
Context-Free Categorical Grammars

Michel Bauderon, Rui Chen, and Olivier Ly

Université de Bordeaux - LaBRI CNRS,
351 cours de la Libération Talence 33405 France

Zhongnan University of Economics and Law,
1 Nanhunan Dadao, Hongshan Wuhan 430073 China

{bauderon,ly}@labri.fr,

rui.chen.bordeaux1@gmail.com

Abstract. We define generic categorical notions of rewriting and gram-
mar, using two basic operations, pullback and pushout, and show that
these categorical grammars are intrinsically context-free in the sense of
Courcelle. We then specialise to various settings, including classical word
grammars, hyperedge replacement grammars or node-replacement gram-
mars. We show that some languages which are classical counter-example
to context-freeness become context-free within this new framework1.

Keywords: Category, rewriting system, grammar, context-freeness.

1 Introduction

This works stems from research in the more specific area of graph rewriting
where two main directions have been explored, which correspond to two distinct
(somehow dual) approaches to the structure of a graph, either as nodes linked
by arrows (vertex rewriting) or as arrows glued by nodes (edge or hyperedge
rewriting).

In both directions, four levels of description have been explored : set theoretic,
algebraic (namely using universal algebra), logical or categorical (using category
theory as a basic tool). In this last setting - using category theory - the main
effort has been devoted to edge (and hyperedge) replacement - using pushout as
a basic operation to generalize the usual substitution, leading to the development
of a large theoretical body, via the double and single pushout approach to graph
rewriting (the so-called algebraic approach) and their extensions (the reader may
refer to [9] for an extensive descriptions of formalisms and results).

In earlier works (such as [2,3,4,5]), we have shown how a dual approach - using
pullback in place of pushout as the basic rewriting operation - could provide a
sound categorical approach to node rewriting in graphs (and hypergraphs [4]).
We have shown in [3] that pullback graph grammars are context-free.

In this paper, we generalize this approach by defining a generic categorical
treatment of substitution, rewriting and grammars, abstracting as much as pos-
sible and lifting main notions and results to their proper level of abstraction. We
1 This work was been completed while the first author was on a CNRS leave at LIAMA,

Chinese Academy of Sciences, Institute of Automation, Beijing.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 160–171, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Context-Free Categorical Grammars 161

thus reach a necessary but sufficient level of abstraction to ensure the context-
freeness property (in the sense of [6]) and it is our main result that categorical
grammars2 are intrinsically context-free. The main ideas of the proof remain
those which have been presented in [3,5], although some useless conditions have
been removed here.

This allows us to describe in this new setting several standard examples (such
as words and graphs), showing that the mere reversing of arrows leads to very
different situations and that the projective grammars are much more powerful
than the inductive ones.

We show for instance in section 3, that inductive word grammars are exactly
classical context free word grammars, while projective word grammars can gen-
erate some context-sensitive languages such as the well known anbncn, which
then becomes context-free in the categorical setting.

This work relies on elementary category theory whose basic definitions will
be taken for granted (but the reader may refer e.g. to [1] available on line). Due
to space limitations, proofs have been omitted.

2 Rewriting in a Category

There are (at least) two possible ways to rewrite objects in a category, by using
the two simplest standard binary operations available in this framework, namely
pullback and pushout (product and coproduct are much simpler, but much less
flexible). Although pushout directly generalizes classical substitution, we follow
the traditional approach where products, pullbacks and projective limits are put
first, pushout and inductive limits being left to a duality argument ([1]).

In this paper, we shall not consider double-pushout or double-pullback rewrit-
ings, which introduce some pattern matching in the computation process. Our
rules will always be directly applicable.

2.1 Basic Definitions

As usual, we let #S denote the cardinality of a set S and N be the set of non
negative integers. In a category C, a span (resp. a cospan) in C is a pair of
arrows with same codomain (resp. domain). A family of arrows F has domain
G (resp. codomain G) if the domain (resp. codomain) of each arrow of F is G.
Let G

u→ X
p← H be a span. If it exists, let us denote by G[p/u] the pullback

object of this span and let G
a← G[p/u] b→ H be the associated co-span. Let us

note that it is symmetric: G[p/u] = H [u/p]. For any arrow f with domain G,
we define a new arrow f [p/u] = f ◦ a with domain G[p/u] and by extension, for
any family F of arrows with domain G, we define F [p/u] = {f [p/u] | f ∈ F}.
Source. From now on, we shall consider a distinguished subset N of objects in
C whose elements will be called non-terminals.
2 We are aware that, by its simplicity, the expressions “categorical grammars” has

been extensively used, e.g. in the area of computational linguistics, but we did not
find any more accurate expression to designate our grammars.

