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Preface

CAI 2009 was the Third International Conference on Algebraic Informatics.
It was intended to cover the topics of algebraic semantics on graphs and trees,
formal power series, syntactic objects, algebraic picture processing, finite and in-
finite computations, acceptors and transducers for strings, trees, graphs, arrays,
etc., decision problems, algebraic characterization of logical theories, process
algebra, algebraic algorithms, algebraic coding theory, algebraic aspects of cryp-
tography.

CAI 2009 was dedicated to Werner Kuich on the occasion of his retirement.
It was held in Thessaloniki, Greece, during May 19-22, 2009 and organized under
the auspices of the Department of Mathematics of the Aristotle University of
Thessaloniki. The opening lecture was given by Werner Kuich, the tutorials by
Alessandra Cherubini and Wan Fokkink, and the other four invited lectures
by Bruno Courcelle, Dietrich Kuske, Detlef Plump, and Franz Winkler. This
volume contains 2 papers from the tutorials, 5 papers of the invited lectures,
and 16 contributed papers. We received 25 submissions, the contributors being
from 14 and countries, and the Program Committee selected 16 papers.

We are grateful to the members of the Program Committee for the evaluation
of the submissions and the numerous referees who assisted in this work. We
should like to thank all the contributors of CAI 2009 and especially the honorary
guest Werner Kuich and the invited speakers who kindly accepted our invitation
to present their important work. Special thanks are due to Alfred Hofmann
the Editorial Director of LNCS, who gave us the opportunity to publish the
proceedings of our conference in the LNCS series, as well as to Anna Kramer from
Springer for the excellent cooperation. We are also grateful to the members of
the Organizing Committee and a group of graduate students who helped us with
several organizing jobs. Last but not least we want to express our gratitude to
the members of the Steering Committee for their constant interest and especially
to Arto Salomaa for his support at Springer.

The sponsors of CAI 2009, OPAP, Aristotle University of Thessaloniki, Attiko
Metro S.A., Research Academic Computer Technology Institute (Fronts), and
Ziti Publications are gratefully acknowledged.

July 2009 Symeon Bozapalidis
George Rahonis
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J. Högberg
S. Jenei



VIII Organization

H. Jonker
A. Kalampakas
D. Kuske
A. Lopes
A. Maletti
E. Mandrali
O. Matz
I. Meinecke
M. Mignotte
K. Ogata
F. Otto
A. Papistas
U. Prange
M. Pohst
D. Poulakis

R. Rabinovich
G. Rahonis
R. Rolland
Y. Roos
K. Salomaa
P. Spirakis
M. Steinby
S. Tison
N. Tzanakis
G. Vaszil
H. Vogler
S. Yu
S.-S. Yu

Organizing Committee

Archontia Grammatikopoulou
Antonios Kalampakas
Eleni Mandrali
Athanasios Papistas
Dimitrios Poulakis (Co-chairman)
George Rahonis (Chairman)

Sponsors

OPAP
Aristotle University of Thessaloniki
Attiko Metro S.A.
Research Academic Computer Technology Institute (Fronts)
Ziti Publications.



Table of Contents

Invited Paper of Werner Kuich

Cycle-Free Finite Automata in Partial Iterative Semirings . . . . . . . . . . . . . 1
Stephen L. Bloom, Zoltan Ésik, and Werner Kuich

Tutorials

Picture Languages: From Wang Tiles to 2D Grammars . . . . . . . . . . . . . . . 13
Alessandra Cherubini and Matteo Pradella

Process Algebra: An Algebraic Theory of Concurrency . . . . . . . . . . . . . . . . 47
Wan Fokkink

Invited Papers

On Several Proofs of the Recognizability Theorem . . . . . . . . . . . . . . . . . . . 78
Bruno Courcelle

Theories of Automatic Structures and Their Complexity . . . . . . . . . . . . . . 81
Dietrich Kuske

The Graph Programming Language GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Detlef Plump

Canonical Reduction Systems in Symbolic Mathematics . . . . . . . . . . . . . . . 123
Franz Winkler

Contributed Papers

Solving Norm Form Equations over Number Fields . . . . . . . . . . . . . . . . . . . 136
Paraskevas Alvanos and Dimitrios Poulakis

A Note on Unambiguity, Finite Ambiguity and Complementation in
Recognizable Two-Dimensional Languages . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Marcella Anselmo and Maria Madonia

Context-Free Categorical Grammars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Michel Bauderon, Rui Chen, and Olivier Ly

An Eilenberg Theorem for Pictures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Symeon Bozapalidis and Archontia Grammatikopoulou



X Table of Contents

On the Complexity of the Syntax of Tree Languages . . . . . . . . . . . . . . . . . . 189
Symeon Bozapalidis and Antonios Kalampakas

On the Reversibility of Parallel Insertion, and Its Relation to Comma
Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Bo Cui, Lila Kari, and Shinnosuke Seki

Computation of Pell Numbers of the Form pX2 . . . . . . . . . . . . . . . . . . . . . . 220
Konstantinos A. Draziotis

Iteration Grove Theories with Applications . . . . . . . . . . . . . . . . . . . . . . . . . . 227
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Cycle-Free Finite Automata in Partial Iterative

Semirings

Stephen L. Bloom1, Zoltan Ésik2,�, and Werner Kuich3,��

1 Dept. of Computer Science
Stevens Institute of Technology

Hoboken, NJ. USA
2 Dept. of Computer Science

University of Szeged
Hungary

3 Institut für Diskrete Mathematik und Geometrie
Technische Universität Wien

Austria

Abstract. We consider partial Conway semirings and partial iteration
semirings, both introduced by Bloom, Ésik, Kuich [2]. We develop a
theory of cycle-free elements in partial iterative semirings that allows us
to define cycle-free finite automata in partial iterative semirings and to
prove a Kleene Theorem. We apply these results to power series over a
graded monoid with discounting.

1 Introduction

Cycle-free power series r ∈ S〈〈Σ∗〉〉, where S is a semiring and Σ is an alphabet,
are defined by the condition that (r, ε), the coefficient of r at the empty word ε, is
nilpotent. Transferring this notion via its transition matrix to a finite automaton
assures that the behavior of a cycle-free finite automaton is well defined. This
fact makes it possible to generalize classical finite automata with ε-moves to
weighted cycle-free finite automata (see Kuich, Salomaa [11], Ésik, Kuich [9]).

In this paper, we take an additional step of generalization. We consider cycle-
free elements in a partial iterative semiring and consider cycle-free finite au-
tomata. This generalization preserves all the nice results of weighted cycle-free
finite automata and allows us to prove the usual Kleene Theorem stating the
coincidence of the sets of recognizable and rational elements.

This paper consists of this and three more sections. In Section 2 we consider
partial iterative semirings and partial Conway semirings, both introduced by
Bloom, Ésik, Kuich [9]. Moreover, we define cycle-free elements in partial itera-
tive semirings and prove several identities involving these cycle-free elements. In
Section 3 we introduce cycle-free finite automata in partial iterative semirings,
� Partially supported by grant no. K 75249 from the National Foundation of Scientific
Research of Hungary, and by Stiftung Aktion Österreich-Ungarn.

�� Partially supported by Stiftung Aktion Österreich-Ungarn.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 1–12, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



2 S.L. Bloom, Z. Ésik, and W. Kuich

define recognizable and rational elements and prove a Kleene Theorem: an ele-
ment is recognizable iff it is rational. In Section 4 we apply the results to power
series over a finitely generated graded monoid with discounting.

2 Cycle-Free Elements in Partial Iterative Semirings

Suppose that S is a semiring and I is an ideal of S, so that 0 ∈ I, I + I ⊆ I
and IS ∪ SI ⊆ I. According to Bloom, Ésik, Kuich [2], S is a partial iterative
semiring over I if for all a ∈ I and b ∈ S the equation x = ax + b has a unique
solution in S. We denote this unique solution by a∗b.

Example. This is a running example for the whole paper. Let S be a semiring
and Σ an alphabet, and consider the power series semiring S〈〈Σ∗〉〉. A power
series r ∈ S〈〈Σ∗〉〉 is called proper if (r, ε) = 0. Clearly, the collection of proper
power series forms an ideal I = {r ∈ S〈〈Σ∗〉〉 | (r, ε) = 0}. By Theorem 5.1 of
Droste, Kuich [4], S〈〈Σ∗〉〉 is a partial iterative semiring over the ideal I, where
the ∗ of a proper power series r is defined by r∗ =

∑
j≥0 rj . �

In the rest of this section we suppose that S is a partial iterative semiring over
I. Moreover, we let J denote the set of all a ∈ S such that ak ∈ I for some k ≥ 1.
Note that if ak ∈ I then am ∈ I for all m ≥ k. When ak is in I, we say that a is
cycle free with index k. We clearly have I ⊆ J .

Proposition 1. If a ∈ I and b ∈ J then a + b ∈ J . Moreover, if a, b ∈ S with
ab ∈ J then ba ∈ J .

Proof. If a ∈ I and b ∈ J with bk ∈ I, then (a + b)k is a sum of terms which
are k-fold products over {a, b}. Each such product is in I since it is either bk or
contains a as a factor. Since I is closed under sum, it follows that (a + b)k is in
I and thus a + b is in J .

Suppose now that a, b ∈ S with (ab)k ∈ I for some k ≥ 1. Then (ba)k+1 =
b(ab)kb ∈ I, proving that ba ∈ J . �

The following fact was shown in Bloom, Ésik, Kuich [2].

Proposition 2. Suppose that a ∈ J and b ∈ S. Then the equation x = ax+b has
a unique solution. Moreover, its unique solution is a∗b, where a∗ is the unique
solution of the equation x = ax + 1.

Thus, we have a partial ∗-operation S → S defined on the set J of cycle-free
elements.

Proposition 3. Suppose that a, b ∈ J and c ∈ S. If ac = cb, then a∗c = cb∗. In
particular, a(am)∗ = (am)∗a, for all a ∈ J and m ≥ 1.

Proof. We have acb∗ + c = cbb∗ + c = c(bb∗ + 1) = cb∗, so that a∗c = cb∗ by
uniqueness. �

Proposition 4. Suppose that a, b ∈ S such that ab ∈ J . Then ba ∈ J , moreover,
(ab)∗a = a(ba)∗ and a(ba)∗b + 1 = (ab)∗.
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Proof. Since (ab)a = a(ba) and ab, ba ∈ J , we can apply Proposition 3 to get
(ab)∗a = a(ba)∗. Using this, a(ba)∗b + 1 = ab(ab)∗ + 1 = (ab)∗. �

Proposition 5. Suppose that a, b ∈ S such that a, a + b and a∗b are all in J .
Then (a + b)∗ = (a∗b)∗a∗.

Proof. We show that (a∗b)∗a∗ is a solution to the equation x = (a + b)x + 1:

(a + b)(a∗b)∗a∗ + 1 = a(a∗b)a∗ + b(a∗b)a∗ + 1
= aa∗(ba∗)∗ + (ba∗)∗

= (aa∗ + 1)(ba∗)∗

= a∗(ba∗)∗

= (a∗b)∗a∗.

�
Corollary 1. If a ∈ J and b ∈ I then (a + b)∗ = (a∗b)∗a∗.

Proposition 6. If a ∈ J then am ∈ J for all m ≥ 1 and a∗ = (am)∗(am−1 +
. . . + 1) = (am−1 + . . . + 1)(am)∗.

Proof. The fact that (am)∗(am−1 + . . .+1) = (am−1 + . . .+1)(am)∗ follows from
Proposition 3. The fact that a∗ = (am−1 + . . . + 1)(am)∗ follows by noting that

a(am−1 + . . . + 1)(am)∗ + 1 = am(am)∗ + 1 + (am−1 + . . . + a)(am)∗

= (am)∗ + (am−1 + . . . + a)(am)∗

= (am−1 + . . . + 1)(am)∗.

�
The following fact is from Bloom, Ésik, Kuich [2].

Proposition 7. If S is a partial iterative semiring over I, then Sn×n is a partial
iterative semiring over In×n.

Below we will consider fixed point equations X = AX +B, where A ∈ Sn×n and
B ∈ Sn×m. We will assume that A and B are partitioned as

A =
(

a b
c d

)
and

(
e
f

)
where a ∈ Sn1×n2 , b ∈ Sn1×n2 , c ∈ Sn2×n1 , d ∈ Sn2×n2 , e ∈ Sn1×m, f ∈ Sn2×m.

Corollary 2. If A is cycle-free so that Ak ∈ In×n for some k, then the equation
X = AX + B has a unique solution.

Again, this unique solution is A∗B, where A∗ is the unique solution to the
equation X = AX + En, where En denotes the unit matrix in Sn×n.

Proposition 8. Let A ∈ Sn×n be cycle-free and assume that a, a + bd∗c, d, d +
ca∗b are all cycle-free. Then

A∗ =
(

(a + bd∗c)∗ (a + bd∗c)∗bd∗

(d + ca∗b)∗ca∗ (d + ca∗b)∗

)
. (1)
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Proof. Consider the system of fixed point equations

x = ax + by + e (2)
y = cx + dy + f (3)

where x ranges over Sn1×m and y ranges over Sn2×m. We show that it has a
unique solution

x = (a + bd∗c)∗(e + bd∗f) (4)
y = (d + ca∗b)∗(f + ca∗e) (5)

Since a is cycle free, from (2) we have x = a∗by + a∗e. Substituting this for x in
(3) gives

y = (d + ca∗b)y + ca∗e + f

Since d + ca∗b is cycle-free, this gives (5). The proof of (4) is similar. �

Proposition 9. Let A ∈ Sn×n and assume that a and d are cycle-free and
b ∈ In1×n2 or c ∈ In2×n1 . Then A is cycle-free and (1) holds.
Proof. We only prove the case where c ∈ In2×n1 . The proof of the other case is
similar. It is clear that for each j ≥ 1,

Aj =
(
aj + x y + z

u dj + v

)
,

where the entries of x, y, u, v are all in I since they are finite sums of j-fold
products containing at least one occurrence of the factor c. Moreover, z is a sum
of j-fold products over {a, b, d} having a single factor equal to b. Since a and
d are cycle-free, it follows that for large enough j each such product is also a
matrix with entries in I, so that each entry of z is in I. We have thus proved
that when j is sufficiently large, then Aj ∈ In×n so that A∗ is defined. Also,
for each j ≥ 1, (a + bd∗c)j = aj + x and (d + ca∗b)j = dj + y where x, y are
matrices with entries in I. Since a and d are cycle-free, it follows again that when
j is sufficiently large, then the entries of (a + bd∗c)j and (d + ca∗b)j are all in
I, so that a + bd∗c and d + ca∗b are cycle-free and (a + bd∗c)∗ and (d + ca∗b)∗

exist. Thus, the assumptions of Proposition 8 are satisfied and our proposition
is proved. �

Corollary 3. Let A ∈ Sn×n and assume that a and d are cycle-free and c = 0.
Then A is cycle-free and

A∗ =
(

a∗ a∗bd∗

0 d∗

)
.

In Bloom, Ésik, Kuich [2], a partial Conway semiring is defined as a semiring S
equipped with a distinguished ideal I and a partial operation ∗ : S → S defined
on I which satisfies the sum ∗-identiy

(a + b)∗ = (a∗b)∗a∗

for all a, b ∈ I and product ∗-identity

(ab)∗ = 1 + a(ba)∗b
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for all a, b ∈ S with a ∈ I or b ∈ I. By Propositions 4 and 5 we have that
each partial iterative semiring is a partial Conway semiring. It is known that
when S is a partial Conway semiring with distinguished ideal I, then for each n,
Sn×n is also a partial Conway semiring equipped with the ideal In×n. Moreover,
(1) holds for all decompositions of a matrix A ∈ In×n. A Conway semiring
(see Conway [3] and Bloom, Ésik [1]) is a partial Conway semiring S whose
distinguished ideal is S, so that the ∗-operation is completely defined.

3 Cycle-Free Finite Automata

In this section we establish a Kleene Theorem in partial iterative semirings. To
this end, we define a general notion of cycle-free finite automaton in partial
iterative semirings. Defining the set of recognizable elements to be the set of
behaviors of cycle-free finite automata, and the set of rational elements to be
the least partial iterative semiring generated by some particular elements, the
Kleene Theorem states that an element is recognizable iff it is rational.

In this section, S is a partial iterative semiring over the ideal I of S, Σ is
a subset of I, and S0 is a subsemiring of S. Moreover, S0Σ denotes the set
of all finite linear combinations over Σ with coefficients in S0, and S0 + S0Σ
denotes the set of sums of elements of S0 with elements of S0Σ. (See Bloom,
Ésik, Kuich [2], Section 6.)

A finite automaton in S and I over (S0, Σ) A = (α,A, β) is given by

(i) a transition matrix A ∈ (S0 + S0Σ)n×n,
(ii) an initial vector α ∈ S1×n

0 ,
(iii) a final vector β ∈ Sn×1

0 .

The integer n ≥ 1 is called the dimension of A. Briefly, we call A finite auto-
maton if S, I, S0, Σ are understood.

The finite automaton A = (α,A, β) is called cycle-free if A is cycle-free over
In×n. The behavior |A| of such a cycle-free finite automaton A is given by

|A| = αA∗β .

We say that a ∈ S is recognizable if a is the behavior of some cycle-free finite
automaton in S and I over (S0, Σ). We let RecS,I(S0, Σ) denote the set of all
elements of S which are recognizable.

We say that a ∈ S is rational if it is contained in the partial iterative semiring
RatS,I(S0, Σ) over RatS,I(S0, Σ)∩I generated by S0∪Σ; i. e., if it is contained
in the least set containing S0∪Σ and closed under the rational operations +, ·, ∗,
where ∗ is applied only to elements of I.

Observe that RatS,I(S0, Σ) may be defined in an equivalent way as follows,
due to Proposition 6: RatS,I(S0, Σ) is the least set containing S0 ∪Σ which is
closed under the operations +, ·, ∗, where ∗ is applied only to cycle-free elements.

We will show that under a certain additional condition on S0, RecS,I(S0, Σ) =
RatS,I(S0, Σ).

Example. We let S0 be the subsemiring S〈{ε}〉 = {aε | a ∈ S} of S〈〈Σ∗〉〉. Then
the finite automata in Subsection 2.1 of Ésik, Kuich [9] are essentially the finite
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automata in S〈〈Σ∗〉〉 and I over (S〈{ε}〉, Σ), where I is the ideal of proper series.
(See Theorem 2.1 of Ésik, Kuich [9].)

The sets Srec〈〈Σ∗〉〉 and Srat〈〈Σ∗〉〉 in Ésik, Kuich [9] are then the specializa-
tions of the sets of recognizable and rational elements of S〈〈Σ∗〉〉, respectively; i. e.,
Srec〈〈Σ∗〉〉 = RecS〈〈Σ∗〉〉,I(S〈{ε}〉, Σ) and Srat〈〈Σ∗〉〉 = RatS〈〈Σ∗〉〉,I(S〈{ε}〉, Σ).
Then RecS,I(S0, Σ) = RatS,I(S0, Σ) is the Kleene-Schützenberger Theorem,
usually written as Srec〈〈Σ∗〉〉 = Srat〈〈Σ∗〉〉, and the theory of cycle-free finite au-
tomata developed in this section is a generalization of Subsection 2.1 of Ésik,
Kuich [9]. �

Two cycle-free finite automata A and A′ are equivalent if |A| = |A′|. A finite
automaton A = (α,A, β) of dimension n is called normalized if n ≥ 2 and

(i) α1 = 1, αi = 0, for all 2 ≤ i ≤ n;
(ii) βn = 1, βi = 0, for all 1 ≤ i ≤ n− 1;
(iii) Ai,1 = An,i = 0, for all 1 ≤ i ≤ n.

(See also Ésik, Kuich [9], below Theorem 2.9.)

Proposition 10. Each cycle-free finite automaton is equivalent to a normalized
cycle-free finite automaton.

Proof. Let A = (α,A, β) be a cycle-free finite automaton of dimension n. Define
the finite automaton

A′ = ((1 0 0),

⎛⎝0 α 0
0 A β
0 0 0

⎞⎠ ,

⎛⎝0
0
1

⎞⎠)

of dimension n + 2. Then A′ is normalized. Applying Corollary 3 twice on the
transition matrix of A′ proves that A′ is cycle-free and

|A′| = (

⎛⎝0 α 0
0 A β
0 0 0

⎞⎠∗

)1,n+2 = αA∗β = |A| .

�

We now show that, under an additional condition on S0, each cycle-free finite
automaton is equivalent to one where the entries of the transition matrix are in
the ideal I. (See condition (23) in Section 6 of Bloom, Ésik, Kuich [2].)

Definition 1. Suppose that S is a partial iterative semiring over the ideal I, S0

is a subsemiring of S. We say (S, S0, I) is cycle-free if for all a ∈ S0 and all
b ∈ I, if

a + b ∈ I

then a = 0.

Thus, when (S, S0, I) is cycle-free, we understand that S, S0, I satisfy the as-
sumptions of Definition 1.
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Proposition 11. Suppose (S, S0, I) is cycle-free and Σ ⊆ I. Then each cycle-
free finite automaton in S and I over (S0, Σ) is equivalent to a cycle-free auto-
maton A′ = (α′, A′, β′) in S and I over (S0, Σ), where A′ ∈ (S0Σ)n×n, and
α′

1 = 1, α′
i = 0 for all 2 ≤ i ≤ n.

Proof. For each cycle-free finite automaton there exists, by Proposition 10, an
equivalent normalized cycle-free automaton A = (α,A, β). The definition of
the transition matrix A implies that it can be written (not necessarily in a
unique way) in the form A = A0 + A1, where A0 ∈ Sn×n

0 and A1 ∈ (S0Σ)n×n.
Assume that A is cycle-free of index k. Then Ak = Ak

0 + B ∈ In×n, where
Ak

0 ∈ Sn×n
0 and B ∈ In×n. By the additional condition on S0 we obtain Ak

0 = 0
and A∗

0 = Ak−1
0 + . . . + E ∈ Sn×n

0 . Hence A∗
0A1 ∈ (S0Σ)n×n and A∗

0β ∈ Sn×n
0 .

We now define the finite automaton A′ by A′ = A∗
0A1, α′ = α, β′ = A∗

0β and
show the equivalence of A and A′:

|A′| = α(A∗
0A1)∗A∗

0β = α(A0 + A1)∗β = αA∗β = |A| .
Here we have applied Corollary 1 in the second equality. �

We now define, for given finite automata A = (α,A, β) and A′ = (α′, A′, β′)
of dimensions n and n′, respectively, the finite automata A + A′ and A ·A′ of
dimension n + n′:

A + A′ = ((α α′),
(

A 0
0 A′

)
,

(
β
β′

)
) ,

A ·A′ = ((α 0),
(

A βα′

0 A′

)
,

(
0
β′

)
) .

Since the entries of βα′ are in S0, the entries of the transition matrices of A+A′

and A · A′ are in S0 + S0Σ. If A and A′ are cycle-free then, by Corollary 3,
the transition matrices of A + A′ and A ·A′ are cycle-free. Hence, A + A′ and
A ·A′ are then again cycle-free finite automata.

Proposition 12. Let A and A′ be cycle-free finite automata. Then A+A′ and
A ·A′ are again cycle-free finite automata and

|A + A′| = |A|+ |A′| and |A ·A′| = |A||A′| .
Proof. For the proof of the equalities we apply Corollary 3:

|A + A′| = (α α′)
(

A 0
0 A′

)∗(
β
β′

)
=

(α α′)
(

A∗ 0
0 A′∗

)(
β
β′

)
= αA∗β + α′A′∗β′ = |A|+ |A′| ;

|A ·A′| = (α 0)
(
A βα′

0 A′

)∗( 0
β′

)
=

(α 0)
(
A∗ A∗βα′A′∗

0 A′∗

)(
0
β′

)
= αA∗βα′A′∗β′ = |A||A′| .

�
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Proposition 13. Let a ∈ S0 + S0Σ. Then a ∈ RecS,I(S0, Σ).

Proof. Consider the following finite automaton Aa, a ∈ S0+S0Σ, of dimension 2:

Aa = ((1 0),
(

0 a
0 0

)
,

(
0
1

)
) .

Clearly, Aa is cycle-free of index 2 and we obtain

|Aa| = (1 0)
(

1 a
0 1

)(
0
1

)
= a .

�

Corollary 4. RecS,I(S0, Σ) is a subsemiring of S containing S0 ∪Σ.

We define, for a given finite automaton A = (α,A, β) the finite automaton
A+ = (α,A+βα, β). Since the entries of βα are in S0, the entries of the transition
matrix of A+ are in S0 + S0Σ.

Proposition 14. Suppose that (S, S0, I) is cycle-free and Σ ⊆ I. Then, for
a ∈ RecS,I(S0, Σ) ∩ I, a∗ ∈ RecS,I(S0, Σ).

Proof. Let a ∈ RecS,I(S0, Σ) ∩ I. Then, by Proposition 11, there exists a finite
automaton A = (α,A, β) with A ∈ (S0Σ)n×n, α ∈ S1×n

0 and β ∈ Sn×1
0 such

that a = |A|. Since a = αA∗β = αβ + αAA∗β, where αβ ∈ S0 and αAA∗β ∈ I,
we infer by the additional condition on S0 that αβ = 0.

Considering the transition matrix of the finite automaton A+, we obtain (A+
βα)2 = A2+Aβα+βαA+βαβα = A2+Aβα+βαA ∈ In×n. Hence, the transition
matrix of A+ is cycle-free of index 2. Observe that A∗βα = βα + AA∗βα is
cycle-free for a similar reason; thus we can in the following computation apply
Proposition 5 in the second equality and Proposition 4 in the third equality and
obtain

|A+| = α(A + βα)∗β = α(A∗βα)∗A∗β = (αA∗β)(αA∗β)∗ = |A||A|∗ .

Hence, aa∗ ∈ RecS,I(S0, Σ).
Consider now the cycle-free finite automaton A1 + A+. It has the behavior

1 + |A||A|∗ = |A|∗. Hence, a∗ ∈ RecS,I(S0, Σ). �

Corollary 5. Suppose that (S, S0, I) is cycle-free and Σ ⊆ I. Then a∗ ∈
RecS,I(S0, Σ) if a ∈ RecS,I(S0, Σ) is cycle-free.

Corollary 6. Suppose that (S, S0, I) is cycle-freeandΣ ⊆ I.ThenRecS,I(S0, Σ)
is a partial iterative subsemiring of S (and hence, a partial Conway subsemiring of
S) containing S0 ∪Σ over the ideal RecS,I(S0, Σ) ∩ I of RecS,I(S0, Σ).

Corollary 4 and Propositions 13, 14 show that, under an additional condition on
S0, RatS,I(S0, Σ) ⊆ RecS,I(S0, Σ). We now prove the converse.

Proposition 15. RecS,I(S0, Σ) ⊆ RatS,I(S0, Σ).
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Proof. Let A = (α,A, β) be a cycle-free finite automaton, where A is cycle-free
of index k. Then |A| = αA∗β = α(Ak)∗(Ak−1 + . . . + E)β = α(Ak−1 + . . . +
E)β +αAk(Ak)∗(Ak−1 + . . .+E)β. By a proof analogous to that of Lemma 6.8
of Bloom, Ésik, Kuich [2], the entries of Ak(Ak)∗ are in RatS,I(S0, Σ). Since
the entries of α, β,Ak−1, . . . , E are also in RatS,I(S0, Σ), the behavior |A| is in
RatS,I(S0, Σ). �

Corollary 7. Suppose that (S, S0, I) is cycle-free and Σ ⊆ I. Then

RecS,I(S0, Σ) = RatS,I(S0, Σ).

Corollary 8. Let (S, S0, I) be cycle-free, and suppose that Σ ⊆ I.Then
RecS,I(S0, Σ) is the least partial iterative subsemiring of S (and hence, the least
partial Conway subsemiring of S) containing S0∪Σ over the ideal RecS,I(S0, Σ)
∩ I of RecS,I(S0, Σ).

Corollary 4.11 and Corollary 6.13 of Bloom, Ésik, Kuich [2] show that un-
der the conditions of Corollary 8, our set RecS,I(S0, Σ) coincides with the set
RecS(S0, Σ) of Bloom, Ésik, Kuich [2].

4 Cycle-Free Finite Automata with Discounting

In this section we apply our results to a generalization of the usual power series
semiring: to power series semirings over a graded monoid with discounting. We
reprove a result of Droste, Sakarovitch, Vogler [6].

A monoid 〈M, ·, e〉 is called graded if it is equipped with a length function
| | : M → N that is an additive morphism. (See Sakarovitch [12,13].)

For a semiring S, we denote by End(S) the monoid of all endomorphisms of
S, with composition as monoid operation and the identity morphism as unit.

For the rest of this section, let 〈M, ·, e〉 be a finitely generated graded monoid
with length function | |, let 〈S,+, ·, 0, 1〉 be a semiring and let φ : M → End(S)
be a monoid morphism.

A formal power series over M and S is a mapping r : M → S, written as
r =
∑

m∈M (r,m)m, where (r,m) = r(m) is the coefficient of m. The set of all
these power series is denoted by SM . Let r, s ∈ SM . Addition of r, s is defined
pointwise by letting (r+ s,m) = (r,m)+ (s,m) for all m ∈M . Multiplication of
r, s is defined by the φ-Cauchy product r ·φ s of r and s by letting

(r ·φ s,m) =
∑

m=uv

(r, u)φ(u)(s, v) for all m ∈M .

The usual definitions on power series over Σ∗ and S, Σ an alphabet, can be
easily transferred to power series in SM .

Theorem 1 (Droste, Kuske [5], Droste, Sakarovitch, Vogler [6]). The algebra
Sφ〈〈M〉〉 = 〈SM ,+, ·φ, 0, e〉 is a semiring. Moreover, the algebra Sφ〈M〉 of poly-
nomials is a subsemiring of Sφ〈〈M〉〉.
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In the sequel we write Sφ〈〈M〉〉 for the set SM of formal power series over M
and S.

Theorem 2. Let S be a partial iterative semiring over the ideal I ′. Then Sφ〈〈M〉〉
is a partial iterative semiring over the ideal {r ∈ Sφ〈〈M〉〉 | (r, e) ∈ I ′}.

Proof. Consider the equation y = ry + s, r, s ∈ Sφ〈〈M〉〉 with (r, e) ∈ I ′. Let
r∗ =

∑
j≥0 rj . Here r0 = 1 and rj+1 = r ·φ rj = rj ·φ r, j ≥ 0. Clearly,

{rj | j ≥ 0} is locally finite and hence, r∗ is well defined.
By an argument similar to that of Theorem 5.6 of Kuich [10], r∗ satisfies

(r∗, e) = (r, e)∗ ,
(r∗,m) =

∑
uv=m, u	=e(r

∗, e)(r, u) ·φ (r∗, v) .

Let t ∈ Sφ〈〈M〉〉 be any solution of y = ry + s. Then, for all m ∈M ,

(t,m) =
∑

uv=m

(r, u) ·φ (t, v) + (s,m) .

We claim that (t,m) = (r∗ ·φ s,m) for all m ∈ M and prove it by induction on
|m|.

Let m = e. Then (t, e) = (r, e)(t, e) + (s, e). Hence, (t, e) = (r, e)∗(s, e) =
(r∗ ·φ s, e).

Let now |m| > 1. Then

(t,m) = (r, e)(t,m) +
∑

uv=m, u	=e

(r, u) ·φ (r∗ ·φ s, v) + (s,m)

implies

(t,m) = (r∗, e)
∑

uv1v2=m, u	=e(r, u) ·φ (r∗, v1) ·φ (s, v2) + (r∗, e)(s,m) =∑
u1v2=m, u1 	=e(r

∗, u1) ·φ (s, v2) + (r∗, e)(s,m) = (r∗ ·φ s,m) .

Hence, r∗ ·φ s is the unique solution of y = ry + s. �

In the sequel, Sφ〈{e}〉 denotes the subsemiring {ae | a ∈ S} of Sφ〈〈M〉〉 and I
an ideal of Sφ〈〈M〉〉. A finite automaton in Sφ〈〈M〉〉 and I over (Sφ〈{e}〉,M)

A = (α,A, β)

is given by

(i) a transition matrix A ∈ (Sφ〈M〉)n×n,
(ii) an initial vector α ∈ (Sφ〈{e}〉)1×n,
(iii) a final vector β ∈ (Sφ〈{e}〉)n×1.

This definition is a specialization of the definition of finite automaton in Sec-
tion 3. The finite automaton A = (α,A, β) is called proper or cycle-free if A is
proper or cycle-free, respectively. The behavior |A| of a cycle-free finite automa-
ton A is given by

|A| = α ·φ A∗ ·φ β .
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Let now Srec
I,φ〈〈M〉〉 and Srat

I,φ〈〈M〉〉 denote the sets RecSφ〈〈M〉〉,I(Sφ〈{e}〉,M)
and RatSφ〈〈M〉〉,I(Sφ〈{e}〉,M), respectively. (Here the definition of Rec and Rat
is adjusted from Σ∗ to M .)

Corollary 8 implies the next theorem.

Theorem 3. Let S be a partial iterative semiring over the ideal I ′ and I = {r ∈
Sφ〈〈M〉〉 | (r, e) ∈ I ′}. Suppose (Sφ〈〈M〉〉, S, I) is cycle-free. Then

Srec
I,φ〈〈M〉〉 = Srat

I,φ〈〈M〉〉

is the least partial iterative subsemiring of Sφ〈〈M〉〉 (and hence, the least Conway
subsemiring of Sφ〈〈M〉〉) containing Sφ〈{e}〉 ∪M over the ideal Srec

I,φ〈〈M〉〉 ∩ I.

This theorem generalizes the Kleene-Schützenberger Theorem of Schützenberger
[14].

The finite S-automata over M in Droste, Sakarovitch, Vogler [6] are nothing
other than our finite automata in Sφ〈〈M〉〉 and I = {r ∈ Sφ〈〈M〉〉 | (r, e) = 0}
over (Sφ〈{e}〉,M − {e}) with proper transition matrix.

Corollary 9 (Droste, Sakarovitch, Vogler [6]). Let I ={r ∈ Sφ〈〈M〉〉 |(r, e)=0}.
Then Srec

I,φ〈〈M〉〉 = Srat
I,φ〈〈M〉〉 is the least partial iterative subsemiring of Sφ〈〈M〉〉

(and hence, the least Conway subsemiring of Sφ〈〈M〉〉) containing
Sφ〈{e}〉 ∪M over the ideal Srec

I,φ〈〈M〉〉 ∩ I.

We now assume, for the rest of this section, that S is a partial Conway semiring.

Theorem 4. If S is a Conway semiring then so is Sφ〈〈M〉〉.
Proof. In the definition of r∗, r ∈ Sφ〈〈M〉〉, and in the proof of Corollary 2.4 of
Kuich [10] replace ϕ|w| by φ(w), w ∈ Σ∗ by w ∈M , and ε by e. �

In the next theorem, we assume S is a Conway semiring, and Sφ〈〈M〉〉 is a partial
Conway semiring over the ideal Sφ〈〈M〉〉 and apply Corollary 6.12 of Bloom, Ésik,
Kuich [2] or Theorem 3.2 of Ésik, Kuich [7].

Corollary 10. Let S be a Conway semiring. Then

Srec
Sφ〈〈M〉〉,φ〈〈M〉〉 = Srat

Sφ〈〈M〉〉,φ〈〈M〉〉

is the least Conway subsemiring of Sφ〈〈M〉〉 which contains S〈{e}〉 ∪M .

Theorem 5. If S is a partial Conway semiring over the ideal I ′ then Sφ〈〈M〉〉
is a partial Conway semiring over the ideal I = {r ∈ Sφ〈〈M〉〉 | (r, e) ∈ I ′}.

Proof. In a first step, change the proof of Corollary 2.4 of Kuich [10] according
to the proof of Theorem 4. Now inspect this proof and assume that the power
series r and s are in I. We have to check, whether the ∗ of all power series, taken
in the proof of Theorem 4, does exist; i. e., we have to check that the ∗-operation
is applied only to power series t where (t, e) ∈ I ′. Inspection shows that this is
the case and the ∗ of all used power series is defined. �

Corollary 6.13 of Bloom, Ésik, Kuich [2] implies our next result.
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Corollary 11. Let S be a partial Conway semiring with distinguished ideal I ′

and I = {r ∈ Sφ〈〈M〉〉 | (r, e) ∈ I ′}. Suppose (Sφ〈〈M〉〉, S, I) is cycle-free. Then

Srec
I,φ〈〈M〉〉 = Srat

I,φ〈〈M〉〉

is the least partial Conway subsemiring of Sφ〈〈M〉〉 containing Sφ〈{e}〉∪M with
distinguished ideal Srec

I,φ〈〈M〉〉 ∩ I.
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Abstract. The aim of this paper is to collect definitions and results on the main
classes of 2D languages introduced with the attempt of generalizing regular and
context-free string languages and in same time preserving some of their nice
properties. Almost all the models here described are based on tiles. So we also
summarize some results on Wang tiles and its applications.

1 Introduction

The interest for a robust theory of two-dimensional (2D) languages (or picture lan-
guages) comes from the increasing relevance of pattern recognition and image process-
ing. The main attempt of the research in this area is to generalize the richness of the
theory of 1D languages to two dimensions. First focus was on definitions of classes
of picture languages that are the analogue of the classes of Chomsky’s hierarchy for
1D languages, in sense that, restricting to pictures of size (1, n), picture and string lan-
guages at each level of the hierarchy coincide and that the new definitions for pictures
inherit as many as possible properties from the corresponding definitions for strings.

Several different approaches were considered in the whole literature on the topic.
The generalizations that seem to be the best answers to previous requests for the two
lower levels of Chomsky’s hierarchy are essentially based on Wang tiles and in this
paper we aim to give a survey of classical and new results on these picture languages.
Wang tiles, introduced in 1961, are squares whose all edges are colored. A finite set
of Wang tiles admits a valid tiling of the plane if copies of the tiles can be arranged
one by one, without rotations or reflections, to fill the plane so that all shared edges
between tiles have matching colors. In 1966, Berger [8] proved that the problem of
determining whether a given finite set of Wang tiles can tile the plane is undecidable,
and constructed the first example of an aperiodic set of Wang tiles, i.e. a finite set of
tiles whose all valid tilings have no periodic behavior. Several papers are devoted to the
problem of determining small aperiodic set of Wang tiles but recently the main interest
in Wang tiles was motivated by applications which, besides computer graphics, start
to involve appealing areas in the frameworks of nanotechnologies and so called life
sciences.
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For the ground level of Chomsky’s hierarchy a robust definition of recognizable pic-
ture languages was proposed in 1991 by Giammarresi and Restivo. They defined the
family REC of recognizable picture languages by projection of local properties, [31].
This class is considered the generalization of the class of regular 1D languages because
it unifies several approaches to define the two dimension analogue of regular languages
via finite automata, grammars, logic and regular expressions.

In 2005 Crespi Reghizzi and Pradella [18] introduced tile grammars, a model of
grammars that extends the context-free (CF) grammars for 1D languages to two dimen-
sions. The right hand part of each rule of a tile grammar is a set of tiles determining a
local picture language. A rule is applied to the current picture replacing a rectangular
subpicture, completely filled by the left hand side of the rule, with an isometric rect-
angle belonging to the local picture language determined by the right hand part of the
rule. The generative power of these grammars exceeds REC languages. More recently
a simplified version of tiling in the right hand part of the rules was considered in [15],
giving raise to a new model of grammars called regional tile grammars. The new model
includes several models of grammars proposed as generalizations of CF 1D grammars,
the membership problem is solved by a polynomial time algorithm that naturally ex-
tends the classical CKY algorithm for strings, but it generates a family of languages
incomparable with REC.

The first section of the paper contains some basic notions on pictures and picture
languages. Then, some information on Wang tiles is given in second section, third and
forth sections are devoted to collect results respectively on REC family and on several
types of grammars proposed as generalization of CF 1D languages included in the fam-
ily generated by tile grammars. In the last section, some open problems and some hints
on different approaches to picture grammars are given.

2 Basic Definitions

In this section some standard definitions of pictures, picture languages and operations
on pictures are recalled.

Let Σ be a finite alphabet. A picture over Σ is a 2D array of elements of Σ called
pixels. The size |p| of a picture p is the pair (|p|row, |p|col) of its number of rows (its
height) and columns (width). The indices grow from top to bottom for the rows and
from left to right for the columns. The set of all pictures over Σ is denoted by Σ+,+.
Σ∗,∗ is Σ+,+ ∪ {λ}, where λ is the empty picture. For h, k ≥ 1, Σh,k (resp. Σh,+,
Σ+,k) is the set of all pictures of size (h, k) (resp. with h rows, with k columns). A
picture language over Σ is a subset of Σ∗,∗. # /∈ Σ is used when needed as a boundary
symbol; p̂ refers to the bordered version of picture p. That is, for p ∈ Σh,k, p̂ is

p̂ =

# # . . . # #
# p(1, 1) . . . p(1, k) #
...

...
. . .

...
...

# p(h, 1) . . . p(h, k) #
# # . . . # #
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The domain of a picture p is the set dom(p) = {1, . . . , |p|row} × {1, . . . , |p|col}
and dom(p̂) = {0, . . . , |p|row + 1} × {0, . . . , |p|col + 1} is the domain of the bordered
picture p̂.

A subdomain of dom(p) is a set d of the form {x, . . . , x′} × {y, . . . , y′} where
1 ≤ x ≤ x′ ≤ |p|row, 1 ≤ y ≤ y′ ≤ |p|col; the size of d is (x′ − x + 1, y′ − y + 1).
We will often denote a subdomain by using its top-left and bottom-right coordinates,
in the previous case the quadruple (x, y;x′, y′)1. Subdomains of dom(p̂) are defined
analogously. Each subdomain of dom(p̂) of size (1, 1) is called a position of p. The
translation of a subdomain d = (x, y;x′, y′) by displacement (a, b) ∈ Z2 is the sub-
domain d′ = (x + a, y + b;x′ + a, y′ + b): we will write d′ = transl(a,b)(d). Pairs
(0, i), (|p|row +1, i), (j, 0), (j, |p|col +1) with 0 ≤ i ≤ |p|col +1, 0 ≤ j ≤ |p|row +1,
are called external positions of p, the other are called internal positions. Positions in the
set {(0, 0), (0, |p|col+1), (|p|row +1, 0), (|p|row+1, |p|col+1)} are called corner posi-
tions. Given a position (i, j) with 1 ≤ i ≤ |p|row +1 and 1 ≤ j ≤ |p|col +1 its top-left-
(tl- for short) contiguous positions are the positions: (i, j− 1), (i− 1, j− 1), (i− 1, j).
Analogously for tr, bl, br where t, b, l, r are used for top, bottom, left and right respec-
tively. For any internal position, its contiguous positions are all the tl-, tr-, br-, and
bl-ones. Since each set P (n,m) = {0, 1 . . . , n+ 1}× {0, 1 . . . ,m + 1} can be seen as
the domain of a bordered picture p̂ with p of size (n,m), the elements of P (n,m) are
sometimes called positions of P (n,m) as well.

The pixel of the picture p at position (i, j) of dom(p) is denoted p(i, j). If all pixels
of a picture p over Σ belong to an alphabet Σ′ ⊆ Σ, p is called Σ′-homogeneous,
a picture which is {a}-homogeneous for some a ∈ Σ is called an a-picture, or also
a homogeneous picture. If a ∈ Σ, ah,k stands for the a-picture in Σh,k, while a+,+

stands for the set of a-pictures in Σ+,+.
Let p be a picture over Σ and let d = (x, y;x′, y′) ⊆ dom(p), the subpicture

spic(p, d) associated to d is the picture of the same size of d such that, ∀i ∈ {1, . . . , x′−
x + 1} and ∀j ∈ {1, . . . , y′ − y + 1}, spic(p, d)(i, j) = p(x + i − 1, y + j − 1). A
subpicture q of p, written q�p, is a subpicture spic(p, d) associated to some subdomain
d of p. If d = (x, y;x + h − 1, y + k − 1), then the subpicture q = spic(p, d) is also
called the subpicture of p of size (h, k) at position (x, y), written q �(x,y) p.The set of
subpictures of size (h, k) of p is denoted by

Bh,k(p) = {q ∈ Σh,k : q � p}.

A picture q ∈ Σm,n is called a scattered subpicture 2 of p ∈ Σ+,+ if there are strictly
monotone functions f : {1, 2, . . . ,m} → {n ∈ N | n ≥ 1}, g : {1, 2, . . . , n} →
{n ∈ N | n ≥ 1} such that p(f(i), g(j)) = q(i, j) for all (i, j) ∈ {1, 2, . . . , n} ×
{1, 2, . . . ,m}.

Now we shortly present main picture-combining and transforming operators.
The column concatenation � , for all pictures p, q such that |p|row = |q|row, written

p � q, is defined as:

1 Notice that the Cartesian coordinate system is clockwise rotated of 90o with respect to the
standard one.

2 A scattered subpicture is often called a subpicture, and subpictures in our sense are called
blocks.
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p � q =

p(1, 1) . . . p(1, |p|col) q(1, 1) . . . q(1, |q|col)
...

. . .
...

...
. . .

...
p(|p|row, 1) . . . p(|p|row, |p|col) q(|q|row, 1) . . . q(|q|row, |q|col)

The row concatenation� for pictures p, q, written p�q, is defined analogously (with
p on top). The empty picture λ is the neutral element for both concatenation operations.
pk� is the horizontal juxtaposition of k copies of p; p∗� is the corresponding closure.
k
, and ∗
 are the row analogous.

The projection by mapping π : Σ → Δ of a picture p ∈ Σ+,+ is a picture p′ ∈ Δ+,+

such that |p| = |p′| and p′(i, j) = π(p(i, j)) for every position (i, j) of p.
The (clockwise) rotation of a picture p, rot(p), is informally described as follows:

rot(p) =

p(|p|row, 1) . . . p(1, 1)
...

. . .
...

p(|p|row, |p|col) . . . p(1, |p|col)

The pixel-wise Cartesian product of two pictures p ∈ Σ∗,∗
1 , q ∈ Σ∗,∗

2 with |p| = |q|,
is a picture f ∈ (Σ1 ×Σ2)∗,∗ such that |f | = |p|, and f(i, j) = (p(i, j), q(i, j)) for all
i, j, 1 ≤ i ≤ |p|row, 1 ≤ j ≤ |p|col [50].

Projection, rotation, row and column concatenation, and pixel-wise Cartesian prod-
uct can be extended to picture languages as usual. For every language L ⊆ Σ∗,∗ we set
L0� = L0
 = λ, Li� = L � L(i−1)� and Li
 = L � L(i−1)
 for every i ≥ 1. Thus,
the row and column closures can be defined as the transitive closures of � and �:

L∗� =
⋃
i≥0

Li�, L∗
 =
⋃
i≥0

Li
,

which can be seen as a sort of 2D Kleene star. In [50] Simplot introduced the closure
L∗∗. We omit the detailed definition of Simplot’s operator and introduce it quite infor-
mally. We say p ∈ L++ iff there exists a partition of dom(p) where each subpicture
associated to a subdomain of the partition is in L. Let L∗∗ be the set L++ ∪ {λ}. For
example:

a a b
b e b
b b c

∈
{

a a ,
b
b
, b c ,

d
d
, e

}∗∗

If all the pictures of L have the same size, then (L∗�)∗
 = (L∗
)∗� = L∗∗.
A well-known and widely useful concept in 1D languages is substitution, which

assigns languages to letters of the alphabet and naturally extends to strings and lan-
guages too. In 2D languages, a substitution can be similarly defined. Given two fi-
nite alphabets Σ and Δ, a substitution from Δ to Σ is a mapping σ : Δ → 2Σ+,+

.
But a difficulty hinders the extension of the mapping to pictures, because of the so-
called shearing problem of picture languages: a pixel in a picture cannot be replaced
by a larger picture without disrupting the array structure. To overcome the problem
in [15] the notion of replacement was introduced. If p, q, q′ are pictures such that
q �(i,j) p for some position (i, j) of p, and |q| = |q′|, then p[q′/q](i,j) denotes the
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picture obtained by replacing the occurrence of q at position (i, j) in p with q′, i.e.,
p[q′/q](i,j)(i+x−1, j+y−1) = q′(x, y) for all 1 ≤ x ≤ |q|row, 1 ≤ y ≤ |q|col. Then

the notion of substitution was modified as follows. Let σ : Δ → 2Σ+,+
be a substitu-

tion. Given a picture p ∈ Δ+,+, a partition Π(dom(p)) = {d1, . . . , dn}, with n ≥ 1,
of dom(p) where each subpicture spic(p, dm) associated to a subdomain dm of the par-
tition is a bm-picture for some bm ∈ Δ is called a homogeneous partition of p. Then
the substitution of p ∈ Δ+,+ induced by Π(dom(p)) is the language σΠ(dom(p))(p) =
{p[r1/spic(p, d1)] . . . [rn/spic(p, dn)] | rm ∈ σ(bm), 1 ≤ m ≤ n}. Given L ⊆ Σ+,+,
a set Π = {(p,Π(dom(p)) | p ∈ L}, where each Π(dom(p)) is a (homogeneous) par-
tition of p ∈ L, is called a (homogeneous) partition set of L. If L ⊆ Δ+,+ and Π is a
homogeneous partition set of L, then the substitution of L induced by the homogeneous
partition set Π is the language σΠ(L) = {σΠ(dom(p))(p) : p ∈ L}.

Roughly speaking a substitution σ : Δ → 2Σ+,+
extends to pictures and to picture

languages by replacing a-subpictures pa, at position (i, j), of p with pictures q ∈ σ(a)
of the same size. This definition, however, is not equivalent to the traditional notion of
substitution when applied to strings.

Now we are in position of introducing families of 2D languages, but since we are
mainly presenting languages based on tiling we remind some notions on Wang tiles.

3 Wang Tiles

A Wang tile is a unit square with colored edges. Let T be a finite set of Wang tiles, which
are not allowed to rotate. A map τ : Z2 → T is called a valid tiling, of the Euclidean
plane, or equivalently T can tile the Euclidean plane, if common edges of any pair of
adjacent tiles have the same color. More formally denote by N(t), S(t), W (t), E(t)
the colors of the upper, lower, left and right edges of a tile t respectively, then τ is
a valid tiling of the Euclidean plane, if N(τ(i, j)) = S(τ(i, j + 1)), S(τ(i, j)) =
N(τ(i, j − 1)), W (τ(i, j)) = E(τ(i − 1, j)), and E(τ(i, j)) = W (τ(i + 1, j)), for
each (i, j) ∈ Z2. Analogously, T can tile a rectangle of size n × m if there is a map
τ : {1, . . . ,m} × {1, . . . , n} → T such that adjacent tiles agree on the colors of
contiguous edges. In 1961 Wang [53], analyzing the class of the first order formulas in
prenex normal form whose prefix is ∀x∃y∀z, raised the question

Plane tiling problem given a finite set of Wang tiles establish whether or not it admits
a valid tiling.

The 1D version of this problem admits an easy solution. Namely, to each finite set T of
unary segments with colored left and right end points one can associate a direct graph
where the set of colors is the set of vertices, and the edges (i, j) are the colors of left
and right endpoints of some segment in T . Obviously T admits a valid tiling if and only
if there is a bi-infinite path in the associate graph and then if and only if the graph has a
loop. Coming back to the 2-dimensional problem, if the given finite set T of Wang tiles
has a valid tiling with some vertical periodicity, the plane is covered by the repetition
of some horizontal strip. Then, since this strip has only finitely many different vertical
cross sections, the tiling has periodicity along two different directions.

A tiling τ is called periodic if there are two integers p, q such that τ(i, j) = τ(i +
p, j), τ(i, j) = τ(i, j + q) for all (i, j) ∈ Z2. Without loss of generality we can assume
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p = q. By the above argument it follows that if a finite set of Wang tiles has a tiling
with a non zero period along one direction then it admits a periodic tiling.

Wang conjectured that any set of tiles which admits a valid tiling of the plane also
admits a periodic tiling and under this assumption he gave an algorithm to solve the
plane tiling problem, based on a compactness-like theorem.

Proposition 1. A finite set of Wang tiles can tile the whole plane iff it can tile arbitrarily
large finite areas of the plane.

In particular a given set of tiles can tile the whole plane if and only if it can tile the first
quadrant and so several constraints on the tiling of the first quadrant were posed. These
problems were a bit easier to settle than the plane tiling problem and were speedily
proved to be undecidable, an overview on these results can be found in [54]. The plane
tiling problem on the contrary remained unsolved for years. However, from the above
discussion it is clear that if the plane tiling problem is undecidable, then there are finite
sets of tiles which admit only non-periodic tilings of the plane.

A finite set of Wang tiles which admits only non-periodic valid tiling is said aperi-
odic. In 1966 Berger [8], proved the following

Theorem 1. The plane tiling problem is undecidable.

His proof is based on encoding the halting problem of Turing Machine in the valid tiling
of an arbitrary large square portion of the plane. Moreover, he constructed an aperiodic
set of 20426 Wang tiles that shortly reduced to 104.

Then several well-known scientists from different areas as discrete mathematics,
logic and computer science paid attention to the problem of finding smaller aperiodic
sets of tiles and simplified proofs of undecidability of plane tiling problem (see for
instance [49]). The smallest aperiodic set of Wang tiles obtained by geometrical ar-
guments is composed by 16 tile (for a survey, see Chapters 10 and 11 of [33]). More
recently Kari, [37], proposed a different approach based on sequential machines that
multiply Beatty sequences of real numbers by rational constants, and produced an ape-
riodic set of Wang tiles with 14 tiles. His method was improved by Culik, [20], who
built an aperiodic set formed by 13 tiles. This is currently the smallest known aperiodic
set of Wang tiles. An expository article describing this approach is [27].

Once proved the existence of aperiodic set of Wang tiles, the following problem
naturally arises:
Periodic tiling problem given a finite set of Wang tiles determine whether or not it can
tile the plane periodically.

The problem was first studied in 1972 by Gurevich and Koriakov, who proved its
undecidability [34].

Valid tilings have some quite surprising regularities. Let T be a finite set of Wang
tiles, a pattern is a partial map ϕ : P → T from a finite domain P of Z2 in T . A pattern
appears in a tiling τ : Z2 → T if the tiling is the extension of the image of the pattern
by a shift.

A valid tiling τ : Z2 → T is called quasi-periodic if for each pattern M appearing
in τ there is an integer n such that M appears in all n × n squares in τ . A valid quasi
periodic tiling that is not periodic is called strictly quasi-periodic.

In [24] Durand proved the following
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Theorem 2. Each finite set of Wang tiles admitting a valid tiling admits a quasi-
periodic valid tiling.

The quasi-periodicity function for a quasi periodic tiling τ is the function that associate
to each integer x the minimal size n of the squares in which one can find all the patterns
of size x appearing in the tiling.

This function enables to characterize quasi periodic tilings that are periodic.

Proposition 2. A quasi periodic tiling is periodic if and only if its quasi-periodicity
function is bounded by x→ x + c, for some constant c .

Then, using a counting argument on trees suitably associated to valid tilings, Durand
obtains the following

Theorem 3. If a tile set can be used to form a strictly quasi-periodic tiling of the plane,
then it can form an uncountable number of different tilings.

It is important to note that valid tilings could be defined in several different ways. For
instance one could arrange all edge colors in complementary pairs and ask for tilings
of the plane where common edges of adjacent tiles have complementary colors. This
problem is equivalent to the plane tiling problem. If tile rotation is allowed, the tiling
problem with matching colors of contiguous edges is trivially solvable while the prob-
lem with complementary colors remain undecidable.

A generalized simple way for describing variants of tiling rules is to consider the
given finite set T of Wang tiles as a finite alphabet and a set of local rules L ⊆ T 4. A
tiling τ satisfies the local rules L if and only if all 2× 2 patterns appearing in the tiling
are in L. In [26] the authors give via this approach a new short proof of the existence of
aperiodic tilings.

Besides the strong connections with first order and description logics [25] yet arising
from its original motivation, tiling problems have appeared in many branches of physics
and mathematics like group theory, topology, quasicrystals, symbolic dynamics. More
recently Winfree et al. [56] have demonstrated the feasibility of creating molecular tiles
made from DNA that can act as Wang tiles introducing the tile assembly model. As
pointed out by Brun [13] a tile assembly model is a highly distributed parallel model of
computation that may be implemented using molecules, or a large computer network
such as the Internet, and this opens several new prospectives.

In a more applicative and less ambitious context, Wang tiles have been proposed as
tool for procedural synthesis of textures, and in general they have also proved to be very
useful for the creation of large non-periodic textures, point-distributions and complex
2D scenes, see for instance [1,17].

4 Recognizable Picture Languages

The attempt of transferring definitions and properties from string languages to their 2D
analogue is quite successful when one considers the first level of Chomsky’s hierarchy.

The class of picture languages corresponding to regular one- dimensional languages
was intensively studied by several authors with different approaches: finite automata,
logical characterizations, regular expressions and so on. An unifying approach to this
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family of picture language was proposed by Giammarresi and Restivo via local prop-
erties and projection. They introduced the so called REC family of picture languages
and collected main properties of this family in the nice survey [31]. Here, besides sum-
marizing the results contained in [31], we add some more recent results with the aim of
fixing the actual state of art.

4.1 Labeled Wang Tiles and Tiling Systems

First, we remind the definition of REC languages based on tiles endowed with labels in
a finite alphabet Σ.

Definition 1. ([21]) A labeled Wang tile, shortly LWT, is a 5-tuple (c1, c2, c3, c4, a)
where for all i, 1 ≤ i ≤ 4, ci belongs to a finite set C of “colors” and a belongs to a
finite set Σ of labels.

A Wang system (WS) is a triple (C,Σ, T ) where T ⊆ C4 × Σ is a finite set of
LWT’s.

Let B ∈ C be a special color and let r be a picture of size (n,m) on the alphabet T ,
r is a tiling over T if

– r(1, 1) ∈{(B,B, c3, c4, a) | c3, c4 ∈ C \ {B}, a ∈Σ},r(1, n)∈{(c1, B,B, c4, a) |
c1, c4 ∈ C \ {B}, a ∈ Σ}, r(m,n) ∈ {(c1, c2, B,B, a) | c1, c2 ∈ C \ {B}, a ∈
Σ},r(m, 1) ∈ {(B, c2, c3, B, a) | c2, c3 ∈ C \ {B}, a ∈ Σ};

– for all i, 1 < i < n, r(1, i) ∈ {(c1, B, c3, c4, a) | c1, c3, c4 ∈ C \ {B}, a ∈ Σ},
r(m, i) ∈ {(c1, c2, c3, B, a) | c1, c2, c3 ∈ C \ {B}, a ∈ Σ};

– for all i, 1 < i < m, r(i, 1) ∈ {(B, c2, c3, c4, a) | c2, c3, c4 ∈ C \ {B}, a ∈ Σ},
r(i, n) ∈ {(c1, c2, B, c4, a) | c1, c2, c4 ∈ C \ {B}, a ∈ Σ};

– for all (i, j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, r(j, i) ∈ {(c1, c2, c3, c4, a) | c1, c2, c3, c4 ∈
C \ {B}, a ∈ Σ}; moreover let r(i, j) = (e, n, w, s, a), then if i > 1, r(i −
1, j) ∈ {(c1, c2, c3, n, a′) | c1, c2, c3 ∈ C, a′ ∈ Σ}, if j > 1, r(i, j − 1) ∈
{(c1, c2, e, c4, a′) | c1, c2, c4 ∈ C, a′ ∈ Σ}.

The label ‖r‖ of a tiling r is a picture over Σ of size |r| defined by

‖r‖(i, j) = a⇔ r(i, j) = (c1, c2, c3, c4, a)

for some c1, c2, c3, c4 ∈ C. The set of the labels of all the tilings over T is the language
L(WS) generated by the Wang system WS. A language L generated by a Wang system
is called Wang recognizable.

For each LWT t = (c1, c2, c3, c4, a) in a Wang system WS, consider the non labeled
version t̃ = (c1, c2, c3, c4). Roughly speaking the above definition says that the map
ρ : {1, . . . ,m}× {1, . . . , n} → T defined as ρ(h, k) = r(n + 1− h, k) is a valid tiling
of the region {1, . . . ,m}×{1, . . . , n} by the set W̃S of the non labeled versions of tiles
in WS such that the boundary of the tiling r is colored by the special color B that does
not occur in inner edges.

The same family of picture languages is also introduced by a formalism based on the
local rules introduced in Section 3.
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For p ∈ Σ+,+ let �p� be the set of subpictures of size (2,2) of p.3 In the sequel the
concepts of tile, and local language are central.

Definition 2. A tile is a square picture of size (2,2). A language L ⊆ Σ∗,∗ is local if
there exists a finite set Θ of tiles over the alphabet Σ ∪ {#} such that L = {p ∈ Σ∗,∗ |
�p̂� ⊆ Θ}. We will refer to such language as LOC(Θ).

Notice that LOC(Θ) is the set of finite rectangles of Euclidean plane with boundary
colored by # that admit a valid tiling agreeing also with the boundary color. The set
of local languages, shortly denoted by LOC, is the natural extension of string local
languages and so the following definition extends one of the definitions of regular 1D
languages.

Definition 3. ([31]) A tiling system (TS) is the 4-tuple T = (Σ,Γ,Θ, π), where:
Σ and Γ are two finite alphabets,
π : Γ → Σ is a mapping,
Θ is a finite set of 2× 2 tiles over the alphabet Γ ∪ {#}.
The language L(T ) = π(LOC(Θ)) is the language defined by the TS T .
The languages over finite alphabets defined by tiling systems constitute the family

REC of TS-recognizable languages on Σ.

The family REC is considered the correct answer to the quest of a natural adaptation
of the class of regular word languages for pictures. Namely, like in the 1D case, REC
languages can be equivalently characterized by several formalisms. We shortly remind
some of them, and we mainly refer to [31] for more information.

First, one can modify the size of tiles. In this way the definition of domino systems
arises where Θ is a finite set of 1 × 2 and 2 × 1 pictures over the alphabet Γ ∪ {#}
and LOC(Θ) = {p ∈ Σ∗∗ | B1,2(p̂) ∪ B2,1(p̂) ⊆ Θ}. A local language of this type
is called hv-local language. The family of hv-local languages is properly included in
LOC.

Moreover, one can consider the connection between Wang tiles and local rules.
Lastly, a characterization of REC in term of regular string languages can be given

using the so called row-column combination of two string languages R and C, i.e. the
languages R⊕C of the pictures all whose rows, thought as strings, are in R and whose
all columns, seen as string from top to bottom, are in C.

Theorem 4. ([50,21]) Let L be a picture languages. The following are equivalent.

1. L is TS-recognizable,
2. L is recognizable by some domino system,
3. L is Wang recognizable,
4. there exist two regular string languages R and C and a projection π such that

L = R⊕ C.

Other generalizations of local languages given in 1D case can be extended to picture
languages.

3 In the rest of the paper, we will use this notation instead of B2,2(p) for brevity.
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Let h, k be two positive integers. Two pictures p, r ∈ Σ∗,∗ are related in the equiva-
lence relation ∼=h,k if and only if their corresponding bordered versions have the same
set of subpictures of size (h, k). A picture language is locally testable if it is union of
∼=h,k-equivalence classes for some positive integers h, k.

Let p be a picture. For h, k, t positive integer and for a picture q ∈ (Σ ∪ {⊥})∗,∗ of
size (h, k) let occp(q) the number of subdomains d of dom(p), such that spic(p, d) is a
translation of q and let occt

p(q) = min(t, occp(q)). Let∼=t
h,k be the equivalence relation

on Σ∗,∗ defined by p ∼=t
h,k r if and only if occt

p(q) = occt
r(q) for all q ∈ (Σ ∪ {⊥})∗,∗

of size (h, k) .
A picture language is locally threshold testable if it is union of ∼=t

h,k-equivalence
classes for some positive integers h, k and t.

Above picture languages are proper subclasses of REC.

Proposition 3. The family LT of locally testable languages is properly included in
the family LTT of locally threshold testable languages, which in turn is properly con-
tained in REC. Moreover every language in LTT is a projection of a locally testable
language.

The family REC inherits several closure properties of regular string languages. Namely
REC is closed under intersection, union, projection, row and column concatenation,
closure operations, Cartesian product, and Simplot closure operator ∗∗. Moreover REC
is closed under substitution of languages in REC induced by homogeneous partition
sets, and also under by substitutions of languages in REC induced by the set of all
homogeneous partitions of each picture [15].

However, fundamental properties of regular string languages fail in REC.

Proposition 4. REC is not closed under complement.
The membership problem for each language L in REC is NP-complete.
The emptiness and universe problems for REC are undecidable.

It is important to remark that in spite of its NP-completeness, the parsing problem for
TS-recognizable languages can be successfully tackled encoding the problem into SAT.
Namely, in [45] a recognizer/generator for pictures defined by a tiling system is imple-
mented in a very attractive, unconventional way, by considering for a picture p and
each a ∈ Σ the statement p(i, j) = a as a propositional variable of the SAT prob-
lem and transforming the tiling problem into a Boolean satisfiability one, then using an
efficient off-the-shelf SAT-solver. The prototype is fast enough to experiment on rea-
sonably sized samples, and has the bonus of being able to complete a partial picture, by
assigning to unknown pixels some values which satisfy the picture specification.

Another difference between regular string languages and REC arises considering the
following modified definition of local testability. Let h, k be two positive integers. Two
pictures are related in the equivalence relation ∼h,k if and only if they have the same
set of scattered subpictures of size (h, k).

A picture language is piecewise locally testable if it is union of ∼h,k-equivalence
classes for some positive integers h, k. The language CORNERS of pictures p over
{a, b} such that whenever p(i, j) = p(i′, j) = p(i, j′) = b then also p(i′, j′) = b is
piecewise testable, but does not belong to REC.
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4.2 Unambiguous and Deterministic Classes of Recognizable Picture Languages

The definition of recognizability in terms of local languages and projections is implic-
itly nondeterministic, moreover since REC family is not closed under complement,
each attempt to overcome its non-determinism gives smaller families of languages, dif-
ferently of what happens for regular string languages.

We remind the definition of unambiguous REC languages given in [30].

Definition 4. A quadruple (Σ,Γ,Θ, π) is an unambiguous tiling system for a 2D lan-
guage L ⊆ Σ∗,∗ if and only if for any picture p ∈ L there exists a unique local picture
q ∈ LOC(Θ) such that p = π(q), i.e. the extension of π to a map from Γ ∗,∗ to Σ∗,∗ is
injective on LOC(Θ).
L ∈ REC is an unambiguous picture language if and only if it admits an unambiguous
tiling system (Σ,Γ,Θ, π).

The family of all unambiguous REC picture languages is denoted by UREC.
The language of pictures with at least two equal columns is in REC, but not in

UREC. Hence

Theorem 5. ([5]) UREC is strictly included in REC.

The notion of determinism for tiling systems has to be referred to a direction, like in
1D case. The considered direction is one of the four main directions from a corner to
another (c2c).

Definition 5. A tiling system (Σ,Γ,Θ, π) is tl2br-deterministic 4 if for any γ1, γ2, γ3 ∈
Γ ∪{#} and σ ∈ Σ there exists at most one tile t ∈ Θ with t = γ1 γ2

γ3 γ4 , and π(γ4) = σ.
Similarly d-deterministic tiling systems for any direction d ∈ c2c are defined.

L ∈ REC is a deterministic picture language if and only if it admits a deterministic
tiling system for some d ∈ c2c.

The family of all deterministic REC picture languages is denoted by DREC.
DREC is properly included in UREC and there are some classes of languages that

strictly separate DREC from UREC. In [3] the classes of row-UREC and col-UREC
are introduced (see also [29]) where four side-to-side scanning directions, namely left-
to-right (l2r) and vice versa (r2l), top-to-bottom (t2b) and vice versa (b2t), are
considered.

Definition 6. A tiling system (Σ,Γ,Θ, π) is l2r-unambiguous if for any column col ∈
Γm,1 ∪ {#}m,1 , and picture p ∈ Σm,1, there exists at most one local column col′ ∈
Γm,1 such that π(col′) = p and

�
{#}1,2 � (col � col′)� {#}1,2

�
⊆ Θ. Similar prop-

erties define d-unambiguous tiling systems, for any side-to-side direction d.
A language is column-unambiguous if it is recognized by a d-unambiguous tiling

system for some d ∈ {l2r, r2l} and it is row-unambiguous if it is recognized by a d-
unambiguous tiling system for some d ∈ {t2b, b2t}. Col-UREC is the class of column-
unambiguous languages and Row-UREC the class of row-unambiguous languages.

Proposition 5. ([3]) DREC ⊂ (Col-UREC∩Row-UREC) ⊂ ⊂ (Col-UREC
∪ Row-UREC) ⊂ UREC.

4 tl2br means from the top left to the bottom right corner.
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More recently, Lonati and Pradella [38] introduced a new kind of determinism for tiles:
given (Σ,Γ,Θ, π), the pre-image of a picture p ∈ Σ∗,∗ is built by scanning p with a
boustrophedonic strategy, that is a natural scanning strategy used by many algorithms
on pictures and 2D arrays. More precisely, it starts from the top-left corner, scans the
first row of p rightwards, then scans the second row leftwards, and so on.

Definition 7. A tiling system (Σ,Γ,Θ, π) is snake-deterministic if Γ and Θ can be
partitioned as Γ = Γ1 ∪ Γ2, Θ = Θ1 ∪Θ2, where

– (Σ,Γ,Θ1, π) is tl2br-deterministic and for each tile t ∈ Θ1, t(i, j) ∈ Γ3−i ∪ {#},
– (Σ,Γ,Θ2, π) is tr2bl-deterministic and for each tile t ∈ Θ2, t(i, j) ∈ Γi ∪ {#}

and not both t(1, 1), t(1, 2) are #.

The closure under rotation of languages recognized by snake deterministic tiling-systems
is denoted Snake-DREC.

Proposition 6. ([38]) Snake-DREC = Col-UREC∪Row-UREC.

UREC is closed under projection, disjoint union, intersection and rotation, and it is
not closed under row and column concatenation and under row and column closures.
An open problem is whether UREC family is closed under complementation, it is also
conjectured that if a REC language is not in UREC then its complement is not in REC.
Some recent results in this direction by Anselmo and Madonia are included in this
volume. The family DREC is closed under complement but it is not closed under union
and intersection. Moreover by Definition 6 it immediately follows that it is decidable
whether a given tiling system is d-deterministic for d ∈ c2c. It is also decidable whether
a tiling system is column- or row-unambiguous while it is undecidable whether it is
unambiguous.

We would like also remark that in [6] a new model of recognizable picture languages
without frames surrounding the pictures was introduced, and the changes of properties
under the framed vs unframed approaches were considered mainly focusing on deter-
minism and unambiguity. It turns out that the frame surrounding the blocks provides
additional memory that, besides enforcing size and content of the recognized pictures,
produces unframed ambiguous languages that are unambiguous in REC.

4.3 Models of 2-Dimensional Finite Automata

A tile system (Σ,Γ,Θ, π) is a natural generalization of non deterministic finite au-
tomata to the 2D case. To underlying the analogies, Matz in [42] suggested to consider
Γ = Σ × Q for some finite set Q, and the projection map π as the map π(a, q) = q
for each a ∈ Σ, q ∈ Q. He calls Q decoration set to point out that element of Q do
not correspond to the intuition behind the word “state”. Then to see the tile system as
an automaton one could imagine to simultaneously “decorate” each pixel of the input
picture p and to check the decorated input for local compatibility with the transition re-
lation Θ. Also in [21] some analogies between Wang systems and finite automata were
indicated. However neither tile systems nor Wang systems correspond to an effective
procedure of recognition, namely when the membership of a picture p to a given REC
language has to be checked, no scanning procedure of the picture p is proposed.
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Several operational models have been proposed to recognize picture languages. Here
we remind only four of them and we refer to [36] for a survey on different models of
finite automata recognizing picture languages.

The first model, called 4-way finite automaton, shortly 4FA, was proposed in 1967
by Blum and Hewitt [10]. It is an extension of 2-way finite automata for strings and
allows the finite automaton to move in four directions: t, b, l, r (top, bottom, left, and
right).

Definition 8. ([31]) A 4FA is a 7-tuple A = (Σ,Q, {t, b, l, r}, q0, qa, qr, δ), where Σ
is the input alphabet, Q is the set of states, q0, qa, qr are three distinguished states,
called initial, accepting and rejecting states, δ : (Q \ {qa, qr})×Σ → 2(Q×{t,b,l,r}) is
the transition function.

A can be seen as a finite control in Q reading the input picture. If (q′, d) ∈ δ(q, a) for
some d ∈ {t, b, l, r}, the automaton goes from the actual state q and the actual position
(i, j) with p(i, j) = a to the state q′, and moves the reading head by one position
according to the direction d. The automaton halts when it reaches either the state qa or
the state qr. It recognizes a picture p ∈ Σ∗,∗ if starting from the position (1, 1) in the
state q0, it eventually reaches the state qa, it is not needed that it reads all the pixels of p.

The 2-dimensional on-line tessellation automaton (2OTA) is a restricted type of 2-
dimensional cellular automata, i.e. an array of cells all being in some state at any given
time and operating in a sequence of discrete time steps. In 2OTA each cell changes its
state depending on the top and left neighbors. This model was introduced by Inoue and
Nakamura in 1977 [35]. Here we remind the definition given in [31].

Definition 9. A 2OTA is a 5-tupleA = (Σ,Q, I, F, δ), where Σ is the input alphabet,
Q is the set of states, I ⊆ Q, F ⊆ Q are the sets of initial and final states, δ :
Q×Q×Σ → 2Q is the transition function.

A run of A over a picture p ∈ Σ∗,∗ associates a state to each position of p. At time
t = 0 a state q0 ∈ I is associated to all positions of the first row and column of p̂, then
moving diagonally across the array, at time t = k, states are simultaneously associated
to each position (i, j) of the picture with i + j − 1 = k, according to δ. The picture
p is recognized by A if there is a run of A associating a final state to the position
(|p|row, |p|col).

In 2007 Anselmo and al. [4] proposed tiling automata (TA for short) as an effective
computational device whose transitions are given by a tiling system with a scanning
strategy that uses a next-step function and a data structure to remember some of the
local symbols associated to the already scanned positions of the input picture. It is
evident that to handle the borders, the next-step function depends also from the size of
the input picture.

Definition 10. Let n,m ∈ N and P (n,m) = {0, 1, . . . , n + 1} × {0, 1, . . . ,m + 1}.
A next-position function for pictures is a computable partial function f : N4 → N2

associating to a quadruple (i, j, n,m), with (i, j) ∈ P (n,m) a pair (i′, j′) ∈ P (n,m).
Let v1(n,m) = (i0, j0) ∈ P (n,m) and put vh(n,m) = f(vh−1(n,m), n,m),

then the sequence Vf,k(n,m) = {v1(n,m), v2(n,m) . . . , vk−1(n,m)} is called the
sequence of visited positions by f at step k with starting position (i0, j0).
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A scanning strategy is a next-position function S such that for any (n,m) ∈ N2 the
sequence VS,(n+2)(m+2)+1(n,m) = {v1(n,m), v2(n,m) . . . , v(n+2)(m+2)(n,m)} of
visited positions by S at step (n + 2)(m + 2) + 1 starting from a corner position of
P (n,m) satisfies:

1) VS,(n+2)(m+2)+1(n,m) is a permutation of P (n,m).
2) for any k = 2, . . . , (n + 2)(m + 2), the tl- (or tr-, or bl-, or br- resp.) contiguous

positions of vk(n,m) (when defined) are all in VS,(n+2)(m+2)+1(n,m).

Moreover if S satisfies condition

3) for any k = 2, . . . , (n+2)(m+2), vk(n,m) is a contiguous position of vk−1(n,m)
provided that vk−1(n,m) is an internal position, otherwise if vk−1(n,m) is an
external position also vk(n,m) is an external position;

it is called a continuous scanning strategy; if S satisfies condition

4) v(n+2)(m+2)(n,m) is a corner position,

it is called a normalized scanning strategy.

For each next-position function there is at most one starting corner, verifying conditions
1 and 2 of Definition 10. Moreover property 3 avoids that two non-contiguous regions
of a picture are both scanned during a scanning process and together with property 4
forbids the existence of holes in the picture during the scanning process. In [4] several
examples of continuous normalized scanning strategies are given, showing the richness
of possibilities in 2D case, and they produce, for suitable data structures, different defi-
nitions of tiling automata. Here we introduce a formal definition of tiling automata with
a scanning strategy that follows a main tl2br-directed strategy, i.e. a strategy such that
for any (n,m) ∈ N2 and for any k with 1 ≤ k ≤ (n+2)(m+2) contains the (defined)
tl-contiguous positions of vk(n,m) in the set of visited position at step k starting from
position (0, 0).

Definition 11. ([4]) A tiling automaton of type tl2br is a 4-tuple A = (T , S, D0, δ)
where T = (Σ,Γ,Θ, π) is a tiling system, S is a tl2br-directed scanning strategy, D0

is the initial content of a data structure that supports operations state1(D), state2(D),
state3(D), update(D, γ), for γ ∈ Γ ∪ {#}, and δ : (Γ ∪ {#})3 × (Σ ∪ {#}) →
2(Γ∪{#}) is a relation such that γ4 ∈ δ(γ1, γ2, γ3, σ) if π(γ4) = σ and γ1 γ2

γ3 γ4 ∈ Θ.
Tiling automata of type d for each corner to corner (c2c) direction d are similarly

defined.

The initial configuration of the tiling automaton A is (p, i, j,D0), where p is a pic-
ture of size (n,m) and (i, j) = v1(n,m). From a configuration (p, h, k,D), h, k ∈
N, the automaton moves to the configuration (p, h′, k′, D) if S(h, k, n,m) is defined,
γ4 ∈ δ(state1(D), state2(D), state3(D), p(h, k)) for some γ4 ∈ Γ ∪{#} , (h′, k′) =
S(h, k, n,m) and D′ is the content of the data structure after calling update(D, γ4). If
S(h, k, n,m) is defined, and there is no γ4 ∈ Γ ∪ {#} such that γ4 ∈ δ(state1(D),
state2(D), state3(D), p(h, k)), A stops without accepting, while if S(h, k, n,m) is
not defined,A stops accepting p.
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It is important to remind that this definition 11 refers to a tiling automaton with a
given scanning strategy (of type tl2br), another scanning strategy produces a different
type of tiling automaton, nevertheless the class of recognized languages is the same.

Another family of automata for dealing with REC family of languages was intro-
duced in 2005 by Bozapalidis and Grammatikopoulou [12]. Their definition is in terms
of doubly ranked monoids. A doubly ranked semigroup (DR-semigroup for short) is
a doubly ranked set M = (Mm,n) endowed with two associative operations h© :
Mm,n × Mm,n′ → Mm,n+n′ , and v© : Mm,n × Mm′,n → Mm+m′,n, called re-
spectively horizontal and vertical multiplications, that are compatible to each other,
i.e. (a h©a′) v©(b h©b′) = (a v©b) h©(a′ v©b′), for all a, a′, b, b′ of suitable ranks. A DR-
semigroup M with two sequences e = (em) and f = (fn), with em ∈ Mm,0, fn ∈
M0,n such that e0 = f0, em v©en = em+n, fm h©fn = fm+n, and em h©a = a h©em =
a, fn v©b = b v©fn = B for all a, b of suitable rank is called a doubly ranked monoid;
e, f are called respectively the horizontal and vertical units of M . Given a doubly
ranked alphabet X the free DR-monoid generated by X is called pict(X).

Given a non empty set Q a quadripolic relation over Q of rank (m,n) is an el-
ement of 2Qm×Qn×Qm×Qn

and the set of all quadripolic relations over Q of rank
(m,n) is denoted by 4Relm,n(Q). The doubly ranked set 4Rel(Q) = (4Relm,n(Q))
can be structured as a DR-monoid, by defining the horizontal multiplication as fol-
lows: for each R ∈ 4Relm,n(Q) and S ∈ 4Relm,n′(Q), R h©S = {(w1, w2, w3, w4)|
∃u ∈ Qm, v2, v4 ∈ Qn, z2, z4 ∈ Qn′

: w2 = v2z2, w4 = v4z4, (w1, v2, u, v4) ∈
R, (u, z2, w3, z4) ∈ S} and in dual way for the vertical multiplication. Let M and
M ′ be two DR-monoids. A morphism from M to M ′ is a family of functions ϕm,n :
Mm,n →M ′

m,n, m, n ∈ N, compatible with horizontal and vertical multiplication and
units. Now we are in position of remind the following

Definition 12. ([12]) Let X be a finite doubly ranked set. A quadripolic automaton
over X is a 5-tuple A = (Q, δ, FWest, FSud, FEst, FNorth) where Q is a finite set of
states,FWest, FSud, FEst, FNorth are subsets of Q, called the four poles of acceptance
for A, δ is a family of maps δm,n : Xm,n → 4Relm,n(Q).

Let δ : pict(X) → 4Rel(Q) be the morphism of DR-monoids uniquely extending δ
and let Fm,n = Fm

West×Fn
Sud×Fm

Est×Fn
North. A picture p ∈ pictm,n(X) is accepted

byA if and only if δm,n(p)∩Fm,n �= ∅. L(QA) denotes the family of languages recog-
nized by a quadripolic automaton. It is clear that quadripolic automata are related to the
description of REC via labeled Wang tiles. This allows an algebraic approach to recog-
nizable languages that is presented in a paper by Bozapalidis and Grammatikopoulou
included in the present volume.

The following theorem clarifies the reason behind the name REC given to the family
of TS-recognizable languages.

Theorem 6. ([31,4,12]) Let L be a picture language. The following are equivalent:

1. L ∈ REC;
2. L ∈ L(2OTA);
3. L ∈ L(TA);
4. L ∈ L(QA).

On the other hand, the family of 4-way automata is not enough powerful to define REC.
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Proposition 7. ([31]) L(4FA) is strictly included in REC. Moreover L(4FA) is not
closed under row and column concatenation and closure operations, but it is closed
under union and intersection.

Some attempts of increasing the power of 4-way automata by endowing them with a
bounded queue or a bounded stack did not produce satisfactory results [7].

The unambiguous versions of on-line tessellation (2-UOTA, for short) and tilings
automata (UTA, for short), i.e. 2-dimensional on-line tessellation and tilings automata
such that for any picture there is at most one accepting computation, recognize UREC
family.

Automata described in Definitions 8, 9, 11 admit also their deterministic counter-
parts. In the sequel 4DFA, 2DOTA, DTA denote the families of deterministic 4-way,
2-dimensional on-line tessellation and tiling automata. They are less powerful than
the corresponding non-deterministic automata. In the deterministic case the family of
languages recognized by tiling automata depends on the chosen scanning strategy, so
L(DTA) denotes the set of all languages recognized by a deterministic d-tiling au-
tomata for each scanning strategy in any direction d ∈ c2c and DREC = L(DTA).
Moreover the family L(4DFA) of languages recognized by a deterministic 4-way au-
tomaton and the family L(2DOTA) recognized by some automaton in 2OTA are not
comparable as shown by examples in [35].

4.4 Regular Expressions

One of the main results on regular string languages is Kleene’s theorem that character-
izes the family of languages recognized by finite automata in term of regular expres-
sions. Such expressions can be analogously defined for picture languages.

Definition 13. ([31]) A regular expression on the alphabet Σ is defined recursively as
follows:

1. ∅ and each a ∈ Σ are regular expressions;
2. if α and β are regular expressions, also α∪ β, α∩ β, αC , α� β, α� β, α∗�, α∗


are so.

Each regular expression over Σ denotes a picture language: ∅ and a ∈ Σ denote
respectively the empty language and the language formed by the unique picture of size
(1, 1) with p(1, 1) = a, α∪β, α∩β , α�β, α�β, denote the union, intersection, row and
column concatenation of languages α and β; αC , α∗�, α∗
 denote the complement,
and Kleene’s closures of language α.

A language L ⊆ Σ∗,∗ is regular if it is generated by a regular expression over Σ.

It is an immediate consequence of the non closure of REC under complement that
REC does not coincide with the class L(RE) of the languages denoted by regular ex-
pressions. Then it is quite natural to consider restricted sets of operators to be itera-
tively applied starting from empty language and languages formed by a single picture
of size (1,1).

In [31] the following sets of operators are considered: R1 = {∪,∩,�,�,∗� ,∗
 },
R2 = {∪,∩,C ,�,�} and in [42] the setR3 = {∪,�,�,∗� ,∗
 } was added.
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Regular expressions containing only operators inR1 are called complement-free and
L(CFRE) is the class of languages generated by complement-free regular expressions.
Regular expressions using only operators in R2 are called star-free and L(SFRE) is
the class of languages they denote. L(CFRE) properly contains the family of hv-
local languages, hence giving a Kleene-like theorem for picture languages modulo
projection.

Theorem 7. A picture language L is in REC if and only if it is the projection of a
language in L(CFRE).

Also the classL(SFRE), being closed under complement, does not coincide with REC.
In [41] Matz proved that the language CORNERS belongs to L(SFRE) whereas it is
not in REC so showing that L(SFRE), and more in general the family of languages
denoted by regular expressions, and REC are incomparable. This results answers to
some open problems in [31], Section 8.4. In [55] it is proved that the language CROSS
of all pictures over {a, b} containing

a b a
b b b
a b a

as subpicture is piecewise testable but does

not belongs to L(SFRE) and obviously L(SFRE) is not contained in the family PT
of piecewise locally testable languages because the inclusion fails for the analog string
languages.

The family of languages denoted by a regular expression containing only operators
in R3, but ∩, is called REG in [42]. It is a proper subfamily of L(CFRE) and, in
spite of its low expressive power, some arguments (simplicity, polynomial membership
problem, polynomial emptiness problem) suggesting that it could be a better analog of
regular string languages, are sketched.

In [39] Matz proposed a more powerful type of regular expressions for picture lan-
guages, called regular expressions with operators. For instance, he considered the col-
umn concatenation of a given picture r to the left and to the right like individual objects:
r� and �r. He call this kind of objects operators and allows iteration over combinations
of operators. If unrestricted, these operators can be combined to generate languages not
in REC (e.g ab((a�)(�b))∗ denotes the language {aibi|i > 0}); but under the natural
constraints that an operator working on the left (resp. top) is never juxtaposed, united
or intersected with an operator working on the right (resp. bottom), he showed that the
power of these expressions does not exceed the family REC and is enough to denote
the language of square. It remains an open problem whether regular expressions with
operators exhaust REC-family.

More recently Anselmo and al. [2] proposed some new operations on pictures and
picture languages with the aim of looking for a homogeneous notion of regular ex-
pressions that could extend more naturally the concept of regular expression of 1D
languages. They focus on regular expressions on one-letter alphabet but, as they re-
mark, this is a necessary and meaningful case to start since it corresponds to study the
“shapes” of pictures: if a picture language is in REC then necessarily the language of its
shapes is in REC. First they introduced diagonal concatenation of pictures, that starting
from two pictures p, q over a one-letter alphabet {a}, respectively of size (n,m) and
(n′,m′), produces the picture over {a} of size (n+n′,m+m′), so enabling to express
some relationship between the dimensions of the pictures. The regular expressions al-
lowing only union, diagonal concatenation and its closure as operators, and the empty
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set, empty picture, and empty row and column as atomic expressions denote a fam-
ily of languages over {a}, called L(D). It coincides with the languages of a-pictures
whose dimensions belongs to some rational relation or equivalently can be recognized
by some 4FA automaton that moves only right and down. L(D) properly contains the
class of languages over one letter alphabet belonging to L(CFRE) and is closed under
intersection and complement. Then they consider the family of languages over one let-
ter alphabet denoted by regular expressions whose operator set contains union, column,
row and diagonal concatenations and their closures, getting again a family properly
included in REC. So, in the attempt of capture all the shapes allowed by 1D REC
languages, they defined new types of iteration operations, called advanced stars, that
result much more powerful than the classical stars and also seem to constitute a more
reasonable approach to the general case because the definitions of advanced stars admit
obvious generalizations on larger alphabets.

4.5 Logic Formulas

Let Σ be a finite set and consider the signature {S1, S2, {Pa}a∈Σ}, where Pa are unary
and Si, i = 1, 2 binary relation symbols. Monadic second-order (shortly MSO) for-
mulas on this signature using first-order variables x, y, z, . . . and second order vari-
ables X,Y, Z . . ., are inductively built from atomic formulas x = y, S1(x, y), S2(x, y),
Pa(x), X(x) using Boolean connectives and quantifiers applicable to first and second
order variables. A MSO formula where no second order variable is quantified is called
a first-order (FO) formula. An existential monadic second order (EMSO) is a formula
of the form ∃X1∃X2 . . . ∃Xrφ where φ is a first-order formula.

A picture p over Σ can be represented by the structure p = (dom(p), Sp,1, Sp,2,
{Pp,a}a∈Σ) where dom(p) = {1, . . . , |p|row}×{1, . . . , |p|col}, Sp,1, Sp,2 ⊂ dom(p)×
dom(p) are two successor relations defined by (i, j)Sp,1(i + 1, j) for 1 ≤ i < |p|row,
1 ≤ i ≤ |p|col and (i, j)Sp,2(i, j + 1) for 1 ≤ i ≤ |p|row, 1 ≤ j < |p|col, |Σ| and
Pp,a = {(i, j)|p(i, j) = a}, with a ∈ Σ gives the set of positions labeled by a.

Let φ(X1, X2, ..., Xt) be a formula where at most X1, X2, ..., Xt are free variables
and let Q1, Q2, . . . , Qt be subsets of dom(p). Consider the interpretation with domain
dom(p), where first order variables are positions and second order variables are sets
of positions in dom(p), and in particular Qi is the interpretation of Xi for 1 ≤ i ≤
t, the predicates S1(x, y), S2(x, y), Pa(x), X(x) are seen as (x, y) ∈ Sp,1, (x, y) ∈
Sp,2, x ∈ Pp,a, x ∈ X . Then

(p,Q1, Q2, . . . , Qt) |= φ(X1, X2, ..., Xt)

means that p satisfies φ in the above interpretation.
A sentence is a formula without free variables. Let φ a sentence on the signature

{S1, S2, {Pa}a∈Σ}, the picture language L defined by φ is the set of all pictures p such
that p |= φ. A characterization of REC in term of logic formulas is the following

Theorem 8. A picture language L is in REC if and only if it is definable by an EMSO
formula in the signature {S1, S2, {Pa}a∈Σ}.
Matz in [41] enforces the above result showing that every picture language in REC is
definable by an EMSO formula of the form ∃Xφ(X) where φ is a first order formula.
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Also, the families of languages with some kind of local testability admit logical char-
acterization. In fact, a language is locally threshold testable iff it is definable by a first-
order formula in the signature {S1, S2, {Pa}a∈Σ} ([32]), while is locally testable if and
only if it is definable by a first-order formula in the signature {S1, S2, {Pa}a∈Σ, left,
right, top, bottom}, where left, right, top, bottom are unary predicates saying that a
position is at the respective border [40].

4.6 Summary

Inclusions of the families introduced in above sections are represented by the following
diagram:

REC

UREC L(4NFA) L(RE)

Snake-DREC = Col-UREC∪Row-UREC L(4DFA)

Col-UREC∩Row-UREC LTT PT L(SFRE)

DREC LT

L(DOTA)

LOC L(CFRE)

hv-languages

4.7 Necessary Conditions for Recognizability

An useful tool to prove whether a language is recognizable in 1D case is pumping
lemma for regular languages. An analog of pumping lemma can be stated for languages
in REC provided that they contain pictures whose number of columns (rows) is suffi-
ciently larger than the number of rows (columns).

Lemma 1. (Horizontal iteration lemma, [31]) Let L ∈ REC. Then there is a function
ϕ : N → N such that if p ∈ L and |p|col > ϕ(|p|row), there exist some pictures x, y, q
with |x � q|col ≤ ϕ(|p|row) and |y|col > 1 so that p = x � q � y and for all i ≥ 0
x � qi�

� y ∈ L. Moreover, ϕ(n) ≤ |Γ |n for any local alphabet used to represent L.

Analogously can be stated a vertical iteration lemma.
Another necessary condition for a language being in REC uses the notion of syn-

tactic equivalence modulo a language L. For a language L ∈ Σ∗,∗ two isometric pic-
tures p, q are called syntactically equivalent modulo L (in symbols, p ≈L q) if for all
x1, x2, y1, y2 ∈ Σ∗,∗ of suitable sizes, x1 � (y1 � p � y2) � x2 ∈ L if and only if
x1 � (y1 � q � y2) � x2 ∈ L. The function fL(|p|row, |p|col) gives the number of
≈L-equivalence classes in Σ∗,∗ of size (|p|row, |p|col).

Lemma 2. (Syntactic equivalence lemma, [31]) Let L ∈ REC. Then there exists a
positive integer c such that fL(n,m) ≤ cn+m for all positive integers n,m.
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Lemma 3. ([40]) Let L ∈ REC over Σ. For each positive integer n let {Mn} be a
sequence such that

1. Mn ⊆ Σn,+ ×Σn,+;
2. ∀(p, q) ∈Mn, p � q ∈ L;
3. ∀(p, q), (p′, q′) ∈Mn, {p � q′, p′ � q} � L.

Then |Mn| is 2O(n).

The question of the existence of some language not in REC for which the above lemma
fails to prove the non recognizability was posed. The language of squares over {a, b}
with as many a’s as b’s was proposed as candidate. However, from a result in [49], it
follows that the above language is recognizable.

4.8 Recognizable Picture Languages on One-Letter Alphabet

Pictures over a one-letter alphabet, as already remarked in Section 4.4, are a special
but meaningful case to consider. Only the shape of the picture is relevant, whence a
unary picture is simply identified by a pair of positive integers representing its size. So a
picture language over one letter alphabet can be studied looking to the corresponding set
of integer pairs, and the definition of recognizability can be extended from languages to
functions from N to N saying that a function f : N→ N is recognizable if its associate
language Lf = {p ∈ {a}∗,∗ | |pcol| = f(|prow|)} is recognizable. In [31] it is shown
that recognizable functions cannot grow quicker than an exponential function or slower
than a logarithmic one.

In 2007 Bertoni and al. [9] presented REC languages over one-letter alphabet via
a characterization of strings encoding the pictures of the language. Namely they as-
sociate to each picture p ∈ {a}∗,∗ the string φ(p) ∈ {a, h, v}∗ defined as follows:
φ(p) = a|p|rowha|p|col−|p|row−1 , if |p|row < |p|col;
φ(p) = a|p|row , if |p|row = |p|col;
φ(p) = a|p|colva|p|row−|p|col−1, if |p|col < |p|row.

Definition of φ obviously extends to languages by putting φ(L) = {φ(p)| p ∈ L} ⊆
{a, h, v}∗ , for L ⊆ {a}∗,∗.

Theorem 9. Let L ⊆ {a}∗,∗. L is in REC if and only if φ(L) is a string language
that can be recognized by a 1-tape non-deterministic Turing machines working, for any
input x ∈ {a, h, v}∗, within |x| space and executing at most a|x| head reversals, where
a|x| is the length of the longest prefix of x in a+.

Languages on one-letter alphabet were considered also for several of the afore-defined
subclasses of REC languages.

5 Grammars for Generating Pictures

We did not consider generating grammars for REC family: in literature, 2D grammars
are mainly considered as a way to introduce an analog of CF string languages, and
several different models of grammars were proposed. There are essentially two main
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categories of picture grammars: one category imposes the constraint that the left and
right parts of a rewriting rule must be isometric arrays, so overcoming the inherent
problem of shearing (which pops up while substituting a subpicture in a host picture).
The other one relies with several variations on notions of operations among pictures.
More recently, to overcome the shearing problem and in general problems arising from
the non flexibility of pixels in a picture, a picture deformation theory was introduced
by Bozapalidis in [11]. A family of pixels x(r,s) is associated to any pixel x, called the
(r, s)-deformed pixels of x, where r, s range over a semiring A. The deformation p(r,s)

of a picture p is obtained by replacing all pixels of p by their (r, s)-deformations and is
a picture where only the dimensions of p are changed.

In the following section a grammar model specified by a set of rewriting rules is
presented with isometric rules. Then some properties of the model that seem to support
the claim that the model is a good generalization of CF 1D languages are stated, and
some relations with other well-known models of picture grammars are discussed.

5.1 Tile Grammars

Tile grammars were defined in [18] with the name of tile rewriting grammars, then a
normal form for those grammars was given in [14]. Here we use the normal form as
basic definition because it is simpler to handle.

First we need to introduce the notion of strong homogeneous partition. We say that
the domain of a picture p admits a strong homogeneous partition if there is a homoge-
neous partition of dom(p) so that subpictures of p associated to contiguous subdomains
have different labels. It is clear that each picture admits at most one strong homoge-
neous partition.

Definition 14. A Tile grammar (TG) is a 4-tuple (Σ,N, S,R), where Σ is the terminal
alphabet, N is a set of nonterminal symbols, S ∈ N is the starting symbol, R is a set of
rules. Let A ∈ N . There are two kinds of rules:

Fixed size: A→ t, where t ∈ Σ; (1)

Variable size: A→ ω, ω is a set of tiles over N ∪ {#}. (2)

The nonterminal symbol A in the left part of a variable size rule denotes an
A-homogeneous picture. The right part of a variable size rule is a picture of a local
language over nonterminal symbols. Thus a variable size rule is a scheme defining a
possibly unbounded number of isometric pairs: left picture, right picture. In addition
there are rules whose right part is a single terminal.

Notice that tile grammars may be viewed as extending CF grammars from one to
two dimensions: the argument that such grammars in one dimension are essentially CF
grammars allowing a local regular expression in right parts of rules is in [18].

The derivation process of a picture starts from a S-picture. Picture derivation is a
relation between partitioned pictures.

Definition 15. Consider a grammar G = (Σ,N, S,R), let p, p′ ∈ (Σ ∪ N)h,k be
pictures of identical size. Let π = {d1, . . . , dn} be homogeneous partition of dom(p).
We say that (p′, π′) derives in one step from (p, π), written

(p, π)⇒G (p′, π′)
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iff, for some A ∈ N and for some rule ρ ∈ R with left part A, there exists in π an
A-homogeneous subdomain di = (x, y;x′, y′), called application area, such that:

– p′ is obtained substituting spic(p, di) in p with a picture s, defined as follows:
• if ρ is of type (1), then s = t;
• if ρ is of type (2), then s ∈ LOC(ω) and admits a strong homogeneous parti-

tion Π(s)
– π′ is a homogeneous partition of dom(p) into the subdomains

(π \ {di}) ∪ transl(x−1,y−1)(Π(s))

where transl(x−1,y−1)(Π(s)) is the translation by displacement (x − 1, y − 1) (intu-
itively, the position of di in p) of the subdomains of Π(s).

We say that (q, π′) derives from (p, π) in n steps, written (p, π) n=⇒G (q, π′), iff
p = q and π = π′, when n = 0, or there are a picture r and a homogeneous partition

π′′ such that (p, π) n−1=⇒G (r, π′′) and (r, π′′) ⇒G (q, π′). We use the abbreviation
(p, π) ∗=⇒G (q, π′) for a derivation with a finite number of steps.

Roughly speaking at each step of the derivation, an A-homogeneous subpicture is re-
placed with an isometric picture of the local language, defined by the right part of a rule
A→ . . . that admits a strong homogeneous partition. The process terminates when all
nonterminals have been eliminated from the current picture.

Definition 16. The picture language defined by a grammar G (written L(G)) is the set
of p ∈ Σ+,+ such that (

S|p|, dom(p)
) ∗⇒G (p, I),

where I denotes the partition of dom(p) defined by single pixels. For short we also
write S

∗⇒G p. L(TG) denote the family of languages generated by some tile grammar.

Example 1. One row and one column of b’s.
The set of pictures such that there is one row and one column (both not at the border)

that hold b’s, and the remainder of the picture is filled with a’s is defined by the tile
grammar (we remind the reader that �p� stands for the set of all subpictures of size (2,2)
of p):

S →

�
���������

# # # # # # #
# A1 A1 V1 A2 A2 #
# A1 A1 V1 A2 A2 #
# H1 H1 V1 H2 H2 #
# A3 A3 V2 A4 A4 #
# A3 A3 V2 A4 A4 #
# # # # # # #

�
���������

Ai →

�
�����

# # # #
# X X #
# Ai Ai #
# Ai Ai #
# # # #

�
����� |

�
�# # # #
# X X #
# # # #

�
� , for 1 ≤ i ≤ 4
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X →
�
�# # # # #
# A X X #
# # # # #

�
� | a; Hi →

�
�# # # # #
# B Hi Hi #
# # # # #

�
� | b, for 1 ≤ i ≤ 2

A → a; B → b; Vi →

�
�����

# # #
# B #
# Vi #
# Vi #
# # #

�
����� | b, for 1 ≤ i ≤ 2.

Here is an example of derivation, with partitions outlined for better readability:

S S S S S
S S S S S
S S S S S
S S S S S

⇒
A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A3 A3 V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒
A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

X X V2 A4 A4

A3 A3 V2 A4 A4

⇒
A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A X V2 A4 A4

A3 A3 V2 A4 A4

⇒

⇒
A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

A a V2 A4 A4

A3 A3 V2 A4 A4

⇒
A1 A1 V1 A2 A2

H1 H1 V1 H2 H2

a a V2 A4 A4

A3 A3 V2 A4 A4

+⇒
a a b a a

b b b b b

a a b a a

a a b a a

The family L(TG) of TG-languages is closed w.r.t. union, column/row concatenation,
column/row closure operations, rotation, alphabetic mapping ([18]).

We remark that this family as well as all families presented in the sequel, which
exactly define CF string languages if restricted to one dimension, are not closed w.r.t.
intersection and complement. Namely, since they are all closed w.r.t. union, the same
arguments as string CF grammars can be used to prove these properties.

5.2 Tile Grammars and Tiling Systems

Proposition 8. ([18]) REC ⊂ L(TG).

In fact, for a tiling system T = (Σ,Γ,Θ, π), it is quite easy to define a TG T ′ such
that L(T ′) = L(T ). Informally, the idea is to take the tile-set Θ and add two markers,
e.g. {b, w} in a “chequerboard-like” fashion to build up a tile-set suitable for the right
part of the variable size starting rule; other straightforward fixed size rules are used to
encode the projection π. We show the construction on a simple example. The interested
reader may refer to [18] for details.

Example 2. The following TS defines square pictures of a’s.

Θ =

�

�
�
�
�
�
�
	

# # # # # #
# 1 0 0 0 #
# 0 1 0 0 #
# 0 0 1 0 #
# 0 0 0 1 #
# # # # # #




�
�
�
�
�
�
�

, π(0) = a, π(1) = a
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An equivalent tile grammar is the following:

S →

�

�
�
�
�
�
�
	

# # # # # #
# 1b 0w 0b 0w #
# 0w 1b 0w 0b #
# 0b 0w 1b 0w #
# 0w 0b 0w 1b #
# # # # # #




�
�
�
�
�
�
�

∪

�

�
�
�
�
�
�
	

# # # # # #
# 1w 0b 0w 0b #
# 0b 1w 0b 0w #
# 0w 0b 1w 0b #
# 0b 0w 0b 1w #
# # # # # #




�
�
�
�
�
�
�

1w → a, 1b → a, 0w → a, 0b → a.

