

Proposition 3. The positive variety PPolkS+ is generated by a finite number
of languages.

Proof. Although a direct proof would be possible we apply Proposition 2. Recall
that the finite characteristic α for S+ is given as follows: for each u, v ∈ X∗, we
have u α v if and only if cont(u) ⊆ cont(v). We show that the finite characteristic
β = pk(α) of PPolkS+ is finitely determined.

Let A be an alphabet containing 22k+1 letters:

A = { ar | r ∈ {0, 1}2k+1 } .

We prove the property from Definition 2. Let B be a finite alphabet and assume
that u, v ∈ B∗ satisfy

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .
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We want to prove u βB v. So, let g = (v0, b1, v1, . . . , b�, v�) ∈ Factk(v) be an
arbitrary factorization of length at most k of the word v. For each letter c ∈ B
we consider the letter ar ∈ A where the sequence r has 1 at j-th position
if and only if c is at the j-th position in the factorization g. More precisely,
r2i+1 = 1 iff c ∈ cont(vi) and r2i = 1 iff c = bi. So, we have defined a mapping
ϕ : B → A. Note that if a letter c does not occur in v then ϕ(c) = a(0,0,...,0)

by this definition. Now ϕ(u) βA ϕ(v) and there exists a factorization f ′ of ϕ(u)
such that f ′ ≤α g′ = (ϕ(v0), ϕ(b1), ϕ(v1), . . . , ϕ(b�), ϕ(v�)). If ϕ(bi) = ar then
r2i = 1 and for this r there is a unique letter c ∈ B, namely bi, with the
property ϕ(c) = ar. Hence we have a factorization f = (u0, b1, u1, . . . , b�, u�) of
u such that ϕ(ui) αA ϕ(vi) for each i ∈ {0, . . . , �}. We show that this implies
ui αB vi. Let d ∈ cont(ui) be an arbitrary letter from the alphabet B. Then
ϕ(d) ∈ cont(ϕ(ui)) ⊆ cont(ϕ(vi)). Let ϕ(d) = ar. Then ar ∈ cont(ϕ(vi)) implies
that r2i+1 = 1. If d �∈ cont(vi) then r2i+1 = 0 by the definition of the mapping
ϕ. Hence d ∈ cont(vi), and thus, we have ui αB vi for each i = 0, . . . , �. For a
given g ∈ Factk(v), we found f ∈ Factk(u) such that f ≤α g. This means that
we proved u βB v. ��

Proposition 4. The positive variety PPol1S is generated by a finite number of
languages.

Proof. Recall that the finite characteristic α for S is given as follows: for each
u, v ∈ X∗, we have u α v if and only if cont(u) = cont(v).

We show that finite characteristic β = p1(α) of the variety PPol1S is finitely
determined on a six-element alphabet A = {a0, a1, a2, a3, a4, a5}. First we for-
mulate some basic consequences of the assumption s βA t for a pair of words
s, t ∈ A∗. We have cont(s) = cont(t) since we can consider (unique) factoriza-
tions of s and t of length 0. Further, if we assume that the first occurrence of a
letter a ∈ A in s is before the first occurrence of a letter a′ ∈ A in s then there is
a factorization (s0, a′, s1) of the word s such that a ∈ cont(s0), s0, s1 ∈ A∗ but
there is no factorization (s0, a, s1) of s such that a′ ∈ cont(s0), s0, s1 ∈ A∗. Thus
from s βA t we can conclude that the sequences of the first occurrences of all
letters in s and in t coincide. Equivalently this can be expressed by the equality
{ cont(s′) | s′ prefix of s } = { cont(t′) | t′ prefix of t }. The similar observations
can be done for the last occurrences of letters in s and t.

Let B be a finite alphabet containing at least seven letters1 and assume that
for a given pair of words u, v ∈ B∗ we have

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .

Let g = (g0, b, g1) ∈ Fact1(v) be a factorization of v. We need to show that there
exists a factorization f = (f0, b, f1) ∈ Fact1(u) such that cont(f0) = cont(g0)
and cont(f1) = cont(g1).

First of all, we take an arbitrary pair of different letters b1, b2 ∈ B and consider
the mapping ϕb1,b2 : B → A given by the rules ϕb1,b2(b1) = a1, ϕb1,b2(b2) = a2

1 For alphabets with at most six letters the statement is trivial.
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and ϕb1,b2(c) = a0 for all c ∈ B \{b1, b2}. Since (ϕb1,b2(u), ϕb1,b2(v)) ∈ βA we can
apply our basic observations concerning βA and we see that cont(ϕb1,b2(u)) =
cont(ϕb1,b2(v)) from which we observe b1 ∈ cont(u) ⇐⇒ b1 ∈ cont(v). This
is true for each b1 and thus cont(u) = cont(v) follows. Further, the sequence of
the first occurrences of letters in ϕb1,b2(u) and ϕb1,b2(v) coincide. Hence the first
occurrence of b1 in the word u is before the first occurrence of b2 in u if and only
if the first occurrence of b1 in v is before the first occurrence of b2 in v. This is
true for every pair of letters b1 and b2 and we can summarize that { cont(u′) |
u′ prefix of u } = { cont(v′) | v′ prefix of v }. When we consider the same idea
from the right we obtain the same observations concerning the last occurrences of
letters and finally we obtain the equality { cont(u′) | u′ suffix of u } = { cont(v′) |
v′ suffix of v }.