162 M. Bauderon, R. Chen, and O. Ly

Definition 1. An N -source (or simply a source) is a triple G = (G, UG, PG)
consisting of an object G in C and two families UG and PG of arrows which share
the same domain G, whose codomains are non-terminal objects and such that
for any non-terminal X, there is at most one arrow in PG with codomain X.
Elements of U are called the unknowns occuring in G. An element p : G → X
of PG is called the replacement scheme for the non-terminal X in G. A source
is said to be terminal if it has no unknown, i.e., if #UG = 0.

Substitution. Substitutions operate on sources: substituting an unknown in a
source by an other source will rise to a new source, in the following way:

Definition 2. Let G = (G, UG, PG) and H = (H, UH , PH) be two sources. Let
u : G→ X be an unknown of G. If H has a replacement scheme p : H → X for
the non-terminal X, the substitution (or replacement) of u by H in G is the
source, denoted by G[H/u], and defined by the triple:

(G[p/u], (UG\{u})[p/u]∪ UH [u/p], PG[p/u])

Let us note that the notation G[H/u] is no longer symmetric.

Rewriting. We can now define a rewriting rule (together with the rewriting
mechanism):

Definition 3. A rewriting rule is a pair denoted by X → H where X is a non-
terminal object and H is a source provided with a replacement scheme for X.
Applying a rule r to a source G consists in selecting an unknown u : G → X
of G (if any) and substituting H to u, giving rise to G[H/u]. This will be denoted
by G

r,u=⇒ G[H/u], or simply G
r=⇒ G[H/u].

As usual, one-step derivation r⇒ defines a binary relation on sources whose re-
flexive and transitive closure is denoted by ∗⇒.

2.2 Dual Approach

As already mentionned, similar definitions can of course be given in a dual
way, by defining a sink (or co-source) with families of morphisms of the form
((fi : Xi → G)i∈I). G is the codomain of the sink and its domains are in N . The
definition of substitution will be dual, making use of pushout instead of pullback
as a basic operation to produce a sink out of two sinks.

In the sequel, we shall try to simplify by using the expressions production
rules (resp. occurrence) to designate both sources or sinks (resp. both sources
or sinks with #PG = 0).

2.3 Rewriting Structures

Definition 4. A categorical rewriting system in a category C, over a family of
objects N called non-terminals is given by a family of productions. The system
is admissible when all productions may be applied at any stage. A categorical
grammar will be given by a categorical rewriting system and a specific occurrence
called the axiom.

Context-Free Categorical Grammars 163

We shall in the sequel use the prefix projective (resp. inductive) to denote systems
relying on pullback (resp. pushout) as their rewriting mechanism.

If the category is complete (projective systems) or co-complete (inductive
systems), any categorical rewriting system is admissible. If not, we shall have to
give conditions for such a system to be admissible.

The language generated by the grammar is the family of terminal occurences
derived through the relation ∗⇒. The extended language is the family of not
necessarily terminal occurrences derived through the relation ∗⇒.

2.4 Context-Freeness

We shall follow Courcelle [6], and use his axiomatic definition of the notion of
context-freeness as the conjunction of three properties: preservation, confluence
and associativity. Let us first describe categorical (co)rewriting system as a sub-
stitution system in the sense of [6].

The alphabet is simply N . To completely fall within the framework described
by [6], we need an indexing of the non-terminal objects as N= {Xi/i ∈ [1, n]}.

The objects are the sources over N , whose set is denoted by CN . If G =
(G, UG, PG) is such an object, the arity function α sends it to the ordered list
α(G) = (X1X2 . . . Xm) consisting of the elements of the (co)domain of UG =
{(uj : G→ Xj)j∈[1,m]}.

According to definition 2, the substitution operator [] defines a partial map-
ping from CN × N × CN to CN by (G, X, R) → G[R/X] whenever this makes
sense. Using the previous indexing, it may also be described as a partial mapping
CN × N× CN to CN defined by (G, i, R)→ G[R/Xi].

Preservation. The first condition for context-freeness is to satisfy the preser-
vation axiom: for all (G, i, R) in the domain of [], one must have

α(G[R/Xi]) = X1X2 . . . Xi−1α(R)Xi+1 . . . Xn

where X1X2 . . .Xn = α(G) , for X1, . . . , Xn ∈ X . It follows from definition 2
that:

Proposition 1. The substitution mapping satisfies the preservation axiom.