To see that the inclusion is proper, one can restrict to string languages.
From above it immediately follows that the parsing problem for TG-languages is

NP-hard, but in [44] it is proved that it is in NP, so

Proposition 9. The parsing problem for L(TG) is NP-complete.

In [15] some restrictions on tile grammars guaranteeing that the generated language is in
REC are given. These restrictions are the analog of the restrictions that one dimensional
CF grammars have to satisfy in order of defining regular languages.

Let G = (Σ,N, S,R) be a tile grammar, a non terminal A ∈ N is non recursive
if and only if there is no derivation of the form (A,Π) ⇒∗ (q,Π ′) with spic(p, d) ∈
A+,+ for some subdomain d of Π ′. Two non terminals A1, A2 ∈ N are mutually
recursive if and only if for each i = 1, 2 there are derivations (Ai, Πi) ⇒∗ (qi, Π

′
i)

with spic(qi, di) ∈ {A3−i}∗,∗ for some subdomain di of Π ′
i . A tile grammar all whose

non terminal are non recursive is called non recursive tile grammar.

Proposition 10. ([15]) The family of languages generated by non-recursive tile gram-
mars coincides with REC.

One can define a 2D analogous of a 1D grammar where self-embedding is never
allowed.

Definition 17. A tile grammar G = (Σ,N, S,R) is a corner grammar if there exists a
partition of N in sets N1, N2, N3, N4, and N such that:

1. N is the set of non-recursive nonterminals of G;
2. for every i �= j, 1 ≤ i, j ≤ 4, for each A ∈ Ni, B ∈ Nj , A and B are not mutually

recursive;
3. for every i, 1 ≤ i ≤ 4, for each A ∈ Ni if A ⇒∗ p then p has a subpicture at i-th

corner in N∗,∗
i and the remainder pixels in Σ ∪ (N \Ni), where the i-th corner is

lt for i = 1, rt for i = 2, rb for i = 3, lb for i = 4.

In other words, in every non-corner position of a picture, only terminals or those nonter-
minals that cannot give rise to recursions are allowed, while disjoint (possibly empty)
nonterminal alphabets are considered for the four corners. Clearly, a non-recursive tile
grammar is a special case of corner grammar (with Ni = ∅ for every i, 1 ≤ i ≤ 4). A
corner grammar is also a generalization of right-linear or left-linear grammars for the
1D case.

Proposition 11. ([15]) The family of languages generated by a corner grammars co-
incides with REC.

Notice that checking whether a tile grammar is recursive or if it is a corner grammar is
not decidable.
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5.3 Regional Tile Grammars

We now introduce the central concepts of regional language. The adjective “regional”
is a metaphor of geographical political maps, such that different regions are filled with
different colors. Of course, regions are rectangles.

Definition 18. A homogeneous partition is regional (HR) iff distinct subdomains have
distinct labels. We will call a picture p regional if it admits a HR partition.

A language is regional if all its pictures are so.

Definition 19. ([14]) A regional tile grammar (RTG) is a tile grammar (see Defini-
tion 14), in which every variable size rule A → ω is such that LOC(ω) is a regional
language.

We note that Example 1 is regional, while the picture language presented in Example 2
is not.

For languages generated by regional tile grammars a parsing algorithm generalizing
the CKY algorithm is given. A subpicture is conveniently identified by its subdomain
as in original algorithm a substring is identified by the positions of its first and last
characters.

Theorem 10. ([14]) The parsing problem for RTG has polynomial time complexity.

Analyzing the algorithm, one derives that the complexity of parsing for a picture of size
(n,m) is O(μm4n4) where constant μ depends on parameters of the grammar. The
property of having polynomial time complexity for picture recognition, together with
the remark that pictures with palindromic rules are not in REC immediately give the
following results:

Proposition 12. ([14]) L(RTG) ⊂ L(TG). L(RTG) is incomparable with REC.

Moreover, the polynomial parsing united with the rather simple and intuitively pleasing
form of RTG rules, should make them a worth addition to the series of array rewrit-
ing grammar models conceived in past years. In the sequel we prove or recall some
inclusion relations between grammar models and corresponding language families.

5.4 Průša’s Grammars

The following definitions are taken and adapted from [46,47].

Definition 20. A 2D CF Průša grammar (PG) is a tuple (Σ,N,R, S), where Σ is the
finite set of terminal symbols, disjoint from the set N of nonterminal symbols, S ∈ N is
the start symbol, and R ⊆ N × (N ∪Σ)+,+ is the set of rules.

Definition 21. Let G = (Σ,N,R, S) be a PG. We define a picture language L(G,A)
over Σ for every A ∈ N . The definition is given by the following recursive descriptions:

(i) If A→ w is in R, and w ∈ Σ+,+, then w ∈ L(G,A).
(ii) Let A→ w be a production in R, w = (N ∪Σ)(m,n), for some m,n ≥ 1. Let pi,j ,

with 1 ≤ i ≤ m, 1 ≤ j ≤ n, be pictures such that:
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1. if w(i, j) ∈ Σ, then pi,j = w(i, j);
2. if w(i, j) ∈ N , then pi,j ∈ L(G,w(i, j));
3. for 1 ≤ i < m, 1 ≤ j ≤ n, |pi,j |col = |pi+1,j |col; let Pk = pk,1 � pk,2 � · · ·�

pk,n, and P = P1 � P2 � · · · � Pm.

Then P ∈ L(G,A).

The set L(G,A) contains just all the pictures that can be obtained by applying a
finite sequence of rules (i) and (ii). The language L(G) generated by the grammar G is
defined as the language L(G,S).

Informally, rules can either be terminal rules, which are used to generate the pictures
which constitute the right parts of rules, or have a picture as right part. In this latter case,
the right part is seen as a “grid”, where nonterminals can be replaced by other pictures,
but maintaining its grid-like structure.

Example 3. The following grammar generates the language of pictures with one row
and one column of b’s in a background of a’s (see Example 1).

S →
A V A
H b H
A V A

, A→ AM |M, M → a
M
| a,

V → b
V
| b, H → bH | b.

It is easy to see that Průša grammars admit a Nonterminal Normal Form:

Definition 22. A Průša grammar G = (Σ,N,R, S), is in Nonterminal Normal Form
iff every rule in R has the form either A → t, or A → w, where A ∈ N , w ∈ N+,+,
and t ∈ Σ.

To compare Průša’s grammars with tile grammars, we must note that the two models
are different in their derivations. Tile grammars start from a picture made of S’s having
a fixed size, and being every derivation step isometric, the resulting picture, if any, has
the same size. On the other hand, PG’s start from a single S symbol, and then “grow”
the picture derivation step by derivation step, obtaining, if any, a usually larger picture.

Proposition 13. ([14]) L(PG) ⊂ L(RTG).

Remark 1. Essentially, Průša grammars can be seen as RTG’s with the additional con-
straint that tiles used in the right parts of rules must not have one of these forms:(

A B
C C

)
,

(
A C
B C

)
,

(
C C
A B

)
,

(
C A
C B

)
with A,B,C all different.
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5.5 Kolam Grammars

Průša introduced his model with the attempt of gaining some generative capacity with
respect the class of Kolam grammars. This class of grammars has been introduced by
Siromoney et al. [52] under the name “Array grammars”, later renamed “Kolam Array
grammars” in order to avoid confusion with Rosenfeld’s homonymous model. Much
later Matz reinvented the same model [39] (considering only CF rules). Here the histor-
ical name, CF Kolam grammars (CFKG) is kept, the more succinct definition of Matz
is used.

Definition 23. A sentential form over an alphabet V is a non-empty well-parenthesized
expression using the two concatenation operators, � and �, and symbols taken from
V . SF(V ) denotes the set of all sentential forms over V . A sentential form φ defines
either one picture over V denoted by φ�, or none.

For example, φ1 = ((a � b)� (b � a)) ∈ SF({a, b}) and φ1� is the picture a b
b a . On

the other hand φ2 = ((a � b)� a) denotes no picture, since the two arguments of the
� operator have different column numbers.

CF Kolam grammars are defined analogously to CF string grammars. Derivation
is similar: a sentential form over terminal and nonterminal symbols results from the
preceding one by replacing a nonterminal with some corresponding right hand side of
a rule. The end of a derivation is reached when the sentential form does not contain
any nonterminal symbols. If this resulting form denotes a picture, then that picture is
generated by the grammar.

Definition 24. A CF Kolam grammar (CFKG) is a tuple G = (Σ,N,R, S), where Σ
is the finite set of terminal symbols, disjoint from the set N of nonterminal symbols;
S ∈ N is the starting symbol; and R ⊆ N × SF(N ∪ Σ) is the set of rules. A rule
(A, φ) ∈ R will be written as A→ φ.

For a grammar G, we define the derivation relation⇒G on the sentential formsSF(N∪
Σ) by ψ1 ⇒G ψ2 iff there is some rule A → φ, such that ψ2 results from ψ1 by
replacing an occurrence of A by φ. As usual,

∗⇒G denotes the reflexive and transitive
closure of⇒G. Notice that the derivation thus defined rewrites strings, not pictures.

From the derived sentential form, one obtains the denoted picture. The picture lan-
guage generated by G is the set

L(G) = {ψ� | ψ ∈ SF(Σ), S ∗⇒G ψ}.

With a slight abuse of notation, we will often write A
∗⇒G p, with A ∈ N, p ∈ Σ∗,∗,

instead of ∃φ : A ∗⇒G φ, φ� = p.
CF Kolam grammars admit a normal form with exactly two or zero nonterminals in

the right part of a rule [39].

Definition 25. A grammar G = (Σ,N,R, S), is in Chomsky Normal Form iff every
rule in R has the form either A → t, or A → B � C, or A → B � C, where
A,B,C ∈ N , and t ∈ Σ.

We know from [39] that for every CFKG G, if L(G) does not contain the empty picture,
there exists a CFKG G′ in Chomsky Normal Form, such that L(G) = L(G′). Also, the
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classical algorithm to translate a string grammar into Chomsky Normal Form can be
easily adapted to CFKGs.

Example 4. The following Chomsky Normal Form grammar G defines the set of pic-
tures such that each column is a palindrome:
S → V � S | A1 �A2 | B1 �B2 | a | b;
V → A1 �A2 | B1 �B2 | a | b;
A2 → V �A1 | a;
B2 → V �B1 | b;
A1 → a;
B1 → b.

Proposition 14. ([14]) L(CFKG) ⊂ L(PG).

Namely, rules A → B � C of a CF Kolam grammar G in CNF are equivalent to RTG
rules:

A→

�

�
�
	

# # # # # #
# B B C C #
# B B C C #
# # # # # #




�
�
�

and similarly an equivalent form can be stated for rules A→ B�C. This is compatible
with the constraint of Průša grammars given in Remark 1 and so for each CF Kolam
grammar there exists an equivalent Průša’s grammar. The inclusion is proper because
the language of Example 1 cannot be generated by a CF Kolam grammar.

The time complexity of picture recognition problem for CF Kolam grammars in CNF
has been recently proved [19] to be O(m2n2(m + n)). The significant difference with
the time complexity of parsing for RTG grammars depends on the fact that in the right
part of a rule of a CF Kolam grammars in CNF there are at most two distinct nontermi-
nals. So, checking if a rule is applicable has complexity which is linear with respect to
the picture width or height.

5.6 Context-Free Matrix Grammars

The early model of CF Matrix grammars [51] is a very limited kind of CF Kolam
grammars. The following definition is taken and adapted from [48].

Definition 26. Let M = (G,G′) where G = (N,T, P, S) is a string grammar, where
N is the set of nonterminals, P is a set of productions, S is the starting symbol, T =
{A1, A2, · · · , Ak}, G′ = {G1, G2, · · · , Gk} where each Ai is the starting symbol of
string grammar Gi. The grammars in G′ are defined over an alphabet Σ, which is the
alphabet of M . A grammar M is said to be a CF Matrix Grammar (CFMG) iff G and
all Gi are CF grammars.

Let p ∈ Σ+,+, p = c1 � c2 � · · · � cn. p ∈ L(M) iff there exists a string
Ax1Axn · · ·Axn ∈ L(G) such that every column cj , seen as a string, is in L(Gxj), 1 ≤
j ≤ n. The string Ax1Axn · · ·Axn is said to be an intermediate string deriving p.

If G and Gi for all i, 1 ≤ i ≤ k are regular grammars then M is called a 2D right
linear grammar.
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Informally, the grammar G is used to generate an horizontal string of starting symbols
for the “vertical grammars” Gj , 1 ≤ j ≤ k. Then, the vertical grammars are used
to generate the columns of the picture. If every column has the same height, then the
generated picture is defined, and is in L(M).

It is trivial to show that the class of CFMG languages is a proper subset of CF Kolam
languages. Intuitively, it is possible to consider the string sub-grammars G, and Gj , of
a CF Matrix grammar M , all in Chomsky Normal Form. This means that we can define
an equivalent M ′ CF Kolam grammar, in which rules corresponding to those of G use
only the � operator, while rules corresponding to those of Gj use only the � operator.

Also, it is easy to adapt classical string parsing methods to Matrix grammars, see e.g.
[48].

It is also well known that the family of languages generated by 2D right linear gram-
mars is strictly included in the family of languages recognized by deterministic 4-way
finite automata.

5.7 Grid Grammars

Grid grammars are an interesting formalism defined by Drewes [22,23]. Grid grammars
are based on an extension of quadtrees [28], in which the number of “quadrants” is not
limited to four, but can be k2, with k ≥ 2 (thus forming a square “grid”).

Following the tradition of quadtrees, and differently from the other formalisms pre-
sented here, grid grammars generate pictures which are seen as set of points on the “unit
square” delimited by the points (0,0), (0,1), (1,0), (1,1) of the Cartesian plane.

To compare such model, in which a picture is in the unit square and mono-chromatic
(i.e. black and white), with the ones presented in this work, we introduce a different but
basically compatible formalization, in which the generated pictures are square arrays
of symbols, and the terminal alphabet is not limited to black and white. Our approach
([44]) is similar to the one used for Kolam grammars.

Definition 27. A sentential form over an alphabet V is either a symbol a ∈ V , or
[t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k], with k ≥ 2, and every ti,j being a sentential form.
SF(V ) denotes the set of all sentential forms over V .

A sentential form φ defines a set of pictures φ�:

– a�, with a ∈ V , represents the set {a}(n,n), n ≥ 1 of all a-homogeneous square
pictures;

– [t1,1, . . . , t1,k, . . . , tk,1, . . . , tk,k]�, represents the set of all square grid pictures
where every ti,j� has the same size n× n, for n ≥ 1, and t1,1� is at the bottom-
left corner, . . . , t1,k� is at the bottom right corner, . . . , and tk,k� is at the top right
corner.

For example, consider the sentential form φ = [[a, b, [a, b, b, a], c], a, B, [b, a, a, b]], the
smallest picture in φ� is

B B B B a a b b
B B B B a a b b
B B B B b b a a
B B B B b b a a
b a c c a a a a
a b c c a a a a
a a b b a a a a
a a b b a a a a
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Definition 28. A Grid grammar (GG) is a tuple G = (Σ,N,R, S), where Σ is the
finite set of terminal symbols, disjoint from the set N of nonterminal symbols; S ∈ N
is the starting symbol; and R ⊆ N ×SF(N ∪Σ) is the set of rules. A rule (A, φ) ∈ R
will be written as A→ φ.

For a grammar G, we define the derivation relation⇒G on the sentential formsSF(N∪
Σ) by ψ1 ⇒G ψ2 iff there is some rule A → φ, such that ψ2 results from ψ1 by
replacing an occurrence of A by φ.

From the derived sentential form, one then obtains the denoted picture. The picture
language generated by G is the set

L(G) = {the smallest picture in ψ� | ψ ∈ SF(Σ), S ∗⇒G ψ}.

With a slight abuse of notation, we will often write A
∗⇒G p, with A ∈ N, p ∈ Σ∗,∗,

instead of ∃φ : A ∗⇒G φ, φ� = p.
In literature, parameter k is fixed for a Grid grammar G, i.e. all the right parts of rules

are either terminal or k×k grids. This constraint could be relaxed, by allowing different
k for different rules: the results that are shown next still hold for this generalization.

It is trivial to see that grid grammars admit a Nonterminal Normal Form:

Definition 29. A grid grammar G = (Σ,N,R, S), is in Nonterminal Normal Form
(NNF) iff every rule in R has the form either A → t, or A → [B1,1, . . . , B1,k, . . . ,
Bk,1, . . . , Bk,k], where A,Bi,j ∈ N , and t ∈ Σ.

Example 5. Here is a simple example of a grid grammar in NNF.

S → [S,B, S,B,B,B, S,B, S], S → a, B → b.

The generated language is that of “recursive” crosses of b’s in a field of a’s.
An example picture:

a b a b b b a a a
b b b b b b a a a
a b a b b b a a a
b b b b b b b b b
b b b b b b b b b
b b b b b b b b b
a b a b b b a a a
b b b b b b a a a
a b a b b b a a a

First, we note that this is the only 2D grammatical model presented in this paper which
cannot generate string languages, since all the generated pictures, if any, have the same
number of rows and columns by definition.

It is easy to see that the class of languages generated by grid grammars are a proper
subset of the one of CF Kolam grammars.

Proposition 15. ([44]) L(GG) ⊂ L(CFKG). L(CFMG) and L(GG) are incompa-
rable.

By definition, grid grammars can generate only square pictures and on the other hand,
it is impossible to define CF Matrix grammars generating only square pictures.
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5.8 Summary

We finish with a synopsis of the previous language family inclusions.

L(TG)

REC L(RTG)

L(PG)

L(CFKG)

L(4DFA) L(GG) L(CFMG)

L(2RGL)

6 Conclusion

First of all we want to remark that there are several different ways to generate or recog-
nize picture languages that are not considered in this survey, e.g. [16], [43].

Since REC is a robust notion, we believe that it is a necessary starting point for a
tutorial on picture languages. If one assumes that REC is the right answer to the quest
of a analog for regular string languages then, to maintain hierarchy, TG grammars is the
notion corresponding to context-free grammars. This is why we choose to describe this
model among the others.

RTG preserves some nice properties of context free string languages and includes
several well known models usually introduced as a generalization of context free gram-
mars. So, a question naturally arises: if RTG is the right model for generating context
free picture languages, what about the right model for regular string languages? Some
criticisms on the fact that REC recognizes a too wide class to be considered the right
model in spite of its robustness was posed for instance in [42]. It could be interest-
ing to consider which languages are defined by non recursive RTG grammars in or-
der to verify whether that family can also be proposed as the analog of regular string
languages.

Moreover, few attention was paid to study the generalization to two dimensions of
push-down automata. For instance how can be defined automata recognizing all the
families of languages generated by grammars described in this survey? And finally are
there more promising grammatical approaches to “context-free” picture languages?

In conclusion, in our opinion the very idea of defining a Chomsky’s hierarchy anal-
ogous, moving from one to two dimensions, is probably doomed to partial unsuccess.
2D structures and formalisms, albeit maintaining some similarities with their 1D coun-
terparts, often exhibit very different formal properties and issues which are not present
or trivial in string languages.

Acknowledgments. We thank Achille Frigeri for his valuable comments.
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In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 751–759.
Springer, Heidelberg (1998)

42. Matz, O.: Recognizable vs. Regular picture languages. In: Bozapalidis, S., Rahonis, G. (eds.)
CAI 2007. LNCS, vol. 4728, pp. 112–121. Springer, Heidelberg (2007)

43. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Rajkumar Dare, V.: Puzzle gram-
mars and context-free array grammars. International Journal of Pattern Recognition and Ar-
tificial Intelligence 5, 663–676 (1991)

44. Pradella, M., Cherubini, A., Crespi Reghizzi, S.: A unifying approach to context-free picture
languages (submitted, 2009)

45. Pradella, M., Crespi Reghizzi, S.: A SAT-based parser and completer for pictures specified
by tiling. Pattern Recognition 41(2), 555–566 (2008)
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Abstract. This tutorial provides an overview of the process algebra ACP.

1 Introduction

The term “process algebra” was coined in 1982 by Jan Bergstra and Jan Willem Klop,
originally in the sense of universal algebra, to refer to a structure satisfying a particular
set of axioms. Nowadays it is used in a more general sense for algebraic approaches to
describe and study concurrent processes. In the late 70’s, Robin Milner and Tony Hoare
largely independently developed the process algebras CSS and CSP, respectively. In the
early 80’s, Bergstra and Klop developed a third process algebra called ACP.

System behaviour generally consists of processes and data. Processes are the control
mechanisms for the manipulation of data. While processes are dynamic and active, data
is static and passive. System behaviour tends to be composed of several processes that
are executed concurrently, where these processes exchange data in order to influence
each other’s behaviour. Fundamental to process algebra is a parallel operator, to break
down systems into their concurrent components. A set of equations is imposed to derive
whether two terms are behaviourally equivalent. In this framework, non-trivial proper-
ties of systems can be established in a rigorous and elegant fashion. For example, it may
be possible to equate an implementation of a system to the specification of its required
input/output relation. A variety of automated tools have been developed to facilitate the
derivation of such properties in a process algebraic framework.

Abstract data types (see, e.g., [5]) offer a framework in which also the data can be
specified by means of equations. μCRL [10] is a specification language, supported by
verification tools, that combines process algebra with equational specification of data
types. In this tutorial we will however mainly focus on processes.

Applications of process algebra exist in diverse fields such as safety-critical sys-
tems, network protocols, and biology. In the educational vein, process algebra has been
recognised to teach skills to deal with complex concurrent systems, by representing and
reasoning about such systems in a mathematically clear and precise manner.

Recommended textbooks are [15] for CCS, [17] for CSP, and [8] for ACP. Jos Baeten
[2] presented a detailed account on the history of process algebra. Here I will focus on
the process algebra ACP; this tutorial is based on [8].

This tutorial is structured as follows. Section 2 explains the general framework. Sec-
tion 3 introduces the basic process algebra BPA. Section 4 extends the framework with
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parallelism, communication and encapsulation. Section 5 adds recursion to express in-
finite behaviour. Section 6 introduces the silent step τ , and abstraction operators to hide
internal behaviour. Finally, Section 7 presents a process algebraic specification and ver-
ification of the Alternating Bit Protocol.

2 The General Framework

Process graphs As starting point, we assume that system behaviour is represented as
a process graph. It basically consists of a set of nodes together with a set of labelled
edges between these nodes. A node represents a system state, while a labelled edge
represents a transition from one system state to the next. That is, if the process graph
contains an edge s

a→ s′, then the process graph can evolve from state s into state s′ by
the execution of action a. One state is selected to be the root state, i.e., the initial state
of the process.

Behavioural equivalences. The states in process graphs are distinguished by some
behavioural equivalence. For example, such an equivalence may relate two process
graphs if and only if their root states can execute exactly the same strings of actions.
This tutorial focuses on bisimilarity, which is the finest of all known process equiv-
alences. Bisimilarity requires not only that two process graphs can execute the same
strings of actions, but also that they have the same branching structure. Bisimilarity is
widely recognised as a well-suited semantic notion when reasoning about concurrent
processes.

Process algebra terms. For the purpose of mathematical reasoning it is often convenient
to represent process graphs algebraically in the form of terms. Process algebra focuses
on the specification and manipulation of process terms as induced by a collection of
operator symbols. This symbolic notation facilitates manipulation by a computer. Most
process algebras contain basic operators to build finite processes, communication oper-
ators to express concurrency, and some notion of recursion to capture infinite behaviour.
Moreover, it is convenient to introduce two special constants: the deadlock enables us
to force actions into communication, while the silent step allows us to abstract away
from internal computations.

Structural operational semantics. Transition rules, which are inductive proof rules, pro-
vide each process term with its intended process graph (see, e.g., [1]). We are going to
present the process algebra ACPτ with recursion in several steps, starting from the ba-
sic process algebra BPA. With every extension we need to check that it is conservative,
meaning that the transition rules for the new operators do not influence the behaviour of
the “old” process algebra terms. This can be checked by inspecting the syntactic form
of the transition rules. Moreover, the process algebraic operators should be a congru-
ence with respect to bisimilarity, meaning that if two process terms are bisimilar, then
they are also bisimilar under any context. Again this can be checked by inspecting the
syntactic form of the transition rules.
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Equational logic. The crux of process algebra is that it imposes an equational logic
on process terms that is sound and complete. Soundness means that if two process
terms can be equated then their process graphs are behaviourally equivalent. Vice versa,
completeness means that if two process terms have behaviourally equivalent process
graphs, then they can be equated.

3 Basic Process Algebra

We start with describing a basic process algebra, denoted by BPA.

3.1 Syntax of BPA

The core for process algebra consists of the following operators.

– First of all, we assume a non-empty set A of (atomic) actions, representing indivis-
ible behaviour (such as reading a datum, or sending a datum). Each atomic action
a is a constant that can execute itself, after which it terminates successfully:

a

a

√

The predicate
a→ √

represents successful termination after the execution of
action a.

– Moreover, we assume a binary operator + called alternative composition. The term
t1 + t2 represents the process that executes the behaviour of either t1 or t2. In other
words, the process graph of t1 + t2 is obtained by joining the process graphs of t1
and t2 at their root states:

t1 t2

– Finally, we assume a binary operator · called sequential composition. The term
t1·t2 represents the process that executes first the behaviour of t1, and then the
behaviour of t2. In other words, the process graph of t1·t2 is obtained by replacing
each successful termination s

a→ √ in in the process graph of t1 by a transition
s

a→ s′, where s′ is the root of the process graph of t2:

t1

t2
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Example 1. Let a, b, c and d be actions. The basic process term ((a+ b)·c)·d represents
the following process graph, with the root state presented at the top:

√
d

c

a b

Each finite process graph can be represented by a process term that is built from the
set A of atomic actions, +, and ·. Such terms are called basic process terms, and the
collection of all basic process terms is called basic process algebra, abbreviated to BPA.

3.2 Transition Rules of BPA

We have provided a syntax for basic process terms, together with some intuition for the
process graph that belongs to such a term. This relationship has to be made formal in or-
der for it to become really meaningful. For this purpose we apply structural operational
semantics. This involves giving a collection of transition rules, which define transitions
t

a→ t′ to express that term t can evolve into term t′ by the execution of action a, and
predicates t

a→ √ to express that term t can terminate successfully by the execution of
action a.

Table 1 presents the transition rules that constitute the structural operational seman-
tics of BPA. The variables x, x′, y and y′ in the transition rules range over the collection
of basic process terms, while v ranges over the set A of atomic actions.

The transition rules of BPA provide each basic process term with a process graph,
according to the intuition that was presented in the previous section:

– the first transition rule says that each atomic action v can terminate successfully by
executing itself;

– the next four transition rules express that t + t′ behaves as either t or t′;

Table 1. Transition rules of BPA

v
v→ √

x
v→ √

x + y
v→ √

x
v→ x′

x + y
v→ x′

y
v→ √

x + y
v→ √

y
v→ y′

x + y
v→ y′

x
v→ √

x·y v→ y

x
v→ x′

x·y v→ x′·y
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– the last two transition rules express that t·t′ executes t until successful termination,
after which it proceeds to execute t′.

Example 2. The transition rules in Table 1 provide the basic process term ((a + b)·c)·d
with the following process graph (cf. Example 1):

√
d

d

c

c · d

((a + b) · c) · d

a b

For instance, the transition ((a + b)·c)·d b→ c·d can be proved from the transition rules
in Table 1 as follows:

b
b→ √ (

v
v→ √

, v := b)

————–

a + b
b→ √ (

y
v→ √

x + y
v→ √

, v := b, x := a, y := b)

——————

(a + b)·c b→ c (
x

v→ √

x·y v→ y
, v := b, x := a + b, y := c)

————————–

((a + b)·c)·d b→ c·d (
x

v→ x′

x·y v→ x′·y
, v := b, x := (a + b)·c, x′ := c, y := d)

At the right-hand side, the transition rules are displayed that are applied in the consec-
utive proof steps, together with the substitutions that are applied to them.

From now on, as binding convention we assume that · binds stronger than +. For exam-
ple, a·b + a·c represents (a·b) + (a·c). Occurrences of · are often omitted from process
terms; that is, st denotes s·t.

3.3 Bisimulation

In the previous section, each basic process term has been provided with a process graph
using structural operational semantics. Processes have been studied since the early 60’s,
first to settle questions in natural languages, later on to study the semantics of pro-
gramming languages. These studies originally focused on so-called trace equivalence,
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in which two processes are said to be equivalent if they can execute exactly the same
strings of actions. However, for system behaviour this equivalence is not always satis-
factory, which is shown by the following example.

Example 3. Consider the two processes below:

√√ √√
write2(d)

read(d)

write1(d)write1(d) write2(d)

read(d) read(d)

The first process reads datum d, and then decides whether it writes d on disc 1 or on disc
2. The second process makes a choice for disc 1 or disc 2 before it reads datum d. Both
processes display the same strings of actions, read(d)write1(d) and read(d)write2(d),
so they are trace equivalent. Still, there is a crucial distinction between the two pro-
cesses, which becomes apparent if for instance disc 1 crashes. In this case the first pro-
cess always saves datum d on disc 2, while the second process may get into a deadlock
(i.e., may get stuck).

Bisimilarity, defined below, is more discriminative than trace equivalence. Namely, if
two processes are bisimilar, then not only they can execute exactly the same strings of
actions, but also they have the same branching structure. For example, the two processes
in Example 3 are not bisimilar.

A bisimulation relation B is a binary relation on states in process graphs such that:

1. if sB t and s
a→ s′, then t

a→ t′ with s′ B t′;
2. if sB t and t

a→ t′, then s
a→ s′ with s′ B t′;

3. if sB t and s
a→ √, then t

a→ √;
4. if sB t and t

a→ √, then s
a→ √.

Two states s and t are bisimilar, denoted by s ↔ t, if there is a bisimulation relation B
such that sB t.

Example 4. (a + a)b↔ ab + a(b + b).
A bisimulation relation that relates these two basic process terms is defined by (a + a)
bB ab + a(b + b), bB b, and bB b + b. This bisimulation relation can be depicted as
follows:

b b + b

b

a

b

a

(a + a)b ab + a(b + b)

√ √b

a a

bb

Bisimilarity is a congruence with respect to BPA. That is, if s ↔ s′ and t ↔ t′, then
s + t ↔ s′ + t′ and s·t ↔ s′·t′. This follows from the fact that the transition rules in
Table 1 are in the so-called path format [21].
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3.4 Axioms for BPA

Checking whether the process graphs of two basic process terms are bisimilar requires
hard labour. First these process graphs have to be computed, and next a bisimulation
relation has to be established between their root states. This section introduces an ax-
iomatisation for BPA, to equate bisimilar basic process terms. This avoids the com-
putation of process graphs and bisimulation relations altogether. The axioms have the
additional advantage that they can be used in automated reasoning, so that they facilitate
a mechanised derivation that two basic process terms are bisimilar.

We are after an axiomatisation such that the induced equality relation = on basic
process terms characterises bisimilarity over BPA in the following sense:

1. the equality relation is sound, meaning that if s = t holds for basic process terms s
and t, then s↔ t;

2. the equality relation is complete, meaning that if s ↔ t holds for basic process
terms s and t, then s = t.

Soundness ensures that if terms can be equated, then they are in the same bisimilarity
class, while completeness ensures that bisimilar terms can always be equated.

Table 2. Axioms for BPA

A1 x+ y = y + x
A2 (x+ y) + z = x+ (y + z)
A3 x+ x = x
A4 (x+ y)·z = x·z + y·z
A5 (x·y)·z = x·(y·z)

Table 2 presents an axiomatisation for BPA modulo bisimilarity. The equality re-
lation on basic process terms induced by this axiomatisation is obtained by taking
the set of substitution instances of A1-5, and closing it under equivalence and
contexts.

The axiomatisation A1-5 is sound for BPA modulo bisimilarity. Since bisimilarity is
both an equivalence and a congruence for BPA, it suffices to check the soundness of the
individual axioms.

Moreover, the axiomatisation is complete for BPA modulo bisimilarity, meaning
that s ↔ t implies s = t. This can be proved by directing axioms A3-5 from left
to right, so that we obtain a term rewriting system (see, e.g., [20]). One can show
that bisimilar basic process terms reduce to the same normal form, modulo the axioms
A1,2.

From now on, process terms are considered modulo associativity of the +, and we
often write t1 + t2 + t3 instead of (t1 + t2) + t3 or t1 + (t2 + t3).
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4 Algebra of Communicating Processes

Atomic actions and the operators alternative and sequential composition from the pre-
vious section provide relatively primitive tools to construct a process graph. In general,
the size of a basic process term is comparable to the size of the related process graph.
This section introduces operators to express parallelism and concurrency, which en-
able us to capture a large process graph by means of a comparatively small process
term.

4.1 Parallelism and Communication

In practice, process behaviour is often composed of several processors that are exe-
cuted in parallel, where these separate entities may influence each other’s execution.
One could say that the processors are the building blocks that make up the complete
system, cemented together by mutual communication actions. In order to model such
concurrent systems, we introduce the merge, which is a binary operator that executes
the two process terms in its arguments in parallel. That is, s‖t can choose to execute an
initial transition of s (i.e., a transition s

a→ s′ or s
a→ √) or an initial transition of t.

This is formalised by four transition rules for the merge:

x
v→ √

x‖y v→ y

x
v→ x′

x‖y v→ x′‖y

y
v→ √

x‖y v→ x

y
v→ y′

x‖y v→ x‖y′

Moreover, s‖t can choose to execute a communication between initial transitions of
s and t. For this purpose we assume a communication function γ : A × A → A,
which produces for each pair of atomic actions a and b their communication γ(a, b).
This communication function is required to be commutative and associative; that is, for
a, b, c ∈ A,

γ(a, b) ≡ γ(b, a)
γ(γ(a, b), c) ≡ γ(a, γ(b, c)).

The next four transition rules for the merge express that s‖t can choose to execute a
communication of initial transitions of s and t:

x
v→ √ y

w→ √

x‖y γ(v,w)→ √
x

v→ √ y
w→ y′

x‖y γ(v,w)→ y′

x
v→ x′ y

w→ √

x‖y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x‖y γ(v,w)→ x′‖y′

Example 5. Let the communication of two atomic actions from {a, b, c} always result
in c. The process graph of the process term (ab)‖(ba) is depicted below.

This example shows that the merge of two simple process terms produces a relatively
large process graph. This partly explains the strength of a theory of communicating
processes, as this theory makes it possible to draw conclusions about the full system by
studying its separate concurrent components.
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(ab)‖(ba)

b‖a

√
a

√ √

b

a bc

c ab

a b

b‖(ba)

ab‖a ba

√

√
a

bb c

ba

a

a

√
ba

√√

b c

ba

b b‖aab

√

√
b

a ac

a

b

b b

√
a b

√ √
ba

c

(ab)‖a

a

4.2 Left Merge and Communication Merge

Moller [16] proved that there does not exist a sound and complete finite axiomatisation
for BPA extended with the merge, modulo bisimilarity. This problem is overcome by
defining two extra operators, called left merge and communication merge, which both
capture part of the behaviour of the merge.

The left merge s t takes its initial transition from the process term s, and then be-
haves as the merge ‖. This is expressed by two transition rules for the left merge, which
correspond with the first two transition rules for the merge:

x
v→ √

x y
v→ y

x
v→ x′

x y
v→ x′‖y

The communication merge s|t executes as initial transition a communication between
initial transitions of the process terms s and t, and then behaves as the merge ‖. This
is expressed by four transition rules for the communication merge, which correspond
with the last four transition rules for the merge:

x
v→ √ y

w→ √

x|y γ(v,w)→ √
x

v→ √ y
w→ y′

x|y γ(v,w)→ y′

x
v→ x′ y

w→ √

x|y γ(v,w)→ x′

x
v→ x′ y

w→ y′

x|y γ(v,w)→ x′‖y′

As binding convention we assume that ‖, , and | bind stronger than +. For example,
a b + a‖c represents (a b) + (a‖c). We refer to BPA extended with the three parallel
operators ‖, , and | as PAP (for process algebra with parallelism).

The left and communication merge together cover the behaviour of the merge, in the
sense that s‖t↔ (s t+ t s)+s|t. Namely, s‖t can execute either an initial transition
of s or t, which is covered by s t or t s, respectively, or a communication of initial
transitions of s and t, which is covered by s|t.

The transition rules of PAP constitute a conservative extension of the ones of BPA,
meaning that they do not influence the process graphs of basic process terms. That is, an
initial transition of a basic process term is derivable from the transition rules of PAP if
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and only if this transition can be derived from the transition rules of BPA. This follows
from the fact that this extension adheres to the syntactic restrictions of the conservative
extension format from [11].

Bisimilarity is a congruence with respect to PAP. Again this follows from the fact
that the transition rules of PAP are in the path format.

4.3 Axioms for PAP

Table 3 presents the axioms for the three parallel operators modulo bisimilarity. We
already noted that the merge can be split into the left merge and the communication
merge; this is exploited in axiom M1. Axioms LM2-4 and CM5-10 enable us to elim-
inate occurrences of the left merge and the communication merge from process terms.
The axioms for PAP are added to the ones for BPA.

Table 3. Axioms for merge, left merge, and communication merge

M1 x‖y = (x y + y x) + x|y

LM2 v y = v·y
LM3 (v·x) y = v·(x‖y)
LM4 (x+ y) z = x z + y z

CM5 v|w = γ(v, w)
CM6 v|(w·y) = γ(v, w)·y
CM7 (v·x)|w = γ(v, w)·x
CM8 (v·x)|(w·y) = γ(v, w)·(x‖y)
CM9 (x+ y)|z = x|z + y|z
CM10 x|(y + z) = x|y + x|z

It can be proved that the resulting axiomatisation is sound and complete for PAP
modulo bisimilarity. Again, the completeness proof is based on a term rewriting analy-
sis, in which the axioms are directed from left to right.

4.4 Deadlock and Encapsulation

If two atomic actions are able to communicate, then often we only want these actions
to occur in communication with each other, and not on their own. For example, let the
action send(d) represent sending a datum d into one end of a channel, while read(d)
represents receiving this datum at the other end of the channel. Furthermore, let the
communication of these two actions result in transferring the datum d through the chan-
nel by the action comm(d). For the outside world, the actions send(d) and read(d)
never appear on their own, but only in communication in the form comm(d).

In order to enforce communication in such cases, we introduce a special constant δ
called deadlock, which does not display any behaviour. The communication function γ
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is extended by allowing that the communication of two atomic actions results in δ, i.e.,
γ : A × A → A ∪ {δ}. This extension of γ enables us to express that two actions a
and b do not communicate, by defining γ(a, b) ≡ δ. Furthermore, we introduce unary
encapsulation operators ∂H for sets H of atomic actions, which rename all actions in
H into δ. PAP extended with deadlock and encapsulation operators is called the algebra
of communicating processes (ACP).

Since the deadlock does not display any behaviour, there is no transition rule for
this constant. Furthermore, since the communication of actions can result in δ, the last
four transition rules for the merge and the four transition rules for the communication
merge need to be supplied with the requirement γ(v, w) �≡ δ. Finally, the behaviour of
the encapsulation operators is captured by the following transition rules, which express
that ∂H(t) can execute those transitions of t that have a label outside H :

x
v→ √

∂H(x) v→ √
v �∈ H

x
v→ x′

∂H(x) v→ ∂H(x′)
v �∈ H

We give an example of the use of encapsulation operators.

Example 6. Suppose a datum 0 or 1 is sent into a channel, which is expressed by the
process term send(0) + send(1). Let this datum be received at the other side of the
channel, which is expressed by the process term read(0) + read(1). The communi-
cation of send(d) and read(d) results in comm(d) for d ∈ {0, 1}, while all other
communications between actions result in δ. The behaviour of the channel is described
by the process term

∂{send(0), send(1), read(0), read(1)}((send(0) + send(1))‖(read(0) + read(1)))

The encapsulation operator enforces that the action send(d) can only occur in commu-
nication with the action read(d), for d ∈ {0, 1}.

Beware not to confuse a transition of the form t
a→ δ with a transition of the form

t
a→ √; intuitively, the first transition expresses that t gets stuck after the execution of

a, while the second transition expresses that t terminates successfully after the execution
of a. A process term t is said to contain a deadlock if there are transitions t

a1→ t1
a2→

· · · an→ tn such that the process term tn does not have any initial transitions (i.e., tn↔δ).
In general it is undesirable that a process contains a deadlock, because it represents
that the process gets stuck without producing any output. Experience learns that non-
trivial specifications of system behaviour often contain a deadlock. For example, the
third sliding window protocol in [19] contained a deadlock; see [14, Stelling 7]. It can,
however, be very difficult to detect such a deadlock, even if one has a good insight into
such a protocol. Automated tools have been developed to help with the detection of
deadlocks in a process algebraic framework.

ACP is a conservative extension of PAP, meaning that the transition rules for the
encapsulation operators do not influence the process graphs belonging to process terms
in PAP. Again this follows from the fact that this extension adheres to the syntactic
restrictions of the conservative extension format. Moreover, bisimilarity is a congruence
with respect to ACP, because the transition rules of ACP are in the path format.
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Table 4. Axioms for deadlock and encapsulation

A6 x+ δ = x
A7 δ·x = δ

D1 v �∈ H ∂H(v) = v
D2 v ∈ H ∂H(v) = δ
D3 ∂H(δ) = δ
D4 ∂H(x+ y) = ∂H(x) + ∂H(y)
D5 ∂H(x·y) = ∂H(x)·∂H(y)

LM11 δ x = δ
CM12 δ|x = δ
CM13 x|δ = δ

Table 4 presents axioms A6,7 for the deadlock, axioms D1-5 for encapsulation, and
axioms LM11 and CM12,13 to deal with the interplay of the deadlock with left and
communication merge.

It can be proved that the resulting axiomatisation is sound and complete for ACP
modulo bisimilarity. Again, the completeness proof is based on a term rewriting analy-
sis, in which the axioms are directed from left to right.

5 Recursion

Up to now we have focused on finite processes. However, systems can often exhibit
infinite traces. In this section it is shown how such infinite behaviour can be specified
using recursive equations.

5.1 Guarded Recursive Specifications

Consider the process that alternately executes actions a and b until infinity, with the root
node presented at the top:

b a

Since ACP can only specify finite behaviour, there does not exist a process term in ACP
with this (or a bisimilar) process graph. The process above can be captured by means
of two recursive equations:

X = aY
Y = bX.

Here, X and Y are recursion variables, which intuitively represent the two states of the
process in which it is going to execute a or b, respectively.
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In general, a recursive specification consists of a finite set of recursive equations

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

where the left-hand sides Xi are recursion variables, and the ti(X1, . . . , Xn) at the
right-hand sides are process terms in ACP with possible occurrences of the recursion
variables X1, . . . , Xn.

Process terms s1, . . . , sn are said to be a solution for a recursive specification {Xi =
ti(X1, . . . , Xn) | i ∈ {1, . . . , n}} (with respect to bisimilarity) if si ↔ ti(s1, . . . , sn)
for all i ∈ {1, . . . , n}.

A recursive specification should represent a unique process graph, so we want its
solution to be unique, modulo bisimilarity. That is, if s1, . . . , sn and s′1, . . . , s

′
n are

two solutions for the same recursive specification, then si ↔ s′i for i ∈ {1, . . . , n}.
However, there exist recursive specifications that allow more than one solution modulo
bisimilarity. We give some examples.

Example 7. Let a ∈ A.

1. All process terms are a solution for the recursive specification {X=X}.
2. All process terms s that can execute an initial transition s

a→ √ are a solution for
the recursive specification {X=a+X}.

3. All process terms that cannot terminate successfully are a solution for the recursive
specification {X=Xa}.

The following example features recursive specifications that do have a unique solution
modulo bisimilarity.

Example 8. Let a, b ∈ A.

1. The only solution for {X=aY, Y =bX}, modulo bisimilarity, is X ↔ abab · · · and
Y ↔ baba · · ·.

2. The only solution for {X=Y, Y =aX}, modulo bisimilarity, is X ↔ aaa · · · and
Y ↔ aaa · · ·.

3. The only solution for {X=(a+b) X}, modulo bisimilarity, is X ↔ (a+b)(a+b)
(a + b) · · ·.

A recursive specification allows a unique solution modulo bisimilarity if and only if it
is guarded. A recursive specification

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn)

is guarded if the right-hand sides of its recursive equations can be adapted to the form

a1·s1(X1, . . . , Xn) + · · ·+ ak·sk(X1, . . . , Xn) + b1 + · · ·+ b	
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with a1, . . . , ak, b1, . . . , b	 ∈ A, by applications of the axioms of ACP and replacing
recursion variables by the right-hand sides of their recursive equations. The process
term above is allowed to have zero summands (i.e., k and � can both be zero), in which
case it represents the deadlock δ.

The recursive specifications in Example 7 are all unguarded; that is, their right-hand
sides cannot be brought into the desired form presented above. The recursive specifica-
tions in Example 8 are all guarded.

5.2 Transition Rules for Guarded Recursion

If E is a guarded recursive specification, and X a recursion variable in E, then intu-
itively 〈X |E〉 denotes the process that has to be substituted for X in the solution for
E. For instance, if E is {X=aY, Y =bX}, then 〈X |E〉 represents the process abab · · ·,
while 〈Y |E〉 represents the process baba · · ·; see the first recursive specification in Ex-
ample 8. We extend ACP with the constants 〈X |E〉, for guarded recursive specifications
E and recursion variables X in E.

Assume that the guarded recursive specification E is of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

Guarded recursion is captured by two transition rules which express that the behaviour
of the solutions 〈Xi|E〉 for the recursion variables Xi in E, for each i ∈ {1, . . . , n}, is
exactly the behaviour of its right-hand side ti(X1, . . . , Xn):

ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ √

〈Xi|E〉 v→ √
ti(〈X1|E〉, . . . , 〈Xn|E〉) v→ y

〈Xi|E〉 v→ y

Example 9. Let E denote {X=aY, Y =bX}. The process graph of 〈X |E〉 is

〈X|E〉

〈Y |E〉

b a

The transition 〈X |E〉 a→ 〈Y |E〉 can be derived from the transition rules as follows:

a
a→ √ (

v
v→ √

, v := a)

———————–

a〈Y |E〉 a→ 〈Y |E〉 (
x

v→ √

xy
v→ y

, v := a, x := a, y := 〈Y |E〉)

———————–

〈X |E〉 a→ 〈Y |E〉 (
a〈Y |E〉 v→ y

〈X |E〉 v→ y
, v := a, y := 〈Y |E〉)
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ACP with guarded recursion is a conservative extension of ACP, because this extension
adheres to the syntactic restrictions of the conservative extension format. Moreover,
bisimilarity is a congruence with respect to ACP with guarded recursion, because the
transition rules of guarded recursion are in the path format.

As an example of the use of guarded recursion we consider the bag process over the
set {0, 1}.

Example 10. We specify a process that can put elements 0 and 1 into a bag, and sub-
sequently collect these elements from the bag in arbitrary order. The actions in(0) and
in(1) represent putting a 0 or 1 into the bag, respectively. Similarly, the actions out(0)
and out(1) represent collecting a 0 or 1 from the bag, respectively. All communica-
tions between actions result in δ. Initially the bag is empty, so that one can only put an
element into the bag. The process graph below depicts the behaviour of the bag over
{0, 1}, with the root state placed in the leftmost uppermost corner. Note that this bag
process consists of infinitely many non-bisimilar states.

in(0)

out(0)

out(1) out(1)

in(0)

in(0) in(0)

in(0)

in(0) in(0)

in(0)

in(0)

out(0) out(0)

out(0) out(0) out(0)

out(0)out(0)out(0)

out(1)

out(1)

in(1) in(1) in(1)

in(1)
out(1)

in(1) in(1)

in(1)
out(1)

in(1)in(1)

out(1)

out(1)

out(1)

...
...

...

· · ·

· · ·

· · ·

The bag over {0, 1} can be specified by a single recursive equation, using the merge ‖.
Let E denote the guarded recursive specification

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1)).

The process graph of 〈X |E〉 is bisimilar with the behaviour of the bag over {0, 1}
as depicted above. Namely, initially 〈X |E〉 can only execute an action in(d) for d ∈
{0, 1}. The subsequent process term 〈X |E〉‖out(d) can put elements 0 and 1 in the
bag and take them out again (by means of the parallel component 〈X |E〉), or it can at
any time take the initial element d out of the bag (by means of the parallel component
out(d)).
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5.3 Recursive Definition and Specification Principles

As before, we want to fit guarded recursion into an axiomatic framework. Table 5 con-
tains two axioms for guarded recursion, the recursive definition principle (RDP) and
the recursive specification principle (RSP). The guarded recursive specification E in
the axioms is assumed to be of the form

X1 = t1(X1, . . . , Xn)
...

Xn = tn(X1, . . . , Xn).

Intuitively, RDP expresses that 〈X1|E〉, . . . , 〈Xn|E〉 is a solution for E, while RSP
expresses that this is the only solution for E modulo bisimilarity.

Table 5. Recursive definition and specification principles

RDP 〈Xi|E〉 = ti(〈X1|E〉, . . . , 〈Xn|E〉) (i ∈ {1, . . . , n})

RSP If yi = ti(y1, . . . , yn) for all i ∈ {1, . . . , n}, then

yi = 〈Xi|E〉 (i ∈ {1, . . . , n})

The resulting axomatisation is sound for ACP with guarded recursion modulo bisim-
ilarity. However, it is not complete. For instance, the following two symmetric guarded
recursive specifications of the bag over {0, 1} (see Example 10) are bisimilar, but cannot
be proved equal by means of the axioms:

X = in(0)·(X‖out(0)) + in(1)·(X‖out(1))

Y = in(0)·(out(0)‖Y ) + in(1)·(out(1)‖Y ).

(In this particular case, this could be remedied by adding a commutativity axiom for the
merge.)

One can prove that the axiomatisation is complete for the subclass of linear recursive
specifications. A recursive specification is linear if its recursive equations are of the
form

X = a1X1 + · · ·+ akXk + b1 + · · ·+ b	

with a1, . . . , ak, b1, . . . , b	 ∈ A. (The empty sum represents δ.) Note that a linear re-
cursive specification is by default guarded.

A regular process, which by definition consists of finitely many states and transitions,
can always be described by a linear recursive specification. Namely, each state s in the
regular process can be represented by a recursion variable Xs. If state s can evolve into
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state s′ by the execution of an action a, then this is expressed by a summand aXs′ at
the right-hand side of the recursive equation for Xs. Moreover, if state s can terminate
successfully by the execution of an action a, then this is expressed by a summand a
at the right-hand side of the recursive equation for Xs. The result is a linear recursive
specification E, and 〈Xs|E〉 ↔ s for all states s in the regular process. Vice versa, a
linear recursive specification always gives rise to a regular process.

6 Abstraction

If a customer asks a programmer to implement a product, ideally this customer is able
to provide the external behaviour of the desired program. That is, he or she is able to tell
what should be the output of the program for each possible input. The programmer then
comes up with an implementation. The question is, does this implementation really
display the desired external behaviour? To answer this question, we need to abstract
away from the internal computation steps of the program.

6.1 Rooted Branching Bisimulation

In order to abstract away from internal actions, we introduce a special constant τ , called
the silent step. Intuitively, a τ -transition represents a sequence of internal actions that
can be eliminated from a process graph. As any atomic action, the constant τ can ex-
ecute itself, after which it terminates successfully. This is expressed by the transition
rule

τ
τ→ √

From now on, v and w in the transition rules and the axioms of ACP with guarded re-
cursion range over A ∪ {τ}. (So the transition rule for atomic actions in Table 1 yields
the transition rule for the silent step τ presented above.) The domain of the communi-
cation function γ is extended with the silent step, γ : A ∪ {τ} × A ∪ {τ} → A ∪ {δ},
by defining that each communication involving τ results in δ.

In the presence of the silent step τ , bisimilarity is no longer a satisfactory process
equivalence. Namely, if process terms s and t are equivalent, and s can execute an action
τ , then it need not be the case that t can simulate this τ -transition of s by the execution
of an action τ . The intuition for the silent step, that it represents an internal computation
in which we are not really interested, asks for a new process equivalence. The question
that we must pose ourselves is:

which τ -transitions are truly silent ?

The obvious answer to this question, “all τ -transitions are truly silent”, turns out to
be incorrect. Namely, this answer would produce an equivalence relation that does not
preserve deadlock behaviour.

As an example of an action τ that is not truly silent, consider the process terms
a + τδ and a. If the τ in the first term were truly silent, then these two terms would be
equivalent. However, the process graph of the first term contains a deadlock,a+τδ

τ→ δ,
while the process graph of the second term does not. Hence, the τ in the first term is not
truly silent. In order to describe this case more vividly, we give an example.
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Example 11. Consider a protocol that first receives a datum d via channel 1, and then
communicates this datum via channel 2 or via channel 3. If the datum is communicated
through channel 2, then it is sent into channel 4. If the datum is communicated through
channel 3, then it gets stuck, as the subsequent channel 5 is broken. So the system gets
into a deadlock if the datum d is transferred via channel 3. This deadlock should not
disappear if we abstract away from the internal communication actions via channels 2
and 3, because this would cover up an important problem of the protocol.

2

3

4

1

5

The system, which is depicted above, is described by the process term

∂{s5(d)}(r1(d)·(c2(d)·s4(d) + c3(d)·s5(d)))
D1,2,4,5

= r1(d)·(c2(d)·s4(d) + c3(d)·δ)

where si(d), ri(d), and ci(d) represent a send, read, and communication action of the
datum d via channel i, respectively. Abstracting away from the internal actions c2(d)
and c3(d) in this process term yields r1(d)·(τ ·s4(d)+τ ·δ). The second τ in this process
term cannot be deleted, because then the process would no longer be able to get into a
deadlock. Hence, this τ is not truly silent.

As a further example of a τ -transition that is not truly silent, consider the process terms
a + τb and a + b. We argued previously that the process terms ∂{b}(a + τb) = a + τδ
and ∂{b}(a+b) = a are not equivalent, because the first term contains a deadlock while
the second term does not. Hence, a + τb and a + b cannot be equivalent, for else the
envisioned equivalence relation would not be a congruence.

Problems with deadlock preservation and congruence can be avoided by taking a
more restrictive view on abstracting away from silent steps. A correct answer to the
question

which τ -transitions are truly silent ?

turns out to be

those τ -transitions that do not lose possible behaviours !

For example, the process terms a + τ(a + b) and a + b are equivalent, because the τ in
the first process term is truly silent: after execution of this τ it is still possible to execute
a. In general, process terms s + τ(s + t) and s + t are equivalent for all process terms
s and t. By contrast, in a process term such as a + τb the τ is not truly silent, since
execution of this τ means losing the option to execute a.

The intuition above is formalised in the notion of branching bisimilarity. Let the pro-
cess terms s and t be branching bisimilar. If s

τ→ s′, then t does not have to simulate this
τ -transition if it is truly silent, meaning that s′ and t are branching bisimilar. Moreover,
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a non-silent transition s
a→ s′ need not be simulated by t immediately, but only after a

number of truly silent τ -transitions: t
τ→ · · · τ→ t0

a→ t′, where s and t0 are branching
bisimilar (to ensure that the τ -transitions are truly silent) and s′ and t′ are branching
bisimilar (so that s

a→ s′ is simulated by t0
a→ t′). A special termination predicate ↓ is

needed in order to relate branching bisimilar process terms such as aτ and a.
Assume a special termination predicate ↓, and let

√
represent a state with

√ ↓. A
branching bisimulation relation B is a binary relation on states in process graphs such
that:

1. if sB t and s
a→ s′, then

- either a ≡ τ and s′ B t;
- or there is a sequence of (zero or more) τ -transitions t

τ→ · · · τ→ t0 such that
sB t0 and t0

a→ t′ with s′ B t′;
2. if sB t and t

a→ t′, then
- either a ≡ τ and sB t′;
- or there is a sequence of (zero or more) τ -transitions s

τ→ · · · τ→ s0 such that
s0 B t and s0

a→ s′ with s′ B t′.
3. if sB t and s ↓, then there is a sequence of (zero or more) τ -transitions t

τ→ · · · τ→
t0 such that sB t0 and t0 ↓;

4. if sB t and t ↓, then there is a sequence of (zero or more) τ -transitions s
τ→ · · · τ→

s0 such that s0 B t and s0 ↓.

Two states s and t are branching bisimilar, denoted by s ↔b t, if there is a branching
bisimulation relation B such that sB t.

Example 12. a + τ(a + b)↔b τ(a + b) + b.
A branching bisimulation relation that relates these two process terms is defined by
a + τ(a + b)B τ(a + b) + b, a + bB τ(a + b) + b, a + τ(a + b)B a + b, a + bB a + b,
and
√B√. This relation can be depicted as follows:

a τ τ b

a a
a + b

√
a + b

a + τ(a + b) τ(a + b) + b

√

b b

It is left to the reader to verify that this relation satisfies the requirements of a branching
bisimulation relation.

Branching bisimilarity satisfies a notion of fairness. That is, if an exit from a τ -loop
exists, then no infinite execution sequence will remain in this τ -loop forever. The intu-
ition is that there is zero chance that no exit from the τ -loop will ever be chosen. For
example, it is not hard to see that 〈X |X = τX + a〉 and a are branching bisimilar.

Branching bisimilarity preserves a large class of interesting properties (including
deadlock behaviour) [7]. See [13] for an exposition on why branching bisimilarity con-
stitutes a sensible equivalence relation to abstract away from internal computations.



66 W. Fokkink

Branching bisimilarity is an equivalence relation; see [4]. However, it is still not a
congruence with respect to BPA. For example, b and τb are branching bisimilar, but we
already argued that a + b and a + τb are not branching bisimilar. This problem can be
overcome by adding a rootedness condition: initial τ -transitions are never truly silent.
In other words, two states are considered equivalent if they can simulate each other’s
initial transitions, such that the resulting states are branching bisimilar. This leads to the
notion of rooted branching bisimilarity.

A rooted branching bisimulation relation B is a binary relation on states in process
graphs such that:

1. if sB t and s
a→ s′, then t

a→ t′ with s′ ↔b t′;
2. if sB t and t

a→ t′, then s
a→ s′ with s′ ↔b t′;

3. if sB t and s ↓, then t ↓;
4. if sB t and t ↓, then s ↓.

Two states s and t are rooted branching bisimilar, denoted by s ↔rb t, if there is a
rooted branching bisimulation relation B such that sB t.

Since branching bisimilarity is an equivalence relation, it is not hard to see that rooted
branching bisimilarity is also an equivalence relation. Branching bisimilarity includes
rooted branching bisimilarity, which in turn includes bisimilarity:

↔⊂↔rb⊂↔b .

In the absence of τ (for example, in ACP), bisimilarity and branching bisimilarity in-
duce exactly the same equivalence classes. In other words, two process terms in ACP
are bisimilar if and only if they are branching bisimilar.

6.2 Guarded Linear Recursion Revisited

Assume a recursive specification E that consists of linear recursive equations Xi =
ti(X1, . . . , Xn) for i ∈ {1, . . . , n}. Since from now on we consider process terms in
the setting of rooted branching bisimilarity, process terms s1, . . . , sn are said to be a
solution for E (with respect to rooted branching bisimilarity) if si ↔rb ti(s1, . . . , sn)
for i ∈ {1, . . . , n}.

In the setting with the silent step, the notion of guardedness, which aims to classify
those recursive specifications that have a unique solution modulo the process equiva-
lence under consideration, needs to be adapted. For example, all process terms τs are
solutions for the recursive specification X = τX , because τs ↔rb ττs holds for all
process terms s. Hence, we consider such a recursive specification to be unguarded. The
notion of guardedness is extended to linear recursive specifications that involve silent
steps by requiring the absence of τ -loops.

A recursive specification is linear if its recursive equations are of the form

X = a1X1 + · · ·+ akXk + b1 + · · ·+ b	

with a1, . . . , ak, b1, . . . , b	 ∈ A ∪ {τ}. A linear recursive specification E is guarded
if there does not exist an infinite sequence of τ -transitions 〈X |E〉 τ→ 〈X ′|E〉 τ→



Process Algebra: An Algebraic Theory of Concurrency 67

〈X ′′|E〉 τ→ · · ·. The guarded linear recursive specifications are exactly the linear recur-
sive specifications that have a unique solution, modulo rooted branching bisimilarity.

ACP with silent step guarded linear recursion constitutes a conservative extension of
ACP with linear recursion, because this extension adheres to the syntactic restrictions
of the conservative extension format. Moreover, rooted branching bisimilarity is a con-
gruence with respect to ACP silent step and guarded linear recursion. This follows from
the fact that the transition rules are in the RBB cool format from [9].

Table 6 presents the axioms B1,2 for the silent step, modulo rooted branching
bisimilarity.

Table 6. Axioms for the silent step

B1 v·τ = v
B2 v·(τ ·(x+ y) + x) = v·(x+ y)

The resulting axiomatisation is sound for ACP with silent step and guarded linear
recursion, modulo rooted branching bisimilarity. Moreover, it can be shown that the
axiomatisation is complete, see [12].

6.3 Abstraction Operators

We introduce unary abstraction operators τI , for subsets I of A, which rename all
atomic actions in I into τ . The abstraction operators enable us to abstract away from
the internal computation steps of an implementation. The behaviour of the abstraction
operators is captured by the following transition rules, which express that in τI(t) all
labels of transitions of t that are in I are renamed into τ :

x
v→ √

τI(x) v→ √
v �∈ I

x
v→ x′

τI(x) v→ τI(x′)
v �∈ I

x
v→ √

τI(x) τ→ √
v ∈ I

x
v→ x′

τI(x) τ→ τI(x′)
v ∈ I

ACP extended with silent step and abstraction operators is denoted by ACPτ .
ACPτ once again constitutes a conservative extension of ACP, because this extension

adheres to the syntactic restrictions of the conservative extension format. Moreover,
rooted branching bisimilarity is a congruence with respect to ACPτ with guarded linear
recursion, because the transition rules are in the RBB cool format.

Table 7 presents axioms for the abstraction operators, modulo rooted branching
bisimilarity.

The resulting axiomatisation is sound for ACPτ with guarded linear recursion mod-
ulo rooted branching bisimilarity. However, to obtain a complete axiomatisation, we
need one more proof principle.



68 W. Fokkink

Table 7. Axioms for abstraction operators

TI1 v �∈ I τI(v) = v
TI2 v ∈ I τI(v) = τ
TI3 τI(δ) = δ
TI4 τI(x+ y) = τI(x) + τI(y)
TI5 τI(x·y) = τI(x)·τI(y)

6.4 Cluster Fair Abstraction Rule

Although τ -loops are prohibited in guarded linear recursive specifications, they can be
constructed using an abstraction operator. For example, τ{a}(〈X |X=aX〉) can only
execute τ ’s until infinity. This observation motivates the following distinction between
specifiable and constructible regular processes:

– specifiable regular processes are the process graphs belonging to process terms in
ACP with silent step and guarded linear recursion;

– constructible regular processes are the process graphs belonging to process terms
in ACPτ with guarded linear recursion.

τττ · · · is the simplest example of a regular process that is constructible, being the
process graph of τ{a}(〈X |X=aX〉), but not specifiable. In general, a constructible
regular process is specifiable if and only if it is free of τ -loops. One extra axiom is
needed to equate process terms of which the regular process graphs are constructible
but not specifiable. For example,

τ{a}(〈X |X=aX〉)↔rb τ{a,b}(〈Y |Y =aZ,Z=bY 〉)

because both process terms execute τ ’s until infinity. However, these process terms
cannot be equated by means of the axioms, due to the guardedness restriction on RSP,
which is essential for the soundness of this axiom. In order to get rid of τ -loops, we
introduce the notion of fair abstraction. For example, let E denote the following guarded
linear recursive specification:

X1 = aX2 + s1

...
Xn−1 = aXn + sn−1

Xn = aX1 + sn

for some a ∈ A. The process term τ{a}(〈X1|E〉) executes τ -transitions that are the
result of abstracting away from the occurrences of a in front of the recursion vari-
ables Xi, until it exits this τ -loop by executing one of the process terms τ{a}(si) for
i ∈ {1, . . . , n}. Note that the transitions in the τ -loop are all truly silent, because they
do not lose possible behaviours; after the execution of such a τ , it is still possible to
execute any of the process terms τ{a}(si) for i ∈ {1, . . . , n}. Fair abstraction says
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that τ{a}(〈X1|E〉) does not stay in the τ -loop forever, so that at some time it will start
executing a τ{a}(si). Hence,

τ{a}(〈X1|E〉)↔rb τ{a}(s1 + τ(s1 + · · ·+ sn)).

Namely, initially τ{a}(〈X1|E〉) can execute either τ{a}(s1) or τ . In the latter case, this
initial (so non-silent) τ -transition is followed by the execution of a series of truly silent
τ ’s in the τ -loop, until one of the process terms τ{a}(si) for i ∈ {1, . . . , n} is executed.

We now present an axiom to eliminate a cluster of τ -transitions, so that only the exits
of such a cluster remain. First, a precise definition is needed of a cluster and its exits.

Let E be a guarded linear recursive specification, and I ⊆ A. Two recursion variables
X and Y in E are in the same cluster for I if and only if there exist sequences of transi-

tions 〈X |E〉 b1→ · · · bm→ 〈Y |E〉 and 〈Y |E〉 c1→ · · · cn→ 〈X |E〉 with b1, . . . , bm, c1, . . . , cn

∈ I ∪ {τ}.
a or aX is an exit for the cluster C if and only if:

1. a or aX is a summand at the right-hand side of the recursive equation for a recur-
sion variable in C; and

2. in the case of aX , either a �∈ I ∪ {τ} or X �∈ C.

Table 8 presents an axiom called cluster fair abstraction rule (CFAR) for guarded lin-
ear recursive specifications. CFAR allows us to abstract away from a cluster of actions
that are renamed into τ , after which only the exits of this cluster remain. In Table 8, E
is a guarded linear recursive specification. Owing to the presence of the initial action
τ at the left- and right-hand side of CFAR, the initial τ -transitions of τI(〈X |E〉) can
be truly silent. If the set of exits is empty, then the empty sum at the right-hand side of
CFAR represents δ.

Table 8. Cluster fair abstraction rule

CFAR If in E, X is in a cluster for I with exits {v1Y1, . . . , vmYm, w1, . . . , wn}, then

τ ·τI(〈X|E〉) = τ ·τI(v1〈Y1|E〉+ · · ·+ vm〈Ym|E〉+ w1 + · · ·+ wn)

The resulting axiomatisation (the axioms for ACPτ together with RDP, RSP and
CFAR) is sound and complete for ACPτ with guarded linear recursion modulo rooted
branching bisimilarity, see [8].

7 Alternating Bit Protocol

So far we have presented a standard framework ACPτ with guarded linear recursion for
the specification and manipulation of concurrent processes. Summarising, it consists of
basic operators (A, +, ·) to define finite processes, communication operators (‖, , |)
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to express parallelism, deadlock and encapsulation (δ, ∂H ) to force atomic actions into
communication, silent step and abstraction (τ , τI ) to make internal computations invisi-
ble, and guarded linear recursion (〈X |E〉) to capture regular processes. These constructs
form a solid basis for the analysis of a wide range of systems.

In particular, the framework is suitable for the specification and verification of net-
work protocols. For such a verification, the desired external behaviour of the protocol is
represented in the form of a process term that is in general built from the basic operators
of BPA together with linear recursion. Moreover, the implementation of the protocol is
represented in the form of a process term that involves the basic operators, the three
parallel operators, and linear recursion. Next, the internal send and read actions of the
implementation are forced into communication using an encapsulation operator, and the
internal communication actions are made invisible using an abstraction operator, so that
only the input/output relation of the implementation remains. If the two process terms
can be equated by the axioms, then this proves that the process graphs belonging to the
desired external behaviour and to the input/output relation of the implementation are
rooted branching bisimilar.

An alternative to an equational correctness proof is to verify that the states in the
process graph above satisfy desirable properties, expressed in some temporal logic
(see, e.g., [18]). Such automated techniques to analyse process graphs are called model
checking. μCRL [6,10] is a toolset for analysing process algebraic specifications in
ACP combined with abstract data types; it supports equational proofs with a theorem
prover, as well as generation of process graphs and model checking.

7.1 Specification of the ABP

As an example, we show how the Alternating Bit Protocol (ABP) [3] can be specified
in this framework. Suppose two armies have agreed to attack a city at the same time.
The two armies reside on different hills, while the city lies in between these two hills.
The only way for the armies to communicate with each other is by sending messengers
through the hostile city. This communication is inherently unsafe; if a messenger is
caught inside the city, then the message does not reach its destination. The paradox is
that in such a situation, the two armies are never able to be 100% sure that they have
agreed on a time to attack the city. Namely, if one army sends the message that it will
attack at say 11am, then the other army has to acknowledge reception of this message,
army one has to acknowledge the reception of this acknowledgement, et cetera.

The ABP is a method to ensure successful transmission of data through a corrupted
channel (such as messengers through a hostile city). This success is based on the as-
sumption that data can be resent an unlimited number of times, and that eventually each
datum will be communicated through the channel successfully. The protocol layout is
depicted below.

ReceiverSender
A

B
C

D

Data elements d1, d2, d3, . . . from a finite set Δ are communicated between a Sender
and a Receiver. If the Sender reads a datum from channel A, then this datum is
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communicated through channel B to the Receiver, which sends the datum into channel
C. However, channel B is corrupted, so that a message that is communicated through
this channel can be turned into an error message ⊥. Therefore, every time the Receiver
receives a message via channel B, it sends an acknowledgement to the Sender via chan-
nel D, which is also corrupted.

In the ABP, the Sender attaches a bit 0 to data elements d2k−1 and a bit 1 to data
elements d2k, when they are sent into channel B. As soon as the Receiver reads a da-
tum, it sends back the attached bit via channel D, to acknowledge reception. If the
Receiver receives a corrupted message, then it sends the previous acknowledgement to
the Sender once more. The Sender keeps on sending a pair (di, b) as long as it receives
the acknowledgement 1 − b or ⊥. When the Sender receives the acknowledgement b,
it starts sending out the next datum di+1 with attached bit 1 − b, until it receives the
acknowledgement 1−b, et cetera. Alternation of the attached bit enables the Receiver to
determine whether a received datum is really new, and alternation of the acknowledge-
ment enables the Sender to determine whether it acknowledges reception of a datum or
of an error message.

We give a linear recursive specification of the ABP in process algebra. First, we
specify the Sender in the state that it is going to send out a datum with the bit b attached
to it, represented by the recursion variable Sb for b ∈ {0, 1}:

Sb =
∑
d∈Δ

rA(d)·Tdb

Tdb = (sB(d, b) + sB(⊥))·Udb

Udb = rD(b)·S1−b + (rD(1− b) + rD(⊥))·Tdb

In state Sb, the Sender reads a datum d from channel A. Then it proceeds to state Tdb,
in which it sends datum d into channel B, with the bit b attached to it. However, the pair
(d, b) may be distorted by the channel, so that it becomes the error message ⊥. Next,
the system proceeds to state Udb, in which it expects to receive the acknowledgement b
through channel D, ensuring that the pair (d, b) has reached the Receiver unscathed. If
the correct acknowledgement b is received, then the system proceeds to state S1−b, in
which it is going to send out a datum with the bit 1 − b attached to it. If the acknowl-
edgement is either the wrong bit 1− b or the error message⊥, then the system proceeds
to state Tdb, to send the pair (d, b) into channel B once more.

Next, we specify the Receiver in the state that it is expecting to receive a datum with
the bit b attached to it, represented by the recursion variable Rb for b ∈ {0, 1}:

Rb =
∑
d′∈Δ

{rB(d′, b)·sC(d′)·Qb + rB(d′, 1− b)·Q1−b} + rB(⊥)·Q1−b

Qb = (sD(b) + sD(⊥))·R1−b

In state Rb there are two possibilities.

1. If in Rb the Receiver reads a pair (d′, b) from channel B, then this constitutes new
information, so the datum d′ is sent into channel C. Then the Receiver proceeds
to state Qb, in which it sends acknowledgement b to the Sender via channel D.
However, this acknowledgement may be distorted by the channel, so that it becomes
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the error message ⊥. Next, the Receiver proceeds to state R1−b, in which it is
expecting to receive a datum with the bit 1− b attached to it.

2. If in Rb the Receiver reads a pair (d′, 1 − b) or an error message ⊥ from channel
B, then this does not constitute new information. So then the Receiver proceeds
to state Q1−b straight away, to send acknowledgement 1 − b to the Sender via
channel D. However, this acknowledgement may be distorted by the channel, so
that it becomes the error message⊥. Next, the Receiver proceeds to state Rb again.

A send and a read action of the same message ((d, b), b, or⊥) over the same internal
channel (B or D) communicate with each other:

γ(sB(d, b), rB(d, b)) ≡ cB(d, b) γ(sD(b), rD(b)) ≡ cD(b)
γ(sB(⊥), rB(⊥)) ≡ cB(⊥) γ(sD(⊥), rD(⊥)) ≡ cD(⊥)

for d ∈ Δ and b ∈ {0, 1}. All other communications between actions result in δ.
The recursive specification E of the ABP, consisting of the recursive equations for

the recursion variables Sb, Tdb, Udb, Rb, and Qb for d ∈ Δ and b ∈ {0, 1}, can easily
be transformed into linear form by introducing extra recursion variables to represent
sC(d′)·Qb for d′ ∈ Δ and b ∈ {0, 1}. In the remainder of this section, for notational
convenience, process terms 〈X |E〉 are abbreviated to X . The desired concurrent system
is obtained by putting R0 and S0 in parallel, encapsulating send and read actions over
the internal channels B and D, and abstracting away from communication actions over
these channels. That is, the ABP is expressed by the process term

τI(∂H(R0‖S0))

with

H ≡ {sB(d, b), rB(d, b), sD(b), rD(b) | d ∈ Δ, b ∈ {0, 1}}
∪ {sB(⊥), rB(⊥), sD(⊥), rD(⊥)}

I ≡ {cB(d, b), cD(b) | d ∈ Δ, b ∈ {0, 1}} ∪ {cB(⊥), cD(⊥)}.

The process graph of ∂H(R0‖S0) is depicted below. Initially, in state 1, a datum d
is read from channel A, resulting in state 2. Then an error message ⊥ is communicated
through channel B zero or more times, each time invoking an incorrect acknowledge-
ment 1 or ⊥. Finally, the pair (d, 0) is communicated through channel B, resulting
in state 4. Then datum d is sent into channel C, to reach state 5. The corrupted ac-
knowledgement ⊥ is communicated through channel D zero or more times, each time
invoking a renewed attempt to communicate the pair (d, 0) through channel B. Finally,
acknowledgement 0 is communicated through channel D, resulting in state 7. There the
same process is repeated, with the distinction that the bit 1 attached to the datum that is
communicated through channel B. Note that states 2-6 and 8-12 depend on the datum d
that is read from channel A.
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cD(1)

cD(⊥)
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cB(d, 1)

cB(⊥) cD(⊥)
cD(0)

cB(d, 0) sC(d) cD(0)

7.2 Verification of the ABP

This section sketches an equational proof that the process algebra specification of the
ABP displays the desired external behaviour; that is, the data elements that are read
from channel A by the Sender are sent into channel C by the Receiver in the same
order, and no data elements are lost. In other words, the process term is a solution for
the guarded recursive specification

X =
∑
d∈Δ

rA(d)·sC(d)·X

where action rA(d) represents “read datum d from channel A”, and action sC(d) repre-
sents “send datum d into channel C”.

First, we derive from the axioms the six equations I-VI below, which establish the
transitions between states 1-7 in the bottom half of the process graph of ∂H(R0‖S0).

I : ∂H(R0‖S0) =
∑

d∈Δ rA(d)·∂H(Td0‖R0)
II : ∂H(Td0‖R0) = cB(d, 0)·∂H(Ud0‖(sC(d)Q0)) + cB(⊥)·∂H(Ud0‖Q1)

III : ∂H(Ud0‖Q1) = (cD(1) + cD(⊥))·∂H(Td0‖R0)
IV : ∂H(Ud0‖(sC(d)Q0)) = sC(d)·∂H(Q0‖Ud0)
V : ∂H(Q0‖Ud0) = cD(0)·∂H(R1‖S1) + cD(⊥)·∂H(R1‖Td0)

VI : ∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))·∂H(Q0‖Ud0)

We start with the derivation of equation I. The process term R0‖S0 can be expanded as
follows. In each step, the subterms that are reduced are underlined.
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R0‖S0
M1= R0 S0 + S0 R0 + R0|S0

RDP= (
∑

d′∈Δ{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1}+ rB(⊥)Q1) S0

+ (
∑

d∈Δ rA(d)Td0) R0

+ (
∑

d′∈Δ{rB(d′, 0)sC(d′)Q0 + rB(d′, 1)Q1}+ rB(⊥)Q1)|(
∑

d∈Δ rA(d)Td0)

LM4,CM9,10
=

∑
d′∈Δ{(rB(d′, 0)sC(d′)Q0) S0 + (rB(d′, 1)Q1) S0}

+ (rB(⊥)Q1) S0 +
∑

d∈Δ (rA(d)Td0) R0

+
∑

d′∈Δ

∑
d∈Δ{(rB(d′, 0)sC(d′)Q0)|(rA(d)Td0) + (rB(d′, 1)Q1)|(rA(d)Td0)}

+
∑

d∈Δ (rB(⊥)Q1)|(rA(d)Td0)

LM3,CM8
=

∑
d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}

+ rB(⊥)(Q1‖S0) +
∑

d∈Δ rA(d)(Td0‖R0)
+
∑

d′∈Δ

∑
d∈Δ{δ((sC(d′)Q0)‖Td0) + δ(Q1‖Td0)}

+
∑

d∈Δ δ(Q1‖Td0)

A6,7
=

∑
d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}

+ rB(⊥)(Q1‖S0) +
∑

d∈Δ rA(d)(Td0‖R0).

Next, we expand the process term ∂H(R0‖S0).

∂H(R0‖S0) = ∂H(
∑

d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖S0) + rB(d′, 1)(Q1‖S0)}
+ rB(⊥)(Q1‖S0) +

∑
d∈Δ rA(d)(Td0‖R0))

D4=
∑

d′∈Δ{∂H(rB(d′, 0)((sC(d′)Q0)‖S0)) + ∂H(rB(d′, 1)(Q1‖S0))}
+ ∂H(rB(⊥)(Q1‖S0)) +

∑
d∈Δ ∂H(rA(d)(Td0‖R0))

D1,2,5
=
∑

d′∈Δ{δ∂H((sC(d′)Q0)‖S0) + δ∂H(Q1‖S0)}+ δ∂H(Q1‖S0)

+
∑

d∈Δ rA(d)∂H(Td0‖R0)
A6,7
=
∑

d∈Δ rA(d)∂H(Td0‖R0).

This completes the proof of equation I. Similar to equation I, we can derive the remain-
ing equations II-VI. These derivations are sketched below.

Td0‖R0 = (sB(d, 0) + sB(⊥))(Ud0‖R0)
+
∑

d′∈Δ{rB(d′, 0)((sC(d′)Q0)‖Td0) + rB(d′, 1)(Q1‖Td0)}
+ rB(⊥)(Q1‖Td0) + cB(d, 0)(Ud0‖(sC(d)Q0)) + cB(⊥)(Ud0‖Q1)

∂H(Td0‖R0) = cB(d, 0)∂H(Ud0‖(sC(d)Q0)) + cB(⊥)∂H(Ud0‖Q1)

Ud0‖Q1 = rD(0)(S1‖Q1) + (rD(1) + rD(⊥))(Td0‖Q1)
+ (sD(1) + sD(⊥))(R0‖Ud0) + (cD(1) + cD(⊥))(Td0‖R0)

∂H(Ud0‖Q1) = (cD(1) + cD(⊥))∂H(Td0‖R0)
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Ud0‖(sC(d)Q0) = rD(0)(S1‖(sC(d)Q0)) + (rD(1) + rD(⊥))(Td0‖(sC(d)Q0))
+ sC(d)(Q0‖Ud0)

∂H(Ud0‖(sC(d)Q0)) = sC(d)∂H(Q0‖Ud0)

Q0‖Ud0 = (sD(0) + sD(⊥))(R1‖Ud0) + rD(0)(S1‖Q0)
+ (rD(1) + rD(⊥))(Td0‖Q0) + cD(0)(R1‖S1) + cD(⊥)(R1‖Td0)

∂H(Q0‖Ud0) = cD(0)∂H(R1‖S1) + cD(⊥)∂H(R1‖Td0)

R1‖Td0 =
∑
d′∈Δ

{rB(d′, 1)((sC(d′)Q1)‖Td0) + rB(d′, 0)(Q0‖Td0)}

+ rB(⊥)(Q0‖Td0) + (sB(d, 0) + sB(⊥))(Ud0‖R1)
+ (cB(d, 0) + cB(⊥))(Q0‖Ud0)

∂H(R1‖Td0) = (cB(d, 0) + cB(⊥))∂H(Q0‖Ud0)

Note that the process term ∂H(R1‖S1) in the right-hand side of equation V is not the
left-hand side of an equation I-VI. We proceed to expand ∂H(R1‖S1). That is, similar to
equations I-VI, the following six equations VII-XII can be derived, which establish the
transitions between states 7-12 and 1 in the top half of the process graph of ∂H(R0‖S0).
The derivations of these equations are left to the reader.

VII : ∂H(R1‖S1) =
∑

d∈Δ rA(d)·∂H(Td1‖R1)
VIII : ∂H(Td1‖R1) = cB(d, 1)·∂H(Ud1‖(sC(d)Q1)) + cB(⊥)·∂H(Ud1‖Q0)

IX : ∂H(Ud1‖Q0) = (cD(0) + cD(⊥))·∂H(Td1‖R1)
X : ∂H(Ud1‖(sC(d)Q1)) = sC(d)·∂H(Q1‖Ud1)

XI : ∂H(Q1‖Ud1) = cD(1)·∂H(R0‖S0) + cD(⊥)·∂H(R0‖Td1)
XII : ∂H(R0‖Td1) = (cB(d, 1) + cB(⊥))·∂H(Q1‖Ud1)

Thus, we can derive algebraically the relations depicted in the process graph of
∂H(R0‖S0). Owing to equations I-XII, RSP yields

∂H(R0‖S0) = 〈X1|E〉 (1)

where E denotes the linear recursive specification

{ X1 =
∑

d′∈Δ rA(d′)·X2d′ , Y1 =
∑

d′∈Δ rA(d′)·Y2d′ ,
X2d = cB(d, 0)·X4d + cB(⊥)·X3d, Y2d = cB(d, 1)·Y4d + cB(⊥)·Y3d,
X3d = (cD(1) + cD(⊥))·X2d, Y3d = (cD(0) + cD(⊥))·Y2d,
X4d = sC(d)·X5d, Y4d = sC(d)·Y5d,
X5d = cD(0)·Y1 + cD(⊥)·X6d, Y5d = cD(1)·X1 + cD(⊥)·Y6d,
X6d = (cB(d, 0) + cB(⊥))·X5d, Y6d = (cB(d, 1) + cB(⊥))·Y5d

| d ∈ Δ }.

We proceed to prove that the process term τI(〈X1|E〉) exhibits the desired external
behaviour of the ABP. After application of the abstraction operator τI to the process
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term 〈X1|E〉, the loops of communication actions in the process graph of ∂H(R0‖S0)
(between states 2-3, states 5-6, states 8-9, and states 11-12) become τ -loops. These
loops can be removed using CFAR. For example, for d ∈ Δ the recursion variables
X2d and X3d form a cluster for I with exit cB(d, 0)·X4d, so

rA(d)·τI(〈X2d|E〉) CFAR= rA(d)·τI(cB(d, 0) 〈X4d|E〉)
TI2,5,B1

= rA(d)·τI(〈X4d|E〉). (2)

Similarly, CFAR together with TI2,5 and B1 can be applied to eliminate the other three
loops of communication actions. Thus, we derive the following equations:

sC(d)·τI(〈X5d|E〉) = sC(d)·τI(〈Y1|E〉) (3)

rA(d)·τI(〈Y2d|E〉) = rA(d)·τI(〈Y4d|E〉) (4)

sC(d)·τI(〈Y5d|E〉) = sC(d)·τI(〈X1|E〉). (5)

Applying RDP, TI1,4,5, and equations (2) and (3) we derive

τI(〈X1|E〉)
RDP,TI1,4,5

=
∑
d∈Δ

rA(d)·τI(〈X2d|E〉)

(2)
=

∑
d∈Δ

rA(d)·τI(〈X4d|E〉)

RDP,TI1,5
=

∑
d∈Δ

rA(d)·sC(d)·τI(〈X5d|E〉)

(3)
=

∑
d∈Δ

rA(d)·sC(d)·τI(〈Y1|E〉). (6)

Likewise, applying RDP, TI1,4,5, and equations (4) and (5) we can derive

τI(〈Y1|E〉) =
∑
d∈Δ

rA(d)·sC(d)·τI(〈X1|E〉). (7)

Equations (6) and (7) together with RSP enable us to derive the following equation:

τI(〈X1|E〉) =
∑
d∈Δ

rA(d)·sC(d)·τI(〈X1|E〉).

In combination with equation (1) this yields

τI(∂H(R0‖S0)) =
∑
d∈Δ

rA(d)·sC(d)·τI(∂H(R0‖S0)).

In other words, the ABP exhibits the desired external behaviour. This finishes the veri-
fication of the ABP.
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Abstract. The lecture has presented and compared several proofs of the
fundamental Recognizability Theorem that relates the Monadic Second-
order definability of a set of finite graphs or relational structures and its
Recognizability, this notion being defined in terms of finite congruences
and not in terms of automata.

Certain sets of finite and infinite words, terms and graphs can be characterized
as the sets of models of logical sentences. How do such definitions relate to other
ones, given in terms of finite automata, regular expressions, equation systems or
grammars ? For words and terms, Trakhtenbrot, Elgot, Büchi, Doner, Thatcher,
Wright, Rabin and others have shown equivalences between Monadic Second-
Order definability and definability by finite automata. The case of First-Order
logic is also well-studied although some questions are still open. The lecture has
discussed the case of Monadic Second-order definable sets of finite graphs and
the extension to them of the results that are known for finite words, terms and
trees (which are not identified with terms) and has been based on the book [1]
in preparation.

A subset of an algebra having a finite set of operations (called its signature)
is recognizable if it is saturated by a congruence having finitely many classes.
Everybody knows that a language is recognizable with respect to the monoid
structure on words if and only if it is accepted by a finite automaton. Recog-
nizability taken in this algebraic sense applies to graphs, provided an algebraic
structure is fixed. Several algebraic structures on graphs can be defined. The VR
algebra is defined as follows.

Graphs are simple, their vertices are labelled by nonnegative integers. The
operations of its countable signature FV R are the (binary) disjoint union ⊕ and
the following unary operations : the change of label a into label b, the addition
of edges between any vertex labelled a and any vertex labelled b. Basic graphs
are (labelled) loops and isolated vertices. This algebra is called the VR alge-
bra because its equational sets are the sets defined by the Vertex Replacement
context-free graph grammars. Clique-width, a graph complexity measure with
� Supported by the GRAAL project of ”Agence Nationale pour la Recherche”.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 78–80, 2009.
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which FPT algorithms can be parametrized, is defined in terms of these opera-
tions. We let FV R

k be the finite subsignature of FV R that uses only the vertex
labels from [k] := {1, ..., k}. A graph has clique-width at most k if (by definition)
it is defined (up to isomorphism) by a term over FV R

k . Since the signature FV R

is countably infinite, the notion of recognizability must be adapted. The type of
a graph is the set of labels of its vertices. A congruence witnessing recognizabil-
ity is required to be type preserving (two equivalent graphs must have the same
type) and to have finitely many classes of each type (countably many globally).

A labelled graph can be handled as an element of an algebra, but also as a log-
ical structure, with vertex set as domain, a binary adjacency relation and unary
predicates for specifying labels. The Recognizability Theorem says that every
Monadic Second-Order (MS in short) definable set of finite graphs is recogniz-
able with respect to the VR algebra. The converse does not hold because there
are uncountably many recognizable sets of finite graphs (up to isomorphism) of
type {1}, i.e., of graphs all vertices of which have label 1. This fact makes impos-
sible to characterize the recognizable sets of graphs in terms of logical formulas
or automata.

The lecture has presented two proofs of this theorem and two proofs of its
following weak form. The Weak Recognizability Theorem says that for each k,
the set of graphs of clique-width at most k that satisfy a fixed MS sentence
is recognizable with respect to the subalgebra of the VR algebra generated by
FV R

k . This theorem does not entail the strong version.
We first recall the structure of the well-known proof (from Doner et al.) for fi-

nite terms. Consider set variables X1, ..., Xn. The assignments of sets of positions
in a term to these variables is encoded by n Booleans attached to each position
in the term. For each MS formula with free variables X1, ..., Xn, one constructs
a finite deterministic automaton recognizing the terms with the Booleans en-
coding the assignments that satisfy the formula. This construction is done by
induction on formulas and is based on closure properties of automata (Boolean
operations, projection, determinization). One can view this construction as a
compilation of an MS formula into a deterministic automaton, yielding a linear
time model-checking algorithm.

Then we consider graphs of bounded clique-width. By Backwards Translation,
one can translate an MS sentence ϕ on graphs into one, ψ, that characterizes the
terms over FV R

k that define graphs satisfying ϕ. This gives a short proof of the
Weak Recognizability Theorem, but this proof is not at all satisfactory, because ψ
is of larger quantifier-height than ϕ, and large quantifier-height makes the above
mentioned compilation infeasible. By constructing directly small automata for
checking atomic formulas (the one for adjacency over FV R

k uses k2+k+3 states),
one gets the Weak Recognizability Theorem in a more direct and efficient way.
However, achieving compilation is still difficult. Experimental results have been
reported.

The (full) Recognizability Theorem, can be proved with a Fefermann-Vaught
style proof. Its main ingredient is the Splitting Theorem saying that the set of n-
tuples of sets that satisfy in S⊕T an MS formula ϕ(X1, ..., Xn) is a combination
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of similar sets for S and T relative to (auxiliary) formulas of no larger quantifier-
height than ϕ. It follows that for each h, the equivalence relation on graphs
saying that G ≈ H if and only if G and H have the same type and satisfy the
same sentences of quantifier-height at most h is a type preserving congruence
for the VR algebra with finitely many classes of each type. It saturates the set
of finite models of any MS sentence of quantifier-height at most h, which proves
the Theorem. This proof has useful extensions giving algorithms to compute
counting and optimization functions (like distance) defined by MS formulas. See
Makowsky [3] for a survey of such applications.

Finally, a proof of the Recognizability Theorem using Booleans attached to
vertices to encode satisfying assignments, thus that generalizes the second proof
of the Weak Recognizability Theorem, can be derived from an article by Engel-
friet [2].

There is no unique best proof of the Recognizability Theorem. Each proof has
some interest.

The Recognizability Theorems presented above are actually two instances of
a unique theorem having a unique proof. Other important instances concern
the HR algebra of finite graphs, from which tree-width can be characterized (for
MS sentences using edge set quantifications), and an algebra of finite relational
structures. See [1] where all details are given.
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Abstract. For automatic structures, several logics have been shown
decidable: first-order logic, its extension by the infinity quantifier, by
modulo-counting quantifiers, and even by a restricted form of second-
order quantification. We review these decidability proofs. As a new
result, we determine the data, the expression, and the combined complex-
ity of quantifier-classes for first-order logic. Finally, we also recall that
first-order logic becomes elementary decidable for automatic structures
of bounded degree.

1 Introduction

The idea of an automatic structure goes back to Büchi and Elgot who used fi-
nite automata to decide, e.g., Presburger arithmetic [9]. In essence, a structure
is automatic if the elements of the universe can be represented as strings from a
regular language (an element can be represented by several strings) and every re-
lation of the structure can be recognized by a finite automaton with several heads
that proceed synchronously. Automaton decidable theories [13] and automatic
groups [10] are similar concepts. A systematic study was initiated by Khous-
sainov and Nerode [15] who also coined the name “automatic structure”. They
received increasing interest over the last years [3,4,17,18,1,16,20,2,22]; Rubin’s
survey [25] gives an excellent overview of the results in this area in particular
regarding the structure and decidability issues. One of the main motivations for
investigating automatic structures is that their first-order theories are decidable.
This decidability holds even if one extends first-order logic by quantifiers “there
exist infinitely many”, “the number of elements satisfying ϕ is finite and equals
(modulo q) p”, and “there exists an infinite relation satisfying ϕ” (provided ϕ
mentions the infinite relation only negatively).

But there exist automatic structures whose first-order theory is non-elemen-
tary (i.e., does not belong to n-EXPSPACE for any n ∈ N). An inspection of
the decidability proof (that we indicate in this article) shows that validity of a
formula in Σn+1 (i.e., with at most n + 1 nested negations) can be decided in
n-EXPSPACE. We prove this to be optimal in two very strict senses. First, we
construct (for every n ∈ N) a fixed formula ϕn ∈ Σn+1 such that validity in
an automatic structure is complete for n-EXPSPACE (the input to this problem
is a presentation of the structure by automata). Second, we also construct one
automatic structure such that validity of a sentence from Σn+1 is complete for
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n-EXPSPACE. In other words, both the data and the expression complexity (and
therefore the combined complexity) are complete for n-EXPSPACE.

In the final part,we present a class of automatic structures that allow elementary
decision procedures, namely the class of structures of bounded degree [23,21].

2 Preliminaries

Let Γ be a finite alphabet and w ∈ Γ ∗ be a finite word over Γ . The length of w
is denoted by |w|.

2.1 Structures

A signature is a finite set τ of relational symbols, where every symbol r ∈ τ has
some fixed arity mr. Then a τ-structure A consists of a non-empty universe A
and, for every r ∈ τ , an mr-ary relation rA ⊆ Amr . Note that we only consider
relational structures. Sometimes, we will also use constants, but in our context,
a constant c can be always replaced by the unary relation {c}. Let us fix a τ -
structure A = (A, (rA)r∈τ ), where rA ⊆ Amr . To simplify notation, we will write
a ∈ A for a ∈ A. For B ⊆ A we define the restriction A�B = (B, (rA∩Bmr )r∈τ ).
Given further constants a1, . . . , an ∈ A, we write (A, a1, . . . , ak) for the structure
(A, (rA)r∈τ , a1, . . . , ak). In the rest of the paper, we will often identify a symbol
r ∈ τ with its interpretation rA.

A congruence on the structure A = (A, (r)r∈τ ) is an equivalence relation ≡
on A such that for every r ∈ τ and all a1, b1, . . . , amr , bmr ∈ A we have: If
(a1, . . . , amr) ∈ r and a1 ≡ b1, . . . , amr ≡ bmr , then also (b1, . . . , bmr) ∈ r. As
usual, the equivalence class of a ∈ A w.r.t. ≡ is denoted by [a]≡ or just [a] and
A/≡ denotes the set of all equivalence classes. We define the quotient structure
A/≡ = (A/≡, (r/≡)r∈τ ), where r/≡ = {([a1], . . . , [amr ]) | (a1, . . . , amr) ∈ r}.

2.2 Automatic Structures

Let us fix n ∈ N and a finite alphabet Γ . Let # �∈ Γ be an additional padding
symbol. For words w1, w2, . . . , wn ∈ Γ ∗ we define the convolution w1 ⊗ w2 ⊗
· · · ⊗ wn, which is a word over the alphabet (Γ ∪ {#})n, as follows: Let wi =
ai,1ai,2 · · · ai,ki with ai,j ∈ Γ and k = max{k1, . . . , kn}. For ki < j ≤ k define
ai,j = #. Then w1 ⊗ · · · ⊗ wn = (a1,1, . . . , an,1) · · · (a1,k, . . . , an,k). Thus, for
instance aba⊗ bbabb = (a, b)(b, b)(a, a)(#, b)(#, b). An n-ary relation R ⊆ (Γ ∗)n

is called automatic if the language {w1⊗· · ·⊗wn | (w1, . . . , wn) ∈ R} is a regular
language.

An m-dimensional (synchronous) automaton over Γ is just a finite automaton
A over the alphabet (Γ ∪{#})m such that L(A) ⊆ {w1⊗· · ·⊗wm | w1, . . . , wm ∈
Γ ∗}. Such an automaton defines an m-ary relation

R(A) = {(w1, . . . , wm) | w1 ⊗ · · · ⊗ wm ∈ L(A)} .

An automatic presentation is a tuple P = (Γ,A0, A=, (Ar)r∈τ ), where:
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– Γ is a finite alphabet.
– τ is a signature (the signature of P ), as before mr is the arity of the symbol

r ∈ τ .
– A0 is a finite automaton over the alphabet Γ .
– For every r ∈ τ , Ar is an mr-dimensional automaton over the alphabet

Γ ∪ {#} such that R(Ar) ⊆ L(A0)mr .
– A= is a 2-dimensional automaton over the alphabet Γ ∪ {#} such that

the relation R(A=) ⊆ L(A0) × L(A0) is a congruence on the structure
(L(A0), (R(Ar))r∈τ ).

The structure presented by P is the quotient

A(P ) = (L(A0), (R(Ar))r∈τ )/R(A=) .

A structure A is called automatic if there exists an automatic presentation P
such that A ∼= A(P ). We will write [u] for the element [u]R(A=) (u ∈ L(A0)) of
the structure A(P ).

By SA, we denote the set of all automatic presentations (here S indicates
that we work with string-automata). A presentation P = (Γ,A0, A=, (Ar)r∈τ )
is called injective if R(A=) is the identity relation on L(A0). In this case, we can
omit the automaton A= and identify P with the tuple (Γ,A0, (Ar)r∈τ ). Then
iSA denotes the set of injective automatic presentations.

Examples

– All finite structures A are automatic with alphabet the universe of A. While
there are many infinite automatic structures (see below), there are no infinite
automatic fields [16].

– The complete binary tree with universe {0, 1}∗, together with the binary
relations “first son” S0, “second son” S1, “prefix” ≤, and “equal length” is
automatic.

– Presburger arithmetic (N,+) is automatic: the alphabet is {0, 1}, the lan-
guage of A0 is {0, 1} where the word a0a1 . . . an represents the number∑

0≤i≤n ai2i. Differently Skolem arithmetic (N, ·) is not automatic [3]. But
there is an extended notion of tree-automaticity based on tree-automata in-
stead of finite automata. Blumensath also showed that Skolem arithmetic is
tree-automatic.

– The linear order (Q,≤) is automatic: The universe is {0, 1}∗ with u < v
iff (u ∧ v)0 is a prefix of u or (u ∧ v)1 is a prefix of v (where u ∧ v is the
longest common prefix of u and v). This presentation is even “automatic-
homogeneous”: Let u1, . . . , un and v1, . . . , vn be increasing sequences of equal
length. Then there is an automatic automorphism f of ({0, 1}∗,≤) mapping
ui to vi [19].

– The rewrite graph (Σ∗,→) of every semi-Thue system and therefore the
configuration graph of every Turing machine are automatic.

– The extension of this configuration graph by the binary relation of reacha-
bility is in general not automatic. But for pushdown automata, the config-
uration graph with reachability (QΓ ∗,→,→∗) is automatic: a configuration
is represented the control state followed by the stack content.
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– The theory of automatic structures was preceeded by that of automatic
groups [10] and semigroups [5]. In terms of automatic structures, a semi-
group is automatic (in the original sense) if its Cayley-graph has an injective
automatic presentation such that L(A0) forms a rational cross-section of
the (semi-)group. Many natural groups and semigroups were shown to be
automatic and therefore to have automatic Cayley-graphs:
• rational monoids [26],
• virtually free finitely generated, virtually free Abelian finitely generated,

and hyperbolic groups [10],
• singular Artin monoids of finite type [7], and
• graph products of such monoids [11].

In contrast, it seems that not many infinite groups are automatic in the sense
of this article. For instance, a finitely generated group is automatic iff it is
virtually Abelian [24].

– An automatic structure can be at most countably infinite. Hence, the ordi-
nal ω1 is certainly not automatic. Delhommé, Goranko, and Knapik proved
that an ordinal α is automatic iff α < ωω [8].

– Let B denote the Boolean algebra of all finite and co-finite subsets of N. Then
an infinite Boolean algebra is automatic iff it is a finite power of B [16].

3 Model Checking

3.1 The Logic FSO

Fix a signature τ . Then let V0 = {xi | i ∈ N} be a countably infinite set of
individual variables and, for k ≥ 1, let Vk = {Xk

i | i ∈ N} be a set of k-ary
relation variables. Formulas of FSO are then built according to the following
formation rules (where α and β are formulas, x, y, y1, . . . , yk ∈ V0 are individual
variables, R is a k-ary relation symbol, and X ∈ Vk is a k-ary relation variable):

(L1) x = y
(L2) R(y1, . . . , yk)
(L3) X(y1, . . . , yk)
(L4) α ∨ β and α ∧ β
(L5) ¬α
(L6) ∃x : α
(L7) ∃∞x : α
(L8) ∃(p,q)x : α for 0 ≤ p < q
(L9) ∃X infinite : α provided X ∈ Vk \ pos(α)

To complete this definition, we have to explain what pos(α), the set of posi-
tively occuring relation variables, is. This is achieved by induction as follows:

(1) pos(x = y) = neg(x = y) = ∅
(2) pos(R(y1, . . . , yk)) = neg(R(y1, . . . , yk)) = ∅
(3) pos(X(y1, . . . , yk)) = {X} and neg(X(y1, . . . , yk)) = ∅
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(4) pos(α ∨ β) = pos(α) ∪ pos(β), neg(α ∨ β) = neg(α) ∪ neg(β), and similarly
for α ∧ β

(5) pos(¬α) = neg(α) and neg(¬α) = pos(α)
(6) pos(∃x : α) = pos(∃x : α) and neg(∃x : α) = neg(∃x : α)
(7) pos(∃∞x : α) = pos(α) and neg(∃∞x : α) = neg(α)
(8) pos(∃(p,q)x : α) = pos(α) and neg(∃(p,q)x : α) = neg(α)
(9) pos(∃X infinite : α) = pos(α) and neg(∃X infinite : α) = neg(α) \ {X}

Before we define the semantics, we observe that FSO contains several inter-
esting fragments:

– If we only allow the formation rules (L1,2,4,5,6), we obtain first-order logic
FO.

– If, in addition, (L7) is allowed, we obtain FO[∃∞].
– Similarly, FO[∃∞, ∃ mod ] is obtained by allowing all the rules except (L3)

and (L9).

We next define the semantics of these formulas. To this aim, let A be a τ -
structure with universe A. An interpretation in A is a family f = (fk)k≥0 of
functions with f0 : V0 → A and fk : Vk → 2A

k

for all k ≥ 1. Given such an
interpretation, we setA |=f ϕ (read as “ϕ holds inA under the interpretation f”)
iff one of the following hold

(S1) ϕ = (x = y) and f0(x) = f0(y).
(S2) ϕ = (R(y1, . . . , yk)) and (f0(y1), . . . , f0(yk)) ∈ RA.
(S3) ϕ = (X(y1, . . . , yk)) and (f0(y1), . . . , f0(yk)) ∈ fk(X).
(S4) ϕ = (α ∨ β) and A |=f α or A |=f β, or

ϕ = (α ∧ β), A |=f α, and A |=f β.
(S5) ϕ = ¬α and not A |=f α.
(S6) ϕ = ∃x : α and there exists a ∈ A with A |=f [ a

x ] α where f [ a
x ] = g is

a family of functions (gk)k≥0 with gk = fk for all k ≥ 1, g0(x) = a, and
g0(y) = f0(y) for all y ∈ V0 \ {x}.