There is a prefix u′ of the word u such that cont(u′) = cont(g0). Let u1 be
the shortest prefix of u with this property and u2 be the longest prefix of u
with this property. Note that u1 can be the empty word (when cont(g0) = ∅,
i.e. in the case g0 = λ) and u2 can be equal to u (when cont(g0) = cont(v)). If
u1 is not the empty word then u1 = u′1b1 where b1 ∈ B and b1 ∈ cont(u1) =
cont(g0), b1 �∈ cont(u′1). A useful consequence is that this b1 is the first occurrence
of b1 in u. Similarly, if u2 �= u then u = u2b2u

′
2 where b2 ∈ B, u′2 ∈ B∗ and

b2 �∈ cont(u2) = cont(g0). Once again this b2 is the first occurrence of b2 in u. Note
that if b1 and b2 are defined then they are different because b2 �∈ cont(g0), but one
of them can be equal to the letter b. These definitions can be also consider dually
from the right. I.e. we can consider the shortest suffix u3 of u and the longest
suffix u4 of u with the properties cont(u3) = cont(u4) = cont(g1). If u3 �= λ then
we denote its first letter b3, i.e u3 = b3u

′
3 and we have b3 ∈ cont(u3) = cont(g1),

b3 �∈ cont(u′3). If u4 �= u then we denote u = u′4b4u4 where b4 ∈ B, u′4 ∈ B∗,
b4 �∈ cont(u4) = cont(g1).

Now we have the subset B′ = {b, b1, b2, b3, b4} of the alphabet B which has
at most five elements. Note that some of the letters can be equal, some of them
can not be defined. We consider some mapping ϕ : B → A such that ϕ(c) = a5

for every c �∈ B′, ϕ(B′) ⊆ A \ {a5}, ϕ(b) = a0 and which is injective on B′.
Then (ϕ(g0), a0, ϕ(g1)) is a factorization of ϕ(v) and there is a factorization
f = (f0, d, f1) of u such that (ϕ(f0), ϕ(d), ϕ(f1)) ≤α (ϕ(g0), ϕ(b), ϕ(g1)) where
ϕ(d) = ϕ(b), i.e. d = b, ϕ(f0) αA ϕ(g0) and ϕ(f0) αA ϕ(g0). We show that
cont(f0) = cont(g0) and cont(f1) = cont(g1).

“cont(g0) ⊆ cont(f0)” If cont(g0) = ∅ then it is clear. If cont(g0) �= ∅ then
b1 ∈ cont(g0) is defined. Hence ϕ(b1) ∈ cont(ϕ(g0)) = cont(ϕ(f0)) and since ϕ is
injective on B′ we have b1 ∈ cont(f0). By the definition of b1 we can conclude
that u1 is a prefix of f0, so, cont(g0) = cont(u1) ⊆ cont(f0).

“cont(f0) ⊆ cont(g0)” If cont(g0) = cont(v) = cont(u) then it is clear. If
cont(g0) �= cont(v) then b2 is defined. We have b2 �∈ cont(g0). Hence ϕ(b2) �∈
cont(ϕ(g0)) = cont(ϕ(f0)) and this implies b2 �∈ cont(f0). By the definition of b2
we can conclude that f0 is a prefix of u2, so, cont(f0) ⊆ cont(u2) = cont(g0).

One can prove the equality cont(f1) = cont(g1) in the same way using the
letters b3 and b4. ��
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Proposition 5. The positive variety PPol2S is not generated by a finite number
of languages.

Proof. For the finite characteristic α for S we have, for each u, v ∈ X∗, it holds
u α v if and only if cont(u) = cont(v)

Assume that the finite characteristic β = p2(α) of the positive variety PPol2S
is finitely determined. Let A = {c1, . . . , cm} be an alphabet for which the prop-
erty from Definition 2 is satisfied. Let B = A ∪ {d}, d �∈ A. Assume that
s1, . . . , sn are all words of length at most m + 1 over the alphabet A such
that cont(sj) �= A for j ∈ {1, . . . , n}. Further tj0j1j2 = dcj0dsj1dcj2d for all
j1 ∈ {1, . . . , n}, j0, j2 ∈ {1, . . . ,m} and t be a product of all words tj0j1j2 in a
fixed order. Finally, we denote s = c1 . . . cm and we define a pair of words over
the alphabet B:

u = sstt ttss and v = sstt dsd ttss .