Hence, G = 〈CN ,N , α, []〉 is a substitution system in the sense of [6]. We may
now study its properties.

Associativity. The first property expresses the fact that two consecutive steps
of rewriting can be condensed into one.

Proposition 2. G[R/X][S/(Y [R/X])] and G[R[S/Y]/(X [S/X])] are isomor-
phic (whenever they can both be computed), hence categorical rewriting systems
are associative.

164 M. Bauderon, R. Chen, and O. Ly

Confluence. This second property expresses the commutativity of the substi-
tution operation, or the fact that rewriting steps can be applied in any order,
giving the same result.

Proposition 3. G[R/X][S/Y] and G[S/Y][R/X] are isomorphic whenever
they can both be computed hence categorical rewriting systems are confluent.

These results show that categorical rewriting systems satify Courcelle’s condi-
tions for context-freeness ([6]) hence that :

Theorem 1. Categorical rewriting systems are context-free.

In the sequel, we shall use the expression context-free (abbreviated as CF) to
denote the notion of context-freeness in the sense of [6] that we have briefly
recalled in this section. When comparing with other definitions, we shall use a
prefix such as w-CF to denote the standard definition of context-freeness in the
classical theory of word languages.

3 Word Grammars

To describe word (or tree) languages in this setting, we need to put them in a
categorical framework which is as close as possible to the usual definitions where
for instance words are mappings from [1, n] ⊂ N to an alphabet A.

We shall consider as a base category the category Pos of partially ordered sets
(with order-preserving mappings) which is well known to be both complete and
cocomplete (see for instance [1]) and more precisely, categories PosA of posets
labeled over an alphabet A = {a, b, c, . . .}.

To model words or trees, we have to consider subcategories of Pos which are
neither complete nor cocomplete, meaning that the pushout and pullback objects
(which always exists in the enclosing category) may fail to be elements of the
category of interest, hence that the rewriting systems mail fail to be admissible.
Ensuring that they are will put stringent conditions of the type of rewriting
systems that we can build. In each case we must identify conditions under which
a pushout or a pullback object belongs to this subcategory as well as coherence
conditions to be fulfilled by the labelings. Due to space limitations, we shall deal
here only with words.

3.1 Words

To model words, we shall consider the subcategory A∗ = TosA of totally ordered
finite sets labeled over A.

Let us first give a few definitions. If m ∈ A∗, with #m = n, we shall write
m = m1m2m3 . . .mn (subscripts will be used to denote elements in a family of
words). If its order relation is denoted by ≤, we shall say that two elements of
m1 ≤ m2 in m are adjacent if there is no m3 such that m1 ≤ m3 ≤ m2; m2 is
then the successor of m1, while m1 is the predecessor of m2.

Context-Free Categorical Grammars 165

Totally Ordered Sets. The following two lemmata give a characterization of
those pushouts and pullbacks which build total orders out of total orders.

Starting with the more intuitive case, let us consider the following pushout
diagram in Pos, where x, u and v are total orders:

x
xv−→ v

↓xu ↓vm

u
um−→ m

The pushout object m is easily constructed: its carrier is the pushout object in
Set (the category of sets) while the order relation is induced by those on u and
v : m1 ≤ m2 if and only if v1 ≤ v2 or u1 ≤ u2, where mi = um(ui) and/or
mi = vm(vi), i = 1, 2.

n = 1

n = 2

n > 2

v

u

v

u

v

Fusion point

Fusion pair
Fusion segment

u

Fig. 1. Pushouts of total orders

Intuitively, if we represent u and v by linear segments, m is obtained by gluing
these two segments at some fusion points (or along fusion segments) which are
images of elements of x in u and v. The main possibilities to build total orders
out of total orders are described in figure 1.

Lemma 1. Let n = #x.

1. if n = 1, m is a total order if and only if xv(x) is the maximal point of v
and xu(x) is the minimal point of u (or conversely).

2. if n = 2, m is a total order if and only if xv(x1) and xv(x2) are adjacent in
v, while xu(x1) and xu(x2) are the extremal points of u (or conversely)

3. if n > 2, m is a total order if and only if the three following conditions hold
(a) either xv(x1) is the minimum of v or xu(x1) is the minimum of u,
(b) either xv(xn) is the maximum of v or xu(xn) is the maximum of u,
(c) if xi and xj are adjacent in x, then at least one of the pairs xv(xi) and

xv(xj) or xu(xi) and xu(xj) is adjacent (in v or u).