(S7) ϕ = ∃∞x : α and there exist infinitely many a ∈ A with A |=f [ a
x ] α.

(S8) ϕ = ∃(p,q)x : α and the number of elements a ∈ A with A |=f [ a
x ] α is finite

and congruent p modulo q.
(S9) ϕ = ∃X infinite : α and there exists an infinite set B ⊆ Ak with A |=f [ B

X ] α

(where we assume X ∈ Vk).

Note that the formulas ∃∞x : ϕ and ¬∃(0,1)x : ϕ are equivalent. Therefore,
above, we did not define the fragment FO[∃ mod ] since it would be equivalent
with the more liberal FO[∃∞, ∃ mod ].

It is an easy exercise to show the following: let A be a τ -structure, ϕ a formula,
and suppose f(y) = g(y) for all y ∈ free(ϕ), the set of variables occurring
freely in ϕ. Then A |=f ϕ iff A |=g ϕ. Assuming a fixed tuple of variables
(y1, . . . , yn) with yi ∈ free(ϕ) for all 1 ≤ i ≤ n, we can therefore simply write
A |= ϕ(f(y1), . . . , f(yn)) for A |=f ϕ. For sentences (i.e., formulas without free
variables), it makes in particular sense to write A |= ϕ.
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3.2 The Model Checking Problem

Let C ⊆ SA be a class of automatic presentations and L ⊆ FSO a set of formulas.
Then

{(ϕ, P ) | ϕ ∈ L sentence, P ∈ C,A(P ) |= ϕ}
is the model checking problem MC(L,C) for L and C, i.e., it is the following
problem:

INPUT: a sentence ϕ from L and an automatic presentation P from C.
OUTPUT: Does A(P ) |= ϕ hold?

To solve the most general model checking problem MC(FSO, SA), one proceeds
as follows:

Proposition 3.1 (cf. [15,3,17,22]). Let P be an automatic presentation and
ϕ ∈ FSO a formula with free(ϕ) ⊆ {y1, . . . , ym} ⊆ V0. Then the relation R =
{(u1, . . . , um) ∈ L(A0)m | A(P ) |= ϕ([u1], . . . , [um])} is regular. Even more, an
m-dimensional automaton for this relation can be computed.

First assume P to be injective and therefore A(P ) = (L(A0), (R(Ar))r∈τ ). If
ϕ is a first-order formula, then the automaton is constructed by induction on
the structure of the formula ϕ: disjunction corresponds to the disjoint union
of automata, existential quantification to projection, and negation to comple-
mentation [15]. The quantifier ∃∞ can be reduced to the first-order case as
follows [3]: Let B be the extension of A(P ) by the length-lexicographic order ≤ll

on L(A0). Then B is still automatic and a formula of the form ∃∞x : ϕ is
equivalent with ∀y∃x(y ≤ll x∧ϕ). This allows to apply the result for first-order
logic. Such a reduction is not possible for the quantifiers ∃(p,q), but explicite
automata-constructions provide the solution [17] (I recommend the presentation
in [25, Proof of Thm. 3.19]). The basic idea is that a finite (k + 1)-dimensional
automaton A can be transformed into a k-dimensional that, on input of k
words (u1, . . . , uk) determines, modulo q, the number of words uk+1 such that
(u1, . . . , uk, uk+1) is accepted by A.

The idea for handling the remaining quantifier ∃X infinite is as follows (cf.
[22] for the details): Let σ be the extension of the signature τ by unary relation
symbols L and Ck and (k + 1)-ary relation symbols elk for k ≥ 1. Then let B be
the structure obtained from A(P ) = (L(A0), (R(Ar))r∈τ ) as follows

– LB = L(A0) is the universe of A(P )
– CB

k ⊆ 2L(A0)
k

is the set of all infinite k-ary relations on L(A0)
– the universe of B consists of the language L(A0) and all infinite relations,

i.e., B = L(A0) ∪
⋃

k≥1 CB
k ,

– the relations rB and rA(P ) = R(Ar) coincide for r ∈ τ , and
– elBk ⊆ L(A0)k × CB

k is the set of all (k + 1)-tuples (u1, . . . , uk, X) with
(u1, . . . , uk) ∈ X .

Now the formula ϕ ∈ FSO can be easily translated into a formula ψ from
FO[∃∞, ∃ mod ] with

A(P ) |= ϕ(u1, . . . , un) ⇐⇒ B |= ψ(u1, . . . , un) .
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The article [18] (see also [25]) provides an encoding of certain infinite sets of
words by infinite words: A word comb is an infinite set {s0s1 . . . si−1ti | i ∈ N} ⊆
Σ∗ such that 0 < |si| < |ti| for all i ∈ N. A relation R ⊆ (Γ ∗)k can be encoded if
the set of convolutions {w1 ⊗ w2 · · · ⊗ wk | (w1, w2, . . . , wk) ∈ R} ⊆ (Γ ∪ {#})∗
is a word comb. Then a compactness argument shows that any infinite k-ary
relation on finite words contains an infinite subset that can be encoded in this
particular way. In a second step, we restrict the sets CB

k to these “encodeable”
relations and denote the resulting structure by B′. The restriction in formation
rule (L9) then ensures

B |= ψ(u1, . . . , un) ⇐⇒ B′ |= ψ(u1, . . . , un) .

The particular coding from [18] ensures that the structure B′ has an injective
“ω-automatic presentation” P ′. These ω-automatic presentations are defined
in the same way as automatic presentations, but using Büchi- instead of fi-
nite automata. Techniques similar to the above for FO[∃∞, ∃ mod ] provide a
k-dimensional Büchi-automaton for the relation defined by ψ in B′ [20] that can
be transformed into a k-dimensional finite automaton for the relation defined by
ϕ in A(P ).

Now let P be non-injective. Then the set of all words from L(A0) that are
length-lexicographically minimal in their equivalence class (as determined by the
automaton A=) is effectively regular [15]. This allows to compute an equivalent
injective presentation P ′ = (B0, (Br)r∈τ ) with L(B0) ⊆ L(A0) and R(Br) =
R(Ar)∩L(B0)k for all k-ary relation symbols r ∈ τ . Then by the above, one can
compute an m-dimensional automaton A with R(A) = {(v1, . . . , vm) ∈ L(B0)m |
A(P ′) |= ϕ(v1, . . . , vm)}. Hence Ph = (A0, A,A=) is an injective automatic
presentation and R is the set of tuples (u1, . . . , um) ∈ L(A0)m with

A(Ph) |= ∃v1, . . . , vm : (v1, . . . , vm) ∈ R ∧
∧

1≤i≤m

(ui, vi) ∈ R(A=) .

This finishes the proof of Prop. 3.1.
Now we come to a direct consequence of Prop. 3.1: to decide whether the

FSO-sentence ϕ holds, one adds a dummy variable x ∈ V0 and then computes
an automaton A with L(A) = {u ∈ L(A0) | A |= ϕ([u])}. Then A |= ϕ iff
L(A) �= ∅ which is decidable.

Theorem 3.2 (cf. [15,3,17,22]). The model checking problem MC(FSO, SA)
for all automatic presentations is decidable. In particular, the FSO-theory
{ϕ ∈ FSO : A(P ) |= ϕ} (that corresponds to MC(FSO, {P})) of every
automatic structure A(P ) is decidable.

Since the first-order theory of the binary tree ({0, 1}, S0, S1,≤) is non-elemen-
tary (cf. [6, Example 8.1]), there cannot be an elementary algorithm for deciding
the model checking problem MC(FSO, SA). The following two sections analyse
this situation a bit further for first-order logic.

Since the number of nested negations will be crucial in this analysis, we define
the following classes of formulas of FO:
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– Σ0 is the set of quantifier-free formulas, i.e., those build according to the
formation rules (L1,2,4,5).

– BΣn is the set of Boolean combinations of formulas from Σn, i.e., we close
the set Σn with respect to the formation rules (L4,5).

– Σn+1 is the closure of the set BΣn with respect to the formation rules (L4,6).

By de Morgan’s rules, we can eliminate from every Σ0-formula any nesting
of negations. Since Σ0 = BΣ0 and since the formation of Σ1 does not involve
additional negations, the same applies to this set. By induction, we can rewrite
every BΣn-formula (for n > 0) such that it has at most n + 1 nested negations
and the same applies to Σn+1-formulas. Note that this process does not increase
the size of the formula.

So let ϕ ∈ Σn+1 have at most n+ 1 nested negations and consider the proofs
of Prop. 3.1 and Theorem 3.2. Since each complementation increases the size of
the automaton exponentially, the automaton A from Prop. 3.1 has (n + 1)-fold
exponential size (in the formula ϕ and the presentation P ). Since non-emptiness
of the language of a finite automaton is in NL, the decision procedure indicated
above requires n-fold exponential space. Thus, we have the following more precise
statement of Theorem 3.2 for first-order logic:

Proposition 3.3. For all n ≥ 0, the model checking problem MC(Σn+1, SA)
belongs to n-EXPSPACE (where 0-EXPSPACE = PSPACE).

From the result of the following sections, it will follow that this upper bound is
optimal.

3.3 Data Complexity

In this section, we want to construct, for every n ∈ N, a first-order sentence
ϕn ∈ Σn+1 such that the question “Does ϕn hold in the structure A(P )?” is
hard for n-fold exponential space. To this aim, we define the following family of
functions Fn : N→ N by induction:

F0(m) = m and Fn+1(m) = Fn(m) · 2Fn(m) .

Note that Fn(m) is an n-fold exponential function. Hence there is a deterministic
Turing machine M with an n-EXPSPACE-complete language that runs in space
Fn(|w|) − 2 for every sufficiently long input w. Let Q be the set of states of M ,
q0 ∈ Q the initial state, qf ∈ Q the accepting state, and Γtape the tape alphabet.
For m ∈ N, an m-configuration of M is a word from Γ ∗

tapeQΓ+
tape of length

Fn(m)−1 (u q v denotes the configuration with tape content uv, control state q,
and head position the first symbol of v). By !, we denote the one-step relation
of M . An m-computation of M is a word $c0$c1 . . . $ck$ over Γ = Q∪Γtape∪{$}
where k ∈ N is arbitrary, c0, c1, . . . , ck are m-configurations of equal length with
ci ! ci+1 for all 0 ≤ i < k, and $ is an additional delimiter. An m-computation
is successful if ck ∈ Γ ∗

tapeqfΓ
+
tape, it is with input w ∈ Γ ∗

tape if c0 ∈ q0w�∗ where
� is the blank symbol of the machine M .
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Now let w be some input word and let m be its length. We construct an
injective automatic presentation Pw such that the acceptance of w by M is
equivalent to validity of a formula ϕn ∈ Σn+1 that does not depend on the
word w. The structure A(Pw) consists of two parts that both depend on the
input word w: the alphabet of the first is Γ , that of the second is {0, 1}. Later,
we will present formulas λi(s) ∈ Σi such that A(Pw) |= λi(s) for s ∈ {0, 1}∗ iff
s ∈ Li = 0∗10Fi(m)−110∗, i.e., iff s ∈ {0, 1}∗ contains precisely two occurrences
of 1 and these two occurrences are Fi(m) apart. But first, we describe the first
part of the structure A(Pw): Its universe is the set Γ ∗ and its core is the binary
relation StepInBlocks. A pair of words (c, c′) belongs to StepInBlocks if and
only if

– c = $c0$c1$ . . . $ck$ and c′ = $c′0$c
′
1$ . . . $c′k$ for some configurations ci

and c′i,
– c0 = c′0,
– |ci| = |c′i| and ci ! c′i for all 1 ≤ i ≤ k, and
– ck ∈ Γ ∗

tapeqfΓ
+
tape is some accepting configuration.

Then w is accepted by M iff there exists a word c = $c0$c1$ . . . $ck$ with
ci ∈ (Γ \ {$})∗ such that

(A1) c0 ∈ q0w�∗ is of length Fn(m)− 1 and
(A2) ($c0$c0$c1$ . . . $ck−1$, $c0$c1$ . . . $ck$) ∈ StepInBlocks.

To express (A1), we use the following two automatic relations:

– Ww is unary and consists of all words from $q0w �∗$.
– Prefix is binary and consists of all pairs (u, v) ∈ Γ ∗× Γ ∗ where u is a prefix

of v.

Let x ∈ Ww be some prefix of c from Ww (i.e., x = $c0$). To express that c0
is of length Fn(m) − 1, we will actually express that the delimiter $ occurs at
positions in x that are Fn(m) apart. To this and later purposes, we will use the
following ternary relation:

– EqLet ⊆ {0, 1}∗ × [(Γ ∗ × Γ ∗) ∪ ({0, 1}∗ × {0, 1}∗)] is the set of triples
(0k0−110k1−110k2 , x, y) such that the letter at position k0 in x equals the
letter at position k0 + k1 in y.

Recall that λn(s) is a formula that defines the set Ln = 0∗10Fn(m)−110∗. Then
(A1) is equivalent to

A(Pw) |= ∃x : Ww(x) ∧ Prefix(x, c)
∧ ∃x′ : x′ ∈ 1{0, 1}∗ ∧ λn(x′) ∧ EqLet(x′, x, x) .

(1)

Here, the second line ensures that the letters number 1 and Fi(m) + 1 of x are
equal. Hence x ∈ Ww = $q0w0∗$ equals $q0w0Fn(m)−m−2$. Since it is a prefix
of c = $c0$c1 . . . ck$, Eq. 1 is equivalent to c0 = q0w0Fn(m)−m−2 and therefore
to (A1).
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Next we argue that, given (A1) (and therefore in particular |c| > Fn(m)),
(A2) is equivalent to

A(Pw) |= ∃c′ : StepInBlocks(c′, c)
∧ ∀x′ : (λn(x′) ∧ |x′| ≤ |c′| → EqLet(x′, c, c′)) .

(2)

By StepInBlocks(c′, c), the words c and c′ have the same length, are sequences of
configurations, and c′ starts with $c0$. The second conjunct expresses that, for
all 0 < i ≤ |c′| − Fn(m), the ith letter of c and the letter number i + Fn(m) + 1
of c′ coincide, i.e., c′ is the prefix of $c0c of length |c|. But this is equivalent with
c′ = $c0$c0$c1 . . . $ck−1$ as required by (A2).

It remains to present the formula λn that is build by induction and uses
not-yet-defined relations on the second part of A(Pw). Before we present these
relations, we need the following auxiliary definitions:

– For x = x0x1 . . . xk with xi ∈ {0, 1}, let val(x) =
∑

0≤i≤k xi2i, i.e., the
word x is considered as binary number written with the least significant bit
first.

– For x = x1x2 . . . xk with xi ∈ {0, 1}∗ and 1 ≤ i ≤ j ≤ k, let x[i, j) =
xixi+1 . . . xj−1 be the factor of x from position i to position j − 1.

The ternary relation DecBlocks is the core of the second part of the automatic
structure A(Pw), it is very similar to the relation StepInBlocks from the first
part:

– Let x ∈ {0, 1}∗ such that 0 < k0 < k1 · · · < k	 are the positions of 1 in x.
Then the triple (x, y, z) of words of equal length belongs to DecBlocks iff
1. val(y[k0, k1)) = 0 (i.e., y[k0, k1) = 0k1−k0),
2. val(y[kj , kj+1))− 1 = val(z[kj , kj+1)) for all 1 ≤ j < �, and
3. val(y[k	−1, k	)) = 2k�−k�−1 − 1 (i.e., y[k	−1, k	) = 1k�−k�−1).

The idea is that the first word divides the second and third into blocks that are
decremented separately. In addition, the first and last blocks of the second word
have the minimal and maximal possible value. Note in particular that y has only
one block of value 0 (since all the other can be decremented).

Further relations on the second part of A(Pw) are the following that all can
be accepted by automata whose size is polynomial in the size m of the input
word w:

– Lw = 0∗10m−110∗.
– Sw = 0∗(10m−1)+10∗ is the set of words with at least two occurrences of 1

such that consecutive occurrences are m positions apart.
– S1 is the set of pairs (x, 0k0−110k1−110k2−1) of words of equal length such

that k0 and k0 + k1 are the first and last occurrences of the letter 1 in x.
– Tw is the set of pairs (x, y) of words of equal length such that, for some

1 ≤ k0 ≤ |y| −m, the letter at position k0 in x is different from the letter at
position k0 + m in y.
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– S2 is the set of pairs (0k0−110k1−110k2, y) of words of equal length such that
the positions k0 and k0 + k1 are either consecutive occurrences of 1 in y, or
they both are occurrences of 0 in y.

Next we define formulas λi ∈ Σi that define the sets Li for 0 ≤ i ≤ n:
The formula λ0(s) = (Lw(s)) is the trivial starting point. Let λ1(s) denote the
following formula:

∃x1, x2, x3 : Sw(x1) ∧ S1(x1, s) ∧ ¬Tw(x2, x3) ∧DecBlocks(x1, x2, x3)

The formula Sw(x1) ensures x1 = 0a(10m−1)	10b for some a, b, � ∈ N, � ≥ 1.
Then S1(x1, s) expresses s = 0a10	m−110b. By DecBlocks(x1, x2, x3), we know
|x1| = |x2| = |x3| and

1. val(x2[a, a + m)) = 0,
2. val(x2[a + jm, a + (j + 1)m)) − 1 = val(x3[a + jm, a + (j + 1)m)) for all

1 ≤ j < �, and
3. val(x2[a + (�− 1)m, a + �m)) = 2m − 1.

Finally, the formula ¬Tw(x2, x3) expresses that for all 0 < k ≤ |x2| − m, the
letter at position k in x2 equals that at position k + m in x3. Hence we have

val(x2[a + jm, a + (j + 1)m))− 1 = val(x3[a + jm, a + (j + 1)m))
= val(x2[a + (j − 1)m, a + jm))

for all 1 ≤ j < �, i.e., the blocks (as determined by x1) in x2 carry consecutive
numbers from 0 to 2m−1. Since DecBlocks(x1, x2, x3) also implies that no other
than the first block of x2 carries 0, we have precisely 2m blocks of length m each.
Hence 1 + (�m − 1) = m · 2m = F1(m) which is equivalent with s ∈ L1. Thus,
indeed, λ1(s) ∈ Σ1 defines the set L1.

Now we proceed by induction on i and let λi+1 denote the following formula:

∃x1, x2, x3 : S1(x1, s) ∧DecBlocks(x1, x2, x3) ∧
x2 /∈ 0∗ ∪ 1∗ ∧ ∃x4 : λi(x4) ∧ |x4| ≤ |x2| ∧
∀x4 : λi(x4) ∧ |x4| ≤ |x2| → S2(x4, x2) ∧
∀x4 : λi(x4) ∧ |x4| = |x3| → EqLet(x4, x2, x3)

By the quantified formula in the second line and the induction hypothesis, |x2| >
Fi(m) ≥ m. Hence the third line ensures that x2 is of the form 0a(10Fi(m)−1)	10b

for some a, b, � ∈ N with � ≥ 1. Then the last line expresses that, for all 0 < k ≤
|x3|−Fi(m), the letter at position k in x2 equals the letter at position k+Fi(m)
in x3. In particular,

x2[a + kFi(m),a + (k + 1)Fi(m))
= x3[a + (k + 1)Fi(m), a + (k + 2)Fi(m)) (3)

for all 0 ≤ k < �. Now, by the first line, s = 0a10	Fi(m)−110b and
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– val(x2[a, a + Fi(m))) = 0,
– val(x2[a+kFi(m), a+(k+1)Fi(m))−1 = val(x3[a+kFi(m), a+(k+1)Fi(m))

for all 0 < k < �, and
– val(x3[a + (�− 1)Fi(m), a + �Fi(m))) = 2Fi(m) − 1.

Now, together with Eq. 3, we obtain as above

val(x2[a + kFi(m),a + (k + 1)Fi(m))) − 1
= val(x3[a + kFi(m), a + (k + 1)Fi(m)))
= val(x2[a + (k − 1)Fi(m), a + kFi(m)))

for all 1 ≤ k < �. As above, this ensures 1+(�m−1) = Fi(m) ·2Fi(m) = Fi+1(m)
which is equivalent with s ∈ Li+1.

Assuming by induction λi ∈ Σi, we obtain λi+1 ∈ Σi+1 as required.
Now we can complete the definition of the automatic structure A(Pw): Its

universe is the set Γ ∗ ∪ {0, 1}∗ and it has the following automatic relations:

– Ww, Lw, Sw, and Tw (these relations depend on the word w).
– StepInBlocks, Prefix, EqLet, DecBlocks, S1, S2, 1{0, 1}∗, and 0∗ ∪ 1∗ (these

relations are independent from the word w).

Summarizing, we have the following: an input word w of length m is accepted
by the machine M if and only if A(Pw) |= ∃c : C ∧ α1 ∧ α2 where α1 and α2

are the Σn+1-formulas from Eq. 1 and Eq. 2, resp. Note that these formulas are
independent from the word w and that the automata from Pw can be computed
from w in polynomial time. Since the language of the machine M is complete
for n-EXPSPACE, we therefore proved

Proposition 3.4. For n ≥ 0, there exists a sentence ϕn ∈ Σn+1 such that
the model checking problems MC({ϕ}, SA) and MC({ϕ}, iSA) are complete for
n-EXPSPACE.

From Propositions 3.3 and 3.4, we obtain immediately

Corollary 3.5. For all n ∈ N, the model checking problems MC(Σn+1, SA) and
MC(Σn+1, iSA) are complete for n-EXPSPACE.

3.4 Expression Complexity

In the previous section, we constructed a fixed sentence ϕn ∈ Σn+1 and, from
an input word w, an automatic presentation Pw such that acceptence of w is
equivalent to validity of ϕn in A(Pw). In this section, we proceed complemen-
tary: we construct a fixed automatic presentation P and, from an input word
w, a sentence ϕw

n ∈ Σn+1 such that acceptence of w is equivalent to validity of
ϕw

n in A(P ). Consequently, we will prove that the Σn+1-theory of A(P ) is hard
for n-EXPSPACE. Note the subtlety that the presentation P is even independent
from n, i.e., the hardness holds for all n ∈ N. Therefore, we now assume the Tur-
ing machine M to be universal. Furthermore, we define the following functions
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Gn : N → N that are a slight variation of the functions Fn from the previous
section:

G0(m) = m,G1(m) = 2m, and Gn+1(m) = Gn(m) · 2Gn(m)

Note that Gn(m) is an n-fold exponential function. Hence, for every n ∈ N, the
following language is complete for n-EXPSPACE:

Mn = {w ∈ L(M) |M accepts w in space Gn(|w|) − 2}

Now let w = a1a2 . . . am be some input word of length m. We construct an
injective automatic presentation P (that does not depend on w) such that the
acceptance of w by M in space Gn(|w|) is equivalent to validity of a formula
ϕw

n ∈ Σn+1 of polynomial size. As before, the structure A(P ) consists of two
parts: the alphabet of the first is Γ , that of the second is {0, 1}. Later, we
will present formulas λ′

i(s) ∈ Σi such that A(P ) |= λ′
i(s) for s ∈ {0, 1}∗ iff

s ∈ L′
i = 0∗10Gi(m)−110∗, i.e., iff s ∈ {0, 1}∗ contains precisely two occurrences

of 1 and these two occurrences are Gi(m) apart.
But first, we describe the first part of the structure A(P ). Recall that the

relation Ww is the only one in the first part of A(Pw) that depends on the input
word w. It is therefore our task to replace it by relations independent from w,
and then express membership in Ww by a small and simple formula. To this
aim, we use the following relations:

– Succa for a ∈ Γ ∪{0, 1} consists of all pairs (u, ua) with u ∈ Γ ∗ if a ∈ Γ and
u ∈ {0, 1}∗ if a ∈ {0, 1}.

– Succ�∗$ consists of all pairs (u, uv) with u ∈ Γ ∗ and v ∈ �∗$.

Now consider the following formula:

∃x, x0, . . . , xm : Succq0(ε, x0) ∧
∧

0≤i<m

Succai+1(xi, xi+1)

∧ Succ�∗$(xm, x) ∧ Prefix(x, c)
∧ ∃x′ : x′ ∈ 1{0, 1}∗ ∧ λ′

n(x′) ∧ EqLet(x′, x, x)

(4)

Given the relations Succx, it is equivalent to the formula from Eq. 1, but this
time, it depends on the word w. This completes the changes regarding the first
part of the automatic structure.

The second part of the structure A(Pw) contains the relations Lw, Sw, and Tw

that all depend on the word w and therefore have to be replaced. The following
formula λ′

0(s)

s ∈ 0∗10∗10∗ ∧ ∃x0, x1, . . . , xm :
(

Succ1(x0, x1) ∧
∧

1≤i<m Succ0(xi, xi+1)
∧ Succ1(xm−1, xm) ∧ Prefix(xm, s)

)
is equivalent with λ0(s), i.e., λ′

0(s) holds iff s ∈ L′
0 = 0∗10m−110∗. But differently

from λ0(s), it belongs to Σ1.
Next we deal with the formula λ′

1 that defines the set L′
1 = 0∗10G1(m)−110∗.

Consider the two automata A0 and A1 from Fig. 1 that accept the relations



94 D. Kuske

A0: 00

10

01

00

01

00

10

00

A1: 000

100

010

001

011

000

100

000

010

011000

001

Fig. 1. The automata for R0 and R1

R(A0) = R0 ⊆ ({0, 1}∗)2 and R(A1) = R1 ⊆ ({0, 1}∗)3. Now λ′
1(s) is the

following formula from Σ1:

∃x1, . . . , xm : R0(s, x1) ∧
∧

1≤i<m

R1(s, xi, xi+1) ∧ xm ∈ 0∗1∗0∗

Then R0(s, x1) ensures s = 0a10b−110c for some a, b, c ∈ N and all the words
x1, . . . , xm are of the form 0a0{0, 1}b−100c by R0(s, x1) and R1(s, xi, xi+1), resp.
From R0(s, x1), we also obtain x1 = 0a(01)

1
2 b00c (in particular, b is even). Now

consider R1(s, x1, x2): it expresses that, at any position between the two oc-
currences of 1 in s, the digit in the word x1 drops from 1 to 0 iff the digit in
the word x2 changes. Hence R1(s, x1, x2) ensures x2 = 0a(0011)

1
4 b00c. By in-

duction, we obtain xi = 0a(02n−1
12n−1

)
1

2n b00c and therefore in particular xm =
0a(02m−1

12m−1
)

1
2m b00c. Since xm is from 0∗1∗0∗, this implies b = 2m = G1(m).

Conversely, only these words xi make the above formula true so that, indeed,
λ′

1(s) expresses s ∈ 0∗10G1(m)−110∗ = L′
1 as required.

To define the formulas λ′
i(s) ∈ Σi for i > 1, we can proceed as in the previous

section.
Now we can complete the definition of the automatic structure A(Pw): Its

universe is the set Γ ∗ ∪ {0, 1}∗ and it has the following automatic relations that
are all independent from the word w:

– Succa, Succ�∗$, R0, R1, StepInBlocks, Prefix, EqLet, DecBlocks, S1, S2,
1{0, 1}∗, 0∗ ∪ 1∗, 0∗10∗10∗, and 0∗1∗0∗.
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Summarizing, we have the following: an input word w of length m is accepted
by the machine M in space Gn(m) if and only if A(P ) |= ∃c : C ∧ α4 ∧ α′

2

where α4 is the Σn+1-formula from Eq. 4 and α′
2 arises from α2 (cf. Eq. 2)

by replacing λn by λ′
n. Note that this formula can be computed from the input

word w in polynomial time. Since the language Mn is complete for n-EXPSPACE,
we therefore proved the following analog of Prop. 3.4 which is, at the same time,
a strengthening of Cor. 3.5:

Proposition 3.6. There exists an injective automatic presentation P such that,
for all n ≥ 0, the model checking problems MC(Σn+1, {P}) and MC(Σn+1, {P})
are complete for n-EXPSPACE.

3.5 Bounded Degree

From Cor. 3.5, it follows immediately that MC(FO, SA) cannot be decided in
elementary space (although it is decidable by Theorem 3.2). In this section, we
present a class of automatic presentations SAb such that MC(FO, SAb) becomes
elementary.

In the following, let P = (Γ,A0, A=, (Ar)r∈τ ) be an automatic presentation
and let A = A(P ). The decision procedure will be based on the näıve algorithm
from Fig. 2 for deciding whether A |= ϕ. The problem with this näıve approach

1 check(ϕ(x̄), ū) : {0, 1}
(ϕ(x̄) formula of quantifier rank ≤ d
with k = |ū| = |x̄| many free variables,
ū tuple of words from L(A0))

2 case ϕ = R(x̄)
3 if ū ∈ L(AR) then return(1) else return(0) endif
4 case ϕ = α ∨ β
5 return(max(check(α, ū), check(β, ū)))
6 case ϕ = ¬α
7 return(1 − check(α, ū))
8 case ϕ = ∃y : α(x̄, y)
9 return(max{check(ϕ1, (ū, v)) | v ∈ L(A0)})

Fig. 2. The näıve algorithm

is that the computation in line 9 requires infinitely many recursive calls if the
language L(A0) is infinite. Hence our task is to find properties of the automatic
presentation P that allow to effectively reduce the number of recursive calls
in line 9. To describe such a condition, we need the following model theoretic
definitions.

The Gaifman-graph G(A) of the τ -structure A is the following symmetric
graph:

G(A) = (A, {(a, b) ∈ A×A |
∨
r∈τ

∃(a1, . . . , amr ) ∈ r ∃j, k : aj = a, ak = b}) .
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Thus, the set of nodes is the universe of A and there is an edge between two
elements if and only if they are contained in some tuple belonging to one of the
relations of A. The structure A has bounded degree if the Gaifman graph G(A)
has bounded degree, i.e., there exists a constant δ such that every a ∈ A is
adjacent to at most δ many other nodes in G(A). For convenience, we say that
the automatic presentation P has bounded degree if the structure A(P ) has
bounded degree.

The Gaifman-graph is also the basis for the definition of spheres: For a, b ∈ A,
let d(a, b) be the distance between a and b in the Gaifman-graph G(A). For a ∈ A
and r ∈ N, let S(r, a) denote the set of elements b of A with d(a, b) ≤ r. Then,
for ā = (a1, . . . , ak) ∈ Ak and d ≥ 0, k > 0, we denote with A[d + k, ā] the
induced substructure A�

⋃k
i=1 S(2d+k−i, ai). Given these notions, the following

locality principle can be formulated.

Theorem 3.7 ([14]). Let A be a structure, ā, b̄ ∈ Ak and d ≥ 0 such that
(A[d + k, ā], ā) ∼= (A[d + k, b̄], b̄). Then, for every formula ϕ(x1, . . . , xk) ∈
FO[∃∞, ∃ mod ] of quantifier depth at most d, we have: A |= ϕ(ā) ⇐⇒ A |= ϕ(b̄).

A short remark on the history of this result: for first-order logic, it was first
shown by Gaifman [12] where, in the definition of A[d+ k, ā], he used the radius
7d instead of 2d+k−i. His result has been improved in two directions: the radius
7d was reduced and the logic has been extended. The final result of this line
of research was provided by Keisler and Lotfallah in [14] proving the above
theorem in an even stronger version: instead of A[d+k, ā], it suffices to consider
the restriction of A to

⋃k
i=1 S(2d, ai) and, secondly, the result holds for even

stronger extensions of FO.
This theorem provides the first step in the restriction of the search space in

line 9 of the näıve algorithm: If (A[d+k, (ū, v)], (ū, v)) ∼= (A[d+k, (ū, v′)], (ū, v′)),
then it suffices to consider the word v. But still, there could be infinitely many
isomorphism types of the form A[d+k, (ū, v)] – which can be excluded by requir-
ing the structure A to be of bounded degree. Then pumping arguments show
that it suffices to consider words of triply exponential length in line 9 of the
näıve algorithm:

Theorem 3.8 ([20]). Let P be an automatic presentation of bounded degree.
Then the model checking problem MC(FO[∃∞, ∃ mod ], {P}) is in 3-EXPSPACE.

A further improvement of the näıve algorithm is obtained if, instead of the
argument ū, one passes the isomorphism type of the finite structure (A[d +
k, ū], ū). This approach yields the following result.

Theorem 3.9 ([21])

(1) The model checking problem MC(FO, iSAb) belongs to 2-EXPSPACE where
iSAb = iSA ∩ SAb is the set of injective automatic presentations of bounded
degree.

(2) The model checking problem MC(FO, SAb) belongs to 3-EXPSPACE.
(3) The model checking problem MC(FO, {P}) belongs to 2-EXPSPACE for every

automatic presentation P of bounded degree.
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Note that (1) and (2) give upper bounds for the combined complexities while (3)
bounds the expression complexity of FO-model checking. This latter upper bound
is shown to be tight in [21] since we constructed an injective automatic presenta-
tion of bounded degree P such that MC(FO, {P}) is hard for 2-EXPSPACE. Hence
also the upper bound in (1) is tight. So far, nothing is known about the data com-
plexity, i.e., the complexity of the problems MC({ϕ}, iSAb) and MC({ϕ}, SAb) for
ϕ ∈ FO. Furthermore, it is not known whether Theorem 3.8 is optimal nor what
the combined or data complexity of FO[∃∞, ∃ mod ] is.
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1. Bárány, V.: Invariants of automatic presentations and semi-synchronous trans-
ductions. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884,
pp. 289–300. Springer, Heidelberg (2006)
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The Graph Programming Language GP
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Abstract. GP (for Graph Programs) is a rule-based, nondeterminis-
tic programming language for solving graph problems at a high level
of abstraction, freeing programmers from handling low-level data struc-
tures. The core of GP consists of four constructs: single-step application
of a set of conditional graph-transformation rules, sequential composi-
tion, branching and iteration. This paper gives an overview on the GP
project. We introduce the language by discussing a sequence of small
programming case studies, formally explain conditional rule schemata
which are the building blocks of programs, and present a semantics for
GP in the style of structural operational semantics. A special feature of
the semantics is how it uses the notion of finitely failing programs to de-
fine powerful branching and iteration commands. We also describe GP’s
prototype implementation.

1 Introduction

This paper gives an overview on GP, an experimental nondeterministic pro-
gramming language for high-level problem solving in the domain of graphs. The
language is based on conditional rule schemata for graph transformation (in-
troduced in [19]) and thereby frees programmers from handling low-level data
structures for graphs. The prototype implementation of GP compiles graph pro-
grams into bytecode for an abstract machine, and comes with a graphical editor
for programs and graphs.

GP has a simple syntax as its core contains only four commands: single-step
application of a set of rule schemata, sequential composition, branching and as-
long-as-possible iteration. Despite its simplicity, GP is computationally complete
in that every computable function on graphs can be programmed [9]. A major
goal for the development of GP is to obtain a practical graph-transformation
language that comes with a concise formal semantics, to facilitate program ver-
ification and other formal reasoning on programs.

There exist a number of graph-transformation languages and tools, such as
PROGRES [24], AGG [6], Fujaba [15], GROOVE [21] and GrGen [8]. But to
the best of our knowledge, PROGRES has been the only graph-transformation
language with a complete formal semantics so far. The semantics given by Schürr
in his dissertation [23], however, reflects the complexity of PROGRES and is in
our opinion too complicated to be used for formal reasoning.

For GP, we adopt Plotkin’s method of structural operational semantics [18] to
define the meaning of programs. This approach is well established for imperative

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 99–122, 2009.
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programming languages [16] but is novel in the field of graph transformation.
In brief, the method consists in devising inference rules which inductively define
the effect of commands on program states. Whereas a classic state consists of
the values of all program variables at a certain point in time, the analogue for
graph transformation is the graph on which the rules of a program operate.

As GP is nondeterministic, our semantics assigns to a program P and an in-
put graph G all graphs that can result from executing P on G. A special feature
of the semantics is the use of failing computations to define powerful branching
and iteration constructs. (Failure occurs when a set of rule schemata to be exe-
cuted is not applicable to the current graph.) While the conditions of branching
commands in traditional programming languages are boolean expressions, GP
uses arbitrary programs as conditions. The evaluation of a condition C succeeds
if there exists an execution of C on the current graph that produces a graph. On
the other hand, the evaluation of C is unsuccessful if all executions of C on the
current graph result in failure. In this case C finitely fails on the current graph.

In logic programming, finite failure (of SLD resolution) is used to define nega-
tion [3]. In the case of GP, it allows to “hide” destructive executions of the
condition C of a statement if C then P else Q. This is because after evalu-
ating C, the resulting graph is discarded and either P or Q is executed on the
graph with which the branching statement was entered. Finite failure also allows
to elegantly lift the application of as-long-as-possible iteration from sets of rule
schemata (as in [19]) to arbitrary programs: the body of a loop can no longer be
applied if it finitely fails on the current graph.

The prototype implementation of GP is faithful to the semantics in that it
uses backtracking to compute results for input graphs. Hence, for terminating
programs a result will be found whenever one exists. In contrast, most other
graph-transformation languages (except PROGRES) lack this completeness be-
cause their implementations have no backtracking mechanism. The GP system
even provides users with the option to generate all possible results of a termi-
nating program.

The rest of this paper is structured as follows. The next section is a brief
summary of the graph-transformation formalism underlying GP, the so-called
double-pushout approach with relabelling. Section 3 introduces conditional rule
schemata and explains their use by interpreting them as sets of conditional rules.
In Section 4, graph programs are gently introduced by discussing seven small
case studies of problem solving with GP. The section also defines an abstract
syntax for graph programs. Section 5 presents a formal semantics for GP in the
style of structural operational semantics and discusses some consequences of the
semantics. A brief description of the current implementation of GP is given in
Section 6. In Section 7, we conclude and mention some topics for future work.
Finally, the Appendix defines the natural pushouts on which the double-pushout
approach with relabelling is based.

This overview paper is in parts based on the papers [19,20,13].
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2 Graph Transformation

We briefly review the model of graph transformation underlying GP, the double-
pushout approach with relabelling [10]. Our presentation is tailored to GP in
that we consider graphs over a fixed label alphabet and rules in which only the
interface graph may contain unlabelled nodes.

GP programs operate on graphs labelled with sequences of integers and strings
(the reason for using sequences will be explained in Section 4). Let Z be the set
of integers and Char be a finite set which represents the characters that can
be typed on a keyboard. We fix the label alphabet L = (Z ∪ Char∗)+ of all
nonempty sequences over integers and character strings.

A partially labelled graph (or graph for short) is a system G = (VG, EG, sG, tG,
lG,mG), where VG and EG are finite sets of nodes (or vertices) and edges,
sG, tG : EG → VG are the source and target functions for edges, lG : VG → L
is the partial node labelling function and mG : EG → L is the (total) edge la-
belling function. Given a node v, we write lG(v) =⊥ if lG(v) is undefined. Graph
G is totally labelled if lG is a total function. The set of all totally labelled graphs
is denoted by G.

A graph morphism g : G → H between graphs G and H consists of two
functions gV : VG → VH and gE : EG → EH that preserve sources, targets
and labels. More precisely, we have sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG,
mH ◦ gE = mG, and lH(g(v)) = lG(v) for all v such that lG(v) �=⊥. Mor-
phism g is an inclusion if g(x) = x for all nodes and edges x. It is injective
(surjective) if gV and gE are injective (surjective), and an isomorphism if it is
injective, surjective and satisfies lH(gV (v)) = ⊥ for all nodes v with lV (v) = ⊥.
In this case G and H are isomorphic, denoted by G ∼= H . The composition
h ◦ g : G → M of two morphisms g : G → H and h : H → M is defined compo-
nentwise: h ◦ g = 〈hV ◦ gV , hE ◦ gE〉.

A rule r = (L ← K → R) consists of two inclusions K → L and K → R
where L and R are totally labelled graphs. We call L the left-hand side, R the
right-hand side and K the interface of r. Intuitively, an application of r to a
graph will remove the items in L−K, preserve K, add the items in R−K, and
relabel the nodes that are unlabelled in K.

Given graphs G,H in G, a rule r = (L ← K → R), and an injective graph
morphism g : L→ G, a direct derivation from G to H by r and g consists of two
natural pushouts as in Figure 1. (See the appendix for the definition of natural
pushouts.) We write G ⇒r,g H or just G ⇒r H if there exists such a direct
derivation, and G⇒R H , where R is a set of rules, if there is some r ∈ R such
that G⇒r H .

L K R

G D H

g

Fig. 1. A double-pushout
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In [10] it is shown that, given r, G and g as above, there exists a direct
derivation as in Figure 1 if and only if g satisfies the dangling condition: no
node in g(L) − g(K) is incident to an edge in G − g(L). In this case D and H
are determined uniquely up to isomorphism and can be constructed from G as
follows:

1. Remove all nodes and edges in g(L)−g(K). For each v ∈ VK with lK(v) = ⊥,
define lD(gV (v)) = ⊥. The resulting graph is D.

2. Add disjointly to D all nodes and edges from R − K, while keeping their
labels. For e ∈ ER − EK , sH(e) is sR(e) if sR(e) ∈ VR − VK , otherwise
gV (sR(e)). Targets are defined analogously.

3. For each v ∈ VK with lK(v) = ⊥, define lH(gV (v)) = lR(v). The resulting
graph is H .

To define conditional rules, we follow [5] and equip rules with predicates that
constrain the morphisms by which rules can be applied. A conditional rule q =
(r, P ) consists of a rule r and a predicate P on graph morphisms. We require
that P is invariant under isomorphic codomains: for a morphism g : L→ G and
an isomorphism i : G→ G′, we have P (g) if and only if P (i ◦ g). Given a direct
derivation G ⇒r,g H such that P (g), we write G ⇒q,g H or just G ⇒q H . For
a set of conditional rules R, we write G⇒R H if there is some q ∈ R such that
G⇒q H .

3 Conditional Rule Schemata

Conditional rule schemata are the “building blocks” of GP, as programs are
essentially declarations of such schemata together with a command sequence for
controlling their application. Rule schemata generalise rules in that labels may
be expressions with parameters of type integer or string. In this section, we give
an abstract syntax for the textual components of conditional rule schemata and
interpret them as sets of conditional rules.

Figure 2 shows an example for the declaration of a conditional rule schema. It
consists of the identifier bridge followed by the declaration of formal parameters,
the left and right graphs of the schema which are labelled with expressions over
the parameters, the node identifiers 1, 2, 3 determining the interface of the
schema, and the keyword where followed by the condition.

In the GP programming system [13], conditional rule schemata are constructed
with a graphical editor. We give grammars in Extended Backus-Naur Form for the
textual components of such schemata. Figure 3 shows the grammar for node and
edge labels in the left and right graph of a rule schema (categories LeftLabel and
RightLabel), Figure 4 shows the grammar for conditions (category BoolExp).1

Labels can be sequences of expressions separated by underscores, as is demon-
strated by examples in Section 4. We require that labels in the left graph must

1 The grammars are ambiguous, we use parentheses to disambiguate expressions where
necessary.
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bridge(a, b, x, y, z : int)

x

1

y

2

z

3

a b
⇒ x

1

y

2 3

z

3

a+ b

a b

where a >= 0 and b >= 0 and not edge(1, 3)

Fig. 2. A conditional rule schema

be simple expressions because their values at execution time are determined by
graph matching. All variable identifiers in the right graph must also occur in
the left graph. Every expression in category Exp has type int or string, where
the type of a variable identifier is determined by its declaration and arithmetical
operators expect arguments of type int.

LeftLabel ::= SimpleExp [’ ’ LeftLabel]

RightLabel ::= Exp [’ ’ RightLabel]

SimpleExp ::= [’-’] Num | String | VarId
Exp ::= SimpleExp | Exp ArithOp Exp
ArithOp ::= ’+’ | ’-’ | ’∗’ | ’/’
Num ::= Digit {Digit}
String ::= ’ ” ’ {Char} ’ ” ’

Fig. 3. Syntax of node and edge labels

BoolExp ::= edge ’(’ Node ’,’ Node ’)’ | Exp RelOp Exp
| not BoolExp | BoolExp BoolOp BoolExp

Node ::= Digit {Digit}
RelOp ::= ’=’ | ’\=’ | ’>’ | ’<’ | ’>=’ | ’<=’
BoolOp ::= and | or

Fig. 4. Syntax of conditions

The condition of a rule schema is a Boolean expression built from expressions
of category Exp and the special predicate edge, where relational operators have
arguments of type int. Again, all variable identifiers occurring in the condition
must also occur in the left graph of the schema. The predicate edge demands
the (non-)existence of an edge between two nodes in the graph to which the rule
schema is applied. For example, the expression not edge(1, 3) in the condition of
Figure 2 forbids an edge from node 1 to node 3 when the left graph is matched.

We interpret a conditional rule schema as the (possibly infinite) set of con-
ditional rules that is obtained by instantiating variables with any values and
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evaluating expressions. To define this, consider a declaration D of a conditional
rule-schema. Let L and R be the left and right graphs of D, and c the condition.
We write Var(D) for the set of variable identifiers occurring in D. Given x in
Var(D), type(x) denotes the type associated with x. An assignment is a map-
ping α : Var(D) → (Z ∪ Char∗) such that for each x in Var(D), type(x) = int
implies α(x) ∈ Z, and type(x) = string implies α(x) ∈ Char∗.

Given a label l of category RightLabel occuring in D and an assignment α, the
value lα ∈ L is inductively defined. If l is a numeral or a sequence of characters,
then lα is the integer or character string represented by l (which is independent of
α). If l is a variable identifier, then lα = α(l). Otherwise, lα is obtained from the
values of l’s components. If l has the form e1 ⊕ e2 with ⊕ in ArithOp and e1, e2

in Exp, then lα = eα
1 ⊕Z eα

2 where ⊕Z is the integer operation represented by ⊕.2

If l has the form e m with e in Exp and m in RightLabel, then lα = eαmα. Note
that our definition of lα covers all labels in D since LeftLabel is a subcategory
of RightLabel.

The value of the condition c in D not only depends on an assignment but
also on a graph morphism. For, if c contains the predicate edge, then we need to
consider the structure of the graph to which we want to apply the rule schema.
Consider an assignment α and let Lα be obtained from L by replacing each label l
with lα. Let g : Lα → G be a graph morphism with G ∈ G. Then for each Boolean
subexpression b of c, the value bα,g in B = {tt, ff} is inductively defined. If b has
the form e1 �� e2 with �� in RelOp and e1, e2 in Exp, then bα,g = tt if and only
if eα

1 ��Z eα
2 where ��Z is the relation on integers represented by ��. If b has the

form not b1 with b1 in BoolExp, then bα,g = tt if and only if bα,g
1 = ff. If b has

the form b1⊕b2 with ⊕ in BoolOp and b1, b2 in BoolExp, then bα,g = bα,g
1 ⊕B bα,g

2

where ⊕B is the Boolean operation on B represented by ⊕. A special case is given
if b has the form edge(v, w) where v, w are identifiers of interface nodes in D.
We then have

bα,g =
{
tt if there is an edge from g(v) to g(w),
ff otherwise.

Let now r be the rule-schema identifier associated with declaration D. For
every assignment α, let rα = (Lα ← K → Rα, Pα) be the conditional rule given
as follows:

– Lα and Rα are obtained from L and R by replacing each label l with lα.
– K is the discrete subgraph of L and R determined by the node identifiers

for the interface, where all nodes are unlabelled.
– Pα is defined by: Pα(g) if and only if g is a graph morphism Lα → G such

that G ∈ G and cα,g = tt.

Now the interpretation of r is the rule set I(r) = {rα | α is an assignment}. For
notational convenience, we sometimes denote the relation ⇒I(r) by ⇒r.

2 For simplicity, we consider division by zero as an implementation-level issue.
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4 Graph Programs

We discuss a number of example programs to familiarize the reader with the
features of GP and their use in solving graph problems. At the end of the section,
we define the abstract syntax of GP programs.

Example 1 (Transitive closure)
A transitive closure of a graph is obtained by inserting an edge between all
distinct nodes v and w such that there is a directed path from v to w but no
edge. The program trans closure in Figure 5 generates a transitive closure of an
integer-labelled input graph by applying the rule schema link as long as possible,
using the iteration operator ’!’. In general, arbitrary command sequences can
be iterated.

main = link!

link(a, b, x, y, z : int)

x

1

y

2

z

3

a b ⇒ x

1

y

2 3

z

3

a+ b

a b

where not edge(1, 3)

Fig. 5. The program trans closure

The keyword main starts the main command sequence of a program to dis-
tinguish it from macros (see Example 5). Note that the condition not edge(1, 3)
of link prevents the creation of edges between nodes that are already linked.
Without this condition, trans closure could generate parallel edges between
nodes 1 and 3 ad infinitum.

By our definition of transitive closure, we can choose any label for the edge
created by link. Using a + b implies that trans closure may produce different
results for a given input graph if there are different paths between two nodes.
If we want to generate a unique transitive closure, we can replace a + b with a
constant such as 0.

Example 2 (Inverse)
The inverse of a graph is obtained by reversing the directions of all edges. The
program inverse in Figure 6 computes the inverse of an integer-labelled input
graph in two stages, using the sequential composition of the loops reverse!
and unmark!. The first loop reverses each edge and replaces its label x with the
tagged label x 0, then the second loop removes all tags. In general, arbitrary
subprograms can be joined by the semicolon operator.

The underscore operator allows to add a tag to a label, used here to mark
an edge as having been reversed. In general, a tagged label is a sequence of
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main = reverse!; unmark!

reverse(a, x, y : int) unmark(a, x, y : int)

x

1

y

2

a ⇒ x

1

y

2

a 0
x

1

y

2

a 0 ⇒ x

1

y

2

a

Fig. 6. The program inverse

expressions joined by underscores. Here, we need to mark reversed edges as
otherwise the loop reverse! would not terminate. Note that the rule schema
reverse can only be applied to edges with untagged labels.

Example 3 (Shortest distances). Given a graph G whose edge labels are integers,
the distance of a directed path from a node v to a node w is the sum of the edge
labels on that path. If all edge labels in G are nonnegative, then the shortest
distance from v to w is the minimum of the distances of all paths from v to w.

The program distances in Figure 7 expects an integer-labelled input graph
where exactly one node v has a tagged label of the form x 0 and where all edge
labels are nonnegative. It adds to each node w that is distinct and reachable
from v a tag with the shortest distance from v to w.

main = {add, reduce}!

add(a, b, x, y : int)

x a y

1 2

b ⇒ x a y a+b

1
2

b

reduce(a, b, c, x, y : int)

x a y c

1 2

b ⇒ x a y a+b

1
2

b

where a+ b < c

Fig. 7. The program distances

In each iteration of the program’s loop, one of the rule schemata add and reduce
is applied to the current graph. If both rule schemata are applicable, one of them
is chosen nondeterministically. An equivalent, slightly more deterministic solu-
tion is to separate the phases of addition and reduction: main = add!; reduce!. A
refined version of the program distances which implements Dijkstra’s shortest-
path algorithm can be found in [19].
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Example 4 (Colouring). A colouring for a graph is an assignment of colours
(integers) to nodes such that the source and target of each edge have different
colours. The program colouring in Figure 8 produces a colouring for every
integer-labelled input graph without loops, recording colours as tags. (Checking
for loops would be a straightforward extension which we omit for simplicity.)

main = init!; {inc1, inc2}!

init(x : int) inc1(a, i, x, y : int)

1

x ⇒
1

x 0 x i y i

1 2

a ⇒ x i y i+1

1
2

a

inc2(a, i, x, y : int)

x i y i

1 2

a ⇒ x i+1 y i

1
2

a

1

1

1

1

2 2

22

∗
⇐=

∗=⇒

1 0

1 1

1 0

1 1

2 2

22

1 0

1 1

1 3

1 2

2 2

22

Fig. 8. The program colouring and two of its derivations

The program initially colours each node with zero and then repeatedly incre-
ments either the source or the target colour of an edge with the same colour at
both ends. Note that this process is highly nondeterministic: Figure 8 shows two
different colourings produced for the same input graph, where one is optimal in
that it uses only two colours while the other uses four colours. (The problem to



108 D. Plump

generate a colouring with a minimal number of colours is NP-complete [7] and
requires a more involved program.)

It is easy to see that whenever colouring terminates, the resulting graph is
a correctly coloured version of the input graph. For, the output cannot contain
an edge with the same colour at both nodes as then inc1 or inc2 would have
been applied at least one more time. It is less obvious though that the program
does terminate for every input graph.

To see that colouring always terminates, consider graphs whose node labels
are of the form n i, with n, i ∈ Z. Given a node v, we denote the tag of its label
by tag(v). Now observe that if G is a graph with tag(v) = 0 for each node v,
then for every derivation G ⇒∗

{inc1,inc2} H there is some 0 ≤ k < VH such that
tag(VH) = {0, 1, . . . , k} (where some tags may occur repeatedly in H). Thus, by
assigning to every graph M the integer #M =

∑
v∈VM

tag(v), we obtain

#H < 1 + 2 + · · ·+ |VH | = 1 + 2 + · · ·+ |VG|.

Since #H equals the number of rule schema applications in G⇒∗ H , it follows
that every derivation with inc1 and inc2 starting from G must eventually ter-
minate. Moreover, as the upper bound for #H is quadratic in |VG|, colouring
always performs at most a quadratic number of rule schema applications.

Example 5 (2-Colouring). A graph is 2-colourable (or bipartite) if it possesses
a colouring with at most two colours. The program 2-colouring in Figure 9
generates a 2-colouring for a nonempty and connected input graph if such a
colouring exists—otherwise the input graph is returned. The program uses the
macro colour to represent the rule-schema set {colour1, colour2}.

Given an integer-labelled input graph, first the rule schema choose colours
an arbitrary node by replacing its label x with x 0. Then the loop colour!
applies the rule schemata colour1 and colour2 as long as possible to colour all
remaining nodes. In each iteration of the loop, an uncoloured node adjacent to
an already coloured node v gets the colour in {0, 1} that is complementary to
v’s colour. If the input graph is connected, the graph resulting from colour! is
correctly coloured if and only if the rule schema illegal is not applicable. The
latter is checked by the if-statement. If illegal is applicable, then the input
must contain an undirected cycle of odd length and hence is not 2-colourable
(see for example [12]). In this case the loop undo! removes all tags to return
the input graph unmodified. Note that the number of rule-schema applications
performed by 2-colouring is linear in the number of input nodes.

We can extend 2-colouring’s applicability to graphs that are possibly empty
or disconnected by inserting a nested loop:

main = (choose; colour!)!; if illegal then undo!.

Now if the input graph is empty, choose fails which causes the outer loop to
terminate and return the current (empty) graph. On the other hand, if the
input consists of several connected components, the body of the outer loop is
repeatedly called to colour each component.
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main = choose; colour!; if illegal then undo!

colour = {colour1, colour2}

choose(x : int) illegal(a, i, x, y : int)

1

x ⇒
1

x 0 x i y i

1 2

a ⇒ x i y i

1 2

a

colour1(a, i, x, y : int) undo(i, x : int)

x i y

1 2

a ⇒ x i y 1−i

1
2

a

1

x i ⇒
1

x

colour2(a, i, x, y : int)

x i y

1 2

a ⇒ x i y 1−i

1
2

a

Fig. 9. The program 2-colouring

Example 6 (Series-parallel graphs)
The class of series-parallel graphs is inductively defined as follows. Every graph
G consisting of two nodes connected by an edge is series-parallel, where the
edge’s source and target are called source and target of G. Given series-parallel
graphs G and H , the graphs obtained from the disjoint union G + H by the
following two operations are also series-parallel. Serial composition: merge the
target of G with the source of H ; the source of G becomes the new source and
the target of H becomes the new target. Parallel composition: merge the source
of G with the source of H , and the target of G with the target of H ; sources
and targets are preserved.

It is known [2,4] that a graph is series-parallel if and only if it reduces to a
graph consisting of two nodes connected by an edge by repeated application of
the following operations: (a) Given a node with one incoming edge i and one
outgoing edge o such that s(i) �= t(o), replace i, o and the node by an edge from
s(i) to t(o). (b) Replace a pair of parallel edges by an edge from their source to
their target.

Suppose that we want to check whether a connected, integer-labelled graph
G is series-parallel and, depending on the result, execute either a program P or
a program Q on G. We can do this with the program

main = if reduce!; base then P else Q
reduce = {serial, parallel}

whose rule schemata serial, parallel and base are shown in Figure 10.
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serial(a, b, x, y, z : int)

x y z

1 2

a b ⇒ x z

1 2

0

parallel(a, b, x, y : int)

x y

1 2

a

b

⇒ x y

1 2

0

base(a, x, y : int)

x y
a ⇒ ∅

Fig. 10. Rule schemata for recognizing series-parallel graphs

The subprogram reduce! applies as long as possible the operations (a) and (b)
to the input graph G, then the rule schema base checks if the resulting graph
consists of two nodes connected by an edge. Graph G is series-parallel if and
only if base is applicable to the reduced graph. (Note that reduce! preserves
connectedness and that, by the dangling condition, base is applicable only if
the images of its left-hand nodes have degree one.) If base is applicable, then
program P is executed, otherwise program Q. It is important to note that P or
Q is executed on the input graph G whereas the graph resulting from the test is
discarded. The precise semantics of the branching command is given in the next
section.

To make the above program usable for possibly disconnected graphs, we can
add an if-statement which checks whether the application of base has resulted
in a nonempty graph:

main = if (reduce!; base; if nonempty then fail) then P else Q.

Here nonempty is a rule schema whose left-hand side is a single interface node,
labelled with an integer variable. If nonempty is applicable, then the graph re-
sulting from reduce! is disconnected and hence the input graph is not series-
parallel. In this case fail causes the test of the outer if-statement to fail, with
the consequence that program Q is executed on the input graph.

Example 7 (Sierpinski triangles). A Sierpinski triangle is a self-similar geomet-
ric structure which can be recursively defined [17]. Figure 11 shows a Sierpinski
triangle of generation three, composed of three second-generation triangles, each
of which consists of three triangles of generation one. The triangle and its geo-
metric layout have been generated with the GP programming system [26,13].

The program in Figure 12 expects as input a graph consisting of a single node
labelled with the generation number of the Sierpinski triangle to be produced.
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Fig. 11. A Sierpinski triangle (third generation)

The rule schema init creates the Sierpinski triangle of generation 0 and turns
the input node into a unique “control node” with the tagged label x 0 in order
to hold the required generation number x together with the current generation
number.

After initialisation, the nested loop (inc; expand!)! is executed. In each it-
eration of the outer loop, inc increases the current generation number if it is
smaller than the required number. The latter is checked by the condition where
x > y. If the test is successful, the inner loop expand! performs a Sierpinski step
on each triangle whose top node is labelled with the current generation number:
the triangle is replaced by four triangles such that the top nodes of the three
outer triangles are labelled with the next higher generation number. The test
x > y fails when the required generation number has been reached. In this case
the application of inc fails, causing the outer loop to terminate and return the
current graph which is the Sierpinski triangle of the requested generation.

Figure 13 shows the abstract syntax of GP programs.3 A program consists of
a number of declarations of conditional rule schemata and macros, and exactly
one declaration of a main command sequence. The rule-schema identifiers (cat-
egory RuleId) occurring in a call of category RuleSetCall refer to declarations
of conditional rule schemata in category RuleDecl (see Section 3). Semantically,

3 Where necessary we use parentheses to disambiguate programs.
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main = init; (inc; expand!)!

init(x : int) inc(x, y : int)

x

1

⇒ 1

x 0 1

0 0

0 1

2

x y

1

⇒ x y+1

1

where x > y

expand(u, v, x, y : int)

1 2

3 4

x y y

u v

0 1

2

⇒

1 2

3 4

x y y+1

u v

y+1 y+1

0

0

0 0

1

1 1

2

2 2

Fig. 12. The program sierpinski

Prog ::= Decl {Decl}
Decl ::= RuleDecl | MacroDecl | MainDecl
MacroDecl ::= MacroId ’=’ ComSeq

MainDecl ::= main ’=’ ComSeq

ComSeq ::= Com {’;’ Com}
Com ::= RuleSetCall | MacroCall

| if ComSeq then ComSeq [else ComSeq]

| ComSeq ’ !’
| skip | fail

RuleSetCall ::= RuleId | ’{’ [RuleId {’,’ RuleId}] ’}’
MacroCall ::= MacroId

Fig. 13. Abstract syntax of GP

each rule-schema identifier r stands for the set I(r) of conditional rules induced
by that identifier. A call of the form {r1, . . . , rn} stands for the union

⋃n
i=1 I(ri).

Macros are a simple means to structure programs and thereby to make them
more readable. Every program can be transformed into an equivalent macro-free



The Graph Programming Language GP 113

program by replacing macro calls with their associated command sequences (re-
cursive macros are not allowed). In the next section we use the terms “program”
and “command sequence” synonymously, assuming that all macro calls have been
replaced.

The commands skip and fail can be expressed through the other commands
(see next section), hence the core of GP includes only the call of a set of condi-
tional rule schemata (RuleSetCall), sequential composition (’;’), the if-then-else
statement and as-long-as-possible iteration (’ !’).

5 Semantics of Graph Programs

This section presents a formal semantics of GP in the style of Plotkin’s structural
operational semantics [18]. As usual for this approach, inference rules inductively
define a small-step transition relation → on configurations. In our setting, a
configuration is either a command sequence together with a graph, just a graph
or the special element fail:

→ ⊆ (ComSeq× G)× ((ComSeq× G) ∪ G ∪ {fail}).

Configurations in ComSeq × G represent unfinished computations, given by a
rest program and a state in the form of a graph, while graphs in G are proper
results of computations. In addition, the element fail represents a failure state.
A configuration γ is terminal if there is no configuration δ such that γ → δ.

Each inference rule in Figure 14 consists of a premise and a conclusion sep-
arated by a horizontal bar. Both parts contain meta-variables for command se-
quences and graphs, where R stands for a call in category RuleSetCall, C,P, P ′, Q
stand for command sequences in category ComSeq and G,H stand for graphs in
G. Given a rule-set call R, let I(R) =

⋃
{I(r) | r is a rule-schema identifier in R}

(see Section 3 for the definition of I(r)). The domain of ⇒I(R), denoted by
Dom(⇒I(R)), is the set of all graphs G in G such that G⇒I(R) H for some graph
H . Meta-variables are considered to be universally quantified. For example, the
rule [Call1] should be read as: “For all R in RuleSetCall and all G,H in G,
G⇒I(R) H implies 〈R, G〉 → H .”

Figure 14 shows the inference rules for the core constructs of GP. We write
→+ and→∗ for the transitive and reflexive-transitive closures of→. A command
sequence C finitely fails on a graph G ∈ G if (1) there does not exist an infinite
sequence 〈C, G〉 → 〈C1, G1〉 → . . . and (2) for each terminal configuration γ
such that 〈C, G〉 →∗ γ, γ = fail. In other words, C finitely fails on G if all
computations starting from (C, G) eventually end in the configuration fail.

The concept of finite failure stems from logic programming where it is used
to define negation as failure [3]. In the case of GP, we use it to define powerful
branching and iteration constructs. In particular, our definition of the if-then-else
command allows to “hide” destructive tests. This is demonstrated by Example 6
in the previous section, where the test of the if-then-else command reduces input
graphs as much as possible by the rule schemata serial and parallel, followed
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[Call1]
G ⇒I(R) H
〈R, G〉 → H

[Call2]
G �∈ Dom(⇒I(R))
〈R, G〉 → fail

[Seq1]
〈P, G〉 → 〈P ′, H〉

〈P ;Q, G〉 → 〈P ′;Q, H〉 [Seq2]
〈P, G〉 → H

〈P ;Q, G〉 → 〈Q, H〉

[Seq3]
〈P, G〉 → fail

〈P ;Q, G〉 → fail

[If1]
〈C, G〉 →+ H

〈if C then P else Q, G〉 → 〈P, G〉 [If2]
C finitely fails on G

〈if C then P else Q, G〉 → 〈Q, G〉

[Alap1]
〈P, G〉 →+ H

〈P !, G〉 → 〈P !, H〉 [Alap2]
P finitely fails on G

〈P !, G〉 → G

Fig. 14. Inference rules for core commands

by an application of base. By the inference rules [If1] and [If2], the resulting
graph is discarded and program P or Q is executed on the input graph.

The meaning of the remaining GP commands is defined in terms of the mean-
ing of the core commands, see Figure 15. We refer to these commands as derived
commands.

[Skip] 〈skip, G〉 → 〈r∅, G〉
where r∅ is an identifier for the rule schema ∅ ⇒ ∅

[[Fail] 〈fail, G〉 → 〈{}, G〉
[If3] 〈if C then P, G〉 → 〈if C then P else skip, G〉

Fig. 15. Inference rules for derived commands

Figure 16 shows a simple example of program evaluation by the transition
relation →. It demonstrates that for the same input graph, a program may
compute an output graph, reach the failure state or diverge.

We now summarise the meaning of GP programs by a semantic function � �

which assigns to each program P the function �P � mapping an input graph G
to the set of all possible results of running P on G. The result set may contain,
besides proper results in the form of graphs, the special value ⊥ which indicates
a nonterminating or stuck computation. To this end, let the semantic function
� � : ComSeq→ (G → 2G∪{⊥}) be defined by4

�P �G = {H ∈ G | 〈P, G〉 +→H} ∪ {⊥ | P can diverge or get stuck from G}

where P can diverge from G if there is an infinite sequence 〈P, G〉 → 〈P1, G1〉 →
〈P2, G2〉 → . . . , and P can get stuck from G if there is a terminal configuration
〈Q, H〉 such that 〈P, G〉 →∗ 〈Q, H〉.
4 We write �P 	G for the application of �P 	 to a graph G.
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main = {r1, r2}; {r1, r2}; r1!
r1 r2

1 ⇒ 1 1 ⇒ 2

〈main, 1 〉 → 〈P, 2 〉 → fail

↓
〈P, 1 〉 → 〈r1!, 1 〉 → 〈r1!, 1 〉 → . . .

↓
〈r1!, 2 〉

↓
2

where P = {r1, r2}; r1!

Fig. 16. Nondeterminism in program evaluation

The element fail is not considered as a result of running a program and hence
does not occur in result sets. In the current implementation of GP, reaching the
failure state triggers backtracking which attempts to find a proper result (see
next section). Note that a program P finitely fails on a graph G if and only if
�P �G = ∅. In Example 6, for instance, we have �reduce!; base�G = ∅ for every
connected graph G containing a cycle. This is because the graph resulting from
reduce! is still connected and cyclic, so the rule schema base is not applicable.

A program can get stuck only in two situations: either it contains a subpro-
gram if C then P else Q where C both can diverge from some graph and
cannot produce a proper result from that graph, or it contains a subprogram
B! where the loop’s body B possesses the said property of C. The evaluation
of such subprograms gets stuck because the inference rules for branching resp.
iteration are not applicable.

Next we consider programs that produce infinitely many (non-isomorphic)
results for some input. A simple example for such a program is given in Figure 17.
GP programs showing this behaviour on some input can necessarily diverge from
that input. This property is known as bounded nondeterminism [22].

Proposition (Bounded nondeterminism). Let P be a program and G a
graph in G. If P cannot diverge from G, then �P �G is finite up to isomorphism.

The reason is that for every configuration γ, the set {δ | γ → δ} is finite up to
isomorphism of the graphs in configurations. In particular, the constraints on
the syntax of conditional rule schemata ensure that for every rule schema r and
every graph G in G, there are up to isomorphism only finitely many graphs H
such that G⇒I(r) H .



116 D. Plump

main = {stop, continue}!
stop continue

1 ⇒ ∅ 1 ⇒ 1 2

�main	 1 = {⊥, ∅, 2 , 2 2 , 2 2 2 , . . . }

Fig. 17. Infinitely many results for the same input

An important role of a formal semantics is to provide a rigorous notion of
program equivalence. We call two programs P and Q semantically equivalent,
denoted by P ≡ Q, if �P � = �Q�. For example, the following equivalences hold
for arbitrary programs C, P , P1, P2 and Q:

(1) P ; skip ≡ P ≡ skip;P
(2) fail;P ≡ fail
(3) if C then (P1; Q) else (P2; Q) ≡ (if C then P1 else P2); Q
(4) P ! ≡ if P then (P ; P !)

On the other hand, there are programs P such that

P ; fail �≡ fail.

For, if P can diverge from some graph G, then �P ; fail�G contains ⊥ whereas
�fail�G is empty.

6 Implementation

This section briefly describes the current implementation of GP, consisting of
a graphical editor for programs and graphs, a compiler, and the York Abstract
Machine (YAM). Figure 18 shows how these components interact, where GXL
is the Graph Exchange Language [27] and YAMG is an internal graph format.

The graphical editor allows graph and program loading, editing and saving,
and program execution on a given graph. Figure 19 shows a screenshot of the
graphical editor, where the rule schema expand of the program sierpinski
from Example 7 is being edited. The editor is implemented in Java and uses the
prefuse data visualisation library [11], which provides automatic graph layout
by a force-directed algorithm. The Sierpinski triangle of Figure 11, for example,
was generated by this algorithm.

The York abstract machine (YAM) manages the graph on which a GP pro-
gram operates, by executing low-level graph operations in bytecode format. The
current graph is stored in a complex data structure which is designed to make
graph interrogation very quick (at the cost of slightly slower graph updates).
Typical query operations are “provide a list of all edges whose target is node
n” and “provide a list of all nodes whose (possibly tagged) label has value 0 at
position 1”.
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Compiler

YAM
Graphical 

Editor
GXL to 
YAMG

GP

(textual)

GXL YAMG

Bytecode

GXL

Fig. 18. Components of the GP system

Fig. 19. A screenshot of the graphical editor

The YAM is similar to Warren’s abstract machine for Prolog [1] in that it
handles GP’s nondeterminism by backtracking, using a mixed stack of choice
points and environment frames. Choice points consist of a record of the number
of graph changes at their creation time, a program position to jump to if failure
occurs when the choice point is the highest on the stack, and pointers to the
previous choice and containing environment. The number of graph changes is
recorded so that they can be undone during backtracking: using the stack of
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graph changes, the graph is recreated as it was at the choice point. Environment
frames have a set of registers to store label elements or graph item identities, and
an associated function and program position in the bytecode. They also show
which environment and program position to return to.

The YAM provides instructions for handling nondeterminism by which the
compiler constructs helper functions to implement backtracking. Nondetermin-
istic choice between a set of rule schemata is handled by trying them in textual
order until one succeeds. Before each is tried, the failure behaviour is configured
to try the next. Nondeterministic choice between graph-item candidates for a
match is handled by choosing and saving the first element, and on failure, using
the saved previous answer to return and save the next element.

For efficiency reasons, the YAM is implemented in C. See also [14], where
a more detailed description of (a slightly older version of) the YAM and its
bytecode instructions is given.

The GP compiler is written in Haskell. It converts textually represented GP
programs into YAM bytecode by translating each individual rule schema into a
sequence of instructions for graph matching and transformation. These sequences
are then composed by YAM function calls according to the meaning of GP’s
control constructs.

The compiler generates code for graph matching by decomposing each rule
schema into a searchplan of node lookups, edge lookups (find an edge whose
source and target have not been found yet) and extensions (find an edge whose
source or target has been found). The choice and order of these search operations
is determined by a list of priorities. For example, finding source or target of an
edge that has already been found has higher priority (because it is cheaper)
than finding an edge between nodes that have already been found. Searchplan
generation is a common technique for graph matching and is also used in the
implementations of PROGRES [28], Fujaba [15] and GrGen [8].

The semantics of GP assigns to an input graph of a program all possible
output graphs. This is taken seriously by the implementation in that it provides
users with the option to generate all results of a terminating program. (There is
no guarantee of completeness for programs that can diverge, because the search
for results uses a depth-first strategy.) In contrast, other graph-transformation
languages do not fully exploit the nondeterministic nature of graph transforma-
tion. For example, AGG [6] makes its nondeterministic choices randomly, with
no backtracking. Similarly, Fujaba has no backtracking. PROGRES [24] seems
to be the only other graph-transformation language that provides backtracking.

7 Conclusion

We have demonstrated that GP is a rule-based language for high-level problem
solving in the domain of graphs, freeing programmers from handling low-level
data structures. The hallmark of GP is syntactic and semantic simplicity. Con-
ditional rule schemata for graph transformation allow to express application
conditions and computations on labels, in addition to structural changes.
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The operational semantics describes the effect of GP’s control constructs in
a natural way and captures the nondeterminism of the language. In particular,
powerful branching and iteration commands have been defined using the con-
cept of finite failure. Destructive tests on the current graph can be hidden in
the condition of the branching command, and nested loops can be coded since
arbitrary subprograms can be iterated as long as possible.

The prototype implementation of GP is faithful to the semantics and computes
a result for a (terminating) program whenever possible. It even provides the
option to generate all possible results.

Future extensions of GP may include recursive procedures for writing com-
plicated algorithms (see [25]) and a type concept for restricting the shape of
graphs. A major goal is to support formal reasoning on graph programs. We
plan to develop static analyses for properties such as termination and confluence
(uniqueness of results), and a calculus and tool support for program verification.

Acknowledgements. I am grateful to Sandra Steinert and Greg Manning for
their contributions to the design and implementation of GP [19,25,14,13,20].
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12. Kleinberg, J., Tardos, É.: Algorithm Design. Addison Wesley, Reading (2006)
13. Manning, G., Plump, D.: The GP programming system. In: Proc. Graph Trans-

formation and Visual Modelling Techniques (GT-VMT 2008). Electronic Commu-
nications of the EASST, vol. 10 (2008)

14. Manning, G., Plump, D.: The York abstract machine. In: Proc. Graph Transfor-
mation and Visual Modelling Techniques (GT-VMT 2006). Electronic Notes in
Theoretical Computer Science, vol. 211, pp. 231–240. Elsevier, Amsterdam (2008)

15. Nickel, U., Niere, J., Zündorf, A.: The FUJABA environment. In: Proc. Interna-
tional Conference on Software Engineering (ICSE 2000), pp. 742–745. ACM Press,
New York (2000)

16. Nielson, H.R., Nielson, F.: Semantics with Applications: An Appetizer. Springer,
Heidelberg (2007)

17. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals, 2nd edn. Springer,
Heidelberg (2004)

18. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60–61, 17–139 (2004)

19. Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig,
H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS,
vol. 3256, pp. 128–143. Springer, Heidelberg (2004)

20. Plump, D., Steinert, S.: The semantics of graph programs (submitted for publica-
tion, 2009)

21. Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz,
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Appendix: Natural Pushouts

This appendix defines the natural pushouts on which direct derivations are based
(see Section 2) and characterises them in terms of ordinary pushouts. Further
properties can be found in [10].

K R

D H

b

d

Fig. 20. A pushout diagram

1 1

1 1

1 1

1 1 1

Fig. 21. A natural and a non-natural double-pushout

A diagram of morphisms between partially labelled graphs as in Figure 20 is
a pushout if the following conditions are satisfied:5

– Commutativity: K → R→ H = K → D → H .
– Universal property: For every pair of graph morphisms 〈R → H ′, D → H ′〉

such that K → R → H ′ = K → D → H ′, there is a unique morphism
H → H ′ such that R→ H ′ = R→ H → H ′ and D → H ′ = D → H → H ′.

The diagram is a pullback if commutativity holds and the following universal
property:

– For every pair of graph morphisms 〈K ′ → R,K ′ → D〉 such that K ′ →
R → H = K ′ → D → H , there is a unique morphism K ′ → K such that
K ′ → R = K ′ → K → R and K ′ → D = K ′ → K → D.

A pushout is natural if it is simultaneously a pullback.

5 Given graph morphisms f : A → B and g : B → C, we write A → B → C for the
composition g ◦ f : A → C.
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Proposition (Characterisation of natural pushouts [10]). If b is injective,
then the pushout in Figure 20 is natural if and only if for all v ∈ VK ,

lK(v) = ⊥ implies lR(bV (v)) = ⊥ or lD(dV (v)) = ⊥.

For example, the double-pushout on the left of Figure 21 consists of natural
pushouts, the double-pushout on the right consists of non-natural pushouts.
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Abstract. Many algorithmic methods in mathematics can be seen as
constructing canonical reduction systems for deciding membership prob-
lems. Important examples are the Gauss elimination method for linear
systems, Euclid’s algorithm for computing greatest common divisors,
Buchberger’s algorithm for constructing Gröbner bases, or the Knuth-
Bendix procedure for equational theories. We explain the basic concept
of a canonical reduction system and investigate the close connections
between these algorithms.

1 Introduction

The biological theory of evolution exhibits many instances of similar solutions
having been developed for similar problem; examples are the wings of insects,
birds, and bats, or the different realizations of light sensitive organs such as eyes.
The same phenomenon can be observed in the development of the sciences, and
also in particular in mathematics. Many algorithmic methods in different fields
of mathematics, e.g. linear algebra, commutative algebra, or logic, can be seen
as constructing canonical reduction systems for deciding membership problems.
Important examples are the Gauss elimination method for linear systems, Eu-
clid’s algorithm for computing greatest common divisors, Buchberger’s algorithm
for constructing Gröbner bases, or the Knuth-Bendix procedure for equational
theories. Here we continue the work started in [4], where we have demonstrated
the relations between Buchberger’s algorithm for the construction of Gröbner
bases and the Knuth-Bendix procedure for the construction of canonical term
rewriting systems. We explain the basic concept of canonical reduction systems
and investigate the close connections between these algorithms.

1.1 Canonical Reduction Relations and Systems

Canonical reduction systems (see also [5], Chapter 8) are supposed to solve the
following kind of problem:

• given a mathematical structure S and a congruence relation ∼= on S (i.e. ∼=⊆
S2) defined by a finite set of generators G = {(li, ri) | li ∼= ri for 1 ≤ i ≤ n}
(i.e. ∼= = ∼=G),

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 123–135, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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• we want to construct a new set of generators Ĝ for this congruence relation,
which makes it easy to decide, for any given s, t ∈ S, whether s ∼=G t.

In order to solve such decision problems we introduce a reduction relation
−→G ⊆ S × S. So, to start with, −→G is simply a binary relation on S. But
we will want this relation to have certain properties. Let us first introduce the
following notation: for any binary relation −→ we denote

by ←− the inverse,
by −→∗ the reflexive transitive closure, and
by ←→∗ the reflexive symmetric transitive closure

of −→. We will want −→G to have the following properties:

• ∼=G = ←→∗
G , i.e. the symmetric reflexive transitive closure of −→G is equal

to the congruence generated by G, and
• −→G is terminating or Noetherian, i.e. every reduction chain

s0 −→G s1 −→G · · · is finite.

In addition to being Noetherian, the reduction relation −→G might also be
Church-Rosser, i.e. s ←→∗

G t implies the existence of a common successor u
s.t. s −→∗

G u←−∗
G t. In particular this means that two irreducible elements s, t

are congruent if and only if they are syntactically equal.
In case−→G is both Noetherian and Church-Rosser, we call−→G a canonical

reduction relation and we call G a canonical reduction system for the
congruence ∼=.

A canonical reduction system yields the following decision procedure for the
underlying congruence ∼= = ←→∗

G: in order to decide whether s ∼= t for s, t ∈ S,

• reduce s and t to (any) irreducible s′ and t′ s.t.

s = s0 −→G s1 −→G · · · −→G sm = s′,
t = t0 −→G t1 −→G · · · −→G tn = t′

(s′ and t′ are called normal forms of s and t, respectively);
• check whether s′ = t′; if so then s ∼=G t, otherwise not.

1.2 Generating Canonical Reduction Systems

In general a given set of generators G (or its corresponding reduction relation
−→G) for a congruence ∼= will not have the Church-Rosser property. So our goal
now becomes to transform G into an equivalent canonical system Ĝ. It turns out
that the Church-Rosser property is equivalent to the simpler property of con-
fluence, meaning that if s, t have a common predecessor in finitely many steps,
s ↑∗G t, then they also have a common successor, s ↓∗G t. Furthermore, under
the assumption of Noetherianity, confluence is equivalent to local confluence,
meaning that if s, t have a common predecessor in a single step, s ↑G t, then they
also have a common successor, s ↓∗G t. In many interesting cases, such as the
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algorithms discussed in this paper, the test for local confluence can be reduced
to the test of finitely many critical pairs. These are pairs (s, t) s.t. s ↑G t,
and all other such situations can be regarded as specializations of critical pairs.
So if we can prove that for all critical pairs there are common successors, then
we have a canonical reduction system. Otherwise we take normal forms s′ �= t′

of s, t, respectively, and add the pair (s′, t′) to G. Since obviously s′ ←→∗
G t′,

we also have s′ ∼= t′; so the addition of this new pair to G will not violate the
requirement ∼= =←→∗

G. Of course we have to ensure that by this modification
of the reduction system G the Noetherianity of −→G is preserved. In general
this is hard, indeed undecidable in some cases such as term rewriting systems
(cf. [1],[2]). In any case, we keep considering critical pairs, adding new pairs to
the set of generators G, and in this way creating more critical pairs. So the
question is whether this process will ever terminate and deliver a canonical re-
duction system. Indeed, for the cases of Gauss elimination, Euclid’s algorithm,
and Gröbner bases, such a canonical system will finally be produced. But in the
case of the Knuth-Bendix procedure for term rewriting systems, the completion
process might not yield such a canonical system in finitely many steps.

Let us now demonstrate this approach for the cases listed above.

2 Gauss Elimination in Linear Algebra

We consider the following setting:

• the mathematical structure S is a finite dimensional vector space V over a
field K; w.l.o.g. V = Kn;
• as the generating elements for the congruence we take a basis B for a sub-

vectorspace W = span(B);
• now the equivalence relation is v1

∼=W v2 ⇐⇒ v1 − v2 ∈ W ; and ∼=W is
generated by b ∼=W 0 for b ∈ B.

The central problem then is to decide whether, for given v ∈ V ,

v ∼=W 0 , i.e. v ∈ span(B) = W .

Every basis B of W generates this congruence; simply let v be congruent w.r.t.
B to w if v − w is a linear combination of B. We write ∼=B for this congruence,
and we observe that ∼=B=∼=W for every basis B of W .

If the basis B (considered as lines of a matrix) is triangular, then this central
problem becomes easily decidable. The triangulation or elimination method of
Gauss transforms B into such a triangular basis. Let us see that what Gauss
elimination does is exactly the construction of a canonical reduction system.

The basis B induces a reduction relation −→B on V as follows:

• for a non-zero vector b = (0, . . . , 0, bi, . . . , bn) with bi �= 0 we say lead(b) = i;
• now the reduction relation −→b by a single vector b is

c = (c1, . . . , ci �= 0, . . . , cn) −→b c− ci

bi
· b
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and for a finite set B we say

c −→B d ⇐⇒ ∃b ∈ B : c −→b d .

It is not hard to see that for every B the reduction relation−→B has the following
properties:

• −→B is terminating
• v ←→∗

B w if and only if v ∼=B w.

But −→B in general is not confluent. Consider the following example: let

B = {(1, 0, 0)︸ ︷︷ ︸
b1

, (1, 1, 1)︸ ︷︷ ︸
b2

}

be a basis for a subvectorspace W = span(B) of Q3. Then

w1 = (0, 2, 2)←−b1 (1, 2, 2) = v −→b2 (0, 1, 1) = w2

and both reduction results are irreducible. So w1 and w2 are congruent, w1
∼=B

w2, but this cannot be determined by reduction w.r.t B.
So what can we do in order to transform −→B into a confluent reduction

relation? Well, according to Gauss elimination, we consider the elements of B as
lines in a matrix (also denoted by B) and transform the matrix

B =

⎛⎝ b1
· · ·
bm

⎞⎠
to row echelon form. This means we look at situations, where the component of
a vector can be reduced by (at least) two different generators bj and bk. Clearly
we can simplify this situation to a situation of critical pairs, where a unit vector

ei = (0, . . . , 0, 1︸︷︷︸
i−th position

, 0, . . . , 0) ,

can be reduced by two different generators bj and bk. This means that lead(bj) =
i = lead(bk), and

ei − bj ←−bj ei −→bk
ei − bk

(here we have assumed, w.l.o.g., that the components of both bj and bk at their
leading positions are 1). These reduction results are congruent w.r.t. ∼=B, so their
difference bm+1 := bj − bk is in W . If bm+1 = 0, then there was no divergence
anyway; otherwise we add bm+1 to the basis B, thereby enforcing this particular
divergence of reduction to converge:

either ei − bj −→bm+1 ei − bk

or ei − bk −→bm+1 ei − bj

Observe that this represents exactly a step in the formation of the row echelon
form of the matrix (basis) B.
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This process terminates and yields a set of generators B̂ s.t.

• ←→∗
B = ∼=W = ←→∗

B̂
,

• −→B̂ is both Noetherian and confluent.

So we can decide the membership problem for W by reduction w.r.t. B̂.
For our example above this means the following:

B = {b1, b2} : b1 = (1, 0, 0)
b2 = (1, 1, 1)
−−− −−−−−
b3 = (0, 1, 1)

→ B̂ = {b1, b2, b3}

Now B̂ spans the same vector space W , and we can use the reduction w.r.t.B̂
to decide membership in W :

(1, 2, 2) −→b1 (0, 2, 2) −→b3 (0, 0, 0)
(1, 2, 2) −→b2 (0, 1, 1) −→b3 (0, 0, 0)

The vector (1, 2, 2) is indeed in W .
In the end we can clean up the basis by keeping only one element with the

same lead; in a confluent system we would never need the others, because in
every reduction in which we might want to use one of these basis elements, we
might instead use the one we keep. Such an interreduced basis B̂ is basically the
Hermite matrix associated to B.

3 Euclid’s Algorithm for gcds of Univariate Polynomials

We consider the following setting:

• the mathematical structure S is K[x], the ring of polynomials over a field K;
• as the generating elements for the congruence we take two (or finitely many)

non-zero polynomials F = {f1(x), f2(x)} ⊂ K[x], generating an ideal I =
〈F 〉 in K[x]; F is called a basis for the ideal I;
• now the equivalence relation is h1 ≡I h2 ⇐⇒ h1 − h2 ∈ I .

The central problem then is to decide whether, for given h ∈ K[x],

h ≡I 0 , i.e. h ∈ 〈F 〉 = I .

If g is the greatest common divisor (gcd) of f1 and f2, then 〈g〉 = I = 〈f1, f2〉,
and the central question can be easily decided as

h ≡I 0 ⇐⇒ g|h .

The Euclidean algorithm computes exactly this gcd, by a sequence of remainders.
W.l.o.g. assume that the degree of f1 is at least as high as the degree of f2. We
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let r1 := f1, r2 := f2 be the first two remainders in our sequence; an ri+2 is then
simply the remainder of ri on division by ri+1. Throughout the algorithm we
always have

gcd(f1, f2) = gcd(ri, ri+1) .

It is easy to see that this process of remaindering must terminate with, say,
rk �= 0, but rk+1 = 0. Then we have

gcd(f1, f2) = gcd(rk, 0) = rk .

Throughout the Euclidean algorithm the ideal I remains unchanged, since all
these remainders clearly are in I.

An ideal basis F induces a reduction relation −→F on K[x] as follows:

• for a non-zero polynomial f(x) = fnx
n + · · · f1x + f0 with fn �= 0 we say

lead(f) = deg(f) = n;
• now the reduction relation −→f by a single polynomial f is

p = pmxm + · · ·+ pi︸︷︷︸
	=0

xi + · · ·+ p0 −→f p − pi

fn
xi−nf(x), if i ≥ n

and for a finite basis F we say

p −→F q ⇐⇒ ∃f ∈ F : p −→f q .

It is not hard to see that for every F the reduction relation −→F has the
following properties:

• −→F is terminating, and
• p←→∗

F q if and only if p ≡I q.

But −→F in general is not confluent. Consider the following example: let

F = {x5 + x4 + x3 − x2 − x− 1︸ ︷︷ ︸
f1

, x4 + x2 + 1︸ ︷︷ ︸
f2

}

be a polynomial basis for the ideal I = 〈f1, f2〉. Then

−x3 + x2 + x + 2︸ ︷︷ ︸
q1

←−f2 −x4 − x3 + x + 1←−f1 x5 − x2︸ ︷︷ ︸
p

−→f2 −x3 − x2 − x︸ ︷︷ ︸
q2

and both reduction results are irreducible. So q1 and q2 are congruent, q1 ≡I q2,
but this cannot be determined by reduction w.r.t. F .

So what can we do in order to transform −→F into a confluent reduction
relation? Well, we consider terms of least degree which can be reduced by two
different polynomials. All other diverging reductions can be seen as derived from
such divergences. W.l.o.g. we may assume that all polynomials in our remainder
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sequence are monic; instead of the actual remainder, we simply take its monic
associate. If di = deg(fi), then xdi can be reduced both by fi and fi+1:

xdi − fi ←−F xdi −→F xdi − xdi−di−1 · fi+1 .

If these reduction results are the same, then this divergence of reduction con-
verges, and we are done. Otherwise we add the difference fi−xdi−di+1fi+i to the
basis; this obviously leaves the ideal I unchanged. In fact we might as well reduce
both sides to normal forms, and then add their difference to the basis. What we
have done is simply a step in the division algorithm. In this way we consider all
pairs of polynomials in the basis (it can be demonstrated that considering sub-
sequent remainders is sufficient); i.e. we compute a remainder sequence starting
with f1, f2:

F = {f1, f2} : f1

f2

−−−
f3 := rem(f1, f2)
...
fk (�= 0)
fk+1 (= 0) F̂ = {f1, f2, . . . , fk}

This process terminates and yields a set of generators F̂ containing fk =
gcd(f1, f2). In fact we have

• ←→∗
F = ≡I = ←→∗

F̂
, and

• −→F̂ is both Noetherian and confluent.

So we can decide the membership problem for I by reduction w.r.t. F̂ :

h ∈ 〈F 〉 ⇐⇒ fk|h ⇐⇒ h −→F̂ 0 .

For our example above this means the following:

F = {f1, f2} : f1 = x5 + x4 + x3 − x2 − x− 1
f2 = x4 + x2 + 1
−−− −−−− −
f3 = x4 − x2 − 2x− 1 = f1 − x · f2

f4 = x2 + x + 1 = 1
2 (f2 − f3)

f5 = 0 = f3 − (x2 − x− 1)f4

→ F̂ = {f1, . . . , f4}

Now F̂ generates the same ideal I, and we can use the reduction w.r.t. F̂ to
decide membership in I:

0←−f3 −x3 + x2 + x + 2←−f1,f2 x5 − x2 −→f2 −x3 − x2 − x −→f3 0 .

So x5 − x2 ∈ I.
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In the end we can again interreduce the elements in the confluent reduction
system F̂ . Whenever we might want to use a basis polynomial different from fk

in a reduction, we might as well use fk. So since our reduction system is now
confluent, we don’t need the other basis polynomials any more; we simply keep
F̂ = {fk}.

4 Gröbner Bases in Multivariate Polynomial Rings

We consider the following setting:

• the mathematical structure S is K[x1, . . . , xn], the ring of multivariate poly-
nomials over a field K;
• as the generating elements for the congruence we take finitely many non-zero

polynomials F = {f1, . . . , fm} ⊂ K[x1, . . . , xn] generating an ideal I = 〈F 〉
in K[x1, . . . , xn];
• now the equivalence relation is h1 ≡I h2 ⇐⇒ h1 − h2 ∈ I .

The central problem then is to decide whether, for given h ∈ K[x1, . . . , xn],

h ≡I 0 , i.e. h ∈ 〈F 〉 = I .

As in the case of univariate polynomials we would like to introduce a reduction
w.r.t. a basis F , and then add certain polynomials to the basis in order to make
the corresponding reduction relation confluent. Such an ideal basis we will then
call a Gröbner basis. Buchberger’s algorithm for the construction of Gröbner
bases does exactly that.

For introducing a reduction relation −→F , we first have to linearly order the
multivariate terms xe1

1 · · ·xen
n . In the univariate case we did not have any choice;

the only reasonable ordering is induced by the degree. But in the multivariate
case we have much more freedom. We need to choose an ordering respecting the
multiplicative structure of the set of terms, called an admissible ordering; i.e.

– 1 = x(0,...,0) ≤ s for every term s, and
– if s ≤ t and u any term, then s · u ≤ t · u.

There is an abundance of such admissible orderings; e.g. lexicographic order-
ings, graduated lexicographic orderings, and many others. Admissible orderings
are completely classified. Once we have chosen an admissible ordering < of the
terms, every non-zero polynomial f has a well-defined leading term lead(f)
(the highest term in the ordering appearing with non-zero coefficient in f) and
a non-zero leading coefficient lc(f), the coefficient of lead(f). By le(f) we
denote the exponent (vector) of lead(f).

Now we are ready for defining the reduction relation −→F on K[x1, . . . , xn]
(for the fixed admissible term ordering <): for a non-zero polynomial

p = ple(p)x
le(p) + · · ·+ pex

e=(e1,...,en) + · · · , with pe �= 0

we define p −→f p− pe

lc(f)
xe−le(f)f(x), if e−le(f) ∈ Nn
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and p −→F q ⇐⇒ ∃f ∈ F : p −→f q .

Again, as in the univariate case, one can prove that −→F has the following
properties:

• −→F is terminating, and
• p −→∗

F q if and only if p ≡I q.

But −→F in general is not confluent. Consider the following example: let

F = {x2y2 + y − 1︸ ︷︷ ︸
f1

, x2y + x︸ ︷︷ ︸
f2

}

be a basis for the polynomial ideal I = 〈f1, f2〉. Then

q1 = −y + 1←−f1 p = x2y2 −→f2 −xy = q2

and both results are irreducible. So q1 and q2 are congruent, q1 ≡F q2, but this
cannot be determined by reduction w.r.t. F .

So what do we do in order to transform −→F into a confluent reduction rela-
tion? Well, as in the previous cases (Gauss elimination, Euclidean algorithm) we
investigate the “smallest” situations in which something can be reduced in es-
sentially two different ways. We look at terms xe which can be reduced w.r.t. two
different generators fj , fk. This means that lead(fj)|xe and also lead(fk)|xe. The
(finitely many) smallest such situations occur when xe = lcm(lead(fj), lead(fk))
(least common multiple), and all the other cases are instantiations of such basic
situations (see [5] for details). We reduce xe both modulo fj and fk, getting
some gj and gk, respectively. gj and gk may be further reduced modulo −→F to
normal forms g′j and g′k, respectively:

g′j ←−∗
F gj ←−fj xe = lcm(lead(fj), lead(fk)) −→fk

gk −→∗
F g′k

Actually we reduce gj − gk, the so-called S-polynomial of fj and fk, to a
normal form h. If h = 0, then this divergence of reduction converges, and we are
done. Otherwise we observe that h ∈ I. So if we add h to the basis F , then this
divergence can be resolved, and the ideal remains unchanged.

Of course, now we have a new element in the basis, and there are more S-
polynomials to be considered. But this process terminates and yields a set of
generators F̂ s.t.

• ←→∗
F = ≡I = ←→∗

F̂
, and

• −→F̂ is both Noetherian and confluent.

So we have computed a Gröbner basis F̂ for the ideal I w.r.t. the term ordering
<. With the Gröbner basis F̂ for I, we can decide the membership problem for
I by reduction w.r.t. F̂ . If in the end we interreduce the elements in F̂ , we get
a minimal Gröbner basis for the ideal I.
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For our example above this means the following. We choose an admissible
term ordering, say graduated lexicographic with x < y. Then we consider S-
polynomials and reduce them to normal forms. This leads to the following se-
quence of polynomials being added to the basis:

F : f1 = x2y2 + y − 1
f2 = x2y + x
−−− −−−−−
f3 = −xy + y − 1 = f1 − y · f2

f4 = y − 1 = f2 + (x + 1)f3

f5 = −x = f3 + (x− 1)f4

→ F̂ = {f1, . . . , f5}

Now F̂ generates the same ideal I, and we can use the reduction w.r.t. F̂ to
decide membership in I:

x2y2 −→f1 −y + 1 −→f4 0
x2y2 −→f2 −xy −→f5 0

So x2y2 ∈ I. The minimal Gröbner basis for I is {x, y − 1}.

5 The Knuth-Bendix Procedure for Term Rewriting
Systems

We consider the following setting:

• a term algebra T (Σ, V ) over a signature Σ and variables V ;
• E = {si = ti | i ∈ I} a set of equations over T generating an equational

theory =E ;
• now the equivalence relation is s ≡E t ⇐⇒ s = t ∈=E .

The equational theory =E is the set of all equations which can be derived from
E by reflexivity, symmetry, transitivity, substitution, and replacing equals by
equals; confer [1], [2].

The central problem then is to decide whether, for given s, t ∈ T (Σ, V ),

s =E t .

We define a reduction relation on T (Σ, V ) by orienting the equations in E

ei : si = ti

in one of the ways (according to a reduction ordering)

ri : si −→ ti or ti −→ si

(w.l.o.g. assume ri : si −→ ti). This leads to a so-called rewrite rule system
(RRS)

R = {ri | i ∈ I} .
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The reduction −→R works in the following way: if there is a substitution σ
and a position p in the term u, such that σ applied to si equals the subterm of
u at position p, i.e. σ(si) = u|p, then this subterm of u can be replaced by σ(ti):

u −→R v ⇐⇒ ∃p, i, σ : u|p = σ(si), and v = u[p← σ(ti)] .

Here u[p ← σ(ti)] means that in u we replace the subterm at position p by the
term σ(ti).

In general the termination property is undecidabel for rewrite rule systems.
But there are several sufficient conditions; e.g. si > ti w.r.t. a reduction ordering.
For the following let us assume that the rules can be ordered w.r.t. such a
reduction ordering. Then −→R has the following properties:

• −→R is terminating, and
• ←→∗

R = =E .

But −→R in general is not confluent. Consider the example of group theory; i.e.
let G consist of the axioms

G = { (1) 1 · x = x,
(2) x−1 · x = 1,
(3) (x · y) · z = x · (y · z) } ,

which are oriented (lexicographic path ordering with −1 > · > 1) to give the
rewrite rule system

R = { (1) 1 · x −→ x,
(2) x−1 · x −→ 1,
(3) (x · y) · z −→ x · (y · z) } .

Then
x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

Both results are irreducible, they are congruent modulo =E, but they have no
common successor.

So again the goal is to transform the RRS R into an equivalent confluent RRS
R̂,

←→∗
R = ←→∗

R̂
.

As in the previous cases (Gauss elimination, Euclidean algorithm, Gröbner bases)
we investigate “smallest” situations in which a term can be reduced in essentially
two different ways. Towards this end, we consider (not necessarily different) rules

r : s −→ t , r′ : s′ −→ t′ ,

a most general unifier (substitution) σ, and a position p in the term s (s|p not
being a variable) s.t.

σ(s′) = σ(s|p) .
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In this case we get the following divergence in reduction

v = σ(t)←−r σ(s) = u −→r′ σ(s[p← t′]) = v′ .

The pair of terms (v, v′) is called a critical pair of the RRS R. The components
of the critical pair (v, v′) are obviously equal modulo =E ; so are normal forms
w and w′ to which v and v′ can be reduced, respectively. If w �= w′, then we try
to orient them into a new rule w −→ w′ or w′ −→ w, which does not violate the
termination property of the RRS.

In contrast to the previous cases (Gauss elimination, Euclidean algorithm,
Gröbner bases), there is no guarantee that this completion process will terminate.
Critical pairs will lead to new rules, which lead to new critical pairs, which will
lead to new rules, and so on. Also we might get stuck in a situation where the
normal forms of a critical pairs, w and w′, cannot be oriented into a rule without
violating the termination property. But if this process terminates and yields a
RRS R̂ then

• ←→∗
R = =E = ←→∗

R̂
, and

• −→R̂ is both Noetherian and confluent.

So we can decide the equality modulo E by reduction w.r.t. R̂. In the end we
can interreduce the RRS R̂ and so get a minimal RRS for =E .

For the example of group theory this means that because of

x−1 · (x · y) ←−(3) (x−1 · x) · y −→(2) 1 · y −→(1) y

we add the new rule
(4) x−1 · (x · y) −→ y .

We continue to consider other critical pairs. For the case of group theory this
completion process (according to Knuth and Bendix, cf. [3]) actually terminates
and yields the following minimal rewrite rule system:

(1) 1 · x −→ x,
(2) x−1 · x −→ 1,
(3) (x · y) · z −→ x · (y · z),
(4) x−1 · (x · y) −→ y,
(5) x · 1 −→ x,
(6) 1−1 −→ 1,
(7) (x−1)−1 −→ x,
(8) x · x−1 −→ 1,
(9) x · (x−1 · y) −→ y,

(10) (x · y)−1 −→ y−1 · x−1.

So the equational theory of pure group theory can be decided by reduction
modulo this RRS. Also for many other equationally definable algebraic structures
there are canonical rewrite rule systems.
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6 Conclusion

We have seen that several key algorithms in constructive algebra and logic ac-
tually are based on the same idea; namely the formation of critical pairs and
the completion of a reduction relation. Recognition of these similarities might
lead to a better understanding of algorithms and perhaps to new application
areas. And mathematics can be seen as a more unified and interrelated field of
knowledge.
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Abstract. Let K be a number field and L a finite extension of K of
degree 
. Let ω1 = 1, ω2, . . . , ω� be K-linearly independent integers of L
and k an integer of K. We denote by NL/K the norm from L to K. In
this paper we give an algorithm for the computation of algebraic integers,
x1, . . . , x� ∈ K satisfying the equation NL/K(ω1x1 + · · ·+ x�ω�) = k.

1 Introduction

One of the oldest problems studied in number theory is to find the integer solu-
tions of equation

x2 − dy2 = 1 (1)

known as Pell equation, for a given positive nonsquare integer d. If (x1, y1) is the
least positive solution of (1) ordered by the value of x1 + y1

√
d, then all integer

solutions of (1) are given by (xn, yn) for n ∈ Z, where

xn + yn

√
d = ±(x1 + y1

√
d)n.

Thus, the problem of solving the Pell equation is that of determining x1 and y1.
Note that finding a solution of (1) comes down to finding a unit > 1 of the ring
Z[
√
d] of norm 1, and so x1 + y1

√
d is the smallest such unit. A bibliography on

the Pell equation and on methods for solving it can be found in [4,15,30].
The regulator of the field Q(

√
d) is defined to be the quantity Rd = log(x1 +

y1

√
d). The inequalities

exp(Rd)
2

< x1 <
exp(Rd)

2
+

1
4d

,
exp(Rd)

2
√
d
− 1

4d
< y1 <

exp(Rd)
2
√
d

,

reduce the computation of the unit x1 + y1

√
d to the computation of Rd. On

the other hand, since the input size is log d, we see that it is not possible to
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have a polynomial-time algorithm for finding (x1, y1), because it may take expo-
nentially many bits to represent. The best algorithm, without any assumption,
for computing Rd, and hence the solutions of (1), has running time O(d1/4+ε),
for every ε > 0 [7]. Recently, in [12], an algorithm is proposed for uncondition-
ally computing the regulator that runs in expected time O(d1/6+ε) assuming the
Generalized Riemann Hypothesis. Under this hypothesis subexponential proba-
bilistic algorithms are given in [1,29]. Note that the problem of solution of Pell’s
equation is in the complexity class SPP [2]. Furthermore, a polynomial time
quantum algorithm is described in [13].