We show that this pair of words contradicts the assumption, namely we show
(i) (u, v) �∈ βB and
(ii) for each ϕ : B → A we have ϕ(u) βA ϕ(v).

To prove the first claim we can consider the factorization

g = (sstt, d, s, d, ttss)

of the word v. For this g there is no factorization f of the word u such that
f ≤α g because there are no two consecutive occurrences of d in u such that the
word between them has a content equal to the set A.

The second claim is more complicated. Let ϕ : B → A be a mapping. We
consider two cases.

I) First assume that there is a letter ci ∈ A such that ϕ(ci) = ϕ(d). Then
we consider the mapping ϕ′ : B → A such that ϕ′|A is the identity mapping
and ϕ′(d) = ci and the mapping ϕ′′ : A → A such that ϕ′′(c) = ϕ(c) for each
c ∈ A. Then ϕ = ϕ′′ ◦ϕ′ and it is enough to show that ϕ′(u) βA ϕ′(v), since the
rest is a consequence of the fact that β is fully invariant. Let g be an arbitrary
factorization of

ϕ′(v) = ss ϕ′(t)ϕ′(t) cisci ϕ′(t)ϕ′(t) ss

where g = (g0, a, g1, b, g2) with a, b ∈ A, g0, g1, g2 ∈ A∗. We want to show the
existence of a factorization f = (f0, a, f1, b, f2) of ϕ′(u) such that cont(f0) =
cont(g0), cont(f1) = cont(g1), cont(f2) = cont(g2) and f0af1bf2 = ϕ′(u). We
distinguish several cases:

1a) “cont(g0) �= A, cont(g1) �= A”
Then g0ag1b is a prefix of the prefix ss of the word ϕ′(v), i.e. ss = g0ag1bh
for some h ∈ A∗. Hence cont(g2) = A, and we can put f0 = g0, f1 = g1,
f2 = hϕ′(t)ϕ′(t)cisciϕ′(t)ϕ′(t)ss.

1b) “cont(g0) �= A, cont(g1) = A, cont(g2) �= A”
Then g0 is a prefix of the first s in ϕ′(v) and g2 is a suffix in the last s in ϕ′(v).
We can put f0 = g0, f2 = g2 and f1 is an appropriate word.
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1c) “cont(g0) �= A, cont(g1) = A, cont(g2) = A”
Then g0 is a prefix of the first s in ϕ′(v), i.e. we put f0 = g0 and we can choose
b from the last but one s from ϕ′(u) and define f1 and f2 adequately.
Altogether we finished the case of cont(g0) �= A.

2) Dually we can solve the cases of cont(g2) �= A.
3) Assume cont(g0) = cont(g2) = A. And in addition we assume:
3a) “cont(g1) = A”

Then we can choose a from the second s in ϕ′(u) and b from the last but one s
in ϕ′(u) and define f0, f1, f2 in the expected way.

3b) “cont(g1) �= A and cont(ag1b) �= A”
Then there is a word f1 of length at most m− 1 such that cont(f1) = cont(g1)
and the word af1b is equal to some sj . Hence we can find the word af1b as a
factor of the first occurrence ϕ′(t) in ϕ′(u) and then define f0 and f2.

3c) “cont(g1) �= A and cont(ag1b) = A, ci ∈ cont(g1)”
Then we can find some sj such that w = cisjci has the property cont(w) =
cont(g1). Further adsjdb is a factor of t, hence we can put f1 = w and af1b is a
factor of the first occurrence of ϕ′(t) in ϕ′(u). As usually, we denote f0 and f2
as needed.

3d) “cont(g1) �= A and cont(ag1b) = A and ci �∈ cont(g1)”
Then a = ci or b = ci.
If a = b = ci then we can find sj such that cont(sj) = cont(g1) and cisjci is a
factor of the first occurrence of ϕ′(t) in ϕ′(u). Thus we consider the factorization
f of u where f1 is equal to this occurrence of sj .
If a = ci, b �= ci then we can find f1 such that f1b is one of sj with cont(f1b) =
cont(g1b) because ci �∈ cont(g1b), i.e. cont(sj) �= A. The case a �= ci, b = ci is
dual.

II) Now assume that there is no such a letter. This means that ϕ(ci) = ϕ(ci′)
for some different i, i′ ∈ {1, . . . ,m}. Considerations are analogous to that of
Case I). ��

Remark. 1. If a positive variety of languages is locally finite we can generate
the corresponding pseudovariety of ordered monoids by finitely generated free
monoids. We are able to present effectively the free ordered monoids in pseudova-
rieties corresponding to PPolkV and BPolkV for V being any of T , S+, S, Am.
It would be desirable to put a closer look into their structures.

2. For each positive variety of languages V the pseudovariety of ordered
monoids corresponding to PPolkV is generated by the Schützenberger products
of the form �k+1(M0, . . . ,Mk) where M0, . . . ,Mk ∈ V (see [9]). Notice that our
Proposition 3 follows from results from [9].
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