166 M. Bauderon, R. Chen, and O. Ly

Remark 1. The first two cases are easily interpreted. The case where n = 1
clearly corresponds to the concatenation vu (or conversely uv) and could there-
fore be used to model regular word grammars (which we will not do), while the
case n = 2 can be seen as the substitution of x by u in v (or conversely x by
v in u) and will be used later to model context-free word grammars. The third
case identifies and mixes parts of the two words according to the definition of
the mappings ox and rx.

Let us now consider the pullback case, by considering the following pullback
diagram in Pos:

m
mv−→ v

↓mu ↓vx

u
ux−→ x

The carrier of the pullback object m is computed as the pullback object in Set,
ie the set of those elements (u1, v1) in the cartesian product u × v such that
ux(u1) = vx(v1). The order on m is the order induced by the product order,
namely (u1, v1) ≤ (u2, v2) if and only if u1 ≤ u2 and v1 ≤ v2.

Lemma 2. The pullback object is a total order if and only if for each xi in x,
either #ux−1 ≤ 1 or #vx−1 ≤ 1.

Words. After describing conditions for pushout and pullback of total orders to
be total orders, we must describe the action of these operations on the labeling
which we need in order to turn total orders into words.

Let A = {a, b, c, . . .}∪{,�,⊥} be a set of terminal letters with three special
symbols , � and ⊥. We shall let the alphabet A be partially ordered by ⊥,� ≤
a ≤ , ∀a ∈ A (letters in A are not comparable, ⊥ and � need not be either).

In TosA, an object m of length n (a word in A∗) is a mapping [1, n] m→ A,
that we may write in the form {m1 ≤ m2 ≤ . . . ≤ mn} where mi ∈ A.

Since the set A of labels (terminal letters) is ordered, we can set :

Definition 5. A morphims of words f : m→ m′ is an order-preserving mapping
(i.e. an arrow in Tos) such that mi ≤ m′

f(i).

One may check that the composition of two such morphism is still a morphism
hence that A∗ = TosA is a category, and that if a diagram is a pushout (resp. a
pullback) in Tos, then it is a pushout (resp. a pullback) in TosA. It is enough
for that to set that whenever an element mi in m has preimages (resp. is image
of) both ui and vi in u and v, the label of mi will be the maximum (resp.
the minimum) of the labels of ui and vi. It will be shown in the two following
sections that whenever the result of the computation is in Tos, then these labels
are comparable.

3.2 Inductive Grammar

It follows from lemma 1, that the usual context-free substitution of a letter by
a word can be modelled in the category A∗ = TosA.

Context-Free Categorical Grammars 167

A non terminal letter x will be modeled by a 2-elements total order x =
{x1 ≤ x2} (we shall use the same symbol to denote the letter and the order),
which we shall label ⊥�. An occurence of x in a word w is an arrow x

ox→ w,
such that ox(x1) and ox(x2) are adjacent. This means that w is of the form
w1 . . . wkox(x1)ox(x2)wk+2 . . . wp. We shall write as usual w = txu, with t =
w1 . . . wk and u = wk+2 . . . wp.

Let us be given a context-free word rewriting rule of the form x→ m, where
m ∈ A∗ is a word of length n and some other non-terminals yi occuring in m.

This rule may be modelled by a sink ((yi

oyi→ m), x rx→ m) where rx(x1) =
m1, rx(x2) = mn, #m = n, and for each i, yi

oyi→ m is an occurence3 of yi in m.
The substitution is given by computing the pushout corresponding to the

following diagram (which is well defined in PosA):

x
rx−→ m

↓ox ↓α
txu

β−→ tmu

From Lemma 1, it follows that tmu is a total order. The labelling on tmu is
uniquely defined everywhere except on the images of x1 and x2 where there are
two possibilities, one coming from x in txu, the other from m. Since x is labelled
by ⊥�, the labelling on m is well defined in each case as the maximum of the
two possible labels.

Each arrow (yi

ryi→ m) defines by composition with α an occurence (yi

α◦ryi→
tmu) and the computation can be continued by further application of rules of
the form (yi → mi).

This construction shows that inductive rewriting models the substitution
mechanism used in the standard theory of words languages.

The details of the encoding are omitted due to the lack of space.
Conversely, it may be shown that any pushout rule can be interpreted as a

classical context-free rewriting rule, hence:

Lemma 3. Context-free word languages are exactly inductive word languages,
which we summarize as w-CF = po.