The equation (1) has an obvious generalization to the equation

x2 − dy2 = k, (2)

where k is a nonzero integer. The integer solutions of (2) correspond to the
elements of Z[

√
d] with norm equal to k. Thus, for solving (2) one has to find a

maximal set of pairwise non associate elements of Z[
√
d] of norm equal to k and

solve the corresponding equation (1). Some methods for the solution of (2) can
be found in [16,17,18].

Equations (1) and (2) are used for the construction of pseudorandom number
generators [14], elliptic curves suitable for cryptographic applications [9, Chapter
24], etc. Furthermore, some cryptographic applications of equation (1) over finite
fields or the rings ZN are given in [19,8].

Dirichlet [10] was the first who studied equation (1) in a quadratic field.
More precisely, he solved (1) over the ring Z[i]. Some results on the solutions
of equation (1) and (2) with coefficients in the ring of integers of an arbitrary
quadratic field were given in [20,21,11,26,27,28].

Let K be a number field with ring of integers OK . In case where d = −1,
Shastri [24] defined an operation on the set of integral solutions (x, y) ∈ O2

K

of (1) such that it is an abelian group and determined its structure in terms of
the number of complex embeddings of K. Next, in [25], he studied the set of
solutions (x, y) ∈ O2

K of (2) in case where d = −1 and k ∈ OK \ {0}. Recently,
Schmid [23], generalized the results of [24] in case where d ∈ OK \{0}. He defined
with the same way an operation on the set of integral solutions of (1) such that
it is an abelian group and determined its structure in terms of the number of
complex and real embeddings of K, and its number of positive embeddings of d.

Let L be a finite extension of K of degree � and OK the ring of integers of
K. We denote by NL/K the norm from L to K. In this paper, we deal with
the following more general computational problem: Given K-linearly indepen-
dent elements ω1 = 1, ω2, . . . , ω	 ∈ OL and k ∈ OK , compute the elements
x1, . . . , xn ∈ OK such that

NL/K(x1ω1 + · · ·+ x	ω	) = k.

In case where � = 2 and ω2 =
√
d, where d is a no square element of OK , we

have the generalized Pell equation (2).
The paper is organized as follows. In section 2 we describe the set of solutions

of the above equation with k = 1. In sections 3 and 4 we give two algorithms for
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the computation of its solutions when k = 1 and k �= 1, respectively. Finally, in
Section 5, we solve some equations using these algorithms.

2 The Set of Solutions of NL/K(x1ω1 + · · · + x�ω�) = 1

In this section we describe the structure of the set of solutions (x1, . . . , x	) ∈ O	
K

of equation

NL/K(x1ω1 + · · ·+ x	ω	) = 1. (3)

If R is an integral domain, then we denote by R∗ its group of invertible elements.
The norm of L over K yields the group epimorphism

N : OK [ω2, . . . , ω	]∗ −→ O∗
K , x1ω1 + · · ·+ x	ω	 %−→ NL/K(x1ω1 + · · ·+ x	ω	).

Thus, (x1, . . . , x	) ∈ O	
K is a solution of the above equation if and only if x1ω1 +

· · ·+ x	ω	 ∈ Ker(N). By the Dirichlet’s Unit Theorem, the torsion subgroup of
the unit group O∗

L is cyclic, and hence the torsion subgroup of Ker(N) is also
cyclic. Hence, for the determination of solutions of (3) is enough to calculate a
basis of the free part of Ker(N) and a generator for the torsion subgroup of
Ker(N).

We say that the �-tuples (xj1, . . . , xj	) (j = 1, . . . , μ) form a fundamental set
of solutions for (3), if the elements xj1ω1 + · · ·+xj	ω	 (j = 1, . . . , μ) form a basis
for the free part of Ker(N). Furthermore, we say that (τ1, . . . , τ	) is a torsion
solution for (3) if τ1ω1 + · · · + τ	ω	 is a generator for the torsion subgroup of
Ker(N). In the following Proposition we compute the number of elements of a
fundamental set of solutions for (3).

Proposition 1. Let r1 (respectively s1) be the number of real embeddings and
r2 (respectively s2) the number of conjugated pairs of complex embeddings of K
(respectively L). Let F be a fundamental set of solutions for the equation (3).
Then

|F | = s1 + s2 − r1 − r2.

Proof. Set [K : Q] = n. Let {β1, . . . , βn} be an integral basis of OK . As
the n� elements βiωj (i = 1, . . . , n, j = 1, . . . , �) are Q-linearly independent,
OK [ω2, . . . , ω	] is an order of L. By [23, Lemma 1.1], we have

rank(OK [ω2, . . . , ω	]∗) = rank(O∗
L) = s1 + s2 − 1.

On the other hand, we have

rank(OK [ω2, . . . , ω	]∗) = rank(O∗
K) + rank(Ker(N)).

Therefore
|F | = rank(Ker(N)) = s1 + s2 − r1 − r2.
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3 Solving the Equation NL/K(x1ω1 + · · · + x�ω�) = 1

In this section we present an algorithm for the computation of integral solutions
(x1, . . . , x	) of equation (3).

Algorithm 1

Input: K, L and ω1 = 1, ω2, . . . , ω	 as above.
Output: A set of fundamental solutions F and a torsion solution t for (3).

1. Compute a basis of the group OK [ω2, . . . , ω	]∗, εi = εi,1ω1 + · · · + εi,	ω	

(i = 1, . . . , r), where εi,j ∈ OK .
2. Compute the elements λi = N(εi) (i = 1, . . . , r).
3. Compute a basis zj = (zj,1, . . . , zj,r) (j = 1, . . . , s) for the lattice

Λ = {(x1, . . . , xr) ∈ Zr
/ λx1

1 · · ·λxr
r = 1}.

4. Compute the elements bi = ε
zi,1
1 · · · εzi,r

r (i = 1, . . . , s) and write bi =
bi,1ωi,1 + · · ·+ bi,	ω	.

5. Compute a generator τ1ω1 + · · ·+ τ	ω	 for the torsion subgroup of Ker(N).
6. Output the set F of (bi,1, . . . , bi,	) (i = 1, . . . , s) and t = (τ1, . . . , τ	).

Proof of correctness of Algorithm 1. The elements

bj = ε
zj,1
1 · · · εzj,r

r , (j = 1, . . . , s)

generate Ker(N). For if u = εx1
1 · · · εxr

r ∈ Ker(N), then λx1
1 · · ·λxr

r = 1. Thus,
(x1, . . . , xr) = c1z1 + · · ·+ cszs, where c1, . . . , cs ∈ Z, and so,

u = bc1
1 · · · bcs

s .

Next, suppose there are integers a1, . . . , as such that

ba1
1 · · · bas

s = 1.

Since ε1, . . . , εr is multiplicatively independent, we get

a1z1,i + · · ·+ aszs,i = 0 (i = 1, . . . , r).

Thus, we have
a1z1 + · · ·+ aszs = 0

and, since z1, . . . , zs form a basis for Λ, we deduce a1 = · · · = as = 0, and so
b1, . . . , bs are multiplicatevely independent. Hence b1, . . . , bs is a basis for the
free part of Ker(N).

Step 1 and Step 5 can be achieved by algorithms implemented in the compu-
tational algebraic system KASH [31] and MAGMA [32]. A description of these
methods can be found in [22]. Furthermore, note that the algorithm of [6] for
this task has running time O(RDε) (for every ε > 0), where R and D is the
regulator and the absolute value of the discriminant of the order OK [ω2, . . . , ω	],
and the O-constant depends only on the degree of L. Step 2 can be achieved by
the system KASH [31] or MAGMA [32] and the time needed is polynomial in the



140 P. Alvanos and D. Poulakis

degree of L. For the Step 3 is more convenient to use an algorithm implemented
in computational algebraic system GAP [33]. A description of this method is
contained in [3, Section 6]. An estimate for the size of a basis of Λ is given in [5,
Corollary, page 207], once the size of εi is known. Finally, Step 4 is easily carried
out using KASH [31] or MAGMA [32].

4 Solving the Equation NL/K(x1ω1 + · · · + x�ω�) = k

In this section, we propose an algorithm for the determination of solutions
(x1, . . . , x	) ∈ O	

K of equation

NL/K(x1ω1 + · · ·+ x	ω	) = k, (4)

with k �= 1. Suppose that w1, . . . , wt form a maximal set of pairwise non as-
sociate elements of OK [ω2, . . . , ω	] sush that NL/K(wi) = k, (i = 1, . . . ,m). If
(x1, . . . , x	) ∈ O	

K is a solution of the above equation, then there is i ∈ {1, . . . , t}
and a unit η = η1ω1 + · · ·+ η	ω	 of OK [ω2, . . . , ω	] such that we have

x1ω1 + · · ·+ x	ω	 = ηwi

and (η1, . . . , η	) is a solution of equation (3). Conversely, we see that all the
�-tuples (x1, . . . , x	) ∈ O	

K of the previous form are solutions of (4).

Algorithm 2

Input: K, L, k and ω1, . . . , ω	 as above.
Output: “No solution” if (4) does not have any solution in OK . Else, a set F of
fundamental solutions and a torsion solution t for the associated equation (3),
and a maximal set M of pairwise non associate elements w ∈ OK [ω2, . . . , ω	]
with NL/K(w) = k.

1. Determine a maximal set M ⊆ OK [ω2, . . . , ω	] such that its elements w are
pairwise non associate with NL/K(w) = k. If a such set does not exist, then
output “No solution”. Else, go to the following step.

2. Using Algorithm 1, compute a set F of fundamental solutions and a torsion
solution t for the associated equation (3).

3. Output the elements obtained in Steps 1 and 2.

Step 1 of the above algorithm can be achieved by algorithms implemented in
the systems KASH and MAGMA.

5 Examples

In this section, using Algorithms 1 and 2, we solve four norm form equations. In
order to achieve the different tasks for this purpose we use the computational al-
gebraic systems KASH, MAGMA and GAP, as we have explained in the previous
sections.
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Example 1. Let K = Q(ω), where ω is a root of the polynomial T 4 + 3T 2 −
2T − 5. The solutions of the norm form equation

NK/Q(x0 + x1ω + x2ω
2 + x3ω

3) = 16

are the quadruples (x0, x1, x2, x3) ∈ Z4 such that

x0 + x1ω + x2ω
2 + x3ω

3 = ±(ω + 1)z(−4ω3 − 19ω2 + 12ω + 24)wΩ,

where z, w ∈ Z and Ω ∈ {2,−ω3 − 2ω2 + 2ω + 3,−12ω3 + 7ω2 + 13ω − 3}.

Proof. The torsion part of the unit group of Z[ω]∗ is generated by −1 and a
basis of the infinite part is given by the elements ω + 1 and −2ω2 + ω + 2.

Let N : Z[ω]∗ −→ {−1, 1} be by the restriction of the norm NK/Q on Z[ω]∗.
The images of −1, ω + 1 and −2ω2 + ω + 2 through the map N are 1, 1,−1,
respectively. It follows that the torsion part of Ker(N) is generated by −1 and a
basis of the infinite part is given by the elements ω+1 and−4ω3−19ω2+12ω+24.

Finally, a maximal set of pairwise non associate algebraic integers of Z[ω]
with norm equal to 16 is given by the numbers

2, −ω3 − 2ω2 + 2ω + 3, −12ω3 + 7ω2 + 13ω − 3.

The result follows.

Example 2. The solutions of the equation

x2 − 7y2 = −17 + 4
√

6

in Z[
√

6] are the couples (x, y) such that

x + y
√

7 = ±(8 + 3
√

7)s(13 + 2
√

6
√

7)t(α + β
√

7),

where s, t ∈ Z and (α, β) = (1 + 2
√

6,
√

6), (1 + 2
√

6,−
√

6).

Proof. Put K = Q(
√

6) and L = Q(
√

6,
√

7). Thus the above equation is the
norm form equation

NL/K(x + y
√

7) = −17 + 4
√

6.

The ring of integers of K is OK = Z[
√

6]. The torsion part of the group
OK [
√

7]∗ is generated by u0 = −1 and a basis for the infinite part of OK [
√

7]∗

is given by the elements

u1 =
√

6 +
√

7, u2 = 5− 2
√

6, u3 = 8 + 3
√

7.

We consider the map

N : OK [
√

7]∗ −→ O∗
K , x + y

√
7 %−→ x2 − 7y2.
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Put λi = N(ui) (i = 0, 1, 2, 3). We have

λ0 = 1, λ1 = −1, λ2 = 49− 20
√

6, λ3 = 1.

A basis for the lattice

Λ = {(x1, x2, x3) ∈ Z3
/ λx1

1 λx2
2 λx3

3 = 1}

is given by the vectors (2, 0, 0) and (0, 0, 1). Thus, a basis for the infinite part of
Ker(N) is formed by the elements

b1 = u2
1 = 13 + 2

√
6
√

7, b2 = u3 = 8 + 3
√

7

and so, a set of fundamental solutions for the equation X2 − 7Y 2 = 1 is given
by the couples (13, 2

√
6) and (8, 3) and the torsion solution is (−1, 0).

A maximal set of pairwise non associate elements of OK [
√

7] with norm equal
to −17 + 4

√
6 is given by the elements 1 + 2

√
6±
√

6
√

7. The results follows.

Example 3. Let a be a root of polynomial T 5 − 3T 2 + 1. The solutions of the
equation

x2 − (1− a2)y2 = 2a2 + a3 − a4

in integers of Q(a) are the couples (x, y) such that

x + y
√

1− a2 = ±
3∏

i=1

(γi + δi

√
1− a2)zi(±κ + λ

√
1− a2),

where z1, z2, z3 ∈ Z and

γ1 = −29− 62a + 8a2 + 10a3 + 22a4, δ1 = −46− 60a + 8a2 + 16a3 + 22a4,
γ2 = 7− 6a2 + 2a3, δ2 = 2 + 10a− 4a2 + 2a3 − 4a4,
γ3 = −3a + a4, δ3 = 3a− a4,
κ = 10 + 18a− 2a2 − 4a3 − 6a4, λ = −13 + 22a− 3a2 − 5a3 − 8a4.

Proof. Put K = Q(a) and L = K(
√
d), where d = 1 − a2. Thus the above

equation is the norm form equation

NL/K(x + y
√
d) = 2a2 + a3 − a4.

The elements 1, a, a2, a3, a4 form an basis for the ring of integers OK of K.
The torsion part of the group OK [

√
d]∗ is generated by u0 = −1 and a basis for

the infinite part of OK [
√
d]∗ is given by the elements

u1 = −a, u4 = 1− 2a + a2 + a4,

u2 = 1− a, u5 = 1 + (−1− 2a + a2 + a3 + a4)
√
d,

u3 = −3a + a4 + (3a− a4)
√
d, u6 = −2a + a2 − a3 + a4 + (2− a)

√
d.

We consider the restriction N : OK [
√
d]∗ −→ O∗

K of the norm NL/K on
OK [
√
d]∗. Put λi = N(ui) (i = 0, . . . , 6). We have λ0 = 1 and

λ1 = a2, λ4 = 3a4 + a3 + 3a2 − 6a + 2,
λ2 = a2 − 2a + 1, λ5 = 2a4 + 2a3 + 3a2 − 2a− 1,
λ3 = 1, λ6 = a− 1.
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A basis for the lattice

Λ = {(x1, . . . , x6) ∈ Z6
/ λx1

1 · · ·λx6
6 = 1}

is given by the vectors

(1, 0, 0, 1,−2,−2), (0, 1, 0, 0, 0,−2), (0, 0, 1, 0, 0, 0).

We compute

b1 = u1u4u
−2
5 u−2

6 = γ1 + δ1

√
d,

b2 = u2u
−2
6 = γ2 + δ2

√
d,

b3 = u3 = γ3 + δ3

√
d,

where γi, δi (i = 1, 2, 3) are given in the statement above. Hence, a set of
fundamental solutions for the equation X2 − dY 2 = 1 is given by the couples
(γi, δi) (i = 1, 2, 3) and the torsion solution is (−1, 0).

Finally, the elements ±κ+λ
√
d, where the quantities κ and λ are given in the

statement above, form a maximal set of pairwise non associate algebraic integers
of K(

√
d) with norm equal to 2a2 + a3 − a4. The result follows.

Example 4. Let a be a root of polynomial T 3−T+1 and = Q(a). Let b be a root
of polynomial T 3−(1−a+2a2)T 2−a, L = K(b) and ω = −1+a+(1−a+2a2)b2.
Then the solutions (x1, x2, x3) ∈ Z[a] of the equation

NL/K(x1 + x2ω + x3ω
2) = a2 − a− 3

are given by

x1 + x2ω + x3ω
2 =

4∏
i=1

(μi + νiω + ξiω
2)ziΩ,

where zi ∈ Z (i = 1, 2, 3, 4),

μ1 = −a2 + 1, μ2 = −35a2 − 7a + 40,
ν1 = −a2 + 1, ν2 = −91a2 − 59a + 67,
ξ1 = 0, ξ2 = −83a2 − 70a + 532,

μ3 = 169163a2 − 210187a− 577987, μ4 = −1429a2 + 1778a− 875,
ν3 = −192789a2− 635482a− 506567, ν4 = −1743a2 + 1865a− 989,
ξ3 = −254575a2 − 253327a+ 111177, ξ4 = −71a2 − 29a + 120,

and

Ω = −1654a2 + 2178a− 1223 + (−1754a2 + 2269a− 1280)ω + (−13a + 21)ω2.

Proof. Let O be the order generated over Z by the elements aiωj , where i, j ∈
{0, 1, 2}. The torsion part of the group O∗ is generated by u0 = −1 and a basis
for the infinite part of O∗ is given by the elements
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u1 = −a
u2 = 1 + (2a− a2)b2,
u3 = −87 + 85a + 115a2 − (15− 80a− 67a2)b + (−108 + 134a + 163a2)b2,
u4 = 217− 251a− 306a2 − (366 + 25a− 174a2)b + (396 + 32a− 199a2)b2,
u5 = 177− 176a + 165a2 − (376− 527a + 257a2)b + (40− 125a + 21a2)b2.

Let N : O∗ −→ O∗
K be the map defined by the restriction of the norm NL/K

on O∗. Put λi = N(ui) (i = 0, . . . , 5). We have

λ0 = λ4 = −1, λ1 = −a + 1, λ2 = λ3 = λ5 = 1.

We obtain that a basis for the lattice

Λ = {(x1, . . . , x5) ∈ Z5
/ λx1

1 · · ·λx5
5 = 1}

is given by the vectors

(0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 2, 0), (0, 0, 0, 0, 1).

Thus, a basis of the free part of the group Ker(N) is given by the elements
w1 = u2, w2 = u3, w3 = u2

4, w4 = u5 and the torsion part of Ker(N) is trivial.
Since

b = a− 1 + (2a2 − a + 1)ω2,

b2 = −61a2 + 79a− 46 + (−10a2 + 14a− 9)ω + (265a2 − 353a + 199)ω2,

we obtain wi = μi + νiω + ξiω
2 (i = 1, 2, 3, 4), where the values of μi, νi, ξi are

given above.
Finally, we see that every algebraic integer of O with norm equal to a2−a−3

is associated to

−1654a2 + 2178a− 1223 + (−1754a2 + 2269a− 1280)ω + (−13a + 21)ω2.

The result follows.
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Abstract. The paper deals with some open questions related to unam-
biguity, finite ambiguity and complementation of two-dimensional rec-
ognizable languages. We give partial answers based on the introduction
of special classes of languages of “high complexity”, in a sense specified
in the paper and motivated by some necessary conditions holding for
recognizable and unambiguous languages. In the last part of the paper
we also show a new necessary condition for recognizable two-dimensional
languages on unary alphabet.

Keywords: Automata and Formal Languages, Unambiguity,
Complement, Two-dimensional languages.

1 Introduction

The theory of formal languages of strings is well founded and the research in
this framework continues from many decades. The increasing interest for pat-
tern recognition and image processing has more recently motivated the research
on languages of pictures or two-dimensional languages, and nowadays this is a
research field of great interest. Since the sixties, many approaches have been
presented in the literature in order to find in two dimensions a counterpart of
notions and results of the one-dimensional languages theory: finite automata,
grammars, logics and regular expressions. In 1991, an unifying point of view was
presented by A. Restivo and D. Giammarresi who defined the family REC of
recognizable picture languages (see [11] and [12]), as an equivalent of the class of
recognizable (or regular) string languages. This definition takes as starting point
a characterization of recognizable string languages in terms of local languages
and projections (cf. [10]): the pair of a local picture language and a projection
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is called tiling system. Tiling systems have also analogies with the tiling of the
infinite plane.

REC family inherits several properties from the class of regular string lan-
guages. A crucial difference lies in the fact that REC family is not closed under
complementation: there are languages in REC whose complement is not in REC
[12]. It is then important to take into account also the class co-REC of languages
whose complement is in REC. The strict inclusion REC⊂ (REC∪ co-REC) holds
even in the unary case [19] and it fits the fact that the definition of recognizability
by tiling systems is intrinsically non-deterministic. The notion of determinism
on tiling systems is discussed in [2].

The non-closure of REC under complementation motivated the definition of
unambiguous two-dimensional languages, whose family is denoted UREC [11].
Informally, a picture language belongs to UREC when it admits an unambiguous
tiling system, that is if every picture has a unique pre-image in its corresponding
local language. In [3], the proper inclusion of UREC in REC is proved; it holds
true in the unary case too (see [6]). In other words there exist in REC inher-
ently ambiguous languages. An open question is whether UREC is closed under
complementation or not. Its answer depends on the following open problem.

Question 1. Does L ∈ REC and L /∈ REC imply that L /∈ UREC?

Question 1 was firstly stated in [22]. The converse is actually an open question
too: Does L ∈ REC \ UREC imply that L /∈ REC? Note that positive answers to
both Question 1 and the converse mean that UREC=REC ∩ co-REC and that
UREC is the largest subset of REC closed under complementation. Also note
that such question is related to some difficult problems on complexity classes [7].

All the inherently ambiguous languages known in the literature are indeed
infinitely ambiguous, in the sense that it is not possible to recognize them by a
tiling system, in such a way that each picture has a fixed number of pre-images
at most (see Section 2 for more details). The question whether this is always the
case or not is open. Let us state it as follows.

Question 2. Does there exist a language L ∈ REC \ UREC such that L is finitely
ambiguous?

In this paper we will answer Questions 1 and 2 in some particular cases, where
languages involved have “high complexity”, as specified in the following. We will
introduce a class HP ⊆ co-REC \ REC of not-recognizable languages and a class
HK ⊆ REC \ UREC of ambiguous languages, whose languages are “hard” with
respect to some complexity functions. We will show that:

1. If L ∈ REC and L ∈ HP then L /∈ UREC.
2. If L ∈ REC and L ∈ HK then L is infinitely ambiguous.

Let us emphasize that at present it is not known whether the inclusions HP⊆
co-REC \ REC and HK⊆ REC \ UREC are strict or not. No example (nor a
candidate) exists showing the inclusions are strict. Hence in the case HP= co-
REC \ REC and/or HK=REC \ UREC, our results would be a positive answer
to Questions 1 and/or 2, in their general setting.
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The introduction of classes HP and HK is motivated by some necessary condi-
tions for languages in REC and in UREC, respectively, stating that: if L ∈REC
then the size of some permutation matrices associated to L cannot grow so
quickly; and if L ∈UREC then the rank of some matrices associated to L cannot
grow so quickly. Indeed here “HP” stands for “High Permutation matrix” and
“HK” stands for “High ranK”. All the examples of languages that witness the
strict inclusions UREC⊂ REC⊂ (REC ∪ co-REC) have been provided applying
the necessary conditions we have just mentioned. The main difficulty in this
framework is that there are no characterizations of REC and UREC, that could
be easily and fruitfully applied, while we do not know whether the mentioned
necessary conditions are also sufficient. A main question is thus the following.

Question 3. Find characterizations of meaningful classes of two-dimensional
languages.

An intermediate step in view of solving Question 3 is to look for necessary
conditions as tight as possible. In the last part of the paper we will introduce
a new necessary condition for the belonging of a picture language to REC, in
the case when the alphabet is unary. We will then compare in an example the
obtained bound with the other ones known in the literature. Remark that the
case when the alphabet has a single letter means studying the shapes of pictures
before their contents. This is not a simpler subcase: all separation results known
for the general case also holds in the unary case. See [1,5,6,7,18] for recent papers
on unary two-dimensional languages.

Let us give some more details on the ideas on which the mentioned necessary
conditions are based, since our results will be basically related to them.

In 1998 O. Matz [18] isolated a technique for showing that a language is not
recognizable. It consists in considering for any recognizable picture language L
and integer m the string language L(m) of all pictures in L of fixed height m.
Then if L ∈ REC it is possible to associate to any tiling system recognizing L
a family {Am}, where each Am is an automaton accepting L(m) with cm states
at most, for some constant c. Using some known lower bound on the size of
an automaton, he proved a necessary condition for the belonging of a picture
language to REC (based on the cardinality of a set of pairs of pictures).

In [3] Matz’s technique was firstly used together with some lower bound on
the size of unambiguous string automata based on the Hankel matrices of the
string languages L(m). Recently in [14] the idea of finding necessary conditions
for picture languages by studying the Hankel matrices of L(m) has been con-
sidered by rephrasing Matz’s necessary condition (for belonging to REC) and
Cervelle’s necessary condition (for belonging to REC∪co-REC) (see [8]) in terms
of parameters of the Hankel matrices.

The paper is organized as follows. After giving the basic definitions and results
on two-dimensional languages in Section 2, in Section 3 we recall some necessary
conditions for two-dimensional languages and introduce the classes HP and HK.
Section 4 contains the main results concerning Questions 1 and 2, while the new
necessary condition for the unary case is in Section 5.
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2 Preliminaries

In this section we recall some definitions about two-dimensional recognizable
languages. More details can be mainly found in [12].

A two-dimensional string (or a picture) over a finite alphabet Σ is a two-
dimensional rectangular array of elements of Σ. The set of all pictures over Σ is
denoted by Σ∗∗ and a two-dimensional language over Σ is a subset of Σ∗∗.

Given a picture p ∈ Σ∗∗, let p(i,j) denote the symbol in p with coordinates
(i, j), �1(p) = m, the number of rows and �2(p) = n the number of columns; the
pair (m,n) is the size of p. Note that when a one-letter alphabet is concerned,
a picture p is totally defined by its size (m,n), and we will write p = (m,n).
Remark that the set Σ∗∗ includes also all the empty pictures, i.e. all pictures of
size (m, 0) or (0, n) for all m,n ≥ 0. It will be needed to identify the symbols
on the boundary of a given picture: for any picture p of size (m,n), we consider
the bordered picture p̂ of size (m + 2, n + 2) obtained by surrounding p with a
special boundary symbol # �∈ Σ.

A tile is a picture of size (2, 2) and B2,2(p) is the set of all sub-blocks of
size (2, 2) of a picture p. Given an alphabet Γ , a two-dimensional language
L ⊆ Γ ∗∗ is local if there exists a finite set Θ of tiles over Γ ∪ {#} such that
L = {p ∈ Γ ∗∗|B2,2(p̂) ⊆ Θ} and we will write L = L(Θ).

A tiling system is a quadruple (Σ,Γ,Θ, π) where Σ and Γ are finite alphabets,
Θ is a finite set of tiles over Γ ∪ {#} and π : Γ → Σ is a projection. A two-
dimensional language L ⊆ Σ∗∗ is tiling recognizable if there exists a tiling system
(Σ,Γ,Θ, π) such that L = π(L(Θ)) (extending π in the usual way). For any
p ∈ L, a local picture p′ ∈ L(Θ), such that p = π(p′), is called a pre-image of p.
We denote by REC the family of all tiling recognizable picture languages.

The family REC is closed with respect to different types of operations. The
column concatenation of p and q (denoted by p �q) and the row concatenation
of p and q (denoted by p �q) are partial operations, defined only if �1(p) = �1(q)
and if �2(p) = �2(q), respectively and are given by:

p �q = p q p �q =
p
q

.

REC family is closed under row and column concatenation and their closures,
under union, intersection and under rotation (see [12] for all the proofs).

Let us give some examples to which we will refer later.

Example 1. Let Lfc=lc be the language of pictures over Σ = {a, b}, with more
than one column, whose first column is equal to the last one. Language Lfc=lc ∈
REC. Informally we can define a local language where information about first
column symbols of a picture p is brought along horizontal direction, by means of
subscripts, to match the last column of p. Tiles are defined to have always same
subscripts within a row while, in left and right border tiles, subscripts and main
symbols should match. Below it is an example of a picture p ∈ Lfc=lc together
with a pre-image p′ of p.
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p =

b b a b b
a a b a a
b a a a b
a b b b a

p′ =

bb bb ab bb bb

aa aa ba aa aa

bb ab ab ab bb

aa ba ba ba aa

.

Let Lfc=c′ be the language of pictures such that the first column is equal to
some i-th column, i �= 1. Note that Lfc=c′ = Lfc=lc

�Σ∗∗ and thus Lfc=c′ ∈
REC. Similarly we can show that the languages Lc′=lc = Σ∗∗ �Lfc=lc, and
Lc=c′ = Σ∗∗ �Lfc=lc

�Σ∗∗ are in REC.

Example 2. Consider the language CORNERS of all pictures p over Σ = {a, b}
such that whenever p(i,j) = p(i′,j) = p(i,j′) = b then also p(i′,j′) = b. Intuitively,
whenever three corners of a rectangle carry a b, then also the fourth one does.
In [18], it is shown that CORNERS /∈ REC. Consider now, the language L =
CORNERS. We have L ∈ REC; indeed, we can set

L1 = Σ∗∗ �(Σ∗∗ �( b �Σ∗∗ � b ) �Σ∗∗ �( b �Σ∗∗ � a ) �Σ∗∗) �Σ∗∗, and then
L is equal to the union of L1 with the languages obtained by its 90◦, 180◦ and
270◦ rotations.

A recognizable two-dimensional language L ⊆ Σ∗∗ is unambiguous if and only
if it admits an unambiguous tiling system T ; a tiling system T = (Σ,Γ,Θ, π) is
unambiguous for L if and only if any picture p ∈ L has an unique pre-image in
the local language L(Θ) (see [11]). The family of all unambiguous recognizable
two-dimensional languages is denoted by UREC. In [3] it is proved that the
inclusion of UREC in REC is strict and in [6] that this strict inclusion holds
even if the alphabet is unary. Therefore in REC there exist languages that are
inherently ambiguous.

Let us now recall the definitions of k-ambiguity, finite and infinite ambiguity
given in [4] for languages in REC. Note that a similar definition of k-ambiguity
is contained in [21]. A tiling system T = (Σ,Γ,Θ, π) recognizing L is said to
be k-ambiguous if every picture p ∈ L has at most k pre-images. A recognizable
language L is said k-ambiguous if k = min{s | T is s-ambiguous tiling system and
T recognizes L }. A language L is finitely ambiguous if it is k-ambiguous for some
k whereas a language L is infinitely-ambiguous if it is not finitely ambiguous.

3 Classes HP and HK

In this section we introduce the definitions of the classes HP and HK of picture
languages motivated by some necessary conditions we recall as well.

Let L ⊆ Σ∗∗ be a picture language. For any m ≥ 1, we can consider the
subset L(m) ⊆ L containing all pictures in L with exactly m rows. Note that
the language L(m) can be viewed as a string language over the alphabet of the
columns of height m. If L is in REC then it is possible to associate to any tiling
system recognizing L a family {Am}, where each Am is an automaton accepting
L(m) with a number of states that is at most cm for some constant c (see [18]).
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Moreover, for any string language L, one can define the infinite boolean Hankel
matrix ML = ‖aαβ‖α∈Σ∗,β∈Σ∗ where aαβ = 1 if and only if αβ ∈ L (see [15]).
Observe that, when L is a regular language, the number of different rows of ML

is finite (Myhill-Nerode Theorem). A sub-matrix M(U,V ) of an Hankel matrix
ML is a matrix specified by a pair of languages (U, V ), with U, V ⊆ Σ∗∗, that
is obtained by intersecting all rows and all columns of ML that are indexed by
the strings in U and V , respectively. Moreover, given a matrix M , we denote by
RankQ(M), the rank of M over the field of rational numbers Q. A permutation
matrix is a boolean matrix that has exactly one 1 in each row and in each
column.

Definition 1. [13] Let L be a picture language.

i) The row complexity function RL(m) gives the number of distinct rows of the
matrix ML(m)

ii) The permutation complexity function PL(m) gives the size of the maximal
permutation matrix that is a sub-matrix of ML(m)

iii) The rank complexity function KL(m) gives the rank of the matrix ML(m).

The following theorem collects some necessary conditions for picture languages.

Theorem 1. Let L ⊆ Σ∗∗.

1. If L ∈ REC ∪ co-REC then there is a c ∈ IN such that, for all m ≥ 1,
RL(m) ≤ 2cm

.
2. If L ∈ REC then there is a c ∈ IN such that, for all m ≥ 1, PL(m) ≤ cm.
3. If L ∈ UREC then there is a c ∈ IN such that, for all m ≥ 1, KL(m) ≤ cm.
4. If L ∈ REC \ UREC and L is k-ambiguous then there is a c ∈ IN such that,

for all m ≥ 1, KL(m) ≤ cm.

Proof. Item 1 is essentially due to J. Cervelle [8] and item 2 to O. Matz [18];
both of them are rephrased in the matrix framework as in [14]. Item 3 is proved
in [3]. Item 4 can be found in [21], for a bit different definition of k-ambiguity,
but it holds even for the definition presented in this paper. Indeed if L is k-
ambiguous then there exists a constant c ∈ IN such that, for any m ≥ 1, there is
a k-ambiguous automaton Am that recognizes language L(m) and has cm states
at most: |Am| ≤ cm. Then we can apply a lower bound on the number of states of
k-ambiguous automata in [15] that guarantees that |Am| ≥ RankQ(ML)1/k − 1.
Therefore KL(m)1/k ≤ dm, for some constant d ∈ IN , and finally KL(m) ≤
(dk)m. &'

Note that in [2], some subclasses of UREC have been introduced and other
necessary conditions founded on RL(m) have been proved.

Definition 2. HP is the class of all picture languages L ∈ co-REC for which
there does not exist a constant c such that PL(m) ≤ cm, for all m ≥ 1.

HK is the class of all picture languages L ∈ REC for which there does not
exist a constant c such that KL(m) ≤ cm, for all m ≥ 1.
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From previous results, if L ∈ HP then L /∈ REC and if L ∈ HK then L /∈ UREC.
Let us now show some examples of languages in HP and in HK. For this, we will
use a result, proved in the following Lemma, concerning the rank of some special
boolean matrices. In the following, for any matrix A = ‖aij‖ with i = 1, · · · ,m,
j = 1, · · · , n, Aij will denote the (i, j) minor of A.

Lemma 1. Let A = ‖aij‖ be a boolean square matrix of size k such that, for
any 1 ≤ i, j ≤ k, aij = 0 if and only if i + j = k + 1. Then RankQ(A) = k.

Proof. It suffices to prove that det(A) �= 0. Remark that A is a square ma-
trix with 0 in all counter-diagonal positions and 1 elsewhere. Let us evaluate
det(A) along its first row: det(A) =

∑k
i=1(−1)1+ia1idet(A1i) = det(A11) +

(−1)det(A12) + . . . + (−1)kdet(A1n−1) + 0 det(A1n).
Since, for any i = 2, . . . , k − 1, the matrix A1i can be obtained from the

matrix A1i−1 by swapping its (k − i + 1)-th row with its (k − i)-th one, we can
say that det(A) = (k− 1)det(A11). Therefore, in order to prove that det(A) �= 0,
it suffices to show that det(A)11 �= 0. Note that A11 is a square matrix, of size
k−1, that has 0 in all the positions immediately above the counter-diagonal and
1 elsewhere. Let us denote by Bh the square matrix of size h of this form and let
us show that, for any h, Bh has a non-null determinant. The proof is by induction
on h. The basis, h = 2, is obvious. Suppose that it is true for Bh−1 and consider
the matrix Bh = ‖bij‖. If we evaluate det(Bh) along its first column, we have
det(Bh) =

∑h
i=1(−1)1+ibi1det(Bh

i1). Remark that the first (h − 2) terms of the
sum are equal to 0 (every matrix Bh

i1 has two identical rows, the last one and the
second-last one, and therefore it has a null determinant) and the (h−1)-th term is
equal to 0 too (note that b(h−1)1 = 0). So we have det(Bh) = (−1)h+1det(Bh−1)
and, therefore, by inductive hypothesis, det(Bh) �= 0. &'

Now, let us fix some notation: we denote by ε the empty string and, for Σ = {a}
and n ∈ N , by an the string over Σ∗ of length n. Moreover, for n1, n2, . . . , nm ∈
N , we denote by lcm(n1, n2, . . . , nm) the lowest common multiple of n1, n2,
. . . , nm.

Example 3. Consider, for any m ≥ 0, the function f(m) = lcm(2m+1, . . . , 2m+1)
and the language LM over the unary alphabet Σ = {a}, LM = {(m,n) | n is
not a multiple of f(m)}. It was shown that LM ∈ REC (see [19,20]).

Now, we will show that LM ∈ HK. Indeed, for any m > 1, consider languages
LM (m) as defined above and the corresponding boolean matrix M = MLM(m).
Let us denote by c the picture over the alphabet Σ with m rows and one column
and consider the set S of f(m) rows of M indexed by c, c2, . . ., cf(m). They are
all distinct (the rows indexed by ci and ci+1 differ in the position corresponding
to the column indexed by cf(m)−i) and, moreover, any other row in M is equal
to one of the rows in S. So RL(m) = f(m). Consider now, in M , the finite
sub-matrix Mc composed by the f(m) rows indexed by c, c2, . . ., cf(m), in this
order, and the f(m) columns indexed by ε, c, c2, . . ., cf(m)−1, in this order, as
in the following figure.
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ε c c2 · · · cf(m)−2 cf(m)−1 cf(m)

c 1 1 1 · · · 1 1 0
c2 1 1 1 · · · 1 0 1
c3 1 1 1 · · · 0 1 1
...

...
...

...
...

...
...

...
cf(m)−3 1 1 0 · · · 1 1 1
cf(m)−2 1 0 1 · · · 1 1 1
cf(m)−1 0 1 1 · · · 1 1 1

.

Then, the i-th row of Mc will have symbol 1 in all its entries except the
f(m) + 1 − i position that will have symbol 0. For this, matrix Mc satisfies
the hypothesis of Lemma 1, and, therefore, RankQ(Mc) = f(m). But f(m) =
RankQ(Mc) ≤ KL(m) ≤ RL(m) = f(m), so we have KL(m) = f(m). Since
f(m) = 2θ(2m) (see [18,19]), then KLM (m) cannot be bounded by km where k is
a constant, and therefore LM ∈ HK.

At last, it is easy to see that, for any m > 1, PL(m) = 2.
Consider now the language LM and, for any m > 1, languages LM (m). The

finite sub-matrix of MLM (m), with same rows and columns indexes as Mc, is
a square matrix of size f(m) with 1 in all counter-diagonal positions and 0
elsewhere. It is easy to show that, for any m, PLM

(m) = RLM
(m) = f(m) and,

therefore, LM ∈ HP. Furthermore we have KLM
(m) = f(m) too.

Example 4. Let CORNERS be the language defined in Example 2. We are going
to show that CORNERS∈ HP, following the proof that CORNERS/∈ REC in
[18].

Consider for any n ≥ 1 a partition P of {1, 2, · · · , 2n} into two-element sets and
fix a bijection αP : P → {1, 2, · · · , n}. Then define picture PP over {a, b} as the
picture of size (2n, n) such that the position (i, j) in PP carries a b if and only if
j = αP({i, i′}) and {i, i′} ∈ P . As an example let n = 3, P= {(1, 2), (3, 4), (5, 6)}
and P ′= {(1, 3), (2, 4), (5, 6)}; then fix αP((1, 2)) = 1, αP((3, 4)) = 2, and
αP((5, 6)) = 3; αP′((1, 3)) = 1, αP′((2, 4)) = 2, and αP′((5, 6)) = 3. Pictures
PP and PP′ are as follows:

PP =

b a a
b a a
a b a
a b a
a a b
a a b

PP′ =

b a a
a b a
b a a
a b a
a a b
a a b

Let ML(2n) be the Hankel matrix of the language L(2n) of pictures in COR-
NERS of fixed height 2n, and M(U,V ) its sub-matrix specified by the pair of
languages (U, V ) with U = V = {PP | P is a partition of {1, 2, · · · , 2n} into
two-element sets}. We have that M(U,V ) is a permutation matrix. Indeed the
entry (PP , PP′) of M(U,V ) is 1 iff P = P ′.
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Furthermore the size of matrix M(U,V ) is equal to the number An of partitions
of {1, 2, · · · , 2n} into two-element sets. And it can be shown that An ≥ n! and
then there does not exist c ∈ IN such that An ≤ cn.

Let us mention that another language in HK is Lc=c′ as introduced in Example
1 (see [2]), while its complement is in HP (see [13]).

4 Some Results on Classes HP and HK

In this section we give partial answers to Questions 1 and 2 as stated in the
Introduction, in the case the involved languages belong to classes HP and HK
introduced in Section 3. Firstly let us compare the values of the complexity
functions RL(m), PL(m) and KL(m) introduced in Section 3, for a language L
and its complement, in the case L is in REC ∪ co-REC (and therefore functions
RL(m), PL(m) and KL(m) have finite values.

Proposition 1. Let L ∈ REC ∪ co-REC.

1. RL(m) = RL(m).
2. PL(m) + PL(m) ≤ RL(m) + 2 and the bound is tight.
3. KL(m) + KL(m) ≤ 2RL(m) and the bound is tight.
4. KL(m) ≥ PL(m) and the bound is tight.

Proof

1. The Hankel matrices for L can be obtained by exchanging entries 0 with
entries 1 in the Hankel matrices for L.

2. Let m ≥ 1, M(U,V ) be a permutation matrix of maximal size that is a
sub-matrix of the Hankel matrix ML(m) for L(m), and let M (U ′,V ′) be a
permutation matrix of maximal size that is a sub-matrix of the Hankel matrix
ML(m) for the complement of L(m). We claim that |U ∩ U ′|, |V ∩ V ′| ≤ 2.
In other words the sub-matrices of ML(m) specified by (U, V ) and (U ′, V ′),
respectively, cannot overlap more than on a square matrix of size 2. Consider
indeed a column of ML(m) indexed by a string in |V ∩V ′|. The set of entries
on such column indexed by strings in U are all 0’s except for one 1 and then
they cannot share more than two elements (a 0 and a 1) with the set of
entries indexed by strings in U ′ (that are all 1’s except for one 0).

Thebound is tight for languageLM inExample 3:PLM (m) = 2 andPLM
(m)

= RLM (m) = f(m) and, therefore, PLM (m) + PLM
(m) = RLM (m) + 2.

3. The inequality follows from Item 1 and from the remark KL(m) ≤ RL(m).
The bound is tight for language LM in Example 3: KLM (m) = KLM

(m) =
RLM (m) = f(m) and, therefore, KLM (m) + KLM

(m) = 2RLM (m).
4. Let P be a maximal permutation matrix of HL(m). Clearly, P is a boolean

square matrix of size PL(m) and we can assume, without loss of generality,
that P has 1 in all counter-diagonal positions and 0 elsewhere. Now, consider
HL(m) and its submatrix of size PL(m), say P , that corresponds to the
permutation matrix P of HL(m). Remark that P is a square matrix of size
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PL(m) with 0 in all counter-diagonal positions and 1 elsewhere. Therefore,
the matrix P satisfies the hypothesis of Lemma 1 and we have RankQ(P ) =
PL(m) that implies KL(m) ≥ PL(m). The bound is tight for language LM ,
that is the complement of language LM in Example 3. &'

Corollary 1. If L ∈ HP then L ∈ HK.

The following proposition is a positive answer to Question 1 (see Section 1) in
the case where L /∈ REC since L ∈ HP. Recall that if a language is in HP then
it is necessarily not in REC; and that we do not know at present whether this
is also a sufficient condition. Note that if this condition were also sufficient then
HP=co-REC\REC. Vice versa, if HP = co-REC\REC then the condition would
be also sufficient for languages in co-REC.

Proposition 2. If L ∈ REC and L ∈ HP then L /∈ UREC.

Proof. If L ∈ HP then, from Corollary 1, L ∈ HK and therefore, from the
definition of HK and Item 3 of Theorem 1, L /∈ UREC. &'

As an application, consider the following example.

Example 5. In Example 4 we showed that CORNERS ∈ HP. Applying Corol-
lary 1 we have that CORNERS ∈ HK and finally CORNERS /∈ UREC.

The following proposition is a negative answer to Question 2 (see Section 1) in
the case where L /∈ UREC since L ∈ HK. Recall that if a language is in HK
then it is necessarily inherently ambiguous; and that we do not know at present
whether this is also a sufficient condition. If this condition were also sufficient
then HK=REC\UREC. Vice versa, if HK = REC\UREC then the condition
would be also sufficient for languages in REC.

Proposition 3. Any language L ∈ REC \ UREC such that L ∈ HK is infinitely
ambiguous.

Proof. The proof follows from item 4 in Theorem 1. &'

Example 6. In Example 5 we showed that CORNERS ∈ HK; hence from Propo-
sition 3 we have that CORNERS is infinitely ambiguous.

5 Necessary Conditions in the Unary Case

In this section we will introduce a new necessary condition for the belonging
of a picture language to REC, in the case when the alphabet is unary. We will
then compare the obtained bound with the other ones known in the literature
(see Theorem 1). All along this section |Σ| = 1.

Let us recall some classical results on unary regular string languages
(see [9,10]). A unary language is regular if and only if it is ultimately peri-
odic. The size of a deterministic finite automaton (dfa) for an unary language
is (λ, μ), where λ is the number of states in the cycle and μ is the number of
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states not in the cycle. A language is said properly ultimately λ-cyclic when it
is accepted by a dfa of size (λ, μ) and by no dfa of size (λ′, μ′) with λ′ < λ;
λ is said the period of the language. Obviously any regular unary language is
properly ultimately λ-cyclic for some λ ∈ IN .

Suppose λ ∈ IN factorizes in prime powers as λ = pk1
1 pk2

2 · · · pks
s ; we will denote

by spp(λ) the sum of its prime powers, that is spp(λ) = pk1
1 +pk2

2 + · · ·+pks
s . The

following lower bound was proved for unary non-deterministic finite automata
(nfa) in [16]: Each nfa accepting a properly ultimately λ-cyclic language has at
least spp(λ) states in its cycles. We will apply this lower bound to obtain a new
necessary condition for unary picture languages in REC. Recall the definition of
L(m) in Section 3.

Proposition 4. Let L be a recognizable language over a unary alphabet and for
any m ≥ 1, λm be the period of L(m). Then there exists a constant c ∈ IN such
that for any m ≥ 1, spp(λm) ≤ cm.

Proof. If L ∈ REC then there exist nfa’s Am that recognize languages L(m) and
have cm states at most, for some constant c ∈ IN (see Section 3): |Am| ≤ cm for
any m ≥ 1. In the case |Σ| = 1, we can apply the above mentioned lower bound
of [16] to automata Am’s, and obtain that for any m ≥ 1: spp(λm) ≤ |Am| ≤ cm.

&'
When the alphabet is unary, Proposition 4, with items 1 and 2 of Theorem 1,
provides three different conditions for the belonging of a language to REC. Let
us summarize the three conditions.

Proposition 5. Let L be a recognizable language over a unary alphabet and for
any m ≥ 1, λm be the period of L(m).

Then there exists a constant c ∈ IN such that for any m ≥ 1:

1. logRL(m) ≤ cm

2. PL(m) ≤ cm

3. spp(λm) ≤ cm.

In the following example we compare the three bounds of Proposition 5.

Example 7. Consider language LM as defined in Example 3: LM = {(m,n) | n
is not a multiple of f(m)} where f(m) = lcm(2m + 1, . . . , 2m+1), for all m ≥ 0.
Recall that LM ∈ REC. The Hankel matrices associated to languages L(m) are
described in Example 3. We show that PLM (m) ≤ logRLM (m) ≤ spp(λm).

We haveλm = RLM (m) = f(m) andPLM (m) = 2. Suppose that for anym ≥ 0,
λm factorizes in prime powers as λm =

∏
p

km,i

m,i , then spp(λm) =
∑

p
km,i

m,i . Hence

2 = PL(m) < logRLM (m) = log(
∏

p
km,i

m,i ) =
∑

log(pkm,i

m,i ) <
∑

p
km,i

m,i = spp(λm).

6 Conclusions and Open Questions

In the paper we afforded some open problems on unambiguity, finite ambiguity
and complementation (Questions 1, 2 and 3 in the Introduction) and gave some
partial answers. A complete answer to Question 1 seems far to be found, also
due to its interpretation in the computational complexity framework.
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With Question 2, we considered the possibility that in REC there exist finitely
ambiguous languages, and showed that this is not true for a class of languages
in REC. Note that in a bit different framework (see [4]), when the recognition is
accomplished without border symbols (tiles with # are not allowed), it is shown
that there is an infinite hierarchy of finitely ambiguous languages. Therefore the
border symbols have to play a major role, in order to show that in REC there
do not exist finitely ambiguous languages. We figure that when a language is
recognized by a tiling system with finite ambiguity, then it is possible to obtain
an unambiguous tiling system for the language by paying special attention to
border tiles.

Finally the problem of finding characterizations of meaningful classes of rec-
ognizable languages (Question 3) deserves some more investigation.
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Abstract. We define generic categorical notions of rewriting and gram-
mar, using two basic operations, pullback and pushout, and show that
these categorical grammars are intrinsically context-free in the sense of
Courcelle. We then specialise to various settings, including classical word
grammars, hyperedge replacement grammars or node-replacement gram-
mars. We show that some languages which are classical counter-example
to context-freeness become context-free within this new framework1.

Keywords: Category, rewriting system, grammar, context-freeness.

1 Introduction

This works stems from research in the more specific area of graph rewriting
where two main directions have been explored, which correspond to two distinct
(somehow dual) approaches to the structure of a graph, either as nodes linked
by arrows (vertex rewriting) or as arrows glued by nodes (edge or hyperedge
rewriting).

In both directions, four levels of description have been explored : set theoretic,
algebraic (namely using universal algebra), logical or categorical (using category
theory as a basic tool). In this last setting - using category theory - the main
effort has been devoted to edge (and hyperedge) replacement - using pushout as
a basic operation to generalize the usual substitution, leading to the development
of a large theoretical body, via the double and single pushout approach to graph
rewriting (the so-called algebraic approach) and their extensions (the reader may
refer to [9] for an extensive descriptions of formalisms and results).

In earlier works (such as [2,3,4,5]), we have shown how a dual approach - using
pullback in place of pushout as the basic rewriting operation - could provide a
sound categorical approach to node rewriting in graphs (and hypergraphs [4]).
We have shown in [3] that pullback graph grammars are context-free.

In this paper, we generalize this approach by defining a generic categorical
treatment of substitution, rewriting and grammars, abstracting as much as pos-
sible and lifting main notions and results to their proper level of abstraction. We
1 This work was been completed while the first author was on a CNRS leave at LIAMA,
Chinese Academy of Sciences, Institute of Automation, Beijing.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 160–171, 2009.
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thus reach a necessary but sufficient level of abstraction to ensure the context-
freeness property (in the sense of [6]) and it is our main result that categorical
grammars2 are intrinsically context-free. The main ideas of the proof remain
those which have been presented in [3,5], although some useless conditions have
been removed here.

This allows us to describe in this new setting several standard examples (such
as words and graphs), showing that the mere reversing of arrows leads to very
different situations and that the projective grammars are much more powerful
than the inductive ones.

We show for instance in section 3, that inductive word grammars are exactly
classical context free word grammars, while projective word grammars can gen-
erate some context-sensitive languages such as the well known anbncn, which
then becomes context-free in the categorical setting.

This work relies on elementary category theory whose basic definitions will
be taken for granted (but the reader may refer e.g. to [1] available on line). Due
to space limitations, proofs have been omitted.

2 Rewriting in a Category

There are (at least) two possible ways to rewrite objects in a category, by using
the two simplest standard binary operations available in this framework, namely
pullback and pushout (product and coproduct are much simpler, but much less
flexible). Although pushout directly generalizes classical substitution, we follow
the traditional approach where products, pullbacks and projective limits are put
first, pushout and inductive limits being left to a duality argument ([1]).

In this paper, we shall not consider double-pushout or double-pullback rewrit-
ings, which introduce some pattern matching in the computation process. Our
rules will always be directly applicable.

2.1 Basic Definitions

As usual, we let #S denote the cardinality of a set S and N be the set of non
negative integers. In a category C, a span (resp. a cospan) in C is a pair of
arrows with same codomain (resp. domain). A family of arrows F has domain
G (resp. codomain G) if the domain (resp. codomain) of each arrow of F is G.
Let G

u→ X
p← H be a span. If it exists, let us denote by G[p/u] the pullback

object of this span and let G
a← G[p/u] b→ H be the associated co-span. Let us

note that it is symmetric: G[p/u] = H [u/p]. For any arrow f with domain G,
we define a new arrow f [p/u] = f ◦ a with domain G[p/u] and by extension, for
any family F of arrows with domain G, we define F [p/u] = {f [p/u] | f ∈ F}.

Source. From now on, we shall consider a distinguished subset N of objects in
C whose elements will be called non-terminals.
2 We are aware that, by its simplicity, the expressions “categorical grammars” has
been extensively used, e.g. in the area of computational linguistics, but we did not
find any more accurate expression to designate our grammars.
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Definition 1. An N -source (or simply a source) is a triple G = (G,UG, PG)
consisting of an object G in C and two families UG and PG of arrows which share
the same domain G, whose codomains are non-terminal objects and such that
for any non-terminal X, there is at most one arrow in PG with codomain X.
Elements of U are called the unknowns occuring in G. An element p : G → X
of PG is called the replacement scheme for the non-terminal X in G. A source
is said to be terminal if it has no unknown, i.e., if #UG = 0.

Substitution. Substitutions operate on sources: substituting an unknown in a
source by an other source will rise to a new source, in the following way:

Definition 2. Let G = (G,UG, PG) and H = (H,UH , PH) be two sources. Let
u : G→ X be an unknown of G. If H has a replacement scheme p : H → X for
the non-terminal X, the substitution (or replacement) of u by H in G is the
source, denoted by G[H/u], and defined by the triple:

(G[p/u], (UG\{u})[p/u]∪ UH [u/p], PG[p/u])

Let us note that the notation G[H/u] is no longer symmetric.

Rewriting. We can now define a rewriting rule (together with the rewriting
mechanism):

Definition 3. A rewriting rule is a pair denoted by X → H where X is a non-
terminal object and H is a source provided with a replacement scheme for X.
Applying a rule r to a source G consists in selecting an unknown u : G → X
of G (if any) and substituting H to u, giving rise to G[H/u]. This will be denoted
by G

r,u=⇒ G[H/u], or simply G
r=⇒ G[H/u].

As usual, one-step derivation r⇒ defines a binary relation on sources whose re-
flexive and transitive closure is denoted by ∗⇒.

2.2 Dual Approach

As already mentionned, similar definitions can of course be given in a dual
way, by defining a sink (or co-source) with families of morphisms of the form
((fi : Xi → G)i∈I). G is the codomain of the sink and its domains are in N . The
definition of substitution will be dual, making use of pushout instead of pullback
as a basic operation to produce a sink out of two sinks.

In the sequel, we shall try to simplify by using the expressions production
rules (resp. occurrence) to designate both sources or sinks (resp. both sources
or sinks with #PG = 0).

2.3 Rewriting Structures

Definition 4. A categorical rewriting system in a category C, over a family of
objects N called non-terminals is given by a family of productions. The system
is admissible when all productions may be applied at any stage. A categorical
grammar will be given by a categorical rewriting system and a specific occurrence
called the axiom.
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We shall in the sequel use the prefix projective (resp. inductive) to denote systems
relying on pullback (resp. pushout) as their rewriting mechanism.

If the category is complete (projective systems) or co-complete (inductive
systems), any categorical rewriting system is admissible. If not, we shall have to
give conditions for such a system to be admissible.

The language generated by the grammar is the family of terminal occurences
derived through the relation ∗⇒. The extended language is the family of not
necessarily terminal occurrences derived through the relation ∗⇒.

2.4 Context-Freeness

We shall follow Courcelle [6], and use his axiomatic definition of the notion of
context-freeness as the conjunction of three properties: preservation, confluence
and associativity. Let us first describe categorical (co)rewriting system as a sub-
stitution system in the sense of [6].

The alphabet is simply N . To completely fall within the framework described
by [6], we need an indexing of the non-terminal objects as N= {Xi/i ∈ [1, n]}.

The objects are the sources over N , whose set is denoted by CN . If G =
(G,UG, PG) is such an object, the arity function α sends it to the ordered list
α(G) = (X1X2 . . . Xm) consisting of the elements of the (co)domain of UG =
{(uj : G→ Xj)j∈[1,m]}.

According to definition 2, the substitution operator [ ] defines a partial map-
ping from CN × N × CN to CN by (G,X,R) → G[R/X ] whenever this makes
sense. Using the previous indexing, it may also be described as a partial mapping
CN × N× CN to CN defined by (G, i,R)→ G[R/Xi].

Preservation. The first condition for context-freeness is to satisfy the preser-
vation axiom: for all (G, i,R) in the domain of [ ], one must have

α(G[R/Xi]) = X1X2 . . . Xi−1α(R)Xi+1 . . . Xn

where X1X2 . . .Xn = α(G) , for X1, . . . , Xn ∈ X . It follows from definition 2
that:

Proposition 1. The substitution mapping satisfies the preservation axiom.

Hence, G = 〈CN ,N , α, [ ]〉 is a substitution system in the sense of [6]. We may
now study its properties.

Associativity. The first property expresses the fact that two consecutive steps
of rewriting can be condensed into one.

Proposition 2. G[R/X ][S/(Y [R/X ])] and G[R[S/Y ]/(X [S/X ])] are isomor-
phic (whenever they can both be computed), hence categorical rewriting systems
are associative.
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Confluence. This second property expresses the commutativity of the substi-
tution operation, or the fact that rewriting steps can be applied in any order,
giving the same result.

Proposition 3. G[R/X ][S/Y ] and G[S/Y ][R/X ] are isomorphic whenever
they can both be computed hence categorical rewriting systems are confluent.

These results show that categorical rewriting systems satify Courcelle’s condi-
tions for context-freeness ([6]) hence that :

Theorem 1. Categorical rewriting systems are context-free.

In the sequel, we shall use the expression context-free (abbreviated as CF) to
denote the notion of context-freeness in the sense of [6] that we have briefly
recalled in this section. When comparing with other definitions, we shall use a
prefix such as w-CF to denote the standard definition of context-freeness in the
classical theory of word languages.

3 Word Grammars

To describe word (or tree) languages in this setting, we need to put them in a
categorical framework which is as close as possible to the usual definitions where
for instance words are mappings from [1, n] ⊂ N to an alphabet A.

We shall consider as a base category the category Pos of partially ordered sets
(with order-preserving mappings) which is well known to be both complete and
cocomplete (see for instance [1]) and more precisely, categories PosA of posets
labeled over an alphabet A = {a, b, c, . . .}.

To model words or trees, we have to consider subcategories of Pos which are
neither complete nor cocomplete, meaning that the pushout and pullback objects
(which always exists in the enclosing category) may fail to be elements of the
category of interest, hence that the rewriting systems mail fail to be admissible.
Ensuring that they are will put stringent conditions of the type of rewriting
systems that we can build. In each case we must identify conditions under which
a pushout or a pullback object belongs to this subcategory as well as coherence
conditions to be fulfilled by the labelings. Due to space limitations, we shall deal
here only with words.

3.1 Words

To model words, we shall consider the subcategory A∗ = TosA of totally ordered
finite sets labeled over A.

Let us first give a few definitions. If m ∈ A∗, with #m = n, we shall write
m = m1m2m3 . . .mn (subscripts will be used to denote elements in a family of
words). If its order relation is denoted by ≤, we shall say that two elements of
m1 ≤ m2 in m are adjacent if there is no m3 such that m1 ≤ m3 ≤ m2; m2 is
then the successor of m1, while m1 is the predecessor of m2.
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Totally Ordered Sets. The following two lemmata give a characterization of
those pushouts and pullbacks which build total orders out of total orders.

Starting with the more intuitive case, let us consider the following pushout
diagram in Pos, where x, u and v are total orders:

x
xv−→ v

↓xu ↓vm

u
um−→ m

The pushout object m is easily constructed: its carrier is the pushout object in
Set (the category of sets) while the order relation is induced by those on u and
v : m1 ≤ m2 if and only if v1 ≤ v2 or u1 ≤ u2, where mi = um(ui) and/or
mi = vm(vi), i = 1, 2.

n = 1

n = 2

n > 2

v 

u 

v 

u 

v 

Fusion point 

Fusion pair 
Fusion segment 

u 

Fig. 1. Pushouts of total orders

Intuitively, if we represent u and v by linear segments, m is obtained by gluing
these two segments at some fusion points (or along fusion segments) which are
images of elements of x in u and v. The main possibilities to build total orders
out of total orders are described in figure 1.

Lemma 1. Let n = #x.

1. if n = 1, m is a total order if and only if xv(x) is the maximal point of v
and xu(x) is the minimal point of u (or conversely).

2. if n = 2, m is a total order if and only if xv(x1) and xv(x2) are adjacent in
v, while xu(x1) and xu(x2) are the extremal points of u (or conversely)

3. if n > 2, m is a total order if and only if the three following conditions hold
(a) either xv(x1) is the minimum of v or xu(x1) is the minimum of u,
(b) either xv(xn) is the maximum of v or xu(xn) is the maximum of u,
(c) if xi and xj are adjacent in x, then at least one of the pairs xv(xi) and

xv(xj) or xu(xi) and xu(xj) is adjacent (in v or u).
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Remark 1. The first two cases are easily interpreted. The case where n = 1
clearly corresponds to the concatenation vu (or conversely uv) and could there-
fore be used to model regular word grammars (which we will not do), while the
case n = 2 can be seen as the substitution of x by u in v (or conversely x by
v in u) and will be used later to model context-free word grammars. The third
case identifies and mixes parts of the two words according to the definition of
the mappings ox and rx.

Let us now consider the pullback case, by considering the following pullback
diagram in Pos:

m
mv−→ v

↓mu ↓vx

u
ux−→ x

The carrier of the pullback object m is computed as the pullback object in Set,
ie the set of those elements (u1, v1) in the cartesian product u × v such that
ux(u1) = vx(v1). The order on m is the order induced by the product order,
namely (u1, v1) ≤ (u2, v2) if and only if u1 ≤ u2 and v1 ≤ v2.

Lemma 2. The pullback object is a total order if and only if for each xi in x,
either #ux−1 ≤ 1 or #vx−1 ≤ 1.

Words. After describing conditions for pushout and pullback of total orders to
be total orders, we must describe the action of these operations on the labeling
which we need in order to turn total orders into words.

Let A = {a, b, c, . . .}∪{(,),⊥} be a set of terminal letters with three special
symbols (, ) and ⊥. We shall let the alphabet A be partially ordered by ⊥,) ≤
a ≤ (, ∀a ∈ A (letters in A are not comparable, ⊥ and ) need not be either).

In TosA, an object m of length n (a word in A∗) is a mapping [1, n] m→ A,
that we may write in the form {m1 ≤ m2 ≤ . . . ≤ mn} where mi ∈ A.

Since the set A of labels (terminal letters) is ordered, we can set :

Definition 5. A morphims of words f : m→ m′ is an order-preserving mapping
(i.e. an arrow in Tos) such that mi ≤ m′

f(i).

One may check that the composition of two such morphism is still a morphism
hence that A∗ = TosA is a category, and that if a diagram is a pushout (resp. a
pullback) in Tos, then it is a pushout (resp. a pullback) in TosA. It is enough
for that to set that whenever an element mi in m has preimages (resp. is image
of) both ui and vi in u and v, the label of mi will be the maximum (resp.
the minimum) of the labels of ui and vi. It will be shown in the two following
sections that whenever the result of the computation is in Tos, then these labels
are comparable.

3.2 Inductive Grammar

It follows from lemma 1, that the usual context-free substitution of a letter by
a word can be modelled in the category A∗ = TosA.
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A non terminal letter x will be modeled by a 2-elements total order x =
{x1 ≤ x2} (we shall use the same symbol to denote the letter and the order),
which we shall label ⊥). An occurence of x in a word w is an arrow x

ox→ w,
such that ox(x1) and ox(x2) are adjacent. This means that w is of the form
w1 . . . wkox(x1)ox(x2)wk+2 . . . wp. We shall write as usual w = txu, with t =
w1 . . . wk and u = wk+2 . . . wp.

Let us be given a context-free word rewriting rule of the form x→ m, where
m ∈ A∗ is a word of length n and some other non-terminals yi occuring in m.

This rule may be modelled by a sink ((yi

oyi→ m), x rx→ m) where rx(x1) =
m1, rx(x2) = mn,#m = n, and for each i, yi

oyi→ m is an occurence3 of yi in m.
The substitution is given by computing the pushout corresponding to the

following diagram (which is well defined in PosA):

x
rx−→ m

↓ox ↓α
txu

β−→ tmu

From Lemma 1, it follows that tmu is a total order. The labelling on tmu is
uniquely defined everywhere except on the images of x1 and x2 where there are
two possibilities, one coming from x in txu, the other from m. Since x is labelled
by ⊥), the labelling on m is well defined in each case as the maximum of the
two possible labels.

Each arrow (yi

ryi→ m) defines by composition with α an occurence (yi

α◦ryi→
tmu) and the computation can be continued by further application of rules of
the form (yi → mi).

This construction shows that inductive rewriting models the substitution
mechanism used in the standard theory of words languages.

The details of the encoding are omitted due to the lack of space.
Conversely, it may be shown that any pushout rule can be interpreted as a

classical context-free rewriting rule, hence:

Lemma 3. Context-free word languages are exactly inductive word languages,
which we summarize as w-CF = po.

3.3 Projective Grammar

We shall now make use of the symbol ( which we added to A to label a single
element order which will thus be turned into a terminal object in the category A∗

and a neutral element for the categorical product. For the sake of clarity in the
following diagrams defining morphisms, we shall also use the letters x, y, z, . . .
to denote the same neutral element (.
3 Of course m must be of the form m = a1y1 . . . apypap+1 for some (possibly empty)
words a1, . . . ap+1, meaning that the images oyi(yi) in m must not overlap. This
corresponds to the fact that there can not be two distinct letters at the same place
in a word and is necessary to ensure that all computed pushout objects are actually
words.
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Let us first note that the following diagram, where the definition of the arrows
rx and ox should be clear from the drawing (modulo the use of the letter x to
denote an occurence of (), models in a projective way the application of the rule
x → m to the word axb (the relabelling of the pullback object is being defined
as earlier):

amb −→ axb
↓ ↓rx

(m( ox−→ (x(

Hence the following lemma:

Lemma 4. Every word context-free rule can be encoded as a projective rule,
hence: w-CF = po ⊂ pb = CF

Let us consider a slightly more complex rule, by considering the production
defined by the pair of arrows

((ax( by ( cz
oy→ (x( y ( z,(ax( by ( cz

rx→ (x( y ( z)

where rx(() = (, rx(ax) = x and so on (oy being defined in the same way). Let
ox be the occurence axbycz → (x( y ( z.

Then the following pullback diagram :

aaxbbyccz
α−→ (ax( by ( cz

↓ ↓rx

axbycz
ox−→ (x( y ( z

computes a new word aaxbbyccz and generates a new occurence aaxbbyccz
oy◦α−→

(x( y ( z where the production rule may be applied once more.

Lemma 5. This rewriting system (together with an unknown erasing rule) gen-
erates in a context free way 4 the language anbncn.

This shows that:

Theorem 2. w-CF= po � CF = pb � CS

The last inequality is quite clear: projective grammars can not generate all
context-sensitive grammars (CS): the rewriting mechanism does not provide any
sort of pattern matching as needed for the most general CS grammars, since
all new occurences are built by composition of functions and can not appear
through mere juxtaposition of letters.

The question remains of the exact expressive power of projective word gram-
mars, although a careful examination of the possible codomains for productions
suggests that they can not generate anything really more complex than anbncn.
4 It is not new that the language anbncn can be generated in a context-free way, but
this needs an encoding of words as string graphs (see [8]) hence needs going out of
word-rewriting to use techniques from hyperedge replacement grammars within the
category of hypergraphs.
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4 Graphs and Hypergraphs

It is well known that categories of graphs or hypergraphs are both complete and
cocomplete. Pushout and pullback can always be computed, and we therefore
simply need to interpret the nature of inductive and projective graph grammars.

4.1 Inductive Hypergraph Grammars

Let H be the category of hypergraphs and X be a set of non-terminal hyper-
graphs. Inductive hypergraph grammars can be defined with no restrictions along
the lines of section 2.3.

Theorem 3. Inductive hypergraph grammars are exactly hyperedge replacement
grammars in the sense of [8].

4.2 Projective Graph Grammars

Projective graph grammars have not so far been studied in general.
We shall recall here the basic definitions of pullback graph grammars, which,

while being a very restricted case, are sufficient to describe e.g. node replacement
systems and to provide already intersting results (details and proofs may be
found in [2,3,4,5]).

Definition 6. A graph G is a 4-tuple G = 〈VG, EG, sG, tG〉 where the sets VG of
vertices and EG of edges are two finite disjoint sets and sG and tG are mappings
from EG to VG. For every element e ∈ EG, sG(e) and tG(e) are called source
vertex and target vertex of the edge e respectively.

A vertex v ∈ VG is reflexive if there exists an edge e ∈ EG such that sG(e) =
tG(e) = v. A graph G is reflexive if all its vertices are reflexive, it is said to be
simple if for any pair x, y of vertices of G, there is at most one edge from x to y.

Non Terminals. Non-terminals graphs have a quite specific form which allows
them to distinguish between nodes to be transformed, nodes to be identically
reproduced and an intermediate zone.

Definition 7. A non-terminal graph X is a graph made out of two components:
a complete reflexive graph Km+1, and a reflexive subgraph U linked to only m of
the vertices of Km+1.

Occurrences and Productions. For the sake of simplicity (and to keep some
coherence with e.g. [3]), we shall simply describe the shapes of the morphisms
involved in the definition of a source G = (G,UG, PG), calling occurence any
morphism appearing in UG and production the morphism involved as a replace-
ment scheme in PG. They both will have a very special structure.

Definition 8. Let G be a directed simple graph and X a non terminal graph,
an occurrence x on G is a graph morphism from G to X such that the pre-image
x−1(U) is non empty.
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Definition 9. A production r is a morphism r : R → X which is isomorphic
on the inverse image of the subgraph of X generated by Km+1.

Theorem 4. Pullback graph grammar are projective graph grammars hence are
context-free. For every inductive hypergraph grammar, there is an equivalent pull-
back graph grammar.

The converse of the second assertion is false, since hypergraph replacement gram-
mars cannot generate square grids ([8]), which can be generated by a pullback
graph grammar with only one rule (as shown in [3]).

In [6], Courcelle shows that vertex replacement grammars (V R-grammars)
are context-free. The result from [3] shows that although it satisfies the same
definition of context-freeness, pullback rewriting provides us with a strictly more
powerful context-free mechanism.

The real expressive power of general projective graph grammars remain to be
investigated.

5 Conclusion

In this paper, we have set a generic categorical framework for rewriting, with
two distinct possibilities, inductive rewriting based on the pushout operation and
projective rewriting based on pullback. We have then shown that both types of
categorical rewriting, either inductive or projective, are intrinsically context-free
(after the well accepted definition of [6]).

This general framework has then been instantiated to two specific cases. First
of all, we have shown that inductive rewriting on words mimics the classical
theory of context-free word languages (generating exactly the same languages),
while projective rewriting gives a more powerful notion of context-freeness, where
languages such that anbncn become context-free.

Ina similarway, inductive rewriting ofhypergraphsdescribes hyperedge replace-
ment grammars (well known to be context-free), while projective graph rewriting
yields a much more powerful context-free mechanism, in which graphs languages
such as the language of all complete graphs or that of square grids become context-
free (as already noticed, we actually used only a very specific case of projective
graph rewriting by putting strong conditions on the rules and occurences).

While we have shown that inductive rewriting describes (at least in two cases)
“classical” context-free rewriting, the exact power of projective rewriting, both
in the case of words or graphs remains an open question. It is also open whether
projective rewriting is always strictly more powerfull than inductive rewriting,
as is the case for words or graphs.
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Abstract. Picture language recognizability by 2-monoids is shown to
be equivalent to recognizability by frame action. Then we establish a
bijection between the pseudovarieties of finite 2-monoids and varieties of
frame recognizable picture languages.

Dedicated to Werner Kuich for his retirement.

1 Introduction

A picture of rank (α, β) ∈ R2
+ is a rectangular array of dimensions α, β con-

structed by elementary rectangular pieces called pixels.
Pictα,β(X) denotes the set of all such pictures over the pixel alphabet X .
On the set Pict(X) = (Pictα,β(X))α,β∈R+ of all pictures over X two natural

operations are defined: the horizontal and the vertical concatenations. The first
one is carried out over pictures with the same width and the other over pictures
of the same length.

In order to achieve grammatical generation, we have introduced in [3] the
operation of picture deformation.

It consists of associating to every (r, s) ∈ (R+ − {0})2 and every pixel x ∈ X
a new pixel x(r,s) which results from x by multiplying its dimensions by r, s
respectively.

The (r, s)-deformation of a picture p is then constructed by replacing all pixels
occurring in p by their (r, s)-deformed pixels.

The above structure is the typical instance of the algebraic structure of what
we call a deformation monoid. This is a family of sets M = (Mα,β)α,β∈R+

equipped with families of horizontal and vertical multiplications

h© : Mα1,β1 ×Mα1,β2 →Mα1,β1+β2 , v© : Mα1,β1 ×Mα2,β1 →Mα1+α2,β1

(α1, α2, β1, β2 ∈ R+) as well as with a family of deformation operators

(def (r,s)
M )α,β : Mα,β →Mrα,sβ

which simulate the preceding structure on pictures. Actually, Pict(X) is the free
deformation monoid.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 172–188, 2009.
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A 2-monoid is a set endowed with two monoid structures compatible to each
other. Clearly any 2-monoid can be viewed as a deformation monoid: its defor-
mation operations are the identity functions.

In the present paper we discuss two recognition devices: through frame action
and through 2-monoids.

Let ξ be a pixel not in X . A frame over X is a picture f ∈ Pict(X ∪ ξ) with
just one occurrence of ξ. The set of all such frames is denoted by Frame(X).
Substitution at ξ is independent of deformation and thus the set Frame(X) of
all deformation classes of frames becomes a monoid which canonically acts on
the set Pict(X) of all deformation classes of pictures.

A deformation closed picture language L ⊆ Pict(X) is said to be frame rec-
ognizable whenever there exist a finite action M × Q → Q (M monoid) and a
morphism of monoid actions

Frame(X)×Pict(X) �

�

Pict(X)

�
M ×Q � Q

(ϕ, f) f

(ϕ monoid morphism) such that f−1(P ) = L, for some P ⊆ Q.
On the other hand, if there exist a finite 2-monoid M and a deformation

morphism H : Pict(X)→M(N) so that L = H−1(R), R ⊆ N then we say that
L is recognized through N .

A main result in this paper states that the two modes of recognition just
stated are equivalent.

Then we use this characterization in order to establish Eilenberg’s Variety
Theorem in the setup of pictures. Precisely, we show that there is a bijection
between pseudovarieties of finite 2-monoids and varieties of frame recognizable
picture languages.

2 Recognizability through Monoid Action

Our first recognition mode is referred to monoid action.
A monoid is a set M equipped with an associative multiplication M×M →M ,

(m1,m2) %→ m1m2 which admits a unit element 1.
Let us fix a monoid (M, ·, 1). Any set Q equipped with a function M ×Q→

Q , (m, q) %→ m · q such that

m1(m2q) = (m1m2)q and 1 · q = q for all q ∈ Q , m1,m2 ∈M

is called an M -set.
Given M -sets Q and Q′, any function h : Q→ Q′ such that

h(m · q) = m · h(q) for all m ∈M , q ∈ Q

is called an M -function.
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The left derivative of a subset L of an M -set Q at the point q ∈ Q is

q−1L = {m|m ∈M , mq ∈ L}.

The set of all left derivatives of L

QL = {q−1L | q ∈ Q}

with the (well defined) action

m(q−1L) = (mq)−1L (m ∈M, q ∈ Q)

is structured into an M -set called the syntactic M -set of L.

Proposition 1. Let L be a subset of an M -set Q. If h : Q→ Q′ is a surjective
M -function such that h−1(h(L)) = L, then there results a unique M -function
h′ : Q′ → QL making commutative the triangle

Q

QL

Q′hL

h

h′�

��������
��������

where hL : Q→ QL is given by hL(q) = q−1L.

Proof. For any q′ ∈ Q′, let q ∈ Q be such that h(q) = q′. Then we set h′(q′) =
q−1L. The reader will verify that h′ is well defined and has all the announced
properties.

The right derivative of L ⊆ Q at m ∈M is

Lm−1 = {q | q ∈ Q , mq ∈ L}.

Proposition 2. If L has finitely many left derivatives, then it has finitely many
right derivatives and vice versa.

Proof. Assume that q−1
1 L , ... , q−1

k L are all the distinct left derivatives of L. This
means that for all q ∈ Q there is an index i (1 � i � k) such that q−1L = q−1

i L.
Now, we define a function

ϕ : {Lm−1 | m ∈M} → {0, 1}k

by setting

ϕ(Lm−1) = (ε1, ..., εk) with εi = 1⇔ mqi ∈ L.

Observe first that ϕ is well defined i.e. Lm−1 = Lm′−1 implies (ε1, ..., εk) =
(ε′1, ..., ε′k).

It suffices to show that εi = 1 iff ε′i = 1 (1 � i � k). Indeed

εi = 1 iff mqi ∈ L iff q ∈ Lm−1 = Lm′−1 iff m′qi ∈ L iff ε′i = 1.
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The fact that ϕ is injective comes as follows: suppose that εi = ε′i for i = 1, ..., k
i.e. mqi ∈ L⇔ m′qi ∈ L. Then

q ∈ Lm−1 iff mq ∈ L iff m ∈ q−1L = q−1
i L iff mqi ∈ L iff m′qi ∈ L iff

m′ ∈ q−1
i L = q−1L iff m′q ∈ L iff q ∈ Lm′−1.

Thus ϕ is injective and so

card{Lm−1 | m ∈M} � 2k.

By interchanging the roles of left and right derivatives in the above argument
we get the converse assertion.

A subset L of an M -set Q is said to be recognizable if there is a finite M -set Q′

and an M -function h : Q→ Q′ so that L = h−1(P ), for some P ⊆ Q′.

Theorem 1. Next conditions are equivalent for a subset L of the M -set Q:

i. L is recognizable
ii. card{q−1L | q ∈ Q} <∞
iii. card{Lm−1 | m ∈M} <∞

Proof. It is a combination of Proposition 1 and Proposition 2.

3 Deformation Monoids

A picture semigroup is a family of sets M = (Mα,β)α,β∈R+ equipped with two
(families of) operations

h©: Mα,β1 ×Mα,β2 →Mα,β1+β2 (horizontal multiplication)

v©: Mα1,β ×Mα2,β →Mα1+α2,β (vertical multiplication)

(α, α1, α2, β, β1, β2 ∈ R+) which are associative in the obvious sense and more-
over compatible with each other, i.e.

(a h©a′) v©(b h©b′) = (a v©b) h©(a′ v©b′)

whenever both sides are defined (a, a′, b, b′ ∈M).
Since we deal with two-dimensional objects, we need two kinds of units with

respect to the kind of multiplication we use. In a picture semigroup M =
(Mα,β)α,β∈R+ we say that the family (eα) , eα ∈ Mα,0 (α ∈ R+) is a horizontal
unit whenever for all a ∈Mα,β it holds that

eα h©a = a = a h©eα and eα v©eβ = eα+β (α, β ∈ R+).

The family of vertical units (fβ) are symmetrically defined. Of course whenever
a horizontal (resp. vertical) unit exists, it is unique. A picture semigroup with
both horizontal and vertical units is called a picture monoid.
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Picture monoids were introduced in [1],[2] in order to study picture codes and
picture automata, respectively.

Assume that two picture monoids M = (Mα,β)α,β∈R+ and M ′ = (M ′
α,β)α,β∈R+

are given. A morphism of rank (r, s), with r, s ∈ R+ − {0}, from M to M ′ is an
(R+ − {0})2-ranked family of functions

H = (Hα,β : Mα,β →M ′
rα,sβ)α,β∈R+

preserving horizontal and vertical multiplications and units

Hα,β1+β2(a h©a′) =Hα,β1(a) h©Hα,β2(a
′)

Hα1+α2,β(b v©b′) =Hα1,β(b) v©Hα2,β(b′)
Hα,0(eα) = e′α H0,β(fβ) = f ′

β

where a ∈ Mα,β1, a
′ ∈ Mα,β2 , b ∈ Mα1,β, b

′ ∈ Mα2,β (α, α1, α2, β, β1, β2 ∈ R+)
and (eα) , (fβ) (resp. (e′α) , (f ′

β)) are the horizontal and vertical units of M
(resp. M ′).

Clearly, the composition of two morphisms of ranks (r, s) and (r′, s′) respec-
tively is a morphism of rank (rr′, ss′). The morphisms of rank (1, 1) are simply
referred to as morphisms of picture monoids.

An instance of deformation monoid that will be used later on is that of a
2-monoid which is a structure M =(M , h©, v©,e,f) where h©, v©: M2 →M are two
associative operations admitting e,f respectively as unit elements.

Moreover, we demand that h©, v© satisfy the coherence condition

(m1 h©m2) v©(m′
1 h©m′

2) = (m1 v©m′
1) h©(m2 v©m′

2)

for all mi,m
′
i ∈M , i = 1, 2.

Furthermore, let M = (Mα,β)α,β∈R+ be a picture monoid and ∼=
(∼α,β)α,β∈R+ be an equivalence relation on M compatible with horizontal and
vertical multiplications

a ∼α,β1 a′ and b ∼α,β2 b′ implies a h©b ∼α,β1+β2 a′ h©b′

a ∼α1,β a′ and b ∼α2,β b′ implies a v©b ∼α1+α2,β a′ v©b′

for all a, a′, b, b′ ∈ M of suitable rank. Then we say that ∼ is a congruence on
M .

The quotient M/∼ can be organized into a picture monoid in the obvious
way:

a h©b = a h©b , a′ v©b′ = a′ v©b′

where a stands for the ∼-class of a and a, a′, b, b′ are elements of M with appro-
priate rank. It is called the quotient picture monoid of M by ∼.

Let X be a finite (pixel) alphabet. A picture of rank (m,n) over X is just an
m× n matrix with entries in X :

p =

x11 ... x1n

...
...

xm1 ... xmn

xij ∈ X .

We denote by pictm,n(X) the set of all such pictures.
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Pictures can be composed in two ways: horizontally and vertically. More pre-
cisely, the horizontal concatenation of an (m,n)-picture p with an (m,n′)-picture
q is the (m,n + n′)-picture pq obtained by writing q on the right of p.

The vertical concatenation of an (m,n)-picture p with an (m′, n)-picture r is

the (m + m′, n)-picture
(
p
r

)
obtained by writing r on the bottom of p.

m p m q %→ p q

n n′

m′ r

n

↓
p

r

Now we are going to introduce our basic algebraic structure.
A deformation monoid (DM) is a pairM = (M,defM ) consisting of a picture

monoid M and a family of morphisms of rank (r, s)

def
(r,s)
M : M →M , r, s ∈ R+ − {0}

called the (r, s)-deformation operator, verifying the equalities:

def
(r,s)
M ◦ def (r′,s′)

M = def
(rr′,ss′)
M , def

(1,1)
M = idM

where idM stands for the identity function on M .
Apparently a 2-monoid M can be viewed as a deformation monoid N(M)

by setting N(M)α,β = M for all α, β ∈ R+ whereas its deformation operators
coincide with the identity function on M .

Given two deformation monoidsM = (M,defM ) andM′ = (M ′, defM ′), any
morphism of picture monoids H : M →M ′ commuting with deformation i.e.

def
(r,s)
M ′ ◦Hα,β = Hrα,sβ ◦ def (r,s)

M α, β ∈ R+ , r, s ∈ R+ − {0}

is termed a morphism of deformation monoids (DM morphism).
Next we are going to construct the free deformation monoid generated by a

pixel alphabet X .
Denote by P (X) = (Pα,β(X))α,β∈R+ the least R+ × R+- indexed family of

sets formally constructed by the following items:
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i. X ⊆ P1,1(X)
ii. if p1 ∈ Pα,β1(X) and p2 ∈ Pα,β2(X), then their horizontal concatenation

p1p2 ∈ Pα,β1+β2(X), α, β1, β2 ∈ R+

iii. if p1 ∈ Pα1,β(X) and p2 ∈ Pα2,β(X) then their vertical concatenation
(
p1

p2

)
∈

Pα1+α2,β(X), α1, α2, β ∈ R+

iv. the horizontal and vertical empty pictures of rank α ∈ R+

εα ∈ Pα,0(X) and ζα ∈ P0,α(X)

play the role of units for the above two concatenations(ε0 = ζ0)
v. if p ∈ Pα,β(X), then p(r,s) ∈ Prα,sβ(X), for all r, s ∈ R+ − {0}, α, β ∈ R+.

The items i. − iv. ensure that P (X) is a picture monoid containing X whose
operations are horizontal and vertical concatenations.

Consider the congruence ∼ on P (X) generated by the relations

d1. p(1,1) ∼ p , (p(r,s))(r
′,s′) ∼ p(rr′,ss′)

d2. (p1p2)(r,s) ∼ p
(r,s)
1 p

(r,s)
2

d3.

(
p1

p2

)(r,s)

∼

(
p
(r,s)
1

p
(r,s)
2

)
for all r, s, r′, s′ ∈ R+ − {0} and all p, p1, p2 ∈ P (X) of suitable rank. Then the

quotient Pict(X) =P (X)/∼ is a deformation monoid: the deformation operation
associated with (r, s) ∈ (R+ − {0})2 is given by the mapping

p %→ p(r,s)

where p denotes the ∼-class of p.
Clearly any element p of Pictα,β(X) can be represented by a picture of rank

(α, β) constructed by the deformed pixels x(r,s) (x ∈ X, r, s ∈ R+−{0}) whereas
p(r,s) is the picture obtained by substituting any deformed pixel x(γ,δ) in p by
x(rγ,sδ), α, β, γ, δ ∈ R+.

A picture language of rank (α, β) over X is a subset of Pictα,β(X) (α, β∈ R+).
Pict(X) is the free deformation monoid generated by X , as next theorem con-
firms.

Theorem 2. The function j : X → Pict1,1(X) , j(x) = x has the following
universal property: for any deformation picture monoid M = (M,defM ) and
any function f : X →M1,1 there is a unique morphism of deformation monoids
f̂ : Pict(X)→M rendering commutative the diagram

X

M

Pict(X).f

j

f̂�

��������
��������
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The morphism f̂ is defined by the clauses:

- f̂(x) = f(x) , x ∈ X

- f̂(p1p2) = f̂(p1) h©f̂(p2)

- f̂

((
p1

p2

))
= f̂(p1) v©f̂(p2)

- f̂(p(r,s)) = def
(r,s)
M (f̂(p))

for all p, p1, p2 ∈ P (X) and (r, s) ∈ R+ − {0}.

4 Frame Recognizability

Now we shall apply the previous data to the setup of pictures. Consider a pixel
alphabet X and an auxiliary pixel ξ /∈ X .

The deformation equivalence ∼def is defined on the set⋃
α,β∈R+

Pictα,β(X)

as follows:

p ∼def q iff q = p(r,s) for some r, s ∈ R+ − {0}.

The quotient set

Pict(X) = (
⋃

α,β∈R+

Pictα,β(X))/ ∼def

has as elements the ∼def -classes of the pictures over X , i.e. the elements of
Pict(X) are of the form

p = {p(r,s) | r, s ∈ R+ − {0}}.

Next we introduce the monoid of frames. The set of frames with exterior rank
(α, β) and interior rank (r, s) is the subset Framer,s

α,β(X) of Pictα,β(X ∪ ξ) con-
sisting of all pictures with just one occurrence of a deformation of ξ, namely ξ(r,s)

f = α
ξ(r,s)

β

r � α , s � β.

Given frames

f ∈ Framer,s
α,β(X) and f ′ ∈ Frameγ,δ

r,s (X)

their composition f ◦ f ′ is the frame obtained by substituting f ′ at ξ(r,s) in f .



180 S. Bozapalidis and A. Grammatikopoulou

In general, if fi ∈ Frameri,si

αi,βi
(X) we define the product

f1 · f2 = f1 ◦ f
(

r1
α2

,
s1
β2

)

2

For f ′
i ∼def fi (i = 1, 2), it holds that f1 · f2 ∼def f ′

1 · f ′
2. It turns out that the

quotient set

Frame(X) =

( ⋃
α,β∈R+−{0}

Framer,s
α,β(X)

)
/ ∼def

with multiplication f1 · f2 = f1 · f2 becomes a monoid which canonically acts on
Pict(X): f · p = f · p. In other words Pict(X) is a Frame(X)-set and thus we
can speak of recognizable subsets L of Pict(X).

The left and right derivatives of L ⊆ Pict(X) are

p−1L = {f | f ∈ Frame(X) , f · p = f · p ∈ L}

Lf−1
= {p | p ∈ Pict(X) , f · p = f · p ∈ L}.

By applying Theorem 1 in the present setup we obtain the following result.

Proposition 3. Next conditions are equivalent for a subset L of Pict(X):

i. there is a finite Frame(X)-set Q and a Frame(X)-function h : Pict(X)→ Q
so that L = h−1(P ), for some P ⊆ Q,

ii. card{p−1L | p ∈ Pict(X)} <∞
iii. card{Lf−1 | f ∈ Frame(X)} <∞.

We call L ⊆ Pict(X) frame recognizable whenever it satisfies one (and thus all)
of the above conditions i-iii.

An immediate consequence of Proposition 3 concerns closure properties.

Proposition 4. The frame recognizable subsets of Pict(X) are closed under the
boolean operations.

A picture language L ⊆ Pict(X) is said to be deformation closed whenever

p ∈ L and p′ ∼def p implies p′ ∈ L.

For a deformation closed picture language L ⊆ Pict(X) its right and left
derivatives are defined to be the corresponding derivatives of the associated set
L:

Lp−1 = Lp−1 , f−1L = f
−1

L for all p ∈ Pict(X) , f ∈ Frame(X)

A deformation closed picture language L ⊆ Pict(X) is called frame recognizable
whenever L = {p | p ∈ L} ⊆ Pict(X) is frame recognizable.

Example 1. Let X = {�,�} and consider the language L ⊆ Pict(X) consisting
of all pictures having black pixels along their north-western faces. L is obviously
deformation-closed and has seven distinct left derivatives p−1L with:
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p =

����������������������������
,

�������������������������������� ,

������������������������������������������������
,

��������������������������������
, , e , f

where e, f are the empty horizontal and vertical pixels respectively.
Thus L is frame recognizable.

5 Recognizability through Picture Monoids

In [5] Matz raised the question whether the word language recognizability through
monoids can be transferred into the framework of pictures. In the present section
we deal with this problem.

A deformation monoid M = (Mα,β)α,β∈R+ is said to be

– locally finite whenever the set Mα,β is finite for all indices α, β ∈ R+

– finite whenever the set ⋃
α,β∈R+

Mα,β

is finite
– reachable if there is a finite pixel alphabet X and a deformation morphism

H : Pict(X) → M which is locally surjective, i.e. all the functions Hα,β :
Pictα,β(X)→Mα,β are surjective. This implies that any element m ∈Mα,β

(α, β ∈ R+) can be obtained from a list of elements def
(r1,s1)
M (m1), ...

, def
(rk,sk)
M (mk) (with m1, ...,mk ∈M1,1) by applying the operations of hor-

izontal and vertical multiplication.

Since R+ − {0} is a multiplicative group, the deformation operator def
(r,s)
M :

Mα,β →Mrα,sβ is bijective and its inverse is def
( 1

r , 1s )

M : Mrα,sβ →Mα,β.
Now, a picture language L ⊆ Pict(X) is recognizable if there is a locally finite

deformation monoid M and a deformation morphism H : Pict(X)→M so that
L = h−1(R), with R ⊆M (i.e. Rα,β ⊆Mα,β for all α, β ∈ R+).

We have next nice result.

Theorem 3. A deformation closed language L ⊆ Pict(X) is frame recognizable
if and only if there is a finite deformation monoid M = (Mα,β) whose deforma-
tion operator def

(r,s)
M : M1,1 →Mr,s (r, s ∈ R+ − {0}) satisfies the condition

(c) def
(r,s)
M (m) = m , for all m ∈M1,1

and a deformation morphism H : Pict(X) → M such that L = H−1(R) for
some R ⊆M .
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Proof. Assume that L is frame recognizable. This means that there exist a finite
Frame(X)-set Q and a Frame(X)-function θ : Pict(X)→ Q so that L = θ−1(Q′)
for some Q′ ⊆ Q.

For all α, β ∈ R+ we set

Mα,β = {θ(p) | p ∈ Pictα,β(X)}

and we define the horizontal multiplication

h© : Mα,β1 ×Mα,β2 →Mα,β1+β2

as follows: if mi = θ(pi), pi ∈ Pictα,βi(X) (i = 1, 2) then

m1 h©m2 = θ(p1p2). (1)

This formula is consistent. Indeed, let p′i ∈ Pictα,βi(X) , i = 1, 2 with

θ(p′i) = θ(pi) , i = 1, 2 (2)

and consider the frames

f = p1 ξ(α,β2) ,

f ′ = ξ(α,β1) p′2 .

Then

θ(p1p2) = θ(f · p2) = f · θ(p2)
(2)
= f · θ(p′2) = θ(f · p′2) = θ(f · p′2)

= θ(p1p′2) = θ(f ′ · p2) = f ′ · θ(p1) = f ′ · θ(p2) = θ(p′1p′2).

This operation is associative since for all mi (i = 1, 2, 3) of suitable rank we have
mi = θ(pi) (i = 1, 2, 3) and so

m1 h©(m2 h©m3) = θ(p1) h©(θ(p2) h©θ(p3)) = θ(p1) h©θ(p2p3) = θ(p1(p2p3))

= θ((p1p2)p3) = (m1 h©m2) h©m3.

The vertical multiplication is obtained in a similar way:

m1 v©m2 = θ

((
p1

p2

))
.

Finally, for all r, s ∈ R+ − {0} the formula

def
(r,s)
M (m) = θ(p(r,s)) (3)
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defines a deformation operator on M = (Mα,β). Thus M is a finite deformation
monoid satisfying the condition (c).

The mapping Hα,β : Pictα,β(X) → Mα,β , p %→ θ(p) is by construction a
deformation morphism.

Now by taking Pα,β = Q′∩Mα,β (α, β ∈ R+) we get for every p ∈ Pictα,β(X)

p ∈ H−1
α,β(Pα,β) iff Hα,β(p) ∈ Pα,β iff θ(p) ∈ Pα,β

iff θ(p) ∈ Q′ iff p ∈ L iff p ∈ L

as wanted.
In order to establish the converse let M = (Mα,β) be a finite deformation

monoid satisfying (c) and H : Pict(X)→M a deformation morphism such that
L = H−1(P ), for some P ⊆M (i.e. Pα,β ⊆Mα,β for all α, β ∈ R+).

Without any loss of generality we may assume that H is locally surjective.
For all r, s ∈ R+ − {0} the function def

(r,s)
M : M1,1 → Mr,s is a bijection and

so by virtue of (c), M1,1 = Mr,s and def
(r,s)
M is the identity function.

Therefore, from the next commutative triangle

M1,1

Mr′,s′

Mr,sdef
(r′,s′)
M

def
(r,s)
M

def
( r′

r , s′
s )

M
�

��������
��������

we obtain that def
( r′

r , s′
s )

M is also the identity function.

Fact. Let p ∈ Pictr,s(X), p′ ∈ Pictr′,s′(X) and p ∼def p′. Then

Hr,s(p) = Hr′,s′(p′).

The monoid Frame(X) acts on the set Q = M1,1 ∪ {e, f} as follows: for f ∈
Framer,s

α,β(X) and m ∈M1,1 we set f ·m = Hα,β(f · p), where p ∈ Pictr,s(X) is
such that Hr,s(p) = m.

If p′ ∈ Pictr,s(X) and Hr,s(p′) = m the fact that H is a morphism guarantees
that Hα,β(f · p) = Hα,β(f · p′).

Now, for f ′ ∼def f , f ′ ∈ Framer′,s′
α′,β′ then f ′ · p ∼def f · p and so by the

previous fact we get Hα,β(f ′ · p) = Hα,β(f · p).
Hence, formula (3) is legitimate.
Furthermore, we define the function θ : Pict(X)→ Q by setting

θ(p) = Hα,β(p) , p ∈ Pictα,β(X). (4)

Formula (4) is also consistent because if p′ = p, i.e. p′ ∼def p, then by virtue of
our fact, Hα,β(p) = Hα′,β′(p′).

The equality h(f · p) = f · h(p) comes directly from the above considerations.
We conclude that L = θ−1(p), that is L is recognizable.
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Given a 2-monoid M =(M , h©, v©,e,f) a morphism from Pict(X) to M is a family
of functions

Hα,β : Pictα,β(X)→M , α, β ∈ R+

which are compatible with horizontal, vertical concatenations and units

Hα,β1+β2(p1p2) = Hα,β1(p1) h©Hα,β2(p2)

Hα1+α2,β

((
q1

q2

))
= Hα1,β(q1) v©Hα2,β(q2)

H1,0(ε) = e

H0,1(ϕ) = f

and respect deformation

p ∼def p′ implies Hα,β(p) = Hα′,β′(p′).

Then we can state

Theorem 4. A deformation closed language L ⊆ Pict(X) is frame recognizable
if and only if there exist a finite 2-monoid M =(M , h©, v©,e,f) and a morphism
H : Pict(X)→M so that

L = H−1(P ) , for some P ⊆M.

Proof. The one direction results by the argument of Theorem 3 and the opposite
direction is straightforward.

6 Syntactic 2-Monoids

In the present section we investigate the minimization problem relative to rec-
ognizability through 2-monoids. Since R+ − {0} is a multiplicative group, all
deformation operators of Pict(Σ) are bijective and so if H : Pict(Σ)→ M is a
morphism of deformation monoids (M is a 2-monoid) then for all r, s ∈ R+−{0}
the language H−1

r,s (Q), Q ⊆M , is the (r, s)-deformation of the language H−1
1,1(Q).

In other words H−1(Q) is completely determined by H−1
1,1 (Q).

Next, given a deformation-closed picture language L ⊆ Pict(Σ), the set of its
right derivatives

ML = {Lp−1 | p ∈ Pict(Σ)}
can be canonically converted into a 2-monoid by defining the horizontal and
vertical multiplication via the formulas

(Lp−1
1 ) h©(Lp−1

2 ) = L(p1p2)−1 , (Lq−1
1 ) v©(Lq−1

2 ) = L

(
q1

q2

)−1

where p1, p2 and q1, q2 above can be chosen to have ranks (α1, β1), (α1, β2) and
(α1, β1), (α2, β1) respectively.

The canonical deformation morphism HL : Pict(Σ)→ML, HL(p) = Lp−1 is
clearly surjective and verifies the equation H−1(H(L)) = L.

Actually HL is universal with the above property in the following sense.
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Theorem 5. Let H : Pict(Σ) → M be a deformation epimorphism (M a 2-
monoid) such that H−1(H(L)) = L. Then there exists a unique epimorpism of
2-monoids H ′ : M →ML making commutative the triangle

Pict(Σ)

ML

MHL

H

H ′�

��������
��������

Proof. In order to achieve the proof we need some preliminary matter.
First, let us observe that the deformation morphism H : Pict(Σ) → M in-

duces a monoid morphism Frame(H) : Frame(Σ)→ Frame(M) which sends ev-
ery frame τ over Σ into the frame over M obtained by replacing every deformed
pixel σ(r,s) by H(σ)

τ =
σ(r,s)

ξ
%→

H(σ)

ξ

The monoid Frame(M) acts on the set M as follows: for any frame π over M
and any element m ∈ M , π ·m is the element of M obtained by replacing ξ by
m in π and then taking the valuation of the resulting picture of Pict(M)

π ·m = valM (π[m/ξ]).

Now, Frame(Σ) acts also on M by setting

τ ·m = Frame(τ) ·m for all τ ∈ Frame(Σ) , m ∈M.

By construction we have for every τ ∈ Frame(Σ)

H(τ · p) = τ ·H(p) p ∈ Pict(Σ). (5)

From the equality L = H−1(H(L)) we get

p ∈ L iff H(p) ∈ H(L). (6)

Since H is surjective, each element m ∈ M is written as m = H(p), for some
p ∈ Pict(Σ).

We set H ′(m) = Lp−1. We are going to show that H ′ is a well defined function,
i.e.

H(p1) = H(p2) implies Lp−1
1 = Lp−1

2 .

Indeed, for all frames τ ∈ Frame(Σ) it holds
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τ ∈ Lp−1
1 ⇔ τ · p1 ∈ L

(6)⇔ H(τ · p1) ∈ H(L)
(5)⇔ τ ·H(p1) ∈ H(L) ⇔ τ ·H(p2) ∈ H(L)

⇔ H(τ · p2) ∈ H(L)
(6)⇔ τ · p2 ∈ L ⇔ τ ∈ Lp−1

2

as wanted. Clearly H ′ preserves the horizontal and vertical multiplications and
units and it is surjective.

Its uniqueness is immediate.

Given 2-monoids M,M ′ we write M < M ′ whenever M is a surjective image of
a 2-submonoid of M ′.

With this notation, we have

Proposition 5. Let L1, L2, L ⊆ Pict(Σ) be deformation closed. Then

ML1∪L2 < ML1 ×ML2 , ML1∩L2 < ML1 ×ML2 , MLc = ML , Mτ−1L < ML

τ ∈ Frame(Σ), where Lc is the set theoretic complement of L.
Moreover, if F : Pict(Δ) → Pict(Σ) is a homomorphism of deformation

monoids, then MF−1(L) < ML.

Proof. A routine application of Theorem 5.

Remark 1. The theory of syntactic 2-monoids could be linked with the general
theory of syntactic algebras, and especially with the many-sorted version pre-
sented in [6].

7 The Variety Theorem

In the framework of picture languages an analogue of the nice Eilenberg variety
theorem can be established. More precisely, we show that there is a bijection
between the varieties of frame recognizable picture languages and the class of
pseudovarieties of finite 2-monoids.

To establish thee above result actually we adapt the arguments of Eilenberg
(cf. [4]).

A class of finite 2-monoids closed under isomorphism is called a pseudovariety
of 2-monoids whenever next axioms are fulfilled:

pv1) If M1, ...,Mk ∈ V, then M1 × ...×Mk ∈ V.
pv2) If g : M ′ →M is a monomorphism of 2-monoids and M ∈ V, then M ′ ∈ V.
pv3) If h : M →M ′′ is an epimorphism of 2-monoids and M ∈ V, then M ′′ ∈ V.