3.3 Projective Grammar

We shall now make use of the symbol which we added to A to label a single
element order which will thus be turned into a terminal object in the category A∗

and a neutral element for the categorical product. For the sake of clarity in the
following diagrams defining morphisms, we shall also use the letters x, y, z, . . .
to denote the same neutral element .
3 Of course m must be of the form m = a1y1 . . . apypap+1 for some (possibly empty)

words a1, . . . ap+1, meaning that the images oyi(yi) in m must not overlap. This
corresponds to the fact that there can not be two distinct letters at the same place
in a word and is necessary to ensure that all computed pushout objects are actually
words.

168 M. Bauderon, R. Chen, and O. Ly

Let us first note that the following diagram, where the definition of the arrows
rx and ox should be clear from the drawing (modulo the use of the letter x to
denote an occurence of), models in a projective way the application of the rule
x → m to the word axb (the relabelling of the pullback object is being defined
as earlier):

amb −→ axb
↓ ↓rx

m ox−→ x
Hence the following lemma:

Lemma 4. Every word context-free rule can be encoded as a projective rule,
hence: w-CF = po ⊂ pb = CF

Let us consider a slightly more complex rule, by considering the production
defined by the pair of arrows

(ax by cz
oy→ x y z,ax by cz

rx→ x y z)

where rx() = , rx(ax) = x and so on (oy being defined in the same way). Let
ox be the occurence axbycz → x y z.

Then the following pullback diagram :

aaxbbyccz
α−→ ax by cz

↓ ↓rx

axbycz
ox−→ x y z

computes a new word aaxbbyccz and generates a new occurence aaxbbyccz
oy◦α−→

x y z where the production rule may be applied once more.

Lemma 5. This rewriting system (together with an unknown erasing rule) gen-
erates in a context free way 4 the language anbncn.

This shows that:

Theorem 2. w-CF= po � CF = pb � CS

The last inequality is quite clear: projective grammars can not generate all
context-sensitive grammars (CS): the rewriting mechanism does not provide any
sort of pattern matching as needed for the most general CS grammars, since
all new occurences are built by composition of functions and can not appear
through mere juxtaposition of letters.

The question remains of the exact expressive power of projective word gram-
mars, although a careful examination of the possible codomains for productions
suggests that they can not generate anything really more complex than anbncn.
4 It is not new that the language anbncn can be generated in a context-free way, but

this needs an encoding of words as string graphs (see [8]) hence needs going out of
word-rewriting to use techniques from hyperedge replacement grammars within the
category of hypergraphs.

Context-Free Categorical Grammars 169

4 Graphs and Hypergraphs

It is well known that categories of graphs or hypergraphs are both complete and
cocomplete. Pushout and pullback can always be computed, and we therefore
simply need to interpret the nature of inductive and projective graph grammars.

4.1 Inductive Hypergraph Grammars

Let H be the category of hypergraphs and X be a set of non-terminal hyper-
graphs. Inductive hypergraph grammars can be defined with no restrictions along
the lines of section 2.3.

Theorem 3. Inductive hypergraph grammars are exactly hyperedge replacement
grammars in the sense of [8].

4.2 Projective Graph Grammars

Projective graph grammars have not so far been studied in general.
We shall recall here the basic definitions of pullback graph grammars, which,

while being a very restricted case, are sufficient to describe e.g. node replacement
systems and to provide already intersting results (details and proofs may be
found in [2,3,4,5]).

Definition 6. A graph G is a 4-tuple G = 〈VG, EG, sG, tG〉 where the sets VG of
vertices and EG of edges are two finite disjoint sets and sG and tG are mappings
from EG to VG. For every element e ∈ EG, sG(e) and tG(e) are called source
vertex and target vertex of the edge e respectively.

A vertex v ∈ VG is reflexive if there exists an edge e ∈ EG such that sG(e) =
tG(e) = v. A graph G is reflexive if all its vertices are reflexive, it is said to be
simple if for any pair x, y of vertices of G, there is at most one edge from x to y.

Non Terminals. Non-terminals graphs have a quite specific form which allows
them to distinguish between nodes to be transformed, nodes to be identically
reproduced and an intermediate zone.

Definition 7. A non-terminal graph X is a graph made out of two components:
a complete reflexive graph Km+1, and a reflexive subgraph U linked to only m of
the vertices of Km+1.