Clearly pv1) + pv2) can be replaced by the single axiom

pv) If M ′ < M and M ∈ V then M ′ ∈ V

where the symbol < was introduced in the previous section.
The intersection of any family of pseudovarieties of 2-monoids is again a pseu-

dovariety of 2-monoids so we can speak of the pseudovariety generated by a class
V of finite 2-monoids. It is denoted by < V >.Clearly
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Proposition 6. It holds

M ∈< V > iff M < M1 × ...×Mk with Mi ∈ V (i = 1, ..., k).

Proposition 7. Each pseudovariety V is generated by the syntactic 2-monoid
it contains.

Proof. Let M ∈ V and denote by Σ(M) a pixel alphabet in bijection with
M , b : Σ(M)→̃M . By Theorem 2 b is uniquely extended into a morphism of
deformation monoids

b : Pict(Σ(M))→M.

We set Lm = b
−1

(m), m ∈ M . Since H−1(H(Lm)) = Lm there results an
epimorphism bm : M →MLm , m ∈M (Theorem 5). The induced morphism

B : M →
∏

m∈M

MLm , B(a) = (bm(a))m∈M

is obviously a monomorphism. Since MLm ∈ V for all m ∈ M the cartesian
product

∏
m∈M MLm is also in V and so M belongs to the variety generated by

the syntactic 2-monoids belonging in V. The result follows.

Now, assume that for every finite pixel alphabet Σ, a family P(Σ) of frame
recognizable picture languages is given, so that

lv1) P(Σ) is closed under boolean operations(union, intersection, complement)
lv2) P(Σ) is closed under right derivatives

τ ∈ Frame(Σ) , L ∈ P(Σ) implies τ−1L ∈ P(Σ)

lv3) for any deformation homomorphism F : Pict(Δ)→ Pict(Σ) we have

L ∈ P(Σ) implies F−1(L) ∈ P(Δ).

Then we say that the family (P(Σ))Σ is a variety of frame recognizable languages.

Proposition 8. Let P = (P(Σ))Σ be a variety of frame recognizable languages.
If L ∈ P(Σ) and p ∈ Pict(Σ) then the equivalence class of p, [p] = H−1

L (HL(p))
is also in P(Σ).

Proof. We only have to observe that

[p] =
⋂

τp∈L

τ−1L−
⋃

τp/∈L

τ−1L

and take into account lv1) and lv2).

Now we are ready to define the main correspondences. To each variety P =
(P(Σ))Σ of frame recognizable languages we associate the pseudovariety of 2-
monoids VP which is generated by the syntactic 2-monoid of the languages of P .

In the opposite direction, to each pseudovariety V of finite 2-monoids we
associate the class PV = (PV(Σ))Σ such that L ∈ PV(Σ) iff ML ∈ V. By virtue
of Proposition 5, PV is a variety of frame recognizable picture languages.
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Theorem 6. The assignments

P %→ VP and V %→ PV

are mutually inverse to each other.

Proof. It follows the classical argument of Eilenberg’s Theorem.
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Abstract. The syntactic complexity of a tree language is defined ac-
cording to the number of the distinct syntactic classes of all trees with
a fixed yield length. This leads to a syntactic classification of tree lan-
guages and it turns out that the class of recognizable tree languages
is properly contained in that of languages with bounded complexity. A
refined syntactic complexity notion is also presented, appropriate exclu-
sively for the class of recognizable tree languages. A tree language is
recognizable if and only if it has finitely many refined syntactic classes.
The constructive complexity of a tree automaton is also investigated
and we prove that for any reachable tree automaton it is equal with the
refined syntactic complexity of its behavior.

1 Introduction

The notion of graph language recognizability by virtue of magmoids was inves-
tigated in [2]. An advantage of this approach is that it is possible to determine
the syntactic complexity of graph languages.

We say that two graphs of the same type are equivalent modulo the syntactic
congruence ∼L, of a graph language L, whenever they have the same set of
contexts with respect to L. A graph language L is recognizable if and only if
there are finitely many syntactic classes at every type.

The syntactic complexity of a recognizable graph language L is then measured
by a function mapping any type (m,n) to the number of syntactic classes at this
type. This leads to a classification of graph languages according to their syntax.
For instance the syntactic complexity of the set Con(Σ) of connected graphs
is bellian and also graph languages with constant, polynomial and exponential
complexity are displayed (cf. [2]). In [6] the language of Eulerian graphs is shown
to be syntactically more complicated than that of connected graphs. On the other
hand the notion of syntactic complexity in the setup of pictures is discussed in [1].
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In the present paper we develop a similar descriptive complexity theory in or-
der to investigate and classify tree languages according to their syntactic struc-
ture. Let us denote by TΓ the set of all trees over the ranked alphabet Γ and
by PΓ the monoid of all trees with just one occurrence of the variable x in their
yield. PΓ acts on TΓ via substitution at x

PΓ × TΓ → TΓ , (τ, t) �→ τ · t = τ [t/x].

Two notions of derivative, with respect to a tree language L ⊆ TΓ , arise: for
τ ∈ PΓ and t ∈ TΓ ,

τ−1L = {t | t ∈ TΓ , τ · t ∈ L}, Lt−1 = {τ | τ ∈ PΓ , τ · t ∈ L}.

The syntactic congruence associated with L is then

t ∼L t′ if and only if Lt−1 = Lt′−1

and the syntactic complexity of L is the function SCL : N → N which sends
every natural number n to the number of distinct ∼L-classes of trees with yield
length n. It is well known that every recognizable language L (i.e., behavior of
a finite tree automaton) has finitely many right derivatives and so its SCL is
bounded. Thus the growth rate of this syntactic measure can only be used for a
classification of non-recognizable tree languages (Section 3).

A refined notion of syntactic complexity is introduced in Section 4 in order
to define a syntactic hierarchy within the class of recognizable tree languages.
Denote by P

(n)
Γ the set formed by all trees where x1, . . . , xn occur in the yield

of the tree (in this order from left to right) exactly once. For t1, . . . , tn ∈ TΓ , we
write τ [t1, . . . , tn] for the tree obtained by substituting in τ the trees t1, . . . , tn
at x1, . . . , xn respectively. There results a function

P
(n)
Γ × T n

Γ → TΓ , (τ, t1, . . . , tn) �→ τ [t1, . . . , tn]

according to which two dual notions of derivatives, with respect to a language
L ⊆ TΓ , arise: for τ ∈ P

(n)
Γ and t1, . . . , tn ∈ TΓ ,

τ−1L = {(t1, . . . , tn) | t1, . . . , tn ∈ TΓ , τ [t1, . . . , tn] ∈ L},

L(t1, . . . , tn)−1 = {τ | τ ∈ P
(n)
Γ , τ [t1, . . . , tn] ∈ L}.

A main result of this paper states that the following conditions are equivalent

i) a language L ⊆ TΓ is recognizable;
ii) for all n, card{τ−1L | τ ∈ P

(n)
Γ } < ∞;

iii) for all n, card{L(t1, . . . , tn)−1 | t1, . . . , tn ∈ TΓ } < ∞.

The refined syntactic complexity of a recognizable language L ⊆ TΓ is the func-
tion RSCL : N → N sending every natural number n to the number of distinct
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left derivatives τ−1L, where τ ranges over the set P
(n)
Γ . Two interesting lan-

guages with linear and exponential refined syntactic complexity are displayed.
The first one is generated by the regular tree grammar

G : x → f(a, x, b), x → c

and RSCL(n) = 2(n + 1), for all n. The second is generated by the regular tree
grammar

G : x1 → f(x1, x2), x1 → a, x2 → g(x1, x2), x2 → b

and RSCL(n) = 2n + 1, for all n.
In the last section we present a way to measure how complicated the structure

of a tree automaton is. Let M = (Q,μ, F ) be a (deterministic bottom up) tree
automaton, over the input alphabet Γ , where Q is the state set, F ⊆ Q the final
state set and μ = (μf : Qk → Q), f ∈ Γk, k ≥ 0, is the table of moves of M.
For τ ∈ P

(n)
Γ and q1, . . . , qn ∈ Q we denote by τ [q1, . . . , qn] the state obtained

by substituting qi at xi inside τ , 1 ≤ i ≤ n. The constructive complexity of M
is the function CCM : N → N defined by the fornmula

CCM(n) = card{τ−1F | τ ∈ P
(n)
Γ }, for all n,

with τ−1F = {(q1, . . . , qn) | q1, . . . , qn ∈ Q, τ [q1, . . . , qn] ∈ F}. For reachable tree
automata M,M′ we demonstrate that if M simulates M′, then CCM = CCM′ .

Consequently, the constructive complexity of any reachable automaton M,
with behavior L, coincides with the constructive complexity of the minimal tree
automaton ML associated with L: CCM = CCML .

As CCML = RSCL we get that the constructive complexity of any reachable
automaton is equal with the refined syntactic complexity of its behavior. As a
byproduct we get a bound for the function RSCL, namely

RSCL(n) ≤ 2(cardQL)n

, for all n,

where QL is the state set of the minimal automaton ML.

2 Basic Facts

To construct trees we need a (finite) ranked alphabet Γ =
⋃

k≥0

Γk and a set

X = {x1, x2, . . . } of variables. Let Xn = {x1, x2, . . . , xn}, X0 = ∅. The set of
trees over Γ and X is the smallest set of TΓ (X) inductively defined by the items

– Γ0 ∪X ⊆ TΓ (X)
– t1, . . . , tk ∈ TΓ (X) and f ∈ Γk implies f(t1, . . . , tk) ∈ TΓ (X).

Often f(t1, . . . , tk) is depicted as
f

. . .
tkt1
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hence the denomination tree. We write TΓ instead of TΓ (∅). The height of a tree
t ∈ TΓ (X) is the length of its longest branch. Formally the function height :
TΓ (X) → N is inductively defined by

– height(α) = 0, for a ∈ Γ0 ∪X ;
– height(f(t1, . . . , tk)) = 1 + max{height(t1), . . . , height(tk)}, f ∈ Γk and

t1, . . . , tk ∈ TΓ (X).

Subsets of TΓ (X) are refereed to as tree languages.
The basic operation on trees is substitution. Given t, t1, . . . , tn ∈ TΓ (Xn),

we denote by t[t1, . . . , tn] the result of substituting ti at every occurrence of xi,
inside t, 1 ≤ i ≤ n. Denote by PΓ the subset of TΓ (x) consisting of all trees with
exactly one occurrence of the variable x. PΓ becomes a monoid with operation
the substitution at x: for τ, π ∈ PΓ , τ · π = τ [π/x]. This monoid is free over the
set of trees of the form

f(t1, . . . , ti−1, x, ti+1, . . . , tk), f ∈ Γk, k ≥ 1, tj ∈ TΓ (j = i)

and acts, again by substitution at x, on the set TΓ :

PΓ × TΓ → TΓ , (τ, t) �→ τ · t = τ [t/x].

The classical machine model consuming trees is the deterministic bottom up
Γ -tree automaton. Such a system is a structure M = (Q,μ, F ) where Q is the
finite set of states, F ⊆ Q is the final state set and μ = (μf : Qk → Q)f∈Γk,k≥0

is the table of moves of M. The reachability map μM : TΓ → Q is inductively
defined by

μM(f(t1, . . . , tk)) = μf (μM(t1), . . . , μM(tk)), f ∈ Γk, ti ∈ TΓ , k ≥ 0

and the behavior of M is the tree language

|M| = {t | t ∈ TΓ , μM(t) ∈ F} = μ−1
M (F ).

Tree languages obtained in this way are called recognizable. The automaton M
is said to be reachable whenever μM is a surjective function. Given a tree au-
tomaton M = (Q,μ, F ) the monoid PΓ acts on each state set Q

PΓ ×Q → Q, (τ, q) �→ τ · q

as follows

– x · q = q, q ∈ Q
– if τ is of the form f(t1, . . . , ti−1, x, ti+1, . . . , tk) then

τ · q = μf (μM(t1), . . . , μM(ti−1), q, μM(ti+1), . . . , μM(tk))

– if τ = τ1 · τ2, with τ1 = x = τ2, then

τ · q = τ1 · (τ2 · q), q ∈ Q.

The reachability map respects the above action.
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Proposition 1. It holds that

μM(τ · t) = τ · μM(t) for every τ ∈ PΓ and t ∈ TΓ .

We are going to characterize recognizability in algebraic terms. The right and
left derivatives of a tree language L ⊆ TΓ at t ∈ TΓ and τ ∈ PΓ are given by

Lt−1 = {τ | τ ∈ PΓ , τ · t ∈ L}, τ−1L = {t | t ∈ TΓ , τ · t ∈ L}

respectively. The equivalence relation ∼L on TΓ

t ∼L t′ if Lt−1 = Lt′−1

is well known to be a congruence, i.e.,

t1 ∼L t′1, . . . , tk ∼L t′k and f ∈ Γk imply f(t1, . . . , tk) ∼L f(t′1, . . . , t
′
k).

The next result is folklore.

Proposition 2. The folowing conditions are equivalent for a language L ⊆ TΓ

i) L is recognizable
ii) card{Lt−1 | t ∈ TΓ } < ∞
iii) card{τ−1L | τ ∈ PΓ } < ∞
iv) The syntactic congruence∼L has finite index (i.e., a finite number of classes).

A device which is equipowerful to tree automata is the regular tree grammar.
Such a grammar is a triple G = (Γ,Xn,R) where Γ , Xn are the input ranked
alphabet and the set of variables respectively, whereas R is a finite set of rules
xi → t, t ∈ TΓ (Xn). For s, s′ ∈ TΓ (Xn), we write s ⇒

G
s′ if there exist τ ∈ PΓ

and a rule xi → t ∈ R such that s = τ · xi and s′ = τ · t. We set

L(G, xi) = {t | t ∈ TΓ , xi
∗⇒
G

t}

where ∗⇒
G

denotes as usual the reflexive and transitive closure of ⇒
G

.

Proposition 3 (cf. [3,4,5]). A language L ⊆ TΓ is recognizable if and only if
it is generated by a regular tree grammar G: L = L(G, x1).

3 Syntactic Complexity of Tree Languages

Syntactic complexity is a tool to study the syntax of a tree language. It counts the
number of distinct syntactic classes of trees with a fixed yield length. Formally
the syntactic complexity of a tree language L ⊆ TΓ is the function

SCL : N → N, SCL(n) = card{t̄ | t ∈ TΓ , |y(t)| = n}, n ∈ N

where t̄ stands for the ∼L-class of t and the function yield, y : TΓ → Γ ∗
0 , is

inductively defined by

y(c) = c, (c ∈ Γ0), y(f(t1, . . . , tk)) = y(t1) · · · y(tk), (f ∈ Γk, ti ∈ TΓ ).
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Alternatively we have

SCL(n) = card{Lt−1 | t ∈ TΓ , |y(t)| = n}, n ∈ N.

We say that a language L ⊆ TΓ has bounded, polynomial or exponential
syntactic complexity if the explicit formula defining the function SCL is upper
bounded by a constant, polynomial or exponential function respectively.

First let us point out that augmenting the basis alphabet Γ the syntactic
complexity remains unchanged. Indeed, if Γ ⊆ Γ ′ and L ⊆ TΓ ⊆ TΓ ′ then the
syntactic complexity of L computed with respect to Γ and Γ ′ differ at most by
1 since, for all t, t′ ∈ TΓ ′ \ TΓ , we have that t ∼L t′. Thus SCL does not depend
on Γ .

According to Proposition 2 every recognizable tree language has bounded
syntactic complexity SCL(n) ≤ k for a fixed k and all n ∈ N. However this fact
does not characterize tree language recognizability as is confirmed by the next
example.

Example 1. Take the alphabet Γ = {f, α} with rank(f) = 2, rank(α) = 0 and
consider the tree languages Lbal of all balanced trees and Lfib of all Fibonacci
trees

Lbal = {tk | t0 = α, tk+1 = f(tk, tk), k ≥ 1},
Lfib = {sk | s0 = s1 = a, sk+2 = f(sk+1, sk), k ≥ 0},

respectively. Observe that |y(tk)| = 2k while |y(sk)| = fk, the k-th Fibonacci
number. The trees

τk = f(tk, x), πk = f(sk+1, x),

have the properties

τk · tk ∈ Lbal, but τk · t /∈ Lbal for t = tk,

and

πk · sk ∈ Lfib, but πk · s /∈ Lfib for s = sk,

respectively. Therefore the derivatives Lbalt
−1
k are pairwise distinct and so are

the derivatives Lfibs
−1
k respectively. It turns out that

card{Lbalt
−1 | t ∈ TΓ } = ∞ = card{Lfibs

−1 | s ∈ TΓ }
and so both the languages Lbal and Lfib are not recognizable. Moreover, it holds

SCLbal
(n) = 2, if n = 2k

= 1, otherwise

and similarly,

SCLfib
(n) = 2, if n = fk

= 1, otherwise.

Thus, although Lbal, Lfib are not recognizable, they have bounded syntactic
complexity.

Consequently,
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Proposition 4. The class BSC of tree languages with bounded syntactic com-
plexity properly contains the class REC of recognizable tree languages.

Our notion of complexity permits to classify the non recognizable tree languages
in a non trivial way as it is presented below.

Proposition 5. Given the ranked alphabet Γ = {f1, . . . , fk, α}, rank(fi) = 2,
1 ≤ i ≤ k, rank(α) = 0, the Dyck tree language of order k

Dk = {t | t ∈ TΓ , |t|f1 = · · · = |t|fk
}

has polynomial syntactic complexity of degree k − 1, namely

SCDk
(n) =

1
(k − 1)!

n(n + 1) · · · (n + k − 2).

Proof. For t, t′ ∈ TΓ we have

Dkt
−1 = Dkt

′−1 if and only if |t|fi = |t′|fi for i = 1, . . . , k.

On the other hand the number of binary symbols occurring in a tree t ∈ TΓ with
yield length n is just n − 1. Therefore the different ways to share the symbols
f1, . . . , fk in the nodes of t is equal with the number of k-tuples of natural
numbers (x1, . . . , xk) verifying the equation

x1 + · · · + xk = n− 1

which, as it is well known from Combinatorics, is equal with(
n− 1 + k − 1

k − 1

)
=
(
n + k − 2

k − 1

)
=

1
(k − 1)!

n(n + 1) · · · (n + k − 2).

Hence the proposed formula.

A tree language L ⊆ TΓ such that for every n

card{Lt−1 | t ∈ TΓ , |y(t)| = n} = card{t | t ∈ TΓ , |y(t)| = n}

will be called syntactically hard. Of course such a language L has the highest
possible syntactic complexity, i.e.,

SCL(n) = card{t | t ∈ TΓ , |y(t)| = n}.

In the case that Γ = {f, a}, with rank(f) = 2, rank(α) = 0 the above number
is well known from Combinatorics and is the n − 1-th Catalan number Cn−1,
where

Cn =
1

n + 1

(
2n
n

)
� 4n

n3/2
√
π
.
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Proposition 6. The diagonal language

Ld = {f(t, t) | t ∈ TΓ }, Γ = {f, α},

is syntactically hard

SCLd
(n + 1) =

1
n + 1

(
2n
n

)
.

Proof. Actually, we shall show that the right derivatives Ldt
−1, t ∈ TΓ , are

pairwise distinct. First observe that

Ldt
−1 = {f(s, τ) | s ∈ TΓ , τ ∈ PΓ , s = τ ·t}∪{f(τ, s) | s ∈ TΓ , τ ∈ PΓ , s = τ ·t}.

Now, if Ldt
−1 ∩ Ldt

′−1 = ∅, then

f(s, τ) = f(s′, τ ′), s = τ · t, s′ = τ ′ · t′,

or
f(τ, s) = f(τ ′, s′), s = τ · t, s′ = τ ′ · t′.

Hence s = s′, τ = τ ′ and t = t′.

4 Refined Syntactic Complexity

As we have seen the growth rate of the function SCL introduced in the previous
section gives no information that allows us to compare recognizable tree lan-
guages with respect to their complexity. Our intention in the present section is
to provide an efficient complexity measure for recognizable tree languages. Let
us denote by P

(n)
Γ the subset of TΓ (Xn) formed by all trees where x1, . . . , xn

occur in the yield of the tree (in this order from left to right) exactly once. For
instance the tree

τ = ∈ P
(3)
Γ .

f

bf x2 x3

f

f

a x1

For every n ≥ 1 there is a junction function

P
(n)
Γ × T n

Γ → TΓ , (τ, t1, . . . , tn) �→ τ [t1, . . . , tn].

With respect to L ⊆ TΓ , two dual notions of derivatives can be defined:

τ−1L = {(t1, . . . , tn) | τ [t1, . . . , tn] ∈ L},

L(t1, . . . , tn)−1 = {τ | τ ∈ P
(n)
Γ , τ [t1, . . . , tn] ∈ L},

for all τ ∈ P
(n)
Γ and t1, . . . , tn ∈ TΓ .
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Theorem 1. For L ⊆ TΓ , the following conditions are equivalent

i) L is recognizable
ii) for every n ≥ 1, card{τ−1L | τ ∈ P

(n)
Γ } < ∞

iii) for every n ≥ 1, card{L(t1, . . . , tn)−1 | t1, . . . , tn ∈ TΓ } < ∞.

Proof. iii) ⇒ ii). Assume that L(t11, . . . , t1n)−1, . . . , L(tk1, . . . , tkn)−1 are the
distinct right derivatives of L. Then the function

φ : {τ−1L | τ ∈ P
(n)
Γ } → {0, 1}k, φ(τ−1L) = (ε1, . . . , εk)

with εi = 1 iff τ [ti1, . . . , tin] ∈ L is well defined and moreover it is injective since

φ(τ−1L) = φ(τ ′−1L) implies τ−1L = τ ′−1L.

The hypothesis φ(τ−1L) = φ(τ ′−1L) is equivalent to

τ [ti1, . . . , tin] ∈ L iff τ ′[ti1, . . . , tin] ∈ L (1)

for all i = 1, 2, . . . , k. We have

(s1, . . . , sn) ∈ τ−1L ⇔ τ [s1, . . . , sn] ∈ L

⇔ τ ∈ L(s1, . . . , sn)−1 = L(ti1, . . . , tin)−1, for some i

⇔ τ [ti1, . . . , tin] ∈ L (by 1 above)
⇔ τ ′[ti1, . . . , tin] ∈ L

⇔ τ ′ ∈ L(ti1, . . . , tin)−1

⇔ (s1, . . . , sn) ∈ τ ′−1L

that is τ−1L = τ ′−1L as wanted. From the injectivity of φ we get

card{τ−1L | τ ∈ P
(n)
Γ } < ∞.

The implication ii) ⇒ iii) can be proved in a similar way.
The fact that ii) ⇒ i) follows from Proposition 2 since PΓ = P

(1)
Γ .

i) ⇒ ii). Consider a tree automaton M = (Q,μ, F ) with behavior L and let
μM : TΓ → Q be its reachability map. We shall demonstrate that for every
t1, . . . , tn ∈ TΓ there exist t̄1, . . . , t̄n ∈ TΓ with height less or equal to cardQ
such that

μM(τ [t1, . . . , tn]) = μM(τ [t̄1, . . . , t̄n]), for all τ ∈ P
(n)
Γ .

Indeed let us choose t̄i with the property

μM(t̄i) = μM(ti), height(t̄i) ≤ cardQ

for all i = 1, . . . , n. Then we get

μM(τ [t1, . . . , tn]) = μM(τ [x, t2, . . . , tn] · t1) (by Prop. 1)
= τ [x, t2, . . . , tn] · μM(t1)
= τ [x, t2, . . . , tn] · μM(t̄1) (by Prop. 1)
= μM(τ [x, t2, . . . , tn] · t̄1)
= μM(τ [t̄1, . . . , tn]) = · · · = μM(τ [t̄1, . . . , t̄n]).
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Now it holds that
L(t1, . . . , tn)−1 = L(t̄1, . . . , t̄n)−1.

In fact

τ ∈ L(t1, . . . , tn)−1 ⇔ τ [t1, . . . , tn] ∈ L = μ−1
M (F )

⇔ μM(τ [t1, . . . , tn]) ∈ F

⇔ μM(τ [t̄1, . . . , t̄n]) ∈ F

⇔ τ [t̄1, . . . , t̄n] ∈ μ−1
M (F ) = L

⇔ τ ∈ L(t̄1, . . . , t̄n)−1

as wanted. It follows that

card{L(t1, . . . , tn)−1 | t1, . . . tn ∈ TΓ } ≤ (cardQ)n < ∞

and the proof is completed.

The refined syntactic complexity of a recognizable tree language L ⊆ TΓ is the
function RSCL : N → N sending every natural number n to the number of the
distinct left derivatives τ−1L when τ ranges over P

(n)
Γ , i.e.,

RSCL(n) = card{τ−1L | τ ∈ P
(n)
Γ }.

Example 2. Return to the non-recognizable language Lbal and let us choose the
trees

f

τk,n =

xn

x2

x1tk

...

f

f ∈ P
(n)
Γ .

For s0, . . . , sn−1 ∈ TΓ , we have τk,n[s0, . . . , sn−1] ∈ Lbal iff si = tk+i for 0 ≤
i < n. In other words, there are infinitely many distinct left derivatives τ−1Lbal,
τ ∈ P

(n)
Γ , i.e., RSCLbal

(n) = ∞ for all n.
Similar observations can be made for Lfib.

In the sequel we display two recognizable languages having linear and exponential
syntactic complexity respectively.

Example 3. Consider the recognizable tree language L consisting of all trees of
the form
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f

tm =

ba

ba

ba c

...

f

f

(m occurrences of f , m ≥ 1).

For 0 ≤ k ≤ n ≤ 2m let us denote by dk a strictly increasing function from
{1, 2, . . . , n} to {1, 2, . . . , 2m} such that dk(i) ≤ m for all i = 1, 2, . . . , k and
dk(i) ≥ m + 1 for i = k + 1, k + 2, . . . , n. We introduce the tree τ(dk) obtained
from tm above by distributing via dk the variables x1, . . . , xk on the left nodes
labelled by a and the remaining variables xk+1, . . . xn on the right nodes labelled
by b. For instance

f

τ(d2) =

x4x1

x3x2

ba c

f

f

f

and τ(d′2) =

x1

x4

x3x2

b

a

c

f

f

with d2, d
′
2 : {1, 2, 3, 4} → {1, 2, 3, 4, 5, 6} given by d2(1) = 1, d2(2) = 2, d2(3) =

5, d2(4) = 6 and d′2(1) = 1, d′2(2) = 3, d′2(3) = 4, d′2(4) = 5 respectively. It is
not hard to see that, if dk, d

′
k are two distributions as defined previously, then

we have

τ(dk)−1L = τ(d′k)−1L

therefore there are exactly n + 1 distinct left derivatives of the above form,
namely,

τ(d0)−1L, τ(d1)−1L, . . . , τ(dn)−1L.

Next for 1 ≤ k ≤ n ≤ 2m+1 let us denote by δk a strictly increasing function
from {1, 2, . . . , n} to {1, 2, . . . , 2m + 1} with the property δk(k) = m + 1 and
δk(i) ≤ m (i ≤ k − 1), δk(i) ≥ m + 2 (i ≥ k + 1). Also we denote by τ(δk) the
tree obtained from tm above by distributing via δk the variables x1, . . . xk−1 on
the left nodes labelled by a, the variables xk+1, . . . xn on the right nodes labelled
by b whereas the variable xk replaces the node labelled by c. As above we can
verify that there are exactly n distinct left derivatives



200 S. Bozapalidis and A. Kalampakas

τ(δ1)−1L, τ(δ2)−1L, . . . , τ(δn)−1L.

Of course if τ ∈ P
(n)
Γ is neither of the form τ(d) nor τ(δ) then τ−1L = ∅. We

conclude that there are in total n+ 1 +n+ 1 = 2(n+ 1) distinct left derivatives
of L at level n, i.e., RSCL(n) = 2(n+1) and the language L has linear syntactic
complexity.

Example 4. Consider the regular tree grammar

G : y1 → f(y1, y2), y2 → g(y1, y2), y1 → a, y2 → b,

and the tree language L(G, y1) generated by G starting from the variable y1. A
tree t belongs to L(G, y1) if and only if the left (resp. right) child of any node
of t is labelled either by f or a (resp. g or b). From any t ∈ L(G, y1) and any
strictly increasing function d : {1, 2, . . . , n} → {1, 2, . . . , |y(t)|} we derive the tree
τ(t, d) ∈ P

(n)
Γ by replacing the letter located at the d(i)-th position of y(t) (from

left to right) with the variable xi (1 ≤ i ≤ n). It is not hard to see that two such
trees τ(t, d) and τ(t′, d′) define the same left derivative,

τ(t, d)−1L(G, y1) = τ(t′, d′)−1L(G, y1)

if and only if for every i ∈ {1, 2, . . . , n} the d(i)-th and d′(i)-th letters in y(t),
y(t′), respectively, are equal. It turns out that the distinct left derivatives of
L(G, y1) correspond to the possible ways of substituting x1 by a or b, x2 by a
or b, etc. Taking into account the empty left derivative we finally obtain

RSCL(G,y1)(n) = 2n + 1

that is L(G, y1) has exponential syntactic complexity.

5 Constructive Complexity of a Tree Automaton

Here we display a way to measure how complicated the structure of a tree au-
tomaton is. First we need some additional notation. Given a tree automaton
M = (Q,μ, F ), for every t ∈ TΓ (Xn) and every q1, . . . , qn ∈ Q, the element
t[q1, . . . , qn] ∈ Q is inductively defined as follows

– for t = xi, xi[q1, . . . , qn] = qi, 1 ≤ i ≤ n;
– for t = c ∈ Γ0, c[q1, . . . , qn] = μc;
– for t = f(t1, . . . , tk), f ∈ Γk, ti ∈ TΓ (Xn)

f(t1, . . . , tk)[q1, . . . , qn] = μf (t1[q1, . . . , qn], . . . , tk[q1, . . . , qn]).

The constructive complexity of the automaton M = (Q,μ, F ) is the function
CCM : N → N defined by the formula

CCM(n) = card{τ−1F | τ ∈ P
(n)
Γ }
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where
τ−1F = {(q1, . . . , qn) | τ [q1, . . . , qn] ∈ F}.

Since for all n we have τ−1F ⊆ Qn, we get that

CCM(n) ≤ 2(cardQ)n

and so CCM is everywhere defined.

Example 5. Let Γ be a finite ranked alphabet and consider the automaton M =
(Zm, μ, F = {0}) where Zm = {0, 1, . . . ,m− 1} is the additive group of integers
modm. The moves μf : Zk

m → Zm are given by

μc = 1, (c ∈ Γ0), μf (α1, . . . , αk) = 1 + α1 + · · · + αk, (f ∈ Γk, k ≥ 1)

where at the right hand side the designated addition is the modm addition. The
reachability map μM : TΓ → Zm sends every tree t to its modm size, i.e.,

μM(t) = |t|(modm)

and the behavior of M consists of all trees whose size is divisible by m. For
τ, τ ′ ∈ P

(n)
Γ , we have

τ−1F = τ ′−1F if and only if |τ | ≡ |τ ′|(modm).

Consequently, there are exactly m distinct classes τ−1F , that is CCM(n) = m
for all n and thus M has constant constructive complexity.

A naturally arising question concerns the comparison of the complexities CCM
and RSC|M|. Recall that a simulation of M = (Q,μ, F ) to M′ = (Q′, μ′, F ′) is
a surjective function h : Q → Q′ respecting the moves

h(μf (q1, . . . , qn)) = μ′
f (h(q1), . . . , h(qk)), f ∈ Γk, qi ∈ Q,

and moreover h−1(F ′) = F . An induction argument on the complexity of the
tree τ ∈ P

(n)
Γ shows that

h(τ [q1, . . . , qn]) = τ [h(q1), . . . , h(qn)], q1, . . . , qn ∈ Q. (2)

Proposition 7. Let M,M′ be reachable tree automata. If there is a simulation
h : M → M′ then both M and M′ have the same constructive complexity

CCM = CCM′ .

Proof. We have to show that

CCM(n) = CCM′(n), for all n

or that

card{τ−1F | τ ∈ P
(n)
Γ } = card{τ−1F ′ | τ ∈ P

(n)
Γ }, for all n.

The last fact will follow if we show that the assignment τ−1F �→ τ−1F ′ is a well
defined injection, which is expressed by the following logical equivalence

τ−1F = τ ′−1F ⇔ τ−1F ′ = τ ′−1F ′.
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Assume that τ−1F = τ ′−1F , then

(q′1, . . . , q
′
n) ∈ τ−1F ′ ⇔ (h(q1), . . . , h(qn)) ∈ τ−1F ′, q′i = h(qi), 1 ≤ i ≤ n

⇔ τ [h(q1), . . . , h(qn)] ∈ F ′ (by Eq. (2))

⇔ h(τ [q1, . . . , qn]) ∈ F ′ (by F = h−1(F ′))
⇔ τ [q1, . . . , qn] ∈ F

⇔ (q1, . . . , qn) ∈ τ−1F = τ ′−1F

⇔ τ ′[q1, . . . , qn] ∈ F

⇔ h(τ ′[q1, . . . , qn]) ∈ F ′

⇔ (q′1, . . . , q
′
n) ∈ τ ′−1F ′

and thus τ−1F ′ = τ ′−1F ′. The implication

τ−1F ′ = τ ′−1F ′ ⇒ τ−1F = τ ′−1F

is proved analogously.

The minimal automaton associated with a tree language L ⊆ TΓ is

ML = (QL, μL, FL)

where

– QL = {Lt−1 | t ∈ TΓ }, FL = {Lt−1 | t ∈ L};
– (μL)f : Qk

L → QL, (μL)f (Lt−1
1 , . . . , Lt−1

k ) = Lf(t1, . . . , tk)−1, f ∈ Γk.

Clearly ML is a reachable automaton with behavior L and for every reachable
automaton M = (Q,μ, F ) with behavior L, there is a (unique) simulation h :
M → ML defined by

h(q) = Lt−1, μM(t) = q, q ∈ Q

therefore, by virtue of Proposition 7, we get

CCM = CCML .

On the other hand

Proposition 8. If M is a reachable automaton with behavior L, then

CCM = RSCL.

Proof. Analogous to that of Proposition 7.

Taking into account the previous discussion we conclude that

Proposition 9. For every recognizable tree language L ⊆ TΓ it holds

RSCL(n) ≤ 2(CardQL)n

, for all n.
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Abstract. This paper studies conditions under which the operation of
parallel insertion can be reversed by parallel deletion, i.e., when does the
equality (L1 ⇐ L2)⇒ L2 = L1 hold for languages L1 and L2. We obtain
a complete characterization of the solutions in the special case when both
languages involved are singleton words. We also define comma codes, a
family of codes with the property that, if L2 is a comma code, then the
above equation holds for any language L1 ⊆ Σ∗. Lastly, we generalize the
notion of comma codes to that of comma intercodes of index m. Besides
several properties, we prove that the families of comma intercodes of
index m form an infinite proper inclusion hierarchy, the first element
which is a subset of the family of infix codes, and the last element of
which is a subset of the family of bifix codes.

1 Introduction

In combinatorics on words and formal language theory, operations play an essen-
tial role in understanding the mechanisms of generating words and languages.
Several generalizations of catenation and quotient, such as shuffle, shuffle on
trajectories, [14], sequential and parallel insertion and deletion, [5], distributed
catenation, [10], mix operation, [11], deletion on trajectories, [2], and hairpin
completion and reduction, [13], have been studied in the literature. Follow-up
studies investigated properties of languages produced by sequential and paral-
lel insertion and deletion in [3,6,7,8,9]. One particular topic of interest was the
reversibility of some of these operations, originally motivated by cryptography
applications: If one uses the insertion of a key as one component of a cryptosys-
tem to encrypt a plain-text message, and one step of decryption is accomplished
by the deletion of the key, what are the language properties that would ensure
that the plain-text can be uniquely deciphered? Motivated by this potential ap-
plication, the determinism and inversibility of insertion and deletion operations
on words were studied in, e.g., [6].

The question can be asked in a more general framework wherein the operations
involved are the parallel insertion and deletion. This paper represents a first step
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towards an answer. More precisely, similar to sequential insertion and deletion,
if we parallel-delete a word v from the language obtained by parallel-inserting v
into u, we will not always obtain u. Thus, the question we ask is “Under what
conditions, after parallel-inserting v into u, followed by the parallel deletion of
v from the result, do we obtain exactly u?”.

In Sect. 3, after the investigation of various properties of parallel insertion and
deletion, we give a complete answer to this question for the singleton case, and
furthermore we generalize the question to languages. We show that, if L2 is a
comma code (formally introduced in Sect. 4), any language L1 can be recovered
after first parallel-inserting L2 into L1 and then parallel-deleting L2 from the
result.

The notion of codes was defined for applications in communication systems.
That is, if a message is encoded by using words from a code, then any arbitrary
catenation of words should be uniquely decodable into code-words. Various codes
with specific algebraic properties, such as prefix codes, infix codes, and comma-
free codes [1,16,17], have been defined and used for various purposes. In Sect. 4,
we define a family of codes, named comma codes, and show that this family is
a proper subfamily of that of infix codes. Also, we give a characterization of
comma codes, obtain some closure and algebraic properties, as well as compare
the comma code family with other families, such as that of comma-free codes
and that of solid codes.

Based on the similarity between the definition of comma codes and that of
comma-free codes, in Sect. 5, we generalize comma codes and introduce the
notion of comma intercodes. Similar to the notion of intercodes [16,17,18], the
families of comma intercodes of index m form a proper inclusion hierarchy within
the family of bifix codes. However, we show that any two families of intercodes
and comma intercodes are incomparable.

2 Preliminaries

An alphabet Σ is a nonempty finite set of letters. A word over Σ is a sequence
of letters in Σ. The length of a word w, denoted by |w|, is the number of letters
in this word. The empty word, denoted by λ, is the word of length 0, while a
unary word is a word of the form aj , j ≥ 1, a ∈ Σ. The set of all words over
Σ is denoted by Σ∗, and Σ+ = Σ∗ \ {λ} is the set of all nonempty words.
A language is a subset of Σ∗. A language with exactly one word is called a
singleton. In this paper, for a word w ∈ Σ∗, we often denote a singleton {w} as
w. A catenation of two languages L1, L2 ⊆ Σ∗, denoted by L1L2, is defined as
L1L2 = {uv | u ∈ L1, v ∈ L2}. As mentioned, if an operand is a singleton, say
L1 = {u} or L2 = {v}, then we write uL2 or L1v instead of {u}L2 or L1{v}.

A word x ∈ Σ∗ is called an infix (prefix, suffix) of a word u ∈ Σ+ if u = zxy
(u = xy, u = zx) for some words y, z ∈ Σ∗. In this definition, if z and y are
nonempty, then such an x is called a proper infix, prefix, or suffix of u. For a
word u ∈ Σ∗, the set of its infixes (prefixes, suffixes) is denoted by F(u) (resp.
Pref(u), Suff(u)). For a word u ∈ Σ∗, we denote the prefix (suffix) of length
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n ≥ 0 by prefn(u) (resp. suffn(u)). These notations can be naturally extended
to languages, e.g., Pref(L) is the set of prefixes of the words in L.

A nonempty word u ∈ Σ+ is said to be primitive if u = vn implies n = 1 and
u = v for any v ∈ Σ+. Any non-primitive word can be written as a power of a
unique primitive word [16], which is called the primitive root of the word.

It is well known that [16], if nonempty words x, y, z ∈ Σ+ satisfy xy = yz,
then there exist α, β ∈ Σ∗ such that αβ is primitive, x = (αβ)i, y = (αβ)jα,
and z = (βα)i for some i ≥ 1 and j ≥ 0.

A nonempty word u ∈ Σ+ is called bordered if there exists a nonempty word
which is both proper prefix and proper suffix of u. A bordered primitive word
is a primitive word which is bordered, and it can be written as xyx for some
x, y ∈ Σ+ [16].

Parallel insertion and deletion on words and languages are variants of well-
known (sequential) insertion and deletion, introduced in [5]. For two words u, v ∈
Σ∗, the parallel insertion of v into u results in a word va1va2 · · · anv, where u =
a1a2 · · · an for letters a1, . . . , an ∈ Σ. We denote this resulting word by u ⇐ v.
This operation can be generalized to languages as follows: for two languages
L1, L2 ⊆ Σ∗, the parallel insertion of L2 into L1 generates a language

L1 ⇐ L2 =
⋃

n ≥ 1, a1, . . . , an ∈ Σ s.t. a1a2 · · · an ∈ L1

L2a1L2a2 · · ·L2anL2.

Example 1. For L1 = {cd} and L2 = {a, b},

L1 ⇐ L2 = L2cL2dL2

= {acada, acadb, acbda, acbdb, bcada, bcadb, bcbda, bcbdb}.

In contrast, the parallel deletion of a language L2 from another language L1

results in a set of words which can be obtained by deleting elements of L2 from
an element of L1 in a “maximal parallel manner”. We denote the resulting set
by L1 ⇒ L2. For u ∈ L1, let

u ⇒ L2 =
{
u1u2 · · ·ukuk+1 | u1, . . . , uk+1 ∈ Σ∗, k ≥ 1, u ∈ u1L2u2L2 · · ·L2uk+1

and F(ui) ∩ (L2 \ {λ}) = ∅ for all 1 ≤ i ≤ k + 1
}
.

By this definition, it is clear that if u does not contain any word in L2 as its
infix, then u ⇒ L2 = ∅. Then we define L1 ⇒ L2 =

⋃
u∈L1

(u ⇒ L2).

Example 2. Let L1 = {abababa, aababa, abaabaaba} and L2 = {aba}. Then

L1 ⇒ L2 = ({abababa} ⇒ L2) ∪ ({aababa} ⇒ L2) ∪ ({abaabaaba} ⇒ L2)
= {b, abba} ∪ {aba, aab} ∪ {λ} = {b, abba, aba, aab, λ}.

3 When Does (L1 ⇐ L2) ⇒ L2 Equal L1?

By definitions, parallel insertion and deletion are not inverse operations in the
sense that L1 may not equal to (L1 ⇐ L2) ⇒ L2. Thus, a question of interest is
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to find under what conditions does the equality (L1 ⇐ L2) ⇒ L2 = L1 hold. We
start by providing some properties of parallel insertions and deletions relevant
to this question.

The simplest case is when the operation is the parallel insertion and both
operands are singleton words. The next theorem will show that, unless w and u
are unary words over the same letter, w ⇐ u is primitive.

Lemma 1. Let u ∈ Σ+ and us ∈ Suff(u). If usau ∈ Pref(u2) for some a ∈ Σ,
then u is a power of a.

Proof. Due to the assumption, u = usau
′
p = u′

pusa for some u′
p ∈ Σ∗. It well

known that, for two words u, v ∈ Σ+, if uv = vu, then they share their primitive
roots. Therefore, the primitive root of u is same as that of usa. Hence, if us is
empty, it is clear that u ∈ a+. Even, otherwise, since us ∈ Suff(u′

pusa), us is a
power of a. Thus, this lemma holds. ��

Theorem 1. Let u,w ∈ Σ+. Then w ⇐ u is not primitive if and only if w and
u are unary words over the same letter a ∈ Σ.

Proof. The if-direction is trivial. So we consider here the only-if direction under
the assumption that w ⇐ u is non-primitive. Then w ⇐ u overlaps with its
square in a nontrivial way. Let w = a1a2 . . . an for some n ≥ 1 and a1, . . . , an ∈
Σ. Also let w ⇐ u = vk for some v ∈ Σ+ and k ≥ 2. In the following, we prove
that in all possible cases v is a unary word, which trivially implies what we want.

Firstly we consider the case when there is an integer � such that ua1 · · ·ua	 =
vi for some i ≥ 1, which further implies that ua1 · · ·ua	 = an−	+1u · · ·anu. In
this case, we can always find such � in the range �n/2� ≤ �. For such �, this
equation implies that all of a1, . . . , an are the same, say a, and v is a power of
a. If |u| = 1, this is always the case so that all we have to consider is the case
|u| ≥ 2 under the assumption that such � cannot be found. Note that then we
cannot find an integer �′ ≥ 0 such that ua1 · · · a	′u is a power of v, either.

Under the assumption, one of the occurrences of u in w ⇐ u overlaps with
the factor u2 of (w ⇐ u)2 nontrivially (x = λ and y = λ in Fig. 1.) As shown
there, we have usamu ∈ Pref(u2) for some 1 ≤ m ≤ n. Lemma 1 implies that u
is a unary word over am longer than 1. Note that the overlap between w ⇐ u
and its square implies that for all 1 ≤ i ≤ n, ai = an because these characters
in w ⇐ u must be contained within some u in (w ⇐ u)2. ��

As mentioned before, (L1 ⇐ L2) ⇒ L2 = L1 is not always the case. Even if
we limit L1 and L2 to be singletons {w} and {u}, (w ⇐ u) ⇒ u can contain

an a1

am

x yus

u u u u

u u

Fig. 1. How uamu overlaps with uanu2
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words except w. Since parallel insertion of a word into another word certainly
generates a singleton, it is the parallel deletion that creates such words. We
initiate our investigation on this problem with a more general question: under
what conditions, parallel deletion results in a singleton.

Note that w ⇒ u = ∅ if and only if w does not contain u as its infix. In the
following, we only consider cases where w contains u as its infix. Also, note that
two occurrences of u in w have to overlap in a nontrivial manner for w ⇒ u
not to be a singleton. If u is unbordered, two occurrences of u never overlap
non-trivially regardless of what w is. Thus we have the following proposition.

Proposition 1. If u ∈ Σ∗ is unbordered, then w ⇒ u is a singleton for any
word w ∈ Σ∗ that contains u as its infix.

This also suggests that, even for a bordered word u, w ⇒ u is at most a singleton
as long as the form of w guarantees that nontrivial overlaps between u’s do not
occur in it. We will give a necessary and sufficient condition for w ⇒ u to be a
singleton in the case when w and u share the same primitive root.

Proposition 2. For a ∈ Σ, let w = aj and u = ak for some j ≥ k ≥ 1. Then
w ⇒ u is a singleton if and only if either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.

Proof. We consider the if-direction first. If k = 1, then this operation results in
a singleton of the empty word. If j < k, then we cannot delete any u from w so
that w ⇒ u = {w}. If k ≤ j ≤ 2k− 1, then by the definition of parallel deletion,
the operation deletes exactly one u from w, and hence w ⇒ u = {aj−k}. In
the case when j = 3k − 1, we let w = ai1akai2 for some 0 ≤ i1 < k. Then
k ≤ i2 ≤ 2k − 1. We know that ai2 ⇒ u = {ai2−k}. Hence w ⇒ u is a singleton.

On the other hand, we show that if k and j do not satisfy these conditions,
then w ⇒ u contains at least two elements. If 2k ≤ j ≤ 3k − 2, then it is clear
that we can delete two u’s from w. In addition, we can write w as ak−1akaj−2k−1.
Since j− 2k− 1 < k, ak−1aj−2k−1 is also included in w ⇒ u. In the case 3k ≤ j,
note that (a2k ⇒ u)(aj−2k ⇒ u) ⊆ w ⇒ u. We know that (a2k ⇒ u) is not a
singleton, and hence w ⇒ u cannot be a singleton. ��

Since a primitive word cannot be a proper infix of its square [17], this proposition
has the following corollary.

Corollary 1. Let w = gj and u = gk for some primitive word g and j ≥ k ≥ 1.
Then w ⇒ u is a singleton if and only if either k = 1, k ≤ j ≤ 2k, or j = 3k−1.

Next we consider the more general case when w and u may have distinct primitive
roots. If the primitive root of u is unbordered, then we can give a condition
similar to the one given in Proposition 2. The proof for this proposition works
to prove the next proposition.

Proposition 3. Let w ∈ Σ∗ and u = gk for some unbordered primitive word g
and k ≥ 1. If the following condition holds, then w ⇒ u is a singleton.
(Condition) whenever w = wpg

jws for some wp, ws ∈ Σ∗ with g ∈ Suff(wp) and
g ∈ Pref(ws), and j ≥ 1, either k = 1, k ≤ j ≤ 2k − 1, or j = 3k − 1.
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Now we consider the main problem of finding conditions for (L1 ⇐ L2) ⇒ L2

to be equal to L1. We start our investigation of this problem with the special
case when L1 = {w} and L2 = {u}. Hence our first aim is to clarify when
(w ⇐ u) ⇒ u does not contain any word other than w. If either w or u is the
empty word, then (w ⇐ u) ⇒ u is always {w}. Therefore in the remainder of
this paper we will assume, without loss of generality, that u and w are nonempty.
Let w = a1a2 · · ·an for some n ≥ 1 and a1, . . . , an ∈ Σ. In order for the parallel
deletion to create another word besides w, there must exist at least two different
ways to parallel-delete the occurrences of u from w ⇐ u. In other words, we
have to delete some occurrences of u that have not been parallel-inserted into w.
Formally speaking, u has to be a proper infix of uaiu for some 1 ≤ i ≤ n. Based
on this idea, we define the set:

X =
{
u ∈ Σ+ | prefx(u) = suffx(u) or prefy(u) = suffy(u)

for any (x, y) ∈ N2 with x + y + 1 = |u|
}
.

Informally, X contains words u which cannot be proper infixes of ubu for any
letter b ∈ Σ. For such words u ∈ X , there cannot exist two different ways to
parallel-delete the occurrences of u from w ⇐ u, and hence we have the following
result.

Proposition 4. If u ∈ X, then (w ⇐ u) ⇒ u = {w} for any w ∈ Σ∗.

In the following, we give a characterization of X . First of all, no unary word
can be in X . By the informal definition of X , the set of all unbordered words
of length at least 2, denoted by U>1, is a subset of X . Let N(>1) denote the
set of all non-primitive words whose primitive root is of length at least 2. The
next result shows that no word u in N(>1) can be a proper infix of ubu, for any
b ∈ Σ.

Lemma 2. N(>1) ⊆ X.

Proof. Suppose that there were u ∈ N(>1) such that u ∈ X . Let u = gi for some
primitive word g of length at least 2 and i > 1. Also we can let u = usaup for
some us ∈ Suff(u), a ∈ Σ, and up ∈ Pref(u). The equation gi = usaup implies
that this a is inside one and only one of these g’s. Since g2 cannot overlap with g
in any nontrivial way, either us or up is a power of g. We only consider the case
when us = gj for some j ≥ 1; the other can be proved in a similar way. Then
aup = gi−j . Since up ∈ Pref(gi), this means g is a power of a, a contradiction
with the primitivity of g. ��
Let QB be the set of all bordered primitive words. Any word in QB can be
written as w = (αβ)kα for some primitive word αβ, and k ≥ 1. We partition
QB into two sets. The first one, Q(=1)

B , denotes the set of all bordered primitive
words w that can be written as (αβ)kα with |β| = 1. The second one is simply
the complement, Q

(>1)
B = QB \ Q

(=1)
B . For example, aaabaa, abbabba ∈ Q

(>1)
B

while aabaabaa ∈ Q
(=1)
B . This is because even though we can regard aabaabaa

as αβα with α = a and β = abaaba, we can also consider it as (α′β′)2α′, where
α′ = aa and β′ = b.
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The next result shows that every bordered primitive word w that can only be
written as (αβ)kα such that αβ is primitive, k ≥ 1, and |β| cannot be 1, cannot
be a proper infix of waw for any a ∈ Σ. Formally, we have

Lemma 3. Q
(>1)
B ⊆ X.

Proof. Suppose that there exists u ∈ Q
(>1)
B but u ∈ X . This means that u =

usaup for some us ∈ Suff(u) and up ∈ Pref(u) and a, b ∈ Σ such that u = upbus.
The Parikh vector of a word contains the occurrences of each letter in Σ. Since
the Parikh vectors of up and us together contain the same number of occurrences
of each letter in usaup and upbus, we can obtain a = b and hence u = upaus.
Due to a well known result mentioned in Sect. 2, there exist α, β ∈ Σ∗ such that
usa = (αβ)i and up = α(βα)j for some i ≥ 1 and j ≥ 0 and βα is primitive.
Then ua = upausa = upa(αβ)i = α(βα)i+ja, and hence the suffix of length
|αβ| + 1 of ua is bαβ = βαa. Again, based on the Parikh vector of this suffix,
b = a, i.e., aαβ = βαa. Note that |β| ≥ 2 because u ∈ Q

(>1)
B and hence a is

a proper suffix of β. Therefore, this equation means that βα overlaps with its
square in a nontrivial way, a contradiction with its primitivity. ��

The next result states that any word w that is either a unary word or a bordered
primitive word that can be written as (αβ)kα with αβ being primitive, k ≥ 1,
and |β| = 1, can be a proper infix of waw for some a ∈ Σ.

Lemma 4.
(
Q

(=1)
B ∪ {ai | a ∈ Σ, i ≥ 1}

)
∩X = ∅.

Proof. As mentioned above, any unary word cannot be in X . Let w ∈ Q
(=1)
B . By

definition, there exist α ∈ Σ+ and b ∈ Σ such that αb is primitive
and w = (αb)kα for some k ≥ 1. Then w is a proper infix of wbw, and hence
w ∈ X . ��

The next proposition characterizes the set of all words u that cannot be a proper
infix of uau for any a ∈ Σ, as being either unbordered words of length greater
than 1, or bordered primitive words of the form (αβ)kα such that αβ is primitive,
k ≥ 1, and |β| cannot be 1, or non-primitive words whose primitive root has
length longer than 1.

Proposition 5. X = U>1 ∪Q
(>1)
B ∪N(>1).

Proof. Note that Σ+ = U>1 ∪ QB ∪ N(>1) ∪ {ai | a ∈ Σ, i ≥ 1}. Combining
Lemmas 2, 3, and 4 together, we can reach this proposition. ��

As mentioned in Proposition 4, u being an element of X is sufficient for it to
satisfy (w ⇐ u) ⇒ u = {w} for any word w. In the following, we give necessary
and sufficient conditions for the equality to be true in the case when u ∈ X , that
is, either u is unary or u ∈ Q

(=1)
B .

Proposition 6. Let w ∈ Σ∗ and u = ak for some a ∈ Σ and k ≥ 1. Then
(w ⇐ u) ⇒ u = {w} if and only if
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1. if k = 2, then aa ∈ F(w);
2. otherwise, w ∈ (Σ \ {a})∗.

Proof. If w contains aa as its infix, then a3k+2 ∈ F(w ⇐ u). Proposition 3
implies that (w ⇐ u) ⇒ u is not a singleton. Next we consider the case when
w contains no aa but a as its infix, and k = 2. Then a5 ∈ F(w ⇐ u). Since
5 = 3k − 1, (w ⇐ u) ⇒ u is a singleton due to the proposition. It is clear that
for w ∈ (Σ \ {a})∗, (w ⇐ u) ⇒ u = {w}. ��

Having considered the case of u being unary, now the only one remaining case is
when u is an element of Q(=1)

B . For such a word u, there exist α ∈ Σ+, b ∈ Σ, and
k ≥ 1 such that u = (αb)kα. We define Mu = {a ∈ Σ | u ∈ Suff(u)aPref(u)}.
By definition, Mu = ∅ if and only if u ∈ X .

Lemma 5. For a bordered primitive word u, if b ∈ Mu, then there exists a
nonempty word α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive.

Proof. Since b ∈ Mu, u = upbus = usbup for some up, us ∈ Σ∗. Then usb = (αβ)i

and up = α(βα)j for some i ≥ 1, j ≥ 0, and α, β ∈ Σ∗ such that αβ is primitive.
Suppose that α were empty. Then u = βi+j . On one hand, i + j has to be 1
because u is primitive; on the other hand, i+ j ≥ 2 because up cannot be empty,
otherwise, u is a unary word over b longer than 2. Thus, α is nonempty. So
ub = upbusb = α(βα)i+jb, and hence b(αβ)i = (βα)ib. Since αβ is primitive, β
has to be of length 1, and hence β = b. ��

Lemma 6. For u ∈ Q
(=1)
B , |Mu| = 1.

Proof. Suppose |Mu| > 1, say two distinct characters b, d are in Mu. Then Lemma
5 implies that u = α(bα)i = γ(dγ)j for some i, j > 0 and α, γ ∈ Σ∗ such that both
αb and γd are primitive. Without loss of generality, we assume |αb| > |γd|. Then
by Fine-and-Wilf’s theorem [12], i = 1. Hence u = αbα = γ(dγ)j . If j is odd,
then clearly b = d, a contradiction. Otherwise, α = (γd)j/2γp = γs(dγ)j/2 and
γ = γpbγs for some γp, γs ∈ Σ∗ of same length. Then we have (γd)j/2−1γdγp =
γs(dγ)j/2−1dγpbγs, and hence b = d, the same contradiction. ��

Proposition 7. Let u ∈ Q
(=1)
B . Then (w ⇐ u) ⇒ u = {w} for w ∈ Σ+ if and

only if w ∈ (Σ \Mu)+.

Proof. If w does not contain any letter in Mu, then it is clear that (w ⇐ u) ⇒
u = {w}.

We prove the converse implication. Due to Lemmas 5 and 6, Mu = {b} and
there exists α ∈ Σ+ such that u = α(bα)k for some k ≥ 1 and αb is primitive.
Let w = a1 · · · an for some n ≥ 1 and ai ∈ Σ for all 1 ≤ i ≤ n, and assume that
w contains b. Then we can find an integer 1 ≤ m ≤ n such that am−1 = b (if
any), am = · · · = am+j−2 = b, and am+j−1 = b (if any) for some j ≥ 2. Now

w ⇐ u = ua1 · · ·uam−1[α(bα)kbα(bα)kb · · · bα(bα)k]am+j−1u · · ·anu.
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We can parallel-delete u’s from the bracketed infix in two ways: one is to delete
j u’s that were actually inserted by the preceding insertion; the other is to
leave the first αβ and delete u from every (k + 1)|αβ| position. Note that in
the latter way, we delete exactly j − 1 u’s. If in both cases, we parallel-delete
the inserted u’s from the prefix and suffix, then we obtain two distinct words
w, a1 · · · am−1αbb

j−2(bα)kam+j−1 · · ·an. We still need to check that the latter
parallel deletion is valid. For that, it is enough to check that neither am−1αb
or (bα)kam+j−1 contain u. Their lengths are at most |u| so that if one of them
contains u, then it is u itself. However, this is not the case because of the prim-
itivity of αb and α = λ. ��

Since

u ∈ Σ+ = N(>1) ∪ {aa+| a ∈ Σ}︸ ︷︷ ︸
non-primitive

∪Σ ∪ U>1 ∪Q
(=1)
B ∪Q

(>1)
B︸ ︷︷ ︸

primitive

,

Propositions 4, 5, 6, 7 completely characterize the solutions to the equation
(w ⇐ u) ⇒ u = {w}.

Hence now we are ready to consider the more general equation (L1 ⇐ L2) ⇒
L2 = L1. When L2 is a singleton, say L2 = {u}, the set X plays an important
role.

Proposition 8. If u ∈ X, then (L ⇐ u) ⇒ u = L for any language L ⊆ Σ∗.

Proof. By definition, (L ⇐ u) ⇒ u =
⋃

w∈L(w ⇐ u) ⇒ u. Then this result is
immediate from Proposition 4. ��

4 Comma Codes

In the previous section, we saw that if u ∈ X , then (L ⇐ u) ⇒ u = L for
any language L ⊆ Σ∗. The aim of this section is to introduce a new language
family with the property that if a language L2 belongs to this family, then
(L1 ⇐ L2) ⇒ L2 = L1 holds for any language L1 ⊆ Σ∗.

Definition 1. A set L ⊆ Σ+ is called a comma code if LΣL ∩Σ+LΣ+ = ∅.
Intuitively, a comma code is a set L with the property that none of its words
can be a proper infix of u1au2 where u1 and u2 are words in L, and a ∈ Σ is a
“comma”. As it turns out (Corollary 2) a comma code is indeed a code.

As examples, L = {abka | k > 1} is a comma code, while any language that
contains unary words or words in Q

(=1)
B is not a comma code.

Theorem 2. If the language L2 ⊆ Σ+ is a comma code, the equation
(L1 ⇐ L2) ⇒ L2 = L1 holds for any language L1 ⊆ Σ∗.

The definition of comma codes reminds us of that of comma-free codes. A
nonempty set L ⊆ Σ+ is a comma-free code if L2 ∩ Σ+LΣ+ = ∅. Recall that a
nonempty set L ⊆ Σ+ is an infix code if L ∩ (Σ∗LΣ+ ∪Σ+LΣ∗) = ∅, and that
a comma-free code is an infix code [17]. We establish a relationship among these
three codes, which leads us to the fact that comma codes are actually codes.
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Lemma 7. For a language A ⊆ Σ∗, A is a comma code if and only if AΣ is a
comma-free code.

Proof

(If) We assume that AΣ is a comma-free code, and suppose that A were not a
comma code. Then there exist w1, w2, w3 ∈ A, a ∈ Σ, and x, y ∈ Σ+ such that
w1aw2 = xw3y. By putting some b ∈ Σ at the ends of both sides, we can reach
a contradiction with AΣ being a comma-free code.

(Only-if) Suppose that AΣ were not a comma-free code. Then we have
u1a1u2a2 = x′u3a3y

′ for some u1, u2, u3 ∈ A, a1, a2, a3 ∈ Σ, and x′, y′ ∈ Σ+.
Since y′ is nonempty, we can cut the rightmost letters of both sides from this
equation, and reaches the contradiction. ��

Lemma 8. For a language A ⊆ Σ∗, A is an infix code if and only if AΣ is an
infix code.

Proof. The only-if direction is trivial because the family of infix codes is closed
under concatenation. As of the if direction, under the assumption that AΣ is
an infix code, suppose that A were not. Then there exist u ∈ A and x, y ∈ Σ∗

such that xuy ∈ A and xy = λ. Then for any b ∈ Σ, xuyb ∈ AΣ, which contains
uc ∈ AΣ as its factor, where c is a first letter of yb. Since uc = xuyb, this is a
contradiction. ��

Corollary 2. A comma code is an infix code, and hence a code.

Actually, the family of comma codes is a proper subset of the family of infix codes.
For example, L = {ab, ba} is an infix code, but not a comma code. Hence we
give a characterization of infix codes which are comma codes. For this purpose,
we define the following terms:

Lp = {x ∈ Σ+ | xy, yz ∈ L for some y, z ∈ Σ+},
Li = {y ∈ Σ+ | xy, yz ∈ L for some x, z ∈ Σ+},
Ls = {z ∈ Σ+ | xy, yz ∈ L for some x, y ∈ Σ+},
Lp = {x ∈ Σ+ | xa ∈ Lp for some a ∈ Σ},
Ls = {x ∈ Σ+ | ax ∈ Ls for some a ∈ Σ}.

Proposition 9 ([16]). Let L ⊆ Σ+. If L is an infix code, then the following
four conditions are equivalent and make L a comma-free code: (1) Ls ∩ Li = ∅,
(2) Lp ∩ Li = ∅, (3) L ∩ LsLs = ∅, and (4) L ∩ LpLp = ∅. Conversely, if L is a
comma-free code, then L is an infix code with these properties.

Proposition 10. Let L ⊆ Σ+. If L is an infix code such that L ∩ Σ = ∅ and
(Ls ∪ Lp) ∩ Σ = ∅, then the following four conditions are equivalent and make
L a comma code: (1) Ls ∩ Li = ∅, (2) Lp ∩ Li = ∅, (3) L ∩ LsLs = ∅, and (4)
L ∩ LpLp = ∅. Conversely, if L is a comma code, then L is an infix code with
these properties.
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Proof. Note that the emptiness of L ∩ Σ and (Ls ∪ Lp) ∩ Σ is the minimal
requirement for L to be a comma code.

(Only-if) Lemma 7 implies that LΣ and ΣL are comma-free codes. Using
Proposition 9, we have the four properties: (a) (LΣ)s ∩ (LΣ)i = ∅, (b) (ΣL)p ∩
(ΣL)i = ∅, (c) LΣ ∩ (LΣ)s(LΣ)s = ∅, and (d) ΣL∩ (ΣL)p(ΣL)p = ∅. Suppose
that there were u ∈ Ls ∩ Li. Then there exist x, y, z, w ∈ Σ+ and a ∈ Σ such
that xy, yau, zu, uw ∈ L. Let w = bw′ for some w′ ∈ Σ∗. Then xya, yaub ∈ LΣ
and hence ub ∈ (LΣ)s. Moreover, zub, ubw′c ∈ LΣ for any c ∈ Σ, and hence
ub ∈ (LΣ)i. These two results cause a contradiction with the property (a). The
2nd one derives from the property (b) in the same manner. Next we prove the 3rd
property from (c). Suppose that L∩LsLs = ∅. Then there exist x, y, z, w, u, v ∈
Σ+ and a ∈ Σ such that xy, yau, zw,wv ∈ L and uv ∈ L. Let v = bv′ for some
v′ ∈ Σ∗. Then xya, yaub, zwb, wbv′c ∈ L for any c ∈ Σ. Thus, ub, v′c ∈ (LΣ)s

and ubv′c ∈ LΣ, a contradiction. The 4th derives from the property (d) in this
way.

(If) Suppose L were not a comma code. Then there exist u, v, w ∈ L, x, y ∈ Σ+,
and a ∈ Σ such that uav = xwy. Since L ∩ Σ = ∅, (Ls ∪ Lp) ∩ Σ = ∅, and L
is an infix code, u = xα, v = βy, and w = αaβ for some α, β ∈ Σ+. Therefore,
β ∈ Ls ∩ Li, α ∈ Lp ∩ Li, βy ∈ L∩ ∈ LsLs, and xα ∈ L∩ ∈ LpL

p
. These

contradict the properties 1-4. ��
Example 3. Let L1 = {aba, abba}. While this is a comma-free code, abababa ∈
LΣL ∩ Σ+LΣ+ and hence L1 is not a comma code. On the other hand, let us
consider L2 = {aaab, abab}. This is a comma code but not a comma-free code
because any element of comma-free codes has to be primitive [17]. Moreover,
there is a language which is both a comma and comma-free code. An example
is L3 = {abba, abbba}.

This example is enough to verify the following result.

Proposition 11. The family of comma codes and the family of comma-free
codes are incomparable, but not disjoint.

Another important subfamily of infix codes is the family of solid codes. A
nonempty set L ⊆ Σ+ is called a solid code if L is an infix code and Pref(L) ∩
Suff(L)∩Σ+ = ∅. This is a strict requirement. In fact, if L is a solid code, then
all of Li, Ls, Lp, Ls, and Lp are empty. Thus, the following is a corollary of
Proposition 10.

Corollary 3. Let L be a solid code. If L ∩Σ = ∅, then L is a comma code.

Since there exists a solid code all of whose elements are of length at least 2, this
corollary clarifies that the family of solid codes and that of comma codes are
not disjoint. However, these two families are incomparable as shown in the next
example.

Example 4. Let L1 = {ab, c}. This is a solid code, but not a comma code because
it contains a word of length 1. On the other hand, L2 in Example 3 provides an
example of a comma code which is not a solid code.



On the Reversibility of Parallel Insertion 215

Proposition 12. The family of comma codes and the family of solid codes are
incomparable.

Next we consider the closure properties of comma codes under certain operations.
For alphabets Σ1, Σ2, let f : Σ∗

1 → Σ∗
2 be a homomorphism. Then the inverse

homomorphism f−1 : Σ∗
2 → 2Σ∗

1 is defined as: for u ∈ Σ∗
2 , f−1(u) = {v ∈ Σ∗

1 |
f(v) = u}.

Proposition 13. The family of comma codes is not closed under union, cate-
nation, +, complement, non-erasing homomorphism, and inverse non-erasing
homomorphism. On the contrary, it is closed under reversal and intersection
with an arbitrary set.

Proof. The union of comma codes {ab} and {ba} is not a comma code. The
catenation AB of comma codes A = {aaba} and B = {abaa} is not so because
(aaba)(abaa)b(aaba)(abaa) contains (aaba)(abaa) as a proper infix. For a comma
code L = {abab}, ababababaabab ∈ L+ΣL+∩Σ+L+Σ+. Thus L+ is not a comma
code. The complement of a comma code {ab} contains a word of length 1 and
hence not a comma code. Consider alphabets Σ1 = {a, b} and Σ2 = {a}, and
let f : Σ∗

1 → Σ∗
2 be a non-erasing homomorphism defined as f(a) = f(b) = a.

Then f maps a comma code {aaab, abab} onto {aaaa}, which is not a comma
code. Consider alphabets Σ3 = {a} and Σ4 = {a, b}, and let g : Σ∗

3 → Σ∗
4

be a homomorphism defined as g(a) = ab. Since L = {abab} is a comma code
but g−1(L) = {aa} is not, the class of comma codes is not closed under inverse
non-erasing homomorphisms.

By definition, it is clear that the family of comma codes is closed under reversal
or intersection with an arbitrary set. ��

Proposition 13 says that the catenation of two comma codes is not always a
comma code. So we investigate a condition under which a catenation of two
languages A and B becomes a comma code under the assumption that A∪B is
an infix code. Under this assumption, an element of AB can be a proper infix
of an element of ABΣAB only in two ways as shown in Fig. 2. The following
results offer additional conditions on A and B, which make AB a comma code
by preventing both cases in Fig. 2 from occurring.

Proposition 14. Let A,B ⊆ Σ∗ such that A ∪ B = ∅. If A ∪ B is either a
comma code or a comma-free code, then AB is a comma code.

Proof. Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,
v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+.
Since comma-free codes and comma codes are infix codes, then A∪B is an infix
code. Thus, we have the two cases shown in Fig. 2. Nevertheless, they cause a
contradiction with A ∪B being a comma or comma-free code. ��

Proposition 15. Let A,B ⊆ Σ∗ such that A ∩ B = ∅ and A ∪ B is an infix
code. If As ∩Bp = ∅, then AB is a comma code.
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x′ x y z z′

z′ z x y y′

Case 1

Case 2

u1 v1 a u2 v2

u3 v3

u1 v1 a u2 v2

u3 v3

Fig. 2. For u1, u2, u3 ∈ A and v1, v2, v3 ∈ B, if A ∪ B is an infix code, u3v3 can be a
proper infix of u1v1au2v2 only in these two ways. Note that x′ and y in Case 1 can be
empty at the same time, and x and y′ in Case 2 can be empty at the same time.

Proof. Suppose that AB were not a comma code. Then there exist u1, u2, u3 ∈ A,
v1, v2, v3 ∈ B, and a ∈ Σ such that u1v1au2v2 = ru3v3s for some r, s ∈ Σ+. Since
A ∪ B is an infix code and A ∩ B = ∅, we have only two cases: (1) u3 = x′x,
v1 = xy, v3 = yaz, and u2 = zz′, or (2) v1 = z′z, u3 = zax, u2 = xy, and
v3 = yy′ for some x′, x, y, z ∈ Σ+ and a ∈ Σ. Then x in case (1) or y in case (2)
is in As ∩Bp, a contradiction. ��

Note that the condition in the above proposition is also the condition for AB
to be a comma-free code [16]. Therefore, if A and B are two disjoint languages
such that A∪B is an infix code and As ∩Bp = ∅, then AB is in the intersection
of the family of comma codes and that of comma-free codes.

5 Comma Intercodes

In coding theory, the notion of comma-free code was extended to the more general
one of intercode. For m ≥ 1, a nonempty set L ⊆ Σ+ is called an intercode of
index m if Lm+1 ∩ Σ+LmΣ+ = ∅. An intercode of index 1 is a comma-free
code. Based on the similarity between the definition of comma code and that
of comma-free code, we introduce the comma intercode as a generalization of
comma code.

For m ≥ 1, a nonempty set L ⊆ Σ+ is called a comma intercode of index m
if (LΣ)mL ∩ Σ+(LΣ)m−1LΣ+ = ∅. It is immediate that a comma intercode of
index 1 is a comma code. A language L is called a comma intercode if there exists
an integer m ≥ 1 such that L is a comma intercode of index m. First of all, we
have to prove that a comma intercode is actually a code. A nonempty set L ⊆ Σ+

is a bifix code if L ∩ LΣ+ = ∅ (prefix code) and L ∩Σ+L = ∅ (suffix code).

Proposition 16. A comma intercode is a bifix code.

Proof. Let L be a comma intercode of index m for some m ≥ 1. Suppose
that L were not a prefix code. Then we have u,w ∈ L such that w = uv for
some v ∈ Σ+. This implies that for some a1, . . . , am ∈ Σ, wa1wa2 · · · amw =
wa1(wa2 · · ·amu)v ∈ Σ+(LΣ)m−1LΣ+, which contradicts that L is a comma
intercode. In the same way, we can prove that L must be a suffix code. Thus, L
is a bifix code. ��
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Like comma codes, a comma intercode consists of only non-unary words of length
at least 2. From now, we introduce several properties of comma intercodes.

Proposition 17. Let L be a regular language. Then for a given integer m ≥ 1,
it is decidable whether or not L is a comma intercode of index m.

Proof. Since the family of regular languages is closed under catenation and in-
tersection, (LΣ)mL∩Σ+(LΣ)m−1LΣ+ is regular. Hence it is decidable whether
this language is empty. ��

Proposition 18. Let L be a comma intercode of index m for some m ≥ 1. Then
L ⊆ X.

Proof. Suppose that there were w ∈ L but w ∈ X . Then w = wsawp for some
ws ∈ Suff(w), a ∈ Σ, and wp ∈ Pref(w). This implies that w = wpaws. Then
(wa)mw = wpa(wsawpa)m−1wsawpaws ∈ Σ+(LΣ)m−1LΣ+, a contradiction.

��

Proposition 19. For any m ≥ 1, every comma intercode of index m is a comma
intercode of index m + 1.

Proof. Let L be a comma intercode of index m. By definition, we have (LΣ)mL∩
Σ+(LΣ)m−1LΣ+ = ∅. Suppose that L were not a comma code of index m + 1.
Then (LΣ)m+1L ∩ Σ+(LΣ)mLΣ+ = ∅. That is, there exist x1, . . . , xm+2 ∈
L, y1, . . . , ym+1 ∈ L, a1, . . . , am+1, b1, . . . , bm ∈ Σ, and u, v ∈ Σ+ such that
x1a1 · · ·am+1xm+2 = uy1b · · · bmym+1v. Because of L being a comma inter-
code of index m, |u| < |x1| and |v| < |xm+2| must hold. However, even so,
y1b1 · · · bmym+1 is in Σ+x2a2 · · ·amxm+1Σ

+, and hence (LΣ)mL∩Σ+(LΣ)m−1

LΣ+ = ∅. This is a contradiction. ��

For any m ≥ 1, we denote the family of comma intercodes of index m by Im.
Proposition 19 implies that Im ⊆ Im+1 for any m ≥ 1. This inclusion is ac-
tually proper. Let {a, b} ⊆ Σ and ui = abia for some i ≥ 1. Then, for some
a1, . . . , am+1 ∈ Σ, L = {u1a1 · · ·um+1am+1um+2, u2, u3, . . . , um, um+1} satis-
fies the condition (LΣ)m+1L ∩ Σ+(LΣ)mLΣ+ = ∅, and hence L ∈ Im+1. On
the other hand, L ∈ Im. This is because a word u1a1 · · ·um+1am+1um+2 ∈
Σ+u2a2 · · ·um+1Σ

+.
Moreover, let Cb denote the family of bifix codes. Then {aba, abba} is in Cb

but not in Im for any m ≥ 1. Combining Proposition 19 with this example, we
have the following hierarchy, where ⊂ denotes proper inclusion.

Theorem 3. I1 ⊂ I2 ⊂ · · · ⊂ Im ⊂ · · · ⊂ Cb holds.

Let I ′m denote the family of intercodes of index m for any m ≥ 1. It is known that
I ′1 ⊂ I ′2 ⊂ · · · ⊂ I ′m ⊂ · · · ⊂ Cb holds [16]. Due to these results and Proposition
11, we obtain the following corollary.

Corollary 4. For any m,n ≥ 1, the family of intercodes of index m and the
family of comma intercode of index n are incomparable.
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Furthermore, we know that the family of comma-free codes and that of comma
codes are proper subsets of the family of infix codes. Thus, we can draw the
proper inclusion hierarchy of the families of bifix codes, intercodes, comma in-
tercodes, and infix codes as follows.

Bifix codes

Intercodes Comma intercodes

I ′
m+1 Im+1

I ′
m Im

I ′
1 (Comma-free codes) I1 (Comma codes)

Infix codes

Fig. 3. The inclusion hierarchy of bifix codes, intercodes, comma intercodes, and infix
codes, where arrows indicate proper inclusion

Although the definition and some properties of comma intercodes are similar
with those of intercodes, we show in the following that these two codes are
not similar in terms of synchronous decoding delay. A code L is synchronously
decipherable if there is a non-negative integer n such that for all u, v ∈ Σ∗ and
x ∈ Ln, uxv ∈ L∗ implies u, v ∈ L∗. If a code L is synchronously decipherable,
then the smallest such n is called the synchronous decoding delay of L. It is
known that, for a code L ⊆ Σ+, L is an intercode of index n if and only if L is
synchronously decipherable with delay less than or equal to n [17]. In contrast,
comma intercodes do not have such a property.

Proposition 20. Let L ⊆ Σ+ be a comma intercode of index n. Then L is not
necessarily synchronously decipherable with delay less than or equal to n.

Proof. Consider L = {abab, aaab}, which is a comma intercode of index 1, and
hence a comma code of any index. For m ≥ 1, aaab(abab)m = aa(abab)mab ∈
Lm+1 and (abab)m ∈ Lm but aa, ab ∈ L. Therefore, L is not with delay m. ��

6 Conclusion

In this paper, we obtained some properties of parallel insertion and deletion,
and investigated conditions for the equation (L1 ⇐ L2) ⇒ L2 = L1 to hold. We
obtained a complete characterization of solutions in the special case when L1 and
L2 are singleton languages. For the general case, we introduced the definition
of comma codes and proved that, if L2 is a comma code, then the equation
holds for any language L1 ⊆ Σ∗. We also obtained a characterization, some
closure properties, and algebraic properties of comma codes, and compared this
family of codes with the families of comma-free codes and solid codes. Lastly,
we generalized the notion of comma codes to that of comma intercodes of index
m. As it turns out, the families of comma intercodes of index m form an infinite
proper inclusion hierarchy within the family of bifix codes. The first element
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of this hierarchy, the family of comma codes, is a subset of the family of infix
codes, while the last element of which is a subset of the family of bifix codes. This
hierarchy parallels, but is different from, the one that starts with comma-free
codes (which are infix codes), and continues with intercodes of index m (which
are bifix codes).
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Abstract. We give an algorithm for the computation of Pell numbers
of the form Pn = px2, where p is prime and x ∈ ZZ.

1 Introduction

The Pell sequence is defined by the linear recurrence relation :

P0 = 0, P1 = 1, Pn = 2Pn−1 + Pn−2, n ≥ 2.

This sequence has many combinatorial meaning. For instance, the number of
132−avoiding two-stack sortable permutations involves Pell and Fibonacci num-
bers, [3]. Also we have the Pell primality test : “If N is odd prime, then Pn−

(
2
n

)
is divisible by N,” where

(
2
n

)
is the Kronecker symbol. For other information

and applications of Pell numbers see [14].
The arithmetic properties of Pell numbers of special form have held the in-

terest of many mathematicians. In [7], Ljunggren showed that a Pell number is
a positive square only if n = 1 or 7. Pethö in [9], proved that these are the only
perfect powers of the Pell sequence. For the numbers of the form Pn = am ± t,
where m = 2, 3 and t ∈ {1, 2, 5, 6, 14}, some results are obtained in [11]. In [8],
it was shown that if k is an integer all of whose prime factors are congruent to
3 modulo 4, then neither term of sequence Pn is of the form kx2.

Furthermore, Robbins [12], in order to compute Pell numbers of the form
Pn = px2, computed the number z∗(p) = min{k : p|Pk} and checked if Pz∗(p) is
equal to px2

1. Note that, there is not known upper bound for the size of z∗(p),
as p is increasing and so is not clear if p is a factor of Pk for some k. So this
may cause an endless searching in order to compute z∗(p). For a comparison see
example 4 in section 4. This method is very fast in practice, for small primes. Our
purpose is to give an algorithm for the computation of Pell numbers of the form
Pn = px2, for p fixed prime number. The main idea is a reduction of the problem
to the study of the integer points (x, y) to the elliptic curve Y 2 = X3 − 32p2X,
with x even. The determination of these integral points is achieved using the
multiplication by 2 Chabauty method, [10], [1]. The simplicity and the usefulness
of the method is illustrated by examples.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 220–226, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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2 The Reduction

Suppose that n is odd and P2n−1 = pr2. Since Pn is odd, then necessarily p is an
odd prime. A straightforward calculation with the general term of Pell sequence,

Pn =
√

2
4

(λn
+ − λn

−), λ± = 1 ±
√

2,

gives
P 2

2n−1 + P 2
2n+1 + 4 = 6P2n−1P2n+1. (1)

Since P2n−1 = pr2 and setting P2n+1 = t, we get

p2r4 + t2 + 4 = 6pr2t.

This equation defines an elliptic curve over Q. Using the map

(r, t) → (X, 3pX2 + Y ),

we get the curve Y 2 = 8p2X4 − 4. Note that if (r, t) is an integer point, then
also (X,Y ) is integer point. Setting Y = 2Y ′′ we get Y ′′2 = 2p2X4 − 1, thus
Y ′′2 ≡ −1/p. So (−1/p) = 1, when p ≡ 1/4. Multiplying both parts with 16p2,
we get (2pY ′′)2 = 2(2pX)4 − 16p2, and this implies Y ′2 = 2X ′4 − 16p2. Finally,
setting x = 2X ′2 and y = 2X ′Y ′ we get the elliptic curve y2 = x3 − 32p2x. So
we have to determine its integer points under the condition x to be of the form
2X ′2. The relation between x, r is x = 8p2r2 and also P2n−1 = x/8p. We note
that x cannot be a square.

Now if n is even, Theorem 2 of [12] give us the following.

Lemma 1. If p is an odd and P2m = px2, then p = 3 and m = 2.

So the problem of computation of Pell numbers of the form Pn = pr2 splits to
two cases. Firstly, if n is odd, then p ≡ 1/4 and using the equation (1), we reduce
the problem to the study of the elliptic curve y2 = x3 − 32p2x. Secondly, if n is
even then n = 4, p = 3. If p = 2, then from [12, Theorem 1] we get n = 2. Thus
in the next section we shall determine the integer points of the elliptic curve
Y 2 = X3 − 32p2X, with X even.

3 Integer Points to Y 2 = X3 − 32p2X

Let E : Y 2 = X3 +AX. We set P = (a, b) ∈ E(ZZ) and let R = (s, t) be a point
of E over the algebraic closure Q ⊂ C of Q, such that 2R = P. By [13, chapter
3, p.59], we get

a =
s4 − 2As2 + A2

4(s3 + As)
(2)

and so s is a root of the polynomial

Θa(T ) = T 4 − 4aT 3 − 2AT 2 − 4AaT + A2. (3)
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If A = −32p2, then we get

Θa(T ) = T 4 − 4aT 3 + 64p2T 2 + 128p2aT + 1024p4.

We have

0 =
Θa(s)
s2

=
(
s− 32p2

s

)2
− 4a
(
s− 32p2

s

)
+ 128p2,

whence

s = a±
√

a2 − 32p2 ±
√

2a2 ± 2a
√

a2 − 32p2,

where the first ± coincide with the third. Thus,

L = Q(s) = Q
(√

2a2 ± 2a
√

a2 − 32p2
)
. (4)

Since a is not a square, then also a2 − 32p2 is not a square and so L can not
be neither a quadratic extension of Q nor equal to Q. Necessarily L is a quartic
extension of Q. Since a is of the form 2r2

1 , we get that a2 − 32p2 = 2r2
2 , for

some r2 ∈ ZZ. Thus from (4) we get L = Q
(√

2a2 ± 2ar2

√
2
)
. Note also that

K = Q(
√

2) ⊂ L. From the form of the number field L we conclude that its
Galois group is either the Dihedral group or the Cyclic group of 4 elements or
the Klein group. The relation between a, r1, r2 allow us to prove the following.

Lemma 2. The extension L/Q is a cyclic extension of Q.

Proof. Since L/Q is quartic, Θa(T ) is an irreducible polynomial. We shall use
the result of [6]. The cubic resolvent of Θa(T ) is

r(T ) = (T + 64p2)(T 2 − 128Tp2 − 512a2p2 + 4096p4)

and the auxiliary polynomial is

g(x) = (x2 +64p2x+1024p4)(x2−4ax+128p2) = (x+32p2)2(x2−4ax+128p2).

The second factor of g(x) has discriminant 2a ± 2
√

a2 − 32p2 = 2a ± 2r2

√
2.

Remarking that the splitting field of r(x) is K = Q(
√

2), we conclude that g(x)
splits in K, so the Galois group is ZZ4.

From [4] or [5] we get that L can be written in a unique way as

L = Q
(√

A(D + B
√
D)
)
,

with B ≥ 1, A square free and odd, D ≥ 2 square free, D − B2 is square and
gcd(A,D) = 1. Further, using again [4] or [5], the discriminant ΔL is equal to
2cA2D3, where c ∈ {0, 4, 6, 8}. Since D = 2 we get B = 1 and ΔL = 2c+3A2.
From [13, Proposition 1.5, p.193], we get that the number field K(s) is unramified
outside the primes dividing the discriminant of E, so L is unramified outside
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{2, p}. Using that ΔL = 2c+3A2 and since A is odd, we get A ∈ {±1,±p}. So
the possible number fields are

Lp,+ = Q
(√

2p± p
√

2
)
, Lp,− = Q

(√
−2p± p

√
2
)
,

L2,+ = Q
(√

2 ±
√

2
)
, L2,− = Q

(√
−2 ±

√
2
)
.

The minimal polynomials are

f±(T ) = T 4 ∓ 4pT 2 + 2p2

for Lp,± and
g±(T ) = T 4 ∓ 4T 2 + 2

for L2,±. The first two are ramified at {2, p} and the other two only at {2}.
From the set up of our problem we have a = 4pz. So s = 4pr. Then r is a root

of the polynomial

θz(T ) = T 4 − 4zT 3 + 4T 2 + 8zT + 4.

The element

r± =
r ±

√
2

2
is a root of the polynomial with integer coefficients:

λ(S) = (1/256)resW (θz(2T ∓W ),W 2 − 2)
= T 8 − 4aT 7 + · · · + 1,

where resW (·, ·) denotes the resultant of two polynomials with respect to W .
Since the constant term is 1, the norm of r± shall divide 1. Thus r± is a unit in
L. So

u =
r +

√
2

2
and v =

√
2 − r

2

satisfy the unit equation u + v =
√

2 in L. Also from [2, Chapter 9, Proposition
9.4.1, p.461] we get that the polynomial θz(T ) defines a totally real quartic
extension, thus Q(s) = Q(r), is totally real. We conclude therefore that the
possible number fields are either

L1 = Q
(√

2 +
√

2
)

or L2 = Q
(√

p(2 +
√

2
))

.

The algorithm of Wildanger [15] which is implemented in the computer algebra
system Kant 2.51 provide us with the solutions of this unit equation in L. Since
s = 4pr, then the relation

a =
(s2 + 32p2)2

4s(s2 − 32p2)
,

1 http://www.math.tu-berlin.de/˜kant
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transforms to

a = p
(r2 + 2)2

r(r2 − 2)
,

and from r = 2u−
√

2 we get

a =
p((2u−

√
2)2 + 2)2

(2u−
√

2)((2u−
√

2)2 − 2)
.

In the case we work in L1, the solutions of the unit equation are listed in
table 1, where we have put [a1 a2 a3 a4] = a0 + a1ω1 + a2ω2 + a3ω3, and
{ω0 = 1, ω1, ω2, ω3} is an integral basis of the number field L1. We found that
a = ±1352p or ±8p. If we substitute these values to equation y2 = x3 − 32p2x,
and since p is odd, does not provide us with an integer value for y,

Table 1. The solutions (u, v) of the unit equation u+ v =
√
2 in Q

(√
2 +

√
2
)

[-1,0,0,0] [-1,0,1,0] [1,0,0,0] [-3 0,1,0] [-1,-1,0,0] [-1,-1,1,0]

[-1,1,0,0] [-1,-1,1,0] [-1,-1,1,0] [-1,1,0,0] [-3,0,1,0] [1,0,0,0]

[407,533,-119,-156] [-409,-533,120,156] [-1,1,1,0] [-1,-1,0,0] [-1,0,1,0] [-1,0,0,0]

[-409,533,120,-156] [407,-533,-119,156] [5,7,-1,-2] [-7,-7,2,2] [1,4,0,-1] [-3,-4,1,1]

[-71,39,120,-65] [69,-39,-119,65] [-1,-1,-1,1] [-1,1,2,-1] [1,2,-3,-2] [-3,-2,4,2]

[69,39,-119,-65] [-71,-39,120,65] [-7,7,2,-2] [5,-7,-1,2] [-3,2,4,-2] [1,-2,-3,2]

[-71,-39,120,65] [69,39,-119,-65] [-1,2,0,-1] [-1,-2,1,1] [1,3,0,-1] [-3,-3,1,1]

[11,14,-3,-4] [-13,-14,4,4] [-1,2,1,-1] [-1,-2,0,1] [-3,3,1,-1] [1,-3,0,1]

[-1,1,-1,-1] [-1,-1,2,1] [-1,1,2,-1] [-1,-1,-1,1] [-3,-4,1,1] [1,4,0,-1]

[11,-14,-3,4] [-13,14,4,-4] [1,-3,0,1] [-3,3,1,-1] [-1,-2,0,1] [-1,2,1,-1]

[-13,14,4,-4] [11,-14,-3,4] [-3,-3,1,1] [1,3,0,-1] [-1,-2,1,1] [-1,2,0,-1]

[-409,-533,120,156] [407,533,-119,-156] [1,-2,-3,2] [-3,2,4,-2] [5,-7,-1,2] [-7,7,2,-2]

[69,-39,-119,65] [-71,39,120,-65] [-1,-1,2,1] [-1,1,-1,-1] [1,-4,0,1] [-3,4,1,-1]

[-13,-14,4,4] [11,14,-3,-4] [-3,-2,4,2] [1,2,-3,-2] [-3,4,1,-1] [1,-4,0,1]

[407,-533,-119,156] [-409,533,120,-156] [-7,-7,2,2] [5,7,-1,-2]

If we work with the number field L2, we have the dependence from p and so the
set of solutions of the unit equation varies. So we have the following algorithm.

Input. p odd prime.

Output. The integer solutions of the equation

Pn = px2. (5)

1. If p ≡ 3/4, then the only solutions of (5) are given by the triple (p, n, Pn) =
(3, 4, 12).

2. if p ≡ 1/4, then solve the unit equation u + v =
√

2 in Q
(√

p(2 +
√

2
))

.

3. Check if r = 2u −
√

2 gives integer value to the expression c = (r2 + 1)2/
(r(r2 − 2)).
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4. If c ∈ ZZ, then the equation (5) does not have any solution.
5. If c ∈ ZZ, then find the integer n such that Pn = c/(8p). (The values of n

from that step, give all the solutions of (5)).

Remark

(i) If the rank of the elliptic curve y2 = x3 −32p2x is 0, then does not have any
integer non trivial solution and so the same holds for equation (5).

(ii) As we saw in section 2 the solutions to the equation Pn = px2, with p
odd prime, is reduced to the study of integral points to the elliptic curve
Y 2 = X3−32p2X. If instead of the prime p we consider a square free integer
k, then again considering n odd, we get the elliptic curve Y 2 = X3−32k2X.
If the rank of this curve is zero then necessarily the equation Pn = kx2 does
not have any solution for n odd.

4 Examples

All the computations are implemented with Kash 2.5. We assume that our hard-
ware and mainly the software was working properly.

1. p = 5 . We are interested in the equation Pn = 5r2. Since p ≡ 1/4, we have

to solve the unit equation u + v =
√

2 in the field Q
(√

5(2 +
√

2
))

. From
Kash 2.5 we get the following solutions :

[[11, 7,−3,−2], [−13,−7, 4, 2]], [[−13, 7, 4,−2], [11,−7,−3, 2]],

[[1, 1,−3,−1], [−3,−1, 4, 1]],

[[−3, 1, 4,−1], [1,−1,−3, 1]], [−1, [−1, 0, 1, 0]], [1, [−3, 0, 1, 0]],

[[−3, 0, 1, 0], 1], [[−1, 0, 1, 0],−1],

[[1,−1,−3, 1], [−3, 1, 4,−1]], [[−3,−1, 4, 1], [1, 1,−3,−1]],

[[11,−7,−3, 2], [−13, 7, 4,−2]], [[−13,−7, 4, 2], [11, 7,−3,−2]]

From these solutions we get the integer solution (200,±2800) on the elliptic
curve

y2 = x2 − 800x.

So Pn = x/8 = 200/40 = 5. This gives n = 3. Thus, (n, r) = (3, 1).
2. p = 29 . We are interested in the equation Pn = 29r2. Since p ≡ 1/4, we have

to solve the unit equation u + v =
√

2 in the field Q
(√

29(2 +
√

2
))

. From
Kash 2.5 we get the following solutions:

[[71, 99,−21,−29], [−69,−99, 20, 29]], [[−69, 99, 20,−29], [71,−99,−21, 29]],

[[13,−1,−21, 0], [−11, 1, 20, 0]], [[13, 1,−21, 0], [−11,−1, 20, 0]], [[1, 0,−1, 0], 1],
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[[3, 0,−1, 0],−1], [−1, [3, 0,−1, 0]], [1, [1, 0,−1, 0]],

[[−11,−1, 20, 0], [13, 1,−21, 0]], [[−11, 1, 20, 0], [13,−1,−21, 0]],

[[71,−99,−21, 29], [−69, 99, 20,−29]], [[−69,−99, 20, 29], [71, 99,−21,−29]].

These, provide us with the integer point (6728,±551696), on the curve
y2 = x3 − 26912x, which give us Pn = 29, so (n, r) = (5, 1).

3. For all primes p ≡ 1/4, 1000 < p < 2000 we did not get any solution for
Pn = px2.

4. For p = 95317 it took less than 10 minutes in Kant, in order to compute the
solution of the unit equation, and we found that there is not any solution to
Pn = px2. Further in Maple, we computed that z∗(p) > 21000, and we did
not continue the computations further, since only for the lower bound took
many hours.
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Abstract. Iteration grove theories are iteration theories equipped with
an additive structure satisfying certain one-sided distributivity laws. In
any iteration grove theory, the fixed point operation determines and is
determined by a generalized star operation that takes familiar form in
many applications. We relate properties of the dagger operation to prop-
erties of the generalized star operation and present some applications to
continuous functions over complete lattices, continuous monoids, and to
tree languages.

1 Introduction

Fixed point operations occur in just about all areas of theoretical computer
science including automata and languages, semantics of programming languages,
logical theories of computational systems, etc. Fixed point, or dagger operations
are usually defined in Lawvere theories of functions over a set equipped with
structure (such as a partial order or a complete metric), or more generally, over
abstract Lawvere theories, or cartesian or co-cartesian categories, cf. [2,8,16,21].

In a Lawvere theory, the fixed point operation takes a morphism f : n → n+p
to a morphism f † : n → p which provides a solution to the fixed point equation
ξ = f · 〈ξ,1p〉. (See the beginning of Section 2 for notation.) If a theory is
equipped with an additional structure, such as an additive structure, then the
dagger operation is usually related to some “Kleenean operations”.

For example, the theory of matrices over a semiring has an additive structure.
Under a natural condition, cf. [2], any dagger operation over a matrix theory
determines and is determined by a star operation mapping an n × n square
matrix A (i.e., a morphism A : n → n) to an n×n square matrix A∗. Properties
of the dagger operation are then reflected by corresponding properties of the
star operation.

For another example, consider a semiring-semimodule pair (S, V ) and the the-
ory of augmented matrices over (S, V ), cf. [2,7]. In this theory, a morphism n → m
is a pair (A, v) consisting of an n × m matrix A over the semiring S and an n-
dimensional column vector v over the S-semimodule V . This theory also has a
natural additive structure and under a natural condition, any dagger operation
determines and is determined by two operations, a star operation over the under-
lying matrix theory of matrices over S as above, and an omega operation mapping
� Partially supported by grant no. K 75249 from the National Foundation of Hungary
for Scientific Research.
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an n × n matrix A over S to an n-dimensional column vector Aω over V . These
two operations in turn determine a generalized star operation by

(A, v) �→ (A, v)⊗ = (A∗, Aω + A∗v),

or more generally,

(A,B, v) �→ (A,B, v)⊗ = (A∗, A∗B,Aω + A∗v),

where A is an n × n matrix and B is an n × p matrix over S and v is an n-
dimensional column vector over V , so that (A, v) and (A, v)⊗ are morphisms
n → n and (A,B, v) and (A,B, v)⊗ are morphisms n → n + p.

More generally, one can define generalized star operations in all grove theories,
which are theories equipped with an additive structure such that composition
distributes over finite sums on the right. (Composition is written in the dia-
grammatic order.) Such generalized star operations in grove theories were first
studied in [2]. Natural sources of the generalized star operation include theories
of continuous (or monotone) functions on complete lattices where the additive
structure is given by the binary supremum operation, theories of tree languages
where the additive structure is given by set union, theories of formal tree series
over semirings with pointwise addition, and theories of synchronization trees and
theories of synchronization trees with respect to various behavioral equivalences.

In this paper we give a systematic treatment of the generalized star operation
in grove theories. After an introductory section on grove theories, in Section 3 we
provide axiomatizations of Conway grove theories and iteration grove theories
in terms of the generalized star operation. Section 4 is devoted to ordered grove
theories. Here we show how the fixed point induction rule can be expressed in
terms of the generalized star operation. Last, in Section 5, we apply our results to
grove theories of continuous functions on complete lattices, theories of continuous
functions over continuous monoids, theories of (regular) tree languages. Due to
space limitations, we left out applications to synchronization trees (processes)
and their behavioral equivalences, as well as applications to formal tree series.

2 Grove Theories

In this section, we review some concepts from [2]. In any category, we will write
the composite of morphisms f : a → b and g : b → c in diagrammatic order as
f · g. The identity morphism corresponding to an object c will be written 1c.
When n is a nonnegative integer, we will denote the set {1, . . . , n} by [n].

We start by recalling that a theory [16,2] T is a small category whose objects
are the nonnegative integers such that each object n is the n-fold coproduct
of object 1 with itself. Moreover, we assume that each theory T comes with
distinguished coproduct injections in : 1 → n, i ∈ [n], n ≥ 1, called distin-
guished morphisms. By the coproduct property, for any sequence of morphisms
f1, . . . , fn : 1 → p in T there is a unique morphism f : n → p, usually denoted
〈f1, . . . , fn〉 such that in · f = fi for all i. The operation implicitly defined by
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this condition is called tupling. In particular, when n = 0, we obtain that for
each p there is a unique morphism 0 → p that we denote 0p. Note that

1n = 〈1n, . . . , nn〉

holds for all n. In addition, we require that 11 = 11 which in turn implies that
〈f〉 = f for all f : 1 → p. We call a base morphism any morphism which is a
tupling of distinguished morphisms. For example, 0n and 1n are base morphisms.
When ρ is a function [n] → [p], there is an associated base morphism n → p
which is the tupling of the distinguished morphisms (1ρ)p, . . . , (nρ)p. A base
permutation is a base morphism associated with a bijective function. Injective
and surjective base morphisms are defined in the same way. Note that a base
permutation corresponding to a bijection ρ is an invertible morphism whose
inverse is the base permutation corresponding to the inverse of ρ.

When f : n → p and g : m → p in a theory T , we define 〈f, g〉 as the morphism
h : n+m → p with in+m ·h = in ·f and (n+ j)n+m ·h = jm · g for all i ∈ [n] and
j ∈ [m]. And when f : n → p and g : m → q then we define f ⊕ g = 〈f · κ, g · λ〉
where κ is the base morphism corresponding to the inclusion [p] → [p + q] and
λ is the base morphism corresponding to the translated inclusion [q] → [p + q],
j �→ p+j. Note that the pairing operation 〈f, g〉 and the separated sum operation
f ⊕ g are associative.

A morphism ϕ : T → T ′ between theories is a functor preserving objects
and distinguished morphisms. It follows that any theory morphism preserves
the pairing and separated sum operations.

Example 1. A fundamental example of a theory is the theory FunA of functions
over a set A. In this theory, a morphism n → p is a function f : Ap → An.
Note the reversal of the arrow. Composition is function composition and the
distinguished morphisms are the projection functions. It is known, see e.g. [2]
that any theory can be embedded in some theory FunA.

Below we will consider theories enriched with constant morphisms + : 1 → 2 and
# : 1 → 0. In any such theory, we define the sum of two morphisms f, g : 1 → p,
p ≥ 0 as the morphism + · 〈f, g〉 : 1 → p. Moreover, we define 01,p = # · 0p, for
all p. More generally, we define

f + g = 〈f1 + g1, . . . , fn + gn〉 : n → p

0n,p = 〈01,p, . . . , 01,p〉 : n → p

for any f = 〈f1, . . . , fn〉, g = 〈g1, . . . , gn〉 and n, p ≥ 0. Note that 00,p = 0p, for
each p. Thus, the set T (n, p) of morphisms n → p is equipped with a binary sum
operation and the constant 0n,p which satisfy the following conditions:

(f + g) · h = (f · h) + (g · h), f, g : n → p, h : p → q

0n,p · h = 0n,q, h : p → q.
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Definition 1. A grove theory [2] is a theory T with additional constants + :
1 → 2 and # : 1 → 0 subject to the following conditions:

(13 + 23) + 33 = 13 + (23 + 33)
12 + 22 = 22 + 12

11 + 011 = 11.

These conditions imply that each set T (n, p) of morphisms n → p is a commu-
tative monoid (T (n, p),+, 0n,p).

Given grove theories T, T ′, a grove theory morphism is a theory morphism
ϕ : T → T ′ preserving + and #. It follows that any morphism of grove theories
preserves the sum operation on each hom-set, and the constants 0n,p.

Remark 1. In a grove theory, for every base morphism ρ : m → n and every pair
of morphisms f, g : n → p it holds that ρ · (f + g) = (ρ · f) + (ρ · g), moreover
ρ · 0n,p = 0m,p, for all n,m, p � 0.

Example 2. Suppose that L is a complete lattice with least element ⊥. Thus,
each direct power Ln of L is also a complete lattice. Recall that a function
Lp → Ln is continuous if it preserves the suprema of (nonempty) directed sets.
Let ContL denote the theory of all continuous functions over L. Thus, ContL

is the “subtheory” of FunL determined by the continuous functions.
Let + denote the function L2 → L, (x, y) �→ x ∨ y, the supremum of the set

{x, y}. It follows that for any f, g : 1 → p, f +g is the function Lp → L mapping
x ∈ Lp to f(x) ∨ g(x). Moreover, let # denote the least element ⊥ considered
as a function L0 → L. Then ContL is a grove theory. Note that for each n, p,
the morphism 0n,p is the function Lp → Ln which maps each z ∈ Lp to ⊥n, the
least element of Ln.

Example 3. A ranked alphabet Σ is a family of pairwise disjoint sets (Σn)n where
n ranges over the nonnegative integers. We assume that the reader is familiar
with the notion of (finite) Σ-trees over a set Xp = {x1, . . . , xp} of variables as
defined e.g. in [2]. Below we will denote the collection of such trees by TΣ(Xp). Σ-
trees form a theory where a morphism n → p is an n-tuple of trees in TΣ(Xp).
Composition is defined by substitution and for each i ∈ [n], n ≥ 0 the ith
distinguished morphism 1 → p is the tree xi. See [2] for details.

We build another theory LangΣ , whose morphisms 1 → p are Σ-tree lan-
guages L ⊆ TΣ(Xp), and whose morphisms n → p are the n-tuples of morphisms
1 → p. Let L : 1 → p and L′ = (L′

1, . . . , L
′
p) : p → q. Then L ·L′ is the collection

of all trees in TΣ(Xq) that can be obtained by OI-substitution [6], i.e., the set
of those trees t such that there is a tree s ∈ L such that t can be constructed
from s by replacing each leaf labeled xi for i ∈ [p] by some tree in L′

i so that
different occurrences of xi may be replaced by different trees. The distinguished
morphism in is the set {xi}, and the morphisms + and # are the sets {x1, x2}
and ∅, respectively. It then follows that addition is (component-wise) set union,
and each component of any 0n,p is ∅.
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3 Grove Theories Equipped with a Dagger or a
Generalized Star Operation

In this section, we consider grove theories equipped with a dagger operation
and grove theories equipped with a generalized star operation, and under some
natural assumptions we establish a correspondence between them in terms of
a categorical isomorphism. We then use this isomorphism to relate equational
properties of the dagger operation to equational properties of the generalized
star operation.

Definition 2. Suppose that T is a theory. We say that T is a dagger theory1

if T is equipped with a dagger operation

† : T (n, n + p) → T (n, p), n, p ≥ 0

which need not satisfy any particular properties. Moreover, we say that T is a
generalized star theory if T is grove theory equipped with a (generalized) star
operation

⊗ : T (n, n + p) → T (n, n + p), n, p ≥ 0

which also need not satisfy any particular properties. Morphisms of dagger and
generalized star theories also preserve the dagger and generalized star operation.

Notation. In any grove theory T , for any morphism f : n → n+p let f τ denote
the following morphism: f τ = f · (1n⊕0n⊕1p)+(0n⊕1n⊕0p) : n → n+n+p.2

Thus, when T = FunA, then f τ is the function An+n+p → An, (x, y, z) �→
f(x, z) + y, for all x, y ∈ An, z ∈ Ap.

Suppose that T is a grove theory which is dagger theory. Then we define a
generalized star operation by

f⊗ = (f τ )† : n → n + p, (1)

for all f : n → n + p. We denote by T⊗ the resulting generalized star theory.
Conversely, suppose now that S is a generalized star theory. Then we define a
dagger operation on S by

f † = f⊗ · 〈0n,p,1p〉 : n → p, (2)

for all f : n → n + p. Let S† denote the resulting dagger theory which is also a
grove theory.

Proposition 1. The category of grove theories which are dagger theories and
satisfy the equation

f † = (f τ )† · 〈0n,p,1p〉, f : n → n + p (3)

1 In [2], a dagger theory is called a preiteration theory.
2 Here and from now on we assume that composition has higher precedence than sum.
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is isomorphic to the category of those grove theories which are generalized star
theories and satisfy

f⊗ = (f τ )⊗ · 〈0n,n+p,1n+p〉, (4)

for all f : n → n + p.

Proof. The equations (3) and (4) yield

(T⊗)† = T and (S†)⊗ = S

for any grove theories T, S such that T is a dagger theory and S is a generalized
star theory. Moreover, for any grove theories T, T ′ which are dagger theories, it
holds that any grove theory morphism T → T ′ preserving dagger preserves the
generalized star operation and is thus a morphism T⊗ → T ′

⊗. Conversely, if S, S′

are grove theories which are generalized star theories, and if ϕ is a grove theory
morphism S → S′ preserving the generalized star operation, then ϕ is also a
morphism S† → S′

†.

By the above proposition, when a grove theory is both a dagger theory and
a generalized star theory and the two operations are related by (1) and (2),
then properties of the dagger operation are reflected by certain properties of the
generalized star operation and vice versa.

The following identities were used in the characterization of the equational
properties of the least fixed point operation on continuous (or monotone) func-
tions over cpo’s or complete lattices, cf. [2,9]. For the origins of these identities,
the reader is referred to [1,5,17,18,20,22].

– Fixed point identity: f † = f · 〈f †,1p〉, f : n → n + p.
– Parameter identity: (f ·(1n⊕g))† = f † ·g, where f : n → n+p and g : p → q.
– Left zero identity: (0n ⊕ f)† = f, f : n → p.
– Right zero identity: (f ⊕ 0q)† = f † ⊕ 0q, f : n → n + p.
– Double dagger identity: f †† = (f · (〈1n,1n〉 ⊕ 1p))†, f : n → n + n + p.
– Composition identity: (f · 〈g, 0n ⊕ 1p〉)† = f · 〈(g · 〈f, 0m ⊕ 1p〉)†,1p〉, where

f : n → m + p and g : m → n + p.
– Permutation identity: (π·f ·(π⊕1p))† = π·f † ·(π−1⊕1p), where f : n → n+p

and π : n → n is any base permutation with inverse π−1.
– Pairing identity: 〈f, g〉† = 〈f † · 〈h†,1p〉, h†〉 where f : n → n + m + p,

g : m → n + m + p and h = g · 〈f †,1m+p〉.

Note that when the fixed point identity holds, then for all f : n → n + p, f † is
a solution of the fixed point equation ξ = f · 〈ξ,1p〉 associated with f , where
ξ ranges over the morphisms n → p. Below we will provide equivalent forms
of the above identities in grove theories that use the generalized star operation
instead of dagger, provided that the two operations are related by (1) and (2).
By Proposition 1, such a translation is always possible, but we might get rather
complicated equations as the result of a direct application of Proposition 1.
Some of the equivalences proved below assume the parameter identity. This is
no problem for the applications, since any well-behaved dagger operation does
satisfy this identity. See also Proposition 3.
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Proposition 2. Suppose that T is a grove theory which is both a dagger the-
ory and a generalized star theory. Suppose that the dagger and generalized star
operations are related by (1) and (2). Then the following equivalences hold in T :

(a) the fixed point identity holds iff the generalized star fixed point identity
holds:
f⊗ = f · 〈f⊗, 0n ⊕ 1p〉 + (1n ⊕ 0p), for every morphism f : n → n + p,

(b) the parameter identity holds iff the generalized star parameter identity
holds:
f⊗ · (1n ⊕ g) = (f · (1n ⊕ g))⊗, where f : n → n + p and g : p → q,

(c) the left zero identity holds iff the generalized star left zero identity holds:
(0n ⊕ f)⊗ = (0n ⊕ f) + (1n ⊕ 0p), where f : n → p,

(d) the right zero identity holds iff the generalized star right zero identity holds:
(f ⊕ 0q)⊗ = f⊗ ⊕ 0q, where f : n → n + p.

Moreover if the parameter identity holds in T , then the following equivalences
are valid:

(e) the double dagger identity holds iff the generalized double star identity holds:

(f⊗ · (π ⊕ 1p))⊗ · 〈0n,n+p,1n+p〉 = (f · (〈1n,1n〉 ⊕ 1p))⊗,

for all f : n → n + n + p, where π = 〈0n ⊕ 1n,1n ⊕ 0n〉,
(f) the composition identity holds iff the generalized star composition identity

holds:

(f · 〈g, 0n ⊕ 1p〉)⊗ = f τ · 〈(g · 〈f τ , 0m+n ⊕ 1p〉)⊗, 0m ⊕ 1p′〉 · 〈0m,p′ ,1p′〉

for all f : n → m + p and g : m → n + p, where p′ = n + p, and f τ =
f · (1m ⊕ 0n ⊕ 1p) + (0m ⊕ 1n ⊕ 0p),

(g) the permutation identity holds iff the generalized star permutation identity
holds:

(π · f · (π−1 ⊕ 1p))⊗ = π · f⊗ · (π−1 ⊕ 1p),

for all f : n → n + p and base permutation π : n → n with inverse π−1,
(h) the pairing identity holds iff the generalized star pairing identity holds:

〈f, g〉⊗ = 〈f⊗ · 〈1n ⊕ 0m+p, k
⊗ · (π−1 ⊕ 1p), 0n+m ⊕ 1p〉, k⊗ · (π−1 ⊕ 1p)〉.

for all f : n → n+m+p and g : m → n+m+p, where π = 〈0m⊕1n,1m⊕0n〉 :
n+m → m+n with inverse π−1 = 〈0n ⊕1m,1n ⊕0m〉 : m+n → n+m and

k = g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉 : m → m + n + p.

Proof. (a) Suppose that the fixed point identity holds. Then

f⊗ = (f τ )†

= f τ · 〈(f τ )†,1n+p〉
= (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) · 〈f⊗,1n+p〉
= f · (1n ⊕ 0n ⊕ 1p) · 〈f⊗,1n+p〉 + (0n ⊕ 1n ⊕ 0p) · 〈f⊗,1n+p〉
= f · 〈f⊗, 0n ⊕ 1p〉 + (1n ⊕ 0p),



234 Z. Ésik and T. Hajgató

for all f : n → n + p. Suppose now that the generalized star fixed point identity
holds. Then

f † = f⊗ · 〈0n,p,1p〉
= (f · 〈f⊗, 0n ⊕ 1p〉 + (1n ⊕ 0p)) · 〈0n,p,1p〉
= f · 〈f⊗ · 〈0n,p,1p〉, (0n ⊕ 1p) · 〈0n,p,1p〉〉 + (1n ⊕ 0p) · 〈0n,p,1p〉
= f · 〈f †,1p〉 + 0n,p

= f · 〈f †,1p〉

for all f : n → n + p.
(b) Let f : n → n+ p and g : p → q. Suppose that the parameter identity holds.
Then

f⊗ · (1n ⊕ g) = (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))† · (1n ⊕ g)
= ((f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) · (12n ⊕ g))†

= (f · (1n ⊕ 0n ⊕ g) + (0n ⊕ 1n ⊕ 0q))†

= (f · (1n ⊕ g) · (1n ⊕ 0n ⊕ 1q) + (0n ⊕ 1n ⊕ 0q))†

= (f · (1n ⊕ g))⊗.

Suppose now that the generalized star parameter identity holds. Then

f † · g = f⊗ · 〈0n,p,1p〉 · g
= f⊗ · 〈0n,q, g〉
= f⊗ · (1n ⊕ g) · 〈0n,q,1q〉
= (f · (1n ⊕ g))⊗ · 〈0n,q,1q〉
= (f · (1n ⊕ g))†.

(c) Suppose that the left zero identity holds. Then

(0n ⊕ f)⊗ = ((0n ⊕ f) · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))†

= ((02n ⊕ f) + (0n ⊕ 1n ⊕ 0p))†

= (0n ⊕ ((0n ⊕ f) + (1n ⊕ 0p)))†

= (0n ⊕ f) + (1n ⊕ 0p),

for all f : n → p. Suppose now that the generalized star left zero identity holds.
Then

(0n ⊕ f)† = (0n ⊕ f)⊗ · 〈0n,p,1p〉
= ((0n ⊕ f) + (1n ⊕ 0p)) · 〈0n,p,1p〉
= f + 0n,p

= f,

for all f : n → p.
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(d) Suppose that the right zero identity holds. Then

(f ⊕ 0q)⊗ = ((f ⊕ 0q) · (1n ⊕ 0n ⊕ 1p+q) + (0n ⊕ 1n ⊕ 0p+q))†

= (((f · (1n ⊕ 0n ⊕ 1p)) ⊕ 0q) + (0n ⊕ 1n ⊕ 0p+q))†

= ((f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) ⊕ 0q)†

= (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))† ⊕ 0q

= f⊗ ⊕ 0q

for all f : n → n + p. The other direction also holds: assuming the generalized
star right zero identity, we have

(f ⊕ 0q)† = (f ⊕ 0q)⊗ · 〈0n,p+q,1p+q〉
= f⊗ · (1n ⊕ 1p ⊕ 0q) · 〈0n,p+q,1p+q〉
= f⊗ · 〈0n,p+q,1p ⊕ 0q〉
= (f⊗ · 〈0n,p,1p〉) ⊕ 0q

= f † ⊕ 0q,

for all f : n → n + p.
(e) Let f : n → n + n + p and let π = 〈0n ⊕ 1n,1n ⊕ 0n〉. Suppose that the
parameter and the double dagger identities hold.

(f⊗ · (π ⊕ 1p))⊗ · 〈0n,n+p,1n+p〉 =
= ((f · (1n ⊕ 0n ⊕ 1n+p) + (0n ⊕ 1n ⊕ 0n+p))† · (π ⊕ 1p))†

= ((f · (1n ⊕ 0n ⊕ 1n+p) + (0n ⊕ 1n ⊕ 0n+p)) · (1n ⊕ π ⊕ 1p))††

= (f · (12n ⊕ 0n ⊕ 1p) + (02n ⊕ 1n ⊕ 0p))††

= (f · (〈1n,1n〉 ⊕ 1p) · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))†

= (f · (〈1n,1n〉 ⊕ 1p))⊗.

Suppose now that the parameter and generalized double star identities hold.
Then:

(f · (〈1n,1n〉 ⊕ 1p))† = (f · (〈1n,1n〉 ⊕ 1p))⊗ · 〈0n,p,1p〉
= (f⊗ · (π ⊕ 1p))⊗ · 〈0n,n+p ⊕ 1n+p〉 · 〈0n,p,1p〉
= (f⊗ · (π ⊕ 1p))† · 〈0n,p,1p〉
= (f⊗ · (π ⊕ 1p) · (1n ⊕ 〈0n,p,1p〉))†

= (f⊗ · 〈0n,n+p,1n+p〉)†

= f ††.

(f) We now show that the composition identity holds iff the generalized star
composition identity holds. Suppose first that the composition identity holds.
Then

(f · 〈g, 0n ⊕ 1p〉)⊗ =
= (f · 〈g, 0n ⊕ 1p〉 · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))†

= (f · 〈g · (1n ⊕ 0n ⊕ 1p), 02n ⊕ 1p〉 + (0n ⊕ 1n ⊕ 0p))†

= (h · 〈t, 0n ⊕ 1p′〉)†,
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where h = f τ = f · (1m ⊕ 0n ⊕ 1p) + (0m ⊕ 1n ⊕ 0p), and t = g · (1n ⊕ 0n ⊕ 1p).
Then by the composition identity we have

(h · 〈t, 0n ⊕ 1p′〉)† =
= h · 〈(t · 〈h, 0m ⊕ 1p′〉)†,1p′〉
= f τ · 〈(g · (1n ⊕ 0n ⊕ 1p) · 〈f τ , 0m ⊕ 1p′〉)†,1p′〉
= f τ · 〈(g · 〈f τ , 0m+n ⊕ 1p〉)†,1p′〉
= f τ · 〈(g · 〈f τ , 0m+n ⊕ 1p〉)⊗, 0m ⊕ 1p′〉 · 〈0m,p′ ,1p′〉.

Suppose now that the generalized star composition identity holds. Then

(f · 〈g, 0n ⊕ 1p〉)⊗ · 〈0n,p,1p〉 = (f · 〈g, 0n ⊕ 1p〉)†,

and also

f τ · 〈(g · 〈f τ , 0m+n ⊕ 1p〉)†,1p′〉 · 〈0n,p,1p〉 =
= f τ · 〈(g · 〈f τ , 0m+n ⊕ 1p〉 · (1m ⊕ 〈0n,p,1p〉))†, 0n,p,1p〉
= f · (1m ⊕ 0n ⊕ 1p) · 〈(g · 〈f τ , 0m+n ⊕ 1p〉 · (1m ⊕ 〈0n,p,1p〉))†, 0n,p,1p〉
= f · 〈(g · 〈f τ , 0m+n ⊕ 1p〉 · (1m ⊕ 〈0n,p,1p〉))†,1p〉
= f · 〈(g · 〈f τ · (1m ⊕ 〈0n,p,1p〉), 0m ⊕ 1p〉)†,1p〉
= f · 〈(g · 〈f, 0m ⊕ 1p〉)†,1p〉,

since

f τ · (1m ⊕ 〈0n,p,1p〉) =
= (f · (1m ⊕ 0n ⊕ 1p) + (0m ⊕ 1n ⊕ 0p)) · (1m ⊕ 〈0n,p,1p〉)
= f + 0n,n+p

= f.

(g) Let f : n → n + p and assume that π : n → n is a base permutation with
inverse π−1. Suppose that the parameter and the permutation identities hold.

(π · f · (π−1 ⊕ 1p))⊗ =
= (π · f · (π−1 ⊕ 1p) · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))†

= (π · f · (1n ⊕ 0n ⊕ 1p) · (π−1 ⊕ 1n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p) · (π−1 ⊕ 1n ⊕ 1p))†

= ((π · f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) · (π−1 ⊕ 1n ⊕ 1p))†

= ((π · f · (1n ⊕ 0n ⊕ 1p) + π · (0n ⊕ π−1 ⊕ 0p)) · (π−1 ⊕ 1n ⊕ 1p))†

= (π · (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ π−1 ⊕ 0p)) · (π−1 ⊕ 1n+p))†

= π · (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ π−1 ⊕ 0p))†

= π · ((f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) · (1n ⊕ π−1 ⊕ 1p))†

= π · (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p))† · (π−1 ⊕ 1p)
= π · f⊗ · (π−1 ⊕ 1p).
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Supposing that the generalized star permutation identity holds, we have

(π · f · (π−1 ⊕ 1p))† = (π · f · (π−1 ⊕ 1p))⊗ · 〈0n,p,1p〉
= π · f⊗ · (π−1 ⊕ 1p) · 〈0n,p,1p〉
= π · f †.

(h) Assume that f : n → n + m + p and g : m → n + m + p. Let π denote
the base permutation 〈0m ⊕ 1n,1m ⊕ 0n〉 : n + m → m + n with inverse π−1 =
〈0n ⊕ 1m,1n ⊕ 0m〉 : m + n → n + m. Define

k = g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉 : m → m + n + p.

We show that when the parameter identity holds, then the pairing identity holds
iff the following generalized star pairing identity holds:

〈f, g〉⊗ = 〈f⊗ · 〈1n ⊕ 0m+p, k
⊗ · (π−1 ⊕ 1p), 0n+m ⊕ 1p〉, k⊗ · (π−1 ⊕ 1p)〉.

Assume first that the parameter identity and the pairing identity hold. Then

〈f, g〉⊗ = (〈f, g〉τ )†

= (〈f, g〉 · (1n+m ⊕ 0n+m ⊕ 1p) + (0n+m ⊕ 1n+m ⊕ 0p))†

= 〈f · (1n+m ⊕ 0n+m ⊕ 1p) + (0n+m ⊕ 1n ⊕ 0m+p),
g · (1n+m ⊕ 0n+m ⊕ 1p) + (0n+m+n ⊕ 1m ⊕ 0p)〉†

= 〈f, g〉†.
Thus, by the pairing identity,

〈f, g〉⊗ = 〈f † · 〈h†,1n+m+p〉, h†〉,
where

h = g · 〈f †
,1m+n+m+p〉.

Now

f
†

= (f · (1n+m ⊕ 0n+m ⊕ 1p) + (0n+m ⊕ 1n ⊕ 0m+p))†

= ((f · (1n ⊕ 0n ⊕ 1m+p) + (0n ⊕ 1n ⊕ 0m+p)) · (1n ⊕ π ⊕ 0m ⊕ 1p))†

= (f τ · (1n ⊕ π ⊕ 0m ⊕ 1p))†

= f⊗ · (π ⊕ 0m ⊕ 1p).

Thus,

h = g · 〈f⊗ · (π ⊕ 0m ⊕ 1p),1m+n+m+p〉
= (g · (1n+m ⊕ 0n+m ⊕ 1p) + (0n+m+n ⊕ 1m ⊕ 0p))

· 〈f⊗ · (π ⊕ 0m ⊕ 1p),1m+n+m+p〉
= g · 〈f⊗ · (π ⊕ 0m ⊕ 1p),1m ⊕ 0n+m ⊕ 1p〉 + (0m+n ⊕ 1m ⊕ 0p)
= (g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉 · (1m ⊕ 0m ⊕ 1n+p) + (0m ⊕ 1m ⊕ 0n+p))

· (1m ⊕ π−1 ⊕ 1p)
= (g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉)

τ · (1m ⊕ π−1 ⊕ 1p)
= kτ · (1m ⊕ π−1 ⊕ 1p),
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where

k = g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉.

Thus,

h† = k⊗ · (π−1 ⊕ 1p).

Using this,

〈f, g〉⊗ = 〈f⊗ · (π ⊕ 0m ⊕ 1p) · 〈k⊗ · (π−1 ⊕ 1p),1n+m+p〉, k⊗ · (π−1 ⊕ 1p)〉
= 〈f⊗ · 〈1n ⊕ 0m+p, k

⊗ · (π−1 ⊕ 1p), 0n+m ⊕ 1p〉, k⊗ · (π−1 ⊕ 1p)〉.

Suppose now that the parameter identity and the generalized star pairing
identity hold. Let f, g be as above. We want to show that

〈f, g〉† = 〈f † · 〈h†,1p〉,1p〉,

where h = g · 〈f †,1m+p〉. We have

〈f, g〉† = 〈f, g〉⊗ · 〈0n+m,p,1p〉
= 〈f⊗ · 〈1n ⊕ 0m+p, k

⊗ · (π−1 ⊕ 1p), 0n+m ⊕ 1p〉, k⊗ · (π−1 ⊕ 1p)〉
· 〈0n+m,p,1p〉,

where k was defined above. First we show that

k⊗ · (π−1 ⊕ 1p) · 〈0n+m,p,1p〉 = h†.

Indeed,

k⊗ · (π−1 ⊕ 1p) · 〈0n+m,p,1p〉 =
= k⊗ · 〈0m+n,p,1p〉
= k⊗ · 〈0m,n+p,1n+p〉 · 〈0n,p,1p〉
= k† · 〈0n,p,1p〉
= (k · (1m ⊕ 〈0n,p,1p〉))†

= (g · 〈f⊗ · (π ⊕ 1p),1m ⊕ 0n ⊕ 1p〉 · (1m ⊕ 〈0n,p,1p〉))†

= (g · 〈f⊗ · 〈0n,m+p,1m+p〉,1m+p〉)†

= (g · 〈f †,1m+p〉)†

= h†.

Using this,

f⊗ · 〈1n ⊕ 0m+p, k
⊗ · (π−1 ⊕ 1p), 0n+m ⊕ 1p〉 · 〈0n+m,p,1p〉 =

= f⊗ · 〈0n,p, h
†,1p〉

= f⊗ · 〈0n,m+p,1m+p〉 · 〈h†,1p〉
= f † · 〈h†,1p〉.

completing the proof.
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Thus, when the generalized star fixed point identity holds, then for each f :
n → n + p, f⊗ solves the fixed point equation ξ = f · 〈ξ, 0n ⊕ 1p〉 + (1n ⊕ 0p)
in the variable ξ : n → n + p. When p = 0 this becomes ξ = f · ξ + 1n. Note
also that if the pairing identity holds, then the dagger operation is completely
determined by its restriction to the scalar morphisms 1 → 1+p, p ≥ 0. Similarly,
if the generalized star pairing identity holds, then the generalized star operation
is completely determined by its restriction to the scalar morphisms 1 → 1 + p.
The parameter identity and the generalized star parameter identity are of special
importance due to the following fact.

Proposition 3. Suppose that T is a grove theory. If T is a dagger theory sat-
isfying the parameter identity, then (3) holds. If T is a generalized star theory
satisfying the generalized star parameter identity, then (4) holds.

Proof. We only prove the first claim, since the proof of the second is similar.
Assume that T is a dagger theory satisfying the parameter identity. Then,

(f τ )† · 〈0n,p,1p〉 = (f τ · (1n ⊕ 〈0n,p,1p〉))†

= ((f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0p)) · (1n ⊕ 〈0n,p,1p〉))†

= (f + 0n,n+p)†

= f †,

for all f : n → n + p.

The above identities are not complete for the equational theory of the fixed point
operation in theories of continuous functions over complete lattices, see Section 5.
To achieve completeness, the semigroup identities and the group identities were
introduced in [9,11] as simplifications of the commutative identities of [2].

Let S = ([n], ◦) be a finite semigroup. For every theory T we define the
following base morphisms ρS

i : n → n, for i ∈ [n]: ρS
i = 〈(i ◦ 1)n, . . . , (i ◦ n)n〉,

where ◦ is the semigroup operation of S. Then for an arbitrary f : n → n + p
the morphism fS can be defined as follows: if f = 〈f1, . . . , fn〉 then let fS =
〈f1 · (ρS

1 ⊕1p), . . . , fn · (ρS
n ⊕1p)〉, and for every g : 1 → n+p let gS = (τn · g)S =

〈g ·(ρS
1 ⊕1p), . . . , g ·(ρS

n⊕1p)〉 : n → n+p, where τn is the unique base morphism
n → 1.

Definition 3. The semigroup identity C(S) associated with a semigroup S =
([n], ◦) is:

g†S = τn · (g · (τn ⊕ 1p))†, where g : 1 → n + p.

When S is a group, C(S) is called a group identity.

Let us observe that an equivalent form of the semigroup identity C(S) is:

〈g · (ρS
1 ⊕ 1p), . . . , g · (ρS

n ⊕ 1p)〉† = 〈(g · (τn ⊕ 1p))†, . . . , (g · (τn ⊕ 1p))†〉,

where obviously ρS
i · τn = τn for each i ∈ [n].
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Proposition 4. Let T be a grove theory equipped with a dagger and a generalized
star operation, which are related by (1) and (2). Suppose that the parameter
identity holds in T . Then for a semigroup S the identity C(S) holds iff the
following identity C⊗(S) holds:

g⊗S · (τn ⊕ 1p) = τn · (g · (τn ⊕ 1p))⊗, (5)

where g : 1 → n + p.

Proof. Since

g⊗S · (τn ⊕ 1p) · 〈01,p,1p〉 = g⊗S · 〈0n,p,1p〉 = g†S

and
τn · (g · (τn ⊕ 1p))⊗ · 〈01,p,1p〉 = τn · (g · (τn ⊕ 1p))†,

if C⊗(S) holds, then so does C(S).

In the computations below, in order to save space, we will only indicate the
generic ith component of a tuple. We will make use of the following equation:

〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p), . . .〉 =

= 〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p), . . .〉 + (0n ⊕ τn ⊕ 0p).

Indeed, since

in · 〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p), . . .〉 =

= g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p)

= in · 〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p), . . .〉 + in · (0n ⊕ τn ⊕ 0p)

= in · (〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p), . . .〉 + (0n ⊕ τn ⊕ 0p)),

for all i ∈ [n].

Suppose now that C(S) holds, then

τn · (g · (τn ⊕ 1p))⊗ =
= τn · (g · (τn ⊕ 1p) · (11 ⊕ 01 ⊕ 1p) + (01 ⊕ 11 ⊕ 0p))†

= τn · ((g · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p)) · (τn ⊕ 11 ⊕ 1p))†

= (g · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p))
†
S

= 〈. . . , (g · (1n ⊕ 01 ⊕ 1p) + (0n ⊕ 11 ⊕ 0p)) · (ρS
i ⊕ 11+p), . . .〉†

= (〈. . . , g · (ρS
i ⊕ 1p) · (1n ⊕ 01 ⊕ 1p), . . .〉 + (0n ⊕ τn ⊕ 0p))†

= (gτ
S · (1n ⊕ τn ⊕ 1p))†

= g⊗S · (τn ⊕ 1p).

Note that we have used the parameter identity in the last equation.
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A Conway theory [2] is a dagger theory which satisfies the left and right zero
identities, the pairing identity and the permutation identity. There are several
alternative axiomatizations: the parameter, double dagger and composition iden-
tities; and the scalar versions of the parameter, double dagger, composition and
pairing identities are two other sets of axioms. Here, the scalar versions of the
parameter and double dagger identities are obtained by taking n = 1 in the cor-
responding identity, while the scalar version of the composition identity is the
composition identity restricted to n = m = 1. Finally, the scalar pairing identity
is the pairing identity with m = 1 (or n = 1). Since the fixed point identity is a
special case of the composition identity, it follows that except for the identities
associated with finite (semi)groups, all identities involving the dagger operation
defined above hold in all Conway theories. A morphism of Conway theories is a
dagger theory morphism. A Conway grove theory is a Conway theory which is a
grove theory. Morphisms of Conway grove theories are grove theory morphisms
which are dagger theory morphisms.

Definition 4. A Conway star theory is a generalized star theory satisfying the
generalized star left zero, right zero, pairing and permutation identities. A mor-
phism of Conway star theories is a generalized star theory morphism.

Corollary 1. A generalized star theory is a Conway star theory iff it satisfies
the generalized star parameter, double star and star composition identities; or the
scalar versions of the generalized star parameter, double star, star composition
and star pairing identities.

The scalar versions are defined in the same way as for the dagger identities. By
Propositions 1, 2 and 3 we have:

Corollary 2. The category of Conway grove theories is isomorphic to the cate-
gory of Conway star theories.

An iteration theory [2,11] is a Conway theory satisfying all group identities. A
morphism of iteration theories is a Conway theory morphism. It is known that
all semigroup identities hold in all iteration theories. An iteration grove theory
is an iteration theory which is a grove theory. A morphism of iteration grove
theories is a Conway grove theory morphism.

Definition 5. An iteration star theory is a Conway star theory satisfying the
identities C⊗(G) for all finite groups G. A morphism of iteration star theories
is a Conway star theory morphism.

Corollary 3. All identities C⊗(S) hold in all iteration star theories, where S
is any finite semigroup.

Corollary 4. The category of iteration grove theories is isomorphic to the
category of iteration star theories.

In Conway theories, the semigroup identities C(S) are implied by a simple im-
plication. Let T be a dagger theory and C a subset of the morphisms of T .
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Following [2], we say that T satisfies the functorial dagger implication for C if
for all f : n → n + p, g : m → m + p in T and for all h : n → m in C,

f · (h⊕ 1p) = h · g ⇒ f † = h · g†.

It is known that any Conway theory satisfies the functorial implication for injec-
tive base morphisms, and that a Conway theory satisfies the functorial dagger
implication for all base morphisms iff it satisfies the functorial dagger implication
for the set of all base morphisms n → 1, n ≥ 2.

Definition 6. Let T be a generalized star theory and C a subset of the set
of morphisms of T . We define two versions of the generalized functorial star
implication for C. We say that T satisfies the first version if for all f : n → n+p,
g : m → m + p in T and h : n → m in C,

f τ · (h⊕ 〈0n,p,1p〉) = h · g ⇒ f⊗ · 〈0n,p,1p〉 = h · g⊗ · 〈0m,p,1p〉. (6)

Moreover, we say that T satisfies the second version if for all f, g, h as above,

f τ · (h⊕ h⊕ 1p) = h · gτ ⇒ f⊗ · (h⊕ 1p) = h · g⊗. (7)

Proposition 5. Let T be a grove theory which is both a dagger and a generalized
star theory in which the dagger and generalized star operations are related by (1)
and (2). Moreover, suppose that T satisfies the parameter identity.

Then for an arbitrary set C of T -morphisms the functorial dagger implication
holds for C iff the first version of the generalized functorial star implication holds.
Also, the functorial dagger implication holds for some set C of base morphisms
iff the second version of the generalized functorial star implication holds.

Proof. To prove the first claim, let C be an arbitrary set of morphisms. Then by
f τ ·(h⊕〈0n,p,1p〉) = f ·(h⊕1p) and f⊗ ·〈0n,p,1p〉 = f †, h ·g⊗ ·〈0m,p,1p〉 = h ·g†,
the functorial dagger implication holds for C iff (6) holds.

Now let C be a set of base morphisms and assume that (7) holds. Let f : n →
n+p, g : m → m+p and h : n → m with h ∈ C. Assume that f · (h⊕1p) = h ·g.
Then, using Remark 1,

f τ · (h⊕ h⊕ 1p) = f · (h⊕ 0m ⊕ 1p) + (0m ⊕ h⊕ 0p)
= f · (h⊕ 1p) · (1m ⊕ 0m ⊕ 1p) + (0m ⊕ h⊕ 0p)
= h · g · (1m ⊕ 0m ⊕ 1p) + (0m ⊕ h⊕ 0p)
= h · gτ .

Thus, by (7),
f⊗ · (h⊕ 1p) = h · g⊗,

so that

f † = f⊗ · 〈0m,p,1p〉
= f⊗ · (h⊕ 1p) · 〈0m,p,1p〉
= h · g⊗ · 〈0m,p,1p〉
= h · g†.
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We have thus proved that the functorial dagger implication holds.
Suppose now that the functorial dagger implication holds for C. We show that

(7) also holds for C. For this reason, let f , g and h be as above, and assume that
f τ · (h⊕ h⊕ 1p) = h · gτ . Let

f = f τ · (1n ⊕ h⊕ 1p) = f · (1n ⊕ 0m ⊕ 1p) + (0n ⊕ h⊕ 0p) : n → n + m + p.

Then,

f · (h⊕ 1m+p) = f · (h⊕ 0m ⊕ 1p) + (0m ⊕ h⊕ 0p)
= f τ · (h⊕ h⊕ 1p)
= h · gτ .

Thus, by the functorial dagger implication, also

f
†

= h · (gτ )†.

Using this fact and the parameter identity,

f⊗ · (h⊕ 1p) = (f τ )† · (h⊕ 1p)
= (f τ · (1n ⊕ h⊕ 1p))†

= f
†

= h · (gτ )†

= h · g⊗.

Corollary 5. Let T be a Conway star theory. Then the generalized functorial
star implications hold for the set of injective base morphisms. Moreover, the
generalized functorial star implications hold for the set of all base morphisms iff
they hold for the base morphisms n → 1 for all n ≥ 2.

Any Conway star theory satisfying one of the two versions of the functorial
star implication for base morphisms is an iteration star theory.

4 Ordered Iteration Grove Theories

An ordered theory is a theory T equipped with a partial order ≤ on each hom-
set T (n, p) which is preserved by the composition and tupling operations. A
morphism of ordered theories is a theory morphism which preserves the partial
order.

Proposition 6. Suppose that T is both a grove theory and an ordered theory.
Then the sum operation is monotone:

f ≤ f ′ & g ≤ g′ ⇒ f + g ≤ f ′ + g′, f, f ′, g, g′ : n → p.

Definition 7. An ordered grove theory is a grove theory T which is an ordered
theory such that for each p, 01,p is the least morphism 1 → p. A morphism of
ordered grove theories is a grove theory morphism which is an ordered theory
morphism.
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It then follows that for any pair n, p of nonnegative integers, 0n,p is least in
T (n, p).

Example 4. Suppose that T is a grove theory such that + · 〈11,11〉 = 11. It then
follows that the sum operation is idempotent: f + f = f for all f : n → p, and
we call T an idempotent grove theory.

When T is idempotent, there is a unique partial order ≤ turning T into an
ordered grove theory: We have f ≤ g for f, g : n → p iff f + g = g iff there
is some h : n → p with f + h = g. It follows that any grove theory morphism
between idempotent grove theories preserves this order and is thus an ordered
grove theory morphism.

Definition 8. An ordered dagger theory is an ordered theory which is a dagger
theory such that the dagger operation is monotone and for each n, p, ⊥n,p =
(1n ⊕ 0p)† is the least morphism n → p. An ordered iteration theory is an
ordered dagger theory which is an iteration theory. An ordered generalized star
theory is an ordered grove theory which is a generalized star theory such that the
generalized star operation is monotone. An ordered iteration star theory is an
ordered generalized star theory which is an iteration star theory. Morphisms of
these structures also preserve the order.

Note that by Definitions 7 and 8, ⊥n,p = 0n,p holds for all n, p ≥ 0 in an ordered
iteration star theory.

The theories ContL defined in Example 2 satisfy the following fixed point
induction rule, cf. [19,9]:

f · 〈g,1p〉 ≤ g ⇒ f † ≤ g

for all f : n → n + p and g : n → p.

Proposition 7. Suppose that T is an ordered grove theory which is both a dagger
theory and a generalized star theory. Suppose that the dagger and generalized star
operations are related by (1) and (2). If T satisfies the fixed point induction rule
and the parameter identity, then T satisfies the following generalized star fixed
point induction rule:

f · 〈g, 0n ⊕ 1p〉 + h ≤ g ⇒ f⊗ · 〈h, 0n ⊕ 1p〉 ≤ g,

for all f, g, h : n → n+ p. Moreover, if T satisfies the generalized star parameter
identity and the generalized star fixed point induction rule then T satisfies the
fixed point induction rule.

Proof. To prove the first claim, suppose that T satisfies the parameter identity
and the fixed point induction rule. Assume that f, g, h : n → n + p with f ·
〈g, 0n ⊕ 1p〉 + h ≤ g. Then

f τ · (1n ⊕ 〈h, 0n ⊕ 1p〉) · 〈g,1n+p〉 =
= f τ · 〈g, h, 0n ⊕ 1p〉
= (f · (1n ⊕ 0n ⊕ 1p) + (0n ⊕ 1n ⊕ 0n)) · 〈g, h, 0n ⊕ 1p〉
= f · 〈g, 0n ⊕ 1p〉 + h

≤ g.
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Thus, by the fixed point induction rule and the parameter identity,

f⊗ · 〈h, 0n ⊕ 1p〉 = (f τ )† · 〈h, 0n ⊕ 1p〉
= (f τ · (1n ⊕ 〈h, 0n ⊕ 1p〉))†

≤ g.

Suppose now that the generalized star fixed point induction rule holds. Let
f : n → n + p and g : n → p with f · 〈g,1p〉 ≤ g. Then

f · 〈0n ⊕ g, 0n ⊕ 1p〉 + 0n,n+p ≤ 0n ⊕ g,

so that
f⊗ · 〈0n,n+p, 0n ⊕ 1p〉 ≤ 0n ⊕ g.

Composing both sides with 〈0n,p,1p〉 on the right, this gives

f † = f⊗ · 〈0n,p,1p〉 ≤ g.

5 Applications

In this section, we present some applications of the results of the previous sec-
tions. Some other applications, not treated here because of space limitations,
include formal tree series, theories of synchronization trees and theories of syn-
chronization trees with respect to various behavioral equivalences.

Below, by a dagger term we will mean any term built in the usual way from
symbols representing morphisms in dagger grove theories and the distinguished
morphisms by composition, the cartesian operations, sum and dagger. Star terms
are defined in the amalogous way. Note that each dagger or star term has a source
n and a target p, and under each evaluation of the morphism variables, the term
evaluates to a morphism n → p in any dagger theory or generalized star theory.
An equation t = t′, or inequation t ≤ t′ between dagger or star terms is a
formal (in)equality between terms t, t′ : n → p. The validity or satisfaction of an
(in)equation in a dagger grove theory or a generalized star theory is defined as
usual.

Example 5. Let L be a complete lattice. We define a dagger and a generalized
star operation on ContL. Let f : Ln+p → Ln be a continuous function. By the
Knaster-Tarski fixed point theorem, for each z ∈ Lp, the endofunction Ln → Ln,
x �→ f(x, z) has a least (pre-)fixed point. We define f †(z) as this least pre-fixed
point. An easy argument shows that f † is also continuous.

Note that when f : Ln+p → Ln is continuous, then so is the function f τ :
Ln+n+p → Ln, defined by (x, y, z) �→ f(x, z) ∨ y. We define f⊗ := (f τ )†.

By definition, (1) holds. Since f τ (x,⊥n, z) = f(x, z), it follows that (2) also
holds. Moreover, since equipped with the dagger operation, ContL is a iteration
grove theory, cf. [2,12], it is also an iteration star theory, in fact an idempotent
iteration grove theory and an idempotent iteration star theory.
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Proposition 8. Suppose that f : Ln+p → Ln in ContL. Then for each y ∈ Ln

and z ∈ Lp, f⊗(y, z) is the least pre-fixed point of the endofunction fz : Ln → Ln,
x �→ f(x, z) which is greater than or equal to y.

Proof. Since ContL is an iteration star theory, the generalized star fixed point
identity holds. Thus, for any y and z, f⊗(y, z) = f(f⊗(y, z), z) ∨ y so that
f(f⊗(y, z), z) ≤ f⊗(y, z) and y ≤ f⊗(y, z). Suppose now that x ∈ Ln satisfies
f(x, z) ≤ x and y ≤ x. Then f τ (x, y, z) = f(x, z) ∨ y ≤ x and thus f⊗(y, z) =
(f τ )†(y, z) ≤ x by the definition of dagger.

The following result was proved in [12]. (For dagger terms without + see also
[2].)

Theorem 1. An (in)equation between dagger terms holds in all theories ContL,
where L is any complete lattice iff it holds in all iteration grove theories satisfying
+† = 11.

The last equation can also be written as (12 + 22)† = 11. As a corollary of this
result we obtain:

Corollary 6. An equation between star terms holds in all theories ContL, where
L is any complete lattice iff it holds in all iteration grove theories satisfying
11

⊗ = 11.

The following result is a reformulation of a result of [12].

Theorem 2. An equation between dagger terms holds in all theories ContL iff
it holds in all idempotent grove theories which are dagger theories satisfying the
(scalar versions) of the fixed point equation, the parameter identity, and the fixed
point induction rule.

Corollary 7. An equation between star terms holds in all theories ContL iff it
holds in all idempotent generalized star theories satisfying the (scalar versions of
the) generalized star fixed point equation, the generalized star parameter identity,
and the generalized star fixed point induction rule.

The last two results also hold for the broader class of monotone functions.
The free theories in the corresponding equational class can be described as

theories of regular synchronization trees modulo simulation equivalence. See [13].

Example 6. Suppose that S is a continuous monoid, i.e., a commutative monoid
S = (S,+, 0) equipped with a partial order ≤ such that (S,≤) is a cpo with
least element 0, so that the supremum of each nonempty directed set exists, and
the sum operation preserves such suprema (and is thus monotone).

Let ContS denote the theory of continuous functions over S. It is an iteration
grove theory in the same way as the theory ContL, where L is a complete lattice.
But unless the monoid S is idempotent, ContS is not necessarily idempotent.
Note that unlike in [4] or [15], we do not require here any linearity conditions
for the functions themselves.

The following results were proved in [13].
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Theorem 3. An (in)equation between dagger terms holds in all theories ContS,
where S is any continuous monoid iff it holds in all ordered iteration grove
theories satisfying (13 + 23 + 33)†† = (12 + 22)†.

Theorem 4. An (in)equation between dagger terms holds in all theories ContS

iff it holds in all ordered dagger grove theories satisfying the (scalar versions)
of the fixed point equation, the parameter identity and the fixed point induction
rule, together with the equation (13 + 23 + 33)†† = (12 + 22)†.

Corollary 8. An (in)equation between star terms holds in all theories ContS,
where S is any continuous monoid iff it holds in all ordered iteration star the-
ories satisfying 11

⊗⊗ = 11
⊗, or when it holds in all ordered generalized star

theories satisfying the star forms the (scalar versions) of fixed point equation,
the parameter identity, the fixed point induction rule, together with the equation
11

⊗⊗ = 11
⊗.

The free theories in the corresponding equational class can be described as the-
ories of regular synchronization trees modulo injective simulation equivalence.
See [13].

In our last example, we consider tree languages. Recall Example 3.

Example 7. Let Σ be a ranked set and consider the idempotent (and thus or-
dered) theory LangΣ . Each hom-set is a complete lattice and the theory and sum
operations are continuous. It follows that for each morphism L = (L1, . . . , Ln) :
n → n + p the fixed point equation

X = L · 〈X,1p〉

has a least solution in the variable X = (X1, . . . , Xn) over LangΣ(n, p), denoted
L†. Given the dagger operation, we can also define a generalized star operation in
the usual way. For each L as above, L⊗ provides a least solution to the equation

Y = L · 〈Y, 0n ⊕ 1p〉 + (1n ⊕ 0p)

in the variable Y = (Y1, . . . , Yn) ranging over the set of morphisms n → p.
(When p = 0, the above equation reads as Y = L · Y + 1n.) Equipped with
the dagger operation, LangΣ is an iteration grove theory, and equipped with
the generalized star operation, LangΣ is an iteration star theory, containing the
theory of regular trees cf. [14,10] as a sub iteration grove (resp, star) theory
denoted RegΣ. Note also that on morphisms L : 1 → 1 + p (i.e., tree languages
L ⊆ TΣ(X1+p)), L⊗ is the familiar x1-iterate of L, cf. [14].

We give a reformulation of the main result of [10]. The original theorem used
the language of μ-terms. We may identify each letter in Σ with a singleton set
containing the corresponding atomic tree.

Theorem 5. RegΣ, equipped with dagger, has the following universal property.
Given any idempotent grove theory T which is a dagger theory satisfying the
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(scalar versions of) the parameter identity, the fixed point identity and the fixed
point induction rule, and given any (rank preserving) function h : Σ → T such
that (8) and (9) hold, there is a unique dagger grove theory morphism h� :
RegΣ → T extending h.

σ · 〈f1 + g1, . . . , fn + gn〉 =
∑

hi∈{fi,gi}
σ · 〈h1, . . . , hn〉 (8)

σ · 〈f1, . . . , 0p, . . . , fn〉 = 0p (9)

where σ ∈ Σn, fi, gi : 1 → p, i ∈ [n].

It is now a routine matter to formulate the same result in terms of generalized
star grove theories.
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Abstract. The suffix automaton of a finite word is the minimal deter-
ministic automaton accepting the language of its suffixes. The states of
the suffix automaton are the classes of an equivalence relation defined on
the set of factors. We explore the relationship between the combinato-
rial properties of a finite word and the structural properties of its suffix
automaton. We give formulas for expressing the total number of states
and the total number of edges of the suffix automaton in terms of special
factors of the word.

1 Introduction

The suffix automaton, also called DAWG (Directed Acyclic Word Graph), is
a data structure largely used in many text processing problems, like pattern
matching and data compression. It is an indexing structure on a text which
solves the following problem: given a text (string) X , preprocess it in order to
search all the occurrences of a pattern (substring) P in linear time with respect
to the size of the pattern. From an algorithmic point of view, the efficiency of the
suffix automaton is a consequence of the fact that it can be constructed (on-line)
in linear time and space with respect to the size of the input text X [1,2].

We introduce the suffix automaton from an algebraic point of view. The states
of the suffix automaton of w are in fact the classes of an equivalence relation
defined on the set of factors of w by means of their occurrences in w. The
terminal states of the suffix automaton are then the classes containing a suffix of
w. The classes of this equivalence have several well known remarkable properties.
Indeed, any two classes are either in an inclusion relation or disjoint. Moreover,
the total number of classes, i.e. the number of states of the suffix automaton, is
smaller than twice the length of w.

Our investigation deals with this question: what are the relations between the
structure of the suffix automaton and the combinatorics of the word w?

We show that each class contains as longest element either a prefix of w or a
left special factor which is not a prefix. A left special factor is a factor u such
that au and bu are both factors of w, for a and b distinct letters.
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As a consequence, we can characterize the words having suffix automaton of
minimal size as the words such that every left special factor is a prefix.

Then we focus on binary words. In this case we can express the total number
of classes in terms of two parameters, Hw and Pw. The first is the length of the
shortest prefix of w that has no repetitions in w, while the second is the length of
the longest prefix of w which is left special. We then derive a new combinatorial
characterization of standard sturmian words in terms of these two parameters.

Finally, we give a formula that expresses the total number of edges of the
suffix automaton of a binary word w in terms of its special factors.

The paper is organized as follows. In Section 2 we fix the notation and recall
some definitions and basic facts about words. In Section 3 we introduce the suffix
automaton and we recall some of its properties. In Section 4 we deal with the
size of the suffix automaton and the number of its terminal states. In Section
5 we focus on binary words and we derive the size of the suffix automaton in
terms of two combinatorial parameters, Hw and Pw. Finally, we give a formula
for the computation of the number of edges of the suffix automaton of a binary
word.

2 Notation and Background

An alphabet, denoted by A, is a finite set of symbols. The size of A is denoted
by |A|. A word over A is a sequence of symbols from A. The length of a word
w is denoted by |w|. The set of all words over A is denoted by A∗. The empty
word has length zero and is denoted by ε. The set of all words over A having
length n ≥ 0 is denoted by An. A language over A is a subset of A∗. For a finite
language L we denote by |L| the number of its elements.

Let w = a1a2 . . . an, n > 0, be a nonempty word over the alphabet A. Any i
such that 1 ≤ i ≤ n is called a position of w, and the letter ai ∈ A is called the
letter in position i.

The reversal of the word w = a1a2 . . . an is the word w̃ = anan−1 . . . a1.
A prefix of w is any word v such that v = ε or v is of the form v = a1a2 . . . ai,

with 1 ≤ i ≤ n. A suffix of w is any word v such that v = ε or v is of the
form v = aiai+1 . . . an, with 1 ≤ i ≤ n. A factor (or substring) of w is a prefix
of a suffix of w (or, equivalently, a suffix of a prefix of w). Therefore, a factor
of w is any word v such that v = ε or v is of the form v = aiai+1 . . . aj , with
1 ≤ i ≤ j ≤ n.

We denote by Pref(w), Suff(w), Fact(w) respectively the set of prefixes,
suffixes, factors of the word w.

The factor complexity of a word w is defined as pn(w) = |Fact(w) ∩ An|,
for every n ≥ 0. The maximal factor complexity of w is defined as p(w) =
maxn≥0{pn(w)}, which represents the maximum number of distinct factors of
w having the same length. Note that p1(w) is the number of distinct letters
occurring in w. A binary word is a word w such that p1(w) = 2.

A factor u of w is said left special if there exist a, b ∈ A, a = b, such that
au, bu ∈ Fact(w). A factor u of w is said right special if there exist a, b ∈ A,
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a = b, such that ua, ub ∈ Fact(w). A factor u of w is said bispecial if it is
both left special and right special. We denote by LS(w) (resp. RS(w), BS(w))
the set of left special (resp. right special, bispecial) factors of the word w. We
note Sl

n(w) (resp. Sr
n(w)) the number of left (resp. right) special factors of w

which have length n. We note Sl(w) (resp. Sr(w)) the total number of left
(resp. right) special factors of w, i.e. Sl(w) =

∑
n≥0 Sl

n(w) = |LS(w)| (resp.
Sr(w) =

∑
n≥0 Sr

n(w) = |RS(w)|). Since a word w has exactly one factor of
length zero (the empty word ε), one has Sl

0(w) = Sr
0(w) = 1 if and only if

p1(w) > 1.
More about combinatorics on words can be found in [6].

3 The Suffix Automaton

Let w = a1a2 . . . an, n > 0, be a nonempty word over the alphabet A. For any
v ∈ Fact(w) we can define the set of ending positions of v in w. It is the set
Endsetw(v) of the positions of w in which an occurrence of v ends. We assume
that Endsetw(ε) = {0, 1, . . . , n}.

Example 1. Let w = aabaab. Then one has Endsetw(ba) = {4}, Endsetw(aab) =
Endsetw(ab) = {3, 6}.

In the next proposition we recall some properties of the sets of ending positions
(see [3]):

Proposition 1. [3] Let u, v ∈ Fact(w). Then one of the three following condi-
tions holds:

1. Endsetw(v) ⊆ Endsetw(u)
2. Endsetw(u) ⊆ Endsetw(v)
3. Endsetw(v) ∩ Endsetw(u) = ∅

Moreover, if u ∈ Suff(v) then Endsetw(v) ⊆ Endsetw(u). If Endsetw(v) =
Endsetw(u) then v ∈ Suff(u) or u ∈ Suff(v).

On the set Fact(w) we can thus define the following equivalence:

u ≡w v ⇔ Endsetw(u) = Endsetw(v).

The set Fact(w) is then partitioned into a finite number of classes with respect
to this equivalence. These classes are called right-equivalence classes.

We note [u]w (or simply [u], if the context does not make it ambiguous)
the right-equivalence class of u in w. So [u]w = {v ∈ Fact(w) : Endsetw(v) =
Endsetw(u)}.

In the following proposition we gather some useful facts about the right-
equivalence classes, that we will use in next sections.

Proposition 2. Let [u] be a right-equivalence class of factors of the word w.
Then:
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1. Two distinct elements in [u] cannot have the same length. If v is the longest
element in [u], then any other element in [u] is a proper suffix of v.

2. The class [u] contains at most one prefix of w; this prefix is the longest
element in [u] and we call [u] a prefix class.

3. If v ∈ [u] is a suffix of w, then all the elements in [u] are suffixes of w. In
this case we call [u] a suffix class.

We now recall the definition and the basic properties of the suffix automaton
(for more details see, for instance, [3]).

Definition 1 ([1,2]). The suffix automaton (or Direct Acyclic Word Graph)
of a word w ∈ A∗ is the minimal deterministic automaton accepting the language
Suff(w). It is denoted by A(w).

The states of A(w) are in fact the right-equivalence classes of factors of the
word w. For each state q of the suffix automaton, the elements of the class [u]q
associated to q are the labeled paths starting at the initial state and ending in
q. Hence one can associate to each state q of A(w) the set of ending positions of
factors in [u]q.

There is an edge from the class q to the class q′ labeled by the letter a ∈ A if
q′ is the class of ua for any u in the class q.

An example of suffix automaton is displayed in Figure 1.

{0, 1, 2, . . . , 7} {1, 2, 5} {2} {3} {4} {5} {6} {7}

{3, 6} {4, 7}

{3, 4, 6, 7}

a a b b a b b

b

b

a

b

b

a

Fig. 1. The suffix automaton of the word w = aabbabb. Terminal states are double
circled.

The size of A(w), denoted by |Qw|, is the number of its states. Therefore,
|Qw| is the number of right-equivalence classes of factors of w.

The bounds on |Qw| are well known. The following proposition can be found
in [3].

Proposition 3. [3] Let w be a word over A. If |w| = 0 then |Qw| = 1; if |w| = 1
then |Qw| = 2. If |w| ≥ 2 then 1 + |w| ≤ |Qw| ≤ 2|w| − 1, and the upper bound
is reached when w has the form ab|w|−1, for a and b distinct letters.

The set of edges of the suffix automaton of the word w is denoted by Ew. In [3]
we can find the following bounds.
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Proposition 4. [3] Let w be a word over A. If |w| = 0 then |Ew| = 0; if |w| = 1
then |Ew| = 1; if |w| = 2 then 2 ≤ |Ew| ≤ 3. If |w| ≥ 3 then |w| ≤ |Ew| ≤ 3|w|−4,
and the upper bound is reached when w has the form ab|w|−2c, for a, b and c
pairwise distinct letters.

4 The Size of the Suffix Automaton

In this section we give some formulas for the computation of the number of states
of the suffix automaton of a word w.

Definition 2. Let w be a word. We denote by D(w) the set of factors u of w
such that u is not a prefix of w and u is left special.

Proposition 5. Let w be a word. Any u ∈ D(w) is the longest element in its
class [u]. In particular, then, the elements of D(w) are each in a distinct class.

Proof. By contradiction, suppose that there exists a factor v of w such that
v ∈ [u] and |v| > |u|. By Proposition 2, u is a proper suffix of v. Let us write
v = zau, with z ∈ A∗, a ∈ A. Since u and v are in the same class, this implies
that every occurrence of u in w is an occurrence of zau, and so u appears in w
always preceded by the letter a, against the hypothesis that u is left special.

Since the longest element of a class is unique (by Proposition 2), each u ∈
D(w) is in a distinct class. ��

Proposition 6. Let w be a word over the alphabet A such that |w| > 2. Then
the suffix automaton of w has size:

|Qw| = 1 + |w| + |D(w)|.

Proof. From Proposition 2 we know that each right-equivalence class contains
at most one prefix of w, so the prefixes of w are each in a distinct class. Since a
word w has exactly |w|+ 1 prefixes the suffix automaton of w has |w|+ 1 prefix
classes. It rests to prove that the number of classes which are not prefix classes
is |D(w)|.

Let [u] be a class which is not a prefix class, and let u be its (unique) longest
element. Thus, by Proposition 2, u is not a prefix of w (and in particular this
implies that |u| > 0). So there exists a letter a ∈ A such that au is factor of w.
From Proposition 1 we have Endsetw(au) ⊆ Endset(u). Since we supposed that u
is the longest element in its class, au cannot belong to [u], and so Endset(au) ⊂
Endset(u). Hence there exists a position i such that i ∈ Endsetw(u) but i /∈
Endsetw(au). Since u is not a prefix of w this implies that there exists a letter
b ∈ A, b = a, such that bu ∈ Fact(w), and so u is left special. Thus u ∈ D(w).

The statement then follows from Proposition 5. ��

An interesting consequence of Proposition 6 is the following.

Corollary 1. Let w be a word over the alphabet A such that |w| > 2. Then the
suffix automaton of w has minimal number of states |Qw| = |w| + 1 if and only
if every left special factor of w is a prefix of w.



Combinatorics of Finite Words and Suffix Automata 255

Let us say that a (finite or infinite) word w over A has property LSP if every
left special factor of w is a prefix of w.

Sciortino and Zamboni showed in [11] that finite words over a binary alphabet
having property LSP are exactly the prefixes of standard sturmian words. Recall
that a right infinite binary word w is a sturmian word if, for every n ≥ 0, w
has exactly n + 1 distinct factors of length n. A standard sturmian word is a
sturmian word having property LSP .

To the best of our knowledge property LSP does not characterize known sets
of finite words in the case of larger alphabets.

A right infinite word is an episturmian word if it has at most one left special
factor (or equivalently right special factor) for each length and the set of its
factors is closed under reversal. A standard episturmian word is an episturmian
word having property LSP .

More generally, if in the definition of episturmian word we substitute the
reversal operator with any involutory antimorphism ϑ (i.e. a map ϑ : A∗ �→
A∗ such that ϑ(uv) = ϑ(v)ϑ(u) and ϑ ◦ ϑ = id), we obtain a ϑ-episturmian
word. Once again, a standard ϑ-episturmian word is a ϑ-episturmian word having
property LSP (see [8]).

The word w = abcaaba has property LSP but has two right special factors
of the same length (a and b). This implies that w cannot be a factor of a ϑ-
episturmian word for any involutory antimorphism ϑ [7]; in particular, it cannot
be a factor of an episturmian word.

5 Binary Words

In this section we show that for binary words the number of states of the suffix
automaton can be expressed in terms of two combinatorial parameters related
to the structure of the word.

We introduce the two parameters Hw and Pw.

Definition 3. Let w be a word over A.
We note Hw the minimal length of a prefix of w which occurs only once in w.
We note Pw the maximal length of a prefix of w which is left special.

We now show a property of binary words that underlines the relationship between
Hw and the total number Sl(w) of left special factors of w.

The next proposition shows that there is a close relation between the number
of left special factors and the factor complexity of w.

Lemma 1. Let w be a binary word such that |w| > 2. Then Sl
n(w) = pn+1(w)−

pn(w) if 0 ≤ n < Hw and Sl
n(w) = pn+1(w) − pn(w) + 1 if Hw ≤ n ≤ |w| − 1.

Proof. Let 0 ≤ n < Hw. Among the pn(w) factors of w of length n there are
Sl

n(w) factors that can be extended to the left with two letters, and pn(w)−Sl
n(w)

factors that can be extended to the left with only one letter. If Hw ≤ n ≤ |w|−1,
there is one factor (the prefix of w of length n) that cannot be extended to the
left by any letter, since it appears in w only as a prefix.
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Thus, the number of factors of w having length n + 1, that is pn+1(w), is
2Sl

n(w)+pn(w)−Sl
n(w) when 1 ≤ n < Hw, and it is 2Sl

n(w)+pn(w)−Sl
n(w)−1

when Hw ≤ n ≤ |w| − 1. ��

The following lemma gives us a simple formula for the computation of the total
number of left special factors of a binary word.

Lemma 2. Let w be a binary word such that |w| > 2. Then the total number of
left special factors of w is Sl(w) = |w| −Hw.

Proof. In view of Lemma 1 we have:

Sl(w) =
|w|−1∑
i=0

Sl
i(w)

=
Hw−1∑

i=0

Sl
i(w) +

|w|−1∑
i=Hw

Sl
i(w)

=
Hw−1∑

i=0

(pi+1(w) − pi(w)) +
|w|−1∑
i=Hw

(pi+1(w) − pi(w) + 1)

=
|w|−1∑
i=0

(pi+1(w) − pi(w)) + (|w| − 1 −Hw + 1)

= p|w|(w) − p0(w) + |w| −Hw

= |w| −Hw

��

Analogous results hold for right special factors. If we denote by Kw the minimal
length of a suffix of w which occurs only once in w, we get the following result:

Lemma 3. Let w be a binary word such that |w| > 2. Then Sr
n(w) = pn+1(w)−

pn(w) if 0 ≤ n < Kw and Sr
n(w) = pn+1(w) − pn(w) + 1 if Kw ≤ n ≤ |w| − 1.

The total number of right special factors of w is Sr(w) = |w| −Kw.

Proof. The proof is very similar to that of Proposition 1 and Lemma 2. In fact,
one reaches the result by using a symmetric argument in which “right” is replaced
by “left”, and Kw by Hw. ��

The previous technical results (Lemmas 1,2 and 3) are rather easy observations
on the factor complexity of finite binary words. For a deep study on the combi-
natorics of finite words over alphabets of arbitrary size see [4].

For binary words we can then express the number of states of the suffix au-
tomaton, |Qw|, in terms of Hw and Pw.

Theorem 1. Let w be a binary word. Then the number of states of the suffix
automaton of w is

|Qw| = 2|w| −Hw − Pw
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Proof. Let first |w| = 2. Since w is a binary word then either w = ab or w = ba
for a and b distinct letters. In both cases we have Hw = 1 and Pw = 0. Moreover,
in both cases |Qw| = 3, so the claim holds.

Let now |w| > 2. From Proposition 6 we have |Qw| = 1 + |w|+ |D(w)|, where
D(w) is the set of left special factors of w that are not prefixes of w.

The total number of left special factors of w is given by the formula Sl(w) =
|w| − Hw by Lemma 2. In order to obtain the number of left special factors
which are not prefixes, i.e. |D(w)|, we have to subtract the number of left special
prefixes of w from Sl(w).

If u is the longest prefix of w which is left special, then all the other left
special prefixes of w are the prefixes of u. Since, by definition, |u| = Pw, we have
that the number of left special factors of w which are not prefixes is |D(w)| =
Sl(w) − (|u| + 1) = |w| − Hw − (Pw + 1). Hence, the total number of distinct
right-equivalence classes of the suffix automaton of w is given by:

|Qw| = 1 + |w| + |D(w)|
= 1 + |w| + |w| −Hw − (Pw + 1)
= 2|w| −Hw − Pw

��
The previous result does not hold for words over an arbitrary alphabet. As an
example, consider the word w = abbccb. The set of left special factors of w which
are not prefixes of w is D(w) = {b, c}. Hence, by Proposition 6, one has |Qw| = 9.
Nevertheless, Hw = 2 and Pw = 0.

In fact, for words over alphabets larger than two, one has Sl(w) ≤ |w| −Hw

(see [4]), and so Lemma 2 does not hold in general.
Another formula, involving left special factors, can be derived from the pre-

vious theorem and Lemma 2.

Corollary 2. Let w be a binary word. Then the number of states of the suffix
automaton of w is

|Qw| = |w| + Sl(w) − Pw

As a consequence of Theorem 1, we get another characterization of the prefixes
of standard sturmian words.

Proposition 7. Let w be a binary word. Then w is a prefix of a standard stur-
mian word if and only if |w| = Hw + Pw + 1.

Remark. The previous proposition does not apply to words of the form w = an,
n ≥ 0. Indeed, such a word belongs to the set of prefixes of standard sturmian
words, but Hw + Pw + 1 = |w| + 1.

We now deal with the number of edges of the suffix automaton of binary
words. The following proposition gives a formula for the computation of the
number of edges |Ew| of the suffix automaton of a binary word.
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Proposition 8. Let w be a binary word. Let G(w) = (Pref(w) ∩ RS(w)) ∪
BS(w). Then:

|Ew| = |Qw| + |G(w)| − 1

Proof. Let q be a state of the suffix automaton. If q is the state corresponding
to the class of w itself then the outgoing degree of q is 0. Else the outgoing
degree of q is either 1 or 2. If it is 2 we call the class corresponding to q a right
special class. It is worth noting that all the factors in a right special class are
right special factors.

Hence the total number of edges of the suffix automaton of w is |Ew| = |Qw|−
1 + |G′(w)|, where G′(w) is the set of right special classes. So we have proved
the claim once we prove that the sets G(w) and G′(w) are in bijection.

The set of right special classes G′(w) is the union of the set of right special
classes which are prefix classes and the set of ones which are not prefix classes.

We know that the longest element of a prefix class is unique and it is a prefix
of w.

By Proposition 5 a class which is not a prefix class contains as longest element
a left special factor which is not a prefix. So a right special class which is not a
prefix class contains as longest element a bispecial factor of w.

Moreover, two different bispecial factors cannot share the same class, since
two different left special factors cannot do it (by Proposition 5).

Thus, each right special class contains as longest element an element of G(w)
and the elements of G(w) are each in a different class. ��

6 Conclusions and Open Problems

This work is an attempt to investigate the combinatorics of a finite word by
looking at the structure of its suffix automaton and vice versa.

The characterization of the set of prefixes of standard sturmian words in terms
of their suffix automaton given by Sciortino and Zamboni ([11]) does not seem
to easy generalize to larger alphabets. A more general question is to characterize
the set of words having property LSP , both in the finite and in the infinite case.

Our formulas on the number of states and edges of the suffix automaton can
also be used in the study of the average size of the suffix automaton, at least
for binary words (this subject is treated for example in [10]). Indeed, both the
parameters Hw and Pw are smaller than or equal to the repetition index of w
(recall that, for a finite word w, the repetition index r(w) is the length of the
longest factor of w that has at least two occurrences in w). And it is known that
for a word w randomly generated by a memoryless source with identical symbol
probabilities, r(w) is logarithmic in the length of w [5,9].

Another direction of research may consist in considering other data struc-
tures in place of the suffix automaton (e.g. factor oracles, suffix tries, suffix
arrays, etc.). For example, a characterization of the class of words having factor
automaton with minimal number of states is still lacking.
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Concatenation hierarchies has been intensively studied by many authors – see
Section 8 of the Pin’s Chapter [8]. The main open problem concerning concate-
nation hierarchies, which is in fact one of the most interesting open problem in
the theory of regular languages, is the membership problem for the level 2 in the
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from level 1 in that hierarchy. It is known that a language is of this type if and
only if it is a Boolean combination of polynomials with languages Li = B∗

i where
each Bi ⊆ A (i = 0, . . . , �). So this instance of polynomial operator is the most
important case to study.

In the restricted case we fix a natural number k and we allow only � ≤ k in
(∗). This operator was considered mainly in the case that V is the trivial variety
by Simon in [10], in a series of papers by Blanchet-Sadri, see for instance [4],
and in a recent paper by the authors [6].

The basic question both for general and restricted polynomial operator is to
translate the construction on languages to the corresponding pseudovarieties of
(ordered) monoids. A crucial tool is the Schützenberger product of (ordered)
monoids (see Pin [9]). Other important questions for varieties resulting by the
polynomial operator concern the existence of finite basis of (pseudo)identities
for the corresponding pseudovarieties of (ordered) monoids and the possibility
to generate such pseudovariety by a single monoid (see Volkov [11]).

In the present paper we continue our research from [6]. We concentrate here on
identity problems for corresponding pseudovarieties and on the question whether
they are generated by a single (ordered) monoid. In our basic examples the class
V(A) equals to {∅, A∗} or to finite unions of B∗, B ⊆ A or to finite unions of
B, B ⊆ A where B is the set of all words over A containing exactly the letters
from B.

In the next section we recall the necessary background and we introduce
there four examples which we will follow thorough the whole paper. We show
in Section 3 that the locally finite positive varieties of languages (i.e. such that
each V(A) is finite) correspond to the so-called finite characteristics which are
certain relations on {x1, x2, . . . }∗. Section 4 contains the main result which ef-
fectively translates the polynomial operation on languages to an operator on
finite characteristics. The last section studies the varieties of languages which
are generated by a finite number of languages. In fact, this is equivalent to the
property that corresponding pseudovariety of (ordered) monoids is generated by
a single monoid. We transfer this property to finite characteristics. We conclude
here to by investigating this “finiteness condition” on our basic examples.

2 Preliminaries

For a relation ρ on a set S we define its dual relation ρd = { (v, u) ∈ S × S |
(u, v) ∈ ρ }. A quasiorder ρ on a set S is a reflexive and transitive relation. Let
ρ̂ = ρ ∩ ρd be the corresponding equivalence relation.

An ordered monoid is a structure (M, ·,≤) where (M, ·) is a monoid and ≤ is
a compatible order on (M, ·), i.e. a ≤ b implies both a · c ≤ b · c, c · a ≤ c · b, for
all a, b, c ∈ M . Morphisms of ordered monoids are isotone monoid morphisms.

Let (M, ·,≤) be an ordered monoid and let ! be a compatible quasiorder on
(M, ·) satisfying ≤ ⊆ !. Then the relation ≤� defined by

a!̂ ≤� b!̂ if and only if a ! b, for all a, b ∈ M
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is a compatible order on (M/!̂, ·) and the mapping a �→ a!̂ is a morphism of
(M, ·,≤) onto (M/!̂, ·,≤�).

Let Y ∗ be the set of all words over an alphabet Y including the empty one,
denoted by λ. For a word u ∈ Y ∗, let

cont(u) = { y ∈ Y | u = u′yu′′ for some u′, u′′ ∈ Y ∗ } .

For a set Z ⊆ Y , let Z = { u ∈ Y ∗ | cont(u) = Z }. Let |u|y be the number of
occurrences of a letter y ∈ Y in u ∈ Y ∗.

An ideal I of an ordered set (M,≤) is a subset of M satisfying b ≤ a ∈ I implies
b ∈ I, for all a, b ∈ M . For a ∈ M , we write (a] = { b ∈ M | b ≤ a }. A language
L over an alphabet A is recognized by a finite ordered monoid (M, ·,≤) if there
exist a morphism φ : A∗ → M and an ideal I of (M,≤) such that L = φ−1(I).

We recall now some basic facts about Eilenberg-type theorems. The Boolean
case was invented by Eilenberg [5] and the positive case was introduced by
Pin [7].

A Boolean variety of languages V associates to every finite alphabet A a class
V(A) of regular languages over A in such a way that

– V(A) is closed under finite unions, finite intersections and complements (in
particular ∅, A∗ ∈ V(A) ),

– V(A) is closed under derivatives, i.e.
L ∈ V(A), u, v ∈ A∗ implies u−1Lv−1 = {w ∈ A∗ | uwv ∈ L } ∈ V(A),

– V is closed under inverse morphisms, i.e.
f : B∗ → A∗, L ∈ V(A) implies f−1(L) = { v ∈ B∗ | f(v) ∈ L } ∈ V(B).

To get the notion of a positive variety of languages, we use in the first item only
intersections and unions (not complements). In fact in this paper we consider
mainly positive varieties and the Boolean ones are treated as special cases.

The meaning of V ⊆ W is that V(A) ⊆ W(A), for each finite alphabet A.
Similarly,

⋃
i∈I Vi means that (

⋃
i∈I Vi)(A) =

⋃
i∈I Vi(A), for each finite A

and arbitrary set I.
A pseudovariety of finite monoids is a class of finite monoids closed under

taking submonoids, morphic images and products of finite families. Similarly for
ordered monoids (see [8]). When defining a variety of (ordered) monoids we use
arbitrary products.

For a regular language L ⊆ A∗, we define the relations ∼L and !L on A∗ as
follows: for u, v ∈ A∗ we have

u ∼L v if and only if ( ∀ p, q ∈ A∗ ) ( puq ∈ L ⇐⇒ pvq ∈ L ) ,

u !L v if and only if ( ∀ p, q ∈ A∗ ) ( pvq ∈ L =⇒ puq ∈ L ) .

The relation ∼L is the syntactic congruence of L on A∗. It is of finite index (i.e.
there are only finitely many classes) and the quotient structure M(L) = A∗/∼L

is called the syntactic monoid of L.
The relation !L is the syntactic quasiorder of L and we have !̂L = ∼L. Hence

!L induces an order on M(L) = A∗/∼L, namely: u∼L ≤ v ∼L if and only if
u !L v. Then we speak about the syntactic ordered monoid of L and we denote
the structure by O(L).
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Result 1 (Eilenberg[5], Pin[7].) Boolean varieties (positive varieties) of lan-
guages correspond to pseudovarieties of finite monoids (ordered monoids). The
correspondence, written V ←→ V (P ←→ P), is given by the following relation-
ship: for L ⊆ A∗ we have

L ∈ V(A) if and only if M(L) ∈ V ( L ∈ P(A) if and only if O(L) ∈ P ) .

The pseudovarieties of ordered monoids can be characterized by pseudoidentities
(see e.g. [1]). The pseudovarieties we consider here are equational – they are given
by identities. For the set X = {x1, x2, . . . }, an identity is a pair u = v (u ≤ v) of
words over X , i.e. u, v ∈ X∗. An identity u = v (u ≤ v, respectively) is satisfied in
a monoid M (ordered monoid (M,≤)) if for each morphism φ : X∗ → M we have
φ(u) = φ(v) (φ(u) ≤ φ(v)). In such a case we write M |= u = v (M |= u ≤ v),
and for a set of identities Π , we define ModΠ = {M | ( ∀ π ∈ Π ) M |= π }. For
a class M of ordered monoids, the meaning of M |= Π is that, for each M ∈ M,
we have M |= Π . Let IdV be the set of all identities which are satisfied in a
variety of ordered monoids V. Let FinV denote the class of all finite members
of a class V.

For a fixed A and L ⊆ A∗, let Lc = A∗ \ L be the complement of L. For a
class V of languages, we define Vc by Vc(A) = {Lc | L ∈ V(A) }. The following
is obvious.

Lemma 1. For a positive variety V the following holds.
(i) Vc is a positive variety.
(ii) Let V ∨Vc be the smallest positive variety containing both V and Vc. Then

(V ∨ Vc)(A) consists of all positive Boolean combinations of the languages from
V(A) ∪ Vc(A).

(iii) The class V ∨ Vc is a Boolean variety.

Next we define the positive varieties of languages T , S+, S, Am. We will return
to them several times in our paper again.

Example 1. 1. Let T (A) = {∅, A∗} for each finite set A.
2. Let S+(A) be the set of all finite unions of the languages of the form B∗,

where B ⊆ A, for each finite set A.
3. Let S(A) be the set of all finite unions of the languages of the form B,

where B ⊆ A, for each finite set A.
4. Let m be a fixed natural number and let Am(A) be the set of all Boolean

combinations of the languages of the form L(a, r) = { u ∈ A∗ | |u|a ≡ r
(mod m) }, where a ∈ A and 0 ≤ r < m, for each finite set A.

Notice that the classes T , S, Am are Boolean varieties. Moreover, for the
corresponding pseudovarieties of (ordered) monoids consist of finite members of
the following varieties:

T = Mod(x = y ), S+ = Mod(x2 = x, xy = yx, 1 ≤ x ),

S = Mod(x2 = x, xy = yx ), Am = Mod(xy = yx, xm = 1 ) .
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The names for the (ordered) monoids of the varieties T, S+, S, Am are triv-
ial monoids, semilattices with the smallest element 1, semilattices and Abelian
groups of index m, respectively – see Pin [8].

3 Locally Finite Varieties of Languages

In this paper we concentrate on positive varieties of languages which correspond
to locally finite pseudovarieties of ordered monoids. Each such pseudovariety is
formed by the finite members of locally finite variety of ordered monoids (i.e.
finitely generated ordered monoids are finite), and consequently such a variety
of languages can be described by a fully invariant compatible quasiorder on the
monoid X∗ which has locally finite index; more precisely:

Definition 1. A relation γ on X∗ is a finite characteristic if it satisfies the
following conditions:

(i) γ is a quasiorder on X∗;
(ii) γ is compatible with the multiplication, i.e. for each u, v, w ∈ X∗ we have

u γ v implies uw γ vw, wu γ wv ;

(iii) γ is fully invariant, i.e. for each morphism ϕ : X∗ → X∗ and each
u, v ∈ X∗ we have

u γ v implies ϕ(u) γ ϕ(v) ;

(iv) for each finite subset Y of the set X, the set Y ∗ intersects only finitely
many classes of X∗/ γ̂.

For each finite alphabet A, we define the natural adaptation γA of a finite char-
acteristic γ in the following way. For u, v ∈ A∗, we have

u γA v if and only if ( ∀ ϕ : A∗ → X∗ ) ϕ(u) γ ϕ(v) . (†)

It follows from the property (iii) in Definition 1 that in (†) we can use just one
morphism given by a fixed injective mapping φ : A → X . In particular, if A
is a finite subset of X then γA is a restriction of γ on A∗. The condition (iv)
from Definition 1 means that γA (more precisely γ̂A) has a finite index (i.e. the
quotient set A∗/ γ̂A is finite).

A relation γ on X∗ satisfying the conditions (i) – (iii) is called a fully invariant
compatible quasiorder. It determines a variety Vγ of ordered monoids; namely
γ can be considered as a set of identities and Vγ = Mod γ. Basics of universal
algebra, see [3] and [2], give that Id and Mod are mutually inverse bijections
between varieties of ordered monoids and fully invariant compatible quasiorders
on X∗. Moreover, for each Y ⊆ X , the ordered monoid Y ∗/γY is a free ordered
monoid in Vγ over Y . The condition (iv) says that the finitely generated free
ordered monoids in Vγ are finite. In this case the variety Vγ is locally finite,
which means that all finitely generated ordered monoids are finite.
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The pseudovariety FinVγ of all finite members from Vγ corresponds to the
positive variety Vγ of languages by

L ∈ Vγ(A) if and only if O(L) ∈ FinVγ , for all finite A .

We say that γ is a finite characteristic of a class of languages V if γ is a finite
characteristic and for every finite alphabet A we have

L ∈ V(A) if and only if γA ⊆ !L .

The following lemma explains the universal algebra point of view.

Lemma 2. Let V be a class of languages and γ be a finite characteristic of V.
Then

(i) V equals to the positive variety of languages Vγ = Fin Mod γ;
(ii) if V is the pseudovariety of finite ordered monoids corresponding to V

then γ = IdV;
(iii) γd is a finite characteristic of the positive variety Vc;
(iv) γ̂ is a finite characteristic of the Boolean variety V ∨ Vc.

Proof. “(i)” Let A be a finite alphabet. We have to show that L ∈ V(A) is
equivalent to L ∈ Vγ(A). The statement on the left hand side is equivalent to
γA ⊆ !L which is equivalent to the fact that O(L) is a morphic image of A∗/γA.
The last is equivalent to O(L) ∈ FinVγ , which means L ∈ Vγ(A).

“(ii)” Notice that Vγ is generated by its finitely generated free ordered
monoids which are in FinVγ .

“(iii)” The statement follows from the fact that !Lc = (!L)d.
“(iv)” It follows from Lemma 1. ��

We present the finite characteristics for our four basic examples.

Example 2. (A continuation of Example 1.)
1. IdT = X∗ ×X∗.
2. IdS+ = { (u, v) ∈ X∗ ×X∗ | cont(u) ⊆ cont(v) }.
3. IdS = { (u, v) ∈ X∗ ×X∗ | cont(u) = cont(v) }.
4. IdAm = { (u, v) ∈ X∗ ×X∗ | (∀ x ∈ X ) |u|x ≡ |v|x (mod m) }.

Proposition 1. Let V be a positive variety of languages and V be the corre-
sponding pseudovariety of ordered monoids. Then the following conditions are
equivalent.

(i) For each finite alphabet A, the set V(A) is finite.
(ii) The pseudovariety of ordered monoids V is locally finite, i.e. each finitely

generated submonoid of an arbitrary product of ordered monoids from V is finite.
(iii) There exists a finite characteristic of V.

Proof. “(i) =⇒ (ii)” Let (Mi)i∈I be an arbitrary family of ordered monoids
from the class V. Let A be a finite set, let φ : A∗ → M ′ =

∏
i∈I Mi be a

morphism, and let πi : M ′ → Mi be the i-th projection (i ∈ I). We want to
show that M = φ(A∗) is finite.
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For each m ∈ M , we have φ−1((m]) =
⋂

i∈I Li where Li = (πiφ)−1((πi(m)]).
We have Li ∈ V(A) as Li is recognized by Mi. Since we have only finitely
many languages in V(A) we intersect only finitely many languages. Consequently
φ−1((m]) ∈ V(A). For different m,n ∈ M , the languages φ−1((m]) and φ−1((n])
are different. Now the finiteness of V(A) gives that M is finite.

“(ii) =⇒ (iii)” Let W = 〈V〉 = HSPV be the variety of ordered
monoids generated by the pseudovariety V. We claim that the variety W is
locally finite. Indeed, let M be an ordered submonoid of

∏
i∈I Mi where each

Mi ∈ V, and let φ be a surjective morphism of M onto an ordered monoid N
with a finite generating set G. We need to show that N is finite. Let F ⊆ M be
a finite set such that φ(F ) = G. By assumption (ii), the set F generates in M a
finite ordered monoid and N is its image.

It follows that γ = IdW is a finite characteristic for V .
“(iii) =⇒ (i)” Let γ be a finite characteristic for V . Then L ∈ V(A) implies

that L is a union of classes of A∗/γA. Since the set A∗/γA is finite there are only
finitely many possibilities for L. ��

A positive variety V is called locally finite if it satisfies (i) of Proposition 1.

4 Polynomial Operators of Bounded Length

Let V be a positive variety of languages and let k be a natural number. We define
the class PPolkV of positive polynomials of length at most k of languages from
the class V . Namely, for a finite alphabet A, PPolkV(A) consists of finite unions
of finite intersections of the languages of the form

L0a1L1a2 . . . a	L	, where � ≤ k, a1, . . . , a	 ∈ A, L0, . . . , L	 ∈ V(A) . (∗)

Similarly, we define the classes BPolkV of Boolean polynomials using all fi-
nite Boolean combinations of languages of the form (∗). Clearly, it holds that
PPolkV ⊆ PPolk′V for k ≤ k′ and the same for BPol’s. We denote the union of
all PPolkV ’s by PPolV . Similarly for BPolkV ’s.

Example 3. (A continuation of Examples 1 and 2.)
1. The case V = T was studied in [6]. Notice only that PPolT is the 1/2-level

of the Straubing-Thérien hierarchy and BPol T is the first level, i.e. the class of
all piecewise testable languages.

2. and 3. One can show that PPolS+ = PPolS is the 3/2-level and BPolS+ =
BPolS is the second level – see Theorem 8.8 in [8].

Lemma 3. If V is a positive variety of languages then PPolkV is a positive
variety of languages and BPolkV is a Boolean variety of languages.

Proof. One can prove the statements directly. For locally finite varieties it also
immediately follows from Theorem 1. ��
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Let k be a fixed natural number and α be a finite characteristic. Let A be a fixed
set; in particular, A can be a finite alphabet or the set X .

For a word u ∈ A∗, we say that

f = (u0, a1, . . . , a	, u	)

is a factorization of u of length � if u0, u1, . . . , u	 ∈ A∗, a1, a2, . . . , a	 ∈ A and
u0a1u1 . . . a	u	 = u. The set of all factorizations of length at most k of the word
u is denoted by Factk(u). For a factorization f = (u0, a1, . . . , a	, u	) of a word
u ∈ A∗ and a factorization g = (v0, b1, v1, . . . bm, vm) of a word v ∈ A∗, we write

f ≤α g

if � = m, ai = bi for every i ∈ {1, . . . , �} and ui αA vi for every i ∈ {0, 1, . . . , �}.
We define the relation (pk(α))A on the set A∗ as follows: for u, v ∈ A∗, we have

u (pk(α))A v if and only if (∀ g ∈ Factk(v) ) (∃ f ∈ Factk(u) ) f ≤α g .

We show in Theorem 1 that the relation (pk(α))X is a finite characteristic and
therefore the relation (pk(α))A is equal to ((pk(α))X)A as defined after Defini-
tion 1. We write pk(α) instead of (pk(α))X . Further we denote bk(α) = p̂k(α).

Theorem 1. Let V be a locally finite positive variety of languages and α be
the finite characteristic of V. Then PPolkV is a locally finite positive variety
of languages with the finite characteristic pk(α) and BPolkV is a locally finite
Boolean variety of languages with the finite characteristic bk(α).

Proof. We prove that pk(α) is a finite characteristic of PPolkV . The rest follows
from Lemma 1 and Lemma 2.

We have to check the properties (i) – (iv) from Definition 1 and also the
property

(v) L ∈ PPolkV(A) if and only if (pk(α))A ⊆ !L.

“(i)” The reflexivity of the relation pk(α) is trivial. The transitivity follows
from the transitivity of the relation ≤α.

“(ii)” Let u, v, w ∈ X∗ be such that (u, v) ∈ pk(α). We want to show that
(uw, vw) ∈ pk(α). Let g ∈ Factk(vw) be an arbitrary factorization of length at
most k of the word vw, i.e. g = (v0, a1, v1, . . . , a	, v	), where � ≤ k, a1, . . . , a	 ∈
X , v0, . . . , v	 ∈ X∗ and there exist 0 ≤ i ≤ � and v′i, v

′′
i ∈ X∗ such that v′iv

′′
i = vi

and
v = v0a1v1 . . . aiv

′
i , w = v′′i ai+1 . . . a	v	 .

From the assumption (u, v) ∈ pk(α) we know that there is a factorization f of
the word u such that f ≤α (v0, a1, v1, . . . , ai, v

′
i), i.e. f = (u0, a1, u1, . . . , ai, u

′
i)

such that u0 α v0, . . . , u′
i α v′i. Since α is a compatible quasiorder we have

u′
iv

′′
i α v′iv

′′
i . Hence

h = (u0, a1, u1, . . . , ai, u
′
iv

′′
i , ai+1, . . . , a	, v	)
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is a factorization of uw such that h ≤α g. This implies (uw, vw) ∈ pk(α).
The proof of the implication “(u, v) ∈ pk(α) =⇒ (wu,wv) ∈ pk(α)” is

similar.

“(iii)” Let u, v ∈ X∗ be such that (u, v) ∈ pk(α) and ϕ : X∗ → X∗ be an
arbitrary morphism. We want to show that (ϕ(u), ϕ(v)) ∈ pk(α). So, let

g′ = (v0, a1, v1 . . . , a	, v	) ∈ Factk(ϕ(v))

where � ≤ k, vi ∈ X∗, ai ∈ X and v0a1v1 . . . a	v	 = ϕ(v). We consider a fac-
torization g = (w0, b1, w1, . . . , bm, wm) of v where the occurrences of the letters
b1, . . . , bm are such that the corresponding occurrences of ϕ(b1), . . . , ϕ(bm) in
ϕ(v) contain all ai’s in the factorization g′. Note that m ≤ � as ϕ(bj) can
contain more than one ai. Now (u, v) ∈ pk(α) and there exists a factoriza-
tion f of u such that f ≤α g, i.e. f = (t0, b1, t1 . . . , bm, tm) where ti α wi for
i ∈ {0, . . . ,m}. Since α is a finite characteristic we have ϕ(ti) α ϕ(wi). Hence
ϕ(u) = ϕ(t0)ϕ(b1)ϕ(t1) . . . ϕ(bm)ϕ(tm) has a factorization f ′ such that f ′ ≤α g′.
We can conclude that (ϕ(u), ϕ(v)) ∈ pk(α).

“(iv)” Let Y be a finite subset of X . Since α̂Y has a finite index, there are
only finitely many factorizations of length at most k over Y when identifying the
≤̂α-related ones. Hence there are only finitely many sets of the form Factk(u) up
to ≤̂α, where u ∈ Y ∗. So, ̂pk(α)|Y has a finite index too.

“(v)” For simplicity denote the relation (pk(α))A by β.
” =⇒ ” We prove that for every language

L = L0a1L1 . . . a	L	, where � ≤ k, a1, . . . , a	 ∈ A, L0, . . . , L	 ∈ V(A) ,

we have β ⊆!L. This is enough because β ⊆ !L and β ⊆ !K imply β ⊆ !L∩K

and β ⊆ !L∪K , for each L,K ⊆ A∗.
Let L be such a language and let u, v ∈ A∗ satisfy u β v. We want to show

that u !L v. So, let p, q ∈ A∗ be such that pvq ∈ L. Hence pvq = v0a1v1 . . . a	v	,
where vi ∈ Li for every i ∈ {0, . . . , �}. Then there exist 0 ≤ i < j ≤ � and
v′i, v

′′
i , v

′
j , v

′′
j ∈ A∗, such that v′iv

′′
i = vi, v′jv

′′
j = vj and

p = v0a1 . . . v′i, v = v′′i ai+1 . . . ajv
′
j and q = v′′j aj+1 . . . a	v	

or there exist 0 ≤ i ≤ � and v′i, v
′′
i , v

′′′
i ∈ A∗ such that v′iv

′′
i v

′′′
i = vi and

p = v0a1 . . . v′i, v = v′′i and q = v′′′i ai+1 . . . a	v	 .

In the first case we have g = (v′′i , ai+1, . . . , aj, v
′
j) a factorization of v. We as-

sumed that u β v, so there is a factorization f = (u′′
i , ai+1, . . . , u

′
j) of u such that

(u′′
i , v

′′
i ), (ui+1, vi+1), . . . , (u′

j , v
′
j) ∈ αA. Since αA is a compatible quasiorder we

have (v′iu
′′
i , v

′
iv

′′
i ) ∈ αA and hence v′iu

′′
i !Li v′iv

′′
i = vi, so we have v′iu

′′
i ∈ Li.

Similarly ui+1 ∈ Li+1, . . . , uj−1 ∈ Lj−1 and u′
jv

′′
j ∈ Lj . Consequently puq ∈ L.

The second case is similar and we see that u β v really implies u !L v.
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“⇐=” Let β ⊆ !L. This means that L is a finite union of languages of the
form

βv = { u ∈ A∗ | u β v }, where v ∈ A∗ .

It is enough to prove that each βv belongs to PPolkV(A). Consider all possible
factorizations of the word v of length at most k, i.e. all elements of the set
Factk(v). So, we have

g1 = (v10, a11, . . . , a1	1 , v1	1) ,

g2 = (v20, a21, . . . , a2	2 , v2	2) ,

...

gm = (vm0, am1, . . . , am	m , vm	m) ,

where for each i ∈ {1, . . . ,m} we have �i ≤ k and aij ∈ A are letters and
vij ∈ A∗ are words and {g1, g2, . . . , gm} = Factk(v). For each i ∈ {1, . . . ,m}
we consider the following language Li corresponding to the factorization gi =
(vi0, ai1, . . . , ai	i , vi	i):

Li = Li0 ai1 Li1 . . . ai	i Li	i ,

where Lij = αAvij = { u ∈ A∗ | u αA vij } ∈ V(A) for each j ∈ {0, . . . , �i}.
Then the language

K =
m⋂

i=1

Li

belongs to PPolkV(A) and we prove that K = βv.
“⊆” If u ∈ K then u ∈ Li for each i ∈ {1, . . . ,m}. This means that for each

i ∈ {1, . . . ,m} we have
u = ui0ai1 . . . ai	iui	i ,

where (ui0, vi0), . . . , (ui	i , vi	i) ∈ αA. Therefore, there is a factorization fi of u
such that fi ≤α gi. Consequently (u, v) ∈ (pk(α))A = β, i.e. u ∈ βv.

“⊇” If u ∈ βv. Then for each i ∈ {1, . . . ,m}, we have some factorization fi

of u such that fi ≤α gi. This implies that u ∈ Li for each i ∈ {1, . . . ,m}, and
hence u ∈ K. ��

The following lemmas concern the preservation of aperiodicity (i.e. monoids have
only trivial subgroups).

Lemma 4. Let α be a finite characteristic and let k, n be arbitrary natural
numbers. Put m = (k + 1)(n + 1).

(i) If (xn, xn+1) ∈ α then (xm−1, xm) ∈ pk(α).
(ii) If (xn, xn+1) ∈ α̂ then (xm−1, xm) ∈ p̂k(α).
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Proof. “(i)” Let g be a factorization of xm of length � ≤ k, i.e.

g = (xi0 , x, xi1 , x, . . . , x, xi�)

where i0+i1+· · ·+i	+� = m and i0, . . . , i	 are non-negative integers. Assume that
for every j ∈ {0, . . . , �} we have ij ≤ n, then i0 + i1 + · · ·+ i	 + � ≤ (�+1)n+ � ≤
(k+1)n+k < (k+1)(n+1) = m a contradiction. Thus, there is j ∈ {0, . . . , �} such
that ij ≥ n + 1, hence xij−1 α xij and consequently there exists a factorization
f of xm−1 such that f ≤α g. This proves (xm−1, xm) ∈ pk(α).

“(ii)” With respect to the part (i) it is enough to prove the implication
(xn+1, xn) ∈ α =⇒ (xm, xm−1) ∈ pk(α). This is not a direct consequence
of statement (i) since (pk(α))d = pk(αd) but the implication can be proved in a
similar way as part (i). ��

Lemma 5. Let V be a positive variety with the finite characteristic α, such
that the corresponding pseudovariety of ordered monoids contains only aperiodic
monoids. Then, for each natural number k, the pseudovariety of ordered monoids
corresponding to the positive variety of languages PPolkV contains only aperiodic
monoids too.

Proof. Let A = {a} be an alphabet. Then A∗/αA belongs to the corresponding
pseudovariety of monoids, i.e. A∗/αA is a finite aperiodic monoid. This implies
that (an, an+1) ∈ α̂A for some natural number n and (xn, xn+1) ∈ α̂ follows.
By Lemma 4, we have (xm−1, xm) ∈ p̂k(α) for a certain m. Hence for every
alphabet B, the monoid B∗/αB is aperiodic, and consequently the pseudovariety
of monoids corresponding to the positive variety of languages PPolkV contains
only aperiodic monoids because each of them is a morphic images of the monoid
B∗/αB for some B. ��

5 Generating Pseudovarieties by a Single Monoid

It is known (see Volkov [11] or the authors [6]) that the pseudovarieties of ordered
monoids corresponding to PPolkT , k a natural number, are generated by a single
ordered monoid. We show such result also for the positive varieties PPolkS+ and
we prove that this is not true for the positive varieties PPolkS. At first we define
a “finiteness-like” condition concerning finite characteristics.

Definition 2. Let α be a finite characteristic. We say that α is finitely deter-
mined if there is a finite alphabet A such that for every finite alphabet B and
all u, v ∈ B∗ we have:

( ( ∀ ϕ : B → A ) ϕ(u) αA ϕ(v) ) implies u αB v .

The extension of a mapping ϕ : B → A to a morphism from B∗ to A∗ is denoted
by the same symbol. Clearly, the opposite implication is always true due to
Definition 1.
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Example 4. The finite characteristic of the positive variety S+ was described
in Example 2.2. It is finitely determined since one can show that the condition
from the previous definition is satisfied for A = {a, a′}, a = a′. Indeed, for an
arbitrary finite alphabet B and u, v ∈ B∗ such that cont(u) ⊆ cont(v) we can
consider a letter b ∈ cont(u) \ cont(v). Then we take a mapping ϕ : B → A
sending b to a and (possible) other elements of B to a′. For this ϕ we have
a ∈ cont(ϕ(u)) \ cont(ϕ(v)).

The same considerations for two element set A are true for S and for Am.

Proposition 2. The following properties for a positive variety V and the cor-
responding pseudovariety of ordered monoids V are equivalent.

(i) The positive variety V is generated by a finite number of languages.
(ii) The pseudovariety V is generated by a single ordered monoid.
(iii) There exists a finite characteristic of V which is finitely determined.

Proof. “(i) =⇒ (ii)” If V is generated by a finite number of languages then
we can take their syntactic ordered monoids and consider the product of all
of them. The resulting ordered monoid generates the pseudovariety of ordered
monoids V.

“(ii) =⇒ (iii)” Let the pseudovariety V be generated by a single finite
ordered monoid M . We consider the variety W = 〈V〉 = 〈M〉 generated by
the monoid M . If we take the free ordered monoid F over X in the variety W
and denote α the kernel of the projection from X∗ onto F , then this α is a
finite characteristic of V . Moreover, for a finite alphabet C, the (finite) structure
C∗/αC is a free ordered monoid over C in W.

Now we put A = M and we prove the property from Definition 2 for this
set A. At first, there is a natural morphism θ : A∗ → M which maps the word
a1a2 . . . am ∈ A∗ to the product of elements a1, a2, . . . , am ∈ A = M in M , i.e.
θ(a1a2 . . . am) = a1 · a2 · . . . · am. Note that M is a morphic image of the free
ordered monoid A∗/αA, in other words, αA is a subset of the kernel of θ.

Let B be a finite alphabet and u, v ∈ B∗ be such that for each ϕ : B → A
we have ϕ(u) αA ϕ(v). Each mapping ϕ : B → A = M determines a morphism
ϕ = θ ◦ ϕ : B∗ → M .

Recall that a free monoid over B in W can be constructed in the following
way. There are only finitely many mappings ϕ : B → M ; denote Σ the set
of all of them. Then we consider the finite product

∏
ϕ∈Σ M = MΣ and the

corresponding morphism ψ : B∗ → MΣ given by ψ(w) = (ϕ(w))ϕ∈Σ . The
image of ψ is a free monoid over B in W and αB is a kernel of ψ. Now for
each ϕ : B → A = M we have ϕ(u) αA ϕ(v). Thus ϕ(u) ≤ ϕ(v) in A∗/αA

and ϕ(u) ≤ ϕ(v) in M follows. Hence ψ(u) ≤ ψ(v) in the free ordered monoid
B∗/αB and consequently u αB v.

“(iii) =⇒ (i)” Let α be a finite characteristic of V which is finitely deter-
mined. Let A be the corresponding finite alphabet. Since αA has a finite index,
there are only finitely many languages of the form αAv = { u ∈ A∗ | u αA v }
where v ∈ A∗. We show that these languages generate V .
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Let B be an arbitrary finite alphabet and let L ∈ V(B). Since α is a finite
characteristic of V we have αB ⊆ !L. Hence L is a finite union of languages of
the form αBw = { t ∈ B∗ | t αB w }, where w ∈ B∗.

There are only finitely many mappings from B to A; denote them ϕ1, . . . , ϕm,
where m = |A||B|. Now for every u, v ∈ B∗ we have

u αB v if and only if ( ∀ i ∈ {1, . . . ,m} ) ϕi(u) αA ϕi(v) .

We show that

αBw =
m⋂

i=1

ϕ−1
i (αAwi), where wi = ϕi(w) for i ∈ {1, . . . ,m} . (‡)

Indeed, for t ∈ B∗, it holds t ∈ αBw if and only if for each i ∈ {1, . . . ,m} we
have ϕi(t) αA ϕi(w) = wi, and this is equivalent to: for each i ∈ {1, . . . ,m} we
have t ∈ ϕ−1

i (αAwi).
Equation (‡) means that we can obtain each language of the form αBw from

the languages αAv, for v ∈ A∗, when we use inverse morphisms and the operation
of intersection. ��

Example 5. In paper [6] the authors proved that PPolkT is generated by a
language A∗a1A

∗a2 . . . akA
∗ where a1, a2, . . . , ak are pairwise different letters

and A = {a1, . . . , ak}. We show that the corresponding finite characteristic
α = pk(X∗ ×X∗) is finitely determined.

Indeed, let Subk(w) denote the set of all subwords of w ∈ X∗ of length at
most k. Then u α v if and only if Subk(v) ⊆ Subk(u). Let A′ = {a1, . . . , ak+1} be
of cardinality k +1, let B be a finite set, and let u, v ∈ B∗ satisfy ϕ(u) αA′ ϕ(v)
for each ϕ : B → A′. Suppose that u αB v does not hold. Then there exists
w ∈ B∗ of length at most k such that w ∈ Subk (v) \ Subk (u). Let C = cont(w).
Take an injective mapping ϕ : C → {a1, . . . , ak} and put ϕ(b) = ak+1 for b ∈ C.
Thus ϕ : B → A′ and ϕ(w) ∈ Subk(ϕ(v)) \ Subk(ϕ(u)) – a contradiction.

Proposition 3. The positive variety PPolkS+ is generated by a finite number
of languages.

Proof. Although a direct proof would be possible we apply Proposition 2. Recall
that the finite characteristic α for S+ is given as follows: for each u, v ∈ X∗, we
have u α v if and only if cont(u) ⊆ cont(v). We show that the finite characteristic
β = pk(α) of PPolkS+ is finitely determined.

Let A be an alphabet containing 22k+1 letters:

A = { ar | r ∈ {0, 1}2k+1 } .

We prove the property from Definition 2. Let B be a finite alphabet and assume
that u, v ∈ B∗ satisfy

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .
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We want to prove u βB v. So, let g = (v0, b1, v1, . . . , b	, v	) ∈ Factk(v) be an
arbitrary factorization of length at most k of the word v. For each letter c ∈ B
we consider the letter ar ∈ A where the sequence r has 1 at j-th position
if and only if c is at the j-th position in the factorization g. More precisely,
r2i+1 = 1 iff c ∈ cont(vi) and r2i = 1 iff c = bi. So, we have defined a mapping
ϕ : B → A. Note that if a letter c does not occur in v then ϕ(c) = a(0,0,...,0)

by this definition. Now ϕ(u) βA ϕ(v) and there exists a factorization f ′ of ϕ(u)
such that f ′ ≤α g′ = (ϕ(v0), ϕ(b1), ϕ(v1), . . . , ϕ(b	), ϕ(v	)). If ϕ(bi) = ar then
r2i = 1 and for this r there is a unique letter c ∈ B, namely bi, with the
property ϕ(c) = ar. Hence we have a factorization f = (u0, b1, u1, . . . , b	, u	) of
u such that ϕ(ui) αA ϕ(vi) for each i ∈ {0, . . . , �}. We show that this implies
ui αB vi. Let d ∈ cont(ui) be an arbitrary letter from the alphabet B. Then
ϕ(d) ∈ cont(ϕ(ui)) ⊆ cont(ϕ(vi)). Let ϕ(d) = ar. Then ar ∈ cont(ϕ(vi)) implies
that r2i+1 = 1. If d ∈ cont(vi) then r2i+1 = 0 by the definition of the mapping
ϕ. Hence d ∈ cont(vi), and thus, we have ui αB vi for each i = 0, . . . , �. For a
given g ∈ Factk(v), we found f ∈ Factk(u) such that f ≤α g. This means that
we proved u βB v. ��

Proposition 4. The positive variety PPol1S is generated by a finite number of
languages.

Proof. Recall that the finite characteristic α for S is given as follows: for each
u, v ∈ X∗, we have u α v if and only if cont(u) = cont(v).

We show that finite characteristic β = p1(α) of the variety PPol1S is finitely
determined on a six-element alphabet A = {a0, a1, a2, a3, a4, a5}. First we for-
mulate some basic consequences of the assumption s βA t for a pair of words
s, t ∈ A∗. We have cont(s) = cont(t) since we can consider (unique) factoriza-
tions of s and t of length 0. Further, if we assume that the first occurrence of a
letter a ∈ A in s is before the first occurrence of a letter a′ ∈ A in s then there is
a factorization (s0, a

′, s1) of the word s such that a ∈ cont(s0), s0, s1 ∈ A∗ but
there is no factorization (s0, a, s1) of s such that a′ ∈ cont(s0), s0, s1 ∈ A∗. Thus
from s βA t we can conclude that the sequences of the first occurrences of all
letters in s and in t coincide. Equivalently this can be expressed by the equality
{ cont(s′) | s′ prefix of s } = { cont(t′) | t′ prefix of t }. The similar observations
can be done for the last occurrences of letters in s and t.