Occurrences and Productions. For the sake of simplicity (and to keep some
coherence with e.g. [3]), we shall simply describe the shapes of the morphisms
involved in the definition of a source G = (G, UG, PG), calling occurence any
morphism appearing in UG and production the morphism involved as a replace-
ment scheme in PG. They both will have a very special structure.

Definition 8. Let G be a directed simple graph and X a non terminal graph,
an occurrence x on G is a graph morphism from G to X such that the pre-image
x−1(U) is non empty.

170 M. Bauderon, R. Chen, and O. Ly

Definition 9. A production r is a morphism r : R → X which is isomorphic
on the inverse image of the subgraph of X generated by Km+1.

Theorem 4. Pullback graph grammar are projective graph grammars hence are
context-free. For every inductive hypergraph grammar, there is an equivalent pull-
back graph grammar.

The converse of the second assertion is false, since hypergraph replacement gram-
mars cannot generate square grids ([8]), which can be generated by a pullback
graph grammar with only one rule (as shown in [3]).

In [6], Courcelle shows that vertex replacement grammars (V R-grammars)
are context-free. The result from [3] shows that although it satisfies the same
definition of context-freeness, pullback rewriting provides us with a strictly more
powerful context-free mechanism.

The real expressive power of general projective graph grammars remain to be
investigated.

5 Conclusion

In this paper, we have set a generic categorical framework for rewriting, with
two distinct possibilities, inductive rewriting based on the pushout operation and
projective rewriting based on pullback. We have then shown that both types of
categorical rewriting, either inductive or projective, are intrinsically context-free
(after the well accepted definition of [6]).

This general framework has then been instantiated to two specific cases. First
of all, we have shown that inductive rewriting on words mimics the classical
theory of context-free word languages (generating exactly the same languages),
while projective rewriting gives a more powerful notion of context-freeness, where
languages such that anbncn become context-free.

Ina similarway, inductive rewriting ofhypergraphsdescribes hyperedge replace-
ment grammars (well known to be context-free), while projective graph rewriting
yields a much more powerful context-free mechanism, in which graphs languages
such as the language of all complete graphs or that of square grids become context-
free (as already noticed, we actually used only a very specific case of projective
graph rewriting by putting strong conditions on the rules and occurences).

While we have shown that inductive rewriting describes (at least in two cases)
“classical” context-free rewriting, the exact power of projective rewriting, both
in the case of words or graphs remains an open question. It is also open whether
projective rewriting is always strictly more powerfull than inductive rewriting,
as is the case for words or graphs.

References

1. Adamek, J., Herrlich, H., Strecker, G.E.: Abstract and Concrete Categories,
http://katmat.math.uni-bremen.de/acc/acc.pdf

2. Bauderon, M.: A uniform approach to graph rewriting: the pullback approach. In:
Nagl, M. (ed.) WG 1995. LNCS, vol. 1017, pp. 101–115. Springer, Heidelberg (1995)

http://katmat.math.uni-bremen.de/acc/acc.pdf

Context-Free Categorical Grammars 171

3. Bauderon, M., Chen, R., Ly, O.: Pullback Grammars Are Context-Free. In:
Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS,
vol. 5214, pp. 366–378. Springer, Heidelberg (2008)

4. Bauderon, M., Jacquet, H.: Node rewriting in graphs and hypergraphs: a categorical
framework. Theoretical Computer Science 266(1-2), 463–487 (2001)

5. Chen, R.: Graph Transformation and Graph Grammar Based on Pullback Opera-
tion, PhD thesis, Université Bordeaux 1 (2007)

6. Courcelle, B.: An axiomatic approach to context-free rewriting and its application
to NLC graph grammars. Theoretical Computer Science 55, 141–181 (1987)

7. Engelfriet, J., Rozenberg, G.: Node Replacement Graph Grammars. In: [9],
pp. 1–94

8. Habel, A.: Hyperedge Replacement: Grammars and Languages. LNCS, vol. 643.
Springer, Heidelberg (1992)

9. Rozenberg, G.: Handbook of Graph Grammars and Computing by Graph
Transformation. World Scientific Publishing, Singapore (1997)

	Context-Free Categorical Grammars
	Introduction
	Rewriting in a Category
	Basic Definitions
	Dual Approach
	Rewriting Structures
	Context-Freeness

	Word Grammars
	Words
	Inductive Grammar
	Projective Grammar

	Graphs and Hypergraphs
	Inductive Hypergraph Grammars
	Projective Graph Grammars

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