Let B be a finite alphabet containing at least seven letters1 and assume that
for a given pair of words u, v ∈ B∗ we have

( ∀ ϕ : B → A ) ϕ(u) βA ϕ(v) .

Let g = (g0, b, g1) ∈ Fact1(v) be a factorization of v. We need to show that there
exists a factorization f = (f0, b, f1) ∈ Fact1(u) such that cont(f0) = cont(g0)
and cont(f1) = cont(g1).

First of all, we take an arbitrary pair of different letters b1, b2 ∈ B and consider
the mapping ϕb1,b2 : B → A given by the rules ϕb1,b2(b1) = a1, ϕb1,b2(b2) = a2

1 For alphabets with at most six letters the statement is trivial.
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and ϕb1,b2(c) = a0 for all c ∈ B \{b1, b2}. Since (ϕb1,b2(u), ϕb1,b2(v)) ∈ βA we can
apply our basic observations concerning βA and we see that cont(ϕb1,b2(u)) =
cont(ϕb1,b2(v)) from which we observe b1 ∈ cont(u) ⇐⇒ b1 ∈ cont(v). This
is true for each b1 and thus cont(u) = cont(v) follows. Further, the sequence of
the first occurrences of letters in ϕb1,b2(u) and ϕb1,b2(v) coincide. Hence the first
occurrence of b1 in the word u is before the first occurrence of b2 in u if and only
if the first occurrence of b1 in v is before the first occurrence of b2 in v. This is
true for every pair of letters b1 and b2 and we can summarize that { cont(u′) |
u′ prefix of u } = { cont(v′) | v′ prefix of v }. When we consider the same idea
from the right we obtain the same observations concerning the last occurrences of
letters and finally we obtain the equality { cont(u′) | u′ suffix of u } = { cont(v′) |
v′ suffix of v }.

There is a prefix u′ of the word u such that cont(u′) = cont(g0). Let u1 be
the shortest prefix of u with this property and u2 be the longest prefix of u
with this property. Note that u1 can be the empty word (when cont(g0) = ∅,
i.e. in the case g0 = λ) and u2 can be equal to u (when cont(g0) = cont(v)). If
u1 is not the empty word then u1 = u′

1b1 where b1 ∈ B and b1 ∈ cont(u1) =
cont(g0), b1 ∈ cont(u′

1). A useful consequence is that this b1 is the first occurrence
of b1 in u. Similarly, if u2 = u then u = u2b2u

′
2 where b2 ∈ B, u′

2 ∈ B∗ and
b2 ∈ cont(u2) = cont(g0). Once again this b2 is the first occurrence of b2 in u. Note
that if b1 and b2 are defined then they are different because b2 ∈ cont(g0), but one
of them can be equal to the letter b. These definitions can be also consider dually
from the right. I.e. we can consider the shortest suffix u3 of u and the longest
suffix u4 of u with the properties cont(u3) = cont(u4) = cont(g1). If u3 = λ then
we denote its first letter b3, i.e u3 = b3u

′
3 and we have b3 ∈ cont(u3) = cont(g1),

b3 ∈ cont(u′
3). If u4 = u then we denote u = u′

4b4u4 where b4 ∈ B, u′
4 ∈ B∗,

b4 ∈ cont(u4) = cont(g1).
Now we have the subset B′ = {b, b1, b2, b3, b4} of the alphabet B which has

at most five elements. Note that some of the letters can be equal, some of them
can not be defined. We consider some mapping ϕ : B → A such that ϕ(c) = a5

for every c ∈ B′, ϕ(B′) ⊆ A \ {a5}, ϕ(b) = a0 and which is injective on B′.
Then (ϕ(g0), a0, ϕ(g1)) is a factorization of ϕ(v) and there is a factorization
f = (f0, d, f1) of u such that (ϕ(f0), ϕ(d), ϕ(f1)) ≤α (ϕ(g0), ϕ(b), ϕ(g1)) where
ϕ(d) = ϕ(b), i.e. d = b, ϕ(f0) αA ϕ(g0) and ϕ(f0) αA ϕ(g0). We show that
cont(f0) = cont(g0) and cont(f1) = cont(g1).

“cont(g0) ⊆ cont(f0)” If cont(g0) = ∅ then it is clear. If cont(g0) = ∅ then
b1 ∈ cont(g0) is defined. Hence ϕ(b1) ∈ cont(ϕ(g0)) = cont(ϕ(f0)) and since ϕ is
injective on B′ we have b1 ∈ cont(f0). By the definition of b1 we can conclude
that u1 is a prefix of f0, so, cont(g0) = cont(u1) ⊆ cont(f0).

“cont(f0) ⊆ cont(g0)” If cont(g0) = cont(v) = cont(u) then it is clear. If
cont(g0) = cont(v) then b2 is defined. We have b2 ∈ cont(g0). Hence ϕ(b2) ∈
cont(ϕ(g0)) = cont(ϕ(f0)) and this implies b2 ∈ cont(f0). By the definition of b2
we can conclude that f0 is a prefix of u2, so, cont(f0) ⊆ cont(u2) = cont(g0).

One can prove the equality cont(f1) = cont(g1) in the same way using the
letters b3 and b4. ��
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Proposition 5. The positive variety PPol2S is not generated by a finite number
of languages.

Proof. For the finite characteristic α for S we have, for each u, v ∈ X∗, it holds
u α v if and only if cont(u) = cont(v)

Assume that the finite characteristic β = p2(α) of the positive variety PPol2S
is finitely determined. Let A = {c1, . . . , cm} be an alphabet for which the prop-
erty from Definition 2 is satisfied. Let B = A ∪ {d}, d ∈ A. Assume that
s1, . . . , sn are all words of length at most m + 1 over the alphabet A such
that cont(sj) = A for j ∈ {1, . . . , n}. Further tj0j1j2 = dcj0dsj1dcj2d for all
j1 ∈ {1, . . . , n}, j0, j2 ∈ {1, . . . ,m} and t be a product of all words tj0j1j2 in a
fixed order. Finally, we denote s = c1 . . . cm and we define a pair of words over
the alphabet B:

u = sstt ttss and v = sstt dsd ttss .

We show that this pair of words contradicts the assumption, namely we show
(i) (u, v) ∈ βB and
(ii) for each ϕ : B → A we have ϕ(u) βA ϕ(v).

To prove the first claim we can consider the factorization

g = (sstt, d, s, d, ttss)

of the word v. For this g there is no factorization f of the word u such that
f ≤α g because there are no two consecutive occurrences of d in u such that the
word between them has a content equal to the set A.

The second claim is more complicated. Let ϕ : B → A be a mapping. We
consider two cases.

I) First assume that there is a letter ci ∈ A such that ϕ(ci) = ϕ(d). Then
we consider the mapping ϕ′ : B → A such that ϕ′|A is the identity mapping
and ϕ′(d) = ci and the mapping ϕ′′ : A → A such that ϕ′′(c) = ϕ(c) for each
c ∈ A. Then ϕ = ϕ′′ ◦ϕ′ and it is enough to show that ϕ′(u) βA ϕ′(v), since the
rest is a consequence of the fact that β is fully invariant. Let g be an arbitrary
factorization of

ϕ′(v) = ss ϕ′(t)ϕ′(t) cisci ϕ′(t)ϕ′(t) ss

where g = (g0, a, g1, b, g2) with a, b ∈ A, g0, g1, g2 ∈ A∗. We want to show the
existence of a factorization f = (f0, a, f1, b, f2) of ϕ′(u) such that cont(f0) =
cont(g0), cont(f1) = cont(g1), cont(f2) = cont(g2) and f0af1bf2 = ϕ′(u). We
distinguish several cases:

1a) “cont(g0) = A, cont(g1) = A”
Then g0ag1b is a prefix of the prefix ss of the word ϕ′(v), i.e. ss = g0ag1bh
for some h ∈ A∗. Hence cont(g2) = A, and we can put f0 = g0, f1 = g1,
f2 = hϕ′(t)ϕ′(t)cisciϕ

′(t)ϕ′(t)ss.
1b) “cont(g0) = A, cont(g1) = A, cont(g2) = A”

Then g0 is a prefix of the first s in ϕ′(v) and g2 is a suffix in the last s in ϕ′(v).
We can put f0 = g0, f2 = g2 and f1 is an appropriate word.
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1c) “cont(g0) = A, cont(g1) = A, cont(g2) = A”
Then g0 is a prefix of the first s in ϕ′(v), i.e. we put f0 = g0 and we can choose
b from the last but one s from ϕ′(u) and define f1 and f2 adequately.
Altogether we finished the case of cont(g0) = A.

2) Dually we can solve the cases of cont(g2) = A.
3) Assume cont(g0) = cont(g2) = A. And in addition we assume:
3a) “cont(g1) = A”

Then we can choose a from the second s in ϕ′(u) and b from the last but one s
in ϕ′(u) and define f0, f1, f2 in the expected way.

3b) “cont(g1) = A and cont(ag1b) = A”
Then there is a word f1 of length at most m− 1 such that cont(f1) = cont(g1)
and the word af1b is equal to some sj . Hence we can find the word af1b as a
factor of the first occurrence ϕ′(t) in ϕ′(u) and then define f0 and f2.

3c) “cont(g1) = A and cont(ag1b) = A, ci ∈ cont(g1)”
Then we can find some sj such that w = cisjci has the property cont(w) =
cont(g1). Further adsjdb is a factor of t, hence we can put f1 = w and af1b is a
factor of the first occurrence of ϕ′(t) in ϕ′(u). As usually, we denote f0 and f2

as needed.
3d) “cont(g1) = A and cont(ag1b) = A and ci ∈ cont(g1)”

Then a = ci or b = ci.
If a = b = ci then we can find sj such that cont(sj) = cont(g1) and cisjci is a
factor of the first occurrence of ϕ′(t) in ϕ′(u). Thus we consider the factorization
f of u where f1 is equal to this occurrence of sj .
If a = ci, b = ci then we can find f1 such that f1b is one of sj with cont(f1b) =
cont(g1b) because ci ∈ cont(g1b), i.e. cont(sj) = A. The case a = ci, b = ci is
dual.

II) Now assume that there is no such a letter. This means that ϕ(ci) = ϕ(ci′)
for some different i, i′ ∈ {1, . . . ,m}. Considerations are analogous to that of
Case I). ��

Remark. 1. If a positive variety of languages is locally finite we can generate
the corresponding pseudovariety of ordered monoids by finitely generated free
monoids. We are able to present effectively the free ordered monoids in pseudova-
rieties corresponding to PPolkV and BPolkV for V being any of T , S+, S, Am.
It would be desirable to put a closer look into their structures.

2. For each positive variety of languages V the pseudovariety of ordered
monoids corresponding to PPolkV is generated by the Schützenberger products
of the form �k+1(M0, . . . ,Mk) where M0, . . . ,Mk ∈ V (see [9]). Notice that our
Proposition 3 follows from results from [9].
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Abstract. In this paper, we give some new extremal ternary self-dual
codes which are constructed by skew-Hadamard matrices. This has been
achieved with the aid of a recently presented modification of a known con-
struction method. In addition, we survey the known results for self-dual
codes over GF (5) constructed via combinatorial designs, i.e. Hadamard
and skew-Hadamard matrices, and we give a new self-dual code of length
72 and dimension 36 whose minimum weight is 16 over GF (5) for the first
time. Furthermore, we give some properties of the generated self-dual codes
interpreted in terms of algebraic coding theory, such as the orders of their
automorphism groups and the corresponding weight enumerators.

Keywords: Self-dual codes, combinatorial designs, construction.

1 Introduction

A linear [n, k] code C over GF (p) is a k-dimensional vector subspace of GF (p)n,
where GF (p) is the Galois field with p elements. In this paper, we consider
the case where p is a prime. The elements of C are called codewords and the
(Hamming) weight wt(x) of a codeword x is the number of non-zero coordinates
in x. The minimum weight of C is defined as min{wt(x) |0 = x ∈ C}. An [n, k, d]
code is an [n, k] code with minimum weight d. A matrix whose rows generate
the code C is called a generator matrix of C. The dual code C⊥ of C is defined
as C⊥ = {x ∈ GF(p)n| x · y = 0 for all y ∈ C}. C is self-dual if C = C⊥.
For p ≡ 1 (mod 4), a self-dual [n, n/2] code over GF (p) exists if and only if n
is even, and for p ≡ 3 (mod 4), a self-dual [n, n/2] code over GF (p) exists if
and only if n ≡ 0 (mod 4) [29]. We say that self-dual codes with the largest
minimum weight among self-dual codes of that length are optimal. Bounds on
the minimum distance of linear codes can be found in [4] and [12].

One reason for the interest in self-dual codes is that they include some of
the nicest and best-known error-correcting codes, and there are strong connec-
tions with other areas of combinatorics, group theory and lattices, while some of
their applications can be found in communications, number and design theory
[31]. By the Gleason-Pierce theorem [34], there are divisible self-dual codes over
GF (p) for p = 2, 3 and 4. Hence much work has been done concerning self-dual
codes over these fields. For example, self-dual codes of small lengths over GF (2),

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 278–287, 2009.
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GF (3) and GF (4) have been classified (cf. [33, Sections 11.3 – 11.6]), in order
to determine which codes exist and which weight enumerators are possible. In
addition, much is known about the largest minimum weights for self-dual codes
over these fields (cf. [33, Tables X, XII, XIII and XIV]). Moreover t-designs are
formed from extremal self-dual codes over GF (2), GF (3), or GF (4) [32] using
the Assmus-Mattson theorem [2]. Conversely, self-dual codes over larger fields
have not been widely studied [33].

Now we consider the weight enumerators of self-dual codes over GF(p).

Theorem 1 (MacWilliams, Mallows and Sloane [30]). The weight enu-
merator of a self-dual code over GF(p) is an element of

C[(x + (
√
p− 1)y)2, y(x− y)].

Hence we have a trivial upper bound d ≤ n/2 + 1 which coincides with the
Singleton bound for an [n, n/2, d] code. However, the weight enumerator Wp(n)
of a self-dual [n, n/2, n/2 + 1] code over GF(p) is uniquely determined.

In Section 2, we give some new extremal ternary self-dual codes which are
constructed by skew-Hadamard matrices. Moreover, in Section 3, we survey the
known results for self-dual codes over GF (5) constructed via combinatorial de-
signs, i.e. Hadamard and skew-Hadamard matrices, and we give a new self-dual
code of length 72 and dimension 36 whose minimum weight is 16 over GF (5) for
the first time.

2 Ternary Self-dual Codes from Skew-Hadamard
Matrices

A Hadamard matrix of order n is an n×n matrix with entries from {1,−1} that
satisfy HHT = nIn. It is well known that if n is the order of a Hadamard matrix
then n is necessarily 1, 2 or a multiple of 4. A Hadamard matrix is normalized if
all entries in its first row and column are equal to 1. Two Hadamard matrices are
equivalent if one can be transformed into the other by a series of row or column
permutations and negations. A matrix H with entries from {1,−1}, for which

H = C + In (1)

is said to be skew-Hadamard matrix of order n if CCT = (n−1)In and CT = −C.
More details on the construction of Hadamard and skew-Hadamard matrices

can be found in [10]. The comprehensive survey article [27] discusses the existence
and the equivalence of skew-Hadamard matrices.

2.1 A Construction Method for Ternary Self-dual Codes

The following Theorem provides a general method for constructing self dual
codes over GF (p) taking into account the beautiful combinatorial structures that
skew-Hadamard matrices possess and was given in [9]. Some other constructions
for ternary self-dual codes using combinatorial designs are given in [1],[13] and
[18].
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Theorem 2 (Georgiou, Koukouvinos and Lappas [9]). Let H be a skew-
Hadamard matrix of order n and suppose that there exist three elements a =
0, b, c from GF (p) such that a2 + b2 + (n− 1)c2 ≡ 0 (mod p). Then the matrix
G = [aIn cC + bIn] generates a self-dual code of length 2n and dimension n.

We restate here, in the following Remark, a slight modification to the previous
construction method given in [26], since it will be used throughout the paper.
More details, regarding the following construction can be found in [26].

Remark 1 (Koukouvinos and Simos [26]). Let H be a skew-Hadamard matrix of
order n and suppose that there exist elements a, b, c = 0 from GF (p) such that
a2 + (b − c)2 + (n − 1)c2 ≡ 0 (mod p). Then the matrix G = [aIn cH − bIn]
generates a self-dual code of length 2n and dimension n.

A ternary self-dual code C which is optimal is called extremal, i.e. if it has the
largest possible minimum weight. The known bounds of d for p = 3 are given in
[33] and [35]. In particular the following theorem is known.

Theorem 3 (Tonchev [35]). The minimum distance d of a ternary self-dual
[2n, n] code C satisfies

d ≤ 3
[n
6

]
+ 3.

where by [x] we denote the nearest integer function of x.

2.2 Ternary Extremal Self-dual Codes

In this Section, we computed the minimum weight of the self-dual codes derived
by Remark 1 for each possible solution of the diophantine equation,

a2 + (b− c)2 + (n− 1)c2 ≡ 0 (mod 3)

when a, b, c = 0 over GF (3). The diophantine equation has solutions for n =
8, 12, 20, 24. We present in the following Sections, extremal self-dual codes of
lengths 2n = 16, 24, 40, 48 derived from inequivalent skew-Hadamard matrices of
orders n = 8, 12, 20, 24. We were motivated to perform a complete study for these
orders of skew-Hadamard matrices since their respective number of inequivalent
classes is completely determined for orders up to 28, and moreover since in
[26] only self-dual codes over GF (5) were given. Let Nn denote the number of
inequivalent skew-Hadamard matrices for a given order n. We summarize the
known results for Nn in the table below, taken from [27].

Table 1. Inequivalent skew-Hadamard matrices for orders 4 to 28

n 4 8 12 16 20 24 28

Nn 1 1 1 2 1 16 54
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In Table 1., we denote by n the order of the skew-Hadamard matrix and by Nn

the number of known inequivalent skew-Hadamard matrices of order n.
In the results that follow, we give for each inequivalent skew-Hadamard matrix

only the inequivalent self-dual codes produced, the order of the automorphism
group of these codes and their respective weight enumerators. We remind that,
two linear codes C1 and C2 over GF (p) are monomially equivalent if there is
a monomial matrix M over GF (p) such that C2 = C1M = {cM | c ∈ C1}. A
monomial matrix over GF (p) which maps C to itself is called an automorphism of
C. The set of all automorphisms of C is called the automorphism group Aut(C)
of C. For a self-dual code derived from the i-th inequivalent skew-Hadamard
matrix of order n we shall use the notation Cn,i.

[16, 8] Ternary Self-dual Codes. In this Section, we study self-dual codes
over GF (3), which arise from the unique skew-Hadamard matrix of order 8. The
unique skew-Hadamard matrix (up to equivalence) of order 8 is

H8 = C + I8 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1
−1 1 1 −1 1 −1 1 −1
−1 −1 1 1 −1 1 1 −1
−1 1 −1 1 1 1 −1 −1
−1 −1 1 −1 1 1 −1 1
−1 1 −1 −1 −1 1 1 1
−1 −1 −1 1 1 −1 1 1
−1 1 1 1 −1 −1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The results obtained by using Remark 1 are presented in the following Table.

Table 2. [16,8] self-dual code from the skew-Hadamard matrix of order 8

C a b c d |Aut(C)| W (x, y)

C8,1 1 2 1 6 43008 = 2
11 · 3 · 7 x16 + 224x10y6 + 2720x7y9 + 3360x4y12 + 256xy15

The code C8,1 is extremal since the bound for n = 8 from Theorem 3 is 6.

[24, 12] Ternary Self-dual Codes. In this Section, we study self-dual codes
over GF (3), which arise from the unique skew-Hadamard matrix of order 12.
The unique skew-Hadamard matrix (up to equivalence) of order 12 is

H12 = C + I12 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 1 1 1 1 −1 1 −1 1 1
−1 1 1 1 1 1 −1 1 1 1 1 −1

1 −1 1 1 1 1 1 1 −1 1 −1 1
−1 −1 −1 1 1 −1 1 −1 1 1 −1 −1
−1 −1 −1 −1 1 1 −1 1 1 −1 −1 1
−1 −1 −1 1 −1 1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1 1 −1 1 1 1

1 −1 −1 1 −1 −1 −1 1 1 1 1 1
−1 −1 1 −1 −1 1 1 −1 1 1 1 1

1 −1 −1 −1 1 1 −1 −1 −1 1 1 −1
−1 −1 1 1 1 −1 −1 −1 −1 −1 1 1
−1 1 −1 1 −1 1 −1 −1 −1 1 −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The results obtained by using Remark 1 are presented in the following Table.

The code C12,1 is extremal since the bound for n = 12 from Theorem 3 is 9.
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Table 3. [24,12] self-dual code from the skew-Hadamard matrix of order 12

C a b c d |Aut(C)| W (x, y)

C12,1 1 1 1 9 5280 = 2
5 · 3 · 5 · 11 x24 + 4048x15y9 + 61824x12y12 + 242880x9y15

+198352x6y18 + 24288x3y21 + 48y24

[40, 20] Ternary Self-dual Codes. In this Section, we study self-dual codes
over GF (3), which arise from the unique skew-Hadamard matrix of order 20.
The skew-Hadamard matrix we used is

H20 = C + I20 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ − + − + + − − + + − − − − + − − − −+
+ + − + − − − + + + − − − + − − − − +−
− + + − + − + + + − − − + − − − − + −−
+ − + + − + + + − − − + − − − − + − −−
− + − + + + + − − + + − − − − + − − −−
− + + − − + − + − + − − − − + + + + +−
+ + − − − + + − + − − − − + − + + + −+
+ − − − + − + + − + − − + − − + + − ++
− − − + + + − + + − − + − − − + − + ++
− − + + − − + − + + + − − − − − + + ++
+ + + + − + + + + − + − + − + + − − ++
+ + + − + + + + − + + + − + − − − + ++
+ + − + + + + − + + − + + − + − + + +−
+ − + + + + − + + + + − + + − + + + −−
− + + + + − + + + + − + − + + + + − −+
+ + + + − − − − − + − + + − − + − + −+
+ + + − + − − − + − + + − − − + + − +−
+ + − + + − − + − − + − − − + − + + −+
+ − + + + − + − − − − − − + + + − + +−
− + + + + + − − − − − − + + − − + − ++

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The results obtained by using Remark 1 are presented in the following Table.

Table 4. [40,20] self-dual code from the skew-Hadamard matrix of order 12

C a b c d |Aut(C)| W (x, y)

C20,1 1 2 1 12 13680 = 24 · 32 · 5 · 19 x40 + 19760x28y12 + 1138176x25y15+
25549680x22y18 + 236945280x19y21 + 907161840x16y24+
1389711680x13y27 + 783017664x10y30 + 137826000x7y33+
5394480x4y36 + 19840xy39

The code C20,1 is extremal since the bound for n = 20 from Theorem 3 is 12.

[48, 24] Ternary Self-dual Codes. In this Section, we study self-dual codes
over GF (3), which arise from the sixteen inequivalent skew-Hadamard matrices
of order 24. The results obtained by using Remark 1 are presented in the following
Table. The skew-Hadamard matrices we have used can be retrieved from [25].
We note that in this case, we list only the order of the automorphism groups of
the derived self-dual codes, and not the respective weight enumerators due to a
computational complexity limit.

The code C24,14 is extremal since the bound for n = 24 from Theorem 3 is 15.
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Table 5. [48,24] self-dual codes from the skew-Hadamard matrices of order 24

C a b c d |Aut(C)| C a b c d |Aut(C)|
C24,1 1 1 1 12 48 = 2

4 · 3 C24,9 1 1 1 12 48 = 24 · 3
C24,2 1 1 1 12 24 = 2

3 · 3 C24,10 1 1 1 12 96 = 2
5 · 3

C24,3 1 1 1 12 48 = 2
4 · 3 C24,11 1 1 1 12 96 = 2

5 · 3
C24,4 1 1 1 12 80 = 2

4 · 5 C24,12 1 1 1 12 10560 = 2
6 · 3 · 5 · 11

C24,5 1 1 1 12 32 = 2
5 C24,13 1 1 1 12 10560 = 2

6 · 3 · 5 · 11
C24,6 1 1 1 12 32 = 2

5 C24,14 1 1 1 15 48576 = 2
6 · 3 · 11 · 23

C24,7 1 1 1 12 32 = 2
5 C24,15 1 1 1 12 80 = 2

4 · 5
C24,8 1 1 1 12 48 = 2

4 · 3 C24,16 1 1 1 12 24 = 2
3 · 3

3 Self-dual Codes over GF (5) from Combinatorial
Designs

For GF (5), only self-dual codes up to length 12, and lengths 14 and 16 have been
classified respectively, in [28] and [20]. The largest minimum weights of self-dual
codes over GF (5) up to length 24 have been determined in [5]. Tables with the
highest minimum distance known for self-dual codes over GF (5) for lengths up
to 64 and 70, are given in (cf. [6, Table V]) and (cf. [8, Tables 9, 10]), respectively.
For online Tables with constructions and the highest minimum distance known
for self-dual codes over GF (5) for lengths up to 70, see [7]. Constructions of
self-dual codes over GF (5), can be found in [1],[6],[8],[14],[15],[21],[24],[28].

Recently, some authors (for instance [21] and [24]) have improved the lower
and upper bounds of the minimum distance of self-dual codes over GF (5) for
lengths from 26 up to 40 and 34, respectively. A method for constructing self-
dual codes over GF (5) from skew-Hadamard designs for lengths from 20 up to
60 has appeared in [22]. In [15], codes over GF (5) with parameters [36, 18, 12],
[48, 24, 15], [60, 30, 18], [64, 32, 18] and [76, 38, 21] which improve the previously
known bounds on the minimum weight for linear codes over GF (5) were con-
structed from conference matrices. In the same paper, the authors noted that
it seems infeasible to determine the minimum weight for the next case of their
method, i.e. length 84. In a recent paper [26] the authors gave a slight modi-
fication to a general method for constructing self-dual codes over GF (5) using
skew-Hadamard matrices. This modification gave optimal self-dual codes for
lengths up to 56. In particular, new inequivalent [48, 24] and [56, 28] self-dual
codes over GF (5) whose minimum weights are 14 and 16, respectively, were con-
structed by using skew-Hadamard matrices of order 24 and 28. These results,
improved the only known quadratic double circulant self-dual codes of lengths
48 and 56. Moreover, they constructed [80, 40] and [88, 44] self-dual codes whose
minimum weights are 17 and 19 over GF (5). These codes were derived from
skew-Hadamard matrices of order 40 and 44, respectively.
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3.1 A [72, 36] Self-dual Code over GF (5)

We used one of the eighteen inequivalent skew-Hadamard matrices of order 36
given in [25] to form a generator matrix G of the form G = [I36 3H − I36] for
a = b = 1 and c = 3 and p = 5 in Remark 1. The matrix G generates a self-dual
code of length 72 and dimension 36. We give below the rows of the submatrix
3H − I36 of the generator matrix G of a [72, 36] self-dual code over GF (5).

222232333333233322223222223232223233
322223233332333223232222232322232332
332222323323332233322222322222323323
333222232233322333222223223223233232
233322223333223332222232232232332322
323332222332233323222322322323323222
232333222322333233223223222233232223
223233322223332333232232222332322232
222323332233323332322322222323222323
222322233222232333323222323333332332
223222332322223233232223233333323323
232223322332222323322232332333233233
322233222333222232222323323332332333
222332223233322223223233232323323333
223322232323332222232332322233233333
233222322232333222323323222332333332
332223222223233322233232223323333323
322232223222323332332322232233333233
332333332232333232222232333233323332
323333323323332322322223233333233322
233333233233323223332222323332333223
333332332333232232333222232323332233
333323323332322323233322223233322333
333233233323223233323332222333223332
332332333232232333232333222332233323
323323333322323332223233322322333233
233233333223233323222323332223332333
323332322222223223322232223222232333
233323223222232232222322233322223233
333232232222322322223222332332222323
332322323223223222232223322333222232
323223233232232222322233222233322223
232232333322322222222332223323332222
322323332223222223223322232232333222
223233323232222232233222322223233322
232333232322222322332223222222323332

Computation of minimum weight. We have used Magma, a computer al-
gebra system for symbolic computation developed at the University of Sydney,
to compute the minimum weight of the previously constructed [72, 36] self-dual
code [3],[11]. We give below the details of the last phase of our computation for
length 72.
Linear Code over GF(5) of length 72 with 36 generators.
Enumerating using 8 generators at a time:
Completed Matrix 1:
lower = 16, upper = 16.
Computation complete
72574065912 vectors enumerated
in total (0.000000% of 72 36 code)
Final Results: lower = 16, upper = 16
IsSelfDual: True

Theorem 4. There exists a [72, 36, 16] self-dual code over GF (5).

3.2 Optimal Minimum Distances of Self-dual Codes over GF (5)

In this Section, we give an updated Table with the best up-to-date optimal
minimum distances of self-dual codes over GF (5) which summarizes the survey
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Table 6. Optimal minimum distances of self-dual codes over GF (5)

Length d N Reference Length d N Reference

2 2 1 [28] 28 10− 11 ≥ 20 [8],[16],[21]
4 2 1 [28] 30 10− 12 ≥ 204 [8],[16]
6 4 1 [28] 32 11− 12 ≥ 1 [8],[16],[21]
8 4 1 [28] 34 11− 12 ≥ 11 [8],[16],[21]
10 4 3 [28] 36 12− 13 ≥ 1 [8],[21]
12 6 1 [28] 38 12− 14 ≥ 1 [8],[21]
14 6 3 [20],[28] 40 13− 15 ≥ 1 [8],[21],[26]
16 7 1 [20],[28] 48 14− 20 ≥ 2 [8],[26]
18 7 9 [20],[21] 56 16− 23 ≥ 2 [8],[26]
20 8 ≥ 8 [21],[28] 72 16−? ≥ 1 Section 3.1
22 8 ≥ 59 [21] 80 17−? ≥ 1 [26]
24 9 ≥ 2 [14],[17],[19],[26],[28] 88 19−? ≥ 1 [26]
26 9− 10 ≥ 1 [8],[16],[21]

and the results given previously. The first and fifth columns give code lengths, the
second and sixth columns give the optimal minimum distances for self-dual codes
over GF (5), and the third and seventh columns give the number of inequivalent
optimal self-dual codes.
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Abstract. Two types of simulations for weighted tree automata (wta)
are considered. Wta process trees and assign a weight to each of them.
The weights are taken from a semiring. The two types of simulations
work for wta over additively idempotent, commutative semirings and
can be used to reduce the size of wta while preserving their semantics.
Such reductions are an important tool in automata toolkits.

1 Introduction

Automata minimization is an important and well-studied subject. Here we con-
sider (finite-state) tree automata and weighted tree automata, which are used
in applications such as model checking [1] and natural language processing [2].
Deterministic (bottom-up) tree automata can be minimized efficiently using, for
example, an algorithm inspired by Hopcroft [3,4]. However, minimizing nonde-
terministic tree automata is PSPACE-complete [5] and cannot be approximated
well [6,7,8] unless P = PSPACE. Consequently, alternative (efficient) methods
to reduce the size of tree automata were explored [4,9,10,11]. An efficient min-
imization procedure for deterministic (bottom-up) weighted tree automata is
presented in [12] and efficient reductions of nondeterministic weighted tree au-
tomata with the help of bisimulation relations are considered in [13].

Here we consider the simulation approach of [10] for weighted tree automata
over additively idempotent, commutative semirings. A weighted tree automaton
essentially is a tree automaton in which each transition carries a weight (an
element of a semiring). Instead of accepting a certain set of trees, a weighted
tree automaton assigns a weight to each tree. First, the automaton assigns a
weight to each run, which is the same as a run of the corresponding unweighted
automaton. The weight of the run is obtained by multiplying (in the semiring)
the participating transition weights (each transition weight as often as it occurs
in the run) and eventually the final weight associated to the state reached at the
root. Should there be several runs on the same input tree, then the weights of
those runs are summed up to obtain the weight assigned to this input tree.
� This work was financially supported by the Ministerio de Educación y Ciencia
(MEC) grant JDCI-2007-760.
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In [10] two types of simulation relations, called downward and upward simu-
lations, are examined for tree automata. Roughly speaking, we generalize these
notions to the setting of weighted tree automata. While there are several poten-
tial generalizations, our approach requires us to consider ordered semirings. Here
we choose to work with additively idempotent (i.e., a + a = a for all semiring
elements a) semirings and their natural order. We define two types of simulation
relations: backward and forward simulation. Intuitively, these notions correspond
to backward and forward bisimulation of [13], but are unfortunately not general-
izations of those concepts. Backward simulation generalizes downward simulation
of [10] and our forward simulation generalizes upward simulation with respect to
the identity as downward simulation [10]. We choose not to generalize upward
simulations [10] with respect to arbitrary downward simulations since we believe
that two completely separate notions are easier to handle and understand.

A simulation is a quasi-order (i.e., a reflexive and transitive relation) on the
states of an input automaton M . A backward simulation is such that larger
states dominate the smaller states; i.e., if the smaller state accepts a tree with
weight a, then the larger state accepts the same tree with a weight that is larger
than a (see Lemma 3). We take the equivalence induced by this quasi-order (i.e.,
two states are equivalent if they simulate each other) and reduce M with it
(see Definition 6). This construction is simple for tree automata, however our
reductions need to address the weights. This yields separate constructions for
the backward (see Definition 6) and forward (see Definition 13) case. We show
in Theorem 7 that the weighted tree automaton obtained with the help of a
backward simulation, which never has more states than M , is equivalent to M .

In a forward simulation we do not consider the trees that a state can accept, but
rather the contexts (i.e., trees over the input ranked alphabet with a unique occur-
rence of the extra symbol �) that can be processed starting from that state. For
those contexts a similar domination property as in the backward case must hold
(see Lemma 12). Again, we use the induced equivalence to reduce the automaton.
Theorem 15 shows that we obtain an equivalent weighted tree automaton.

Both types of simulations admit a greatest simulation that can be used for
greatest gain in reduction (see Theorems 2 and 11). For deterministic weighted
tree automata, we show that backward simulation is ineffective and forward
simulation is only as effective as forward bisimulation [13]. This essentially means
that our new tools do not surpass the existing tools in the deterministic case,
but they can yield much greater reductions in the nondeterministic case. In
summary, we add two more tools to the toolbox, which can be used to reduce
nondeterministic weighted tree automata.

2 Preliminaries

We denote the nonnegative integers, which include 0, by N. For every l, u ∈ N, the
subset {n ∈ N | l � n � u} is simply written as [l, u]. An alphabet is a nonempty
and finite set. Its elements are called symbols. A ranked alphabet (Σ, rk) consists
of an alphabet Σ and a mapping rk: Σ → N, which associates to each symbol
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a rank. The set Σk = {σ ∈ Σ | rk(σ) = k} contains the symbols of rank k.
Henceforth, we will denote such a ranked alphabet by Σ alone and assume that
the mapping rk is implicit. For a ranked alphabet Σ and a set T , we write Σ(T )
for {σ(t1, . . . , tk) | σ ∈ Σk, t1, . . . , tk ∈ T }. We generally write α instead of α()
for α ∈ Σ0. The set TΣ(V ) of Σ-trees indexed by a set V is the smallest set such
that V ⊆ TΣ(V ) and Σ(TΣ(V )) ⊆ TΣ(V ). We just write TΣ for TΣ(∅).

A relation # on a set S is a subset of S × S. The inverse #−1 is the relation
{(s′, s) | s # s′} and the composition of two relations #1 and #2 on S is

#1 ; #2 = {(s, s′′) | ∃s′ ∈ S : s #1 s′ #2 s′′} .

A quasi-order ! on S is a reflexive, transitive relation on S. An up-set A ⊆ S
(with respect to !) is such that for every s ! s′ with s ∈ A also s′ ∈ A. The
smallest up-set containing A ⊆ S is denoted by ↑(A). If A = {s}, then we simply
write ↑(s). The quasi-order ! is an equivalence relation if it is symmetric, and it
is a partial order if it is anti-symmetric. A partial order � on S is total if s � s′

or s′ � s for every s, s′ ∈ S. Let ≡ be an equivalence on S. We write [s]≡ for the
equivalence class of s ∈ S and (S/≡) for the partition {[s]≡ | s ∈ S}. Whenever
possible without confusion, we drop ≡ from [s]≡. Note that if ! is a quasi-order
on S, then � = !∩!−1 is an equivalence relation on S and ! induces a partial
order on S/�.

A commutative semiring is an algebraic structure A = (A,+, ·, 0, 1) compris-
ing two commutative monoids (A,+, 0) and (A, ·, 1) such that · distributes over +
and 0 is absorbing for · (i.e., 0 ·a = 0 for every a ∈ A). It is (additively) idempo-
tent if 1+1 = 1. Moreover, let � be a partial order on A. It partially orders A if
a1 + b1 � a2 + b2 and a1 · b1 � a2 · b2 for every a1 � a2 and b1 � b2. Let ' be the
quasi-order on A such that a ' b if there exists c ∈ A with a + c = b. Whenever
' is anti-symmetric, it is called the natural order. Note that for an idempotent
semiring, the relation ' is always a partial order. Morever, the natural order
always (independent of idempotency) partially orders A.

A tree series (over Σ and A) is a mapping ϕ : TΣ → A. The set of all such tree
series is A〈〈TΣ〉〉. We write (ψ, t) instead of ψ(t) for every t ∈ TΣ. A weighted
tree automaton (wta) [14,15,16] is a tuple M = (Q,Σ,A, μ, F ) such that

– Q is a finite set of states,
– Σ is a ranked alphabet of input symbols,
– A = (A,+, ·, 0, 1) is a semiring,
– μ = (μk)k∈N is such that μk : Σk → AQ×Qk

, and
– F : Q → A is a final weight assignment.

The wta is deterministic if for every σ ∈ Σk and q1, . . . , qk ∈ Q there exists at
most one q ∈ Q such that μk(σ)q,q1,...,qk

= 0. A wta computes a tree series as
follows. Let hμ : TΣ(Q) → AQ be the mapping such that

– for every p, q ∈ Q

hμ(p)q =

{
1 if p = q

0 otherwise
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– for every σ ∈ Σk, t1, . . . , tk ∈ TΣ, and q ∈ Q

hμ(σ(t1, . . . , tk))q =
∑

q1,...,qk∈Q

μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi .

The wta M recognizes the tree series ϕM ∈ A〈〈TΣ〉〉, which is defined for every
t ∈ TΣ by (ϕM , t) =

∑
q∈Q F (q)·hμ(t)q . Two wta are equivalent if they recognize

the same tree series.

3 A Backward Simulation

In this section, we investigate backward simulation for wta [14,15,16]. Such
simulations for unweighted tree automata were already considered in [10] and
backward bisimulations, which are a related concept, for wta were considered
in [13]. To avoid a very detailed discussion, we restrict ourselves to idempotent
and commutative semirings and their natural order. With minor modifications,
our arguments also work for other idempotent (even non-commutative) semi-
rings that are partially ordered. In the following, we fix an idempotent semiring
A = (A,+, ·, 0, 1) and its natural order '. In addition, let M = (Q,Σ,A, μ, F )
be a wta, and without loss of generality, suppose that Q is totally ordered. We
will use min(P ) with P ⊆ Q for the minimal state of P with respect to that
total order.

Let us start with the definition of a backward simulation. Note that our def-
inition yields the definition of [10] when considered in the unweighted case.
In that case, if a state q simulates a state p and there exists a transition
σ(p1, . . . , pk) → p, then there also exists a transition σ(q1, . . . , qk) → q such
that the qi simulate the corresponding pi. Now, let us consider the weighted
setting. In essence, for a state q to simulate a state p, written p ! q, we de-
mand that for every transition weight μk(σ)p,p1,...,pk

there exists a larger (with
respect to the natural order ') transition weight μk(σ)q,q1,...,qk

such that, for
every i ∈ [1, k], the state qi simulates pi. Note that there is no condition on the
final weights.

Definition 1 (cf. [10, Section 2]). A quasi-order ! on Q is a backward
simulation for M if for every p ! q, σ ∈ Σk, and p1, . . . , pk ∈ Q there exist
q1, . . . , qk ∈ Q such that μk(σ)p,p1,...,pk

' μk(σ)q,q1,...,qk
and pi ! qi for every

i ∈ [1, k].

Let us discuss the definition. We already remarked that it coincides with the
definition of a backward simulation [10] in the unweighted case [i.e., the case
where A = ({⊥,(},∨,∧,⊥,() is the Boolean semiring]. However, the defi-
nition does not generalize the notion of backward bisimulation for wta of [13].
Next, let us establish some central properties of backward simulations. First,
there is a greatest backward simulation for M . We prove this along the lines
of [13, Theorem 22].
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Theorem 2. There exists a greatest (with respect to⊆) backward simulation forM .

Proof. Let ! and !′ be backward simulations for M . We claim that (! ∪!′)∗,
the reflexive and transitive closure of ! ∪ !′, is again a backward simulation.
Clearly, (! ∪ !′)∗ is a quasi-order. Now, let (p, q) ∈ (! ∪ !′)∗, σ ∈ Σ, and
p1, . . . , pk ∈ Q. Consequently, there exist r1, . . . , rn ∈ Q such that

p = r0 ! r1 !′ r2 ! r3 !′ · · · !′ rn = q .

By this chain of inequalities, there also exist q1, . . . , qk ∈ Q such that

μk(σ)p,p1,...,pk
' μk(σ)q,q1,...,qk

and pi (! ; !′ ; ! ; !′ ; · · · ; !′) qi

for every i ∈ [1, k], which proves that (! ∪!′)∗ is a backward simulation. ��
The main property of a state q that simulates a state p is that the state q accepts
every input tree with a weight that is larger than the weight with which the same
tree is accepted by p. In the unweighted case, this corresponds to the statement
that the tree language accepted by p is a subset of the tree language accepted
by q (see [10, Section 6.1]). In general, this immediately yields that any two
states equivalent in !∩!−1, which is always an equivalence relation since ! is
a quasi-order, accept the same tree series.

Lemma 3. Let ! be a backward simulation for M . Then hμ(t)p ' hμ(t)q for
every t ∈ TΣ and p ! q.

Proof. Let t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. We compute
as follows:

hμ(σ(t1, . . . , tk))p =
∑

p1,...,pk∈Q

μk(σ)p,p1,...,pk
·

k∏
i=1

hμ(ti)pi .

For all p1, . . . , pk ∈ Q there exist (q1, . . . , qk) ∈ Qk such that pi ! qi for every
i ∈ [1, k] and μk(σ)p,p1,...,pk

' μk(σ)q,q1 ,...,qk
because p ! q. Denote (q1, . . . , qk)

by f(p1, . . . , pk) and qi by f(p1, . . . , pk)i for every i ∈ [1, k]. Then we continue
with

hμ(σ(t1, . . . , tk))p '
∑

p1,...,pk∈Q

μk(σ)q,f(p1,...,pk) ·
k∏

i=1

hμ(ti)f(p1,...,pk)i

by induction hypothesis and the fact that ' partially orders A and

hμ(σ(t1, . . . , tk))p '
∑

(q1,...,qk)∈f(Qk)

μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi

'
∑

q1,...,qk∈Q

μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi

= hμ(σ(t1, . . . , tk))q

by idempotency of A and the definition of the natural order. ��
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We already remarked that this yields that states p, q ∈ Q such that p ! q and
q ! p, which we call equivalent, recognize the same tree series. Let us note
another property of such states.

Note 4. Let p ! q ! p. For every σ ∈ Σk and p1, . . . , pk ∈ Q there exist
q1, . . . , qk ∈ Q and r1, . . . , rk ∈ Q such that pi ! qi ! ri ! qi for every i ∈ [1, k]
and

μk(σ)p,p1,...,pk
' μk(σ)q,q1,...,qk

= μk(σ)p,r1,...,rk
.

So equivalent states enforce equally weighted transitions, but not necessarily
within the same blocks (because, in general, we might have qi ! pi for some
i ∈ [1, k] in Note 4). However, the property hints at an essential property of
equivalent states p and q. If p = q, then there must be at least two transitions,
one to p and one to q, with the same weight. Otherwise p and q cannot be
equivalent.

Corollary 5 (of Lemma 3). Let ! be a backward simulation for M and
� = (! ∩!−1). Then hμ(t)p = hμ(t)q for every p � q.

This completes our investigation of the principal properties of backward sim-
ulation. Next, let us show how to reduce the size of a wta using a backward
simulation. The main idea is, of course, to collapse equivalent states into just
a single state. Recall, that we assumed a total order on Q and that min(P )
with P ⊆ Q denotes the smallest element in P with respect to that order. We
use this order in our construction to obtain a unique wta. In contrast to [13,
Definition 18], we thus need not discuss why the constructed wta is well-defined.

Definition 6. Let ! be a backward simulation for M and � = (!∩!−1). The
collapsed wta (M/�) = (Q′, Σ,A, μ′, F ′) is given by

– Q′ = (Q/�),
– F ′(P ) =

∑
q∈P F (q) for every P ∈ Q′, and

– for every σ ∈ Σk, states P, P1, . . . , Pk ∈ Q′

μ′
k(σ)P,P1,...,Pk

=
∑

q1∈P1,...,qk∈Pk

μk(σ)min(P ),q1,...,qk
.

Clearly, (M/�) never has strictly more states than M . Naturally, the best re-
duction is achieved by the greatest backward simulation. Next, let us show that
M/� is equivalent to M , which proves that our construction preserves the se-
mantics. Note that we make no assumptions on the total order on Q, so that the
theorem will hold for any total order on Q.

Theorem 7 (cf. [10, Theorem 7]). Let ! be a backward simulation for M
and � = (! ∩!−1). Then M and M/� are equivalent.

Proof. Let (M/�) = (Q′, Σ,A, μ′, F ′) be the collapsed wta. We first prove
that hμ′(t)P = hμ(t)q for every t ∈ TΣ , P ∈ Q′, and q ∈ P . Suppose that
t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ . Then

hμ′(σ(t1, . . . , tk))P



294 A. Maletti

=
∑

P1,...,Pk∈Q′
μ′

k(σ)P,P1,...,Pk
·

k∏
i=1

hμ′(ti)Pi

=
∑

P1,...,Pk∈Q′

( ∑
q1∈P1,...,qk∈Pk

μk(σ)min(P ),q1,...,qk

)
·

k∏
i=1

hμ′(ti)Pi

†
=

∑
q1,...,qk∈Q

μk(σ)min(P ),q1,...,qk
·

k∏
i=1

hμ(ti)qi

= hμ(σ(t1, . . . , tk))min(P )

= hμ(σ(t1, . . . , tk))q

using the induction hypothesis at † and Corollary 5 in the last step where
q � min(P ). With this auxiliary result

(ϕ(M/�), t) =
∑

P∈Q′
F ′(P ) · hμ′(t)P =

∑
P∈Q′

(∑
q∈P

F (q)
)
· hμ′(t)P

=
∑
q∈Q

F (q) · hμ(t)q = (ϕM , t) . ��

An other negative property of our notion of backward simulation is that the result
obtained by collapsing M with the greatest backward simulation is not minimal
with respect to backward simulation. We call M backward-simulation minimal
if every backward simulation for it is a partial order. If a backward simulation !
is a partial order, then !∩!−1 is the identity, which yields no reduction in the
number of states if used to collapse M . Thus, a backward-simulation minimal
wta cannot be reduced any further using backward simulation, which justifies
the name. Let us illustrate the definitions and the principal disadvantages of
backward simulation on a very simplistic example. Similar examples can easily be
constructed for more commonly used idempotent semirings such as the tropical
semiring (R ∪ {∞},min,+,∞, 0).

Example 8. Let S = {1, 2}. We consider the semiring P(S) = (P(S),∪,∩, ∅, S)
where P(S) is the powerset of S. Moreover, consider the wta

M = ([1, 6], Σ,P(S), μ, F )

where

– Σ = {α, γ} contains the nullary symbol α and the unary symbol γ,
– F (i) = {1, 2} for every i ∈ [1, 6], and
– the following transitions

μ0(α)1,ε = {1, 2} μ0(α)2,ε = {1, 2} μ0(α)3,ε = {1, 2}
μ1(γ)5,1 = {1} μ1(γ)4,2 = {1}
μ1(γ)5,2 = {2} μ1(γ)4,1 = {2}
μ1(γ)6,3 = {1, 2} .
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Let ! be the greatest backward simulation on M , and let � = (!∩!−1). Then
1 � 2 � 3 and 4 � 5 ! 6, but 6 ! 5 and 6 ! 4. Then the collapsed wta is
M ′ = (Q′, Σ,P(S), μ′, F ′) with Q′ = {{1, 2, 3}, {4, 5}, {6}}, F ′(P ) = {1, 2} for
every P ∈ Q′, and

μ′
0(α){1,2,3},ε = {1, 2} μ′

1(γ){4,5},{1,2,3} = {1, 2} μ′
1(γ){6},{1,2,3} = {1, 2} .

The wta M and M ′ are displayed in Figure 1. Now the states {4, 5} and {6}
are equivalent; i.e., {4, 5} simulates {6} and vice versa. This demonstrates that
the collapsed wta with respect to the greatest backward simulation need not be
backward-simulation minimal. ��

1 4

2 5

3 6

α/{1, 2}

α/{1, 2}

α/{1, 2}

γ/{2}

γ/{1}γ/{1}

γ/{2}

γ/{1, 2}

{1, 2, 3} {4, 5}

{6}

α/{1, 2} γ/{1, 2}

γ/{1, 2}

Fig. 1. The wta of Example 8 (without final weights)

Let us quickly consider deterministic wta. For every input tree t ∈ TΣ, the
vector hμ(t) contains at most one nonzero entry if M is deterministic [17, Obser-
vation 4.1.6]. Thus, if M is deterministic and has no useless states (a state q ∈ Q
is useless if hμ(t)q = 0 for every t ∈ TΣ), then it is automatically backward-
simulation minimal by Corollary 5. In other words, we cannot reduce a deter-
ministic wta with the help of a backward simulation.

At the end of this section, let us develop a very simple algorithm to compute
the greatest backward simulation. Our algorithm (Algorithm 1) starts with the
optimistic assumption that all states simulate each other and the refines the rela-
tion as it finds evidence to the contrary (see [10,13]). To speed up the algorithm,
we could also use the property mentioned in Note 4, but we present the simple,
non-optimized version of the algorithm here for clarity.

Theorem 9. Algorithm 1 returns the greatest backward simulation for M .

Proof. Let ! be the greatest backward simulation for M . First, we prove that
! ⊆ Ri for every i that is encountered during the run of the algorithm. Let us
proceed by induction on i. Trivially ! ⊆ R0 because R0 = Q ×Q. Now, let us
assume that p ! q. Consequently, (p, q) ∈ Ri by the induction hypothesis. Let



296 A. Maletti

Algorithm 1. Computing the greatest backward simulation for M .
R0 ← Q × Q
i ← 0
repeat

j ← i
for all σ ∈ Σk and p1, . . . , pk ∈ Q do

Ri+1 ← {(p, q) ∈ Ri |
∃(p1, q1), . . . , (pk, qk) ∈ Ri : μk(σ)p,p1,...,pk � μk(σ)q,q1,...,qk}

i ← i+ 1
until Ri = Rj

σ ∈ Σk and p1, . . . , pk ∈ Q. Then by Definition 1 there exist q1, . . . , qk ∈ Q such
that μk(σ)p,p1,...,pk

' μk(σ)q,q1,...,qk
and pi ! qi for every i ∈ [1, k]. By induction

hypothesis, we also have (pi, qi) ∈ Ri for every i ∈ [1, k]. Consequently, we
obtain (p, q) ∈ Ri+1. This proves ! ⊆ Ri+1. At termination, Ri is a backward
simulation (see Definition 1) and since ! ⊆ Ri and ! is the greatest backward
simulation for M , we can conclude that Ri = !. ��

4 A Forward Simulation

Next, we consider a forward version of the simulation of Section 3. Similar sim-
ulations (called composed simulations) for the unweighted case are considered
in [10] and forward bisimulation for wta is considered in [13]. Let us follow the
structure of the previous section and start with the definition of a forward sim-
ulation. Note that we will use the same symbols here as in Section 3, but it
should be clear that we exclusively speak about forward simulations here unless
otherwise mentioned.

For state q ∈ Q to (forward) simulate another state p, written p ! q, we
demand that for every transition weight μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

, there exists
a larger transition weight μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

with the additional restric-
tion that the state q′ simulates p′. In addition, the final weight of q should be
larger than the one of p. In the unweighted case, this coincides with the defi-
nition of an upward simulation [10, Section 2] with respect to the identity as a
backward simulation. There it is demanded that q should be a final state if p is.
Moreover, for every transition σ(q1, . . . , qi−1, p, qi+1, . . . , qk) → p′ there should
exist a transition σ(q1, . . . , qi−1, q, qi+1, . . . , qk) → q′ such that q′ simulates p′.

Definition 10. A quasi-order ! ⊆ Q×Q is a forward simulation for M if for
every p ! q the following two conditions are satisfied:

– F (p) ' F (q) and
– for every σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q there exist q′ ∈ Q such

that p′ ! q′ and

μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
' μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

.



A Backward and a Forward Simulation for Weighted Tree Automata 297

A forward simulation is also only a quasi-order and not an equivalence relation
like every forward bisimulation. We do not consider upward simulations [10] here
since we believe that two independent simulations are easier to understand and
we can always first reduce with the help of a backward simulation and then with
a forward simulation to achieve roughly the same as with an upward simulation
of [10]. Let us proceed with the principal properties of forward simulations. As
in the backward case, there exists a greatest forward simulation for M .

Theorem 11 (see [13, Theorem 7]). There exists a greatest forward
simulation for M .

Proof. Let ! and !′ be forward simulations for M . Again, we claim that (!∪!′)∗

is a forward simulation. Clearly, (!∪!′)∗ is a quasi-order. Let (p, q) ∈ (!∪!′)∗,
σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q. Consequently, there exist r1, . . . , rn ∈ Q
such that

p = r0 ! r1 !′ r2 ! r3 !′ · · · !′ rn = q .

By this chain of inequalities, there also exists q′ ∈ Q such that

μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
' μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

and p′ (! ; !′ ; ! ; !′ ; · · · ; !′) q′, which proves that (! ∪ !′)∗ is a forward
simulation. ��

To state the main property of similar states, we need some additional notions.
A context is a tree of TΣ({�}), where � is a distinguished (fixed) symbol, such
that � occurs exactly once. The set of all contexts is denoted by CΣ . The tree c[t]
is obtained by replacing the symbol � in the context c ∈ CΣ by the tree t ∈ TΣ .

Lemma 12. Let ! be a forward simulation for M . Moreover, let c ∈ CΣ and
p ! q. Then

∑
r∈B hμ(c[p])r '

∑
r∈B hμ(c[q])r for every up-set B ⊆ Q.

Proof. We prove the statement by induction on c ∈ CΣ . In the base case, let
c = �. Then ∑

r∈B

hμ(p)r =

{
1 if p ∈ B

0 otherwise.

Since B is an up-set, p ∈ B implies q ∈ B and thus by 0 ' 1

∑
r∈B

hμ(p)r '
{

1 if q ∈ B

0 otherwise

=
∑
r∈B

hμ(q)r .

In the induction step, let c = σ(t1, . . . , tj−1, c
′, tj+1, . . . , tk) for some σ ∈ Σk,

j ∈ [1, k], c′ ∈ CΣ , and t1, . . . , tk ∈ TΣ . Then∑
r∈B

hμ(σ(t1, . . . , tj−1, c
′[p], tj+1, . . . , tk))r
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=
∑
r∈B

p1,...,pk∈Q

μk(σ)r,p1,...,pk
· hμ(c′[p])pj ·

∏
i∈[1,k]\{j}

hμ(ti)pi .

Then hμ(c′[p])pj '
∑

p′∈↑(pj)
hμ(c′[q])p′ by the induction hypothesis, and thus

'
∑
r∈B

p1,...,pk∈Q

μk(σ)r,p1,...,pk
·
( ∑

p′∈↑(pj)

hμ(c′[q])p′
)
·
∏

i∈[1,k]\{j}
hμ(ti)pi

'
∑
r∈B

p1,...,pk∈Q
p′∈↑(pj)

( ∑
r′∈↑(r)

μk(σ)r′,p1,...,pj−1,p′,pj+1,...,pk

)
· hμ(c′[q])p′ ·

∏
i∈[1,k]\{j}

hμ(ti)pi

because pj ! p′ and thus for every r ∈ B there exists r′ ∈ Q such that r ! r′

and μk(σ)r,p1,...,pk
' μk(σ)r′,p1,...,pj−1,p′,pj+1,...,pk

. Since B is an up-set and A
idempotent, we continue with

=
∑
r∈B

p1,...,pk∈Q

μk(σ)r,p1,...,pk
· hμ(c′[q])pj ·

∏
i∈[1,k]\{j}

hμ(ti)pi

=
∑
r∈B

hμ(σ(t1, . . . , tj−1, c
′[q], tj+1, . . . , tk))r . ��

Next, let us show how to reduce the size of a wta using a forward simulation. We
again make use of the total order on Q to simplify the construction. In particular,
the minimum operation in the construction refers to this total order and not to
the forward simulation for M .

Definition 13 (cf. [13, Definition 3]). Let ! be a forward simulation for M
and � = (! ∩!−1). The collapsed wta (M/�) = (Q′, Σ,A, μ′, F ′) is given by

– Q′ = (Q/�),
– F ′(P ) = F (min(P )) for every P ∈ Q′, and
– for every σ ∈ Σk, states P, P1, . . . , Pk ∈ Q′

μ′
k(σ)P,P1,...,Pk

=
∑
q∈P

μk(σ)q,min(P1),...,min(Pk)

As before, the collapsed wta M/� never has more states than M itself and the
best reduction is achieved by the greatest forward simulation. However, we first
need to show that M/� is equivalent to M . Beforehand, let us note an important
property of equivalent states (i.e., states that simulate each other) that follows
immediately from Definition 10.

Note 14. Let ! be a forward simulation for M , and let � = (! ∩ !−1). Then
for every p � q, σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q, there exist q′, r′ ∈ Q
such that p′ ! q′ � r′ and

μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
' μk(σ)q′,q1,...,qi−1,p,qi+1,...,qk

= μk(σ)r′,q1,...,qi−1,q,qi+1,...,qk
.
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We will use this property in the proof of the next theorem, which will prove the
correctness of our construction.

Theorem 15 (cf. [10, Theorem 7]). Let ! be a forward simulation for M
and � = (! ∩!−1). Then M and M/� are equivalent.

Proof. Let (M/�) = (Q′, Σ,A, μ′, F ′) be the collapsed wta. We first prove
that hμ′(t)P =

∑
q∈↑(P ) hμ(t)q for every t ∈ TΣ , and P ∈ Q′. Suppose that

t = σ(t1, . . . , tk) for some σ ∈ Σk and t1, . . . , tk ∈ TΣ. Then we compute as
follows where the equality marked † is explained below.

hμ′(σ(t1, . . . , tk))P

=
∑

P1,...,Pk∈Q′
μ′

k(σ)P,P1,...,Pk
·

k∏
i=1

hμ′(ti)Pi

=
∑

P1,...,Pk∈Q′
μ′

k(σ)P,P1,...,Pk
·

k∏
i=1

( ∑
qi∈↑(Pi)

hμ(ti)qi

)

=
∑

P1,...,Pk∈Q′
q1∈↑(P1),...,qk∈↑(Pk)

( ∑
q∈↑(P )

μk(σ)q,min(P1),...,min(Pk)

)
·

k∏
i=1

hμ(ti)qi

=
∑

q∈↑(P )

∑
P1,...,Pk∈Q′

q1∈↑(P1),...,qk∈↑(Pk)

μk(σ)q,min(P1),...,min(Pk) ·
k∏

i=1

hμ(ti)qi

†
=
∑

q∈↑(P )

∑
P1,...,Pk∈Q′

q1∈↑(P1),...,qk∈↑(Pk)

μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi

=
∑

q∈↑(P )

hμ(σ(t1, . . . , tk))q

Let us take a closer look at the equation marked †. We can show this equal-
ity by showing both inequalities. Let us consider the inequality ' first. Clearly,
it is sufficient to show that for each summand of the left-hand side there ex-
ists a larger summand in the right-hand side. For this we consider a sum-
mand μk(σ)p,min(P1),...,min(Pk) ·

∏k
i=1 hμ(ti)qi of the left-hand side of † for some

P1, . . . , Pk ∈ Q′, p ∈ ↑(P ), and q1, . . . , qk ∈ Q such that qi ∈ ↑(Pi) for every
i ∈ [1, k]. Since min(Pi) ! qi for every i ∈ [1, k], there exists q ∈ Q such that
μk(σ)p,min(P1),...,min(Pk) ' μk(σ)q,q1···qk

by Definition 10. Consequently,

μk(σ)p,min(P1),...,min(Pk) ·
k∏

i=1

hμ(ti)qi ' μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi

and the latter is a summand on the right-hand side of †. For the converse inequal-
ity, let us consider a summand μk(σ)q,q1,...,qk

·
∏k

i=1 hμ(ti)qi in the right-hand
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side where q ∈ ↑(P ) and q1, . . . , qk ∈ Q. For every i ∈ [1, k] let Pi = [qi].
Then min(Pi) � qi for every i ∈ [1, k]. Then by Definition 10 and the property
remarked in Note 14, there exist p, q′ ∈ Q such that q ! q′ � p and

μk(σ)q,q1,...,qk
' μk(σ)q′,q1,...,qk

= μk(σ)p,min(P1),...,min(Pk) .

It follows that

μk(σ)q,q1,...,qk
·

k∏
i=1

hμ(ti)qi ' μk(σ)p,min(P1),...,min(Pk) ·
k∏

i=1

hμ(ti)qi ,

which is a summand of the left-hand side because q ! p. This completes the
proof of our auxiliary statement. For the statement of the theorem, we compute
as follows:

(ϕ(M/�), t) =
∑

P∈Q′
F ′(P ) · hμ′(t)P =

∑
P∈Q′

F ′(P ) ·
( ∑

q∈↑(P )

hμ(t)q

)
=

∑
P∈Q′,q∈↑(P )

F ′(P ) · hμ(t)q =
∑
q∈Q

F (q) · hμ(t)q = (ϕM , t)

because F (p) ' F (q) if p ! q. This proves our theorem. ��

Also the notion of forward simulation has the negative properties outlined in
the section on backward simulation. For example, the result obtained by col-
lapsing M with the greatest forward simulation is again not necessarily minimal
with respect to forward simulation. Accordingly, we call M forward-simulation
minimal if every forward simulation for it is a partial order. Let us also present
a small example for forward simulation.

Example 16. Consider the wta M of Example 8. Let ! be the coarsest forward
simulation for it, and let � = (! ∩ !−1). Then 4 � 5 � 6 and 1 � 2 ! 3
but 3 ! 2. Consequently, the collapsed wta is M ′ = (Q′, Σ,P(S), μ′, F ′) where
Q′ = {{1, 2}, {3}, {4, 5, 6}}, F ′(P ) = {1, 2} for every P ∈ Q′, and

μ′
0(α){1,2},ε = {1, 2} μ′

1(γ){4,5,6},{1,2} = {1, 2}
μ′

0(α){3},ε = {1, 2} μ′
1(γ){4,5,6},{3} = {1, 2} .

Figure 2 displays M and M ′. In M ′ the states {1, 2} and {3} are equivalent;
i.e., {1, 2} simulates {3} and vice versa. This again demonstrates that the col-
lapsed wta with respect to the greatest forward simulation need not be forward-
simulation minimal. ��

Let us also discuss the deterministic case. Roughly speaking, we claim that
reduction with the help of forward simulation is not more effective than reduction
with the help of forward bisimulation on deterministic wta. Let us quickly recall
the definition of a forward bisimulation [13] for M .

Definition 17 (see [13, Definition 1]). An equivalence relation ≡ on Q is a
forward bisimulation for M if for every p ≡ q the following two conditions hold:
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1 4

2 5

3 6

α/{1, 2}

α/{1, 2}

α/{1, 2}

γ/{2}

γ/{1}γ/{1}

γ/{2}

γ/{1, 2}

{1, 2} {4, 5, 6}

{3}

α/{1, 2}

α/{1, 2}

γ/{1, 2}

γ/{1, 2}

Fig. 2. The wta of Example 16 (without final weights)

(i) F (p) = F (q) and
(ii) for every σ ∈ Σk, i ∈ [1, k], q1, . . . , qk ∈ Q, and P ∈ (Q/≡)∑

r∈P

μk(σ)r,q1,...,qi−1,p,qi+1,...,qk
=
∑
r∈P

μk(σ)r,q1,...,qi−1,q,qi+1,...,qk
.

Suppose that M is deterministic. To prove that reduction with the help of for-
ward simulation is only as effective as reduction with the help of forward bisim-
ulation, it is sufficient to show that any equivalence relation � obtained from a
forward simulation ! for M is indeed a forward bisimulation for M . The algo-
rithm in [13] can then be used to compute an equivalent wta that has at most
as many states as (M/�). Recall that a state q ∈ Q is useless if hμ(t)q = 0 for
every t ∈ TΣ.

Theorem 18. Let M be deterministic and without useless states. Moreover, let
! be a forward simulation for M , and � = (! ∩ !−1). Then � is a forward
bisimulation for M .

Proof. Let p � q, σ ∈ Σk, i ∈ [1, k], and p′, q1, . . . , qk ∈ Q be such that
μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

= 0. By determinism there exists at most one such p′

and if M has no useless states, then there exists at least one such p′. Since p � q,
there exist q′, r′ ∈ Q such that p′ ! q′ ! r′ and

μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
' μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

' μk(σ)r′,q1,...,qi−1,p,qi+1,...,qk
.

By determinism, r′ = p′ and thus p′ � q′ and

μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk
= μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

.

Consequently, for every P ∈ (Q/�)∑
r∈P

μk(σ)r,q1,...,qi−1,p,qi+1,...,qk
=

{
μk(σ)p′,q1,...,qi−1,p,qi+1,...,qk

if p′ ∈ P

0 otherwise
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=

{
μk(σ)q′,q1,...,qi−1,q,qi+1,...,qk

if q′ ∈ P

0 otherwise

=
∑
r∈P

μk(σ)r,q1,...,qi−1,q,qi+1,...,qk

because p′ ∈ P if and only if q′ ∈ P . This proves condition (ii) of Defi-
nition 17. For condition (i) of the same definition, we simply observe that
F (p) ' F (q) ' F (p), which proves it and hence the statement that � is a
forward bisimulation. ��

Minimization (i.e., finding a minimal deterministic wta that is equivalent to M)
of deterministic wta is discussed in [12]. Note that the previous theorem also
proves that reduction with the help of the greatest forward simulation does not
necessarily yield a minimal deterministic wta. This is due to the fact that forward
bisimulation does not achieve that (cf. [18, Theorem 3.12]).

Algorithm 2. Computing the greatest forward simulation for M .
R0 ← {(p, q) ∈ Q × Q | F (p) � F (q)}
i ← 0
repeat

j ← i
for all σ ∈ Σk, n ∈ [1, k], and p′, q1, . . . , qk ∈ Q do

Ri+1 ← {(p, q) ∈ Ri | ∃(p′, q′) ∈ Ri :
μk(σ)p′,q1,...,qn−1,p,qn+1,...,qk

� μk(σ)q′,q1,...,qn−1,q,qn+1,...,qk
}

i ← i+ 1
until Ri = Rj

Finally, let us develop an algorithm for the greatest forward simulation. Our
algorithm is displayed in Algorithm 2.

Theorem 19. Algorithm 2 returns the greatest forward simulation for M .

Proof. Let ! be the greatest forward simulation for M . Again we prove that
! ⊆ Ri for every relevant i as an auxiliary statement. Using the first condition
of Definition 10, we have ! ⊆ R0. Suppose that p ! q. Then (p, q) ∈ Ri by the
induction hypothesis. Moreover, let σ ∈ Σk, n ∈ [1, k], and p′, q1, . . . , qk ∈ Q.
Since p ! q, we can conclude that there exists q′ ∈ Q such that p′ ! q′ and

μk(σ)p′,q1,...,qn−1,p,qn+1,...,qk
' μk(σ)q′,q1,...,qn−1,q,qn+1,...,qk

.

Invoking the induction hypothesis, we obtain (p′, q′) ∈ Ri and thus (p, q) ∈ Ri+1.
Thus ! ⊆ Ri+1. Clearly, Ri is a forward simulation for M (see Definition 10) at
termination. Since ! ⊆ Ri and ! is the greatest forward simulation for M , we
can conclude that Ri = !. ��
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4. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. Theoret. Comput. Sci. (to appear, 2009),
http://dx.doi.org/10.1016/j.tcs.2009.03.022

5. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions
with squaring requires exponential space. In: Proc. FOCS, pp. 125–129. IEEE
Computer Society Press, Los Alamitos (1972)

6. Gramlich, G., Schnitger, G.: Minimizing nFA’s and regular expressions. In:
Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 399–411.
Springer, Heidelberg (2005)

7. Gramlich, G., Schnitger, G.: Minimizing nfa’s and regular expressions. J. Comput.
System Sci. 73(6), 908–923 (2007)

8. Gruber, H., Holzer, M.: Inapproximability of nondeterministic state and transition
complexity assuming P �= NP. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.)
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9. Abdulla, P.A., Högberg, J., Kaati, L.: Bisimulation minimization of tree automata.
Int. J. Found. Comput. Sci. 18(4), 699–713 (2007)
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Abstract. Quasi-alphabetic tree bimorphisms [Steinby, Tîrnăucă:
Defining syntax-directed translations by tree bimorphisms. Theor. Com-
put. Sci., to appear. http://dx.doi.org/10.1016/j.tcs.2009.03.009,
2009] are reconsidered. It is known that the class of (string) translations
defined by such bimorphisms coincides with the class of syntax-
directed translations. This result is extended to a smaller class of
tree bimorphisms namely (linear and complete) symbol-to-symbol tree
bimorphisms. Moreover, it is shown that the class of simple syntax-
directed translations coincides with the class of translations defined by
alphabetic tree bimorphisms (also known as finite-state relabelings).
This proves that alphabetic tree bimorphisms are not sufficiently
powerful to model all syntax-directed translations. Finally, it is shown
that the class of tree transformations defined by quasi-alphabetic tree
bimorphisms is closed under composition. The corresponding result is
known in the variable-free case. Overall, the main results of [Steinby,
Tîrnăucă] are strengthened.
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1 Introduction

The field of syntax-based machine translation was established by the demand-
ing need of systems used in practical translations between natural languages (for
example, Arabic to English). Modern systems should be able to perform local ro-
tations and capture syntax-sensitive transformations (i.e, tree transformations).
Another important property that such a system should possess is composability.
This property allows us to split the system into subsystems, which are easier to
handle, train, and study. Those subsystems can then be assembled into a large
system by an automatic composition construction [1,2].
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Two powerful tools that define tree transformations have been proposed dur-
ing the past decades in the formal language community: tree transducers and
tree bimorphisms (see [3,4] for surveys). The former devices are operational and
easy to implement but closure under composition only holds for few classes of
tree transformations [2,3,5]. This closure is easier to establish using the latter
devices by imposing suitable restrictions on their constituents [6,7,8,9], but tree
bimorphisms are more difficult to implement. More precisely, a tree bimorphism
is formed by two tree homomorphisms and a center tree language. The tree
transformation is obtained by applying both homomorphisms to elements of the
center tree language. One homomorphism yields the input tree and the other
homomorphism yields the corresponding output tree. If we take the yield of the
input and output tree, then we obtain a (string) translation.

Synchronous grammars [10,11,12] are another way to define tree transfor-
mations. They easily capture even difficult local rotations that are required by
pairs of natural languages with very different syntax-structures (e.g., Chinese and
English). A synchronous grammar basically consists of two grammars, in which
the productions have associated nonterminals. The derivations are then obtained
by applying two suitable rules, one of each grammar, to associated nonterminals.
Again one side produces the input tree and the other side produces the output
tree in this fashion. Unfortunately, few closure under composition results were
known about such grammars until [13] related synchronous grammars and tree
bimorphisms.

One synchronous grammar device is the syntax-directed translation
schema (SDTS), which appeared first as a simple model of a compiler [10]
(see [14] for a survey). In the spirit of [13], quasi-alphabetic tree bimorphisms [15]
were shown to be as powerful as SDTSs for string translations. Moreover, for
quasi-alphabetic tree bimorphisms, in which the center tree language does not
permit variables, the class of tree transformations (and thus also the class of
string translations) defined by them is shown to be closed under composition [15].

Here we sharpen the connection between SDTSs and tree bimorphisms. The
class of all translations defined by SDTSs coincides with the class of all trans-
lations defined by (linear and complete) symbol-to-symbol tree bimorphisms
(see Section 3). The latter devices define a strictly smaller class of tree
transformations than quasi-alphabetic tree bimorphisms. In addition, simple
SDTSs [16,17] are equally powerful as alphabetic tree bimorphisms [3] (finite-
state relabelings [5]). Finally, we strengthen the closure under composition result
of quasi-alphabetic tree bimorphisms by showing that the class of tree transfor-
mations defined by them remains closed under composition even if we allow
variables in the center tree language (see Section 4).

2 Preliminaries

The nonnegative integers are denoted by IN. For every k ∈ IN, the set
{i ∈ IN | 1 � i � k} is denoted by [k]. Let R, S, and T be sets and ρ ⊆ R × S
a relation. We occasionally write r ρ s instead of (r, s) ∈ ρ. The inverse of ρ
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is ρ−1 = {(s, r) | r ρ s} and the reflexive and transitive closure of # is denoted
by #∗. The composition of ρ with τ ⊆ S × T is ρ ; τ = {(r, t) | ∃s ∈ S : r ρ s τ t}.
Finally, |S| is the cardinality of the (finite) set S.

For a set V , we denote by V ∗ the set of all strings over V and by ε the empty
string. An alphabet is a finite set (of symbols). A ranked alphabet (Σ, rk) is an
alphabet Σ together with a mapping rk: Σ → IN. Often we leave rk implicit.
For every k ∈ IN, let Σk = {f ∈ Σ | rk(f) = k}.

Let Σ be a ranked alphabet and T a set. Then

Σ(T ) = {f(t1, . . . , tk) | f ∈ Σk, t1, . . . , tk ∈ T } .

The set TΣ(V ) of all Σ-trees indexed by variables V is the smallest set T such
that V ⊆ T and Σ(T ) ⊆ T . Subsets of TΣ(V ) are tree languages. Such a
tree language L is variable-free (respectively, almost variable-free) if L ⊆ TΣ

(respectively, L ⊆ TΣ ∪ V ). Generally, for all considered trees t ∈ TΣ(V ) we
assume that Σ ∩ V = ∅, so that we can safely write c instead of c() for every
c ∈ Σ0. For every tree t ∈ TΣ(V ), the set pos(t) ⊆ IN∗ of positions of t is
inductively defined by pos(v) = {ε} for every v ∈ V , and

pos(f(t1, . . . , tk)) = {ε} ∪ {iw | i ∈ [k], w ∈ pos(ti)}

for every f ∈ Σk and t1, . . . , tk ∈ TΣ(V ). Let w ∈ pos(t). The label of t at w, the
subtree of t at w, and the replacement of that subtree by s ∈ TΣ(V ) are denoted
by t(w), by t|w, and by t[s]w, respectively.

A tree t ∈ TΣ(V ) is linear (respectively, nondeleting) in Y ⊆ V if every y ∈ Y
occurs at most (respectively, at least) once in t. Let D ⊆ V ∪ Σ0. The D-yield
of t is defined inductively by ydD(d) = d for every d ∈ D, ydD(v) = ε for every
v ∈ V \D, and

ydD(f(t1, . . . , tk)) = ydD(t1) · · ·ydD(tk)

for every f ∈ Σk \D and t1, . . . , tk ∈ TΣ(V ).
We fix a set X = {xi | i � 1} of formal variables (disjoint to all other ranked

alphabets and variables considered). For every n ∈ IN, we let Xn = {xi | i ∈ [n]}.
For all t, t1, . . . , tn ∈ TΣ(V ∪Xn), we denote by t[t1, . . . , tn] the result obtained
by replacing, for every i ∈ [n], every occurrence of xi in t by ti. For every v ∈ V ,
we denote by t[v ← (t1, . . . , tn)] the result of replacing, for every i ∈ [n], the i-th
(with respect to the lexicographic order on the positions) occurrence of v by ti.

A regular tree grammar is a tuple G = (N,Σ, V, P, S) consisting of

– an alphabet N of nonterminal symbols such that N ∩ (Σ ∪ V ) = ∅,
– a finite set P of productions of the form A → r where A ∈ N and

r ∈ TΣ(N ∪ V ), and
– a start symbol S ∈ N .

The size of G, denoted by |G|, is |G| = |P |. For any s, t ∈ TΣ(N ∪ V ), we
write s ⇒G t if there exists A → r ∈ P such that t can be obtained from s
by replacing one occurrence of A by r. The tree language generated by G is
L(G) = {t ∈ TΣ(V ) | S ⇒∗

G t}. A tree language L is recognizable if there exists
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a regular tree grammar G such that L = L(G). The family of all recognizable
(respectively, recognizable variable-free and recognizable almost variable-free)
tree languages is denoted by Rec (respectively, Recvf and Recavf).

A tree homomorphism ϕ : TΣ(V ) → TΔ(Y ) can be presented by a mapping
ϕV : V → TΔ(Y ) and mappings ϕk : Σk → TΔ(Y ∪ Xk) for every k ∈ IN as
follows:

– vϕ = ϕV (v) for every v ∈ V , and
– f(t1, . . . , tk)ϕ = ϕk(f)[t1ϕ, . . . , tkϕ] for every t1, . . . , tk ∈ TΣ(V ) and

f ∈ Σk.

We say that it is normalized if for every f ∈ Σk there exists n ∈ IN such that
ydX(ϕk(f)) = x1 · · ·xn. Moreover, such a homomorphism ϕ is

– linear [3,7,18] (respectively, complete [18]) if ϕk(f) is linear (respectively,
nondeleting) in Xk for every f ∈ Σk,

– quasi-alphabetic [15] if it is linear and complete, ϕV (v) ∈ Y for every v ∈ V ,
and ϕk(f) ∈ Δ(Y ∪Xk) for every f ∈ Σk,

– symbol-to-symbol [18] if it is quasi-alphabetic and ϕk(f) ∈ Δ(Xk) for every
f ∈ Σk, and

– alphabetic [3,18] if it is symbol-to-symbol and normalized.

Note that our ‘symbol-to-symbol’ corresponds to “linear, complete, and symbol-
to-symbol” of [18], and ‘alphabetic’ homomorphisms are sometimes called rela-
belings [5]. We denote by qaH, ssH, and aH the classes of all quasi-alphabetic,
symbol-to-symbol, and alphabetic tree homomorphisms, respectively.

A tree bimorphism is a triple B = (ϕ,L, ψ) where L ⊆ TΓ (Z) is a tree
language, ϕ : TΓ (Z) → TΣ(V ) and ψ : TΓ (Z) → TΔ(Y ) are tree homomorphisms,
called input and output homomorphism, respectively. The size of B, denoted
by |B|, is defined to be the size of a representation (e.g., by a regular tree
grammar) of L. The tree transformation defined by B is τB = {(tϕ, tψ) | t ∈ L}.
We reserve the special variable e. The translation defined by B is

yd(τB) = {(ydV \{e}(s), ydY \{e}(t)) | (s, t) ∈ τB} .

Note the special treatment of e. It is never output but acts as the empty string.
For all classes H1 and H2 of tree homomorphisms and every class L of tree
languages, we denote by B(H1,L,H2) the class of tree transformations τB where
B = (ϕ,L, ψ) with ϕ ∈ H1, L ∈ L, and ψ ∈ H2. In particular, we say that
a tree bimorphism (ϕ,L, ψ) is quasi-alphabetic (respectively, symbol-to-symbol,
alphabetic, and normalized) if both ϕ and ψ have this property and L ∈ Rec.
Moreover, a bimorphism (ϕ,L, ψ) is variable-free (respectively, almost variable-
free) if L is so.

A system M = (Q,Σ,Δ, F,R) is a bottom-up tree transducer [5,19] if

– Q = Q1 is a unary ranked alphabet of states,
– Σ and Δ are an input and an output alphabet, respectively,
– F ⊆ Q is a set of final states, and
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– R is a finite set of rules of the form f(q1(x1), . . . , qk(xk)) → r where f ∈ Σk,
q1, . . . , qk ∈ Q, and r ∈ Q(TΔ(Xk)).

The bottom-up tree transducer M = (Q,Σ,Δ, F,R) is linear (respec-
tively, nondeleting) if r is linear (respectively, nondeleting) in Xk for every
f(q1(x1), . . . , qk(xk)) → r ∈ R. The one-step derivation relation ⇒M is defined
as follows. For every ζ, ξ ∈ TΣ(Q(TΔ)) we have ζ ⇒M ξ if and only if there exists
a rule f(q1(x1), . . . , qk(xk)) → r ∈ R, a position w ∈ pos(ζ), and s1, . . . , sk ∈ TΔ

such that ζ|w = f(q1(s1), . . . , qk(sk)) and ξ = ζ[s]w with s = r[s1, . . . , sn]. The
tree transformation computed by M is

τM = {(s, t) ∈ TΣ × TΔ | ∃q ∈ F : s ⇒∗
M q(t)} .

3 Syntax-Directed Translation Schema

In this section, we explore the connection between quasi-alphabetic tree bimor-
phisms and syntax-directed translation schemata (SDTSs) [10,16,17]. It was
shown in [15] that quasi-alphabetic tree bimorphisms and SDTSs are equally
powerful when we consider them as translation devices for strings. This close
connection is the main motivation for quasi-alphabetic tree bimorphisms [15].
Here we show that the mentioned connection already holds between SDTSs
and symbol-to-symbol tree bimorphisms, a class that is smaller and well-known.
Moreover, we show that simple SDTS correspond to alphabetic tree bimorphisms
(also called finite-state relabelings [5]). The latter result proves that alphabetic
tree bimorphisms are strictly less powerful than SDTSs.

Roughly speaking, a syntax-directed translation schema consists of two
context-free grammars (CFGs) over a common set of nonterminals. A production
of an SDTS is of the form A → u ;w such that A → u and A → w are CFG pro-
ductions, and additionally, the same nonterminals occur in u and w. Formally, a
syntax -directed translation schema (SDTS) is a system T = (N,V, Y, P, S) where

– N is an alphabet of nonterminals disjoint with V ∪ Y ,
– V and Y are an input and output alphabet, respectively,
– P is a finite set of productions of the form A → u ; w where A ∈ N ,

u ∈ (N ∪ V )∗, w ∈ (N ∪ Y )∗, and the nonterminals in w are a permutation
of the nonterminals in u, and

– S ∈ N is a start symbol.

An SDTS is called simple if the nonterminals occur in same order in u and w
for each production A → u ; w in P . Finally, the size of T , denoted by |T |, is
defined as the numbers of its productions (i.e., |T | = |P |).

To present the semantics of SDTS, we use the slightly informal notion of
associated nonterminals. Whenever we apply a production in a derivation, we
have to apply it to two “associated” nonterminals. This notion can easily be
formalized, but we avoid this here to present the matter without excessive detail.
The translation forms of T , which are elements of (N∪V )∗×(N∪Y )∗, are defined
inductively as follows:
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– (S, S) is a translation form and the two nonterminals S are associated.
– If (u1Au2, w1Aw2) is a translation form in which the two explicit in-

stances of A are associated and A → u ; w is a production in P , then
(u1Au2, w1Aw2) ⇒T (u1uu2, w1ww2) and the latter is a translation form.
The nonterminals of u and w are associated exactly as they are associated in
the production and the nonterminals of u1 and u2 are associated with those
of w1 and w2 in the new translation form exactly as in the original one.

The translation defined by T is the relation

τT = {(u,w) ∈ V ∗ × Y ∗ | (S, S) ⇒∗
T (u,w)} .

A major normal form for CFGs is the Chomsky normal form, but unfortunately
its analogue cannot be achieved for SDTSs. However, [17] shows that we can ob-
tain the following normal form. Note that we changed the definition slightly and
demand that at most one terminal symbol occurs in each part of a production.

Definition 1. An SDTS (N,V, Y, P, S) is in normal form if

– u,w ∈ N∗ or
– u ∈ V ∪ {ε} and w ∈ Y ∪ {ε} for every production A → u ; w in P .

Proposition 2 (cf. [17, Lemma 3.1]). For every SDTS T there exists an
SDTS T ′ in normal form such that τT = τT ′ . If T is simple, then T ′ can be
chosen to be simple as well.

Proof. Let T = (N,V, Y, P, S) be an SDTS. We construct the SDTS
T ′ = (N ′, V, Y, P ′, S) where

– N ′ = N ∪ {v | v ∈ V } ∪ {y | y ∈ Y } with v and y being new nonterminals,
– for every v ∈ V and y ∈ Y the following two rules are in P ′

v → v ; ε and y → ε ; y ,

– and for every production of P with associated nonterminal permutation
σ : [n] → [n]

A → u0A1u1 · · ·Anun ; w0Aσ(1)w1 · · ·Aσ(n)wn

where u0, . . . , un ∈ V ∗, w0, . . . , wn ∈ Y ∗, and A,A1, . . . , An ∈ N , the follow-
ing production is in P ′

A → u0w0A1u1w1 · · ·Anunwn ; u0w0Aσ(1)u1w1 · · ·Aσ(n)unwn

where for every v1, . . . , vk ∈ V and y1, . . . , ym ∈ Y we define

v1 · · · vk = v1 · · · vk and y1 · · · ym = y1 · · · ym .

– The set P ′ does not contain any further productions.
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Obviously, T ′ is in normal form. Moreover, it is simple if T is so. Finally, it is
easy to see that τT ′ = τT . ��

Let us consider the complexity of the construction in the proof of Proposition 2.
Clearly, the number of productions of T ′ is |P | + |V | + |Y |. Thus, the size
of T ′ is |T | + |V | + |Y |. It is a reasonable assumption that for every v ∈ V
(respectively, y ∈ Y ) there is at least one production in P in which v (respec-
tively, y) occurs (otherwise we can simply drop the offending v or y). Conse-
quently, |V | + |Y | � 2|T | and |T ′| ∈ O(|T |), which proves that the size of T ′ is
linear in the size of T .

Before we proceed with the mentioned connection between SDTSs and quasi-
alphabetic tree bimorphisms, let us recall the well-known link between SDTSs
and simple SDTSs.

Theorem 3 (see [16, Theorem 2]). The class of all translations defined by
simple SDTSs is properly contained in the class of all translations defined by
SDTSs.

In [15, Theorem 5.7] it was shown that SDTSs and quasi-alphabetic tree bimor-
phisms define the same (string) translations. The correspondence is very close
since the derivations of an SDTS can be obtained from the tree transformation
of the corresponding bimorphism. However, we will show that this correspon-
dence already exists between SDTSs and symbol-to-symbol tree bimorphisms.
Moreover, we will show that simple SDTSs and alphabetic tree bimorphisms
define the same class of translations. Let us first consider the direction in which
we construct a tree bimorphism for an SDTS. Since the only difference between
quasi-alphabetic and symbol-to-symbol tree bimorphisms is in their homomor-
phisms, let us reconsider the construction of those homomorphisms from [15,
Sect. 5]. We only change the behavior on productions that only have terminal
symbols on the right-hand sides.

Definition 4. Let T = (N,V, Y, P, S) be an SDTS in normal form. For every
production p = (A → u ;w) ∈ P let rk(p) = n be such that u ∈ NnV ∗. This turns
the set P into a ranked alphabet. Moreover, let P ′ =

⋃
k�1 Pk. We construct the

homomorphisms

ϕ : TP ′(P0) → TP ′(V ′) and ψ : TP ′(P0) → TP ′(Y ′)

where V ′ = V ∪ {e} and Y ′ = Y ∪ {e} as follows: Let p = (A → u ; w) ∈ P .

– If p ∈ P0, then

ϕP0(p) =

{
e if u = ε

u if u ∈ V
and ψP0(p) =

{
e if w = ε

w if w ∈ V.

– If p ∈ P ′
k, then ϕk(p) = p(x1, . . . , xk) and ψk(p) = p(xσ(1), . . . , xσ(k)) where

σ : [k] → [k] is the nonterminal permutation of p.
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By Proposition 2 we can assume normal form without loss of generality. Our
construction is very similar to the construction of [15] if we restrict ourselves to
SDTSs in normal form. The constructed homomorphisms ϕ and ψ are symbol-to-
symbol, and if T is simple, then they are alphabetic. Thus, a minor modification
of a principal result of [15, Sect. 5] yields our first result.

Lemma 5 (cf. [15, Prop. 5.5]). For every SDTS T , there exists a symbol-to-
symbol tree bimorphism B such that yd(τB) = τT . If T is simple, then B can be
chosen to be alphabetic.

Let us consider the size of the resulting bimorphism. The construction in the
proof of [15, Prop. 5.5] yields a local center tree language L ⊆ TP (the symbols
are productions and their rank is determined by the number of nonterminals as
in Definition 4). Roughly speaking, the language L contains all legal derivations
(i.e., the nonterminals in productions match). For this tree language L we can
construct the following regular tree grammar G = (N,P, ∅, P ′, S), where for
every production p ∈ Pn (note that we assume that T is in normal form) with
associated nonterminal permutation σ : [n] → [n] such that

p = A → A1 · · ·Anv ; Aσ(1) · · ·Aσ(n)y

for some A,A1, . . . , An ∈ N , v ∈ V ∪ {ε}, and y ∈ Y ∪ {ε}, the set P ′ contains
the production A → p(A1, . . . , An). All productions of P ′ are constructed in this
manner. Obviously, the size of G is the same as the size of T . Thus, the size
of the bimorphism B constructed in Lemma 5 is linear in the size of the input
SDTS T .

For the converse, we can again reconsider [15]. In [15, Prop. 5.6] it is proved
that for every quasi-alphabetic tree bimorphism B there exists an SDTS T
such that τT = yd(τB). Clearly, every symbol-to-symbol bimorphism is quasi-
alphabetic, and moreover, it is an easy exercise to confirm that the SDTS
constructed in [15, Prop. 5.6] is simple if B is alphabetic. Our minor modifi-
cation of the definition of the translation defined by a tree bimorphism (the
special treatment of the symbol e) requires only a minor change in the proof of
[15, Prop. 5.6].

Lemma 6. For every symbol-to-symbol tree bimorphism B, there exists an
SDTS T such that τT = yd(τB). If B is alphabetic, then T can be chosen to
be simple.

In the construction of [15, Prop. 5.6] the center tree language is represented as
a local tree language, but in the same spirit the construction can be done if the
center tree language is represented by a regular tree grammar. Every production
of the tree grammar yields a production of the constructed SDTS. Thus, the size
of the constructed SDTS is linear in the size of the input bimorphism (see, for
example, [20, Theorem 4] on how to handle the regular tree grammar).

This yields the following relations between SDTSs and symbol-to-symbol tree
bimorphisms. It was shown in [15] that the class of all translations defined by
SDTSs coincides with the class of all translations defined by quasi-alphabetic
tree bimorphisms. Here we sharpen this result.
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Theorem 7. The class of translations defined by arbitrary (respectively, sim-
ple) SDTSs coincides with the class of translations defined by symbol-to-symbol
(respectively, alphabetic) tree bimorphisms.

If we consider Theorems 3 and 7 together, we obtain that the class of all trans-
lations defined by alphabetic tree bimorphisms is properly contained in the class
of all translations defined by symbol-to-symbol tree bimorphisms.

4 Closure under Composition

In this section we reconsider the problem of closure under composition for the
class of tree transformations defined by quasi-alphabetic tree bimorphisms. It
was shown in [15] that if we restrict ourselves to quasi-alphabetic tree bimor-
phisms with a variable-free center tree language, then the resulting class of tree
transformations is closed under composition. Here we want to extend this result
to include variables. The following proposition is trivial, but indicates why clo-
sure under composition is possible whereas closure under intersection fails [21].

Proposition 8. For every quasi-alphabetic bimorphism B, there exist a quasi-
alphabetic bimorphism B1 with a normalized input homomorphism and a quasi-
alphabetic bimorphism B2 with a normalized output homomorphism such that
τB = τB1 = τB2 . If B is variable-free (almost variable-free, respectively), then
B1 and B2 can be chosen such that they are variable-free (almost variable-free,
respectively).

So we showed that one homomorphism of a quasi-alphabetic bimorphism can
always be normalized. As a final step we try to get rid of the variables as much
as possible.

Lemma 9. B(qaH,Recavf, qaH) = B(qaH,Rec, qaH)

Proof. Let B = (ϕ,L, ψ) be a quasi-alphabetic tree bimorphism with L ⊆ TΓ (Z).
Moreover, let Y be a set and h : Z → Y be a bijection. Finally, let
M = (Q,Γ ′, Ω′, Q,R) be the linear bottom-up tree transducer with

– Q = Y ∪ {$},
– Γ ′

k = Γk for every k � 1 and Γ ′
0 = Γ0 ∪ Z,

– Ω′
k = {t ∈ Γ (Q) | k = |t|�} for every k � 1 and Ω′

0 = Γ0 ∪ Z.
– The set R of rules is given as follows:

• For every z ∈ Z, let z → q(z) be a rule of R where q = h(z).
• For every f ∈ Γk and q1, . . . , qk ∈ Q, let

f(q1(x1), . . . , qk(xk)) → $(ω(xi1 , . . . , xin))

be a rule of R where ω = f(q1, . . . , qk), i1 < · · · < in, and
{i1, . . . , in} = {i ∈ [k] | qi = $}.
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Let L′ = τM (L) be the image of L under τM . Clearly, L′ is almost variable-free,
and by [3, Lemma IV.6.5], the tree language L′ is recognizable. We construct
the bimorphism B′ = (ϕ′, L′, ψ′) such that ϕ′

Z = ϕZ , ψ′
Z = ψZ , and

ϕ′
k(t) = ϕ(t[$ ← (x1, . . . , xk)]) and ψ′

k(t) = ψ(t[$ ← (x1, . . . , xk)])

for every t ∈ Ωk. Clearly, ϕ′ and ψ′ are quasi-alphabetic. Thus, B′ is an almost
variable-free quasi-alphabetic bimorphism. Note that M is deterministic and
total and thus τM is a mapping [5]. Finally, let us prove that τB′ = τB . For this,
we prove that tϕ = τM (t)ϕ′ and tψ = τM (t)ψ′ for every t ∈ TΓ (Z). Clearly, it is
sufficient to prove the former statement since the argument is totally symmetric.
First, let t ∈ Z. Then

tϕ = τM (t)ϕ = τM (t)ϕ′ .

Now, let t = f(t1, . . . , tk) for some f ∈ Σk and t1, . . . , tk ∈ TΓ (Z). Moreover, for
every i ∈ [k], let qi = h(ti) if ti ∈ Z and qi = $ otherwise. Then

τM (f(t1, . . . , tk))ϕ′ = ω(τM (ti1 ), . . . , τM (tin))ϕ′

= ϕ′
n(ω)[τM (ti1)ϕ

′, . . . , τM (tin)ϕ′]
= ϕ(f(q1, . . . , qk)[$ ← (x1, . . . , xn)])[ti1ϕ, . . . , tinϕ]
= f(q1, . . . , qk)[$ ← (ti1 , . . . , tin)]ϕ
= f(t1, . . . , tk)ϕ

with ω = f(q1, . . . , qk), i1 < · · · < in, and {i1, . . . , in} = {i ∈ [k] | qi = $}. This
completes the proof. ��

It is proved in [15, Theorem 7.4] that B(qaH,Recvf, qaH) is closed under compo-
sition. Let us take another look at composition closure results. First, we point
out why it is far easier to prove the closure only for tree transformations defined
by variable-free or almost variable-free quasi-alphabetic bimorphisms.

Lemma 10. Let ϕ : TΣ(V ) → TΓ (Z) and ψ : TΔ(Y ) → TΓ (Z) be normalized
quasi-alphabetic tree homomorphisms, and let s ∈ TΣ ∪ V and t ∈ TΔ ∪ Y . If
sϕ = tψ, then pos(s) = pos(t).

Proof. First, let s ∈ V . Then sϕ ∈ Z. Since sϕ = tψ, it follows that t ∈ Y
and hence pos(s) = pos(t). Second, let s = f(s1, . . . , sk) for some f ∈ Σk and
s1, . . . , sk ∈ TΣ. Then sϕ = ϕk(f)[s1ϕ, . . . , skϕ] = tψ. Since ϕ and ψ are quasi-
alphabetic, we have siϕ /∈ Z for every i ∈ [k]. If we additionally take into account
that sϕ = tψ, then we can conclude that t = g(t1, . . . , tk) for some g ∈ Δk and
t1, . . . , tk ∈ TΔ. Moreover, since ϕ and ψ are normalized, it also follows that
ϕk(f) = ψk(g). Using the induction hypothesis, we thus obtain pos(s) = pos(t).

��

The previous proposition essentially states that all almost variable-free trees with
the same image under two normalized quasi-alphabetic tree homomorphisms
can be paired up in a product data structure TΣ×Δ(V × Y ). Let us plug the
statements together and establish the relation to closure under composition.
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Lemma 11. B(qaH,Rec, qaH) is closed under composition if

{t ∈ TΩ ∪ V | tϕ = tψ} (†)

is a recognizable tree language for every ranked alphabet Ω, set V of variables,
and pair (ϕ, ψ) of normalized quasi-alphabetic tree homomorphisms.

Proof. Let B1 = (ϕ1, L1, ψ1) and B2 = (ϕ2, L2, ψ2) be quasi-alphabetic bimor-
phisms. Without loss of generality, let B1 and B2 be almost variable-free by
Lemma 9. Moreover, suppose that ψ1 and ϕ2 are normalized by Proposition 8.
Let

τ = τB1 ; τB2

= {(s, r) | ∃t : (s, t) ∈ τB1 , (t, r) ∈ τB2}
= {(tϕ1, rψ2) | t ∈ L1, r ∈ L2, tψ1 = rϕ2} .

Since tψ1 = rϕ2, it follows by Lemma 10 that pos(t) = pos(r). Hence
the quantified t and r in the last displayed equation can be stored in a
tree s ∈ TΣ×Δ ∪ (V × Y ) such that sπ1 = t and sπ2 = r where π1 and π2

are the usual projections to the first and second component.
Let T = TΣ×Δ ∪ (V × Y ). We can continue the displayed equations by

τ = {(tπ1ϕ1, tπ2ψ2) | t ∈ T, tπ1 ∈ L1, tπ2 ∈ L2, tπ1ψ1 = tπ2ϕ2}
= {(tπ1ϕ1, tπ2ψ2) | t ∈ π−1

1 (L1) ∩ π−1
2 (L2) ∩ L}

where L = {t ∈ T | tπ1ψ1 = tπ2ϕ2}. It is easily seen that the tree
homomorphisms π1ϕ1, π2ψ2, π1ψ1, and π2ϕ2 are quasi-alphabetic. More-
over, π1ψ1, and π2ϕ2 are normalized. By assumption, L is thus recognizable,
and π−1

1 (L1) and π−1
2 (L2) are recognizable by [3, Theorem II.4.18]. Conse-

quently, π−1
1 (L1)∩π−1

2 (L2)∩L is recognizable by [3, Theorem II.4.2], and hence,
τ ∈ B(qaH,Rec, qaH), which completes the proof. ��

So whenever the equality sets [the sets (†) in Lemma 11] are recognizable, we
can construct a quasi-alphabetic bimorphism that computes the composition of
two given quasi-alphabetic bimorphisms. It remains to prove that the equality
sets are recognizable (the premise of Lemma 11).

Lemma 12. Let ϕ : TΩ(Z) → TΣ(V ) and ψ : TΩ(Z) → TΣ(V ) be normalized
quasi-alphabetic tree homorphisms. Then L = {t ∈ TΩ ∪ Z | tϕ = tψ} is
recognizable.

Proof. We construct the regular tree grammar G = ({S}, Ω′, P, S) where

– Ω′
k = Ωk for every k � 1 and Ω′

0 = Ω0 ∪ Z, and
– P = P1 ∪ P2 with

P1 = {S → z | z ∈ Z, zϕ = zψ}
P2 = {S → f(S, . . . , S) | f ∈ Ωk, ϕk(f) = ψk(f)} .
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Then L = L(G) ∩ (TΩ ∪ Z), which is recognizable [3, Theorem II.4.2]. ��

We are now ready to state our main result. Let Loc (respectively, Locvf) be
the class of all local (respectively, local variable-free) tree languages [3]. Note
that [15, Theorem 7.4] proves that B(qaH,Locvf, qaH) is closed under composi-
tion. Since every recognizable tree language is the image of a local tree language
under an alphabetic tree homomorphism [3, Theorem II.9.5], we immediately
obtain

B(qaH,Locvf, qaH) = B(qaH,Recvf, qaH)
B(qaH,Loc, qaH) = B(qaH,Rec, qaH) .

The closure of B(qaH,Recvf, qaH) is thus proved in [15] and here we prove it
for B(qaH,Rec, qaH). Note that our approach is slightly different.

Theorem 13 (cf. [15, Theorem 7.4]). B(qaH,Rec, qaH) is closed under com-
position.

Proof. Follows directly from Lemmata 11 and 12. ��
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Abstract. In the present study the problem of efficient computation of
the k-th root of the Discrete Logarithm is investigated. Lower bounds
on the degree of interpolation polynomials of the root of the Discrete
Logarithm for subsets of given data are obtained. These results support
the assumption of hardness of the k-th root of the discrete logarithm.

1 Introduction

The k-th root of the discrete logarithm is used as a one-way function in sev-
eral cryptographic applications. In particular in Public Verifiable Secret Shar-
ing Schemes, Group Signature Schemes, Electronic Cash, Anonymity Control in
Multi-bank E-Cash System, Offline Electronic Cash Systems (c.f. [1], [4], [5], [6],
[7], [10], [11], [12], [20], [22], [23]). These considerations are related to applications
of the Double Discrete Logarithm [16].

Let G = 〈g〉 be a cyclic group of order t and Y be an element of G. The
discrete logarithm of Y with respect to the base g is the smallest positive integer
x such that gx = Y . A k-th root of the discrete logarithm of Y ∈ G to the base
g is an integer x satisfying:

g(xk) = Y if such an x exists.
It is evident that existence and uniqueness of the k-th root of the discrete

logarithm are not guaranteed. In the case
∣∣∣{x : g(xk) = Y

}∣∣∣ ≥ 2, we investigate
branches of the k-th root of the discrete logarithm.

Parameters G, t and g can be chosen in advance in such a way that computing
discrete logarithms to the base g is infeasible. In addition t can be chosen in such
a way that obtaining k-th roots modulo t is hard to be determined.

In most of the applications (see [6], [7], [11], [12]) t is an RSA modulus that
is t = p.q,where p and q are big primes and the factorization of t is unknown.
Therefore deriving the k-th roots is not feasible. In [23] the problem has been
studied for the case t = p2.q,where p and q are primes. Concerning k it may be
equal to two (square root), also, k could be equal to e, that is the encryption
exponent of the RSA (root of odd order). A message m is encrypted as me

( mod t) and then g(me) becomes public. Recovering m is the same as computing
the e-th root of the discrete logarithm.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 318–323, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The goal of this paper is to investigate the possibility to obtain a solution
of the ’k-th root of the discrete logarithm problem’ by applying interpolating
polynomials. We derive lower bounds on the degrees of these polynomials. We
show that such polynomials have indeed a very large degree, supporting the
assumption of the hardness of the problem when the parameters are properly
chosen.

For polynomial representations of other cryptographic functions some similar
results have been obtained. The investigations for our study regarding the k-th
root of the discrete logarithm in this paper are motivated from a number of
results. In [14], [15], [17], [18] exact polynomial representations of the discrete
logarithm in a finite field has been deduced. However in [8], [19], [21], [25] it was
proved that there are no low degree interpolation polynomials of the discrete
logarithm for a large set of given data. Concerning other cryptographic functions,
c.f. [9], [13], [24], lower bounds on the degrees of polynomials representing the
Diffie-Hellman mapping are obtained. Also in [3] exact formulas for polynomials
representing the Lucas logarithm are deduced and lower bounds on the degree of
interpolation polynomials of the Lucas logarithm for subsets of given data have
been proved. In [16] the double discrete logarithm is addressed.

2 Roots of Odd Order

In what follows the exponent k is odd and relatively prime to ϕ (t) and, of course,
the k-th root function is a bijection mapping. The main motivation for this study
stems from RSA. In this case k is the encryption exponent e.

Theorem 1. Let p be a prime, g ∈ Z∗
p , |〈g〉| = t and let k > 0 be an integer such

that gcd(k, ϕ(t)) = 1. Let S ⊆ Z∗
t be a subset of order |S| = ϕ(t) − s. Suppose

the existence of a polynomial F (X) ∈ Zp[X ] such that F (gxk

) = x for all x ∈ S.
Then deg(F ) ≥ ϕ(t)−2s

2 .

Proof. The condition gcd(k, ϕ(t)) = 1 implies the existence and uniqueness of
the k-th root of every element of Z∗

t .
Consider the set R = {x : x ∈ S, t− x ∈ S}.
Obviously |R| ≥ ϕ(t) − 2s. For all x ∈ R, Y ∈ Zp and Y = gxk

it is true that
1
Y = g(t−x)k

.
Therefore one has the equation F (Y ) + F ( 1

Y ) = t.
The polynomial h(Y ) = Y n

(
F (Y ) + F

(
1
Y

)
− t
)

is not identical to the zero-
polynomial in Zp[X ]. In order to verify it one can set F (Y ) = a0+ ...+anY

n and
get h(0) = an = 0.Therefore h(Y ) has degree 2n and at least |R| zeros. Thus
one obtains deg(F ) = n = deg(h)

2 ≥ |R|
2 ≥ ϕ(t)−2s

2 . The proof is complete.

3 Square Roots of Discrete Logarithms

In the following Theorems 2 and 3 the order of the group 〈g〉 is prime. In Theorem
4 the order is the product of two primes (RSA-modulus),that is N = p.q. However
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the factorization of N is not known. In the followings we denote by QRt the set
of all quadratic residues modulo t. It is a fact that QRt is a subgroup of Z∗

t .
A function b : QRt → Zt satisfying (b(x))2 = x will be called a branch of the

square root. In other words the function b assigns to the quadratic residue x one
of its square roots. It is evident that b is a bijection mapping from QRt onto
Imb (that is the image of the function b). Define A = Imb, B = Z∗

t � Imb.When
t is a prime, |A| = |B| = ϕ(t)

2 , x ∈ A if and only if −x ∈ B for all x ∈ Z∗
t . The

branch of the square root of the discrete logarithm can be defined in a similar
way.

Theorem 2. Let p be a prime, g ∈ Z∗
p , |〈g〉| = t and t be also a prime. Consider

the subset:
S ⊆ Z∗

t , |S| = t−1
2 − s ≤ t−1

2 .

Let F (X) ∈ Zp [X ] be a polynomial satisfying F (gx2
) = x for all x ∈ S.Then:

deg(F ) ≥ t−1−4s
32 .

Proof. Let x ∈ S. Since g(x)2 = g(−x)2 one has −x /∈ S. F can be extended to
a branch b of the square root of the discrete logarithm. We can find A,B ⊆ Z∗

t ,
such that A ∪B = Z∗

t , A ∩B = ∅, S ⊆ A = Imb, |A| = |B| = t−1
2 .

The set S can be decomposed to the following form as S = R1∪W1∪R2∪W2

(disjoint union),where
R1 = {x : x ∈ S, 2x ∈ A and 2x ∈ S},
W1 = {x : x ∈ S, 2x ∈ A and 2x ∈ A � S},
R2 = {x : x ∈ S, 2x ∈ B and −2x ∈ S},
W2 = {x : x ∈ S, 2x ∈ B and −2x ∈ A � S}
The set W1 ∪W2 has at most s elements. Therefore, the set R = R1 ∪R2 has

at least
|S| − s = t−1

2 − 2s elements.
It is follows that Y = gx2

meaning Y 4 = g(2x)2 = g(−2x)2 . For every x ∈ R1:
F (Y 4) = F

(
g(2x)2

)
= 2x− ε = 2F (Y ) − ε, ε ∈ {0, t}.

For every x ∈ R2:
F
(
Y 4
)

= F
(
g(−2x)2

)
= ε + t− 2x = ε + t− 2F (Y ), ε ∈ {0, t}

Let x ∈ R where = R1 ∪R2. Consider the polynomials:
h1(Y ) = F (Y 4) − 2F (Y ), in the case x ∈ R1 and ε = 0,
h2(Y ) = F (Y 4) − 2F (Y ) + t, in the case x ∈ R1 and ε = t,
h3(Y ) = F (Y 4) + 2F (Y ) − t, in the case x ∈ R2 and ε = 0,
h4(Y ) = F (Y 4) + 2F (Y ) − 2t, in the case x ∈ R2 and ε = t.
It is easily follows that no one of these polynomials is identical to the zero

polynomial and that
deg(hi) = 4n for i = 1, 2, 3, 4.
At least one of them has at least 1

4 |R| roots. It is follows:
deg(F ) = n = deg(h)

4 ≥ 1
16 |R| ≥ 1

16 ( t−1
2 − 2s) = t−1−4s

32 .

Theorem 3. Let p be a prime, g ∈ Z∗
p , |〈g〉| = t, t is also a prime, t ≡

3 ( mod 4).
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Consider the subset S ⊆ QRt ⊆ {1, 2, ..., t− 1}, |S| = t−1
2 − s ≤ t−1

2 . The
elements of S are quadratic residues.

Let F (X) ∈ Zp [X ] be a polynomial satisfying: F
(
gx2
)

= x for all x ∈ S.
Then

deg (F ) ≥ max
{

t−1−4s
32 , t−1−4s

2v3

}
where v is the smallest quadratic residue mod t, v ∈ {2, 3, 4}.

Proof. The assumption t ≡ 3 ( mod 4) implies that for all x ∈ Z∗
t , the element

x is a quadratic residue if and only if −x is not a quadratic residue. Thus the
square root function becomes a bijection.

Let v be the smallest quadratic residue mod t, v ∈ {2, 3, 4} Define R =
{x : x ∈ S, vx ∈ S}, |R| ≥ t−1

2 − 2s. For all x ∈ R it is follow:

F
(
g(vx)2

)
= F
(
Y v2
)

= v.x− j.t, for j = 0, 1, ..., v − 1.
Consider the v polynomials in Zp [X ]:

hj (Y ) = F
(
Y v2
)
− v.F (Y ) + j.t, j = 0, 1, ..., v − 1.

None of these polynomials is identical to the zero polynomial and deg (hj) =
v2.n.

On the other hand at least one of these polynomials has at least |R|
v zeros.

Therefore:
deg (F ) = n = deg(hj)

v2 ≥ 1
v2 .

|R|
v ≥

t−1
2 −2.s

v3 = t−1−4s
2v3 .

From Theorem 2 one gets
deg (F ) ≥ max

{
t−1−4s

32 , t−1−4s
2v3

}
.

Theorem 4. Let r be a prime number, g ∈ Z∗
r , |〈g〉| = N , N = p.q an RSA

modulus. In addition, we assume that p ≡ q ≡ 3 ( mod 4). Consider the subset
S ⊆ QRN ⊂ Z∗

N , |S| = ϕ(N)
4 − s ≤ ϕ(N)

4 . The elements of S are quadratic
residues. Let F (X) ∈ Zr [X ] be a polynomial satisfying:

F
(
gx2
)

= x for all x ∈ S. Then

deg (F ) ≥ ϕ(N)−8s
4v3 , where v is the smallest quadratic residue mod N , v ∈

{2, 3, 4}.

Proof. The assumption p ≡ q ≡ 3 ( mod 4) implies that all quadratic residues
in Z∗

N have exactly one root which is also a quadratic residue mod N , that is
the square root function is a bijection. The rest of the proof follows a similar
argument as in the proof of Theorem 3.
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Abstract. Restarting tree automata are an extension of top-down tree
automata that incorporate transformations of trees through the exe-
cution of certain size-reducing rewrite operations. An input tree is re-
peatedly rewritten until a simple tree is obtained that is then accepted
without further rewrites. Accordingly, these automata can be seen as
term-rewriting systems with an incorporated regular control realizing
parallel rewrites on independent branches. Here we introduce and study
two restricted types of restarting tree automata by restricting the options
for the regular control. The first variant we consider is the single-path
restarting tree automaton, which is obtained from the general model by
restricting it to the ability to pass down information along a single path
only. In this way it is enforced that rewrites are executed in a strictly se-
quential way. Interestingly, single-path restarting tree automata reduce
the tree languages they recognize to a proper subclass of the class of
regular tree languages. Nevertheless, many of the results on the gen-
eral model of restarting automata carry over to this variant. The second
variant we study is the ground-rewrite restarting tree automaton. It is
required to perform its size-reducing rewrite steps only on ground terms
of bounded height. Accordingly, these automata can be interpreted as
ground term-rewriting systems with additional regular control. Although
they are much less expressive than the general model, it turns out that
due to an inherent synchronization mechanism they can still accept cer-
tain non-regular tree languages. Finally, we consider the combination of
both restrictions.

Keywords: restarting tree automaton, single-path top-down tree au-
tomaton, classes of tree languages, linear context-free tree language.

1 Introduction

The restarting automaton, which was introduced in [4] to model the so-called
analysis by reduction used in linguistics, has been extended in [9] from strings
to trees. Actually several different variants of restarting tree automata have
been defined that correspond to certain basic types of restarting automata (on
strings). In [9] some fundamental results on the expressive power of these types
� The results presented here are mostly taken from Heiko Stamer’s doctoral disserta-
tion [8], where the proofs can be found in full detail.

S. Bozapalidis and G. Rahonis (Eds.): CAI 2009, LNCS 5725, pp. 324–341, 2009.
� Springer-Verlag Berlin Heidelberg 2009



Single-Path Restarting Tree Automata 325

of restarting tree automata are derived, and some closure properties are given for
the families of tree languages recognized by them. In [10] this work is continued
by proving that all linear context-free tree languages are recognized by restarting
tree automata. In fact, from a linear context-free tree grammar G, a restarting
tree automaton A of type RWWT (see Subsection 2.1 for the definition) can be
constructed such that A recognizes the tree language generated by G. This result
is of particular interest from a linguistic point of view, as the linear, nondeleting,
monadic context-free tree grammars generate the same class of string languages
as tree adjoining grammars [2] and some other formalisms studied in linguistics
(see, e.g., [11]).

Basically a restarting tree automaton A works as follows. Given an input term
t ∈ T (F), A reads t in a top-down fashion performing local simplifications (or
rewrites), in this way producing a term t1 that may contain auxiliary symbols.
Then A restarts this process with the term t1. This continues until A gets stuck,
in which case it rejects, or until a simple term is obtained that A accepts without
modifications. By L(A) we denote the language consisting of all terms that A
accepts, while S(A) is the sublanguage consisting of all terms that A accepts
without modifications. It is called the simple tree language recognized by A. It
follows easily from the definition that on S(A), the automaton A works essen-
tially like a finite top-down tree automaton, implying that S(A) is a regular tree
language. Thus, A reduces the language L(A) to the regular language S(A). In
fact, any regular tree language can occur as the simple language of a restarting
tree automaton.

A restarting tree automaton can be seen as a term-rewriting system that is
equipped with a regular control. In general it may perform several rewrite steps
in parallel, where these steps are synchronized by way of the regular control.
Here we introduce and study some restricted types of restarting tree automata.
The type we consider first is the single-path restarting tree automaton. In order
to define it formally we first introduce the single-path top-down tree automa-
ton (spNF↓T) that is obtained from the finite top-down tree automaton by re-
quiring that information is passed down along a single path only. It turns out
that the class of tree languages recognized by these automata forms a strict sub-
class of the regular tree languages that is incomparable under inclusion to the
class of tree languages that are recognized by deterministic finite top-down tree
automata (DF↓T). The single-path restarting tree automaton is then obtained
by extending the spNF↓T-automaton by rewrite transitions just as the (general)
restarting tree automaton is obtained from the finite top-down tree automaton.
Thus, these automata reduce the languages recognized to the subclass of regular
tree languages that are defined by single-path top-down tree automata. Essen-
tially a single-path restarting tree automaton can be seen as a term-rewriting
system that is equipped with a regular control, but which can only perform
rewrites sequentially.

Surprizingly, single-path restarting tree automata are quite expressive. Al-
ready the most basic model, the spRT-automaton, accepts a proper super-
class of the class L(RTG) of regular tree languages (Theorem 1), while
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spRWWT-automata even recognize some tree languages that are not context-free
(Corollary 2). Further, all linear context-free tree languages are recognized by
these automata (Theorem 2), improving upon the corresponding result from [10].

Then we introduce the ground-rewrite restarting tree automaton, which is
required to perform rewrite transitions for ground subterms only, that is, they are
only executed near the leaves of the current tree. It turns out that this restriction
is in some sense orthogonal to the single-path restriction, but spRT-automata
that are ground-rewrite can still recognize all regular tree languages. Actually,
we conjecture that the ground-rewrite spRT-automaton recognizes only regular
tree languages. This would provide a non-trivial characterization for this class of
tree languages by a type of restarting tree automaton, as the simple languages
of (ground-rewrite) spRT-automata are a proper subclass of the regular tree
languages as observed above.

This paper is structured as follows. In Section 2 we restate in short the most
basic definitions and notation concerning trees, tree languages, tree automata,
and tree grammars. For more details we refer to the monograph [1]. Concerning
restarting automata (on strings) we refer to the survey [6]. Then in Section 3
we introduce the single-path top-down tree automaton, before we define the
single-path restarting tree automaton in Section 4. The ground-rewrite restarting
automaton is studied in Section 5. The paper closes with Section 6, in which we
state a number of open problems for future work.

2 Preliminaries and Notation

A ranked alphabet F is a finite nonempty set of symbols such that each f ∈ F
has a unique nonnegative arity (or rank). By Fn we denote the subset of F
containing all symbols of arity n. Symbols of arity zero are called constants.
Further, let X := {x1, x2, . . . , xi, . . .} be an ordered countable set of variables,
which are special symbols of rank zero. For each n ≥ 1, let Xn := {x1, . . . , xn}
be the finite subset of X containing the first n elements of X . Note that X is
always assumed to be disjoint from any other ranked alphabet. Then T (F ,X )
denotes the set of all terms over F with variables in X . For t ∈ T (F ,X ), Var(t)
denotes the set of variables that occur in t. A term is linear, if each variable
occurs at most once in it. Terms from T (F) := T (F , ∅) are called ground terms.

The set of positions of a term t ∈ T (F ,X ) is denoted by Pos(t). By Top(t)
we denote the outermost symbol of t, which is the symbol at the root. For
p ∈ Pos(t), t|p denotes the subterm of t at position p, and t[u]p denotes the term
that is obtained from t by replacing t|p by the term u. Finally, a term t is called
a scattered subterm of a term t′, if t is homeomorphically embedded in t′, that is,
t can be obtained from t′ by ‘striking out’ some symbols. The size ||t|| and the
height Hgt(t) of a term t are defined inductively as follows:

||t|| = 0, Hgt(t) = 0, if t ∈ X ,
||t|| = 1, Hgt(t) = 0, if t ∈ F0,
||t|| = 1 +

∑n
i=1 ||(t|i)||, Hgt(t) = 1 + maxi=1,...,n Hgt(t|i), if Top(t) ∈ Fn,

and n ≥ 1.
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A substitution is a mapping from X into T (F ,X ) that is the identity on all but
finitely many variables. A linear term t ∈ T (F ,Xn) is called an n-context, if
Var(t) = Xn, and if the variables x1, . . . , xn occur in this order from left to right
in t. By t[t1, . . . , tn] we denote the term that is obtained from t by replacing
each variable xi ∈ Xn by ti ∈ T (F ,X ) (1 ≤ i ≤ n). The set of all n-contexts is
denoted as Ctx(F ,Xn).

A rewrite rule is a pair of terms, denoted by l → r, where l, r ∈ T (F ,X ),
l ∈ X , and Var(l) ⊇ Var(r). It is called linear, if both l and r are linear terms. A
term rewriting system (TRS) is a set Δ of rewrite rules. The induced rewriting
relation →Δ over T (F ,X ) is the least relation containing Δ that is closed under
subterm replacement and substitution, that is, for t, t′ ∈ T (F ,X ), t →Δ t′ if and
only if there exist a 1-context s ∈ Ctx(F ,X1), a rewrite rule (l → r) ∈ Δ, and a
substitution σ such that t = s[σ(l)] and t′ = s[σ(r)] hold. By →∗

Δ we denote the
reflexive transitive closure of this relation.

Next we consider automata on trees. Let Q be a finite set of unary symbols
called states such that Q ∩ F = ∅. Then T (F ∪ Q) is the set of configurations.
A normalized top-down transition is a linear rewrite rule of the form

q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)),

where n ≥ 1, f ∈ Fn, x1, . . . , xn ∈ X , and q, q1, . . . , qn ∈ Q. If the symbol from F
is a constant a ∈ F0, then the corresponding transitions have the form q(a) → a.
They are called normalized final transitions. A nondeterministic finite top-down
tree automaton (NF↓T) is given through a four-tuple A = (F ,Q,Q0, Δ), where
F is a finite ranked alphabet, Q is a finite set of states, Q0 ⊆ Q is a set of initial
states, and Δ is a finite term rewriting system on F ∪Q consisting of normalized
top-down and final transitions only. This automaton is deterministic (DF↓T),
if Q0 is a singleton, and if there are no two rewrite rules in Δ with the same
left-hand side. The move relation →A and its reflexive transitive closure →∗

A are
induced by the TRS Δ. The set of terms

L(A) = { t ∈ T (F) | ∃q ∈ Q0 : q(t) →∗
A t }

is the tree language recognized by A. A nondeterministic finite bottom-up tree
automaton (NF↑T) is given by a four-tuple A = (F ,Q,Qf , Δ), where F is a
finite ranked alphabet, Q is a finite set of states, Qf ⊆ Q is a set of final states,
and Δ is a finite term rewriting system on F ∪ Q consisting of ground rewrite
rules of the form f(q1, . . . , qn) → q, where n ≥ 0, f ∈ Fn, and q, q1, . . . , qn ∈ Q.
Note that in the bottom-up case the states are constants. The move relation
→A and its reflexive transitive closure →∗

A are induced by the TRS Δ. The set
of terms

L(A) = { t ∈ T (F) | ∃q ∈ Qf : t →∗
A q }

is the tree language recognized by A. An NF↑T-automaton A = (F ,Q,Qf , Δ) is
deterministic (DF↑T) if there are no two rules in Δ that have the same left-hand
side. It is called complete if there is at least one rule f(q1, . . . , qn) → q in Δ for
all f ∈ Fn, n ≥ 0, and all q1, . . . , qn ∈ Q.
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For any class A of tree automata, L(A) denotes the class of tree languages that
are recognized by automata from that class. Concerning the expressive power of
the various types of finite tree automata it is well-known that

L(DF↓T) � L(NF↓T) = L(NF↑T) = L(DF↑T),

and that L(DF↓T) does not even contain all finite tree languages [1].
Finally, we turn to tree grammars. A context-free tree grammar (CFTG) G =

(F ,N ,P , S) consists of two finite disjoint ranked alphabets F and N , a finite
TRS P , and a distinct initial symbol S ∈ N0. The elements of F are called
terminal symbols, and those of N are nonterminal symbols. The rewrite rules
(productions) from P are all of the form A(x1, . . . , xn) → t, where n ≥ 0, A ∈ Nn

is a nonterminal symbol, x1, . . . , xn ∈ X are variables, and t ∈ T (F ∪ N ,Xn)
is a term. The unrestricted derivation relation ⇒G and its reflexive transitive
closure ⇒∗

G are induced by P . The tree language generated by G is

L(G) = { t ∈ T (F) | S ⇒∗
G t }.

For any class G of tree grammars, L(G) denotes the class of tree languages that
are generated by grammars from that class. A context-free tree grammar is called
regular (RTG), if all its nonterminal symbols are constants, that is, N = N0. It
is called linear (lin-CFTG), if all productions are linear. A set of ground terms
E ⊆ T (F) is called a regular or a (linear) context-free tree language, respectively,
if there is a regular, respectively a (linear) context-free, tree grammar G such
that L(G) = E. It is well-known that L(RTG) = L(NF↑T) holds [1,3].

2.1 Restarting Tree Automata

In [9] restarting automata on trees were introduced. Formally, a (top-down)
restarting tree automaton (RRWWT-automaton, for short) is described by a six-
tuple A = (F ,G,Q, q0, k,Δ), where F is a finite ranked input alphabet, G ⊇ F
is a finite ranked working alphabet, Q = Q1 ∪ Q2 is a finite set of states such
that Q1 ∩ Q2 = ∅, q0 ∈ Q1 is the initial state and simultaneously the restart
state, k ≥ 1 is the height of the read/write-windows, and Δ = Δ1∪Δ2 is a finite
term rewriting system on G ∪ Q. The symbols from G � F are called auxiliary
symbols. The rule set Δ1 only contains k-height bounded top-down transitions of
the form

q(t) → t[q1(x1), . . . , qm(xm)], (1)

where m ≥ 1, t ∈ Ctx(G,Xm), and q, q1, . . . , qm ∈ Q1, and k-height bounded final
transitions of the form

q(t) → t, (2)

where t ∈ T (G) and q ∈ Q1. The rule set Δ2 contains size-reducing top-down
rewrite transitions, that is, linear rewrite rules of the form

q(t) → t′[q1(x1), . . . , qm(xm)], (3)
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where m ≥ 1, t, t′ ∈ Ctx(G,Xm), q ∈ Q1, and q1, . . . , qm ∈ Q2, and size-reducing
final rewrite transitions of the form

q(t) → t′, (4)

where q ∈ Q1 and t, t′ ∈ T (G). For both these types of transitions it is required
that ||t|| > ||t′|| and Hgt(t) ≤ k. In addition, Δ2 contains k-height bounded
top-down transitions

q(t) → t[q1(x1), . . . , qm(xm)], (5)

where m ≥ 1, t ∈ Ctx(G,Xm), and q, q1, . . . , qm ∈ Q2, and k-height bounded final
transitions

q(t) → t, (6)

where t ∈ T (G) and q ∈ Q2.
The partial move relation →Δ and its reflexive transitive closure →∗

Δ are
induced by the TRS Δ, while the final move relation →Δ1 and its reflex-
ive transitive closure →∗

Δ1
are induced by Δ1. We use the notation u ↪→A v

(u, v ∈ T (G)) to express the fact that q0(u) (→∗
Δ � →+

Δ1
) v, and we say that u

is transformed into v by a cycle of A. As q0 ∈ Q1, this notation means that at
least one size-reducing rewrite transition from Δ2 of type (3) or (4) is applied in
transforming q0(u) into v. Observe further that it is ensured by the way in which
the states from Q1 and Q2 are used that in a cycle no two rewrite transitions
can be applied on the same path. The relation ↪→∗

A is the reflexive transitive
closure of ↪→A. The tree language recognized by the RRWWT-automaton A is

L(A) =
{
t0 ∈ T (F) | ∃ t′ ∈ T (G) such that t0 ↪→∗

A t′ and q0(t′) →∗
Δ1

t′
}

.

The final part q0(t′) →∗
Δ1

t′ is called the tail of the computation. Thus, each
computation of A consists of a finite sequence of cycles followed by a tail. The
simple tree language recognized by A is SF(A) = { t ∈ T (F) | q0(t) →∗

Δ1
t }, and

the auxiliary simple tree language is SG(A) = { t ∈ T (G) | q0(t) →∗
Δ1

t }, that is,
these are the languages consisting of all terms (from T (F) or T (G), respectively)
that are accepted in tail computations.

Also some restricted variants of restarting tree automata have been introduced.
A restarting tree automaton A = (F ,G,Q, q0, k,Δ) is called an RWWT-
automaton, if Q2 only contains “don’t-care” states, that is, the top-down transi-
tions in Δ2 of type (3) are of the form q(f(x1, . . . , xm)) → f(q(x1), . . . , q(xm)) for
all q ∈ Q2 and all f ∈ T (G). In this situation the subset Q2 can be ignored, and
the top-down rewrite transitions can be written in the special form

q(t) → t′[x1, . . . , xm], (7)

where m ≥ 1, q ∈ Q1, and t, t′ ∈ Ctx(G,Xm) satisfying the requirements that
||t′|| < ||t|| and Hgt(t) ≤ k hold. A restarting tree automaton is an RRWT-
automaton, if its working alphabet G coincides with its input alphabet F , that
is, no auxiliary symbols are available. It is an RRT-automaton, if it is an RRWT-
automaton for which the right-hand side of every rewrite transition is a scattered
subterm of the corresponding left-hand side. Analogously, we obtain the RWT-
and the RT-automaton from the RWWT-automaton.
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Example 1. The language

L1 := { f(gn(a), gn(a)) | n ≥ 0 } ∈ L(CFTG) � L(RTG)

is recognized by the RT-automaton A1 = (F ,F ,Q, q0, k,Δ), where F = {f(·, ·),
g(·), a}, Q = Q1 ∪ Q2 with Q1 = {q0}, Q2 = ∅, k = 2, and Δ is given by the
rewrite rules q0(f(g(x1), g(x2))) → f(x1, x2) and q0(f(a, a)) → f(a, a).

With a finite alphabet Σ = {a1, a2, . . . , an} we associate the ranked alphabet
FΣ := {a1(·), . . . , an(·),⊥}, where ai(·) (1 ≤ i ≤ n) are unary symbols and ⊥ is
a constant. Then the free monoid Σ∗ and the set of ground terms T (FΣ) are in
one-to-one correspondence modulo the mapping

ˆ : ai1ai2 · · · aim �→ ai1(ai2(· · · (aim(⊥)) · · · )).

It has been shown in [9] that, for each X ∈ {R,RR,RW, RRW}, there is a close
correspondence between the X-automata on Σ and the XT-automata on FΣ .
Further, already the class L(RT) contains tree languages that are not even
context-free. On the other hand, from a linear context-free tree grammar G,
an RWWT-automaton A can be constructed that recognizes the tree language
L(G) [10].

3 Single-Path Top-Down Tree Automata

Here we introduce the single-path top-down tree automaton (spNF↓T), which
will serve as the basis for the single-path restarting tree automaton in the next
section. An spNF↓T-automaton is given through a five-tuple A = (F ,Q, q0, k,Δ),
where F is a finite ranked alphabet, Q is a finite set of states, q0 ∈ Q is the
initial state, k ≥ 1 is the height of the look-ahead window, and Δ is a finite
term rewriting system that contains k-height bounded top-down transitions of
the form

q(t) → t[x1, . . . , xi−1, q
′(xi), xi+1 . . . , xm], (8)

where m ≥ 1, t ∈ Ctx(F ,Xm), q, q′ ∈ Q, and i ∈ {1, . . . ,m}, and k-height
bounded final transitions of the form

q(t) → t, (9)

where t ∈ T (F) and q ∈ Q. The tree language recognized by A is

L(A) = { t ∈ T (F) | q0(t) →∗
Δ t },

that is, it consists of those ground terms t ∈ T (F) for which A has an accepting
run starting from the configuration q0(t).

Proposition 1. For each spNF↓T-automaton A, L(A) ∈ L(RTG).
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Proof. Let A = (F ,Q, q0, k,Δ) be an spNF↓T-automaton. From A we construct
a regular tree grammar GA := (F ,N ,P , S) by taking N := Q ∪ {U}, S := q0,
and P to consist of the following productions:

q → t for all (q(t) → t) ∈ Δ,

q → t[U, . . . , U, q′, U . . . , U ] for all (q(t) → t[x1, . . . , q
′(xi), . . . , xm]) ∈ Δ,

U → f(U, . . . , U) for all n-ary function symbols f ∈ Fn, n ≥ 1,
U → a for all constants a ∈ F0.

Observe that the subgrammar (F , {U},P , U) simply generates the set of ground
terms T (F). It is now easily verified that L(GA) = L(A) holds. It follows in
particular that L(A) is a regular tree language. ��

From the above proof we see that, for each spNF↓T-automaton A, the regular
tree language L(A) is of a rather restricted form.

Example 2. Let F := {f(·, ·), a}, and let Lu be the regular tree language that is
generated by the regular tree grammar Gu := (F ,N ,P , S), where

N := {S,A}, and P := {S → f(A,A), S → f(S, S), A → a}.

Then t ∈ T (F) is an element of Lu if and only if, for all p ∈ Pos(t), if Top(t|p) =
f , then either t|p = f(a, a) or t|p = f(f(t1, t2), f(t3, t4)) for some t1, . . . , t4 ∈
T (F). We claim that Lu = L(A) for each spNF↓T-automaton A.

Assume that A = (F ,Q, q0, k,Δ) is an spNF↓T-automaton such that L(A) =
Lu. The complete binary tree t of height 2k is an element of Lu. As Lu = L(A),
this implies q0(t) →∗

Δ t. In the course of this computation A walks down a
single path from the root of t to one of its leaves. During this process A always
sees the same partial term, that is, the partial term of height k that has an
occurrence of the binary symbol f at every position, until it reaches the leaves
of t. Thus, there exists a position p ∈ Pos(t) such that t|p = f(f(a, a), f(a, a)),
but this particular subterm is not seen by A during the above computation.
Hence, we can simply replace the subterm t|p by the term f(f(a, a), a), which
yields the term t′ := t[f(f(a, a), a)]p ∈ Lu. However, starting from q0(t′), A can
perform the same transition steps as in the above computation, which yields the
computation q0(t′) →∗

Δ t′. Thus, t′ ∈ L(A), implying that L(A) = Lu.

Obviously, each finite tree language is recognized by some spNF↓T-automaton. It
follows that L(spNF↓T) is not contained in L(DF↓T), as the finite tree language
{f(a, b), f(b, a)} is not recognized by any DF↓T. On the other hand, it can be
shown that the tree language

Ld := { f(gn(a), gm(b)) | n,m ≥ 0 } ∈ L(DF↓T)

is not recognized by any spNF↓T-automaton by arguing as in Example 2. Thus,
we have the following results, where L(FINT) denotes the class of all finite tree
languages.
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Corollary 1. (a) L(FINT) � L(spNF↓T) � L(RTG).

(b) L(spNF↓T) is incomparable to L(DF↓T) under inclusion.

However, no characterization in terms of more classical automata, grammars or
rewriting systems is currently known for the class L(spNF↓T).

4 Single-Path Restarting Tree Automata

Now we define the single-path variant of the restarting tree automaton and
establish some basic results concerning its expressive power.

Definition 1. A single-path restarting tree automaton (spRRWWT-automaton,
for short ) is formally described by a six-tuple A = (F ,G,Q, q0, k,Δ), where

– F is a finite ranked input alphabet,
– G ⊇ F is a finite ranked working alphabet,
– Q = Q1 ∪ Q2 is a finite set of states such that Q1 ∩Q2 = ∅,
– q0 ∈ Q1 is the initial state and simultaneously the restart state,
– k ≥ 1 is the height of the read/write-windows, and
– Δ = Δ1 ∪Δ2 is a finite term rewriting system on G ∪ Q,

where (G,Q1, q0, k,Δ1) is an spNF↓T-automaton on G, and the rule set Δ2 only
contains the following types of transitions:

1. Size-reducing top-down rewrite transitions, that is, linear rewrite rules of
the form

q(t) → t′[x1, . . . , xi−1, q
′(xi), xi+1, . . . , xm], (10)

where m ≥ 1, t, t′ ∈ Ctx(G,Xm), i ∈ {1, . . . ,m}, q ∈ Q1, and q′ ∈ Q2, and
size-reducing final rewrite transitions of the form

q(t) → t′, (11)

where q ∈ Q1 and t, t′ ∈ T (G). For both these types of transitions it is
required that ||t|| > ||t′|| and Hgt(t) ≤ k.

2. k-height bounded top-down transitions of the form

q(t) → t[x1, . . . , xi−1, q
′(xi), xi+1, . . . , xm], (12)

where m ≥ 1, t ∈ Ctx(G,Xm), i ∈ {1, . . . ,m}, and q, q′ ∈ Q2, and k-height
bounded final transitions of the form

q(t) → t, (13)

where t ∈ T (G) and q ∈ Q2.
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Essentially, an spRRWWT-automaton A works just like an RRWWT-automa-
ton, the only difference is the fact that in the current tree A walks down a single
path only. In particular, the partial move relation →Δ and its reflexive transitive
closure →∗

Δ are induced by the TRS Δ, while the final move relation →Δ1 and
its reflexive transitive closure →∗

Δ1
are induced by Δ1. Here we also use the

notation u ↪→A v (u, v ∈ T (G)) to express the fact that q0(u) (→∗
Δ � →+

Δ1
) v,

and we say that u is transformed into v by a cycle of A. As q0 ∈ Q1, and as no
two rewrite transitions can be applied on the same path, this means that exactly
one size-reducing rewrite transition from Δ2 of type (10) or (11) is applied in
transforming q0(u) into v. The tree language accepted by A is defined as

L(A) =
{
t0 ∈ T (F) | ∃ t′ ∈ T (G) such that t0 ↪→∗

A t′ and q0(t′) →∗
Δ1

t′
}

,

that is, it consists of those trees t0 ∈ T (F) that can be reduced by the relation
↪→∗

A to a tree recognized by the spNF↓T-automaton (G,Q1, q0, k,Δ1).
As the simple language of A is the intersection of the language that is recog-

nized by the spNF↓T-automaton (G,Q1, q0, k,Δ1) with the set of ground terms
T (F), we see from Corollary 1 that the class of simple languages of spRWWT-
automata is properly contained in the class of regular tree languages.

For a ranked alphabet containing only unary function symbols and constants
single-path restarting tree automata coincide with restarting tree automata.
Hence, the correspondence between restarting tree automata and restarting au-
tomata on strings mentioned above carries over to single-path restarting tree
automata. Further, the following result is seen easily, where the various re-
stricted types of spRRWWT-automata are obtained as for the general RRWWT-
automaton.

Proposition 2. Let X ∈ {R,RR,RW,RRW,RWW,RRWW} be a type of restart-
ing automaton. Then for each spXT-automaton M there exists an XT-automaton
M ′ such that L(M) = L(M ′).

Note that the RT-automaton from Example 1 is in fact an spRT-automaton.

Theorem 1. L(RTG) � L(spRT).

Proof. We know already from Example 1 that L(spRT) contains non-regular
tree languages. Thus, it remains to show that each tree language L ∈ L(RTG)
is recognized by some spRT-automaton.

Let D = (F ,Q(D), Q
(D)
f , Δ(D)) be a DF↑T-automaton, and let L ⊆ T (F)

be the tree language recognized by D. Without loss of generality we can as-
sume that D is complete. We construct a corresponding spRT-automaton A :=
(F ,F ,Q, q0, k,Δ) by taking Q := Q1 := {q0(·), q1(·)}, k := |Q(D)| + 1, and
Δ := Δ1 ∪Δ2 to consist of the following groups of rules:
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I: Final transitions:
(1) q0(t) → t if t ∈ L satisfying Hgt(t) ≤ k.

II: Top-down transitions:
(2) q0(f(x1, . . . , xn)) → f(x1, . . . , xi−1, q1(xi), xi+1, . . . , xn)

for all f ∈ Fn, n ≥ 1, and 1 ≤ i ≤ n,
(3) q1(f(x1, . . . , xn)) → f(x1, . . . , xi−1, q1(xi), xi+1, . . . , xn)

for all f ∈ Fn, n ≥ 1, and 1 ≤ i ≤ n,

III: Final Rewrite transitions:
(4) q1(t) → t1[t3] for all t ∈ T (F), Hgt(t) = k, where t = t1[t2[t3]] such that

t3 →∗
Δ(D) q, and t2[q] →∗

Δ(D) q for some q ∈ Q(D),

where in (4) an arbitrary factorization of the term t with the required properties
is chosen. Here state q1 is used to ensure that final transitions can only be
applied at the root of a tree. Concerning the rewrite rules observe the following. If
t ∈ T (F) can be written as t = t1[t2[t3]] such that t3 →∗

Δ(D) q and t2[q] →∗
Δ(D) q

hold for some q ∈ Q(D), then t is accepted by D if and only if t′ := t1[t3] is
accepted by D. It follows that L(A) ⊆ L(D) = L holds. It remains to establish
the converse inclusion.

Claim. L ⊆ L(A).

Proof. If t ∈ L satisfies Hgt(t) ≤ k, then t is immediately accepted by A using
the corresponding rule from group (1). So let t ∈ L such that Hgt(t) > k. For each
position o ∈ Pos(t), there exists a unique state q ∈ Q(D) such that t|o →∗

Δ(D) q
holds, as D is deterministic and complete. Now let p ∈ Pos(t) be a position of
maximal depth. Then the path from the root of t to the constant at position p is
of length Hgt(t) > k. Thus, there exist contexts t0, t1, t2 ∈ Ctx(F , {x1}), and a
term t3 ∈ T (F) such that t = t0[t1[t2[t3]]] and the following two conditions are
satisfied:

1. Hgt(t1[t2[t3]]) = k,
2. t3 →∗

Δ(D) q and t2[t3] →∗
Δ(D) q for some q ∈ Q(D).

Hence, A can execute the cycle t = t0[t1[t2[t3]]] ↪→A t0[t1[t3]]. However, with t
also the term t′ := t0[t1[t3]]] belongs to L = L(D). As it is strictly smaller than t,
induction yields that t ∈ L(A) holds. ��

Our next example shows that spRWWT-automata are very expressive.

Example 3. The tree language

L4 := { f(gn(hn(a)), gn(hn(a))) | n ≥ 1 },

which is not context-free, is accepted by an RT-automaton [9]. Here we present
an spRWWT-automaton A4 := (F ,G,Q, q0, k,Δ) for this language.
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Let F := {f(·, ·), g(·), h(·), a}, G := F ∪ {F (·, ·), G(·)}, Q := Q1 := {q0, q1},
k := 3, and let Δ := Δ1 ∪Δ2 consist of the following groups of rules:

I: Top-down transitions of Δ1:
(1) q0(G(x1)) → G(q1(x1)),
(2) q1(G(x1)) → G(q1(x1)).

II: Final transitions of Δ1:
(3) q0(f(g(h(a)), g(h(a)))) → f(g(h(a)), g(h(a))),
(4) q0(G(F (h(a), h(a)))) → G(F (h(a), h(a))).

III: Rewrite transitions of Δ2:
(5) q0(f(g(g(x1)), g(g(x2)))) → G(F (g(x1), g(x2))),
(6) q1(F (g(x1), g(x2))) → G(F (x1, x2)),
(7) q1(G(F (h(h(x1)), h(h(x2))))) → F (h(x1), h(x2)).

Claim 1. L4 ⊆ L(A4).

Proof. Let t ∈ L4, that is, there exists an integer n ≥ 1 such that

t = f(gn(hn(a)), gn(hn(a))).

If n = 1, then t = f(g(h(a)), g(h(a))) is immediately accepted by rule (3). If
n ≥ 2, then A4 can execute the following sequence of cycles:

t = f(gn(hn(a)), gn(hn(a))) ↪→A4 G(F (gn−1(hn(a)), gn−1(hn(a))))
↪→n−1

A4
Gn(F (hn(a), hn(a))) ↪→A4 Gn−1(F (hn−1(a), hn−1(a)))

↪→n−2
A4

G(F (h(a), h(a))),

which is then accepted by rule (4). Thus, L4 ⊆ L(A4). ��

Claim 2. L(A4) ⊆ L4.

Proof. Each rewrite transition of A4 has nonterminal symbols on its right-hand
side. Thus, a term t ∈ T (F) is accepted by A4, if either t = f(g(h(a)), g(h(a)))
or t ↪→+

A4
G(F (h(a), h(a))). In the former case, t ∈ L4. Thus, it remains to study

the latter case.
If t ∈ T (F) such that t ↪→+

A4
G(F (h(a), h(a))), then it follows from the form

of the rules of A4 that Top(t) = f and that |t|f = 1, that is, t is of the form
f = f(g2(t1), g2(t2)), where t1, t2 ∈ T ({g(·), h(·), a}). Again from the form of
the rewrite transitions it follows that t1 = gn−2(hn(a)) = t2 for some n ≥ 2.
Thus, t = f(gn(hn(a)), gn(hn(a))), that is, t ∈ L4. ��

Thus, L(A4) = L4 holds, implying that L4 ∈ L(spRWWT).

This example yields the following consequence.

Corollary 2. L(spRWWT) contains tree languages that are not context-free.

Without auxiliary symbols these automata are strictly less expressive.
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Lemma 1. L4 ∈ L(spRRWT), that is, the language L4 is not accepted by any
single-path restarting tree automaton that has no auxiliary symbols.

Proof. Let F = {f(·, ·), g(·), h(·), a}. Assume that A = (F ,F ,Q, q0, k,Δ) is an
spRRWT-automaton for the language L4, and let tn := f(gn(hn(a)), gn(hn(a)))
for a sufficiently large value of n. Then tn ∈ L4, that is, A has an accepting
computation on input tn. Clearly this computation cannot be an accepting tail,
that is, it has the form tn ↪→A s1 ↪→A · · · ↪→A sm such that q0(sm) →∗

Δ1
sm. As

A has no auxiliary symbols, s1, . . . , sm ∈ T (F), implying that s1, . . . , sm ∈ L(A).
In particular, this means that s1 ∈ L4. In the cycle tn ↪→A s1 a single size-
reducing rewrite transition is applied. This rewrite transition is either applied at
the root of tn, replacing the top part of the form f(gk−1(·), gk−1(·)) of tn by a
smaller term, or it is applied inside one of the two subterms gn(hn(a)). In either
case the resulting term s1 does not belong to the language L4. Thus, we see that
L(A) = L4, that is, L4 is not accepted by any spRRWT-automaton. ��

Observe, however, that it is not known whether L(spRRWT) only consists of
context-free tree languages. The next result improves upon the corresponding
result for RWWT-automata from [10].

Theorem 2. Given a linear context-free tree grammar G, an spRWWT-auto-
maton A can be constructed such that L(G) = L(A) holds.

Proof. Let G = (F ,N ,P , S) be a linear context-free tree grammar. By the
normalization procedure of [10] we can assume that G is growing, that is, each
rule of P is of the form A(x1, . . . , xn) → t, where n ≥ 0, A ∈ Nn, and t ∈
T (F ∪ N ,Xn) satisfying Var(t) = Xn and ||t|| ≥ 2, or it is of the form S → s,
where s ∈ T (F).

Let CS be the set of all constants c ∈ (F0 ∪ N0) such that P contains a rule
S → c. For each rule (l → r) ∈ P , where the initial symbol S occurs at least once
in the right-hand side r, we enlarge P by all combinations of that rule in which
some occurrences of S in the right-hand side are replaced by symbols from CS .

We construct an spRWWT-automaton A = (F ,G,Q, q0, k,Δ) by taking G =
F ∪ N , Q = { q0, q1 }, and by defining Δ as follows. Recall that Δ = Δ1 ∪ Δ2.
For each production from P of type F (x1, . . . , xn) → t, where n ≥ 0, F ∈ Nn,
||t|| ≥ 2, and t ∈ T (F ∪N ,Xn), we add the linear rewrite transitions

q0(t) → F (x1, . . . , xn) and q1(t) → F (x1, . . . , xn)

to Δ2. Note that all these rewrite transitions are size-reducing, because the gram-
mar G is growing. For each constant t ∈ CS , we add the final transition q0(t) → t
to Δ1. Additionally, we put the transition q0(S) → S into Δ1. Moreover, for each
symbol F ∈ (Fn ∪ Nn), where n > 0, Δ1 contains the rules

qi(F (x1, . . . , xn)) → F (x1, . . . , q1(xj), . . . , xn),

for all i ∈ { 0, 1 } and all j ∈ { 1, . . . , n }. Here state q1 is used to guarantee that
the final transitions can only be applied at the root of a tree.
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The automaton A simulates all derivations of G nondeterministically and in
reverse order. Let t ∈ L(G) be a ground term generated by G, and let

S ⇒G t1 ⇒∗
G · · · ⇒∗

G ti ⇒G ti+1 ⇒∗
G · · · ⇒∗

G t	 = t

be a derivation in G. The automaton guesses in each cycle the correct production
from P . Then A applies the corresponding reverse transition on ti+1 to obtain
ti and restarts. Finally, the automaton reaches either a constant t1 ∈ CS and
accepts, since t1 ∈ SG(A), or it reaches S and accepts by the transition q0(S) → S
from Δ1. On the other hand, for each accepting computation

t ↪→A t	−1, . . . , t2 ↪→A t1, q0(t1) →∗
Δ1

t1, where t1 ∈ CS ∪ {S },

there is a corresponding derivation starting with S ⇒ε
G t1 ⇒G t2 ⇒∗

G · · · . Hence,
we have t ∈ L(G) if and only if t ∈ L(A). ��

As the tree language L4 considered in Example 3 is not context-free, we obtain
the following consequence.

Corollary 3. L(lin-CFTG) � L(spRWWT).

5 Ground-Rewrite Restarting Tree Automata

Finally we consider restarting tree automata for which the rewrite transitions
are restricted to ground terms.

Definition 2. A ground-rewrite restarting tree automaton (gr-RWWT) is an
RWWT-automaton A = (F ,G,Q, q0, k,Δ) for which Δ2 only contains final
rewrite transitions, that is, Var(l) = Var(r) = ∅ for all transitions (l → r) ∈ Δ2.

Obviously, for ground-rewrite restarting tree automata there is no difference
between the RRWWT- and the RWWT-variants. Thus, in the following we only
consider the RWWT-, the RWT-, and the RT-variants.

Example 4. The non-regular context-free tree language L1 = { f(gn(a), gn(a)) |
n ≥ 0 } of Example 1 is recognized by the RT-automaton A′

1 = (F ,F ,Q, q0, k,Δ)
that is defined by F := {f(·, ·), g(·), a}, Q := Q1 := {q0, q1}, k := 1, and Δ is
given by the following rules:

(1) q0(f(x1, x2)) → f(q1(x1), q1(x2)), (3) q1(g(x1)) → g(q1(x)),
(2) q1(g(a)) → a, (4) q0(f(a, a)) → f(a, a).

The only rewrite transition of A′
1 is rule (2), which is a final rewrite transition.

Thus, A′
1 is in fact a gr-RT-automaton.

Of course, gr-RT-automata can still recognize all regular tree languages, as the
subsystem of a gr-RT-automaton that is described by Δ1 is (essentially) an
NF↓T-automaton. Thus, we have the following proper inclusion.
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Corollary 4. L(RTG) � L(gr-RT).

It is easily seen that the language

L2 := { gn(h(gn(a))) | n ≥ 0 }

belongs to the class L(spRT), since there is no branching transition required
to recognize this non-regular tree language. Thus, the spRT-automaton A2 =
(F ,F ,Q, q0, k,Δ) defined by F := {g(.), h(.), a}, Q := Q1 := {q0, q1}, and
k := 3 with the top-down transitions

q0(g(x1)) → g(q1(x1)), q1(g(x1)) → g(q1(x1)),
q0(g(h(g(a)))) → g(h(g(a))), q0(h(a)) → h(a),

and the sole size-reducing rewrite transition q1(g(h(g(x1)))) → h(x1) accepts a
ground term t ∈ T (F), if and only if t ∈ L2. However, L2 is not recognized by
any gr-RWWT-automaton, as the following proposition shows.

Proposition 3. L2 ∈ L(gr-RWWT).

Proof. Assume that a gr-RWWT-automaton A = (F ,G,Q, q0, k,Δ) can recog-
nize L2. Let t = gm(h(gm(a))) ∈ L2 be a ground term of sufficient height 2m+1.
Then t ∈ SF(A), because otherwise A would also accept some trees that do not
belong to L2. Since A can perform ground-rewrites only, each accepting compu-
tation will contain a sequence of configurations of the form t

(i)
1 [q(i)(t(i)2 )], where

t
(i)
1 ∈ Ctx(F ,X1), t

(i)
2 ∈ T (G), and q(i) ∈ Q such that t

(i)
1 = gm(h(gm−	(i)(x1))).

Note that A can only remember a finite amount of information about the integer
�(i) by using its internal states q(i) and the size-bounded ground term t

(i)
2 . Thus,

for a large enough value of m, there exist indices i < j such that q(i) = q(j),
t
(i)
2 = t

(j)
2 , and t

(j)
1 [g	(x1)] = t

(i)
1 for some � ≥ 1. Hence, A can transform the term

gm(h(gm+	(a))) ∈ L2 into the configuration t
(j)
1 [g	(q(j)(t(j)2 ))] = t

(i)
1 [q(i)(t(i)2 )].

Thus, A will also accept the term gm(h(gm+	(a))), which contradicts our as-
sumption. ��

On the other hand, the tree language

L3 := { f(gn(a), gn(a)), f(gn(a), g2n(b)) | n ≥ 0 }

can be recognized by a gr-RT-automaton using the following transitions:

q0(f(x1, x2)) → f(q1(x1), q2(x2)), q0(f(a, a)) → f(a, a),
q0(f(a, b)) → f(a, b), q1(g(x1)) → g(q1(x1)),
q2(g(x1)) → g(q2(x1)), q1(g(a)) → a,

q2(g(a)) → a, q2(g(g(b))) → b.

Note that a gr-RT-automaton can use its inherent synchronization mechanism
to compare the number of g’s in each branch by performing corresponding re-
ductions at the leafs. However, L3 is not recognized by any spRWT-automaton,
because such a synchronization mechanism is missing there.
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Proposition 4. L3 ∈ L(spRWT).

Proof. Assume that a spRWT-automaton A = (F ,F ,Q, q0, k,Δ) can recognize
L3, that is, L(A) = L3 holds. Let t = f(gm(a), gm(a)) ∈ L3 be a ground term
of sufficient height m + 1. Now consider the following cases:

1. Assume that t is accepted by A in a computation using a top-down rewrite
transition including the outermost symbol f , that is, a top-down rewrite
transition of the form q0(f(gi(x1), gj(x2)))) → f(gi−	(x1), gj−	(x2)) is used,
where 0 < � ≤ i, j < k. Then A could use this transition to transform the
term f(gm+	(a), g2m+	(b)) ∈ L3 into the term f(gm(a), g2m(b)) ∈ L(A).
Thus, together with the latter A would also accept the former, contradicting
our assumption.

2. Assume that t is accepted by A in a computation using only top-down rewrite
or final rewrite transitions not including the outermost symbol f . Then A
must decide in which branch it will reduce the number of g’s. Without loss of
generality we may assume that after the first of these reductions a stateless
configuration of the form f(gm(a), gm−	(a)) is reached for some � ≥ 1. Thus,
A also accepts the term f(gm(a), gm−	(a)) ∈ L3. Again this contradicts our
assumption, which completes the proof. ��

Proposition 3 and Proposition 4 yield the following consequences. In particular,
it follows that L(gr-RT) and L(spRT) are incomparable under set inclusion.

Corollary 5. L2 ∈ L(spRT)�L(gr-RWWT) and L3 ∈ L(gr-RT)�L(spRWT).

By combining the restriction of admitting ground rewrite transitions only and
the restriction of walking down a single path only we obtain the ground-rewrite
single-path restarting tree automaton.

Definition 3. A ground-rewrite spRWWT-automaton is an spRWWT-automa-
ton A = (F ,G,Q, q0, k,Δ) for which Δ2 only contains final rewrite transitions.

In the proof of Theorem 1 it is shown how to construct an spRT-automaton
that recognizes a given regular tree language. In fact, all rewrite transitions of
that spRT-automaton are ground. Thus, we obtain the following.

Corollary 6. L(RTG) ⊆ L(gr-spRT).

It remains open whether gr-spRWWT-automata can recognize any non-regular
tree languages. For example, it can be shown that L2, L3 ∈ L(gr-spRWWT) by
combining the arguments used in the proofs of Propositions 3 and 4.

6 Conclusion

We have presented two types of restrictions for restarting tree automata: single-
path restarting tree automata that only walk down a single path in the tree
considered, and ground-rewrite restarting automata that only perform rewrite



340 F. Otto and H. Stamer

RRWWT

RWWT

��

gr-RWWT
L2

��������������
spRRWWT

��

lin-CFTG L4

�� spRWWT

��

��

RRWT

��

gr-spRWWT
L2

��������������

L3

�����

�������

RWT

��������

���������

��

gr-RWT L2

�������

���������

��

spRRWT

L4

��

L4

�����������

spRWT

��������������

L4

��

L4

����������
RRT

��

gr-spRWT
L2

����������������

��

L3

�����������
RT

��������

����������

��

gr-RT L2

��������

����������

��

spRRT

��

L4

�����������

spRT

����������������

��

L4

����������

RTG

��

��gr-spRT
L2

������������������

��

L3

�����������

DF↓T

��

spNF↓T
Lu

		���������

Fig. 1. Inclusions between language classes defined by (single-path) restarting tree
automata and classes generated by various tree grammars. An arrow denotes a proper
inclusion, while a dotted arrow denotes an inclusion that is not known to be proper.

steps at the subterms of the actual tree that are ground. The inclusion relations
between the language classes recognized by the various types of restarting tree
automata are summarized in the diagram in Figure 1. However, the following
interesting questions remain open at this time:

1. Is any of the inclusions L(gr-RT) ⊆ L(gr-RWT) ⊆ L(gr-RWWT) proper?
2. Do gr-spRWT-automata only accept regular tree languages, that is, does the

equality L(RTG) = L(gr-spRWT) hold? We conjecture that this is indeed
the case. If so, then it also follows that L(RTG) = L(gr-spRWWT) holds, as
each gr-spRWWT-automaton A = (F ,G,Q, q0, k,Δ) can be converted into
the gr-spRWT-automaton B = (G,G,Q, q0, k,Δ). If L(B) is regular, then
L(A) = L(B) ∩ T (F) is also regular, as T (F) is regular and as L(RTG) is
closed under intersection.

3. For a given regular tree language a gr-spRT-automaton with a finite simple
language can be constructed (see the proof of Theorem 1). This raises the
question of whether each gr-spRWWT-automaton A can be converted into an
equivalent gr-spRWWT-automaton B such that the simple language SG(B)
is finite. Essentially this property corresponds to the notion of weak cyclic
form for restarting automata on strings (see, e.g., [5,7]).
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Abstract. Parallel communicating grammar systems with regular con-
trol (RPCGS, for short) are introduced, which are obtained from re-
turning regular parallel communicating grammar systems by restricting
the derivations that are executed in parallel by the various components
through a regular control language. For the class of languages that are
generated by RPCGSs with constant communication complexity we de-
rive a characterization in terms of a restricted type of freely rewriting
restarting automaton. From this characterization we obtain that these
languages are semi-linear, and that centralized RPCGSs with constant
communication complexity are of the same generative power as non-
centralized RPCGSs with constant communication complexity.
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1 Introduction

The notion of a parallel communicating grammar system is a theoretical model
for a finite group of agents that concurrently work on the solution of a prob-
lem [1,3,12]. These systems are able to create copies of generated strings and
their images under regular mappings in a very natural way. This ability has a
strong similarity to the generation of sentence segments in the Czech language
(and some other natural languages). However, the synonymy and homonymy of
segments has not yet been modelled appropriately [4].
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In [9] the current authors studied returning regular parallel communicating
grammar systems (PCGS(REG) or PCGS, for short) with constant communica-
tion complexity, establishing a transformation to freely rewriting restarting au-
tomata (FRR automata, for short) of a very restricted form. As a consequence
it follows that the languages generated by PCGSs with constant communication
complexity are semi-linear, and that these languages have characteristic analy-
sis of polynomial size, which, in addition, can even be computed in polynomial
time. However, it appears that the restricted type of FRR automaton consid-
ered in [9] is still more expressive than PCGSs with constant communication
complexity. This seems to result from the very restriction put on the communi-
cation of the PCGSs considered. Within a generative section of a computation,
each component grammar of a PCGS works in complete isolation from all other
component grammars1 apart from the effects of the global clock that ensures
that each component grammar makes a single generative step in each unit of
time.

In order to model the linguistic notion of segment this kind of communication
is not sufficient. Therefore we introduce an extension of the PCGS by providing a
regular control for proper derivations. This yields the so-called regulated return-
ing regular parallel communicating grammar systems (RPCGS(REG) or simply
RPCGS, for short). Here a regular language is used to restrict the set of admis-
sible derivations of a PCGS. This idea is borrowed from the field of ‘regulated
rewriting’ (see, e.g., [2]); a similar idea was used by G. Pǎun in [11] to define par-
allel communicating grammar systems with rule synchronization. As our main
result we derive a characterization of the class of languages that are generated by
RPCGSs with constant communication complexity in terms of so-called skele-
ton preserving FRR automata. In fact, we prove that centralized RPCGSs with
constant communication complexity are equivalent (in generative power) to non-
centralized RPCGSs with constant communication complexity. Here an RPCGS
Π is called centralized if the master grammar of Π (see Subsections 2.1 and 2.2
for the definitions of PCGSs and RPCGSs, respectively) is the only one that can
initiate communication steps, while it is called non-centralized if any component
grammar can do that. From the above mentioned characterization it follows that
the languages generated by RPCSGs with constant communication complexity
are semi-linear, that their characteristic analysis is of polynomial size, and that
the latter can even be computed in polynomial time.

This paper is structured as follows. In Section 2 we give the (informal) def-
initions of PCGS, RPCGS, and FRR automata, and present some basic facts
about them. In Section 3, which constitutes the technical main part of the paper,
we introduce the notion of skeleton preserving FRR automaton and present the
simulation results described above. Since the skeleton preserving FRR automa-
ton considered here is a special type of the FRR automaton as it is used in [9],
the announced results on semi-linearity and on the characteristic analysis follow
as in [9]. Finally, some closing remarks are found in Section 4.

1 This is reminiscent of the behaviour of a distributed system.
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2 Regulated Parallel Communicating Grammar Systems
and FRR Automata

Here we informally introduce the various grammar systems and models of restart-
ing automata that we will consider in this paper.

2.1 Parallel Communicating Grammar Systems

A returning regular parallel communicating grammar system (PCGS, for short)
of degree m (≥ 1) is defined as an (m + 3)-tuple Π = (N,K, T,G1, . . . , Gm),
where N is a finite alphabet of symbols called nonterminals, K = {Q1, . . . , Qm}
is a set of special symbols called communication symbols (or query symbols)
that is a subset of N , T is a finite alphabet of symbols called terminals that is
disjoint from N , and Gi = (N,T, Si, Pi) are regular grammars (1 ≤ i ≤ m). The
grammars Gi are the component grammars of Π , and the component grammar
G1 is called the master of the system.

A configuration of Π is an m-tuple C = (x1A1, . . . , xmAm), where xi ∈ T ∗

and Ai ∈ (N ∪{ε}) (1 ≤ i ≤ m). The string xiAi is the i-th component of config-
uration C. The nonterminal cut of C is the m-tuple N(C) = (A1, A2, . . . , Am).
If N(C) contains a communication symbol, then it is called an NC-cut, denoted
by NC(C).

A derivation of Π is a sequence of configurations D = C0, C1, . . . , Ct starting
from the initial configuration C0 = (S1, . . . , Sm) such that, for all j < t, Cj+1

is obtained from Cj by a single generative step or a single communication step.
This is written as Cj ⇒ Cj+1. If no communication symbol occurs in Cj , then
a generative step is performed. It consists of synchronously applying a single
rewrite step of grammar Gi to the i-th component of Cj for all i = 1, . . . ,m.
Components of Cj that are terminal strings remain unchanged. If, however, any
component of Cj contains a nonterminal that cannot be rewritten, then the
derivation is blocked. Further, if the first component of Cj is a terminal word w,
then the derivation is complete, and w is the result of this derivation. In this
situation D is usually denoted as D(w). A maximal sub-sequence of D that only
contains generative steps is called a generative section of D.

If one or more communication symbols are present in Cj = (α(j)
1 , . . . , α

(j)
m ),

then a communication step is performed. It consists of replacing each occurrence
of each communication symbol Ql (1 ≤ l ≤ m) by the phrase α

(j)
l , provided

that α
(j)
l itself does not contain a communication symbol. Such an individual

replacement is called a communication. In addition, the component l is reset2

to its start symbol Sl. Obviously, in a single communication step at most m− 1
communications can be performed. Communication steps are performed until all
communication symbols have been replaced, or until the derivation is blocked.
A maximal sub-sequence of D that only contains communication steps is called
a communication section of D. Thus, the communication steps divide D into
generative sections and communication sections.
2 Because of this the PCGS is called ‘returning.’
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By ⇒+ we denote the transitive closure of the relation ⇒ above. The (ter-
minal) language L(Π) generated by Π is the set of all terminal words that are
generated by the component G1 (the master of the system):

L(Π) = {w ∈ T ∗ | ∃α2, . . . , αm : (S1, . . . , Sm) ⇒+ (w,α2, . . . , αm) }.

Several useful notions are associated with a derivation D(w) in Π :

• g(i, j) (or g(i, j,D(w))), the (i, j)-(generative) factor of D(w), is the termi-
nal word that is generated by the component grammar Gi within the j-th
generative section of D(w). Observe that each symbol of w belongs unam-
biguously to one of the factors g(i, j).

• The communication structure CS(D(w)) of D(w) captures the connection
between the terminal word w and its particular derivation D(w)):

CS(D(w)) = (i1, j1), (i2, j2), . . . , (ir, jr), if w = g(i1, j1)g(i2, j2) · · · g(ir, jr).

• n(i, j) (or n(i, j,D(w))) denotes the number of occurrences of g(i, j) in w.
• For j ≥ 1 let N(j,D(w)) =

∑m
i=1 n(i, j,D(w)). The degree of distribution

DD(D(w)) of D(w) is defined as DD(D(w)) = maxj N(j,D(w)). Thus,
DD(D(w)) is the maximal number of occurrences of factors g(i, j) in w that
are generated in the same generative section of D(w).

• The communication sequence, resp. the NC-sequence (NCS(D)), is defined
as the sequence of all NC-cuts in the (sub-)derivation D. Realize that the
communication sequence NCS(D(w)) unambiguously defines the communi-
cation structure of D(w). Moreover, the set of words with the same commu-
nication sequence/structure is in general infinite.

A cycle in a derivation D is a smallest (continuous) sub-derivation C = C1, . . . , Cj

of D such that N(C1) = N(Cj). If none of the nonterminal cuts in C contains a
communication symbol, then the whole cycle is contained in a generative section;
we speak about a generative cycle in this case.

If there is a generative cycle in the derivation D(w), then manifold repetition3

of this cycle results in a derivation of some terminal word. However, repetition or
deletion of a generative cycle does neither change the communication sequence
nor the communication structure of a derivation. We call a derivation D(w) re-
duced, if every repetition of any of its generative cycles leads to a longer terminal
word. Obviously, to every derivation D(w) there is an equivalent reduced deriva-
tion D′(w) of the same word. In what follows, we consider only derivations that
are reduced.

2.2 Regulated Parallel Communicating Grammar Systems

Within a generative section of a derivation, each component grammar of a PCGS
works in complete isolation from all other component grammars apart from the

3 Deletion of a cycle is also possible.
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synchronization enforced by the ‘global clock’. Here we extend the PCGS by
establishing a regular control for the admissible derivations. In this way the
PCGS is turned into a truly parallel device.

Let Π be a PCGS, and let

(A0,1, . . . , A0,m), (α1,1A1,1, . . . , α1,mA1,m), (α1,1α2,1A2,1, . . . , α1,mα2,mA2,m),
. . . , (α1,1 · · ·αs,1As,1, . . . , α1,m · · ·αs,mAs,m)

be the sub-derivation that corresponds to the j-th generative section of a Π-deri-
vation D(w). Here (A0,1, . . . , A0,m) is the nonterminal cut at the beginning of
this generative section, and (Al−1,i → αl,iAl,i) is the production of component
grammar Gi (1 ≤ i ≤ m) that is applied in the l-th step of this sub-derivation
(1 ≤ l ≤ s). If Al−1,i is the empty word, then we simply take αl,iAl,i = ε as well.
With this sub-derivation we associate the following extended j-trace:

ex-T(D(w), j) =

⎛⎜⎜⎝
A0,1

A0,2

· · ·
A0,m

⎞⎟⎟⎠
⎛⎜⎜⎝

α1,1A1,1

α1,2A1,2

· · ·
α1,mA1,m

⎞⎟⎟⎠
⎛⎜⎜⎝

α2,1A2,1

α2,2A2,2

· · ·
α2,mA2,m

⎞⎟⎟⎠ . . .. . .

⎛⎜⎜⎝
αs,1As,1

αs,2As,2

· · ·
αs,mAs,m

⎞⎟⎟⎠ ,

which completely describes this sequence of generative steps. Assume that D(w)
has k generative sections. Then

ex-T(D(w)) = ex-T(D(w), 1), ex-T(D(w), 2), . . . , ex-T(D(w), k)

is the extended trace of D(w), which is another representation of D(w). Observe
that, for all j < k, the nonterminal cut at the beginning of the (j +1)-st genera-
tive section is uniquely determined by the nonterminal cut at the end of the j-th
generative section, which is actually an NC-cut, as the former is obtained from
the latter through a (uniquely determined) sequence of communication steps.

By associating a new symbol with each m-tuple (r1, r2, . . . , rm), where ri is
the right-hand side of a production of grammar Gi (1 ≤ i ≤ m), and with each
possible nonterminal cut (B1, B2, . . . , Bm) of Π , we obtain a finite alphabet ΩΠ

such that each extended trace can be interpreted as a string over ΩΠ . Under
this interpretation, the language

Lex-T(Π) = { ex-T(D(w)) | w ∈ L(Π) } ⊆ Ω∗
Π

is actually regular. Now we are ready to define the main notion of this paper,
the regulated parallel communicating grammar systems.

Definition 1. Let Π be a PCGS, and let R be a regular language over ΩΠ .
Then the language L(Π,R) that is generated by Π regulated by R is defined as

L(Π,R) = {w ∈ L(Π) | ∃Π-derivation D(w) : ex-T(D(w)) ∈ R }.

The pair (Π,R) is called a regulated parallel communicating grammar system
(RPCGS, for short ). We say that the PCGS Π is regulated by R, and also that
a Π-derivation D(w) satisfying ex-T(D(w)) ∈ R is regulated by R.
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Thus, in an RPCGS (Π,R), a Π-derivation D(w) is admissible only if it satis-
fies the additional condition that ex-T(D(w)) belongs to the regular language R.
This is exactly the same mechanism that is used in (context-free) grammars with
regular control (see, e.g., [2]). In the case of regular components, the parallel com-
municating grammar system with rule synchronization studied by Pǎun in [11]
is a special case of regulated parallel communicating grammar systems, as the
control languages used by Pǎun correspond to regular languages of the form M∗,
where M is a finite subset of ΩΠ .

It is easily seen that the regular control set R ⊆ Ω∗
Π of an RPCGS (Π,R)

can be modified in such a way that, for each regulated Π-derivation D(w), there
exists an equivalent regulated Π-derivation that is reduced.

Informally the communication complexity com(D) of a Π-derivation D is the
number of communications performed within this derivation; analogously, the
distribution complexity of D is the degree of distribution DD(D) defined above,
and the generation complexity of D is the number of generative sections in D.
The communication complexity, the distribution complexity, and the generation
complexity of a language and the associated complexity classes are now defined
in the usual way (always considering the corresponding maximum). These three
complexity measures are closely related.

Fact 2. Let Π be a (regulated) PCGS of degree m, and let c(n), g(n), and d(n)
be the communication complexity, the generation complexity, and the distribution
complexity of L(Π), respectively. Then g(n) ∈ O(c(n)) and d(n) ∈ O(mc(n)).

Motivated by the analysis by reduction we are mainly interested in those classes
of languages for which these three complexity measures are bounded from above
by constants. For natural numbers c, d, g, we denote the corresponding commu-
nication complexity class for PCGSs by COM(c), the distribution complexity
class by d-DD, the generation complexity class by g-DG, and the complexity
class obtained by combining the restriction on the distribution complexity with
the restriction on the generation complexity by d-g-DDG. Analogously, the cor-
responding complexity classes for RPCGSs are denoted by RCOM(c), d-RDD,
g-RDG, and d-g-RDDG, respectively.

When only the master component of an (R)PCGS may use communication
symbols, then we speak of a centralized (R)PCGS. This is in contrast to the
general case of non-centralized (R)PCGSs, in which each component grammar
may use communication symbols. By d-g-C(R)DDG we will denote the class of
languages that are generated by centralized (R)PCGSs with distribution and
generation complexity d and g, respectively.

Fact 3. Let (Π,R) be an RPCGS with constant communication complexity.
Then there exists a regular language R′ over ΩΠ such that L(Π,R) = L(Π,R′),
and every derivation regulated by R′ is reduced.

It follows from Fact 3 that, if (Π,R) is an RPCGS of degree m with constant com-
munication complexity, then there exists a constant e(Π,R) such that, whenever
D(w) is a reduced regulated Π-derivation the j-th generative section of which
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contains more than e(Π,R) many generative steps, then at least one of the fac-
tors g(i, j,D(w)) (1 ≤ i ≤ m) is changed in this generative section. Based on
pumping arguments also the following observation follows easily.

Fact 4. If (Π,R) is an RPCGS with constant communication complexity, then
the set of regulated Π-derivations that do not contain a generative cycle is finite.

As our first result we separate the language class d-g-(C)RDDG from the class
d-g-(C)DDG by presenting a corresponding example language.

Example 1. Let Σ = {0, 1}, let h be the morphism that is induced by h(0) = 1
and h(1) = 0, let L = {wh(w) | w ∈ Σ∗ }, and let Π be the PCGS that consists
of the following two component grammars G1 and G2:

G1 : S1 → N, N → 0N | 1N | Q2, N
′ → ε,

G2 : S2 → M, M → 0M | 1M | N ′.

For the regular control we take the language

R =
(
S1

S2

){(
0N
1M

)
,

(
1N
0M

)}∗(
Q2

N ′

)(
N ′

S2

)(
ε

M

)
.

First consider the unregulated case. In the first step of a Π-derivation both
grammars use their unique starting rule. Thereafter, both grammars choose a
symbol 0 or 1 from Σ nondeterministically and independently of each other.
Finally, one communication followed by a final generative step completes the
derivation. It is easily seen that L(Π) = {ww′ | w,w′ ∈ Σ∗, |w| = |w′| }.
In the regulated case, however, the regular control language R coordinates the
nondeterministic choices of G1 and G2. It follows that L(Π,R) = L.

Observe that there is a kind of indirect communication between the two com-
ponent grammars in every step of a regulated derivation in the RPCGS (Π,R)
from Example 1, while the communication complexity of (Π,R) is just one. On
the other hand, there is no unregulated PCGS with constant communication
complexity for the language generated by (Π,R).

Theorem 1. L = {wh(w) | w ∈ Σ∗ } ∈ COM(O(1)).

Proof. Assume that L ∈ COM(k) for some constant k ∈ N, and let Π =
(N,K,Σ,G1, . . . , Gm) be a PCGS generating L with communication complexity
at most k. We consider a word w = α1α2 · · ·αnh(α1) · · ·h(αn) that satisfies the
following conditions:

1. n > 2k+1, and
2. for all i = 1, . . . , n, αi = 0ji1ji , where ji is chosen in such a way that neither

0ji nor 1ji can be generated without a generative cycle.

Let D be a reduced Π-derivation of w. The choice of n guarantees that there
exists an index i such that the complete sub-word αi is generated by one of the
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component grammars of Π within a single generative section g. For brevity we
call this particular component grammar I.

From the choice of αi = 0ji1ji it follows that there are two generative cycles
C0 and C1 of length �0 and �1, respectively, within the generative section g such
that component grammar I generates a nonempty factor 0Δ0 of αi in cycle C0

and a nonempty factor 1Δ1 of αi in cycle C1. Since D is a reduced derivation,
repetitions of either C0 and/or C1 will result in a longer terminal word. By simple
pumping arguments it follows that there must be another component grammar,
say H , that generates the factor 1Δ0 of h(αi) in cycle C0 and the factor 0Δ1 of
h(αi) in cycle C1.

Now, we consider two derivations D(0) and D(1) such that D(0) is obtained
from D by repeating the cycle C0 (�1 + 1) times, while D(1) is obtained from
D by repeating the cycle C1 (�0 + 1) times. Thus, in both derivations we have
added the same number �0 · �1 of generative steps to generative section g. This
implies that we obtain a valid Π-derivation D(0, 1), if I behaves as in derivation
D(0), while H (and all other components) behave as in derivation D(1). The
word w′ generated by this derivation has the form

w′ = α1 · · ·αi−1βiαi+1 · · ·αnh(α1) · · ·h(αi−1)γih(αi+1) · · ·h(αn),

where βi = 0ji+(Δ0·	1)1ji and γi = 1ji0ji+(Δ1·	0). As w′ ∈ L, this contradicts
our assumption that L(Π) = L. It follows that L is not generated by any PCGS
with constant communication complexity. �

As the RPCGS from Example 1 is centralized, we obtain the following separation
results.

Theorem 2. For all d, g ≥ 2,
(a) d-g-DDG � d-g-RDDG and (b) d-g-CDDG � d-g-CRDDG.

2.3 Freely Rewriting Restarting Automata

Here we introduce the particular type of restarting automaton we are interested
in in this paper.

A freely rewriting restarting automaton, abbreviated as FRR automaton, is
a nondeterministic machine that consists of a finite-state control, a single flex-
ible tape with end markers, and a read/write window of a fixed size k ≥ 1
that can move along this tape. Formally, it is described by an 8-tuple M =
(Q,Σ, Γ, c, $, q0, k, δ), where Q denotes a finite set of (internal) states that con-
tains the initial state q0, Σ is a finite input alphabet, and Γ is a finite tape
alphabet that contains Σ. The elements of Γ � Σ are called auxiliary symbols.
The additional symbols c, $ ∈ Γ are used as markers for the left and right end
of the workspace, respectively. They cannot be removed from the tape. The be-
havior of M is described by a transition function δ that associates a finite set
of transition steps to each pair of the form (q, x), where q is a state and x is a
possible content of the read/write window.
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There are four types of transition steps: move-right steps, rewrite steps, restart
steps, and accept steps. A move-right step simply shifts the read/write window
one position to the right and changes the internal state. A rewrite step causes
M to replace a non-empty prefix u of the content of the read/write window by
a word v satisfying |v| ≤ |u|, and to change the state. Further, the read/write
window is placed immediately to the right of the string v. However, some re-
strictions apply in that neither a move-right step nor a rewrite step can shift
the read/write window across the right sentinel $. A restart step causes M to
place its read/write window over the left end of the tape, so that the first sym-
bol it sees is the left sentinel c, and to reenter the initial state q0. Finally, an
accept step simply causes M to halt and accept. However, it is more convenient
for our purposes to describe FRR automata through so-called meta-instructions
(see below).

A configuration of M is described by a string αqβ, where q ∈ Q, and either
α = ε and β ∈ {c} · Γ ∗ · {$} or α ∈ {c} · Γ ∗ and β ∈ Γ ∗ · {$}; here q represents
the current state, αβ is the current content of the tape, and it is understood
that the window contains the first k symbols of β or all of β when |β| ≤ k. A
restarting configuration is of the form q0cw$, where w ∈ Γ ∗.

Any computation of M consists of certain phases. A phase, called a cycle,
starts in a restarting configuration. The window is shifted along the tape by
move-right and rewrite operations until a restart operation is performed and
thus a new restarting configuration is reached. If no further restart operation is
performed, then the computation necessarily finishes in a halting configuration
– such a phase is called a tail. It is required that in each cycle M performs at
least one rewrite step that is strictly length-decreasing. Thus, each cycle strictly
reduces the length of the tape. We use the notation w +c

M z to denote a cycle
of M that begins with the restarting configuration q0cw$ and ends with the
restarting configuration q0cz$; the relation +c∗

M is the reflexive and transitive
closure of +c

M . An FRR automaton is called t-rewriting for an integer t ≥ 1, if
it does not perform more than t rewrite steps in any cycle or tail. By t-FRR we
denote the class of all t-rewriting FRR automata.

A rewriting meta-instruction for a t-rewriting FRR automaton M is of the
form

(E1, u1 → v1, E2, u2 → v2, E3, . . . , Ei, ui → vi, Ei+1),

where 1 ≤ i ≤ t, E1, . . . , Ei+1 are regular expressions, and uj , vj ∈ Γ ∗ are strings
satisfying k ≥ |uj | ≥ |vj | for all j = 1, . . . , i. The rules uj → vj , 1 ≤ j ≤ i, em-
body rewrite steps of M . On trying to execute this meta-instruction, M will
get stuck (and so reject) starting from the restarting configuration C1 = q0cw$,
if w does not admit a factorization of the form w = w1u1w2u2 · · ·wiuiwi+1

such that cw1 ∈ E1, w2 ∈ E2, . . . , wi+1$ ∈ Ei+1. On the other hand, if
w does have factorizations of this form, then one such factorization is chosen
nondeterministically, and C1 is transformed into the restarting configuration
C2 = q0cw1v1w2v2w3 · · ·wiviwi+1$. To describe the tails of accepting computa-
tions of M we use meta-instructions of the form (c ·E · $,Accept), which accepts
the sentences from the regular language E.
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A word w ∈ Γ ∗ is accepted by M , if there is an accepting computation
which starts from the restarting configuration q0cw$. By LC(M) we denote the
so-called characteristic language of M , which is the language consisting of all
words accepted by M . By PrΣ we denote the projection from Γ ∗ onto Σ∗, that
is, PrΣ is the morphism defined by a �→ a (a ∈ Σ) and A �→ ε (A ∈ Γ � Σ). If
v := PrΣ(w), then v is the Σ-projection of w, and w is an expanded version of v.
For a language L ⊆ Γ ∗, PrΣ(L) := {PrΣ(w) | w ∈ L }. Further, for K ⊆ Γ , |x|K
denotes the number of occurrences of symbols from K in x.

In recent papers (see, e.g., [6]) restarting automata were mainly used as ac-
ceptors. The main focus was on the so-called (input) language of a restarting
automaton M , that is, the set L(M) := LC(M)∩Σ∗. Here, motivated by linguis-
tic considerations to model the analysis by reduction with parallel processing,
we are rather interested in the so-called proper language of M , which is the set
of words LP(M) := PrΣ(LC(M)). Realize that the main difference between the
input language and the proper language lies in the way in which auxiliary sym-
bols are inserted into the (terminal) words of the language. For words from the
input language, auxiliary symbols can only be inserted by the automaton itself
in the course of a computation, while for words from the proper language, the
auxiliary symbols are provided beforehand by an outside source, e.g., a linguist.

Based on the number of auxiliary symbols that are allowed in a word two dif-
ferent classes of FRR automata have been considered in the literature –lexicalized
and linearized FRR automata [7,8,10]. Here, however, we will restrict the use
of auxiliary symbols even further, as we will only consider FRR automata for
which the number of auxiliary symbols that may occur concurrently on the tape
is bounded from above by a constant.

In a real process of analysis by reduction of a sentence of a natural language it
is desired that whatever is done within the process does not change the correct-
ness of the sentence. For restarting automata this property can be formalized as
follows.

Definition 5. (Correctness Preserving Property.) An FRR automaton M
is correctness preserving if w ∈ LC(M) and w +c∗

M z imply that z ∈ LC(M), too.

While each deterministic FRR automaton is obviously correctness preserving,
there are nondeterministic FRR automata which are not correctness preserving.

In traditional linguistics the syntactic analysis of central-European languages
is often substituted by a procedure, which we call characteristic analysis. In
fact, in the Czech Republic the characteristic analysis is taught manually in
middle-schools.

Definition 6. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be an FRR automaton that is
correctness preserving, and let w ∈ Σ∗. Then the set

AC(w,M) := {wC ∈ Γ ∗ | wC ∈ LC(M) and PrΣ(wC) = w }

is called the characteristic analysis of w by M . The size of AC(w,M) is called
the characteristic ambiguity of w by M .
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Note that the assumption of the correctness preserving property in the above
definition is quite important. It ensures the so-called ‘syntactic completeness’
of categories used in the characteristic analysis; in our approach we use auxil-
iary symbols to model these categories. The notions of correctness preserving
property, syntactic completeness, and characteristic analysis are derived from
the linguistic method of ‘analysis by reduction’ as described, e.g., in [5].

3 Analysis by Reduction and Regulated Parallel
Communicating Grammar Systems

In [9] the current authors present a transformation that, from a PCGS Π of
degree m with constant distribution complexity d and constant generation com-
plexity g, yields a correctness preserving d-rewriting FRR automaton M of a
very restricted form such that LP(M) = L(Π). The basic idea of this trans-
formation is as follows. Let w be a word from L(Π). For each (reduced) Π-
derivation of w, there exists a factorization of w into generative factors of the
form w = g(i1, j1)g(i2, j2) · · · g(ir, jr) ∈ L(Π). From the bounds d and g for the
distribution and generation complexity, respectively, it follows that the number
r of these factors is bounded from above by the product g · d.

The FRR automaton M is given a word of the form

wC := Δ0,kΔ1,k g(i1, j1)Λ1,kΔ2,k g(i2, j2)Λ2,k . . . Δr,k g(ir, jr)Λr,kΔr+1,k

as input, where Δ0,k, . . . , Δr+1,k and Λ1,k, . . . , Λr,k are auxiliary symbols. These
symbols describe a particular Π-derivation without cycles (and its communica-
tion structure). From Fact 4 we know that the set of Π-derivations of this form
is finite.

The FRR automaton M processes this input as follows. In each cycle M
first nondeterministically chooses an index j of a generative section, and then
it consistently removes the rightmost generative cycle from each occurrence of
each of the factors g(i, j) (1 ≤ i ≤ m) in w. Observe that there are possibly
several occurrences of the factors g(i, j). This is actually an interesting formal
example of the mutual independence in the linguistic sense (in the sense of
dependency theory) of the segments with different indices j and j′. On the other
hand the segments with the same index j are mutually dependent in a sense,
which strongly resembles the linguistic notion of valency. Here (the information
stored in) the symbols of the form Δt,k are used to verify that the simplifications
of the various occurrences of factors g(i, j) is consistent with the particular Π-
derivation without cycles encoded in the word wC , while (the information stored
in) the symbols of the form Λt,k are used to ensure that all simplifications of
occurrences of factors g(i, j) are consistent with each other. In fact, in each
rewrite operation M replaces an auxiliary symbol of the form Λt,k by another
auxiliary symbol of the form Λ′

t,k, and there is at least one rewrite operation
in each cycle that removes a non-empty factor consisting of terminals (input
symbols). M repeatedly executes such cycles until a word is obtained that does
not contain any generative cycles anymore.
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Motivated by the properties of the FRR automaton M above we now define
the notion of a skeleton preserving automaton. To simplify the definition, we first
present some notation.

Let s, r ∈ N+, let SP be a set of symbols, and let

φ : SP → {1, . . . , s} × {1, . . . , r}

be a mapping. Then SP (i) and SP (i, j) will be used to denote the following
subsets of SP for all 1 ≤ i ≤ s and 1 ≤ j ≤ r:

SP (i) = {χ | ∃ j′ : φ(χ) = (i, j′) } and SP (i, j) = {χ | φ(χ) = (i, j) }.

Further, for an FRR automaton M , let SC(M) denote the simple characteris-
tic language of M , which is the set of words w ∈ Γ ∗ that M accepts in tail
computations.

Definition 7. Let r, s ∈ N+, and let M = (Q,Σ, Γ, c, $, q0, k, δ) be a correctness
preserving t-rewriting FRR automaton for which the language SC(M) is finite.
M is a skeleton preserving [s, r, t]-automaton if there exists a sub-alphabet SP
of Γ of cardinality |SP | ≤ s · r and a mapping φ : SP → {1, . . . , s} × {1, . . . , r}
such that all of the following properties are satisfied:

1. Each w ∈ LC(M) can be written as w = x1Λ1Θ1x2Λ2Θ2 · · ·xr′Λr′Θr′ , where
r′ ≤ r, x1, . . . , xr′ ∈ Σ∗, Θ1, . . . , Θr′ ∈ SP (i) for some 1 ≤ i ≤ s, and
Λ1, . . . , Λr′ ∈ V = Γ � (SP ∪ Σ). We call xiΛiΘi the i-th skeletal factor
of w.

2. For all w ∈ LC(M) and all χ ∈ SP , |w|χ ≤ 1.
3. Each rewriting meta-instruction I of M can be written as a sequence of

constraints separated by rewriting rules, that is,

I = (C(0),W1, C
(1),W2, . . . ,Wt′ , C

(t′))

for some t′ ≤ t such that
– Wa = (Σ∗, xayazaΛaΘa → xazaΛ

′
aΘa) for all 1 ≤ a ≤ t′, where xayaza ∈

Σ∗, Λa, Λ
′
a ∈ V , and Θa ∈ SP ,

– |y1y2 . . . yt′ | > 0, and Θ1, Θ2, . . . , Θt′ ∈ SP (i, j) for some i and j,
– C(j) = Σ∗ ·Λj(1)Θj(1) ·Σ∗ ·Λj(2)Θj(2) · · ·Σ∗ ·Λj(	(j))Θj(	(j)) for all j, where

Θj(1), Θj(2), . . . , Θj(	(j)) ∈ SP , and Λj(1), Λj(2), . . . , Λj(	(j)) ∈ V .
4. Whenever f = xiΛiΘi is a factor of w ∈ LC(M) such that |f | > k, then

there is an applicable cycle of M containing a rewrite step that deletes some
symbols from f .

The set SP is called the skeletal set of M , and V is the set of variables of M .
As elements of SP are neither inserted, nor removed, nor changed during any
computation of M , we call them islands. Further, SP (i) is the i-th skeleton, and
SP (i, j) is the j-th level of the i-th skeleton.
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The construction of the FRR automaton M in [9] as outlined above can be
modified in such a way that we obtain the following result.

Theorem 3. For each L ∈ d-g-RDDG, there exists a positive integer i such that
there is a skeleton preserving [i, g·d, d]-FRR automaton M such that L = LP(M).
Moreover, the number of auxiliary symbols in w ∈ LC(M) is bounded from above
by the constant 2 · g · d.
Here the number i corresponds to the number of reduced regulated Π-derivations
without a generative cycle, and for each value of i, the corresponding i-th skeleton
SP (i) is used to describe the factorization of a word w ∈ L(Π,R) into its
generative factors according to this particular Π-derivation. The second index
j corresponds to an index of a generative section of this Π-derivation, and the
elements of the j-th level SP (i, j) of the i-th skeleton are used to mark the
occurrences of the generative factors g(l, j) (1 ≤ l ≤ m) in w.

As in [9] the following result can be established for the characteristic analysis
AC(w,M) of a word w by a skeleton preserving FRR automaton M .

Proposition 1. Let M be a skeleton preserving [i, g · d, d]-FRR automaton.
Then, for each w ∈ Σ∗, the characteristic ambiguity of w by M is bounded
from above by O(|Γ � Σ|2·g·d · ng·d), and the characteristic analysis AC(w,M)
of w by M can be computed in time O(|Γ � Σ|2·g·d · ng·d · (n + 2 · g · d)2).
Together with Theorem 3 this proposition has the following consequence.

Corollary 1. For each language L ∈ d-g-RDDG, the membership problem can
be solved in time O(2O(2·g·d) · ng·d · (n + 2 · g · d)2).

Let M be a skeleton preserving FRR automaton. From Properties 1 and 4 of
Definition 7 it follows that each cycle w +c

M w1 unambiguously determines an
index j such that the rewrite steps executed involve the j-th level SP (i, j) of
the skeleton SP (i) occurring in w.

Each rewrite step of a skeleton preserving automaton M is a kind of suffix
rewrite on a syllable ending with an island. Further, from the assumptions of
Definition 7 we see that the language SC(M) is finite. As suffix rewrites preserve
regularity, it follows that all Σ-syllables of words from LC(M) satisfy some
regularity constraints. This implies the following important result.

Corollary 2. The languages LC(M) and LP(M) are semi-linear for each skele-
ton preserving FRR automaton M .

To complete our intended characterization we now present a transformation of
a skeleton preserving FRR automaton into an RPCGS. To this end we first
introduce some technical notions that reflect the structural properties of com-
putations of skeleton preserving FRR automata.

Let wC = v1Λ1Θ1v2Λ2Θ2 · · · vrΛrΘr ∈ LC(M), where viΛiΘi are the skeletal
factors of wC (1 ≤ i ≤ r). Then the sequence Θ1, Θ2, . . . , Θr is called the skeletal
structure of wC . Obviously, the skeletal structure of wC is preserved during the
whole computation (analysis by reduction) of M on wC .

The basis for our transformation is the following technical result.
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Proposition 2. Let M = (Q,Σ, Γ, c, $, q0, k, δ) be a skeleton preserving [s, 1, 1]-
automaton with a single island θ. Then there is a right-linear grammar Gθ =
(Vθ, Σ, Sθ, Pθ) such that L(Gθ) = LP(M). Moreover, Gθ can be designed in such
a way that it simulates M ’s computations step-by-step in reverse order.

Proof. It is easily seen that the language accepted by a skeleton preserving
[s, 1, 1]-automaton M with a single island θ is regular. So a right-linear grammar
Gθ can easily be constructed that simulates M ’s computations step-by-step in
reverse order. �

Based on this proposition we obtain the following main result.

Theorem 4. LP(M) ∈ d-(g · d)-CRDDG for each skeleton preserving [s, g ·d, d]-
FRR automaton M .

Below we give an outline of the proof, which is followed by a detailed example
illustrating it.

Proof outline. Let SP = {θ1, . . . , θm} be the skeletal set of M , and let V be the
set of variables of M (see Definition 7). For a skeletal structure σ and an island
θj occurring in σ, ordσ(θj) denotes the order of θj in σ, and elemσ(i) = j, if
ordσ(θj) = i. The construction of the RPCGS (Π,R) for the language LP(M)
is given in six steps, where Π = (N,K,Σ,GM , G1 . . . , Gm).
1. For every θ ∈ SP , a skeleton preserving [s, 1, 1]-automaton Mθ is obtained
from M as follows:
(a) For all θ′ ∈ SP , and all α ∈ Σ∗ ·V , if θ′αθ is a factor of a word from SC(M),

or if αθ is a prefix of a word from SC(M), then αθ is accepted by a tail
computation of Mθ.

(b) Each meta-instruction I = (C(0),W1, C
(1), . . . ,Wi, . . . , C

(t′)) of M , where
the rewriting rule Wi contains the island θ, is converted into a meta-instruc-
tion of the form Iθ = Wi.

2. Let Hθi denote the regular grammar for LP(Mθi) that is obtained from Mθi ac-
cording to Proposition 2. To define G1, . . . , Gm we slightly modify Hθ1 , . . . , Hθm ,
letting them work in parallel and checking consistency with the help of a reg-
ular control language R. The nonterminals of Gi, 1 ≤ i ≤ m, are modelled as
pairs, the first component of which is used to represent a nonterminal of the
grammar Hθi . To enforce consistency of the various components working in par-
allel, each grammar Gi guesses a skeletal structure σ in its first step such that
θi occurs in σ, and remembers σ in the second components of its nonterminals.
Accordingly, Gi has the start rules

Sθi →
{

(Sθi , σ), if θi occurs in σ,
(∗, σ), otherwise.

3. Productions of the form A → A, where A denotes a nonterminal symbol, are
added to the grammar Gi to give it the option to idle. This is necessary for
allowing the simulation of cycles of M in which θi is not involved. In particular,
(∗, σ) → (∗, σ) is the only production with left-hand side (∗, σ).
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4. In order to enable the master grammar GM to compose the terminal word
to be derived, we add to Gi rules of the form A → Tordσ(θ′), where θ′ is the
right-hand neighbor of θi in σ, and A → x is a rule in Hθi such that x is a
terminal string. The nonterminal Tj can be seen as a message to the master to
ask Gj for a communication. With the exception of GM , Tj → Tj is the only
production applicable to Tj.
5. The derivation of the master grammar GM can be given by the following
expression, where σ runs over all possible skeletal structures:

SM → (SM , σ), {(SM , σ) → (SM , σ)}∗, (SM , σ) → Qelemσ(1),
Telemσ(1) → Qelemσ(2), . . . , Telemσ(|σ|−1) → Qelemσ(|σ|).

6. Finally, the regular language R is constructed to verify that all grammars have
guessed the same skeletal structure σ, and that the productions applied in (non-
idling) component grammars in each derivation step correspond to a rewriting
meta-instruction of M applicable in a computation over a word with skeletal
structure σ. In addition, all other component grammars have to be idling. �

The following simple example is included in order to illustrate the proof outline
above.

Example 2. Let Σ = {a, b, c, d}, let h : {a, c}∗ → {b, d}∗ be the morphism given
by h(a) = b and h(c) = d, and let L2 be the following language:

L2 = {wh(w)w1h(w1)h(w) | w,w1 ∈ {a, c}∗ }.

First we present a skeleton preserving [1, 5, 3]-FRR automaton M2 such that
L2 = LP(M2). The input alphabet of M2 is Σ, and M2 uses the skeletal set
SP2 = {[1, 1, 1], [1, 1, 2], [1, 2, 3], [1, 2, 4], [1, 1, 5]}, and exactly one variable A.
The structural mapping φ2 of this skeletal set is given by φ2([1, i, j]) = [1, i] for
all [1, i, j] ∈ SP2. We see that SP2 consists of a single skeleton σ with two levels.

The behaviour of M2 is given by the following five meta-instructions :

Ia,1 = (Σ∗, aA[1, 1, 1] → A[1, 1, 1], Σ∗, bA[1, 1, 2] → A[1, 1, 2],
Σ∗ ·A[1, 2, 3] ·Σ∗ ·A[1, 2, 4], Σ∗, bA[1, 1, 5] → A[1, 1, 5]);

Ic,1 = (Σ∗, cA[1, 1, 1] → [1, 1, 1], Σ∗, dA[1, 1, 2] → A[1, 1, 2],
Σ∗ ·A[1, 2, 3] ·Σ∗ ·A[1, 2, 4], Σ∗, dA[1, 1, 5] → A[1, 1, 5]);

Ia,2 = (Σ∗ · A[1, 1, 1] ·Σ∗ ·A[1, 1, 2], Σ∗, aA[1, 2, 3] → A[1, 2, 3],
Σ∗, bA[1, 2, 4] → A[1, 2, 4], Σ∗ ·A[1, 1, 5]);

Ic,2 = (Σ∗ · A[1, 1, 1] ·Σ∗ ·A[1, 1, 2], Σ∗, cA[1, 2, 3] → A[1, 2, 3],
Σ∗, dA[1, 2, 4] → A[1, 2, 4], Σ∗ · A[1, 1, 5]);

Iacc = (A[1, 1, 1]A[1, 1, 2]A[1, 2, 3]A[1, 2, 4]A[1, 1, 5],Accept).

It is not hard to see that

LC(M2) = {wA[1, 1, 1]h(w)A[1, 1, 2]w1A[1, 2, 3]h(w1)A[1, 2, 4]h(w)A[1, 1, 5] |
w,w1 ∈ {a, c}∗ },
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and that the above meta-instructions are correctness preserving. In particular, it
follows that M2 is indeed a skeleton preserving [1, 5, 3]-FRR automaton satisfying
LP(M2) = L2.

Next we construct a regulated PCGS (Π2, R2) step by step which generates
the language L2, simulating M2. The construction illustrates the underlying
ideas of the proof of Theorem 4.

First we describe the master GM2 of Π2. It has the following productions, in
which the symbols [1, 1, 1], [1, 1, 2], [1, 2, 3], [1, 2, 4], [1, 1, 5] are used as commu-
nication symbols:

SM → (SM , σ), (SM , σ) → (SM , σ), (SM , σ) → [1, 1, 1],
T1 → [1, 1, 2], T2 → [1, 2, 3], T3 → [1, 2, 4], T4 → [1, 1, 5].

Observe that GM2 does not use any terminals at all.
Next we describe the remaining component grammars of Π2. These are the

grammars G[1,1,1], G[1,1,2], G[1,1,5], G[1,2,3], and G[1,2,4]. Observe that the first
three of these grammars must idle after returning to their start symbol, while the
latter two of these grammars need not idle after generating terminal symbols.
Accordingly, these grammars are given be the following sets of productions:

G[1,1,1] : S[1,1,1] → (S[1,1,1], σ), (S[1,1,1], σ) → (S[1,1,1], σ),
(S[1,1,1], σ) → (A[1,1,1], σ), (A[1,1,1], σ) → a(A[1,1,1], σ),
(A[1,1,1], σ) → c(A[1,1,1], σ), (A[1,1,1], σ) → T1,

T1 → T1;

G[1,1,2] : S[1,1,2] → (S[1,1,2], σ), (S[1,1,2], σ) → (S[1,1,2], σ),
(S[1,1,2], σ) → (A[1,1,2], σ), (A[1,1,2], σ) → b(A[1,1,2], σ),
(A[1,1,2], σ) → d(A[1,1,2], σ), (A[1,1,2], σ) → T2,

T2 → T2;

G[1,1,5] : S[1,1,5] → (S[1,1,5], σ), (S[1,1,5], σ) → (S[1,1,5], σ),
(S[1,1,5], σ) → (A[1,1,5], σ), (A[1,1,5], σ) → b(A[1,1,5], σ),
(A[1,1,5], σ) → d(A[1,1,5], σ), (A[1,1,5], σ) → T5,

T5 → T5, T5 → ε;

G[1,2,3] : S[1,2,3] → (S[1,2,3], σ), (S[1,2,3], σ) → (S[1,2,3], σ),
(S[1,2,3], σ) → (A[1,2,3], σ), (A[1,2,3], σ) → a(A[1,2,3], σ),
(A[1,2,3], σ) → c(A[1,2,3], σ), (A[1,2,3], σ) → T3,

T3 → T3;

G[1,2,4] : S[1,2,4] → (S[1,2,4], σ), (S[1,2,4], σ) → (S[1,2,4], σ),
(S[1,2,4], σ) → (A[1,2,4], σ), (A[1,2,4], σ) → b(A[1,2,4], σ),
(A[1,2,4], σ) → d(A[1,2,4], σ), (A[1,2,4], σ) → T4,

T4 → T4.
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It remains to describe the regular control language R2 for the set of admissible
extended traces of Π2. The task of R2 is to force Π2 to first generate the factors
of the first level, then the factors of the second level, and finally to compose the
final word generated by the master in the correct way. The language R2 is given
through the following regular expression:

R2 =⎛⎜⎜⎜⎜⎜⎝
SM

S[1,1,1]

S[1,1,2]

S[1,1,5]

S[1,2,3]

S[1,2,4]

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)
(S[1,1,1], σ)
(S[1,1,2], σ)
(S[1,1,5], σ)
(S[1,2,3], σ)
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⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

c(A[1,1,1], σ)
d(A[1,1,2], σ)
d(A[1,1,5], σ)
(S[1,2,3], σ)
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∗

·

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

T1

T2

T5

(S[1,2,3], σ)
(S[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

T1

T2

ε
(A[1,2,3], σ)
(A[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

T1

T2

ε
a(A[1,2,3], σ)
b(A[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

T1

T2

ε
c(A[1,2,3], σ)
d(A[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠
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∗ ⎛⎜⎜⎜⎜⎜⎝
(SM , σ)

T1

T2

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎜⎝
[1, 1, 1]

T1

T2

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠
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T1

S[1,1,1]

T2

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠
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[1, 1, 2]

(S[1,1,1], σ)
T2

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T2

(S[1,1,1], σ)
S[1,1,2]

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
[1, 2, 3]

(S[1,1,1], σ)
(S[1,1,2], σ)

ε
T3

T4

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T3

(S[1,1,1], σ)
(S[1,1,2], σ)

ε
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T4

⎞⎟⎟⎟⎟⎟⎠ ·
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[1, 2, 4]

(S[1,1,1], σ)
(S[1,1,2], σ)

ε
(S[1,2,3], σ)

T4

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
T4

(S[1,1,1], σ)
(S[1,1,2], σ)

ε
(S[1,2,3], σ)

S[1,2,4]

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
[1, 2, 5]

(S[1,1,1], σ)
(S[1,1,2], σ)

ε
(S[1,2,3], σ)
(S[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝
ε

(S[1,1,1], σ)
(S[1,1,2], σ)

S[1,1,5]

(S[1,2,3], σ)
(S[1,2,4], σ)

⎞⎟⎟⎟⎟⎟⎠
It is now easily verified that the regulated PCGS (Π2, R2) generates the lan-

guage LP(M2) = L2.

From Theorems 3 and 4 we obtain the following consequence.

Corollary 3. For each L ∈ RCOM(O(1)), there is a centralized RPCGS (Π,R)
with constant communication complexity such that L = L(Π,R).

4 Conclusion

Here we have introduced regulated PCGS, and derived the following interesting
results on regulated PCGSs with constant communication complexity:



Parallel Communicating Grammar Systems 359

– Regulated PCGSs are more expressive than non-regulated PCGSs.
– The centralized variant is as expressive as the non-centralized variant.
– A language L can be generated by an RPCGS if and only if it is the proper

language of a skeleton preserving FRR automaton. Accordingly, L is semi-
linear, the characteristic analysis for each of its elements is of polynomial
size, and the membership problem for L can be solved in polynomial time.

However, it remains to compare the regulated PCGSs introduced here to the
PC grammar systems with regular components and with rule synchronization of
Pǎun [11]. Further, it remains to derive closure and non-closure properties for
the class of languages that can be generated by regulated PCGSs with constant
communication complexity. Also it remains to study regulated PCGSs with a
higher degree of communication complexity.

Acknowledgement. We are grateful to an anonymous referee for pointing us
to Pǎun’s article [11].
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generation of languages. In: Privara, I., Ružička, P., Rovan, B. (eds.) MFCS 1994.
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6. Otto, F.: Restarting automata. In: Ésik, Z., Mart́ın-Vide, C., Mitrana, V. (eds.)
Recent Advances in Formal Languages and Applications. Studies in Computational
Intelligence, vol. 25, pp. 269–303. Springer, Heidelberg (2006)
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